WorldWideScience

Sample records for adult dorsal spinal

  1. Expression of nerve growth factor in spinal dorsal horn following crushed spinal cord injury

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    AIM: The aim of this study was to explore the expression of nerve growth factor(NGF) in spinal dorsal horn following crushed spinal cord injury. METHODS: The adult Srague-Dawley rat model of crushed spinal cord injury was established by the method in our laboratory, and intact spinal cord was used as control. The rats were sacrificed respectively after 24 hours, 7 days, and 21 days of operation, and the L3 spinal segments were removed out and fixed in 4% polyformaldehyde. The segments were sectioned into sections of 20 μm in thickness. The sections were stained with anti-NGF antibody by ABC method of immunohistochemistry technique. The immunoreactive intensity of NGF and the number of positive neurons as well as glial cells in dorsal horn were observed and counted under light microscope. RESULTS: The number of positive cells and immunoreactive intensity of NGF increased gradually in the dorsal horn at 24 hours, 7 days and 21 days following crushed spinal cord injury compared with control group (P<0.01). CONCLUSION: These results indicated that NGF plays an important role in the postoperative reaction during the early period of the crushed spinal cord injury.

  2. Langerhans' cell histiocytosis involving posterior elements of the dorsal spine: An unusual cause of extradural spinal mass in an adult.

    Science.gov (United States)

    Tyagi, Devendra K; Balasubramaniam, Srikant; Savant, Hemant V

    2011-07-01

    Langerhans cell histiocytosis (LCH) is a clonal proliferation of Langerhans cells occurring as an isolated lesion or as part of a systemic proliferation. It is commoner in children younger than 10 years of age with sparing of the posterior elements in more than 95% of cases. We describe a case of LCH in an adult female presenting with paraplegia. MRI revealed a well-defined extradural contrast enhancing mass at D2-D4 vertebral level involving the posterior elements of spine. D2-5 laminectomy with excision of lesion was performed which lead to marked improvement of patients neurological status. Histopathology was suggestive of eosinophilic granuloma. We describe the case, discuss its uniqueness and review the literature on this rare tumor presentation.

  3. Langerhans′ cell histiocytosis involving posterior elements of the dorsal spine: An unusual cause of extradural spinal mass in an adult

    Directory of Open Access Journals (Sweden)

    Devendra K Tyagi

    2011-01-01

    Full Text Available Langerhans cell histiocytosis (LCH is a clonal proliferation of Langerhans cells occurring as an isolated lesion or as part of a systemic proliferation. It is commoner in children younger than 10 years of age with sparing of the posterior elements in more than 95% of cases. We describe a case of LCH in an adult female presenting with paraplegia. MRI revealed a well-defined extradural contrast enhancing mass at D2-D4 vertebral level involving the posterior elements of spine. D2-5 laminectomy with excision of lesion was performed which lead to marked improvement of patients neurological status. Histopathology was suggestive of eosinophilic granuloma. We describe the case, discuss its uniqueness and review the literature on this rare tumor presentation.

  4. Glial glutamate transporter and glutamine synthetase regulate GABAergic synaptic strength in the spinal dorsal horn.

    Science.gov (United States)

    Jiang, Enshe; Yan, Xisheng; Weng, Han-Rong

    2012-05-01

    Decreased GABAergic synaptic strength ('disinhibition') in the spinal dorsal horn is a crucial mechanism contributing to the development and maintenance of pathological pain. However, mechanisms leading to disinhibition in the spinal dorsal horn remain elusive. We investigated the role of glial glutamate transporters (GLT-1 and GLAST) and glutamine synthetase in maintaining GABAergic synaptic activity in the spinal dorsal horn. Electrically evoked GABAergic inhibitory post-synaptic currents (eIPSCs), spontaneous IPSCs (sIPSCs) and miniature IPSCs were recorded in superficial spinal dorsal horn neurons of spinal slices from young adult rats. We used (2S,3S)-3-[3-[4-(trifluoromethyl)benzoylamino]benzyloxy]aspartate (TFB-TBOA), to block both GLT-1 and GLAST and dihydrokainic acid to block only GLT-1. We found that blockade of both GLAST and GLT-1 and blockade of only GLT-1 in the spinal dorsal horn decreased the amplitude of GABAergic eIPSCs, as well as both the amplitude and frequency of GABAergic sIPSCs or miniature IPSCs. Pharmacological inhibition of glial glutamine synthetase had similar effects on both GABAergic eIPSCs and sIPSCs. We provided evidence demonstrating that the reduction in GABAergic strength induced by the inhibition of glial glutamate transporters is due to insufficient GABA synthesis through the glutamate-glutamine cycle between astrocytes and neurons. Thus, our results indicate that deficient glial glutamate transporters and glutamine synthetase significantly attenuate GABAergic synaptic strength in the spinal dorsal horn, which may be a crucial synaptic mechanism underlying glial-neuronal interactions caused by dysfunctional astrocytes in pathological pain conditions. PMID:22339645

  5. The homeodomain factor Gbx1 is required for locomotion and cell specification in the dorsal spinal cord

    Directory of Open Access Journals (Sweden)

    Hamid Meziane

    2013-08-01

    Full Text Available Dorsal horn neurons in the spinal cord integrate and relay sensory information to higher brain centers. These neurons are organized in specific laminae and different transcription factors are involved in their specification. The murine homeodomain Gbx1 protein is expressed in the mantle zone of the spinal cord at E12.5-13.5, correlating with the appearance of a discernable dorsal horn around E14 and eventually defining a narrow layer in the dorsal horn around perinatal stages. At postnatal stages, Gbx1 identifies a specific subpopulation of GABAergic neurons in the dorsal spinal cord. We have generated a loss of function mutation for Gbx1 and analyzed its consequences during spinal cord development. Gbx1−/− mice are viable and can reproduce as homozygous null mutants. However, the adult mutant mice display an altered gait during forward movement that specifically affects the hindlimbs. This abnormal gait was evaluated by a series of behavioral tests, indicating that locomotion is impaired, but not muscle strength or motor coordination. Molecular analysis showed that the development of the dorsal horn is not profoundly affected in Gbx1−/− mutant mice. However, analysis of terminal neuronal differentiation revealed that the proportion of GABAergic inhibitory interneurons in the superficial dorsal horn is diminished. Our study unveiled a role for Gbx1 in specifying a subset of GABAergic neurons in the dorsal horn of the spinal cord involved in the control of posterior limb movement.

  6. Plasticity and Recovery After Dorsal Column Spinal Cord Injury in Nonhuman Primates.

    Science.gov (United States)

    Reed, Jamie L; Liao, Chia-Chi; Qi, Hui-Xin; Kaas, Jon H

    2016-01-01

    Here, we review recent work on plasticity and recovery after dorsal column spinal cord injury in nonhuman primates. Plasticity in the adult central nervous system has been established and studied for the past several decades; however, capacities and limits of plasticity are still under investigation. Studies of plasticity include assessing multiple measures before and after injury in animal models. Such studies are particularly important for improving recovery after injury in patients. In summarizing work by our research team and others, we suggest how the findings from plasticity studies in nonhuman primate models may affect therapeutic interventions for conditions involving sensory loss due to spinal cord injury. PMID:27578996

  7. SURGICAL ANATOMY OF DORSAL ROOT ENTRY ZONE OF CERVICAL SPINAL NERVES : CADAVERIC STUDY

    Directory of Open Access Journals (Sweden)

    A.Arun Kumar

    2014-06-01

    Full Text Available Background: The main purpose of this study is to determine the detailed morphometric data of Dorsal Root Entry Zone (DREZ of cervical spinal nerves. This knowledge is necessary for diagnosis, treatment and surgical management of pain due to many conditions like brachial plexus avulsion injury, post-herpetic neuralgia, phantom pain and cancer pain involved in cervical myelo-radiculopathy. There are fewer studies reported in this field of DREZ. Materials and Methods: Twenty five adult formalin fixed cadavers are taken for this study. Conventional Spinal cord dissection is followed as per Cunningham’s Dissection Mannual. Findings: The parameters included are Number of dorsal rootlets, Longitudinal Length of DREZ, Distance between two successive DREZ, Length of dorsal rootlets, Distance between right and left DREZ, Distance between DREZ and Ligamentum denticulatum, Cranial angles of Superior & inferior rootlets. Results: Results were noted for all the parameters and are compared with the previous studies. The significant observations are obtained. Conclusion: Surgical anatomy of Dorsal Root Entry Zone (DREZ of cervical spinal nerves will be useful for the neurosurgeons doing Drezotomy procedure, in which the nociceptive fibres alone are specifically severed with preservation of other sensations

  8. Spinal Deformity, Dorsal Kyphosis and Bone Mineral Density

    Directory of Open Access Journals (Sweden)

    Banu Kuran

    2003-06-01

    Full Text Available It has been show that spine deformity index is a better indicator of the functional capacity of the osteoporotic patient than the number of vertebral fractures. In order to investigate the relation between spinal deformity, dorsal kyphosis and the bone mineral density, we undertook the following study. In 40 postmenopausal women (age 59,1±7 spine deformity index (SDI was calculated by lateral roentgenograms of the dorsal and lumbar spine. 25 subjects at premenopausal age were also x-rayed to find the normal limits. Dorsal kyphosis (DK was measured by Cobb’s angle. Bone mineral density (BMD of the lumbar spine and proximal femur were measured by DEXA. Pearson’s correlation coefficient and Student’s t-test were used as statistical analysis. The results show that there was a significant correlation between DK and SDI. BMD's at femoral neck and lumbar spine were not correlated with DK and SDI (p>0,05. In patients with 40 degrees. The difference was not significant. We conclude that as the spinal deformity increases, DK is expected to increase and BMD is expected to decrease.

  9. Transcriptional control of GABAergic neuron development in the dorsal spinal cord

    Institute of Scientific and Technical Information of China (English)

    Huang Jing; Wu Shengxi

    2008-01-01

    GABAergic neurons are the major inhibitory interneurons that powerfully control the function of spinal neuronalnet works. In recent years, tremendous progresses have been made in understanding the transcriptional control of GABAergic neuron development in the dorsal spinal cord. New experimental approaches provide a relatively high throughput way to study the molecular regulation of subgroup fate determination. Our understanding of the molecular mechanisms on GABAergic neuron development in the dorsal spinal cord is rapidly expanding. Recent studies have defined several transcription factors that play essential roles in GABAergic neuron development in the spinal dorsal horn. Here, we review results of very recent analyses of the mechanisms that specify the GABAergic neuron development in the dorsal spinal cord, especially the progresses in the homeodomain (HD) and basic-helix-loop-helix(bHLH) containing transcription factors.

  10. SDF1 in the dorsal corticospinal tract promotes CXCR4+ cell migration after spinal cord injury

    Directory of Open Access Journals (Sweden)

    Jung Hosung

    2011-02-01

    Full Text Available Abstract Background Stromal cell-derived factor-1 (SDF1 and its major signaling receptor, CXCR4, were initially described in the immune system; however, they are also expressed in the nervous system, including the spinal cord. After spinal cord injury, the blood brain barrier is compromised, opening the way for chemokine signaling between these two systems. These experiments clarified prior contradictory findings on normal expression of SDF1 and CXCR4 as well as examined the resulting spinal cord responses resulting from this signaling. Methods These experiments examined the expression and function of SDF1 and CXCR4 in the normal and injured adult mouse spinal cord primarily using CXCR4-EGFP and SDF1-EGFP transgenic reporter mice. Results In the uninjured spinal cord, SDF1 was expressed in the dorsal corticospinal tract (dCST as well as the meninges, whereas CXCR4 was found only in ependymal cells surrounding the central canal. After spinal cord injury (SCI, the pattern of SDF1 expression did not change rostral to the lesion but it disappeared from the degenerating dCST caudally. By contrast, CXCR4 expression changed dramatically after SCI. In addition to the CXCR4+ cells in the ependymal layer, numerous CXCR4+ cells appeared in the peripheral white matter and in the dorsal white matter localized between the dorsal corticospinal tract and the gray matter rostral to the lesion site. The non-ependymal CXCR4+ cells were found to be NG2+ and CD11b+ macrophages that presumably infiltrated through the broken blood-brain barrier. One population of macrophages appeared to be migrating towards the dCST that contains SDF1 rostral to the injury but not towards the caudal dCST in which SDF1 is no longer present. A second population of the CXCR4+ macrophages was present near the SDF1-expressing meningeal cells. Conclusions These observations suggest that attraction of CXCR4+ macrophages is part of a programmed response to injury and that modulation of the

  11. Endoplasmic reticulum stress impairment in the spinal dorsal horn of a neuropathic pain model.

    Science.gov (United States)

    Zhang, Enji; Yi, Min-Hee; Shin, Nara; Baek, Hyunjung; Kim, Sena; Kim, Eunjee; Kwon, Kisang; Lee, Sunyeul; Kim, Hyun-Woo; Chul Bae, Yong; Kim, Yonghyun; Kwon, O-Yu; Lee, Won Hyung; Kim, Dong Woon

    2015-01-01

    Endoplasmic reticulum (ER) stress has been implicated in neurodegenerative diseases, but its role in neuropathic pain remains unclear. In this study, we examined the ER stress and the unfolded protein response (UPR) activation in a L5 spinal nerve ligation (SNL)-induced rat neuropathic pain model. SNL-induced neuropathic pain was assessed behaviorally using the CatWalk system, and histologically with microglial activation in the dorsal spinal horn. L5 SNL induced BIP upregulation in the neuron of superficial laminae of dorsal spinal horn. It also increased the level of ATF6 and intracellular localization into the nuclei in the neurons. Moreover, spliced XBP1 was also markedly elevated in the ipsilateral spinal dorsal horn. The PERK-elF2 pathway was activated in astrocytes of the spinal dorsal horn in the SNL model. In addition, electron microscopy revealed the presence of swollen cisternae in the dorsal spinal cord after SNL. Additionally, inhibition of the ATF6 pathway by intrathecal treatment with ATF6 siRNA reduced pain behaviors and BIP expression in the dorsal horn. The results suggest that ER stress might be involved in the induction and maintenance of neuropathic pain. Furthermore, a disturbance in UPR signaling may render the spinal neurons vulnerable to peripheral nerve injury or neuropathic pain stimuli. PMID:26109318

  12. Oscillatory interaction between dorsal root excitability and dorsal root potentials in the spinal cord of the turtle

    DEFF Research Database (Denmark)

    Delgado-Lezama, R; Perrier, J F; Hounsgaard, J

    1999-01-01

    The response to dorsal root stimulation, at one to two times threshold, was investigated in the isolated cervical enlargement of the turtle spinal cord. At frequencies near 10 Hz the synaptic response in motoneurons and the cord dorsum potential, after an initial lag time, oscillated in amplitude...

  13. Monosynaptic connections between primary afferents and giant neurons in the turtle spinal dorsal horn

    DEFF Research Database (Denmark)

    Fernández, A; Radmilovich, M; Russo, R E;

    1996-01-01

    This paper reports the occurrence of monosynaptic connections between dorsal root afferents and a distinct cell type-the giant neuron-deep in the dorsal horn of the turtle spinal cord. Light microscope studies combining Nissl stain and transganglionic HRP-labeling of the primary afferents have...

  14. Estimation of fiber diameters in the spinal dorsal columns from clinical data

    NARCIS (Netherlands)

    Wesselink, Wilbert A.; Holsheimer, Jan; Nuttin, Bart; Boom, Herman B.K.; King, Gary W.; Gybels, Jan M.; Sutter, de Paul

    1998-01-01

    Lack of human morphometric data regarding the largest nerve fibers in the dorsal columns (DCs) of the spinal cord has lead to the estimation of the diameters of these fibers from clinical data retrieved from patients with a new spinal cord stimulation (SCS) system. These patients indicated the perce

  15. Neuroimmune and Neuropathic Responses of Spinal Cord and Dorsal Root Ganglia in Middle Age.

    Directory of Open Access Journals (Sweden)

    William Galbavy

    Full Text Available Prior studies of aging and neuropathic injury have focused on senescent animals compared to young adults, while changes in middle age, particularly in the dorsal root ganglia (DRG, have remained largely unexplored. 14 neuroimmune mRNA markers, previously associated with peripheral nerve injury, were measured in multiplex assays of lumbar spinal cord (LSC, and DRG from young and middle-aged (3, 17 month naïve rats, or from rats subjected to chronic constriction injury (CCI of the sciatic nerve (after 7 days, or from aged-matched sham controls. Results showed that CD2, CD3e, CD68, CD45, TNF-α, IL6, CCL2, ATF3 and TGFβ1 mRNA levels were substantially elevated in LSC from naïve middle-aged animals compared to young adults. Similarly, LSC samples from older sham animals showed increased levels of T-cell and microglial/macrophage markers. CCI induced further increases in CCL2, and IL6, and elevated ATF3 mRNA levels in LSC of young and middle-aged adults. Immunofluorescence images of dorsal horn microglia from middle-aged naïve or sham rats were typically hypertrophic with mostly thickened, de-ramified processes, similar to microglia following CCI. Unlike the spinal cord, marker expression profiles in naïve DRG were unchanged across age (except increased ATF3; whereas, levels of GFAP protein, localized to satellite glia, were highly elevated in middle age, but independent of nerve injury. Most neuroimmune markers were elevated in DRG following CCI in young adults, yet middle-aged animals showed little response to injury. No age-related changes in nociception (heat, cold, mechanical were observed in naïve adults, or at days 3 or 7 post-CCI. The patterns of marker expression and microglial morphologies in healthy middle age are consistent with development of a para-inflammatory state involving microglial activation and T-cell marker elevation in the dorsal horn, and neuronal stress and satellite cell activation in the DRG. These changes, however

  16. Neuroimmune and Neuropathic Responses of Spinal Cord and Dorsal Root Ganglia in Middle Age.

    Science.gov (United States)

    Galbavy, William; Kaczocha, Martin; Puopolo, Michelino; Liu, Lixin; Rebecchi, Mario J

    2015-01-01

    Prior studies of aging and neuropathic injury have focused on senescent animals compared to young adults, while changes in middle age, particularly in the dorsal root ganglia (DRG), have remained largely unexplored. 14 neuroimmune mRNA markers, previously associated with peripheral nerve injury, were measured in multiplex assays of lumbar spinal cord (LSC), and DRG from young and middle-aged (3, 17 month) naïve rats, or from rats subjected to chronic constriction injury (CCI) of the sciatic nerve (after 7 days), or from aged-matched sham controls. Results showed that CD2, CD3e, CD68, CD45, TNF-α, IL6, CCL2, ATF3 and TGFβ1 mRNA levels were substantially elevated in LSC from naïve middle-aged animals compared to young adults. Similarly, LSC samples from older sham animals showed increased levels of T-cell and microglial/macrophage markers. CCI induced further increases in CCL2, and IL6, and elevated ATF3 mRNA levels in LSC of young and middle-aged adults. Immunofluorescence images of dorsal horn microglia from middle-aged naïve or sham rats were typically hypertrophic with mostly thickened, de-ramified processes, similar to microglia following CCI. Unlike the spinal cord, marker expression profiles in naïve DRG were unchanged across age (except increased ATF3); whereas, levels of GFAP protein, localized to satellite glia, were highly elevated in middle age, but independent of nerve injury. Most neuroimmune markers were elevated in DRG following CCI in young adults, yet middle-aged animals showed little response to injury. No age-related changes in nociception (heat, cold, mechanical) were observed in naïve adults, or at days 3 or 7 post-CCI. The patterns of marker expression and microglial morphologies in healthy middle age are consistent with development of a para-inflammatory state involving microglial activation and T-cell marker elevation in the dorsal horn, and neuronal stress and satellite cell activation in the DRG. These changes, however, did not

  17. Evidence that dorsal locus coeruleus neurons can maintain their spinal cord projection following neonatal transection of the dorsal adrenergic bundle in rats.

    Science.gov (United States)

    Stanfield, B B

    1989-01-01

    In adult rats, locus coeruleus neurons which extend axons to the spinal cord are found only at mid-rostrocaudal levels of the nucleus, where they are essentially confined to its ventral, wedge-shaped half (Satoh et al. 1980; Westlund et al. 1983; Loughlin et al. 1986). However, during early postnatal development, coeruleospinal cells are found throughout the locus coeruleus (Cabana and Martin 1984; Chen and Stanfield 1987). This developmental restriction of the distribution of coeruleospinal neurons is due to axonal elimination rather than to cell death, since neurons retrogradely labeled through their spinal axons perinatally are still present in the dorsal portion of the locus coeruleus at survival periods beyond the age at which these cells lose their spinal projection (Chen and Stanfield 1987). I now report that if axons ascending from the locus coeruleus are cut by transecting the dorsal adrenergic bundle on the day of birth, a more widespread distribution of coeruleospinal neurons is retained beyond the perinatal period. These results not only indicate that the absence of the normally maintained collateral of a locus coeruleus neuron is sufficient to prevent the elimination of a collateral which would otherwise be lost, but also may imply that during normal postnatal development the presence of the maintained collateral is somehow causally involved in the elimination of the transient collateral. PMID:2612596

  18. Brain and Spinal Cord Tumors in Adults

    Science.gov (United States)

    ... saved articles window. My Saved Articles » My ACS » Brain and Spinal Cord Tumors in Adults Download Printable ... the topics below to get started. What Is Brain/CNS Tumors In Adults? What are adult brain ...

  19. Responses of spinal dorsal horn neurons to foot movements in rats with a sprained ankle

    OpenAIRE

    Kim, Jae Hyo; Kim, Hee Young; Chung, Kyungsoon; Chung, Jin Mo

    2011-01-01

    Acute ankle injuries are common problems and often lead to persistent pain. To investigate the underlying mechanism of ankle sprain pain, the response properties of spinal dorsal horn neurons were examined after ankle sprain. Acute ankle sprain was induced manually by overextending the ankle of a rat hindlimb in a direction of plantarflexion and inversion. The weight-bearing ratio (WBR) of the affected foot was used as an indicator of pain. Single unit activities of dorsal horn neurons in res...

  20. Nikolaus Friedreich and degenerative atrophy of the dorsal columns of the spinal cord

    OpenAIRE

    Koeppen, Arnulf H.

    2013-01-01

    Nikolaus Friedreich (1825-1882) presented clinical findings in 6 patients with a severe hereditary disorder of the nervous system and secured full autopsies in 4 of them. He was fascinated by the spinal cord lesions in the siblings of two unrelated families, and in the first 3 of his 5 long articles stressed the destruction of the dorsal columns. He recognized the relatively minor symmetrical lesions of the anterolateral fasciculi but did not separate dorsal spinocerebellar tracts (Flechsig’s...

  1. Rapid identification of spinal ventral and dorsal roots using a quartz crystal microbalance

    Institute of Scientific and Technical Information of China (English)

    Tao Sui; Jun Que; Dechao Kong; Hao Xie; Daode Wang; Kun Shi; Xiaojian Cao; Xiang Li

    2013-01-01

    The fast and accurate identification of nerve tracts is critical for successful nerve anastomosis. Taking advantage of differences in acetylcholinesterase content between the spinal ventral and dorsal roots, we developed a novel quartz crystal microbalance method to distinguish between these nerves based on acetylcholinesterase antibody reactivity. The acetylcholinesterase antibody was immobilized on the electrode surface of a quartz crystal microbalance and reacted with the acetylcholinesterase in sample solution. The formed antigen and antibody complexes added to the mass of the electrode inducing a change in frequency of the electrode. The spinal ventral and dorsal roots were distinguished by the change in frequency. The ventral and dorsal roots were cut into 1 to 2-mm long segments and then soaked in 250 μL PBS. Acetylcholinesterase antibody was immobilized on the quartz crystal microbalance gold electrode surface. The results revealed that in 10 minutes, both spinal ventral and dorsal roots induced a frequency change; however, the frequency change induced by the ventral roots was notably higher than that induced by the dorsal roots. No change was induced by bovine serum albumin or PBS. These results clearly demonstrate that a quartz crystal microbalance sensor can be used as a rapid, highly sensitive and accurate detection tool for the quick identification of spinal nerve roots intraoperatively.

  2. Reversal of neurochemical alterations in the spinal dorsal horn and dorsal root ganglia by Mas-related gene (Mrg) receptors in a rat model of spinal nerve injury.

    Science.gov (United States)

    Wang, Dongmei; Xue, Yaping; Yan, Yanhua; Lin, Minjie; Yang, Jiajia; Huang, Jianzhong; Hong, Yanguo

    2016-07-01

    The rodent Mas-related gene (Mrg) receptor subtype C has been demonstrated to inhibit pathological pain. This study investigated the mechanisms underlying the reversal of pain hypersensitivity by the selective MrgC receptor agonist bovine adrenal medulla 8-22 (BAM8-22) in a rat model of L5 spinal nerve ligation (SNL). Intrathecal (i.t.) administration of BAM8-22 (0.1-10nmol) attenuated mechanical allodynia in a dose-dependent manner on day 10 after SNL. The antiallodynia effect of BAM8-22 was abolished by MrgC receptor antibody, but not by naloxone. I.t. BAM8-22 (10nmol) inhibited SNL-induced upregulation of neuronal nitric oxide synthesis (nNOS) and phosphorylation of cyclic AMP response element-binding protein (p-CREB) in the spinal dorsal horn. The BAM8-22 treatment reversed the SNL-induced astrocyte activation, increase of interleukin-1β (IL-1β) expression and phosphorylation of extracellular signal-regulated kinase (p-ERK) in the spinal cord. BAM8-22 also reversed the upregulation of fractalkine and IL-1β in small- and medium-sized dorsal root ganglion (DRG) neurons. Furthermore, the BAM8-22 exposure suppressed the lipopolysaccharide (LPS)-induced increase of nNOS and IL-1β in the DRG explant cultures and the BAM8-22-induced suppression disappeared in the presence of MrgC receptor antibody. The present study provides evidence that activation of MrgC receptors inhibits nerve injury-induced increase of pronociceptive molecules in DRG neurons, suppressing astrocyte activation, the upregulation of excitatory mediators and phosphorylation of transcription factors in the spinal dorsal horn. As MrgC receptors are unequally expressed in the dorsal root and trigeminal ganglia, this study suggests that targeting MrgC receptors could be a new therapy for neuropathic pain with limited unwanted effects. PMID:27018398

  3. Loss of Hoxb8 alters spinal dorsal laminae and sensory responses in mice

    OpenAIRE

    Holstege, Jan; de Graaff, Wim; Hossaini, Mehdi; Cano, S.C.; Jaarsma, Dick; Deschamps, Jacqueline; Akker, Eric

    2008-01-01

    textabstractAlthough Hox gene expression has been linked to motoneuron identity, a role of these genes in development of the spinal sensory system remained undocumented. Hoxb genes are expressed at high levels in the dorsal horn of the spinal cord. Hoxb8 null mutants manifest a striking phenotype of excessive grooming and hairless lesions on the lower back. Applying local anesthesia underneath the hairless skin suppressed excessive grooming, indicating that this behavior depends on peripheral...

  4. Sensory Afferents Regenerated into Dorsal Columns after Spinal Cord Injury Remain in a Chronic Pathophysiological State

    OpenAIRE

    Tan, Andrew M.; Petruska, Jeffrey C.; Mendell, Lorne M.; Levine, Joel M.

    2007-01-01

    Axon regeneration after experimental spinal cord injury (SCI) can be promoted by combinatorial treatments that increase the intrinsic growth capacity of the damaged neurons and reduce environmental factors that inhibit axon growth. A prior peripheral nerve conditioning lesion is a well established means of increasing the intrinsic growth state of sensory neurons whose axons project within the dorsal columns of the spinal cord. Combining such a prior peripheral nerve conditioning lesion with t...

  5. Endoplasmic reticulum stress impairment in the spinal dorsal horn of a neuropathic pain model

    OpenAIRE

    Enji Zhang; Min-Hee Yi; Nara Shin; Hyunjung Baek; Sena Kim; Eunjee Kim; Kisang Kwon; Sunyeul Lee; Hyun-Woo Kim; Yong Chul Bae; Yonghyun Kim; O.-Yu Kwon; Won Hyung Lee; Dong Woon Kim

    2015-01-01

    Endoplasmic reticulum (ER) stress has been implicated in neurodegenerative diseases, but its role in neuropathic pain remains unclear. In this study, we examined the ER stress and the unfolded protein response (UPR) activation in a L5 spinal nerve ligation (SNL)-induced rat neuropathic pain model. SNL-induced neuropathic pain was assessed behaviorally using the CatWalk system, and histologically with microglial activation in the dorsal spinal horn. L5 SNL induced BIP upregulation in the neuro...

  6. The majority of dorsal spinal cord gastrin releasing peptide is synthesized locally whereas neuromedin B is highly expressed in pain- and itch-sensing somatosensory neurons

    Directory of Open Access Journals (Sweden)

    Fleming Michael S

    2012-07-01

    Full Text Available Abstract Background Itch is one of the major somatosensory modalities. Some recent findings have proposed that gastrin releasing peptide (Grp is expressed in a subset of dorsal root ganglion (DRG neurons and functions as a selective neurotransmitter for transferring itch information to spinal cord interneurons. However, expression data from public databases and earlier literatures indicate that Grp mRNA is only detected in dorsal spinal cord (dSC whereas its family member neuromedin B (Nmb is highly expressed in DRG neurons. These contradictory results argue that a thorough characterization of the expression of Grp and Nmb is warranted. Findings Grp mRNA is highly expressed in dSC but is barely detectable in DRGs of juvenile and adult mice. Anti-bombesin serum specifically recognizes Grp but not Nmb. Grp is present in a small number of small-diameter DRG neurons and in abundance in layers I and II of the spinal cord. The reduction of dSC Grp after dorsal root rhizotomy is significantly different from those of DRG derived markers but similar to that of a spinal cord neuronal marker. Double fluorescent in situ of Nmb and other molecular markers indicate that Nmb is highly and selectively expressed in nociceptive and itch-sensitive DRG neurons. Conclusion The majority of dSC Grp is synthesized locally in dorsal spinal cord neurons. On the other hand, Nmb is highly expressed in pain- and itch-sensing DRG neurons. Our findings provide direct anatomic evidence that Grp could function locally in the dorsal spinal cord in addition to its roles in DRG neurons and that Nmb has potential roles in nociceptive and itch-sensitive neurons. These results will improve our understanding about roles of Grp and Nmb in mediating itch sensation.

  7. Responses of spinal dorsal horn neurons to foot movements in rats with a sprained ankle.

    Science.gov (United States)

    Kim, Jae Hyo; Kim, Hee Young; Chung, Kyungsoon; Chung, Jin Mo

    2011-05-01

    Acute ankle injuries are common problems and often lead to persistent pain. To investigate the underlying mechanism of ankle sprain pain, the response properties of spinal dorsal horn neurons were examined after ankle sprain. Acute ankle sprain was induced manually by overextending the ankle of a rat hindlimb in a direction of plantarflexion and inversion. The weight-bearing ratio (WBR) of the affected foot was used as an indicator of pain. Single unit activities of dorsal horn neurons in response to plantarflexion and inversion of the foot or ankle compression were recorded from the medial part of the deep dorsal horn, laminae IV-VI, in normal and ankle-sprained rats. One day after ankle sprain, rats showed significantly reduced WBRs on the affected foot, and this reduction was partially restored by systemic morphine. The majority of deep dorsal horn neurons responded to a single ankle stimulus modality. After ankle sprain, the mean evoked response rates were significantly increased, and afterdischarges were developed in recorded dorsal horn neurons. The ankle sprain-induced enhanced evoked responses were significantly reduced by morphine, which was reversed by naltrexone. The data indicate that movement-specific dorsal horn neuron responses were enhanced after ankle sprain in a morphine-dependent manner, thus suggesting that hyperactivity of dorsal horn neurons is an underlying mechanism of pain after ankle sprain. PMID:21389306

  8. SURGICAL ANATOMY OF DORSAL ROOT ENTRY ZONE OF CERVICAL SPINAL NERVES : CADAVERIC STUDY

    OpenAIRE

    A Arun Kumar; Sudha Seshayyan; V.Tamilalagan; Sindou, M

    2014-01-01

    Background: The main purpose of this study is to determine the detailed morphometric data of Dorsal Root Entry Zone (DREZ) of cervical spinal nerves. This knowledge is necessary for diagnosis, treatment and surgical management of pain due to many conditions like brachial plexus avulsion injury, post-herpetic neuralgia, phantom pain and cancer pain involved in cervical myelo-radiculopathy. There are fewer studies reported in this field of DREZ. Materials and Methods: Twenty five...

  9. Xenon inhibits excitatory but not inhibitory transmission in rat spinal cord dorsal horn neurons

    Directory of Open Access Journals (Sweden)

    Baba Hiroshi

    2010-05-01

    Full Text Available Abstract Background The molecular targets for the promising gaseous anaesthetic xenon are still under investigation. Most studies identify N-methyl-D-aspartate (NMDA receptors as the primary molecular target for xenon, but the role of α-amino-3-hydroxy-5-methyl-4-isoxazole-4-propionic acid (AMPA receptors is less clear. In this study we evaluated the effect of xenon on excitatory and inhibitory synaptic transmission in the superficial dorsal horn of the spinal cord using in vitro patch-clamp recordings from rat spinal cord slices. We further evaluated the effects of xenon on innocuous and noxious stimuli using in vivo patch-clamp method. Results In vitro, xenon decreased the amplitude and area under the curve of currents induced by exogenous NMDA and AMPA and inhibited dorsal root stimulation-evoked excitatory postsynaptic currents. Xenon decreased the amplitude, but not the frequency, of miniature excitatory postsynaptic currents. There was no discernible effect on miniature or evoked inhibitory postsynaptic currents or on the current induced by inhibitory neurotransmitters. In vivo, xenon inhibited responses to tactile and painful stimuli even in the presence of NMDA receptor antagonist. Conclusions Xenon inhibits glutamatergic excitatory transmission in the superficial dorsal horn via a postsynaptic mechanism. There is no substantial effect on inhibitory synaptic transmission at the concentration we used. The blunting of excitation in the dorsal horn lamina II neurons could underlie the analgesic effect of xenon.

  10. [Endovascular treatment of spinal dorsal intradural arteriovenous fistulas].

    Science.gov (United States)

    Santos-Franco, Jorge Arturo; Collado-Arce, María Griselda Lizbeth; Dávila-Romero, Julio César; Saavedra-Andrade, Rafael; Sandoval-Balanzario, Miguel Antonio

    2015-01-01

    Introducción: las fístulas arteriovenosas intradurales dorsales espinales (FAVIDE) son lesiones poco frecuentes y complejas que son subdiagnósticadas y condicionan discapacidad. El objetivo es presentar nuestra experiencia en el manejo endovascular. Métodos: estudio ambispectivo de pacientes con FAVIDE, tratados mediante terapia endovascular (TEV) con n-butil-cianoacrilato en el periodo de 2007 a 2013. Resultados: se incluyeron 15 pacientes con edad media de 37 años. En 12 casos la presentación fue progresiva e insidiosa en un lapso de entre 6 meses y un año, mientras que 3 presentaron hemorragia. La lesión tuvo localización torácica en 73 % de los casos, lumbar en 20 % y cervical en 7 %. Previo al tratamiento observamos discapacidad de grados 5 y 4 en 73 %, y 67 % tenían alteraciones de la micción de grado 3. Como complicaciones, solo una paciente tuvo deterioro del estado de alerta transitorio 6 horas después del procedimiento. Se encontró una mejoría hacia los grados 1 y 2 de discapacidad, a las 48 horas, 3 y 6 meses, de 53 %, 73 % y 87 %, respectivamente. Conclusiones: con la TEV se tiene un tiempo quirúrgico corto, el volumen de hemorragia es bajo y la estancia hospitalaria es corta, respecto de otras técnicas quirúrgicas. La TEV es un procedimiento seguro y con efectividad significativa en el tratamiento de FAVIDE. Esta es la primera serie de casos tratados con TEV en México.

  11. Dorsal root potential produced by a TTX-insensitive micro-circuitry in the turtle spinal cord

    DEFF Research Database (Denmark)

    Russo, R E; Delgado-Lezama, R; Hounsgaard, J

    2000-01-01

    1, The mechanisms underlying the dorsal root potential (DRP) were studied in transverse slices of turtle spinal cord. DRPs were evoked by stimulating one filament in a dorsal root and were recorded from another such filament. 2. The DRP evoked at supramaximal stimulus intensity was reduced...

  12. Expressing Constitutively Active Rheb in Adult Dorsal Root Ganglion Neurons Enhances the Integration of Sensory Axons that Regenerate Across a Chondroitinase-Treated Dorsal Root Entry Zone Following Dorsal Root Crush.

    Science.gov (United States)

    Wu, Di; Klaw, Michelle C; Kholodilov, Nikolai; Burke, Robert E; Detloff, Megan R; Côté, Marie-Pascale; Tom, Veronica J

    2016-01-01

    While the peripheral branch of dorsal root ganglion neurons (DRG) can successfully regenerate after injury, lesioned central branch axons fail to regrow across the dorsal root entry zone (DREZ), the interface between the dorsal root and the spinal cord. This lack of regeneration is due to the limited regenerative capacity of adult sensory axons and the growth-inhibitory environment at the DREZ, which is similar to that found in the glial scar after a central nervous system (CNS) injury. We hypothesized that transduction of adult DRG neurons using adeno-associated virus (AAV) to express a constitutively-active form of the GTPase Rheb (caRheb) will increase their intrinsic growth potential after a dorsal root crush. Additionally, we posited that if we combined that approach with digestion of upregulated chondroitin sulfate proteoglycans (CSPG) at the DREZ with chondroitinase ABC (ChABC), we would promote regeneration of sensory axons across the DREZ into the spinal cord. We first assessed if this strategy promotes neuritic growth in an in vitro model of the glial scar containing CSPG. ChABC allowed for some regeneration across the once potently inhibitory substrate. Combining ChABC treatment with expression of caRheb in DRG significantly improved this growth. We then determined if this combination strategy also enhanced regeneration through the DREZ after dorsal root crush in adult rats in vivo. After unilaterally crushing C4-T1 dorsal roots, we injected AAV5-caRheb or AAV5-GFP into the ipsilateral C5-C8 DRGs. ChABC or PBS was injected into the ipsilateral dorsal horn at C5-C8 to digest CSPG, for a total of four animal groups (caRheb + ChABC, caRheb + PBS, GFP + ChABC, GFP + PBS). Regeneration was rarely observed in PBS-treated animals, whereas short-distance regrowth across the DREZ was observed in ChABC-treated animals. No difference in axon number or length between the ChABC groups was observed, which may be related to intraganglionic inflammation induced by the

  13. An Acetylcholinesterase Antibody-Based Quartz Crystal Microbalance for the Rapid Identification of Spinal Ventral and Dorsal Roots

    OpenAIRE

    Tao Sui; Yingbin Ge; Wujun Liu; Zhao, Zongbao K.; Ning Zhang; Xiaojian Cao

    2013-01-01

    Differences in the levels of acetylcholinesterase (AChE) in ventral and dorsal spinal roots can be used to differentiate the spinal nerves. Although many methods are available to assay AChE, a rapid and sensitive method has not been previously developed. Here, we describe an antibody-based quartz crystal microbalance (QCM) assay and its application for the quantification of AChE in the solutions of ventral and dorsal spinal roots. The frequency variation of the QCM device corresponds to the l...

  14. The bHLH factor Olig3 coordinates the specification of dorsal neurons in the spinal cord

    OpenAIRE

    Mueller, T.; Anlag, K.; Wildner, H.; Britsch, S; Treier, M; Birchmeier, C.

    2005-01-01

    Neurons of the dorsal horn integrate and relay sensory information and arise during development in the dorsal spinal cord, the alar plate. Class A and B neurons emerge in the dorsal and ventral alar plate, differ in their dependence on roof plate signals for specification, and settle in the deep and superficial dorsal horn, respectively. We show here that the basic helix-loop-helix (bHLH) gene Olig3 is expressed in progenitor cells that generate class A (dI1-dI3) neurons and that Olig3 is an ...

  15. Three-Dimensional Distribution of Sensory Stimulation-Evoked Neuronal Activity of Spinal Dorsal Horn Neurons Analyzed by In Vivo Calcium Imaging

    OpenAIRE

    Nishida, Kazuhiko; Matsumura, Shinji; Taniguchi, Wataru; Uta, Daisuke; Furue, Hidemasa; Ito, Seiji

    2014-01-01

    The spinal dorsal horn comprises heterogeneous populations of interneurons and projection neurons, which form neuronal circuits crucial for processing of primary sensory information. Although electrophysiological analyses have uncovered sensory stimulation-evoked neuronal activity of various spinal dorsal horn neurons, monitoring these activities from large ensembles of neurons is needed to obtain a comprehensive view of the spinal dorsal horn circuitry. In the present study, we established i...

  16. Depletion of vesicular zinc in dorsal horn of spinal cord causes increased neuropathic pain in mice

    DEFF Research Database (Denmark)

    Jo, Seung; Danscher, Gorm; Schrøder, Henrik;

    2008-01-01

    neuropathic pain we applied Chung's rodent pain model on BALB/c mice, and traced zinc transporter 3 (ZnT3) proteins and zinc ions with immunohistochemistry and autometallography (AMG), respectively. Under anesthesia the left fifth lumbar spinal nerve was ligated in male mice in order to produced neuropathic...... pain. The animals were then sacrificed 5 days later. The ZnT3 immunoreactivity was found to have decreased significantly in dorsal horn of fourth, fifth, and sixth lumbar segments. In parallel with the depressed ZnT3 immunoreactivity the amount of vesicular zinc decreased perceptibly in superficial...

  17. Altered acetylcholinesterase levels in the spinal cord anterior horn and dorsal root ganglion following sciatic nerve ischemia

    Institute of Scientific and Technical Information of China (English)

    Zhenjun Yang; Pei Wang; Songhe Yang; Jingfeng Xue

    2009-01-01

    BACKGROUND: Peripheral nerve ischemia has been shown to result in ischemic fiber degeneration and axoplasmic transport disturbance. However, the effect on acetylcholinesterase (AChE) expression in relevant cells following sciatic nerve ischemia remains unclear. OBJECTIVE: To observe AChE concentration changes following peripheral nerve ischemia. DESIGN, TIME AND SETTING: The present comparative observation, neuroanatomical experiment was performed at the Central Laboratory Animal of Chengde Medical College between 2006 and 2007. MATERIALS: A total of 20 healthy, adult, Wistar rats were randomized into two groups (n = 10): 8-day ischemia and 14-day ischemia. METHODS: Ischemia injury was induced in the unilateral sciatic nerve (experimental side) through ligation of the common iliac artery. The contralateral side received no intervention, and served as the control side. Rats in the 8-day ischemia and 14-day ischemia groups were allowed to survive for 8 and 14 days, respectively. MAIN OUTCOME MEASURES: The L5 lumbar spinal cord and the L5 dorsal root ganglion were removed from both sides and sectioned utilizing a Leica vibrating slicer. AChE cellular expression was detected using Karnovsky-Root, and the number of AChE-positive cells and average gray value were analyzed using a MiVnt image analysis system. RESULTS: In the 8-day ischemia group, AChE-positive cell numbers were significantly less in the dorsal root ganglion and spinal cord anterior horn of the experimental side, but the average gray value was significantly greater, compared with the control side (P < 0.05). These changes were more significant in the 14-day ischemia group than in the 8-day ischemia group (P < 0.01). CONCLUSION: Peripheral nerve ischemia leads to decreased AChE expression in the associated cells in a time-dependent manner.

  18. Developmentally Regulated Expression of HDNF/NT-3 mRNA in Rat Spinal Cord Motoneurons and Expression of BDNF mRNA in Embryonic Dorsal Root Ganglion.

    Science.gov (United States)

    Ernfors, Patrik; Persson, Håkan

    1991-01-01

    Northern blot analysis was used to demonstrate high levels of hippocampus-derived neurotrophic factor/neurotrophin-3 (HDNF/NT-3) mRNA in the embryonic day (E) 13 - 14 and 15 - 16 spinal cord. The level decreased at E18 - 19 and remained the same until postnatal day (P) 1, after which it decreased further to a level below the detection limit in the adult. In situ hybridization revealed that the NT-3 mRNA detected in the developing spinal cord was derived from motoneurons and the decrease seen at E18 - 19 was caused by a reduction in the number of motoneurons expressing NT-3 mRNA. The distribution of NT-3 mRNA-expressing cells in the E15 spinal cord was very similar to the distribution of cells expressing choline acetyltransferase or nerve growth factor receptor (NGFR) mRNA. Moreover, a striking similarity between the developmentally regulated expression of NT-3 and NGFR mRNA was noted in spinal cord motoneurons. A subpopulation of all neurons in the dorsal root ganglia expressed brain-derived neurotrophic factor (BDNF) mRNA from E13, the earliest time examined, to adulthood. These results are consistent with a trophic role of NT-3 for proprioceptive sensory neurons innervating the ventral horn, and imply a local action of BDNF for developing sensory neurons within the dorsal root ganglia. PMID:12106253

  19. Immunostaining for Homer reveals the majority of excitatory synapses in laminae I-III of the mouse spinal dorsal horn

    OpenAIRE

    Gutierrez-Mecinas, Maria; Kuehn, Emily D.; Abraira, Victoria E.; Polgár, Erika; Watanabe, Masahiko; Todd, Andrew J.

    2016-01-01

    The spinal dorsal horn processes somatosensory information before conveying it to the brain. The neuronal organization of the dorsal horn is still poorly understood, although recent studies have defined several distinct populations among the interneurons, which account for most of its constituent neurons. All primary afferents, and the great majority of neurons in laminae I–III are glutamatergic, and a major factor limiting our understanding of the synaptic circuitry has been the difficulty i...

  20. Three-dimensional distribution of sensory stimulation-evoked neuronal activity of spinal dorsal horn neurons analyzed by in vivo calcium imaging.

    Directory of Open Access Journals (Sweden)

    Kazuhiko Nishida

    Full Text Available The spinal dorsal horn comprises heterogeneous populations of interneurons and projection neurons, which form neuronal circuits crucial for processing of primary sensory information. Although electrophysiological analyses have uncovered sensory stimulation-evoked neuronal activity of various spinal dorsal horn neurons, monitoring these activities from large ensembles of neurons is needed to obtain a comprehensive view of the spinal dorsal horn circuitry. In the present study, we established in vivo calcium imaging of multiple spinal dorsal horn neurons by using a two-photon microscope and extracted three-dimensional neuronal activity maps of these neurons in response to cutaneous sensory stimulation. For calcium imaging, a fluorescence resonance energy transfer (FRET-based calcium indicator protein, Yellow Cameleon, which is insensitive to motion artifacts of living animals was introduced into spinal dorsal horn neurons by in utero electroporation. In vivo calcium imaging following pinch, brush, and heat stimulation suggests that laminar distribution of sensory stimulation-evoked neuronal activity in the spinal dorsal horn largely corresponds to that of primary afferent inputs. In addition, cutaneous pinch stimulation elicited activities of neurons in the spinal cord at least until 2 spinal segments away from the central projection field of primary sensory neurons responsible for the stimulated skin point. These results provide a clue to understand neuronal processing of sensory information in the spinal dorsal horn.

  1. Delta opioid receptors presynaptically regulate cutaneous mechanosensory neuron input to the spinal cord dorsal horn.

    Science.gov (United States)

    Bardoni, Rita; Tawfik, Vivianne L; Wang, Dong; François, Amaury; Solorzano, Carlos; Shuster, Scott A; Choudhury, Papiya; Betelli, Chiara; Cassidy, Colleen; Smith, Kristen; de Nooij, Joriene C; Mennicken, Françoise; O'Donnell, Dajan; Kieffer, Brigitte L; Woodbury, C Jeffrey; Basbaum, Allan I; MacDermott, Amy B; Scherrer, Grégory

    2014-03-19

    Cutaneous mechanosensory neurons detect mechanical stimuli that generate touch and pain sensation. Although opioids are generally associated only with the control of pain, here we report that the opioid system in fact broadly regulates cutaneous mechanosensation, including touch. This function is predominantly subserved by the delta opioid receptor (DOR), which is expressed by myelinated mechanoreceptors that form Meissner corpuscles, Merkel cell-neurite complexes, and circumferential hair follicle endings. These afferents also include a small population of CGRP-expressing myelinated nociceptors that we now identify as the somatosensory neurons that coexpress mu and delta opioid receptors. We further demonstrate that DOR activation at the central terminals of myelinated mechanoreceptors depresses synaptic input to the spinal dorsal horn, via the inhibition of voltage-gated calcium channels. Collectively our results uncover a molecular mechanism by which opioids modulate cutaneous mechanosensation and provide a rationale for targeting DOR to alleviate injury-induced mechanical hypersensitivity. PMID:24583022

  2. Direct communication of the spinal subarachnoid space with the rat dorsal root ganglia.

    Science.gov (United States)

    Joukal, Marek; Klusáková, Ilona; Dubový, Petr

    2016-05-01

    The anatomical position of the subarachnoid space (SAS) in relation to dorsal root ganglia (DRG) and penetration of tracer from the SAS into DRG were investigated. We used intrathecal injection of methylene blue to visualize the anatomical position of the SAS in relation to DRG and immunostaining of dipeptidyl peptidase IV (DPP-IV) for detecting arachnoid limiting the SAS. Intrathecal administration of fluorescent-conjugated dextran (fluoro-emerald; FE) was used to demonstrate direct communication between the SAS and DRG. Intrathecal injection of methylene blue and DPP-IV immunostaining revealed that SAS delimited by the arachnoid was extended up to the capsule of DRG in a fold-like recess that may reach approximately half of the DRG length. The arachnoid was found in direct contact to the neuronal body-rich area in the angle between dorsal root and DRG as well as between spinal nerve roots at DRG. Particles of FE were found in the cells of DRG capsule, satellite glial cells, interstitial space, as well as in small and medium-sized neurons after intrathecal injection. Penetration of FE from the SAS into the DRG induced an immune reaction expressed by colocalization of FE and immunofluorescence indicating antigen-presenting cells (MHC-II+), activated (ED1+) and resident (ED2+) macrophages, and activation of satellite glial cells (GFAP+). Penetration of lumbar-injected FE into the cervical DRG was greater than that into the lumbar DRG after intrathecal injection of FE into the cisterna magna. Our results demonstrate direct communication between DRG and cerebrospinal fluid in the SAS that can create another pathway for possible propagation of inflammatory and signaling molecules from DRG primary affected by peripheral nerve injury into DRG of remote spinal segments. PMID:26844624

  3. Milnacipran inhibits glutamatergic N-Methyl-D-Aspartate receptor activity in Spinal Dorsal Horn Neurons

    Directory of Open Access Journals (Sweden)

    Kohno Tatsuro

    2012-06-01

    Full Text Available Abstract Background Antidepressants, which are widely used for treatment of chronic pain, are thought to have antinociceptive effects by blockade of serotonin and noradrenaline reuptake. However, these drugs also interact with various receptors such as excitatory glutamatergic receptors. Thermal hyperalgesia was induced by intrathecal injection of NMDA in rats. Paw withdrawal latency was measured after intrathecal injection of antidepressants. The effects of antidepressants on the NMDA and AMPA-induced responses were examined in lamina II neurons of rat spinal cord slices using the whole-cell patch-clamp technique. The effects of milnacipran followed by application of NMDA on pERK activation were also investigated in the spinal cord. Results Intrathecal injection of milnacipran (0.1 μmol, but not citalopram (0.1 μmol and desipramine (0.1 μmol, followed by intrathecal injection of NMDA (1 μg suppressed thermal hyperalgesia. Milnacipran (100 μM reduced the amplitude of NMDA (56 ± 3 %, 64 ± 5 % of control-, but not AMPA (98 ± 5 %, 97 ± 5 % of control-mediated currents induced by exogenous application and dorsal root stimulation, respectively. Citalopram (100 μM and desipramine (30 μM had no effect on the amplitude of exogenous NMDA-induced currents. The number of pERK-positive neurons in the group treated with milnacipran (100 μM, but not citalopram (100 μM or desipramine (30 μM, followed by NMDA (100 μM was significantly lower compared with the NMDA-alone group. Conclusions The antinociceptive effect of milnacipran may be dependent on the drug’s direct modulation of NMDA receptors in the superficial dorsal horn. Furthermore, in addition to inhibiting the reuptake of monoamines, glutamate NMDA receptors are also important for analgesia induced by milnacipran.

  4. Inhibitory coupling between inhibitory interneurons in the spinal cord dorsal horn

    Directory of Open Access Journals (Sweden)

    Ribeiro-da-Silva Alfredo

    2009-05-01

    Full Text Available Abstract Local inhibitory interneurons in the dorsal horn play an important role in the control of excitability at the segmental level and thus determine how nociceptive information is relayed to higher structures. Regulation of inhibitory interneuron activity may therefore have critical consequences on pain perception. Indeed, disinhibition of dorsal horn neuronal networks disrupts the balance between excitation and inhibition and is believed to be a key mechanism underlying different forms of pain hypersensitivity and chronic pain states. In this context, studying the source and the synaptic properties of the inhibitory inputs that the inhibitory interneurons receive is important in order to predict the impact of drug action at the network level. To address this, we studied inhibitory synaptic transmission in lamina II inhibitory interneurons identified under visual guidance in spinal slices taken from transgenic mice expressing enhanced green fluorescent protein (EGFP under the control of the GAD promoter. The majority of these cells fired tonically to a long depolarizing current pulse. Monosynaptically evoked inhibitory postsynaptic currents (eIPSCs in these cells were mediated by both GABAA and glycine receptors. Consistent with this, both GABAA and glycine receptor-mediated miniature IPSCs were recorded in all of the cells. These inhibitory inputs originated at least in part from local lamina II interneurons as verified by simultaneous recordings from pairs of EGFP+ cells. These synapses appeared to have low release probability and displayed potentiation and asynchronous release upon repeated activation. In summary, we report on a previously unexamined component of the dorsal horn circuitry that likely constitutes an essential element of the fine tuning of nociception.

  5. Neurological complications in adult spinal deformity surgery.

    Science.gov (United States)

    Iorio, Justin A; Reid, Patrick; Kim, Han Jo

    2016-09-01

    The number of surgeries performed for adult spinal deformity (ASD) has been increasing due to an aging population, longer life expectancy, and studies supporting an improvement in health-related quality of life scores after operative intervention. However, medical and surgical complication rates remain high, and neurological complications such as spinal cord injury and motor deficits can be especially debilitating to patients. Several independent factors potentially influence the likelihood of neurological complications including surgical approach (anterior, lateral, or posterior), use of osteotomies, thoracic hyperkyphosis, spinal region, patient characteristics, and revision surgery status. The majority of ASD surgeries are performed by a posterior approach to the thoracic and/or lumbar spine, but anterior and lateral approaches are commonly performed and are associated with unique neural complications such as femoral nerve palsy and lumbar plexus injuries. Spinal morphology, such as that of hyperkyphosis, has been reported to be a risk factor for complications in addition to three-column osteotomies, which are often utilized to correct large deformities. Additionally, revision surgeries are common in ASD and these patients are at an increased risk of procedure-related complications and nervous system injury. Patient selection, surgical technique, and use of intraoperative neuromonitoring may reduce the incidence of complications and optimize outcomes. PMID:27250041

  6. Noxious mechanical heterotopic stimulation induces inhibition of the spinal dorsal horn neuronal network: analysis of spinal somatosensory-evoked potentials.

    Science.gov (United States)

    Meléndez-Gallardo, J; Eblen-Zajjur, A

    2016-09-01

    Most of the endogenous pain modulation (EPM) involves the spinal dorsal horn (SDH). EPM including diffuse noxious inhibitory controls have been extensively described in oligoneuronal electrophysiological recordings but less attention had been paid to responses of the SDH neuronal population to heterotopic noxious stimulation (HNS). Spinal somatosensory-evoked potentials (SEP) offer the possibility to evaluate the neuronal network behavior, reflecting the incoming afferent volleys along the entry root, SDH interneuron activities and the primary afferent depolarization. SEP from de lumbar cord dorsum were evaluated during mechanical heterotopic noxious stimuli. Sprague-Dawley rats (n = 12) were Laminectomized (T10-L3). The sural nerve of the left hind paw was electrically stimulated (5 mA, 0.5 ms, 0.05 Hz) to induce lumbar SEP. The HNS (mechanic clamp) was applied sequentially to the tail, right hind paw, right forepaw, muzzle and left forepaw during sural stimulation. N wave amplitude decreases (-16.6 %) compared to control conditions when HNS was applied to all areas of stimulation. This effect was more intense for muzzle stimulation (-23.5 %). N wave duration also decreased by -23.6 %. HNS did not change neither the amplitude nor the duration of the P wave but dramatically increases the dispersion of these two parameters. The results of the present study strongly suggest that a HNS applied to different parts of the body is able to reduce the integrated electrical response of the SDH, suggesting that not only wide dynamic range neurons but many others in the SDH are modulated by the EPM. PMID:27207681

  7. In vivo longitudinal Myelin Water Imaging in rat spinal cord following dorsal column transection injury.

    Science.gov (United States)

    Kozlowski, Piotr; Rosicka, Paulina; Liu, Jie; Yung, Andrew C; Tetzlaff, Wolfram

    2014-04-01

    Longitudinal Myelin Water Imaging was carried out in vivo to characterize white matter damage following dorsal column transection (DC Tx) injury at the lumbar level L1 of rat spinal cords. A transmit-receive implantable coil system was used to acquire multiple spin-echo (MSE) quantitative T2 data from the lumbar spinal cords of 16 rats at one week pre-injury as well as 3 and 8weeks post-injury (117 microns in-plane resolution and 1.5mm slice thickness). In addition, ex vivo MSE and DTI data were acquired from cords fixed and excised at 3 or 8weeks post injury using a solenoid coil. The MSE data were used to generate Myelin Water Fractions (MWFs) as a surrogate measure of myelin content, while DTI data were acquired to study damage to the axons. Myelin damage was assessed histologically with Eriochrome cyanine (EC) and Myelin Basic Protein in degenerated myelin (dgen-MBP) staining, and axonal damage was assessed by neurofilament-H in combination with neuron specific beta-III-tubulin (NF/Tub) staining. These MRI and histological measures of injury were studied in the dorsal column at 5mm cranial and 5mm caudal to injury epicenter. MWF increased significantly at 3weeks post-injury at both the cranial and caudal sites, relative to baseline. The values on the cranial side of injury returned to baseline at 8weeks post-injury but remained elevated on the caudal side. This trend was found in both in vivo and ex vivo data. This MWF increase was likely due to the presence of myelin debris, which were cleared by 8 weeks on the cranial, but not the caudal, side. Both EC and dgen-MBP stains displayed similar trends. MWF showed significant correlation with EC staining (R=0.63, p=0.005 in vivo and R=0.74, p=0.0001 ex vivo). MWF also correlated strongly with the dgen-MBP stain, but only on the cranial side (R=0.64, p=0.05 in vivo; R=0.63, p=0.038 ex vivo). This study demonstrates that longitudinal MWI in vivo can accurately characterize white matter damage in DC Tx model of injury

  8. Neuronal intrinsic properties shape naturally evoked sensory inputs in the dorsal horn of the spinal cord.

    Science.gov (United States)

    Reali, Cecilia; Russo, Raúl E

    2013-01-01

    Intrinsic electrophysiological properties arising from specific combinations of voltage-gated channels are fundamental for the performance of small neural networks in invertebrates, but their role in large-scale vertebrate circuits remains controversial. Although spinal neurons have complex intrinsic properties, some tasks produce high-conductance states that override intrinsic conductances, minimizing their contribution to network function. Because the detection and coding of somato-sensory information at early stages probably involves a relatively small number of neurons, we speculated that intrinsic electrophysiological properties are likely involved in the processing of sensory inputs by dorsal horn neurons (DHN). To test this idea, we took advantage of an integrated spinal cord-hindlimbs preparation from turtles allowing the combination of patch-clamp recordings of DHN embedded in an intact network, with accurate control of the extracellular milieu. We found that plateau potentials and low threshold spikes (LTS) -mediated by L- and T-type Ca(2+)channels, respectively- generated complex dynamics by interacting with naturally evoked synaptic potentials. Inhibitory receptive fields could be changed in sign by activation of the LTS. On the other hand, the plateau potential transformed sensory signals in the time domain by generating persistent activity triggered on and off by brief sensory inputs and windup of the response to repetitive sensory stimulation. Our findings suggest that intrinsic properties dynamically shape sensory inputs and thus represent a major building block for sensory processing by DHN. Intrinsic conductances in DHN appear to provide a mechanism for plastic phenomena such as dynamic receptive fields and sensitization to pain. PMID:24399934

  9. Functional expression of T-type Ca2+ channels in spinal motoneurons of the adult turtle.

    Directory of Open Access Journals (Sweden)

    Martha Canto-Bustos

    Full Text Available Voltage-gated Ca2+ (CaV channels are transmembrane proteins comprising three subfamilies named CaV1, CaV2 and CaV3. The CaV3 channel subfamily groups the low-voltage activated Ca2+ channels (LVA or T-type a significant role in regulating neuronal excitability. CaV3 channel activity may lead to the generation of complex patterns of action potential firing such as the postinhibitory rebound (PIR. In the adult spinal cord, these channels have been found in dorsal horn interneurons where they control physiological events near the resting potential and participate in determining excitability. In motoneurons, CaV3 channels have been found during development, but their functional expression has not yet been reported in adult animals. Here, we show evidence for the presence of CaV3 channel-mediated PIR in motoneurons of the adult turtle spinal cord. Our results indicate that Ni2+ and NNC55-0396, two antagonists of CaV3 channel activity, inhibited PIR in the adult turtle spinal cord. Molecular biology and biochemical assays revealed the expression of the CaV3.1 channel isotype and its localization in motoneurons. Together, these results provide evidence for the expression of CaV3.1 channels in the spinal cord of adult animals and show also that these channels may contribute to determine the excitability of motoneurons.

  10. [Effect of spontaneous firing of injured dorsal root ganglion neuron on excitability of wide dynamic range neuron in rat spinal dorsal horn].

    Science.gov (United States)

    Song, Ying; Zhang, Yong-Mei; Xu, Jie; Wu, Jing-Ru; Qin, Xia; Hua, Rong

    2013-10-25

    The aim of the paper is to study the effect of spontaneous firing of injured dorsal root ganglion (DRG) neuron in chronic compression of DRG (CCD) model on excitability of wide dynamic range (WDR) neuron in rat spinal dorsal horn. In vivo intracellular recording was done in DRG neurons and in vivo extracellular recording was done in spinal WDR neurons. After CCD, incidence of spontaneous discharge and firing frequency enhanced to 59.46% and (4.30 ± 0.69) Hz respectively from 22.81% and (0.60 ± 0.08) Hz in normal control group (P neuron in CCD rats decreased the spontaneous activities of WDR neurons from (191.97 ± 45.20)/min to (92.50 ± 30.32)/min (P neuron evoked spontaneous firing in a reversible way (n = 5) in silent WDR neurons of normal rats. There was 36.36% (12/33) WDR neuron showing after-discharge in response to innocuous mechanical stimuli on cutaneous receptive field in CCD rats, while after-discharge was not seen in control rats. Local administration of TTX on DRG with a concentration of 50 nmol/L attenuated innocuous electric stimuli-evoked after-discharge of WDR neurons in CCD rats in a reversible manner, and the frequency was decreased from (263 ± 56.5) Hz to (117 ± 30) Hz (P neurons is influenced by spontaneous firings of DRG neurons after CCD.

  11. Curcumin exerts antinociceptive effects by inhibiting the activation of astrocytes in spinal dorsal horn and the intracellular extracellular signal-regulated kinase signaling pathway in rat model of chronic constriction injury

    Institute of Scientific and Technical Information of China (English)

    JI Feng-tao; LIANG Jiang-jun; LIU Ling; CAO Ming-hui; LI Feng

    2013-01-01

    Background Activation of glial cells and the extracellular signal-regulated kinase (ERK) signaling pathway play an important role in the development and maintenance of neuropathic pain.Curcumin can alleviate the symptom of inflammatory pain by inhibiting the production and release of interleukin and tumor necrosis factor.However,whether curcumin affects neuropathic pain induced by nerve injury and the possible mechanism involved are still unknown.This study investigated the effects of tolerable doses of curcumin on the activation of astrocytes and ERK signaling in the spinal dorsal horn in rat model of neuropathic pain.Methods Adult male Sprague-Dawley rats were randomly divided into three groups:a control (sham operated) group,and chronic constriction injury groups (to induce neuropathic pain) that were either untreated or treated with curcumin.Thermal and mechanical hyperalgesia thresholds were measured.The distribution and morphological changes of astrocytes were observed by immunofluorescence.Western blotting was used to detect changes in the expression of glial flbrillary acid protein (GFAP) and phosphorylated ERK.Results Injured rats showed obvious mechanical allodynia and thermal hyperalgesia.The number of GFAP-positive astrocytes,and the fluorescence intensity of GFAP were significantly increased in the spinal dorsal horn of injured compared with control rats.The soma of astrocytes also appeared hypertrophied in injured animals.Expression of GFAP and phosphorylated ERK was also significantly increased in the spinal dorsal hom of injured compared with control rats.Curcumin reduced the injury-induced thermal and mechanical hyperalgesia,the increase in the fluorescence intensity of GFAP and the hypertrophy of astrocytic soma,activation of GFAP and phosphorylation of ERK in the spinal dorsal horn.Conclusions Curcumin can markedly alleviate nerve injury-induced neuropathic pain in rats.The analgesic effect of curcumin may be attributed to its inhibition of

  12. The majority of dorsal spinal cord gastrin releasing peptide is synthesized locally whereas neuromedin B is highly expressed in pain- and itch-sensing somatosensory neurons

    OpenAIRE

    Fleming, Michael S; Ramos, Daniel; Han, Seung Baek; Zhao, JianYuan; Son, Young-Jin; Luo, Wenqin

    2012-01-01

    Background Itch is one of the major somatosensory modalities. Some recent findings have proposed that gastrin releasing peptide (Grp) is expressed in a subset of dorsal root ganglion (DRG) neurons and functions as a selective neurotransmitter for transferring itch information to spinal cord interneurons. However, expression data from public databases and earlier literatures indicate that Grp mRNA is only detected in dorsal spinal cord (dSC) whereas its family member neuromedin B (Nmb) is high...

  13. The majority of dorsal spinal cord gastrin releasing peptide is synthesized locally whereas neuromedin B is highly expressed in pain- and itch-sensing somatosensory neurons

    OpenAIRE

    Fleming Michael S; Ramos Daniel; Han Seung; Zhao Jianyuan; Son Young-Jin; Luo Wenqin

    2012-01-01

    Abstract Background Itch is one of the major somatosensory modalities. Some recent findings have proposed that gastrin releasing peptide (Grp) is expressed in a subset of dorsal root ganglion (DRG) neurons and functions as a selective neurotransmitter for transferring itch information to spinal cord interneurons. However, expression data from public databases and earlier literatures indicate that Grp mRNA is only detected in dorsal spinal cord (dSC) whereas its family member neuromedin B (Nmb...

  14. Restoration of shoulder abduction by transfer of the spinal accessory nerve to suprascapular nerve through dorsal approach: a clinical study

    Institute of Scientific and Technical Information of China (English)

    GUAN Shi-bing; HOU Chun-lin; CHEN De-song; GU Yu-dong

    2006-01-01

    Background In recent years, transfer of the spinal accessory nerve to suprascapular nerve has become a routine procedure for restoration of shoulder abduction. However, the operation via the traditional supraclavicular anterior approach often leads to partial denervation of the trapezius muscle. The purpose of the study was to introduce transfer of the spinal accessory nerve through dorsal approach, using distal branch of the spinal accessory nerve, to repair the suprascapular nerve for restoration of shoulder abduction, and to observe its therapeutic effect.Methods From January to October 2003, a total of 11 patients with a brachial plexus injury and an intact or nearly intact spinal accessory nerve were treated by transferring the spinal accessory nerve to the suprascapular nerve through dorsal approach. The patients were followed up for 18 to 26 months [mean (23.5 ±5.2) months] to evaluate their shoulder abduction and function of the trapezius muscle. The outcomes were compared with those of 26 patients treated with traditional anterior approach. And the data were analyzed by Student's t test using SPSS 10.5.Results In the 11 patients, the spinal accessory nerves were transferred to the suprascapular nerve through the dorsal approach successfully. Intact function of the upper trapezius was achieved in all of them. In the patients,the location of the two nerves was relatively stable at the level of superior margin of the scapula, the mean distance between them was (4.2±1.4) cm, both the nerves could be easily dissected and end-to-end anastomosed without any tension. During the follow-up, the first electrophysiological sign of recovery of the infraspinatus appeared at (6.8±2.7) months and the first sign of restoration of the shoulder abduction at (7.6±2.9) months after the operation, which were earlier than that after the traditional operation [(8.7±2.4) months and (9.9±2.8)months, respectively; P<0.05]. The postoperative shoulder abduction was 62.8°± 12

  15. Principles of electrical stimulation and dorsal column mapping as it relates to spinal cord stimulation: an overview.

    Science.gov (United States)

    Ramasubbu, Chitra; Flagg, Artemus; Williams, Kayode

    2013-02-01

    The last 30 years have witnessed the growth of spinal cord stimulation as a treatment modality for an increasing number of chronic pain conditions. In spite of this growth, one of the greatest criticisms is the lack of concrete evidence for the mechanism of action. With the ever increasing enlightenment with regards to the neurophysiology of pain, and the development of more dynamic neuroimaging techniques, the opportunity to better define the mechanism of action of the spinal cord stimulator will continue to expand. In the interim, clinicians will benefit from the consolidation of the available knowledge that will enhance the effective use of the device. This review serves to provide an overview of the key principles of electrical stimulation and dorsal column mapping as it relates to spinal cord stimulation. We aim at enhancing the understanding regarding the basis for successful placement of leads and manipulation of electrical parameters. PMID:23299905

  16. Different types of spinal afferent nerve endings in stomach and esophagus identified by anterograde tracing from dorsal root ganglia.

    Science.gov (United States)

    Spencer, Nick J; Kyloh, Melinda; Beckett, Elizabeth A; Brookes, Simon; Hibberd, Tim

    2016-10-15

    In visceral organs of mammals, most noxious (painful) stimuli as well as innocuous stimuli are detected by spinal afferent neurons, whose cell bodies lie in dorsal root ganglia (DRGs). One of the major unresolved questions is the location, morphology, and neurochemistry of the nerve endings of spinal afferents that actually detect these stimuli in the viscera. In the upper gastrointestinal (GI) tract, there have been many anterograde tracing studies of vagal afferent endings, but none on spinal afferent endings. Recently, we developed a technique that now provides selective labeling of only spinal afferents. We used this approach to identify spinal afferent nerve endings in the upper GI tract of mice. Animals were anesthetized, and injections of dextran-amine were made into thoracic DRGs (T8-T12). Seven days post surgery, mice were euthanized, and the stomach and esophagus were removed, fixed, and stained for calcitonin gene-related peptide (CGRP). Spinal afferent axons were identified that ramified extensively through many rows of myenteric ganglia and formed nerve endings in discrete anatomical layers. Most commonly, intraganglionic varicose endings (IGVEs) were identified in myenteric ganglia of the stomach and varicose simple-type endings in the circular muscle and mucosa. Less commonly, nerve endings were identified in internodal strands, blood vessels, submucosal ganglia, and longitudinal muscle. In the esophagus, only IGVEs were identified in myenteric ganglia. No intraganglionic lamellar endings (IGLEs) were identified in the stomach or esophagus. We present the first identification of spinal afferent endings in the upper GI tract. Eight distinct types of spinal afferent endings were identified in the stomach, and most of them were CGRP immunoreactive. J. Comp. Neurol. 524:3064-3083, 2016. © 2016 Wiley Periodicals, Inc. PMID:27019197

  17. Decision Making Algorithm for Adult Spinal Deformity Surgery.

    Science.gov (United States)

    Kim, Yongjung J; Hyun, Seung-Jae; Cheh, Gene; Cho, Samuel K; Rhim, Seung-Chul

    2016-07-01

    Adult spinal deformity (ASD) is one of the most challenging spinal disorders associated with broad range of clinical and radiological presentation. Correct selection of fusion levels in surgical planning for the management of adult spinal deformity is a complex task. Several classification systems and algorithms exist to assist surgeons in determining the appropriate levels to be instrumented. In this study, we describe our new simple decision making algorithm and selection of fusion level for ASD surgery in terms of adult idiopathic idiopathic scoliosis vs. degenerative scoliosis. PMID:27446511

  18. Complications after spinal anesthesia in adult tethered cord syndrome.

    Science.gov (United States)

    Liu, Jing-Jie; Guan, Zheng; Gao, Zhen; Xiang, Li; Zhao, Feng; Huang, Sheng-Li

    2016-07-01

    Since little has been reported about complications of spinal anesthesia in adult tethered cord syndrome (TCS), we sought to delineate the characteristics of the condition.A total of 4 cases of adult TCS after spinal anesthesia were reviewed. The medical charts of the patients were obtained. Anesthesia, which was combined spinal and epidural anesthesia or spinal anesthesia was performed, and follow-up were carried out in all patients.The most common neurological symptom of adult TCS before surgery was occasional severe pain in back, perineal region, or legs. Frequent micturition, diminished knee and ankle reflexes, and difficulty in bending were exhibited in partial patients. Paraesthesia of perineal region or/and lower extremities existed 2 to 3 days after spinal anesthesia in all the cases. Weakness of lower extremities existed in 1 case. Lumbar magnetic resonance imaging showed the low location of conus medullaris. At follow-up, 3 cases recovered completely within 3 weeks, and 1 case underwent permanent disability.These cases suggest anesthesiologists and surgeons alert to the association of adult TCS and spinal anesthesia. Spinal anesthesia should be prohibited in patients with adult TCS to prevent neurological damages. PMID:27442670

  19. Vascularized peripheral nerve trunk autografted in the spinal cord: a new experimental model in adult rats

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Objective: To investigate the effect of vascularized peripheral nerve trunk autografted in spinal cord. Methods: With modern microsurgical technique,vascularized peripheral median and ulnar nerve trunk autografted in the upper thoracic region of the spinal cord were established in 20 female adult rats. The origin and the termination of axons in the graft were studied by retrograde neuronal labeling with horseradish peroxidase (HRP).Cord, nerve grafts and some normal median and ulnar nerves in the right upper limb were removed and sectioned for Bielschowsky's silver stain and haematoxylin and eosin (H&E) stain. Light and electron microscopic examination and electrophysiological examination were applied.Results: The grafts were innervated by many new fibers. Studies with HRP indicated that new axons in graft were originated from intrinsic central nervous system (CNS) neurons with their cell bodies from brain stem to sacral segments of spinal cord. Other axons arose from dorsal root ganglia at the level of graft and at least 19 distal segments to them. Together with electron microscopy, electrophysiological examination, silver and H&E stain, the results demonstrated that vascularized peripheral nerve trunk grafted in spinal cord attracted many neurons to grow into the nerve grafts.Conclusions: The findings implicate that CNS is able to regenerate much better in vascularized nerve autografted in spinal cord.

  20. Actions of the GABAB agonist, (-)-baclofen, on neurones in deep dorsal horn of the rat spinal cord in vitro.

    OpenAIRE

    Allerton, C. A.; Boden, P. R.; Hill, R G

    1989-01-01

    1. The electrophysiological actions of the GABAB agonist, (-)-baclofen, on deep dorsal horn neurones were studied using an in vitro preparation of the spinal cord of 9-16 day old rat. 2. On all neurones tested, (-)-baclofen (100 nM-30 microM) had a hyperpolarizing action which was associated with a reduction in apparent membrane input resistance. The increase in membrane conductance was dose-dependent and had a Hill coefficient of 1.0. 3. The (-)-baclofen-activated hyperpolarization persisted...

  1. Deafferentation causes a loss of presynaptic bombesin receptors and supersensitivity of substance P receptors in the dorsal horn of the cat spinal cord.

    Science.gov (United States)

    Massari, V J; Shults, C W; Park, C H; Tizabi, Y; Moody, T W; Chronwall, B M; Culver, M; Chase, T N

    1985-09-23

    Bombesin (BN)- and substance P (SP)-containing neurons are found in the dorsal root ganglia, and project to the dorsal horn of the spinal cord. The present study was undertaken to determine if chronic deafferentation of the cat spinal cord would affect BN or SP receptors in the spinal cord. Ten and 30 days after a unilateral lumbosacral dorsal rhizotomy, BN and SP receptor binding was evaluated autoradiographically using iodinated ligands to bind to these receptors in vitro. The normal distribution of BN receptors detected by this method was restricted to the head of the dorsal horn. Deafferentation caused a 38% and 22% decline in BN receptor binding in laminae I-IV at 10 or 30 days postoperatively, respectively. These data suggest that 'presynaptic' BN receptors are found on the central nervous system terminals of primary sensory afferents. Normal SP receptor distribution was most dense in lamina X, not in the superficial laminae of the dorsal horn. Deafferentation caused an initial decline in SP receptor binding in laminae I-II, followed by a 14% increase at 30 days in comparison to the unoperated side of the spinal cord. This delayed supersensitivity of SP receptors was confirmed in a separate experiment using a homogenate binding assay. These data are discussed with respect to the potential roles of receptor supersensitivity or subsensitivity in the development of deafferentation-induced changes in reactivity of dorsal horn neurons to nociceptive and non-nociceptive stimuli. PMID:2413960

  2. Information to cerebellum on spinal motor networks mediated by the dorsal spinocerebellar tract

    DEFF Research Database (Denmark)

    Stecina, Katinka; Fedirchuk, Brent; Hultborn, Hans

    2013-01-01

    of peripheral sensory input to the cerebellum in general, and during rhythmic movements such as locomotion and scratch. In contrast, the VSCT was seen as conveying a copy of the output of spinal neuronal circuitry, including those circuits generating rhythmic motor activity (the spinal central pattern generator...

  3. Retinoic acid receptor beta2 and neurite outgrowth in the adult mouse spinal cord in vitro.

    Science.gov (United States)

    Corcoran, Jonathan; So, Po-Lin; Barber, Robert D; Vincent, Karen J; Mazarakis, Nicholas D; Mitrophanous, Kyriacos A; Kingsman, Susan M; Maden, Malcolm

    2002-10-01

    Retinoic acid, acting through the nuclear retinoic acid receptor beta2 (RARbeta2), stimulates neurite outgrowth from peripheral nervous system tissue that has the capacity to regenerate neurites, namely, embryonic and adult dorsal root ganglia. Similarly, in central nervous system tissue that can regenerate, namely, embryonic mouse spinal cord, retinoic acid also stimulates neurite outgrowth and RARbeta2 is upregulated. By contrast, in the adult mouse spinal cord, which cannot regenerate, no such upregulation of RARbeta2 by retinoic acid is observed and no neurites are extended in vitro. To test our hypothesis that the upregulation of RARbeta2 is crucial to neurite regeneration, we have transduced adult mouse or rat spinal cord in vitro with a minimal equine infectious anaemia virus vector expressing RARbeta2. After transduction, prolific neurite outgrowth occurs. Outgrowth does not occur when the cord is transduced with a different isoform of RARbeta nor does it occur following treatment with nerve growth factor. These data demonstrate that RARbeta2 is involved in neurite outgrowth, at least in vitro, and that this gene may in the future be of some therapeutic use. PMID:12235288

  4. Electroacupuncture reduces the evoked responses of the spinal dorsal horn neurons in ankle-sprained rats

    OpenAIRE

    Kim, Jae Hyo; Kim, Hee Young; Chung, Kyungsoon; Chung, Jin Mo

    2011-01-01

    Acupuncture is shown to be effective in producing analgesia in ankle sprain pain in humans and animals. To examine the underlying mechanisms of the acupuncture-induced analgesia, the effects of electroacupuncture (EA) on weight-bearing forces (WBR) of the affected foot and dorsal horn neuron activities were examined in a rat model of ankle sprain. Ankle sprain was induced manually by overextending ligaments of the left ankle in the rat. Dorsal horn neuron responses to ankle movements or compr...

  5. A novel transverse push-pull microprobe: in vitro characterization and in vivo demonstration of the enzymatic production of adenosine in the spinal cord dorsal horn.

    Science.gov (United States)

    Patterson, S L; Sluka, K A; Arnold, M A

    2001-01-01

    Adenosine produces analgesia in the spinal cord and can be formed extracellularly through enzymatic conversion of adenine nucleotides. A transverse push-pull microprobe was developed and characterized to sample extracellular adenosine concentrations of the dorsal horn of the rat spinal cord. Samples collected via this sampling technique reveal that AMP is converted to adenosine in the dorsal horn. This conversion is decreased by the ecto-5'-nucleotidase inhibitor, alpha,beta-methylene ADP. Related behavioral studies demonstrate that AMP administered directly to the spinal cord can reverse the secondary mechanical hyperalgesia characteristic of the intradermal capsaicin model of inflammatory pain. The specific adenosine A(1) receptor antagonist 8-cyclopentyl-1,3-dimethylxanthine (CPT) inhibits the antihyperalgesia produced by AMP. This research introduces a novel microprobe that can be used as an adjunct sampling technique to microdialysis and push-pull cannulas. Furthermore, we conclude that AMP is converted to adenosine in the dorsal horn of the spinal cord by ecto-5'-nucleotidase and subsequently may be one source of adenosine, acting through adenosine A(1) receptors in the dorsal horn of the spinal cord, which produce antihyperalgesia. PMID:11145997

  6. Exercise alleviates hypoalgesia and increases the level of calcitonin gene-related peptide in the dorsal horn of the spinal cord of diabetic rats

    Directory of Open Access Journals (Sweden)

    Patrícia Severo do Nascimento

    2012-09-01

    Full Text Available OBJECTIVE: The aim of this study was to evaluate the effects of treadmill training on nociceptive sensitivity and immunoreactivity to calcitonin gene-related peptide in the dorsal horn of the spinal cord of diabetic rats. METHODS: Male Wistar rats were divided into three groups: control, diabetic and trained diabetic. Treadmill training was performed for 8 weeks. The blood glucose concentrations and body weight were evaluated 48 h after diabetes induction and every 30 days thereafter. The nociceptive sensitivity was evaluated using the tail-flick apparatus. The animals were then transcardially perfused, and the spinal cords were post-fixed, cryoprotected and sectioned in a cryostat. Immunohistochemistry for calcitonin gene-related peptide analysis was performed on the dorsal horn of the spinal cord. RESULTS: The nociceptive sensitivity analysis revealed that, compared with the control and trained diabetic animals, the latency to tail deflection on the apparatus was longer for the diabetic animals. Optical densitometry demonstrated decreased calcitonin gene-related peptide immunoreactivity in the dorsal horn of the spinal cord in diabetic animals, which was reversed by treadmill training. CONCLUSION: We concluded that treadmill training can alleviate nociceptive hypoalgesia and reverse decreased calcitonin gene-related peptide immunoreactivity in the dorsal horn of the spinal cord of diabetic animals without pharmacological treatment.

  7. Dorsal intramedullary spinal epidermoid cysts: Report of two cases and review of literature

    Directory of Open Access Journals (Sweden)

    Cincu Rafael

    2007-01-01

    Full Text Available Intramedullary epidermoid cysts of the spinal cord are rare tumors, especially those not associated with spinal dysraphism. About 50 cases have been reported in the literature. Of these, only seven cases have had magnetic resonance imaging (MRI studies. We report two cases of spinal intramedullary epidermoid cysts with MR imaging. Both were not associated with spina bifida. In one patient, the tumor was located at D4 vertebral level; while in the other, within the conus medullaris. The clinical features, MRI characteristics and surgical treatment of intramedullary epidermoid cyst are presented with relevant review of the literature.

  8. Thoracolumbar spinal fractures : segmental range of motion after dorsal spondylodesis in 82 patients: a prospective study

    NARCIS (Netherlands)

    Leferink, VJM; Nijboer, JMM; Zimmerman, KW; Veldhuis, EFM; ten Vergert, EM; ten Duis, HJ

    2002-01-01

    In order to study the effect of dorsal spondylodesis on intervertebral movement in patients treated for thoracolumbar fractures, we measured the sagittal range of motion (ROM) in the segments above and below the fractured vertebral body 2 years after operation. Between 1991 and 1996, 82 consecutive

  9. EXCITATORY CONNECTIONS BETWEEN SPINAL MOTONEURONS IN THE ADULT RAT

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Objectives. Dendro-dendritic and dendro-somatic projections are common between spinal motoneurons. We attempted to clarify whether there are functional connections through these projections.Methods. Motoneurons were antidromically stimulated by the muscle nerve and recorded intracellularly to examine the direct interaction between them, after the related dorsal roots had been cut.Results. Excitatory connections, demonstrated by depolarizing potentials in response to muscle nerve stimulation, were found between motoneurons innervating the same muscle or synergistic muscles, but never between motoneurons innervating antagonistic muscles. These potentials were finely graded in response to a series of increasing stimuli and resistant to high frequency (50Hz) stimulation.Conclusions.These results indicate that excitatory connections, with certain specificity of spatial and temporal distribution, occur in the spinal motoneurons. It is also suggested that electrical coupling should be involved in these connections and this mechanism should improve the excitability of the motoneurons in the same column.

  10. A Surgery Protocol for Adult Zebrafish Spinal Cord Injury

    Institute of Scientific and Technical Information of China (English)

    Ping Fang; Jin-Fei Lin; Hong-Chao Pan; Yan-Qin Shen; Melitta Schachner

    2012-01-01

    Adult zebrafish has a remarkable capability to recover from spinal cord injury,providing an excellent model for studying neuroregeneration.Here we list equipment and reagents,and give a detailed protocol for complete transection of the adult zebrafish spinal cord.In this protocol,potential problems and their solutions are described so that the zebrafish spinal cord injury model can be more easily and reproducibly performed.In addition,two assessments are introduced to monitor the success of the surgery and functional recovery:one test to assess free swimming capability and the other test to assess extent of neuroregeneration by in vivo anterograde axonal tracing.In the swimming behavior test,successful complete spinal cord transection is monitored by the inability of zebrafish to swim freely for 1 week after spinal cord injury,followed by the gradual reacquisition of full locomotor ability within 6 weeks after injury.As a morphometric correlate,anterograde axonal tracing allows the investigator to monitor the ability of regenerated axons to cross the lesion site and increasingly extend into the gray and white matter with time after injury,confirming functional recovery.This zebrafish model provides a paradigm for recovery from spinal cord injury,enabling the identification of pathways and components of neuroregeneration.

  11. Stability of long term facilitation and expression of zif268 and Arc in the spinal cord dorsal horn is modulated by conditioning stimulation within the physiological frequency range of primary afferent fibers.

    Science.gov (United States)

    Haugan, F; Wibrand, K; Fiskå, A; Bramham, C R; Tjølsen, A

    2008-07-17

    Long term facilitation (LTF) of C-fiber-evoked firing of wide dynamic range neurons in the spinal dorsal horn in response to conditioning stimulation (CS) of afferent fibers is a widely studied cellular model of spinal nociceptive sensitization. Although 100 Hz CS of primary afferent fibers is commonly used to induce spinal cord LTF, this frequency exceeds the physiological firing range. Here, we examined the effects of electrical stimulation of the sciatic nerve within the physiological frequency range on the magnitude and stability of the C-fiber-evoked responses of wide dynamic range neurons and the expression of immediate early genes (c-fos, zif268, and Arc) in anesthetized rats. Stimulation frequencies of 3, 30 and 100 Hz all induced facilitation of similar magnitude as recorded at 1 h post-CS. Strikingly, however, 3 Hz-induced potentiation of the C-fiber responses was decremental, whereas both 30 and 100 Hz stimulation resulted in stable, non-decremental facilitation over 3 h of recording. The number of dorsal horn neurons expressing c-fos, but not zif268 or Arc, was significantly elevated after 3 Hz CS and increased proportionally with stimulation rate. In contrast, a stable LTF of C-fiber responses was obtained at 30 and 100 Hz CS, and at these frequencies there was a sharp increase in zif268 expression and appearance of Arc-positive neurons. The results show that response facilitation can be induced by stimulation frequencies in the physiological range (3 and 30 Hz). Three hertz stimulation induced the early phase of LTF, but the responses were decremental. Arc and zif268, two genes previously coupled to LTP of synaptic transmission in the adult brain, are upregulated at the same frequencies that give stable LTF (30 and 100 Hz). This frequency-dependence is important for understanding how the afferent firing pattern affects neuronal plasticity and nociception in the spinal dorsal horn.

  12. Effect of propofol on glutamate-induced activation and elated inflammatory cytokines of astrocytes from spinal cord dorsal horn

    Institute of Scientific and Technical Information of China (English)

    Chengming Qin; Qing Li; Juying Liu; Tao Zhu; Yong Xiang

    2008-01-01

    BACKGROUND: Astrocytes participate in central nervous system-mediated physiological or pathological processes, such as pain. Activated dorsal horn astrocytes from the spinal cord produce nerve active substances and proinflammatory cytokines, such as interleukin-I beta (IL-1 β ), IL-6, and tumor necrosis factor-a (TNF-a ), which play important roles in pain transduction and regulation. OBJECTIVE: To investigate the effects of different doses of propofol on activation of cultured spinal cord dorsal horn astrocytes induced by glutamate, as well as changes in IL-1 β, IL-6, and TNF-a, and IL-10 (anti-inflammatory cytokine) expression in rats, and to explore the dose relationship of propofnl. DESIGN, TIME AND SETTING: The cellular and molecular biology experiment was performed at the Central Laboratory of Yunyang Medical College between March 2006 and December 2007. MATERIALS: Forty healthy, Wistar rats, aged 2-3 days, were selected. Propofol was provided by Zeneca, UK; glutamate by Sigma, USA; EPICS XL flow cytometry by Beckman culture, USA; rabbit-anti-mouse glial fibrillary acidic protein (GFAP) antibody kit and inflammatory cytokine detection kit were provided by Zhongshan Biotechnology Company Ltd., Beijing; multimedia color pathologic image analysis system was a product of Nikon, Japan. METHODS: Astrocytes were harvested from T11-L6spinal cord dorsal horn of Wistar rats and incubated for 3 weeks. The cells were divided into seven groups, according to various treatment conditions: control group was cells cultured in Hank's buffered saline solution; intralipid group was cells cultured in intralipid (0.2 mL/L); glutamate group was cells cultured with 100 μ mol/L glutamate; propofol group was cells cultured with 250 μ mol/L propofol; three glutamate plus propofol groups were cultured in 100 μ mol/L of glutamate, followed by 5, 25, and 250 μ mol/L of prnpofol 10 minutes later. MAIN OUTCOME MEASURES: GFAP-labeled astrocytes were analyzed using a multimedia

  13. A afferent fibers are involved in the pathology of central changes in the spinal dorsal horn associated with myofascial trigger spots in rats.

    Science.gov (United States)

    Meng, Fei; Ge, Hong-You; Wang, Yong-Hui; Yue, Shou-Wei

    2015-11-01

    A afferent fibers have been reported to participate in the development of the central sensitization induced by inflammation and injuries. Current evidence suggests that myofascial trigger points (MTrPs) induce central sensitization in the related spinal dorsal horn, and clinical studies indicate that A fibers are associated with pain behavior. Because most of these clinical studies applied behavioral indexes, objective evidence is needed. Additionally, MTrP-related neurons in dorsal root ganglia and the spinal ventral horn have been reported to be smaller than normal, and these neurons were considered to be related to A fibers. To confirm the role of A fibers in MTrP-related central changes in the spinal dorsal horn, we studied central sensitization as well as the size of neurons associated with myofascial trigger spots (MTrSs, equivalent to MTrPs in humans) in the biceps femoris muscle of rats and provided some objective morphological evidence. Cholera toxin B subunit-conjugated horseradish peroxidase was applied to label the MTrS-related neurons, and tetrodotoxin was used to block A fibers specifically. The results showed that in the spinal dorsal horn associated with MTrS, the expression of glutamate receptor (mGluR1α/mGluR5/NMDAR1) increased, while the mean size of MTrS-related neurons was smaller than normal. After blocking A fibers, these changes reversed to some extent. Therefore, we concluded that A fibers participated in the development and maintenance of the central sensitization induced by MTrPs and were related to the mean size of neurons associated with MTrPs in the spinal dorsal horn.

  14. Immunostaining for Homer reveals the majority of excitatory synapses in laminae I-III of the mouse spinal dorsal horn.

    Science.gov (United States)

    Gutierrez-Mecinas, Maria; Kuehn, Emily D; Abraira, Victoria E; Polgár, Erika; Watanabe, Masahiko; Todd, Andrew J

    2016-08-01

    The spinal dorsal horn processes somatosensory information before conveying it to the brain. The neuronal organization of the dorsal horn is still poorly understood, although recent studies have defined several distinct populations among the interneurons, which account for most of its constituent neurons. All primary afferents, and the great majority of neurons in laminae I-III are glutamatergic, and a major factor limiting our understanding of the synaptic circuitry has been the difficulty in identifying glutamatergic synapses with light microscopy. Although there are numerous potential targets for antibodies, these are difficult to visualize with immunocytochemistry, because of protein cross-linking following tissue fixation. Although this can be overcome by antigen retrieval methods, these lead to difficulty in detecting other antigens. The aim of this study was to test whether the postsynaptic protein Homer can be used to reveal glutamatergic synapses in the dorsal horn. Immunostaining for Homer gave punctate labeling when viewed by confocal microscopy, and this was restricted to synapses at the ultrastructural level. We found that Homer puncta were colocalized with the AMPA receptor GluR2 subunit, but not with the inhibitory synapse-associated protein gephyrin. We also examined several populations of glutamatergic axons and found that most boutons were in contact with at least one Homer punctum. These results suggest that Homer antibodies can be used to reveal the great majority of glutamatergic synapses without antigen retrieval. This will be of considerable value in tracing synaptic circuits, and also in investigating plasticity of glutamatergic synapses in pain states. PMID:27185486

  15. Central connectivity of transient receptor potential melastatin 8-expressing axons in the brain stem and spinal dorsal horn.

    Directory of Open Access Journals (Sweden)

    Yun Sook Kim

    Full Text Available Transient receptor potential melastatin 8 (TRPM8 ion channels mediate the detection of noxious and innocuous cold and are expressed by primary sensory neurons, but little is known about the processing of the TRPM8-mediated cold information within the trigeminal sensory nuclei (TSN and the spinal dorsal horn (DH. To address this issue, we characterized TRPM8-positive (+ neurons in the trigeminal ganglion and investigated the distribution of TRPM8+ axons and terminals, and their synaptic organization in the TSN and in the DH using light and electron microscopic immunohistochemistry in transgenic mice expressing a genetically encoded axonal tracer in TRPM8+ neurons. TRPM8 was expressed in a fraction of small myelinated primary afferent fibers (23.7% and unmyelinated fibers (76.3%, suggesting that TRPM8-mediated cold is conveyed via C and Aδ afferents. TRPM8+ axons were observed in all TSN, but at different densities in the dorsal and ventral areas of the rostral TSN, which dominantly receive sensory afferents from intra- and peri-oral structures and from the face, respectively. While synaptic boutons arising from Aδ and non-peptidergic C afferents usually receive many axoaxonic contacts and form complex synaptic arrangements, TRPM8+ boutons arising from afferents of the same classes of fibers showed a unique synaptic connectivity; simple synapses with one or two dendrites and sparse axoaxonic contacts. These findings suggest that TRPM8-mediated cold is conveyed via a specific subset of C and Aδ afferent neurons and is processed in a unique manner and differently in the TSN and DH.

  16. Differential expression patterns of K(+) /Cl(-) cotransporter 2 in neurons within the superficial spinal dorsal horn of rats.

    Science.gov (United States)

    Javdani, Fariba; Holló, Krisztina; Hegedűs, Krisztina; Kis, Gréta; Hegyi, Zoltán; Dócs, Klaudia; Kasugai, Yu; Fukazawa, Yugo; Shigemoto, Ryuichi; Antal, Miklós

    2015-09-01

    γ-Aminobutyric acid (GABA)- and glycine-mediated hyperpolarizing inhibition is associated with a chloride influx that depends on the inwardly directed chloride electrochemical gradient. In neurons, the extrusion of chloride from the cytosol primarily depends on the expression of an isoform of potassium-chloride cotransporters (KCC2s). KCC2 is crucial in the regulation of the inhibitory tone of neural circuits, including pain processing neural assemblies. Thus we investigated the cellular distribution of KCC2 in neurons underlying pain processing in the superficial spinal dorsal horn of rats by using high-resolution immunocytochemical methods. We demonstrated that perikarya and dendrites widely expressed KCC2, but axon terminals proved to be negative for KCC2. In single ultrathin sections, silver deposits labeling KCC2 molecules showed different densities on the surface of dendritic profiles, some of which were negative for KCC2. In freeze fracture replicas and tissue sections double stained for the β3-subunit of GABAA receptors and KCC2, GABAA receptors were revealed on dendritic segments with high and also with low KCC2 densities. By measuring the distances between spots immunoreactive for gephyrin (a scaffolding protein of GABAA and glycine receptors) and KCC2 on the surface of neurokinin 1 (NK1) receptor-immunoreactive dendrites, we found that gephyrin-immunoreactive spots were located at various distances from KCC2 cotransporters; 5.7 % of them were recovered in the middle of 4-10-µm-long dendritic segments that were free of KCC2 immunostaining. The variable local densities of KCC2 may result in variable postsynaptic potentials evoked by the activation of GABAA and glycine receptors along the dendrites of spinal neurons. PMID:25764511

  17. Neuronal intrinsic properties shape naturally-evoked sensory inputs in the dorsal horn of the spinal cord

    Directory of Open Access Journals (Sweden)

    Cecilia eReali

    2013-12-01

    Full Text Available Intrinsic electrophysiological properties arising from specific combinations of voltage-gated channels are fundamental for the performance of small neural networks in invertebrates, but their role in large-scale vertebrate circuits remains controversial. Although spinal neurons have complex intrinsic properties, some tasks produce high-conductance states that override intrinsic conductances, minimizing their contribution to network function. Because the detection and coding of somato-sensory information at early stages probably involves a relatively small number of neurons, we speculated that intrinsic electrophysiological properties are likely involved in the processing of sensory inputs by dorsal horn neurons (DHN. To test this idea, we took advantage of an integrated spinal cord–hindlimbs preparation from turtles allowing the combination of patch-clamp recordings of DHN embedded in an intact network, with accurate control of the extracellular milieu. We found that plateau potentials and low threshold spikes (LTS -mediated by L- and T-type Ca2+ channels, respectively- generated complex dynamics by interacting with naturally evoked synaptic potentials. Inhibitory receptive fields could be changed in sign by activation of the LTS. On the other hand, the plateau potential transformed sensory signals in the time domain by generating persistent activity triggered on and off by brief sensory inputs and windup of the response to repetitive sensory stimulation. Our findings suggest that intrinsic properties dynamically shape sensory inputs and thus represent a major building block for sensory processing by DHN. Intrinsic conductances in DHN appear to provide a mechanism for plastic phenomena such as dynamic receptive fields and sensitization to pain.

  18. Incidence of surgical site infection following adult spinal deformity surgery: an analysis of patient risk

    OpenAIRE

    Pull ter Gunne, Albert F.; Laarhoven, C.J.H.M. van; Cohen, David B.

    2010-01-01

    Surgical site infection (SSI) following spinal surgery is a frequent complication and results in higher morbidity, mortality and healthcare costs. Patients undergoing surgery for spinal deformity (scoliosis/kyphosis) have longer surgeries, involving more spinal levels and larger blood losses than typical spinal procedures. Previous research has identified risk factors for SSI in spinal surgery, but few studies have looked at adult deformity surgeries. We retrospectively performed a large case...

  19. Marked depletion of dorsal spinal cord substance P and calcitonin gene-related peptide with intact skin flare responses in multiple system atrophy.

    OpenAIRE

    Anand, P; Bannister, R; McGregor, G P; Ghatei, M A; Mulderry, P K; Bloom, S R

    1988-01-01

    In view of the presence of neuropeptides in spinal cord autonomic pathways, their regional concentration was studied in post mortem thoracic cord from four cases of multiple system atrophy with progressive autonomic failure (MSA). A marked depletion was observed of substance P, its related peptide substance K, and of calcitonin gene-related peptide (CGRP), particularly in dorsal regions where peptide-containing sensory fibres terminate. As substance P and CGRP in primary sensory fibres are co...

  20. Tlx1/3 and Ptf1a control the expression of distinct sets of transmitter and peptide receptor genes in the developing dorsal spinal cord.

    Science.gov (United States)

    Guo, Zhen; Zhao, Congling; Huang, Menggui; Huang, Tianwen; Fan, Mingran; Xie, Zhiqin; Chen, Ying; Zhao, Xiaolin; Xia, Guannan; Geng, Junlan; Cheng, Leping

    2012-06-20

    Establishing the pattern of expression of transmitters and peptides as well as their receptors in different neuronal types is crucial for understanding the circuitry in various regions of the brain. Previous studies have demonstrated that the transmitter and peptide phenotypes in mouse dorsal spinal cord neurons are determined by the transcription factors Tlx1/3 and Ptf1a. Here we show that these transcription factors also determine the expression of two distinct sets of transmitter and peptide receptor genes in this region. We have screened the expression of 78 receptor genes in the spinal dorsal horn by in situ hybridization. We found that receptor genes Gabra1, Gabra5, Gabrb2, Gria3, Grin3a, Grin3b, Galr1, and Npy1r were preferentially expressed in Tlx3-expressing glutamatergic neurons and their derivatives, and deletion of Tlx1 and Tlx3 resulted in the loss of expression of these receptor genes. Furthermore, we obtained genetic evidence that Tlx3 uses distinct pathways to control the expression of receptor genes. We also found that receptor genes Grm3, Grm4, Grm5, Grik1, Grik2, Grik3, and Sstr2 were mainly expressed in Pax2-expressing GABAergic neurons in the spinal dorsal horn, and their expression in this region was abolished or markedly reduced in Ptf1a and Pax2 deletion mutant mice. Together, our studies indicate that Tlx1/3 and Ptf1a, the key transcription factors for fate determination of glutamatergic and GABAergic neurons in the dorsal spinal cord, are also responsible for controlling the expression of two distinct sets of transmitter and peptide receptor genes. PMID:22723691

  1. Quantitative study of NPY-expressing GABAergic neurons and axons in rat spinal dorsal horn.

    Science.gov (United States)

    Polgár, Erika; Sardella, Thomas C P; Watanabe, Masahiko; Todd, Andrew J

    2011-04-15

    Between 25-40% of neurons in laminae I-III are GABAergic, and some of these express neuropeptide Y (NPY). We previously reported that NPY-immunoreactive axons form numerous synapses on lamina III projection neurons that possess the neurokinin 1 receptor (NK1r). The aims of this study were to determine the proportion of neurons and GABAergic boutons in this region that contain NPY, and to look for evidence that they selectively innervate different neuronal populations. We found that 4-6% of neurons in laminae I-III were NPY-immunoreactive and based on the proportions of neurons that are GABAergic, we estimate that NPY is expressed by 18% of inhibitory interneurons in laminae I-II and 9% of those in lamina III. GABAergic boutons were identified by the presence of the vesicular GABA transporter (VGAT) and NPY was found in 13-15% of VGAT-immunoreactive boutons in laminae I-II, and 5% of those in lamina III. For both the lamina III NK1r-immunoreactive projection neurons and protein kinase Cγ (PKCγ)-immunoreactive interneurons in lamina II, we found that around one-third of the VGAT boutons that contacted them were NPY-immunoreactive. However, based on differences in the sizes of these boutons and the strength of their NPY-immunoreactivity, we conclude that these originate from different populations of interneurons. Only 6% of VGAT boutons presynaptic to large lamina I projection neurons that lacked NK1rs contained NPY. These results show that NPY-containing neurons make up a considerable proportion of the inhibitory interneurons in laminae I-III, and that their axons preferentially target certain classes of dorsal horn neuron.

  2. Minocycline enhances inhibitory transmission to substantia gelatinosa neurons of the rat spinal dorsal horn.

    Science.gov (United States)

    Peng, H-Z; Ma, L-X; Lv, M-H; Hu, T; Liu, T

    2016-04-01

    Minocycline, a second-generation tetracycline, is well known for its antibiotic, anti-inflammatory, and antinociceptive effects. Modulation of synaptic transmission is one of the analgesic mechanisms of minocycline. Although it has been reported that minocycline may suppress excitatory glutamatergic synaptic transmission, it remains unclear whether it could affect inhibitory synaptic transmission, which also plays a key role in modulating pain signaling. To examine the effect of minocycline on synaptic transmission in rat spinal substantia gelatinosa (SG) neurons, we recorded spontaneous inhibitory postsynaptic currents (sIPSCs) using whole-cell patch-clamp recording at a holding potential of 0 mV. Bath application of minocycline significantly increased the frequency but not the amplitude of sIPSCs in a reversible and concentration-dependent manner with an EC50 of 85. The enhancement of inhibitory synaptic transmission produced by minocycline was not affected by the glutamate receptor antagonists CNQX and D-APV or by the voltage-gated sodium channel blocker tetrodotoxin (TTX). Moreover, the potency of minocycline for facilitating sIPSC frequency was the same in both glycinergic and GABAergic sIPSCs without changing their decay phases. However, the facilitatory effect of minocycline on sIPSCs was eliminated in a Ca(2+)-free Krebs solution or by co-administration with calcium channel blockers. In summary, our data demonstrate that baseline inhibitory synaptic transmission in SG neurons is markedly enhanced by minocycline. This may function to decrease the excitability of SG neurons, thus leading to a modulation of nociceptive transmission. PMID:26826332

  3. Transplantation of an Acutely Isolated Bone Marrow Fraction Repairs Demyelinated Adult Rat Spinal Cord Axons

    OpenAIRE

    SASAKI, MASANORI; HONMOU, OSAMU; Akiyama, Yukinori; Uede,Teiji; Hashi,Kazuo; Kocsis, Jeffery D.

    2001-01-01

    The potential of bone marrow cells to differentiate into myelin-forming cells and to repair the demyelinated rat spinal cord in vivo was studied using cell transplantation techniques. The dorsal funiculus of the spinal cord was demyelinated by x-irradiation treatment, followed by microinjection of ethidium bromide. Suspensions of a bone marrow cell fraction acutely isolated from femoral bones in LacZ transgenic mice were prepared by centrifugation on a density gradient (Ficoll-Paque) to remov...

  4. Capillary electrophoresis combined with microdialysis in the human spinal cord: a new tool for monitoring rapid peroperative changes in amino acid neurotransmitters within the dorsal horn.

    Science.gov (United States)

    Parrot, Sandrine; Sauvinet, Valérie; Xavier, Jean-Michel; Chavagnac, Delphine; Mouly-Badina, Laurence; Garcia-Larrea, Luis; Mertens, Patrick; Renaud, Bernard

    2004-06-01

    A method originally developed for the separation of the three neurotransmitters gamma-aminobutyric acid (GABA), glutamate (Glu) and L-aspartate (L-Asp) in microdialysis samples from rat brain (Sauvinet et al., Electrophoresis 2003, 24, 3187-3196) was applied to human spinal dialysates obtained during peroperative microdialysis from patients undergoing surgery against chronic pain. Molecules were tagged on their primary amine function with the fluorogene agent, naphthalene-2,3-dicarboxaldehyde (NDA), and, after separation by capillary electrophoresis (CE, 75 mmol/L borate buffer, pH 9.2, containing 70 mmol/L sodium dodecyl sulfate and 10 mmol/L hydroxypropyl-beta-cyclodextrin, + 25 kV voltage), were detected by laser-induced fluorescence detection (LIFD) using a 442 nm helium-cadmium laser. The complete method, including microdialysis sampling and analysis by CE-LIFD, has been validated for the analysis of human spinal microdialysates. The analytical detection limits were 1, 3.7 and 17 nmol/L for GABA, Glu and L-Asp respectively. This method allows an accurate measurement of the three amino acid neurotransmitters during an in vivo monitoring performed as rapidly as every minute in the human spinal dorsal horn. In addition, the effect of a brief peroperative electrical stimulation of the dorsal rootlets was investigated. The results obtained illustrate the advantages of combining microdialysis with CE-LIFD for studying neurotransmitters with such a high sampling rate.

  5. Axotomy of tributaries of the pelvic and pudendal nerves induces changes in the neurochemistry of mouse dorsal root ganglion neurons and the spinal cord.

    Science.gov (United States)

    McCarthy, Carly J; Tomasella, Eugenia; Malet, Mariana; Seroogy, Kim B; Hökfelt, Tomas; Villar, Marcelo J; Gebhart, G F; Brumovsky, Pablo R

    2016-05-01

    Using immunohistochemical techniques, we characterized changes in the expression of several neurochemical markers in lumbar 4-sacral 2 (L4-S2) dorsal root ganglion (DRG) neuron profiles (NPs) and the spinal cord of BALB/c mice after axotomy of the L6 and S1 spinal nerves, major tributaries of the pelvic (targeting pelvic visceral organs) and pudendal (targeting perineum and genitalia) nerves. Sham animals were included. Expression of cyclic AMP-dependent transcription factor 3 (ATF3), calcitonin gene-related peptide (CGRP), transient receptor potential cation channel subfamily V, member 1 (TRPV1), tyrosine hydroxylase (TH) and vesicular glutamate transporters (VGLUT) types 1 and -2 was analysed seven days after injury. L6-S1 axotomy induced dramatic de novo expression of ATF3 in many L6-S1 DRG NPs, and parallel significant downregulations in the percentage of CGRP-, TRPV1-, TH- and VGLUT2-immunoreactive (IR) DRG NPs, as compared to their expression in uninjured DRGs (contralateral L6-S1-AXO; sham mice); VGLUT1 expression remained unaltered. Sham L6-S1 DRGs only showed a small ipsilateral increase in ATF3-IR NPs (other markers were unchanged). L6-S1-AXO induced de novo expression of ATF3 in several lumbosacral spinal cord motoneurons and parasympathetic preganglionic neurons; in sham mice the effect was limited to a few motoneurons. Finally, a moderate decrease in CGRP- and TRPV1-like-immunoreactivities was observed in the ipsilateral superficial dorsal horn neuropil. In conclusion, injury of a mixed visceral/non-visceral nerve leads to considerable neurochemical alterations in DRGs matched, to some extent, in the spinal cord. Changes in these and potentially other nociception-related molecules could contribute to pain due to injury of nerves in the abdominopelvic cavity. PMID:25749859

  6. Differential expression of ATP7A, ATP7B and CTR1 in adult rat dorsal root ganglion tissue

    Directory of Open Access Journals (Sweden)

    Ip Virginia

    2010-09-01

    Full Text Available Abstract Background ATP7A, ATP7B and CTR1 are metal transporting proteins that control the cellular disposition of copper and platinum drugs, but their expression in dorsal root ganglion (DRG tissue and their role in platinum-induced neurotoxicity are unknown. To investigate the DRG expression of ATP7A, ATP7B and CTR1, lumbar DRG and reference tissues were collected for real time quantitative PCR, RT-PCR, immunohistochemistry and Western blot analysis from healthy control adult rats or from animals treated with intraperitoneal oxaliplatin (1.85 mg/kg or drug vehicle twice weekly for 8 weeks. Results In DRG tissue from healthy control animals, ATP7A mRNA was clearly detectable at levels similar to those found in the brain and spinal cord, and intense ATP7A immunoreactivity was localised to the cytoplasm of cell bodies of smaller DRG neurons without staining of satellite cells, nerve fibres or co-localisation with phosphorylated heavy neurofilament subunit (pNF-H. High levels of CTR1 mRNA were detected in all tissues from healthy control animals, and strong CTR1 immunoreactivity was associated with plasma membranes and vesicular cytoplasmic structures of the cell bodies of larger-sized DRG neurons without co-localization with ATP7A. DRG neurons with strong expression of ATP7A or CTR1 had distinct cell body size profiles with minimal overlap between them. Oxaliplatin treatment did not alter the size profile of strongly ATP7A-immunoreactive neurons but significantly reduced the size profile of strongly CTR1-immunoreactive neurons. ATP7B mRNA was barely detectable, and no specific immunoreactivity for ATP7B was found, in DRG tissue from healthy control animals. Conclusions In conclusion, adult rat DRG tissue exhibits a specific pattern of expression of copper transporters with distinct subsets of peripheral sensory neurons intensely expressing either ATP7A or CTR1, but not both or ATP7B. The neuron subtype-specific and largely non

  7. N-methyl-D-aspartate receptor expression in the spinal dorsal horn of a rat model of formalin-induced inflammatory pain following intrathecal injection of butorphanol

    Institute of Scientific and Technical Information of China (English)

    Yichun Wang; Yuan Zhang; Qulian Guo; Xiaohong Liu; Mingde Wang; Hui Luo

    2010-01-01

    Clinical and animal experiments have proved that intrathecal injection of butorphanol has an analgesic effect. However, whether the analgesic effect is associated with activation of the N-methyl-D-aspartate (NMDA) receptor remains unclear. This study presumed that intrathecal injection of butorphanol has an analgesic effect on formalin-induced inflammatory pain in rats, and its analgesic effect is associated with inhibition of NMDA receptors. Concurrently, ketamine was injected into the intrathecal space, which is a non-competitive NMDA receptor antagonist, to determine the analgesic mechanism of butorphanol. The total reflection time in phase 1 and phase 2 of rat hind paws carding action was reduced when the butorphanol dose was increased to 25 μg,or a low dose of butorphanol was combined with ketamine. Intrathecal injection of a high dose of butorphanol alone or a Iow dose of butorphanol combined with ketamine can remarkably reduce NMDA receptor expression in the L5 spinal dorsal horn of formalin-induced pain rats. The results suggest that intrathecal injection of butorphanol has analgesic effects on formalin-induced inflammatory pain, and remarkably reduces NMDA receptor expression in the rat spinal dorsal horn.Ketamine strengthens this analgesic effect. The analgesic mechanism of intrathecal injection of butorphanol is associated with inhibition of NMDA receptor activation.

  8. Spinal metastasis of medulloblastoma in adults: A case report

    Directory of Open Access Journals (Sweden)

    Živković Nenad

    2014-01-01

    Full Text Available Introduction. Medulloblastoma is a primitive neuro-ectodermal malignant tumor most commonly seen in childhood and rarely and uncommonly in adult age. Treatment consists of surgery followed by radiotherapy. In the case of a relapse there is no overall accepted treatment. Tumor metastasis can be seen along the neural axis, lymph nodes, soft tissues, bones and distant organs. Case Outline. In this paper we present a 45-year-old female patient with a thoraco-spinal extramedullary metastatic medulloblastoma and progressive neurological deterioration seen 11 months after the first operation and description of magnetic resonance and intraoperative finding. Conclusion. Although rare, the presence of metastasis is a poor prognostic factor. The treatment options for patients with metastases are limited and their prognosis continues to remain poor.

  9. Alteration of forebrain neurogenesis after cervical spinal cord injury in the adult rat.

    Directory of Open Access Journals (Sweden)

    Marie-Solenne eFELIX

    2012-04-01

    Full Text Available Spinal cord injury (SCI triggers a complex cellular response at the injury site, leading to the formation of a dense scar tissue. Despite this local tissue remodeling, the consequences of SCI at the cellular level in distant rostral sites (i.e. brain, remain unknown. In this study, we asked whether cervical SCI could alter cell dynamics in neurogenic areas of the adult rat forebrain. To this aim, we quantified BrdU incorporation and determined the phenotypes of newly generated cells (neurons, astrocytes, or microglia during the subchronic and chronic phases of injury. We find that subchronic SCI leads to a reduction of BrdU incorporation and neurogenesis in the olfactory bulb and in the hippocampal dentate gyrus. By contrast, subchronic SCI triggers an increased BrdU incorporation in the dorsal vagal complex of the hindbrain, where most of the newly generated cells are identified as microglia. In chronic condition 90 days after SCI, BrdU incorporation returns to control levels in all regions examined, except in the hippocampus, where SCI produces a long-term reduction of neurogenesis, indicating that this structure is particularly sensitive to SCI. Finally, we observe that SCI triggers an acute inflammatory response in all brain regions examined, as well as a hippocampal-specific decline in BDNF levels, which could explain the SCI-mediated distant effects on forebrain neurogenesis. This study provides the first demonstration that forebrain neurogenesis is vulnerable to a distal SCI.

  10. Positron emission tomography for serial imaging of the contused adult rat spinal cord.

    NARCIS (Netherlands)

    Nandoe, R.D.S.; Yu, J.; Seidel, J.; Rahiem, S.T.; Hurtado, A.; Tsui, B.M.; Grotenhuis, J.A.; Pomper, M.G.; Oudega, M.

    2010-01-01

    We investigated whether small-animal positron emission tomography (PET) could be used in combination with computed tomography (CT) imaging techniques for longitudinal monitoring of the injured spinal cord. In adult female Sprague-Dawley rats (n = 6), the ninth thoracic (T9) spinal cord segment was e

  11. Lentiviral gene transfer into the dorsal root ganglion of adult rats

    Directory of Open Access Journals (Sweden)

    Park Frank

    2011-08-01

    Full Text Available Abstract Background Lentivector-mediated gene delivery into the dorsal root ganglion (DRG is a promising method for exploring pain pathophysiology and for genetic treatment of chronic neuropathic pain. In this study, a series of modified lentivector particles with different cellular promoters, envelope glycoproteins, and viral accessory proteins were generated to evaluate the requirements for efficient transduction into neuronal cells in vitro and adult rat DRG in vivo. Results In vitro, lentivectors expressing enhanced green fluorescent protein (EGFP under control of the human elongation factor 1α (EF1α promoter and pseudotyped with the conventional vesicular stomatitis virus G protein (VSV-G envelope exhibited the best performance in the transfer of EGFP into an immortalized DRG sensory neuron cell line at low multiplicities of infection (MOIs, and into primary cultured DRG neurons at higher MOIs. In vivo, injection of either first or second-generation EF1α-EGFP lentivectors directly into adult rat DRGs led to transduction rates of 19 ± 9% and 20 ± 8% EGFP-positive DRG neurons, respectively, detected at 4 weeks post injection. Transduced cells included a full range of neuronal phenotypes, including myelinated neurons as well as both non-peptidergic and peptidergic nociceptive unmyelinated neurons. Conclusion VSV-G pseudotyped lentivectors containing the human elongation factor 1α (EF1α-EGFP expression cassette demonstrated relatively efficient transduction to sensory neurons following direct injection into the DRG. These results clearly show the potential of lentivectors as a viable system for delivering target genes into DRGs to explore basic mechanisms of neuropathic pain, with the potential for future clinical use in treating chronic pain.

  12. Material basis for inhibition of Dragon's Blood on evoked discharges of wide dynamic range neurons in spinal dorsal horn of rats

    Institute of Scientific and Technical Information of China (English)

    GUO Min; CHEN Su; LIU XiangMing

    2008-01-01

    In vivo experiments were designed to verify the analgesic effect of Dragon's Blood and the material basis for this effect. Extracellular microelectrode recordings were used to observe the effects of Dragon's Blood and various combinations of the three components (cochinchinenin A, cochinchinenin B, and Ioureirin B) extracted from Dragon's Blood on the discharge activities of wide dynamic range (WDR) neurons in spinal dorsal horn (SDH) of intact male Wistar rats evoked by electric stimulation at sciatic nerve. When the Hill's coefficients describing the dose-response relations of drugs were dif-ferent, based on the concept of dose equivalence, the equations of addillvity surfaces which can be applied to assess the interaction between three drugs were derived. Adopting the equations and Tal-larida's isobole equations used to assess the interaction between two drugs with dissimilar dose-response relations, the effects produced by various combinations of the three components in modulating the evoked discharge activities of WDR neurons were evaluated. Results showed that Dragon's Blood and its three components could inhibit the evoked discharge frequencies of WDR neurons in a concentration-dependent way. The Hill's coefficients describing dose-response relations of three components were different. Only the combined effect of cochinchinenin A, cochinchinenin B and Ioureirin B was similar to that of Dragons Blood. Furthermore, the combined effect was synergistic. This investigation demonstrated that through the synergistic interaction of the three components Dragon's Blood could interfere with the transmission and processing of pain signals in spinal dorsal horn. All these further proved that the combination of cochinchinenin A, cochinchinenin B, and Ioureirin B was the material basis for the analgesic effect of Dragon's Blood.

  13. Material basis for inhibition of Dragon’s Blood on evoked discharges of wide dynamic range neurons in spinal dorsal horn of rats

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    In vivo experiments were designed to verify the analgesic effect of Dragon’s Blood and the material basis for this effect. Extracellular microelectrode recordings were used to observe the effects of Dragon’s Blood and various combinations of the three components (cochinchinenin A, cochinchinenin B, and loureirin B) extracted from Dragon’s Blood on the discharge activities of wide dynamic range (WDR) neurons in spinal dorsal horn (SDH) of intact male Wistar rats evoked by electric stimulation at sciatic nerve. When the Hill’s coefficients describing the dose-response relations of drugs were dif-ferent, based on the concept of dose equivalence, the equations of additivity surfaces which can be applied to assess the interaction between three drugs were derived. Adopting the equations and Tal-larida’s isobole equations used to assess the interaction between two drugs with dissimilar dose-response relations, the effects produced by various combinations of the three components in modulating the evoked discharge activities of WDR neurons were evaluated. Results showed that Dragon’s Blood and its three components could inhibit the evoked discharge frequencies of WDR neurons in a concentration-dependent way. The Hill’s coefficients describing dose-response relations of three components were different. Only the combined effect of cochinchinenin A, cochinchinenin B and loureirin B was similar to that of Dragons Blood. Furthermore, the combined effect was synergistic. This investigation demonstrated that through the synergistic interaction of the three components Dragon’s Blood could interfere with the transmission and processing of pain signals in spinal dorsal horn. All these further proved that the combination of cochinchinenin A, cochinchinenin B, and loureirin B was the material basis for the analgesic effect of Dragon’s Blood.

  14. Depression of presynaptic excitation by the activation of vanilloid receptor 1 in the rat spinal dorsal horn revealed by optical imaging

    Directory of Open Access Journals (Sweden)

    Ikeda Hiroshi

    2006-02-01

    Full Text Available Abstract In this study, we show that capsaicin (CAP depresses primary afferent fiber terminal excitability by acting on vanilloid receptor 1 (TRPV1 channels of primary afferent fibers in adenosine 5'-triphosphate (ATP- and temperature-dependent manner using two optical imaging methods. First, transverse slices of spinal cord were stained with a voltage-sensitive dye and the net excitation in the spinal dorsal horn was recorded. Prolonged treatment (>20 min with the TRPV1 channel agonist, CAP, resulted in a long-lasting inhibition of the net excitation evoked by single-pulse stimulation of C fiber-activating strength. A shorter application of CAP inhibited the excitation in a concentration-dependent manner and the inhibition was reversed within several minutes. This inhibition was Ca++-dependent, was antagonized by the TRPV1 channel antagonist, capsazepine (CPZ, and the P2X and P2Y antagonist, suramin, and was facilitated by the P2Y agonist, uridine 5'-triphosphate (UTP. The inhibition of excitation was unaffected by bicuculline and strychnine, antagonists of GABAA and glycine receptors, respectively. Raising the perfusate temperature to 39°C from 27°C inhibited the excitation (-3%/°C. This depressant effect was antagonized by CPZ and suramin, but not by the P2X antagonist, 2', 3'-O-(2,4,6-trinitrophenyl adenosine 5'-triphosphate (TNP-ATP. Second, in order to record the presynaptic excitation exclusively, we stained the primary afferent fibers anterogradely from the dorsal root. CAP application and a temperature increase from 27°C to 33°C depressed the presynaptic excitation, and CPZ antagonized these effects. Thus, this study showed that presynaptic excitability is modulated by CAP, temperature, and ATP under physiological conditions, and explains the reported central actions of CAP. These results may have clinical importance, especially for the control of pain.

  15. Lumbar spinal mobility changes among adults with advancing age

    Directory of Open Access Journals (Sweden)

    Ismaila Adamu Saidu

    2011-01-01

    Conclusion : Using these data, we developed normative values of spinal mobility for each sex and age group. This study helps the clinicians to understand and correlate the restrictions of lumbar spinal mobility due to age and differentiate the limitations due to disease.

  16. Effects of intrathecal injection of glial cell inhibitor on spinal cord astrocytes following chronic compression of dorsal root ganglia in rats

    Institute of Scientific and Technical Information of China (English)

    Xianhong Zhang; Wen Shen; Mingde Wang; Yinming Zeng

    2009-01-01

    BACKGROUND: Astrocytes are considered to provide nutritional support in the central nervous system. However, recent studies have confirmed that astrocytes also play an important role in chronic pain. OBJECTIVE: To investigate the effects of intrathecal injection of fluorocitrate, minocycline or both on astrocyte activation and proliferation in the spinal dorsal horn of compressed dorsal root ganglion in rats. DESIGN, TIME AND SETTING: The neurology randomized controlled animal study was performed at the Jiangsu Institute of Anesthesia Medicine, from September 2006 to April 2007. MATERIALS: A total of 96 male Sprague Dawley rats, aged 6-8 weeks, were selected for this study. Following intrathecal catheterization, 80 rats underwent steel bar insertion into the L4-5 intervertebral foramina to make a stable compression on the L4-5 posterior root ganglion. Thus rat models of ganglion compression were established. Minocycline and fluorocitrate were purchased from Sigma, USA. METHODS: A total of 96 rats were randomly and equally divided into six groups. Rat L4, L5 transverse process and intervertebral foramina were exposed in the sham operation group, but without steel bar insertion. The model group did not receive any manipulations. Rats in the phosphate buffered saline (PBS) group were intrathecally injected with 0.01 mmol/L PBS (20 μL). Rats in the fluorocitrate group were subjected to 1 μmol/L fluorocitrate (20 μL). Rats in the minocycline group were intrathecally injected with 5 g/L minocycline (20 μL). Rats in the minocycline and fluorocitrate group received a mixture (20 μL) of 5 g/L minocycline and 1 μmol/L fluorocitrate. Following model establishment, drugs were administered once a day. MAIN OUTCOME MEASURES: At 7 and 14 days following model induction, glial fibrillary acidic protein expression in the spinal dorsal horn was measured by immunofluorescence microscopy. Six sections with significant glial fibrillary acidic protein -positive expression were

  17. Pulmonary function before and after anterior spinal surgery in adult idiopathic scoliosis.

    OpenAIRE

    Wong, C. A.; Cole, A. A.; L. Watson; Webb, J K; Johnston, I. D.; Kinnear, W. J.

    1996-01-01

    BACKGROUND: Little is known about the long term effects of anterior spinal surgery on pulmonary function in adult patients with idiopathic scoliosis. A study was therefore undertaken of pulmonary function before and after anterior spinal surgery in this group of patients. METHODS: Fourteen patients (12 women) of mean age 26.5 years (range 17-50, 10 > or = 20 years) were studied. All 14 patients underwent thoracotomy and anterior arthrodesis, and five also underwent posterior arthrodesis. Scol...

  18. Repair of acutely injured spinal cord through constructing tissue-engineered neural complex in adult rats

    Institute of Scientific and Technical Information of China (English)

    PU Yu; GUO Qing-shan; WANG Ai-min; WU Si-yu; XING Shu-xing; ZHANG Zhong-rong

    2007-01-01

    Objective: To construct tissue-engineered neural complex in vitro and study its effect in repairing acutely injured spinal cord in adult rats. Methods: Neural stem cells were harvested from the spinal cord of embryo rats and propagated in vitro. Then the neural stem cells were seeded into polyglycolic acid scaffolds and co-cultured with extract of embryonic spinal cord in vitro. Immunofluorescence histochemistry and scanning electron microscope were used to observe the microstructure of this complex. Animal model of spine semi-transection was made and tissue-engineered neural complex was implanted by surgical intervention. Six weeks after transplantation, functional evaluation and histochemistry were applied to evaluate the functional recovery and anatomic reconstruction. Results: The tissue-engineered neural complex had a distinct structure, which contained neonatal neurons, oligodendrocytes and astrocytes. After tissue-engineered neural complex was implanted into the injured spinal cord, the cell components such as neurons, astrocytes and oligodendrocytes, could survive and keep on developing. The adult rats suffering from spinal cord injury got an obvious neurological recovery in motor skills. Conclusions: The tissue-engineered neural complex appears to have therapeutic effects on the functional recovery and anatomic reconstruction of the adult rats with spinal cord injury.

  19. Effect of thyroxine on munc-18 and syntaxin-1 expression in dorsal hippocampus of adult-onset hypothyroid rats

    Directory of Open Access Journals (Sweden)

    Y. Zhu

    2012-05-01

    Full Text Available Adult-onset hypothyroidism induces a variety of impairments on hippocampus- dependent neurocognitive functioningin which many synaptic proteins in hippocampus neurons are involved. Here, we observed the effect of adult-onset hypothyroidism on the expression of syntaxin-1 and munc-18 in the dorsal hippocampus and whether the altered proteins could be restored by levothyroxine (T4 treatment. All rats were separated into 4 groups randomly: hypothyroid group, 5μg T4/100 g body weight (BW treated group, 20 μg T4/100g BW treated group and control group. The radioimmunoassay kits were applied to assay the levels of serum T3 and T4, and the levels of syntaxin-1 and munc-18 in hippocampus were assessed by immunohistochemistry and Western blot. Both analysis corroborated that syntaxin-1 in the hypothyroid group was significantly higher. Munc-18 was lower in four layers of CA3 and dentate gyrus by immunohistochemistry. After two weeks of treatment with 5 μg T4/100g BW for hypothyroidism, syntaxin-1 levels were completely restored, whereas the recovery of munc-18 only located in two of the four impaired layers. Twenty μg T4/100g BW treatment normalized munc-18 levels. These data suggested that adult-onset hypothyroidism induced increment of syntaxin-1 and decrement of munc-18 in the dorsal hippocampus, which could be restored by T4 treatment. Larger dosage of T4 caused more effective restorations.

  20. Effect of pre-electroacupuncture on p38 and c-Fos expression in the spinal dorsal horn of rats suffering from visceral pain

    Institute of Scientific and Technical Information of China (English)

    XU Ke-da; LIANG Tao; WANG Kun; TIAN De-an

    2010-01-01

    Background Acupuncture is an effective way to relieve pain, but the mechanism by which electroacupuncture (EA) decreases the visceral pain state still remains unclear. This study aimed to evaluate the effects of pre-electroacupuncture on pain behaviors, p38 phosphorylation, and c-Fos protein and mRNA expression in both the colonic wall and spinal dorsal horn of rats suffering from visceral pain. This study also investigated the probable signaling regulatory mechanism of the analgesic effect induced by electroacupuncture. Methods All rats were randomized into the control (Con) group, the Con+EA group, the visceral pain (VP) group, and VP+EA group (n=8 for all groups). The visceral pain model was established using 40 ul of 5% formalin solution injected into the colon of rats. EA was applied to the bilateral Jiaji acupoints for 20 minutes before application of visceral pain. Parameters for EA were set at a continuous wave (20 Hz) and intensity where the rats shook their whiskers but did not scrabble (≤1 mA). The visceral pain score was recorded and the expressions of p38 and c-Fos protein were detected using Western blotting. Real-time quantitative PCR was also used to determine the expression of c-Fos mRNA. Results Rats in the VP group immediately presented with obvious visceral pain behaviors after being injected with formalin. p38 activity and c-Fos protein and mRNA expression in both the colonic wall and spinal dorsal horn were higher in the VP group than in the Con group (P <0.05). By contrast, visceral pain behaviors were delayed in rats from the VP+EA group. p38 activity and c-Fos protein and mRNA expression were lower in the VP+EA group than that in the VP group (P<0.01). Conclusions Pre-electroacupuncture of the Jiaji acupoint has prophylactic analgesic effects on rats suffering from visceral pain. The p38 signal transduction pathway may be partly involved in the regulatory mechanism of this analgesic effect.

  1. Reevaluation of the Role of the Sympathetic Nervous System in Cutaneous Vasodilation during Dorsal Spinal Cord Stimulation: Are Multiple Mechanisms Active?

    Science.gov (United States)

    Croom, J E; Foreman, R D; Chandler, M J; Barron, K W

    1998-04-01

    Objective. In addition to treatment of refractory chronic pain in patients with peripheral vascular disease, dorsal spinal cord stimulation (DCS) increases cutaneous blood flow to the extremities and may have a limb-saving effect. The purpose of this study was to examine the role of the sympathetic nervous system in the cutaneous vasodilation due to DCS. Methods. Male Sprague-Dawley rats were anesthetized with pentobarbital (60 mg/kg, i.p.). A unipolar ball electrode was placed on the left side of the exposed spinal cord at approximately the L1-L2 level. Blood flow was concurrently recorded from both hindpaw foot pads with laser Doppler flowmeters. Blood flow responses were assessed during 1 min of DCS (0.6 mA at 50 Hz, 0.2 msec pulse duration) at 10 min intervals. To determine the contribution of the sympathetic nervous system in the blood flow response to DCS, the role of ganglionic transmission, alpha-adrenergic receptors, beta-adrenergic receptors, and adrenal catecholamine secretion were investigated using adrenergic receptor antagonists. Results. Hexamethonium (10 mg/kg, i.v.), an autonomic ganglionic receptor antagonist, did not attenuate the cutaneous vasodilation during DCS. Phentolamine (3 mg/kg, i.v.), a nonselective alpha-adrenergic receptor antagonist, also did not attenuate the DCS-induced increase in peripheral cutaneous blood flow. On the other hand, prazosin (0.1 mg/kg, i.v.), a selective alpha-1-adrenergic receptor antagonist, attenuated the DCS response but this may, at least, be partly due to a vehicle effect. Propranolol (5 mg/kg, i.v.), a nonselective beta-adrenergic receptor antagonist, attenuated the DCS response while adrenal demedullation did not. Conclusion. Overall, our results show that DCS-induced vasodilation can occur through mechanisms that are independent of sympathetic outflow. PMID:22150941

  2. Clinical features of adult spinal muscular atrophy:46 cases

    Institute of Scientific and Technical Information of China (English)

    Xiaojun He; Ping Zhang; Guanghui Chen

    2006-01-01

    BACKGROUND: Spinal muscular atrophy (SMA) is a kind of degenerative disease of nervous system. There are 4 types in clinic, especially types Ⅰ, Ⅱ and Ⅲ are common, and the researches on those 3 types are relative mature. Type Ⅳ is a kind of adult spinal muscular atrophy (ASMA), which has low incidence rate and is often misdiagnosed as amyotrophic lateral sclerosis, muscular dystrophy, cervical syndrome, or others.OBJECTIVE: To observe the clinical features of 46 ASMA patients and analyze the relationship between course and activity of daily living.DESIGN: Case analysis.SETTING: Departments of Neurology of the 81 Hospital of Chinese PLA, the Second Affiliated Hospital of Nanjing Medical College and General Hospital of Nanjing Military Area Command of Chinese PLA.PARTICIPANTS: A total of 46 ASMA patients were selected from the Departments of Neurology of the 81Hospital of Chinese PLA, the Second Affiliated Hospital of Nanjing Medical College and General Hospital of Nanjing Military Area Command of Chinese PLA between April 1998 and January 2002. All patients were consentient. Among 46 cases, there were 37 males and 9 females with the mean age of 42 years. The patients' courses in all ranged from 6 months to 23 years, concretely, courses of 37 cases were less than or equal to 5 years, and those of 9 cases were more than or equal to 6 years.METHODS : ① All the 46 ASMA patients were asked to check blood sedimentation, anti O, serum creatinine,creatine, blood creatine phosphokinase (CPK) and muscular biopsy as early as possible. ② X-ray was used to measure plain film of cervical vertebra borderline film of cranium and neck at proximal end of upper limb of 25 cases and plain film of abdominal vertebra at proximal end of lower limb of 17 cases.③ Cerebrospinal fluid of lumbar puncture was checked on 42 cases, for routine examination, biochemical examination, and immunoglobulin examination. Electromyogram (EMG) was also examined to 42 cases. ④ Barthel index

  3. Kalsiyum Kanal Blokeri Verapamilin Spinal Reflekslere Etkisi

    OpenAIRE

    TAŞÇI, N.; GENÇ, O.

    2010-01-01

    Effects of calcium channel blocker verapamil on spinal reflexes were studied. Verapamil 5, 50, (iM locally. 10,20 mg/kg was administradet intraperitoneally and 10, 50, 100 (iM localyy. Experiments on adult spinal cats (n=10) were conducted. Animals weighing 1,5-3 kg were anesthetized with ketamine (45 mg/kg intramuscular) and artiflcally ventilated. Animals were spinalized at Cj level and a laminectomy was performed in the lumbosacral region. The ventral and dorsal roots of segment Lg were...

  4. Inhibition of SNL-induced upregulation of CGRP and NPY in the spinal cord and dorsal root ganglia by the 5-HT(2A) receptor antagonist ketanserin in rats.

    Science.gov (United States)

    Wang, Dongmei; Chen, Tingjun; Gao, Yun; Quirion, Rémi; Hong, Yanguo

    2012-05-01

    Our previous study has demonstrated that topical and systemic administration of the 5-HT(2A) receptor antagonist ketanserin attenuates neuropathic pain. To explore the mechanisms involved, we examined whether ketanserin reversed the plasticity changes associated with calcitonin gene-related peptides (CGRP) and neuropeptide Y (NPY) which may reflect distinct mechanisms: involvement and compensatory protection. Behavioral responses to thermal and tactile stimuli after spinal nerve ligation (SNL) at L5 demonstrated neuropathic pain and its attenuation in the vehicle- and ketanserin-treated groups, respectively. SNL surgery induced an increase in CGRP and NPY immunoreactivity (IR) in laminae I-II of the spinal cord. L5 SNL produced an expression of NPY-IR in large, medium and small diameter neurons in dorsal root ganglion (DRG) only at L5, but not adjacent L4 and L6. Daily injection of ketanserin (0.3 mg/kg, s.c.) for two weeks suppressed the increase in CGRP-IR and NPY-IR in the spinal cord or DRG. The present study demonstrated that: (1) the expression of CGRP was enhanced in the spinal dorsal horn and NPY was expressed in the DRG containing injured neurons, but not in the adjacent DRG containing intact neurons, following L5 SNL; (2) the maladaptive changes in CGRP and NPY expression in the spinal cord and DRG mediated the bioactivity of 5-HT/5-HT(2A) receptors in neuropathic pain and (3) the blockade of 5-HT(2A) receptors by ketanserin reversed the evoked upregulation of both CGRP and NPY in the spinal cord and DRG contributing to the inhibition of neuropathic pain.

  5. 幻肢痛大鼠脊髓背角神经元和突触数量的变化%Changes in the number of synapses and neurons in spinal dorsal horn in a rat model of phantom limb pain

    Institute of Scientific and Technical Information of China (English)

    林菁艳; 彭彬; 杨正伟; 闵苏

    2010-01-01

    Objective To investigate the changes in the number of synapses and neurons in the spinal dorsal horn in a rat model of phantom limb pain. Methods Eleven healthy adult SD rats of both sexes weighing 209-300 g were randomly divided into 2 groups: sham operation group (group S, n = 5) and phantom limb pain group (group P, n = 6). Phantom limb pain was induced by resection of a 0.5 cm segment of unilateral sciatic nerve in group P. In group S unilateral sciatic nerve was exposed but not transected. The animals were observed for autotomy and scored (0 = no autotomy, 13 = the worst autotomy) after operation and were sacrificed on the 28th day after operation. The L3-6 segment of the spinal cord was removed for determination of the number of neurons (by Nissl's staining) and synapses (by synaptophysin immuno-histochemistry).Results In group S no animal developed autotomy. In group P autotomy started from the 2nd day after operation and the score reached 9-11. The number of the neurons in the spinal dorsal horn in all 4 segments and the number of synapses in L3 and 16 segments were comparable between the two sides and the 2 groups. The number of synapses in the spinal dorsal horn of L4and L5 segment was significantly larger in the operated side than in the contralateral side in group P. Conclusion The number of synapses in the spinal dorsal horn significantly increases in animals with plantom limb pain which induces no increase in the number of neurons in the spinal dorsal horn.%目的 探讨幻肢痛大鼠脊髓背角神经元和突触数量的变化.方法 健康成年SD大鼠11只,雄雌不拘,体重290~300 g,随机分为2组:假手术组(S组,n=5)和单侧坐骨神经横断组(P组,n=6).术后持续观察P组大鼠自噬情况,并进行自噬评分.术后28 d时,取L3~6节段脊髓组织,分别进行尼氏染色(显示神经元)和突触素免疫组织化学染色(显示突触数量),计数手术侧和非手术侧脊髓背角神经元和突触的数量.结果 P

  6. Extensive neuronal differentiation of human neural stem cell grafts in adult rat spinal cord.

    Directory of Open Access Journals (Sweden)

    Jun Yan

    2007-02-01

    Full Text Available BACKGROUND: Effective treatments for degenerative and traumatic diseases of the nervous system are not currently available. The support or replacement of injured neurons with neural grafts, already an established approach in experimental therapeutics, has been recently invigorated with the addition of neural and embryonic stem-derived precursors as inexhaustible, self-propagating alternatives to fetal tissues. The adult spinal cord, i.e., the site of common devastating injuries and motor neuron disease, has been an especially challenging target for stem cell therapies. In most cases, neural stem cell (NSC transplants have shown either poor differentiation or a preferential choice of glial lineages. METHODS AND FINDINGS: In the present investigation, we grafted NSCs from human fetal spinal cord grown in monolayer into the lumbar cord of normal or injured adult nude rats and observed large-scale differentiation of these cells into neurons that formed axons and synapses and established extensive contacts with host motor neurons. Spinal cord microenvironment appeared to influence fate choice, with centrally located cells taking on a predominant neuronal path, and cells located under the pia membrane persisting as NSCs or presenting with astrocytic phenotypes. Slightly fewer than one-tenth of grafted neurons differentiated into oligodendrocytes. The presence of lesions increased the frequency of astrocytic phenotypes in the white matter. CONCLUSIONS: NSC grafts can show substantial neuronal differentiation in the normal and injured adult spinal cord with good potential of integration into host neural circuits. In view of recent similar findings from other laboratories, the extent of neuronal differentiation observed here disputes the notion of a spinal cord that is constitutively unfavorable to neuronal repair. Restoration of spinal cord circuitry in traumatic and degenerative diseases may be more realistic than previously thought, although major

  7. Culture of Schwann cells of human embryonic spinal cord dorsal root%人胚胎脊髓背根雪旺氏细胞的培养

    Institute of Scientific and Technical Information of China (English)

    林绿标; 林旭妍; 肖哲; 许益民

    2012-01-01

    目的 探索人胚胎雪旺氏细胞的分离、培养和纯化的方法,为将来雪旺氏细胞移植奠定基础.方法 从胎儿脊髓背根中分离培养雪旺氏细胞,利用雪旺氏细胞与纤维母细胞的不同贴壁特性,综合利用酶消化、时间差和阿糖胞苷抑制等方法,达到分离和纯化人雪旺氏细胞的目的.结果 雪旺氏细胞大部份呈梭形,两端有突起,少数呈多角形.免疫组化示这些细胞呈S-100抗原阳性,细胞纯度达99%.结论 本方法分离、培养的人雪旺氏细胞纯度高,是一种有效的培养方法.%Objective To explore the separation, culture and purification methods of human embryonic Schwann cells in order to lay the foundation for future transplantation of Schwann cells. Methods The Schwann cells were separated from the fetal spinal cord dorsal root. Based on the different adherent properties of Schwann cells and fibroblasts, enzymatic digestion, time difference, cytarabine inhibition and other methods were used to separate and purify human Schwann cells. Results The majority of Schwann cells were fusiform, with protrusion on both ends, and the minority was polygonal. Immuno-histochemistry showed that these cells were antigen S-100 positive and the cell purity degree reached up to 99%. Conclusion The cells separated and cultured with this method show high cell purity, thereby it is an effective culture method.

  8. Role of minimally invasive surgery for adult spinal deformity in preventing complications.

    Science.gov (United States)

    Yen, Chun-Po; Mosley, Yusef I; Uribe, Juan S

    2016-09-01

    With the aging population, there is a rising prevalence of degenerative spinal deformity and need of surgical care for these patients. Surgical treatment for adult spinal deformity (ASD) is often fraught with a high rate of complications. Minimally invasive surgery (MIS) has for the past decade been adopted by spine surgeons to treat ASD in the hopes of reducing access-related morbidity and perioperative complications. The benefits of MIS approach in general and recent development of MIS techniques to avoid long-term complications such as pseudoarthrosis or proximal junctional kyphosis are reviewed. PMID:27411527

  9. Differentiation of endogenous neural precursors following spinal cord injury in adult rats

    Institute of Scientific and Technical Information of China (English)

    Bin Zhao; Hua Han; Shuanke Wang; Bingren Gao; Zhengyi Sun

    2008-01-01

    BACKGROUND:Studies have shown that cell death can activate proliferation of endogenous neural stem cells and promote newly generated cells to migrate to a lesion site.OBJECTIVE:To observe regeneration and differentiation of neural cells following spinal cord injury in adult rats and to quantitatively analyze the newly differentiated cells.DESIGN,TIME AND SETTING:A cell biology experiment was performed at the Institute of Orthopedics and Medical Experimental Center,Lanzhou University.between August 2005 and October 2007.MATERIALS:Fifty adult,Wistar rats of both sexes;5-bromodeoxyuridine(BrdU,Sigma,USA);antibodies against neuron-specific enolase,glial fibrillary acidic protein,and myelin basic protein(Chemicon,USA).METHODS:Twenty-five rats were assigned to the spinal cord injury group and received a spinal cord contusion injury.Materials were obtained at day 1,3,7,15,and 29 after injury,with 5 rats for each time point.Twenty-five rats were sham-treated by removing the lamina of the vertebral arch without performing a contusion.MAIN OUTCOME MEASURES:The phenotype of BrdU-labeled cells,i.e.,expression and distribution of surface markers for neurons(neuron-specific enolase),astrocytes(glial fibrillary acidic protein),and oligodendrocytes(myelin basic protein),were identified with immunofluorescence double-labeling.Confocal microscopy was used to detect double-labeled cells by immunofluorescence.Quantitative analysis of newly generated cells was performed with stereological counting methods.RESULTS:There was significant cell production and differentiation after adult rat spinal cord injury.The quantity of newly-generated BrdU-labeled cells in the spinal cord lesion was 75-fold greater than in the corresponding area of control animals.Endogenous neural precursor cells differentiated into astrocytes and oligodendrocytes,however spontaneous neuronal difierentiation was not detected.Between 7 and 29 d after spinal cord injury,newly generated cells expressed increasingly more

  10. The change of T-wave on electrocardiogram after epinephrine test dose in spinal anesthetized adults

    OpenAIRE

    Lee, Jeong Woo; Kim, Deokyu; Choi, Hyun Ho; Kim, Dong Chan

    2010-01-01

    Background This study evaluated the efficacy of a T-wave change after the IV administration of low dose epinephrine containing the test dose during spinal anesthesia. Methods Eighty healthy adults undergoing spinal anesthesia were enrolled in this study. The subjects were divided randomly into the following 4 groups: Group S (n = 20) received 3 ml of normal saline, group L (n = 20) received 3 ml of 1.0% lidocaine, group E5 received 3 ml of 1.0% lidocaine with epinephrine 5 µg, and group E10 r...

  11. Differential expression of Wnts after spinal cord contusion injury in adult rats.

    Directory of Open Access Journals (Sweden)

    Carmen María Fernández-Martos

    Full Text Available BACKGROUND: Spinal cord injury is a major cause of disability that has no clinically accepted treatment. Functional decline following spinal cord injury is caused by mechanical damage, secondary cell death, reactive gliosis and a poor regenerative capacity of damaged axons. Wnt proteins are a family of secreted glycoproteins that play key roles in different developmental processes although little is known of the expression patterns and functions of Wnts in the adult central nervous system in normal or diseased states. FINDINGS: Using qRT-PCR analysis, we demonstrate that mRNA encoding most Wnt ligands and soluble inhibitors are constitutively expressed in the healthy adult spinal cord. Strikingly, contusion spinal cord injury induced a time-dependent increase in Wnt mRNA expression from 6 hours until 28 days post-injury, and a narrow peak in the expression of soluble Wnt inhibitors between 1 and 3 days post-injury. These results are consistent with the increase in the migration shift, from day 1 to 7, of the intracellular Wnt signalling component, Dishevelled-3. Moreover, after an initial decrease by 1 day, we also found an increase in phosphorylation of the Wnt co-receptor, low-density lipoprotein receptor-related protein 6, and an increase in active β-catenin protein, both of which suffer a dramatic change, from a homogeneous expression pattern in the grey matter to a disorganized injury-induced pattern. CONCLUSIONS: Our results suggest a role for Wnts in spinal cord homeostasis and injury. We demonstrate that after injury Wnt signalling is activated via the Wnt/β-catenin and possibly other pathways. These findings provide an important foundation to further address the function of individual Wnt proteins in vivo and the pathophysiology of spinal cord injury.

  12. Ex vivo infection of human embryonic spinal cord neurons prior to transplantation into adult mouse cord

    Directory of Open Access Journals (Sweden)

    Dénes Ádám

    2010-05-01

    Full Text Available Abstract Background Genetically modified pseudorabies virus (Prv proved suitable for the delivery of foreign genes to rodent embryonic neurons ex vivo and maintaining foreign gene expression after transplantation into spinal cord in our earlier study. The question arose of whether human embryonic neurons, which are known to be more resistant to Prv, could also be infected with a mutant Prv. Specifically, we investigated whether a mutant Prv with deleted ribonucleotide reductase and early protein 0 genes has the potential to deliver marker genes (gfp and β-gal into human embryonic spinal cord neurons and whether the infected neurons maintain expression after transplantation into adult mouse cord. Results The results revealed that the mutant Prv effectively infected human embryonic spinal cord neurons ex vivo and the grafted cells exhibited reporter gene expression for several weeks. Grafting of infected human embryonic cells into the spinal cord of immunodeficient (rnu-/rnu- mice resulted in the infection of some of the host neurons. Discussion These results suggest that Prv is suitable for the delivery of foreign genes into transplantable human cells. This delivery method may offer a new approach to use genetically modified cells for grafting in animal models where spinal cord neuronal loss or axon degeneration occurs.

  13. Characterization of Proliferating Neural Progenitors after Spinal Cord Injury in Adult Zebrafish.

    Directory of Open Access Journals (Sweden)

    Subhra Prakash Hui

    Full Text Available Zebrafish can repair their injured brain and spinal cord after injury unlike adult mammalian central nervous system. Any injury to zebrafish spinal cord would lead to increased proliferation and neurogenesis. There are presences of proliferating progenitors from which both neuronal and glial loss can be reversed by appropriately generating new neurons and glia. We have demonstrated the presence of multiple progenitors, which are different types of proliferating populations like Sox2+ neural progenitor, A2B5+ astrocyte/ glial progenitor, NG2+ oligodendrocyte progenitor, radial glia and Schwann cell like progenitor. We analyzed the expression levels of two common markers of dedifferentiation like msx-b and vimentin during regeneration along with some of the pluripotency associated factors to explore the possible role of these two processes. Among the several key factors related to pluripotency, pou5f1 and sox2 are upregulated during regeneration and associated with activation of neural progenitor cells. Uncovering the molecular mechanism for endogenous regeneration of adult zebrafish spinal cord would give us more clues on important targets for future therapeutic approach in mammalian spinal cord repair and regeneration.

  14. Abundance of gap junctions at glutamatergic mixed synapses in adult Mosquitofish spinal cord neurons

    Directory of Open Access Journals (Sweden)

    Jose L Serrano-Velez

    2014-06-01

    Full Text Available Dye-coupling, whole-mount immunohistochemistry for gap junction channel protein connexin 35 (Cx35, and freeze-fracture replica immunogold labeling (FRIL reveal an abundance of electrical synapses/gap junctions at glutamatergic mixed synapses in the 14th spinal segment that innervates the adult male gonopodium of Western Mosquitofish, Gambusia affinis (Mosquitofish.To study gap junctions’ role in fast motor behavior, we used a minimally-invasive neural-tract-tracing technique to introduce gap junction-permeant or -impermeant dyes into deep muscles controlling the gonopodium of the adult male Mosquitofish, a teleost fish that rapidly transfers (complete in 50 of the 62 gap junctions at mixed synapses are in the 14th spinal segment.Our results support and extend studies showing gap junctions at mixed synapses in spinal cord segments involved in control of genital reflexes in rodents, and they suggest a link between mixed synapses and fast motor behavior. The findings provide a basis for studies of specific roles of spinal neurons in the generation/regulation of sex-specific behavior and for studies of gap junctions’ role in regulating fast motor behavior. Finally, the CoPA IN provides a novel candidate neuron for future studies of gap junctions and neural control of fast motor behaviors.

  15. A Comprehensive Analysis of the SRS-Schwab Adult Spinal Deformity Classification and Confounding Variables

    DEFF Research Database (Denmark)

    Hallager, Dennis Winge; Hansen, Lars Valentin; Dragsted, Casper Rokkjær;

    2016-01-01

    confounding variables. SUMMARY OF BACKGROUND DATA: The SRS-Schwab Adult Spinal Deformity Classification includes sagittal modifiers considered important for HRQOL and the clinical impact of the classification has been validated in patients from the International Spine Study Group database; however, equivocal...... results were reported for the Pelvic Tilt modifier and potential confounding variables were not evaluated. METHODS: Between March 2013 and May 2014, all adult spinal deformity patients from our outpatient clinic with sufficient radiographs were prospectively enrolled. Analyses of HRQOL variance and post...... with multivariate proportional odds regressions. P values were adjusted for multiple testing. RESULTS: Two hundred ninety-two of 460 eligible patients were included for analyses. The SRS-Schwab Classification significantly discriminated HRQOL scores between normal and abnormal sagittal modifier classifications...

  16. Hypericum perforatum Attenuates Spinal Cord Injury-Induced Oxidative Stress and Apoptosis in the Dorsal Root Ganglion of Rats: Involvement of TRPM2 and TRPV1 Channels.

    Science.gov (United States)

    Özdemir, Ümit Sinan; Nazıroğlu, Mustafa; Şenol, Nilgün; Ghazizadeh, Vahid

    2016-08-01

    Oxidative stress and cytosolic Ca(2+) overload have important roles on apoptosis in dorsal root ganglion (DRG) neurons after spinal cord injury (SCI). Hypericum perforatum (HP) has an antioxidant property in the DRGs due to its ability to modulate NADPH oxidase and protein kinase C pathways. We aimed to investigate the protective property of HP on oxidative stress, apoptosis, and Ca(2+) entry through transient receptor potential melastatin 2 (TRPM2) and transient receptor potential vanilloid 1 (TRPV1) channels in SCI-induced DRG neurons of rats. Rats were divided into four groups as control, HP, SCI, and SCI + HP. The HP groups received 30 mg/kg HP for three concessive days after SCI induction. The SCI-induced TRPM2 and TRPV1 currents and cytosolic free Ca(2+) concentration were reduced by HP. The SCI-induced decrease in glutathione peroxidase and cell viability values were ameliorated by HP treatment, and the SCI-induced increase in apoptosis, caspase 3, caspase 9, cytosolic reactive oxygen species (ROS) production, and mitochondrial membrane depolarization values in DRG of SCI group were overcome by HP treatment. In conclusion, we observed a protective role of HP on SCI-induced oxidative stress, apoptosis, and Ca(2+) entry through TRPM2 and TRPV1 in the DRG neurons. Our findings may be relevant to the etiology and treatment of SCI by HP. Graphical Abstract Possible molecular pathways of involvement of Hypericum perforatum (HP) on apoptosis, oxidative stress, and calcium accumulation through TRPM2 and TRPV1 channels in DRG neurons of SCI-induced rats. The TRPM2 channel is activated by ADP-ribose and oxidative stress through activation of ADP-ribose pyrophosphate although it was inhibited by N-(p-amylcinnamoyl) anthranilic acid (ACA) and 2-aminoethyl diphenylborinate (2APB). The TRPV1 channel is activated by oxidative stress and capsaicin and it is blocked by capsazepine. Injury in the DRG can result in augmented ROS release, leading to Ca(2+) uptake through

  17. CB1 cannabinoid receptor enrichment in the ependymal region of the adult human spinal cord.

    Science.gov (United States)

    Paniagua-Torija, Beatriz; Arevalo-Martin, Angel; Ferrer, Isidro; Molina-Holgado, Eduardo; Garcia-Ovejero, Daniel

    2015-12-04

    Cannabinoids are involved in the regulation of neural stem cell biology and their receptors are expressed in the neurogenic niches of adult rodents. In the spinal cord of rats and mice, neural stem cells can be found in the ependymal region, surrounding the central canal, but there is evidence that this region is largely different in adult humans: lacks a patent canal and presents perivascular pseudorosettes, typically found in low grade ependymomas. Using Laser Capture Microdissection, Taqman gene expression assays and immunohistochemistry, we have studied the expression of endocannabinoid system components (receptors and enzymes) at the human spinal cord ependymal region. We observe that ependymal region is enriched in CB1 cannabinoid receptor, due to high CB1 expression in GFAP+ astrocytic domains. However, in human spinal cord levels that retain central canal patency we found ependymal cells with high CB1 expression, equivalent to the CB1(HIGH) cell subpopulation described in rodents. Our results support the existence of ependymal CB1(HIGH) cells across species, and may encourage further studies on this subpopulation, although only in cases when central canal is patent. In the adult human ependyma, which usually shows central canal absence, CB1 may play a different role by modulating astrocyte functions.

  18. Posterior spinal decompression, stabilization and arthrodesis in Nigerian adults: Profile and outcome

    Directory of Open Access Journals (Sweden)

    O E Idowu

    2012-01-01

    Full Text Available Background: The availability of intraoperative fluoroscopy and improved access to varieties of spinal titanium implants has revived posterior spinal stabilization techniques with their distinct advantages. Our aim is to describe the profile of various spine pathologies requiring subaxial posterior spinal decompression, stabilization (using titanium implants, and arthrodesis, and to determine the rate of postoperative complications and factors affecting outcome. Materials and Methods: This is a prospective single institution study of consecutive adult patients seen during the study period. Data collected included the patients′ demographics, radiological findings, indication for surgery, surgical procedure, operation time, intraoperative blood loss, and postoperative complications. Results: There were 26 patients (15 males and 11 females. Their ages ranged between 24 and 78 years (median = 42 years. The most common indications for surgery were spinal trauma and degenerative spine disease (24 patients. The region that was most commonly stabilized was the lumbar- 12 cases (46.2%. No patients experienced neural or vascular injury as a result of screw position; likewise no patient had screw loosening. There was a case each of superficial surgical site infection and transient cerebrospinal fluid leak but no case of implant failure was encountered. The outcome was significantly associated with the etiology (0.030 of the indication for surgery and preoperative power grade (0.000. Conclusion: Spinal trauma and degenerative spine disease are the two most common indications for posterior spinal decompression, stabilization and fusion in our center. It is associated with acceptable postoperative complication rate when done under fluoroscopic guidance. Outcome is related more to the preoperative neurological deficit and etiology of the indication for surgical stabilization.

  19. Combined spinal epidural anesthesia for laparoscopic appendectomy in adults: A case series

    Directory of Open Access Journals (Sweden)

    Rajesh S Mane

    2012-01-01

    Full Text Available Background: Laparoscopy is one of the most common surgical procedures and is the procedure of choice for most of the elective abdominal surgeries performed preferably under endotracheal general anesthesia. Technical advances in the field of laparoscopy have helped to reduce surgical trauma and discomfort, reduce anesthetic requirement resulting in shortened hospital stay. Recently, regional anaesthetic techniques have been found beneficial, especially in patients at a high risk to receive general anesthesia. Herewith we present a case series of laparoscopic appendectomy in eight American Society of Anaesthesiologists (ASA I and II patients performed under spinal-epidural anaesthesia. Methods: Eight ASA Grade I and II adult patients undergoing elective Laparoscopic appendectomy received Combined Spinal Epidural Anaesthesia. Spinal Anaesthesia was performed at L 2 -L 3 interspace using 2 ml of 0.5% (10 mg hyperbaric Bupivacaine mixed with 0.5ml (25 micrograms of Fentanyl. Epidural catheter was inserted at T 10 -T 11 interspace for inadequate spinal anaesthesia and postoperative pain relief. Perioperative events and operative difficulty were studied. Systemic drugs were administered if patients complained of shoulder pain, abdominal discomfort, nausea or hypotension. Results: Spinal anaesthesia was adequate for surgery with no operative difficulty in all the patients. Intraoperatively, two patients experienced right shoulder pain and received Fentanyl, one patient was given Midazolam for anxiety and two were given Ephedrine for hypotension. The postoperative period was uneventful. Conclusion: Spinal anaesthesia with Hyperbaric Bupivacaine and Fentanyl is adequate and safe for elective laparoscopic appendectomy in healthy patients but careful evaluation of the method is needed particularly in compromised cardio respiratory conditions.

  20. Spinal metastasis of medulloblastoma in adults: A case report

    OpenAIRE

    Živković Nenad; Berisavac Iva; Marković Marko; Milenković Sanja

    2014-01-01

    Introduction. Medulloblastoma is a primitive neuro-ectodermal malignant tumor most commonly seen in childhood and rarely and uncommonly in adult age. Treatment consists of surgery followed by radiotherapy. In the case of a relapse there is no overall accepted treatment. Tumor metastasis can be seen along the neural axis, lymph nodes, soft tissues, bones and distant organs. Case Outline. In this paper we present a 45-year-old female patient with a thoraco-sp...

  1. Cervical Spinal Cord Atrophy Profile in Adult SMN1-Linked SMA.

    Directory of Open Access Journals (Sweden)

    Mohamed-Mounir El Mendili

    Full Text Available The mechanisms underlying the topography of motor deficits in spinal muscular atrophy (SMA remain unknown. We investigated the profile of spinal cord atrophy (SCA in SMN1-linked SMA, and its correlation with the topography of muscle weakness.Eighteen SMN1-linked SMA patients type III/V and 18 age/gender-matched healthy volunteers were included. Patients were scored on manual muscle testing and functional scales. Spinal cord was imaged using 3T MRI system. Radial distance (RD and cord cross-sectional area (CSA measurements in SMA patients were compared to those in controls and correlated with strength and disability scores.CSA measurements revealed a significant cord atrophy gradient mainly located between C3 and C6 vertebral levels with a SCA rate ranging from 5.4% to 23% in SMA patients compared to controls. RD was significantly lower in SMA patients compared to controls in the anterior-posterior direction with a maximum along C4 and C5 vertebral levels (p-values < 10-5. There were no correlations between atrophy measurements, strength and disability scores.Spinal cord atrophy in adult SMN1-linked SMA predominates in the segments innervating the proximal muscles. Additional factors such as neuromuscular junction or intrinsic skeletal muscle defects may play a role in more complex mechanisms underlying weakness in these patients.

  2. Expression and role of PAK6 after spinal cord injury in adult rat

    Directory of Open Access Journals (Sweden)

    CHEN Xiang-dong

    2012-02-01

    Full Text Available 【Abstract】Objective: To observe p21-activated kinase 6 (PAK6 expression and its possible role after spinal cord injury (SCI in adult rat. Methods: Sprague-Dawley rats were subjected to spinal cord injury. To explore the pathological and physiological significance of PAK6, the expression patterns and distribution of PAK6 were observed by Western blot, immunohistochemistry and immunofluorescence. Results: Western blot analysis showed PAK6 protein level was significantly up-regulated on day 2 and day 4, then reduced and had no up-regulation till day 14. Immunohistochemistry analysis showed that the expression of PAK6 was significantly increased on day 4 compared with the control group. Besides, double immunofluorescence staining showed PAK6 was primarily expressed in the neurons and astrocytes in the control group. While after injury, the expression of PAK6 was increased significantly in the astrocytes and neurons, and the astrocytes were largely proliferated. We also examined the expression of proliferating cell nuclear antigen (PCNA and found its change was correlated with the expression of PAK6. Importantly, double immunofluorescence staining revealed that cell proliferation evaluated by PCNA appeared in many PAK6-expressing cells on day 4 after injury. Conclusion: The up-regulation of PAK6 in the injured spinal cord may be associated with glial proliferation. Key words: PAK6 protein, human; p21-activated kinases; Spinal cord injury; Astrocytes

  3. Influence of cryopreserved olfactory ensheathing cells transplantation on axonal regeneration in spinal cord of adult rats

    Institute of Scientific and Technical Information of China (English)

    沈慧勇; 殷德振; 唐勇; 吴燕峰; 程志安; 杨睿; 黄霖

    2004-01-01

    Objective: To observe the effects of cryopreserved olfactory ensheathing cells (OECs) transplantation on axonal regeneration and functional recovery following spinal cord injury in adult rats.Methods: Twenty-four rats were divided into experimental and control groups, each group having 12 rats. The spinal cord injury was established by transecting the spinal cord at T10 level with microsurgery scissors.OECs were purified from SD rat olfactory bulb and cultured in DMEM ( Dulbecco's minimum essential medium) and cryopreserved (-120℃) for two weeks.OECs suspension[(1-1.4)×105/ul] was transplanted into transected spinal cord, while the DMEM solution was injected instead in the control group. At 6 and 12 weeks after transplantation, the rats were evaluated with climbing test and MEP ( moter evoked potentials) monitoring. The samples of spinal cord were procured and studied with histological and immunohisto chemical stainings.Results: At 6 weeks after transplantation, all of the rats in both transplanted and control groups were paraplegic, and MEPs could not be recorded. Morphology of transplanted OECs was normal, and OECs were interfused with host well. Axons could regrow into gap tissue between the spinal cords. Both OECs and regrown axons were immunoreactive for MBP. No regrown axons were found in the control group. At 12 weeks after transplantation, 2 rats (2/7) had lower extremities muscle contraction, 2 rats (2/7) had hip and/or knee active movement, and MEP of 5 rats (5/7) could be recorded in the calf in the transplantation group. None of the rats (7/ 7) in the control group had functional improvement, and none had MEPs recorded. In the transplanted group,histological and immunohistochemical methods showed the number of transplanted OECs reduced and some regrown axons had reached the end of transected spinal cord.However, no regrown axons could be seen except scar formation in the control group.Conclusions: Cryopreserved OECs could integrated with the host and

  4. Influences of olfactory ensheathing cells transplantation on axonal regeneration in spinal cord of adult rats

    Institute of Scientific and Technical Information of China (English)

    沈慧勇; 唐勇; 吴燕峰; 陈燕涛; 程志安

    2002-01-01

    To observe whether olfactory ensheathing cells could be used to promote axonal regeneration in a spontaneously nonregenerating system. Methods: After laminectomy at the lower thoracic level, the spinal cords of adult rats were exposed and completely transected at T10. A suspension of ensheathing cells was injected into the lesion site in 12 adult rats, and control D/F-12 (1∶1 mixture of DMEM and Hams F-12) was injected in 12 adult rats. Six weeks and ten weeks after cell transplantation, the rats were evaluated by climbing test and motor evoked potentials (MEPs) monitoring. The samples were procured and studied with histologicl and immunohistochemical methods. Results: At the 6th week after cell transplantation, all the rats in both the transplanted and control groups were paraplegic and the MEPs could not be recorded. At the 10th week after cell transplantation, of 7 rats in the control group, 2 rats had muscles contraction of the lower extremities, 2 rats had hips and/or knees active movement; and 5 rats MEPs could be recorded in the hind limbs in the transplanted group (n=7). None of the rats in the control group had functional improvement and no MEPs recorded (n=7). Numerous regenerating axons were observed through the transplantation and continued to regenerate into the denervated host tract. Cell labelling using anti-Myelin Basic Protein (MBP) and anti-Nerve Growth Factor Receptor (anti-NGFR) indicated that the regenerated axons were derived from the appropriate neuronal source and that donor cells migrated into the denervated host tract. But axonal degeneration existed and regenerating axons were not observed within the spinal cords of the adult rats with only D/F-12 injection. Conclusions: The axonal regeneration in the transected adult rat spinal cord is possible after ensheathing cells transplantation.

  5. Delayed post-traumatic spinal cord infarction in an adult after minor head and neck trauma: a case report

    Directory of Open Access Journals (Sweden)

    Bartanusz Viktor

    2012-09-01

    Full Text Available Abstract Introduction Delayed post-traumatic spinal cord infarction is a devastating complication described in children. In adults, spinal cord ischemia after cardiovascular interventions, scoliosis correction, or profound hypotension has been reported in the literature. However, delayed spinal cord infarction after minor head trauma has not been described yet. Case presentation We report the case of a 45-year-old Hispanic man who had a minor head trauma. He was admitted to our hospital because of paresthesias in his hands and neck pain. A radiological workup showed cervical spinal canal stenosis and chronic cervical spondylotic myelopathy. Twelve hours after admission, our patient became unresponsive and, despite full resuscitation efforts, died. The autopsy revealed spinal cord necrosis involving the entire cervical spinal cord and upper thoracic region. Conclusions This case illustrates the extreme fragility of spinal cord hemodynamics in patients with chronic cervical spinal canal stenosis, in which any further perturbations, such as cervical hyperflexion related to a minor head injury, can have catastrophic consequences. Furthermore, the delayed onset of spinal cord infarction in this case shows that meticulous maintenance of blood pressure in the acute post-traumatic period is of paramount importance, even in patients with minimal post-traumatic symptoms.

  6. The inhibition of subchondral bone lesions significantly reversed the weight-bearing deficit and the overexpression of CGRP in DRG neurons, GFAP and Iba-1 in the spinal dorsal horn in the monosodium iodoacetate induced model of osteoarthritis pain.

    Directory of Open Access Journals (Sweden)

    Degang Yu

    Full Text Available BACKGROUND: Chronic pain is the most prominent and disabling symptom of osteoarthritis (OA. Clinical data suggest that subchondral bone lesions contribute to the occurrence of joint pain. The present study investigated the effect of the inhibition of subchondral bone lesions on joint pain. METHODS: Osteoarthritic pain was induced by an injection of monosodium iodoacetate (MIA into the rat knee joint. Zoledronic acid (ZOL, a third generation of bisphosphonate, was used to inhibit subchondral bone lesions. Joint histomorphology was evaluated using X-ray micro computed tomography scanning and hematoxylin-eosin staining. The activity of osteoclast in subchondral bone was evaluated using tartrate-resistant acid phosphatase staining. Joint pain was evaluated using weight-bearing asymmetry, the expression of calcitonin gene-related peptide (CGRP in the dorsal root ganglion (DRG, and spinal glial activation status using glial fibrillary acidic protein (GFAP and ionized calcium binding adaptor molecule-1 (Iba-1 immunofluorescence. Afferent neurons in the DRGs that innervated the joints were identified using retrograde fluorogold labeling. RESULTS: MIA injections induced significant histomorphological alterations and joint pain. The inhibition of subchondral bone lesions by ZOL significantly reduced the MIA-induced weight-bearing deficit and overexpression of CGRP in DRG neurons, GFAP and Iba-1 in the spinal dorsal horn at 3 and 6 weeks after MIA injection; however, joint swelling and synovial reaction were unaffected. CONCLUSIONS: The inhibition of subchondral bone lesions alleviated joint pain. Subchondral bone lesions should be a key target in the management of osteoarthritic joint pain.

  7. Localized giant cell tumors in the spinal column radiologic presentation. Tumor de celulas gigantes localizado en la columna dorsal: presentacion radiologica poco frecuente

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez Echeverria, M.A.; Parra Blanco, J.A.; Pagola Serrano, M.A.; Mellado Santos, J.M.; Bueno Lopez, J.; Gonzalez Tutor, A. (Hospital Marques Valdecilla. Santander (Spain))

    1994-01-01

    Given the uncommonness of the location of giant cell tumors (GCT) in the spinal column and the limited number of studies published, we present a case of GCT located in the spinal column, which involved both vertebral bodies and partially destroyed the adjacent rib. (Author)

  8. Impact of spine surgery complications on costs associated with management of adult spinal deformity.

    Science.gov (United States)

    Yeramaneni, Samrat; Robinson, Chessie; Hostin, Richard

    2016-09-01

    A better understanding of the consequences of spine surgery complications is warranted to optimize patient-reported outcomes and contain the rising health care costs associated with the management of adult spinal deformity (ASD). We systematically searched PubMed and Scopus databases using keywords "adult spinal deformity surgery," "complications," and "cost" for published studies on costs of complications associated with spinal surgery, with a particular emphasis on ASD and scoliosis. In the 17 articles reviewed, we identified 355,354 patients with 11,148 reported complications. Infection was the most commonly reported complication, with an average treatment cost ranging from $15,817 to $38,701. Hospital costs for patients with deep venous thrombosis, pulmonary thromboembolism, and surgical site infection were 2.3 to 3.1 times greater than for patients without those complications. An effort to collect and characterize data on cost of complications is encouraged, which may help health care providers to identify potential resources to limit complications and overall costs. PMID:27278531

  9. Effects of ketamine on neuronal activity of the spinal dorsal horn in rats with unilateral hindpaw inflammation%氯胺酮对单足致炎大鼠脊髓背角神经元活动的影响

    Institute of Scientific and Technical Information of China (English)

    郭华; 李菁锦; 吕国蔚

    2000-01-01

    A total of 32 units were extracellularly recorded from the spinal dorsal horn of rats. Unitary discharges evoked by stimulation of A and C fiber in ipsilateral lateral and medial plantar nerve were increased after carrageenan injection to the plantar area. The evoked responses to both A and C fiber were significantly decreased or even disappeared after administration of ketamine. The windup phenomenon was observed in neurons located deeply in the dorsal horn following carrageenan injection and was significantly suppressed or abolished after ketamine administration. The results above show NMDA receptor appears to be involved in the increase of excitability and the development of windup phenomenon in the spinal cord dorsal horn associated with carrageenan induced inflammation.%在大鼠脊髓背角用细胞外记录技术共记录到32个单位.角叉菜胶一侧足底注射致炎后, 电刺激该侧足底内外侧神经激动其中A、C纤维时, 脊髓背角神经元的诱发放电数均显著增加; 静脉注射NMDA受体拮抗剂氯胺酮后, A、C纤维刺激诱发的放电反应均显著下降甚至消失. 致炎后脊髓背角深层单位出现Windup现象, 静脉注射氯胺酮后该现象减轻或消失.结果提示: 角叉菜胶致炎导致脊髓背角神经元兴奋性升高和Windup; NMDA受体参与炎症痛和Windup形成.

  10. The effect of SCS on NR2B receptor and the activation of astrocytes in the spinal dorsal horn of rats with neuropathic pain%脊髓刺激术对神经病理性痛模型大鼠脊髓背角内NR2B受体和星形胶质细胞激活的影响

    Institute of Scientific and Technical Information of China (English)

    张春奎; 方相春; 李志红; 唐君; 董玉琳; 李金莲

    2013-01-01

    目的:探讨脊髓刺激术(spinal cord stimulation,SCS)对L5脊神经结扎(spinal nerve ligation,SNL)诱导的神经病理性痛(neuropathic pain,NP)大鼠脊髓背角内NMDA受体亚单位NR2B的表达和星形胶质细胞激活的影响.方法:成年雄性SD大鼠48只,随机分为4组:正常组(不做任何处理);SCS组(植入SCS装置并给予SCS刺激);SNL+ sham SCS组(给予SNL手术并植入SCS装置,但不进行刺激);SNL+ SCS组(SNL手术并给予SCS刺激).SCS刺激是在SNL术后第6~10d进行(8h/d),第10 d刺激结束后处死动物.运用行为学方法检测慢性痛状态下大鼠后肢对机械性刺激的反应阈值;采用免疫组织化学染色和Western blot方法分别检测脊髓背角内NR2B和星形胶质细胞的标志物GFAP的表达变化.结果:(1)SNL术后大鼠手术侧后足机械性痛敏显著增加,第6~10d给予SCS刺激后,可观察到大鼠的痛行为学表现有明显缓解;(2)免疫组化结果显示:与SNL+sham SCS组相比,SNL+ SCS组大鼠脊髓背角内NR2B和GFAP免疫阳性细胞的数量显著减少;(3)Western blot结果显示:给予SCS刺激后,SNL大鼠腰膨大段脊髓背角内NR2B的表达量显著下调,同时GFAP的表达量也明显有所降低.结论:给予SCS刺激可以有效地缓解SNL模型大鼠的神经病理性痛的行为学表现;该作用可能与SCS刺激抑制脊髓背角内NR2B的表达和星形胶质细胞的激活密切相关.%Objective:To investigate the effect of spinal cord stimulation (SCS) on NR2B subunit of the NMDA receptor and the activation of astrocytes in the spinal dorsal horn of rats with L5 spinal nerve ligation induced neuropathic pain (NP).Methods:48 adult male rats were divided into 4 groups randomly:normal group (normal rats without any operation) ; SCS group (normal rats planted with SCS devices,and received SCS stimulation),SNL + sham SCS group (rats were operated with SNL and were planted with SCS devices,but did not receive SCS stimulation

  11. Spinal Cord Injury 101

    Medline Plus

    Full Text Available Experts \\ Spinal Cord Injury 101 Topics Adult Injuries Spinal Cord Injury 101 Spinal Cord Injury 101 The Basics of Spinal Cord Injury Rehabilitation ... in countries outside the US ? A spinal cord injury affects the entire family FacingDisability is designed to ...

  12. Study Protocol- Lumbar Epidural Steroid Injections for Spinal Stenosis (LESS: a double-blind randomized controlled trial of epidural steroid injections for lumbar spinal stenosis among older adults

    Directory of Open Access Journals (Sweden)

    Friedly Janna L

    2012-03-01

    Full Text Available Abstract Background Lumbar spinal stenosis is one of the most common causes of low back pain among older adults and can cause significant disability. Despite its prevalence, treatment of spinal stenosis symptoms remains controversial. Epidural steroid injections are used with increasing frequency as a less invasive, potentially safer, and more cost-effective treatment than surgery. However, there is a lack of data to judge the effectiveness and safety of epidural steroid injections for spinal stenosis. We describe our prospective, double-blind, randomized controlled trial that tests the hypothesis that epidural injections with steroids plus local anesthetic are more effective than epidural injections of local anesthetic alone in improving pain and function among older adults with lumbar spinal stenosis. Methods We will recruit up to 400 patients with lumbar central canal spinal stenosis from at least 9 clinical sites over 2 years. Patients with spinal instability who require surgical fusion, a history of prior lumbar surgery, or prior epidural steroid injection within the past 6 months are excluded. Participants are randomly assigned to receive either ESI with local anesthetic or the control intervention (epidural injections with local anesthetic alone. Subjects receive up to 2 injections prior to the primary endpoint at 6 weeks, at which time they may choose to crossover to the other intervention. Participants complete validated, standardized measures of pain, functional disability, and health-related quality of life at baseline and at 3 weeks, 6 weeks, and 3, 6, and 12 months after randomization. The primary outcomes are Roland-Morris Disability Questionnaire and a numerical rating scale measure of pain intensity at 6 weeks. In order to better understand their safety, we also measure cortisol, HbA1c, fasting blood glucose, weight, and blood pressure at baseline, and at 3 and 6 weeks post-injection. We also obtain data on resource utilization

  13. Estudo do alcance do retalho do músculo grande dorsal para o revestimento cutâneo da coluna An anatomic study of latissimus dorsi and its suitability for spinal soft tissue coverage

    Directory of Open Access Journals (Sweden)

    Kelly Cristina Moutinho da Costa

    2009-01-01

    Full Text Available INTRODUÇÃO: A crescente indicação cirúrgica na terapêutica das patologias da coluna vertebral, ocasionada pela melhoria tecnológica aplicada ao tratamento cirúrgico, que proporciona cada vez mais uma cirurgia mais segura, mais rápida, menos invasiva e com melhores resultados funcionais, tem nos levado a um aumento nas complicações pós-operatórias da coluna vertebral. As complicações podem ser mecânicas, biológicas, estruturais ou relacionadas ao material de síntese. As infecções em cirurgia de coluna vertebral, embora raras, ocorrem em 3-6%, constituem um dilema para o cirurgião de coluna, além de graves desdobramentos clínicos para o paciente. A importância do uso do retalho do grande dorsal esta implicada na tentativa de cobertura de partes moles e melhora no padrão vascular regional. OBJETIVO: Avaliar a confiabilidade do retalho do músculo grande dorsal para cobertura de defeitos cutâneos na coluna. MATERIAL E MÉTODO: Foram dissecados 17 músculos grande dorsal de cadáver e medido o quanto eles passavam da linha média na altura de C7, T7 e transição toracolombar. RESULTADOS E CONCLUSÃO: O estudo anatômico realizado comprovou a eficácia desse método.INTRODUCTION: There has been a dramatic increase in spine surgery. New surgical instrumentation and less invasive techniques make surgical procedure faster, safer, achieving better functional results. With this increasing number of operations, the number of back surgery failures has also increased. Complications may be mechanical, biological, or related to problems on instrumentation frames. The rate of spinal infections lies between 3-6 % and it´s still a challenge. After debridement and removal of all infected nonviable soft tissue, it is sometimes difficult to obtain wound closure. Pedicled latissimus dorsi muscle flap coverage provides wound healing by promoting vascularized tissue to reduce dead spaces, enhancing local oxygen delivery, and facilitating

  14. Does social support impact depression in caregivers of adults ageing with spinal cord injuries?

    Science.gov (United States)

    Rodakowski, Juleen; Skidmore, Elizabeth R.; Rogers, Joan C.; Schulz, Richard

    2013-01-01

    Objective The objective of this study was to examine the role of social support in predicting depression in caregivers of adults aging with spinal cord injuries (SCI). Design Cross-sectional secondary data analyses were conducted for this study. Setting Participants were recruited from multiple community locations in Pittsburgh, PA and Miami, FL. Subjects Community-dwelling caregivers of aging adults with SCI (N=173) were interviewed as part of a multisite randomized clinical trial. Main measures The Center for Epidemiological Studies Depression Scale measured caregiver depression symptom levels. A hierarchical multiple regression analysis examined the effect of social support (social integration, received social support, and negative social interactions) on depressive symptoms levels for the caregivers of adults aging with SCI, controlling for demographic characteristics and caregiving characteristics. Results Caregivers were, on average, 53 years old (SD=15) and care-recipients were 55 years old (SD=13). Average Center for Epidemiological Studies Depression Scale scores indicated that sixty-nine (40%) caregivers had significant depressive symptoms (mean 8.69, SD=5.5). Negative social interactions (β̂ =.27, P<.01) and social integration (β̂ =−.25, P<.01) were significant independent predictors of depressive symptom levels in caregivers of adults aging with SCI. Conclusions Findings demonstrate that negative social interactions and social integration are associated with burden in caregivers of adults aging with SCI. Negative social interactions and social integration should be investigated in assessments and interventions intended to target caregiver depressive symptom levels. PMID:23117350

  15. Blood supply to the thoracolumbar spinal cord in the laboratory mouse using corrosion and dissection techniques.

    Science.gov (United States)

    Flesarova, Slavka; Mazensky, David; Teleky, Jana; Almasiova, Viera; Holovska, Katarina; Supuka, Peter

    2016-01-01

    Mice are used frequently as experimental models in the study of ischemic spinal cord injury. The aim of the present study was to describe the arterial blood supply to the thoracolumbar spinal cord in the mouse. The study was carried out on 20 adult mice using the corrosion and dissection technique. Dorsal intercostal arteries were found as branches of the thoracic aorta: as 7 pairs in 80% of cases, as 8 pairs in 15% of cases and as 9 pairs in 5% of cases. The paired lumbar arteries arising from the abdominal aorta were present as 5 pairs in all cases. Along the entire thoracic and lumbar spinal regions, we observed left-sided branches entering the ventral spinal artery in 64.2% and right-sided branches in 35.8% of cases. Along the entire thoracic and lumbar spinal regions, the branches entering the dorsal spinal arteries were left-sided in 60.8% of cases and right-sided in 39.2% of cases. We found some variations in the site of origin of the artery of Adamkiewicz and in the number of dorsal spinal arteries. Documenting the anatomical variations in spinal cord blood supply in the laboratory mouse will aid the planning of future experimental studies and in determining the clinical relevance of such studies.

  16. Effects of C8 ventral root avulsion or transection on spinal alpha motoneurons in adult rats A qualitative light and electron microscopic study

    Institute of Scientific and Technical Information of China (English)

    Khulood M.AL-Khater; Bassem Y.Sheikh

    2008-01-01

    BACKGROUND:Nerve root avulsion is a frequent finding in patients with brachial plexus injury following road traffic accidents or as a result of severe arm traction during complicated deliveries.This injury constitutes a challenging clinical and surgical problem.The orphological characteristics of motoneurons after nerve root avulsion deserve further analysis.OBJECTIVE:To study the different morphological changes of u -motoneurons under light and electron microscopy after C8 spinal ventral rootlets avulsion and transection at various stages.DESIGN:Controlled animal study.SETTING:Department of Anatomy,King Faisal University.MATERIALS:The experiment was carried out at the Department of Anatomy,College of Medicine,King Faisal University between January 2005 and March 2006.Six adult Sprague Dawley rats weighing 200-350 g, irrespective of gender,were used for this study.The animals were bred at the animal house,College of Medicine,King Faisal University,and fed on rat maintenance diet.Water and standard diet were supplied ad libitum.Animal interventions were carried out according to animal ethical standards.METHODS:Three animals were randomly chosen for avulsion of the right ventral rootlets of C8 spinal nerves.The other three received transection of the right ventral rootlets of C8 spinal nerves.①Avulsion experiment:After rats were anesthetized,the right ventral rootlets of C8 spinal nerves were identified.The ventral rootlets were avulsed from the spinal cord by traction with a fine hook(Fine Science Tools Inc.,No. 10031-13,Germany).Traction was exerted in a direction parallel to the course of the spinal root.Under the operating microscope,the Cs segment was exactly located.After checking the successfulness of the surgical procedure,the Ca segment was separated from the spinal cord.The outcome of the avulsion procedure was as follows:two animals had true avulsion,i.e.,no remaining stump was attached to the spinal cord surface.One rat had a stump still attached

  17. 脊髓刺激术对神经病理性痛模型大鼠痛行为和脊髓背角内小胶质细胞激活的影响%The effect of spinal cord stimulation on pain behavior and activition of microglia in spinal dorsal horn of rats with neuropathic pain

    Institute of Scientific and Technical Information of China (English)

    张春奎; 李志红; 方相春; 唐君; 齐建国; 李金莲

    2012-01-01

    Objective: To investigate the effect of spinal cord stimulation (SCS) on pain behavior and activition of microglia in spinal dorsal hom of rate with neuropathic pain (NP). Methods; 20 adult rats were randomly divided into 4groups: (1) control group; (2) SCS group: normal rats with SCS; (3) SNL + shamSCS group;the SCS device was implanted but without SCS; (4) SNL + SCS group: SNL rate with SCS. Mechanical withdrawal threshold (MWT) was detected for 3 consecutive days pre-operation and on the 5 d post-operation. Rats in SCS and SNL + SCS groups received SCS during 2-5 d after the operation, 8 hours each day. Besides, both of SCS group and SNL + SCS group were given a 90 min test before 8 hours SCS, which meant that SCS was applied for 30 rain and the withdrawl thresholds of the ipsi lateral hind paw were assessed at time of 0, 15, 30, 45, 60 and 90 rain. After SCS on the 5 d of post-operation, rats were sacrificed. Immunohistochemistry combined with average optical density ( AOD) analysis was performed to examine the expression of OX- 42 (marker of microglia) in the L5 segment spinal dorsal horn of rats of all 4 groups. Result; (1) The behavior results showed that the MWT in SNL + shamSCS group and SNL + SCS group reduced significantly from 26.00 ± 0.0 g pre-operation to 5.50 ± 0.96 g and 6.40 ± 0.40 g respectively on the 5 d of post-operation (P <0.05). What's more, 30 min after cessation of SCS, the MWT decreased obviously to the pre-SCS level. ( 2) Immunohistochemical results demonstrated that on the 5 d of postoperation, the expression of OX- 42-immunoreactivi-ty in SNL + SCS group was more lower than SNL + shamSCS group, but both of them showed more immunoreactivity than control group and SCS group. The results of AOD analysis also showed that the spinal dorsl hom AOD of SNL + SCS group (1.29 ± 0.28) was remarkably lower than SNL + shamSCS group ( 2.66 ± 0.38, P < 0.05 ) , but still higher than control group(0.14±0.21)and SCS group(0. 24 ±0

  18. Bulleyaconitine A depresses neuropathic pain and potentiation at C-fiber synapses in spinal dorsal horn induced by paclitaxel in rats.

    Science.gov (United States)

    Zhu, He-Quan; Xu, Jing; Shen, Kai-Feng; Pang, Rui-Ping; Wei, Xu-Hong; Liu, Xian-Guo

    2015-11-01

    Paclitaxel, a widely used chemotherapeutic agent, often induces painful peripheral neuropathy and at present no effective drug is available for treatment of the serious side effect. Here, we tested if intragastrical application of bulleyaconitine A (BLA), which has been approved for clinical treatment of chronic pain in China since 1985, could relieve the paclitaxel-induced neuropathic pain. A single dose of BLA attenuated the mechanical allodynia, thermal hyperalgesia induced by paclitaxel dose-dependently. Repetitive administration of the drug (0.4 and 0.8 mg/kg, t.i.d. for 7 d) during or after paclitaxel treatment produced a long-lasting inhibitory effect on thermal hyperalgesia, but not on mechanical allodynia. In consistency with the behavioral results, in vivo electrophysiological experiments revealed that spinal synaptic transmission mediated by C-fiber but not A fiber was potentiated, and the magnitude of long-term potentiation (LTP) at C-fiber synapses induced by the same high frequency stimulation was ~50% higher in paclitaxel-treated rats, compared to the naïve rats. Spinal or intravenous application of BLA depressed the spinal LTP, dose-dependently. Furthermore, patch clamp recordings in spinal cord slices revealed that the frequency but not amplitude of both spontaneous excitatory postsynaptic current (sEPSCs) and miniature excitatory postsynaptic currents (mEPSCs) in lamina II neurons was increased in paclitaxel-treated rats, and the superfusion of BLA reduced the frequency of sEPSCs and mEPSCs in paclitaxel-treated rats but not in naïve ones. Taken together, we provide novel evidence that BLA attenuates paclitaxel-induced neuropathic pain and that depression of spinal LTP at C-fiber synapses via inhibiting presynaptic transmitter release may contribute to the effect. PMID:26376216

  19. Extensive juvenile "babysitting" facilitates later adult maternal responsiveness, decreases anxiety, and increases dorsal raphe tryptophan hydroxylase-2 expression in female laboratory rats.

    Science.gov (United States)

    Harding, Kaitlyn M; Lonstein, Joseph S

    2016-05-01

    Pregnancy and parturition can dramatically affect female neurobiology and behavior. This is especially true for laboratory-reared rodents, in part, because such rearing prevents a host of developmental experiences that females might undergo in nature, including juvenile alloparenting. We examined the effect of chronic exposure to pups during post-weaning juvenile life (days 22-36) on adult maternal responsiveness, anxiety-related behaviors, and dorsal raphe tryptophan hydroxylase-2 (TPH2) and serotonin transporter (SERT) levels in nulliparous rats. Adult females with juvenile alloparental experience showed significantly faster sensitized maternal responsiveness, less anxiety, and more dorsal raphe TPH2. Juvenile alloparenting did not affect females' later social novelty and preference behaviors toward adults, suggesting their increased interest in pups did not extend to all social partners. In a second experiment, suckling a pregnant dam (achieved by postpartum estrus reinsemination), interacting with her after standard laboratory weaning age, and a 3-day exposure to younger siblings also reduced juvenile females' later anxiety but did not affect maternal responsiveness or TPH2. Thus, extensive juvenile "babysitting" can have long-term effects reminiscent of pregnancy and parturition on maternal responsiveness and anxiety, and these effects may be driven by upregulated serotonin. © 2016 Wiley Periodicals, Inc. Dev Psychobiol 58: 492-508, 2016. PMID:26806471

  20. Malignant ventricular arrhythmia in a case of adult onset of spinal muscular atrophy (Kugelberg-Welander disease).

    NARCIS (Netherlands)

    Roos, M.; Sarkozy, A.; Chierchia, G.B.; Wilde, P.C.M. de; Schmedding, E.; Brugada, P.

    2009-01-01

    We present a case of a 43-year-old male patient with adult onset of spinal muscular atrophy (SMA). The patient first came to our attention with atrioventricular (AV) block. A dual-chamber pacemaker (DDD-PM) was implanted. Four years later, the PM data log showed occurrence of frequent episodes of no

  1. Serotonin differentially modulates the intrinsic properties of spinal motoneurons from the adult turtle

    Science.gov (United States)

    Perrier, Jean-François; Cotel, Florence

    2008-01-01

    This report considers serotonergic (5-HT) effects on spinal motoneurons, reviewing previous data and presenting a new study showing distinct effects of two 5-HT receptor subtypes. We previously investigated the effects of 5-HT on motoneurons in a slice preparation from the spinal cord of the adult turtle. In agreement with previous studies, we had found that 5-HT applied to the extracellular medium promoted a voltage sensitive plateau potential. However, we also reported that this effect was only observed in half of the motoneurons; 5-HT inhibited the firing of the other half of the motoneurons recorded from. To investigate the reasons for this, we applied 5-HT focally by means of the microiontophoresis technique. Facilitation of plateau potentials was observed when 5-HT was released at sites throughout the somatodendritic region. However, motoneurons were inhibited by 5-HT when selectively applied in the perisomatic region. These two effects could be induced in the same motoneuron. With pharmacological tools, we demonstrate here that the facilitation of plateau potentials is mediated by 5-HT2 receptors and the inhibitory effect is due to the activation of 5-HT1A/7 receptors. PMID:18096602

  2. Spinal actinomycosis: A rare disease

    Directory of Open Access Journals (Sweden)

    Dua Rakesh

    2010-01-01

    Full Text Available Actinomycosis is an indolent, slowly progressive infection caused by Actinomyces species. Of human actinomycosis, the spinal form is rare and actinomycosis-related spinal neurological deficit is uncommon. We report two cases with cervical and dorsal actinomycosis and one of them with spinal neurological deficit.

  3. Spinal shape analysis in 1,020 healthy young adults aged from 19 to 30 years

    Directory of Open Access Journals (Sweden)

    Jakub Krejčí

    2016-03-01

    Full Text Available Background: A number of studies on diseased spine have been published; however, there is a relative paucity of studies investigating spine shape characteristics in healthy populations. Such characteristics are needed for diagnostics of spine disorders and assessment of changes in the spinal shape that may have been caused by influence of the modern life style or intensive sport activity. Objective: The aim of the study was to determine characteristics of the spine shape in a large sample of healthy young adults. Methods: Population cross-sectional study. A non-radiographic surface method (system DTP-3 was used for the assessment of spine shape in the sagittal and frontal planes. A total of 1,020 participants (440 men, 580 women took part in the study, their mean (± SD age was 21.8 ± 1.9 years (range 19.1-29.7 for men and 21.9 ± 1.8 years (range 19.3-29.7 for women. All data were checked for normality and are presented as means, standard deviations, ranges, skewness, and kurtosis. Differences between the sexes were assessed with the two-sample t-test. Results: The average sagittal spinal shape was C3 - 12.9° - C7 - 43.0° - T10 - 27.1° - L5 for men and C3 - 12.1° - C6 - 44.5° - T11 - 34.1° - L5 for women. Men showed a significantly smaller thoracic kyphosis and lumbar lordosis curvatures than women. The average curvature due to the lateral deviation in the frontal plane was 6.1° for both sexes, the curvature was larger than 10° in 9.1% of men and 8.8% of women. We found left lateral deviation in 72.5% of men and in 63.6% of women. Conclusions: The study provides characteristics of the spine shape in a large sample of healthy young adults. Such characteristics should be part and parcel of determining the cut-off level for physiological spinal shape. Based on the results of the study, we suggest a lateral deviation of 10° as the maximum for a curvature to be still considered non-pathological.

  4. Role of calpain in spinal dorsal horn in development of paw inflammatory pain in rats%脊髓背角卡配因在大鼠足底炎性痛形成中的作用

    Institute of Scientific and Technical Information of China (English)

    王静捷; 陈广俊; 陈雯; 杜金; 罗爱伦; 黄宇光

    2011-01-01

    目的 探讨脊髓背角卡配因在大鼠足底炎性痛形成中的作用.方法 雄性SD大鼠48只,6周龄,体重160~200 g,采用随机数字表法,将其随机分为3组:正常对照组(C组,n=8)、PBS组(n=16)和酵母多糖诱发足底炎性痛组(Z组,n=24).Z组于大鼠左侧后足足底皮下注射酵母多糖1.25 mg,制备酵母多糖诱发足底炎性痛模型,PBS组给予等容量PBS 100μl.分别于给药前(T0)、给药后30 min(T1)、1 h(T2)、2 h(T3)、4 h(T4)、8 h(T5)、24 h(T6)和48 h(T7)时测定左侧后足机械刺激缩足阈值(MWT)、热缩足反应潜伏期(PWTL)和左侧后足足底最大厚度.PBS组于T4时处死8只大鼠,Z组分别于T4、T6和T7时各处死8只大鼠,取左侧脊髓L4~6节段,采用Western blot法测定脊髓背角spectrin αⅡ降解产物、IκBα、环氧化酶-2(COX-2)的表达和NF-κB活性.结果 与C组比较,Z组MWT降低,PWTL缩短,足底最大厚度增厚,脊髓背角spectrin αⅡ降解产物和COX-2的表达上调,IκBα表达下调,NF-κB活性升高(P<0.05或0.01),PBS组上述指标差异无统计学意义(P>0.05).结论 脊髓背角卡配因活化参与了大鼠足底炎性痛的形成,其机制与激活NF-κB,上调COX-2表达有关.%Objective To investigate the role of calpain in the spinal dorsal horn in development of paw inflammatory pain in rats.Methods Forty-eight male SD rats,aged 6 weeks,weighing 160-200 g,were randomly divided into three groups:normal control group(group C,n =8),PBS group( n =16),zymosan-induced paw inflammatory pain group (group Z,n =24).Inflammatory pain was induced by injection of zymosan 1.25 mg into the plantar surface of left hindpaw.Group PBS received the equal volume of PBS 100 μl.The mechanical paw withdrawal threshold (MWT),paw withdrawal thermal latency (PWTL) and maximum thickness of the plantar surface of left hindpaw were measured before (T0 ) and at 30 min,1,2,4,8,24 and 48 h(T1-7 ) after zymosan or PBS injection.Eight rats were sacrificed at T4 in

  5. Incidence of surgical site infection following adult spinal deformity surgery: an analysis of patient risk.

    NARCIS (Netherlands)

    Pull ter Gunne, A.F.; Laarhoven, C.J.H.M. van; Cohen, D.B.

    2010-01-01

    Surgical site infection (SSI) following spinal surgery is a frequent complication and results in higher morbidity, mortality and healthcare costs. Patients undergoing surgery for spinal deformity (scoliosis/kyphosis) have longer surgeries, involving more spinal levels and larger blood losses than ty

  6. {sup 18}F-FDG PET/CT evaluation of children and young adults with suspected spinal fusion hardware infection

    Energy Technology Data Exchange (ETDEWEB)

    Bagrosky, Brian M. [University of Colorado School of Medicine, Department of Pediatric Radiology, Children' s Hospital Colorado, 12123 E. 16th Ave., Box 125, Aurora, CO (United States); University of Colorado School of Medicine, Department of Radiology, Division of Nuclear Medicine, Aurora, CO (United States); Hayes, Kari L.; Fenton, Laura Z. [University of Colorado School of Medicine, Department of Pediatric Radiology, Children' s Hospital Colorado, 12123 E. 16th Ave., Box 125, Aurora, CO (United States); Koo, Phillip J. [University of Colorado School of Medicine, Department of Radiology, Division of Nuclear Medicine, Aurora, CO (United States)

    2013-08-15

    Evaluation of the child with spinal fusion hardware and concern for infection is challenging because of hardware artifact with standard imaging (CT and MRI) and difficult physical examination. Studies using {sup 18}F-FDG PET/CT combine the benefit of functional imaging with anatomical localization. To discuss a case series of children and young adults with spinal fusion hardware and clinical concern for hardware infection. These people underwent FDG PET/CT imaging to determine the site of infection. We performed a retrospective review of whole-body FDG PET/CT scans at a tertiary children's hospital from December 2009 to January 2012 in children and young adults with spinal hardware and suspected hardware infection. The PET/CT scan findings were correlated with pertinent clinical information including laboratory values of inflammatory markers, postoperative notes and pathology results to evaluate the diagnostic accuracy of FDG PET/CT. An exempt status for this retrospective review was approved by the Institution Review Board. Twenty-five FDG PET/CT scans were performed in 20 patients. Spinal fusion hardware infection was confirmed surgically and pathologically in six patients. The most common FDG PET/CT finding in patients with hardware infection was increased FDG uptake in the soft tissue and bone immediately adjacent to the posterior spinal fusion rods at multiple contiguous vertebral levels. Noninfectious hardware complications were diagnosed in ten patients and proved surgically in four. Alternative sources of infection were diagnosed by FDG PET/CT in seven patients (five with pneumonia, one with pyonephrosis and one with superficial wound infections). FDG PET/CT is helpful in evaluation of children and young adults with concern for spinal hardware infection. Noninfectious hardware complications and alternative sources of infection, including pneumonia and pyonephrosis, can be diagnosed. FDG PET/CT should be the first-line cross-sectional imaging study in

  7. 18F-FDG PET/CT evaluation of children and young adults with suspected spinal fusion hardware infection

    International Nuclear Information System (INIS)

    Evaluation of the child with spinal fusion hardware and concern for infection is challenging because of hardware artifact with standard imaging (CT and MRI) and difficult physical examination. Studies using 18F-FDG PET/CT combine the benefit of functional imaging with anatomical localization. To discuss a case series of children and young adults with spinal fusion hardware and clinical concern for hardware infection. These people underwent FDG PET/CT imaging to determine the site of infection. We performed a retrospective review of whole-body FDG PET/CT scans at a tertiary children's hospital from December 2009 to January 2012 in children and young adults with spinal hardware and suspected hardware infection. The PET/CT scan findings were correlated with pertinent clinical information including laboratory values of inflammatory markers, postoperative notes and pathology results to evaluate the diagnostic accuracy of FDG PET/CT. An exempt status for this retrospective review was approved by the Institution Review Board. Twenty-five FDG PET/CT scans were performed in 20 patients. Spinal fusion hardware infection was confirmed surgically and pathologically in six patients. The most common FDG PET/CT finding in patients with hardware infection was increased FDG uptake in the soft tissue and bone immediately adjacent to the posterior spinal fusion rods at multiple contiguous vertebral levels. Noninfectious hardware complications were diagnosed in ten patients and proved surgically in four. Alternative sources of infection were diagnosed by FDG PET/CT in seven patients (five with pneumonia, one with pyonephrosis and one with superficial wound infections). FDG PET/CT is helpful in evaluation of children and young adults with concern for spinal hardware infection. Noninfectious hardware complications and alternative sources of infection, including pneumonia and pyonephrosis, can be diagnosed. FDG PET/CT should be the first-line cross-sectional imaging study in patients

  8. Bone marrow stromal cells elicit tissue sparing after acute but not delayed transplantation into the contused adult rat thoracic spinal cord.

    NARCIS (Netherlands)

    Tewarie, R.D.; Hurtado, A.; Ritfeld, G.J.; Rahiem, S.T.; Wendell, D.F.; Barroso, M.M.; Grotenhuis, J.A.; Oudega, M.

    2009-01-01

    Bone marrow stromal cells (BMSC) transplanted into the contused spinal cord may support repair by improving tissue sparing. We injected allogeneic BMSC into the moderately contused adult rat thoracic spinal cord at 15 min (acute) and at 3, 7, and 21 days (delayed) post-injury and quantified tissue s

  9. Changes of the expression of prostatic acid phosphatase in spinal dorsal horn and dorsal root ganglion in different chronic pain models of the rat%前列腺酸性磷酸酶在慢性痛大鼠脊髓背角和背根神经节的表达变化

    Institute of Scientific and Technical Information of China (English)

    朱玲; 陈磊; 张富兴; 李云庆

    2012-01-01

    Objective; To observe the expression changes of prostatic acid phosphatase (PAP) in the spinal dorsal horn (SDH) and dorsal root ganglion (DRG) in different chronic pain models of the rat. Methods; Immunohistochemistry combined with multiple immunofluorescent histochemical technique was employed to detect the expression changes of PAP in different chronic pain models. Results; In the intact normal rats, PAP was principally located in small- to medium-sized non-peptidergic neurons in the DRG, and the number of PAP-immunoreactive (PAP-ir) neurons was about 64 ± 4.3% to the total number of the DRG neurons. In the SDH, only PAP-ir fibers and terminals but not PAP-ir neurons were exclusively observed in lamina Ⅰ and Ⅱ, especially in lamina Ⅱ. In a model of neuropathic pain rat, PAP immunoreactivi-ties were markedly decreased, or even vanished in the SDH and DRG ipsilateral to the nerve injury side. There were no remarkable changes of the PAP expression on the side contralateral to the nerve injury. In an inflammatory pain model induced by CFA injection into the rat hindpaw, however, there were no obvious expression changes of PAP-ir neurons, fibers and terminals in bilateral SDHs and DRGs. Conclusion: PAP is specifically expressed in the SDH and DRG. It might play important roles in the transduction and process of the signals of the neuropathic pain.%目的:观察前列腺酸性磷酸酶(prostatic acid phosphatase,PAP)在多种慢性痛大鼠脊髓背角(spinal dorsal horn,SDH)和背根神经节(dorsal root ganglion,DRG)内的表达变化.方法:应用免疫组织化学染色法以及免疫荧光多重染色技术在多种慢性痛模型大鼠观察PAP的表达变化.结果:在正常大鼠,PAP阳性反应产物主要位于DRG的中、小型的非肽能神经元,PAP阳性神经元约占DRG神经元总数的64±4.3%;在脊髓背角,PAP 阳性纤维和终末主要位于Ⅱ层.在神经病理性痛模型大鼠,术侧脊髓背角Ⅱ层的PAP

  10. A prospective evaluation of a pressure ulcer prevention and management E-Learning Program for adults with spinal cord injury.

    Science.gov (United States)

    Brace, Jacalyn A; Schubart, Jane R

    2010-08-01

    Pressure ulcers are a common complication of spinal cord injury (SCI). Pressure ulcer education programs for spinal cord injured individuals have been found to have a positive effect on care protocol adherence. A prospective study was conducted among hospitalized spinal cord-injured men and women to determine if viewing the Pressure Ulcer Prevention and Management Education for Adults with Spinal Cord Injury: E-Learning Program affects their knowledge scores. A 20-question multiple-choice pre-/post learning test was developed and validated by 12 rehabilitation nurses. Twenty (20) patients (13 men, seven women; mean age 49 years, [SD: 18.26] with injuries to the cervical [seven], thoracic [six], and lumbar [six] regions) volunteered. Most (42%) had completed high school and time since SCI ranged from 2 weeks to 27 years. Eighteen (18) participants completed both the pre- and post test. Of those, 16 showed improvement in pressure ulcer knowledge scores. The median scores improved from 65 (range 25 to 100) pre-program to 92.5 (range 75 to 100) post-program. Descriptive statistics, Student's t-test, and analysis of variance (ANOVA) were used to analyze the data. The results suggest that a single viewing of this e-learning program could improve pressure ulcer knowledge of hospitalized adults with SCI. Research to ascertain the effects of this and other educational programs on pressure ulcer rates is needed. PMID:20729562

  11. Interneurons and proprioneurons in the adult human spinal grey matter and in the general somatic and visceral afferent cranial nerve nuclei.

    OpenAIRE

    Abdel-Maguid, T E; Bowsher, D

    1984-01-01

    Using the classification of Abdel-Maguid & Bowsher (1984), interneurons of the dorsal horn of the grey matter of the human spinal cord and medulla oblongata were found to belong to only three 'families' of neurons, out of a possible thirteen. This is in itself one of the justifications for the method of classification. Functional identification of these human neurons has been made on the basis of topological, morphological and projectional comparison with known cells in other mammalian specie...

  12. Combining Adult Learning Theory with Occupational Therapy Intervention for Bladder and Bowel Management after Spinal Cord Injury: A Case Report.

    Science.gov (United States)

    Gallagher, Gina; Bell, Alison

    2016-01-01

    Bladder and bowel management is an important goal of rehabilitation for clients with spinal cord injury. Dependence is these areas have been linked to a variety of secondary complications, including decreased quality of life, urinary tract infections and pressure ulcers (Hammell, 2010; Hicken et al, 2001). Occupational therapists have been identified as important members of the health care team in spinal cord injury rehabilitation; however, specific roles and interventions have not been clearly described. This case report will describe occupational therapy interventions embedded with principles of adult learning theory to address bladder and bowel management with an adult client who sustained an incomplete thoracic level spinal cord injury. PMID:26694910

  13. The Effects of Cyclosporin-A on Functional Outcome and Axonal Regrowth Following Spinal Cord Injury in Adult Rats

    Directory of Open Access Journals (Sweden)

    Hamdollah Delaviz

    2012-04-01

    Full Text Available It has been shown that the immunophilin ligands have the special advantage in spinal cord repair. In this study, the effects of cyclosporine A (CsA on functional recovery and histological outcome were evaluated following spinal cord injury in rats. After spinal cord hemisection in thirty six adult female Sprague-Dawley rats (200- 250 g, treatment groups received CsA (2.5 mg/kg i.p. at 15min and 24h after lesion (CsA 15min group and CsA 24h group daily, for 8 weeks. Control and sham groups received normal saline and in sham operated animals the spinal cord was exposed in the same manner as treatment groups, but was not hemisected. Hindlimb motor function was assessed in 1, 3, 5 and 7 weeks after lesion, using locomotive rating scale developed by Basso, Bresnahan and Beattie (BBB. Motor neurons were counted within the lamina IX of ventral horn and lesion size was measured in 5 mm of spinal lumbar segment with the epicenter of the lesion site. The mean number of motor neurons and the mean BBB scale in 3, 5 and 7 weeks in CsA 15min groups significantly increased compared to the control group. Although, the lesion size reduced in rats with CsA treatment compared to the control group, no significant difference was observed. Thus, it can be concluded that CsA can improve locomotor function and histological outcome in the partial spinal cord injury.

  14. Magnetic resonance imaging of the normal and chronically injured adult rat spinal cord in vivo

    Energy Technology Data Exchange (ETDEWEB)

    Guizar-Sahagun, G. (Centro de Investigacion del Proyecto Camina, Mexico City (Mexico) Dept. of Clinical Research in Neurology and Neurosurgery, Hospital de Especialidades, Centro Medico Nacional Siglo XXI, Inst. Mexicano del Seguro Social, Mexico City (Mexico)); Rivera, F. (Centro de Investigacion del Proyecto Camina, Mexico City (Mexico)); Babinski, E. (Centro de Investigacion del Proyecto Camina, Mexico City (Mexico)); Berlanga, E. (Dept. of Magnetic Resonance Imaging, Hospital Angeles del Pedregal, Mexico City (Mexico)); Madrazo, M. (Dept. of Magnetic Resonance Imaging, Hospital Angeles del Pedregal, Mexico City (Mexico)); Franco-Bourland, R. (Centro de Investigacion del Proyecto Camina, Mexico City (Mexico) Dept. of Biochemistry, Inst. Nacional de la Nutricion, Mexico City (Mexico)); Grijalva, I. (Centro de Investigacion del Proyecto Camina, Mexico City (Mexico) Dept. of Clinical Research in Neurology and Neurosurgery, Hospital de Especialidades, Centro Medico Nacional Siglo

    1994-08-01

    We assessed the capacity of MRI to show and characterise the spinal cord (SC) in vivo in normal and chronically injured adult rats. In the chronically injured animals the SC was studied by MRI and histological examination. MRI was performed at 1.5 T, using gradient-echo and spin-echo (SE) sequences, the latter with and without gadolinium-DTPA (Gd-DTPA). Several positions were tried for good alignment and to diminish interference by respiratory movements. Images of the SC were obtained in sagittal, coronal, and axial planes. Normal SC was observed as a continuous intensity in both sequences, although contrast resolution was better using SE; it was not possible to differentiate the grey and white matter. Low signal was seen in the damaged area in chronically injured rats, which corresponded to cysts, trabeculae, mononuclear infiltrate, and fibroglial wall on histological examination. Gd-DTPA failed to enhance the SC in normal or chronically injured rats. It did, however, cause enhancement of the lesion after acute SC injury. (orig.)

  15. The effect of July admission on inpatient morbidity and mortality after adult spinal deformity surgery

    Science.gov (United States)

    De la Garza-Ramos, Rafael; Passias, Peter G.; Schwab, Frank J.; Lafage, Virginie

    2016-01-01

    Background Some studies have suggested patients who undergo surgery in July have worse outcomes compared to patients treated during other months. The purpose of this study is to compare inpatient morbidity and mortality among patients who underwent adult spinal deformity (ASD) surgery in July with those who underwent surgery in other months. Methods Admission data for patients who underwent ASD surgery were extracted from the Nationwide Inpatient Sample for the years 2002 to 2011. Only adult patients (over 21 years of age) and elective admissions to teaching hospitals were included. A multivariable regression analysis was performed to examine the independent effect of July admissions on overall complications, major complications, and inpatient mortality. Results A total of 27,794 patients were identified, with 2,023 (7.8%) admitted in July and 25,771 (92.2%) in other months. Overall complication rates in July (43.1%) were not different from rates in other months (44.9%, p=0.468). Similarly, major complication rates were similar; 12.9% in July and 12.4% in other months (p=0.764). Mortality was not different between groups (p=0.807). After multivariable analysis, July admissions were not found to increase the odds of developing any complication (OR 0.94; 95% CI, 0.77 - 1.12; p=0.403), major complications (OR 1.04; 95% CI, 0.76 - 1.41; p=0.788) or inpatient mortality (OR 1.35; 95% CI, 0.31 - 5.84; p=0.684). Conclusion In this study of a nationwide database, patients who underwent ASD surgery in July did not have increased odds of developing a complication or inpatient mortality compared to patients admitted in other months. PMID:26913223

  16. Impact of Increasing Age on Outcomes of Spinal Fusion in Adult Idiopathic Scoliosis

    Science.gov (United States)

    Verla, Terence; Adogwa, Owoicho; Toche, Ulysses; Farber, S. Harrison; Petraglia, Frank; Murphy, Kelly R.; Thomas, Steven; Fatemi, Parastou; Gottfried, Oren; Bagley, Carlos A.; Lad, Shivanand P.

    2016-01-01

    Objective To investigate the role of advancing age on postoperative complications and revision surgery after fusion for scoliosis. Methods A retrospective, cohort study was performed using the Thomson Reuters MarketScan database, examining patients with adult scoliosis who underwent spinal fusion from 2000 to 2009. Primary outcomes included infection, hemorrhage and pulmonary embolism (PE) within 90 days of surgery, and refusion. The effect of increasing age was estimated using the odds ratio (OR) of complications in a multivariate logistic regression analysis, and a Cox proportional hazard model estimated the hazard ratio of refusion. Results A total of 8432 patients were included in this study. Overall, the average age was 53.3 years, with 26.90% males and 39% with a Charlson Comorbidity Score of ≥1. Most patients had commercial insurance (66.81%), with 26.03% and 7.16% covered by Medicare and Medicaid, respectively. Increasing age (per 5-year increment) was a significant predictor of hemorrhagic complication (OR, 1.06; confidence interval [CI], 1.01–1.11; P = 0.0196), PE (OR, 1.09; CI, 1.03–1.16; P = 0.0031), infection (OR, 1.04; CI, 1.01–1.07; P = 0.0053), and refusion (hazard ratio, 1.07; CI, 1.02–1.13; P = 0.0103). Conclusions In this study, age was associated with increased risk of hemorrhage, PE, infection, and refusion. With the aging population, the role of patient age on postoperative healing and outcomes deserves deeper investigation after repair of adult idiopathic scoliosis. PMID:26546999

  17. Ketamine inhibits the excitability induced by formalin in spinal dorsal horn neurons of rats%氯胺酮对甲醛致痛诱导大鼠脊髓背角神经元兴奋性的抑制

    Institute of Scientific and Technical Information of China (English)

    颜明; 曾因明; 张励才; 戴体俊; 段世明

    2006-01-01

    performance of the rats in each group. ② Spinal sections were chosen, and stained with c-fos genetic immunohistochemical and NADPH-d histochemical methods. The changes of the number of Fos-like immuno-positive neurons (FLI) and FLI/nitric oxide synthase (NOS) double-labeled neurons in the 4-layer sections (layer Ⅰ -Ⅱ ,layer Ⅲ-Ⅳ ,layerⅤ-Ⅵ ,layer Ⅶ-X )of spinal dorsal horn of the rats were observed.RESULTS: All the thirty rats entered the stage of result analysis. ① Behavioral changes: The rats of formalin group and formalin+ normal salinegroup had apparent pain response; Several minutes after injection with ketamine, righting reflex disappeared and did not recover at perfusion period.Prolonged sleep was found without obvious pain response performance. ② FLI neuron expression: A lot of FLI positive neurons were found in the spinal dorsal horn of injec tion side of the rats in the formalin group and formalin+ normal saline group, and they distributed principally in the layer Ⅰ - Ⅱ of spinal dorsal horn.The distribution in the ketamine + formalin group and formalin + ketamine group was basically similar to that in the formalin group and formalin + normal saline group, but positive neuron counts were significantly reduced (P < 0.01). ③ The expression of FLI/NOS double-labeled neurons: The number of double-labeled neurons in the spinal dorsal horn layer Ⅰ - Ⅱ of the rats in the ketamine+ formalin group and formalin+ ketamine group were significantly less than that in the formalin group and formalin+normal saline group [(1±1), (1±1), (7±3), (8±3),P < 0.01].CONCLUSION: Some neurons of ipsilateral corresponding spinal segments participate in the transmission and mediation of pain signal. Ketamine can suppress the activities of these neurons and exert antinociceptive effect. The antinococeptive function of ketamine may be caused by the activity depression of the NOS-positive neurons in spinal cord.%背景:氯胺酮是否可通过影响脊髓水平

  18. Isolation of mineralizing Nestin+ Nkx6.1+ vascular muscular cells from the adult human spinal cord

    Directory of Open Access Journals (Sweden)

    Guillon Hélène

    2011-10-01

    Full Text Available Abstract Background The adult central nervous system (CNS contains different populations of immature cells that could possibly be used to repair brain and spinal cord lesions. The diversity and the properties of these cells in the human adult CNS remain to be fully explored. We previously isolated Nestin+ Sox2+ neural multipotential cells from the adult human spinal cord using the neurosphere method (i.e. non adherent conditions and defined medium. Results Here we report the isolation and long term propagation of another population of Nestin+ cells from this tissue using adherent culture conditions and serum. QPCR and immunofluorescence indicated that these cells had mesenchymal features as evidenced by the expression of Snai2 and Twist1 and lack of expression of neural markers such as Sox2, Olig2 or GFAP. Indeed, these cells expressed markers typical of smooth muscle vascular cells such as Calponin, Caldesmone and Acta2 (Smooth muscle actin. These cells could not differentiate into chondrocytes, adipocytes, neuronal and glial cells, however they readily mineralized when placed in osteogenic conditions. Further characterization allowed us to identify the Nkx6.1 transcription factor as a marker for these cells. Nkx6.1 was expressed in vivo by CNS vascular muscular cells located in the parenchyma and the meninges. Conclusion Smooth muscle cells expressing Nestin and Nkx6.1 is the main cell population derived from culturing human spinal cord cells in adherent conditions with serum. Mineralization of these cells in vitro could represent a valuable model for studying calcifications of CNS vessels which are observed in pathological situations or as part of the normal aging. In addition, long term propagation of these cells will allow the study of their interaction with other CNS cells and their implication in scar formation during spinal cord injury.

  19. EXPRESSION OF NESTIN AND GLIAL FIBRILLARY ACIDIC PROTEIN IN DIFFERENT PERIOD AFTER SPINAL INJURY IN ADULT RATS

    Institute of Scientific and Technical Information of China (English)

    屈建强; 贺西京; 杨平林; 师蔚; 李浩鹏; 兰宾尚; 袁普卫; 王国毓

    2004-01-01

    Objective To study the expression of Nestin and glial fibrillary acidic protein (GFAP) in different period after spinal injury in adult rats. Methods Animal moels were created by artery clamp. Expression of Nestin and GFAP in different period (1,3,5days;1-8 weeks) and different area(injury locus and its surrounding tissue ) after spinal injury were observed pathologicaly using immunofluorescence and LeicaQ500IW imaging processing system. Results There was expression of Nestin and GFAP in injured area 1 day after injury.The expression increased not only in in injured area but its sourrounding 3-7 days later and gradually got to peak value. As the time went on, expression of Nestin and GFAP dereased. Conclusion Spinal injury can induce the expression of Nestin. Nerve stem cell has response to spinal injury. There is positive correlation between expression of Nestin and hyperplasia of reactivity astrocyte. Nerve stem cell maybe invovled in the repair of central nervous system (CNS).

  20. Upregulation of S100A4 after spinal cord transection in adult rats

    Institute of Scientific and Technical Information of China (English)

    Kai-hua ZHANG; Shu HAN; Pei-hua LU; Xiao-ming XU

    2004-01-01

    AIM: To investigate whether spinal cord transection induces changes of gene expression of S 100A4 protein.METHODS: In a spinal cord transection model, S 100A4 expression and cellular localization were examined using cDNA microarray, Northern blot, immunohistochemistry, and immunofluorescence double-labeling methods.RESULTS: There was very limited S 100A4 mRNA expression in the control spinal cord. However, S 100A4 mRNA expression was increased significantly in both the rostral and caudal spinal cord segments adjacent to the injury site.Specifically, S100A4 gene expression was substantially increased at d 2, peaked at d 7 and d 14, and remained high up to 28 d post-injury. During its peak expression, S100A4 protein was localized in astrocytes of the spinal cord within 5 mm from the site of spinal transection. CONCLUSION: Spinal cord transection induces prolonged S 100A4 expression at both mRNA and protein levels in areas close to the injury site. Increased expression of S100A4 in astrocytes after spinal cord transection may indicate that this molecule may play a role in astrocytic responses to injury.

  1. Retinoic acid receptor beta2 promotes functional regeneration of sensory axons in the spinal cord.

    Science.gov (United States)

    Wong, Liang-Fong; Yip, Ping K; Battaglia, Anna; Grist, John; Corcoran, Jonathan; Maden, Malcolm; Azzouz, Mimoun; Kingsman, Susan M; Kingsman, Alan J; Mazarakis, Nicholas D; McMahon, Stephen B

    2006-02-01

    The embryonic CNS readily undergoes regeneration, unlike the adult CNS, which has limited axonal repair after injury. Here we tested the hypothesis that retinoic acid receptor beta2 (RARbeta2), critical in development for neuronal growth, may enable adult neurons to grow in an inhibitory environment. Overexpression of RARbeta2 in adult rat dorsal root ganglion cultures increased intracellular levels of cyclic AMP and stimulated neurite outgrowth. Stable RARbeta2 expression in DRG neurons in vitro and in vivo enabled their axons to regenerate across the inhibitory dorsal root entry zone and project into the gray matter of the spinal cord. The regenerated neurons enhanced second-order neuronal activity in the spinal cord, and RARbeta2-treated rats showed highly significant improvement in sensorimotor tasks. These findings show that RARbeta2 induces axonal regeneration programs within injured neurons and may thus offer new therapeutic opportunities for CNS regeneration. PMID:16388307

  2. Activation of the dorsal hippocampal nicotinic acetylcholine receptors improves tamoxifen-induced memory retrieval impairment in adult female rats.

    Science.gov (United States)

    Tajik, Azam; Rezayof, Ameneh; Ghasemzadeh, Zahra; Sardari, Maryam

    2016-07-01

    Tamoxifen (TAM), a selective estrogen receptor modulator, has frequently been used in the treatment of breast cancer. In view of the fact that cognitive deficits in women who receive adjuvant chemotherapy for breast cancer is a common health problem, using female animal models for investigating the cognitive effects of TAM administration may improve our knowledge of TAM therapy. Therefore, the present study assessed the role of dorsal hippocampal cholinergic nicotinic receptors (nAChRs) in the effect of TAM administration on memory retrieval in ovariectomized (OVX) and non-OVX female rats using a passive avoidance learning task. Our results showed that pre-test administration of TAM (2-6mg/kg) impaired memory retrieval. Pre-test intra-CA1 microinjection of nicotine (0.3-0.5μg/rat) reversed TAM-induced memory impairment. Pre-test intra-CA1 microinjection of mecamylamine (0.1-0.3μg/rat) plus 2mg/kg (an ineffective dose) of TAM impaired memory retrieval. Pre-test intra-CA1 microinjection of the same doses of nicotine and mecamylamine by themselves had no effect on memory retrieval. In OVX rats, the administration of TAM (6mg/kg) produced memory impairment but pre-test intra-CA1 microinjection of nicotine (0.5μg/rat) had no effect on TAM response. Moreover, the administration of an ineffective dose of TAM (2mg/kg) had no effect on memory retrieval in OVX rats, while pre-test intra-CA1 microinjection of mecamylamine (0.3μg/rat) impaired memory retrieval. Taken together, it can be concluded that the impairing effect of TAM on memory formation may be modulated by nAChRs of the CA1 regions. It seems that memory impairment may be considered as an important side effect of TAM. PMID:27072849

  3. Morphological and electrophysiological evidence for regeneration of transected spinal cord fibers and restoration of motor functions in adult rats

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    After 2/3 transection of the right ninth thoracic spinal cord of an adult rat, a chitosan tube seeded with L-poly-lysine was implanted between the rostral and caudal end of the lesioned cord. Twelve months after the operation, regeneration of myelinated and non-myelinated axons and new blood vessels were observed along the wall of the chitosan tube implanted under an electron microscope. Somatosensory evoked potentials (SEP) could be consistently recorded from the left somatosensory cortex following electrical stimulation of the right hind limb, while transcranial magnetic stimulation of the left motor cortex could also evoke motor activity from the right hind limb. The present result suggests that implanted chitosan tube might be useful in regeneration of injured nerve fibers of the spinal cord resulting in a long-term restoration of motor functions.

  4. 体视学研究坐骨神经慢性限制性损伤对大鼠脊髓背角内突触数量的可塑性改变及COX-2抑制剂的作用%Stereological investigation on plasticity in synaptic number associated with chronic constriction injury in the rat spinal dorsal horn and effects of COX-2 inhibitor

    Institute of Scientific and Technical Information of China (English)

    商义; 张才全; 彭彬; 林菁艳; 杨正伟

    2011-01-01

    目的:探讨坐骨神经慢性限制性损伤(CCI)所致神经病理性疼痛是否伴有脊髓背角神经元和突触数量的可塑性变化以及帕瑞昔布干预的作用.方法:正常成年SD大鼠随机分为假手术组、CCI组及帕瑞昔布组.术后28d取第5腰段脊髓作石蜡包埋切片,分别用尼氏染色和突触素的免疫组织化学显色显示神经元和突触,采用体视学新技术--光学体视框估计脊髓背角内神经元和突触的数量.结果:与对侧未手术侧相比,CCI组手术侧单位长度脊髓背角内的突触数及突触数与神经元数之比分别增加了86%、98%;帕瑞昔布组手术侧单位长度脊髓背角内的突触数及突触数与神经元数之比分别增加了78%、68%.与假手术组手术侧相比,CCI组手术侧单位长度脊髓背角内的突触数及突触数与神经元数之比分别增加了78%、73%;帕瑞昔布组则分别增加了81%、71%.结论:CCI所致神经病理性疼痛伴有脊髓背角内突触数量增加的可塑性变化,COX-2抑制剂帕瑞昔布对CCI致突触数量的增加无作用.%Objective: To determine whether neuropathic pain induced by chronic constriction injury (CCI) is associated with a plasticity change in the number of synapses in the spinal dorsal horn and the effects of COX-2 inhibitor on it. Methods: 17 normal adult SD rats were randomly divided into 3 groups: sham-operated group, CCI group and parecoxib group. 28 days after operation, L5 segment of the spinal cord was removed, and paraffin-embedded sections were prepared and stained with Nissl's method and synaptophysin immunohistochemistry. The numbers of neurons and synapses in the spinal dorsal horn were estimated using a contemporary stereological technique - the optical disector. Results: In the CCI group, the number of synapses and the ratio between the numbers of synapses and neurons on the operated side increased significantly by 86%and 98%, respectively, compared to the non-operated side

  5. Role of 5-HT5A receptors in activation of astroglia in the spinal dorsal horn in a rat model of neuropathic pain by vincristine%5-HT5A受体在长春新碱致神经病理性痛大鼠脊髓背角星形胶质细胞活化中的作用

    Institute of Scientific and Technical Information of China (English)

    刘巍; 叶茂; 徐颖; 石远; 柏林

    2010-01-01

    目的 评价5-羟色胺5A受体(5-HT5AR)在长春新碱致神经病理性痛大鼠脊髓背角星形胶质细胞活化中的作用.方法 雄性成年SD大鼠40只,体重180~200 g,随机分为4组(n=10):对照组(C组)、神经病理性痛组(P组)、空载体腺病毒组(B组)和siRNA重组腺病毒载体组(S组).C组腹腔注射生理盐水1 ml;P组、B组和S组第1~5天和第8~12天每天定时腹腔注射0.1 mg/kg长春新碱建立大鼠神经病理性痛模型.腹腔给药结束第2天测定机械痛阈,然后P组、B组和S组分别鞘内注射人工脑脊液、空载体腺病毒和siRNA重组腺病毒载体25μl.鞘内给药后第7天测定机械痛阈,然后处死大鼠,取L4.5脊髓组织,测定脊髓背角5-HT5AR及胶原纤维酸性蛋白(GFAP)的表达.结果 与C组比较,P组、B组和S组各时点机械痛阈降低,脊髓背角5-HT5AR和GFAP的表达均上调(P<0.05);与P组比较,S组鞘内给药后第7天机械痛阈降低,脊髓背角5-HT5AR表达下调,GFAP表达上调(P<0.05),B组上述指标差异无统计学意义(P>0.05).结论 5-HT5AR参与了星形胶质细胞活化的抑制过程,从而减轻长春新碱致大鼠神经病理性痛.%Objective To evaluate the role of 5-HT5A receptors (5-HT5A R) in activation of astroglia in the spinal dorsal horn in a rat model of neuropathic pain induced by vincristine. Methods Forty adult male SD rats weighing 180-200 g were randomly divided into 4 groups ( n = 10 each): control group (group C);neuropathic pain group (group P);Ad-X-HK group (group B) and Ad-5-HT5A-siRNA group (group S). Neuropathic pain was induced by repeated intraperitoneal (IP) injection of vincristine 0.1 mg/kg according to the method described by Weng et al in group P, B and S. On the 2nd day after the last IP injection, the animals received artificial cerebrospinal fluid, Ad-X-HK and Ad-5-HT5A-siRNA 25 μl administered intrathecally (IT) in group P, B and S respectively. Paw withdrawal threshold to mechanical stimulus

  6. (-)-Epigallocatechin-3-gallate (EGCG) modulates neurological function when intravenously infused in acute and, chronically injured spinal cord of adult rats.

    Science.gov (United States)

    Renno, Waleed M; Al-Khaledi, Ghanim; Mousa, Alyaa; Karam, Shaima M; Abul, Habib; Asfar, Sami

    2014-02-01

    Spinal cord injury (SCI) causes severe and long lasting motor and sensory deficits, chronic pain, and autonomic dysreflexia. (-)-epigallocatechin-3-gallate (EGCG) has shown to produce neuroprotective effect in a broad range of neurodegenerative disease animal models. This study designed to test the efficacy of intravenous infusion of EGCG for 36 h, in acutely injured rats' spinal cord: within first 4 h post-injury and, in chronically SC injured rats: after one year of injury. Functional outcomes measured using standard BBB scale, The Louisville Swim Scale (LSS) and, pain behavior assessment tests. 72 Female adult rats subjected to moderate thoracic SCI using MASCIS Impactor, blindly randomized as the following: (I) Acute SCI + EGCG (II) Acute SCI + saline. (III) Chronic SCI + EGCG. (IV) Chronic SCI + saline and, sham SCI animals. EGCG i.v. treatment of acute and, chronic SCI animals resulted in significantly better recovery of motor and sensory functions, BBB and LSS (P spinal cord increased (P < 0.001). Percent areas of GAP-43 and GFAP immunohistochemistry showed significant (P < 0.05) increase. We conclude that the therapeutic window of opportunity for EGCG to depict neurological recovery in SCI animals, is viable up to one year post SCI when intravenously infused for 36 h.

  7. Primary spinal intradural hydatid cyst--a short report.

    Science.gov (United States)

    Pushparaj, K; Sundararajan, M; Madeswaran, K; Ambalavanan, S

    2001-06-01

    Primary spinal hydatid cysts are uncommon. Among these, intradural presentation is very rare. A case of primary spinal intradural hydatid cyst presenting as incomplete dorsal cord compression is reported here for its rarity. PMID:11447449

  8. Primary spinal intradural hydatid cyst--a short report.

    Directory of Open Access Journals (Sweden)

    Pushparaj K

    2001-04-01

    Full Text Available Primary spinal hydatid cysts are uncommon. Among these, intradural presentation is very rare. A case of primary spinal intradural hydatid cyst presenting as incomplete dorsal cord compression is reported here for its rarity.

  9. Primary spinal intradural hydatid cyst--a short report.

    OpenAIRE

    Pushparaj K; Sundararajan M; Madeswaran K; Ambalavanan S

    2001-01-01

    Primary spinal hydatid cysts are uncommon. Among these, intradural presentation is very rare. A case of primary spinal intradural hydatid cyst presenting as incomplete dorsal cord compression is reported here for its rarity.

  10. Circumcision with “no-flip Shang Ring” and “Dorsal Slit” methods for adult males: a single-centered, prospective, clinical study

    Science.gov (United States)

    Lei, Jun-Hao; Liu, Liang-Ren; Wei, Qiang; Xue, Wen-Ben; Song, Tu-Run; Yan, Shi-Bing; Yang, Lu; Han, Ping; Zhu, Yu-Chun

    2016-01-01

    This paper was aimed to compare the clinical effectiveness and safety of adult male circumcision using the Shang Ring™ (SR) with the no-flip technique compared with Dorsal Slit (DS) surgical method. A single-centered, prospective study was conducted at the West China Hospital, where patients were circumcised using the no-flip SR (n = 408) or the DS (n = 94) procedure. The adverse events (AEs) and satisfaction were recorded for both groups, and ring-removal time and percentage of delayed removals were recorded for the SR group. Finally, complete follow-up data were collected for 76.1% of patients (SR: n = 306; DS: n = 76). The average ring-removal time for the SR group was 17.62 ± 6.30 days. The operation time (P flip SR method was found to be superior to the DS method for its short operation time (<5 min), involving less pain, bleeding, infection, and resulting in a satisfactory appearance. However, the time for recovery from edema took longer, and patients may wear device for 2–3 weeks after the procedure. PMID:26585694

  11. Upregulation of heparin-binding growth-associated molecule after spinal cord injury in adult rats

    Institute of Scientific and Technical Information of China (English)

    Yan-ting WANG; Shu HAN; Kai-hua ZHANG; Yu JIN; Xiao-ming XU; Pei-hua LU

    2004-01-01

    AIM: To investigate whether traumatic spinal cord injury (SCI) induces changes of gene expression of heparinbinding growth-associated molecule (HB-GAM). METHODS: In a spinal cord transection model, HB-GAM expression and cellular localization were examined using Northern blot, RT-PCR, immunohistochemistry and immunofluorescence double-labeling methods. RESULTS: HB-GAM mRNA was significantly upregulated in spinal cord tissues rostral and caudal to the injury at 7 d after SCI. HB-GAM gene expression was markedly increased at 3 d,peaked at 7 d, and declined to the baseline level at 28 d post-injury. During its peak expression, HB-GAM was colocalized in astrocytes, oligodendrocytes, and neurons in spinal cord tissues within 7 mm from the site of spinal transection. CONCLUSION: SCI induces HB-GAM expression at both mRNA and protein levels in areas close to the injury. Both neurons and glial cells expressed HB-GAM implying that HB-GAM played a role in the process of injury and/or repair following SCI.

  12. Dorsal penile nerves and primary premature ejaculation

    Institute of Scientific and Technical Information of China (English)

    ZHANG Hai-feng; ZHANG Chun-ying; LI Xing-hua; FU Zhong-ze; CHEN Zhao-yan

    2009-01-01

    Background Based on our clinical experience, the number of dorsal penile nerves in patients with primary premature ejaculation (PPE) is not consistent with the average number (2 branches). In this study, we evaluated the number and distribution of dorsal penile nerves among healthy Chinese adults and patients with PPE.Methods The dorsal nerve of the penis, the deep dorsal vein of the penis, and the dorsal artery of the penis between the deep fascia of the penis and the albuginea penis were carefully educed, observed, and counted in 38 adult autopsy specimens. The number and distribution of the dorsal penile nerve in 128 surgical patients with PPE were determined. Results The numbers of dorsal penile nerves of the 38 cases were as follows:7 branches in 1 case; 6 branches in 1 case; 5 branches in 6 cases; 4 branches in 9 cases; 3 branches in 14 cases; and 2 branches in 7 cases. Most of the dorsal nerves were parallel to each other and in the dorsum of the penis. In only 8 cases, the branches were connected by some communicating branches. In 4 cases, 1 or 2 thin dorsal nerves continued their pathway over the ventral aspect of the penis. The average number of branches of the dorsal penile nerve in patients with PPE was 7.16. Conclusions Based on the study of 38 cases, the average number of dorsal penile nerves was 3.55 branches and that of patients with PPE was greater. These preliminary results suggest that the excessive dorsal penile nerves may have an impact on PPE via increased sensitivity and provide topographic data for the possible treatment of PPE.

  13. Dorsal horn-enriched genes identified by DNA microarray, in situ hybridization and immunohistochemistry

    Directory of Open Access Journals (Sweden)

    Koblan Kenneth S

    2002-08-01

    Full Text Available Abstract Background Neurons in the dorsal spinal cord play important roles in nociception and pain. These neurons receive input from peripheral sensory neurons and then transmit the signals to the brain, as well as receive and integrate descending control signals from the brain. Many molecules important for pain transmission have been demonstrated to be localized to the dorsal horn of the spinal cord. Further understanding of the molecular interactions and signaling pathways in the dorsal horn neurons will require a better knowledge of the molecular neuroanatomy in the dorsal spinal cord. Results A large scale screening was conducted for genes with enriched expression in the dorsal spinal cord using DNA microarray and quantitative real-time PCR. In addition to genes known to be specifically expressed in the dorsal spinal cord, other neuropeptides, receptors, ion channels, and signaling molecules were also found enriched in the dorsal spinal cord. In situ hybridization and immunohistochemistry revealed the cellular expression of a subset of these genes. The regulation of a subset of the genes was also studied in the spinal nerve ligation (SNL neuropathic pain model. In general, we found that the genes that are enriched in the dorsal spinal cord were not among those found to be up-regulated in the spinal nerve ligation model of neuropathic pain. This study also provides a level of validation of the use of DNA microarrays in conjunction with our novel analysis algorithm (SAFER for the identification of differences in gene expression. Conclusion This study identified molecules that are enriched in the dorsal horn of the spinal cord and provided a molecular neuroanatomy in the spinal cord, which will aid in the understanding of the molecular mechanisms important in nociception and pain.

  14. Role of ERK1/2, Akt, and PLCy pathways in proliferation and neuronal differentiation in the adult rat spinal cord neural stem/progenitor cell culture

    Directory of Open Access Journals (Sweden)

    Wai Si eChan

    2013-08-01

    Full Text Available Proliferation of endogenous neural stem/progenitor cells (NSPCs has been identified in both normal and injured adult mammalian spinal cord. Yet the signaling mechanisms underlying the regulation of adult spinal cord NSPCs proliferation and commitment toward a neuronal lineage remain undefined. In this study, the role of three growth factor-mediated signaling pathways in proliferation and neuronal differentiation was examined. Adult spinal cord NSPCs were enriched in the presence of fibroblast growth factor 2 (FGF2. We observed an increase in the number of cells expressing the microtubule-associated protein 2 (MAP2 over time, indicating neuronal differentiation in the culture. Inhibition of the mitogen-activated protein kinase or extracellular signal-regulated kinase (ERK kinase 1 and 2/ERK 1 and 2 (MEK/ERK1/2 or the phosphoinositide 3-kinase (PI3K/Akt pathways suppressed active proliferation in adult spinal cord NSPC cultures; whereas neuronal differentiation was negatively affected only when the ERK1/2 pathway was inhibited. Inhibition of the phospholipase C gamma (PLCy pathway did not affect proliferation or neuronal differentiation. Finally, we demonstrated that the blockade of either the ERK1/2 or PLCy signaling pathways reduced neurite branching of MAP2+ cells derived from the NSPC cultures. Many of the MAP2+ cells expressed synaptophysin and had a glutamatergic phenotype, indicating that over time adult spinal cord NSPCs had differentiated into mostly glutamatergic neurons. Our work provides new information regarding the contribution of these pathways to the proliferation and neuronal differentiation of NSPCs derived from adult spinal cord cultures, and emphasizes that the contribution of these pathways is dependent on the origin of the NSPCs.

  15. Short term treatment versus long term management of neck and back disability in older adults utilizing spinal manipulative therapy and supervised exercise: a parallel-group randomized clinical trial evaluating relative effectiveness and harms

    OpenAIRE

    Vihstadt, Corrie; Maiers, Michele; Westrom, Kristine; Bronfort, Gert; Evans, Roni; Hartvigsen, Jan; Schulz, Craig

    2014-01-01

    Background Back and neck disability are frequent in older adults resulting in loss of function and independence. Exercise therapy and manual therapy, like spinal manipulative therapy (SMT), have evidence of short and intermediate term effectiveness for spinal disability in the general population and growing evidence in older adults. For older populations experiencing chronic spinal conditions, long term management may be more appropriate to maintain improvement and minimize the impact of futu...

  16. Transplantation of adult monkey neural stem cells into a contusion spinal cord injury model in rhesus macaque monkeys

    DEFF Research Database (Denmark)

    Nemati, Shiva Nemati; Jabbari, Reza; Hajinasrollah, Mostafa;

    2014-01-01

    OBJECTIVE: Currently, cellular transplantation for spinal cord injuries (SCI) is the subject of numerous preclinical studies. Among the many cell types in the adult brain, there is a unique subpopulation of neural stem cells (NSC) that can self-renew and differentiate into neurons. The study aims......, therefore, to explore the efficacy of adult monkey NSC (mNSC) in a primate SCI model. MATERIALS AND METHODS: In this experimental study, isolated mNSCs were analyzed by flow cytometry, immunocytochemistry, and RT-PCR. Next, BrdU-labeled cells were transplanted into a SCI model. The SCI animal model...... was confirmed by magnetic resonance imaging (MRI) and histological analysis. Animals were clinically observed for 6 months. RESULTS: Analysis confirmed homing of mNSCs into the injury site. Transplanted cells expressed neuronal markers (TubIII). Hind limb performance improved in trans- planted animals based...

  17. 不同频率电针对正常大鼠脊髓背角的转录组学研究%Transcriptomics Study of the Transcriptional Response of the Spinal Dorsal Horn to Electroacupuncture Stimulation with Different Frequencies

    Institute of Scientific and Technical Information of China (English)

    王珂; 张嵘; 赵国屏; 张庆华; 崔彩莲

    2012-01-01

    Objective To explore the effects of low-and high-frequency electroacupuncture (EA) on the gene expression profiles in rat spinal dorsal horn (DH) under the physiological state, thus providing the information to find out the differences of different EA frequencies induced effects. Methods Using cDNA microarray, the changes of the gene expressions in the DH were detected and compared between 2 Hz EA and 100 Hz EA at bilateral Zusanli (ST36) and Sanyinjiao(SP6). The differentially expressed genes were identified. The EASE scores were used to comprehensively analyze the gene functions (by Gene Ontology) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways. Results (1) After EA stimulation 1 150 genes/expressed sequence tags (ESTs) were differentially expressed by 2 Hz EA, while 1 270 genes/ESTs were differentially expressed by 100 Hz EA. (2) Both 2 Hz and 100 Hz EA could induce the modulation of the same 516 genes/ESTs in the same direction, which was correlated with neural signal transmission. (3) The differentially expressed genes regulated specifically by 2 Hz were correlated with neural plasticity. (4) The differentially expressed genes regulated specifically by 100 Hz were correlated with stress and immunoregulation. Conclusions Either low-or high-frequency EA could extensively regulate the spinal cord information processing. The low-frequency EA participated more in the regulation of neural plasticity, while high-frequency EA had more significant effects on stress and immunoregulation.%目的 探索生理状态下低频和高频电针对大鼠脊髓背角区域基因表达谱的影响,为理解不同频率的电针效应差异提供研究资料.方法 采用基因表达谱芯片技术,检测比较2 Hz和100 Hz电针刺激大鼠双侧足三里穴(ST36)和三阴交穴(SP6)后脊髓背角区域基因表达的变化,识别差异表达基因,利用生物信息学手段对差异表达基因所涉及的基因功能和通路进行富集识别与分析.结果 (1

  18. Enhanced dopamine D1 and BDNF signaling in the adult dorsal striatum but not nucleus accumbens of prenatal cocaine treated mice

    Directory of Open Access Journals (Sweden)

    Thomas F. Tropea

    2011-12-01

    Full Text Available Previous work from our group and others utilizing animal models have demonstrated long lasting structural and functional alterations in the meso-cortico-striatal dopamine pathway following prenatal cocaine treatment. We have shown that prenatal cocaine treatment results in augmented D1 -induced cyclic AMP (cAMP and cocaine-induced immediate-early gene expression in the striatum of adult mice. In this study we further examined basal as well as cocaine or D1-induced activation of a set of molecules known to be mediators of neuronal plasticity following psychostimulant treatment, with emphasis in the dorsal striatum (Str and nucleus accumbens (NAc of adult mice exposed to cocaine in utero. Basally, in the striatum of prenatal cocaine treated (PCOC mice there were significantly higher levels of a number of the transcription factors studied. Following acute administration of cocaine (15 mg/kg, i.p. or D1 agonist (SKF 82958; 1 mg/kg, i.p. there were significantly higher levels of Ser133 P-CREB, Thr34 P-DARPP-32, and Thr202/Tyr204 P-ERK2 in the Str, that were significantly augmented in PCOC mice. In sharp contrast, in the NAc of those mice, we found increased P-CREB and P-ERK2 in PSAL mice, a response that was not evident in PCOC mice. Examination of Ser 845 P-GluA1 revealed increased levels in PSAL mice, but significantly decreased levels in PCOC mice in both the Str and NAc following acute administration of cocaine or D1 agonist. We also found significantly higher levels of the BDNF precursor, pro-BDNF and one of its receptors, TrkB in the Str of PCOC mice. These results suggest a persistent up-regulation of molecules critical to D1 and BDNF signaling in the Str of adult mice exposed to cocaine in utero. These molecular adaptations may underlie components of the behavioral deficits evident in exposed animals and a subset of exposed humans, and may represent a therapeutic target for ameliorating aspects of the prenatal cocaine-induced phenotype.

  19. Effectiveness and safety of recombinant human bone morphogenetic protein-2 for adults with lumbar spine pseudarthrosis following spinal fusion surgery

    Science.gov (United States)

    Balaji, V.; Kaila, R.; Wilson, L.

    2016-01-01

    Objectives We performed a systematic review of the literature to determine the safety and efficacy of bone morphogenetic protein (BMP) compared with bone graft when used specifically for revision spinal fusion surgery secondary to pseudarthrosis. Methods The MEDLINE, EMBASE and Cochrane Library databases were searched using defined search terms. The primary outcome measure was spinal fusion, assessed as success or failure in accordance with radiograph, MRI or CT scan review at 24-month follow-up. The secondary outcome measure was time to fusion. Results A total of six studies (three prospective and three retrospective) reporting on the use of BMP2 met the inclusion criteria (203 patients). Of these, four provided a comparison of BMP2 and bone graft whereas the other two solely investigated the use of BMP2. The primary outcome was seen in 92.3% (108/117) of patients following surgery with BMP2. Although none of the studies showed superiority of BMP2 to bone graft for fusion, its use was associated with a statistically quicker time to achieving fusion. BMP2 did not appear to increase the risk of complication. Conclusion The use of BMP2 is both safe and effective within the revision setting, ideally in cases where bone graft is unavailable or undesirable. Further research is required to define its optimum role. Cite this article: Mr P. Bodalia. Effectiveness and safety of recombinant human bone morphogenetic protein-2 for adults with lumbar spine pseudarthrosis following spinal fusion surgery: A systematic review. Bone Joint Res 2016;5:145–152. DOI: 10.1302/2046-3758.54.2000418. PMID:27121215

  20. Anatomical study of blood supply to the cervical spinal cord in the guinea pig.

    Science.gov (United States)

    Mazensky, David; Danko, Jan; Petrovova, Eva; Flesarova, Slavka; Supuka, Peter; Supukova, Anna; Luptakova, Lenka; Purzyc, Halina

    2015-06-01

    The aim of this study was to describe the arterial arrangement of the cervical spinal cord in the guinea pig. The study was carried out on 20 adult English self guinea pigs using corrosion and dissection technique. Batson's corrosion casting kit no. 17(©) was used as a casting medium. The origin of the ventral spinal artery from the left vertebral artery was found on average in 35% of the cases and from the right vertebral artery on average in 40% of the cases. The ventral spinal artery with origin from the anastomosis of two medial branches was found on average in 25% of the cases. The presence of ventral radicular branches of rami spinales entering the ventral spinal artery in the cervical region was observed in 42% of the cases on the right side and in 58% of the cases on the left side. The presence of dorsal radicular branches of rami spinales that reached the spinal cord was observed in 63% of the cases on the left side and in 37% of the cases on the right side. The number of radicular branches supplying the spinal cord is greater in guinea pig than in humans.

  1. Histochemical study of the pre—and postnatal development of acetylcholinesterase in the rat spinal cord

    Institute of Scientific and Technical Information of China (English)

    ZHANGQIN; XINWENDONG; 等

    1993-01-01

    The distribution of acetylcholinesterase(AChE)-positive structures in the developing rat spinal cord was studied with AChE-histochemistry.AChE-positive perikarya were first seen on embryonic day 14(E14) in the ventrolateral portion of the spinal cord.From that time onward.AChE=containing cells appeared gradually in the intermediate gray,dorsal horn and lateral spinal nucleus of the spinal cord in a ventral-to-dorsal,and lateral-to-medial order.No obvious rostral-to-caudal sequence was found.At birth,the distribution pattern of AChE-positive perikarya was basically similar to that in adults.After birth a dramatic increase in the AChE staining intensity extended from postnatal day 5(P5) to postnatal day 21(P21),In addition,two phases of transient AChE staining were observed in the external surface of the dorsal horn from embryonic day 15(E15) to embryonic day 21(E21) and in the marginal layer from embryonic day 21(E21) to postnatal day 14(P14),respectively.

  2. 针刺下大鼠脊髓背根神经元放电的时间结构%Temporal Structures of Spikes in Spinal Dorsal Root Ganglion Neuron of the Rat Under Manual Acupuncture

    Institute of Scientific and Technical Information of China (English)

    陈颖源; 王江; 邓斌; 魏熙乐; 于海涛

    2015-01-01

    神经元放电的时间结构包含了大量的编码信息。为了研究针刺作用下神经元放电的时间结构,通过不同手法针刺刺激大鼠足三里穴在脊髓背根处获取神经放电序列,运用fano因子和分散分析等方法对神经充放电序列进行分形分析。结果表明:部分神经元放电序列的 fano 因子随统计时间窗的增加而增加,具有长时程相关性。部分神经元序列的 fano 因子在小时间窗处出现明显的峰值,具有短时程相关性。放电特征分析显示该峰值是由于簇放电所致。这些结果说明针刺能引起脊髓背根神经元放电时间结构的变化,针刺效应是长时程效应和短时程效应相结合的产物。这些结果为针刺注重时间效应提供了合理解释,也为量化针刺手法提供了参考。%The temporal structure of the neural spikes contains much information of neural coding. In order to under-stand the temporal structure of neural spikes under manual acupuncture(MA),the time series of spike discharge were obtained from spinal dorsal root ganglion(SDRG)during different manual acupuncture manipulations taken at Zusanli point of experiment rats. Fano factor and dispersional analysis(DA)were introduced to analyze these time series. Fano factors increase with time windows increasing in some time series of SDRG neurons,but not in the shuffled surrogate data. This phenomenon reveals that these time series have long-term correlation. Some fano factor curves have an ob-vious peak when the sizes of counting time window are relatively small,which reveals that these time series have short-term correlation. These peaks are proved to be correlated to the bursting evoked by MA stimulations through analyzing the discharge patterns of experimental data. These results suggest that MA stimulations change the temporal structure of SDRG neuron spiking. Both long-term correlation and short-term correlation are the characters of MA effects

  3. A PET/CT-based Morphometric Study of Spinal Canal in Korean Young Adults: Anteroposterior Diameter from Cervical Vertebra to Sacrum

    OpenAIRE

    Kang, Moo Sung; Park, Jeong Yoon; Chin, Dong Kyu; Kim, Kyung Hyun; Kuh, Sung Uk; Kim, Keun Su; Cho, Yong Eun

    2012-01-01

    Objective To establish normative data for spinal canal AP diameter from cervical vertebra to sacrum in the Korean young and to assess the exposed spinal canal after laminectomy which was related with restenosis by post-laminectomy membrane formation. Methods From PET/CT, axial bone-window CT of 83 young adults (20-29 years) were obtained, and we measured AP diameters of C3, C5, C7, T1, T4, T8, T12, L1, L3, L5 and S1. We also measured exposed AP diameter of C3, C5, C7, T1 and T2 above imaginar...

  4. Effects of estrogens and bladder inflammation on mitogen-activated protein kinases in lumbosacral dorsal root ganglia from adult female rats

    Directory of Open Access Journals (Sweden)

    Keast Janet R

    2009-12-01

    Full Text Available Abstract Background Interstitial cystitis is a chronic condition associated with bladder inflammation and, like a number of other chronic pain states, symptoms associated with interstitial cystitis are more common in females and fluctuate during the menstrual cycle. The aim of this study was to determine if estrogens could directly modulate signalling pathways within bladder sensory neurons, such as extracellular signal-related kinase (ERK and p38 mitogen-activated protein (MAP kinases. These signalling pathways have been implicated in neuronal plasticity underlying development of inflammatory somatic pain but have not been as extensively investigated in visceral nociceptors. We have focused on lumbosacral dorsal root ganglion (DRG neurons projecting to pelvic viscera (L1, L2, L6, S1 of adult female Sprague-Dawley rats and performed both in vitro and in vivo manipulations to compare the effects of short- and long-term changes in estrogen levels on MAPK expression and activation. We have also investigated if prolonged estrogen deprivation influences the effects of lower urinary tract inflammation on MAPK signalling. Results In studies of isolated DRG neurons in short-term (overnight culture, we found that estradiol and estrogen receptor (ER agonists rapidly stimulated ER-dependent p38 phosphorylation relative to total p38. Examination of DRGs following chronic estrogen deprivation in vivo (ovariectomy showed a parallel increase in total and phosphorylated p38 (relative to β-tubulin. We also observed an increase in ERK1 phosphorylation (relative to total ERK1, but no change in ERK1 expression (relative to β-tubulin. We observed no change in ERK2 expression or phosphorylation. Although ovariectomy increased the level of phosphorylated ERK1 (vs. total ERK1, cyclophosphamide-induced lower urinary tract inflammation did not cause a net increase of either ERK1 or ERK2, or their phosphorylation. Inflammation did, however, cause an increase in p38

  5. Potentiation of excitatory transmission in substantia gelatinosa neurons of rat spinal cord by inhibition of estrogen receptor alpha

    Directory of Open Access Journals (Sweden)

    Li Kai-Cheng

    2010-12-01

    Full Text Available Abstract Background It has been shown that estrogen is synthesized in the spinal dorsal horn and plays a role in modulating pain transmission. One of the estrogen receptor (ER subtypes, estrogen receptor alpha (ERα, is expressed in the spinal laminae I-V, including substantia gelatinosa (SG, lamina II. However, it is unclear how ERs are involved in the modulation of nociceptive transmission. Results In the present study, a selective ERα antagonist, methyl-piperidino-pyrazole (MPP, was used to test the potential functional roles of spinal ERα in the nociceptive transmission. Using the whole-cell patch-clamp technique, we examined the effects of MPP on SG neurons in the dorsal root-attached spinal cord slice prepared from adult rats. We found that MPP increased glutamatergic excitatory postsynaptic currents (EPSCs evoked by the stimulation of either Aδ- or C-afferent fibers. Further studies showed that MPP treatment dose-dependently increased spontaneous EPSCs frequency in SG neurons, while not affecting the amplitude. In addition, the PKC was involved in the MPP-induced enhancement of synaptic transmission. Conclusions These results suggest that the selective ERα antagonist MPP pre-synaptically facilitates the excitatory synaptic transmission to SG neurons. The nociceptive transmission evoked by Aδ- and C-fiber stimulation could be potentiated by blocking ERα in the spinal neurons. Thus, the spinal estrogen may negatively regulate the nociceptive transmission through the activation of ERα.

  6. Mature teratoma of the spinal cord in adults: An unusual case

    OpenAIRE

    Li, Yuan; Yang, Bo; SONG, LAIJUN; Yan, Dongming

    2013-01-01

    Intraspinal mature teratomas rarely occur in adults. The present study describes an unusual case of adult intradural mature teratoma, which was completely resected. A 22-year-old female presented with an intermittent pinching pain in the lower right shank that had lasted for three months. Magnetic resonance imaging (MRI) results indicated a multicystic mass extending from the T12 to L2 vertebrae, and the tumors were certified as teratomas by a histopathological examination. The level of pain ...

  7. Spinal cord glioneuronal tumor with neuropil-like islands with 1p/19q deletion in an adult with low-grade cerebral oligodendroglioma.

    Science.gov (United States)

    Fraum, Tyler J; Barak, Stephanie; Pack, Svetlana; Lonser, Russell R; Fine, Howard A; Quezado, Martha; Iwamoto, Fabio M

    2012-04-01

    Glioneuronal tumor with neuropil-like islands (GTNI) is considered a rare variant of astrocytoma, characterized by discrete aggregates of cells expressing neuronal markers that punctuate a GFAP-positive glial background. Of the 24 published GTNI cases, only two occurred in adult spinal cords; none occurred concurrent with another CNS tumor; and none of those tested exhibited the 1p/19q deletion typical of oligodendroglioma. A 48-year-old man without significant past medical history was diagnosed with a WHO grade II oligodendroglioma by stereotactic biopsy of a lesion discovered after the patient suffered a generalized tonic-clonic seizure. By FISH analysis, this tumor exhibited the 1p/19q deletion present in up to 80% of oligodendrogliomas. The patient received 14 monthly cycles of temozolomide, and his cerebral tumor had a minor response. When the patient subsequently reported progressive paresthesias of his lower extremities, an MRI revealed an enhancing, cystic tumor of the thoracic spinal cord that was diagnosed as GTNI by histological analysis. By FISH analysis, this lesion exhibited the same 1p/19q deletion present in the concurrent cerebral oligodendroglioma. This case of a spinal cord GTNI with 1p/19q deletions constitutes the third report of a spinal cord GTNI in an adult patient; the first report of a GTNI in an individual with a separate CNS neoplasm; and the first report of a GTNI with 1p/19q deletions. This case establishes a potential genetic kinship between GTNI and oligodendroglioma that warrants further investigation.

  8. NMDA受体通道参与大鼠脊髓背角C纤维诱发电位LTP的表达%NMDA Receptor Channels Are Involved in The Expression of Long-term Potentiation of C-fiber Evoked Field Potentials in Rat Spinal Dorsal Horn

    Institute of Scientific and Technical Information of China (English)

    张红梅; 周利君; 胡能伟; 张彤; 刘先国

    2006-01-01

    以往研究表明,激动NMDA受体是引起海马长时程增强(LTP)的必备条件,而LTP的表达主要与AMPA受体的磷酸化及其受体组装到突触后膜有关.但是,近年来有研究表明NMDA受体通道也参与了LTP的表达.为探讨NMDA受体通道是否参与了脊髓背角C纤维诱发电位LTP的表达,诱导LTP后,分别静脉或脊髓局部给予NMDA受体拮抗剂MK 801或APV,观察其作用.发现静脉注射非竞争性NMDA受体MK 801(0.1 mg/kg)对脊髓LTP无影响,注射0.5 mg/kg显著抑制LTP,但是当剂量增高到1.0mg/kg时,抑制作用并未进一步增大.脊髓局部给予MK 801也能抑制脊髓背角LTP.为验证上述结果,使用了竞争性NMDA受体拮抗剂APV.结果显示,脊髓局部给予50μmol/L APV对LTP无影响,100 μmol/L对LTP有显著的抑制作用,当浓度升至200 μmol/L时,抑制作用并未见进一步增强.因此认为,NMDA受体通道部分地参与了脊髓背角C纤维诱发电位LTP的表达.%In hippocampus, numerous studies have shown that N-methyl-D-aspartate (NMDA) receptors are essential for the initiation of long-term potentiation (LTP), whereas the expression of LTP is primarily mediated by the phosphorylation of the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors and the increased insertion of postsynaptic AMPA receptors. However, in recent years there is also evidence that NMDA receptor channels contribute to the expression of LTP under physiological conditions. It was examined whether NMDA receptor channels contributed to the expression of LTP of C-fiber evoked field potentials in rat spinal dorsal horn by intravenous or spinal application of NMDA receptor antagonists after the establishment of LTP. It was found that MK 801 (a non-competitive NMDA receptor antagonist) at dose of 0.1 mg/kg (iv) had no effect on the spinal LTP and at the dose of 0.5 mg/kg depressed the LTP significantly. However, the inhibitory effect of MK 801 at higher dose (1.0 mg/kg)was not

  9. Adult bone marrow mesenchymal and neural crest stem cells are chemoattractive and accelerate motor recovery in a mouse model of spinal cord injury

    OpenAIRE

    Neirinckx, Virginie; Agirman, Gulistan; Coste, Cécile; Marquet, Alice; Dion, Valérie; Rogister, Bernard; Franzen, Rachelle; Wislet, Sabine

    2015-01-01

    Introduction Stem cells from adult tissues were considered for a long time as promising tools for regenerative therapy of neurological diseases, including spinal cord injuries (SCI). Indeed, mesenchymal (MSCs) and neural crest stem cells (NCSCs) together constitute the bone marrow stromal stem cells (BMSCs) that were used as therapeutic options in various models of experimental SCI. However, as clinical approaches remained disappointing, we thought that reducing BMSC heterogeneity should be a...

  10. Classification of neurons by dendritic branching pattern. A categorisation based on Golgi impregnation of spinal and cranial somatic and visceral afferent and efferent cells in the adult human.

    OpenAIRE

    Abdel-Maguid, T E; Bowsher, D

    1984-01-01

    Neurons from adult human brainstem and spinal cord, fixed by immersion in formalin, were impregnated by a Golgi method and examined in sections 100 micron thick. Objective numerical criteria were used to classify completely impregnated neurons. Only the parameters mentioned below were found to be valid. Neurons in 100 micron sections were classified on the basis of (i) the primary dendrite number, indicated by a Roman numeral and called group; (ii) the dendritic branching pattern, comprising ...

  11. Health promotion through fitness for adolescents and young adults following spinal cord injury.

    Science.gov (United States)

    Edwards, P A

    1996-09-01

    A study by Warms (1987) sought to determine both the health care actually received by individuals following a spinal cord injury and the services they desired but did not obtain. The findings suggest that the general health promotion needs of these individuals are the same as for the general population and, though disability related topics are discussed with health care providers, information on health promotion is not received. The leading two services desired by the respondents but not obtained were planning an exercise program (43%) and referral to a fitness center (26%). A plan for health promotion through fitness was designed for individuals with physical disabilities to assist in meeting the identified needs. The program provides several benefits which include: improved function, a positive impact on lifestyle, and a decrease in the risk of complications. The plan includes a general health appraisal and fitness assessment as well as an exercise and fitness prescription with adapted physical activity and sports participation as integral parts. Evaluation methodology is incorporated to demonstrate that health promotion activities positively effect function and lifestyle and decrease severity of complications.

  12. Fictive locomotion in the adult decerebrate and spinal mouse in vivo

    DEFF Research Database (Denmark)

    Meehan, Claire Francesca; Grøndahl, Lillian; Nielsen, Jens Bo;

    2012-01-01

    that it is possible to evoke fictive locomotion in the adult decerebrate mouse in vivo using L-3,4-Dihydroxyphenylalanine methyl ester hydrochloride (L-DOPA) and 5-hydroxytryptophan (5HTP) following injection of the monoaminoxiadase inhibitor Nialamide. We investigate the effects of afferent stimulation...

  13. Postural control during gait initiation and termination of adults with incomplete spinal cord injury.

    Science.gov (United States)

    Lemay, Jean-François; Duclos, Cyril; Nadeau, Sylvie; Gagnon, Dany H

    2015-06-01

    Gait initiation and termination are potentially challenging tasks for balance due to the transition from a quasi-static bipedal phase to a dynamic single-support phase. The purpose of this study was to compare the bipedal and single-support phases of gait initiation and termination in individuals with incomplete spinal cord injury (ISCI). Twelve individuals with ISCI were evaluated on the dynamic and postural components of balance using the stabilizing and destabilizing forces during gait initiation, termination and natural gait. Phase comparisons were made using non parametric tests. Visual inspection of the force profile of the factors explaining the forces was also conducted. Gait termination challenged more the postural control during the single-support phase than the bipedal phase for the dynamic component of the stabilizing/destabilizing forces model (p=.002). For gait initiation, the most challenging phase varied with the components analyzed (single-support phase for the dynamic component, bipedal phase for the postural component) (p⩽.008). The single support phase is more challenged during gait termination (both components) (p⩽.015) while the bipedal phase is more challenged during gait initiation (dynamic components) (p=.012). The stabilizing force and the speed of the center of mass on the one hand, and destabilizing force and the distance between the center of pressure and the base of support on the other hand, had a similar profile. The single-support phase of gait termination was the most challenging among all phases evaluated, being as challenging as the single-support phase of level natural gait. This phase should be targeted in rehabilitation in order to improve balance and decrease the risk of falling in this population.

  14. Early Outcomes of Minimally Invasive Anterior Longitudinal Ligament Release for Correction of Sagittal Imbalance in Patients with Adult Spinal Deformity

    Directory of Open Access Journals (Sweden)

    Armen R. Deukmedjian

    2012-01-01

    Full Text Available The object of this study was to evaluate a novel surgical technique in the treatment of adult degenerative scoliosis and present our early experience with the minimally invasive lateral approach for anterior longitudinal ligament release to provide lumbar lordosis and examine its impact on sagittal balance. Methods. All patients with adult spinal deformity (ASD treated with the minimally invasive lateral retroperitoneal transpsoas interbody fusion (MIS LIF for release of the anterior longitudinal ligament were examined. Patient demographics, clinical data, spinopelvic parameters, and outcome measures were recorded. Results. Seven patients underwent release of the anterior longitudinal ligament (ALR to improve sagittal imbalance. All cases were split into anterior and posterior stages, with mean estimated blood loss of 125 cc and 530 cc, respectively. Average hospital stay was 8.3 days, and mean follow-up time was 9.1 months. Comparing pre- and postoperative 36′′ standing X-rays, the authors discovered a mean increase in global lumbar lordosis of 24 degrees, increase in segmental lumbar lordosis of 17 degrees per level of ALL released, decrease in pelvic tilt of 7 degrees, and decrease in sagittal vertical axis of 4.9 cm. At the last followup, there was a mean improvement in VAS and ODI scores of 26.2% and 18.3%. Conclusions. In the authors’ early experience, release of the anterior longitudinal ligament using the minimally invasive lateral retroperitoneal transpsoas approach may be a feasible alternative in correcting sagittal deformity.

  15. Cutaneous vasodilation during dorsal column stimulation is mediated by dorsal roots and CGRP.

    Science.gov (United States)

    Croom, J E; Foreman, R D; Chandler, M J; Barron, K W

    1997-02-01

    Dorsal column stimulation (DCS) is used clinically to provide pain relief from peripheral vascular disease and has the benefit of increasing cutaneous blood flow to the affected lower extremities. The purpose of this study was to examine the role of dorsal roots, calcitonin gene-related peptide (CGRP), and substance P in the cutaneous vasodilation induced by DCS. Male rats were anesthetized with pentobarbital sodium (60 mg/kg ip). A unipolar ball electrode was placed unilaterally on the spinal cord at the L1-L2 spinal segment. Blood flow was recorded in each hindpaw foot pad with laser Doppler flowmeters. Blood flow responses were assessed during 1 min of DCS (either 0.2 mA subdural or 0.6 mA epidural at 50 Hz, 0.2-ms pulse duration). Dorsal rhizotomy of L3-L5 (n = 5) abolished the cutaneous vasodilation to subdural DCS, whereas removal of T10-T12 (n = 5) and T13-L2 dorsal roots (n = 5) did not attenuate the DCS-induced vasodilation. The CGRP antagonist, CGRP-(8-37) (2.6 mg/kg iv, n = 7), eliminated the epidural DCS-induced vasodilation, whereas the substance P receptor antagonist, CP-96345 (1 mg/kg iv, n = 6), had no effect. In summary, L3-L5 dorsal roots and CGRP are essential for the DCS-induced vasodilation. We propose that DCS antidromically activates afferent fibers in the dorsal roots, thus causing peripheral release of CGRP, which produces cutaneous vasodilation. PMID:9124459

  16. Adult human neural stem cells : Properties in vitro and as xenografts in the spinal cord

    OpenAIRE

    Westerlund, Ulf

    2005-01-01

    Though the presence of stem cells in the adult human brain has been presented earlier, much has yet to be discovered about these cells. However, the mere potential of these cells has had a significant impact of how we today evaluate the regenerative capacity of the central nervous system and, importantly, on the possible means for science to provide insights in neural repair. In this thesis a series of in vitro studies, based on the formation of neurospheres, was used to...

  17. 切口痛大鼠脊髓背角GluR1-AMPA受体和GluR2-AMPA受体胞浆至胞膜转运的变化%Changes in trafficking of GluR1-containing AMPA receptor and GluR2-containing AMPA receptor from cytoplasm to cell membrane in spinal dorsal horn in a rat model of incisional pain

    Institute of Scientific and Technical Information of China (English)

    郭瑞娟; 王云; 时蓉; 吴安石; 岳云

    2012-01-01

    Objective To investigate the changes in trafficking of GluRl-containing AMPA (GluR1-AMPA) receptor and GluR2-AMPA receptor from cytoplasm to cell membrane in the spinal cord dorsal horn in a rat model of incisional pain.Methods Thirty-two adult male SD rats aged 6-8 weeks weighing 280-300 g were randomly divided into 2 groups:control group (group C,n =8) and incisional pain group (group Ⅰ,n =24).An 1 cm long incision was made in the plautar surface of right hindpaw according to Brennan et al.in group Ⅰ.Cumulative pain score (CPS) and paw-withdrawal threshold to yon Frey stimuli (PWT) were measured at 3 h and day 1 and 3 afar incision ( T1,2,3 ).The animals were sacrificed after pain behavior assessment.Their lumbar segments of the spinal cord (L3-6) were removed.The expression of GluR1 and GluR2 in cell membrane and cytoplasm in spinal cord dorsal horn was determined by Western blot analysis.The co-expression of Stargazing with GluR1 and GluR2 in the spinal cord dorsal horn was examined by co-immuno-precipitation.Results The CPS was increased and PWT decreased; the GluR1 expression in cytoplasm was decreased while the expression of GluR1 in cell membrane and the co-expression of Stargazing with GluR1 were up-regulated in group Ⅰ as compared with group C.There was no significant change in the expression of GluR2 in cytoplasm and cell membrane and the co-expression of Stargazing with GluR2 in group Ⅰ as compared with group C.Conclusion GluR1-AMPA receptor transfers from cytoplasm to cell membrane but GluR2-AMPA receptor does not in rats with incisional pain.%目的 探讨切口痛大鼠脊髓背角含谷氨酸受体1亚基的使君子酸(GluR1-AMPA)受体和含谷氨酸受体2亚基的使君子酸(GluR2-AMPA)受体胞浆至胞膜转运的变化.方法 成年雄性清洁级SD大鼠32只,体重280~ 300 g,6~8周龄,采用随机数表法,将其随机分为2组:正常对照组(C组,n=8)和切口痛组(Ⅰ组,n=24).Ⅰ组大鼠制作右足底

  18. Illness experience of adults with cervical spinal cord injury in Japan: a qualitative investigation

    Directory of Open Access Journals (Sweden)

    Ide-Okochi Ayako

    2013-01-01

    Full Text Available Abstract Background There is growing recognition that healthcare policy should be guided by the illness experience from a layperson’s or insider’s perspective. One such area for exploration would include patient-centered research on traumatic Spinal Cord Injury (SCI, a condition associated with permanent physical disability requiring long-term and often complex health care. The chronicity of SCI can, in turn, affect individuals’ sense of self. Although previous research in Western countries suggests that people with SCI find a way to cope with their disability through social participation and family bonds, the process of adjustment among people with cervical SCI (CSCI living in Japan may be different because of the restrained conditions of their social participation and the excessive burden on family caregivers. The purpose of this study was to examine the impact of injury and the process of accommodation in people with CSCI in Japan. Methods Semi-structured home interviews were conducted with 29 participants who were recruited from a home-visit nursing care provider and three self-help groups. Interviews were recorded, transcribed and analyzed based on the grounded theory approach. Results Five core categories emerged from the interview data: being at a loss, discrediting self by self and others, taking time in performance, restoring competency, and transcending limitations of disability. Overall, the process by which participants adjusted to and found positive meaning in their lives involved a continuous search for comfortable relationships between self, disability and society. Conclusions The results of this study suggest that persons with CSCI do not merely have disrupted lives, but find positive meaning through meaningful interactions. Family members added to the discredit of self by making the injured person entirely dependent on them. Gaining independence from family members was the key to restoring competency in people with CSCI

  19. UK DRAFFT - A randomised controlled trial of percutaneous fixation with kirschner wires versus volar locking-plate fixation in the treatment of adult patients with a dorsally displaced fracture of the distal radius

    Directory of Open Access Journals (Sweden)

    Brown Jaclyn

    2011-09-01

    Full Text Available Abstract Background Fractures of the distal radius are extremely common injuries in adults. However, the optimal management remains controversial. In general, fractures of the distal radius are treated non-operatively if the bone fragments can be held in anatomical alignment by a plaster cast or orthotic. However, if this is not possible, then operative fixation is required. There are several operative options but the two most common in the UK, are Kirschner-wire fixation (K-wires and volar plate fixation using fixed-angle screws (locking-plates. The primary aim of this trial is to determine if there is a difference in the Patient-Reported Wrist Evaluation one year following K-wire fixation versus locking-plate fixation for adult patients with a dorsally-displaced fracture of the distal radius. Methods/design All adult patients with an acute, dorsally-displaced fracture of the distal radius, requiring operative fixation are potentially eligible to take part in this study. A total of 390 consenting patients will be randomly allocated to either K-wire fixation or locking-plate fixation. The surgery will be performed in trauma units across the UK using the preferred technique of the treating surgeon. Data regarding wrist function, quality of life, complications and costs will be collected at six weeks and three, six and twelve months following the injury. The primary outcome measure will be wrist function with a parallel economic analysis. Discussion This pragmatic, multi-centre trial is due to deliver results in December 2013. Trial registration Current Controlled Trials ISRCTN31379280 UKCRN portfolio ID 8956

  20. The influence of GABAB receptor expression in the spinal dorsal horn of rats by using baclofen in combination with morphine%巴氯芬与吗啡联合应用对脊髓背角GABAB受体表达的影响

    Institute of Scientific and Technical Information of China (English)

    单文燕; 陈艳平; 曹德权

    2012-01-01

    目的 探讨巴氯芬与吗啡联合应用对脊髓背角GABAB受体表达的影响.方法 成年雄性SD大鼠48只鞘内置管成功后,随机均分为四组,分别鞘内注射生理盐水10μl(NS组),吗啡10μg(M组),巴氯芬0.5μg(B组)和巴氯芬0.5μg+吗啡10 μg(BM组).每天9:00和16:00鞘内注射,在9:30行热水浴甩尾潜伏期(TFL)测定,连测3次,间隔5 min,取其均值,将第1天注药后的TFL均值作为基础值,以TFL恢复到基础值作为出现吗啡耐受的标准.第11天晨,取大鼠腰段脊髓行免疫组织化学染色观察脊髓背角GABAB受体的表达.结果 注药后第10天M组大鼠TFL恢复至基础值,出现吗啡耐受现象,B组和BM组未出现吗啡耐受现象(P<0.01).M组GABABR1及GABABR2表达明显低于其它三组(P<0.01).结论 巴氯芬与吗啡联合应用可以减轻吗啡对脊髓背角GABAB受体表达的下调作用.%Objective To investigate the effects of GABAB receptor expression in the spinal dorsal horn of rats by using baclofen in combination with morphine. Methods Healthy male SD rats were randomly divided into four groups after the success of intrathecal cathetemation (n=12). They included saline group(group NS): 0. 9% saline 10 /μ∣, morphine group(group M). morphine 10 figs baclofen group(group B): baclofen 0. 5 μg, baclofen-morphine group (group BM): baclofen 0. 5 μg +morphine 10 μg. Drugs were given by intrathecal injection on 9:00 am and 16:00 pm for 10 consecutive days. At 9:30 the tail-flick latency (TFL) in rats were measured continued 3 limes with an interval of 5 mm. The mean value of TFL measured on the first day were considered as the baseline, and the return to baseline level of TFL were regarded as the morphine tolerance standard. In the morning of the eleventh day, spinal lumbar enlargement of rats were removed and cut into frozen sections to test GABAB receptors expression by immunohistochemical staining. Results TFL of rats returned to baseline in group M after 10 days

  1. Osteoporotic spinal burst fracture in a young adult as first presentation of systemic mastocytosis.

    Science.gov (United States)

    Ble, Christina; Tsitsopoulos, Parmenion P; Anestis, Dimitrios M; Hadjileontiadou, Sofia; Koletsa, Triantafyllia; Papaioannou, Maria; Tsonidis, Christos

    2016-01-01

    Osteoporotic vertebral fractures are uncommon in young adults and usually indicate an underlying disease. Systemic mastocytosis is a myeloproliferative neoplasm, which can be associated with osteoporosis. A previously healthy 30-year-old man presented with an L4 burst fracture after lifting a heavy object. He was operated with laminectomy and posterior lumbar instrumentation. During surgery, abnormally soft bone was noted. Postoperatively, osteoporosis was confirmed with measurement of bone mineral density. Further investigation revealed elevated serum tryptase levels while bone marrow biopsy findings showed systemic mastocytosis. He was also tested positive for D816V KIT mutation. Treatment with biphosphonates and interferon was initiated. No extraskeletal involvement was noted up to the last checkup, 18 months after the first presentation. Abrupt vertebral fractures in apparently healthy young individuals should raise the suspicion of an underlying pathology. Prompt identification and treatment of systemic mastocytosis is crucial in order to avoid unexpected sequelae. PMID:27141048

  2. Peripheral injury of pelvic visceral sensory nerves alters GFRa (GDNF family receptor alpha localization in sensory and autonomic pathways of the sacral spinal cord

    Directory of Open Access Journals (Sweden)

    Shelley Lynne Forrest

    2015-04-01

    Full Text Available GDNF (glial cell line-derived neurotrophic factor, neurturin and artemin use their co-receptors (GFRα1, GFRα2 and GFRα3, respectively and the tyrosine kinase Ret for downstream signalling. In rodent dorsal root ganglia (DRG most of the unmyelinated and some myelinated sensory afferents express at least one GFRα. The adult function of these receptors is not completely elucidated but their activity after peripheral nerve injury can facilitate peripheral and central axonal regeneration, recovery of sensation, and sensory hypersensitivity that contributes to pain. Our previous immunohistochemical studies of spinal cord and sciatic nerve injuries in adult rodents have identified characteristic changes in GFRα1, GFRα2 or GFRα3 in central spinal cord axons of sensory neurons located in dorsal root ganglia. Here we extend and contrast this analysis by studying injuries of the pelvic and hypogastric nerves that contain the majority of sensory axons projecting to the pelvic viscera (e.g., bladder and lower bowel. At 7 d, we detected some effects of pelvic but not hypogastric nerve transection on the ipsilateral spinal cord. In sacral (L6-S1 cord ipsilateral to nerve injury, GFRα1-immunoreactivity (IR was increased in medial dorsal horn and CGRP-IR was decreased in lateral dorsal horn. Pelvic nerve injury also upregulated GFRα1- and GFRα3-IR terminals and GFRα1-IR neuronal cell bodies in the sacral parasympathetic nucleus that provides the spinal parasympathetic preganglionic output to the pelvic nerve. This evidence suggests peripheral axotomy has different effects on somatic and visceral sensory input to the spinal cord, and identifies sensory-autonomic interactions as a possible site of post-injury regulation.

  3. Short term treatment versus long term management of neck and back disability in older adults utilizing spinal manipulative therapy and supervised exercise

    DEFF Research Database (Denmark)

    Vihstadt, Corrie; Maiers, Michele; Westrom, Kristine;

    2014-01-01

    BACKGROUND: Back and neck disability are frequent in older adults resulting in loss of function and independence. Exercise therapy and manual therapy, like spinal manipulative therapy (SMT), have evidence of short and intermediate term effectiveness for spinal disability in the general population...... 1:1 allocation; computer generated scheme, concealed in sequentially numbered, opaque, sealed envelopes. BLINDING: Functional outcome examiners are blinded to treatment allocation; physical nature of the treatments prevents blinding of participants and providers to treatment assignment. PRIMARY...... outcomes include pain, general health status, improvement, self-efficacy, kinesiophobia, satisfaction, and medication use. Functional outcome assessment occurs at baseline and week 37 for hand grip strength, short physical performance battery, and accelerometry. Individual qualitative interviews...

  4. Research progress of dorsal root entry zone lesioning for the treatment of pain after brachial plexus avulsion

    Directory of Open Access Journals (Sweden)

    Qing-jun LIU

    2015-08-01

    Full Text Available Pain after brachial plexus avulsion (BPA is a clinically common drug-refractory neuropathic pain. Overactive spontaneous potential due to deafferentation in the neurons of spinal dorsal horn is the main pathogenesis of pain after BPA. Dorsal root entry zone (DREZ lesioning is one way that damages overactive spontaneous potential neurons in spinal dorsal horn through radio-frequency electrode or bipolar coagulation so as to achieve pain relief. Dorsal root entry zone lesioning is a safe and effective treatment approach for pain after BPA. DOI: 10.3969/j.issn.1672-6731.2015.08.014

  5. Activation of the Wnt/{beta}-catenin signaling pathway is associated with glial proliferation in the adult spinal cord of ALS transgenic mice

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Yanchun [Department of Histology and Embryology, Weifang Medical University, Weifang, Shandong (China); Department of Histology and Embryology, Shandong University School of Medicine, Jinan, Shandong (China); Guan, Yingjun, E-mail: guanyj@wfmc.edu.cn [Department of Histology and Embryology, Weifang Medical University, Weifang, Shandong (China); Department of Histology and Embryology, Shandong University School of Medicine, Jinan, Shandong (China); Liu, Huancai [Department of Orthopedic, Affiliated Hospital, Weifang Medical University, Weifang, Shandong (China); Wu, Xin; Yu, Li; Wang, Shanshan; Zhao, Chunyan; Du, Hongmei [Department of Histology and Embryology, Weifang Medical University, Weifang, Shandong (China); Wang, Xin, E-mail: xwang@rics.bwh.harvard.edu [Department of Neurosurgery, Brigham and Women' s Hospital, Harvard Medical School, Boston, MA (United States)

    2012-04-06

    Highlights: Black-Right-Pointing-Pointer Wnt3a and Cyclin D1 were upregulated in the spinal cord of the ALS mice. Black-Right-Pointing-Pointer {beta}-catenin translocated from the cell membrane to the nucleus in the ALS mice. Black-Right-Pointing-Pointer Wnt3a, {beta}-catenin and Cyclin D1 co-localized for astrocytes were all increased. Black-Right-Pointing-Pointer BrdU/Cyclin D1 double-positive cells were increased in the spinal cord of ALS mice. Black-Right-Pointing-Pointer BrdU/Cyclin D1/GFAP triple-positive cells were detected in the ALS mice. -- Abstract: Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease characterized by the progressive and fatal loss of motor neurons. In ALS, there is a significant cell proliferation in response to neurodegeneration; however, the exact molecular mechanisms of cell proliferation and differentiation are unclear. The Wnt signaling pathway has been shown to be involved in neurodegenerative processes. Wnt3a, {beta}-catenin, and Cyclin D1 are three key signaling molecules of the Wnt/{beta}-catenin signaling pathway. We determined the expression of Wnt3a, {beta}-catenin, and Cyclin D1 in the adult spinal cord of SOD1{sup G93A} ALS transgenic mice at different stages by RT-PCR, Western blot, and immunofluorescence labeling techniques. We found that the mRNA and protein of Wnt3a and Cyclin D1 in the spinal cord of the ALS mice were upregulated compared to those in wild-type mice. In addition, {beta}-catenin translocated from the cell membrane to the nucleus and subsequently activated transcription of the target gene, Cyclin D1. BrdU and Cyclin D1 double-positive cells were increased in the spinal cord of these mice. Moreover, Wnt3a, {beta}-catenin, and Cyclin D1 were also expressed in both neurons and astrocytes. The expression of Wnt3a, {beta}-catenin or Cyclin D1 in mature GFAP{sup +} astrocytes increased. Moreover, BrdU/Cyclin D1/GFAP triple-positive cells were detected in the ALS mice. Our findings suggest that

  6. Comparison of functional recovery of manual dexterity after unilateral spinal cord lesion or motor cortex lesion in adult macaque monkeys

    Directory of Open Access Journals (Sweden)

    Florence eHoogewoud

    2013-07-01

    Full Text Available In relation to mechanisms involved in functional recovery of manual dexterity from cervical cord injury or from motor cortical injury, our goal was to determine whether the movements that characterize post-lesion functional recovery are comparable to original movement patterns or do monkeys adopt distinct strategies to compensate the deficits depending on the type of lesion? To this aim, data derived from earlier studies, using a skilled finger task (the modified Brinkman board from which pellets are retrieved from vertical or horizontal slots, in spinal cord and motor cortex injured monkeys were analyzed and compared. Twelve adult macaque monkeys were subjected to a hemi-section of the cervical cord (n=6 or to a unilateral excitotoxic lesion of the hand representation in the primary motor cortex (n=6. In addition, in each subgroup, one half of monkeys (n=3 were treated for 30 days with a function blocking antibody against the neurite growth inhibitory protein Nogo-A, while the other half (n=3 represented control animals. The motor deficits, and the extent and time course of functional recovery were assessed.For some of the parameters investigated (wrist angle for horizontal slots and movement types distribution for vertical slots after cervical injury; movement types distribution for horizontal slots after motor cortex lesion, post-lesion restoration of the original movement patterns (true recovery led to a quantitatively better functional recovery. In the motor cortex lesion groups, pharmacological reversible inactivation experiments showed that the peri-lesion territory of the primary motor cortex or re-arranged, spared domain of the lesion zone, played a major role in the functional recovery, together with the ipsilesional intact premotor cortex.

  7. Changes in the expression of neuromedin U receptor 2 in spinal dorsal horn in a rat model of bone cancer pain%骨癌痛大鼠脊髓背角神经介素U受体2表达的变化

    Institute of Scientific and Technical Information of China (English)

    杭黎华; 邵东华; 陈正; 王洪

    2013-01-01

    目的 探讨骨癌痛大鼠脊髓背角神经介素U受体2(NMUR2)表达的变化.方法 健康雌性未交配SD大鼠32只,体重150~ 180 g,采用随机数字表法,将其分为2组(n=16):假手术组(S组)和骨癌痛组(BCP组).采用左胫骨骨髓腔内注入Walker 256(1×105个)乳腺癌细胞的方法建立胫骨癌痛模型.S组左胫骨骨髓腔内注入等容积的热杀死肿瘤细胞.各组随机取8只大鼠,于术前1d和术后1、3、6、9、12、15 d测定机械痛阈.于术后15 d,行左胫骨X线检查,观察骨质破坏情况.于术前1d和术后15 d,随机取4只大鼠,处死后取脊髓背角,采用real-time PCR及Western blot法分别测定NMUR2 mRNA及其蛋白的表达水平.结果 与S组比较,BCP组术后6~15d机械痛阈降低,术后15d脊髓背角NMUR2 mRNA及蛋白表达上调(P<0.05或0.01).与术前1d比较,BCP组术后6~15d机械痛阈进行性降低,术后15 d脊髓NMUR2 mRNA及蛋白表达上调(P<0.05或0.01).BCP组大鼠左胫骨x摄片显示,有明显的骨小梁缺损及骨皮质破坏,而S组变化不明显.结论 骨癌痛大鼠脊髓NMUR2表达上调,该变化可能参与了骨癌痛的形成和维持.%Objective To investigate the changes in the expression of neuromedin U receptor 2 (NMUR2) in spinal dorsal horn in a rat model of bone cancer pain (BCP).Methods Thirty-two female Sprague-Dawley rats,weighing 150-180 g,were randomly divided into 2 groups (n =16 each):sham operation group (group S) and BCP group.BCP was induced by inoculating Walker 256 mammary gland carcinoma cells (1 × 105) into the medullary cavity of left tibia.Heat-killed Walker 256 cells (1 × 105) were injected into the medullary cavity of left tibia in S group.Eight rats were chosen from each group and the paw withdrawal threshold (PWT) to yon Frey filaments was measured at 1 day before operation (baseline) and 1,3,6,9,12 and 15 days after operation.Bone destruction was shown by X-ray at 15 days after operation.At 1 day before operation and

  8. Glutamate acts as a neurotransmitter for gastrin releasing peptide-sensitive and insensitive itch-related synaptic transmission in mammalian spinal cord

    Directory of Open Access Journals (Sweden)

    Ling Jennifer

    2011-06-01

    Full Text Available Abstract Itch sensation is one of the major sensory experiences of human and animals. Recent studies have proposed that gastrin releasing peptide (GRP is a key neurotransmitter for itch in spinal cord. However, no direct evidence is available to indicate that GRP actually mediate responses between primary afferent fibers and dorsal horn neurons. Here we performed integrative neurobiological experiments to test this question. We found that a small population of rat dorsal horn neurons responded to GRP application with increases in calcium signaling. Whole-cell patch-clamp recordings revealed that a part of superficial dorsal horn neurons responded to GRP application with the increase of action potential firing in adult rats and mice, and these dorsal horn neurons received exclusively primary afferent C-fiber inputs. On the other hands, few Aδ inputs receiving cells were found to be GRP positive. Finally, we found that evoked sensory responses between primary afferent C fibers and GRP positive superficial dorsal horn neurons are mediated by glutamate but not GRP. CNQX, a blocker of AMPA and kainate (KA receptors, completely inhibited evoked EPSCs, including in those Fos-GFP positive dorsal horn cells activated by itching. Our findings provide the direct evidence that glutamate is the principal excitatory transmitter between C fibers and GRP positive dorsal horn neurons. Our results will help to understand the neuronal mechanism of itch and aid future treatment for patients with pruritic disease.

  9. Axon diameter and myelin sheath thickness in nerve fibres of the ventral spinal root of the seventh lumbar nerve of the adult and developing cat.

    OpenAIRE

    Berthold, C H; Nilsson, I; Rydmark, M

    1983-01-01

    The axon diameter (d) and the number of myelin sheath lamellae (nl) were estimated in electron micrographs of cross sectioned ventral spinal roots of the seventh lumbar nerve of adult cats, kittens and cat fetuses. Myelination started between the 40th and the 45th day after mating (about 3 weeks before birth). From birth onwards the calibre spectrum consisted of a group of small fibres and a group of large fibres. During the first two postnatal months the point distribution of the number of m...

  10. A Fab fragment directed against the neural cell adhesion molecule L1 enhances functional recovery after injury of the adult mouse spinal cord.

    Science.gov (United States)

    Loers, Gabriele; Cui, Yi-Fang; Neumaier, Irmgard; Schachner, Melitta; Skerra, Arne

    2014-06-15

    Lack of permissive mechanisms and abundance of inhibitory molecules in the lesioned central nervous system of adult mammals contribute to the failure of functional recovery, which leads to severe disabilities in motor functions or pain. Previous studies have indicated that the neural cell adhesion molecule L1 constitutes a viable target to promote regeneration. In the present study, we describe the cloning, functional expression in Escherichia coli cells and purification of a recombinant αL1 Fab fragment that binds to L1 with comparable activity as the function-triggering monoclonal antibody 557.B6 and induces neurite outgrowth and neuronal survival in cultured neurons, despite its monovalent function. Infusion of αL1 Fab into the lesioned spinal cord of mice enhanced functional recovery after thoracic spinal cord compression injury. αL1 Fab treatment resulted in reduced scar volume, enhanced number of tyrosine hydroxylase-positive axons and increased linear density of VGLUT1 (vesicular glutamate transporter 1) on motoneurons. Furthermore, the number and soma size of ChAT (choline acetyltransferase)-positive motoneurons and the linear density of ChAT-positive boutons on motoneurons as well as parvalbumin-positive interneurons in the lumbar spinal cord were elevated. Stimulation of endogenous L1 by application of the αL1 Fab opens new avenues for recombinant antibody technology, offering prospects for therapeutic applications after traumatic nervous system lesions.

  11. Expression of nitric oxide synthase in the spinal cord after selective brachial plexus injury

    Institute of Scientific and Technical Information of China (English)

    Na Liu; Feng Li; Longju Chen; Wutian Wu

    2006-01-01

    BACKGROUND: Some researches showed that motoneurons in spinal cord anterior horn wound die following brachial plexus injury, but the concrete mechanism of motoneurons death remains unclear.OBJECTIVE: To observe the expression of nitric oxide synthase (NOS) and survival of C7 motoneurons in spinal cord of rats after selective brachial plexus injury.DESIGN: A randomized controlled animal experiment.SETTING: Department of Anatomy, Sun Yet-sen Medical College, Sun Yet-sen University.MATERIALS: Totally 35 adult healthy male Sprague-Dawley rats with the body mass of 200-300 g were provided by Experimental Animal Center, Sun Yet-sen Medical College, Sun Yat-sen University. The rats were divided into control group (n =5) and experimental group (n=30) by random number table method, and the experimental group was divided into three injury subgroups: anterior root avulsion group, dorsal root transection group and spinal cord hemisection group, 10 rats in each group. There were horse anti-neuronal NOS (Nnos) polycolonal antibody (Sigma company) and nicotina mideadeninedinucleotide phosphate (NADPH-d) (SigmaCompany).METHODS: The experiment was performed at Department of Anatomy, Sun Yet-sen Medical College, Sun Yet-sen University between September 2004 and April 2005. ①After anesthetizing the rats, the spinous process of second thoracic vertebra as a marker, the vertebra was exposed from C5 to T1 and the lamina of vertebra was unclenched, and spinal dura mater was carved to expose the spinal nerve dorsal roots of C5-T1.The right ventral root of C7 was avulsed, and the residual root was removed in anterior root avulsion group. The right ventral root of C7 was avulsed and the right dorsal roots of brachial plexus (C5-T1) were cut off in dorsal root transection group. In spinal cord hemisection group, the hemisection between the C5 and C6 spinal segment on right side and avulsion of right ventral root of C7 were made. In the control group, the vertebra from C5 to T1 was

  12. Fos, nociception and the dorsal horn.

    Science.gov (United States)

    Coggeshall, Richard E

    2005-12-01

    The protooncogene c-fos is rapidly activated after noxious stimuli to express the protein Fos in spinal dorsal horn neurons that are in the 'correct' locations for nociceptive information transfer. As such, therefore, mapping Fos expression in these neurons is at present the best global marker for efficiently locating populations of neurons in the awake animal that respond to nociceptive input. This allows, among other things, precise behavioral measurements to be correlated with Fos expression. Two arenas where mapping dorsal horn Fos expression has made a major impact are in the anatomy of nociceptive systems and as a useful assay for the analgesic properties of various therapeutic regimens. Also Fos expression is the only way to map populations of neurons that are responding to non-localized input such as withdrawal after addiction and vascular occlusion. Another insight is that it shows a clear activation of neurons in superficial 'pain-processing' laminae by innocuous stimuli after nerve lesions, a finding that presumably bears on the allodynia that often accompanies these lesions. It is to be understood, however, that the Fos localizations are not sufficient unto themselves, but the major function of these studies is to efficiently locate populations of cells in nociceptive pathways so that powerful anatomic and physiologic techniques can be brought to bear efficiently. Thus, the purpose of this review is to summarize the studies whose numbers are geometrically expanding that deal with Fos in the dorsal horn and the conclusions therefrom.

  13. Epicritic Sensation in Cervical Spinal Cord Injury: Diagnostic Gains Beyond Testing Light Touch

    NARCIS (Netherlands)

    Velstra, Inge-Marie; Bolliger, Marc; Baumberger, Michael; Rietman, Johan Swanik; Curt, Armin

    2013-01-01

    Applied as a bedside test of gross dorsal column function, the testing of light touch (LT) sensation is of high clinical value in the diagnosis of human spinal cord injury (SCI). However, the assessment of overall dorsal column deficit by testing only LT may be limited, because the dorsal column pat

  14. Paresthesia thresholds in spinal cord stimulation: a comparison of theoretical results with clinical data

    NARCIS (Netherlands)

    Struijk, Johannes J.; Holsheimer, Jan; Barolat, Giancarlo; He, Jiping; Boom, Herman B.K.

    1993-01-01

    The potential distributions produced in the spinal cord and surrounding tissues by dorsal epidural stimulation at the midcervical, midthoracic, and low thoracic levels were calculated with the use of a volume conductor model. Stimulus thresholds of myelinated dorsal column fibers and dorsal root fib

  15. Effects of electrode configuration and geometry on fiber preference in spinal cord stimulation

    NARCIS (Netherlands)

    Holsheimer, Jan; Struijk, Johannes J.; Wesselink, Wilbert A.

    1996-01-01

    In contrast to the widespread assumption that dorsal column fibers are the primary targets of spinal cord stimulation by a dorsal epidural electrode, it appears that dorsal root fibers are recruited as well, and even preferentially under various conditions. This will, however, limit the coverage of

  16. Studies on repairing of hemisected thoracic spinal cord of adult rats by using a chitosan tube filled with alginate fibers

    Institute of Scientific and Technical Information of China (English)

    LI Xiaoguang; YANG Zhaoyang; YANG Yi

    2006-01-01

    A chitosan tube filled with alginate fibers was implanted into the injured spinal cord of a rat for repairing the damaged tissue. Twelve months after the operation, the morphological observation demonstrated that this chitosan tube could induce regeneration of myelinated and non-myelinated axons and blood vessels. The Basso-Beattie-Bresnahan (BBB) behavioral evaluation confirmed that the implants played a key role in the long-term restoration of rats motor functions. It is a promising start in the treatment of the patients with the injury of the spinal cord.

  17. INHIBITIVE EFFECTS OF ELECTROACUPUNCTUROACUPUNCTURE ON LTP OF SYNAPIIC IRRANSMIS-SION TO FACILITATED BY EXCITOMOTOR OF IGLURS INTRATHECAL ADMINISTRA-TION IN SPINAL DORSAL HORN OF RATS%电针抑制iGluRs激动剂鞘内给药易化的大鼠脊髓背角突触传递LTP

    Institute of Scientific and Technical Information of China (English)

    马骋; 冯克辉; 闰丽萍

    2009-01-01

    Objective:To observe the inhibitive effects of electroacupuncture(EA)on long-term potentia- tion(LTP)of C-fiber evoked potentials in the spinal dorsal horn facilitated by excitomotor of NMDA or AMPA receptors,and explore the analgesia mechanism of acupuncture in neuropathic pain.Methods: Sprague-Dawley rats were divided into 7 groups:control,NMDA(NMDA)IntratheCal administration(i. t.),AMPA([±]-AMPA HBr)i.t.,EA+NMDA i.t.,EA+AMPA i.t.,NMDA i.t.+EA,and AMPA i.t+EA.The rats were fixed on stereotaxic instrument after anesthesia.C-fiber evoked field potentials in the spinal dorsal horn(L4/L5)were recorded by extracellular recording.The test stimulus was given in single pulse with 2mA,0.5ms,100Hz,5min each once on the sciatic nerve.The lower intensity high- frequency train plus stimulus(HFS)wag given in 4 trains of 1 S duration at 10s intervals with 2mA,0. 5ms,lOOHz on same place.The NMDA or[±]-AMPA HBr(40pg)was injected with i.t.,to excite the related receptor.On GB30 and BL40,EA Wag acupunctured with 1mA,2Hz,30min.Results:In the con- trol,the variation rate of evoked potentials showed no significant differences compared with before or after HFS.After excitomotor i.t then lower intensity HFS.the LTP was induced significantly and com- pared with control(P<0.01).The exeitomotor i.t.and HFS after EA,the LTP was inhibited markedly (P<0.01).After the LTP was steady kept lhr induced by the excitomotor i.t.and HFS,the EA was operated.In NMDA i.t.+EA,LTP was inhibited markedly(P<0.01);In AMPA i.t.+EA,the LTP was step down significantly(Pspinal dorsal hom to facilitated by excitomotor of iGluRs WaS inhibited by EA.The results indi- cate that the abnormal excitability of neuron in the spinal dorsal horn with neuropathic pain Was inhibited by EA,which might be the postsynaptic mecharism underlying EA analgesia.%目的:观察电针对离子型谷氨酸受体(iGluRs)激动剂易化脊髓背角神经元

  18. 4th International Meeting on Biology of Nitric Oxide Selective blockade by yohimbine of locus coeruleus-induced inhibition of nociceptive reflex but not that of C responses of spinal dorsal horn neurons in rats%育亨宾阻断蓝斑对伤害性屈反射的抑制而不影响其对背角神经元C反应的抑制

    Institute of Scientific and Technical Information of China (English)

    张凯明; 赵志奇

    1994-01-01

    The effect of α2-adrenoceptor antagonist yohimbine ( Yoh ) on locus coeruleus (LC)-induced spinal antinociception was investigated in 18 anesthetized Wistar rats. Stimulation of LC markedly inhibited both nociceptive reflex of the posterior biceps semitendinosus (PBST) muscle and C responses of 16 wide-dynamic range (WDR)neurons of the dorsal horn. Application of Yoh (0.2 %, 5-10 μl) to the surface of spinal cord at L3-4 attenuated the LC-induced inhibition of nociceptive reflex without affecting that of C responses of 10 WDR neurons that were tested in 6 rats. The results suggested that LC may exert its inhibitory action on the nociceptive reflex via α2 adrenoceptors somewhere other than the WDR neurons in the spinal dorsal horn.%在18只麻醉大鼠上刺激蓝斑可以抑制强电流刺激后肢引起的后二头半腱肌的屈反射和16个背角神经元的C反应,在脊髓腰3-4节段表面滴注Yoh(0.2%,5-10μl)明显减弱蓝斑对反射的抑制而不影响其对C反应(n=10)的抑制.结果提示,α2受体参与蓝斑对伤害性反射的抑制,而蓝斑对背角神元C反应的抑制可能由其它递质介导.

  19. Neuregulin-1 controls an endogenous repair mechanism after spinal cord injury.

    Science.gov (United States)

    Bartus, Katalin; Galino, Jorge; James, Nicholas D; Hernandez-Miranda, Luis R; Dawes, John M; Fricker, Florence R; Garratt, Alistair N; McMahon, Stephen B; Ramer, Matt S; Birchmeier, Carmen; Bennett, David L H; Bradbury, Elizabeth J

    2016-05-01

    Following traumatic spinal cord injury, acute demyelination of spinal axons is followed by a period of spontaneous remyelination. However, this endogenous repair response is suboptimal and may account for the persistently compromised function of surviving axons. Spontaneous remyelination is largely mediated by Schwann cells, where demyelinated central axons, particularly in the dorsal columns, become associated with peripheral myelin. The molecular control, functional role and origin of these central remyelinating Schwann cells is currently unknown. The growth factor neuregulin-1 (Nrg1, encoded by NRG1) is a key signalling factor controlling myelination in the peripheral nervous system, via signalling through ErbB tyrosine kinase receptors. Here we examined whether Nrg1 is required for Schwann cell-mediated remyelination of central dorsal column axons and whether Nrg1 ablation influences the degree of spontaneous remyelination and functional recovery following spinal cord injury. In contused adult mice with conditional ablation of Nrg1, we found an absence of Schwann cells within the spinal cord and profound demyelination of dorsal column axons. There was no compensatory increase in oligodendrocyte remyelination. Removal of peripheral input to the spinal cord and proliferation studies demonstrated that the majority of remyelinating Schwann cells originated within the injured spinal cord. We also examined the role of specific Nrg1 isoforms, using mutant mice in which only the immunoglobulin-containing isoforms of Nrg1 (types I and II) were conditionally ablated, leaving the type III Nrg1 intact. We found that the immunoglobulin Nrg1 isoforms were dispensable for Schwann cell-mediated remyelination of central axons after spinal cord injury. When functional effects were examined, both global Nrg1 and immunoglobulin-specific Nrg1 mutants demonstrated reduced spontaneous locomotor recovery compared to injured controls, although global Nrg1 mutants were more impaired in

  20. Release properties and functional integration of noradrenergic-rich tissue grafted to the denervated spinal cord of the adult rat.

    Science.gov (United States)

    Leanza, G; Cataudella, T; Dimauro, R; Monaco, S; Stanzani, S

    1999-05-01

    Noradrenaline- (NA-) containing grafts of central (embryonic locus coeruleus, LC) or peripheral (juvenile adrenal medullary, AM, autologous superior cervical ganglionic, SCG) tissue were implanted unilaterally into rat lumbar spinal cord previously depleted of its NA content by 6-hydroxydopamine (6-OHDA) intraventricularly. A microdialysis probe was implanted in the spinal cord 3-4 months after transplantation, and extracellular levels of noradrenaline were monitored in freely moving animals during basal conditions and following administration of pharmacological or behavioural stimuli. Age-matched normal and lesioned animals both served as controls. Morphometric analyses were carried out on horizontal spinal sections processed for dopamine-beta-hydroxylase (DBH) immunocitochemistry, in order to assess lesion- or graft-induced changes in the density of spinal noradrenergic innervation, relative to the normal patterns. In lesioned animals, the entire spinal cord was virtually devoid of DBH-positive fibers, resulting in a dramatic 88% reduction in baseline NA, compared with that in controls, which did not change in response to the various stimuli. LC and SCG grafts reinstated approximately 80% and 50% of normal innervation density, respectively, but they differed strikingly in their release ability. Thus, LC grafts restored baseline NA levels up to 60% of those in controls, and responded with significantly increased NA release to KCl-induced depolarization, neuronal uptake blockade and handling. In contrast, very low NA levels and only poor and inconsistent responses to the various stimuli were observed in the SCG-grafted animals. In AM-grafted animals, spinal extracellular NA levels were restored up to 45% of those in controls, probably as a result of nonsynaptic, endocrine-like release, as grafted AM cells retained the chromaffine phenotype, showed no detectable fibre outgrowth and did not respond to any of the pharmacological or behavioural challenges. Thus, both a

  1. 瑞芬太尼和芬太尼对大鼠脊髓背角神经元NMDA受体通道电流的影响%Effects of remifentanil and fentanyl on N-methyl-D-aspartate receptor currents in rat spinal cord dorsal horn neurons

    Institute of Scientific and Technical Information of China (English)

    李思思; 郁葱; 罗玉琳

    2013-01-01

    Objective To investigate the effect of remifentanil and fentanyl on N-methyl-D-aspartate (NMDA) receptor currents in rat spinal cord dorsal horn neurons.Methods Whole-cell patch-clamp technique was used to record the NMDA receptor currents.The primary cultured E14SD rat spinal cord dorsal horn neurons (DH cells) were randomly divided into 3 groups (n =10 each):remifentanil group (group R),fentanyl group (group F) and control group (group C).DH cells were perfused with 4 nmol/L remifentanil (group R) or 10 μmol/L fentanyl (group F) for 60 min followed by washout.NMDA receptor currents were recorded immediately after administration (T0),at 15,30,45 and 60 min of action of drugs (T1-4),and at 15 and 30 min (T5-6) after washout.Results Compared with group C,no significant change in the peak NMDA receptor current was found at each time point in group F and at T0 and T1 in group R (P > 0.05),and the peak NMDA receptor current was significantly increased at T2-6 in group R (P < 0.01).The peak NMDA receptor current was significantly higher at T2-6 than at T0,while lower at T2-4 and T6 than at T5 in group R (P < 0.01).Conclusion Remifentanil can increase NMDA receptor function in rat spinal cord horn neurons,and the peak effect is reached after washout,but fentanyl dose not have the effect.%目的 探讨瑞芬太尼和芬太尼对大鼠脊髓背角神经元NMDA受体通道电流的影响.方法 采用全细胞膜片钳技术记录NMDA受体通道电流.原代培养的E14SD大鼠脊髓背角神经元(DH细胞)30个,采用随机数字表法,将其分为3组(n=10):瑞芬太尼组(R组)、芬太尼组(F组)、对照组(C组).4 nmol/L瑞芬太尼(R组)、10 μmol/L芬太尼(F组)灌流DH细胞60 min后洗脱.于给药后即刻(T0)、药物作用15 min(T1)、30 min(T2)、45 min(T3)、60 min(T4)、洗脱后15 min(T5)、30 min(T6)时记录NMDA受体通道电流.结果 与C组比较,F组各时点NMDA受体通道峰电流差异无统计学意义,R组T0、T1时NMDA受体通道

  2. Prospective multicenter assessment of perioperative and minimum 2-year postoperative complication rates associated with adult spinal deformity surgery.

    Science.gov (United States)

    Smith, Justin S; Klineberg, Eric; Lafage, Virginie; Shaffrey, Christopher I; Schwab, Frank; Lafage, Renaud; Hostin, Richard; Mundis, Gregory M; Errico, Thomas J; Kim, Han Jo; Protopsaltis, Themistocles S; Hamilton, D Kojo; Scheer, Justin K; Soroceanu, Alex; Kelly, Michael P; Line, Breton; Gupta, Munish; Deviren, Vedat; Hart, Robert; Burton, Douglas C; Bess, Shay; Ames, Christopher P

    2016-07-01

    OBJECTIVE Although multiple reports have documented significant benefit from surgical treatment of adult spinal deformity (ASD), these procedures can have high complication rates. Previously reported complications rates associated with ASD surgery are limited by retrospective design, single-surgeon or single-center cohorts, lack of rigorous data on complications, and/or limited follow-up. Accurate definition of complications associated with ASD surgery is important and may serve as a resource for patient counseling and efforts to improve the safety of patient care. The authors conducted a study to prospectively assess the rates of complications associated with ASD surgery with a minimum 2-year follow-up based on a multicenter study design that incorporated standardized data-collection forms, on-site study coordinators, and regular auditing of data to help ensure complete and accurate reporting of complications. In addition, they report age stratification of complication rates and provide a general assessment of factors that may be associated with the occurrence of complications. METHODS As part of a prospective, multicenter ASD database, standardized forms were used to collect data on surgery-related complications. On-site coordinators and central auditing helped ensure complete capture of complication data. Inclusion criteria were age older than 18 years, ASD, and plan for operative treatment. Complications were classified as perioperative (within 6 weeks of surgery) or delayed (between 6 weeks after surgery and time of last follow-up), and as minor or major. The primary focus for analyses was on patients who reached a minimum follow-up of 2 years. RESULTS Of 346 patients who met the inclusion criteria, 291 (84%) had a minimum 2-year follow-up (mean 2.1 years); their mean age was 56.2 years. The vast majority (99%) had treatment including a posterior procedure, 25% had an anterior procedure, and 19% had a 3-column osteotomy. At least 1 revision was required in 82

  3. Retraining the injured spinal cord

    Science.gov (United States)

    Edgerton, V. R.; Leon, R. D.; Harkema, S. J.; Hodgson, J. A.; London, N.; Reinkensmeyer, D. J.; Roy, R. R.; Talmadge, R. J.; Tillakaratne, N. J.; Timoszyk, W.; Tobin, A.

    2001-01-01

    The present review presents a series of concepts that may be useful in developing rehabilitative strategies to enhance recovery of posture and locomotion following spinal cord injury. First, the loss of supraspinal input results in a marked change in the functional efficacy of the remaining synapses and neurons of intraspinal and peripheral afferent (dorsal root ganglion) origin. Second, following a complete transection the lumbrosacral spinal cord can recover greater levels of motor performance if it has been exposed to the afferent and intraspinal activation patterns that are associated with standing and stepping. Third, the spinal cord can more readily reacquire the ability to stand and step following spinal cord transection with repetitive exposure to standing and stepping. Fourth, robotic assistive devices can be used to guide the kinematics of the limbs and thus expose the spinal cord to the new normal activity patterns associated with a particular motor task following spinal cord injury. In addition, such robotic assistive devices can provide immediate quantification of the limb kinematics. Fifth, the behavioural and physiological effects of spinal cord transection are reflected in adaptations in most, if not all, neurotransmitter systems in the lumbosacral spinal cord. Evidence is presented that both the GABAergic and glycinergic inhibitory systems are up-regulated following complete spinal cord transection and that step training results in some aspects of these transmitter systems being down-regulated towards control levels. These concepts and observations demonstrate that (a) the spinal cord can interpret complex afferent information and generate the appropriate motor task; and (b) motor ability can be defined to a large degree by training.

  4. Effect of curcumin on apoptosis in spinal cord and dorsal root ganglion neurons in a rat model of diabetic neuropathic pain%姜黄素对糖尿病神经病理性痛大鼠脊髓和背根神经节神经细胞凋亡的影响

    Institute of Scientific and Technical Information of China (English)

    陈果; 黄葱葱; 党江坤; 连庆泉; 李军; 曹红

    2011-01-01

    目的 探讨姜黄素对糖尿病神经病理性痛(DNP)大鼠脊髓和背根神经节(DRG)神经细胞凋亡的影响.方法雄性SD大鼠108只,体重200~230 g,采用腹腔注射链唑霉素70 mg/kg的方法建立大鼠DNP模型.采用随机数字表法,将大鼠随机分为4组(n=27),正常对照组(C组):不制备DNP模型;DNP组;溶剂对照组(SC组)和姜黄素组(Cur组):于腹腔注射链唑霉素后14 d分别腹腔注射玉米油或姜黄素100 mg/kg(25 mg/ml),1次/d,连续2周.于链唑霉素给药前2 d、给药后14 d、姜黄素给药后3、7、14 d时测定机械缩足阈值(MWT)和热缩足潜伏期(TWL);于姜黄素给药后3、7、14 d时分别采用免疫组化法和Western blot法测定脊髓和DRG caspase-3和Bcl-2的表达水平,并测定神经细胞的凋亡率.结果 与C组比较,DNP组、SC组和Cur组MWT降低,TWL缩短,脊髓和DRG神经细胞凋亡率升高,caspase-3表达上调,Bcl-2表达下调(P<0.05);与DNP组比较,Cur组MWT升高,TWL延长,脊髓和DBG神经细胞凋亡率降低,caspase-3表达下调,Bcl-2表达上调(P<0.05),SC组差异无统计学意义(P>0.05).结论 姜黄素可通过抑制脊髓和DRG神经细胞凋亡,从而减轻大鼠DNP,其机制与抑制caspase-3水平、增强Bcl-2水平有关.%Objective To investigate the effect of curcumin on the apoptosis in spinal cord and dorsal root ganglion neurons in a rat model of diabetic neuropathic pain (DNP) . Methods One hundred and eight male SD rats weighing 200-230 g were randomly divided into 4 groups ( n = 27 each): control group (group C), DNP group, solvent control group (group SC) and curcumin group (group Cur) . Diabetes was induced with intraperitoneal streptozocin 70 mg/kg. Successful induction of diabetes was defined as blood glucose > 16.7 mmol/L. Curcumin and com oil 100 mg/kg (23 mg/ml) were given intraperitoneally once a day for 14 consecutive days starting from 14 days after administration of streptozocin in Cur and SC groups respectively

  5. Effect of morphine on synaptic long-term potentiation in spinal dorsal horn evoked by electric stimulation of sciatic nerve in rats%吗啡对电刺激坐骨神经诱发大鼠脊髓背角突触长时程增强的影响

    Institute of Scientific and Technical Information of China (English)

    吴江; 黄德樱; 程洁; 上官守琴; 胡祁生

    2009-01-01

    Objective To evaluate the effect of morphine on synaptic long-term potentiation (LTP) in the spinal dorsal horn evoked by electric stimulation of sciatic nerve in rats. Methods Twenty-seven healthy male SD rats aged 60-90 d weighing 180-200 g were randomly divided into 4 groups: group Ⅰ control (group C, n=7), group Ⅱ morphine (group M, n=7), group Ⅲ naloxone (group N, n=6), and group Ⅳ morphine + naloxone (group MN, n=7). The animals were anesthetized with intraperitoneal 10% urethane 1 g/kg, intubated and then mechanically ventilated. The bipolar insulated stainless steel recording electrode (impedance 0.5-1 MΩ, diameter 0.1 mm) was inserted into the left side of the spinal dorsal horn at T13-L1 to stimulate the left side of the sciatic nerve. Single square pulses (15 V, 0.5 ms, 1/60 Hz for 30 min) was applied to evoke spinal field potentials. Normal saline 10 μl, morphine 10 μl (15 μg/μl), naloxone 10 μl (2.5 μg/μl), and the mixture 10 μl of naloxone 5 μl (2.5 μg/μl) and morphine 5 μl (15 μg/μl) was gradually instilled over 2 rain in the 4 groups respectively. Five minutes later, high-frequency and intensity tetanic stimulation (30-40 V, 0.5 ms, 100 Hz, given in 4 trains of 1-s duration at 10-s intervals) was used to induce LTP. Then single square stimuli (15 V, 5 ms, 1/60 Hz) were applied to the sciatic nerve for 210 min. The amplitude and latency period of the field potential were recorded 30 min before tetanic stimulation, and 0-30, 35-60, 65-120 and 125-210 min after titanic stimulation. Results Compared with group C, the amplitude of the field potential was significantly decreased and the latency period prolonged in group M and MN, but there was no significant difference in the above indices between group N and C. Compared with group M, the amplitude of the field potential was significantly increased and the latency period shortened in group MN. Compared with those 30 min before the tetanic stimulation, the amplitude of the field

  6. Spinal myxopapillary ependymoma in an adult male presenting with recurrent acute low back pain: a case report

    OpenAIRE

    Petersen, Dean; Lystad, Reidar P

    2016-01-01

    Background Spinal intramedullary ependymomas are very rare and occur more commonly in the cervical and upper thoracic regions. These neoplasms tend to manifest in young adulthood, and patients typically present with mild clinical symptoms without objective evidence of neurologic deficits. The mean duration of symptoms is 40 months until the lesion is diagnosed. Case Presentation A 48-year-old male police officer was referred to a chiropractic clinic by a general practitioner for the evaluatio...

  7. Aquaporin 1 – a novel player in spinal cord injury

    OpenAIRE

    Nesic, O.; Lee, J.; Unabia, G. C.; Johnson, K.; Z. Ye; Vergara, L.; Hulsebosch, C. E.; Perez-Polo, J. R.

    2008-01-01

    The role of water channel aquaporin 1 (AQP-1) in uninjured or injured spinal cords is unknown. AQP-1 is weakly expressed in neurons and gray matter astrocytes, and more so in white matter astrocytes in uninjured spinal cords, a novel finding. As reported before, AQP-1 is also present in ependymal cells, but most abundantly in small diameter sensory fibers of the dorsal horn. Rat contusion spinal cord injury (SCI) induced persistent and significant four- to eightfold increases in AQP-1 levels ...

  8. Dorsal metakarpal arter flepleri

    OpenAIRE

    Bora, Arslan; Ozerkan, Fuat; Kaplan, Ibrahim; Ada, Sait; Ademoglu, Yalcin

    2004-01-01

    We present dorsal metacarpal artery flaps applied to 10 cases with the aim of reconstruction of the skin defects at the dorsum of the fingers and hand and whole thumb. The main aim was to obtain the skin coverage. Average age of our patients was 25,7, and the average follow up period was 25.7 months (2 years and 2 months). 6 out of 10 were island flaps. 3 axial flaps and one was reverse flow (distally based) flap. Seven were to cover the defects on thumb, cne was dorsum of the index finger, o...

  9. Classification of neurons by dendritic branching pattern. A categorisation based on Golgi impregnation of spinal and cranial somatic and visceral afferent and efferent cells in the adult human.

    Science.gov (United States)

    Abdel-Maguid, T E; Bowsher, D

    1984-06-01

    Neurons from adult human brainstem and spinal cord, fixed by immersion in formalin, were impregnated by a Golgi method and examined in sections 100 micron thick. Objective numerical criteria were used to classify completely impregnated neurons. Only the parameters mentioned below were found to be valid. Neurons in 100 micron sections were classified on the basis of (i) the primary dendrite number, indicated by a Roman numeral and called group; (ii) the dendritic branching pattern, comprising the highest branching order seen, indicated by an Arabic numeral and called category; the lowest dendritic branching order observed in complete neurons, indicated by an upper case letter and called class; and the number of branching orders seen between the two preceding, indicated by a lower case letter and called subclass. On the basis of the above characteristics, all neurons seen in the grey matter of the spinal cord and cranial nerve nuclei could be classified into thirteen 'families'. The results of other investigations (Abdel-Maguid & Bowsher, 1979, 1984) showed that this classification has functional value. PMID:6204961

  10. What is different about spinal pain?

    Directory of Open Access Journals (Sweden)

    Vernon Howard

    2012-07-01

    Full Text Available Abstract Background The mechanisms subserving deep spinal pain have not been studied as well as those related to the skin and to deep pain in peripheral limb structures. The clinical phenomenology of deep spinal pain presents unique features which call for investigations which can explain these at a mechanistic level. Methods Targeted searches of the literature were conducted and the relevant materials reviewed for applicability to the thesis that deep spinal pain is distinctive from deep pain in the peripheral limb structures. Topics related to the neuroanatomy and neurophysiology of deep spinal pain were organized in a hierarchical format for content review. Results Since the 1980’s the innervation characteristics of the spinal joints and deep muscles have been elucidated. Afferent connections subserving pain have been identified in a distinctive somatotopic organization within the spinal cord whereby afferents from deep spinal tissues terminate primarily in the lateral dorsal horn while those from deep peripheral tissues terminate primarily in the medial dorsal horn. Mechanisms underlying the clinical phenomena of referred pain from the spine, poor localization of spinal pain and chronicity of spine pain have emerged from the literature and are reviewed here, especially emphasizing the somatotopic organization and hyperconvergence of dorsal horn “low back (spinal neurons”. Taken together, these findings provide preliminary support for the hypothesis that deep spine pain is different from deep pain arising from peripheral limb structures. Conclusions This thesis addressed the question “what is different about spine pain?” Neuroanatomic and neurophysiologic findings from studies in the last twenty years provide preliminary support for the thesis that deep spine pain is different from deep pain arising from peripheral limb structures.

  11. Outcomes of a skiing program on level and stability of self-esteem and physical self in adults with spinal cord injury.

    Science.gov (United States)

    Barbin, Jean-Marc; Ninot, Grégory

    2008-03-01

    This study explored the intraindividual level and variability of global self-esteem and physical self-worth in adults with spinal cord injury over three consecutive periods, 4 weeks at home, 1 week in an adapted skiing program, and 4 weeks at home. Ten participants responded twice a day over a period of 9 weeks with the Physical Self Inventory, a six-item questionnaire with a visual analogue scale. The results showed that the program significantly increased the level of global self-esteem, physical self-worth, and three subdomains. The variability of the physical condition, sport competence, and physical strength subdomains was diminished after the program. The changes are discussed in terms of impact of a specific adapted physical activities program on physical self conceived as a complex system.

  12. Regulation of DM-20 mRNA expression and intracellular translocation of glutathione-S-transferase pi isoform during oligodendrocyte differentiation in the adult rat spinal cord.

    Science.gov (United States)

    Kitada, Masaaki; Takeda, Kazuya; Dezawa, Mari

    2016-07-01

    We previously demonstrated that NG2-positive oligodendrocyte precursor cells (OPCs) do not express DM-20 mRNA and identified a distinct DM-20 mRNA-positive cell population expressing glutathione-S-transferase pi isoform (GST-pi) in the nucleus (GST-pi(Nuc)) of the adult rat spinal cord. As GST-pi intranuclear localization correlates with progenitor cell properties, we examined the differentiation status of this cell population under the intensive 5-bromo-2'-deoxyuridine (BrdU) administration method, consisting of intraperitoneal BrdU injections every 2 h for 48 h. We observed that a certain population of proliferating/proliferated cells expressed DM-20 mRNA, and sometimes two proliferating/proliferated cells were observed still attached to each other. We performed triple staining for BrdU, DM-20 mRNA, and NG2 and found pairs of neighboring BrdU-positive cells, which were considered to originate from the same progenitor cells and where both cells expressed DM-20 mRNA. Triple staining for BrdU, DM-20 mRNA, and GST-pi detected proliferating/proliferated cells exhibiting the GST-pi(Nuc)/DM-20 mRNA-positive expression pattern. These findings suggested the presence of a GST-pi(Nuc)/DM-20 mRNA-positive oligodendrocyte-lineage progenitor cell population in the adult rat spinal cord. However, we did not find any pair of neighboring BrdU-positive cells with this expression pattern. These observations collectively support the idea that GST-pi(Nuc)/DM-20 mRNA-expressing cells are the progeny of NG2-positive OPCs rather than a novel type of oligodendrocyte-lineage progenitor cells and that DM-20 mRNA expression is dynamically regulated during differentiation of OPCs into oligodendrocytes.

  13. The calcium-binding protein Mtsl/S100A4 in normal, degenerating and demyelinated spinal cord of the adult mouse%The calcium-binding protein Mtsl/S100A4 in normal,degenerating and demyelinated spinal cord of the adult mouse

    Institute of Scientific and Technical Information of China (English)

    FANG Zhengyu; XIONG Liang; HUANG Xiaolin; ZHOU Ning; Kozlova-Aldskogius Elena

    2008-01-01

    目的:研究止常、退行性病变以及脱髓鞘小鼠脊髓内Mtsl/S100A4蛋白的表达模式,及其对胶质细胞反应的影响.方法:以野生型和Mtsl/S100A4基因敲除型小鼠为试验动物,采用背根损伤、坐骨神经损伤、溴乙啶局部微量注射的方法复制退行性病变及脱髓鞘脊髓动物模型,应用免疫荧光技术,检测S100A4、GFAP、NG2、Mac1的表达情况.结果:野生型小鼠脊髓内,仅白质星型胶质细胞表达S100A4蛋白,且主要分布于Lissauer束:背根或坐骨神经损伤后,白质星形胶质细胞内的S100A4及GFAP表达上调.野生型与S100A4基因敲除小鼠GFAP表达量无显著差异;溴乙啶注射7d后,野生型小鼠脊髓脱髓鞘区域内她S100A4呈云雾状分布,胶质细胞反应局限于注射侧,并且形成清晰的胶质瘢痕,而S100A4基凶敲除小鼠则未见上述病理变化.结论:S100A4蛋白在小鼠脊髓内的表达模式与大鼠相似;退行性变的脊髓内,细胞内上调的S100A4蛋白并不影响胶质细胞的反应;脱髓鞘脊髓内,细胞外的S100A4蛋白明显影响胶质细胞反应,包括胶质瘢痕的形成.%Objective:To investigate the expression pattern of Mtsl/S100A4 in mouse spinal cord;to investigate the effects of Mtsl/S100A4 on glial cell responses.Method:The study was carried out on Mtsl/S100A4 wild type and knock-out mice.The degenerative spinal cord model was established by dorsal root or sciatic nerve injury.The de-myelinated spinal cord model was established by ethidium bromide injections.Then the expressions of S100A4,GFA P,NG2 and Mael were measured.Result:The expressions of Mtsl/S100A4 in mice spinal cord were similar to that in rats.In WT mice this protein expressed in a thin layer of fiber bundles in the tract of Lissauer,and in white matter astrocytes.There was intracellular up-regulation of Mtsl/S100A4 in white matter astrocytes of WT mice after dorsal root or sciatic nerve injury,with no difference in glial cell response

  14. 许旺细胞源神经营养因子对脊髓背根节感觉神经元的保护作用%Protective effect of Schwann cell-derived neurotrophic factor on sensory neurons in spinal dorsal root ganglia

    Institute of Scientific and Technical Information of China (English)

    刘黎军; 朱家恺; 王大平; 肖建德; 杨雷

    2006-01-01

    BACKGROUND: Schwann cell-derived neurotrophic factor is a bioactive protein isolated and purified from the kytoplasm of Schwann cell. It can obviously maintain the survival of spinal cord anterior horn motor neuron and promote the regeneration of peripheral nerve.OBJECTIVE: To observe the protective effect of Schwann cell-derived neurotrophic factor on the high injury of peripheral nerve-induced apoptosis of sensory neurons in spinal dorsal root ganglia.DESIGN: Randomized and controlled animal experiment.SETTING: Shenzhen Second People's Hospital.MATERIALS: Totally 30 3-week-old SD infant rats, of clean grade and either gender, were used in this experiment. They were randomly divided into neurotrophic factor group and control group with 15 rats in each one.Left sides of the animals in both two groups were set as normal sides and right sides as injured sides.METHODS: This experiment was carried out at the Experimental Animal Center, Medical College of Sun Yat-sen University from May 2003 to July 2003. ① L4.5 nerve root high-mutilation animal models were developed on the rats in two groups. Proximal nerve stump was connected with silicone tube. According to grouping, 60 mg/L Schwann cell-derived neurotrophic factors and 20 μL normal saline were injected into the silicone tubes respectively. Two ends of silicone tube were enveloped with vaseline.② Sample collecting was conducted at postoperative 4 weeks, survival rate and morphological change of sensory neurons in dorsal root ganglia of injured nerve was observed.MAIN OUTCOME MEASURES: ① Gross observation of sciatic nerve regeneration at injured side of the rats in two groups ② Survival of sensory neurons in dorsal root ganglia ③ Morphological change of sensory neurons in dorsal root ganglia.RESULTS: All the 30 rats entered the stage of result analysis. ① Gross observation of sciatic nerve regeneration: In the neurotrophic factor group,nerve new born axon grew along silicone tube, with 1cm in length

  15. Agenesis of the dorsal pancreas

    Institute of Scientific and Technical Information of China (English)

    Lale Pasaoglu; Murat Vural; Hatice Gul Hatipoglu; Gokce Tereklioglu; Suha Koparal

    2008-01-01

    Developmental anomalies of the pancreas have been reported but dorsal pancreatic agenesis is an extremely rare entity. We report an asymptomatic 62-year-old woman with complete agenesis of the dorsal pancreas.Abdominal computed tomography (CT) revealed a normal pancreatic head, but pancreatic body and tail were not visualized. Magnetic resonance imaging (MRI)findings were similar to CT. At magnetic resonance cholangiopancreatography (MRCP), the major pancreatic duct was short and the dorsal pancreatic duct was not visualized. The final diagnosis was dorsal pancreatic agenesis.

  16. Anorgasmia in anterior spinal cord syndrome.

    OpenAIRE

    Berić, A; Light, J K

    1993-01-01

    Three male and two female patients with anorgasmia and dissociated sensory loss due to an anterior spinal cord syndrome are described. Clinical, neurophysiological and quantitative sensory evaluation revealed preservation of the large fibre dorsal column functions from the lumbosacral segments with concomitant severe dysfunction or absence of the small fibre neospinothalamic mediated functions. These findings indicate a role for the spinothalamic system in orgasm.

  17. Short-term plasticity in turtle dorsal horn neurons mediated by L-type Ca2+ channels

    DEFF Research Database (Denmark)

    Russo, R E; Hounsgaard, J

    1994-01-01

    Windup--the gradual increase of the response--of dorsal horn neurons to repeated activation of primary afferents is an elementary form of short-term plasticity that may mediate central sensitization to pain. In deep dorsal horn neurons of the turtle spinal cord in vitro we report windup of the re......Windup--the gradual increase of the response--of dorsal horn neurons to repeated activation of primary afferents is an elementary form of short-term plasticity that may mediate central sensitization to pain. In deep dorsal horn neurons of the turtle spinal cord in vitro we report windup...... of the response to repeated depolarizing current pulses as well as to repeated stimulation of the ipsilateral dorsal root. We found both forms of windup to be mediated by a depolarizing potential produced by increasing activation of postsynaptic L-type Ca2+ channels. These results suggest a central role...

  18. Recurrent Primary Spinal Hydatid Cyst

    Directory of Open Access Journals (Sweden)

    Okan Turk

    2015-03-01

    Full Text Available Primary hydatid disease of spine is rare and spinal hydatitosis constitute only 1% of all hydatitosis. We report a case of recurrent primary intraspinal extradural hydatid cyst of the thoracic region causing progressive paraparesis. The patient was operated 16 years ago for primary spinal hydatid disease involvement and was instrumented dorsally for stabilization. The magnetic resonance imaging (MRI of thoracic spine showed a cystic lesion at T11-12 level and compressed spinal cord posterolaterally. Intraspinal cyst was excised through T11-12 laminectomy which made formerly. The early postoperative period showed a progressive improvement of his neurological deficit and he was discharged with antihelmintic treatment consisting of albendazole and amoxicillin-sulbactam combination. [Cukurova Med J 2015; 40(Suppl 1: 84-89

  19. Locally transplanted enteric gila improve functional and structural recovery in a rat model of spinal cord injury

    Institute of Scientific and Technical Information of China (English)

    Shucui Jiang; Mohammad I.Khan; James R.Bain; Cai Jiang; Christopher R.Hansebout; Zesheng Yu; Yuqing Liu; Michel P.Rathbone

    2009-01-01

    BACKGROUND: We have previously reported that adult enteric gila (EG) facilitate the growth of transected dorsal root axons into the uninjured spinal cord to form functional connections with their targets. OBJECTIVE: The present study investigated the effects of EG on spinal cord function, tissue injury, and axonal regeneration following transplantation into injured rat spinal cords, according to histological and functional outcomes. DESIGN, TIME AND SETTING: A randomized controlled animal experiment was performed at McMaster University, Canada from January 2006 to March 2008.MATERIALS: EG were isolated from rat intestine. METHODS: One week following spinal cord crush, female Wistar rats were injected with an EG suspension (2 μL, 1 x 10 5/μL, n=10) or with the same volume of fresh culture medium alone (control animals, n=11). The third group did not receive any injection following laminectomy and served as the sham-operated controls (n=5). MAIN OUTCOME MEASURES: Behavior was tested prior to transplantation and weekly following transplantation, with nine behavioral examinations in total. Open field, hind limb placement response, foot orientation response, and inclined plane test were utilized. Immediately following the final behavioral examination, spinal cord T9 to L1 segments were harvested for immunohistochemical and hematoxylin-eosin staining to determine astroglial scarring, axonal regeneration and spinal cord lesion size. RESULTS: Rats with EG transplantation exhibited significantly better locomotor function with reduced tissue damage, compared with the control rats. Cystic cavities were present 2 months after injury in spinal cords from both control groups. In contrast, rats injected with EG did not present with cystic lesions. In addition, the injury site consisted of cellular material and nerve fibers, and axonal regeneration was apparent, with dense labeling of neurofilament-positive axons within the injury site. Moreover, regenerating axons were

  20. Recurrent Autonomic Dysreflexia due to Chronic Aortic Dissection in an Adult Male with Cervical Spinal Cord Injury

    Directory of Open Access Journals (Sweden)

    Subramanian Vaidyanathan

    2008-01-01

    Full Text Available Autonomic dysreflexia is a hypertensive clinical emergency for persons with spinal cord injury at T-6 level or above. Recurrent autonomic dysreflexia is uncommon in spinal cord injury patients and is usually caused by noxious stimuli that cannot be removed promptly, e.g., somatic pain, abdominal distension. A 61-year-old man, who sustained tetraplegia at C-5 (ASIA-A 38 years ago, was admitted with chest infection. Computerised tomography (CT of the chest showed the ascending aorta to measure 4 cm in anteroposterior diameter; descending thoracic aorta measured 3.5 cm. No dissection was seen. Normal appearances of abdominal aorta were seen. He was treated with noninvasive ventilation, antibiotics, and diuretics. Nineteen days later, when there was sudden deterioration in his clinical condition, CT of the pulmonary angiogram was performed to rule out pulmonary embolism. This showed no pulmonary embolus, but the upper abdominal aorta showed some dissection with thrombosis of the false lumen. Blood pressure was controlled with perindopril 2 mg, once a day, doxazosin 4 mg, twice a day, and furosemide 20 mg, twice a day. Since this patient did not show clinical features of mesenteric or lower limb ischaemia, the vascular surgeon did not recommend subdiaphragmatic aortic replacement.

  1. Spinal astrocyte gap junctions contribute to oxaliplatin-induced mechanical hypersensitivity

    OpenAIRE

    Yoon, Seo-Yeon; Robinson, Caleb R.; Zhang, Haijun; Dougherty, Patrick M.

    2013-01-01

    Spinal glial cells contribute to the development of many types of inflammatory and neuropathic pain. Here the contribution of spinal astrocytes and astrocyte gap junctions to oxaliplatin-induced mechanical hypersensitivity was explored. The expression of glial fibrillary acidic protein (GFAP) in spinal dorsal horn was significantly increased at day 7 but recovered at day 14 after oxaliplatin treatment, suggesting a transient activation of spinal astrocytes by chemotherapy. Astrocyte-specific ...

  2. Inflammation unmasks gabapentin's effect on Aδ-fiber evoked excitatory postsynaptic currents in substantia gelatinosa neurons of rat spinal cord

    Institute of Scientific and Technical Information of China (English)

    刘智良; 徐如祥; 杨鲲

    2003-01-01

    ObjectiveTo study the analgesic mechanism of gabapentin, an anticonvulsant, during antinociceptive clinical treatment. MethodsWhole-cell voltage-clamp recordings were taken from adult rat spinal cord slices to investigate the effect of gabapentin on primary afferent Aδ-fiber evokedexcitatory postsynaptic currents (EPSCs) to substantia gelatinosa (SG) neurons in normal and inflamed (established by plantar injection of carrageenan) rats. Results Gabapentin (5-20 μmol/L for 5 min) depressed dorsal root Aδ fiber evoked polysynaptic, but not monosynaptic EPSCs to SG experiencing inflammation by about 25ptic or monosynaptic EPSCs in normal rats. Gabapentin failed to block a glutamate receptor subtype, N-methyl-D-aspartate (NMDA), -induced slow excitatory currents on SG neurons.ConclusionsInflammation, at least in part, unmasks the gabapentin depression on nociception transmission in the dorsal horn, and this depression is not due to the blockade of postsynaptic NMDA receptor.

  3. Ephrin-B3 decreases the survival of adult rat spinal cord-derived neural stem/progenitor cells in vitro and after transplantation into the injured rat spinal cord.

    Science.gov (United States)

    Fan, Xin Yan Susan; Mothe, Andrea J; Tator, Charles H

    2013-02-01

    Although transplantation of neural stem/progenitor cells (NSPC) encourages regeneration and repair after spinal cord injury (SCI), the survival of transplanted NSPC is limited. Ephrin-B3 has been shown to reduce the death of endogenous NSPC in the subventricular zone of the mouse brain without inducing uncontrolled proliferation. Due to similarities in the environment of the brain and spinal cord, we hypothesized that ephrin-B3 might reduce the death of both transplanted and endogenous spinal cord-derived NSPC. Both normal and injured (26 g clip compression) spinal cords were examined. Ephrin-B3-Fc was tested, and Fc fragments and phosphate-buffered saline (PBS) were used as controls. We found that EphA4 receptors were expressed by spinal cord-derived NSPC and expressed in the normal and injured rat spinal cord (higher expression in the latter). In vitro, ephrin-B3-Fc did not significantly reduce the survival of NSPC except at 1 μg/mL (Pinjured spinal cord compared with the infusion of PBS (Pinjured spinal cord, the infusion of either ephrin-B3-Fc or Fc fragments alone caused a 20-fold reduction in the survival of transplanted NSPC (P<0.001). Thus, after SCI, ephrin-B3-Fc and Fc fragments are toxic to transplanted NSPC.

  4. Adenoviral gene transfer into the normal and injured spinal cord: enhanced transgene stability by combined administration of temperature-sensitive virus and transient immune blockade.

    Science.gov (United States)

    Romero, M I; Smith, G M

    1998-12-01

    This study characterized gene transfer into both normal and injured adult rat dorsal spinal cord using first (E1-/E3-) or second (E1-/E2A125/E3-, temperature-sensitive; ts) generation of replication-defective adenoviral (Ad) vectors. A novel immunosuppressive regimen aimed at blocking CD4/CD45 lymphocytic receptors was tested for improving transgene persistence. In addition, the effect of gene transfer on nociception was also evaluated. Seven days after treatment, numerous LacZ-positive cells were observed after transfection with either viral vector. By 21 days after transfection, beta-galactosidase staining was reduced and suggestive of ongoing cytopathology in both Ad-treated groups, despite the fact that the immunogenicity of LacZ/Adts appeared less when compared with that elicited by the LacZ/Ad vector. In contrast, immunosuppressed animals showed a significant (P < or = 0.05) increase in the number of LacZ-positive cells not displaying cytopathology. In these animals, a concomitant reduction in numbers of macrophages/microglia and CD4 and CD8 lymphocytes was observed. Only animals that received LacZ/Adts and immunosuppression showed transgene expression after 60 days. Similar results were observed in animals in which the L4-L5 dorsal roots were lesioned before transfection. Gene transfer into the dorsal spinal cord did not affect nociception, independent of the adenovirus vector. These results indicate that immune blockade of the CD4/CD45 lymphocytic receptors enhanced transgene stability in adult animals with normal or injured spinal cords and that persistent transgene expression in the spinal cord does not interfere with normal neural function. PMID:10023440

  5. Spinal brucellosis.

    Science.gov (United States)

    Tali, E Turgut; Koc, A Murat; Oner, A Yusuf

    2015-05-01

    Spinal involvement in human brucellosis is a common condition and a significant cause of morbidity and mortality, particularly in endemic areas, because it is often associated with therapeutic failure. Most chronic brucellosis cases are the result of inadequate treatment of the initial episode. Recognition of spinal brucellosis is challenging. Early diagnosis is important to ensure proper treatment and decrease morbidity and mortality. Radiologic evaluation has gained importance in diagnosis and treatment planning, including interventional procedures and monitoring of all spinal infections.

  6. Enhancing physical activity guidelines: a needs survey of adults with spinal cord injury and health care professionals.

    Science.gov (United States)

    Foulon, Brianne L; Lemay, Valérie; Ainsworth, Victoria; Martin Ginis, Kathleen A

    2012-10-01

    The purpose of this study was to determine preferences of people with spinal cord injury (SCI) and health care professionals (HCP) regarding the content and format of a SCI physical activity guide to support recently released SCI physical activity guidelines. Seventy-eight people with SCI and 80 HCP completed a survey questionnaire. Participants with SCI identified desired content items and their preferences for format. HCP rated the helpfulness of content items to prescribe physical activity. All content items were rated favorably by participants with SCI and useful by HCP. The risks and benefits of activity and inactivity, and strategies for becoming more active, were rated high by both samples. Photographs and separate information for those with paraplegia versus tetraplegia were strongly endorsed. These data were used to guide the development of an SCI physical activity guide to enhance the uptake of physical activity guidelines for people with SCI. The guide was publically released November 11, 2011. PMID:23027146

  7. Long-lasting analgesic effect of radiofrequency treatment of the lumbosacral dorsal root ganglion

    NARCIS (Netherlands)

    Geurts, JWM; Wynne, HJ; van Wijk, R.

    2001-01-01

    Object. The authors conducted a study to establish the benefit of radiofrequency (RF) treatment of the lumbosacral dorsal root ganglion (DRG) as a therapy to reduce symptomatic pain in patients with chronic spinal pain radiating to the leg. Methods. Two hundred seventy-nine patients were evaluated a

  8. LOCUS-COERULEUS PROJECTIONS TO THE DORSAL MOTOR VAGUS NUCLEUS IN THE RAT

    NARCIS (Netherlands)

    TERHORST, GJ; TOES, GJ; VANWILLIGEN, JD

    1991-01-01

    The origin of the noradrenergic innervation of the preganglionic autonomic nuclei in the medulla oblongata and spinal cord is still controversial. In this investigation descending connections of the locus coeruleus to the dorsal motor vagus nucleus in the rat are studied with Phaseolus vulgaris leuc

  9. Neutrophilic dermatosis of dorsal hands

    Directory of Open Access Journals (Sweden)

    S Kaur

    2015-01-01

    Full Text Available Sweet′s syndrome is characterized by erythematous tender nodules and plaques over face and extremities. Fever, leukocytosis with neutrophilia, and a neutrophilic infiltrate in the dermis are characteristic features. Neutrophilic dermatosis of dorsal hands is a rare localized variant of Sweet′s syndrome occurring predominantly over dorsa of hands. Various degrees of vascular damage may be observed on histopathology of these lesions. Both Sweet′s syndrome and its dorsal hand variant have been reported in association with malignancies, inflammatory bowel diseases, and drugs. We report a patient with neutrophilic dermatoses of dorsal hands associated with erythema nodosum. He showed an excellent response to corticosteroids and dapsone.

  10. AMPA receptor trafficking in inflammation-induced dorsal horn central sensitization

    Institute of Scientific and Technical Information of China (English)

    Yuan-Xiang Tao

    2012-01-01

    Activity-dependent postsynaptic receptor trafficking is critical for long-term synaptic plasticity in the brain,but it is unclear whether this mechanism actually mediates the spinal cord dorsal horn central sensitization (a specific form of synaptic plasticity) that is associated with persistent pain.Recent studies have shown that peripheral inflammation drives changes in α-amino-3-hydroxy-5-methy1-4-isoxazolepropionic acid receptor (AMPAR) subunit trafficking in the dorsal horn and that such changes contribute to the hypersensitivity that underlies persistent pain.Here,we review current evidence to illustrate how spinal cord AMPARs participate in the dorsal horn central sensitization associated with persistent pain.Understanding these mechanisms may allow the development of novel therapeutic strategies for treating persistent pain.

  11. Single pellet grasping following cervical spinal cord injury in adult rat using an automated full-time training robot.

    Science.gov (United States)

    Fenrich, Keith K; May, Zacincte; Torres-Espín, Abel; Forero, Juan; Bennett, David J; Fouad, Karim

    2016-02-15

    Task specific motor training is a common form of rehabilitation therapy in individuals with spinal cord injury (SCI). The single pellet grasping (SPG) task is a skilled forelimb motor task used to evaluate recovery of forelimb function in rodent models of SCI. The task requires animals to obtain food pellets located on a shelf beyond a slit at the front of an enclosure. Manually training and testing rats in the SPG task requires extensive time and often yields results with high outcome variability and small therapeutic windows (i.e., the difference between pre- and post-SCI success rates). Recent advances in automated SPG training using automated pellet presentation (APP) systems allow rats to train ad libitum 24h a day, 7 days a week. APP trained rats have improved success rates, require less researcher time, and have lower outcome variability compared to manually trained rats. However, it is unclear whether APP trained rats can perform the SPG task using the APP system after SCI. Here we show that rats with cervical SCI can successfully perform the SPG task using the APP system. We found that SCI rats with APP training performed significantly more attempts, had slightly lower and less variable final score success rates, and larger therapeutic windows than SCI rats with manual training. These results demonstrate that APP training has clear advantages over manual training for evaluating reaching performance of SCI rats and represents a new tool for investigating rehabilitative motor training following CNS injury. PMID:26611563

  12. Single pellet grasping following cervical spinal cord injury in adult rat using an automated full-time training robot.

    Science.gov (United States)

    Fenrich, Keith K; May, Zacincte; Torres-Espín, Abel; Forero, Juan; Bennett, David J; Fouad, Karim

    2016-02-15

    Task specific motor training is a common form of rehabilitation therapy in individuals with spinal cord injury (SCI). The single pellet grasping (SPG) task is a skilled forelimb motor task used to evaluate recovery of forelimb function in rodent models of SCI. The task requires animals to obtain food pellets located on a shelf beyond a slit at the front of an enclosure. Manually training and testing rats in the SPG task requires extensive time and often yields results with high outcome variability and small therapeutic windows (i.e., the difference between pre- and post-SCI success rates). Recent advances in automated SPG training using automated pellet presentation (APP) systems allow rats to train ad libitum 24h a day, 7 days a week. APP trained rats have improved success rates, require less researcher time, and have lower outcome variability compared to manually trained rats. However, it is unclear whether APP trained rats can perform the SPG task using the APP system after SCI. Here we show that rats with cervical SCI can successfully perform the SPG task using the APP system. We found that SCI rats with APP training performed significantly more attempts, had slightly lower and less variable final score success rates, and larger therapeutic windows than SCI rats with manual training. These results demonstrate that APP training has clear advantages over manual training for evaluating reaching performance of SCI rats and represents a new tool for investigating rehabilitative motor training following CNS injury.

  13. Astrocytes derived from glial-restricted precursors promote spinal cord repair

    Directory of Open Access Journals (Sweden)

    Mayer-Proschel Margot

    2006-04-01

    Full Text Available Abstract Background Transplantation of embryonic stem or neural progenitor cells is an attractive strategy for repair of the injured central nervous system. Transplantation of these cells alone to acute spinal cord injuries has not, however, resulted in robust axon regeneration beyond the sites of injury. This may be due to progenitors differentiating to cell types that support axon growth poorly and/or their inability to modify the inhibitory environment of adult central nervous system (CNS injuries. We reasoned therefore that pre-differentiation of embryonic neural precursors to astrocytes, which are thought to support axon growth in the injured immature CNS, would be more beneficial for CNS repair. Results Transplantation of astrocytes derived from embryonic glial-restricted precursors (GRPs promoted robust axon growth and restoration of locomotor function after acute transection injuries of the adult rat spinal cord. Transplantation of GRP-derived astrocytes (GDAs into dorsal column injuries promoted growth of over 60% of ascending dorsal column axons into the centers of the lesions, with 66% of these axons extending beyond the injury sites. Grid-walk analysis of GDA-transplanted rats with rubrospinal tract injuries revealed significant improvements in locomotor function. GDA transplantation also induced a striking realignment of injured tissue, suppressed initial scarring and rescued axotomized CNS neurons with cut axons from atrophy. In sharp contrast, undifferentiated GRPs failed to suppress scar formation or support axon growth and locomotor recovery. Conclusion Pre-differentiation of glial precursors into GDAs before transplantation into spinal cord injuries leads to significantly improved outcomes over precursor cell transplantation, providing both a novel strategy and a highly effective new cell type for repairing CNS injuries.

  14. Spinal trauma in children

    International Nuclear Information System (INIS)

    Evaluation of the child with suspected spinal injury can be a difficult task for the radiologist. Added to the problems posed by lack of familiarity with the normal appearances of the paediatric spine is anxiety about missing a potentially significant injury resulting in neurological damage. Due to differences in anatomy and function, the pattern of injury in the paediatric spine is different from that in the adolescent or adult. Lack of appreciation of these differences may lead to over investigation and inappropriate treatment. This review attempts to clarify some of the problems frequently encountered. It is based on a review of the literature as well as personal experience. The normal appearances and variants of the spine in children, the mechanisms and patterns of injury are reviewed highlighting the differences between children and adults. Specific fractures, a practical scheme for the assessment of spinal radiographs in children, and the role of cross sectional imaging are discussed. (orig.)

  15. Spinal trauma in children

    Energy Technology Data Exchange (ETDEWEB)

    Roche, C.; Carty, H. [Radiology Dept., Royal Liverpool Children' s NHS Trust-Alder Hey (United Kingdom)

    2001-10-01

    Evaluation of the child with suspected spinal injury can be a difficult task for the radiologist. Added to the problems posed by lack of familiarity with the normal appearances of the paediatric spine is anxiety about missing a potentially significant injury resulting in neurological damage. Due to differences in anatomy and function, the pattern of injury in the paediatric spine is different from that in the adolescent or adult. Lack of appreciation of these differences may lead to over investigation and inappropriate treatment. This review attempts to clarify some of the problems frequently encountered. It is based on a review of the literature as well as personal experience. The normal appearances and variants of the spine in children, the mechanisms and patterns of injury are reviewed highlighting the differences between children and adults. Specific fractures, a practical scheme for the assessment of spinal radiographs in children, and the role of cross sectional imaging are discussed. (orig.)

  16. Accumulation of Misfolded SOD1 in Dorsal Root Ganglion Degenerating Proprioceptive Sensory Neurons of Transgenic Mice with Amyotrophic Lateral Sclerosis

    Directory of Open Access Journals (Sweden)

    Javier Sábado

    2014-01-01

    Full Text Available Amyotrophic lateral sclerosis (ALS is an adult-onset progressive neurodegenerative disease affecting upper and lower motoneurons (MNs. Although the motor phenotype is a hallmark for ALS, there is increasing evidence that systems other than the efferent MN system can be involved. Mutations of superoxide dismutase 1 (SOD1 gene cause a proportion of familial forms of this disease. Misfolding and aggregation of mutant SOD1 exert neurotoxicity in a noncell autonomous manner, as evidenced in studies using transgenic mouse models. Here, we used the SOD1G93A mouse model for ALS to detect, by means of conformational-specific anti-SOD1 antibodies, whether misfolded SOD1-mediated neurotoxicity extended to neuronal types other than MNs. We report that large dorsal root ganglion (DRG proprioceptive neurons accumulate misfolded SOD1 and suffer a degenerative process involving the inflammatory recruitment of macrophagic cells. Degenerating sensory axons were also detected in association with activated microglial cells in the spinal cord dorsal horn of diseased animals. As large proprioceptive DRG neurons project monosynaptically to ventral horn MNs, we hypothesise that a prion-like mechanism may be responsible for the transsynaptic propagation of SOD1 misfolding from ventral horn MNs to DRG sensory neurons.

  17. A new device concept for directly modulating spinal cord pathways: initial in vivo experimental results.

    Science.gov (United States)

    Flouty, Oliver; Oya, Hiroyuki; Kawasaki, Hiroto; Wilson, Saul; Reddy, Chandan G; Jeffery, Nicholas D; Brennan, Timothy J; Gibson-Corley, Katherine N; Utz, Marcel; Gillies, George T; Howard, Matthew A

    2012-12-01

    We describe a novel spinal cord (SC) stimulator that is designed to overcome a major shortcoming of existing stimulator devices: their restricted capacity to selectively activate targeted axons within the dorsal columns. This device overcomes that limitation by delivering electrical stimuli directly to the pial surface of the SC. Our goal in testing this device was to measure its ability to physiologically activate the SC and examine its capacity to modulate somatosensory evoked potentials (SSEPs) triggered by peripheral stimulation. In this acute study on adult sheep (n = 7), local field potentials were recorded from a grid placed in the subdural space of the right hemisphere during electrical stimulation of the left tibial nerve and the spinal cord. Large amplitude SSEPs (>200 µV) in response to SC stimulation were consistently obtained at stimulation strengths well below the thresholds inducing neural injury. Moreover, stimulation of the dorsal columns with signals employed routinely by devices in standard clinical use, e.g., 50 Hz, 0.2 ms pulse width, produced long-lasting changes (>4.5 h) in the SSEP patterns produced by subsequent tibial nerve stimulation. The results of these acute experiments demonstrate that this device can be safely secured to the SC surface and effectively activate somatosensory pathways. PMID:23151433

  18. The utility of testing tactile perception of direction of scratch as a sensitive clinical sign of posterior column dysfunction in spinal cord disorders.

    OpenAIRE

    Hankey, G.J.; Edis, R H

    1989-01-01

    Classical beliefs about the functions of the dorsal columns of the spinal cord have been attacked following recent evidence that position and vibration sensations may be carried in the dorsal spinocerebellar tracts. There is evidence that the one specific function of the dorsal columns is for the transmission of information concerning the direction of tactile cutaneous movement. Thirty normal controls, 43 patients with spinal cord disorders and 10 patients with functional disorders were exami...

  19. Dorsal and ventral language pathways in persistent developmental stuttering.

    Science.gov (United States)

    Kronfeld-Duenias, Vered; Amir, Ofer; Ezrati-Vinacour, Ruth; Civier, Oren; Ben-Shachar, Michal

    2016-08-01

    Persistent developmental stuttering is a speech disorder that affects an individual's ability to fluently produce speech. While the disorder mainly manifests in situations that require language production, it is still unclear whether persistent developmental stuttering is indeed a language impairment, and if so, which language stream is implicated in people who stutter. In this study, we take a neuroanatomical approach to this question by examining the structural properties of the dorsal and ventral language pathways in adults who stutter (AWS) and fluent controls. We use diffusion magnetic resonance imaging and individualized tract identification to extract white matter volumes and diffusion properties of these tracts in samples of adults who do and do not stutter. We further quantify diffusion properties at multiple points along the tract and examine group differences within these diffusivity profiles. Our results show differences in the dorsal, but not in the ventral, language-related tracts. Specifically, AWS show reduced volume of the left dorsal stream, as well as lower anisotropy in the right dorsal stream. These data provide neuroanatomical support for the view that stuttering involves an impairment in the bidirectional mapping between auditory and articulatory cortices supported by the dorsal pathways, not in lexical access and semantic aspects of language processing which are thought to rely more heavily on the left ventral pathways. PMID:27179916

  20. Spinal Cord Injury 101

    Medline Plus

    Full Text Available ... Injury Psychological Issues After Spinal Cord Injury Psychological Health After Spinal Cord Injury Psychological Health After Spinal Cord Injury The Psychologist's Role After ...

  1. Spinal Cord Injury 101

    Medline Plus

    Full Text Available ... Cord Injury Psychological Realities After Spinal Cord Injury Psychology of Spinal Cord Injury Rehabilitation Psychology of Spinal Cord Injury Rehabilitation How Psychologists Help ...

  2. Spinal Cord Injury 101

    Medline Plus

    Full Text Available ... Cord Injury Psychological Realities after Spinal Cord Injury Psychology of Spinal Cord Injury Rehabilitation Psychology of Spinal Cord Injury Rehabilitation How Psychologists Help ...

  3. Spinal Hemangiomas

    Directory of Open Access Journals (Sweden)

    I.A. Norkin

    2010-06-01

    Full Text Available The given article considers the modern view on etiology, pathogenesis, classifications, clinical picture, diagnosis and treatment of spinal hemangiomas. Advantages of vertebroplasty over the other techniques of treatment of studied pathology are presented

  4. Spinal stenosis

    Science.gov (United States)

    ... make some changes in their activities or work. Spine surgery will often partly or fully relieve symptoms in ... disease of the bone Spinal fusion Patient Instructions Spine surgery - discharge Update Date 7/13/2015 Updated by: ...

  5. Effect of activation of γ-aminobutyric acid B receptors on glutamate release in spinal dorsal horn neurons in rats with diabetic neuropathic pain%激活γ-氨基丁酸B受体对糖尿病神经痛大鼠脊髓背角神经元谷氨酸递质释放的影响

    Institute of Scientific and Technical Information of China (English)

    王秀丽; 吴川; 郭跃先; 王秋筠; 刘飞飞; 曹倩倩; 张兆龙

    2012-01-01

    release in spinal dorsal horn neurons in rats with diabetic neuropathyic pain(DNP). Methods Thirty Sprague-Dawley(SD) male rats(aged 4 weeks,weighing 150 g-170 g) were randomly divided into 2 groups (n=15):Normal rats group (N group),DN rats group (D group).DNP were induced by single intraperitoneal (IP) injection of streptozotocin (STZ,50 mg/kg),and rats in C group received the equal volume saline injection.At 3-4 weeks after STZ or saline intraperitoneal injection,blood glucose level and paw withdraw threshold (PWT) were measured,and the rats were then killed,the lumbar segment of spinal cord (L1-5) was removed for slices preparations.Monosynaptic glutamatergic evoked excitatory postsynaptic currents (eEPSCs) of lamina Ⅱ neurons were recorded by using whole-cell voltage-clamp patch.Bath baclofen (1,10,20,50 μmol/L) was applicated,monosynaptic eEPSCs was recorded before application of baclofen,at 1,10,20,50 μmol/L and wash out 5 min,the inhibitory rate (%) of eEPSCs was compared between two groups (n=15),the effect of CGP55845 (1 pmol/L) on eEPSCs of 50 μmol/L baclofen was analyzed in two groups (n=12). Results The mean blood glucose level was significantly higher in D group than in N group,while PWT in D group was significantly lower than that in N group (P<0.05).eEPSCs in totally 30 glutamatergic neurons was recorded by electrophysiological recording. (1, 10,20,50 μmol/L) baclofen dose-dependently decreased the amplitude of eEPSCs both in two groups,the significant decrease of the amplitude inhibitory rate (%) of eEPSCs was observed at 1,10,20,50 μmol/L baclofen both in two groups(P<0.05),its in D group were significantly decreased compared with N group at above times(P<0.05) respectively:(47±7) vs (21 ±7 ),(55 ±6) vs (50±6),(92±6) vs (72±9),(95 ±8) vs (88±8).CGP55845 was completely abolished the inhibitory effect of 50 μmol/L baclofen on the amplitude of monosynaptic eEPSCs in lamina Ⅱ neurons both two groups. Conclusions Activation of

  6. Comparison of pulmonary function and back muscle strength according to the degree of spinal curvature of healthy adults

    OpenAIRE

    You, Jae Eung; Lee, Hye Young; Kim, Kyoung

    2015-01-01

    [Purpose] Degree of curvature on the spine is known to affect respiratory function and back muscle activation. We compared pulmonary function and back muscle strength according to the degree of curvature of the spine of healthy adults. [Subjects and Methods] Twenty-three healthy volunteers were enrolled. They were divided into two groups according to the degree of curvature of the spine: the below 2° group, and the above 2° group. The degree of curvature was assessed using the Adams forward b...

  7. Spinal cysticercosis

    International Nuclear Information System (INIS)

    Spinal cysticercosis is an extremely uncommon condition. We have examined four patients with complaints that resembled nervous root compression by disk herniation. Myelography was shown to be an efficient method to evaluate spinal involvement, that was characterized by findings of multiple filling defect images (cysts) plus signs of adhesive arachnoiditis. One cyst was found to be mobile. Because of the recent development of medical treatment, a quick and precise diagnosis is of high importance to determine the prognosis of this condition. (author)

  8. Spinal vascular malformations; Spinale Gefaessmalformationen

    Energy Technology Data Exchange (ETDEWEB)

    Yilmaz, U. [Universitaetsklinikum des Saarlandes, Klinik fuer Diagnostische und Interventionelle Neuroradiologie, Homburg/Saar (Germany)

    2012-05-15

    Spinal vascular malformations are a group of rare diseases with different clinical presentations ranging from incidental asymptomatic findings to progressive tetraplegia. This article provides an overview about imaging features as well as clinical and therapeutic aspects of spinal arteriovenous malformations, cavernomas and capillary telangiectasia. (orig.) [German] Spinale Gefaessmalformationen sind eine Gruppe seltener Erkrankungen mit unterschiedlichen klinischen Praesentationen, die vom asymptomatischen Zufallsbefund bis zur progredienten Tetraparese reichen. Dieser Artikel gibt einen Ueberblick ueber radiologische Befunde sowie klinische und therapeutische Aspekte von spinalen arteriovenoesen Malformationen, Kavernomen und kapillaeren Teleangiektasien. (orig.)

  9. Epicritic sensation in cervical spinal cord injury: diagnostic gains beyond testing light touch

    OpenAIRE

    Velstra, Inge-Marie; Bolliger, Marc; Baumberger, Michael; Rietman, Johan Swanik; Curt, Armin

    2013-01-01

    Abstract Applied as a bedside test of gross dorsal column function, the testing of light touch (LT) sensation is of high clinical value in the diagnosis of human spinal cord injury (SCI). However, the assessment of overall dorsal column deficit by testing only LT may be limited, because the dorsal column pathway conveys several large diameter afferent modalities (e.g., sensation of touch, two-point discrimination, and proprioception). Therefore, the objective of this study was to compare the ...

  10. Spinal Cord Injury 101

    Medline Plus

    Full Text Available ... Substance Abuse and Spinal Cord Injury How Family Life Changes After Spinal Cord Injury How Family Life Changes After Spinal Cord Injury Empowering the Patient After Spinal ...

  11. Immunohistochemical distribution of Calbindin D-28K immunoreactivity in the central nervous system of adult cat

    Institute of Scientific and Technical Information of China (English)

    LIU Tao; LI Jin-lian; XIONG Kang-hui; LI Ji-shuo

    2002-01-01

    Objective: In order to get more information about the possible functions of Calbindin D-28K in the central nervous system of adult cat, the distribution of Calbindin D-28K in the central nervous system of adult cat was examined. Methods: Immunohistochemical staining techniques were used, and immunostained sections were observed under a light microscopy. Results: A high density of both immunoreactive perikarya and fibers were observed in the basal ganglia, amygdaloid complex, nucleus of the fields of Forel, subthalamic nucleus, paracentral nucleus, pulvinar nucleus, subthalamus, dorsal hypothalamic area, lateral hypothalamic area, anterior hypothalamus, suprachiasmatic nucleus, superior colliculus, inferior colliculus, oculomo-tor nucleus, superior olivary complex, marginal nucleus of the brachium conjunctivum, vestibular nuclei, the spinal trigeminal nucleus, nucleus of the solitary tract, cuneate nucleus, inferior olivary complex, dorsal motor nucleus of the vagus nerve, the molecular layer of the cerebellum, the purkinje cell layer of the cerebellum and in the laminae Ⅱ of the spinal cord, whereas the dentate gyrus, the central medial nucleus of the thalamus, the paracentral and central lateral nucleus of the thalamus, the lateral dorsal nucleus of the thalamus,the ventrolateral complex of the thalamus, the medioventral nucleus of the thalamus, the posterior hypothalamic area, the dorsal hypothalamic area, the infundibular nucleus, the dorsomedial hypothalamic nucleus and the interfascicular nucleus had just a high density of immunoreactive perikarya, and no positive fibres were detected in these areas. Conclusion: The present results showed that Calbindin D-28K-like immunoreactivity was widely distributed throughout the central nervous system of adult cat and might play an important role in the activities of the neurons in the central nervous system of adult cat.

  12. Dorsal spinous process impingement syndrome ('kissing spine') in a cat: imaging appearance and surgical management.

    Science.gov (United States)

    Gutierrez-Quintana, Rodrigo; Lindley, Samantha; Sullivan, Martin; Penderis, Jacques; Wessmann, Annette

    2011-08-01

    Spinal pain is an important clinical presentation in feline patients, but the underlying causes can often be difficult to elucidate. Dorsal spinous process impingement syndrome ('kissing spine' or in human patients 'Baastrup syndrome') is a significant cause of spinal pain in equine and human patients and radiographically is characterised by a close approximation of adjacent spinous processes with reactive bone sclerosis affecting these spinous processes. In this report we describe the first reported case of dorsal spinous process impingement syndrome in a cat causing spinal pain, and successful surgical management of the syndrome. The affected cat presented at 5 years of age for evaluation of a 7-month history of progressive thoracolumbar pain. Radiographs revealed close approximation of the dorsal spinous processes of the seventh, eighth and ninth thoracic vertebrae (T7, T8 and T9), with associated reactive bone sclerosis. Surgical resection of the T8 dorsal spinous process resulted in complete resolution of the clinical signs with no evidence of recurrence 9 months after surgery. PMID:21723173

  13. MR imaging of spinal epidural sepsis

    International Nuclear Information System (INIS)

    Spinal epidural abscess is uncommonly found in adults and children. Early diagnosis and treatment improves prognosis and prevents serious neurologic sequelae. Four patients with spinal epidural infections were recently evaluated with MR and CT of the spine. In all cases, MR and CT localized the site of infection accurately and showed adjacent bony osteomyelitis. MR proved superior in characterizing infection (abscess vs. inflammatory edema) and demonstrating epidural involvement and spinal cord compression. In all cases, MR obviated the need for myelography. Early recognition by MR of spinal epidural sepsis led to expeditious treatment and better clinical outcome

  14. Phrenic nerve afferents elicited cord dorsum potential in the cat cervical spinal cord

    Directory of Open Access Journals (Sweden)

    Davenport Paul W

    2005-05-01

    Full Text Available Abstract Background The diaphragm has sensory innervation from mechanoreceptors with myelinated axons entering the spinal cord via the phrenic nerve that project to the thalamus and somatosensory cortex. It was hypothesized that phrenic nerve afferent (PnA projection to the central nervous system is via the spinal dorsal column pathway. Results A single N1 peak of the CDP was found in the C4 and C7 spinal segments. Three peaks (N1, N2, and N3 were found in the C5 and C6 segments. No CDP was recorded at C8 dorsal spinal cord surface in cats. Conclusion These results demonstrate PnA activation of neurons in the cervical spinal cord. Three populations of myelinated PnA (Group I, Group II, and Group III enter the cat's cervical spinal segments that supply the phrenic nerve

  15. 大鼠初级传入纤维与脊髓背角神经元间的动作电序列的突触传递%SYNAPTIC TRANSMISSION OF VARIOUS SPIKE TRAINS BETWEEN PRIMARY AFFERENT FIBER AND SPINAL DORSAL HORN NEURON IN THE RAT

    Institute of Scientific and Technical Information of China (English)

    万业宏; 菅忠; 文治洪; 王玉英; 胡三觉

    2004-01-01

    Peripheral sensory neurons encode continuous, time-varying signals into spike trains, which are finally relayed to the brain through synaptic transmission. But how various types of spike trains are transmitted across chemical synapses between neurons is still an open question. Here the synaptic transmission of various spike trains between primary Aδ afferent fiber and spinal dorsal horn neuron was investigated. Regular, periodic and stochastic stimulus trains were composed of either brief bursts or single pulses. "Events" were defined as the longest sequences of spikes with all interspike intervals less than or equal to a certain threshold and the interevent intervals (IEIs) were extracted from spike trains. The IEI analysis by time-IEI graphs and return maps showed that the main temporal structure of presynaptic input trains could be detected in postsynaptic output trains, especially under brief-burst stimulation. By calculating the mutual information between input and output trains, it was found that brief bursts could more reliably transmit the information carried by input trains across synapses.These results suggested that the main temporal characters of peripheral input trains can be transmitted across synapses, and that brief-burst firing is more effective during synapse transmission of neural information. The present research takes a step forward to exploring the mystery of neural coding from the aspect of synaptic transmission.%外周感觉神经元通过动作电位序列对信号进行编码,这些动作电位序列经过突触传递最终到达脑部.但是各种脉冲序列如何通过神经元之间的化学突触进行传递依然是一个悬而未决的问题.研究了初级传入Aδ纤维与背角神经元之间各种动作电位序列的突触传递过程.用于刺激的规则、周期、随机脉冲序列由短簇脉冲或单个脉冲构成.定义"事件"(event)为峰峰间期(interspike interval)小于或等于规定阈值的最长动作电位

  16. Cell size and geometry of spinal cord motoneurons in the adult cat following the intramuscular injection of adriamycin: comparison with data from aged cats.

    Science.gov (United States)

    Liu, R H; Yamuy, J; Engelhardt, J K; Xi, M C; Morales, F R; Chase, M H

    1996-10-28

    of neurons on the control side. We conclude that significant geometrical changes were induced in lumbar motoneurons of adult cats after ADM was injected to their muscles. In old cats, spinal cord motoneurons exhibit similar patterns of changes in their electrophysiological characteristics which have also been suggested to be correlated with changes in cell geometry. The question then arises as to whether the response of motoneurons to ADM and the aging process reflects a stereotypic reaction of motoneurons to a variety of insults or whether the response to ADM mirrors specific aspects of the aging process. PMID:8949934

  17. Effect of nitric oxide with different doses on Bcl-2/Bax in spinal dorsal horn in rats induced by formalin%不同剂量的一氧化氮对福尔马林炎性痛大鼠脊髓背角Bcl-2/Bax表达的影响

    Institute of Scientific and Technical Information of China (English)

    未小明; 李宽; 祁文秀

    2011-01-01

    Objective: To investigate the effects of multiple application of different doses of nitric oxide (NO) on Bcl-2/ Bax in spinal dorsal horn induced by formalin. Methods: A succession of 4 d intrathecal injection of NO precursor L-arginine (L-Arg)10 μg/d (low L-Arg group) or 250 μg/d (high L-Arg group) or NOS inhibitor Nω-nitro-L-arginine methylester (L-NAME) 2700 μg/d (L-NAME group) in rats, and normal saline (NS group) was applied as a control, and administration once a day. Then rats were subcutaneously injected formalin (2%, 100 μL) into the right hindpaw, four hours later after formalin injection, Bcl-2 or Bax protein expression were detected with immunocytochemistry and Western Blot. Results: The immunocytochemistry showed the distributions of Bcl-2 and Bax were in both sides of the dorsal horn,especially in superficial laminae, and the expressions of bcl-2 and bax in the ipsilateral side of formalin injection were significantly increased than that in contralateral side of formalin injection in all four groups; the ratio of Bcl-2/Bax with Western-Blot was increased in low L-Arg group compared with normal saline group and was all decreased in high L-Arg group or L-NAME group compared with normal saline group. bcl-2 and bax are two major genes in the regulation of apoptosis, bcl-2 inhibits apoptosis and bax promotes apoptosis. Conclusion: Therefore, in inflammatory pain model, low doses of NO can promote the antiapoptotic gene expression, while high doses of NO and insufficient of NO both can promote pro-apoptotic gene expression, which affect the incidence of inflammatory pain.%目的:探讨多次应用不同剂量的一氧化氮(NO)对福尔马林炎性痛中脊髓背角神经元Bcl-2、Bax表达的影响.方法:连续4 d给大鼠各进行鞘内注射不同剂量的一氧化氮前体左旋精氨酸(L-arginine,L-Arg)10μg/d(低L-Arg组)、250 μg/d(高L-Arg组)或一氧化氮合酶(nitric oxide synthase,NOS)抑制剂Nω-硝基-L

  18. The effect of spinally administered WIN 55,212-2, a cannabinoid agonist, on thermal pain sensitivity in diabetic rats

    Directory of Open Access Journals (Sweden)

    Samane Jahanabadi

    2016-04-01

    Conclusion: These data show that cannabinoids have potent antinociceptive effects through direct actions in the spinal dorsal horn of nociceptive pathway. This suggests that intrathecally administered cannabinoids may offer hopeful strategies for the treatment of diabetic neuropathic pain.

  19. Health service use in adults 20-64 years with traumatic brain injury, spinal cord injury or pelvic fracture. A cohort study with 9-year follow-up

    DEFF Research Database (Denmark)

    Laursen, Bjarne; Helweg-Larsen, Karin

    2012-01-01

    To estimate the health service use over 9 years after the injury year for patients with traumatic brain injury (TBI), spinal cord injury (SCI) and pelvic fracture (PF), and compare with non-injured.......To estimate the health service use over 9 years after the injury year for patients with traumatic brain injury (TBI), spinal cord injury (SCI) and pelvic fracture (PF), and compare with non-injured....

  20. MRI Findings in Spinal Canal Stenosis

    Directory of Open Access Journals (Sweden)

    Maryam Barzin

    2010-05-01

    Full Text Available Spinal canal stenosis results from progressive narrowing of the central spinal canal and the lateral recesses. Primary (congenital lumbar spinal stenosis is associated with achondroplastic dwarfism. The spinal canal may become narrowed by bulging or protrusion of the intervertebral disc annulus, herniation of the nucleus pulposus posteriorly, thickening of the posterior longitudinal ligament, hypertrophy of the facet joints, hypertrophy of the ligamentum flavum, epidural fat deposition, spondylosis of the intervertebral disc margins and uncovertebral joint hypertrophy in the neck. The central canal and the neurorecess may be compromised by tumor infiltration, such as metastatic disease, or by infectious spondylitis."nAP diameter of the normal adult cervical canal has a mean value of 17-18 mm at vertebral levels C3-5. The lower cervical canal measures 12-14 mm. Cervical stenosis is associated with an AP diameter of less than 10 mm. The thoracic spinal canal varies from 12 to 14 mm in diameter in the adult. The diameter of the normal lumbar spinal canal varies from 15 to 27 mm. Lumbar stenosis results from a spinal canal diameter of less than 12 mm in some patients; a diameter of 10 mm is definitely stenotic."nSpinal MRI is the most suitable technique for the diagnosis of spinal stenosis. The examination should be performed using thin sections (3 mm and high resolution, including the axial and sagittal planes using T1-weighted, proton-density, and T2-weighted techniques. The bony and osteophytic components are seen best using a T2-weighted gradient-echo technique."nOn MRI, findings of spinal stenosis have a variable presentation depending on the specific disease. The goal of spinal imaging is to localize the site and level of disease and to help differentiate between conditions in which patients require surgery or conservative treatment."nIn this presentation, different kinds of spinal canal stenosis and their MRI findings would be discussed.

  1. Involvement of microglia and interleukin-18 in the induction of long-term potentiation of spinal nociceptive responses induced by tetanic sciatic stimulation

    Institute of Scientific and Technical Information of China (English)

    Yu-Xia Chu; Yu-Qiu Zhang; Zhi-Qi Zhao

    2012-01-01

    Objective The present study aimed to investigate the potential roles of spinal microglia and downstream molecules in the induction of spinal long-term potentiation (LTP) and mechanical allodynia by tetanic stimulation of the sciatic nerve (TSS).Methods Spinal LTP was induced in adult male Sprague-Dawley rats by tetanic stimulation of the sciatic nerve (0.5 ms,100 Hz,40 V,10 trains of 2-s duration at 10-s intervals).Mechanical allodynia was determined using von Frey hairs.Immunohistochemical staining and Westem blot were used to detect changes in glial expression of interleukin- 18 (IL- 18) and IL- 18 receptor (IL- 18R).Results TSS induced LTP of C-fiber-evoked field potentials in the spinal cord.Intrathecal administration of the microglial inhibitor minocycline (200 μg/20 μL) 1 h before TSS completely blocked the induction of spinal LTP.Furthermore,after intrathecal injection of minocycline (200 μg/20 μL) by lumbar puncture 1 h before TSS,administration of minocycline for 7 consecutive days (once per day) partly inhibited bilateral allodynia.Immunohistochemistry showed that minocycline inhibited the sequential activation of microglia and astrocytes,and IL-1 8 was predominantly colocalized with the microglial marker Iba-1 in the spinal superficial dorsal horn.Western blot revealed that repeated intrathecal injection of minocycline significantly inhibited the increased expression of IL-18 and IL-18Rs in microglia induced by TSS.Conclusion The IL-18 signaling pathway in microglia is involved in TSS-induced spinal LTP and mechanical allodynia.

  2. Characterization of spinal findings in children and adults with neurofibromatosis type 1 enrolled in a natural history study using magnetic resonance imaging.

    Science.gov (United States)

    Nguyen, Rosa; Dombi, Eva; Akshintala, Srivandana; Baldwin, Andrea; Widemann, Brigitte C

    2015-01-01

    To characterize spinal abnormalities in patients with neurofibromatosis type 1 (NF1) using magnetic resonance imaging (MRI). NF1 patients with at least one spine MRI were selected from participants prospectively enrolled in the National Cancer Institute NF1 Natural History Study. Data were analyzed retrospectively. Ninety-seven patients (38 females, median age 14.2 years, standard deviation [SD] 7.6) had baseline imaging of the spine, and 26 patients (27 %) had one follow-up spine MRI (follow up time 2.5 years, SD 1.1, range 0.7-4.7). Seventy-eight patients (80 %) had spinal neurofibromas, with rising frequency from 70 % in patients younger than 10 years to 80 % in patients aged 10-18 years to 89 % in individuals older than 18 years of age. At baseline, 33/97 patients (34 %) had MRI changes consistent with spinal cord compression that was most prevalent at the cervical (43 %) and lumbar spine region (40 %). Seven of nine patients with progression of their spinal neurofibromas developed cord compression. Paraspinal plexiform neurofibromas (PNs) were present in 77/97 patients (79 %), of which 68 patients (88 %) had concomitant spinal neurofibromas. Spinal curvature abnormality was present in 50/97 patients (51 %, 20 females, median age 14.6 years, SD 7.6). Patients with paraspinal PNs had six-fold higher odds of developing spinal curvature abnormalities compared to patients without PN (OR = 5.9, 95 % CI 1.81 to 19.44, p = 0.0033). A total of 58/97 patients (60 %, median age 16.1 years, SD 7.8, range 4.8-48.2 years) presented with neurologic abnormalities that progressed in 12/26 patients (46 %). Substantial spinal neurofibroma and paraspinal PN burden was observed in our study population, which represents a selective group of patients with specifically more severe tumor involvement than the general NF1 population. Occurrence and progression of spinal neurofibromas on repeat evaluations highlight the need for longitudinal clinical monitoring in patients with known

  3. Experimental study on spinal cord injury treated by embryonic spinal cord transplantation and greater omental transposition

    Institute of Scientific and Technical Information of China (English)

    Hao Dingjun(郝定均); Zheng Yonghong(郑永宏); Yuan Fuyong(袁福镛); He Liming; Wang Rong; Yuan Yong

    2004-01-01

    Objective: To observe the clinical efficacy of the embryonic spinal cellular transplantation and greater omental transposition for treatment of the spinal cord injury in 24 mongrel dogs. Methods: 24 adult mongrel dogs, weighing 10 ~ 13kg,bryonic spinal cellular transplantation and greater omental transposition group (group D). Each group consisted of 6 dogs. SEP(somatosensory evoked potential) and MEP (motor evoked potential) of the spinal cord were examed prior to the spinal cord injury and 2 months after the treatment to observe the changes of the animals' behavior. All dogs were killed 2 months after surgery and the spinal cord sections were obtained from T12 to L1 level for pathological analysis and observation under the electron microscope.Results: There was an obvious difference in the spinal somatosensory evoked potential and the motor evoked potential between the group D and the other three groups (group A, B, and C). Recovery of the behavior was noted. The spinal cells had survived for two months following the transplantation. Conclusion: Transplantation of the embryonic spinal cell and greater omentum for treatment of the spinal cord injury in dogs can gain a better outcome than the other groups in behavior and spinal somatosensory and motor evoked potential, but the further study is still essential to confirm its clinical efficacy.

  4. 自体骨髓基质干细胞移植对大鼠脊髓损伤的疗效%EFFECTS OF TRANSPLANTATION OF AUTOLOGOUS BONE MARROW STROMAL CELLS ON REPAIR OF SPINAL CORD INJURY IN ADULT RATS

    Institute of Scientific and Technical Information of China (English)

    沈肖方; 王延伟; 刘晓阳; 刘洪涛

    2011-01-01

    [目的]观察自体骨髓基质干细胞(bone marrow stromal cells,BMSCs)移植对大鼠脊髓损伤(SCI)的治疗效果.[方法]体外分离纯化大鼠骨髓基质干细胞,取46例Wistar大鼠采用改良的Allen's装置在TIl水平制成大鼠脊髓损伤模型,随机分成基质干细胞(MSCs)移植组(n=23)和对照组(n=23),分别于术后1、4周通过BBB评分观察大鼠SCI后功能的恢复情况.[结果]术前所有大鼠BBB评分均为21分,脊髓损伤后为0分,所有大鼠神经功能缺损症状随着时间的推移都有不同程度的减轻.两组术后4周时BBB评分均较术后1周时高,差异有统计学意义(P<0.05).移植组术后1、4周时BBB评分均高于对照组,差异有统计学意义(P<0.05).[结论]BMSCs移植有助予大鼠脊髓损伤后的修复重建和功能恢复.%[Objective] To observe the effects of transplantation of autologous bone marrow stromal cells (BMSCs) on repair of spinal cord injury (SCI) in adult rats. [Methods] Autologous bone marrow stromal cells were isolated and purified. 46 Wistar rats with spinal cord injury were randomly divided into two groups (n = 23, each). The BMSCs group was received transplantation of autologous bone marrow stromal cells, and the control group was only given spinal cord injury. At one and four weeks after surgery, the functional recovery of the hind limbs was evaluated by the Basso-Beattie-Bresnahan (BBB) locomotor rating score. [Results] The spinal cord function BBB scores at 4 weeks after bone marrow stromal cell transplantation were significantly higher than those at one week after bone marrow stromal cell transplantation in the two groups. At one and four weeks after bone marrow stromal cell transplantation, the BBB scores in the BMSCs group were significantly higher than those in the control group (P < 0.05). [Conclusion] Autologous bone marrow stem cell transplantation is effective for treatment of spinal cord injury of adult rats.

  5. 氯胺酮对N-甲基-D-天冬氨酸诱导大鼠脊髓背角星形胶质细胞损伤的作用%Influence of ketamine on astrocyte damage in spinal dorsal horn of rats induced by N-methyl-D-aspartic acid

    Institute of Scientific and Technical Information of China (English)

    李清; 刘菊英; 周青山; 朱涛; 秦成名

    2006-01-01

    组,差异显著[分别为(25.26±6.13)%,(5.66±2.24)%,P<0.01],100μmol/LN-甲基-D-天冬氨酸+1 mmol/L氯胺酮组低于100 μmol/L N-甲基-D-天冬氨酸组,差异显著[分别为(24.41±4.82)%,(25.26±6.13)%,P<0.01].③丙二醛含量和超氧化物歧化酶活性变化:100 μmol/L N-甲基-D-天冬氨酸使星形胶质细胞内丙二醛含量显著升高,而超氧化物歧化酶活性明显降低;1 mmol/L氯胺酮明显降低丙二醛含量,显著增强超氧化物歧化酶活性,该效应在临床镇痛剂量以内有明显量效关系,与N-甲基-D-天冬氨酸组相比差异显著(P<0.01).1 mmol/L氯胺酮组与对照组相比、100μmol/L N-甲基-D-天冬氨酸+0.1 mmol/L氯胺酮组与N-甲基-D-天冬氨酸组相比差异均无显著性.结论:N-甲基-D-天冬氨酸受体过度激活可诱导大鼠脊髓背角星形胶质细胞大量凋亡,适量氯胺酮显著抑制细胞凋亡,其机制可能增强星形胶质细胞Bcl-2蛋白表达,同时抑制自由基的产生和增强超氧化物歧化酶活性.%BACKGROUND: Ketamine is a kind of frequently used general venous anesthesia drug in clinic, and the medication in vein or epidural cavum has analgesic effect. It is N-methyl-D-aspartic acid (NMDA) receptor noncompetitive antagonist, which can inhibit toxic effect of excitatory amino acids.OBJECTIVE: To observe effect of ketamine on apoptosis of dorsal horn astrocytes of spinal cord of rats induced by NMDA receptor over activation and explore its possible mechanism of action.DESIGN: Randomized controlled observation.SETTING: Department of Anesthesiology, Taihe Hospital Affiliated to Yunyang Medical College.MATERIALS: The experiment was conducted at Cell Biology Laboratory,Institute of Basic Medical Sciences, Yunyang Medical College between September 2003 and January 2005. Neonatal Wistar rats of two or three days were provided by Animal Experimental Center of Wuhan University. METHODS: Primary astrocytes in dorsal horn of T11-L6 spinal cord of Wistar rats were purified and

  6. Spinal motor neurons are regenerated after mechanical lesion and genetic ablation in larval zebrafish

    Science.gov (United States)

    Ohnmacht, Jochen; Yang, Yujie; Maurer, Gianna W.; Barreiro-Iglesias, Antón; Tsarouchas, Themistoklis M.; Wehner, Daniel; Sieger, Dirk; Becker, Catherina G.; Becker, Thomas

    2016-01-01

    ABSTRACT In adult zebrafish, relatively quiescent progenitor cells show lesion-induced generation of motor neurons. Developmental motor neuron generation from the spinal motor neuron progenitor domain (pMN) sharply declines at 48 hours post-fertilisation (hpf). After that, mostly oligodendrocytes are generated from the same domain. We demonstrate here that within 48 h of a spinal lesion or specific genetic ablation of motor neurons at 72 hpf, the pMN domain reverts to motor neuron generation at the expense of oligodendrogenesis. By contrast, generation of dorsal Pax2-positive interneurons was not altered. Larval motor neuron regeneration can be boosted by dopaminergic drugs, similar to adult regeneration. We use larval lesions to show that pharmacological suppression of the cellular response of the innate immune system inhibits motor neuron regeneration. Hence, we have established a rapid larval regeneration paradigm. Either mechanical lesions or motor neuron ablation is sufficient to reveal a high degree of developmental flexibility of pMN progenitor cells. In addition, we show an important influence of the immune system on motor neuron regeneration from these progenitor cells. PMID:26965370

  7. Spinal cord injury reveals multilineage differentiation of ependymal cells.

    Directory of Open Access Journals (Sweden)

    Konstantinos Meletis

    2008-07-01

    Full Text Available Spinal cord injury often results in permanent functional impairment. Neural stem cells present in the adult spinal cord can be expanded in vitro and improve recovery when transplanted to the injured spinal cord, demonstrating the presence of cells that can promote regeneration but that normally fail to do so efficiently. Using genetic fate mapping, we show that close to all in vitro neural stem cell potential in the adult spinal cord resides within the population of ependymal cells lining the central canal. These cells are recruited by spinal cord injury and produce not only scar-forming glial cells, but also, to a lesser degree, oligodendrocytes. Modulating the fate of ependymal progeny after spinal cord injury may offer an alternative to cell transplantation for cell replacement therapies in spinal cord injury.

  8. Differential contribution of electrically evoked dorsal root reflexes to peripheral vasodilatation and plasma extravasation

    Directory of Open Access Journals (Sweden)

    Peng Yuan B

    2011-02-01

    Full Text Available Abstract Background Dorsal root reflexes (DRRs are antidromic activities traveling along the primary afferent fibers, which can be generated by peripheral stimulation or central stimulation. DRRs are thought to be involved in the generation of neurogenic inflammation, as indicated by plasma extravasation and vasodilatation. The hypothesis of this study was that electrical stimulation of the central stump of a cut dorsal root would lead to generation of DRRs, resulting in plasma extravasation and vasodilatation. Methods Sprague-Dawley rats were prepared to expose spinal cord and L4-L6 dorsal roots under pentobarbital general anesthesia. Electrical stimulation of either intact, proximal or distal, cut dorsal roots was applied while plasma extravasation or blood perfusion of the hindpaw was recorded. Results While stimulation of the peripheral stump of a dorsal root elicited plasma extravasation, electrical stimulation of the central stump of a cut dorsal root generated significant DRRs, but failed to induce plasma extravasation. However, stimulation of the central stump induced a significant increase in blood perfusion. Conclusions It is suggested that DRRs are involved in vasodilatation but not plasma extravasation in neurogenic inflammation in normal animals.

  9. Glutamate Increases In Vitro Survival and Proliferation and Attenuates Oxidative Stress-Induced Cell Death in Adult Spinal Cord-Derived Neural Stem/Progenitor Cells via Non-NMDA Ionotropic Glutamate Receptors.

    Science.gov (United States)

    Hachem, Laureen D; Mothe, Andrea J; Tator, Charles H

    2016-08-15

    Traumatic spinal cord injury (SCI) leads to a cascade of secondary chemical insults, including oxidative stress and glutamate excitotoxicity, which damage host neurons and glia. Transplantation of exogenous neural stem/progenitor cells (NSPCs) has shown promise in enhancing regeneration after SCI, although survival of transplanted cells remains poor. Understanding the response of NSPCs to the chemical mediators of secondary injury is essential in finding therapies to enhance survival. We examined the in vitro effects of glutamate and glutamate receptor agonists on adult rat spinal cord-derived NSPCs. NSPCs isolated from the periventricular region of the adult rat spinal cord were exposed to various concentrations of glutamate for 96 h. We found that glutamate treatment (500 μM) for 96 h significantly increased live cell numbers, reduced cell death, and increased proliferation, but did not significantly alter cell phenotype. Concurrent glutamate treatment (500 μM) in the setting of H2O2 exposure (500 μM) for 10 h increased NSPC survival compared to H2O2 exposure alone. The effects of glutamate on NSPCs were blocked by the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA)/kainate receptor antagonist GYKI-52466, but not by the N-methyl-D-aspartic acid receptor antagonist MK-801 or DL-AP5, or the mGluR3 antagonist LY-341495. Furthermore, treatment of NSPCs with AMPA, kainic acid, or the kainate receptor-specific agonist (RS)-2-amino-3-(3-hydroxy-5-tert-butylisoxazol-4-yl)propanoic acid mimicked the responses seen with glutamate both alone and in the setting of oxidative stress. These findings offer important insights into potential mechanisms to enhance NSPC survival and implicate a potential role for glutamate in promoting NSPC survival and proliferation after traumatic SCI. PMID:27316370

  10. Spinal injury - resources

    Science.gov (United States)

    Resources - spinal injury ... The following organizations are good resources for information on spinal injury : National Institute of Neurological Disorders and Stroke -- www.ninds.nih.gov The National Spinal Cord Injury ...

  11. Key role of the dorsal root ganglion in neuropathic tactile hypersensibility.

    Science.gov (United States)

    Sukhotinsky, Inna; Ben-Dor, Efrat; Raber, Pnina; Devor, Marshall

    2004-04-01

    Cutting spinal nerves just distal to the dorsal root ganglion (DRG) triggers, with rapid onset, massive spontaneous ectopic discharge in axotomized afferent A-neurons, and at the same time induces tactile allodynia in the partially denervated hindlimb. We show that secondary transection of the dorsal root (rhizotomy) of the axotomized DRG, or suppression of the ectopia with topically applied local anesthetics, eliminates or attenuates the allodynia. Dorsal rhizotomy alone does not trigger allodynia. These observations support the hypothesis that ectopic firing in DRG A-neurons induces central sensitization which leads to tactile allodynia. The question of how activity in afferent A-neurons, which are not normally nociceptive, might induce allodynia is discussed in light of the current literature. PMID:14987623

  12. 浅析老年人外伤型脊柱骨折的临床特点%The Clinical Characteristics of SC Type Traumatic Spinal Fractures in Older Adults

    Institute of Scientific and Technical Information of China (English)

    戴财

    2016-01-01

    objective to study the clinical characteristics of type traumatic spinal fractures in older adults, and to provide basis for clinical treatment and prevention. Methods analyze the clinical characteristics of type traumatic spinal fractures in older adults. The re-sults in the elderly trauma patients with spinal fractures in women than men, patients with spinal fractures in the elderly trauma ratio of 55-69 years old was obviously higher than that of other age groups. Trauma type spine fractures in older adults in women in life and hurt more, men falling injury and heavy parts, see more at high proportion of female life hurt significantly higher than the male, male, falling injury and heavy parts Ratio is significantly higher than women. Life and high falling injury and heavy parts cause trauma type spine fractures in older adults in male patients with ISS score and the proportion of spinal cord injury than women, comparative differences are statistically significant (P<0.05). Conclusion traumatic type spine fractures in older adults is given priority to with life fall and fall injury, good hair at 55 -69 years old, so at ordinary times in life to win to prevention.%目的:探讨老年人外伤型脊柱骨折的临床特点,为临床治疗及预防提供依据。方法分析总结老年人外伤型脊柱骨折的临床特点。结果老年人外伤型脊柱骨折患者中女性明显高于男性,老年人外伤型脊柱骨折患者发于55~69岁的比率明显高于其他各年龄段。老年人外伤型脊柱骨折中女性多见于生活中摔伤,男性多见于高处坠落伤及重物砸伤,女性生活中地摔伤所占比率明显高于男性,男性高处坠落伤及重物砸伤比率明显高于女性。生活中地摔伤,高处坠落伤及重物砸伤导致老年人外伤型脊柱骨折中男性患者在ISS评分及脊髓损伤所占比率高于女性,比较差异均有统计学意义(P<0.05)。结论老年人外伤型脊柱骨折以生

  13. Spinal Cord Contusion

    Institute of Scientific and Technical Information of China (English)

    Gong Ju; Jian Wang; Yazhou Wang; Xianghui Zhao

    2014-01-01

    Spinal cord injury is a major cause of disability with devastating neurological outcomes and lim-ited therapeutic opportunities, even though there are thousands of publications on spinal cord injury annually. There are two major types of spinal cord injury, transaction of the spinal cord and spinal cord contusion. Both can theoretically be treated, but there is no well documented treatment in human being. As for spinal cord contusion, we have developed an operation with fabulous result.

  14. New understanding of dorsal dysraphism with lipoma (lipomyeloschisis): radiologic evaluation and surgical correction

    Energy Technology Data Exchange (ETDEWEB)

    Naidich, T.P. (Northwestern Univ., Chicago, IL); McLone, D.G.; Mutluer, S.

    1983-06-01

    The spinal anomaly designated dorsal dysraphism with lipoma (lipomyeloschisis) consists of skin-covered, focal spina bifida; focal partial clefting of the dorsal half of the spinal cord; continuity of the dorsal cleft with the central canal of the cord above (and occasionally below) the cleft; deficiency of the dura underlying the spina bifida; deep extension of subcutaneous lipoma through the spina bifida and the dural deficiency to insert directly into the cleft on the dorsal half of the cord; variable cephalic extension of lipoma into the contiguous central canal of the cord; and variable ballooning of the subarachnoid space to form an associated meningocele. The variable individual expressions of the anomaly are best understood by reference to their archetypal concept. Careful analysis of radiographic and surgical findings in human lipomyeloschisis and correlation with an animal model of lipomyeloschisis indicate that plain spine radiographs and high-resolution metrizamide computed tomographic myelography successfully delineate the precise anatomic derangements associated with lipomyeloschisis and provide the proper basis for planning surgical therapy of this condition.

  15. New understanding of dorsal dysraphism with lipoma (lipomyeloschisis): radiologic evaluation and surgical correction

    International Nuclear Information System (INIS)

    The spinal anomaly designated dorsal dysraphism with lipoma (lipomyeloschisis) consists of skin-covered, focal spina bifida; focal partial clefting of the dorsal half of the spinal cord; continuity of the dorsal cleft with the central canal of the cord above (and occasionally below) the cleft; deficiency of the dura underlying the spina bifida; deep extension of subcutaneous lipoma through the spina bifida and the dural deficiency to insert directly into the cleft on the dorsal half of the cord; variable cephalic extension of lipoma into the contiguous central canal of the cord; and variable ballooning of the subarachnoid space to form an associated meningocele. The variable individual expressions of the anomaly are best understood by reference to their archetypal concept. Careful analysis of radiographic and surgical findings in human lipomyeloschisis and correlation with an animal model of lipomyeloschisis indicate that plain spine radiographs and high-resolution metrizamide computed tomographic myelography successfully delineate the precise anatomic derangements associated with lipomyeloschisis and provide the proper basis for planning surgical therapy of this condition

  16. Changing Balance of Spinal Cord Excitability and Nociceptive Brain Activity in Early Human Development.

    Science.gov (United States)

    Hartley, Caroline; Moultrie, Fiona; Gursul, Deniz; Hoskin, Amy; Adams, Eleri; Rogers, Richard; Slater, Rebeccah

    2016-08-01

    In adults, nociceptive reflexes and behavioral responses are modulated by a network of brain regions via descending projections to the spinal dorsal horn [1]. Coordinated responses to noxious inputs manifest from a balance of descending facilitation and inhibition. In contrast, young infants display exaggerated and uncoordinated limb reflexes [2]. Our understanding of nociceptive processing in the infant brain has been advanced by the use of electrophysiological and hemodynamic imaging [3-6]. From approximately 35 weeks' gestation, nociceptive-specific patterns of brain activity emerge [7], whereas prior to this, non-specific bursts of activity occur in response to noxious, tactile, visual, and auditory stimulation [7-10]. During the preterm period, refinement of spinal cord excitability is also observed: reflex duration shortens, response threshold increases, and improved discrimination between tactile and noxious events occurs [2, 11, 12]. However, the development of descending modulation in human infants remains relatively unexplored. In 40 infants aged 28-42 weeks' gestation, we examined the relationship between nociceptive brain activity and spinal reflex withdrawal activity in response to a clinically essential noxious procedure. Nociceptive-specific brain activity increases in magnitude with gestational age, whereas reflex withdrawal activity decreases in magnitude, duration, and latency across the same developmental period. By recording brain and spinal cord activity in the same infants, we demonstrate that the maturation of nociceptive brain activity is concomitant with the refinement of noxious-evoked limb reflexes. We postulate that, consistent with studies in animals, infant reflexes are influenced by the development of top-down inhibitory modulation from maturing subcortical and cortical brain networks. PMID:27374336

  17. Spinal Cord Injury 101

    Medline Plus

    Full Text Available ... Injury 101 The Basics of Spinal Cord Injury Rehabilitation The Basics of Spinal Cord Injury Rehabilitation Preventing Pressure Sores Preventing Pressure Sores Transition from ...

  18. Spinal Cord Injury 101

    Medline Plus

    Full Text Available ... Workers Help Transitions How Social Workers Help Transitions Occupational Therapy After Spinal Cord Injury Occupational Therapy After Spinal Cord Injury How Occupational Therapists Work ...

  19. Direct Effect of Remifentanil and Glycine Contained in Ultiva® on Nociceptive Transmission in the Spinal Cord: In Vivo and Slice Patch Clamp Analyses

    Science.gov (United States)

    Sumie, Makoto; Shiokawa, Hiroaki; Yamaura, Ken; Karashima, Yuji; Hoka, Sumio; Yoshimura, Megumu

    2016-01-01

    Background Ultiva® is commonly administered intravenously for analgesia during general anaesthesia and its main constituent remifentanil is an ultra-short-acting μ-opioid receptor agonist. Ultiva® is not approved for epidural or intrathecal use in clinical practice. Previous studies have reported that Ultiva® provokes opioid-induced hyperalgesia by interacting with spinal dorsal horn neurons. Ultiva® contains glycine, an inhibitory neurotransmitter but also an N-methyl-D-aspartate receptor co-activator. The presence of glycine in the formulation of Ultiva® potentially complicates its effects. We examined how Ultiva® directly affects nociceptive transmission in the spinal cord. Methods We made patch-clamp recordings from substantia gelatinosa (SG) neurons in the adult rat spinal dorsal horn in vivo and in spinal cord slices. We perfused Ultiva® onto the SG neurons and analysed its effects on the membrane potentials and synaptic responses activated by noxious mechanical stimuli. Results Bath application of Ultiva® hyperpolarized membrane potentials under current-clamp conditions and produced an outward current under voltage-clamp conditions. A barrage of excitatory postsynaptic currents (EPSCs) evoked by the stimuli was suppressed by Ultiva®. Miniature EPSCs (mEPSCs) were depressed in frequency but not amplitude. Ultiva®-induced outward currents and suppression of mEPSCs were not inhibited by the μ-opioid receptor antagonist naloxone, but were inhibited by the glycine receptor antagonist strychnine. The Ultiva®-induced currents demonstrated a specific equilibrium potential similar to glycine. Conclusions We found that intrathecal administration of Ultiva® to SG neurons hyperpolarized membrane potentials and depressed presynaptic glutamate release predominantly through the activation of glycine receptors. No Ultiva®-induced excitatory effects were observed in SG neurons. Our results suggest different analgesic mechanisms of Ultiva® between intrathecal

  20. Direct Effect of Remifentanil and Glycine Contained in Ultiva® on Nociceptive Transmission in the Spinal Cord: In Vivo and Slice Patch Clamp Analyses.

    Directory of Open Access Journals (Sweden)

    Makoto Sumie

    Full Text Available Ultiva® is commonly administered intravenously for analgesia during general anaesthesia and its main constituent remifentanil is an ultra-short-acting μ-opioid receptor agonist. Ultiva® is not approved for epidural or intrathecal use in clinical practice. Previous studies have reported that Ultiva® provokes opioid-induced hyperalgesia by interacting with spinal dorsal horn neurons. Ultiva® contains glycine, an inhibitory neurotransmitter but also an N-methyl-D-aspartate receptor co-activator. The presence of glycine in the formulation of Ultiva® potentially complicates its effects. We examined how Ultiva® directly affects nociceptive transmission in the spinal cord.We made patch-clamp recordings from substantia gelatinosa (SG neurons in the adult rat spinal dorsal horn in vivo and in spinal cord slices. We perfused Ultiva® onto the SG neurons and analysed its effects on the membrane potentials and synaptic responses activated by noxious mechanical stimuli.Bath application of Ultiva® hyperpolarized membrane potentials under current-clamp conditions and produced an outward current under voltage-clamp conditions. A barrage of excitatory postsynaptic currents (EPSCs evoked by the stimuli was suppressed by Ultiva®. Miniature EPSCs (mEPSCs were depressed in frequency but not amplitude. Ultiva®-induced outward currents and suppression of mEPSCs were not inhibited by the μ-opioid receptor antagonist naloxone, but were inhibited by the glycine receptor antagonist strychnine. The Ultiva®-induced currents demonstrated a specific equilibrium potential similar to glycine.We found that intrathecal administration of Ultiva® to SG neurons hyperpolarized membrane potentials and depressed presynaptic glutamate release predominantly through the activation of glycine receptors. No Ultiva®-induced excitatory effects were observed in SG neurons. Our results suggest different analgesic mechanisms of Ultiva® between intrathecal and intravenous

  1. The time course of serotonin 2C receptor expression after spinal transection of rats

    DEFF Research Database (Denmark)

    Ren, Li-Qun; Wienecke, Jacob; Chen, Meng;

    2013-01-01

    In the spinal cord 5-HT systems modulate the spinal network via various 5-HT receptors. 5-HT2A and 2C receptors are likely the most important 5-HT receptors for enhancing the motoneuron excitability by facilitating the persistent inward current, and thus play an important role for the pathogenesis...... distributed in different regions of the spinal gray matter and was predominantly located in the neuronal somata and their dendrites although it seemed also present in axonal fibers in the superficial dorsal horn. 5-HT2CR-IR in different regions of the spinal gray matter was seen to be increased at 14 days...

  2. Agenesis of the dorsal pancreas

    Institute of Scientific and Technical Information of China (English)

    Wolfgang J Schnedl; Claudia Piswanger-Soelkner; Sandra J Wallner; Robert Krause; Rainer W Lipp

    2009-01-01

    During the last 100 years in medical literature, there are only 54 reports, including the report of Pasaoglu et al ( World J Gastroenterol 2008; 14: 2915-2916), with clinical descriptions of agenesis of the dorsal panc reas in humans . Agenes i s of the dor sal pancreas, a rare congenital pancreatic malformation,is associated with some other medical conditions such as hyperglycemia, abdominal pain, pancreatitis and a few other diseases. In approximately 50% of reported patients with this congenital malformation,hyperglycemia was demonstrated. Evaluation of hyperglycemia and diabetes mellitus in all patients with agenesis of the dorsal pancreas including description of fasting blood glucose, oral glucose tolerance test, glycated hemoglobin and medical treatment would be a future goal. Since autosomal dominant transmission has been suggested in single families,more family studies including imaging technologies with demonstration of the pancreatic duct system are needed for evaluation of this disease. With this letter to the editor, we aim to increase available information for the better understanding of this rare disease.

  3. Intraspinally mediated state-dependent enhancement of motoneurone excitability during fictive scratch in the adult decerebrate cat.

    Science.gov (United States)

    Power, Kevin E; McCrea, David A; Fedirchuk, Brent

    2010-08-01

    This is the first study to report on the increase in motoneurone excitability during fictive scratch in adult decerebrate cats. Intracellular recordings from antidromically identified motoneurones revealed a decrease in the voltage threshold for spike initiation (V(th)), a suppression of motoneurone afterhyperpolarization and activation of voltage-dependent excitation at the onset of scratch. These state-dependent changes recovered within 10-20 s after scratch and could be evoked after acute transection of the spinal cord at C1. Thus, there is a powerful intraspinal system that can quickly and reversibly re-configure neuronal excitability during spinal network activation. Fictive scratch was evoked in spinal intact and transected decerebrate preparations by stroking the pinnae following topical curare application to the dorsal cervical spinal cord and neuromuscular block. Hyperpolarization of V(th) occurred (mean 5.8 mV) in about 80% of ipsilateral flexor, extensor or bifunctional motoneurones during fictive scratch. The decrease in V(th) began before any scratch-evoked motoneurone activity as well as during the initial phase in which extensors are tonically hyperpolarized. The V(th) of contralateral extensors depolarized by a mean of +3.7 mV during the tonic contralateral extensor activity accompanying ipsilateral scratch. There was a consistent and substantial reduction of afterhyperpolarization amplitude without large increases in motoneurone conductance in both spinal intact and transected preparations. Depolarizing current injection increased, and hyperpolarization decreased the amplitude of rhythmic scratch drive potentials in acute spinal preparations indicating that the spinal scratch-generating network can activate voltage-dependent conductances in motoneurones. The enhanced excitability in spinal preparations associated with fictive scratch indicates the existence of previously unrecognized, intraspinal mechanisms increasing motoneurone excitability.

  4. Spinal dural ossification causing neurological signs in a cat.

    Science.gov (United States)

    Antila, Johanna M; Jeserevics, Janis; Rakauskas, Mindaugas; Anttila, Marjukka; Cizinauskas, Sigitas

    2013-06-19

    A six-year-old Ragdoll cat underwent examination due to a six-month history of slowly progressive gait abnormalities. The cat presented with an ambulatory tetraparesis with a neurological examination indicating a C1-T2 myelopathy. Radiographs of the spine showed a radiopaque irregular line ventrally in the vertebral canal dorsal to vertebral bodies C3-C5. In this area, magnetic resonance imaging revealed an intradural extramedullary/extradural lesion compressing the spinal cord. The spinal cord was surgically decompressed. The cause of the spinal cord compression was dural ossification, a diagnosis confirmed by histopathological examination of the surgically dissected sample of dura mater. The cat gradually improved after the procedure and was ambulating better than prior to the surgery. The cat's locomotion later worsened again due to ossified plaques in the dura causing spinal cord compression on the same cervical area as before. Oral prednisolone treatment provided temporary remission. Ten months after surgery, the cat was euthanized due to severe worsening of gait abnormalities, non-ambulatory tetraparesis. Necropsy confirmed spinal cord compression and secondary degenerative changes in the spinal cord on cervical and lumbar areas caused by dural ossification. To our knowledge, this is the first report of spinal dural ossification in a cat. The reported cat showed neurological signs associated with these dural changes. Dural ossification should be considered in the differential diagnosis of compressive spinal cord disorders in cats.

  5. Cost effectiveness of treatment with percutaneous Kirschner wires versus volar locking plate for adult patients with a dorsally displaced fracture of the distal radius: analysis from the DRAFFT trial.

    Science.gov (United States)

    Tubeuf, S; Yu, G; Achten, J; Parsons, N R; Rangan, A; Lamb, S E; Costa, M L

    2015-08-01

    We present an economic evaluation using data from the Distal Radius Acute Fracture Fixation Trial (DRAFFT) to compare the relative cost effectiveness of percutaneous Kirschner wire (K-wire) fixation and volar locking-plate fixation for patients with dorsally-displaced fractures of the distal radius. The cost effectiveness analysis (cost per quality-adjusted life year; QALY) was derived from a multi-centre, two-arm, parallel group, assessor-blind, randomised controlled trial which took place in 18 trauma centres in the United Kingdom. Data from 460 patients were available for analysis, which includes both a National Health Service cost perspective including costs of surgery, implants and healthcare resource use over a 12-month period after surgery, and a societal perspective, which includes the cost of time off work and the need for additional private care. There was only a small difference in QALYs gained for patients treated with locking-plate fixation over those treated with K-wires. At a mean additional cost of £714 (95% confidence interval 588 to 865) per patient, locking-plate fixation presented an incremental cost effectiveness ratio (ICER) of £89,322 per QALY within the first 12 months of treatment. Sensitivity analyses were undertaken to assess the ICER of locking-plate fixation compared with K-wires. These were greater than £30,000. Compared with locking-plate fixation, K-wire fixation is a 'cost saving' intervention, with similar health benefits. PMID:26224825

  6. Retinal glia promote dorsal root ganglion axon regeneration.

    Directory of Open Access Journals (Sweden)

    Barbara Lorber

    Full Text Available Axon regeneration in the adult central nervous system (CNS is limited by several factors including a lack of neurotrophic support. Recent studies have shown that glia from the adult rat CNS, specifically retinal astrocytes and Müller glia, can promote regeneration of retinal ganglion cell axons. In the present study we investigated whether retinal glia also exert a growth promoting effect outside the visual system. We found that retinal glial conditioned medium significantly enhanced neurite growth and branching of adult rat dorsal root ganglion neurons (DRG in culture. Furthermore, transplantation of retinal glia significantly enhanced regeneration of DRG axons past the dorsal root entry zone after root crush in adult rats. To identify the factors that mediate the growth promoting effects of retinal glia, mass spectrometric analysis of retinal glial conditioned medium was performed. Apolipoprotein E and secreted protein acidic and rich in cysteine (SPARC were found to be present in high abundance, a finding further confirmed by western blotting. Inhibition of Apolipoprotein E and SPARC significantly reduced the neuritogenic effects of retinal glial conditioned medium on DRG in culture, suggesting that Apolipoprotein E and SPARC are the major mediators of this regenerative response.

  7. Liposarcome dorsal: aspect clinique rare

    Science.gov (United States)

    Agbessi, Odry; Arrob, Adil; Fiqhi, Kamal; Khalfi, Lahcen; Nassih, Mohammed; El Khatib, Karim

    2015-01-01

    Décrit la première fois par Virchow en 1860, le liposarcome est une tumeur mésenchymateuse rare. Cette rareté est relative car les liposarcomes représentent quand même 14 à 18% de l'ensemble des tumeurs malignes des parties molles et ils constituent le plus fréquent des sarcomes des parties molles. Pour la majorité des auteurs, il ne se développerait jamais sur un lipome ou une lipomatose préexistant. Nous rapportons un cas de volumineux liposarcome de la face dorsale du tronc. L'histoire de la maladie, l'aspect clinique inhabituel « de tumeur dans tumeur », l'aspect de la pièce opératoire nous fait évoquer la possibilité de la transformation maligne d'un lipome bénin préexistant. PMID:26113914

  8. Spinal pain

    International Nuclear Information System (INIS)

    Highlights: • Purpose of this review is to address the current concepts on the pathophysiology of discogenic, radicular, facet and dysfunctional spinal pain, focusing on the role of the imaging in the diagnostic setting, to potentially address a correct approach also to minimally invasive interventional techniques. • Special attention will be given to the discogenic pain, actually considered as the most frequent cause of chronic low back pain. • The correct distinction between referred pain and radicular pain contributes to give a more correct approach to spinal pain. • The pathogenesis of chronic pain renders this pain a true pathology requiring a specific management. - Abstract: The spinal pain, and expecially the low back pain (LBP), represents the second cause for a medical consultation in primary care setting and a leading cause of disability worldwide [1]. LBP is more often idiopathic. It has as most frequent cause the internal disc disruption (IDD) and is referred to as discogenic pain. IDD refers to annular fissures, disc collapse and mechanical failure, with no significant modification of external disc shape, with or without endplates changes. IDD is described as a separate clinical entity in respect to disc herniation, segmental instability and degenerative disc desease (DDD). The radicular pain has as most frequent causes a disc herniation and a canal stenosis. Both discogenic and radicular pain also have either a mechanical and an inflammatory genesis. For to be richly innervated, facet joints can be a direct source of pain, while for their degenerative changes cause compression of nerve roots in lateral recesses and in the neural foramina. Degenerative instability is a common and often misdiagnosed cause of axial and radicular pain, being also a frequent indication for surgery. Acute pain tends to extinguish along with its cause, but the setting of complex processes of peripheral and central sensitization may influence its evolution in chronic

  9. Spinal pain

    Energy Technology Data Exchange (ETDEWEB)

    Izzo, R., E-mail: roberto1766@interfree.it [Neuroradiology Department, A. Cardarelli Hospital, Naples (Italy); Popolizio, T., E-mail: t.popolizio1@gmail.com [Radiology Department, Casa Sollievo della Sofferenza Hospital, San Giovanni Rotondo (Fg) (Italy); D’Aprile, P., E-mail: paoladaprile@yahoo.it [Neuroradiology Department, San Paolo Hospital, Bari (Italy); Muto, M., E-mail: mutomar@tiscali.it [Neuroradiology Department, A. Cardarelli Hospital, Napoli (Italy)

    2015-05-15

    Highlights: • Purpose of this review is to address the current concepts on the pathophysiology of discogenic, radicular, facet and dysfunctional spinal pain, focusing on the role of the imaging in the diagnostic setting, to potentially address a correct approach also to minimally invasive interventional techniques. • Special attention will be given to the discogenic pain, actually considered as the most frequent cause of chronic low back pain. • The correct distinction between referred pain and radicular pain contributes to give a more correct approach to spinal pain. • The pathogenesis of chronic pain renders this pain a true pathology requiring a specific management. - Abstract: The spinal pain, and expecially the low back pain (LBP), represents the second cause for a medical consultation in primary care setting and a leading cause of disability worldwide [1]. LBP is more often idiopathic. It has as most frequent cause the internal disc disruption (IDD) and is referred to as discogenic pain. IDD refers to annular fissures, disc collapse and mechanical failure, with no significant modification of external disc shape, with or without endplates changes. IDD is described as a separate clinical entity in respect to disc herniation, segmental instability and degenerative disc desease (DDD). The radicular pain has as most frequent causes a disc herniation and a canal stenosis. Both discogenic and radicular pain also have either a mechanical and an inflammatory genesis. For to be richly innervated, facet joints can be a direct source of pain, while for their degenerative changes cause compression of nerve roots in lateral recesses and in the neural foramina. Degenerative instability is a common and often misdiagnosed cause of axial and radicular pain, being also a frequent indication for surgery. Acute pain tends to extinguish along with its cause, but the setting of complex processes of peripheral and central sensitization may influence its evolution in chronic

  10. Posterior spinal artery aneurysm rupture after 'Ecstasy' abuse.

    Science.gov (United States)

    Johnson, Jeremiah; Patel, Shnehal; Saraf-Lavi, Efrat; Aziz-Sultan, Mohammad Ali; Yavagal, Dileep R

    2015-07-01

    Posterior spinal artery (PSA) aneurysms are a rare cause of subarachnoid hemorrhage (SAH). The commonly abused street drug 3,4-methylenedioxymethamphetamine (MDMA) or 'Ecstasy' has been linked to both systemic and neurological complications. A teenager presented with neck stiffness, headaches and nausea after ingesting 'Ecstasy'. A brain CT was negative for SAH but a CT angiogram suggested cerebral vasculitis. A lumbar puncture showed SAH but a cerebral angiogram was negative. After a spinal MR angiogram identified abnormalities on the dorsal surface of the cervical spinal cord, a spinal angiogram demonstrated a left PSA 2 mm fusiform aneurysm. The patient underwent surgery and the aneurysmal portion of the PSA was excised without postoperative neurological sequelae. 'Ecstasy' can lead to neurovascular inflammation, intracranial hemorrhage, SAH and potentially even de novo aneurysm formation and subsequent rupture. PSA aneurysms may be treated by endovascular proximal vessel occlusion or open surgical excision.

  11. The effect of microgene pSVPoMcat to modify Schwann cell on GAP- 43 expression after spinal cord injury in adult rats%微基因修饰雪旺氏细胞移植对大鼠脊髓损伤后GAP-43表达的影响

    Institute of Scientific and Technical Information of China (English)

    陈礼刚; 高立达; 毛伯镛; 杨立斌; 李开慧

    2001-01-01

    Objective To study the effect of microgene pSVPoMcat implanted to modify schwann cell on growth associated protein-43(GAP-43) expression after spinal cord injury in adult rats.Method Hemisected of the T8 segment of the spinal cord was performed for all the experiment rats.The rats were randomly divided into three groups as follows:Group A with microgene pSVPoMcat implanted to genetically modify SC;Group B with SC implanted ;Group C with hemisection of the spinal cord only.The changes of expression of GAP-43 in spinal cord were observed by immunochemistry with antibodies against GAP-43 .Simultaneous,the combined behavioral scores(CBS)was measured.Result There were not any different(P >0.05)among the three groups in first week and 12 week.There were significant diffeence(P<0.05)among three groups in 2nd,8th,and more dxpression of GAP-43 at the 2nd week in group A.The neurofunctional recovery was best in group A.Conclusion The microgene pSVPoMcat implanted to modify schwann cell can promote the expression of GAP-43 in spinal cord and functional recovery in adults rats after SCI.

  12. Motor and dorsal root ganglion axons serve as choice points for the ipsilateral turning of dI3 axons.

    Science.gov (United States)

    Avraham, Oshri; Hadas, Yoav; Vald, Lilach; Hong, Seulgi; Song, Mi-Ryoung; Klar, Avihu

    2010-11-17

    The axons of the spinal intersegmental interneurons are projected longitudinally along various funiculi arrayed along the dorsal-ventral axis of the spinal cord. The roof plate and the floor plate have a profound role in patterning their initial axonal trajectory. However, other positional cues may guide the final architecture of interneuron tracks in the spinal cord. To gain more insight into the organization of specific axonal tracks in the spinal cord, we focused on the trajectory pattern of a genetically defined neuronal population, dI3 neurons, in the chick spinal cord. Exploitation of newly characterized enhancer elements allowed specific labeling of dI3 neurons and axons. dI3 axons are projected ipsilaterally along two longitudinal fascicules at the ventral lateral funiculus (VLF) and the dorsal funiculus (DF). dI3 axons change their trajectory plane from the transverse to the longitudinal axis at two novel checkpoints. The axons that elongate at the DF turn at the dorsal root entry zone, along the axons of the dorsal root ganglion (DRG) neurons, and the axons that elongate at the VLF turn along the axons of motor neurons. Loss and gain of function of the Lim-HD protein Isl1 demonstrate that Isl1 is not required for dI3 cell fate. However, Isl1 is sufficient to impose ipsilateral turning along the motor axons when expressed ectopically in the commissural dI1 neurons. The axonal patterning of dI3 neurons, revealed in this study, highlights the role of established axonal cues-the DRG and motor axons-as intermediate guidepost cues for dI3 axons.

  13. Electromyogram and pathological features of adult spinal muscle atrophy:analysis of 46 cases%成人型脊髓性肌萎缩症46例电生理与病理变化

    Institute of Scientific and Technical Information of China (English)

    张平; 何晓军; 陈立晔

    2003-01-01

    AIM: To study the electromyogram and muscular pathological features of adult spinal muscular atrophy(SMA4). METHODS: 46 cases of SMA4 were evaluated based on clinical, histopathology, enzyme histochemistry and ultrastructure. RESULTS: A mean age of the patients with SMA4 was 38.7 years, clinical progressed was slowly. Clinic manifestations mainly appeared proximal muscular weakness and progressive muscular atrophy, and there was a relatively good prognosis. Laboratory found: one-fourth of the disease had elevated serum creatine kinase levels. Eletromyogram revealed neurogenic damages. The muscular pathological changes showed small groups of atrophy of denervation, ATPase reaction showed fibre-type grouping of renervation and hypertrophy in muscle fibers. CONCLUSION: Muscle biopsy was important; it could to help to establish to diagnose the disorder and provided available cases for gene study.

  14. Spinal sagittal imbalance in patients with lumbar disc herniation: its spinopelvic characteristics, strength changes of the spinal musculature and natural history after lumbar discectomy

    OpenAIRE

    Liang, Chen; Sun, Jianmin; Cui, Xingang; Jiang, Zhensong; Zhang, Wen; Li, Tao

    2016-01-01

    Background Spinal sagittal imbalance is a widely acknowledged problem, but there is insufficient knowledge regarding its occurrence. In some patients with lumbar disc herniation (LDH), their symptom is similar to spinal sagittal imbalance. The aim of this study is to illustrate the spinopelvic sagittal characteristics and identity the role of spinal musculature in the mechanism of sagittal imbalance in patients with LDH. Methods Twenty-five adults with spinal sagittal imbalance who initially ...

  15. Spinal infections

    Energy Technology Data Exchange (ETDEWEB)

    Tali, E. Turgut E-mail: turguttali@gazi.edu.tr

    2004-05-01

    Spinal infections can be thought of as a spectrum of disease comprising spondylitis, discitis, spondylodiscitis, pyogenic facet arthropathy, epidural infections, meningitis, polyradiculopathy and myelitis. Radiological evaluations have gained importance in the diagnosis, treatment planning, treatment and treatment monitoring of the spinal infections. Conventional radiographs are usually the initial imaging study. The sensitivity and specificity of the plain radiographs are very low. The sensitivity of CT is higher while it lacks of specificity. Conventional CT has played minor role for the diagnosis of early spondylitis and disc space infection and for follow-up, researches are going on the value of MDCT. MRI is as sensitive, specific and accurate as combined nuclear medicine studies and the method of choice for the spondylitis. Low signal areas of the vertebral body, loss of definition of the end plates and interruption of the cortical continuity, destruction of the cortical margins are typical on T1WI whereas high signal of affected areas of the vertebral body and disc is typical on T2WI. Contrast is mandatory and increases conspicuity, specificity, and observer confidence in the diagnosis and facilitates the treatment planning. Contrast enhancement is the earliest sign and pathognomonic in the acute inflammatory episode and even in the subtle infection then persists to a varying degree for several weeks or months. The outcome of the treatment is influenced by the type of infection and by the degree of neurologic compromise before treatment. There is an increasing move away from surgical intervention towards conservative therapy, percutaneous drainage of abscess or both. It is therefore critical to monitor treatment response, particularly in the immuno-deficient population.

  16. Spinal fusion

    Science.gov (United States)

    ... remove some bone from the back of the rim of the pelvis. From a bone bank. This ... of your back at home Patient Instructions Bathroom safety - adults Preventing falls Preventing falls - what to ask ...

  17. Use of quadrupedal step training to re-engage spinal interneuronal networks and improve locomotor function after spinal cord injury

    OpenAIRE

    Shah, Prithvi K.; Garcia-Alias, Guillermo; Choe, Jaehoon; Gad, Parag; Gerasimenko, Yury; Tillakaratne, Niranjala; Zhong, Hui; Roy, Roland R.; Edgerton, V. Reggie

    2013-01-01

    Can lower limb motor function be improved after a spinal cord lesion by re-engaging functional activity of the upper limbs? We addressed this issue by training the forelimbs in conjunction with the hindlimbs after a thoracic spinal cord hemisection in adult rats. The spinal circuitries were more excitable, and behavioural and electrophysiological analyses showed improved hindlimb function when the forelimbs were engaged simultaneously with the hindlimbs during treadmill step-training as oppos...

  18. Pharmacological characterization of serotonin receptor subtypes modulating primary afferent input to deep dorsal horn neurons in the neonatal rat

    OpenAIRE

    Garraway, Sandra M.; Hochman, Shawn

    2001-01-01

    Spinal cord slices and whole-cell patch clamp recordings were used to investigate the effects of serotonergic receptor ligands on dorsal root-evoked synaptic responses in deep dorsal horn (DDH) neurons of the neonatal rat at postnatal days (P) 3 – 6 and P10 – 14.Bath applied 5-hydroxytryptamine (5-HT) potently depressed synaptic responses in most neurons. Similarly, the 5-HT1/7 receptor agonist, 5-carboxamidotryptamine (5-CT) depressed synaptic responses. This action was probably mediated by ...

  19. A role for bombesin in sensory processing in the spinal cord.

    Science.gov (United States)

    O'Donohue, T L; Massari, V J; Pazoles, C J; Chronwall, B M; Shults, C W; Quirion, R; Chase, T N; Moody, T W

    1984-12-01

    Bombesin (BN)-containing neuronal processes were demonstrated in laminae I and II of the dorsal horn of the cat, rat, and mouse spinal cord by immunocytochemistry and radioimmunoassay. Dorsal rhizotomy in the cat resulted in a marked decrease in BN immunoreactivity in the dorsal horn indicating that BN is contained in primary sensory afferents. BN-binding sites were also localized in superficial laminae of the dorsal horn. The presence of both BN and BN-binding sites in the dorsal horn suggested that BN may be involved in sensory processing in the spinal cord. Consistent with this hypothesis, it was demonstrated that an injection of BN into the spinal cord caused a biting and scratching response indicative of sensory stimulation. The effect was similar to that observed after injection of substance P into the cord with the exception that the BN effect lasted about 100 times longer than that induced by substance P. Taken together, these data indicate that BN may be a neurotransmitter of primary sensory afferents to the spinal cord. PMID:6094746

  20. Adult Scheuermann’s disease as cause of mechanic dorsalgia

    Directory of Open Access Journals (Sweden)

    F.P. Cantatore

    2011-09-01

    Full Text Available Scheuermann’s disease (SD or vertebral osteochondrosis is the most frequent cause of non postural kyphosis and one of more frequent cause of adolescent’s dorsalgia. The criteria for the diagnosis are: more than 5° of wedging of at least three adjacent vertebrae at the apex of the kyphosis; a toracic kyphosis of more than 45° of Cobb’s degree; Schmorl’s nodes and endplates irregularities. In addition to classic SD, there are radiological alterations that remain asintomatic for a long time to reveal in adult age: in that case it speaks of adult Scheuermann’s disease (ASD. We considered the diagnosis of patients came from April 2006 to April 2007 on Day Hospital in our Clinic. ASD was diagnosed, besides, in 10 of these patients. 7 patients had previous diagnosis such as: dorsal Spondiloarthrosis (4 subjects; Osteoporosis with vertebral fractures (3 subjects. All these diagnosis was not confirmed by us. In case of chronic dorsalgia of adult, ASD is rarely considered as differential diagnosis. Besides, the vertebral dorsalgia, even in absence of red flags as fever, astenia, ipersedimetry, functional loss and aching spinal processes to tapping, could hide a serious scene that lead us to be careful in the differential diagnosis, because of similar radiological pictures of the MSA to other pathology as spondylodiscitis, primitive or metastasic spinal tumors, and brittleness vertebral fractures

  1. Building bridges with astrocytes for spinal cord repair

    OpenAIRE

    Miller, Robert H.

    2006-01-01

    Simultaneous suppression of glial scarring and a general enhancement of axonal outgrowth has now been accomplished in an adult rat model of spinal cord transection. Transplantation of a novel astrocyte cell type derived from glial-restricted precursors in vitro raise the eventual possibility of cellular therapy for spinal cord injury.

  2. Spontaneous axonal regeneration in rodent spinal cord after ischemic injury

    DEFF Research Database (Denmark)

    von Euler, Mia; Janson, A M; Larsen, Jytte Overgaard;

    2002-01-01

    Here we present evidence for spontaneous and long-lasting regeneration of CNS axons after spinal cord lesions in adult rats. The length of 200 kD neurofilament (NF)-immunolabeled axons was estimated after photochemically induced ischemic spinal cord lesions using a stereological tool. The total l...

  3. Development and regulation of response properties in spinal cord motoneurons

    DEFF Research Database (Denmark)

    Perrier, J F; Hounsgaard, J

    2000-01-01

    vertebrates in terms of both phylogeny and ontogeny. Spinal motoneurons in adults are remarkably similar in many respects ranging from the resting membrane potential to pacemaker properties. Apart from the axolotls, spinal motoneurons from all species investigated have latent intrinsic response properties...

  4. UK DRAFFT - A randomised controlled trial of percutaneous fixation with kirschner wires versus volar locking-plate fixation in the treatment of adult patients with a dorsally displaced fracture of the distal radius

    OpenAIRE

    Brown Jaclyn; Edlin Richard P; Rangan Amar; Parsons Nick R; Achten Juul; Costa Matthew L; Lamb Sarah E

    2011-01-01

    Abstract Background Fractures of the distal radius are extremely common injuries in adults. However, the optimal management remains controversial. In general, fractures of the distal radius are treated non-operatively if the bone fragments can be held in anatomical alignment by a plaster cast or orthotic. However, if this is not possible, then operative fixation is required. There are several operative options but the two most common in the UK, are Kirschner-wire fixation (K-wires) and volar ...

  5. Magnetic Resonance Imaging in occult spinal dysraphism

    International Nuclear Information System (INIS)

    A prospective study was carried out in 100 cases of suspected occult spinal dysraphic anomalies with Magnetic Resonance Imaging (MRI) in order to determine its diagnostic efficacy as the initial imaging modality. MR imaging provided accurate preoperative information in 91 out of 92 cases (98.9%). Some of the unusual and interesting findings in the series were: presence of intrinsic cord abnormality in 19 out of 21 cases (90.4%) with a normal plain radiography, 4 cases of diastematomyelia with a dermoid in the dorsal and lumbar region associated with syringohydromyelia, intradural fibrous/glial bands, syringo-hydromyelia/myelomalacia of the conus with tethered cord syndrome having a normally paced conus, and myelocystocele. It is concluded that MRI is an excellent primary diagnostic tool, together with a plain radiography, for complete preoperative evaluation of mid-line spinal anomalies. 14 refs., 3 tabs., 7 figs

  6. Primary osseous tumors of the pediatric spinal column: review of pathology and surgical decision making.

    Science.gov (United States)

    Ravindra, Vijay M; Eli, Ilyas M; Schmidt, Meic H; Brockmeyer, Douglas L

    2016-08-01

    Spinal column tumors are rare in children and young adults, accounting for only 1% of all spine and spinal cord tumors combined. They often present diagnostic and therapeutic challenges. In this article, the authors review the current management of primary osseous tumors of the pediatric spinal column and highlight diagnosis, management, and surgical decision making.

  7. Primary osseous tumors of the pediatric spinal column: review of pathology and surgical decision making.

    Science.gov (United States)

    Ravindra, Vijay M; Eli, Ilyas M; Schmidt, Meic H; Brockmeyer, Douglas L

    2016-08-01

    Spinal column tumors are rare in children and young adults, accounting for only 1% of all spine and spinal cord tumors combined. They often present diagnostic and therapeutic challenges. In this article, the authors review the current management of primary osseous tumors of the pediatric spinal column and highlight diagnosis, management, and surgical decision making. PMID:27476845

  8. Dorsal horn neurons release extracellular ATP in a VNUT-dependent manner that underlies neuropathic pain.

    Science.gov (United States)

    Masuda, Takahiro; Ozono, Yui; Mikuriya, Satsuki; Kohro, Yuta; Tozaki-Saitoh, Hidetoshi; Iwatsuki, Ken; Uneyama, Hisayuki; Ichikawa, Reiko; Salter, Michael W; Tsuda, Makoto; Inoue, Kazuhide

    2016-01-01

    Activation of purinergic receptors in the spinal cord by extracellular ATP is essential for neuropathic hypersensitivity after peripheral nerve injury (PNI). However, the cell type responsible for releasing ATP within the spinal cord after PNI is unknown. Here we show that PNI increases expression of vesicular nucleotide transporter (VNUT) in the spinal cord. Extracellular ATP content ([ATP]e) within the spinal cord was increased after PNI, and this increase was suppressed by exocytotic inhibitors. Mice lacking VNUT did not show PNI-induced increase in [ATP]e and had attenuated hypersensitivity. These phenotypes were recapitulated in mice with specific deletion of VNUT in spinal dorsal horn (SDH) neurons, but not in mice lacking VNUT in primary sensory neurons, microglia or astrocytes. Conversely, ectopic VNUT expression in SDH neurons of VNUT-deficient mice restored PNI-induced increase in [ATP]e and pain. Thus, VNUT is necessary for exocytotic ATP release from SDH neurons which contributes to neuropathic pain. PMID:27515581

  9. Expression of gdnf and nos in adult zebrafish brain during the regeneration after spinal cord injury%成年斑马鱼脊髓损伤修复中脑gdnf 和nos 基因的表达

    Institute of Scientific and Technical Information of China (English)

    谢琳; 房萍; 林金飞; 潘洪超; 张帆; 申延琴

    2013-01-01

    成年斑马鱼(Danio rerio)具有很强的脊髓损伤后自主修复的能力,但目前其机制不明.为了研究斑马鱼中脑组织对脊髓再生的影响,文章应用成年斑马鱼脊髓损伤模型,采用实时定量PCR 方法和原位杂交技术,检测了斑马鱼脑中胶质细胞源性神经营养因子(gdnf)和一氧化氮合酶(nos)基因在脊髓损伤后4 h、12 h、6 d、11 d的表达情况,展示了这两种基因在斑马鱼脑内不同核团的动态表达变化.结果显示,成年斑马鱼脊髓损伤后,神经营养因子gdnf 基因在损伤急性期(4 h、12 h)和神经修复期(6 d、11 d)于斑马鱼脑内呈现显著性升高(P<0.05),而一氧化氮合酶基因nos 的表达于损伤急性期显著性升高 (P<0.05),随后下降,并在修复期 (11 d)显著降低(P<0.05).这表明,脊髓损伤后,高表达gdnf 基因同时低表达nos 基因的脑环境给脊髓损伤提供了良好的神经再生微环境,从而可能促进轴突的再生长及运动能力的恢复.%Recently, it is unclear about the mechanism of notable regenerated ability of adult zebrafish after spinal cord injury. To investigate the effects of brain on restoration from spinal cord injury, adult zebrafish spinal cord injury model was built and brain samples were dissected at different time points after the injury. Real-time quantitative PCR and in situ hybridization were applied to reveal the dynamics of glial cell line-derived neurotrophic factor (gdnf) and nitric oxide synthases (nos) mRNA expression in various regions of zebrafish brain. The results showed that, compared to sham group at each time points separately, the expression of gdnf mRNA in adult zebrafish brain during both acute phase (4 h and 12 h) and chronic phase of neuroregeneration (6 d and 11d) increased significantly (P<0.05). The expression of nos mRNA in zebrafish brain enhanced during acute phase, and then reduced to the level lower than the sham group during the chronic phase of neuroregeneration

  10. Neurotransmitter map of the asymmetric dorsal habenular nuclei of zebrafish

    Science.gov (United States)

    deCarvalho, Tagide N.; Subedi, Abhignya; Rock, Jason; Harfe, Brian D.; Thisse, Christine; Thisse, Bernard; Halpern, Marnie E.; Hong, Elim

    2014-01-01

    The role of the habenular nuclei in modulating fear and reward pathways has sparked a renewed interest in this conserved forebrain region. The bilaterally paired habenular nuclei, each consisting of a medial/dorsal and lateral/ventral nucleus, can be further divided into discrete subdomains whose neuronal populations, precise connectivity and specific functions are not well understood. An added complexity is that the left and right habenulae show pronounced morphological differences in many non-mammalian species. Notably, the dorsal habenulae of larval zebrafish provide a vertebrate genetic model to probe the development and functional significance of brain asymmetry. Previous reports have described a number of genes that are expressed in the zebrafish habenulae, either in bilaterally symmetric patterns or more extensively on one side of the brain than the other. The goal of our study was to generate a comprehensive map of the zebrafish dorsal habenular nuclei, by delineating the relationship between gene expression domains, comparing the extent of left-right asymmetry at larval and adult stages, and identifying potentially functional subnuclear regions as defined by neurotransmitter phenotype. While many aspects of habenular organization appear conserved with rodents, the zebrafish habenulae also possess unique properties that may underlie lateralization of their functions. PMID:24753112

  11. Wound management with vacuum-assisted closure in postoperative infections after surgery for spinal stenosis

    OpenAIRE

    Karaaslan F; Erdem Ş; Mermerkaya MU

    2014-01-01

    Fatih Karaaslan,1 Şevki Erdem,2 Musa Ugur Mermerkaya11Department of Orthopaedics and Traumatology, Bozok University Medical School, Yozgat, Turkey; 2Department of Orthopaedics and Traumatology, Haydarpasa Numune Training Hospital, Istanbul, TurkeyObjective: To evaluate the results of negative-pressure wound therapy (NPWT) in the treatment of surgical spinal site infections.Materials and methods: The use of NPWT in postoperative infections after dorsal spinal surgery (transforaminal lumbar in...

  12. Intrathecal lidocaine pretreatment attenuates immediate neuropathic pain by modulating Nav1.3 expression and decreasing spinal microglial activation

    Directory of Open Access Journals (Sweden)

    Wang Hung-Chen

    2011-06-01

    Full Text Available Abstract Background Intrathecal lidocaine reverses tactile allodynia after nerve injury, but whether neuropathic pain is attenuated by intrathecal lidocaine pretreatment is uncertain. Methods Sixty six adult male Sprague-Dawley rats were divided into three treatment groups: (1 sham (Group S, which underwent removal of the L6 transverse process; (2 ligated (Group L, which underwent left L5 spinal nerve ligation (SNL; and (3 pretreated (Group P, which underwent L5 SNL and was pretreated with intrathecal 2% lidocaine (50 μl. Neuropathic pain was assessed based on behavioral responses to thermal and mechanical stimuli. Expression of sodium channels (Nav1.3 and Nav1.8 in injured dorsal root ganglia and microglial proliferation/activation in the spinal cord were measured on post-operative days 3 (POD3 and 7 (POD7. Results Group L presented abnormal behavioral responses indicative of mechanical allodynia and thermal hyperalgesia, exhibited up-regulation of Nav1.3 and down-regulation of Nav1.8, and showed increased microglial activation. Compared with ligation only, pretreatment with intrathecal lidocaine before nerve injury (Group P, as measured on POD3, palliated both mechanical allodynia (p p 1.3 up-regulation (p = 0.003, and mitigated spinal microglial activation (p = 0.026 by inhibiting phosphorylation (activation of p38 MAP kinase (p = 0.034. p38 activation was also suppressed on POD7 (p = 0.002. Conclusions Intrathecal lidocaine prior to SNL blunts the response to noxious stimuli by attenuating Nav1.3 up-regulation and suppressing activation of spinal microglia. Although its effects are limited to 3 days, intrathecal lidocaine pretreatment can alleviate acute SNL-induced neuropathic pain.

  13. Time Course of Immediate Early Gene Protein Expression in the Spinal Cord following Conditioning Stimulation of the Sciatic Nerve in Rats

    NARCIS (Netherlands)

    Bojovic, Ognjen; Panja, Deb; Bittins, Margarethe; Bramham, Clive R.; Tjolsen, Arne

    2015-01-01

    Long-term potentiation induced by conditioning electrical stimulation of afferent fibers is a widely studied form of synaptic plasticity in the brain and the spinal cord. In the spinal cord dorsal horn, long-term potentiation is induced by a series of high-frequency trains applied to primary afferen

  14. Bupivacaína a 0,15% hipobárica para raquianestesia posterior (dorsal versus bupivacaína a 0,5% hiperbárica para procedimentos cirúrgicos anorretais em regime ambulatorial Bupivacaína a 0,15% hipobárica para raquianestesia posterior (dorsal versus bupivacaína a 0,5% hiperbara para procedimientos quirúrgicos anorrectales en régimen ambulatorial Hypobaric 0.15% bupivacaine versus hyperbaric 0.5% bupivacaine for posterior (dorsal spinal block in outpatient anorectal surgery

    Directory of Open Access Journals (Sweden)

    Luiz Eduardo Imbelloni

    2006-12-01

    OBJECTIVES: The aim of this study was to study low dose hypobaric 0.15% bupivacaine and hyperbaric 0.5% bupivacaine in outpatient anorectal surgical procedures. METHODS: Two groups of 50 patients, physical status ASA I and II, undergoing anorectal surgical procedures in a jackknife position, received 6 mg of hypobaric 0.15% bupivacaine in the surgical position (Group 1 or 6 mg of hyperbaric 0.5% bupivacaine in the sitting position for 5 minutes, after which they were placed in a jackknife position (Group 2. Sensitive and motor blockade, time of first urination, ambulation, complications, and the need for analgesics were evaluated. Patients were followed until the third postoperative day and questioned whether they experienced post-puncture headache or temporary neurological symptoms, and until the 30th day and questioned about permanent neurological complications. The test t Student, Mood's median, and Fisher Exact test were used for statistical analysis, and a p < 0.05 was considered significant. RESULTS: Every patient in Group 1 presented selective blockade of the posterior sacral nerve roots, while patients in Group 2 experienced blockade of the anterior and posterior nerve roots. Blockade was significantly higher in Group 1. Motor blockade was significantly less severe in Group 1. Forty-nine patients in Group 1 transferred to the stretcher unassisted while only 40 patients in Group 2 were able to do so. Recovery in Group 1 occurred in 105 ± 25 minutes and in 95 ± 15 minutes in Group 2, and this difference was not statistically significant. There were no hemodynamic changes, nausea or vomiting, urine retention, or post-puncture headache. CONCLUSIONS: Anorectal surgical procedures under spinal block with low dose bupivacaine, hyperbaric or hypobaric, can be safely done.

  15. Inhibiting spinal neuron-astrocytic activation correlates with synergistic analgesia of dexmedetomidine and ropivacaine.

    Directory of Open Access Journals (Sweden)

    Huang-Hui Wu

    Full Text Available BACKGROUND: This study aims to identify that intrathecal (i.t. injection of dexmedetomidine (Dex and ropivacaine (Ropi induces synergistic analgesia on chronic inflammatory pain and is accompanied with corresponding "neuron-astrocytic" alterations. METHODS: Male, adult Sprague-Dawley rats were randomly divided into sham, control and i.t. medication groups. The analgesia profiles of i.t. Dex, Ropi, and their combination detected by Hargreaves heat test were investigated on the subcutaneous (s.c. injection of complete Freund adjuvant (CFA induced chronic pain in rat and their synergistic analgesia was confirmed by using isobolographic analysis. During consecutive daily administration, pain behavior was daily recorded, and immunohistochemical staining was applied to investigate the number of Fos-immunoreactive (Fos-ir neurons on hour 2 and day 1, 3 and 7, and the expression of glial fibrillary acidic protein (GFAP within the spinal dorsal horn (SDH on day 1, 3, 5 and 7 after s.c. injection of CFA, respectively, and then Western blot to examine spinal GFAP and β-actin levels on day 3 and 7. RESULTS: i.t. Dex or Ropi displayed a short-term analgesia in a dose-dependent manner, and consecutive daily administrations of their combination showed synergistic analgesia and remarkably down-regulated neuronal and astrocytic activations indicated by decreases in the number of Fos-ir neurons and the GFAP expression within the SDH, respectively. CONCLUSION: i.t. co-delivery of Dex and Ropi shows synergistic analgesia on the chronic inflammatory pain, in which spinal "neuron-astrocytic activation" mechanism may play an important role.

  16. Spinal osteomyelitis caused by Proteus mirabilis in a child

    NARCIS (Netherlands)

    deWeerd, W; Kimpen, JLL; Miedema, CJ

    1997-01-01

    Osteomyelitis due to Proteus mirabilis is rare. Spinal osteomyelitis caused by this organism has only been described in adults. This is the first paediatric case of P. mirabilis vertebral osteomyelitis.

  17. The influence of protein-calorie malnutrition on the development of paranodal regions in spinal roots. A study with the OTAN method on rat.

    Science.gov (United States)

    Nordborg, C

    1977-11-28

    During the early postnatal development of spinal roots in rats paranodal regions were often found, containing OTAN-positive inclusions in the Schwann cell cytoplasm. The presence of OTAN-positive paranodal regions showed variations in time, which were synchronous for ventral and dorsal roots. Dorsal roots, however, showed a more marked presence during development than ventral roots. Spinal roots of animals submitted to a 50% food restriction, were shown to contain more OTAN-positive paranodal regions than controls. This was true for ventral as well as dorsal roots. It is suggested that crowding of internodal segments could be one factor, determining the presence of paranodal, OTAN-positive material. PMID:414508

  18. Spinal Cord Infarction

    Science.gov (United States)

    ... treatments Functional and Dysfunctional Spinal Circuitry: Role for Rehabilitation and Neural Prostheses Summary of NINDS New Strategies in Spinal Cord Injury workshop held June, 2000. NINDS Workshop on Re- ...

  19. Spinal Cord Dysfunction (SCD)

    Data.gov (United States)

    Department of Veterans Affairs — The Spinal Cord Dysfunction (SCD) module supports the maintenance of local and national registries for the tracking of patients with spinal cord injury and disease...

  20. Spinal Cord Injury 101

    Medline Plus

    Full Text Available ... the use of electrical stimulation for spinal cord injuries? What is "Braingate" research? What is the status of stem-cell research? How would stem-cell therapies work in the treatment of spinal cord injuries? ...

  1. Spinal Cord Injury 101

    Medline Plus

    Full Text Available ... injury? What is the "Spinal Cord Injury Model Systems" program? ... family FacingDisability is designed to provide Internet-based information and support for people with spinal cord injuries ...

  2. Spinal Cord Injury 101

    Medline Plus

    Full Text Available ... Patient Partnerships How Social Workers Help Transitions How Social Workers Help Transitions Occupational Therapy After Spinal Cord Injury Occupational Therapy After Spinal Cord Injury How Occupational Therapists Work How Occupational Therapists Work Occupational Therapy Enables Daily ...

  3. Spinal Muscular Atrophy

    Science.gov (United States)

    Spinal muscular atrophy (SMA) is a genetic disease that attacks nerve cells, called motor neurons, in the spinal cord. These cells communicate with your voluntary muscles - the ones you can control, like in your ...

  4. Effects of electrode geometry and combination on nerve fibre selectivity in spinal cord stimulation.

    Science.gov (United States)

    Holsheimer, J; Struijk, J J; Tas, N R

    1995-09-01

    The differential effects of the geometry of a rostrocaudal array of electrode contacts on dorsal column fibre and dorsal root fibre activation in spinal cord stimulation are analysed theoretically. 3-D models of the mid-cervical and mid-thoracic vertebral areas are used for the computation of stimulation induced field potentials, whereas a cable model of myelinated nerve fibre is used for the calculation of the excitation thresholds of large dorsal column and dorsal root fibres. The size and spacing of 2-D rectangular electrode contacts are varied while mono-, bi- and tripolar stimulation are applied. The model predicts that the highest preferential stimulation of dorsal root fibres is obtained in monopolar stimulation with a large cathode, whereas dorsal column fibre preference is highest in tripolar stimulation with small contacts and small contact spacings. Fibre type preference is most sensitive to variations of rostrocaudal contact size and least sensitive to variations of lateral contact size. Dorsal root fibre preference is increased and sensitivity to lead geometry is reduced as the distance from contacts to spinal cord is increased.

  5. Prospectively isolated CD133/CD24-positive ependymal cells from the adult spinal cord and lateral ventricle wall differ in their long-term in vitro self-renewal and in vivo gene expression.

    Science.gov (United States)

    Pfenninger, Cosima V; Steinhoff, Christine; Hertwig, Falk; Nuber, Ulrike A

    2011-01-01

    In contrast to ependymal cells located above the subventricular zone (SVZ) of the adult lateral ventricle wall (LVW), adult spinal cord (SC) ependymal cells possess certain neural stem cell characteristics. The molecular basis of this difference is unknown. In this study, antibodies against multiple cell surface markers were applied to isolate pure populations of SC and LVW ependymal cells, which allowed a direct comparison of their in vitro behavior and in vivo gene expression profile. Isolated CD133(+)/CD24(+)/CD45(-)/CD34(-) ependymal cells from the SC displayed in vitro self-renewal and differentiation capacity, whereas those from the LVW did not. SC ependymal cells showed a higher expression of several genes involved in cell division, cell cycle regulation, and chromosome stability, which is consistent with a long-term self-renewal capacity, and shared certain transcripts with neural stem cells of the embryonic forebrain. They also expressed several retinoic acid (RA)-regulated genes and responded to RA exposure. LVW ependymal cells showed higher transcript levels of many genes regulated by transforming growth factor-β family members. Among them were Dlx2, Id2, Hey1, which together with Foxg1 could explain their potential to turn into neuroblasts under certain environmental conditions. PMID:21046556

  6. Spinal Cord Injury 101

    Medline Plus

    Full Text Available ... Coping with a New Injury Adjusting to Social Life in a Wheelchair Adjusting to Social Life in a Wheelchair Substance Abuse and Spinal Cord ... Substance Abuse and Spinal Cord Injury How Family Life Changes After Spinal Cord Injury How Family Life ...

  7. Brain and Spinal Tumors

    Science.gov (United States)

    ... Awards Enhancing Diversity Find People About NINDS NINDS Brain and Spinal Tumors Information Page Synonym(s): Spinal Cord ... en Español Additional resources from MedlinePlus What are Brain and Spinal Tumors? Tumors of the brain and ...

  8. Spinal Cord Injuries

    Science.gov (United States)

    ... forth between your body and your brain. A spinal cord injury disrupts the signals. Spinal cord injuries usually begin with a blow that fractures or ... down on the nerve parts that carry signals. Spinal cord injuries can be complete or incomplete. With a complete ...

  9. Spinal Cord Diseases

    Science.gov (United States)

    ... damages the vertebrae or other parts of the spine, this can also injure the spinal cord. Other spinal cord problems include Tumors Infections such as meningitis and polio Inflammatory diseases Autoimmune diseases Degenerative diseases such as amyotrophic lateral sclerosis and spinal ...

  10. Mirror Neurons System Engagement in Late Adolescents and Adults While Viewing Emotional Gestures.

    Directory of Open Access Journals (Sweden)

    Emilie Salvia

    2016-07-01

    Full Text Available Observing others’ actions enhances muscle-specific cortico-spinal excitability, reflecting putative mirror neurons activity. The exposure to emotional stimuli also modulates cortico-spinal excitability. We investigated how those two phenomena might interact when they are combined, i.e. while observing a gesture performed with an emotion, and whether they change during the transition between adolescence and adulthood, a period of social and brain maturation.We delivered single-pulse transcranial magnetic stimulation (TMS over the hand area of the left primary motor cortex of 27 healthy adults and adolescents and recorded their right first dorsal interossus (FDI muscle activity (i.e. motor evoked potential – MEP, while they viewed either videos of neutral or angry hand actions and facial expressions, or neutral objects as a control condition. We reproduced the motor resonance and the emotion effects -- hand-actions and emotional stimuli induced greater cortico-spinal excitability than the faces / control condition and neutral videos, respectively. Moreover, the influence of emotion was present for faces but not for hand actions, indicating that the motor resonance and the emotion effect might be non-additive. While motor resonance was observed in both groups, the emotion effect was present only in adults and not in adolescents. We discuss the possible neural bases of these findings.

  11. Mirror Neurons System Engagement in Late Adolescents and Adults While Viewing Emotional Gestures.

    Science.gov (United States)

    Salvia, Emilie; Süß, Moritz; Tivadar, Ruxandra; Harkness, Sarah; Grosbras, Marie-Hélène

    2016-01-01

    Observing others' actions enhances muscle-specific cortico-spinal excitability, reflecting putative mirror neurons activity. The exposure to emotional stimuli also modulates cortico-spinal excitability. We investigated how those two phenomena might interact when they are combined, i.e., while observing a gesture performed with an emotion, and whether they change during the transition between adolescence and adulthood, a period of social and brain maturation. We delivered single-pulse transcranial magnetic stimulation (TMS) over the hand area of the left primary motor cortex of 27 healthy adults and adolescents and recorded their right first dorsal interossus (FDI) muscle activity (i.e., motor evoked potential - MEP), while they viewed either videos of neutral or angry hand actions and facial expressions, or neutral objects as a control condition. We reproduced the motor resonance and the emotion effects - hand-actions and emotional stimuli induced greater cortico-spinal excitability than the faces/control condition and neutral videos, respectively. Moreover, the influence of emotion was present for faces but not for hand actions, indicating that the motor resonance and the emotion effects might be non-additive. While motor resonance was observed in both groups, the emotion effect was present only in adults and not in adolescents. We discuss the possible neural bases of these findings.

  12. Mirror Neurons System Engagement in Late Adolescents and Adults While Viewing Emotional Gestures

    Science.gov (United States)

    Salvia, Emilie; Süß, Moritz; Tivadar, Ruxandra; Harkness, Sarah; Grosbras, Marie-Hélène

    2016-01-01

    Observing others’ actions enhances muscle-specific cortico-spinal excitability, reflecting putative mirror neurons activity. The exposure to emotional stimuli also modulates cortico-spinal excitability. We investigated how those two phenomena might interact when they are combined, i.e., while observing a gesture performed with an emotion, and whether they change during the transition between adolescence and adulthood, a period of social and brain maturation. We delivered single-pulse transcranial magnetic stimulation (TMS) over the hand area of the left primary motor cortex of 27 healthy adults and adolescents and recorded their right first dorsal interossus (FDI) muscle activity (i.e., motor evoked potential – MEP), while they viewed either videos of neutral or angry hand actions and facial expressions, or neutral objects as a control condition. We reproduced the motor resonance and the emotion effects – hand-actions and emotional stimuli induced greater cortico-spinal excitability than the faces/control condition and neutral videos, respectively. Moreover, the influence of emotion was present for faces but not for hand actions, indicating that the motor resonance and the emotion effects might be non-additive. While motor resonance was observed in both groups, the emotion effect was present only in adults and not in adolescents. We discuss the possible neural bases of these findings. PMID:27489547

  13. Muscle structure and innervation are affected by loss of Dorsal in the fruit fly, Drosophila melanogaster.

    Science.gov (United States)

    Cantera, R; Kozlova, T; Barillas-Mury, C; Kafatos, F C

    1999-02-01

    In Drosophila, the Rel-protein Dorsal and its inhibitor, Cactus, act in signal transduction pathways that control the establishment of dorsoventral polarity during embryogenesis and the immune response during postembryonic life. Here we present data indicating that Dorsal is also involved in the control of development and maintenance of innervation in somatic muscles. Dorsal and Cactus are colocalized in all somatic muscles during postembryonic development. In larvae and adults, these proteins are distributed at low levels in the cytoplasm and nuclei and at much higher levels in the postsynaptic component of glutamatergic neuromuscular junctions. Absence of Dorsal, in homozygous dorsal mutant larvae results in muscle misinsertions, duplications, nuclear hypotrophy, disorganization of actin bundles, and altered subcellular distribution of Cactus. Some muscles show very abnormal neuromuscular junctions, and some motor axon terminals are transformed into growth cone-like structures embedded in synaptotagmin-enriched vesicles. The detailed phenotype suggests a role of Dorsal signalling in the maintenance and plasticity of the NMJ. PMID:10192771

  14. Localization of vesicular glutamate transporter 2 mRNA in the dorsal root ganglion of the pigeon (Columba livia).

    Science.gov (United States)

    Atoji, Y; Islam, M R

    2009-11-01

    Our previous study showed localization of glutamate receptor 1 (GluR1) mRNA in neurons of the pigeon spinal cord, suggesting glutamatergic input from intrinsic and extrinsic origins. The present study examined localization of vesicular glutamate transporter 2 (VGLUT2) mRNA to confirm an extrinsic origin of glutamatergic neurons in the dorsal root ganglion (DRG). GluR1 and GluR2 mRNAs were examined in DRG and spinal cord to seek projection regions from VGLUT2 mRNA-expressing neurons. VGLUT2 mRNA was expressed in most DRG neurons and labelling intensity varied from weakly to intensely. Intense VGLUT2 mRNA expression was mainly seen in medium to large neurons. GluR1 and GluR2 mRNAs were expressed in the dorsal horn and GluR2 mRNA signal was also seen in the marginal nucleus. The results suggest that the pigeon DRG has an extrinsic glutamatergic origin that project to the dorsal horn and marginal nucleus of the spinal cord. PMID:19821818

  15. Clinical Observation of Spinal Nerve Dorsal Root Impulse Radio Frequency Combined with Epidural Nerve Block in the Treatment of Post Herpes Zoster Neuralgia%脊神经背根脉冲射频联合硬膜外神经阻滞治疗带状疱疹后神经痛的临床观察

    Institute of Scientific and Technical Information of China (English)

    邓茹; 刘庆

    2016-01-01

    目的:采用新型微创脊神经背根脉冲射频联合硬膜外神经阻滞治疗带状疱疹后神经痛,探讨两种方法结合治疗带状疱疹后神经痛的临床疗效,观测它和生活质量之间关系,从而为PHN治疗提供借。方法以泸州医学院附属中医院疼痛科2011年12月~2012年12月符合标准的带状疱疹后神经痛患者60例作为研究对象。并随机将其划分成硬膜外神经阻滞复合加巴喷丁和硬膜外神经阻滞复合加巴喷丁+脊神经背根脉冲射频组。进行五次A、B两组患者的视觉模拟评分,自评抑郁量表以及焦虑自评量表评分。结果①VAS评分、抑郁评分院与T0比较,A组和B组T1~T4时VAS评分、抑郁评分显著降低。和A组相比,B组T1~T4各时点VAS评分、抑郁评分显著降低。②焦虑评分院与T0比较,A组和B组T1~T4时焦虑评分显著降低;与A组比较,B组T2~T4各时点焦虑评分显著降低。结论①两种方案治疗PHN均有效,但联合脊神经背根脉冲射频疗效更好。②PHN患者的抑郁和焦虑评分随着疼痛的缓解降低。%Objective A new minimally invasive dorsal root pulsed radiofrequency treatment combined with epidural nerve block postherpetic neuralgia, explore the relationship between clinical efficacy neuralgia, observing that the two methods and quality of life after combined treatment of herpes zoster , by providing for the treatment of PHN. Methods Affiliated Hospital of Luzhou Pain in December 2011 - after the period December 2012-compliant herpetic neuralgia 60 patients for the study. And randomly divided into epidural nerve block combined gabapentin (A group, n=30) and epidural nerve block combined gabapentin+dorsal root pulsed radiofrequency (group B, n=30). Five times A, B groups were visual analog scale, self-rating depression scale and self-rating anxiety scale score. Results ①VAS score, depression score: Compared with T0, A group A and group B T1-T4 when the VAS

  16. PKMζ is essential for spinal plasticity underlying the maintenance of persistent pain

    Directory of Open Access Journals (Sweden)

    Laferrière Andre

    2011-12-01

    Full Text Available Abstract Background Chronic pain occurs when normally protective acute pain becomes pathologically persistent. We examined here whether an isoform of protein kinase C (PKC, PKMζ, that underlies long-term memory storage in various brain regions, also sustains nociceptive plasticity in spinal cord dorsal horn (SCDH mediating persistent pain. Results Cutaneous injury or spinal stimulation produced persistent increases of PKMζ, but not other atypical PKCs in SCDH. Inhibiting spinal PKMζ, but not full-length PKCs, reversed plasticity-dependent persistent painful responses to hind paw formalin and secondary mechanical hypersensitivity and SCDH neuron sensitization after hind paw capsaicin, without affecting peripheral sensitization-dependent primary heat hypersensitivity after hind paw capsaicin. Inhibiting spinal PKMζ, but not full-length PKCs, also reversed mechanical hypersensitivity in the rat hind paw induced by spinal stimulation with intrathecal dihydroxyphenylglycine. Spinal PKMζ inhibition also alleviated allodynia 3 weeks after ischemic injury in rats with chronic post-ischemia pain (CPIP, at a point when allodynia depends on spinal changes. In contrast, spinal PKMζ inhibition did not affect allodynia in rats with chronic contriction injury (CCI of the sciatic nerve, or CPIP rats early after ischemic injury, when allodynia depends on ongoing peripheral inputs. Conclusions These results suggest spinal PKMζ is essential for the maintenance of persistent pain by sustaining spinal nociceptive plasticity.

  17. Spinal infections in children: A review.

    Science.gov (United States)

    Tyagi, Rahul

    2016-12-01

    Spinal infections are uncommon but significant causes of morbidity and hospitalization in the paediatric population. These infections encompass a broad range of conditions, from discitis to osteomyelitis and spinal epidural and intramedullary abscesses. Paediatric spinal infections can be caused by a range of bacterial, viral, fungal and parasitic agents. Ultrastructural differences of the vertebrae and associated structures result in distinct mechanisms of pathogenesis of spinal infections in children compared to adults. The non-specific nature of symptoms produced by them can cause considerable diagnostic delays. Magnetic Resonance (MR) imaging can facilitate early identification of the disease, and distinguish it from other spinal pathologies. The association of antimicrobial resistant bacterial strains from some of the cases appears worrisome; as is the increasing incidence of Kingella kingae infections causing spinal infections. Rest and immobilization are the general treatment, and prompt initiation of antimicrobial therapy is warranted to ensure optimal clinical outcome. Most patients generally have a good prognosis; however, early identification and prompt initiation of antimicrobial therapy is essential to achieve the best therapeutic response. PMID:27408498

  18. Kinematic analysis of the gait of adult sheep during treadmill locomotion: Parameter values, allowable total error, and potential for use in evaluating spinal cord injury.

    Science.gov (United States)

    Safayi, Sina; Jeffery, Nick D; Shivapour, Sara K; Zamanighomi, Mahdi; Zylstra, Tyler J; Bratsch-Prince, Joshua; Wilson, Saul; Reddy, Chandan G; Fredericks, Douglas C; Gillies, George T; Howard, Matthew A

    2015-11-15

    We are developing a novel intradural spinal cord (SC) stimulator designed to improve the treatment of intractable pain and the sequelae of SC injury. In-vivo ovine models of neuropathic pain and moderate SC injury are being implemented for pre-clinical evaluations of this device, to be carried out via gait analysis before and after induction of the relevant condition. We extend previous studies on other quadrupeds to extract the three-dimensional kinematics of the limbs over the gait cycle of sheep walking on a treadmill. Quantitative measures of thoracic and pelvic limb movements were obtained from 17 animals. We calculated the total-error values to define the analytical performance of our motion capture system for these kinematic variables. The post- vs. pre-injury time delay between contralateral thoracic and pelvic-limb steps for normal and SC-injured sheep increased by ~24s over 100 steps. The pelvic limb hoof velocity during swing phase decreased, while range of pelvic hoof elevation and distance between lateral pelvic hoof placements increased after SC injury. The kinematics measures in a single SC-injured sheep can be objectively defined as changed from the corresponding pre-injury values, implying utility of this method to assess new neuromodulation strategies for specific deficits exhibited by an individual. PMID:26341152

  19. Spinal processing of bee venom-induced pain and hyperalgesia

    Institute of Scientific and Technical Information of China (English)

    Jun CHEN

    2008-01-01

    Subcutaneous injection of bee venom causes long-term neural activation and hypersensitization in the dorsal horn of the spinal cord, which contributes to the development and maintenance of various pain-related behaviors. The unique behavioral 'pheno-types' of nociception and hypersensitivity identified in the rodent bee venom test are believed to reflect a complex pathological state of inflammatory pain and might be appropriate to the study of phenotype-based mechanisms of pain and hyperalgesia. In this review, the spinal processing of the bee venom-induced different 'phenotypes' of pain and hyperalgesia will be described. The accumulative electrophysiological, pharmacological, and behavioral data strongly suggest that different 'phenotypes' of pain and hyperalgesia are mediated by different spinal signaling pathways. Unraveling the phenotype-based mechanisms of pain might be useful in development of novel therapeutic drugs against complex clinic pathological pain.

  20. Eggshell procedure combined with multi-segmental laminectomy for congenital spinal deformity in adults%蛋壳技术联合多椎板切除治疗成人先天性脊柱畸形

    Institute of Scientific and Technical Information of China (English)

    汤育森; 丁真奇; 林坤山; 何明长; 刘晖; 林达生

    2012-01-01

    目的 探讨蛋壳技术联合多椎板切除治疗成人先天性脊柱畸形的安全性及有效性.方法 13例先天性脊柱畸形患者均采用后正中切口,通过蛋壳技术去除椎体松质骨使原发弯顶椎变为空壳样,顶椎相邻节段椎板全切除,应用平移、去旋转结合凸侧加压、凹侧撑开钉棒系统内固定矫正,同时行自体骨混合同种异体骨脊柱后外侧植骨融合治疗.结果 13例共切除36个节段椎板;行蛋壳技术的椎体共16个;融合节段8~15个.手术用时230~430 (305.4±62) min;术中出血量1 800~3 900 ml (2 646±651) ml.13例均获得随访,时间18~82 (43.5±7.6) 个月.末次随访时,脊柱主弯侧凸矫正率为49.2%,后凸矫正率为48.8%.未发现螺钉断裂、松动,无断棒现象.1例术后出现脑脊液漏,1例在末次随访时主诉有轻度腰背痛,1例随访71个月时出现相邻融合节段腰椎弓峡部裂.结论 蛋壳技术联合多椎板切除钉棒系统内固定治疗成人先天性脊柱畸形是一种较安全有效的治疗方法.%Objective To investigate the feasibility and safety of the treatment of congenital spinal deformity in adults with eggshell procedure combined with multi-segmental laminectomy. Methods 13 patients who underwent surgery for congenital spinal deformity in adults were retrospectively reviewed. A posterior medial incision was made for spinal exposure. According to the preoperative plan, all patients were operated with transpedicular eggshell procedure in a-pex vertebra and multi-segmental laminectomy to the adjacent apex vertebra. Application technique of translation, de-rotation with pressurized on convex side and concave side braced was used to correct scoliosis, and the autograft and allogeneic bone grafting for posterolateral spinal fusion. Results The number of vertebral lamina removed was 36 in all. The number of vertebrae with eggshell procedure was 16 in all. Fusion extent were range 8 ~ 15. Mean operating time was

  1. Hypocretinergic control of spinal cord motoneurons.

    Science.gov (United States)

    Yamuy, Jack; Fung, Simon J; Xi, Mingchu; Chase, Michael H

    2004-06-01

    Hypocretinergic (orexinergic) neurons in the lateral hypothalamus project to motor columns in the lumbar spinal cord. Consequently, we sought to determine whether the hypocretinergic system modulates the electrical activity of motoneurons. Using in vivo intracellular recording techniques, we examined the response of spinal motoneurons in the cat to electrical stimulation of the lateral hypothalamus. In addition, we examined the membrane potential response to orthodromic stimulation and intracellular current injection before and after both hypothalamic stimulation and the juxtacellular application of hypocretin-1. It was found that (1) hypothalamic stimulation produced a complex sequence of depolarizing- hyperpolarizing potentials in spinal motoneurons; (2) the depolarizing potentials decreased in amplitude after the application of SB-334867, a hypocretin type 1 receptor antagonist; (3) the EPSP induced by dorsal root stimulation was not affected by the application of SB-334867; (4) subthreshold stimulation of dorsal roots and intracellular depolarizing current steps produced spike potentials when applied in concert to stimulation of the hypothalamus or after the local application of hypocretin-1; (5) the juxtacellular application of hypocretin-1 induced motoneuron depolarization and, frequently, high-frequency discharge; (6) hypocretin-1 produced a significant decrease in rheobase (36%), membrane time constant (16.4%), and the equalizing time constant (23.3%); (7) in a small number of motoneurons, hypocretin-1 produced an increase in the synaptic noise; and (8) the input resistance was not affected after hypocretin-1. The juxtacellular application of vehicle (saline) and denatured hypocretin-1 did not produce changes in the preceding electrophysiological properties. We conclude that hypothalamic hypocretinergic neurons are capable of modulating the activity of lumbar motoneurons through presynaptic and postsynaptic mechanisms. The lack of hypocretin

  2. Aquaporin 1 - a novel player in spinal cord injury.

    Science.gov (United States)

    Nesic, O; Lee, J; Unabia, G C; Johnson, K; Ye, Z; Vergara, L; Hulsebosch, C E; Perez-Polo, J R

    2008-05-01

    The role of water channel aquaporin 1 (AQP-1) in uninjured or injured spinal cords is unknown. AQP-1 is weakly expressed in neurons and gray matter astrocytes, and more so in white matter astrocytes in uninjured spinal cords, a novel finding. As reported before, AQP-1 is also present in ependymal cells, but most abundantly in small diameter sensory fibers of the dorsal horn. Rat contusion spinal cord injury (SCI) induced persistent and significant four- to eightfold increases in AQP-1 levels at the site of injury (T10) persisting up to 11 months post-contusion, a novel finding. Delayed AQP-1 increases were also found in cervical and lumbar segments, suggesting the spreading of AQP-1 changes over time after SCI. Given that the antioxidant melatonin significantly decreased SCI-induced AQP-1 increases and that hypoxia inducible factor-1alpha was increased in acutely and chronically injured spinal cords, we propose that chronic hypoxia contributes to persistent AQP-1 increases after SCI. Interestingly; AQP-1 levels were not affected by long-lasting hypertonicity that significantly increased astrocytic AQP-4, suggesting that the primary role of AQP-1 is not regulating isotonicity in spinal cords. Based on our results we propose possible novel roles for AQP-1 in the injured spinal cords: (i) in neuronal and astrocytic swelling, as AQP-1 was increased in all surviving neurons and reactive astrocytes after SCI and (ii) in the development of the neuropathic pain after SCI. We have shown that decreased AQP-1 in melatonin-treated SCI rats correlated with decreased AQP-1 immunolabeling in the dorsal horns sensory afferents, and with significantly decreased mechanical allodynia, suggesting a possible link between AQP-1 and chronic neuropathic pain after SCI. PMID:18248364

  3. Spinal D1-like dopamine receptors modulate NMDA receptor-induced hyperexcitability and NR1 subunit phosphorylation at serine 889.

    Science.gov (United States)

    Aira, Zigor; Barrenetxea, Teresa; Buesa, Itsaso; Martínez, Endika; Azkue, Jon Jatsu

    2016-04-01

    Activation of the N-methyl-d-aspartate receptor (NMDAR) in dorsal horn neurons is recognized as a fundamental mechanism of central sensitization and pathologic pain. This study assessed the influence of dopaminergic, D1-like receptor-mediated input to the spinal dorsal horn on NMDAR function. Spinal superfusion with selective NMDAR agonist cis-ACPD significantly increased C-fiber-evoked field potentials in rats subjected to spinal nerve ligation (SNL), but not in sham-operated rats. Simultaneous application of D1LR antagonist SCH 23390 dramatically reduced hyperexcitability induced by cis-ACPD. Furthermore, cis-ACPD-induced hyperexcitability seen in nerve-ligated rats could be mimicked in unin-jured rats during stimulation of D1LRs by agonist SKF 38393 at subthreshold concentration. Phosphorylation of NMDAR subunit NR1 at serine 889 at postsynaptic sites was found to be increased in dorsal horn neurons 90 min after SNL, as assessed by increased co-localization with postsynaptic marker PSD-95. Increased NR1 phosphorylation was attenuated in the presence of SCH 23390 in the spinal superfusate. The present results support that D1LRs regulate most basic determinants of NMDAR function in dorsal horn neurons, suggesting a potential mechanism whereby dopaminergic input to the dorsal horn can modulate central sensitization and pathologic pain.

  4. Surgical treatment of primary intramedullary spinal cord tumors in adult patients Tratamento cirúrgico de tumores intramedulares primários em adultos

    Directory of Open Access Journals (Sweden)

    Mario Augusto Taricco

    2008-03-01

    Full Text Available BACKGROUND: Primary spinal cord intramedullary tumors are rare and present with insidious symptoms. Previous treatment protocols emphasized biopsy and radiation/chemotherapy but more aggressive protocols have emerged. OBJECTIVE: To report our experience. METHOD: Forty-eight patients were diagnosed with primary intramedullary tumors. The cervical cord was involved in 27% and thoracic in 42% of patients. Complete microsurgical removal was attempted whenever possible without added neurological morbidity. RESULTS: Complete resection was obtained in 33 (71% patients. Neurological function remained stable or improved in 32 patients (66.7%. Ependymoma was the most frequent tumor (66.7%. CONCLUSION: Neurological outcome is superior in patients with subtle findings; aggressive microsurgical resection should be pursued with acceptable neurological outcomes.INTRODUÇÃO: Tumores intramedulares primários são raros e apresentam-se com sintomas insidiosos. Protocolos de tratamento anteriores enfatizavam biópsia e radio/quimioterapia, mas protocolos mais agres-sivos têm surgido. OBJETIVO: Relatar nossa experiência. MÉTODO: Tumores intramedulares foram diagnosticados em 48 pacientes. O segmento cervical estava envolvido em 27% e torácico em 42% dos pacientes. Remoção completa foi tentada quando possível sem aumento da morbidade neurológica. RESULTADOS: Ressecção total foi obtida em 33 (71% pacientes. Função neurológica: permaneceu inalterada/melhorou em 32 (66,7% pacientes. O tumor mais freqüente foi ependimoma (66,7%. CONCLUSÃO: O prognóstico é melhor em pacientes oligossintomáticos; ressecção microcirúrgica agressiva deve ser tentada sempre, com resultados clínicos aceitáveis.

  5. The Cotransplantation of Olfactory Ensheathing Cells with Bone Marrow Mesenchymal Stem Cells Exerts Antiapoptotic Effects in Adult Rats after Spinal Cord Injury

    OpenAIRE

    Shifeng Wu; Guanqun Cui; Hua Shao; Zhongjun Du; Ng, Jack C.; Cheng Peng

    2015-01-01

    The mechanisms behind the repairing effects of the cotransplantation of olfactory ensheathing cells (OECs) with bone marrow mesenchymal stromal cells (BMSCs) have not been fully understood. Therefore, we investigated the effects of the cotransplantation of OECs with BMSCs on antiapoptotic effects in adult rats for which the models of SCI are induced. We examined the changes in body weight, histopathological changes, apoptosis, and the expressions of apoptosis-related proteins after 14 days an...

  6. Optical monitoring and detection of spinal cord ischemia.

    Directory of Open Access Journals (Sweden)

    Rickson C Mesquita

    Full Text Available Spinal cord ischemia can lead to paralysis or paraparesis, but if detected early it may be amenable to treatment. Current methods use evoked potentials for detection of spinal cord ischemia, a decades old technology whose warning signs are indirect and significantly delayed from the onset of ischemia. Here we introduce and demonstrate a prototype fiber optic device that directly measures spinal cord blood flow and oxygenation. This technical advance in neurological monitoring promises a new standard of care for detection of spinal cord ischemia and the opportunity for early intervention. We demonstrate the probe in an adult Dorset sheep model. Both open and percutaneous approaches were evaluated during pharmacologic, physiological, and mechanical interventions designed to induce variations in spinal cord blood flow and oxygenation. The induced variations were rapidly and reproducibly detected, demonstrating direct measurement of spinal cord ischemia in real-time. In the future, this form of hemodynamic spinal cord diagnosis could significantly improve monitoring and management in a broad range of patients, including those undergoing thoracic and abdominal aortic revascularization, spine stabilization procedures for scoliosis and trauma, spinal cord tumor resection, and those requiring management of spinal cord injury in intensive care settings.

  7. Tumor necrosis factor α sensitizes spinal cord TRPV1 receptors to the endogenous agonist N-oleoyldopamine

    Directory of Open Access Journals (Sweden)

    Spicarova Diana

    2010-08-01

    Full Text Available Abstract Modulation of synaptic transmission in the spinal cord dorsal horn is thought to be involved in the development and maintenance of different pathological pain states. The proinflamatory cytokine, tumor necrosis factor α (TNFα, is an established pain modulator in both the peripheral and the central nervous system. Up-regulation of TNFα and its receptors (TNFR in dorsal root ganglion (DRG cells and in the spinal cord has been shown to play an important role in neuropathic and inflammatory pain conditions. Transient receptor potential vanilloid 1 (TRPV1 receptors are known as molecular integrators of nociceptive stimuli in the periphery, but their role on the spinal endings of nociceptive DRG neurons is unclear. The endogenous TRPV1 receptor agonist N-oleoyldopamine (OLDA was shown previously to activate spinal TRPV1 receptors. In our experiments the possible influence of TNFα on presynaptic spinal cord TRPV1 receptor function was investigated. Using the patch-clamp technique, miniature excitatory postsynaptic currents (mEPSCs were recorded in superficial dorsal horn neurons in acute slices after incubation with 60 nM TNFα. A population of dorsal horn neurons with capsaicin sensitive primary afferent input recorded after the TNFα pretreatment had a basal mEPSC frequency of 1.35 ± 0.20 Hz (n = 13, which was significantly higher when compared to a similar population of neurons in control slices (0.76 ± 0.08 Hz; n = 53; P

  8. Biomechanical performance of an ovine model of intradural spinal cord stimulation.

    Science.gov (United States)

    Safayi, S; Jeffery, N D; Fredericks, D C; Viljoen, S; Dalm, B D; Reddy, C G; Wilson, S; Gillies, G T; Howard, M A

    2014-07-01

    The authors are developing a novel type of spinal cord stimulator, designed to be placed directly on the pial surface of the spinal cord, for more selective activation of target tissues within the dorsal columns. For pre-clinical testing of the device components, an ovine model has been implemented which utilizes the agility and flexibility of a sheep's cervical and upper thoracic regions, thus providing an optimal environment of accelerated stress-cycling on small gauge lead wires implanted along the dorsal spinal columns. The results are presented of representative biomechanical measurements of the angles of rotation and the angular velocities and accelerations associated with the relevant head, neck and upper back motions, and these findings are interpreted in terms of their impact on assessing the robustness of the stimulator implant systems. PMID:24841845

  9. Human spinal motor control

    DEFF Research Database (Denmark)

    Nielsen, Jens Bo

    2016-01-01

    Human studies in the past three decades have provided us with an emerging understanding of how cortical and spinal networks collaborate to ensure the vast repertoire of human behaviors. We differ from other animals in having direct cortical connections to spinal motoneurons, which bypass spinal...... interneurons and exert a direct (willful) muscle control with the aid of a context-dependent integration of somatosensory and visual information at cortical level. However, spinal networks also play an important role. Sensory feedback through spinal circuitries is integrated with central motor commands...... and contributes importantly to the muscle activity underlying voluntary movements. Regulation of spinal interneurons is used to switch between motor states such as locomotion (reciprocal innervation) and stance (coactivation pattern). Cortical regulation of presynaptic inhibition of sensory afferents may focus...

  10. Intranasal nerve growth factor bypasses the blood-brain barrier and affects spinal cord neurons in spinal cord injur y

    Institute of Scientific and Technical Information of China (English)

    Luigi Aloe; Patrizia Bianchi; Alberto De Bellis; Marzia Soligo; Maria Luisa Rocco

    2014-01-01

    The purpose of this work was to investigate whether, by intranasal administration, the nerve growth factor bypasses the blood-brain barrier and turns over the spinal cord neurons and if such therapeutic approach could be of value in the treatment of spinal cord injury. Adult Sprague-Dawley rats with intact and injured spinal cord received daily intranasal nerve growth factor administration in both nostrils for 1 day or for 3 consecutive weeks. We found an in-creased content of nerve growth factor and enhanced expression of nerve growth factor receptor in the spinal cord 24 hours after a single intranasal administration of nerve growth factor in healthy rats, while daily treatment for 3 weeks in a model of spinal cord injury improved the deifcits in locomotor behaviour and increased spinal content of both nerve growth factor and nerve growth factor receptors. These outcomes suggest that the intranasal nerve growth factor bypasses blood-brain barrier and affects spinal cord neurons in spinal cord injury. They also suggest exploiting the possible therapeutic role of intranasally delivered nerve growth factor for the neuroprotection of damaged spinal nerve cells.

  11. Induction of long-term potentiation and long-term depression is cell-type specific in the spinal cord

    OpenAIRE

    Kim, Hee Young; Jun, Jaebeom; Wang, Jigong; Bittar, Alice; Chung, Kyungsoon; Chung, Jin Mo

    2015-01-01

    Abstract The underlying mechanism of chronic pain is believed to be changes in excitability in spinal dorsal horn (DH) neurons that respond abnormally to peripheral input. Increased excitability in pain transmission neurons, and depression of inhibitory neurons, are widely recognized in the spinal cord of animal models of chronic pain. The possible occurrence of 2 parallel but opposing forms of synaptic plasticity, long-term potentiation (LTP) and long-term depression (LTD) was tested in 2 ty...

  12. Spinal cord compression in two related Ursus arctos horribilis.

    Science.gov (United States)

    Thomovsky, Stephanie A; Chen, Annie V; Roberts, Greg R; Schmidt, Carrie E; Layton, Arthur W

    2012-09-01

    Two 15-yr-old grizzly bear littermates were evaluated within 9 mo of each other with the symptom of acute onset of progressive paraparesis and proprioceptive ataxia. The most significant clinical examination finding was pelvic limb paresis in both bears. Magnetic resonance examinations of both bears showed cranial thoracic spinal cord compression. The first bear had left-sided extradural, dorsolateral spinal cord compression at T3-T4. Vertebral canal stenosis was also observed at T2-T3. Images of the second bear showed lateral spinal cord compression from T2-T3 to T4-T5. Intervertebral disk disease and associated spinal cord compression was also observed at T2-T3 and T3-T4. One grizzly bear continued to deteriorate despite reduced exercise, steroid, and antibiotic therapy. The bear was euthanized, and a necropsy was performed. The postmortem showed a spinal ganglion cyst that caused spinal cord compression at the level of T3-T4. Wallerian-like degeneration was observed from C3-T6. The second bear was prescribed treatment that consisted of a combination of reduced exercise and steroid therapy. He continued to deteriorate with these medical therapies and was euthanized 4 mo after diagnosis. A necropsy showed hypertrophy and protrusion of the dorsal longitudinal ligament at T2-T3 and T3-T4, with resulting spinal cord compression in this region. Wallerian-like degeneration was observed from C2-L1. This is one of few case reports that describes paresis in bears. It is the only case report, to the authors' knowledge, that describes spinal magnetic resonance imaging findings in a grizzly bear and also the only report that describes a cranial thoracic myelopathy in two related grizzly bears with neurologic signs.

  13. Spinal injury in sport

    International Nuclear Information System (INIS)

    Spinal injuries are very common among professional or amateur athletes. Spinal sport lesions can be classified in overuse and acute injuries. Overuse injuries can be found after years of repetitive spinal load during sport activity; however specific overuse injuries can also be found in adolescents. Acute traumas are common in contact sports. Most of the acute injuries are minor and self-healing, but severe and catastrophic events are possible. The aim of this article is to review the wide spectrum of spinal injuries related to sport activity, with special regard to imaging finding

  14. Spinal injury in sport

    Energy Technology Data Exchange (ETDEWEB)

    Barile, Antonio [Department of Radiology, University of L' Aquila, S. Salvatore Hospital, Via Vetoio, Coppito, 67100 L' Aquila (Italy)]. E-mail: antonio.barile@cc.univaq.it; Limbucci, Nicola [Department of Radiology, University of L' Aquila, S. Salvatore Hospital, Via Vetoio, Coppito, 67100 L' Aquila (Italy); Splendiani, Alessandra [Department of Radiology, University of L' Aquila, S. Salvatore Hospital, Via Vetoio, Coppito, 67100 L' Aquila (Italy); Gallucci, Massimo [Department of Radiology, University of L' Aquila, S. Salvatore Hospital, Via Vetoio, Coppito, 67100 L' Aquila (Italy); Masciocchi, Carlo [Department of Radiology, University of L' Aquila, S. Salvatore Hospital, Via Vetoio, Coppito, 67100 L' Aquila (Italy)

    2007-04-15

    Spinal injuries are very common among professional or amateur athletes. Spinal sport lesions can be classified in overuse and acute injuries. Overuse injuries can be found after years of repetitive spinal load during sport activity; however specific overuse injuries can also be found in adolescents. Acute traumas are common in contact sports. Most of the acute injuries are minor and self-healing, but severe and catastrophic events are possible. The aim of this article is to review the wide spectrum of spinal injuries related to sport activity, with special regard to imaging finding.

  15. International Spinal Cord Injury

    DEFF Research Database (Denmark)

    Dvorak, M F; Itshayek, E; Fehlings, M G;

    2015-01-01

    of the completion of the intervention or surgical closure; (6) Surgical procedure-open reduction, (7) Surgical procedure-direct decompression of neural elements, and (8 and 9) Surgical procedure-stabilization and fusion (spinal segment number and level). All variables are coded using numbers or characters. Each...... spinal intervention and procedure is coded (variables 1 through 7) and the spinal segment level is described (variables 8 and 9). Sample clinical cases were developed to illustrate how to complete it. CONCLUSION: The International SCI Spinal Interventions and Surgical Procedures Basic Data Set...

  16. Transplantation of D15A-Expressing Glial-Restricted-Precursor-Derived Astrocytes Improves Anatomical and Locomotor Recovery after Spinal Cord Injury

    Directory of Open Access Journals (Sweden)

    Chunling Fan, Yiyan Zheng, Xiaoxin Cheng, Xiangbei Qi, Ping Bu, Xuegang Luo, Dong H. Kim, Qilin Cao

    2013-01-01

    Full Text Available The transplantation of neural stem/progenitor cells is a promising therapeutic strategy for spinal cord injury (SCI. In this study, we tested whether combination of neurotrophic factors and transplantation of glial-restricted precursor (GRPs-derived astrocytes (GDAs could decrease the injury and promote functional recovery after SCI. We developed a protocol to quickly produce a sufficiently large, homogenous population of young astrocytes from GRPs, the earliest arising progenitor cell population restricted to the generation of glia. GDAs expressed the axonal regeneration promoting substrates, laminin and fibronectin, but not the inhibitory chondroitin sulfate proteoglycans (CSPGs. Importantly, GDAs or its conditioned medium promoted the neurite outgrowth of dorsal root ganglion neurons in vitro. GDAs were infected with retroviruses expressing EGFP or multi-neurotrophin D15A and transplanted into the contused adult thoracic spinal cord at 8 days post-injury. Eight weeks after transplantation, the grafted GDAs survived and integrated into the injured spinal cord. Grafted GDAs expressed GFAP, suggesting they remained astrocyte lineage in the injured spinal cord. But it did not express CSPG. Robust axonal regeneration along the grafted GDAs was observed. Furthermore, transplantation of D15A-GDAs significantly increased the spared white matter and decreased the injury size compared to other control groups. More importantly, transplantation of D15A-GDAs significantly improved the locomotion function recovery shown by BBB locomotion scores and Tredscan footprint analyses. However, this combinatorial strategy did not enhance the aberrant synaptic connectivity of pain afferents, nor did it exacerbate posttraumatic neuropathic pain. These results demonstrate that transplantation of D15A-expressing GDAs promotes anatomical and locomotion recovery after SCI, suggesting it may be an effective therapeutic approach for SCI.

  17. Spinal cord injury without radiographic abnormality

    Directory of Open Access Journals (Sweden)

    Singh Anil

    2006-01-01

    Full Text Available Spinal cord injury without radiological abnormality is rare in adults. Below we present a case report of 20 yrs old male with isolated cervical cord injury, without accompanying vertebral dislocation or fracture involving the spinal canal rim. He fell down on plain and smooth ground while carrying 40 kg weight overhead and developed quadriparesis with difficulty in respiration. Plain radiographs of the neck revealed no fractures or dislocations. MRI showed bulky spinal cord and an abnormal hyper intense signal on the T2W image from C2 vertebral body level to C3/4 intervertebral disc level predominantly in the anterior aspect of the cord The patient was managed conservatively with head halter traction and invasive ventilatory support for the initial 7 days period in the ICU. In our patient recovery was good and most of the neurological deficit improved over 4 weeks with conservative management.

  18. Neurons in the lateral part of the lumbar spinal cord show distinct novel axon trajectories and are excited by short propriospinal ascending inputs.

    Science.gov (United States)

    Antal, Zs; Luz, L L; Safronov, B V; Antal, M; Szücs, Peter

    2016-05-01

    The role of spinal dorsal horn propriospinal connections in nociceptive processing is not yet established. Recently described, rostrocaudally oriented axon collaterals of lamina I projection and local-circuit neurons (PNs and LCNs) running in the dorsolateral funiculus (DLF) may serve as the anatomical substrate for intersegmental processing. Putative targets of these axons include lateral dendrites of superficial dorsal horn neurons, including PNs, and also neurons in the lateral spinal nucleus (LSN) that are thought to be important integrator units receiving, among others, visceral sensory information. Here we used an intact spinal cord preparation to study intersegmental connections within the lateral part of the superficial dorsal horn. We detected brief monosynaptic and prolonged polysynaptic excitation of lamina I and LSN neurons when stimulating individual dorsal horn neurons located caudally, even in neighboring spinal cord segments. These connections, however, were infrequent. We also revealed that some projection neurons outside the dorsal grey matter and in the LSN have distinct, previously undescribed course of their projection axon. Our findings indicate that axon collaterals of lamina I PNs and LCNs in the DLF rarely form functional connections with other lamina I and LSN neurons and that the majority of their targets are on other elements of the dorsal horn. The unique axon trajectories of neurons in the dorsolateral aspect of the spinal cord, including the LSN do not fit our present understanding of midline axon guidance and suggest that their function and development differ from the neurons inside lamina I. These findings emphasize the importance of understanding the connectivity matrix of the superficial dorsal horn in order to decipher spinal sensory information processing. PMID:25912439

  19. Astrocytoma with involvement of medulla oblongata, spinal cord and spinal nerves in a raccoon (Procyon lotor)

    Science.gov (United States)

    Neoplasms affecting the central and peripheral nervous systems of wild animals are extremely rare. Described are clinical signs, pathologic and immunohistochemical findings in an adult female raccoon (Procyon lotor) with an astrocytoma which involved brainstem, cervical spinal cord and roots of the ...

  20. Establishment and validation of standardized animal models of spinal cord injury by normal external force-caused fracture dislocation

    Institute of Scientific and Technical Information of China (English)

    Weibing Shuang; Qiang Liu; Shoubin Jiao; Yang Yang

    2011-01-01

    The duplication of animal models plays a key role in spinal cord injury research; however, there has been limited study into normal, external force-derived fracture dislocation. This study adopted experimental devices, designed in-house, to construct standardized ventral and dorsal spinal cord injury animal models of 6 g and 17 g falling from a height of 2, 4, and 10 cm, and 15, 30 or 50 g transversal compression on the spinal cord. The results showed that gradual increases in the degree of histopathological injury led to decreased Tarlov and Basso, Beattie and Bresnahan scores for the behavioral test, and increased Ashworth scores for the hind limb. Furthermore, there was a gradual decline in the slope test in the rats with dorsal spinal cord injury that correlated to increases in the falling substance weight or falling height. Similar alterations were observed in the ventral spinal cord injured rats, proportional to the increase in compression weight. Our experimental findings indicate that the standardized experimental rat models of dorsal and ventral spinal cord injury are stable, reliable and reproducible.

  1. Schwann cells for spinal cord repair

    Directory of Open Access Journals (Sweden)

    Oudega M.

    2005-01-01

    Full Text Available The complex nature of spinal cord injury appears to demand a multifactorial repair strategy. One of the components that will likely be included is an implant that will fill the area of lost nervous tissue and provide a growth substrate for injured axons. Here we will discuss the role of Schwann cells (SCs in cell-based, surgical repair strategies of the injured adult spinal cord. We will review key studies that showed that intraspinal SC grafts limit injury-induced tissue loss and promote axonal regeneration and myelination, and that this response can be improved by adding neurotrophic factors or anti-inflammatory agents. These results will be compared with several other approaches to the repair of the spinal cord. A general concern with repair strategies is the limited functional recovery, which is in large part due to the failure of axons to grow across the scar tissue at the distal graft-spinal cord interface. Consequently, new synaptic connections with spinal neurons involved in motor function are not formed. We will highlight repair approaches that did result in growth across the scar and discuss the necessity for more studies involving larger, clinically relevant types of injuries, addressing this specific issue. Finally, this review will reflect on the prospect of SCs for repair strategies in the clinic.

  2. Cryptic organisation within an apparently irregular rostrocaudal distribution of interneurons in the embryonic zebrafish spinal cord

    International Nuclear Information System (INIS)

    The molecules and mechanisms involved in patterning the dorsoventral axis of the developing vertebrate spinal cord have been investigated extensively and many are well known. Conversely, knowledge of mechanisms patterning cellular distributions along the rostrocaudal axis is relatively more restricted. Much is known about the rostrocaudal distribution of motoneurons and spinal cord cells derived from neural crest but there is little known about the rostrocaudal patterning of most of the other spinal cord neurons. Here we report data from our analyses of the distribution of dorsal longitudinal ascending (DoLA) interneurons in the developing zebrafish spinal cord. We show that, although apparently distributed irregularly, these cells have cryptic organisation. We present a novel cell-labelling technique that reveals that DoLA interneurons migrate rostrally along the dorsal longitudinal fasciculus of the spinal cord during development. This cell-labelling strategy may be useful for in vivo analysis of factors controlling neuron migration in the central nervous system. Additionally, we show that DoLA interneurons persist in the developing spinal cord for longer than previously reported. These findings illustrate the need to investigate factors and mechanisms that determine 'irregular' patterns of cell distribution, particularly in the central nervous system but also in other tissues of developing embryos.

  3. Cryptic organisation within an apparently irregular rostrocaudal distribution of interneurons in the embryonic zebrafish spinal cord

    Energy Technology Data Exchange (ETDEWEB)

    Wells, Simon, E-mail: simon.wells@adelaide.edu.au [Discipline of Genetics, School of Molecular and Biomedical Sciences, University of Adelaide, Adelaide, South Australia 5005 (Australia); The Special Research Centre for the Molecular Genetics of Development, University of Adelaide, Adelaide, South Australia 5005 (Australia); Conran, John G., E-mail: john.conran@adelaide.edu.au [Ecology and Evolutionary Biology, School of Earth and Environmental Sciences, University of Adelaide, Adelaide, South Australia 5005 (Australia); Tamme, Richard, E-mail: rtamme@ttu.ee [Discipline of Genetics, School of Molecular and Biomedical Sciences, University of Adelaide, Adelaide, South Australia 5005 (Australia); Gaudin, Arnaud, E-mail: a.gaudin@uq.edu.au [School of Biomedical Sciences, University of Queensland, Brisbane, Queensland 4072 (Australia); Webb, Jonathan, E-mail: jonathan.webb@worc.ox.ac.uk [Discipline of Genetics, School of Molecular and Biomedical Sciences, University of Adelaide, Adelaide, South Australia 5005 (Australia); Lardelli, Michael, E-mail: michael.lardelli@adelaide.edu.au [Discipline of Genetics, School of Molecular and Biomedical Sciences, University of Adelaide, Adelaide, South Australia 5005 (Australia); The Special Research Centre for the Molecular Genetics of Development, University of Adelaide, Adelaide, South Australia 5005 (Australia)

    2010-11-15

    The molecules and mechanisms involved in patterning the dorsoventral axis of the developing vertebrate spinal cord have been investigated extensively and many are well known. Conversely, knowledge of mechanisms patterning cellular distributions along the rostrocaudal axis is relatively more restricted. Much is known about the rostrocaudal distribution of motoneurons and spinal cord cells derived from neural crest but there is little known about the rostrocaudal patterning of most of the other spinal cord neurons. Here we report data from our analyses of the distribution of dorsal longitudinal ascending (DoLA) interneurons in the developing zebrafish spinal cord. We show that, although apparently distributed irregularly, these cells have cryptic organisation. We present a novel cell-labelling technique that reveals that DoLA interneurons migrate rostrally along the dorsal longitudinal fasciculus of the spinal cord during development. This cell-labelling strategy may be useful for in vivo analysis of factors controlling neuron migration in the central nervous system. Additionally, we show that DoLA interneurons persist in the developing spinal cord for longer than previously reported. These findings illustrate the need to investigate factors and mechanisms that determine 'irregular' patterns of cell distribution, particularly in the central nervous system but also in other tissues of developing embryos.

  4. Phorbol Ester Modulation of Ca2+ Channels Mediates Nociceptive Transmission in Dorsal Horn Neurones

    Directory of Open Access Journals (Sweden)

    Gary J. Stephens

    2013-05-01

    Full Text Available Phorbol esters are analogues of diacylglycerol which activate C1 domain proteins, such as protein kinase C (PKC. Phorbol ester/PKC pathways have been proposed as potential therapeutic targets for chronic pain states, potentially by phosphorylating proteins involved in nociception, such as voltage-dependent Ca2+ channels (VDCCs. In this brief report, we investigate the potential involvement of CaV2 VDCC subtypes in functional effects of the phorbol ester, phorbol 12-myristate 13-acetate (PMA on nociceptive transmission in the spinal cord. Effects of PMA and of selective pharmacological blockers of CaV2 VDCC subtypes on nociceptive transmission at laminae II dorsal horn neurones were examined in mouse spinal cord slices. Experiments were extended to CaV2.3(−/− mice to complement pharmacological studies. PMA increased the mean frequency of spontaneous postsynaptic currents (sPSCs in dorsal horn neurones, without an effect on event amplitude or half-width. sPSC frequency was reduced by selective VDCC blockers, w-agatoxin-IVA (AgTX; CaV2.1, w-conotoxin-GVIA (CTX; CaV2.2 or SNX-482 (CaV2.3. PMA effects were attenuated in the presence of each VDCC blocker and, also, in CaV2.3(−/− mice. These initial data demonstrate that PMA increases nociceptive transmission at dorsal horn neurones via actions on different CaV2 subtypes suggesting potential anti-nociceptive targets in this system.

  5. Sexual Dimorphism and Geographic Variation in Dorsal Fin Features of Australian Humpback Dolphins, Sousa sahulensis.

    Science.gov (United States)

    Brown, Alexander M; Bejder, Lars; Parra, Guido J; Cagnazzi, Daniele; Hunt, Tim; Smith, Jennifer L; Allen, Simon J

    2016-01-01

    Determining the sex of free-ranging cetaceans can be challenging. Sexual dimorphism among external features may allow inferences on sex, but such patterns may be difficult to detect and are often confounded by age and geographic variation. Dorsal fin images of 107 female and 54 male Australian humpback dolphins, Sousa sahulensis, from Western Australia (WA) and Queensland (QLD) were used to investigate sex, age and geographic differences in colouration, height/length quotient and number of notches. Adult males exhibited more dorsal fin notches (pdolphins, which could potentially be applied to populations throughout their range. In contrast to adults, presumed immature animals showed little or no loss of pigmentation or spotting; however, the rate of development of these features remains unknown. There were pronounced differences between QLD and WA in the intensity of spotting on dorsal fins and the extent of pigmentation loss around the posterior insertion and trailing edge of the dorsal fin. While based on a limited sample size, these geographic differences may have conservation implications in terms of population subdivision and should be investigated further.

  6. Spinal Cord Injury 101

    Medline Plus

    Full Text Available ... US ? A spinal cord injury affects the entire family FacingDisability is designed to provide Internet-based information ... spinal cord injuries and the members of their families. Our website has more than 1,500 videos ...

  7. Spinal arteriography: a primer

    Institute of Scientific and Technical Information of China (English)

    David A KUMPE

    2005-01-01

    Spinal arteriography is an esoteric procedure that is seldom performed by peripheral interventionalists. This presentation is intended to outline some of the essential points that the interventionalist performing the procedure should be aware of, especially about spinal dural arteriovenous fistulae (SDAVF).

  8. Spinal Cord Injury 101

    Medline Plus

    Full Text Available ... Adjusting to Social Life in a Wheelchair Substance Abuse and Spinal Cord Injury Substance Abuse and Spinal Cord Injury How Family Life Changes ... Patient Partnerships How Social Workers Help Transitions How Social Workers Help ... advice, recommend or endorse health care products or services, or control the information found on external websites. ...

  9. Spinal pain in adolescents

    DEFF Research Database (Denmark)

    Aartun, Ellen; Hartvigsen, Jan; Wedderkopp, Niels;

    2014-01-01

    BACKGROUND: The severity and course of spinal pain is poorly understood in adolescents. The study aimed to determine the prevalence and two-year incidence, as well as the course, frequency, and intensity of pain in the neck, mid back, and low back (spinal pain). METHODS: This study was a school...

  10. Glioblastoma with spinal seeding

    Energy Technology Data Exchange (ETDEWEB)

    Fakhrai, N.; Fazeny-Doerner, B.; Marosi, C. [Clinical Div. of Oncology, Dept. of Medicine I, Univ. of Vienna (Austria); Czech, T. [Dept. of Neurosurgery, Univ. of Vienna (Austria); Diekmann, K. [Dept. of Radiooncology, Univ. of Vienna (Austria); Birner, P.; Hainfellner, J.A. [Clinical Inst. for Neurology, Univ. of Vienna (Austria); Prayer, D. [Dept. of Neuroradiology, Univ. of Vienna (Austria)

    2004-07-01

    Background: extracranial seeding of glioblastoma multiforme (GBM) is very rare and its development depends on several factors. This case report describes two patients suffering from GBM with spinal seeding. In both cases, the anatomic localization of the primary tumor close to the cerebrospinal fluid (CSF) was the main factor for spinal seeding. Case reports: two patients with GBM and spinal seeding are presented. After diagnosis of spinal seeding, both patients were highly symptomatic from their spinal lesions. Case 1 experienced severe pain requiring opiates, and case 2 had paresis of lower limbs as well as urinary retention/incontinence. Both patients were treated with spinal radiation therapy. Nevertheless, they died 3 months after diagnosis of spinal seeding. Results: in both patients the diagnosis of spinal seeding was made at the time of cranial recurrence. Both tumors showed close contact to the CSF initially. Even though the patients underwent intensive treatment, it was not possible to keep them in a symptom-free state. Conclusion: because of short survival periods, patients deserve optimal pain management and dedicated palliative care. (orig.)

  11. Spinal Cord Injury 101

    Medline Plus

    Full Text Available ... Fertility After Spinal Cord Injury Coping with a New Injury Coping with a New Injury Adjusting to Social Life in a Wheelchair ... after an injury? What are the most promising new treatments for spinal cord injuries? What are the ...

  12. Sigma-1 receptor expression in the dorsal root ganglion: Reexamination using a highly specific antibody.

    Science.gov (United States)

    Mavlyutov, Timur A; Duellman, Tyler; Kim, Hung Tae; Epstein, Miles L; Leese, Charlotte; Davletov, Bazbek A; Yang, Jay

    2016-09-01

    Sigma-1 receptor (S1R) is a unique pluripotent modulator of living systems and has been reported to be associated with a number of neurological diseases including pathological pain. Intrathecal administration of S1R antagonists attenuates the pain behavior of rodents in both inflammatory and neuropathic pain models. However, the S1R localization in the spinal cord shows a selective ventral horn motor neuron distribution, suggesting the high likelihood of S1R in the dorsal root ganglion (DRG) mediating the pain relief by intrathecally administered drugs. Since primary afferents are the major component in the pain pathway, we examined the mouse and rat DRGs for the presence of the S1R. At both mRNA and protein levels, quantitative RT-PCR (qRT-PCR) and Western confirmed that the DRG contains greater S1R expression in comparison to spinal cord, cortex, or lung but less than liver. Using a custom-made highly specific antibody, we demonstrated the presence of a strong S1R immuno-fluorescence in all rat and mouse DRG neurons co-localizing with the Neuron-Specific Enolase (NSE) marker, but not in neural processes or GFAP-positive glial satellite cells. In addition, S1R was absent in afferent terminals in the skin and in the dorsal horn of the spinal cord. Using immuno-electron microscopy, we showed that S1R is detected in the nuclear envelope and endoplasmic reticulum (ER) of DRG cells. In contrast to other cells, S1R is also located directly at the plasma membrane of the DRG neurons. The presence of S1R in the nuclear envelope of all DRG neurons suggests an exciting potential role of S1R as a regulator of neuronal nuclear activities and/or gene expression, which may provide insight toward new molecular targets for modulating nociception at the level of primary afferent neurons. PMID:27339730

  13. Mini-open pedicle subtraction osteotomy as a treatment for severe adult spinal deformities: case series with initial clinical and radiographic outcomes.

    Science.gov (United States)

    Wang, Michael Y; Bordon, Gerd

    2016-05-01

    lumbar Cobb angle improved from a mean of 41.2° ± 18.4° to 15.4° ± 9.6°, and lumbar lordosis improved from 23.1° ± 15.9° to 48.6° ± 11.7°. Pelvic tilt improved from a mean of 33.7° ± 8.6° to 24.4° ± 6.5°, and the sagittal vertical axis improved from 102.4 ± 73.4 mm to 42.2 ± 39.9 mm. The final lumbar lordosis-pelvic incidence difference averaged 8.4° ± 12.1°. There were 4 patients who failed to achieve less than or equal to a 10° mismatch on this parameter. Ten of the 16 patients underwent delayed postoperative CT, and 8 of these had developed a solid arthrodesis at all levels treated. A total of 6 complications occurred in this series. There were no cases of symptomatic proximal junction kyphosis. CONCLUSIONS Advancements in minimally invasive technique have resulted in the ability to manage increasingly complex deformities with hybrid approaches. In this limited series, the authors describe the results of utilizing a tissue-sparing mini-open PSO to correct severe spinal deformities. This method was technically feasible in all cases with acceptable radiographic outcomes similar to open surgery. However, high complication rates associated with these deformity corrections remain problematic. PMID:26745348

  14. Changes in autophagy proteins in a rat model of spinal cord injury

    Institute of Scientific and Technical Information of China (English)

    Zhang Qin; Huang Chen; Meng Bin; Tang Tiansi; Yang Huilin

    2014-01-01

    Objective:Autophagy is involved in several neurodegenerative diseases and recently its role in acute brain injury has won increasing interest.Spinal cord injuries (SCIs) often lead to permanent neurological deficit.Therefore,in this study,we examined the profiles of autophagy-linked proteins (MAP-LC3) after SCI to investigate whether the expression of autophagy contributes to neurological deficit after SCI.Methods:Adult female Sprague-Dawley rats were used and randomly divided into control and SCI groups.All the rates received laminectomy at T8-T10 level.Those in the SCI group received additional exposure of the dorsal surface of the spinal cord,followed by a weightdrop injury.Thereafter we investigated the expression levels of MAP-LC3,beclin-1,Cathepsin D and the beclin-1-binding protein bcl-2 by western blot analysis at 12 h,24 h,3 d,7 d,21 d and 28 d.One-way ANOVA with Tukey post hoc test was used to compare data between groups.Results:We observed significant increase in the level of LC3 (LC3-Ⅱ/LC3-Ⅰ) at 3 d and 7 d after SCI when compared with the sham group.While the level of beclin-1 and ratio of beclin-1/bcl-2 was found to have increased from 12 h to 24 h after injury.Cathepsin D expression was also elevated at 7 d (P<0.01).Conclusion:Based on the above mentioned data,we proposed that autophagy plays a role in the manifestation of cell injury following SCI.

  15. High molecular weight hyaluronic acid limits astrocyte activation and scar formation after spinal cord injury

    Science.gov (United States)

    Khaing, Zin Z.; Milman, Brian D.; Vanscoy, Jennifer E.; Seidlits, Stephanie K.; Grill, Raymond J.; Schmidt, Christine E.

    2011-08-01

    A major hurdle for regeneration after spinal cord injury (SCI) is the ability of axons to penetrate and grow through the scar tissue. After SCI, inflammatory cells, astrocytes and meningeal cells all play a role in developing the glial scar. In addition, degradation of native high molecular weight (MW) hyaluronic acid (HA), a component of the extracellular matrix, has been shown to induce activation and proliferation of astrocytes. However, it is not known if the degradation of native HA actually enhances glial scar formation. We hypothesize that the presence of high MW HA (HA with limited degradation) after SCI will decrease glial scarring. Here, we demonstrate that high MW HA decreases cell proliferation and reduces chondroitin sulfate proteoglycan (CSPG) production in cultured neonatal and adult astrocytes. In addition, stiffness-matched high MW HA hydrogels crosslinked to resist degradation were implanted in a rat model of spinal dorsal hemisection injury. The numbers of immune cells (macrophages and microglia) detected at the lesion site in animals with HA hydrogel implants were significantly reduced at acute time points (one, three and ten days post-injury). Lesioned animals with HA implants also exhibited significantly lower CSPG expression at ten days post-injury. At nine weeks post-injury, animals with HA hydrogel implants exhibited a significantly decreased astrocytic response, but did not have significantly altered CSPG expression. Combined, these data suggest that high MW HA, when stabilized against degradation, mitigates astrocyte activation in vitro and in vivo. The presence of HA implants was also associated with a significant decrease in CSPG deposition at ten days after SCI. Therefore, HA-based hydrogel systems hold great potential for minimizing undesired scarring as part of future repair strategies after SCI.

  16. Minimally Invasive Drainage of a Post-Laminectomy Subfascial Seroma with Cervical Spinal Cord Compression.

    Science.gov (United States)

    Kitshoff, Adriaan Mynhardt; Van Goethem, Bart; Cornelis, Ine; Combes, Anais; Dvm, Ingeborgh Polis; Gielen, Ingrid; Vandekerckhove, Peter; de Rooster, Hilde

    2016-01-01

    A 14 mo old female neutered Doberman pinscher was evaluated for difficulty in rising, a wide based stance, pelvic limb gait abnormalities, and cervical pain of 2 mo duration. Neurologic examination revealed pelvic limb ataxia and cervical spinal hyperesthesia. Spinal reflexes and cranial nerve examination were normal. The pathology was localized to the C1-C5 or C6-T2 spinal cord segments. Computed tomography (CT) findings indicated bony proliferation of the caudal articular processes of C6 and the cranial articular processes of C7, resulting in bilateral dorsolateral spinal cord compression that was more pronounced on the left side. A limited dorsal laminectomy was performed at C6-C7. Due to progressive neurological deterioration, follow-up CT examination was performed 4 days postoperatively. At the level of the laminectomy defect, a subfacial seroma had developed, entering the spinal canal and causing significant spinal cord compression. Under ultrasonographic guidance a closed-suction wound catheter was placed. Drainage of the seroma successfully relieved its compressive effects on the spinal cord and the patient's neurological status improved. CT was a valuable tool in assessing spinal cord compression as a result of a postoperative subfascial seroma. Minimally invasive application of a wound catheter can be successfully used to manage this condition.

  17. Minimally Invasive Drainage of a Post-Laminectomy Subfascial Seroma with Cervical Spinal Cord Compression.

    Science.gov (United States)

    Kitshoff, Adriaan Mynhardt; Van Goethem, Bart; Cornelis, Ine; Combes, Anais; Dvm, Ingeborgh Polis; Gielen, Ingrid; Vandekerckhove, Peter; de Rooster, Hilde

    2016-01-01

    A 14 mo old female neutered Doberman pinscher was evaluated for difficulty in rising, a wide based stance, pelvic limb gait abnormalities, and cervical pain of 2 mo duration. Neurologic examination revealed pelvic limb ataxia and cervical spinal hyperesthesia. Spinal reflexes and cranial nerve examination were normal. The pathology was localized to the C1-C5 or C6-T2 spinal cord segments. Computed tomography (CT) findings indicated bony proliferation of the caudal articular processes of C6 and the cranial articular processes of C7, resulting in bilateral dorsolateral spinal cord compression that was more pronounced on the left side. A limited dorsal laminectomy was performed at C6-C7. Due to progressive neurological deterioration, follow-up CT examination was performed 4 days postoperatively. At the level of the laminectomy defect, a subfacial seroma had developed, entering the spinal canal and causing significant spinal cord compression. Under ultrasonographic guidance a closed-suction wound catheter was placed. Drainage of the seroma successfully relieved its compressive effects on the spinal cord and the patient's neurological status improved. CT was a valuable tool in assessing spinal cord compression as a result of a postoperative subfascial seroma. Minimally invasive application of a wound catheter can be successfully used to manage this condition. PMID:27008321

  18. Diagnostics and therapy of spinal disc herniation

    International Nuclear Information System (INIS)

    Degenerative processes in a movement segment of the vertebral column, which can potentially give rise to herniation of elements of the nucleus pulposus, are complex and of variable clinical and radiological dimensions; however the mere assumption that degenerative changes precede disc herniation remains a matter of debate. By definition, spinal disc herniation (SDH) refers to components of the gelatinous nucleus pulposus protruding beyond the dorsal level of the vertebral body margin through tears in the annulus fibrosus. Clinical presentation may include pain, paresis and sensory disturbances. Magnetic resonance imaging (MRI) is considered the gold standard in the diagnosis of SDH. In the majority of patients a conservative approach with physical therapy exercises and adequate analgesic and antiphlogistic medical treatment results in a substantial improvement of symptoms. (orig.)

  19. Pain processing by spinal microcircuits: afferent combinatorics.

    Science.gov (United States)

    Prescott, Steven A; Ratté, Stéphanie

    2012-08-01

    Pain, itch, heat, cold, and touch represent different percepts arising from somatosensory input. How stimuli give rise to these percepts has been debated for over a century. Recent work supports the view that primary afferents are highly specialized to transduce and encode specific stimulus modalities. However, cross-modal interactions (e.g. inhibition or exacerbation of pain by touch) support convergence rather than specificity in central circuits. We outline how peripheral specialization together with central convergence could enable spinal microcircuits to combine inputs from distinctly specialized, co-activated afferents and to modulate the output signals thus formed through computations like normalization. These issues will be discussed alongside recent advances in our understanding of microcircuitry in the superficial dorsal horn.

  20. Connections from the rat dorsal column nuclei (DCN) to the periaqueductal gray matter (PAG).

    Science.gov (United States)

    Barbaresi, Paolo; Mensà, Emanuela

    2016-08-01

    Electrical stimulation of the dorsal columns (DCs; spinal cord stimulation; SCS) has been proposed to treat chronic neuropathic pain. SCS may activate a dual mechanism that would affect both the spinal cord and supraspinal levels. Stimulation of DCs or DC nuclei (DCN) in animals where neuropathic pain has been induced causes activation of brainstem centers including the periaqueductal gray (PAG), which is involved in the endogenous pain suppression system. Biotinylated dextran-amine (BDA) was iontophoretically injected into the DCN to analyze the ascending projection directed to the PAG. Separate injections into the gracile nucleus (GrN) and the cuneate nucleus (CunN) showed BDA-positive fibers terminating in different regions of the contralateral PAG. GrN-PAG afferents terminated in the caudal and middle portions of PAG-l, whereas CunN-PAG fibers terminated in the middle and rostral portions of PAG-l. Based on the DCN somatotopic map, the GrN sends information to the PAG from the contralateral hindlimb and the tail and the CunN from the contralateral forelimb, shoulder, neck and ear. This somatotopic organization is consistent with earlier electrophysiological and PAG stimulation studies. These fibers could form part of the DCs-brainstem-spinal cord loop, which may be involved in the inhibitory effects of SCS on neuropathic pain. PMID:26902642

  1. Deep dorsal vein arterialisation in vascular impotence.

    Science.gov (United States)

    Wespes, E; Corbusier, A; Delcour, C; Vandenbosch, G; Struyven, J; Schulman, C C

    1989-11-01

    A series of 12 patients with vasculogenic impotence (4 arterial lesions; 8 arterial and venous lesions) underwent deep dorsal vein arterialisation after pre-operative assessment by a multidisciplinary approach. Cumulative graft patency was 58% (7 of 12 patients) up to 21 months but only 4 patients developed almost normal erections. Digital angiography, with and without the intracavernous injection of papaverine, was performed during follow-up to determine the vascular physiological status. At flaccidity, the corpora cavernosa were never opacified in the absence of a venocorporeal shunt. The penile glans was always visualised. Opacification of the deep dorsal vein and the circumflex system decreased with penile rigidity, resulting from their compression between Buck's fascia and the tunica albuginea. Intracavernous pressure recorded before and after the surgical procedure showed a marked increase when a caverno-venous shunt was performed. Hypervascularisation of the glans occurred in 2 cases. The relevance of this new surgical technique and its functional mechanism are discussed.

  2. Regulation of excitability in tonic firing substantia gelatinosa neurons of the spinal cord by small-conductance Ca(2+)-activated K(+) channels.

    Science.gov (United States)

    Yang, Kun

    2016-06-01

    The excitability of substantia gelatinosa (SG) neurons in the spinal dorsal horn determines the processing of nociceptive information from the periphery to the central nervous system. Small conductance Ca(2+)-activated K(+) (SK) channels on neurons supply strong negative feedback control on neuronal excitability by affecting afterhyperpolarization (AHP). However, the role of SK channels in regulating tonic-firing SG neuron excitability remains elusive. In the present study, whole-cell recordings were conducted in SG neurons from acute spinal cord slices of adult rats. The SK channel opener 1-ethyl-2-benzimidazolinone (1-EBIO) attenuated spike discharges and increased AHP amplitudes; this effect was mimicked by a high Ca(2+) external solution. Systemic administration of 1-EBIO attenuated the thermal-induced nociception behavior. Conversely, the inhibition of SK channels with apamin, a specific SK channel inhibitor, increased neuronal excitability and decreased the AHP amplitudes; this effect was mimicked by a Ca(2+)-free external solution. Apamin increased excitatory synaptic transmission by increasing the amplitudes of evoked excitatory postsynaptic potentials (eEPSPs). This facilitation depended on N-methyl-d-aspartate (NMDA) receptors, extracellular Mg(2+) and intracellular Ca(2+). Voltage-gated Ca(2+) channels (VGCCs) were also involved in the apamin-induced effects. Strikingly, 1-EBIO action on decreasing excitability persisted in the presence of apamin, indicating that 1-EBIO manipulates SK channels via a pathway rather than via apamin-sensitive SK channels. The data reveal a previously uncharacterized mechanism for manipulating SG neuronal excitability by Ca(2+) conductances via both apamin-sensitive and apamin-insensitive pathways. Because SG neurons in the dorsal horn are involved in regulating nociception, manipulating neuronal excitability via SK channels indicates a potential therapeutic target. PMID:26777279

  3. Expression of melanocortin receptors and pro-opiomelanocortin in the rat spinal cord in relation to neurotrophic effects of melanocortins

    NARCIS (Netherlands)

    Gispen, W.H.; Kraan, M. van der; Tatro, J.B.; Entwistle, M.L.; Brakkee, J.H.; Burbach, J.P.H.; Adan, R.A.H.

    1999-01-01

    Although neurotrophic effects of -melanocyte-stimulating hormone (-MSH) are well established, the mechanism underlying these effects is unknown. To identify candidate components of the signaling system that may mediate these effects, in the present study rat spinal cord, dorsal root ganglia, sciatic

  4. Effect of Regular Exercise on Cardiopulmonary Fitness in Males With Spinal Cord Injury

    OpenAIRE

    Lee, Young Hee; Oh, Kyung Joon; Kong, In Deok; Kim, Sung Hoon; Shinn, Jong Mock; Kim, Jong Heon; Yi, Dongsoo; Lee, Jin Hyeong; Chang, Jae Seung; Kim, Tae-ho; Kim, Eun Ju

    2015-01-01

    Objective To evaluate the cardiopulmonary endurance of subjects with spinal cord injury by measuring the maximal oxygen consumption with varying degrees of spinal cord injury level, age, and regular exercise. Methods We instructed the subjects to perform exercises using arm ergometer on healthy adults at 20 years of age or older with spinal cord injury, and their maximal oxygen consumption (VO2max) was measured with a metabolic measurement system. The exercise proceeded stepwise according to ...

  5. Immediate effects of spinal manipulation on thermal pain sensitivity: an experimental study

    Directory of Open Access Journals (Sweden)

    George Steven Z

    2006-08-01

    Full Text Available Abstract Background The underlying causes of spinal manipulation hypoalgesia are largely unknown. The beneficial clinical effects were originally theorized to be due to biomechanical changes, but recent research has suggested spinal manipulation may have a direct neurophysiological effect on pain perception through dorsal horn inhibition. This study added to this literature by investigating whether spinal manipulation hypoalgesia was: a local to anatomical areas innervated by the lumbar spine; b correlated with psychological variables; c greater than hypoalgesia from physical activity; and d different for A-delta and C-fiber mediated pain perception. Methods Asymptomatic subjects (n = 60 completed baseline psychological questionnaires and underwent thermal quantitative sensory testing for A-delta and C-fiber mediated pain perception. Subjects were then randomized to ride a stationary bicycle, perform lumbar extension exercise, or receive spinal manipulation. Quantitative sensory testing was repeated 5 minutes after the intervention period. Data were analyzed with repeated measures ANOVA and post-hoc testing was performed with Bonferroni correction, as appropriate. Results Subjects in the three intervention groups did not differ on baseline characteristics. Hypoalgesia from spinal manipulation was observed in lumbar innervated areas, but not control (cervical innervated areas. Hypoalgesic response was not strongly correlated with psychological variables. Spinal manipulation hypoalgesia for A-delta fiber mediated pain perception did not differ from stationary bicycle and lumbar extension (p > 0.05. Spinal manipulation hypoalgesia for C-fiber mediated pain perception was greater than stationary bicycle riding (p = 0.040, but not for lumbar extension (p = 0.105. Conclusion Local dorsal horn mediated inhibition of C-fiber input is a potential hypoalgesic mechanism of spinal manipulation for asymptomatic subjects, but further study is required to

  6. Spinal cord abscess

    Science.gov (United States)

    ... abscess: Back injuries or trauma, including minor ones Boils on the skin, especially on the back or ... of spinal cord abscess. Prevention Thorough treatment of boils, tuberculosis, and other infections decreases the risk. Early ...

  7. Spinal Cord Injury 101

    Science.gov (United States)

    ... is "Braingate" research? What is the status of stem-cell research? How would stem-cell therapies work in the treatment of spinal cord injuries? What does stem-cell research on animals tell us? When can we expect ...

  8. Spinal Cord Injury 101

    Medline Plus

    Full Text Available ... family FacingDisability is designed to provide Internet-based information and support for people with spinal cord injuries ... health care products or services, or control the information found on external websites. The Hill Foundation is ...

  9. Spinal Cord Injury Map

    Science.gov (United States)

    ... Videos Videos by Topic and Question Videos by Family Relationship Videos by Experts Resources The Short List Government ... Home Videos by Topic and Question Videos by Family Relationship Videos by Spinal Cord Experts Resources Forums Peer ...

  10. Spinal cord trauma

    Science.gov (United States)

    ... Oh's Intensive Care Manual . 7th ed. Philadelphia, PA: Elsevier; 2014:chap 78. Bryce TN. Spinal cord injury. ... Physical Medicine and Rehabilitation . 5th ed. Philadelphia, PA: Elsevier; 2016:chap 49. Dalzell K, Nouri A, Fehlings ...

  11. Comparison of icilin- and cold-evoked responses of spinal neurones, and their modulation of mechanical activity, in a model of neuropathic pain.

    Science.gov (United States)

    Brignell, Jennifer L; Chapman, Victoria; Kendall, David A

    2008-06-18

    Cold allodynia is a poorly understood symptom of neuropathic pain. Two members of the transient receptor potential (TRP) family of proteins, TRPM8 and TRPA1, may contribute to cold somatosensation. The aim of the present study was to investigate the usefulness of icilin as a pharmacological tool to study primary afferent fibre responses to cold stimuli and to determine whether there are differences in the responses of spinal neurones to cooling of peripheral receptive fields in control versus neuropathic rats. The effects of icilin, a TRPM8 and TRPA1 agonist, on intracellular Ca(2+) ([Ca(2+)](i)) responses of small diameter adult dorsal root ganglia (DRG) neurones were determined. Icilin (10 nM-10 microM) produced a concentration-related increase in [Ca(2+)](i) in DRG neurones, which was attenuated by the non-selective TRP channel antagonist ruthenium red (10 microM). In vivo electrophysiology in naïve, sham-operated and SNL rats demonstrated that application of ice to receptive fields evoked firing of wide dynamic range (WDR) neurones, which was significantly greater in SNL rats than naïve and sham-operated rats. Intraplantar injection of icilin did not evoke firing of WDR neurones in naïve, sham-operated or SNL rats but inhibited mechanically-evoked responses of WDR neurones in naïve and sham-operated rats, whilst facilitating mechanically-evoked responses in SNL rats. Icilin increased both innocuous (sham-operated and SNL rats) and noxious (SNL rats) receptive field sizes of WDR neurones. Our data suggests that icilin modulates the mechanosensitivity of dorsal horn neurones. The differing effects of ice and icilin on dorsal horn neurones indicate different mechanisms of action.

  12. Modeling spinal cord biomechanics

    Science.gov (United States)

    Luna, Carlos; Shah, Sameer; Cohen, Avis; Aranda-Espinoza, Helim

    2012-02-01

    Regeneration after spinal cord injury is a serious health issue and there is no treatment for ailing patients. To understand regeneration of the spinal cord we used a system where regeneration occurs naturally, such as the lamprey. In this work, we analyzed the stress response of the spinal cord to tensile loading and obtained the mechanical properties of the cord both in vitro and in vivo. Physiological measurements showed that the spinal cord is pre-stressed to a strain of 10%, and during sinusoidal swimming, there is a local strain of 5% concentrated evenly at the mid-body and caudal sections. We found that the mechanical properties are homogeneous along the body and independent of the meninges. The mechanical behavior of the spinal cord can be characterized by a non-linear viscoelastic model, described by a modulus of 20 KPa for strains up to 15% and a modulus of 0.5 MPa for strains above 15%, in agreement with experimental data. However, this model does not offer a full understanding of the behavior of the spinal cord fibers. Using polymer physics we developed a model that relates the stress response as a function of the number of fibers.

  13. Spatial and temporal activation of spinal glial cells: role of gliopathy in central neuropathic pain following spinal cord injury in rats.

    Science.gov (United States)

    Gwak, Young S; Kang, Jonghoon; Unabia, Geda C; Hulsebosch, Claire E

    2012-04-01

    In the spinal cord, neuron and glial cells actively interact and contribute to neurofunction. Surprisingly, both cell types have similar receptors, transporters and ion channels and also produce similar neurotransmitters and cytokines. The neuroanatomical and neurochemical similarities work synergistically to maintain physiological homeostasis in the normal spinal cord. However, in trauma or disease states, spinal glia become activated, dorsal horn neurons become hyperexcitable contributing to sensitized neuronal-glial circuits. The maladaptive spinal circuits directly affect synaptic excitability, including activation of intracellular downstream cascades that result in enhanced evoked and spontaneous activity in dorsal horn neurons with the result that abnormal pain syndromes develop. Recent literature reported that spinal cord injury produces glial activation in the dorsal horn; however, the majority of glial activation studies after SCI have focused on transient and/or acute time points, from a few hours to 1 month, and peri-lesion sites, a few millimeters rostral and caudal to the lesion site. In addition, thoracic spinal cord injury produces activation of astrocytes and microglia that contributes to dorsal horn neuronal hyperexcitability and central neuropathic pain in above-level, at-level and below-level segments remote from the lesion in the spinal cord. The cellular and molecular events of glial activation are not simple events, rather they are the consequence of a combination of several neurochemical and neurophysiological changes following SCI. The ionic imbalances, neuroinflammation and alterations of cell cycle proteins after SCI are predominant components for neuroanatomical and neurochemical changes that result in glial activation. More importantly, SCI induced release of glutamate, proinflammatory cytokines, ATP, reactive oxygen species (ROS) and neurotrophic factors trigger activation of postsynaptic neuron and glial cells via their own receptors

  14. Does the histaminergic system play a role in spinal nociception?

    Science.gov (United States)

    Harasawa, K

    2000-07-01

    The author studied whether the histaminergic system is involved in spinal nociception or not. A nociception-related, slow ventral root potential of rats, which is an integrated output of motoneurons, was recorded as an index of the intensity of nociception when an electric stimulation was applied to the dorsal root. Histamine dissolved in an artificial cerebrospinal fluid caused small reduction in the potential; however, mepyramine (10 nM to 10 microM, as an H1 receptor antagonist), ranitidine (1 nM to 1 microM, as an H2 receptor antagonist), R(-)-alpha-methylhistamine (2 pM to 200 nM, as an H3 receptor agonist), and thioperamide (1 nM to 10 microM, as an H3 receptor antagonist) dose-dependently reduced the potential down to around a half of each control level. These results indicate that the histaminergic system may affect the spinal withdrawal reflex.

  15. Minimally invasive keyhole approaches in spinal intradural tumor surgery: report of two cases and conceptual considerations.

    Science.gov (United States)

    Reisch, Robert; Koechlin, Nicolas O; Marcus, Hani J

    2016-09-01

    Despite their predominantly histologically benign nature, intradural tumors may become symptomatic by virtue of their space-occupying effect, causing severe neurological deficits. The gold standard treatment is total excision of the lesion; however, extended dorsal and dorsolateral approaches may cause late complications due to iatrogenic destruction of the posterolateral elements of the spine. In this article, we describe our concept of minimally invasive spinal tumor surgery. Two illustrative cases demonstrate the feasibility and safety of keyhole fenestrations exposing the spinal canal. PMID:25336048

  16. Congenital spinal malformations; Kongenitale spinale Malformationen

    Energy Technology Data Exchange (ETDEWEB)

    Ertl-Wagner, B.B.; Reiser, M.F. [Klinikum Grosshadern, Ludwig-Maximilians-Univ. Muenchen (Germany). Inst. fuer Klinische Radiologie

    2001-12-01

    Congenital spinal malformations form a complex and heterogeneous group of disorders whose pathogenesis is best explained embryologically. Radiologically, it is important to formulate a diagnosis when the disorder first becomes symptomatic. However, it is also crucial to detect complications of the disorder or of the respective therapeutic interventions in the further course of the disease such as hydromyelia or re-tethering after repair of a meningomyelocele. Moreover, once a congenital spinal malformation is diagnosed, associated malformations should be sought after. A possible syndromal classification such as in OEIS- or VACTERL-syndromes should also be considered. (orig.) [German] Kongenitale spinale Malformationen stellen eine komplexe Gruppe an Stoerungen dar, deren Genese sich am einfachsten aus der Embryologie heraus erklaeren laesst. Bei der klinisch-radiologischen Begutachtung ist zunaechst ihre korrekte Klassifikation im Rahmen der Erstdiagnose wichtig. Im weiteren Verlauf ist es jedoch zudem entscheidend, moegliche Komplikationen wie beispielsweise eine Hydromyelie oder ein Wiederanheften des Myelons nach Operation einer Spina bifida aperta zu erkennen. Zudem sollte bei der Diagnosestellung einer kongenitalen spinalen Malformation immer auch auf assoziierte Fehlbildungen, wie z.B. die Diastematomyelie oder das intraspinale Lipom bei der Spina bifida aperta, sowie auf eine moegliche syndromale Einordnung wie beispielsweise beim OEIS-oder VACTERL-Syndrom geachtet werden. (orig.)

  17. Safety Profile, Feasibility and Early Clinical Outcome of Cotransplantation of Olfactory Mucosa and Bone Marrow Stem Cells in Chronic Spinal Cord Injury Patients

    OpenAIRE

    Goni, Vijay G.; Chhabra, Rajesh; Gupta, Ashok; Marwaha, Neelam; Dhillon, Mandeep S; Pebam, Sudesh; Gopinathan, Nirmal Raj; Bangalore Kantharajanna, Shashidhar

    2014-01-01

    Study Design Prospective case series. Purpose To study the safety and feasibility of cotransplantation of bone marrow stem cells and autologous olfactory mucosa in chronic spinal cord injury. Overview of Literature Stem cell therapies are a novel method in the attempt to restitute heavily damaged tissues. We discuss our experience with this modality in postspinal cord injury paraplegics. Methods The study includes 9 dorsal spine injury patients with American Spinal Injury Association (ASIA) I...

  18. Dorsal and ventral streams across sensory modalities

    Institute of Scientific and Technical Information of China (English)

    Anna Sedda; Federica Scarpina

    2012-01-01

    In this review,we describe the current models of dorsal and ventral streams in vision,audition and touch.Available theories take their first steps from the model of Milner and Goodale,which was developed to explain how human actions can be efficiently carried out using visual information.Since then,similar concepts have also been applied to other sensory modalities.We propose that advances in the knowledge of brain functioning can be achieved through models explaining action and perception patterns independently from sensory modalities.

  19. Asymmetric development of dorsal and ventral attention networks in the human brain

    Directory of Open Access Journals (Sweden)

    Kristafor Farrant

    2015-04-01

    Full Text Available Two neural systems for goal-directed and stimulus-driven attention have been described in the adult human brain; the dorsal attention network (DAN centered in the frontal eye fields (FEF and intraparietal sulcus (IPS, and the ventral attention network (VAN anchored in the temporoparietal junction (TPJ and ventral frontal cortex (VFC. Little is known regarding the processes governing typical development of these attention networks in the brain. Here we use resting state functional MRI data collected from thirty 7 to 12 year-old children and thirty 18 to 31 year-old adults to examine two key regions of interest from the dorsal and ventral attention networks. We found that for the DAN nodes (IPS and FEF, children showed greater functional connectivity with regions within the network compared with adults, whereas adults showed greater functional connectivity between the FEF and extra-network regions including the posterior cingulate cortex. For the VAN nodes (TPJ and VFC, adults showed greater functional connectivity with regions within the network compared with children. Children showed greater functional connectivity between VFC and nodes of the salience network. This asymmetric pattern of development of attention networks may be a neural signature of the shift from over-representation of bottom-up attention mechanisms to greater top-down attentional capacities with development.

  20. The coding of cutaneous temperature in the spinal cord.

    Science.gov (United States)

    Ran, Chen; Hoon, Mark A; Chen, Xiaoke

    2016-09-01

    The spinal cord is the initial stage that integrates temperature information from peripheral inputs. Here we used molecular genetics and in vivo calcium imaging to investigate the coding of cutaneous temperature in the spinal cord in mice. We found that heating or cooling the skin evoked robust calcium responses in spinal neurons, and their activation threshold temperatures distributed smoothly over the entire range of stimulation temperatures. Once activated, heat-responding neurons encoded the absolute skin temperature without adaptation and received major inputs from transient receptor potential (TRP) channel V1 (TRPV1)-positive dorsal root ganglion (DRG) neurons. By contrast, cold-responding neurons rapidly adapted to ambient temperature and selectively encoded temperature changes. These neurons received TRP channel M8 (TRPM8)-positive DRG inputs as well as novel TRPV1(+) DRG inputs that were selectively activated by intense cooling. Our results provide a comprehensive examination of the temperature representation in the spinal cord and reveal fundamental differences in the coding of heat and cold. PMID:27455110

  1. Puerarin Alleviates Neuropathic Pain by Inhibiting Neuroinflammation in Spinal Cord

    Directory of Open Access Journals (Sweden)

    Ming Liu

    2014-01-01

    Full Text Available Neuropathic pain responds poorly to drug treatments, and partial relief is achieved in only about half of the patients. Puerarin, the main constituent of Puerariae Lobatae Radix, has been used extensively in China to treat hypertension and tumor. The current study examined the effects of puerarin on neuropathic pain using two most commonly used animal models: chronic constriction injury (CCI and diabetic neuropathy. We found that consecutive intrathecal administration of puerarin (4–100 nM for 7 days inhibited the mechanical and thermal nociceptive response induced by CCI and diabetes without interfering with the normal pain response. Meanwhile, in both models puerarin inhibited the activation of microglia and astroglia in the spinal dorsal horn. Puerarin also reduced the upregulated levels of nuclear factor-κB (NF-κB and other proinflammatory cytokines, such as IL-6, IL-1β, and TNF-α, in the spinal cord. In summary, puerarin alleviated CCI- and diabetes-induced neuropathic pain, and its effectiveness might be due to the inhibition of neuroinflammation in the spinal cord. The anti-inflammation effect of puerarin might be related to the suppression of spinal NF-κB activation and/or cytokines upregulation. We conclude that puerarin has a significant effect on alleviating neuropathic pain and thus may serve as a therapeutic approach for neuropathic pain.

  2. Cysticercosis of the nervous system: less frequent clinical forms III- spinal cord forms

    Directory of Open Access Journals (Sweden)

    Horacio M. Canelas

    1963-06-01

    Full Text Available The spinal forms of cysticercosis are rather rare (2.7% of 296 cases of neurocysticercosis recorded in the Department of Neurology of the University of São Paulo Medical School. In a survey of the literature only 42 cases were found, most of them associated with cerebral symptoms. The reasons for this low incidence, as well as the possible routes followed by the parasite in its approach to the spinal cord, are discussed. After a review of the first cases reported in the literature, the authors refer the main syndromes (meningomyelitides, tabetiform pictures and spinal cord compressions and some of the clinico-pathologic features of spinal cysticercosis. Nine cases of spinal cysticercosis are reported. The diagnosis was based on laboratorial data (mainly the complement fixation test for cysticercosis in the cerebrospinal fluid or in the results of surgical therapy. Other cerebrospinal fluid findings (presence of eosinophile cells, protein contents, and the results of the manometric tests are discussed. Myelographic block was demonstrated in 5 cases. Three of these patients were submitted to laminectomy, with variable results. The prevailing neurological picture was that of spinal cord and/or root compression (4 cases. Two patients showed a dorsal funiculi syndrome closely simulating tabes dorsalis. Two other patients presented a picture of meningomyelitis with no systematization. One patient had a syndrome suggestive of subacute combined degeneration of the spinal cord, but the presence of cerebral symptoms and the laboratorial data pointed to cysti-cercosis as the main disease process.

  3. Imaging in spinal trauma

    Energy Technology Data Exchange (ETDEWEB)

    Goethem, J.W.M. van [Universitair Ziekenhuis Antwerpen, University of Antwerp, Belgium, Department of Radiology, Edegem (Belgium); Algemeen Ziekenhuis Maria Middelares, Department of Radiology, Sint-Niklaas (Belgium); Maes, Menno; Oezsarlak, Oezkan; Hauwe, Luc van den; Parizel, Paul M. [Universitair Ziekenhuis Antwerpen, University of Antwerp, Belgium, Department of Radiology, Edegem (Belgium)

    2005-03-01

    Because it may cause paralysis, injury to the spine is one of the most feared traumas, and spinal cord injury is a major cause of disability. In the USA approximately 10,000 traumatic cervical spine fractures and 4000 traumatic thoracolumbar fractures are diagnosed each year. Although the number of individuals sustaining paralysis is far less than those with moderate or severe brain injury, the socioeconomic costs are significant. Since most of the spinal trauma patients survive their injuries, almost one out of 1000 inhabitants in the USA are currently being cared for partial or complete paralysis. Little controversy exists regarding the need for accurate and emergent imaging assessment of the traumatized spine in order to evaluate spinal stability and integrity of neural elements. Because clinicians fear missing occult spine injuries, they obtain radiographs for nearly all patients who present with blunt trauma. We are influenced on one side by fear of litigation and the possible devastating medical, psychologic and financial consequences of cervical spine injury, and on the other side by pressure to reduce health care costs. A set of clinical and/or anamnestic criteria, however, can be very useful in identifying patients who have an extremely low probability of injury and who consequently have no need for imaging studies. Multidetector (or multislice) computed tomography (MDCT) is the preferred primary imaging modality in blunt spinal trauma patients who do need imaging. Not only is CT more accurate in diagnosing spinal injury, it also reduces imaging time and patient manipulation. Evidence-based research has established that MDCT improves patient outcome and saves money in comparison to plain film. This review discusses the use, advantages and disadvantages of the different imaging techniques used in spinal trauma patients and the criteria used in selecting patients who do not need imaging. Finally an overview of different types of spinal injuries is given

  4. Imaging in spinal trauma

    International Nuclear Information System (INIS)

    Because it may cause paralysis, injury to the spine is one of the most feared traumas, and spinal cord injury is a major cause of disability. In the USA approximately 10,000 traumatic cervical spine fractures and 4000 traumatic thoracolumbar fractures are diagnosed each year. Although the number of individuals sustaining paralysis is far less than those with moderate or severe brain injury, the socioeconomic costs are significant. Since most of the spinal trauma patients survive their injuries, almost one out of 1000 inhabitants in the USA are currently being cared for partial or complete paralysis. Little controversy exists regarding the need for accurate and emergent imaging assessment of the traumatized spine in order to evaluate spinal stability and integrity of neural elements. Because clinicians fear missing occult spine injuries, they obtain radiographs for nearly all patients who present with blunt trauma. We are influenced on one side by fear of litigation and the possible devastating medical, psychologic and financial consequences of cervical spine injury, and on the other side by pressure to reduce health care costs. A set of clinical and/or anamnestic criteria, however, can be very useful in identifying patients who have an extremely low probability of injury and who consequently have no need for imaging studies. Multidetector (or multislice) computed tomography (MDCT) is the preferred primary imaging modality in blunt spinal trauma patients who do need imaging. Not only is CT more accurate in diagnosing spinal injury, it also reduces imaging time and patient manipulation. Evidence-based research has established that MDCT improves patient outcome and saves money in comparison to plain film. This review discusses the use, advantages and disadvantages of the different imaging techniques used in spinal trauma patients and the criteria used in selecting patients who do not need imaging. Finally an overview of different types of spinal injuries is given

  5. Neuronal plasticity after spinal cord injury: identification of a gene cluster driving neurite outgrowth.

    Science.gov (United States)

    Di Giovanni, Simone; Faden, Alan I; Yakovlev, Alexander; Duke-Cohan, Jonathan S; Finn, Tom; Thouin, Melissa; Knoblach, Susan; De Biase, Andrea; Bregman, Barbara S; Hoffman, Eric P

    2005-01-01

    Functional recovery after spinal cord injury (SCI) may result in part from axon outgrowth and related plasticity through coordinated changes at the molecular level. We employed microarray analysis to identify a subset of genes the expression patterns of which were temporally coregulated and correlated to functional recovery after SCI. Steady-state mRNA levels of this synchronously regulated gene cluster were depressed in both ventral and dorsal horn neurons within 24 h after injury, followed by strong re-induction during the following 2 wk, which paralleled functional recovery. The identified cluster includes neuritin, attractin, microtubule-associated protein 1a, and myelin oligodendrocyte protein genes. Transcriptional and protein regulation of this novel gene cluster was also evaluated in spinal cord tissue and in single neurons and was shown to play a role in axonal plasticity. Finally, in vitro transfection experiments in primary dorsal root ganglion cells showed that cluster members act synergistically to drive neurite outgrowth. PMID:15522907

  6. PROJECTIONS OF DORSAL AND MEDIAN RAPHE NUCLEI TO DORSAL AND VENTRAL STRIATUM

    Directory of Open Access Journals (Sweden)

    G. R. Hassanzadeh G. Behzadi

    2007-08-01

    Full Text Available The ascending serotonergic projections are derived mainly from mesencephalic raphe nuclei. Topographical projections from mesencephalic raphe nuclei to the striatum were examined in the rat by the retrograde transport technique of HRP (horseradish peroxidase. In 29 rats stereotaxically injection of HRP enzyme were performed in dorsal and ventral parts of striatum separately. The extent of the injection sites and distribution of retrogradely labeled neuronal cell bodies were drawed on representative sections using a projection microscope. Following ipsilateral injection of HRP into the dorsal striatum, numerous labeled neurons were seen in rostral portion of dorsal raphe (DR nucleus. In the same level the cluster of labeled neurons were hevier through caudal parts of DR. A few neurons were also located in lateral wing of DR. More caudally some labeled neurons were found in lateral, medial line of DR. In median raphe nucleus (MnR the labeled neurons were scattered only in median portion of this nucleus. The ipsilateral injection of HRP into the ventral region of striatum resulted on labeling of numerous neurons in rostral, caudal and lateral portions of DR. Through the caudal extension of DR on 4th ventricle level, a large number of labeled neurons were distributed along the ventrocaudal parts of DR. In MnR, labeled neurons were observed only in median part of this nucleus. These findings suggest the mesencephalic raphe nuclei projections to caudo-putamen are topographically organized. In addition dorsal and median raphe nuclei have a stronger projection to the ventral striatum.

  7. Variable laterality of corticospinal tract axons that regenerate after spinal cord injury as a result of PTEN deletion or knock-down.

    Science.gov (United States)

    Willenberg, Rafer; Zukor, Katherine; Liu, Kai; He, Zhigang; Steward, Oswald

    2016-09-01

    Corticospinal tract (CST) axons from one hemisphere normally extend and terminate predominantly in the contralateral spinal cord. We previously showed that deleting the gene phosphatase and tensin homolog (PTEN) in the sensorimotor cortex enables CST axons to regenerate after spinal cord injury and that some regenerating axons extend along the "wrong" side. Here, we characterize the degree of specificity of regrowth in terms of laterality. PTEN was selectively deleted via cortical adeno-associated virus (AAV)-Cre injections in neonatal PTEN-floxed mice. As adults, mice received dorsal hemisection injuries at T12 or complete crush injuries at T9. CST axons from one hemisphere were traced by unilateral biotinylated dextran amine (BDA) injections in PTEN-deleted mice with spinal cord injury and in noninjured PTEN-floxed mice that had not received AAV-Cre. In noninjured mice, 97.9 ± 0.7% of BDA-labeled axons in white matter and 88.5 ± 1.0% of BDA-labeled axons in gray matter were contralateral to the cortex of origin. In contrast, laterality of CST axons that extended past a lesion due to PTEN deletion varied across animals. In some cases, regenerated axons extended predominantly on the ipsilateral side; in other cases, axons extended predominantly contralaterally, and in others, axons were similar in numbers on both sides. Similar results were seen in analyses of cases from previous studies using short hairpin (sh)RNA-mediated PTEN knock-down. These results indicate that CST axons that extend past a lesion due to PTEN deletion or knock-down do not maintain the contralateral rule of the noninjured CST, highlighting one aspect of how the resultant circuitry from regenerating axons may differ from that of the uninjured CST. J. Comp. Neurol. 524:2654-2676, 2016. © 2016 Wiley Periodicals, Inc. PMID:26878190

  8. Reducing macrophages to improve bone marrow stromal cell survival in the contused spinal cord.

    NARCIS (Netherlands)

    Ritfeld, G.J.; Nandoe Tewarie, R.D.S.; Rahiem, S.T.; Hurtado, A.; Roos, R.A.; Grotenhuis, A.; Oudega, M.

    2010-01-01

    We tested whether reducing macrophage infiltration would improve the survival of allogeneic bone marrow stromal cells (BMSC) transplanted in the contused adult rat thoracic spinal cord. Treatment with cyclosporine, minocycline, or methylprednisolone all resulted in a significant decrease in macropha

  9. Effect of activating γ-aminobutyric acid B receptors on the expression of phosphorylated cyclic adenosine monophosphate response element binding protein and N-methyl-D-aspartate receptor subunit 2B in the spinal dorsal horn in rats with diabetic neuropathic pain%激活γ-氨基丁酸B型受体对糖尿病神经痛大鼠脊髓背角磷酸化环磷酸腺苷反应元件结合蛋白和N-甲基-D-天冬氨酸受体2B亚基表达的影响

    Institute of Scientific and Technical Information of China (English)

    刘朋; 郭闻亚; 赵晓南; 吕艳霞; 魏淑明; 王秀丽

    2013-01-01

    binding protein (p-CREB) and N-methyl-D-aspartate receptor subunit 2B (NR2B) receptors in the spinal dorsal horn in rats with diabetic neuropathic pain (DNP) by using GABAB receptors agonist (baclofen) and atagonist (CGP55845).Methods Sixty-two male SD rats were randomly divided into two groups:normal control group (C group) and DNP nodel group (D group),which were intraperitonealy injected with saline and streptozocin (STZ) respectively.Fifty rats were intraperitonealy injected with STZ (60 mg/kg),and 4weeks later,DNP models were successfully established in 36 rats which were randomly divided into 3 groups (n = 12 each) according to the injected medicines:saline 10 μ1 + saline 10 μl were injected intrathecally in D1 group,saline 10 μl + baclofen 0.5 μg in D2 group,CGP55845 10 μg + baclofen 0.5 μg in D3 group.Saline 10 μl + saline 10 μl were injected intrathecally in 12 normal rats as C group.There was an interval of 15 min between twice intrathecal injections in four groups.The PWT was measured at 30 min before and after intrathecal injection for 4 days,and the time points were as follows:T1,T2,T3and T4.The spinal cord dorsal horns of rats were removed after measurement of PWT for detection of the expression of p-CREB,cyclic adenosine monophosphate response element binding protein (CREB) and NR2B receptor.Results As compared with C group,the expression levels of NR2B and p-CREB protein were significantly increased,while PWT was significantly decreased at each time point (T1-T4) in D1 and D3 groups (P<0.05).As compared with D1 group [p-CREB protein (0.76 ±0.13),NR2B protein (1.28 ±0.14),and NR2B mRNA (0.83 ± 0.10)],the protein expression levels of NR2B (0.88 ±0.13) and p-CREB (0.45 ± 0.08) and NR2B mRNA expression (0.53 ± 0.08) were significantly decreased,and PWT was significantly increased at each time point (T1-T4) in D2 group (P < 0.05).The expression levels of CREB had no significant diffierence among the four groups (P > 0.05).Conclusion

  10. Spinal canal stenosis; Spinalkanalstenose

    Energy Technology Data Exchange (ETDEWEB)

    Papanagiotou, P.; Boutchakova, M. [Klinikum Bremen-Mitte/Bremen-Ost, Klinik fuer Diagnostische und Interventionelle Neuroradiologie, Bremen (Germany)

    2014-11-15

    Spinal stenosis is a narrowing of the spinal canal by a combination of bone and soft tissues, which can lead to mechanical compression of spinal nerve roots or the dural sac. The lumbal spinal compression of these nerve roots can be symptomatic, resulting in weakness, reflex alterations, gait disturbances, bowel or bladder dysfunction, motor and sensory changes, radicular pain or atypical leg pain and neurogenic claudication. The anatomical presence of spinal canal stenosis is confirmed radiologically with computerized tomography, myelography or magnetic resonance imaging and play a decisive role in optimal patient-oriented therapy decision-making. (orig.) [German] Die Spinalkanalstenose ist eine umschriebene, knoechern-ligamentaer bedingte Einengung des Spinalkanals, die zur Kompression der Nervenwurzeln oder des Duralsacks fuehren kann. Die lumbale Spinalkanalstenose manifestiert sich klinisch als Komplex aus Rueckenschmerzen sowie sensiblen und motorischen neurologischen Ausfaellen, die in der Regel belastungsabhaengig sind (Claudicatio spinalis). Die bildgebende Diagnostik mittels Magnetresonanztomographie, Computertomographie und Myelographie spielt eine entscheidende Rolle bei der optimalen patientenbezogenen Therapieentscheidung. (orig.)

  11. G protein-coupled inwardly rectifying potassium channels in dorsal root ganglion neurons

    Institute of Scientific and Technical Information of China (English)

    Xiao-fei GAO; Hai-lin ZHANG; Zhen-dong YOU; Chang-lin LU; Cheng HE

    2007-01-01

    Aim: G protein-coupled inwardly rectifying potassium channels (GIRK) are important for neuronal signaling and membrane excitability. In the present study, we intend to find whether GIRK channels express functionally in adult rat dorsal root ganglion (DRG) neurons. Methods: We used RT-PCR to detect mRNA for4 subunits of GIRK in the adult DRG. The whole-cell patch clamp recording was used to confirm GIRK channels functionally expressed. Results: The mRNA for the 4 subunits of GIRK were detected in the adult DRG. GTPγS enhanced inwardly rectifying potassium (K+) currents of the DRG neurons, while Ba2+inhibited such currents. Furthermore, the GIRK channels were shown to be coupled to the GABAB receptor, a member of the G protein-coupled receptor family, as baclofen increased the inwardly rectifying K+ currents. Conclusion: GIRK channels are expressed and functionally coupled with GABAB receptors in adult rat DRG neurons.

  12. Dorsal Column Degeneration after Bortezomib Therapy in a Patient with Multiple Myeloma

    Directory of Open Access Journals (Sweden)

    Tatsuro Joh

    2009-10-01

    Full Text Available We present here a case of dorsal column degeneration in a female patient with multiple myeloma following exposure to bortezomib. Two days after intravenous administration of a first course of bortezomib 1 mg/m2, the patient developed rapidly-progressive numbness, pain and muscle weakness in the bilateral upper and lower limbs. Following gancyclovir treatment of subsequent cytomegalovirus viremia, the patient went on to receive a course of EPOCH (etoposide 50 mg/m2/day on days 1–4, vincristine 0.4 mg/m2/day on days 1–4, doxorubicin 10 mg/m2/day on days 1–4, cyclophosphamide 750 mg/m2/day on day 6, and prednisolone 60 mg/m2/day on days 1–6. Shortly thereafter, the patient developed bilateral Aspergillus pneumonia. Despite treatment with appropriate antifungal agents, the patient died from respiratory failure due to bilateral diffuse alveolar damage of the lungs and without recovery of severe sensory and motor neuropathy prior to her death. Post mortem examination revealed spongy degeneration of the dorsal column from the medulla oblongata to the cervical spinal cord. Bortezomib-associated peripheral neuropathy in patients with multiple myeloma has been commonly reported but appears to resolve in a majority of these patients after dose reduction or discontinuation. We believe this to be the first report of spinal cord abnormalities in a patient with multiple myeloma treated with bortezomib. Further investigation is required to ascertain the exact mechanism of this central neurotoxic effect and to identify appropriate neuroprotective strategies.

  13. Function of dorsal fins in bamboo shark during steady swimming.

    Science.gov (United States)

    Maia, Anabela; Wilga, Cheryl A

    2013-08-01

    To gain insight into the function of the dorsal fins in white-spotted bamboo sharks (Orectolobiformes: Hemiscyillidae) during steady swimming, data on three-dimensional kinematics and electromyographic recordings were collected. Bamboo sharks were induced to swim at 0.5 and 0.75 body lengths per second in a laminar flow tank. Displacement, lag and angles were analyzed from high-speed video images. Onset, offset, duration, duty cycle and asynchrony index were calculated from three muscle implants on each side of each dorsal fin. The dorsal fins were displaced more laterally than the undulating body. In addition, the dorsal tips had larger lateral displacement than the trailing edges. Increased speed was accompanied by an increase in tail beat frequency with constant tail beat amplitude. However, lateral displacement of the fins and duration of muscle bursts remained relatively constant with increased speed. The range of lateral motion was greater for the second dorsal fin (mean 33.3°) than for the first dorsal fin (mean 28.4°). Bending within the fin was greater for the second dorsal fin (mean 43.8°) than for the first dorsal fin (mean 30.8°). Muscle onset and offset among implants on the same side of each dorsal fin was similar. Three-dimensional conformation of the dorsal fins was caused by interactions between muscle activity, material properties, and incident flow. Alternating bilateral activity occurred in both dorsal fins, further supporting the active role of these hydrofoils in thrust production during steady swimming. The dorsal fins in bamboo sharks are capable of thrust production during steady swimming and do not appear to function as stabilizing structures. PMID:23830781

  14. Function of dorsal fins in bamboo shark during steady swimming.

    Science.gov (United States)

    Maia, Anabela; Wilga, Cheryl A

    2013-08-01

    To gain insight into the function of the dorsal fins in white-spotted bamboo sharks (Orectolobiformes: Hemiscyillidae) during steady swimming, data on three-dimensional kinematics and electromyographic recordings were collected. Bamboo sharks were induced to swim at 0.5 and 0.75 body lengths per second in a laminar flow tank. Displacement, lag and angles were analyzed from high-speed video images. Onset, offset, duration, duty cycle and asynchrony index were calculated from three muscle implants on each side of each dorsal fin. The dorsal fins were displaced more laterally than the undulating body. In addition, the dorsal tips had larger lateral displacement than the trailing edges. Increased speed was accompanied by an increase in tail beat frequency with constant tail beat amplitude. However, lateral displacement of the fins and duration of muscle bursts remained relatively constant with increased speed. The range of lateral motion was greater for the second dorsal fin (mean 33.3°) than for the first dorsal fin (mean 28.4°). Bending within the fin was greater for the second dorsal fin (mean 43.8°) than for the first dorsal fin (mean 30.8°). Muscle onset and offset among implants on the same side of each dorsal fin was similar. Three-dimensional conformation of the dorsal fins was caused by interactions between muscle activity, material properties, and incident flow. Alternating bilateral activity occurred in both dorsal fins, further supporting the active role of these hydrofoils in thrust production during steady swimming. The dorsal fins in bamboo sharks are capable of thrust production during steady swimming and do not appear to function as stabilizing structures.

  15. Selective depression of synaptic excitation in cat spinal neurones by baclofen: an iontophoretic study.

    OpenAIRE

    Davies, J

    1981-01-01

    1 The effects of baclofen have been examined on responses of neurones in the spinal cord of the anaesthetized cat to stimulation of appropriate synaptic pathways, acetylcholine and a range of amino acid excitants. Baclofen and excitant substances were administered by standard microiontophoretic techniques. 2 Small ejecting currents of baclofen (less than 10 nA) depressed non-cholinergic, excitatory, synaptic responses evoked by stimulation of dorsal roots or muscle or cutaneous afferents. Exc...

  16. Delta Opioid Receptors Presynaptically Regulate Cutaneous Mechanosensory Neuron Input to the Spinal Cord Dorsal Horn

    OpenAIRE

    Bardoni, Rita; Tawfik, Vivianne L.; Wang, Dong; François, Amaury; Solorzano, Carlos; Shuster, Scott A.; Choudhury, Papiya; Betelli, Chiara; Cassidy, Colleen; Smith, Kristen; de Nooij, Joriene C.; Mennicken, Françoise; O’Donnell, Dajan; Kieffer, Brigitte L.; Woodbury, C. Jeffrey

    2014-01-01

    Cutaneous mechanosensory neurons detect mechanical stimuli that generate touch and pain sensation. Although opioids are generally associated only with the control of pain, here we report that the opioid system in fact broadly regulates cutaneous mechanosensation, including touch. This function is predominantly subserved by the delta opioid receptor (DOR), which is expressed by myelinated mechanoreceptors that form Meissner corpuscles, Merkel cell-neurite complexes, and circumferential hair fo...

  17. Evaluation of Five Tests for Sensitivity to Functional Deficits following Cervical or Thoracic Dorsal Column Transection in the Rat.

    Directory of Open Access Journals (Sweden)

    Nitish D Fagoe

    Full Text Available The dorsal column lesion model of spinal cord injury targets sensory fibres which originate from the dorsal root ganglia and ascend in the dorsal funiculus. It has the advantages that fibres can be specifically traced from the sciatic nerve, verifiably complete lesions can be performed of the labelled fibres, and it can be used to study sprouting in the central nervous system from the conditioning lesion effect. However, functional deficits from this type of lesion are mild, making assessment of experimental treatment-induced functional recovery difficult. Here, five functional tests were compared for their sensitivity to functional deficits, and hence their suitability to reliably measure recovery of function after dorsal column injury. We assessed the tape removal test, the rope crossing test, CatWalk gait analysis, and the horizontal ladder, and introduce a new test, the inclined rolling ladder. Animals with dorsal column injuries at C4 or T7 level were compared to sham-operated animals for a duration of eight weeks. As well as comparing groups at individual timepoints we also compared the longitudinal data over the whole time course with linear mixed models (LMMs, and for tests where steps are scored as success/error, using generalized LMMs for binomial data. Although, generally, function recovered to sham levels within 2-6 weeks, in most tests we were able to detect significant deficits with whole time-course comparisons. On the horizontal ladder deficits were detected until 5-6 weeks. With the new inclined rolling ladder functional deficits were somewhat more consistent over the testing period and appeared to last for 6-7 weeks. Of the CatWalk parameters base of support was sensitive to cervical and thoracic lesions while hind-paw print-width was affected by cervical lesion only. The inclined rolling ladder test in combination with the horizontal ladder and the CatWalk may prove useful to monitor functional recovery after experimental

  18. CONSEQÜÊNCIAS DA LAMINECTOMIA DORSAL DO TIPO FUNKQUIST A EM CÃES NORMAIS CONSEQUENCES OF THE FUNKQUIST A DORSAL LAMINECTOMY, IN NORMAL DOGS

    Directory of Open Access Journals (Sweden)

    Eduardo Alberto Tudury

    2001-02-01

    supramedulary pad; suture of thoracolumbar fascia, subcutaneous and skin; and compressive bandage for seven days. Fourty-eight hours latter all the dogs (10 submitted to this technique showed loss of the postural reactions and paraparesis classified of moderated to serious. Hypalgesia was ascertained in five of them. Trying to discover the causes, was accomplished histologic studies of spinal cord collected 4 and 48 hours after the accomplishment of the laminectomies were conducted, however with modifications as: non-elevation of the vertebral bodies during the surgery and prevention of any type of compression spinal after the laminectomie. Examining these results was possible to conclude that the neurologic dysfunctions were originated from cord lesions caused for: elevation of the vertebral bodies during the laminectomy, possible damage of spinal vessels, destabilization of the spine and a somatory of compressive forces acting upon an uncovered spinal cord. At the necropsy of five dogs realized forty - five days latter were possible to verify: the permanence of the supraspinous ligament; that the fat grafts do not avoid the penetration of the fibrous tissue into the vertebral canal neither its adherency to the dura mater; notorious (p < 0.01 flattening of the vertebral canal and deformations of the spinal cords. With support on these results, isn't advise to furfill these surgery procedure in the thoracolumbar junction of dogs. The mantainement of the supraspinatus ligament do not perturb the realization of the laminectomy, minimize the occurrence of the aesthetics defects at the dorsal midline and can participate at the immediate postoperative cord compression.

  19. MRI of closed spinal dysraphisms

    Energy Technology Data Exchange (ETDEWEB)

    Badve, Chaitra A.; Khanna, Paritosh C.; Phillips, Grace S.; Thapa, Mahesh M.; Ishak, Gisele E. [Seattle Children' s Hospital and University of Washington Medical Center, Department of Radiology, Seattle, WA (United States)

    2011-10-15

    We present a pictorial review of MRI features of various closed spinal dysraphisms based on previously described clinicoradiological classification of spinal dysraphisms proposed. The defining imaging features of each dysraphism type are highlighted and a diagnostic algorithm for closed spinal dysraphisms is suggested. (orig.)

  20. Spinal cord swelling and candidiasis

    Energy Technology Data Exchange (ETDEWEB)

    Ho, K.; Gronseth, G.; Aldrich, M.; Williams, A.

    1982-11-01

    Fusiform swelling of the spinal cord was noted myelographically in a patient with Hodgkin's disease. Autopsy revealed that the swelling was caused by Candida infection of the spinal cord. It is suggested that fungal infection be included in the differential diagnosis of spinal cord swelling in the immunosuppressed cancer patient.

  1. Spinal cord swelling and candidiasis

    International Nuclear Information System (INIS)

    Fusiform swelling of the spinal cord was noted myelographically in a patient with Hodgkin's disease. Autopsy revealed that the swelling was cauused by Candida infection of the spinal cord. It is suggested that fungal infection be included in the differential diagnosis of spinal cord swelling in the immunsupporessed cancer patient. (orig.)

  2. [Spinal cord infarction].

    Science.gov (United States)

    Naumann, N; Shariat, K; Ulmer, S; Stippich, C; Ahlhelm, F J

    2012-05-01

    Infarction of the spinal cord can cause a variety of symptoms and neurological deficits because of the complex vascular supply of the myelon. The most common leading symptom is distal paresis ranging from paraparesis to tetraplegia caused by arterial ischemia or infarction of the myelon. Venous infarction, however, cannot always be distinguished from arterial infarction based on the symptoms alone.Modern imaging techniques, such as computed tomography angiography (CTA) and magnetic resonance angiography (MRA) assist in preoperative planning of aortic operations to reliably identify not only the most important vascular structure supplying the spinal cord, the artery of Adamkiewicz, but also other pathologies such as tumors or infectious disorders. In contrast to CT, MRI can reliably depict infarction of the spinal cord.

  3. Spinal leptomeningeal cysticercosis

    International Nuclear Information System (INIS)

    The spinal forms of neurocysticercosis are extremely rare, with a frequency under 1% in large series. The types of involvement are a) subarachnoid cysts and b) intramedullary lesions (less frequent). The authors report the case of a 56-year-old female with central nervous system infection by the larval form of Taenia Solium, which conduced to a hydrocephalus, treated by neurosurgical ventricular-peritoneal shunting. After 2 years, the patient consulted due to paraesthesia, spastic paraparesis and incontinence. MRI showed an homogeneous cystic mass compressing the spinal cord at D5-D6 level. Laminectomies were performed and the arachnoid membrane appeared thickened (arachnoiditis); the larval cyst was removed. Anatomo-pathologic exam revealed a leptomeningeal cysticercosis. The patient had a favorable clinical evolution without spinal compression sings or symptoms. (author)

  4. Spinal Cord Injury without Radiographic Abnormality (SCIWORA) – Clinical and Radiological Aspects

    International Nuclear Information System (INIS)

    The acronym SCIWORA (Spinal Cord Injury Without Radiographic Abnormality) was first developed and introduced by Pang and Wilberger who used it to define “clinical symptoms of traumatic myelopathy with no radiographic or computed tomographic features of spinal fracture or instability”. SCIWORA is a clinical-radiological condition that mostly affects children. SCIWORA lesions are found mainly in the cervical spine but can also be seen, although much less frequently, in the thoracic or lumbar spine. Based on reports from different authors, SCIWORA is responsible for 6 to 19% and 9% to 14% of spinal injuries in children and adults, respectively. Underlying degenerative changes, including spondylosis or spinal canal stenosis, are typically present in adult patients. The level of spinal cord injury corresponds to the location of these changes. With recent advances in neuroimaging techniques, especially in magnetic resonance imaging, and with increasing availability of MRI as a diagnostic tool, the overall detection rate of SCIWORA has significantly improved

  5. Serotonin Promotes Development and Regeneration of Spinal Motor Neurons in Zebrafish.

    Science.gov (United States)

    Barreiro-Iglesias, Antón; Mysiak, Karolina S; Scott, Angela L; Reimer, Michell M; Yang, Yujie; Becker, Catherina G; Becker, Thomas

    2015-11-01

    In contrast to mammals, zebrafish regenerate spinal motor neurons. During regeneration, developmental signals are re-deployed. Here, we show that, during development, diffuse serotonin promotes spinal motor neuron generation from pMN progenitor cells, leaving interneuron numbers unchanged. Pharmacological manipulations and receptor knockdown indicate that serotonin acts at least in part via 5-HT1A receptors. In adults, serotonin is supplied to the spinal cord mainly (90%) by descending axons from the brain. After a spinal lesion, serotonergic axons degenerate caudal to the lesion but sprout rostral to it. Toxin-mediated ablation of serotonergic axons also rostral to the lesion impaired regeneration of motor neurons only there. Conversely, intraperitoneal serotonin injections doubled numbers of new motor neurons and proliferating pMN-like progenitors caudal to the lesion. Regeneration of spinal-intrinsic serotonergic interneurons was unaltered by these manipulations. Hence, serotonin selectively promotes the development and adult regeneration of motor neurons in zebrafish.

  6. Expression of gamma-aminobutyric acid type A receptor α2 subunit in the dorsal root ganglion of rats with sciatic nerve injury

    Institute of Scientific and Technical Information of China (English)

    Yu Lian; Yang Wang; Ketao Ma; Lei Zhao; Zhongshuang Zhang; Yuanyuan Shang; Junqiang Si; Li Li

    2012-01-01

    The γ-aminobutyric acid neurotransmitter in the spinal cord dorsal horn plays an important role in pain modulation through primary afferent-mediated presynaptic inhibition. The weakening of γ-aminobutyric acid-mediated presynaptic inhibition may be an important cause of neuropathic pain. Γ-aminobutyric acid-mediated presynaptic inhibition is related to the current strength of γ-aminobutyric acid A receptor activation. In view of this, the whole-cell patch-clamp technique was used here to record the change in muscimol activated current of dorsal root ganglion neurons in a chronic constriction injury model. Results found that damage in rat dorsal root ganglion neurons following application of muscimol caused concentration-dependent activation of current, and compared with the sham group, its current strength and γ-aminobutyric acid A receptor protein expression decreased. Immunofluorescence revealed that γ-aminobutyric acid type A receptor α2 subunit protein expression decreased and was most obvious at 12 and 15 days after modeling. Our experimental findings confirmed that the γ-aminobutyric acid type A receptor α2 subunit in the chronic constriction injury model rat dorsal root ganglion was downregulated, which may be one of the reasons for the reduction of injury in dorsal root ganglion neurons following muscimol-activated currents.

  7. Congenital spinal malformations

    International Nuclear Information System (INIS)

    Congenital spinal malformations form a complex and heterogeneous group of disorders whose pathogenesis is best explained embryologically. Radiologically, it is important to formulate a diagnosis when the disorder first becomes symptomatic. However, it is also crucial to detect complications of the disorder or of the respective therapeutic interventions in the further course of the disease such as hydromyelia or re-tethering after repair of a meningomyelocele. Moreover, once a congenital spinal malformation is diagnosed, associated malformations should be sought after. A possible syndromal classification such as in OEIS- or VACTERL-syndromes should also be considered. (orig.)

  8. Spinal Neurocysticercosis: Case Report

    International Nuclear Information System (INIS)

    Neurocysticercosis (NCC) is the most frequent parasitic illness of the central nervous system caused by the larval form of Taenia solium and its considered to be endemic in Latin America. Its diagnosis is based on imaging findings and epidemiological data; although its diagnosis can be made through the detection of specific IgG antibodies, these tests have limited availability in our environment. Central nervous system involvement is generally observed in the brain parenchyma, and less commonly in the ventricular system and subarachnoid space; only infrequently is reported to involve the structures within the spinal canal, in this article we review a case of a patient with spinal cysticercal involvement.

  9. Spinal Cord Stimulation

    DEFF Research Database (Denmark)

    Meier, Kaare

    2014-01-01

    Spinal cord stimulation (SCS) is a surgical treatment for chronic neuropathic pain that is refractory to other treatment. Originally described by Shealy et al. in 1967(1), it is used to treat a range of conditions such as complex regional pain syndrome (CRPS I)(2), angina pectoris(3), radicular...... pain after failed back surgery syndrome (FBSS)(4), pain due to peripheral nerve injury, stump pain(5), peripheral vascular disease(6) and diabetic neuropathy(7,8); whereas phantom pain(9), postherpetic neuralgia(10), chronic visceral pain(11), and pain after partial spinal cord injury(12) remain more...

  10. Pain-related mediators underlie incision-induced mechanical nociception in the dorsal root ganglia

    Institute of Scientific and Technical Information of China (English)

    Xiuhong Yuan; Xiangyan Liu; Qiuping Tang; Yunlong Deng

    2013-01-01

    Approximately 50-70% of patients experience incision-induced mechanical nociception after sur-gery. However, the mechanism underlying incision-induced mechanical nociception is stil unclear. Interleukin-10 and brain-derived neurotrophic factor are important pain mediators, but whether in-terleukin-10 and brain-derived neurotrophic factor are involved in incision-induced mechanical no-ciception remains uncertain. In this study, forty rats were divided randomly into the incision surgery (n=32) and sham surgery (n=8) groups. Plantar incision on the central part of left hind paw was performed under anesthesia in rats from the surgery group. Rats in the sham surgery group re-ceived anesthesia, but not an incision. Von Frey test results showed that, compared with the sham surgery group, incision surgery decreased the withdrawal threshold of rats at 0.5, 3, 6 and 24 hours after incision. Immunofluorescence staining in the dorsal root ganglia of the spinal cord (L 3-5 ) showed that interleukin-10 and brain-derived neurotrophic factor were expressed mainly on smal-and medium-sized neurons (diameter40μm) at 6 and 24 hours after incision surgery, which corresponded to the decreased mechanical withdrawal threshold of rats in the surgery group. These experimental findings suggest that expression pattern shift of interleukin-10 and brain-derived neurotrophic factor induced by inci-sion surgery in dorsal root ganglia of rats was closely involved in lowering the threshold to me-chanical stimulus in the hind paw fol owing incision surgery. Pain-related mediators induced by in-cision surgery in dorsal root ganglia of rats possibly underlie mechanical nociception in ipsilateral hind paws.

  11. Dissociation of μ- and δ-opioid inhibition of glutamatergic synaptic transmission in superficial dorsal horn

    Directory of Open Access Journals (Sweden)

    Vaughan Christopher W

    2010-10-01

    Full Text Available Abstract Background There is anatomical and behavioural evidence that μ- and δ-opioid receptors modulate distinct nociceptive modalities within the superficial dorsal horn. The aim of the present study was to examine whether μ- and δ-opioid receptor activation differentially modulates TRP sensitive inputs to neurons within the superficial dorsal horn. To do this, whole cell patch clamp recordings were made from lamina I - II neurons in rat spinal cord slices in vitro to examine the effect of opioids on TRP agonist-enhanced glutamatergic spontaneous miniature excitatory postsynaptic currents (EPSCs. Results Under basal conditions the μ-opioid agonist DAMGO (3 μM reduced the rate of miniature EPSCs in 68% of neurons, while the δ- and κ-opioid agonists deltorphin-II (300 nM and U69593 (300 nM did so in 13 - 17% of neurons tested. The TRP agonists menthol (400 μM and icilin (100 μM both produced a Ca2+-dependent increase in miniature EPSC rate which was unaffected by the voltage dependent calcium channel (VDCC blocker Cd2+. The proportion of neurons in which deltorphin-II reduced the miniature EPSC rate was enhanced in the presence of icilin (83%, but not menthol (0%. By contrast, the proportion of DAMGO and U69593 responders was unaltered in the presence of menthol (57%, 0%, or icilin (57%, 17%. Conclusions These findings demonstrate that δ-opioid receptor activation selectively inhibits inputs activated by icilin, whereas μ-opioid receptor activation has a more widespread effect on synaptic inputs to neurons in the superficial dorsal horn. These findings suggest that δ-opioids may provide a novel analgesic approach for specific, TRPA1-like mediated pain modalities.

  12. Maladaptive spinal plasticity opposes spinal learning and recovery in spinal cord injury

    Directory of Open Access Journals (Sweden)

    Adam R Ferguson

    2012-10-01

    Full Text Available Synaptic plasticity within the spinal cord has great potential to facilitate recovery of function after spinal cord injury (SCI. Spinal plasticity can be induced in an activity-dependent manner even without input from the brain after complete SCI. The mechanistic basis for these effects is provided by research demonstrating that spinal synapses have many of the same plasticity mechanisms that are known to underlie learning and memory in the brain. In addition, the lumbar spinal cord can sustain several forms of learning and memory, including limb-position training. However, not all spinal plasticity promotes recovery of function. Central sensitization of nociceptive (pain pathways in the spinal cord may emerge with certain patterns of activity, demonstrating that plasticity within the spinal cord may contribute to maladaptive pain states. In this review we discuss interactions between adaptive and maladaptive forms of activity-dependent plasticity in the spinal cord. The literature demonstrates that activity-dependent plasticity within the spinal cord must be carefully tuned to promote adaptive spinal training. Stimulation that is delivered in a limb position-dependent manner or on a fixed interval can induce adaptive plasticity that promotes future spinal cord learning and reduces nociceptive hyper-reactivity. On the other hand, stimulation that is delivered in an unsynchronized fashion, such as randomized electrical stimulation or peripheral skin injuries, can generate maladaptive spinal plasticity that undermines future spinal cord learning, reduces recovery of locomotor function, and promotes nociceptive hyper-reactivity after spinal cord injury. We review these basic phenomena, discuss the cellular and molecular mechanisms, and discuss implications of these findings for improved rehabilitative therapies after spinal cord injury.

  13. Sympathetic-correlated c-Fos expression in the neonatal rat spinal cord in vitro

    Directory of Open Access Journals (Sweden)

    Kuo Hsiao-Hui

    2009-05-01

    Full Text Available Abstract An isolated thoracic spinal cord of the neonatal rat in vitro spontaneously generates sympathetic nerve discharge (SND at ~25°C, but it fails in SND genesis at ≤ 10°C. Basal levels of the c-Fos expression in the spinal cords incubated at ≤ 10°C and ~25°C were compared to determine the anatomical substrates that might participate in SND genesis. Cells that exhibited c-Fos immunoreactivity were virtually absent in the spinal cords incubated at ≤ 10°C. However, in the spinal cords incubated at ~25°C, c-Fos-positive cells were found in the dorsal laminae, the white matter, lamina X, and the intermediolateral cell column (IML. Cell identities were verified by double labeling of c-Fos with neuron-specific nuclear protein (NeuN, glial fibrillary acidic protein (GFAP, or choline acetyltransferase (ChAT. The c-Fos-positive cells distributed in the white matter and lamina X were NeuN-negative or GFAP-positive and were glial cells. Endogenously active neurons showing c-Fos and NeuN double labeling were scattered in the dorsal laminae and concentrated in the IML. Double labeling of c-Fos and ChAT confirmed the presence of active sympathetic preganglionic neurons (SPNs in the IML. Suppression of SND genesis by tetrodotoxin (TTX or mecamylamine (MECA, nicotinic receptor blocker almost abolished c-Fos expression in dorsal laminae, but only mildly affected c-Fos expression in the SPNs. Therefore, c-Fos expression in some SPNs does not require synaptic activation. Our results suggest that spinal SND genesis is initiated from some spontaneously active SPNs, which are capable of TTX- or MECA-resistant c-Fos expression.

  14. Opioid Tolerance and Physical Dependence: Role of Spinal Neuropeptides, Excitatory Amino Acids and Their Messengers

    Directory of Open Access Journals (Sweden)

    Khem Jhamandas

    2000-01-01

    Full Text Available Chronic opioid treatment results in the development of tolerance and physical dependence. The mechanisms underlying opioid tolerance and/or physical dependence are unclear. Recent studies suggest that opioid receptor or nociceptive, neural network-based adaptations contribute to this phenomenon. At the spinal level, the genesis of tolerance and physical dependence is associated with increased excitatory amino acid activity expressed through N-methyl-D-aspartate receptors in the dorsal horn. However, recent evidence also implicates spinal neuropeptide transmitters such as calcitonin gene-related peptide (CGRP and  substance P in the development of opioid tolerance. Long term spinal morphine treatment increases CGRP-like immunostaining in the dorsal horn, and coadministration of morphine with CGRP8-37, a competitive CGRP1 receptor antagonist, prevents this response as well as loss of the analgesic potency. CGRP8-37, like N-methyl-D-aspartate receptor antagonists, has the potential to restore morphine potency in experimental animals who are already tolerant to the opioid agonist. Recent evidence suggests that the effects of excitatory amino acid and neuropeptide receptor activity may be expressed through the generation of messengers such as nitric oxide and prostanoids. Agents that inhibit the synthesis of nitric oxide and prostanoids have the potential to inhibit and reverse spinal opioid tolerance, suggesting that this phenomenon may be expressed through the activity of these mediators. Nociceptive transmission in the dorsal horn of the spinal cord also involves activity of a number of other mediators including morphine modulatory neuropeptides, neuropeptide FF  and neuropeptide SF. The role of these mediators and their relationship with other factors implicated in tolerance remain to be determined.

  15. Theories of the dorsal bundle extinction effect.

    Science.gov (United States)

    Mason, S T; Iversen, S D

    1979-07-01

    Selective destruction of the noradrenaline systems in the rat brain using the neurotoxin 6-hydroxydopamine has been found to cause resistance to extinction in a number of behavioural situations. Several theories concerning the behavioural mechanism altered by the lesion, and hence about the role of noradrenaline in normal brain functioning, are proposed and evaluated. Theories suggesting a role for noradrenaline in activity, perseveration, internal inhibition, frustrative non-reward, motivation, or secondary reinforcement, fail to explain all the available evidence and direct tests of each theory fails to support its predictions. A model which suggests that noreadrenaline is involved in attentional behaviour, specifically in filtering out or learning to ignore irrelevant environmental stimuli, is successful in explaining all available data and direct tests of the lesioned rats' attentional capacity serve to confirm many of the predictions of an attentional theory of the dorsal bundle extinction effect.

  16. Best practice guidelines for molecular analysis in spinal muscular atrophy

    NARCIS (Netherlands)

    Scheffer, H; Cobben, JM; Matthijs, G; Wirth, B

    2001-01-01

    With a prevalence of approximately 1/10 000, and a carrier frequency of 1/40-1/60 the proximal spinal muscular atrophies (SMAs) are among the most frequent autosomal recessive hereditary disorders. Patients can be classified clinically into four groups: acute, intermediate, mild, and adult (SMA type

  17. Real-time control of walking using recordings from dorsal root ganglia

    Science.gov (United States)

    Holinski, B. J.; Everaert, D. G.; Mushahwar, V. K.; Stein, R. B.

    2013-10-01

    Objective. The goal of this study was to decode sensory information from the dorsal root ganglia (DRG) in real time, and to use this information to adapt the control of unilateral stepping with a state-based control algorithm consisting of both feed-forward and feedback components. Approach. In five anesthetized cats, hind limb stepping on a walkway or treadmill was produced by patterned electrical stimulation of the spinal cord through implanted microwire arrays, while neuronal activity was recorded from the DRG. Different parameters, including distance and tilt of the vector between hip and limb endpoint, integrated gyroscope and ground reaction force were modelled from recorded neural firing rates. These models were then used for closed-loop feedback. Main results. Overall, firing-rate-based predictions of kinematic sensors (limb endpoint, integrated gyroscope) were the most accurate with variance accounted for >60% on average. Force prediction had the lowest prediction accuracy (48 ± 13%) but produced the greatest percentage of successful rule activations (96.3%) for stepping under closed-loop feedback control. The prediction of all sensor modalities degraded over time, with the exception of tilt. Significance. Sensory feedback from moving limbs would be a desirable component of any neuroprosthetic device designed to restore walking in people after a spinal cord injury. This study provides a proof-of-principle that real-time feedback from the DRG is possible and could form part of a fully implantable neuroprosthetic device with further development.

  18. Effects of tegaserod on Fos,substance P and calcitonin gene-related peptide expression induced by colon inflammation in lumbarsacral spinal cord

    Institute of Scientific and Technical Information of China (English)

    Yi-Ning Sun; Jin-Yan Luo

    2004-01-01

    AIM: To investigate the mechanisms of tegaserod, a partial 5-HT4 agonist, in reducing visceral sensitivity by observing Fos, substance P (SP) and calcitonin gene-related peptide (CGRP) expression in the lumbarsacral spinal cord inducedby colonic inflammation in rats.METHODS: Twenty-four male rats with colonic inflammation induced by intraluminal instillation of trinitrobenzenesulfonic acid (TNBS) were divided into 3 groups. Treatment group Treatment group 2: intra-gastric administration of tegaserod,saline, 2.0 mL/d. After 7 d of intra-gastric administration,lumbarsacral spinal cord was removed and processed for Fos, SP and CGRP immunohistochemistry.RESULTS: In rats of the control group, the majority of Fos labeled neurons was localized in deeper laminae of the lumbarsacral spinal cord (L5-S1). SP and CGRP were primarily expressed in the superficial laminae of the spinal cord after TNBS injection. Intra-gastric administration of tegaserod neurons (22.0±7.7) and SP density (12.5±1.4) in the dorsal horn in the lumbarsacral spinal cord compared to those of the control group (62.2±18.9, 35.9±8.9, P<0.05). However,CGRP content in dorsal horn did not significantly reduce in rats of treatment group 1 (1.2±1.1) compared to that of the control group (2.8±2.4, P>0.05). Neither Fos expression nor SP or CGRP density in the dorsal horn significantly declined in rats of treatment group 2 compared to those of the control group (P>0.05).CONCLUSION: Tegaserod can significantly reduce Fos labeled neurons in the lumbarsacral spinal cord induced by colonic inflammation. Tegaserod may reduce visceral sensitivity by inhibiting SP expression in the dorsal horn of spinal cord.

  19. Gender moderates the association between dorsal medial prefrontal cortex volume and depressive symptoms in a subclinical sample.

    Science.gov (United States)

    Carlson, Joshua M; Depetro, Emily; Maxwell, Joshua; Harmon-Jones, Eddie; Hajcak, Greg

    2015-08-30

    Major depressive disorder is associated with lower medial prefrontal cortex volumes. The role that gender might play in moderating this relationship and what particular medial prefrontal cortex subregion(s) might be implicated is unclear. Magnetic resonance imaging was used to assess dorsal, ventral, and anterior cingulate regions of the medial prefrontal cortex in a normative sample of male and female adults. The Depression, Anxiety, and Stress Scale (DASS) was used to measure these three variables. Voxel-based morphometry was used to test for correlations between medial prefrontal gray matter volume and depressive traits. The dorsal medial frontal cortex was correlated with greater levels of depression, but not anxiety and stress. Gender moderates this effect: in males greater levels of depression were associated with lower dorsal medial prefrontal volumes, but in females no relationship was observed. The results indicate that even within a non-clinical sample, male participants with higher levels of depressive traits tend to have lower levels of gray matter volume in the dorsal medial prefrontal cortex. Our finding is consistent with low dorsal medial prefrontal volume contributing to the development of depression in males. Future longitudinal work is needed to substantiate this possibility. PMID:26166620

  20. Decreased Endomorphin-2 and μ-Opioid Receptor in the Spinal Cord Are Associated with Painful Diabetic Neuropathy

    Science.gov (United States)

    Kou, Zhen-Zhen; Wan, Fa-Ping; Bai, Yang; Li, Chun-Yu; Hu, Jia-Chen; Zhang, Guo-Tao; Zhang, Ting; Chen, Tao; Wang, Ya-Yun; Li, Hui; Li, Yun-Qing

    2016-01-01

    Painful diabetic neuropathy (PDN) is one of the most common complications in the early stage of diabetes mellitus (DM). Endomorphin-2 (EM2) selectively activates the μ-opioid receptor (MOR) and subsequently induces antinociceptive effects in the spinal dorsal horn. However, the effects of EM2-MOR in PDN have not yet been clarified in the spinal dorsal horn. Therefore, we aimed to explore the role of EM2-MOR in the pathogenesis of PDN. The main findings were the following: (1) streptozotocin (STZ)-induced diabetic rats exhibited hyperglycemia, body weight loss and mechanical allodynia; (2) in the spinal dorsal horn, the expression levels of EM2 and MOR decreased in diabetic rats; (3) EM2 protein concentrations decreased in the brain, lumbar spinal cord and cerebrospinal fluid (CSF) in diabetic rats but were unchanged in the plasma; (4) the frequency but not the amplitude of spontaneous excitatory postsynaptic currents (sEPSCs) was significantly higher in diabetic rats than in control rats; and (5) intrathecal injection of EM2 for 14 days in the early stage of PDN partially alleviated mechanical allodynia and reduced MOR expression in diabetic rats. Our results demonstrate that the EM2-MOR signal may be involved in the early stage of PDN.

  1. Role of interleukin-1beta in the control of neuroepithelial proliferation and differentiation of the spinal cord during development.

    Science.gov (United States)

    de la Mano, A; Gato, A; Alonso, M I; Carnicero, E; Martín, C; Moro, J A

    2007-02-01

    Interleukin-1beta (IL-1beta) is an important trophic factor in the nervous system (NS). IL-1beta is ubiquitously expressed from very early stages during the development of the amphibian NS and its action has been demonstrated in vitro on survival, proliferation and differentiation in mammalian embryos. In this report, we show that IL-1beta is immunocytochemically expressed in embryonic spinal cord from early stages, both in rat (embryonic day 12) and in chicken (stage 17-HH), in neuroepithelial cells and nerve fibres, dorsal root ganglia, anterior and posterior roots of the spinal nerves, and in the fibres of these nerves. Our in vivo experiments on chick embryos, with microbeads impregnated with IL-1beta implanted laterally to the spinal cord at the level of the wing anlage, demonstrate that this cytokine produces a statistically significant increase in nuclear incorporation of BrdU at the dorsal level and a reduction of this at the ventral level, whereas local immunoblocking with anti-IL-1beta antibodies causes a dorsal reduction of BrdU incorporation and alters ventral differentiation. These data demonstrate that IL-1beta plays a part in controlling proliferation and early differentiation during the development of the spinal cord in chick embryos. PMID:17449272

  2. Spinal Cord Injury 101

    Medline Plus

    Full Text Available ... Braingate" research? What is the status of stem-cell research? How would stem-cell therapies work in the treatment of spinal cord injuries? What does stem-cell research on animals tell us? When can we ...

  3. Spinal computed tomography

    Energy Technology Data Exchange (ETDEWEB)

    Sartor, K.

    1980-10-01

    Computed tomography (CT) of the spine and spinal cord is gaining more and more importance as a valuable investigative method in neuroradiology. Performed as a noninvasive procedure, with or without intravenous contrast enhancement, it can be used to diagnose paravertebral soft tissue lesions, constrictive lesions of the bony spinal canal, structure changes of the vertebral column or of individual vertebrae, vascular intraspinal lesions, and intraspinal tumors with abnormally high or abnormally low attenuation values. Performed as an invasive procedure, after intrathecal introduction of metrizamide, spinal CT can in selected cases be used in conjunction with conventional metrizamide myelography as an additional procedure (secondary CT-myelography) or even as initial procedure ( primary CT-myelography), taking advantage of its unique properties, namely to provide a transverse axial image of the spine and related soft tissue structures and to detect even small differences in density. Further improvement of spinal CT, particularly the routine non-invasive demonstration of the intraspinal soft tissues, is to be expected.

  4. Spinal Cord Injury 101

    Medline Plus

    Full Text Available ... Home Videos by Topic and Question Videos by Family Relationship Videos by Spinal Cord Experts Resources Forums Peer Counseling Blog About Us Contact Donate Sitemap Privacy ... © 2011 – 2016 Hill Foundation for Families Living With Disabilities FacingDisability.com is an informational ...

  5. Spinal Cord Injury 101

    Medline Plus

    Full Text Available ... Home Videos by Topic and Question Videos by Family Relationship Videos by Spinal Cord Experts Resources Forums Peer Counseling Blog About Us Contact Donate Sitemap Privacy Statement Terms of Use © 2011 – 2016 Hill Foundation for Families Living With Disabilities FacingDisability.com is an informational ...

  6. Spinal Cord Injury

    Science.gov (United States)

    ... How much do you know about taking good care of yourself? Links to more information girlshealth glossary girlshealth.gov home http://www.girlshealth.gov/ Home Illness & disability Types of ... Spinal cord injury Read advice from Dr. Jeffrey Rabin , a pediatric rehabilitation specialist at the Children’s National Medical Center. ...

  7. Spinal Cord Injury 101

    Medline Plus

    Full Text Available ... is "Braingate" research? What is the status of stem-cell research? How would stem-cell therapies work in the treatment of spinal cord injuries? What does stem-cell research on animals tell us? When can we ...

  8. Sunscreen Use on the Dorsal Hands at the Beach

    Directory of Open Access Journals (Sweden)

    Donald B. Warren

    2013-01-01

    Full Text Available Background. Since skin of the dorsal hands is a known site for the development of cutaneous squamous cell carcinoma, an epidemiologic investigation was needed to determine if beachgoers apply sunscreen to the dorsal aspect of their hands as frequently as they apply it to other skin sites. Aim. The aim of the current study was to compare the use of sunscreen on the dorsal hands to other areas of the body during subtropical late spring and summer sunlight exposure at the beach. Materials and Methods. A cross-sectional survey from a convenience sample of beachgoers was designed to evaluate respondent understanding and protective measures concerning skin cancer on the dorsal hands in an environment with high natural UVR exposure. Results. A total of 214 surveys were completed and analyzed. Less than half of subjects (105, 49% applied sunscreen to their dorsal hands. Women applied sunscreen to the dorsal hands more than men (55% women versus 40% men, . Higher Fitzpatrick Skin Type respondents were less likely to protect their dorsal hands from ultraviolet radiation (. Conclusions. More public education focused on dorsal hand protection from ultraviolet radiation damage is necessary to reduce the risk for squamous cell carcinomas of the hands.

  9. Sunscreen use on the dorsal hands at the beach.

    Science.gov (United States)

    Warren, Donald B; Riahi, Ryan R; Hobbs, Jason B; Wagner, Richard F

    2013-01-01

    Background. Since skin of the dorsal hands is a known site for the development of cutaneous squamous cell carcinoma, an epidemiologic investigation was needed to determine if beachgoers apply sunscreen to the dorsal aspect of their hands as frequently as they apply it to other skin sites. Aim. The aim of the current study was to compare the use of sunscreen on the dorsal hands to other areas of the body during subtropical late spring and summer sunlight exposure at the beach. Materials and Methods. A cross-sectional survey from a convenience sample of beachgoers was designed to evaluate respondent understanding and protective measures concerning skin cancer on the dorsal hands in an environment with high natural UVR exposure. Results. A total of 214 surveys were completed and analyzed. Less than half of subjects (105, 49%) applied sunscreen to their dorsal hands. Women applied sunscreen to the dorsal hands more than men (55% women versus 40% men, P = 0.04). Higher Fitzpatrick Skin Type respondents were less likely to protect their dorsal hands from ultraviolet radiation (P = 0.001). Conclusions. More public education focused on dorsal hand protection from ultraviolet radiation damage is necessary to reduce the risk for squamous cell carcinomas of the hands.

  10. An Optimized Culture Method of Rat Dorsal Root Ganglion Neurons

    Institute of Scientific and Technical Information of China (English)

    LIUYin; CHENJing-Hong; GONGZe-Hui

    2004-01-01

    AIM: To establish a primary culture technique of acutely isolated dorsal root ganglion (DRG) neurons, and provide a simple & useful in vitro model for study of analgesia. Methods: Acutely isolated dorsal root ganglion (DRG) neurons were planted and cultured; the configuration and growth characters of DRG neurons were observed through inverted microscope.

  11. Expression of Nav1.7 in DRG neurons extends from peripheral terminals in the skin to central preterminal branches and terminals in the dorsal horn

    Directory of Open Access Journals (Sweden)

    Black Joel A

    2012-11-01

    Full Text Available Abstract Background Sodium channel Nav1.7 has emerged as a target of considerable interest in pain research, since loss-of-function mutations in SCN9A, the gene that encodes Nav1.7, are associated with a syndrome of congenital insensitivity to pain, gain-of-function mutations are linked to the debiliting chronic pain conditions erythromelalgia and paroxysmal extreme pain disorder, and upregulated expression of Nav1.7 accompanies pain in diabetes and inflammation. Since Nav1.7 has been implicated as playing a critical role in pain pathways, we examined by immunocytochemical methods the expression and distribution of Nav1.7 in rat dorsal root ganglia neurons, from peripheral terminals in the skin to central terminals in the spinal cord dorsal horn. Results Nav1.7 is robustly expressed within the somata of peptidergic and non-peptidergic DRG neurons, and along the peripherally- and centrally-directed C-fibers of these cells. Nav1.7 is also expressed at nodes of Ranvier in a subpopulation of Aδ-fibers within sciatic nerve and dorsal root. The peripheral terminals of DRG neurons within skin, intraepidermal nerve fibers (IENF, exhibit robust Nav1.7 immunolabeling. The central projections of DRG neurons in the superficial lamina of spinal cord dorsal horn also display Nav1.7 immunoreactivity which extends to presynaptic terminals. Conclusions The expression of Nav1.7 in DRG neurons extends from peripheral terminals in the skin to preterminal central branches and terminals in the dorsal horn. These data support a major contribution for Nav1.7 in pain pathways, including action potential electrogenesis, conduction along axonal trunks and depolarization/invasion of presynaptic axons. The findings presented here may be important for pharmaceutical development, where target engagement in the right compartment is essential.

  12. DO OPIOIDS EVOKE THE RELEASE OF SEROTONIN IN THE SPINAL-CORD - AN INVIVO MICRODIALYSIS STUDY OF THE REGULATION OF EXTRACELLULAR SEROTONIN IN THE RAT

    NARCIS (Netherlands)

    MATOS, FF; ROLLEMA, H; BROWN, JL; BASBAUM, AI

    1992-01-01

    This study investigated the regulation of serotonin (5-HT) and its major metabolite 5-hydroxyindoleacetic acid (5-HIAA) in the dorsal spinal cord of awake, freely moving rats, using microdialysis coupled to HPLC with electrochemical detection and tested the hypothesis that opioids exert their analge

  13. Research on swimming by undulatory long dorsal fin propulsion

    Institute of Scientific and Technical Information of China (English)

    WANG Gnangming; SHEN Lincheng; WU Yonghui

    2007-01-01

    The kinematics of steady forward swimming of Gymnarchus niloticus is described. The geometric features of the body and locomotive characteristic and parameters of the flexible dorsal fin are discussed. On the basis of observation and experimental data, a simplified kinematic model on loco- motion of the undulatory long dorsal fin propulsion is pro- moted. The hydromechanical performances of the undulatory long dorsal fin propeller of G. Niloticus are estimated with the large-amplitude elongated-body theory. The hydromechani- cal efficiency of the undulatory long dorsal fin system ranged from 81.664% to 86.420% over a speed range of 0.728- 0.985 length·s-1. It is suggested that the undulatory long dorsal fin propulsion is an adaptation to swimming with high hydromechanical efficiency.

  14. FOS EXPRESSION IN LUMBARSACRAL SPINAL CORD AND MEDULLA OBLONGATA INDUCED BY CHRONIC COLONIC INFLAMMATION IN RATS

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    Objective To investigate Fos expression in rat lumbarsacral spinal cord and medulla oblongata induced by chronic colonic inflammation. Methods Thirty-three male Sprague-Dawley rats were randomly divided into two groups: experimental group: colonic inflammation was induced in seventeen rats by intraluminal administration of trinitrobenzenesulfonic acid (TNBS); control group: saline was administered intraluminally in sixteen rats; After 3, 7, 14 and 28 days of administration, lumbarsacral spinal cord and medulla oblongata were removed and processed for Fos immunohistochemistry. Results Fos-immunoreactive (Fos-IR) neurons induced by TNBS administration were primarily distributed in deep laminae (laminae Ⅲ-Ⅳ,Ⅴ-Ⅵ) in the spinal dorsal horn and in medullary visceral zone (MVZ) in the medulla oblongata. The number of Fos-IR cells in the spinal cord and MVZ in rats after 7 and 14 days of TNBS administration were significantly higher than that in the control rats (P<0.05). After 28 days of TNBS instillation, the number of Fos-IR neurons in MVZ decreased and became comparable to the control group. However, the number of Fos cells in the spinal cord in some rats were still significantly increased compared with the control rats (P<0.05). Conclusion Fos-IR neurons after colonic inflammation recovery may play an important role in the development of visceral hypersensitivity. Medulla oblongata was a less important structure than the spinal cord in inducing visceral hypersensitivity after chronic colonic inflammation.

  15. Delayed spinal extradural hematoma following thoracic spine surgery and resulting in paraplegia: a case report

    Directory of Open Access Journals (Sweden)

    Parthiban Chandra JKB

    2008-05-01

    Full Text Available Abstract Introduction Postoperative spinal extradural hematomas are rare. Most of the cases that have been reported occured within 3 days of surgery. Their occurrence in a delayed form, that is, more than 72 hours after surgery, is very rare. This case is being reported to enhance awareness of delayed postoperative spinal extradural hematomas. Case presentation We report a case of acute onset dorsal spinal extradural hematoma from a paraspinal muscular arterial bleed, producing paraplegia 72 hours following surgery for excision of a spinal cord tumor at T8 level. The triggering mechanism was an episode of violent twisting movement by the patient. Fresh blood in the postoperative drain tube provided suspicion of this complication. Emergency evacuation of the clot helped in regaining normal motor and sensory function. The need to avoid straining of the paraspinal muscles in the postoperative period is emphasized. Conclusion Most cases of postoperative spinal extradural hematomas occur as a result of venous bleeding. However, an arterial source of bleeding from paraspinal muscular branches causing extradural hematoma and subsequent neurological deficit is underreported. Undue straining of paraspinal muscles in the postoperative period after major spinal surgery should be avoided for at least a few days.

  16. Bilateral mechanical and thermal hyperalgesia and tactile allodynia after chronic compression of dorsal root ganglion in mice.

    Science.gov (United States)

    Chen, Rong-Gui; Kong, Wei-Wei; Ge, Da-Long; Luo, Ceng; Hu, San-Jue

    2011-08-01

    OBJECTIVE Low back pain is one of the most inextricable problems encountered in clinics. Animal models that imitate symptoms in humans are valuable tools for investigating low back pain mechanisms and the possible therapeutic applications. With the development of genetic technology in pain field, the possibility of mutating specific genes in mice has provided a potent tool for investigating the specific mechanisms of pain. The aim of the present study was to develop a mouse model of chronic compression of dorsal root ganglion (CCD), in which gene mutation can be applied to facilitate the studies of chronic pain. METHODS Chronic compression of L4 and L5 dorsal root ganglia was conducted in mice by inserting fine stainless steel rods into the intervertebral foramina, one at L4 and the other at L5. Mechanical allodynia and thermal hyperalgesia were examined with von Frey filaments and radiating heat stimulator, respectively. RESULTS The CCD mice displayed dramatic mechanical and thermal hyperalgesia as well as tactile allodynia in the hindpaw ipsilateral to CCD. In addition, this mechanical and thermal hyperalgesia as well as tactile allodynia was also found to spread to the contralateral hindpaw. CONCLUSION This model, combined with the possible genetic modification, will strengthen our knowledge of the underlying mechanisms of low back pain. It also favors the development of new treatment strategies for pain and hyperalgesia after spinal injury and other disorders which affect the dorsal root ganglion in humans. PMID:21788994

  17. Gemistocytic astrocytoma in the spinal cord in a dog: a case report

    Directory of Open Access Journals (Sweden)

    R.O. Chaves

    2016-08-01

    Full Text Available ABSTRACT This paper reports a case of a rare variant of the cervical spinal cord astrocytoma diagnosed in a dog with progressive neurological signs, initially asymmetrical, not ambulatory tetraparesis, segmental reflexes and normal muscle tone in all four limbs and absence of pain upon palpation of the cervical spine. Myelography revealed attenuation of the ventral and dorsal contrast line in the third region of the fifth cervical vertebra. At necropsy intramedullary cylindrical mass that stretched from the third to the sixth cervical vertebra, which replaced all the gray matter of the spinal cord was observed. In the histological study, there was the replacement of the substance by neoplastic cells mantle arranged loosely. The cells were large and slightly rounded. The eosinophilic cytoplasm was well defined, sometimes forming processes interconnecting cells. The nucleus was eccentric, round, oval or kidney-shaped, and the nucleolus was evident. Thus, the microscopic changes observed in the cervical spinal cord were consistent with gemistocytic astrocytoma.

  18. Dorsal hump morphology in pink salmon (Oncorhynchus gorbuscha).

    Science.gov (United States)

    Susuki, Kenta; Ichimura, Masaki; Koshino, Yosuke; Kaeriyama, Masahide; Takagi, Yasuaki; Adachi, Shinji; Kudo, Hideaki

    2014-05-01

    Mature male Pacific salmon (Genus Oncorhynchus) develop a dorsal hump, as a secondary male sexual characteristic, during the spawning period. Previous gross anatomical studies have indicated that the dorsal humps of salmon are mainly composed of cartilaginous tissue (Davidson [1935] J Morphol 57:169-183.) However, the histological and biochemical characteristics of such humps are poorly understood. In this study, the detailed microstructures and components of the dorsal humps of pink salmon were analyzed using histochemical techniques and electrophoresis. In mature males, free interneural spines and neural spines were located in a line near to the median septum of the dorsal hump. No cartilaginous tissue was detected within the dorsal hump. Fibrous and mucous connective tissues were mainly found in three regions of the dorsal hump: i) the median septum, ii) the distal region, and iii) the crescent-shaped region. Both the median septum and distal region consisted of connective tissue with a high water content, which contained elastic fibers and hyaluronic acid. It was also demonstrated that the lipid content of the dorsal hump connective tissue was markedly decreased in the mature males compared with the immature and maturing males. Although, the crescent-shaped region of the hump consisted of connective tissue, it did not contain elastic fibers, hyaluronic acid, or lipids. In an ultrastructural examination, it was found that all of the connective tissues in the dorsal hump were composed of collagen fibers. Gel electrophoresis of collagen extracts from these tissues found that the collagen in the dorsal hump is composed of Type I collagen, as is the case in salmon skin. These results indicate that in male pink salmon the dorsal hump is formed as a result of an increase in the amount of connective tissue, rather than cartilage, and the growth of free interneural spines and neural spines.

  19. Posterior spinal cord infarction due to fibrocartilaginous embolization in a 16-year-old athlete.

    Science.gov (United States)

    Bansal, Seema; Brown, Wendy; Dayal, Anuradha; Carpenter, Jessica L

    2014-07-01

    Spinal cord infarction is extremely rare in children, and, similar to cerebrovascular infarcts, the pathogenesis is different from adults. Spinal cord infarcts are most commonly reported in adults in the context of aortic surgery; in children, the etiology is frequently unknown. Fibrocartilaginous embolization is a potential cause of spinal cord infarct in both populations. It is a process that occurs when spinal injury has resulted in disc disease, and subsequently disc fragments embolize to the cord, resulting in ischemia and/or infarction. In this report, we present a 16-year-old athlete who presented with symptoms of acute myelopathy after a period of intense exercise. Our original concern was for an inflammatory process of the spinal cord; however, given her history of competitive tumbling and degenerative disc changes on her initial spine magnetic resonance imaging scan, diffusion-weighted imaging was performed, which demonstrated acute spinal cord infarction. Unlike many cases of spinal cord infarction, our patient was fortunate to make a near-complete recovery. This case highlights the importance of recognizing rare causes of spinal cord pathology and considering infarction in the differential diagnosis of acute myelopathy because management and prognosis varies.

  20. Thoracic rat spinal cord contusion injury induces remote spinal gliogenesis but not neurogenesis or gliogenesis in the brain.

    Directory of Open Access Journals (Sweden)

    Steffen Franz

    Full Text Available After spinal cord injury, transected axons fail to regenerate, yet significant, spontaneous functional improvement can be observed over time. Distinct central nervous system regions retain the capacity to generate new neurons and glia from an endogenous pool of progenitor cells and to compensate neural cell loss following certain lesions. The aim of the present study was to investigate whether endogenous cell replacement (neurogenesis or gliogenesis in the brain (subventricular zone, SVZ; corpus callosum, CC; hippocampus, HC; and motor cortex, MC or cervical spinal cord might represent a structural correlate for spontaneous locomotor recovery after a thoracic spinal cord injury. Adult Fischer 344 rats received severe contusion injuries (200 kDyn of the mid-thoracic spinal cord using an Infinite Horizon Impactor. Uninjured rats served as controls. From 4 to 14 days post-injury, both groups received injections of bromodeoxyuridine (BrdU to label dividing cells. Over the course of six weeks post-injury, spontaneous recovery of locomotor function occurred. Survival of newly generated cells was unaltered in the SVZ, HC, CC, and the MC. Neurogenesis, as determined by identification and quantification of doublecortin immunoreactive neuroblasts or BrdU/neuronal nuclear antigen double positive newly generated neurons, was not present in non-neurogenic regions (MC, CC, and cervical spinal cord and unaltered in neurogenic regions (dentate gyrus and SVZ of the brain. The lack of neuronal replacement in the brain and spinal cord after spinal cord injury precludes any relevance for spontaneous recovery of locomotor function. Gliogenesis was increased in the cervical spinal cord remote from the injury site, however, is unlikely to contribute to functional improvement.

  1. Differential diagnoses of spinal tumors; Differenzialdiagnose spinaler Tumoren

    Energy Technology Data Exchange (ETDEWEB)

    Yilmaz, U. [Universitaetsklinikum des Saarlandes, Klinik fuer Diagnostische und Interventionelle Neuroradiologie, Homburg/Saar (Germany)

    2011-12-15

    A wide variety of degenerative, inflammatory and vascular diseases can resemble the clinical presentation and imaging findings of spinal tumors. This article provides an overview of the most frequent diseases which are important to recognize for diagnostic imaging of the spine. (orig.) [German] Eine Vielzahl degenerativer, entzuendlicher und vaskulaerer Erkrankungen kann das klinische Bild und radiologische Befunde spinaler Tumoren imitieren. Dieser Artikel dient der Uebersicht ueber die haeufigsten dieser Erkrankungen, deren Kenntnis wichtig fuer die spinale Bildgebung ist. (orig.)

  2. Expression changes of parvalbumin and microtubule-associated protein 2 induced by chronic constriction injury in rat dorsal root ganglia

    Institute of Scientific and Technical Information of China (English)

    CAO Ming-hui; JI Feng-tao; LIU Ling; LI Feng

    2011-01-01

    Background Parvalbumin (PV), as a mobile endogenous calcium buffer, plays an important role in affecting temporospatial characteristics of calcium transients and in modulating calcium homeostasis. PV is expressed in neurons in the dorsal root ganglion (DRG) and spinal dorsal horn and may be involved in synaptic transmission through regulating cytoplasm calcium concentrations. But the exact role of PV in peripheral sensory neurons remains unknown.Microtubule-associated protein 2 (MAP-2), belonging to structural microtubule-associated protein family, is especially vulnerable to acute central nervous system (CNS) injury, and there will be rapid loss of MAP-2 at the injury site. The present study investigated the changes of PV expressing neurons and the MAP-2 neurons in the DRG after an operation for chronic constriction injury to the unilateral sciatic nerve (CCI-SN), in order to demonstrate the possible roles of PV and MAP-2 in transmission and modulation of peripheral nociceptive information.Methods Seventy-two adult male Sprague-Dawley (SD) rats, weighing 180-220 g, were randomly divided into two groups (36 rats in each group), the sham operation group and chronic constriction injury (CCI) group. Six rats in each group were randomly selected to receive mechanical and thermal sensitivity tests at one day before operation and 1,3, 5,7, and 14 days after surgery. After pain behavioral test, ipsilateral lumbar fifth DRGs were removed and double immunofluorescence staining was performed to assess the expression changes of PV and of MAP2 expressing neurons in the L5 DRG before or after surgery.Results The animals with CCI-SN showed obvious mechanical allodynia and thermal hyperalgesia (P<0.05). Both the thermal and mechanical hyperalgesia decreased to their lowest degree at 7 days after surgery compared to the baseline before surgery (P<0.01). In normal rats before surgery, a large number of neurons were MAP-2 single labeled cells, and just a small number of PV

  3. Spinal high-mobility group box 1 contributes to mechanical allodynia in a rat model of bone cancer pain

    International Nuclear Information System (INIS)

    Mechanisms underlying bone cancer-induced pain are largely unknown. Previous studies indicate that neuroinflammation in the spinal dorsal horn is especially involved. Being first reported as a nonhistone chromosomal protein, high-mobility group box 1 (HMGB1) is now implicated as a mediator of inflammation. We hypothesized that HMGB1 could trigger the release of cytokines in the spinal dorsal horn and contribute to bone cancer pain. To test this hypothesis, we first built a bone cancer pain model induced by intratibal injection of Walker 256 mammary gland carcinoma cells. The structural damage to the tibia was monitored by radiological analysis. The mechanical allodynia was measured and the expression of spinal HMGB1 and IL-1β was evaluated. We observed that inoculation of cancer cells, but not heat-killed cells, induced progressive bone destruction from 9 d to 21 d post inoculation. Behavioral tests demonstrated that the significant nociceptive response in the cancer cells-injected rats emerged on day 9 and this kind of mechanical allodynia lasted at least 21 d following inoculation. Tumor cells inoculation significantly increased HMGB1 expression in the spinal dorsal horn, while intrathecal injecting a neutralizing antibody against HMGB1 showed an effective and reliable anti-allodynia effect with a dose-dependent manner. IL-1β was significantly increased in caner pain rats while intrathecally administration of anti-HMGB1 could decrease IL-1β. Together with previous reports, we predict that bone cancer induces HMGB1 production, enhancing spinal IL-1β expression and thus modulating spinal excitatory synaptic transmission and pain response.

  4. Spinal high-mobility group box 1 contributes to mechanical allodynia in a rat model of bone cancer pain

    Energy Technology Data Exchange (ETDEWEB)

    Tong, Wei [Department of Out-Patient, Xijing Hospital, Fourth Military Medical University, Xi' an 710032 (China); Wang, Wei; Huang, Jing [Department of Anatomy and K. K. Leung Brain Research Centre, Fourth Military Medical University, Xi' an 710032 (China); Ren, Ning [Comprehensive Diagnostic and Therapeutic Center, Xijing Hospital, Fourth Military Medical University, Xi' an 710032 (China); Wu, Sheng-Xi, E-mail: shengxi@fmmu.edu.cn [Department of Anatomy and K. K. Leung Brain Research Centre, Fourth Military Medical University, Xi' an 710032 (China); Li, Yong-Qi, E-mail: devneuro@fmmu.edu.cn [Comprehensive Diagnostic and Therapeutic Center, Xijing Hospital, Fourth Military Medical University, Xi' an 710032 (China)

    2010-05-14

    Mechanisms underlying bone cancer-induced pain are largely unknown. Previous studies indicate that neuroinflammation in the spinal dorsal horn is especially involved. Being first reported as a nonhistone chromosomal protein, high-mobility group box 1 (HMGB1) is now implicated as a mediator of inflammation. We hypothesized that HMGB1 could trigger the release of cytokines in the spinal dorsal horn and contribute to bone cancer pain. To test this hypothesis, we first built a bone cancer pain model induced by intratibal injection of Walker 256 mammary gland carcinoma cells. The structural damage to the tibia was monitored by radiological analysis. The mechanical allodynia was measured and the expression of spinal HMGB1 and IL-1{beta} was evaluated. We observed that inoculation of cancer cells, but not heat-killed cells, induced progressive bone destruction from 9 d to 21 d post inoculation. Behavioral tests demonstrated that the significant nociceptive response in the cancer cells-injected rats emerged on day 9 and this kind of mechanical allodynia lasted at least 21 d following inoculation. Tumor cells inoculation significantly increased HMGB1 expression in the spinal dorsal horn, while intrathecal injecting a neutralizing antibody against HMGB1 showed an effective and reliable anti-allodynia effect with a dose-dependent manner. IL-1{beta} was significantly increased in caner pain rats while intrathecally administration of anti-HMGB1 could decrease IL-1{beta}. Together with previous reports, we predict that bone cancer induces HMGB1 production, enhancing spinal IL-1{beta} expression and thus modulating spinal excitatory synaptic transmission and pain response.

  5. File list: Pol.Lar.05.AllAg.Dorsal_mesothoracic_disc [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Lar.05.AllAg.Dorsal_mesothoracic_disc dm3 RNA polymerase Larvae Dorsal mesothoracic disc...iosciencedbc.jp/kyushu-u/dm3/assembled/Pol.Lar.05.AllAg.Dorsal_mesothoracic_disc.bed ...

  6. File list: Pol.Lar.10.AllAg.Dorsal_mesothoracic_disc [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Lar.10.AllAg.Dorsal_mesothoracic_disc dm3 RNA polymerase Larvae Dorsal mesothoracic disc...iosciencedbc.jp/kyushu-u/dm3/assembled/Pol.Lar.10.AllAg.Dorsal_mesothoracic_disc.bed ...

  7. File list: Pol.Lar.50.AllAg.Dorsal_mesothoracic_disc [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Lar.50.AllAg.Dorsal_mesothoracic_disc dm3 RNA polymerase Larvae Dorsal mesothoracic disc...iosciencedbc.jp/kyushu-u/dm3/assembled/Pol.Lar.50.AllAg.Dorsal_mesothoracic_disc.bed ...

  8. File list: Pol.Lar.20.AllAg.Dorsal_mesothoracic_disc [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Lar.20.AllAg.Dorsal_mesothoracic_disc dm3 RNA polymerase Larvae Dorsal mesothoracic disc...iosciencedbc.jp/kyushu-u/dm3/assembled/Pol.Lar.20.AllAg.Dorsal_mesothoracic_disc.bed ...

  9. File list: ALL.Lar.50.AllAg.Dorsal_mesothoracic_disc [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Lar.50.AllAg.Dorsal_mesothoracic_disc dm3 All antigens Larvae Dorsal mesothorac...barchive.biosciencedbc.jp/kyushu-u/dm3/assembled/ALL.Lar.50.AllAg.Dorsal_mesothoracic_disc.bed ...

  10. File list: ALL.Lar.20.AllAg.Dorsal_mesothoracic_disc [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Lar.20.AllAg.Dorsal_mesothoracic_disc dm3 All antigens Larvae Dorsal mesothorac...barchive.biosciencedbc.jp/kyushu-u/dm3/assembled/ALL.Lar.20.AllAg.Dorsal_mesothoracic_disc.bed ...

  11. File list: ALL.Lar.05.AllAg.Dorsal_mesothoracic_disc [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Lar.05.AllAg.Dorsal_mesothoracic_disc dm3 All antigens Larvae Dorsal mesothorac...barchive.biosciencedbc.jp/kyushu-u/dm3/assembled/ALL.Lar.05.AllAg.Dorsal_mesothoracic_disc.bed ...

  12. File list: ALL.Lar.10.AllAg.Dorsal_mesothoracic_disc [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Lar.10.AllAg.Dorsal_mesothoracic_disc dm3 All antigens Larvae Dorsal mesothorac...barchive.biosciencedbc.jp/kyushu-u/dm3/assembled/ALL.Lar.10.AllAg.Dorsal_mesothoracic_disc.bed ...

  13. Effects of epidural spinal cord electrical stimulation with varying voltage and frequency on spinal cord refle-xes%硬膜外脊髓电刺激电压及频率变化对正常大鼠脊髓反射的影响

    Institute of Scientific and Technical Information of China (English)

    王熠钊; 徐江; 黄晓琳; 许涛; 方征宇; 徐琦; 涂细凯; 杨沛沛

    2010-01-01

    目的 研究正常大鼠麻醉状态下S_1脊髓节段不同电压及频率硬膜外脊髓电刺激(ESCES)所诱发的脊髓反射,探讨ESCES诱发脊髓反射的发生机制及来源.方法 选取成年雌性Sprague-Dawley大鼠10只,麻醉后手术将电极植入S脊髓节段,予以波宽200μs、电压强度分别为400,600,1200 mV的单脉冲ESCES;1200 mV时,频率分别为50,60,80,100 Hz的ESCES.以同心圆针电极记录大鼠后肢半腱肌肌腹的肌电信号,观察所诱导脊髓反射的特点.结果 能引起大鼠半腱肌反应的阈值为300 mV.3种电压强度的ESCES能诱导出2种潜伏期成分的脊髓反射,较低的400,600 mV电压强度可诱发出长潜伏期成分,潜伏期分别为(5.27±0.36)ms和(5.19±0.67)ms;较高的1200 mV电压强度可诱发出短潜伏期成分,潜伏期为(2.57±0.23)ms.4种较高频刺激均可诱发出脊髓反射,但刺激后期都出现了脊髓反射脱落后不规律出现,部分大鼠出现了较高频刺激后期脊髓反射完全消失.50 Hz频率的ESCES所诱发脊髓反射的潜伏期和波宽分别为(4.46±1.07)ms和(7.33±1.00)ms,与另外3种频率所诱发脊髓反射相比差异有统计学意义(P<0.05).结论 不同电压的ESCES可诱导出不同来源的脊髓反射.长潜伏期成分可能是兴奋脊髓背根传入神经后引起的单突触反射;短潜伏期成分可能是直接兴奋脊髓内的运动神经元或运动纤维后向下传导引起的肌肉兴奋电反应.4种较高频ESCES所诱发的不规律出现的脊髓反射,可能是一种单突触反射.较高频刺激时脊髓反射的小规律出现可能与较高频刺激的抑制作用有关.%Objective To investigate the effects of epidural spinal cord electrical stimulation (ESCES) on spinal cord reflexes in normal adult rats, and to find out where and how the spinal cord reflexes are generated. Methods Ten adult female Sprague Dawley rats were anaesthetized and an electrode was placed at the S, spinal cord segment

  14. Spinal dermoid cyst. Characteristic CT findings after metrizamide myelography

    Energy Technology Data Exchange (ETDEWEB)

    Miyamoto, Yoshihisa; Makita, Yasumasa; Nabeshima, Sachio; Tei, Taikyoku; Keyaki, Atsushi; Takahashi, Jun; Kawamura, Junichiro

    1987-10-01

    A 25-year-old male complained of intermittent, sharp pains about the left eye and in the left side of the chest. Neurological examination revealed paresthesia and impaired perception of touch and pin-pricks in the dermatomes of Th8 and Th9 on the left side. In all four extremities, the muscle stretch reflexes were equal and slightly hyperactive, without weakness or sensory deficits. Metrizamide myelography showed defective filling at the level between the upper 8th and 9th thoracic vertebrae. The lesion was also demonstrated by computed tomography (CT) scan performed 1 hour later, appearing as an oval, radiolucent mass in the left dorsal spinal canal, which compressed the spinal cord forward and toward the right. Serial sections of the spinal canal revealed the lesion to be partly filled with contrast medium. Repeat CT scan 24 hours after metrizamide myelography showed more contrast medium in the periphery of the lesion, giving it a doughnut-shaped appearance. At surgery a smooth-surfaced cyst containing sebum and white hair was totally removed from the intradural extramedullary space. The histological diagnosis was dermoid cyst. There have been a few reported cases of intracranial epidermoid cyst in which filling of the cyst was suggested on metrizamide CT myelography. These findings may complicate the differential diagnosis of arachnoid cyst and dermoid or epidermoid cyst when only CT is used.

  15. Spinal lordosis optimizes the requirements for a stable erect posture

    Directory of Open Access Journals (Sweden)

    Wagner Heiko

    2012-04-01

    Full Text Available Abstract Background Lordosis is the bending of the lumbar spine that gives the vertebral column of humans its characteristic ventrally convex curvature. Infants develop lordosis around the time when they acquire bipedal locomotion. Even macaques develop a lordosis when they are trained to walk bipedally. The aim of this study was to investigate why humans and some animals develop a lumbar lordosis while learning to walk bipedally. Results We developed a musculoskeletal model of the lumbar spine, that includes an asymmetric, dorsally shifted location of the spinal column in the body, realistic moment arms, and physiological cross-sectional areas (PCSA of the muscles as well as realistic force-length and force-velocity relationships. The model was used to analyze the stability of an upright body posture. According to our results, lordosis reduces the local joint torques necessary for an equilibrium of the vertebral column during an erect posture. At the same time lordosis increases the demands on the global muscles to provide stability. Conclusions We conclude that the development of a spinal lordosis is a compromise between the stability requirements of an erect posture and the necessity of torque equilibria at each spinal segment.

  16. Identification and quantification of neuropeptides in naïve mouse spinal cord using mass spectrometry reveals [des-Ser1]-cerebellin as a novel modulator of nociception.

    Science.gov (United States)

    Su, Jie; Sandor, Katalin; Sköld, Karl; Hökfelt, Tomas; Svensson, Camilla I; Kultima, Kim

    2014-07-01

    Neuropeptide transmitters involved in nociceptive processes are more likely to be expressed in the dorsal than the ventral horn of the spinal cord. This study was designed to examine the relative distribution of neuropeptides between the dorsal and ventral spinal cord in naïve mice using liquid chromatography, high-resolution mass spectrometry. We identified and relatively quantified 36 well-characterized full-length neuropeptides and an additional 168 not previously characterized peptides. By extraction with organic solvents we identified seven additional full-length neuropeptides. The peptide [des-Ser1]-cerebellin (desCER), originating from cerebellin precursor protein 1 (CBLN1), was predominantly expressed in the dorsal horn. Immunohistochemistry showed the presence of CBLN1 immunoreactivity with a punctate cytoplasmic pattern in neuronal cell bodies throughout the spinal gray matter. The signal was stronger in the dorsal compared to the ventral horn, with most CBLN1 positive cells present in outer laminae II/III, colocalizing with calbindin, a marker for excitatory interneurons. Intrathecal injection of desCER induced a dose-dependent mechanical hypersensitivity but not heat or cold hypersensitivity. This study provides evidence for involvement of desCER in nociception and provides a platform for continued exploration of involvement of novel neuropeptides in the regulation of nociceptive transmission. Neuropeptides involved in nociceptive processes are more likely to be expressed in the dorsal than the ventral horn of spinal cord. Well-characterized full-length neuropeptides as well as uncharacterized neuropeptides were quantified by mass spectrometry. The CBLN1-derived peptide [des-Ser1]-cerebellin (desCER) is predominantly expressed in the dorsal horn, and intrathecal injection of desCER induced a dose-dependent mechanical hypersensitivity.

  17. Primary spinal epidural lymphomas

    Directory of Open Access Journals (Sweden)

    Goutham Cugati

    2011-01-01

    Full Text Available An epidural location for lymphoma is observed in 0.1-6.5% of all the lymphomas. Primary spinal epidural lymphoma (PSEL is a subset of lymphomas, where there are no other recognizable sites of lymphomas at the time of diagnosis. The incidence of this subset of lymphomas is much less. It, however, is increasingly diagnosed, due to the increased use of more sensitive imaging modalities. For the electronic search, Pubmed was used to identify journals that enlisted and enumerated PSEL from 1961 to January 2011. The following combination of terms: "primary," "spinal," "epidural," and "lymphoma" were used. The most significant articles and their bibliographies were analyzed by the authors. The symptoms, pathogenesis, diagnostic workup, histopathology, treatment, and outcome have been analyzed in a systematic manner

  18. Research on the Relationship between Spinal Ways and the Effect of Point Zusanli (ST 36)

    Institute of Scientific and Technical Information of China (English)

    汪克明; 刘婧; 吴子建; 蔡荣林; 龙迪和; 何璐

    2008-01-01

    Objective: The integrity of the corresponding dorsal root is important in the research of the effects of acupuncture Zusanli (ST 36) on gastric smooth muscle. Investigate the communicate channels of central control on the effect of acupuncture Zusanli (ST 36). Method: Selected 30 healthy adult SD rats and using veniua-glacial acid to made gastric mucosa ulcer model. Divided them into three groups, model group, cutting L1-S1group and transecting T10-T11group after the models have been made successfully, each group 10 rats. Implanted diameter in 0.2 mm Platinum Circle electrode into subserous of the ulcer place and recorded the myoelectricity activity of gastric smooth muscle before and after acupuncture Zusanli (ST 36). Acupuncture parameters, 2-100 Hz, lasting 20 mill. Results: Model group before acupuncture, (5.73±0.51) cycle per minitue (cpm), (2.28±0.57) mV; model group after acupuncture, (5.34±0.34) cpm, (1.06±0.13). Group that before cutting dorsal L4-S1, (5.65±0.26) cpm, (1.66±0.15) mV; group that after cutting dorsal L4-S1(5.40±0.23) cpm, (1.17±0.23), group that after cutting dorsal L4-S1and acupuncture, (5.26±0.18) cpm, (2.45±0.23). Group that before transecting dorsal T10-T11, (5.69±0.36) cpm, (1.91±0.25) mV, group that after transecting dorsal T10-T11, (4.98±0.53) cpm, (1.05±0.18) mV, group that after transecting dorsal T10-T11and acupuncture, (4.60±0.44) cpm, (2.52±0.38) mV. Conclusion: Acupunture Zusanli (ST 36) can inhibit the myoelectricity activity of gastric smooth muscle, cutting L4-S1 can strengthen the myoelectricity activity, but the effect of transect T10-T11 is better. So it can be said that the integrity of Dorsal root is important to the effect of acupuncture. The two-way regulation of Acupuncture has a close relationship with the higher centre above spinal cord.%目的:横断研究相应脊髓背根通路的完垫f生对针刺足三里穴后胃平滑肌电活动的影响,探讨中枢性调控对针刺足三里穴效应的

  19. Imaging of Spinal Metastatic Disease

    Directory of Open Access Journals (Sweden)

    Lubdha M. Shah

    2011-01-01

    Full Text Available Metastases to the spine can involve the bone, epidural space, leptomeninges, and spinal cord. The spine is the third most common site for metastatic disease, following the lung and the liver. Approximately 60–70% of patients with systemic cancer will have spinal metastasis. Materials/Methods. This is a review of the imaging techniques and typical imaging appearances of spinal metastatic disease. Conclusions. Awareness of the different manifestations of spinal metastatic disease is essential as the spine is the most common site of osseous metastatic disease. Imaging modalities have complimentary roles in the evaluation of spinal metastatic disease. CT best delineates osseous integrity, while MRI is better at assessing soft tissue involvement. Physiologic properties, particularly in treated disease, can be evaluated with other imaging modalities such as FDG PET and advanced MRI sequences. Imaging plays a fundamental role in not only diagnosis but also treatment planning of spinal metastatic disease.

  20. Transverse myelitis following spinal anesthesia

    Directory of Open Access Journals (Sweden)

    Jha Sanjeev

    2006-01-01

    Full Text Available Spinal anesthesia is widely used during surgical procedures. It is generally safe and the frequency of severe, permanent neurological complications associated with it has been reported to be extremely low. We report a patient, who developed paraplegia following spinal anesthesia. A 29-year-old male was referred with acute, flaccid, sensory motor paraplegia, with bladder and bowel involvement. He developed this immediately after an operation for inguinal hernia under spinal anesthesia. Spinal magnetic resonance imaging revealed hemorrhagic myelitis in the conus at D12. He was referred after he did not respond to intravenous methylprednisolone for 10 days. This case brings up the difficulty encountered in determination of the interspace used for spinal anesthesia and the potential for traumatic injury to the spinal cord. It also demonstrates the tragic outcome after a clinician violates some important, standard and established guidelines.