WorldWideScience

Sample records for adult brain tumor

  1. Brain tumor - primary - adults

    Science.gov (United States)

    ... Vestibular schwannoma (acoustic neuroma) - adults; Meningioma - adults; Cancer - brain tumor (adults) ... Primary brain tumors include any tumor that starts in the brain. Primary brain tumors can start from brain cells, ...

  2. Brain tumor - primary - adults

    Science.gov (United States)

    ... Vestibular schwannoma (acoustic neuroma) - adults; Meningioma - adults; Cancer - brain tumor (adults) ... wireless devices Head injuries Smoking Hormone therapy SPECIFIC TUMOR TYPES Brain tumors are classified depending on: Location of the ...

  3. Adult brain tumors

    International Nuclear Information System (INIS)

    Radiotherapy plays an important role in the management of adults with brain tumors. This refresher course will focus on a wide variety of benign and malignant brain neoplasms and how contemporary radiotherapy affects survival. In each case the intent of radiation therapy is to destroy the neoplasm without affecting normal tissues. However, for many neoplasms serial post-treatment scans may show little change, and success is often measured more by absence of tumor progression than by scan normalization. Successful outcome after radiation therapy of brain tumors usually requires that (1) there is no tumor extension beyond the target volume, (2) adequate dose is delivered to the target volume, and (3) normal tissue tolerance doses are not exceeded. For some tumors it may be impossible to satisfy all three criteria. Three-dimensional treatment planning based on MRI or CT makes it possible to guarantee delivery of the full dose of radiation to gross tumor while minimizing the volume of normal tissue receiving high dose. Acceptable dose conformity can often be achieved with 2-4 static beams or arcs and are usually preferable to opposed lateral fields. Examples of planning solutions for a variety of tumor types, sizes, and anatomic location will be given. For some tumors, protocols involving substantial dose escalation require a large number of non-coplanar x-ray beams or particle therapy. Several concepts and techniques which relate to the treatment of brain tumors will be discussed, including conformal radiotherapy, brachytherapy, radiosurgery, fractionated stereotactic radiotherapy, altered fractionation, inverse treatment planning, re-irradiation and biologically effective dose (BED)

  4. Adult brain tumors

    International Nuclear Information System (INIS)

    Radiotherapy plays an important role in the management of adults with brain tumors. This refresher course will focus on a variety of benign and malignant brain neoplasms and how contemporary radiotherapy affects outcome. Successful outcome after radiotherapy requires that (1) there is no tumor extension beyond the selected target volume, (2) adequate dose is delivered to the target volume, and (3) normal tissue tolerance dose is not exceeded. For many neoplasms serial post-treatment scans may show little change, and success is often measured more by absence of tumor progression than by scan normalization. Three-dimensional treatment planning based on MRI or CT makes it possible to guarantee delivery of the full prescription dose to gross tumor while minimizing the volume of normal tissue receiving high dose. Acceptable dose conformity can often be achieved with 2-4 static beams or arcs, which is usually preferable to opposed lateral fields. Protocols involving substantial dose escalation require a large number of non-coplanar x-ray beams or particle therapy. This course will cover important concepts and techniques which relate to the treatment of brain tumors, including conformal radiotherapy, brachytherapy, radiosurgery, fractionated stereotactic radiotherapy, altered fractionation, inverse treatment planning, re-irradiation, and biologically effective dose (BED). Examples of planning solutions for a variety of tumor types, size and anatomical locations will be given

  5. Adult brain tumors

    International Nuclear Information System (INIS)

    Radiotherapy plays an important role in the management of adults with brain tumors. This refresher course will focus on a variety of benign and malignant brain neoplasms and how contemporary radiotherapy affects outcome. Successful outcome after radiotherapy requires that (1) there is no tumor extension beyond the selected target volume, (2) adequate dose is delivered to the target volume, and (3) normal tissue tolerance dose is not exceeded. For many neoplasms serial post-treatment scans may show little change, and success is often measured more by absence of tumor progression than by scan normalization. Three-dimensional treatment planning based on MRI or CT makes it possible to guarantee delivery of the full prescription dose to gross tumor while minimizing the volume of normal tissue receiving high dose. Acceptable dose conformity can often be achieved with 2-4 static beams or arcs, which is usually preferable to opposed lateral fields. Protocols involving substantial dose escalation require a large number of non-coplanar x-ray beams or particle therapy. This course will cover important concepts and techniques which relate to the treatment of brain tumors, including conformal radiotherapy, brachytherapy, radiosurgery, fractionated stereotactic radiotherapy, altered fractionation, inverse treatment planning, re-irradiation, and biologically effective dose (BED). Examples of planning solutions for a variety of tumor types, size and anatomical locations will be given. Note: I will incorporate examples of interesting, difficult and unusual cases from other practices as time permits, provided slides and descriptive materials are sent to me in advance of the course

  6. Brain and Spinal Cord Tumors in Adults

    Science.gov (United States)

    ... saved articles window. My Saved Articles » My ACS » Brain and Spinal Cord Tumors in Adults Download Printable ... the topics below to get started. What Is Brain/CNS Tumors In Adults? What are adult brain ...

  7. Transcriptional signature of an adult brain tumor in Drosophila

    Directory of Open Access Journals (Sweden)

    Loop Thomas

    2004-04-01

    Full Text Available Abstract Background Mutations and gene expression alterations in brain tumors have been extensively investigated, however the causes of brain tumorigenesis are largely unknown. Animal models are necessary to correlate altered transcriptional activity and tumor phenotype and to better understand how these alterations cause malignant growth. In order to gain insights into the in vivo transcriptional activity associated with a brain tumor, we carried out genome-wide microarray expression analyses of an adult brain tumor in Drosophila caused by homozygous mutation in the tumor suppressor gene brain tumor (brat. Results Two independent genome-wide gene expression studies using two different oligonucleotide microarray platforms were used to compare the transcriptome of adult wildtype flies with mutants displaying the adult bratk06028 mutant brain tumor. Cross-validation and stringent statistical criteria identified a core transcriptional signature of bratk06028 neoplastic tissue. We find significant expression level changes for 321 annotated genes associated with the adult neoplastic bratk06028 tissue indicating elevated and aberrant metabolic and cell cycle activity, upregulation of the basal transcriptional machinery, as well as elevated and aberrant activity of ribosome synthesis and translation control. One fifth of these genes show homology to known mammalian genes involved in cancer formation. Conclusion Our results identify for the first time the genome-wide transcriptional alterations associated with an adult brain tumor in Drosophila and reveal insights into the possible mechanisms of tumor formation caused by homozygous mutation of the translational repressor brat.

  8. [Chemotherapy for brain tumors in adult patients].

    Science.gov (United States)

    Weller, M

    2008-02-01

    Chemotherapy has become a third major treatment option for patients with brain tumors, in addition to surgery and radiotherapy. The role of chemotherapy in the treatment of gliomas is no longer limited to recurrent disease. Temozolomide has become the standard of care in newly diagnosed glioblastoma. Several ongoing trials seek to define the role of chemotherapy in the primary care of other gliomas. Some of these studies are no longer only based on histological diagnoses, but take into consideration molecular markers such as MGMT promoter methylation and loss of genetic material on chromosomal arms 1p and 19q. Outside such clinical trials chemotherapy is used in addition to radiotherapy, e.g., in anaplastic astrocytoma, medulloblastoma or germ cell tumors, or as an alternative to radiotherapy, e.g., in anaplastic oligodendroglial tumors or low-grade gliomas. In contrast, there is no established role for chemotherapy in other tumors such as ependymomas, meningiomas or neurinomas. Primary cerebral lymphomas are probably the only brain tumors which can be cured by chemotherapy alone and only by chemotherapy. The chemotherapy of brain metastases follows the recommendations for the respective primary tumors. Further, strategies of combined radiochemotherapy using mainly temozolomide or topotecan are currently explored. Leptomeningeal metastases are treated by radiotherapy or systemic or intrathecal chemotherapy depending on their pattern of growth. PMID:18253773

  9. Exploratory case-control study of brain tumors in adults

    International Nuclear Information System (INIS)

    An exploratory study of brain tumors in adults was carried out using 215 cases diagnosed in Southern Ontario between 1979 and 1982, with an individually matched, hospital control series. Significantly elevated risks were observed for reported use of spring water, drinking of wine, and consumption of pickled fish, together with a significant protective effect for the regular consumption of any of several types of fruit. While these factors are consistent with a role for N-nitroso compounds in the etiology of these tumors, for several other factors related to this hypothesis, no association was observed. Occupation in the rubber industry was associated with a significant relative risk of 9.0, though no other occupational associations were seen. Two previously unreported associations were with smoking nonfilter cigarettes with a significant trend and with the use of hair dyes or sprays. The data do not support an association between physical head trauma requiring medical attention and risk of brain tumors and indicate that exposure to ionizing radiation and vinyl chloride monomer does not contribute any appreciable fraction of attributable risk in the population studied. The findings warrant further detailed investigation in future epidemiologic studies

  10. Brain Tumors

    Science.gov (United States)

    A brain tumor is a growth of abnormal cells in the tissues of the brain. Brain tumors can be benign, with no cancer cells, or ... cancer cells that grow quickly. Some are primary brain tumors, which start in the brain. Others are metastatic, ...

  11. Brain Tumors

    Science.gov (United States)

    A brain tumor is a growth of abnormal cells in the tissues of the brain. Brain tumors can be benign, with no cancer cells, ... cancer cells that grow quickly. Some are primary brain tumors, which start in the brain. Others are ...

  12. Pediatric Cancers and Brain Tumors in Adolescents and Young Adults.

    Science.gov (United States)

    McCabe, Martin G; Valteau-Couanet, Dominique

    2016-01-01

    Embryonal tumors classically occur in young children, some principally within the first year of life. Prospective national and international clinical trials during recent decades have brought about progressive improvements in survival, and associated biological studies have advanced our understanding of tumor biology, in some cases allowing biological tumor characteristics to be harnessed for therapeutic benefit. Embryonal tumors continue to occur, albeit less commonly, during childhood, adolescence and throughout adulthood. These tumors are less well understood, usually not managed according to standardized protocols and rarely included in clinical trials. Survival outcomes are generally poorer than their childhood equivalents. We present here a summary of the published literature on embryonal tumors that present ectopically during adolescence and adulthood. We show that for some tumors protocol-driven treatment, supported by accurate and complete diagnostics and staging, can result in equivalent outcomes to those seen during childhood. We make the case that clinical trial eligibility criteria should be disease-based rather than age-based, and support improvements in dialogue between children's and adults' cancer clinicians to improve outcomes for these rare tumors. PMID:27595358

  13. Adult Pilomyxoid Astrocytoma Mimicking a Cortical Brain Tumor: MR Imaging Findings

    Energy Technology Data Exchange (ETDEWEB)

    Jang, Jong Chang; Weon, Young Cheol; Suh, Jae Hee; Kim, Young; Hwang, Jae Cheol [Ulsan University Hospital, Ulsan (Korea, Republic of)

    2010-08-15

    A pilomyxoid astrocytoma (PMA) is a recently identified low-grade neoplasm that was previously classified as a pilocytic astrocytoma (PA), yet demonstrates unique histological features and more aggressive behavior. Although a PMA is generally a tumor of early childhood and typically occurs in the hypothalamic/chiasmatic region, it can mimic cortical tumors, especially in adults. We report the MR findings of a PMA presenting as a cortical brain tumor in an adult with neurofibromatosis 1 (NF1)

  14. Adult Pilomyxoid Astrocytoma Mimicking a Cortical Brain Tumor: MR Imaging Findings

    International Nuclear Information System (INIS)

    A pilomyxoid astrocytoma (PMA) is a recently identified low-grade neoplasm that was previously classified as a pilocytic astrocytoma (PA), yet demonstrates unique histological features and more aggressive behavior. Although a PMA is generally a tumor of early childhood and typically occurs in the hypothalamic/chiasmatic region, it can mimic cortical tumors, especially in adults. We report the MR findings of a PMA presenting as a cortical brain tumor in an adult with neurofibromatosis 1 (NF1)

  15. Brain tumor

    International Nuclear Information System (INIS)

    BNCT in the past was not widely accepted because of poor usability of a nuclear reactor as a neutron source. Recently, technical advancements in the accelerator field have made accelerator-based BNCT feasible. Consequently, clinical trials of intractable brain tumors have started using it since 2012. In this review, our clinical results obtained from conventional reactor-based BNCT for treatment of brain tumors are introduced. It is strong hope that accelerator-based BNCT becomes a standard therapy for current intractable brain tumors. (author)

  16. Adding chemo after radiation treatment improves survival for adults with a type of brain tumor

    Science.gov (United States)

    Adults with low-grade gliomas, a form of brain tumor, who received chemotherapy following completion of radiation therapy lived longer than patients who received radiation therapy alone, according to long-term follow-up results from a NIH-supported random

  17. New Experimental Model of Brain Tumors in Brains of Adult Immunocompetent Rats

    OpenAIRE

    Baklaushev, Vladimir P.; Kavsan, Vadym M.; Balynska, Olena V; Yusubalieva, Gaukhar M.; Abakumov, Maxim A.; Chekhonin, Vladimir P.

    2012-01-01

    Aims: Xenograft models, namely heterotransplantation of human cancer cells or tumor biopsies into immunodeficient rodents are the major preclinical approach for the development of novel cancer therapeutics. However, in these models the animals must be used only after the severe systemic immune suppression in order to ensure graft survival. Thus, additional new human brain tumor models without immune suppression of the recipient rodent may be required. Place and Duration of Study: Laboratory o...

  18. Yoga Therapy in Treating Patients With Malignant Brain Tumors

    Science.gov (United States)

    2015-07-27

    Adult Anaplastic Astrocytoma; Adult Anaplastic Ependymoma; Adult Anaplastic Meningioma; Adult Anaplastic Oligodendroglioma; Adult Brain Stem Glioma; Adult Choroid Plexus Tumor; Adult Diffuse Astrocytoma; Adult Ependymoblastoma; Adult Ependymoma; Adult Giant Cell Glioblastoma; Adult Glioblastoma; Adult Gliosarcoma; Adult Grade II Meningioma; Adult Medulloblastoma; Adult Meningeal Hemangiopericytoma; Adult Mixed Glioma; Adult Oligodendroglioma; Adult Papillary Meningioma; Adult Pineal Gland Astrocytoma; Adult Pineoblastoma; Adult Pineocytoma; Adult Supratentorial Primitive Neuroectodermal Tumor (PNET); Recurrent Adult Brain Tumor

  19. Brain tumor - children

    Science.gov (United States)

    ... children; Neuroglioma - children; Oligodendroglioma - children; Meningioma - children; Cancer - brain tumor (children) ... The cause of primary brain tumors is unknown. Primary brain tumors may ... (spread to nearby areas) Cancerous (malignant) Brain tumors ...

  20. Efficacy of 68Ga-DOTATOC Positron Emission Tomography (PET) CT in Children and Young Adults With Brain Tumors

    Science.gov (United States)

    2016-06-17

    Acoustic Schwannoma; Adult Anaplastic Astrocytoma; Adult Anaplastic Ependymoma; Adult Anaplastic Meningioma; Adult Anaplastic Oligodendroglioma; Adult Brain Stem Glioma; Adult Choroid Plexus Tumor; Adult Craniopharyngioma; Adult Diffuse Astrocytoma; Adult Ependymoblastoma; Adult Ependymoma; Adult Giant Cell Glioblastoma; Adult Glioblastoma; Adult Gliosarcoma; Adult Grade I Meningioma; Adult Grade II Meningioma; Adult Medulloblastoma; Adult Meningeal Hemangiopericytoma; Adult Mixed Glioma; Adult Myxopapillary Ependymoma; Adult Oligodendroglioma; Adult Papillary Meningioma; Adult Pilocytic Astrocytoma; Adult Pineal Gland Astrocytoma; Adult Pineoblastoma; Adult Pineocytoma; Adult Subependymal Giant Cell Astrocytoma; Adult Subependymoma; Adult Supratentorial Primitive Neuroectodermal Tumor (PNET); Childhood Choroid Plexus Tumor; Childhood Craniopharyngioma; Childhood Ependymoblastoma; Childhood Grade I Meningioma; Childhood Grade II Meningioma; Childhood Grade III Meningioma; Childhood High-grade Cerebellar Astrocytoma; Childhood High-grade Cerebral Astrocytoma; Childhood Infratentorial Ependymoma; Childhood Low-grade Cerebellar Astrocytoma; Childhood Low-grade Cerebral Astrocytoma; Childhood Medulloepithelioma; Childhood Supratentorial Ependymoma; Meningeal Melanocytoma; Newly Diagnosed Childhood Ependymoma; Recurrent Adult Brain Tumor; Recurrent Childhood Anaplastic Astrocytoma; Recurrent Childhood Anaplastic Oligoastrocytoma; Recurrent Childhood Anaplastic Oligodendroglioma; Recurrent Childhood Brain Stem Glioma; Recurrent Childhood Cerebellar Astrocytoma; Recurrent Childhood Cerebral Astrocytoma; Recurrent Childhood Diffuse Astrocytoma; Recurrent Childhood Ependymoma; Recurrent Childhood Fibrillary Astrocytoma; Recurrent Childhood Gemistocytic Astrocytoma; Recurrent Childhood Giant Cell Glioblastoma; Recurrent Childhood Glioblastoma; Recurrent Childhood Gliomatosis Cerebri; Recurrent Childhood Gliosarcoma; Recurrent Childhood Medulloblastoma; Recurrent Childhood

  1. American Brain Tumor Association

    Science.gov (United States)

    ... For Health Care Professionals About Us Our Founders Board of Directors Staff Leadership Strategic Plan Financials News Careers Brain Tumor Information Brain Anatomy Brain Tumor Symptoms Diagnosis Types of Tumors Tumor Grade Risk Factors Brain Tumor Statistics ABTA Publications Brain Tumor ...

  2. Brain Tumor Surgery

    Science.gov (United States)

    ... Pediatric Caregiver Resource Center About Us Our Founders Board of Directors Staff Leadership Strategic Plan Financials News Careers Brain Tumor Information Brain Anatomy Brain Tumor Symptoms Diagnosis Types of Tumors Tumor Grade Risk Factors Brain Tumor Statistics ABTA Publications Brain Tumor ...

  3. Brain Tumors (For Parents)

    Science.gov (United States)

    ... Story" 5 Things to Know About Zika & Pregnancy Brain Tumors KidsHealth > For Parents > Brain Tumors Print A ... radiation therapy or chemotherapy, or both. Types of Brain Tumors There are many different types of brain ...

  4. Brain tumor (image)

    Science.gov (United States)

    Brain tumors are classified depending on the exact site of the tumor, the type of tissue involved, benign ... tendencies of the tumor, and other factors. Primary brain tumors can arise from the brain cells, the meninges ( ...

  5. Adolescent and Pediatric Brain Tumors

    Science.gov (United States)

    ... abta.org Donate Now Menu Adolescent & Pediatric Brain Tumors Brain Tumors In Children Pediatric Brain Tumor Diagnosis Family ... or Complete our contact form Adolescent & Pediatric Brain Tumors Brain Tumors In Children Pediatric Brain Tumor Diagnosis Family ...

  6. Notch Signaling and Brain Tumors

    DEFF Research Database (Denmark)

    Stockhausen, Marie; Kristoffersen, Karina; Poulsen, Hans Skovgaard

    2011-01-01

    Human brain tumors are a heterogenous group of neoplasms occurring inside the cranium and the central spinal cord. In adults and children, astrocytic glioma and medulloblastoma are the most common subtypes of primary brain tumors. These tumor types are thought to arise from cells in which Notch...

  7. Epidemiological features of brain tumors

    Directory of Open Access Journals (Sweden)

    Živković Nenad

    2013-01-01

    Full Text Available Brain tumors account for 1.4% of all cancers and 2.4% of all cancer-related deaths. The incidence of brain tumors varies and it is higher in developed countries of Western Europe, North America, Australia and New Zealand. In Serbia, according to data from 2009, malignant brain tumors account for 2. 2 of all tumors, and from all cancer­related deaths, 3.2% is caused by malignant brain tumors. According to recent statistical reports, an overall incidence of brain tumors for benign and malignant tumors combined is 18.71 per 100,000 persons/year. The most common benign brain tumor in adults is meningioma, which is most present in women, and the most common malignant tumor is glioblastoma, which is most present in adult men. Due to high mortality, especially in patients diagnosed with glioblastoma and significant brain tumor morbidity, there is a constant interest in understanding its etiology in order to possibly prevent tumor occurrence in future and enable more efficient treatment strategies for this fatal brain disease. Despite the continuously growing number of epidemiological studies on possible factors of tumor incidence, the etiology remains unclear. The only established environmental risk factor of gliomas is ionizing radiation exposure. Exposure to radiofrequency electromagnetic fields via cell phone use has gained a lot of attention as a potential risk factor of brain tumor development. However, studies have been inconsistent and inconclusive, so more definite results are still expected.

  8. Disruption of White Matter Integrity in Adult Survivors of Childhood Brain Tumors: Correlates with Long-Term Intellectual Outcomes

    OpenAIRE

    King, Tricia Z.; Liya Wang; Hui Mao

    2015-01-01

    Background Although chemotherapy and radiation treatment have contributed to increased survivorship, treatment-induced brain injury has been a concern when examining long-term intellectual outcomes of survivors. Specifically, disruption of brain white matter integrity and its relationship to intellectual outcomes in adult survivors of childhood brain tumors needs to be better understood. Methods Fifty-four participants underwent diffusion tensor imaging in addition to structural MRI and an in...

  9. Brain Tumor Diagnosis

    Science.gov (United States)

    ... Tumors Tumor Grading and Staging Types of Tumors Risk Factors Brain Tumor Statistics Webinars Anytime Learning About Us Our Founders Board of Directors Staff Leadership Strategic Plan Financials News Careers Brain ...

  10. The effects of radiotherapy on psychosocial and cognitive functioning in adults with a primary brain tumor: a prospective evaluation†

    OpenAIRE

    Kangas, Maria; Tate, Robyn L.; Williams, Janet R.; Smee, Robert I.

    2012-01-01

    A paucity of studies have evaluated the biopsychosocial factors contributing to quality of life (QoL) in adults with a primary brain tumor (BT). Our objective was to investigate (i) the effects of radiotherapy on the psychosocial (ie, posttraumatic stress symptoms [PTSS]) and cognitive functioning of adults with a primary BT, assessed preradiotherapy [T1] and postradiotherapy [T2], and (ii) predictors of PTSS and QoL postradiotherapy. Seventy adults with a BT were assessed at T1, and 67 patie...

  11. Pathological advances in pediatric brain tumors

    OpenAIRE

    Wang, Li-Feng; Wang, Rui-Fen; Guan, Wen-bin; Yan, Yu

    2015-01-01

    Pediatric brain tumors are the most common solid tumors in children. Compared with brain tumors in adults, pediatric brain tumors have characteristic clinicopathological features and molecular mechanisms. The accurate diagnosis and classification of brain tumors in children is important for patients to have an individualized therapy and to improve the survival rate. With the further study of pediatric brain tumors, there are some new viewpoints on pilocytic astrocytoma (PA), ependymoma,...

  12. Brain tumor stem cells.

    Science.gov (United States)

    Palm, Thomas; Schwamborn, Jens C

    2010-06-01

    Since the end of the 'no-new-neuron' theory, emerging evidence from multiple studies has supported the existence of stem cells in neurogenic areas of the adult brain. Along with this discovery, neural stem cells became candidate cells being at the origin of brain tumors. In fact, it has been demonstrated that molecular mechanisms controlling self-renewal and differentiation are shared between brain tumor stem cells and neural stem cells and that corruption of genes implicated in these pathways can direct tumor growth. In this regard, future anticancer approaches could be inspired by uncovering such redundancies and setting up treatments leading to exhaustion of the cancer stem cell pool. However, deleterious effects on (normal) neural stem cells should be minimized. Such therapeutic models underline the importance to study the cellular mechanisms implicated in fate decisions of neural stem cells and the oncogenic derivation of adult brain cells. In this review, we discuss the putative origins of brain tumor stem cells and their possible implications on future therapies. PMID:20370314

  13. Childhood Brain Tumors

    Science.gov (United States)

    Brain tumors are abnormal growths inside the skull. They are among the most common types of childhood ... still be serious. Malignant tumors are cancerous. Childhood brain and spinal cord tumors can cause headaches and ...

  14. Pediatric brain tumors

    International Nuclear Information System (INIS)

    Among all causes of death in children from solid tumors, pediatric brain tumors are the most common. This article includes an overview of a subset of infratentorial and supratentorial tumors with a focus on tumor imaging features and molecular advances and treatments of these tumors. Key to understanding the imaging features of brain tumors is a firm grasp of other disease processes that can mimic tumor on imaging. We also review imaging features of a common subset of tumor mimics. (orig.)

  15. Pediatric brain tumors

    Energy Technology Data Exchange (ETDEWEB)

    Poussaint, Tina Y. [Department of Radiology, Boston, MA (United States); Panigrahy, Ashok [Children' s Hospital of Pittsburgh of University of Pittsburgh Medical Center, Department of Radiology, Pittsburgh, PA (United States); Huisman, Thierry A.G.M. [Charlotte R. Bloomberg Children' s Center, Johns Hopkins Hospital, Division of Pediatric Radiology and Pediatric Neuroradiology, Baltimore, MD (United States)

    2015-09-15

    Among all causes of death in children from solid tumors, pediatric brain tumors are the most common. This article includes an overview of a subset of infratentorial and supratentorial tumors with a focus on tumor imaging features and molecular advances and treatments of these tumors. Key to understanding the imaging features of brain tumors is a firm grasp of other disease processes that can mimic tumor on imaging. We also review imaging features of a common subset of tumor mimics. (orig.)

  16. Brain tumors

    International Nuclear Information System (INIS)

    Magnetic Resonance Tomography (MRT) is the method of choice for the diagnostics of cerebral gliomas, but the differentiation of tumour tissue from unspecific tissue changes is limited. Positron emission tomography (PET) and Single-Photon-Emission-Computed Tomography (SPECT) may offer relevant additional information which allows for a more accurate diagnostics in unclear situations. Especially, radiolabeled amino acids offer a better delineation of cerebral gliomas which allows an improved guidance of biopsy, planning of surgery and radiation therapy. Furthermore, amino acid imaging appears to be useful to differentiate tumor recurrence from unspecific posttherapeutic tissue, to predict the prognosis especially in low grade gliomas and to monitor the metabolic response during tumor therapy. (orig.)

  17. Pediatric Brain Tumor Foundation

    Science.gov (United States)

    ... you insights into your child's treatment. LEARN MORE Brain tumors and their treatment can be deadly so ... Michigan event celebrates 25 years Read more >> Pediatric Brain Tumor Foundation 302 Ridgefield Court, Asheville, NC 28806 ...

  18. Brain and Spinal Tumors

    Science.gov (United States)

    ... Awards Enhancing Diversity Find People About NINDS NINDS Brain and Spinal Tumors Information Page Synonym(s): Spinal Cord ... en Español Additional resources from MedlinePlus What are Brain and Spinal Tumors? Tumors of the brain and ...

  19. Progressive mental deterioration after radiotherapy in adult patients with brain tumors

    International Nuclear Information System (INIS)

    We report a study on changes of mental function in twenty five adult patients with cerebral low-grade gliomas after radiotherapy. None of them had shown mental deterioration before radiotherapy nor tumor recurrence after radiotherapy. Radiation was given at a dose of 48 to 78 Gy (mean: 54.2 Gy). Patients were assigned for mental functional levels according to Karnofsky performance scale (KPS) after radiotherapy. Ten patients (40%) were normal. Seven patients (28%) showed moderate disabilities and 8 (32%) severe disabilities. The median interval time from radiotherapy to the onset of mental deterioration was 2.5 years in the moderate group and 1.6 years in the severe group. CT findings in severe group demonstrated severe brain atrophy and diffuse low density in the white matter after radiotherapy. The risk factors responsible for progressive mental deterioration after radiotherapy may be radiation site and size (whole frontal lobe), total dose (over 60 Gy) and patient age at the time of radiotherapy (over 60 yrs). (author)

  20. Intraaxial brain tumors

    International Nuclear Information System (INIS)

    The incidence of primary intracranial tumors in the United States is approximately 15,0000 new cases per year. It has been estimated that 80--85% of all intracranial tumors occur in adults; the majority are situated in the supratentorial compartment. In the pediatric population, intracranial tumors are extraordinarily common---the CNS is the second most common site of pediatric neoplasia. Excluding the first year of life and adolescence, the location of intracranial tumors in the pediatric age group is infratentorial in 60--70% of cases, of which 75% involve the cerebellum and 25% reside in the brainstem. The limitations of neuroimaging are often revealed by understanding the microscopic pathology of these lesions, just as the neuropathologist would find if he or she relied solely on gross pathology. The general correlation between pathology and imaging will be stressed in this paper. Innumerable schemes for tumor classification have been devised; unfortunately, no classification is perfect. For the purposes of this discussion, the author has modified the proposed classifications of tumors in an attempt to combine typical neuroanatomic sites with the complex divisions traditionally formed on the basis of histopathology, since it is well recognized that the clinical behavior of brain tumors can depend largely on their sites of origin

  1. Childhood Brain Tumors

    Science.gov (United States)

    ... They are among the most common types of childhood cancers. Some are benign tumors, which aren't ... can still be serious. Malignant tumors are cancerous. Childhood brain and spinal cord tumors can cause headaches ...

  2. The Mediating Role of Visuospatial Planning Skills on Adaptive Function Among Young-Adult Survivors of Childhood Brain Tumor.

    Science.gov (United States)

    King, Tricia Z; Smith, Kristen M; Ivanisevic, Mirjana

    2015-08-01

    The Boston Qualitative Scoring System (BQSS) was used as a method to examine executive skills on the Rey-Osterrieth complex figure (ROCF). Young-adult survivors of childhood brain tumor (N = 31) and a demographically-matched comparison group (N = 33) completed the ROCF copy version and Grooved Pegboard, and informants were administered the Scales of Independent Behavior-Revised (SIB-R) and Behavior Rating Inventory of Executive Function (BRIEF). Survivors had significantly lower BQSS planning and SIB-R community living skills and greater perseveration. Mediation analyses found that BQSS planning skills mediate the relationship between group and community living skills. Convergent findings of the BRIEF Planning, and discriminant findings with the BQSS Fragmentation, BRIEF Emotional Control, and Grooved Pegboard support the planning construct as the specific mediator in this model. Together, these findings highlight the role of planning skills in adaptive functions of young-adult survivors of childhood brain tumor. PMID:26055499

  3. Time course of hypothalamic-pituitary deficiency in adults receiving cranial radiotherapy for primary extrasellar brain tumors

    International Nuclear Information System (INIS)

    Background: No longitudinal data on hypothalamic-pituitary (HP) function are available in patients who had received cranial radiation therapy (CRT) for primary extrasellar brain tumors (PBT). Purpose: To investigate the effects of CRT on HP function in adults with PBT. Patients and methods: Twenty-six adults irradiated for PBT and six CRT naive controls were studied. CRT was delivered with 6 MV X-ray by a linear accelerator (2 Gy fraction schedule). Gross Tumor Volume (GTV) excluded the HP region that was contoured on the planning CT. Median dose to the HP region was 41.8 Gy (IQR: 30.7-49.8). Results: All controls maintained normal HP function. Hypopituitarism developed in 38% of CRT patients (GH deficiency 29%, ACTH 22%, TSH 14%, gonadotropin 4%, no abnormal prolactin level or diabetes insipidus). All HP failures occurred within 32 months after CRT. Conclusions: Adults undergoing CRT for PBT are at increased risk for HP dysfunction within 3 years from CRT. Endocrine surveillance is recommended also in adults patients exposed to CRT for primary brain tumors distant from HP region.

  4. Disruption of White Matter Integrity in Adult Survivors of Childhood Brain Tumors: Correlates with Long-Term Intellectual Outcomes.

    Directory of Open Access Journals (Sweden)

    Tricia Z King

    Full Text Available Although chemotherapy and radiation treatment have contributed to increased survivorship, treatment-induced brain injury has been a concern when examining long-term intellectual outcomes of survivors. Specifically, disruption of brain white matter integrity and its relationship to intellectual outcomes in adult survivors of childhood brain tumors needs to be better understood.Fifty-four participants underwent diffusion tensor imaging in addition to structural MRI and an intelligence test (IQ. Voxel-wise group comparisons of fractional anisotropy calculated from DTI data were performed using Tract Based Spatial Statistics (TBSS on 27 survivors (14 treated with radiation with and without chemotherapy and 13 treated without radiation treatment on average over 13 years since diagnosis and 27 healthy comparison participants. Whole brain white matter fractional anisotropy (FA differences were explored between each group. The relationships between IQ and FA in the regions where statistically lower FA values were found in survivors were examined, as well as the role of cumulative neurological factors.The group of survivors treated with radiation with and without chemotherapy had lower IQ relative to the group of survivors without radiation treatment and the healthy comparison group. TBSS identified white matter regions with significantly different mean fractional anisotropy between the three different groups. A lower level of white matter integrity was found in the radiation with or without chemotherapy treated group compared to the group without radiation treatment and also the healthy control group. The group without radiation treatment had a lower mean FA relative to healthy controls. The white matter disruption of the radiation with or without chemotherapy treated survivors was positively correlated with IQ and cumulative neurological factors.Lower long-term intellectual outcomes of childhood brain tumor survivors are associated with lower white

  5. Epilepsy and Brain Tumors

    Institute of Scientific and Technical Information of China (English)

    Zhi-yi Sha

    2009-01-01

    @@ Epidemiology It is estimated 61,414 new cases of primary brain tumors are expected to be diagnosed in 2009 in the U.S. The incidence statistic of 61,414 persons diagnosed per year includes both malignant (22,738) and non-malignant (38,677) brain tumors. (Data from American Brain Tumor Association). During the years 2004-2005, approximately 359,000 people in the United States were living with the diagnosis of a primary brain or central nervous system tumor. Specifically, more than 81,000 persons were living with a malignant tumor, more than 267,000 persons with a benign tumor. For every 100,000 people in the United States, approximately 131 are living following the diagnosis of a brain tumor. This represents a prevalence rate of 130.8 per 100,000 person years[1].

  6. Brain Tumor Statistics

    Science.gov (United States)

    ... About Us Our Founders Board of Directors Staff Leadership Strategic Plan Financials News Press Releases Headlines Newsletter ABTA ... About Us Our Founders Board of Directors Staff Leadership Strategic Plan Financials News Careers Brain Tumor Information Brain ...

  7. Brain tumor - children

    Science.gov (United States)

    Glioblastoma multiforme - children; Ependymoma - children; Glioma - children; Astrocytoma - children; Medulloblastoma - children; Neuroglioma - children; Oligodendroglioma - children; Meningioma - children; Cancer - brain tumor (children)

  8. Management and survival of pineoblastoma. An analysis of 34 adults from the brain tumor registry of Japan

    International Nuclear Information System (INIS)

    Pineoblastoma is a rare tumor in adults, and factors influencing survival are poorly understood. Data from the Brain Tumor Registry of Japan (BTRJ) was analyzed to examine patient, tumor, and treatment characteristics associated with increased survival in adults with pineoblastomas. All pineoblastoma cases in adults aged 16 years or older were identified in the BTRJ. Data were extracted on demographics, presentation, tumor characteristics, treatments, and outcomes. Kaplan-Meier plots, the log rank method, and p value <0.15 was used to screen variables for inclusion in a multivariate Cox regression estimating survival. In the final Cox multivariate model, all variables with p values <0.05 were considered significant predictors of survival, and all variables with p values 0.05-0.099 were considered trends. The BTRJ contained 34 adults with pineoblastomas diagnosed from 1969-1998. The patients were predominantly male (22 patients), with a median age of 35 years (range 16-66 years). Median survival from diagnosis was 25.7 months, with a median follow up of 20.5 months. Median surgical resection was 75-94%, and five of the 34 patients had gross total resection. Twenty-nine of the 34 patients received cranial irradiation therapy with a median dose of 50 Gy (range 30-70 Gy). In the final multivariate model, cranial irradiation≥40 Gy (p=0.014) and gross total resection (p=0.034) were associated with improved survival. There was a trend towards improved survival for women (p=0.099). Adult pineoblastoma patients have poor survival prognosis. Cranial irradiation therapy using at least 40 Gy and complete surgical resection are associated with improved survival. (author)

  9. Screening for Psychological Distress in Adult Primary Brain Tumor Patients and Caregivers: Considerations for Cancer Care Coordination

    OpenAIRE

    Trad, Wafa; Koh, Eng-Siew; Daher, Maysaa; Bailey, Alanah; Kastelan, Marina; Legge, Dianne; Fleet, Marcia; Simpson, Grahame K.; Hovey, Elizabeth

    2015-01-01

    Introduction This study aimed to assess psychological distress (PD) as scored by the Distress Thermometer (DT) in adult primary brain tumor patients and caregivers (CGs) in a clinic setting and ascertain if any high-risk subgroups for PD exist. Material and methods From May 2012 to August 2013, n = 96 patients and n = 32 CG underwent DT screening at diagnosis, and a differing cohort of n = 12 patients and n = 14 CGs at first recurrence. Groups were described by diagnosis (high grad...

  10. Positron Emission Tomography Using Fluorine F 18 EF5 to Find Oxygen in Tumor Cells of Patients Who Are Undergoing Surgery or Biopsy for Newly Diagnosed Brain Tumors

    Science.gov (United States)

    2013-01-15

    Adult Anaplastic Astrocytoma; Adult Anaplastic Ependymoma; Adult Anaplastic Oligodendroglioma; Adult Brain Stem Glioma; Adult Central Nervous System Germ Cell Tumor; Adult Choroid Plexus Tumor; Adult Craniopharyngioma; Adult Diffuse Astrocytoma; Adult Ependymoblastoma; Adult Ependymoma; Adult Giant Cell Glioblastoma; Adult Glioblastoma; Adult Gliosarcoma; Adult Grade I Meningioma; Adult Grade II Meningioma; Adult Grade III Meningioma; Adult Medulloblastoma; Adult Meningeal Hemangiopericytoma; Adult Mixed Glioma; Adult Myxopapillary Ependymoma; Adult Oligodendroglioma; Adult Pilocytic Astrocytoma; Adult Pineoblastoma; Adult Pineocytoma; Adult Subependymoma; Adult Supratentorial Primitive Neuroectodermal Tumor (PNET); Meningeal Melanocytoma

  11. Brain Tumor Symptoms

    Science.gov (United States)

    ... experience symptoms associated with their tumor(s) and/or treatment(s). People with brain tumors often suffer from: Headaches Seizures Sensory (touch) and motor (movement control) loss Deep venous thrombosis (DVT, or blood clot) Hearing loss Vision loss ...

  12. Pathological advances in pediatric brain tumors

    Directory of Open Access Journals (Sweden)

    Li-feng WANG

    2015-10-01

    Full Text Available Pediatric brain tumors are the most common solid tumors in children. Compared with brain tumors in adults, pediatric brain tumors have characteristic clinicopathological features and molecular mechanisms. The accurate diagnosis and classification of brain tumors in children is important for patients to have an individualized therapy and to improve the survival rate. With the further study of pediatric brain tumors, there are some new viewpoints on pilocytic astrocytoma (PA, ependymoma, medulloblastoma (MB, atypical teratoid/rhabdoid tumor (AT/RT, etc. In this article, an overview about pathological advances in the common pediatric brain tumors will be shown. DOI: 10.3969/j.issn.1672-6731.2015.10.002

  13. Extra-axial brain tumors.

    Science.gov (United States)

    Rapalino, Otto; Smirniotopoulos, James G

    2016-01-01

    Extra-axial brain tumors are the most common adult intracranial neoplasms and encompass a broad spectrum of pathologic subtypes. Meningiomas are the most common extra-axial brain tumor (approximately one-third of all intracranial neoplasms) and typically present as slowly growing dural-based masses. Benign meningiomas are very common, and may occasionally be difficult to differentiate from more aggressive subtypes (i.e., atypical or malignant varieties) or other dural-based masses with more aggressive biologic behavior (e.g., hemangiopericytoma or dural-based metastases). Many neoplasms that typically affect the brain parenchyma (intra-axial), such as gliomas, may also present with primary or secondary extra-axial involvement. This chapter provides a general and concise overview of the common types of extra-axial tumors and their typical imaging features. PMID:27432671

  14. Understanding Brain Tumors

    Science.gov (United States)

    ... Our Mission Advance Research Clinical Trial Endpoints Defeat GBM Oligo Research Fund Pediatric Initiatives Funded Research & Accomplishments ... no symptoms when their brain tumor is discovered Recurrent headaches Issues with vision Seizures Changes in personality ...

  15. Brain Tumor Risk Factors

    Science.gov (United States)

    ... for example), unusual symptoms such as headaches or short-term memory loss can be investigated with your family history in mind. Click here to view our webinars on Causes and Risk Factors of Brain Tumors. Additional information ...

  16. Hippocampal Dosimetry Predicts Neurocognitive Function Impairment After Fractionated Stereotactic Radiotherapy for Benign or Low-Grade Adult Brain Tumors

    Energy Technology Data Exchange (ETDEWEB)

    Gondi, Vinai [Department of Human Oncology, University of Wisconsin, Madison, WI (United States); Hermann, Bruce P. [Department of Neurology, University of Wisconsin, Madison, WI (United States); Mehta, Minesh P. [Department of Radiation Oncology, Northwestern University Feinberg School of Medicine, Chicago, IL (United States); Tome, Wolfgang A., E-mail: tome@humonc.wisc.edu [Department of Human Oncology, University of Wisconsin, Madison, WI (United States); Department of Medical Physics, University of Wisconsin, Madison, WI (United States); Department of Biomedical Engineering, University of Wisconsin, Madison, WI (United States)

    2013-02-01

    Purpose: To prospectively evaluate the association between hippocampal dose and long-term neurocognitive function (NCF) impairment for benign or low-grade adult brain tumors treated with fractionated stereotactic radiotherapy (FSRT). Methods and Materials: Adult patients with benign or low-grade adult brain tumors were treated with FSRT per institutional practice. No attempt was made to spare the hippocampus. NCF testing was conducted at baseline and 18 months follow-up, on a prospective clinical trial. Regression-based standardized z scores were calculated by using similar healthy control individuals evaluated at the same test-retest interval. NCF impairment was defined as a z score {<=}-1.5. After delineation of the bilateral hippocampi according to the Radiation Therapy Oncology Group contouring atlas, dose-volume histograms were generated for the left and right hippocampi and for the composite pair. Biologically equivalent doses in 2-Gy fractions (EQD{sub 2}) assuming an {alpha}/{beta} ratio of 2 Gy were computed. Fisher's exact test and binary logistic regression were used for univariate and multivariate analyses, respectively. Dose-response data were fit to a nonlinear model. Results: Of 29 patients enrolled in this trial, 18 completed both baseline and 18-month NCF testing. An EQD{sub 2} to 40% of the bilateral hippocampi >7.3 Gy was associated with impairment in Wechsler Memory Scale-III Word List (WMS-WL) delayed recall (odds ratio [OR] 19.3; p = 0.043). The association between WMS-WL delayed recall and EQD{sub 2} to 100% of the bilateral hippocampi >0.0 Gy trended to significance (OR 14.8; p = 0.068). Conclusion: EQD{sub 2} to 40% of the bilateral hippocampi greater than 7.3 Gy is associated with long-term impairment in list-learning delayed recall after FSRT for benign or low-grade adult brain tumors. Given that modern intensity-modulated radiotherapy techniques can reduce the dose to the bilateral hippocampi below this dosimetric threshold

  17. Hippocampal Dosimetry Predicts Neurocognitive Function Impairment After Fractionated Stereotactic Radiotherapy for Benign or Low-Grade Adult Brain Tumors

    International Nuclear Information System (INIS)

    Purpose: To prospectively evaluate the association between hippocampal dose and long-term neurocognitive function (NCF) impairment for benign or low-grade adult brain tumors treated with fractionated stereotactic radiotherapy (FSRT). Methods and Materials: Adult patients with benign or low-grade adult brain tumors were treated with FSRT per institutional practice. No attempt was made to spare the hippocampus. NCF testing was conducted at baseline and 18 months follow-up, on a prospective clinical trial. Regression-based standardized z scores were calculated by using similar healthy control individuals evaluated at the same test–retest interval. NCF impairment was defined as a z score ≤−1.5. After delineation of the bilateral hippocampi according to the Radiation Therapy Oncology Group contouring atlas, dose–volume histograms were generated for the left and right hippocampi and for the composite pair. Biologically equivalent doses in 2-Gy fractions (EQD2) assuming an α/β ratio of 2 Gy were computed. Fisher’s exact test and binary logistic regression were used for univariate and multivariate analyses, respectively. Dose–response data were fit to a nonlinear model. Results: Of 29 patients enrolled in this trial, 18 completed both baseline and 18-month NCF testing. An EQD2 to 40% of the bilateral hippocampi >7.3 Gy was associated with impairment in Wechsler Memory Scale-III Word List (WMS-WL) delayed recall (odds ratio [OR] 19.3; p = 0.043). The association between WMS-WL delayed recall and EQD2 to 100% of the bilateral hippocampi >0.0 Gy trended to significance (OR 14.8; p = 0.068). Conclusion: EQD2 to 40% of the bilateral hippocampi greater than 7.3 Gy is associated with long-term impairment in list-learning delayed recall after FSRT for benign or low-grade adult brain tumors. Given that modern intensity-modulated radiotherapy techniques can reduce the dose to the bilateral hippocampi below this dosimetric threshold, patients should be enrolled in

  18. What underlies the diversity of brain tumors?

    OpenAIRE

    Swartling, Fredrik J.; Hede, Sanna-Maria; Weiss, William A.

    2013-01-01

    Glioma and medulloblastoma represent the most commonly occurring malignant brain tumors in adults and in children respectively. Recent genomic and transcriptional approaches present a complex group of diseases, and delineate a number of molecular subgroups within tumors that share a common histopathology. Differences in cells of origin, regional niches, developmental timing and genetic events all contribute to this heterogeneity. In an attempt to recapitulate the diversity of brain tumors, an...

  19. Screening for psychological distress in adult primary brain tumor patients and caregivers: considerations for cancer care coordination

    Directory of Open Access Journals (Sweden)

    Wafa eTrad

    2015-09-01

    Full Text Available IntroductionThis study aimed to assess psychological distress (PD as scored by the Distress Thermometer (DT in adult primary brain tumor (PBT patients and caregivers in a clinic setting, and ascertain if any high risk sub-groups for PD exist. Material and MethodsFrom May 2012 to August 2013, n=96 patients and n=32 caregivers (CG underwent DT screening at diagnosis, and a differing cohort of n=12 patients and n=14 caregivers at first recurrence. Groups were described by diagnosis (high grade, low grade and benign, and English versus non-English speaking. Those with DT score≥4 met caseness criteria for referral to psycho-oncology services. One-way ANOVA tests were conducted to test for between group differences where appropriate.ResultsAt diagnosis and first recurrence, 37.5% and 75.0% (respectively of patients had DT scores above the cut-off for distress. At diagnosis, 78.1% of caregivers met caseness criteria for distress. All caregivers at recurrence met distress criterion. Patients with high grade glioma had significantly higher scores than those with a benign tumor. For patients at diagnosis, non-English speaking participants did not report significantly higher DT scores than English speaking participants.DiscussionPsychological distress is particularly elevated in caregivers, and in patients with high grade glioma at diagnosis. Effective PD screening, triage and referral by skilled care coordinators is vital to enable timely needs assessment, psychological support and effective intervention.

  20. Children's Brain Tumor Foundation

    Science.gov (United States)

    ... 3 families will mourn the loss of their child to a brain or spinal cord tumor. Friends, family and community will try to make sense of an untimely death and the unfulfilled promise of a life. 6 families will transition to survivorship. A mother may be too exhausted from providing constant care ...

  1. Brain tumors in children; Hirntumoren beim Kind

    Energy Technology Data Exchange (ETDEWEB)

    Harting, I.; Seitz, A. [Universitaetsklinikum Heidelberg (Germany). Abt. Neuroradiologie

    2009-06-15

    Brain tumors are common in children; in Germany approximately 400 children are diagnosed every year. In the posterior fossa, cerebellar neoplasms outnumber brainstem gliomas. In contrast to their rarity in adults, brainstem gliomas are not uncommon in children. Supratentorial tumors can be subdivided by location into neoplasms of the cerebral hemispheres, suprasellar and pineal tumors. Astrocytoma is the most common pediatric brain tumor followed by medulloblastoma, ependymoma and craniopharyngeoma. The combination of imaging morphology, tumor localisation and patient age at manifestation form the basis of the neuroradiological differential diagnosis. (orig.)

  2. Drugs Approved for Brain Tumors

    Science.gov (United States)

    ... Ask about Your Treatment Research Drugs Approved for Brain Tumors This page lists cancer drugs approved by the ... that are not listed here. Drugs Approved for Brain Tumors Afinitor (Everolimus) Afinitor Disperz (Everolimus) Avastin (Bevacizumab) Becenum ( ...

  3. Therapy of malignant brain tumors

    International Nuclear Information System (INIS)

    The tumors of the brain claim for a separate position in scientific medicine regarding biology, morphology, features of clinical manifestation, diagnostics and therapy. During the past years due to rapid progress in medical biotechnics the situation of the neuroclinician in front of brain tumors has been dramatically changed. The prerequisites for early and accurate diagnosis as well as for successful treatment also of malignant neoplasms have increased and remarkably improved. At the same time the information necessary for an appropriate pragmatic use of the available cognitive methods and therapeutic means increased along the same scale. These facts necessitate the preparation of publications in which the state of the art is presented in possible completeness, systematic order and proper dis-posability for rational management and therapeutic strategies. The primary aim of the present book is to serve these purposes. With 8 chapters, two of them are indexed for INIS, the collective of competent authors deal on the biology, pathology and immunology of malignant brain tumors of adults and of children including relevant basic and recent data of experimental research; further on the available methods of therapy: neurosurgery, radiology and chemotherapy, the fundamental principals of their efficacy and the differing models of single respective combined application, in comprehensive critical form. 111 figs

  4. Tumor Microenvironment in the Brain

    International Nuclear Information System (INIS)

    In addition to malignant cancer cells, tumors contain a variety of different stromal cells that constitute the tumor microenvironment. Some of these cell types provide crucial support for tumor growth, while others have been suggested to actually inhibit tumor progression. The composition of tumor microenvironment varies depending on the tumor site. The brain in particular consists of numerous specialized cell types such as microglia, astrocytes, and brain endothelial cells. In addition to these brain-resident cells, primary and metastatic brain tumors have also been shown to be infiltrated by different populations of bone marrow-derived cells. The role of different cell types that constitute tumor microenvironment in the progression of brain malignancies is only poorly understood. Tumor microenvironment has been shown to be a promising therapeutic target and diagnostic marker in extracranial malignancies. A better understanding of tumor microenvironment in the brain would therefore be expected to contribute to the development of improved therapies for brain tumors that are urgently required due to a poor availability of treatments for these malignancies. This review summarizes some of the known interactions between brain tumors and different stromal cells, and also discusses potential therapeutic approaches within this context

  5. Tumor Microenvironment in the Brain

    Energy Technology Data Exchange (ETDEWEB)

    Lorger, Mihaela [Leeds Institute of Molecular Medicine, University of Leeds, St. James’s University Hospital, Beckett Street, Leeds, LS9 7TF (United Kingdom)

    2012-02-22

    In addition to malignant cancer cells, tumors contain a variety of different stromal cells that constitute the tumor microenvironment. Some of these cell types provide crucial support for tumor growth, while others have been suggested to actually inhibit tumor progression. The composition of tumor microenvironment varies depending on the tumor site. The brain in particular consists of numerous specialized cell types such as microglia, astrocytes, and brain endothelial cells. In addition to these brain-resident cells, primary and metastatic brain tumors have also been shown to be infiltrated by different populations of bone marrow-derived cells. The role of different cell types that constitute tumor microenvironment in the progression of brain malignancies is only poorly understood. Tumor microenvironment has been shown to be a promising therapeutic target and diagnostic marker in extracranial malignancies. A better understanding of tumor microenvironment in the brain would therefore be expected to contribute to the development of improved therapies for brain tumors that are urgently required due to a poor availability of treatments for these malignancies. This review summarizes some of the known interactions between brain tumors and different stromal cells, and also discusses potential therapeutic approaches within this context.

  6. NANOROBOTS IN BRAIN TUMOR

    Directory of Open Access Journals (Sweden)

    Sayyed Tarannum, Garje Dattatray H

    2011-02-01

    Full Text Available Nanomedicine is the process of diagnosing, treating, and preventing disease and traumatic injury, of relieving pain, and of preserving and improving human health, using molecular tools and molecular knowledge of the human body. In the relatively near term, nanomedicine can address many important medical problems by using nanoscale-structured materials and simple nanodevices that can be manufactured today, including the interaction of nanostructured materials with biological systems. The authors predict that technology-assisted medicine and robotics in particular, will have a significant impact over the next few decades. Robots will augment the surgeon’s motor performance, diagnosis capability, and senses with haptics (feel, augmented reality (sight, and ultrasound (sound. Robotic devices have been used in cardiac surgery, urology, fetal surgery, pediatrics, neurosurgery, orthopedics, and many other medical disciplines. In this article, we present the Nanorobot drug delivery to brain tumor, paying special attention to the transformation trends of organizations, and the integration of robots in brain tumor and underscoring potential repercussions which may deserve more attention and further research.

  7. Imaging of brain tumors

    International Nuclear Information System (INIS)

    The contents are diagnostic approaches, general features of tumors -hydrocephalus, edema, attenuation and/or intensity value, hemorrhage, fat, contrast enhancement, intra-axial supratentorial tumors - tumors of glial origin, oligodendrogliomas, ependymomas, subependymomas, subependymal giant cell astrocytomas, choroid plexus papilloma; midline tumors - colloid cysts, craniopharyngiomas; pineal region tumors and miscellaneous tumors i.e. primary intracerebral lymphoma, primitive neuroectodermal tumors, hemangioblastomas; extraaxial tumors - meningiomas; nerve sheath tumors -schwannomas, epidermoids, dermoids, lipomas, arachnoid cysts; metastatic tumors (8 refs.)

  8. Living with a Brain Tumor

    Science.gov (United States)

    ... when you have been diagnosed with a brain tumor diagnosis. Dealing with changes to your appearance – such as losing your hair or losing weight is difficult for most of us. Keep in mind that your life is not so much ... with a brain tumor may mean rethinking your work and professional goals, ...

  9. Brain Tumor Epidemiology Consortium (BTEC)

    Science.gov (United States)

    The Brain Tumor Epidemiology Consortium is an open scientific forum organized to foster the development of multi-center, international and inter-disciplinary collaborations that will lead to a better understanding of the etiology, outcomes, and prevention of brain tumors.

  10. Study Design for a Case Control Investigation of Cellular Telephones and Other Risk Factors for Brain Tumors in Adults

    International Nuclear Information System (INIS)

    The aetiology of brain tumours is poorly understood. Due, in part, to public concern about a postulated relationship between the use of cellular telephones or other increasingly prevalent environmental exposures and the incidence of brain cancer in adults, the National Cancer Institute is collaborating with three US hospitals in a comprehensive case control study of malignant and benign brain tumours. Factors under consideration include use of cellular phones and other wireless communication devices, workplace exposures to chemical agents and electromagnetic fields, dietary factors, family history of tumours, genetic determinants of susceptibility, home appliance use, reproductive history and hormonal exposures, viruses, medical and dental exposure to ionising radiation, and other aspects of medical history. Approximately 800 newly diagnosed brain tumour cases and 800 controls were enrolled at hospitals in Boston, Phoenix and Pittsburgh from 1994 to 1998. Cases include all adults (age ≥ 18 y) newly diagnosed with a histologically confirmed intracranial glioma, histologically confirmed intracranial meningioma or acoustic neuroma. Controls are patients admitted to the same hospitals as the cases, and treated for any of a variety of non-malignant conditions. Key features of the study include its large size, the emphasis on rapid ascertainment of incident cases and interview of study subjects rather than surrogate respondents, the use of detailed, job-specific questions developed by industrial hygienists to ascertain occupational exposures, and the storage of blood samples for future evaluation of inherited susceptibility, biomarkers of exposure and gene environment interactions. (author)

  11. Study Design for a Case Control Investigation of Cellular Telephones and Other Risk Factors for Brain Tumors in Adults

    Energy Technology Data Exchange (ETDEWEB)

    Inskip, P.D.; Hatch, E.E.; Stewart, P.A.; Heineman, E.F.; Ziegler, R.G.; Dosemeci, M.; Parry, D.; Rothman, N.; Boice, J.D. Jr.; Wilcosky, T.C.; Watson, D.J.; Shapiro, W.R.; Selker, R.G.; Fine, H.A.; Black, P. McL.; Loeffler, J.S.; Linet, M.S

    1999-07-01

    The aetiology of brain tumours is poorly understood. Due, in part, to public concern about a postulated relationship between the use of cellular telephones or other increasingly prevalent environmental exposures and the incidence of brain cancer in adults, the National Cancer Institute is collaborating with three US hospitals in a comprehensive case control study of malignant and benign brain tumours. Factors under consideration include use of cellular phones and other wireless communication devices, workplace exposures to chemical agents and electromagnetic fields, dietary factors, family history of tumours, genetic determinants of susceptibility, home appliance use, reproductive history and hormonal exposures, viruses, medical and dental exposure to ionising radiation, and other aspects of medical history. Approximately 800 newly diagnosed brain tumour cases and 800 controls were enrolled at hospitals in Boston, Phoenix and Pittsburgh from 1994 to 1998. Cases include all adults (age {>=} 18 y) newly diagnosed with a histologically confirmed intracranial glioma, histologically confirmed intracranial meningioma or acoustic neuroma. Controls are patients admitted to the same hospitals as the cases, and treated for any of a variety of non-malignant conditions. Key features of the study include its large size, the emphasis on rapid ascertainment of incident cases and interview of study subjects rather than surrogate respondents, the use of detailed, job-specific questions developed by industrial hygienists to ascertain occupational exposures, and the storage of blood samples for future evaluation of inherited susceptibility, biomarkers of exposure and gene environment interactions. (author)

  12. Treatment of Pediatric Brain Tumors

    OpenAIRE

    Karajannis, Matthias; Allen, Jeffrey C.; Newcomb, Elizabeth W.

    2008-01-01

    Over the past decades considerable advances have been made in neurosurgery, radiotherapy and chemotherapy resulting in improved survival and cure rates for children with brain tumors. Here we review four of the most common subtypes of pediatric brain tumors, low-grade and high-grade astrocytomas, medulloblastomas and ependymomas, highlighting their molecular features regarding their tumor biology and promising potential therapeutic targets that may hold promise for finding new “molecularly ta...

  13. Negative brain scintigrams in brain tumors

    International Nuclear Information System (INIS)

    With 53 histologically verified and 2 histologically not identified brain tumors, that showed a negative scintigram, it was tried to find reasons for the wrong and negative dropout of these scintigrams. The electroencephalograms and angiograms, that were made simultaneously were taken into consideration with respect to their propositional capability and were compared with the scintigram findings. For the formation of the negative brain scintigrams there could be found no unique cause or causal constellation. The scintigraphic tumor representation is likely based on a complex process. Therefore the reasons for the negativity of the brain scintigrams can be a manifold of causes. An important role plays the vascularisation of the tumor, but not in a sole way. As well the tumor localisation gains some importance; especially in the temporal lobe or in the deeper structures situated tumors can be negative in the scintigram. To hold down the rate of wrong-negative quote in the case of intracranial tumor search, one is advised to continue with an further exposure after 2 to 4 hours besides the usual exposures, unless a sequential scintigraphy was made from the beginning. (orig./MG)

  14. Monitoring Radiographic Brain Tumor Progression

    Directory of Open Access Journals (Sweden)

    John H. Sampson

    2011-03-01

    Full Text Available Determining radiographic progression in primary malignant brain tumors has posed a significant challenge to the neuroncology community. Glioblastoma multiforme (GBM, WHO Grade IV through its inherent heterogeneous enhancement, growth patterns, and irregular nature has been difficult to assess for progression. Our ability to detect tumor progression radiographically remains inadequate. Despite the advanced imaging techniques, detecting tumor progression continues to be a clinical challenge. Here we review the different criteria used to detect tumor progression, and highlight the inherent challenges with detection of progression.

  15. Brain tumors; Hirntumoren

    Energy Technology Data Exchange (ETDEWEB)

    Langen, K.J. [Forschungszentrum Juelich (Germany). Inst. fuer Neurowissenschaften und Biophysik; Stoffels, G. [Duesseldorf Univ. (Germany). C. und O. Vogt Inst. fuer Hirnforschung

    2007-09-15

    Magnetic Resonance Tomography (MRT) is the method of choice for the diagnostics of cerebral gliomas, but the differentiation of tumour tissue from unspecific tissue changes is limited. Positron emission tomography (PET) and Single-Photon-Emission-Computed Tomography (SPECT) may offer relevant additional information which allows for a more accurate diagnostics in unclear situations. Especially, radiolabeled amino acids offer a better delineation of cerebral gliomas which allows an improved guidance of biopsy, planning of surgery and radiation therapy. Furthermore, amino acid imaging appears to be useful to differentiate tumor recurrence from unspecific posttherapeutic tissue, to predict the prognosis especially in low grade gliomas and to monitor the metabolic response during tumor therapy. (orig.)

  16. Brain tumors imaging

    International Nuclear Information System (INIS)

    At the beginning of the illness, we should use an anatomical technique for brain exploration (CT scan or MRI) to see the boundaries of the lesion before the diagnostic biopsy. After treatment (chemotherapy and/or radiotherapy and/or surgery), the evolution of the lesion can be observed with functional techniques (SPECT Thallium or MIBI or PET scan). (author)

  17. A North American brain tumor consortium phase II study of poly-ICLC for adult patients with recurrent anaplastic gliomas.

    Science.gov (United States)

    Butowski, Nicholas; Lamborn, Kathleen R; Lee, Bee L; Prados, Michael D; Cloughesy, Timothy; DeAngelis, Lisa M; Abrey, Lauren; Fink, Karen; Lieberman, Frank; Mehta, Minesh; Ian Robins, H; Junck, Larry; Salazar, Andres M; Chang, Susan M

    2009-01-01

    This phase II study was designed to determine the objective response rate and 6-month progression free survival of adult patients with recurrent supratentorial anaplastic glioma when treated with the immune modulator, polyinosinic-polycytidylic acid stabilized with polylysine and carboxymethylcellulose (poly-ICLC). This was an open-labeled, single arm phase II study. Patients were treated with poly-ICLC alone. Patients may have had treatment for no more than two prior relapses. Treatment with poly-ICLC continued until tumor progression. Fifty five patients were enrolled in the study. Ten were ineligible after central review of pathology. Eleven percent of patients (5 of 45) had a radiographic response. Time to progression was known for 39 patients and 6 remain on treatment. The estimated 6-month progression free survival was 24%. The median survival time was 43 weeks. Poly-ICLC was well tolerated, but there was no improvement in 6-month progression free survival compared to historical database nor was there an encouraging objective radiographic response rate. Based on this study, poly-ICLC does not improve 6moPFS in patients with recurrent anaplastic gliomas but may be worth further study in combination with agents such as temozolomide. PMID:18850068

  18. More Complete Removal of Malignant Brain Tumors by Fluorescence-Guided Surgery

    Science.gov (United States)

    2016-05-13

    Benign Neoplasms, Brain; Brain Cancer; Brain Neoplasms, Benign; Brain Neoplasms, Malignant; Brain Tumor, Primary; Brain Tumor, Recurrent; Brain Tumors; Intracranial Neoplasms; Neoplasms, Brain; Neoplasms, Intracranial; Primary Brain Neoplasms; Primary Malignant Brain Neoplasms; Primary Malignant Brain Tumors; Gliomas; Glioblastoma

  19. Brain angiogenesis: Mechanism and Therapeutic Intervention in Brain Tumors

    OpenAIRE

    Kim, Woo-Young; Lee, Ho-Young

    2009-01-01

    Formation of new blood vessels is required for growth and metastasis of all solid tumors. New blood vessels are established in tumors mainly through angiogenesis. Brain tumors in particular are highly angiogenic. Therefore, interventions designed to prevent angiogenesis may be effective at controlling brain tumors. Indeed, many recent findings from preclinical and clinical studies of antiangiogenic therapy for brain tumors showed that it is a promising approach to managing this deadly disease...

  20. Evaluating brain tumors with SPECT

    International Nuclear Information System (INIS)

    The evaluation of cerebral blood flow and metabolism using functional imaging in combination with morphological imaging by CT and MRI has recently been attracting attention in neuroradiological diagnosis of brain tumor. This report assesses the clinical usefulness of SPECT for brain tumor. Because 201TlCl SPECT is useful in determining the degree of brain tumor malignancy and clearly reflects tumor metabolism after radiochemotherapy, it is capable of determining therapeutic outcomes earlier than MRI. To increase the diagnostic performance of 201TlCl SPECT, time-course accumulation dynamics were investigated using early and delayed imaging. Three-dimensional SPECT imaging using N-isopropyl-p[123I]-iodoamphetamine (123I-IMP) is a new diagnostic method that not only visually evaluates the lesion but also quantifies the expansion volume of the hypoperfusion area associated with the lesion. Development of functional imaging may lead to a new therapeutic method by providing clinical images that more faithfully reproduce the pathological state. (author)

  1. Fiber tracking for brain tumor

    International Nuclear Information System (INIS)

    The purpose of this study was to validate an innovative scanning method for patients diagnosed with brain tumors. Using a 1.5 Tesla whole body magnetic resonance (MR) imager, 23 patients with brain tumors were scanned. The recorded data points of the diffusion-tensor imaging (DTI) sequences were 128 x 37 with the parallel imaging technique. The parallel imaging technique was equivalent to a true resolution of 128 x 74. The scan parameters were repetition time (TR)=6000, echo time (TE)=88, 6 averaging with a b-value of 800 s/mm2. The total scan time for DTI was 4 minutes and 24 seconds. DTI scans and subsequent fiber tracking were successfully applied in all cases. All fiber tracts on the contralesional side were visualized in the expected locations. Fiber tracts on the lesional side had varying degrees of displacement, disruption, or a combination of displacement and disruption due to the tumor. Tract disruption resulted from direct tumor involvement, compression upon the tract, and vasogenic edema surrounding the tumor. This DTI method using a parallel imaging technique allows for clinically feasible fiber tracking that can be incorporated into a routine MR examination. (author)

  2. Brain and Spinal Tumors: Hope through Research

    Science.gov (United States)

    ... and worsen as the tumor grows. The most obvious sign of a brain tumor in infants is ... blood flow, antidepressants to treat anxiety or ease depression that might occur following a tumor diagnosis, and ...

  3. Caring for the brain tumor patient: Family caregiver burden and unmet needs

    OpenAIRE

    Schubart, Jane R.; Kinzie, Mable B.; Farace, Elana

    2008-01-01

    The rapid onset and progression of a brain tumor, cognitive and behavioral changes, and uncertainty surrounding prognosis are issues well known to health practitioners in neuro-oncology. We studied the specific challenges that family caregivers face when caring for patients experiencing the significant neurocognitive and neurobehavioral disorders associated with brain tumors. We selected 25 family caregivers of adult brain tumor patients to represent the brain tumor illness trajectory (crisis...

  4. Treatment of Newly Diagnosed and Recurrent Childhood Brain Tumors

    Science.gov (United States)

    ... Treatment of Newly Diagnosed and Recurrent Childhood Brain Tumors The brain is made of different kinds of cells . Childhood ... following: What You Need To Know About™ Brain Tumors Pediatric Brain Tumor Consortium (PBTC) For more childhood cancer information ...

  5. Neuropsychological status in children and young adults with benign and low-grade brain tumors treated prospectively with focal stereotactic conformal radiotherapy

    International Nuclear Information System (INIS)

    Purpose: To present prospective neuropsychological data at baseline and follow-up in children and young adults with benign and low-grade gliomas treated with focal stereotactic conformal radiotherapy (SCRT). Methods and Materials: A total of 22 patients (age 4-25 years) with residual/progressive benign and low-grade brain tumors considered suitable for SCRT underwent detailed and in-depth neuropsychological and cognitive testing at baseline before SCRT. The test battery included measurement of age-adjusted intelligence quotients (IQs) and cognitive parameters of visual, spatial, visuomotor, and attention concentrations. Anxiety was measured using the State-Trait Anxiety Inventory for Children and Hamilton Anxiety Rating Scale for patients >16 years old. Patients were treated with high-precision conformal radiotherapy under stereotactic guidance to a dose of 54 Gy in 30 fractions. All neuropsychological assessments were repeated at 6 and 24 months after SCRT completion and compared with the baseline values. Results: The baseline mean full-scale IQ before starting RT for patients 16 years, the corresponding value was 72 (range, 64-129). Of 20 evaluable patients, 14 (70%) had less than average IQs at baseline, even before starting radiotherapy. The verbal IQ, performance IQ, and full-scale IQ, as well as other cognitive scores, did not change significantly at the 6- and 24-month follow-up assessments for all patients. The memory quotient in older children and young adults was maintained at 6 and 24 months after SCRT, with a mean value of 93 and 100, respectively, compared with a mean baseline value of 81 before RT. The mean anxiety score in children measured by the C1 and C2 components of the State-Trait Anxiety Inventory for Children (STAIC) was 48 and 40, respectively, which improved significantly to mean values of 30 and 26, respectively, at the 24-month follow-up assessment (p = 0.005). The mean depression score in patients >16 years old was 23 at baseline and had

  6. Histamine in brain development and tumors.

    Science.gov (United States)

    Panula, P; Lintunen, M; Karlstedt, K

    2000-02-01

    Histamine is found in developing mammalian brain in both neurons and mast cells. Under normal conditions, histamine H1 and H2 receptors are found in neural, glial and endothelial cells, and H3 receptors at least on neurons. Experimental brain tumors display both H1 and H2 receptors, and histamine increases permeability in the tumors and in the neighboring areas. Many studies have addressed histaminergic signalling mechanisms in cell lines originating from brain tumors. However, the role of histamine in normal development of brain structures, proliferation and differentiation of neurons and glial cells, and growth of malignant tumors in situ is still poorly understood. PMID:10888266

  7. Dysembryoplastic neuroepithelial tumor: A rare brain tumor not to be misdiagnosed

    OpenAIRE

    Sukheeja, Deepti; Mehta, Jayanti

    2016-01-01

    Dysembryoplastic neuroepithelial tumor (DNET) is a recently described, morphologically unique, and surgically curable low-grade brain tumor which is included in the latest WHO classification as neuronal and mixed neuronal-glial tumor. It is usually seen in children and young adults. The importance of this particular entity is that it is a surgically curable neuroepithelial neoplasm. When recognized, the need for adjuvant radiotherapy and chemotherapy is obviated. We hereby present a case repo...

  8. Cancer stem cells and brain tumors

    OpenAIRE

    Pérez Castillo, Ana; Aguilar Morante, Diana; Morales-García, José A.; Dorado, Jorge

    2008-01-01

    Besides the role of normal stem cells in organogenesis, cancer stem cells are thought to be crucial for tumorigenesis. Most current research on human tumors is focused on molecular and cellular analysis of the bulk tumor mass. However, evidence in leukemia and, more recently, in solid tumors suggests that the tumor cell population is heterogeneous. In recent years, several groups have described the existence of a cancer stem cell population in different brain tumors. These neural cancer stem ...

  9. Radiosensitized treatment of malignant brain tumors

    Science.gov (United States)

    Bloznelyte-Plesniene, Laima

    2003-12-01

    Around 12,000 deaths from glioblastoma occurs within the European Community annually. At present, the best available treatment for malignant brain tumors results in a median survival of patients of 15 months despite surgery, radiotherapy, and chemotherapy. The purpose of this paper is to review our results of radiosensitized treatment of malignant brain tumors.

  10. Learning Profiles of Survivors of Pediatric Brain Tumors

    Science.gov (United States)

    Barkon, Beverly

    2009-01-01

    By 2010 it is predicted that one in 900 adults will be survivors of some form of pediatric cancer. The numbers are somewhat lower for survivors of brain tumors, though their numbers are increasing. Schools mistakenly believe that these children easily fit pre-existing categories of disability. Though these students share some of the…

  11. Recent advances in imaging of brain tumors

    OpenAIRE

    D A Sanghvi

    2009-01-01

    The recent advances in brain tumor imaging offer unique anatomical as well as pathophysiological information that provides new insights on brain tumors, directed at facilitating therapeutic decisions and providing information regarding prognosis. This information is presently utilized in clinical practice for initial diagnosis and noninvasive, preoperative grading of tumors, biopsy planning, surgery, and radiation portal planning, as well as, prognostication. The newer advances described in t...

  12. BNCT for malignant brain tumors in children

    International Nuclear Information System (INIS)

    BSH-based intra-operative BNCT as an initial treatment underwent in 4 children with malignant brain tumors since 1998. There were 2 glioblastomas, one primitive neuroectodermal tumor (PNET) and one anaplastic ependymoma patient. They included two children under 3-year-old. All GBM patients were died of CSF dissemination without tumor regrowth in the primary site. Another PNET and anaplastic ependymoma patients are still alive without tumor recurrence. We can consider BNCT is optimal treatment modality for malignant brain tumor in children. (author)

  13. Brain tumors in patients primarly treated psychiatrically

    Directory of Open Access Journals (Sweden)

    Ignjatović-Ristić Dragana

    2011-01-01

    Full Text Available Introduction. Psychiatric symptoms are not rare manifestations of brain tumors. Brain tumors presented by symptoms of raised intracranial pressure, focal neurological signs, or convulsions are usually first seen by the neurologist or less frequently by the neurosurgeon in routine diagnostic procedures. On the other hand, when psychiatric symptoms are the first manifestation in “neurologically silent” brain tumors, the patients are sent to the psychiatrist for the treatment of psychiatric symptoms and brain tumors are left misdiagnosed for a long period of time. Case Report. We presented three patients with the diagnosed brain tumor where psychiatrist had been the first specialist to be consulted. In all three cases neurological examination was generally unremarkable with no focal signs or features of raised intracranial pressure. CT scan demonstrated right insular tumor in a female patient with obsessive-compulsive disorder (OCD; right parietal temporal tumor in a patient with delusions and depression and left frontal tumor in a patient with history of alcohol dependency. Conclusion. Psychiatric symptoms/disorders in patients with brain tumors are not specific enough and can have the same clinical presentation as the genuine psychiatric disorder. Therefore, we emphasize the consideration of neuroimaging in patients with abrupt beginning of psychiatric symptoms, in those with a change in mental status, or when headaches suddenly appear or in cases of treatment resistant psychiatric disorders regardless the lack of neurological symptoms.

  14. Wavelet Based Image Fusion for Detection of Brain Tumor

    Directory of Open Access Journals (Sweden)

    CYN Dwith

    2013-01-01

    Full Text Available Brain tumor, is one of the major causes for the increase in mortality among children and adults. Detecting the regions of brain is the major challenge in tumor detection. In the field of medical image processing, multi sensor images are widely being used as potential sources to detect brain tumor. In this paper, a wavelet based image fusion algorithm is applied on the Magnetic Resonance (MR images and Computed Tomography (CT images which are used as primary sources to extract the redundant and complementary information in order to enhance the tumor detection in the resultant fused image. The main features taken into account for detection of brain tumor are location of tumor and size of the tumor, which is further optimized through fusion of images using various wavelet transforms parameters. We discuss and enforce the principle of evaluating and comparing the performance of the algorithm applied to the images with respect to various wavelets type used for the wavelet analysis. The performance efficiency of the algorithm is evaluated on the basis of PSNR values. The obtained results are compared on the basis of PSNR with gradient vector field and big bang optimization. The algorithms are analyzed in terms of performance with respect to accuracy in estimation of tumor region and computational efficiency of the algorithms.

  15. Brain tumors: Special characters for research and banking

    OpenAIRE

    Majid Kheirollahi; Sepideh Dashti; Zahra Khalaj; Fatemeh Nazemroaia; Parvin Mahzouni

    2015-01-01

    A brain tumor is an intracranial neoplasm within the brain or in the central spinal canal. Primary malignant brain tumors affect about 200,000 people worldwide every year. Brain cells have special characters. Due to the specific properties of brain tumors, including epidemiology, growth, and division, investigation of brain tumors and the interpretation of results is not simple. Research to identify the genetic alterations of human tumors improves our knowledge of tumor biology, genetic inter...

  16. Stages of Adult Brain Tumors

    Science.gov (United States)

    ... Unknown Primary Treatment Colon Cancer Treatment Leukemia Home Page Melanoma Treatment Nasopharyngeal Cancer Treatment Non-Small Cell Lung Cancer Treatment Renal Cell Cancer Treatment Small Cell ...

  17. A Case Report of Brain Stem Tumor

    Directory of Open Access Journals (Sweden)

    R Nazari

    2004-07-01

    Full Text Available Background: Brain and spinal cord tumors are the most frequent neoplasms after leukemia in children. Brain stem glioma is responsible for 10-20% of brain tumors in this group and often found in pons presenting with cerebellar signs, cranial nerve palsies, pyramidal signs and eventually increased intracranial pressure Case Report: In this article we reported an 11 year old girl affected with brain stem tumor with signs of headache, dizziness, vomiting and ataxia. Strabismus due to palsy of sixth cranial nerve, and dysarthria was observed. Conclusion: Children complaining of vomiting, headache and dizziness for a long time must be assessed for brain tumor in posterior fossa that sometimes may lead to increased intracranial pressure. An exact neurological examination can be worth guide to diagnosis.

  18. Pediatric brain tumors of neuroepithelial tissue

    International Nuclear Information System (INIS)

    Tumors of neuroepithelial tissue represent the largest group of pediatric brain tumors by far and has therefore been divided into several discrete tumor subtypes each corresponding to a specific component of the neuropil. The neuropil contains several subtypes of glial cells, including astrocytes, oligodendrocytes, ependymal cells and modified ependymal cells that form the choroid plexus. This review discusses the imaging aspects of the most common pediatric tumors of neuroepithelial tissue. (orig.)

  19. Asymptomatic brain tumor detected at brain check-up

    Energy Technology Data Exchange (ETDEWEB)

    Onizuka, Masanari; Suyama, Kazuhiko; Shibayama, Akira; Hiura, Tsuyoshi; Horie, Nobutaka; Miyazaki, Hisaya [Sankoukai Miyazaki Hospital, Isahaya, Nagasaki (Japan)

    2001-09-01

    Brain check-up was performed in 4000 healthy subjects who underwent medical and radiological examinations for possible brain diseases in our hospital from April 1996 to March 2000. Magnetic resonance imaging revealed 11 brain tumors which consisted of six meningiomas, three pituitary adenomas, one astrocytoma, and one epidermoid cyst. The detection rate of incidental brain tumor in our hospital was 0.3%. Nine patients underwent surgery, with one case of morbidity due to postoperative transient oculomotor nerve paresis. The widespread use of brain check-up may increasingly detect asymptomatic brain tumors. Surgical indications for such lesions remain unclear, and the strategy for treatment should be determined with consideration of the patient's wishes. (author)

  20. Brain tumor stem cell dancing

    Directory of Open Access Journals (Sweden)

    Giuseppina Bozzuto

    2014-09-01

    Full Text Available Background. Issues regarding cancer stem cell (CSC movement are important in neurosphere biology as cell-cell or cell-environment interactions may have significant impacts on CSC differentiation and contribute to the heterogeneity of the neurosphere. Aims. Despite the growing body of literature data on the biology of brain tumor stem cells, floating CSC-derived neurospheres have been scarcely characterized from a morphological and ultrastructural point of view. Results. Here we report a morphological and ultrastructural characterization performed by live imaging and scanning electron microscopy. Glioblastoma multiforme (GBM CSC-derived neurospheres are heterogeneous and are constituted by cells, morphologically different, capable of forming highly dynamic structures. These dynamic structures are regulated by not serendipitous cell-cell interactions, and they synchronously pulsate following a cyclic course made of "fast" and "slow" alternate phases. Autocrine/paracrine non canonical Wnt signalling appears to be correlated with the association status of neurospheres. Conclusions. The results obtained suggest that GBM CSCs can behave both as independents cells and as "social" cells, highly interactive with other members of its species, giving rise to a sort of "multicellular organism".

  1. Computed tomography of virally induced monkey brain tumors

    International Nuclear Information System (INIS)

    Thirty-five (35) Japanese monkeys (Macaca fuscata) were inoculated intracerebrally with chickembryo fibroblasts which were producing the Schmidt-Ruppin strain of the Rous sarcoma virus. These were then studied by means of computed tomography (CT) to detect brain tumors. Tumors were induced in 54.3% (19/35), with an average latency of 32.6 (15 - 43) days before a CT image appeared. The brains were sectioned into 5-mm slices, coplanar with the CT images. Various CT features, such as necrosis, hemorrhage, and peritumoral edema, correlated with the pathological findings. Contrast-enhanced CT detected tumors greater than 4-6 mm in diameter, and it was accurate within 2 mm in determining. Following brain tumors by CT in 6 monkeys revealed changes in the tumor size. One monkey was treated by differential hypothermia following craniectomy; the therapeutic effect and the tumor size, as subsequently evaluated for six months, revealed tumor regression during the initial 5 weeks, followed by stabilization and late (6 months) progression. The large brain size, 90-110 grams in adults, and the availability of these monkeys make them an excellent model system for neurological, neurosurgical, CT, and multimodality therapeutic experimentation. (author)

  2. Cognitive deficits in patients with brain tumor

    Institute of Scientific and Technical Information of China (English)

    SHEN Chao; BAO Wei-min; YANG Bo-jie; XIE Rong; CAO Xiao-yun; LUAN Shi-hai; MAO Ying

    2012-01-01

    Objective To discuss the present status and progress of clinical research on the cognitive effects caused by different types of brain tumors and common treatments.Data sources The data used in this review were mainly from PubMed articles published in English from 1990 to Febuary 2012.Research terms were "cognitive deficits" or "cognitive dysfunction".Study selection Articals including any information about brain tumor related cognitive deficits were selected.Results It is widely accepted that brain tumors and related treatments can impair cognitive function across manydomains,and can impact on patients' quality of life.Tumor localization,lateralization,surgery,drugs,radiotherapy and chemotherapy are all thought to be important factors in this process.However,some conflicting findings regarding brain tumor-related cognitive deficits have been reported.It can be difficult to determine the mechanism of these treatments,such as chemotherapy,antibiotics,antiepileptics,and steroids.Future research is needed to clarify these potential treatment effects.Conclusions Cognitive function is important for patients with brain tumor.Much more focus has been paid on this field.It should be regarded as an important prognostic index for the patients with brain tumor,and neuropsychological tests should be used in regular examinations.

  3. Brain Tumor Epidemiology Consortium Membership Information

    Science.gov (United States)

    BTEC welcomes new members interested in the development of multi-center, inter-disciplinary collaborations that will lead to a better understanding of the etiology, outcomes and prevention of all brain tumors.

  4. Air pollution from traffic and risk for brain tumors

    DEFF Research Database (Denmark)

    Poulsen, Aslak Harbo; Sørensen, Mette; Andersen, Zorana J;

    2016-01-01

    residential nitrogen oxides (NO x ) concentrations since 1971 with a validated dispersion model. Categorical and linear odds ratios (OR) and confidence intervals (CI) were calculated with conditional logistic regression models. RESULTS: The highest risk estimates for any brain cancer were observed among......PURPOSE: Air pollution is an established lung carcinogen, and there is increasing evidence that air pollution also negatively affects the brain. We have previously reported an association between air pollution and risk of brain tumors in a cohort study based on only 95 cases. We set out to...... replicate that finding in a large nationwide case-control study. METHODS: We identified all 4,183 adult brain tumor cases in Denmark in the years 2000-2009 and 8,018 risk set sampled population controls matched on gender and year of birth. We extracted residential address histories and estimated mean...

  5. Similarity on neural stem cells and brain tumor stem cells in transgenic brain tumor mouse models

    OpenAIRE

    Qiao, Guanqun; Li, Qingquan; Peng, Gang; Ma, Jun; Fan, Hongwei; Li, Yingbin

    2013-01-01

    Although it is believed that glioma is derived from brain tumor stem cells, the source and molecular signal pathways of these cells are still unclear. In this study, we used stable doxycycline-inducible transgenic mouse brain tumor models (c-myc+/SV40Tag+/Tet-on+) to explore the malignant trans-formation potential of neural stem cells by observing the differences of neural stem cells and brain tumor stem cells in the tumor models. Results showed that chromosome instability occurred in brain t...

  6. Permeability imaging in pediatric brain tumors

    OpenAIRE

    Lam, Sandi; Lin, Yimo; Warnke, Peter C.

    2014-01-01

    While traditional computed tomography (CT) and magnetic resonance (MR) imaging illustrate the structural morphology of brain pathology, newer, dynamic imaging techniques are able to show the movement of contrast throughout the brain parenchyma and across the blood-brain barrier (BBB). These data, in combination with pharmacokinetic models, can be used to investigate BBB permeability, which has wide-ranging applications in the diagnosis and management of central nervous system (CNS) tumors in ...

  7. Structural plasticity of the adult brain

    OpenAIRE

    Gage, Fred H.

    2004-01-01

    The adult brain has long been considered stable and unchanging, except for the inevitable decline that occurs with aqinq. This view is now being challenged with clear evidence that structural changes occur in the brain throughout life, including the generation of new neurons and other brain cells, and connections between and among neurons. What is as remarkable is that the changes that occur in the adult brain are influenced by the behaviors an individual engages in, as well as the environmen...

  8. Similarity on neural stem cells and brain tumor stem cells in transgenic brain tumor mouse models

    Institute of Scientific and Technical Information of China (English)

    Guanqun Qiao; Qingquan Li; Gang Peng; Jun Ma; Hongwei Fan; Yingbin Li

    2013-01-01

    Although it is believed that glioma is derived from brain tumor stem cells, the source and molecular signal pathways of these cells are stil unclear. In this study, we used stable doxycycline-inducible transgenic mouse brain tumor models (c-myc+/SV40Tag+/Tet-on+) to explore the malignant trans-formation potential of neural stem cells by observing the differences of neural stem cel s and brain tumor stem cells in the tumor models. Results showed that chromosome instability occurred in brain tumor stem cells. The numbers of cytolysosomes and autophagosomes in brain tumor stem cells and induced neural stem cel s were lower and the proliferative activity was obviously stronger than that in normal neural stem cells. Normal neural stem cells could differentiate into glial fibril ary acidic protein-positive and microtubule associated protein-2-positive cells, which were also negative for nestin. However, glial fibril ary acidic protein/nestin, microtubule associated protein-2/nestin, and glial fibril ary acidic protein/microtubule associated protein-2 double-positive cells were found in induced neural stem cells and brain tumor stem cel s. Results indicate that induced neural stem cells are similar to brain tumor stem cells, and are possibly the source of brain tumor stem cells.

  9. Fluorescent Nanoparticle Uptake for Brain Tumor Visualization

    Directory of Open Access Journals (Sweden)

    Rachel Tréhin

    2006-04-01

    Full Text Available Accurate delineation of tumor margins is vital to the successful surgical resection of brain tumors. We have previously developed a multimodal nanoparticle CLIO-Cy5.5, which is detectable by both magnetic resonance imaging and fluorescence, to assist in intraoperatively visualizing tumor boundaries. Here we examined the accuracy of tumor margin determination of orthotopic tumors implanted in hosts with differing immune responses to the tumor. Using a nonuser-based signal intensity method applied to fluorescent micrographs of 9L gliosarcoma green fluorescent protein (GFP tumors, mean overestimations of 2 and 24 µm were obtained using Cy5.5 fluorescence, compared to the true tumor margin determined by GFP fluorescence, in nude mice and rats, respectively. To resolve which cells internalized the nanoparticle and to quantitate degree of uptake, tumors were disaggregated and cells were analyzed by flow cytometry and fluorescence microscopy. Nanoparticle uptake was seen in both CD11b+ cells (representing activated microglia and macrophages and tumor cells in both animal models by both methods. CD11b+ cells were predominantly found at the tumor margin in both hosts, but were more pronounced at the margin in the rat model. Additional metastatic (CT26 colon and primary (Gli36 glioma brain tumor models likewise demonstrated that the nanoparticle was internalized both by tumor cells and by host cells. Together, these observations suggest that fluorescent nanoparticles provide an accurate method of tumor margin estimation based on a combination of tumor cell and host cell uptake for primary and metastatic tumors in animal model systems and offer potential for clinical translation.

  10. Bleomycin treatment of brain tumors: an evaluation

    DEFF Research Database (Denmark)

    Linnert, Mette; Gehl, Julie

    2009-01-01

    Bleomycin has been used in the treatment of brain tumors for over 30 years. Currently, we are evaluating electrochemotherapy (the use of electric pulses to enhance uptake of bleomycin) for patients with secondary brain tumors. We, therefore, reviewed the literature with specific reference...... to the tolerability and toxicity of bleomycin. Using the keywords 'brain' and 'bleomycin', a database search without date restriction was performed and over 500 articles were found. Twenty-five articles were used for this study based on relevance determined by: (i) clinical studies, (ii) use of bleomycin, and (iii...

  11. Proton MRS imaging in pediatric brain tumors.

    Science.gov (United States)

    Zarifi, Maria; Tzika, A Aria

    2016-06-01

    Magnetic resonance (MR) techniques offer a noninvasive, non-irradiating yet sensitive approach to diagnosing and monitoring pediatric brain tumors. Proton MR spectroscopy (MRS), as an adjunct to MRI, is being more widely applied to monitor the metabolic aspects of brain cancer. In vivo MRS biomarkers represent a promising advance and may influence treatment choice at both initial diagnosis and follow-up, given the inherent difficulties of sequential biopsies to monitor therapeutic response. When combined with anatomical or other types of imaging, MRS provides unique information regarding biochemistry in inoperable brain tumors and can complement neuropathological data, guide biopsies and enhance insight into therapeutic options. The combination of noninvasively acquired prognostic information and the high-resolution anatomical imaging provided by conventional MRI is expected to surpass molecular analysis and DNA microarray gene profiling, both of which, although promising, depend on invasive biopsy. This review focuses on recent data in the field of MRS in children with brain tumors. PMID:27233788

  12. Multiparametric MR assessment of pediatric brain tumors

    International Nuclear Information System (INIS)

    MR assessment of pediatric brain tumors has expanded to include physiologic information related to cellular metabolites, hemodynamic and diffusion parameters. The purpose of this study was to investigate the relationship between MR and proton MR spectroscopic imaging in children with primary brain tumors. Twenty-one patients (mean age 9 years) with histologically verified brain tumors underwent conventional MR imaging, hemodynamic MR imaging (HMRI) and proton MR spectroscopic imaging (MRSI). Fourteen patients also had diffusion-weighted MR imaging (DWMRI). Metabolic indices including choline-containing compounds (Cho), total creatine (tCr) and lipids/lactate (L) were derived by proton MRSI, relative cerebral blood volume (rCBV) by HMRI, and apparent tissue water diffusion coefficients (ADC) by DWMRI. Variables were examined by linear regression and correlation as well as by ANOVA. Cho (suggestive of tumor cellularity and proliferative activity) correlated positively with rCBV, while the relationship between Cho and ADC (suggestive of cellular density) was inverse (P<0.001). The relationship between rCBV and ADC was also inverse (P=0.004). Cho and lipids (suggestive of necrosis and/or apoptosis) were not significantly correlated (P=0.51). A positive relationship was found between lipids and ADC (P=0.002). The relationships between Cho, rCBV, ADC and lipids signify that tumor physiology is influenced by the tumor's physical and chemical environment. Normalized Cho and lipids distinguished high-grade from low-grade tumors (P<0.05). Multiparametric MR imaging using MRSI, HMRI and DWMRI enhances assessment of brain tumors in children and improves our understanding of tumor physiology while promising to distinguish higher- from lower-malignancy tumors, a distinction that is particularly clinically important among inoperable tumors. (orig.)

  13. Recent developments in brain tumor predisposing syndromes.

    Science.gov (United States)

    Johansson, Gunnar; Andersson, Ulrika; Melin, Beatrice

    2016-01-01

    The etiologies of brain tumors are in the most cases unknown, but improvements in genetics and DNA screening have helped to identify a wide range of brain tumor predisposition disorders. In this review we are discussing some of the most common predisposition disorders, namely: neurofibromatosis type 1 and 2, schwannomatosis, rhabdoid tumor predisposition disorder, nevoid basal cell carcinoma syndrome (Gorlin), tuberous sclerosis complex, von Hippel-Lindau, Li-Fraumeni and Turcot syndromes. Recent findings from the GLIOGENE collaboration and the newly identified glioma causing gene POT1, will also be discussed. Genetics. We will describe these disorders from a genetic and clinical standpoint, focusing on the difference in clinical symptoms depending on the underlying gene or germline mutation. Central nervous system (CNS) tumors. Most of these disorders predispose the carriers to a wide range of symptoms. Herein, we will focus particularly on tumors affecting the CNS and discuss improvements of targeted therapy for the particular disorders. PMID:26634384

  14. Brain tumor and Gliadel wafer treatment

    Directory of Open Access Journals (Sweden)

    M Panigrahi

    2011-01-01

    Full Text Available Glioblastoma is a rapidly progressive and extremely fatal form of brain tumor with poor prognosis. It is the most common type of primary brain tumor. Even with the most aggressive conventional treatment that comprises surgery followed by radiotherapy and chemotherapy, most patients die within a year of diagnosis. Developments in molecular and cell biology have led to better understanding of tumor development, leading to novel treatment strategies including biological therapy and immunotherapy to combat the deadly disease. Targeted drug delivery strategies to circumvent the blood-brain barrier have shown efficiency in clinical trials. Gliadel wafer is a new approach to the treatment of glioblastoma, which involves controlled release delivery of carmustine from biodegradable polymer wafers. It has shown promising results and provides a silver lining for glioblastoma patients.

  15. Anticancer Activity of β-Elemene and its Synthetic Analogs in Human Malignant Brain Tumor Cells

    OpenAIRE

    Li, Qingdi Quentin; Lee, Rebecca X.; LIANG, HUASHENG; ZHONG, YUHUA

    2013-01-01

    Malignant brain tumors are aggressive in both children and adults. Despite recent improvements in diagnostic techniques, therapeutic approaches remain disappointing and unsuccessful. There is an urgent need for promising anticancer agents to improve overall survival of patients with brain cancer. β-Elemene has been shown to have antiproliferative effects on many types of carcinomas. In this study, we compared the cytotoxic efficacy of β-elemene and its synthetic analogs in the brain tumor cel...

  16. Linac radiosurgery for metastatic brain tumor

    International Nuclear Information System (INIS)

    Metastatic brain tumors are usually the final stage in cancer progression. The aim of this study was to retrospectively determine optimal treatment strategies for linear accelerator stereotactic radiosurgery (SRS) and to investigate possible prognostic factors. Of 156 patients treated from 1990 to 2001, 124 patients with 312 lesions were treated with SRS alone, and followed-up for periods ranging from 15 days to 24 months (median 8.2 months). There were 86 males and 38 females, with a median age of 62.8 years. Tumor volume ranged from 0.04 to 50.5 ccm (median 7.9 ccm), and radiation doses ranged from 18 to 50 Gy (median 26.6 Gy in one fraction). Univariate and multivariate analyses of survival and tumor volume reduction rate were performed using Kaplan-Meier Curves, analysis of variance and log-rank test techniques. Median survival time was 8.2 months after SRS. The overall tumor control rate was 97.2%, with a complete or partial remission rate of 84.4%. The median follow-up time was 8.2 months following SRS. During follow-up, there was one case of fetal intracerebral hemorrhage (1.0%) and 6 cases of cerebral herniation (6.3%). Tumor reduction rate was related to tumor histology (p<0.01). Survival rate correlated with pre-SRS Karnofsky Performance Score (KPS) (p<0.01), a number of brain lesions (p=0.0075) and primary disease status (p<0.05), but was not related to progression of extracranial disease, age, lesion volume or lesion site. SRS is indicated for brain metastases under the following circumstances: lesions ≤40 mm in diameter, irradiation after reduction of tumor by paracentesis and suction of cystic lesion, a maximum of three tumors irradiated in one SRS, no concomitant whole brain irradiation, in general. (author)

  17. Dysembryoplastic neuroepithelial tumor: A rare brain tumor not to be misdiagnosed.

    Science.gov (United States)

    Sukheeja, Deepti; Mehta, Jayanti

    2016-01-01

    Dysembryoplastic neuroepithelial tumor (DNET) is a recently described, morphologically unique, and surgically curable low-grade brain tumor which is included in the latest WHO classification as neuronal and mixed neuronal-glial tumor. It is usually seen in children and young adults. The importance of this particular entity is that it is a surgically curable neuroepithelial neoplasm. When recognized, the need for adjuvant radiotherapy and chemotherapy is obviated. We hereby present a case report of an 8-year-old male child who presented with intractable seizures and parieto-occipital space occupying lesion. Histologically, the tumor exhibited features of WHO grade I dysembryoplastic neuroepithelial tumor which was further confirmed by immunohistochemistry. PMID:27057233

  18. Calcium-activated potassium channels mediated blood-brain tumor barrier opening in a rat metastatic brain tumor model

    OpenAIRE

    2007-01-01

    Background The blood-brain tumor barrier (BTB) impedes the delivery of therapeutic agents to brain tumors. While adequate delivery of drugs occurs in systemic tumors, the BTB limits delivery of anti-tumor agents into brain metastases. Results In this study, we examined the function and regulation of calcium-activated potassium (KCa) channels in a rat metastatic brain tumor model. We showed that intravenous infusion of NS1619, a KCa channel agonist, and bradykinin selectively enhanced BTB perm...

  19. Recent advances in imaging of brain tumors

    Directory of Open Access Journals (Sweden)

    D A Sanghvi

    2009-01-01

    The next decade will witness further sophistication of these techniques, with data available from larger studies. It is expected that imaging will continue to provide new and unique insights in neuro-oncology, which should hopefully contribute to the better management of patients with brain tumors.

  20. MicroRNA and Brain Tumors

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    MicroRNAs (miRNAs) were first described in 1993 by Lee and colleagues, and the term microRNA was only introduced in 2001 in a set of three articles in Science[1]. One of the biggest surprises in the past few years has been the emergence of miRNAs as a major new class of gene expression regulators. Recent studies suggest that miRNA alterations are involved in the initiation and progression of human cancer. The brain tumor,glioblastoma multiforme, is the most malignant and deadly form of gliomas.The prognosis is poor and the median survival with combined radiotherapy and chemotherapy is only 14.6 months. With the discovery of miRNA, the miRNA profiles may become useful biomarkers for brain tumor diagnostics,and miRNA therapy could be a powerful tool for brain tumor prevention and therapeutics. This review outlines the background of miRNA and its expression and therapeutic potential for brain tumors.

  1. The electroencephalogram in metastatic brain tumors

    Directory of Open Access Journals (Sweden)

    P. Pinto Pupo

    1967-12-01

    Full Text Available Sixty cases of intracranial metastatic tumors diagnosed either clinically or by neurosurgery (28 operative cases, 26 with radiological contrast examinations and 6 with clinical diagnosis only are reported. The EEG tests had been made previously to the diagnosis of metastasis. The EEG results are analysed according to the previous impression gained from this test and are presented in 5 tables, on which the cases are divided as per the brain topography of the metastasis. The positive EEG data are analysed and the possibility of topographic diagnosis discussed. The results agree with those presented in the literature. The AA. reach the following conclusions: 1 in patients with suspect brain metastasis the normal EEG allows with great probability to exclude the possibility; 2 in patients with malignant tumor the EEG signs of involvement of the nervous parenchyma are the most important elements for positive diagnosis of brain metastasis; 3 in the cases of metastasis developing at the posterior fossa, either there were indicative signs of the process at that level or the EEG was normal; 4 the EEG signs of an irritant process at the brain cortex were less frequent and, in the majority of cases, appeared in the temporal and parietal areas; 5 the signs of involvement of the mesodiencephalic structures in tumors of the brain hemispheres appeared only when the tumor was located in the median part of the hemisphere (temporal or parietal lobes; 6 signs of depression of the basal electric brain activity in the affected areas appeared rarely and in cases of parietal or occipital tumors; 7 the electric brain activity of other areas of the involved hemisphere or in the opposite hemisphere was normal in the majority of the cases observed. Considering the results of the literature and their own the AA. believe that the EEG could be a semiological method to be used at the preoperative examinations of patients with malignant tumors, with a view at establishing the

  2. Development and evaluation of information resources for patients, families, and healthcare providers addressing behavioral and cognitive sequelae among adults with a primary brain tumor.

    Science.gov (United States)

    Wright, Kylie M; Simpson, Grahame K; Koh, Eng-Siew; Whiting, Diane L; Gillett, Lauren; Simpson, Teresa; Firth, Rochelle

    2015-06-01

    Behavioral and cognitive changes in patients with primary brain tumor (PBT) are common and may be distressing to patients and their family members. Healthcare professionals report a strong need for information, practical strategies, and training to assist consumers and better address management issues. A literature review by the current project found that 53% of the information resources currently available to consumers and health professionals contained minimal or no information about cognitive/behavioral changes after PBT, and 71% of the resources contained minimal or no information on associated strategies to manage these changes. This project aimed to develop an information resource for patients, carers, and health professionals addressing the behavioral and cognitive sequelae of PBT, including strategies to minimize the disabling impact of such behaviors. In consultation with staff and patient groups, 16 key information topics were identified covering cognitive and communication changes and challenging behaviors including executive impairment, behavioral disturbance, and social/emotional dysfunction. Sixteen fact sheets and 11 additional resource sheets were developed and evaluated according to established consumer communication guidelines. Preliminary data show that these resources have been positively received and well utilized. These sheets are the first of their kind addressing challenging behaviors in the neuro-oncology patient group and are a practical and useful information resource for health professionals working with these patients and their families. The new resource assists in reinforcing interventions provided to individual patients and their relatives who are experiencing difficulties in managing challenging behaviors after PBT. PMID:25827649

  3. Malignant brain tumor treatments and hyperbaric oxygenation

    Energy Technology Data Exchange (ETDEWEB)

    Kohshi, Kiyotaka [Univ. of Occupational and Environmental Health, Kitakyushu, Fukuoka (Japan)

    2000-09-01

    Malignant brain tumor treatment and hyperbaric oxygenation: Combined hyperbaric oxygenation (HBO) therapy and radiation therapy of malignant gliomas is reviewed. Malignant glioma tissue is hypoxic, and the efficacy of radiation therapy is increased by raising the oxygen density in glioma tissue. Residual tumor was reduced by a radiation dose of approximately 40 Gy in many cases when radiation therapy was begun within 15 minutes after HBO. In the experiment in animal models with different hypoxic fractions (HFs) of cells (SCCVII and 9L gliosarcoma), the tumor reduction effect was more significant in the SCCVII model, which has a higher HF. When the SCCVII model was irradiated within 30 minutes after HBO, the improvement effect was more significant (1.60-1.78 times) than by irradiation alone. HBO was effective in the treatment of radionecrosis of the brain. However, there were some cases in which radionecrosis progressed when the HBO treatments were discontinued, and the optimal duration of HBO treatment should be determined. It is difficult to differentiate between radionecrosis and tumor recurrence after radiosurgery of a malignant intracranial tumor. When no lesion reduction is observed in response to HBO treatment and steroid administration for about one month, the lesion is concluded to be a recurrence of the tumor, and additional irradiation should be performed. HBO treatment in combination with chemotherapy is also discussed. (K.H.)

  4. Malignant brain tumor treatments and hyperbaric oxygenation

    International Nuclear Information System (INIS)

    Malignant brain tumor treatment and hyperbaric oxygenation: Combined hyperbaric oxygenation (HBO) therapy and radiation therapy of malignant gliomas is reviewed. Malignant glioma tissue is hypoxic, and the efficacy of radiation therapy is increased by raising the oxygen density in glioma tissue. Residual tumor was reduced by a radiation dose of approximately 40 Gy in many cases when radiation therapy was begun within 15 minutes after HBO. In the experiment in animal models with different hypoxic fractions (HFs) of cells (SCCVII and 9L gliosarcoma), the tumor reduction effect was more significant in the SCCVII model, which has a higher HF. When the SCCVII model was irradiated within 30 minutes after HBO, the improvement effect was more significant (1.60-1.78 times) than by irradiation alone. HBO was effective in the treatment of radionecrosis of the brain. However, there were some cases in which radionecrosis progressed when the HBO treatments were discontinued, and the optimal duration of HBO treatment should be determined. It is difficult to differentiate between radionecrosis and tumor recurrence after radiosurgery of a malignant intracranial tumor. When no lesion reduction is observed in response to HBO treatment and steroid administration for about one month, the lesion is concluded to be a recurrence of the tumor, and additional irradiation should be performed. HBO treatment in combination with chemotherapy is also discussed. (K.H.)

  5. Brain tumors in childhood; Hirntumoren im Kindesalter

    Energy Technology Data Exchange (ETDEWEB)

    Sinzig, M.; Gasser, J.; Hausegger, K.A. [Landeskrankenhaus Klagenfurt, Kinderradiologie RZI, Klagenfurt (Austria); Jauk, B. [Landeskrankenhaus Klagenfurt, Abt. fuer Kinder- und Jugendheilkunde, Klagenfurt (Austria)

    2008-10-15

    Central nervous system (CNS) tumors are the most common solid neoplasms in childhood and the second most common malignancies after leukemia in the pediatric age group. Supratentorial tumors are more common in children younger than 2 years old and in adolescents, whereas in patients between 2 and 12 years of age brain tumors originating in the posterior fossa dominate. This implies a relationship between the type of tumor, its location and the age of the patient, which has to be considered in differential diagnoses. Medulloblastoma represents the most common malignant brain tumor in childhood. In the posterior fossa medulloblastomas are approximately as frequent as astrocytomas. Supratentorial astrocytomas are by far the main tumor type. In this report some typical CNS neoplasms in children are discussed and their neuroradiological features are demonstrated. (orig.) [German] Hirntumoren sind die haeufigsten soliden Tumoren des Kindesalters und repraesentieren nach den Leukaemien die zweithaeufigsten malignen Erkrankungen bei Kindern. Waehrend bei Kleinkindern und Adoleszenten supratentorielle Hirntumoren ueberwiegen, ist bei Patienten zwischen 2 und 12 Jahren haeufiger die hintere Schaedelgrube Ursprungsort dieser Malignome. Daraus geht hervor, dass gewisse Tumortypen eine gewisse Alterspraedilektion aufweisen, was neben der radiologischen Morphologie der Raumforderung fuer differenzialdiagnostische Ueberlegungen ueberaus hilfreich sein kann. Das Medulloblastom ist das haeufigste ZNS-Malignom des Kindesalters und repraesentiert zusammen mit zerebellaeren Astrozytomen auch den haeufigsten Tumortyp der hinteren Schaedelgrube. Supratentoriell stehen die Astrozytome ganz im Vordergrund. In dieser Arbeit werden einige typische kindliche infra- und supratentorielle Hirntumoren diskutiert und ihre neuroradiologischen Merkmale dargestellt. (orig.)

  6. Wilms tumor in adults. About 3 cases

    International Nuclear Information System (INIS)

    Wilms tumor has an incidence of 5% in pediatric tumors .s u Prognosis in this population has improved with the introduction and refinement of therapeutic schemes based radiotherapy and chemotherapy, with a rate of Current 90% cure. In the adult, the Nephroblastoma is outstanding and there are currently no guidelines for terapéutico.Si handling well in the literature, there are a few hundred cases of Wilms tumor, not all of them have been duly confirmed, as a result pathological variety of nomenclatures used in the past. in compared to the pediatric population, Wilms tumor in adults diagnosed with more advanced disease and have a worse prognosis. We present a series of 3 adult patients with Wilms tumor. While two of the patients had histological elements of poor prognosis, the third of these patients had a favorable histology, although the diagnosis was made at an advanced stage. These 3 clinical cases and treatment recommendations for these are described tumors arising from the analysis of the scant literature, and that evolution of these patients seems to corroborate. There is no consensus on how monitoring should be performed curatively operated patients of colon cancer (C C). It is often it is comprehensive

  7. Targeted Toxins in Brain Tumor Therapy

    Directory of Open Access Journals (Sweden)

    Walter A. Hall

    2010-11-01

    Full Text Available Targeted toxins, also known as immunotoxins or cytotoxins, are recombinant molecules that specifically bind to cell surface receptors that are overexpressed in cancer and the toxin component kills the cell. These recombinant proteins consist of a specific antibody or ligand coupled to a protein toxin. The targeted toxins bind to a surface antigen or receptor overexpressed in tumors, such as the epidermal growth factor receptor or interleukin-13 receptor. The toxin part of the molecule in all clinically used toxins is modified from bacterial or plant toxins, fused to an antibody or carrier ligand. Targeted toxins are very effective against cancer cells resistant to radiation and chemotherapy. They are far more potent than any known chemotherapy drug. Targeted toxins have shown an acceptable profile of toxicity and safety in early clinical studies and have demonstrated evidence of a tumor response. Currently, clinical trials with some targeted toxins are complete and the final results are pending. This review summarizes the characteristics of targeted toxins and the key findings of the important clinical studies with targeted toxins in malignant brain tumor patients. Obstacles to successful treatment of malignant brain tumors include poor penetration into tumor masses, the immune response to the toxin component and cancer heterogeneity. Strategies to overcome these limitations are being pursued in the current generation of targeted toxins.

  8. Mapping of language brain areas in patients with brain tumors.

    Science.gov (United States)

    Hyder, Rasha; Kamel, Nidal; Boon, Tang Tong; Reza, Faruque

    2015-08-01

    Language cortex in the human brain shows high variability among normal individuals and may exhibit a considerable shift from its original position due to tumor growth. Mapping the precise location of language areas is important before surgery to avoid postoperative language deficits. In this paper, the Magnetoencephalography (MEG) recording and the MRI scanning of six brain tumorous subjects are used to localize the language specific areas. MEG recordings were performed during two silent reading tasks; silent word reading and silent picture naming. MEG source imaging is performed using distributed source modeling technique called CLARA ("Classical LORETA Analysis Recursively Applied"). Estimated MEG sources are overlaid on individual MRI of each patient to improve interpretation of MEG source imaging results. The results show successful identification of the essential language areas and clear definition of the time course of neural activation connecting them. PMID:26736340

  9. Brain tumors in man and animals: report of a workshop.

    OpenAIRE

    1986-01-01

    This report summarizes the results of a workshop on brain tumors in man and animals. Animals, especially rodents are often used as surrogates for man to detect chemicals that have the potential to induce brain tumors in man. Therefore, the workshop was focused mainly on brain tumors in the F344 rat and B6C3F1 mouse because of the frequent use of these strains in long-term carcinogenesis studies. Over 100 brain tumors in F344 rats and more than 50 brain tumors in B6C3F1 mice were reviewed and ...

  10. Brain Tumor Detection Based On Symmetry Information

    OpenAIRE

    G., Narkhede Sachin; Khairnar, Vaishali

    2013-01-01

    Advances in computing technology have allowed researchers across many fields of endeavor to collect and maintain vast amounts of observational statistical data such as clinical data, biological patient data, data regarding access of web sites, financial data, and the like. This paper addresses some of the challenging issues on brain magnetic resonance (MR) image tumor segmentation caused by the weak correlation between magnetic resonance imaging (MRI) intensity and anatomical meaning. With th...

  11. Spectrum of pediatric brain tumors in India: A multi-institutional study

    Directory of Open Access Journals (Sweden)

    Ayushi Jain

    2011-01-01

    Full Text Available Background : Till date there is no published multi-institutional data regarding the epidemiological profile of pediatric brain tumors in India. Aim : The present retrospective study analyses the histological spectrum of pediatric age group brain tumors in seven tertiary care hospitals in India. Material and Methods : Data regarding frequencies of various primary brain tumors (diagnosed according to the World Health Organization (WHO classification, in 3936 pediatric patients (<18 yrs of age, was collected from seven tertiary care hospitals in India.Results : The most common primary pediatric brain tumors were astrocytic tumors (34.7%, followed by medulloblastoma and supratentorial primitive neuro-ectodermal tumors (22.4%, craniopharyngiomas (10.2% and ependymal tumors (9.8%. The most common astrocytic tumor was pilocytic astrocytoma. In comparison to adults, oligodendrogliomas and lymphomas were rare in children. Conclusions : Our study is the first such report on the histological spectrum of brain tumors in children in India. Except for a slightly higher frequency of craniopharyngiomas, the histological profile of pediatric brain tumors in India is similar to that reported in the Western literature.

  12. p53 protein alterations in adult astrocytic tumors and oligodendrogliomas

    Directory of Open Access Journals (Sweden)

    Nayak Anupma

    2004-04-01

    Full Text Available BACKGROUND: p53 is a tumor suppressor gene implicated in the genesis of a variety of malignancies including brain tumors. Overexpression of the p53 protein is often used as a surrogate indicator of alterations in the p53 gene. AIMS: In this study, data is presented on p53 protein expression in adult cases (>15 years of age of astrocytic (n=152 and oligodendroglial (n=28 tumors of all grades. Of the astrocytic tumors, 86% were supratentorial in location while remaining 14% were located infratentorially - 8 in the the cerebellum and 13 in the brainstem. All the oligodendrogliomas were supratentorial. MATERIALS AND METHODS: p53 protein expression was evaluated on formalin-fixed paraffin-embedded sections using streptavidin biotin immunoperoxidase technique after high temperature antigen retrieval. RESULTS: Overall 52% of supratentorial astrocytic tumors showed p53 immunopositivity with no correlation to the histological grade. Thus, 58.8% of diffuse astrocytomas (WHO Grade II, 53.8% of anaplastic astrocytomas (WHO Grade III and 50% of glioblastomas (WHO Grade IV were p53 protein positive. In contrast, all the infratentorial tumors were p53 negative except for one brainstem glioblastoma. Similarly, pilocytic astrocytomas were uniformly p53 negative irrespective of the location. Among oligodendroglial tumors, the overall frequency of p53 immunopositivity was lower (only 28%, though a trend of positive correlation with the tumor grade was noted - 25% in Grade II and 31.5% in grade III (anaplastic oligodendroglioma. Interestingly, p53 labeling index (p53 LI did not correlate with the histopathological grade in both astrocytic and oligodendroglial tumors. CONCLUSIONS: Thus, this study gives an insight into the genetic and hence biological heterogeneity of gliomas, not only between astrocytic tumors vs. oligodendrogliomas but also within astrocytic tumors with regard to their grade and location. With p53 gene therapy trials in progress, this will

  13. Extracellular Vesicles in Brain Tumor Progression.

    Science.gov (United States)

    D'Asti, Esterina; Chennakrishnaiah, Shilpa; Lee, Tae Hoon; Rak, Janusz

    2016-04-01

    Brain tumors can be viewed as multicellular 'ecosystems' with increasingly recognized cellular complexity and systemic impact. While the emerging diversity of malignant disease entities affecting brain tissues is often described in reference to their signature alterations within the cellular genome and epigenome, arguably these cell-intrinsic changes can be regarded as hardwired adaptations to a variety of cell-extrinsic microenvironmental circumstances. Conversely, oncogenic events influence the microenvironment through their impact on the cellular secretome, including emission of membranous structures known as extracellular vesicles (EVs). EVs serve as unique carriers of bioactive lipids, secretable and non-secretable proteins, mRNA, non-coding RNA, and DNA and constitute pathway(s) of extracellular exit of molecules into the intercellular space, biofluids, and blood. EVs are also highly heterogeneous as reflected in their nomenclature (exosomes, microvesicles, microparticles) attempting to capture their diverse origin, as well as structural, molecular, and functional properties. While EVs may act as a mechanism of molecular expulsion, their non-random uptake by heterologous cellular recipients defines their unique roles in the intercellular communication, horizontal molecular transfer, and biological activity. In the central nervous system, EVs have been implicated as mediators of homeostasis and repair, while in cancer they may act as regulators of cell growth, clonogenicity, angiogenesis, thrombosis, and reciprocal tumor-stromal interactions. EVs produced by specific brain tumor cell types may contain the corresponding oncogenic drivers, such as epidermal growth factor receptor variant III (EGFRvIII) in glioblastoma (and hence are often referred to as 'oncosomes'). Through this mechanism, mutant oncoproteins and nucleic acids may be transferred horizontally between cellular populations altering their individual and collective phenotypes. Oncogenic pathways

  14. Gamma knife radiosurgery for metastatic brain tumors from lung cancer

    International Nuclear Information System (INIS)

    The purpose of this retrospective study is to evaluate the effectiveness of gamma knife radiosurgery (GKS) alone for metastatic brain tumors from lung cancer. Two hundred thirty-one consecutive patients with metastatic brain tumors from lung cancer filling the following 4 criteria were analyzed for this study; no prior brain tumor treatment, 25 or fewer lesions, a maximum 5 tumors with diameter of 2 cm or more, no surgically inaccessible tumor 3 cm or greater in diameter. According to the same treatment protocol, large tumors (≥ 3 cm) were surgically removed and all the other small lesions (10 brain lesions. This study suggests the results of GKS for metastatic brain tumors from lung cancer are quite satisfactory considering prevention of neurological death and maintenance of QOL. But cases with carcinomatous meningitis and/or >10 brain lesions are not good candidates for GKS alone. (author)

  15. Non-FDG PET imaging of brain tumors

    Institute of Scientific and Technical Information of China (English)

    HUANG Zemin; GUAN Yihui; ZUO Chuantao; ZHANG Zhengwei; XUE Fangping; LIN Xiangtong

    2007-01-01

    Due to relatively high uptake of glucose in the brain cortex, the use of FDG PET imaging is greatly limited in brain tumor imaging, especially for low-grade gliomas and some metastatic tumours. More and more tracers with higher specificity were developed lately for brain tumor imaging. There are 3 main types of non-FDG PET tracers:amino acid tracers, choline tracers and nucleic acid tracers. These tracers are now widely applied in many aspects of brain tumor imaging. This article summarized the general use of non-FDG PET in different aspects of brain tumor imaging.

  16. Nuclear magnetic resonance imaging in brain tumors

    International Nuclear Information System (INIS)

    Full text: Magnetic resonance imaging (MRI) is a non-invasive imaging method based on the detecting signal from hydrogen nuclei of water molecules and fat. Performances of MRI are continuously increasing, and its domains of investigation of the human body are growing in both morphological and functional study. MRI also allows It also performing advanced management of tumours especially in the brain, by combining anatomical information (morphological MRI), functional (diffusion, perfusion and BOLD contrast) and metabolic (tissue composition in magnetic resonance spectroscopy (MRS)). The MRI techniques have an important role in cancerology. These techniques allow essential information for the diagnosis and answering therapist's questions before, during or after the treatment. The MR allows clarifying the localization of expanding processes, the differential diagnosis between brain tumour and a lesion confined by another structural aspect, the diagnosis of the tumoral aspect of a lesion, the histological ranking in case of glial tumour and the extension of its localization as well as the therapeutic follow-up (pre-therapeutic and post-therapeutics assessments). A better combination between the morphological, functional and metabolic studies, as well as integrating new technical developments, especially while using a multichannel bird cage coils the 3T magnet and suitable computing software, would allow significant improvements of the exploration strategies and management of brain tumors.

  17. Brain tumors induced by radiation in rhesus monkeys

    International Nuclear Information System (INIS)

    Two out of four pubescent rhesus monkeys, which received 1,500 rads of supervoltage X-irradiation, showed malignant brain tumors afer the survival of 52 and 102 weeks each. Since the incidence of spontaneous developing brain tumors in monkeys cited in the literatures was quite low, the tumors in the present series may have been radiation induced. (author)

  18. Radiotherapy for pediatric brain tumors: Standards of care, current clinical trials, and new directions

    International Nuclear Information System (INIS)

    The objectives of the course are to evaluate the role of radiation therapy in the treatment of pediatric brain tumors. Areas where the role is evolving will be identified, and the results of clinical trials which been mounted to clarify radiotherapy's role will be reviewed. Brain tumors are the second most common malignancy of childhood after leukemias and lymphomas. However, they remain the most common group of childhood tumors to require radiation therapy. Therefore, a thorough understanding of these tumors, and the appropriate role of surgery, radiation and chemotherapy is critical. Issues surrounding the management of sequelae are no less important. The role of radiotherapy for the treatment of these tumors is far different from that for adults. These differences relate to the profound potential for sequelae from therapy, the higher overall cure rates, and the utility of multimodality therapies. In addition, the rarity of childhood brain tumors compared with adults' makes them more difficult to study. In this session, the following issues will be reviewed; 1. Incidence of pediatric brain tumors, 2. General issues regarding symptoms, diagnosis, diagnostic tests and evaluation, 3. Importance of a team approach, 4. General issues regarding treatment sequelae, 5. Specific tumor types/entities; a. Cerebellar Astrocytomas b. Benign and malignant Gliomas including brainstem and chiasmatic lesions c. Primitive Neuroectodermal Tumors (PNET) and Medulloblastoma d. Ependymomas e. Craniopharyngiomas f. Germ cell tumors g. Miscellaneous and rare pediatric brain tumors 6. Management of sequelae 7. New and future directions a. Treatment of infants b. The expanding role of chemotherapy c. Advances in radiotherapy. The attendees will complete the course with a better understanding of the role that radiation therapy plays in the treatment of pediatric brain tumors. They will be knowledgeable in the foundation for that role, and the changes which are likely to take place in the

  19. Photodynamic Therapy for Malignant Brain Tumors.

    Science.gov (United States)

    Akimoto, Jiro

    2016-04-15

    Photodynamic therapy (PDT) using talaporfin sodium together with a semiconductor laser was approved in Japan in October 2003 as a less invasive therapy for early-stage lung cancer. The author believes that the principle of PDT would be applicable for controlling the invading front of malignant brain tumors and verified its efficacy through experiments using glioma cell lines and glioma xenograft models. An investigator-initiated clinical study was jointly conducted with Tokyo Women's Medical University with the support of the Japan Medical Association. Patient enrollment was started in May 2009 and a total of 27 patients were enrolled by March 2012. Of 22 patients included in efficacy analysis, 13 patients with newly diagnosed glioblastoma showed progression-free survival of 12 months, progression-free survival at the site of laser irradiation of 20 months, 1-year survival of 100%, and overall survival of 24.8 months. In addition, the safety analysis of the 27 patients showed that adverse events directly related to PDT were mild. PDT was approved in Japan for health insurance coverage as a new intraoperative therapy with the indication for malignant brain tumors in September 2013. Currently, the post-marketing investigation in the accumulated patients has been conducted, and the preparation of guidelines, holding training courses, and dissemination of information on the safe implementation of PDT using web sites and videos, have been promoted. PDT is expected to be a breakthrough for the treatment of malignant glioma as a tumor cell-selective less invasive therapy for the infiltrated functional brain area. PMID:26888042

  20. Positron Scanner for Locating Brain Tumors

    Science.gov (United States)

    Rankowitz, S.; Robertson, J. S.; Higinbotham, W. A.; Rosenblum, M. J.

    1962-03-01

    A system is described that makes use of positron emitting isotopes for locating brain tumors. This system inherently provides more information about the distribution of radioactivity in the head in less time than existing scanners which use one or two detectors. A stationary circular array of 32 scintillation detectors scans a horizontal layer of the head from many directions simultaneously. The data, consisting of the number of counts in all possible coincidence pairs, are coded and stored in the memory of a Two-Dimensional Pulse-Height Analyzer. A unique method of displaying and interpreting the data is described that enables rapid approximate analysis of complex source distribution patterns. (auth)

  1. Intraoperative MRI in pediatric brain tumors.

    Science.gov (United States)

    Choudhri, Asim F; Siddiqui, Adeel; Klimo, Paul; Boop, Frederick A

    2015-09-01

    Intraoperative magnetic resonance imaging (iMRI) has emerged as an important tool in guiding the surgical management of children with brain tumors. Recent advances have allowed utilization of high field strength systems, including 3-tesla MRI, resulting in diagnostic-quality scans that can be performed while the child is on the operating table. By providing information about the possible presence of residual tumor, it allows the neurosurgeon to both identify and resect any remaining tumor that is thought to be safely accessible. By fusing the newly obtained images with the surgical guidance software, the images have the added value of aiding in navigation to any residual tumor. This is important because parenchyma often shifts during surgery. It also gives the neurosurgeon insight into whether any immediate postoperative complications have occurred. If any complications have occurred, the child is already in the operating room and precious minutes lost in transport and communications are saved. In this article we review the three main approaches to an iMRI system design. We discuss the possible roles for iMRI during intraoperative planning and provide guidance to help radiologists and neurosurgeons alike in the collaborative management of these children. PMID:26346145

  2. Intraoperative MRI in pediatric brain tumors

    Energy Technology Data Exchange (ETDEWEB)

    Choudhri, Asim F. [Le Bonheur Children' s Hospital, Department of Radiology, Memphis, TN (United States); University of Tennessee Health Science Center, Department of Radiology, Memphis, TN (United States); University of Tennessee Health Science Center, Department of Neurosurgery, Memphis, TN (United States); University of Tennessee Health Science Center, Department of Ophthalmology, Memphis, TN (United States); Le Bonheur Children' s Hospital, Le Bonheur Neuroscience Institute, Memphis, TN (United States); Siddiqui, Adeel [University of Tennessee Health Science Center, Department of Radiology, Memphis, TN (United States); Le Bonheur Children' s Hospital, Le Bonheur Neuroscience Institute, Memphis, TN (United States); Klimo, Paul; Boop, Frederick A. [University of Tennessee Health Science Center, Department of Neurosurgery, Memphis, TN (United States); Le Bonheur Children' s Hospital, Le Bonheur Neuroscience Institute, Memphis, TN (United States); Semmes-Murphey Neurologic and Spine Institute, Memphis, TN (United States); St. Jude Children' s Hospital, Division of Neurosurgery, Department of Surgery, Memphis, TN (United States)

    2015-09-15

    Intraoperative magnetic resonance imaging (iMRI) has emerged as an important tool in guiding the surgical management of children with brain tumors. Recent advances have allowed utilization of high field strength systems, including 3-tesla MRI, resulting in diagnostic-quality scans that can be performed while the child is on the operating table. By providing information about the possible presence of residual tumor, it allows the neurosurgeon to both identify and resect any remaining tumor that is thought to be safely accessible. By fusing the newly obtained images with the surgical guidance software, the images have the added value of aiding in navigation to any residual tumor. This is important because parenchyma often shifts during surgery. It also gives the neurosurgeon insight into whether any immediate postoperative complications have occurred. If any complications have occurred, the child is already in the operating room and precious minutes lost in transport and communications are saved. In this article we review the three main approaches to an iMRI system design. We discuss the possible roles for iMRI during intraoperative planning and provide guidance to help radiologists and neurosurgeons alike in the collaborative management of these children. (orig.)

  3. Intraoperative MRI in pediatric brain tumors

    International Nuclear Information System (INIS)

    Intraoperative magnetic resonance imaging (iMRI) has emerged as an important tool in guiding the surgical management of children with brain tumors. Recent advances have allowed utilization of high field strength systems, including 3-tesla MRI, resulting in diagnostic-quality scans that can be performed while the child is on the operating table. By providing information about the possible presence of residual tumor, it allows the neurosurgeon to both identify and resect any remaining tumor that is thought to be safely accessible. By fusing the newly obtained images with the surgical guidance software, the images have the added value of aiding in navigation to any residual tumor. This is important because parenchyma often shifts during surgery. It also gives the neurosurgeon insight into whether any immediate postoperative complications have occurred. If any complications have occurred, the child is already in the operating room and precious minutes lost in transport and communications are saved. In this article we review the three main approaches to an iMRI system design. We discuss the possible roles for iMRI during intraoperative planning and provide guidance to help radiologists and neurosurgeons alike in the collaborative management of these children. (orig.)

  4. An integrative view on sex differences in brain tumors

    OpenAIRE

    Sun, Tao; Plutynski, Anya; Ward, Stacey; Rubin, Joshua B.

    2015-01-01

    Sex differences in human health and disease can range from undetectable to profound. Differences in brain tumor rates and outcome are evident in males and females throughout the world and regardless of age. These observations indicate that fundamental aspects of sex determination can impact the biology of brain tumors. It is likely that optimal personalized approaches to the treatment of male and female brain tumor patients will require recognizing and understanding the ways in which the biol...

  5. Increased expression of aquaporin-4 in human traumatic brain injury and brain tumors

    Institute of Scientific and Technical Information of China (English)

    HU Hua; YAO Hong-tian; ZHANG Wei-ping; ZHANG LEI; DING Wei; ZHANG Shi-hong; CHEN Zhong; WEI Er-qing

    2005-01-01

    Objective: To characterize the expression of aquaporin-4 (AQP4), one of the aquaporins (AQPs), in human brain specimens from patients with traumatic brain injury or brain tumors. Methods: Nineteen human brain specimens were obtained from the patients with traumatic brain injury, brain tumors, benign meningioma or early stage hemorrhagic stroke. MRI or CT imaging was used to assess brain edema. Hematoxylin and eosin staining were used to evaluate cell damage. Immunohistochemistry was used to detect the AQP4 expression. Results: AQP4 expression was increased from 15h to at least 8 d after injury. AQP4immunoreactivity was strong around astrocytomas, ganglioglioma and metastatic adenocarcinoma. However, AQP4 immunoreactivity was only found in the centers of astrocytomas and ganglioglioma, but not in metastatic adenocarcinoma derived from lung.Conclusion: AQP4 expression increases in human brains after traumatic brain injury, within brain-derived tumors, and around brain tumors.

  6. Molecular Mechanism of Adult Neurogenesis and its Association with Human Brain Diseases.

    Science.gov (United States)

    Liu, He; Song, Ni

    2016-01-01

    Recent advances in neuroscience challenge the old dogma that neurogenesis occurs only during embryonic development. Mounting evidence suggests that functional neurogenesis occurs throughout adulthood. This review article discusses molecular factors that affect adult neurogenesis, including morphogens, growth factors, neurotransmitters, transcription factors, and epigenetic factors. Furthermore, we summarize and compare current evidence of associations between adult neurogenesis and human brain diseases such as Alzheimer's disease, Parkinson's disease, Huntington's disease, and brain tumors. PMID:27375363

  7. Heterogeneity of Ductular Reactions in Adult Rat and Human Liver Revealed by Novel Expression of Deleted in Malignant Brain Tumor 1

    OpenAIRE

    Bisgaard, Hanne Cathrine; Holmskov, Uffe; Santoni-Rugiu, Eric; Nagy, Peter; Nielsen, Ole; Ott, Peter; Hage, Ester; Dalhoff, Kim; Rasmussen, Lene Juel; Tygstrup, Niels

    2002-01-01

    The regenerative capacity of mammalian adult liver reflects the ability of a number of cell populations within the hepatic lineage to take action. Limited information is available regarding factors and mechanisms that determine the specific lineage level at which liver cells contribute to liver repair as well as the fate of their progeny in the hostile environment created by liver injury. In the present study, we attempted to identify novel molecules preferentially involved in liver regenerat...

  8. Intensity-Modulated Radiation Therapy for Primary Brain Tumors

    Institute of Scientific and Technical Information of China (English)

    Zhong-min Wang

    2004-01-01

    Radiation therapy has been used to treat primary brain tumors as standard primary and/or adjunctive therapies for decades. It is difficult for conventional radiotherapy to deliver a lethal dose of radiation to the tumors while sparing surrounding normal brain due to complicated structures and multifunction in human brain. With the understanding of radiation physics and computer technology, a number of novel and more precise radiotherapies have been developed in recent years. Intensity modulated radiotherapy (IMRT) is one of these strategies. The use of IMRT in the treatment of primary brain tumors is being increasing nowadays. It shows great promise for some of primary brain tumors and also presents some problems, This review highlights current IMRT in the treatment of mainly primary brain tumors.

  9. Increased expression of aquaporin-4 in human traumatic brain injury and brain tumors

    Institute of Scientific and Technical Information of China (English)

    HuaHu; Wei-PingZhang; LeiZhang; ZhongChen; Er-QingWei

    2004-01-01

    Aquaporin-4 (AQP4) is one of the aquaporins (AQPs), a water channel family. In the brain, AQP4 is expressed in astroeyte foot processes, and plays an important role in water homeostasis and in the formation of brain edema. In our study, AQP4 expression in human brain specimens from patients with traumatic brain injury or different brain tumors was detected

  10. Growth Patterns of Microscopic Brain Tumors

    CERN Document Server

    Sander, L M; Sander, Leonard M.; Deisboeck, Thomas S.

    2002-01-01

    Highly malignant brain tumors such as Glioblastoma Multiforme (GBM) form complex growth patterns in vitro in which invasive cells organize in tenuous branches. Here, we formulate a chemotaxis model for this sort of growth. A key element controlling the pattern is homotype attraction, i.e., the tendency for invasive cells to follow pathways previously explored. We investigate this in two ways: we show that there is an intrinsic instability in the model, which leads to branch formation. We also give a discrete description for the expansion of the invasive zone, and a continuum model for the nutrient supply. The results indicate that both, strong heterotype chemotaxis and strong homotype chemo-attraction are required for branch formation within the invasive zone. Our model thus can give a way to assess the importance of the various processes, and a way to explore and analyze transitions between different growth regimes.

  11. Anticonvulsant therapy in brain-tumor related epilepsy

    Directory of Open Access Journals (Sweden)

    Fröscher Walter

    2016-06-01

    Full Text Available Background. The lifetime risk of patients with brain tumors to have focal epileptic seizures is 10-100%; the risk depends on different histology. Specific guidelines for drug treatment of brain tumor-related seizures have not yet been established.

  12. Interphone study - on mobile phones and brain tumors

    International Nuclear Information System (INIS)

    Interphone study is the largest study on mobile phone use and risk of brain tumors that have been implemented. The study does not provide reliable answers to whether there is an increased risk of brain tumors using the mobile phone, but is an important contribution. (AG)

  13. Stem cell-based therapies for tumors in the brain: are we there yet?

    Science.gov (United States)

    Shah, Khalid

    2016-08-01

    Advances in understanding adult stem cell biology have facilitated the development of novel cell-based therapies for cancer. Recent developments in conventional therapies (eg, tumor resection techniques, chemotherapy strategies, and radiation therapy) for treating both metastatic and primary tumors in the brain, particularly glioblastoma have not resulted in a marked increase in patient survival. Preclinical studies have shown that multiple stem cell types exhibit inherent tropism and migrate to the sites of malignancy. Recent studies have validated the feasibility potential of using engineered stem cells as therapeutic agents to target and eliminate malignant tumor cells in the brain. This review will discuss the recent progress in the therapeutic potential of stem cells for tumors in the brain and also provide perspectives for future preclinical studies and clinical translation. PMID:27282399

  14. Preliminary study of MR elastography in brain tumors

    International Nuclear Information System (INIS)

    Objective: To investigate the potential values of magnetic resonance elastography (MRE) for evaluating the brain tumor consistency in vivo. Methods: Fourteen patients with known solid brain tumor (5 male, 9 female; age range: 16-63 years) underwent brain MRE studies. Informed consent was obtained from all patients. A dedicated external force actuator for brain MRE study was developed. The actuator was fixed to the head coil. During scan, one side of the actuator was attached to the patients' head. Low frequency oscillation was produced by the actuator and caused shear waves propagating into brain tissue. The pulse sequence used in the study was phase-contrast gradient-echo sequence. Phase images of the brain were obtained and the shear waves within the brain were directly imaged. Phase images were processed with local frequency estimation (LFE) technique to obtain the elasticity image. Consistency of brain tumors was evaluated at surgery and was classified as soft, intermediate, or hard with comparison to the white matter of the brain. Correspondence of MRE evaluation with operative results was studied. Results: The elastic modulus of the tumor was lower than that of white matter in 1 patient, higher in 11 patients, and similar in 2 patients. At surgery, the tumor manifested a soft consistency in 1 patient, hard consistency in 11 patients, intermediate consistency in 2 patients. The elasticity of tumors in 14 patients evaluated by MRE was correlated with the tumor consistency on the operation. Conclusion: MRE can noninvasively display the elasticity of brain tumors in vivo, and evaluate the brain tumor consistency before operation. (authors)

  15. A study of ICAM expression in brain tumors

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Chang Hoon; Lee, Seung Hoon; Hong, Seok Il [Korea Cancer Center Hospital, Seoul (Korea, Republic of)

    1995-12-01

    The purpose of this study is to test the possibility of using sICAM-1 as a marker for follow-up of treatment. The micro-ELISA method was adopted. The brain stem gliomas showed positive results in 67%. Overall, 23% of brain tumors showed positive results. It is possible that we can use sICAM-1 as a marker for metastatic brain tumors, and measurement after radiation therapy is not reliable. 6 refs. (Author) (Author).

  16. Comparison of Swallowing Functions Between Brain Tumor and Stroke Patients

    OpenAIRE

    Park, Dae Hwan; Chun, Min Ho; Lee, Sook Joung; Song, Yoon Bum

    2013-01-01

    Objective To compare the swallowing functions according to the lesion locations between brain tumor and stroke patients. Methods Forty brain tumor patients and the same number of age-, lesion-, and functional status-matching stroke patients were enrolled in this study. Before beginning the swallowing therapy, swallowing function was evaluated in all subjects by videofluoroscopic swallowing study. Brain lesions were classified as either supratentorial or in-fratentorial. We evaluated the follo...

  17. Brain Tumor Detection Based On Mathematical Analysis and Symmetry Information

    OpenAIRE

    G., Narkhede Sachin; Khairnar, Vaishali; Kadu, Sujata

    2014-01-01

    Image segmentation some of the challenging issues on brain magnetic resonance image tumor segmentation caused by the weak correlation between magnetic resonance imaging intensity and anatomical meaning.With the objective of utilizing more meaningful information to improve brain tumor segmentation,an approach which employs bilateral symmetry information as an additional feature for segmentation is proposed.This is motivated by potential performance improvement in the general automatic brain tu...

  18. Research on Perfusion CT in Rabbit Brain Tumor Model

    International Nuclear Information System (INIS)

    We investigated the vascular characteristics of tumors and normal tissue using perfusion CT in the rabbit brain tumor model. The VX2 carcinoma concentration of 1 x 107 cells/ml(0.1 ml) was implanted in the brain of nine New Zealand white rabbits (weight: 2.4 kg-3.0 kg, mean: 2.6 kg). The perfusion CT was scanned when the tumors were grown up to 5 mm. The tumor volume and perfusion value were quantitatively analyzed by using commercial workstation (advantage windows workstation, AW, version 4.2, GE, USA). The mean volume of implanted tumors was 316±181 mm3, and the biggest and smallest volumes of tumor were 497 mm3 and 195 mm3, respectively. All the implanted tumors in rabbits are single-nodular tumors, and intracranial metastasis was not observed. In the perfusion CT, cerebral blood volume (CBV) were 74.40±9.63, 16.8±0.64, 15.24±3.23 ml/100g in the tumor core, ipsilateral normal brain, and contralateral normal brain, respectively (p≤0.05). In the cerebral blood flow (CBF), there were significant differences between the tumor core and both normal brains (p≤0.05), but no significant differences between ipsilateral and contralateral normal brains (962.91±75.96 vs. 357.82±12.82 vs. 323.19±83.24 ml/100g/min). In the mean transit time (MTT), there were significant differences between the tumor core and both normal brains (p≤0.05), but no significant differences between ipsilateral and contralateral normal brains (4.37±0.19 vs. 3.02±0.41 vs. 2.86±0.22 sec). In the permeability surface (PS), there were significant differences among the tumor core, ipsilateral and contralateral normal brains (47.23±25.44 vs. 14.54±1.60 vs. 6.81±4.20 ml/100g/min)(p≤0.05). In the time to peak (TTP) were no significant differences among the tumor core, ipsilateral and contralateral normal brains. In the positive enhancement integral (PEI), there were significant differences among the tumor core, ipsilateral and contralateral brains (61.56±16.07 vs. 12.58±2.61 vs. 8.26±5

  19. Research on Perfusion CT in Rabbit Brain Tumor Model

    Energy Technology Data Exchange (ETDEWEB)

    Ha, Bon Chul; Kwak, Byung Kook; Jung, Ji Sung [Dept. of Diagnostic Radiology, Chung Ang University Hospital, Seoul (Korea, Republic of); Lim, Cheong Hwan; Jung, Hong Ryang [Dept. of Radiological Science, Hanseo University, Seosan (Korea, Republic of)

    2012-06-15

    We investigated the vascular characteristics of tumors and normal tissue using perfusion CT in the rabbit brain tumor model. The VX2 carcinoma concentration of 1 x 10{sup 7} cells/ml(0.1 ml) was implanted in the brain of nine New Zealand white rabbits (weight: 2.4 kg-3.0 kg, mean: 2.6 kg). The perfusion CT was scanned when the tumors were grown up to 5 mm. The tumor volume and perfusion value were quantitatively analyzed by using commercial workstation (advantage windows workstation, AW, version 4.2, GE, USA). The mean volume of implanted tumors was 316{+-}181 mm{sup 3}, and the biggest and smallest volumes of tumor were 497 mm{sup 3} and 195 mm{sup 3}, respectively. All the implanted tumors in rabbits are single-nodular tumors, and intracranial metastasis was not observed. In the perfusion CT, cerebral blood volume (CBV) were 74.40{+-}9.63, 16.8{+-}0.64, 15.24{+-}3.23 ml/100g in the tumor core, ipsilateral normal brain, and contralateral normal brain, respectively (p{<=}0.05). In the cerebral blood flow (CBF), there were significant differences between the tumor core and both normal brains (p{<=}0.05), but no significant differences between ipsilateral and contralateral normal brains (962.91{+-}75.96 vs. 357.82{+-}12.82 vs. 323.19{+-}83.24 ml/100g/min). In the mean transit time (MTT), there were significant differences between the tumor core and both normal brains (p{<=}0.05), but no significant differences between ipsilateral and contralateral normal brains (4.37{+-}0.19 vs. 3.02{+-}0.41 vs. 2.86{+-}0.22 sec). In the permeability surface (PS), there were significant differences among the tumor core, ipsilateral and contralateral normal brains (47.23{+-}25.44 vs. 14.54{+-}1.60 vs. 6.81{+-}4.20 ml/100g/min)(p{<=}0.05). In the time to peak (TTP) were no significant differences among the tumor core, ipsilateral and contralateral normal brains. In the positive enhancement integral (PEI), there were significant differences among the tumor core, ipsilateral and

  20. Experimental evidence for sex-specific plasticity in adult brain

    OpenAIRE

    Herczeg, Gábor; Gonda, Abigél; Balázs, Gergely; Noreikiene, Kristina; Merilä, Juha

    2015-01-01

    Background Plasticity in brain size and the size of different brain regions during early ontogeny is known from many vertebrate taxa, but less is known about plasticity in the brains of adults. In contrast to mammals and birds, most parts of a fish’s brain continue to undergo neurogenesis throughout adulthood, making lifelong plasticity in brain size possible. We tested whether maturing adult three-spined sticklebacks (Gasterosteus aculeatus) reared in a stimulus-poor environment exhibited br...

  1. Blood Brain Barrier: A Challenge for Effectual Therapy of Brain Tumors

    OpenAIRE

    Arijit Bhowmik; Rajni Khan; Mrinal Kanti Ghosh

    2015-01-01

    Brain tumors are one of the most formidable diseases of mankind. They have only a fair to poor prognosis and high relapse rate. One of the major causes of extreme difficulty in brain tumor treatment is the presence of blood brain barrier (BBB). BBB comprises different molecular components and transport systems, which in turn create efflux machinery or hindrance for the entry of several drugs in brain. Thus, along with the conventional techniques, successful modification of drug delivery and n...

  2. High Toxoplasma gondii Seropositivity among Brain Tumor Patients in Korea

    Science.gov (United States)

    Jung, Bong-Kwang; Song, Hyemi; Kim, Min-Jae; Cho, Jaeeun; Shin, Eun-Hee; Chai, Jong-Yil

    2016-01-01

    Toxoplasma gondii is an intracellular protozoan that can modulate the environment of the infected host. An unfavorable environment modulated by T. gondii in the brain includes tumor microenvironment. Literature has suggested that T. gondii infection is associated with development of brain tumors. However, in Korea, epidemiological data regarding this correlation have been scarce. In this study, in order to investigate the relationship between T. gondii infection and brain tumor development, we investigated the seroprevalence of T. gondii among 93 confirmed brain tumor patients (various histological types, including meningioma and astrocytoma) in Korea using ELISA. The results revealed that T. gondii seropositivity among brain tumor patients (18.3%) was significantly (P<0.05) higher compared with that of healthy controls (8.6%). The seropositivity of brain tumor patients showed a significant age-tendency, i.e., higher in younger age group, compared with age-matched healthy controls (P<0.05). In conclusion, this study supports the close relationship between T. gondii infection and incidence of brain tumors. PMID:27180580

  3. Absence of pathogenic mitochondrial DNA mutations in mouse brain tumors

    International Nuclear Information System (INIS)

    Somatic mutations in the mitochondrial genome occur in numerous tumor types including brain tumors. These mutations are generally found in the hypervariable regions I and II of the displacement loop and unlikely alter mitochondrial function. Two hypervariable regions of mononucleotide repeats occur in the mouse mitochondrial genome, i.e., the origin of replication of the light strand (OL) and the Arg tRNA. In this study we examined the entire mitochondrial genome in a series of chemically induced brain tumors in the C57BL/6J strain and spontaneous brain tumors in the VM mouse strain. The tumor mtDNA was compared to that of mtDNA in brain mitochondrial populations from the corresponding syngeneic mouse host strain. Direct sequencing revealed a few homoplasmic base pair insertions, deletions, and substitutions in the tumor cells mainly in regions of mononucleotide repeats. A heteroplasmic mutation in the 16srRNA gene was detected in a spontaneous metastatic VM brain tumor. None of the mutations were considered pathogenic, indicating that mtDNA somatic mutations do not likely contribute to the initiation or progression of these diverse mouse brain tumors

  4. Absence of pathogenic mitochondrial DNA mutations in mouse brain tumors

    Directory of Open Access Journals (Sweden)

    Seyfried Thomas N

    2005-08-01

    Full Text Available Abstract Background Somatic mutations in the mitochondrial genome occur in numerous tumor types including brain tumors. These mutations are generally found in the hypervariable regions I and II of the displacement loop and unlikely alter mitochondrial function. Two hypervariable regions of mononucleotide repeats occur in the mouse mitochondrial genome, i.e., the origin of replication of the light strand (OL and the Arg tRNA. Methods In this study we examined the entire mitochondrial genome in a series of chemically induced brain tumors in the C57BL/6J strain and spontaneous brain tumors in the VM mouse strain. The tumor mtDNA was compared to that of mtDNA in brain mitochondrial populations from the corresponding syngeneic mouse host strain. Results Direct sequencing revealed a few homoplasmic base pair insertions, deletions, and substitutions in the tumor cells mainly in regions of mononucleotide repeats. A heteroplasmic mutation in the 16srRNA gene was detected in a spontaneous metastatic VM brain tumor. Conclusion None of the mutations were considered pathogenic, indicating that mtDNA somatic mutations do not likely contribute to the initiation or progression of these diverse mouse brain tumors.

  5. Pituitary Tumors

    Science.gov (United States)

    ... Tumors Oligoastrocytoma Oligodendroglioma Pineal Tumor Pituitary Tumor PNET Schwannoma Risk Factors Brain Tumor Facts Brain Tumor Dictionary ... Tumors Oligoastrocytoma Oligodendroglioma Pineal Tumor Pituitary Tumor PNET Schwannoma Risk Factors Brain Tumor Facts Brain Tumor Dictionary ...

  6. Computational modeling of brain tumors: discrete, continuum or hybrid?

    Science.gov (United States)

    Wang, Zhihui; Deisboeck, Thomas S.

    In spite of all efforts, patients diagnosed with highly malignant brain tumors (gliomas), continue to face a grim prognosis. Achieving significant therapeutic advances will also require a more detailed quantitative understanding of the dynamic interactions among tumor cells, and between these cells and their biological microenvironment. Data-driven computational brain tumor models have the potential to provide experimental tumor biologists with such quantitative and cost-efficient tools to generate and test hypotheses on tumor progression, and to infer fundamental operating principles governing bidirectional signal propagation in multicellular cancer systems. This review highlights the modeling objectives of and challenges with developing such in silico brain tumor models by outlining two distinct computational approaches: discrete and continuum, each with representative examples. Future directions of this integrative computational neuro-oncology field, such as hybrid multiscale multiresolution modeling are discussed.

  7. Cilengitide in Treating Children With Refractory Primary Brain Tumors

    Science.gov (United States)

    2013-09-27

    Childhood Central Nervous System Germ Cell Tumor; Childhood Choroid Plexus Tumor; Childhood Craniopharyngioma; Childhood Ependymoblastoma; Childhood Grade I Meningioma; Childhood Grade II Meningioma; Childhood Grade III Meningioma; Childhood High-grade Cerebellar Astrocytoma; Childhood High-grade Cerebral Astrocytoma; Childhood Infratentorial Ependymoma; Childhood Low-grade Cerebellar Astrocytoma; Childhood Low-grade Cerebral Astrocytoma; Childhood Medulloepithelioma; Childhood Mixed Glioma; Childhood Oligodendroglioma; Childhood Supratentorial Ependymoma; Recurrent Childhood Brain Stem Glioma; Recurrent Childhood Brain Tumor; Recurrent Childhood Cerebellar Astrocytoma; Recurrent Childhood Cerebral Astrocytoma; Recurrent Childhood Ependymoma; Recurrent Childhood Medulloblastoma; Recurrent Childhood Pineoblastoma; Recurrent Childhood Subependymal Giant Cell Astrocytoma; Recurrent Childhood Supratentorial Primitive Neuroectodermal Tumor; Recurrent Childhood Visual Pathway and Hypothalamic Glioma

  8. Application of 31P MR spectroscopy to the brain tumors

    International Nuclear Information System (INIS)

    To evaluate the clinical feasibility and obtain useful parameters of 31P magnetic resonance spectroscopy (MRS) study for making the differential diagnosis of brain tumors. Twenty-eight patients with brain tumorous lesions (22 cases of brain tumor and 6 cases of abscess) and 11 normal volunteers were included. The patients were classified into the astrocytoma group, lymphoma group, metastasis group and the abscess group. We obtained the intracellular pH and the metabolite ratios of phosphomonoesters/phosophodiesters (PME/PDE), PME/inorganic phosphate (Pi), PDE/Pi, PME/adenosine triphosphate (ATP), PDE/ATP, PME/phosphocreatine (PCr), PDE/PCr, PCr/ATP, PCr/Pi, and ATP/Pi, and evaluated the statistical significances. The brain tumors had a tendency of alkalization (pH = 7.28 ± 0.27, p = 0.090), especially the pH of the lymphoma was significantly increased (pH = 7.45 ± 0.32, p = 0.013). The brain tumor group showed increased PME/PDE ratio compared with that in the normal control group (p 0.012). The ratios of PME/PDE, PDE/Pi, PME/PCr and PDE/PCr showed statistically significant differences between each brain lesion groups (p 1'P MRS, and the pH, PME/PDE, PDE/Pi, PME/PCr, and PDE/PCr ratios are helpful for differentiating among the different types of brain tumors.

  9. Treatment Option Overview (Adult Brain Tumors)

    Science.gov (United States)

    ... Unknown Primary Treatment Colon Cancer Treatment Leukemia Home Page Melanoma Treatment Nasopharyngeal Cancer Treatment Non-Small Cell Lung Cancer Treatment Renal Cell Cancer Treatment Small Cell ...

  10. General Information about Adult Brain Tumors

    Science.gov (United States)

    ... Unknown Primary Treatment Colon Cancer Treatment Leukemia Home Page Melanoma Treatment Nasopharyngeal Cancer Treatment Non-Small Cell Lung Cancer Treatment Renal Cell Cancer Treatment Small Cell ...

  11. Somatostatin receptor scintigraphy in brain tumors and pituitary tumors: First experiences

    International Nuclear Information System (INIS)

    This preliminary study embraced 45 patients with meningiomas, brain tumors or pituitary tumors, which were imaged by planar and tomographic scintigraphy after intravenous injection of 111Indium-labeled octreotide. In all of the meningiomas studied (unifocal and multifocal tumors in various locations), a high density of somatostatin receptors was detected by scintigraphy. Pituitary tumors were slightly positive in 50% of cases only, independent of the endocrine activity. Gliomas with an intact blood-brain barrier showed no enhanced tracer uptake in vivo, while gliomas with distributed blood-brain barrier had a high activity uptake. We conclude that in vivo somatostatin receptor scintigraphy, although not tumor-specific, may aid in the preoperative diagnosis and staging of intracranial tumors, especially skull base tumors. (orig.)

  12. Cortical Plasticity in the Setting of Brain Tumors.

    Science.gov (United States)

    Fisicaro, Ryan A; Jost, Ethan; Shaw, Katharina; Brennan, Nicole Petrovich; Peck, Kyung K; Holodny, Andrei I

    2016-02-01

    Cortical reorganization of function due to the growth of an adjacent brain tumor has clearly been demonstrated in a number of surgically proven cases. Such cases demonstrate the unmistakable implications for the neurosurgical treatment of brain tumors, as the cortical function may not reside where one may initially suspect based solely on the anatomical magnetic resonance imaging (MRI). Consequently, preoperative localization of eloquent areas adjacent to a brain tumor is necessary, as this may demonstrate unexpected organization, which may affect the neurosurgical approach to the lesion. However, in interpreting functional MRI studies, the interpreting physician must be cognizant of artifacts, which may limit the accuracy of functional MRI in the setting of brain tumors. PMID:26848558

  13. Imaging of brain tumors with histological correlations. 2. ed.

    Energy Technology Data Exchange (ETDEWEB)

    Drevelegas, Antonios (ed.)

    2011-07-01

    This volume provides a deeper understanding of the diagnosis of brain tumors by correlating radiographic imaging features with the underlying pathological abnormalities. All modern imaging modalities are used to complete a diagnostic overview of brain tumors with emphasis on recent advances in diagnostic neuroradiology. High-quality illustrations depicting common and uncommon imaging characteristics of a wide range of brain tumors are presented and analysed, drawing attention to the ways in which these characteristics reflect different aspects of pathology. Important theoretical considerations are also discussed. Since the first edition, chapters have been revised and updated and new material has been added, including detailed information on the clinical application of functional MRI and diffusion tensor imaging. Radiologists and other clinicians interested in the current diagnostic approach to brain tumors will find this book to be an invaluable and enlightening clinical tool. (orig.)

  14. Childhood exposure to ionizing radiation and brain tumors

    International Nuclear Information System (INIS)

    Brain has been categorized into the low risk group of radiogenic tumors. However, recent epidemiologic studies on the cancer risks among children who received repeated CT scans, radiotherapies and A-bomb have revealed that low-to-moderate dose of ionizing radiation is effective to induce brain tumors. Ionizing radiation is more strongly associated with risk for meningiomas and schwannomas compared to gliomas. While risk of meningiomas is independent of age at the time of exposure, that of gliomas is profoundly high after neonatal and infantile exposures. Inherited susceptibility to brain tumors is suggested by family history or cancer prone syndromes. People with certain gene mutations such as RB, NF1 or PTCH1 are associated with enhanced cancer risk after radiotherapies. Genetic polymorphism of cancer-related genes on brain tumor risk deserves further investigation. (author)

  15. Clinical results of BNCT for malignant brain tumors in children

    International Nuclear Information System (INIS)

    It is very difficult to treat the patients with malignant brain tumor in children, especially under 3 years, because the conventional irradiation cannot be applied due to the damage of normal brain tissue. However, boron neutron capture therapy (BNCT) has tumor selectivity such that it can make damage only in tumor cells. We evaluated the clinical results and courses in patients with malignant glioma under 15 years. Among 183 patients with brain tumors treated by our group using BSH-based intra-operative BNCT, 23 patients were under 15 years. They included 4 patients under 3 years. There were 3 glioblastomas (GBM), 6 anaplastic astrocytomas(AAS), 7 primitive neuroectodermal tumors (PNET), 6 pontine gliomas and 1 anaplastic ependymoma. All GBM and PNET patients died due to CSF and/or CNS dissemination without local tumor regrowth. All pontine glioma patients died due to regrowth of the tumor. Four of 6 anaplastic astrocytoma and 1 anaplastic ependymoma patients alive without tumor recurrence. BNCT can be applied to malignant brain tumors in children, especially under 3 years instead of conventional radiation. Although it can achieve the local control in the primary site, it cannot prevent CSF dissemination in patients with glioblastoma.

  16. Clinical results of BNCT for malignant brain tumors in children

    Energy Technology Data Exchange (ETDEWEB)

    Nakagawa, Yoshinobu [Department of Neurosurgery, Kagawa National Children' s Hospital, Kagawa 765-8501 (Japan)], E-mail: ynakagawa0517@yahoo.co.jp; Kageji, Teruyoshi; Mizobuchi, Yoshifumi [Department of Neurosurgery, University of Tokushima, Tokushima 770-8503 (Japan); Kumada, Hiroaki [Department of Research Reactor, Japan Atomic Energy Research Institute, Ibaragi 319-1195 (Japan); Nakagawa, Yoshiaki [Department of Medical Informatics, Post Graduated School, Kyoto University, Kyoto (Japan)

    2009-07-15

    It is very difficult to treat the patients with malignant brain tumor in children, especially under 3 years, because the conventional irradiation cannot be applied due to the damage of normal brain tissue. However, boron neutron capture therapy (BNCT) has tumor selectivity such that it can make damage only in tumor cells. We evaluated the clinical results and courses in patients with malignant glioma under 15 years. Among 183 patients with brain tumors treated by our group using BSH-based intra-operative BNCT, 23 patients were under 15 years. They included 4 patients under 3 years. There were 3 glioblastomas (GBM), 6 anaplastic astrocytomas(AAS), 7 primitive neuroectodermal tumors (PNET), 6 pontine gliomas and 1 anaplastic ependymoma. All GBM and PNET patients died due to CSF and/or CNS dissemination without local tumor regrowth. All pontine glioma patients died due to regrowth of the tumor. Four of 6 anaplastic astrocytoma and 1 anaplastic ependymoma patients alive without tumor recurrence. BNCT can be applied to malignant brain tumors in children, especially under 3 years instead of conventional radiation. Although it can achieve the local control in the primary site, it cannot prevent CSF dissemination in patients with glioblastoma.

  17. From reverse transcription to human brain tumors

    Directory of Open Access Journals (Sweden)

    Dmitrenko V. V.

    2013-05-01

    Full Text Available Reverse transcriptase from avian myeloblastosis virus (AMV was the subject of the study, from which the investi- gations of the Department of biosynthesis of nucleic acids were started. Production of AMV in grams quantities and isolation of AMV reverse transcriptase were established in the laboratory during the seventies of the past cen- tury and this initiated research on the cDNA synthesis, cloning and investigation of the structure and functions of the eukaryotic genes. Structures of salmon insulin and insulin-like growth factor (IGF family genes and their transcripts were determined during long-term investigations. Results of two modern techniques, microarray-ba- sed hybridization and SAGE, were used for the identification of the genes differentially expressed in astrocytic gliomas and human normal brain. Comparison of SAGE results on the genes overexpressed in glioblastoma with the results of microarray analysis revealed a limited number of common genes. 105 differentially expressed genes, common to both methods, can be included in the list of candidates for the molecular typing of glioblastoma. The first experiments on the classification of glioblastomas based on the data of the 20 genes expression were conducted by using of artificial neural network analysis. The results of these experiments showed that the expression profiles of these genes in 224 glioblastoma samples and 74 normal brain samples could be according to the Koho- nen’s maps. The CHI3L1 and CHI3L2 genes of chitinase-like cartilage protein were revealed among the most overexpressed genes in glioblastoma, which could have prognostic and diagnostic potential. Results of in vitro experiments demonstrated that both proteins, CHI3L1 and CHI3L2, may initiate the phosphorylation of ERK1/ ERK2 and AKT kinases leading to the activation of MAPK/ERK1/2 and PI3K/AKT signaling cascades in human embryonic kidney 293 cells, human glioblastoma U87MG, and U373 cells. The new human cell line

  18. The Potential Impact of Biofield Treatment on Human Brain Tumor Cells: A Time-Lapse Video Microscopy

    OpenAIRE

    Trivedi, Mahendra Kumar

    2015-01-01

    Study background: Glioblastoma (GBM) is the most common subtype of primary brain tumor in adults. The aim was to evaluate the impact of biofield treatment potential on human GBM and non-GBM brain cells using two time-lapse video microscopy technique. Methods: The human brain tumor, GBM cultured cells were divided into two groups viz. GBM control and GBM treatment. Similarly, human normal brain cultured cells (non-GBM) were taken and divided into two groups viz. non- GBM control ...

  19. Clinical impact of anatomo-functional evaluation of brain function during brain tumor surgery

    International Nuclear Information System (INIS)

    To attempt to improve surgical outcome of brain surgery, clinical significance of anatomo-functional evaluation of brain function during resection of brain tumors was assessed. Seventy four patients with glioma located near eloquent areas underwent surgery while awake. Intraoperative tractography-integrated functional neuronavigation and cortical/subcortical electrical stimulation were correlated with clinical symptoms during and after resection of tumors. Cortical functional areas were safely removed with negative electric stimulation and eloquent cortices could be removed in some circumstances. Subcortical functional mapping was difficult except for motor function. Studying cortical functional compensation allows more extensive removal of brain tumors located in the eloquent areas. (author)

  20. Automatic detection of brain tumors in MR images

    Czech Academy of Sciences Publication Activity Database

    Dvořák, P.; Kropatsch, W.G.; Bartušek, Karel

    Brno: University of technolgy, 2013, s. 577-580. ISBN 978-1-4799-0404-4. [International conference on telecommunications and signal processing /36./. Rome (IT), 02.07.2013-04.07.2013] R&D Projects: GA ČR GAP102/12/1104; GA MŠk ED0017/01/01 Institutional support: RVO:68081731 Keywords : brain symmetry * brain tumor * magnetic resonance * tumor detection Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering

  1. Proteomic and immunologic analyses of brain tumor exosomes

    OpenAIRE

    Graner, Michael W.; Alzate, Oscar; Dechkovskaia, Angelika M.; Keene, Jack D.; Sampson, John H; Mitchell, Duane A; Bigner, Darell D.

    2009-01-01

    Brain tumors are horrific diseases with almost universally fatal outcomes; new therapeutics are desperately needed and will come from improved understandings of glioma biology. Exosomes are endosomally derived 30–100 nm membranous vesicles released from many cell types into the extracellular milieu; surprisingly, exosomes are virtually unstudied in neuro-oncology. These microvesicles were used as vaccines in other tumor settings, but their immunological significance is unevaluated in brain tu...

  2. Glutamate Release by Primary Brain Tumors Induces Epileptic Activity

    OpenAIRE

    Buckingham, Susan C.; Campbell, Susan L.; Haas, Brian R.; Montana, Vedrana; Robel, Stefanie; Ogunrinu, Toyin; Sontheimer, Harald

    2011-01-01

    Epileptic seizures are a common and poorly understood co-morbidity for individuals with primary brain tumors. To investigate peritumoral seizure etiology, we implanted patient-derived glioma cells into scid mice. Within 14–18 days, glioma-bearing animals developed spontaneous, recurring abnormal EEG events consistent with epileptic activity that progressed over time. Acute brain slices from these animals showed significant glutamate release from the tumor mediated by the system xc − cystine/g...

  3. Specific features of epilepsy in children with brain tumors

    OpenAIRE

    G. V. Kalmykova; A. F. Neretina; Zh. Yu. Chefranova

    2015-01-01

    Objective: to study the specific features of epilepsy in children and adolescents with brain tumors and to define the optimal tactics of management and antiepileptic therapy after surgical treatment. Patients and methods. Sixty-one patients aged 5 months to 15 years were examined. All the patients were diagnosed as having a brain tumor found in the presence of symptomatic epilepsy. They were all followed up for 5 years postsurgery or during their lifetime (in case of death). Comprehensive exa...

  4. Brain Tumor Detection Based On Mathematical Analysis and Symmetry Information

    OpenAIRE

    Narkhede Sachin G.,; Prof. Vaishali Khairnar

    2014-01-01

    Image segmentation some of the challenging issues on brain magnetic resonance (MR) image tumor segmentation caused by the weak correlation between magnetic resonance imaging (MRI) intensity and anatomical meaning. With the objective of utilizing more meaningful information to improve brain tumor segmentation, an approach which employs bilateral symmetry information as an additional feature for segmentation is proposed. This is motivated by potential performance improvement in ...

  5. FDTD analysis of a noninvasive hyperthermia system for brain tumors

    Directory of Open Access Journals (Sweden)

    Yacoob Sulafa M

    2012-08-01

    Full Text Available Abstract Background Hyperthermia is considered one of the new therapeutic modalities for cancer treatment and is based on the difference in thermal sensitivity between healthy tissues and tumors. During hyperthermia treatment, the temperature of the tumor is raised to 40–45°C for a definite period resulting in the destruction of cancer cells. This paper investigates design, modeling and simulation of a new non-invasive hyperthermia applicator system capable of effectively heating deep seated as well as superficial brain tumors using inexpensive, simple, and easy to fabricate components without harming surrounding healthy brain tissues. Methods The proposed hyperthermia applicator system is composed of an air filled partial half ellipsoidal chamber, a patch antenna, and a head model with an embedded tumor at an arbitrary location. The irradiating antenna is placed at one of the foci of the hyperthermia chamber while the center of the brain tumor is placed at the other focus. The finite difference time domain (FDTD method is used to compute both the SAR patterns and the temperature distribution in three different head models due to two different patch antennas at a frequency of 915 MHz. Results The obtained results suggest that by using the proposed noninvasive hyperthermia system it is feasible to achieve sufficient and focused energy deposition and temperature rise to therapeutic values in deep seated as well as superficial brain tumors without harming surrounding healthy tissue. Conclusions The proposed noninvasive hyperthermia system proved suitable for raising the temperature in tumors embedded in the brain to therapeutic values by carefully selecting the systems components. The operator of the system only needs to place the center of the brain tumor at a pre-specified location and excite the antenna at a single frequency of 915 MHz. Our study may provide a basis for a clinical applicator prototype capable of heating brain tumors.

  6. Assessment of brain retraction injury from tumor operation with 99Tcm-ECD brain SPECT imaging

    International Nuclear Information System (INIS)

    Objective: To evaluate the rCBF of brain retraction injury by 99Tcm-ECD SPECT imaging. Methods: The 99Tcm-ECD SPECT brain imaging was performed in 21 patients with brain tumor before and after operation. To compare the rCBF of peripheral tumor region with that of retraction injury region by semi-quantitative analysis. The rCBF levels of the central and peripheral areas of brain retraction injury were also studied. Results: Both the peripheral tumor region before operation and retraction region after operation were ischemic, but the difference between them was significant (P99Tcm-ECD SPECT brain imaging is a useful technique in detecting retraction injury come from brain tumor operation

  7. The impact of dietary isoflavonoids on malignant brain tumors.

    Science.gov (United States)

    Sehm, Tina; Fan, Zheng; Weiss, Ruth; Schwarz, Marc; Engelhorn, Tobias; Hore, Nirjhar; Doerfler, Arnd; Buchfelder, Michael; Eyüpoglu, Iiker Y; Savaskan, Nic E

    2014-08-01

    Poor prognosis and limited therapeutic options render malignant brain tumors one of the most devastating diseases in clinical medicine. Current treatment strategies attempt to expand the therapeutic repertoire through the use of multimodal treatment regimens. It is here that dietary fibers have been recently recognized as a supportive natural therapy in augmenting the body's response to tumor growth. Here, we investigated the impact of isoflavonoids on primary brain tumor cells. First, we treated glioma cell lines and primary astrocytes with various isoflavonoids and phytoestrogens. Cell viability in a dose-dependent manner was measured for biochanin A (BCA), genistein (GST), and secoisolariciresinol diglucoside (SDG). Dose-response action for the different isoflavonoids showed that BCA is highly effective on glioma cells and nontoxic for normal differentiated brain tissues. We further investigated BCA in ex vivo and in vivo experimentations. Organotypic brain slice cultures were performed and treated with BCA. For in vivo experiments, BCA was intraperitoneal injected in tumor-implanted Fisher rats. Tumor size and edema were measured and quantified by magnetic resonance imaging (MRI) scans. In vascular organotypic glioma brain slice cultures (VOGIM) we found that BCA operates antiangiogenic and neuroprotective. In vivo MRI scans demonstrated that administered BCA as a monotherapy was effective in reducing significantly tumor-induced brain edema and showed a trend for prolonged survival. Our results revealed that dietary isoflavonoids, in particular BCA, execute toxicity toward glioma cells, antiangiogenic, and coevally neuroprotective properties, and therefore augment the range of state-of-the-art multimodal treatment approach. PMID:24898306

  8. MR imaging of solid cerebellar tumors in adult

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Kee Hyun; Han, Moon Hee; Yu, In Kyu [Seoul National University College of Medicine, Seoul (Korea, Republic of); Choo, Sung Wook; Byun, Hong Sik [Samsung Medical Center, Seoul (Korea, Republic of); Choi, Kyu Ho; Kim, Ki Jun [Catholic University Medical College, Seoul (Korea, Republic of)

    1995-07-15

    The solid variety of cerebellar tumors in adult is relatively uncommon. This study is to describe the characteristic MR findings of various solid cerebellar tumors in adult. Twenty three cerebellar solid tumors from 22 consecutive patients over age of 15 with surgical confirmations were retrospectively evaluated with MR findings. Histologic diagnosis included hemangioblastoma (n = 6), metastasis (n = 6), high-grade astrocytoma (n = 3), and medulloblastoma (n = 8). The MR findings were reviewed with attention of the size, the signal intensity of the tumors, pattern of enhancement, tumoral margin, degree of peritumoral edema, signal void vascular structures within and/or around the tumor, and location in relation to attachment to the pial surface of the tumor. Solid hemangioblastomas consistently showed slightly low or iso signal intensity on T1-weighted images and high intensity on T2-weighted images, dense homogeneous enhancement, and signal void vessels within and/or around the mass. Metastatic tumors showed various findings with predominantly low or iso signal intensity on T2-weighted images. Medulloblastomas was midline and/or paramidline in location, and had larger mass formation. High-grade astrocytomas revealed nonspecific MR findings with no signal void vessels. Hemangioblastoma, metastasis, malignant astrocytoma, and medulloblastoma should be included in differential diagnosis of solid cerebellar tumors in adult. Dense homogeneous enhancement and signal void vessels are characteristic of hemangioblastoma. The signal intensity of the tumor, and presence of signal void vessels, location and enhancement pattern can be some value in differential diagnosis of solid cerebellar tumors in adult.

  9. Brain tumor imaging of rat fresh tissue using terahertz spectroscopy

    Science.gov (United States)

    Yamaguchi, Sayuri; Fukushi, Yasuko; Kubota, Oichi; Itsuji, Takeaki; Ouchi, Toshihiko; Yamamoto, Seiji

    2016-07-01

    Tumor imaging by terahertz spectroscopy of fresh tissue without dye is demonstrated using samples from a rat glioma model. The complex refractive index spectrum obtained by a reflection terahertz time-domain spectroscopy system can discriminate between normal and tumor tissues. Both the refractive index and absorption coefficient of tumor tissues are higher than those of normal tissues and can be attributed to the higher cell density and water content of the tumor region. The results of this study indicate that terahertz technology is useful for detecting brain tumor tissue.

  10. Brain abscesses in diffusion-weighted imaging (DWI) - comparison to cystic brain tumors

    International Nuclear Information System (INIS)

    The clinical usefulness of diffusion-weighted imaging (DWI) was evaluated in patients with brain abscesses in comparison to patients with cystic brain tumors. Five patients with surgically confirmed brain abscesses underwent beside a brain MRI examination with contrast media application diffusion weighted imaging. Apparent diffusion coefficients (rADC) in three orthogonal diffusion gradient were calculated. The same protocol was used to examine 5 patients with cystic brain tumors. Showing an rADC of 0.33 x 10-3/mm2/s abscesses have a highly restricted diffusion in comparison to cystic brain tumors with an rADC of 1,67 x 10-3/mm2/s. Diffusion weighted imaging is a usefull diagnostic tool in the work up of brain abscesses. (orig.)

  11. Evaluation of intraoperative brain shift using an ultrasound-linked navigation system for brain tumor surgery

    International Nuclear Information System (INIS)

    Image-guided neurosurgery using navigation systems is an essential tool to increase accuracy in brain tumor surgery. However, brain shift during surgery has remained problematic. The present study evaluated the utility of a new ultrasound (US)-linked navigation system for brain tumor surgery in 64 patients with intracranial tumors. The navigation system consisted of a StealthStationTM navigation system, a SonoNavTM system, and a standard US scanner. This system determines the orientation of the US images and reformats the images from preoperative computed tomography (CT) or magnetic resonance (MR) imaging to match the US images. The system was used intraoperatively to measure brain shift several times, using the results to guide tumor resection. US-linked navigation provided information regarding brain shift, and extent of tumor resection during surgery. Evaluation of brain shift was easily achieved in all patients, without using intraoperative CT or MR imaging. Accurate information regarding the true anatomical configuration of the patient could be obtained in all phases of the operation. Magnitude of brain shift increased progressively from pre- to post-resection and depended on the type of cranial structure. Integration of the US scanner with the navigation system allowed comparisons between the intraoperative US and preoperative images, thus improving interpretation of US images. The system also improved the rate of tumor resection by facilitating the detection of remnant tumor tissue. This US-linked navigation system provides information on brain shift, and improves the accuracy and utility of image-guided surgery. (author)

  12. Neuropsychological function in adults after high dose fractionated radiation therapy of skull base tumors

    International Nuclear Information System (INIS)

    Purpose: To evaluate the long term effects of high dose fractionated radiation therapy on brain functioning prospectively in adults without primary brain tumors. Methods and Materials: Seventeen patients with histologically confirmed chordomas and low grade chondrosarcomas of the skull base were evaluated with neuropsychological measures of intelligence, language, memory, attention, motor function and mood following surgical resection/biopsy of the tumor prior to irradiation, and then at about 6 months, 2 years and 4 years following completion of treatment. None received chemotherapy. Results: In the patients without tumor recurrence or radiation necrosis, there were no indications of adverse effects on cognitive functioning in the post-acute through the late stages after brain irradiation. Even in patients who received doses of radiation up to 66 Cobalt Gy equivalent through nondiseased (temporal lobe) brain tissue, memory and cognitive functioning remained stable for up to 5 years after treatment. A mild decline in psycho-motor speed was seen in more than half of the patients, and motor slowing was related to higher radiation doses in midline and temporal lobe brain structures. Conclusion: Results suggest that in adults, tolerance for focused radiation is relatively high in cortical brain structures

  13. The Multimodal Brain Tumor Image Segmentation Benchmark (BRATS)

    DEFF Research Database (Denmark)

    Menze, Bjoern H.; Jakab, Andras; Bauer, Stefan;

    2015-01-01

    In this paper we report the set-up and results of the Multimodal Brain Tumor Image Segmentation Benchmark (BRATS) organized in conjunction with the MICCAI 2012 and 2013 conferences. Twenty state-of-the-art tumor segmentation algorithms were applied to a set of 65 multi-contrast MR scans of low- a...

  14. Wilms Tumor: An Uncommon Entity in the Adult Patient

    Science.gov (United States)

    Mahmoud, Fade; Allen, M Brandon; Cox, Roni; Davis, Rodney

    2016-01-01

    Wilms tumor, the most common kidney tumor in children, is rarely seen in adults, making it a challenge for the adult oncologist to diagnose and treat. Unlike with renal cell carcinoma, patients with Wilms tumor should receive adjuvant chemotherapy with or without radiation therapy. Adult oncologists may not be familiar with pediatric oncology protocols, so it is important to consult with pediatric oncologists who have more experience in this disease. Multimodal therapy based on pediatric protocols improved the outcomes of adults with Wilms tumor worldwide. We report a rare case of a 24-year-old woman with a slow-growing mass of the left kidney during a 4-year period. The mass was surgically removed and final diagnosis confirmed by pathology to be Wilms tumor. The patient received adjuvant chemotherapy and has been free of disease since 2014. PMID:27043834

  15. Crossing the barrier: treatment of brain tumors using nanochain particles.

    Science.gov (United States)

    Karathanasis, Efstathios; Ghaghada, Ketan B

    2016-09-01

    Despite advancements in surgery and radiotherapy, the aggressive forms of brain tumors, such as gliomas, are still uniformly lethal with current therapies offering only palliation complicated by significant toxicities. Gliomas are characteristically diffuse with infiltrating edges, resistant to drugs and nearly inaccessible to systemic therapies due to the brain-tumor barrier. Currently, aggressive efforts are underway to further understand brain-tumor's microenvironment and identify brain tumor cell-specific regulators amenable to pharmacologic interventions. While new potent agents are continuously becoming available, efficient drug delivery to brain tumors remains a limiting factor. To tackle the drug delivery issues, a multicomponent chain-like nanoparticle has been developed. These nanochains are comprised of iron oxide nanospheres and a drug-loaded liposome chemically linked into a 100-nm linear, chain-like assembly with high precision. The nanochain possesses a unique ability to scavenge the tumor endothelium. By utilizing effective vascular targeting, the nanochains achieve rapid deposition on the vascular bed of glioma sites establishing well-distributed drug reservoirs on the endothelium of brain tumors. After reaching the target sites, an on-command, external low-power radiofrequency field can remotely trigger rapid drug release, due to mechanical disruption of the liposome, facilitating widespread and effective drug delivery into regions harboring brain tumor cells. Integration of the nanochain delivery system with the appropriate combination of complementary drugs has the potential to unfold the field and allow significant expansion of therapies for the disease where success is currently very limited. WIREs Nanomed Nanobiotechnol 2016, 8:678-695. doi: 10.1002/wnan.1387 For further resources related to this article, please visit the WIREs website. PMID:26749497

  16. Involvement of tumor acidification in brain cancer pathophysiology

    OpenAIRE

    AvinashHonasoge

    2013-01-01

    Gliomas, primary brain cancers, are characterized by remarkable invasiveness and fast growth. While they share many qualities with other solid tumors, gliomas have developed special mechanisms to convert the cramped brain space and other limitations afforded by the privileged central nervous system into pathophysiological advantages. In this review we discuss gliomas and other primary brain cancers in the context of acid-base regulation and interstitial acidification; namely, how the altered ...

  17. Combined therapy of tumors in adult persons

    International Nuclear Information System (INIS)

    A significant amelioration of treatment results is achieved by sequential chemotherapy and radiotherapy in patients with lymphogranulomatosis of stage IIb to IVb and in patients with non-Hodgkin's lymphomas in corresponding stages. Similar results will probably be obtained in patients with small cell bronchial carcinomas in a limited stage. Patients suffering from an initially inoperable ovarian cancer often reach an operable condition by sequential chemotherapy and radiotherapy. In the stages Dukes B2 and C of the rectum carcinoma, preoperative and/or postoperative irradiation significantly reduces the recurrence rates and increases the survival times. A considerable reduction of recurrence rates is obtained by postoperative radiotherapy in soft tissue sarcomas of the stages T1 to T3. Another improvements is anticipated by a neutron or neutron boost irradiation for stage T3 and by adjuvant chemotherapy for G3 tumors. In the osteasarcoma of adult persons, the results of the limb-sparing sequential therapy will not be worse than the results achieved by amputation. Retrospective analyses of the long-term results of radical mastectomy and conservative operation with postoperative irradiation in case of mammary carcinoma did not show any difference for the stages T1 to T3, N0 to N1. (orig.)

  18. Congenital Brain Tumors, a Series of Seven Patients

    Directory of Open Access Journals (Sweden)

    Farideh Nejat

    2007-05-01

    Full Text Available Objective: Congenital brain tumors are very rare. We review these tumors in patients younger than 2 months diagnosed in our Department. Material & Methods: Seven congenital brain tumors were diagnosed during five years. Clinical and radiological findings and prognosis are analyzed. Findings: The study included 5 female and two male infants. Two cases were diagnosed antenatally by means of ultrasonography. All patients presented with intracranial hypertension. The tumor was non-homogenous with cystic and solid components in all neuroimaging, except for the case with choroid plexus papilloma. Hydrocephalus was evident in all of them. Most findings were infra-tentorial lesions. There were three teratomas, one primitive neuro-ectodermal tumor, one ependymoblastoma and one choroid plexus papilloma. Six patients were operated on, with one intra-operative death. Two passed away postoperatively with aspiration pneumonia. One patient died due to complications of chemotherapy and another one due to tumor recurrence one year after surgery. Only the patient with choroid plexus papilloma is alive after 2 years. Conclusion: Today, the availability of noninvasive imaging procedures such as computerized tomography scan and magnetic resonance imaging has improved the diagnosis of congenital brain tumors. Inspite of development in prenatal diagnosis, appropriate pre and post operative management, the mortality associated with these tumors still remains high. The final prognosis in these patients is still discouraging despite early surgery and operative and anesthetic improvements. Choroid plexus papilloma accompanies the best prognosis, whereas teratoma and primitive neuroectodermal tumors have the worst prognosis.

  19. Evolution of Brain Tumor and Stability of Geometric Invariants

    Directory of Open Access Journals (Sweden)

    K. Tawbe

    2008-01-01

    Full Text Available This paper presents a method to reconstruct and to calculate geometric invariants on brain tumors. The geometric invariants considered in the paper are the volume, the area, the discrete Gauss curvature, and the discrete mean curvature. The volume of a tumor is an important aspect that helps doctors to make a medical diagnosis. And as doctors seek a stable calculation, we propose to prove the stability of some invariants. Finally, we study the evolution of brain tumor as a function of time in two or three years depending on patients with MR images every three or six months.

  20. Intraoperative neurophysiological monitoring for the resection of brain tumors in pediatric patients.

    Science.gov (United States)

    Sala, F; Coppola, A; Tramontano, V; Babini, M; Pinna, G

    2015-12-01

    Intraoperative neurophysiology (ION) is the gold standard to map and monitor brain functions during supratentorial surgery in critical areas. This is of great value for the surgery of brain gliomas in adults, but the same ION techniques can be used in the pediatric population with respect to both epilepsy and brain tumor surgery. While the principles of most ION techniques are the same for adults and children, the developing nervous system has peculiar characteristics in terms of anatomical and physiological maturation of afferent and efferent pathways within the brain and the spinal cord. Accordingly, some adjustments, particularly with regards to stimulation parameters, are needed in younger children. This paper will review current ION techniques to assist during the resection of brain tumors in children, focusing on the aspects peculiar to mapping and monitoring of sensori-motor functions in the pediatric population. On the other hand, awake surgery, of common use in adult patients when aiming to identify cortical and subcortical cognitive functions, is of very limited use in children and will not be discussed here. PMID:26373668

  1. Subacute brain atrophy induced by radiation therapy to the malignant brain tumors

    International Nuclear Information System (INIS)

    In order to analyze brain atrophy after radiation therapy to the brain tumors, we calculated a CSF-cranial volume ratio on CT scan as an index of brain atrophy, and estimated dementia-score by Hasegawa's method in 91 post-irradiated patients with malignant brain tumors. Radiation-induced brain atrophy was observed in 51 out of 91 patients (56 %) and dementia in 23 out of 47 patients (49 %). These two conditions were closely related, and observed significantly more often in aged and whole-brain-irradiated patients. As radiation-induced brain atrophy accompanied by dementia appeared 2 - 3 months after the completion of radiation therapy, it should be regarded as a subacute brain injury caused by radiation therapy. (author)

  2. Stereotaxic interstitial implantation for the treatment of malignant brain tumors

    International Nuclear Information System (INIS)

    The Brain Tumor Study Group (BTSG) demonstrated that patients with malignant gliomas who were treated with radiation therapy to a dose of 50 Gray (Gy) or more to the whole brain survived significantly longer than patients treated with surgery alone. A dose-response analysis of the BTSG data for 621 patients, 90% of whom had glioblastoma multiforme, showed a stepwise improvement in survival in patient groups receiving 50, 55, or 60 Gy. The median survival times were 28, 36, and 42 weeks, respectively (difference between 50 and 60 Gy significant at rho = .004). However, all tumors recurred and all patients died of their disease. If higher doses of radiation therapy could be delivered, improved local tumor control might be achieved. However, the delivery of doses of external irradiation in excess of 60 Gy is accompanied by radiation-induced brain necrosis. Experimental therapeutic strategies in the treatment of malignant brain tumors have involved the use of systemic chemotherapy. However, because of the localized nature of malignant glial tumors, it would seem logical to consider additional local treatment modalities. As radiation therapy has proven to be the most effective adjunct to surgery in the treatment of malignant brain tumors, there has been considerable recent interest in interstitial radiation therapy. Using interstitial radiation sources, high-dose radiation therapy can be delivered to the primary tumor with relative sparing of surrounding normal tissues. Interstitial implantation could be employed alone or to augment the dose delivered by external beam irradiation for the treatment of primary brain tumors, and would allow radical re-irradiation of recurrent malignant gliomas

  3. Research of the multimodal brain-tumor segmentation algorithm

    Science.gov (United States)

    Lu, Yisu; Chen, Wufan

    2015-12-01

    It is well-known that the number of clusters is one of the most important parameters for automatic segmentation. However, it is difficult to define owing to the high diversity in appearance of tumor tissue among different patients and the ambiguous boundaries of lesions. In this study, a nonparametric mixture of Dirichlet process (MDP) model is applied to segment the tumor images, and the MDP segmentation can be performed without the initialization of the number of clusters. A new nonparametric segmentation algorithm combined with anisotropic diffusion and a Markov random field (MRF) smooth constraint is proposed in this study. Besides the segmentation of single modal brain tumor images, we developed the algorithm to segment multimodal brain tumor images by the magnetic resonance (MR) multimodal features and obtain the active tumor and edema in the same time. The proposed algorithm is evaluated and compared with other approaches. The accuracy and computation time of our algorithm demonstrates very impressive performance.

  4. Preliminary results of fractionated stereotactic radiotherapy for benign brain tumors

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Byung Ock [College of Medicine, Catholic Univ., Seoul (Korea, Republic of); Kang, Ki Mun [Cellege of Medicine, Gyeongsang National Univ., Jinju, (Korea, Republic of)

    2003-03-01

    To evaluate the role of fractionated stereotactic radiotherapy (FSRT) in the management of benign brain tumors, we reviewed the clinical, and radiographic responses of patients treated. Between March 1996 and March 2002, 36 patients with benign brain tumors were treated by FSRT. The pathological diagnoses consisted of pituitary adenomas (12 patients), craniopharyngiomas (5 patients), meningiomas (10 patients), and acoustic neurinomas (9 patients). Radiotherapy doses of 25 to 35 Gy (3-6 Gy/fraction, 5-10 fractions) were prescribed to the 85-90% isodose line, depending upon the location, size and volume of the tumors. The median clinical and radiographical followup periods were 31 [range, 2-74) and 21 (range, 4-56) months, respectively. In the 35 patients that could be evaluated for their clinical response, 13 (37.1%) were considered improved, 16 (45.7%) stable and 6 (17.2%) worse. Of the 33 patients who had radiographic studies, tumor shrinkage was noted in 17 (51.5%), tumor stabilization in 13 (39.4%), and tumor progression in 3 (9,1%). Of the 17 tumor shrinkage patients, 7 [21.2%) showed a complete response, Acute radiation-induced complications occurred in 11 (30.6%) patients. FSRT is considered a safe and effective treatment method for benign brain tumors but large numbers of patients, with relatively long follow-up periods are needed to assess the exact role or effect of FSRT.

  5. Performance Analysis of Unsupervised Clustering Methods for Brain Tumor Segmentation

    Directory of Open Access Journals (Sweden)

    Tushar H Jaware

    2013-10-01

    Full Text Available Medical image processing is the most challenging and emerging field of neuroscience. The ultimate goal of medical image analysis in brain MRI is to extract important clinical features that would improve methods of diagnosis & treatment of disease. This paper focuses on methods to detect & extract brain tumour from brain MR images. MATLAB is used to design, software tool for locating brain tumor, based on unsupervised clustering methods. K-Means clustering algorithm is implemented & tested on data base of 30 images. Performance evolution of unsupervised clusteringmethods is presented.

  6. CT-guided laser probe for ablation of brain tumors

    Directory of Open Access Journals (Sweden)

    Abdolhadi Daneshi

    2010-01-01

    Full Text Available   Abstract  In this study, 22 patients (15-75 years old were selected and transferred to CT scan for tumor ablation. For ablations, after prep and drep under the local anesthesia and mild sedation in proper position, small incision made and special needle inserted and guided by proper direction to the core of the tumor. Then, laser probe inserted through the needle and laser energy delivered. Although we have not a good prognosis in metastatic tumors but post-operative follow up and brain CT scan established the effect of laser on resection and evaporation and diminution of mass effect in tumor lesions.

  7. Can deceased donor with recurrent primary brain tumor donate kidneys for transplantation?

    Science.gov (United States)

    Kumar, Suresh; Modi, Pranjal R; Pal, Bipin C; Modi, Jayesh

    2016-01-01

    Kidney transplantation from deceased donors is in its infancy in India. Cadaver organ donation was accepted legally in 1994 by the "Human Organs Transplantation Act." Marginal donors are now accepted by many centers for kidney transplantation. We report a case of procurement of both kidneys from a young deceased donor having recurrent primary brain tumor, transplanted into two adult recipients with successful outcome. PMID:26941500

  8. Evaluation and characterization of generalized anxiety and depression in patients with primary brain tumors

    OpenAIRE

    Arnold, Staci D.; Forman, Leslie M.; Brigidi, Bart D.; Carter, Karen E.; Schweitzer, Holly A.; Quinn, Heather E.; Guill, A. Bebe; Herndon, James E.; Raynor, Renee H.

    2008-01-01

    To determine clinical and sociodemographic factors that are associated with major neuropsychiatric illnesses among brain tumor patients, we administered a modified version of the Brief Patient Health Questionnaire and a demographic data form to 363 adult neuro-oncology patients. Responses were analyzed to assess for associations between demographic variables, clinical variables, and symptoms consistent with diagnoses of generalized anxiety disorder and/or depression. Multivariate logistic reg...

  9. From Child to Young Adult, the Brain Changes Its Connections

    OpenAIRE

    Kaustubh Supekar; Mark Musen; Vinod Menon

    2009-01-01

    The ontogeny of large-scale functional organization of the human brain is not well understood. Here we use network analysis of intrinsic functional connectivity to characterize the organization of brain networks in 23 children (ages 7-9 y) and 22 young-adults (ages 19-22 y). Comparison of network properties, including path-length, clustering-coefficient, hierarchy, and regional connectivity, revealed that although children and young-adults' brains have similar "small-world" organization at th...

  10. Experience-Dependent Neural Plasticity in the Adult Damaged Brain

    Science.gov (United States)

    Kerr, Abigail L.; Cheng, Shao-Ying; Jones, Theresa A.

    2011-01-01

    Behavioral experience is at work modifying the structure and function of the brain throughout the lifespan, but it has a particularly dramatic influence after brain injury. This review summarizes recent findings on the role of experience in reorganizing the adult damaged brain, with a focus on findings from rodent stroke models of chronic upper…

  11. Malignant primary germ-cell tumor of the brain

    International Nuclear Information System (INIS)

    The unusual case of a 15 year old boy with three discrete paraventricular germ-cell tumors is reported.FThe first tumor was located just lateral to the left thalamus and included a massive cystic part around it, the second tumor in the paraventricular region above the head of the left caudate nucleus and the third tumor in the medial part of the left parietal lobe.FTotal removal of all tumors was successfully accomplished in stages at four separate operations, namely, the first tumor was removed through the left transsylvian approach, the second tumor via left superior frontal gyrus and the third tumor via left superior frontal gyrus and left superior parietal lobule.FHistological examination revealed that the first tumor was teratoma, the second was choriocarcinoma and the third was germinoma.FPrimary germ-cell tumors of the brain can be divided into 5 groups: 1) germinoma; 2) embryonal carcinoma; 3) choriocarcinoma; 4) yolk-sac tumor; or 5) teratoma.FIn this case, a combination of three different histological patterns was seen. If malignant germ-cell tumor is supected on CT, aggressive extirpation should be done, not only to determine the exact diagnosis, but also to provide the basis for subsequent adjunctive therapy. (author)

  12. Multidrug resistance (MDR) in brain tumors; its clinical importance

    International Nuclear Information System (INIS)

    MDR is one of the important factors affecting chemotherapy in high grade brain malignancies. Especially it affects commonly used agents such as vincristine, VP16, VM26, and cisplatin. MDR1 gene encoded P-glycoprotein (Pgp) prevents intratumoral retention of such drugs by expelling them at the plasma membrance of brain tumor cells. Therefore, the objective of this study was to evaluate MDR in various brain tumors including metastatic tumors including metastatic tumors by dual isotope SPECT, Northern blotting or immunohistochemical staining (IHCS) using JSB-1 monoclonal antibody against MDR1 gene encoded Pgp. Twenty one patients with various brain tumors of primary, secondary, and recurrent tumors were included from 2 institutions. Whenever possible, surgical specimen from these patients were obtained to study MDR. SPET was performed with a tripple head system (Trionix, Twinsburg, Ohio or MultiSPECT 3, Siemens). Three millicuries of 201Tl chloride and 20 mCi of 99mTc-sestamibi were adminstered and SPET was performed in about 15 min. Nineteen percent of patients had MIBI (-) and Tl (+) suggesting MDR (+). MIBI tumor uptake was higher in recurrence (6.67 +/- 1.3) than the stable original tumors (3.12 +/-0.77) (For 201Tl, 3.65 +/-2.2 Vs 1.5 +/-0.41). Three recurrent gliomas biopsied showed positive blotting and these patients failed several courses of chemotherapy. Six patients with various tumors such as oligodendroglioma, meningioma, recurrent G-M (2), and astrocytoma (2) were studied by IHCS, Weakly positive MDR was seen in one recurrent G-M and an astrocytoma case. Positive MDR was seen in the other recurrent G-M and a meningioma. In conclusion, MDR in brain tumors is detected successfully by dual isotope SPECT studies in a limited number of patients. MDR in benign brain tumors has no clinical significance since they are cured by surgical removal. However, we believe its presence in metastatic and high grade especially recurrent tumors is an essential information

  13. Multidrug resistance (MDR) in brain tumors; its clinical importance

    Energy Technology Data Exchange (ETDEWEB)

    Kim, S. Z. [Thomas Jefferson Univ., Philadelphia (United States); Park, C. H.; Kim, S. M.; Cho, K. K.; Bai, M. S.; Yoon, S. N.; Cho, C. W.; Jin, Y. M.; Kim, Y. S. [College of Medicine, Ajou Univ., Suwon (Korea, Republic of)

    1997-07-01

    MDR is one of the important factors affecting chemotherapy in high grade brain malignancies. Especially it affects commonly used agents such as vincristine, VP16, VM26, and cisplatin. MDR1 gene encoded P-glycoprotein (Pgp) prevents intratumoral retention of such drugs by expelling them at the plasma membrance of brain tumor cells. Therefore, the objective of this study was to evaluate MDR in various brain tumors including metastatic tumors including metastatic tumors by dual isotope SPECT, Northern blotting or immunohistochemical staining (IHCS) using JSB-1 monoclonal antibody against MDR1 gene encoded Pgp. Twenty one patients with various brain tumors of primary, secondary, and recurrent tumors were included from 2 institutions. Whenever possible, surgical specimen from these patients were obtained to study MDR. SPET was performed with a tripple head system (Trionix, Twinsburg, Ohio or MultiSPECT 3, Siemens). Three millicuries of {sup 201}Tl chloride and 20 mCi of {sup 99m}Tc-sestamibi were adminstered and SPET was performed in about 15 min. Nineteen percent of patients had MIBI (-) and Tl (+) suggesting MDR (+). MIBI tumor uptake was higher in recurrence (6.67 +/- 1.3) than the stable original tumors (3.12 +/-0.77) (For {sup 201}Tl, 3.65 +/-2.2 Vs 1.5 +/-0.41). Three recurrent gliomas biopsied showed positive blotting and these patients failed several courses of chemotherapy. Six patients with various tumors such as oligodendroglioma, meningioma, recurrent G-M (2), and astrocytoma (2) were studied by IHCS, Weakly positive MDR was seen in one recurrent G-M and an astrocytoma case. Positive MDR was seen in the other recurrent G-M and a meningioma. In conclusion, MDR in brain tumors is detected successfully by dual isotope SPECT studies in a limited number of patients. MDR in benign brain tumors has no clinical significance since they are cured by surgical removal. However, we believe its presence in metastatic and high grade especially recurrent tumors is an

  14. Assessment of serum L-fucose in brain tumor cases

    Directory of Open Access Journals (Sweden)

    Manjula S

    2010-01-01

    Full Text Available Background: Glycosylation of altered tumor cell in relation to cellular heterogeneity in human intracranial tumors remains relatively unexposed. Serum protein-bound carbohydrate, L-Fucose is reported to be overexpressed during tumor progression by many investigators. Therefore, there is a need to determine the diagnostic, prognostic, functional significance of glycoprotein elevations in various cases of tumors. Objective: The objective of the present study was to evaluate the clinical utility of serum L-fucose in patients with brain tumor. Materials and Methods: Serum glyco-conjugate levels were estimated in 99 patients with brain tumors. Estimation of L-fucose was carried out colorimetrically by the method of Winzler using cysteine hydrochloride. Results: There was a significant increase in L-fucose level in most of the patients. In the posttreatment cases, the L-fucose levels were apparently low compared to preoperative values. Conclusion: Our results showed that the rise in serum L-fucose may be used as a general marker for brain tumors in addition to other markers.

  15. Expression of iron-related genes in human brain and brain tumors

    Directory of Open Access Journals (Sweden)

    Britton Robert S

    2009-04-01

    Full Text Available Abstract Background Defective iron homeostasis may be involved in the development of some diseases within the central nervous system. Although the expression of genes involved in normal iron balance has been intensively studied in other tissues, little is known about their expression in the brain. We investigated the mRNA levels of hepcidin (HAMP, HFE, neogenin (NEO1, transferrin receptor 1 (TFRC, transferrin receptor 2 (TFR2, and hemojuvelin (HFE2 in normal human brain, brain tumors, and astrocytoma cell lines. The specimens included 5 normal brain tissue samples, 4 meningiomas, one medulloblastoma, 3 oligodendrocytic gliomas, 2 oligoastrocytic gliomas, 8 astrocytic gliomas, and 3 astrocytoma cell lines. Results Except for hemojuvelin, all genes studied had detectable levels of mRNA. In most tumor types, the pattern of gene expression was diverse. Notable findings include high expression of transferrin receptor 1 in the hippocampus and medulla oblongata compared to other brain regions, low expression of HFE in normal brain with elevated HFE expression in meningiomas, and absence of hepcidin mRNA in astrocytoma cell lines despite expression in normal brain and tumor specimens. Conclusion These results indicate that several iron-related genes are expressed in normal brain, and that their expression may be dysregulated in brain tumors.

  16. Photon spectrum and absorbed dose in brain tumor

    Energy Technology Data Exchange (ETDEWEB)

    Silva S, A. [General Electric Healthcare, Antonio Dovali Jaime 70, Torre A 3er. piso, Col. Santa Fe, 01210 Mexico D. F. (Mexico); Vega C, H. R. [Universidad Autonoma de Zacatecas, Unidad Academica de Estudios Nucleares, Cipres No. 10, Fracc. La Penuela, 98068 Zacatecas, Zac. (Mexico); Rivera M, T. [IPN, Centro de Investigacion en Ciencia Aplicada y Tecnologia Avanzada, Av. Legaria No. 694, 11500 Mexico D. F. (Mexico)

    2015-10-15

    Using Monte Carlo methods a BOMAB phantom inside a treatment hall with a brain tumor nearby the pituitary gland was treated with photons produced by a Varian 6 MV linac. The photon spectrum and the absorbed dose were calculated in the tumor, pituitary gland and the head. The treatment beam was collimated to illuminate only the tumor volume; however photons were noticed in the gland. Photon fluence reaching the tumor is 78.1 times larger than the fluence in the pituitary gland, on the other hand the absorbed dose in the tumor is 188 times larger than the dose in the gland because photons that reach the pituitary gland are scattered, by the head and the tumor, through Compton effect. (Author)

  17. Photon spectrum and absorbed dose in brain tumor

    International Nuclear Information System (INIS)

    Using Monte Carlo methods a BOMAB phantom inside a treatment hall with a brain tumor nearby the pituitary gland was treated with photons produced by a Varian 6 MV linac. The photon spectrum and the absorbed dose were calculated in the tumor, pituitary gland and the head. The treatment beam was collimated to illuminate only the tumor volume; however photons were noticed in the gland. Photon fluence reaching the tumor is 78.1 times larger than the fluence in the pituitary gland, on the other hand the absorbed dose in the tumor is 188 times larger than the dose in the gland because photons that reach the pituitary gland are scattered, by the head and the tumor, through Compton effect. (Author)

  18. The impact of dietary isoflavonoids on malignant brain tumors

    International Nuclear Information System (INIS)

    Poor prognosis and limited therapeutic options render malignant brain tumors one of the most devastating diseases in clinical medicine. Current treatment strategies attempt to expand the therapeutic repertoire through the use of multimodal treatment regimens. It is here that dietary fibers have been recently recognized as a supportive natural therapy in augmenting the body's response to tumor growth. Here, we investigated the impact of isoflavonoids on primary brain tumor cells. First, we treated glioma cell lines and primary astrocytes with various isoflavonoids and phytoestrogens. Cell viability in a dose-dependent manner was measured for biochanin A (BCA), genistein (GST), and secoisolariciresinol diglucoside (SDG). Dose–response action for the different isoflavonoids showed that BCA is highly effective on glioma cells and nontoxic for normal differentiated brain tissues. We further investigated BCA in ex vivo and in vivo experimentations. Organotypic brain slice cultures were performed and treated with BCA. For in vivo experiments, BCA was intraperitoneal injected in tumor-implanted Fisher rats. Tumor size and edema were measured and quantified by magnetic resonance imaging (MRI) scans. In vascular organotypic glioma brain slice cultures (VOGIM) we found that BCA operates antiangiogenic and neuroprotective. In vivo MRI scans demonstrated that administered BCA as a monotherapy was effective in reducing significantly tumor-induced brain edema and showed a trend for prolonged survival. Our results revealed that dietary isoflavonoids, in particular BCA, execute toxicity toward glioma cells, antiangiogenic, and coevally neuroprotective properties, and therefore augment the range of state-of-the-art multimodal treatment approach

  19. [Gross tumor volume (GTV) and clinical target volume (CTV) in adult gliomas].

    Science.gov (United States)

    Kantor, G; Loiseau, H; Vital, A; Mazeron, J J

    2001-10-01

    Glioblastoma multiform and astrocytoma are the most frequent primary cancer of the central nervous system of adult. Definitions of gross tumor volume (GTV) and clinical target volume (CTV) are based on the confrontation of clinical presentation (age, performance status, neurologic symptoms...), histological type and imaging aspects. For glioblastoma multiform, the GTV can be defined by the area of contrast enhancement observed on the CT scan or MRI. Definition of the CTV can be more difficult and have to take into account the risk of presence of isolated malignant cells in the oedema surrounding the tumor or in the adjacent brain structures. The classical concept of GTV plus a safety margin of 2 cm around is discussed with a CTV containing at least all the oedematous area and eventually adjacent brain structures (nuclei, corpus callosum or other long associative fibers...). For low grade astrocytoma, the definition of GTV can be difficult if the tumoral infiltration is diffuse without nodular visible tumor. CTV corresponds to at least T2 MRI hypersignal area when visible. For postoperative tumor, technical considerations are important for the detection of residual tumor. A safety margin around the resected area is designed according to the risk of presence of isolated cells or involvement of adjacent brain structures. PMID:11715309

  20. Gonadal status in male survivors following childhood brain tumors

    DEFF Research Database (Denmark)

    Schmiegelow, M; Lassen, S; Poulsen, H S; Schmiegelow, K; Hertz, H; Andersson, A M; Skakkebaek, N E; Müller, J

    2001-01-01

    The effect of radiotherapy (RT) and chemotherapy (CT) on gonadal function was assessed in males treated for a childhood brain tumor not directly involving the hypothalamus/pituitary (HP) axis in a population-based study with a long follow-up time. All males......The effect of radiotherapy (RT) and chemotherapy (CT) on gonadal function was assessed in males treated for a childhood brain tumor not directly involving the hypothalamus/pituitary (HP) axis in a population-based study with a long follow-up time. All males...

  1. Brain Tumor Detection Based On Mathematical Analysis and Symmetry Information

    Directory of Open Access Journals (Sweden)

    Narkhede Sachin G.,

    2014-02-01

    Full Text Available Image segmentation some of the challenging issues on brain magnetic resonance (MR image tumor segmentation caused by the weak correlation between magnetic resonance imaging (MRI intensity and anatomical meaning. With the objective of utilizing more meaningful information to improve brain tumor segmentation, an approach which employs bilateral symmetry information as an additional feature for segmentation is proposed. This is motivated by potential performance improvement in the general automatic brain tumor segmentation systems which are important for many medical and scientific applications. Brain Magnetic Resonance Imaging (MRI segmentation is a complex problem in the field of medical imaging despite various presented methods. MR image of human brain can be divided into several sub-regions especially soft tissues such as gray matter, white matter and cerebrospinal fluid. Although edge information is the main clue in image segmentation, it can’t get a better result in analysis the content of images without combining other information. Our goal is to detect the position and boundary of tumors automatically. Experiments were conducted on real pictures, and the results show that the algorithm is flexible and convenient.

  2. Clinical features of depressive disorders in patients with brain tumors

    Directory of Open Access Journals (Sweden)

    Ogorenko V.V.

    2014-03-01

    Full Text Available The aim of the study was to examine the structure of psychopathology and clinical features of depressive disorders in patients with brain oncopathology. Polymorphic mental disorders of various clinical content and severity in most cases not only are comorbid to oncological pathology of the brain, but most often are the first clinical signs of early tumors. The study was conducted using the following methods: clinical psychiatric, questionnaire Simptom Check List- 90 -Revised-SCL- 90 -R, Luscher test and mathematical processing methods. Sample included 175 patients with brain tumors with non-psychotic level of mental disorders. The peculiarities of mental disorders and psychopathological structure of nonpsychotic depressive disorders have been a clinical option of cancer debut in patients with brain tumors. We found that nonpsychotic depression is characterized by polymorphism and syndromal incompletion; this causes ambiguity of diagnoses interpretation on stages of diagnostic period. Features of depressive symptoms depending on the signs of malignancy / nonmalignancy of brain tumor were defined.

  3. Training stem cells for treatment of malignant brain tumors

    Institute of Scientific and Technical Information of China (English)

    Shengwen; Calvin; Li; Mustafa; H; Kabeer; Long; T; Vu; Vic; Keschrumrus; Hong; Zhen; Yin; Brent; A; Dethlefs; Jiang; F; Zhong; John; H; Weiss; William; G; Loudon

    2014-01-01

    The treatment of malignant brain tumors remains a challenge. Stem cell technology has been applied in the treatment of brain tumors largely because of the ability of some stem cells to infiltrate into regions within the brain where tumor cells migrate as shown in preclinical studies. However, not all of these efforts can translate in the effective treatment that improves the quality of life for pa-tients. Here, we perform a literature review to identify the problems in the field. Given the lack of efficacy of most stem cell-based agents used in the treatment of malignant brain tumors, we found that stem cell distribution(i.e., only a fraction of stem cells applied capable of targeting tumors) are among the limiting factors. We provide guidelines for potential improvements in stem cell distribution. Specifically, we use an engineered tissue graft platform that replicates the in vivo microenvironment, and provide our data to validate that this culture platform is viable for producing stem cells that have better stem cell distribution than with the Petri dish culture system.

  4. BRAIN TUMOR CLASSIFICATION USING NEURAL NETWORK BASED METHODS

    OpenAIRE

    Kalyani A. Bhawar*, Prof. Nitin K. Bhil

    2016-01-01

    MRI (Magnetic resonance Imaging) brain neoplasm pictures Classification may be a troublesome tasks due to the variance and complexity of tumors. This paper presents two Neural Network techniques for the classification of the magnetic resonance human brain images. The proposed Neural Network technique consists of 3 stages, namely, feature extraction, dimensionality reduction, and classification. In the first stage, we have obtained the options connected with tomography pictures victimization d...

  5. Adult granulosa cell tumor of the testis masquerading as hydrocele

    Directory of Open Access Journals (Sweden)

    Archana George Vallonthaiel

    2015-12-01

    Full Text Available Adult testicular granulosa cell tumor is a rare, potentially malignant sex cord-stromal tumor, of which 30 cases have been described to date. We report the case of a 43-year-old male who complained of a left testicular swelling. Scrotal ultrasound showed a cystic lesion, suggestive of hydrocele. However, due to a clinical suspicion of a solid-cystic neoplasm, a high inguinal orchidectomy was performed, which, on pathological examination, was diagnosed as adult granulosa cell tumor. Adult testicular granulosa cell tumors have aggressive behaviour as compared to their ovarian counterparts. They may rarely be predominantly cystic and present as hydrocele. Lymph node and distant metastases have been reported in few cases. Role of MIB-1 labelling index in prognostication is not well defined. Therefore, their recognition and documentation of their behaviour is important from a diagnostic, prognostic and therapeutic point of view.

  6. Caring for the brain tumor patient: Family caregiver burden and unmet needs

    Science.gov (United States)

    Schubart, Jane R.; Kinzie, Mable B.; Farace, Elana

    2008-01-01

    The rapid onset and progression of a brain tumor, cognitive and behavioral changes, and uncertainty surrounding prognosis are issues well known to health practitioners in neuro-oncology. We studied the specific challenges that family caregivers face when caring for patients experiencing the significant neurocognitive and neurobehavioral disorders associated with brain tumors. We selected 25 family caregivers of adult brain tumor patients to represent the brain tumor illness trajectory (crisis, chronic, and terminal phases). Interviews documented caregiving tasks and decision-making and information and support needs. Themes were permitted to emerge from the data in qualitative analysis. We found that the family caregivers in this study provided extraordinary uncompensated care involving significant amounts of time and energy for months or years and requiring the performance of tasks that were often physically, emotionally, socially, or financially demanding. They were constantly challenged to solve problems and make decisions as care needs changed, yet they felt untrained and unprepared as they struggled to adjust to new roles and responsibilities. Because the focus was on the patient, their own needs were neglected. Because caregiver information needs are emergent, they are not always known at the time of a clinic visit. Physicians are frequently unable to address caregiver questions, a situation compounded by time constraints and cultural barriers. We provide specific recommendations for (1) improving the delivery of information; (2) enhancing communication among patients, families, and health care providers; and (3) providing psychosocial support for family caregivers. PMID:17993635

  7. Staging Childhood Brain and Spinal Cord Tumors

    Science.gov (United States)

    ... tests to check the brain, spinal cord, and nerve function. The exam checks a person’s mental status, coordination, and ability to walk normally, and how well the muscles, senses, and reflexes work. This may also be called a neuro ...

  8. Brain tumors induced in rats by human adenovirus type 12

    Directory of Open Access Journals (Sweden)

    Murao,Tsuyoshi

    1974-02-01

    Full Text Available Oncogenesis of human adenovirus type 12 in the brain of rats was examined. Newborn rats of Sprague-Dawley and Donryu strains were injected intracranially with human adenovirus type 12. The incidence of intracranial tumors was 91% (30/33 in SpragueDawley and 56% (14/25 in Donryu rats. Except for one tumor nodule located in the parietal cortex of a Sprague.Dawley rat, all tumors developed in the paraventricular areas or in the meninges. Tumors were quite similar histologically to those induced in hamsters and mice resembling the undifferentiated human brain tumors such as medulloblastoma, ependymoblastoma and embryonic gliomas. From the histological features and primary sites of tumor development, it is suggested that the tumors in the brain of rats induced by adenovirus type 12 originate from the embryonic cells in the paraventricular area and also from the undifferentiated supporting cells of the peripheral nerves in the leptomeninges.

  9. Delayed contrast extravasation MRI for depicting tumor and non-tumoral tissues in primary and metastatic brain tumors.

    Directory of Open Access Journals (Sweden)

    Leor Zach

    Full Text Available The current standard of care for newly diagnosed glioblastoma multiforme (GBM is resection followed by radiotherapy with concomitant and adjuvant temozolomide. Recent studies suggest that nearly half of the patients with early radiological deterioration post treatment do not suffer from tumor recurrence but from pseudoprogression. Similarly, a significant number of patients with brain metastases suffer from radiation necrosis following radiation treatments. Conventional MRI is currently unable to differentiate tumor progression from treatment-induced effects. The ability to clearly differentiate tumor from non-tumoral tissues is crucial for appropriate patient management. Ten patients with primary brain tumors and 10 patients with brain metastases were scanned by delayed contrast extravasation MRI prior to surgery. Enhancement subtraction maps calculated from high resolution MR images acquired up to 75 min after contrast administration were used for obtaining stereotactic biopsies. Histological assessment was then compared with the pre-surgical calculated maps. In addition, the application of our maps for prediction of progression was studied in a small cohort of 13 newly diagnosed GBM patients undergoing standard chemoradiation and followed up to 19.7 months post therapy. The maps showed two primary enhancement populations: the slow population where contrast clearance from the tissue was slower than contrast accumulation and the fast population where clearance was faster than accumulation. Comparison with histology confirmed the fast population to consist of morphologically active tumor and the slow population to consist of non-tumoral tissues. Our maps demonstrated significant correlation with perfusion-weighted MR data acquired simultaneously, although contradicting examples were shown. Preliminary results suggest that early changes in the fast volumes may serve as a predictor for time to progression. These preliminary results suggest that

  10. Boron neutron capture therapy for children with malignant brain tumor

    International Nuclear Information System (INIS)

    Among the 131 cases with brain tumors treated by boron-neutron capture therapy (BNCT), seventeen were children. Eight supratentorial tumors included five astrocytomas(grade 2-4), two primitive neuroectodermal tumors (PNET) and one rhabdomyosarcoma. Seven pontine tumors included one astrocytoma, one PNET and 5 unverified gliomas. Two cerebellar tumors (PNET and astrocytoma) were also treated. All pontine tumors showed remarkable decrease in size after BNCT. However, most of them showed regrowth of the tumors because the neutrons were insufficient due to the depth. Four cases with cerebral tumor died of remote cell dissemination, although they all responded to BNCT. One of them survived 7 years after repeated BNCTs. An 11 years old girl with a large astrocytoma in the right frontal lobe has lived more than 11 years and is now a draftswoman at a civil engineering company after graduating from a technical college. An 8 years old girl with an astrocytoma in the left occipital lobe has no recurrence of the tumor for 2 years and attends on elementary school without mental and physical problems. Two children (one year old girl and four years old boy) with cerebellar tumors have shown showed an excellent growth after BNCT and had no neurological deficits. Mental and physical development in patients treated by BNCT is usually better than that in patients treated by conventional radiotherapy. (author)

  11. IMPLEMENTATION OF BRAIN TUMOR IDENTIFICATION USING SVM AND CLASSIFICATION USING BAYESIAN CLASSIFIER IN MRI IMAGES

    OpenAIRE

    Sree Sankar.J*, R.A. Isabel

    2016-01-01

    Brain tumors are one of the deadly diseases. Identifying the type of the brain tumor is very essential for the planning of treatment and surgery. Early detection and classification of the tumors will increase the chances of survival. In this paper we propose a methodology for the detection and classification of brain tumors from Magnetic Resonance Imaging (MRI) scans. Here for the tumor detection Support Vector Machine (SVM) is used and for classification of tumor Bayesian classifier is used....

  12. Effect of tumor resection on the characteristics of functional brain networks

    NARCIS (Netherlands)

    Wang, H.; Douw, L.; Hernández, J.M.; Reijneveld, J.C.; Stam, C.J.; Van Mieghem, P.

    2010-01-01

    Brain functioning such as cognitive performance depends on the functional interactions between brain areas, namely, the functional brain networks. The functional brain networks of a group of patients with brain tumors are measured before and after tumor resection. In this work, we perform a weighted

  13. American brain tumor patients treated with BNCT in Japan

    International Nuclear Information System (INIS)

    The purpose of this work is to establish and maintain a database for patients from the United States who have received BNCT in Japan for malignant gliomas of the brain. This database will serve as a resource for the DOE to aid in decisions relating to BNCT research in the United States, as well as assisting the design and implementation of clinical trials of BNCT for brain cancer patients in this country. The database will also serve as an information resource for patients with brain tumors and their families who are considering this form of therapy

  14. American brain tumor patients treated with BNCT in Japan

    Energy Technology Data Exchange (ETDEWEB)

    Laramore, G.E.; Griffin, B.R.; Spence, A.

    1995-11-01

    The purpose of this work is to establish and maintain a database for patients from the United States who have received BNCT in Japan for malignant gliomas of the brain. This database will serve as a resource for the DOE to aid in decisions relating to BNCT research in the United States, as well as assisting the design and implementation of clinical trials of BNCT for brain cancer patients in this country. The database will also serve as an information resource for patients with brain tumors and their families who are considering this form of therapy.

  15. Development of multifunctional nanoparticles for brain tumor diagnosis and therapy

    Science.gov (United States)

    Veiseh, Omid

    Magnetic nanoparticles (MNPs) represent a class of non-invasive imaging agents developed for magnetic resonance (MR) imaging and drug delivery. MNPs have traditionally been developed for disease imaging via passive targeting, but recent advances in nanotechnology have enabled cellular-specific targeting, drug delivery and multi-modal imaging using these nanoparticles. Opportunities now exist to engineer MNP with designated features (e.g., size, coatings, and molecular functionalizations) for specific biomedical applications. The goal of this interdisciplinary research project is to develop targeting multifunctional nanoparticles, serving as both contrast agents and drug carriers that can effectively pass biological barriers, for diagnosis, staging and treatment of brain tumors. The developed nanoparticle system consists of a superparamagnetic iron oxide nanoparticle core (NP) and a shell comprised of biodegradable polymers such as polyethylene glycol (PEG) and chitosan. Additionally, near-infrared fluorescing (NIRF) molecules were integrated onto the NP shell to enable optical detection. Tumor targeting was achieved by the addition of chlorotoxin, a peptide with that has high affinity to 74 out of the 79 classifications of primary brain tumors and ability to illicit a therapeutic effect. This novel NP system was tested both in vitro and in vivo and was shown to specifically target gliomas in tissue culture and medulloblastomas in transgenic mice with an intact blood brain barriers (BBB), and delineate tumor boundaries in both MR and optical imaging. Additionally, the therapeutic potential of this NP system was explored in vitro, which revealed a unique nanoparticle-enabled pathway that enhances the therapeutic potential of bound peptides by promoting the internalization of membrane bound cell surface receptors. This NP system was further modified with siRNA and evaluated as a carrier for brain tumor targeted gene therapy. Most significantly, the evaluation of

  16. Mild traumatic brain injuries in adults

    Directory of Open Access Journals (Sweden)

    Dhaval Shukla

    2010-01-01

    Full Text Available Mild traumatic brain injury (mTBI is the commonest form of TBI. Though the name implies, it may not be mild in certain cases. There is a lot of heterogeneity in nomenclature, classification, evaluation and outcome of mTBI. We have reviewed the relevant articles on mTBI in adults, particularly its definition, evaluation and outcome, published in the last decade. The aspects of mTBI like pediatric age group, sports concussion, and postconcussion syndrome were not reviewed. There is general agreement that Glasgow coma score (GCS of 13 should not be considered as mTBI as the risk of intracranial lesion is higher than in patients with GCS 14-15. All patients with GCS of <15 should be evaluated with a computed tomography (CT scan. Patients with GCS 15 and risk factors or neurological symptoms should also be evaluated with CT scan. The outcome of mTBI depends on the combination of preinjury, injury and postinjury factors. Overall outcome of mTBI is good with mortality around 0.1% and disability around 10%.

  17. Dynamic Quantitative T1 Mapping in Orthotopic Brain Tumor Xenografts

    Directory of Open Access Journals (Sweden)

    Kelsey Herrmann

    2016-04-01

    Full Text Available Human brain tumors such as glioblastomas are typically detected using conventional, nonquantitative magnetic resonance imaging (MRI techniques, such as T2-weighted and contrast enhanced T1-weighted MRI. In this manuscript, we tested whether dynamic quantitative T1 mapping by MRI can localize orthotopic glioma tumors in an objective manner. Quantitative T1 mapping was performed by MRI over multiple time points using the conventional contrast agent Optimark. We compared signal differences to determine the gadolinium concentration in tissues over time. The T1 parametric maps made it easy to identify the regions of contrast enhancement and thus tumor location. Doubling the typical human dose of contrast agent resulted in a clearer demarcation of these tumors. Therefore, T1 mapping of brain tumors is gadolinium dose dependent and improves detection of tumors by MRI. The use of T1 maps provides a quantitative means to evaluate tumor detection by gadolinium-based contrast agents over time. This dynamic quantitative T1 mapping technique will also enable future quantitative evaluation of various targeted MRI contrast agents.

  18. Cyclosporin safety in a simplified rat brain tumor implantation model

    Directory of Open Access Journals (Sweden)

    Francisco H. C. Felix

    2012-01-01

    Full Text Available Brain cancer is the second neurological cause of death. A simplified animal brain tumor model using W256 (carcinoma 256, Walker cell line was developed to permit the testing of novel treatment modalities. Wistar rats had a cell tumor solution inoculated stereotactically in the basal ganglia (right subfrontal caudate. This model yielded tumor growth in 95% of the animals, and showed absence of extracranial metastasis and systemic infection. Survival median was 10 days. Estimated tumor volume was 17.08±6.7 mm³ on the 7th day and 67.25±19.8 mm³ on 9th day post-inoculation. Doubling time was 24.25 h. Tumor growth induced cachexia, but no hematological or biochemical alterations. This model behaved as an undifferentiated tumor and can be promising for studying tumor cell migration in the central nervous system. Dexamethasone 3.0 mg/kg/day diminished significantly survival in this model. Cyclosporine 10 mg/kg/day administration was safely tolerated.

  19. Application of nanoparticles in brain tumor treatment

    CERN Document Server

    Caruso, Gerardo

    2012-01-01

    Despite progress in surgery, radiotherapy, and chemotherapy, an effective treatment of gliomas does not yet exist. This new monograph in the ASME-Momentum Press series on Biomedical & Nanomedical Technologies book shows how nanotechnology could be used both to improve the treatment efficacy and to reduce the adverse side effects. It will explain how nanotechnology-based approaches to targeted delivery of drugs across the brain-blood barrier may potentially be engineered to carry out specific functions as needed.

  20. Brain hyaluronan binding protein inhibits tumor growth

    Institute of Scientific and Technical Information of China (English)

    高锋; 曹曼林; 王蕾

    2004-01-01

    Background Great efforts have been made to search for the angiogenic inhibitors in avascular tissues. Several proteins isolated from cartilage have been proved to have anti-angiogenic or anti-tumour effects. Because cartilage contains a great amount of hyaluronic acid (HA) oligosaccharides and abundant HA binding proteins (HABP), therefore, we speculated that HABP might be one of the factors regulating vascularization in cartilage or anti-angiogenesis in tumours. The purpose of this research was to evaluale the effects of hyaluronan binding protein on inhibiting tumour growth both in vivo and vitro. Methods A unique protein termed human brain hyaluronan (HA) binding protein (b-HABP) was cloned from human brain cDNA library. MDA-435 human breast cancer cell line was chosen as a transfectant. The in vitro underlying mechanisms were investigated by determining the possibilities of MDA-435/b-HABP colony formation on soft agar, the effects of the transfectant on the proliferation of endothelial cells and the expression levels of caspase 3 and FasL from MDA-435/b-HABP. The in vivo study included tumour growth on the chorioallantoic membrane (CAM) of chicken embryos and nude mice. Results Colony formation assay revealed that the colonies formed by MDA-435/b-HABP were greatly reduced compared to mock transfectants. The conditioned media from MDA-435/b-HABP inhibited the growth of endothelial cells in culture. Caspase 3 and FasL expressions were induced by MDA-435/b-HABP. The size of tumours of MDA-435/b-HABP in both CAM and nude mice was much smaller than that of MDA-435 alone. Conclusions Human brain hyaluronan binding protein (b-HABP) may represent a new kind of naturally existing anti-tumour substance. This brain-derived glycoprotein may block tumour growth by inducing apoptosis of cancer cells or by decreasing angiogenesis in tumour tissue via inhibiting proliferation of endothelial cells.

  1. Melphalan, Carboplatin, Mannitol, and Sodium Thiosulfate in Treating Patients With Recurrent or Progressive CNS Embryonal or Germ Cell Tumors

    Science.gov (United States)

    2016-04-28

    Adult Central Nervous System Germ Cell Tumor; Adult Ependymoblastoma; Adult Medulloblastoma; Adult Pineoblastoma; Adult Supratentorial Primitive Neuroectodermal Tumor; Childhood Atypical Teratoid/Rhabdoid Tumor; Childhood Central Nervous System Germ Cell Tumor; Childhood Ependymoblastoma; Medulloepithelioma; Ototoxicity; Recurrent Adult Brain Neoplasm; Recurrent Childhood Central Nervous System Embryonal Neoplasm; Recurrent Childhood Malignant Germ Cell Tumor; Recurrent Childhood Medulloblastoma; Recurrent Childhood Pineoblastoma; Recurrent Childhood Supratentorial Primitive Neuroectodermal Tumor

  2. Spectroscopy of brain tumors; Spektroskopie bei Hirntumoren

    Energy Technology Data Exchange (ETDEWEB)

    Raab, Peter; Lanfermann, Heinrich [Medizinische Hochschule Hannover (Germany). Inst. fuer Diagnostische und Interventionelle Neuroradiologie; Pilatus, Ulrich [Frankfurt Univ., Frankfurt am Main (Germany). Inst. fuer Neuroradiologie

    2008-09-15

    Metabolic imaging with NMR-spectroscopy has become a diagnostic tool that is used for the examination of cerebral pathologies. It is a non-invasive technique, which can detect and quantify biochemical changes. This paper describes the history of NMR-spectroscopy, its technical basis and possible areas of use for tumor diagnostics. An overview of the literature is given and upcoming developments are mentioned. (orig.)

  3. Gd-DTPA-enhanced MR imaging for metastatic brain tumors

    International Nuclear Information System (INIS)

    The present series consists of 24 patients with brain metastasis smaller than 10 mm in diameter demonstrated on Gd-DTPA enhanced MR imaging (Gd-MRI). All patients underwent contrast-enhanced (CE) CT to be compared with Gd-MRI in size, number and detectability. The primary lesions of the series included 18 patients with lung cancer (9 with adenocarcinoma, 4 with small cell cancer, 3 with squamous cell cancer and 2 with large cell cancer), 4 with breast cancer, and each 1 with parotid cancer and renal cell carcinoma. All 24 patients except one who underwent surgery were treated with radiation therapy. In 13 patients examined by Gd-MRI and CE-CT both before and after the brain irradiation, therapeutic effect was estimated on each diagnostic imaging comparatively. In regard to size of brain metastases of 24 patients, 91 lesions smaller than 5 mm in diameter were detected by Gd-MRI but only 15 by CE-CT. Three of all patients, no brain metastasis was found on CE-CT. In 6 patients estimated as CR (complete remission) by CE-CT after brain irradiation, Gd-MRI evidenced tumor residues in 5 patients to alter the score of therapeutic effect as PR (partial remission). The difference in therapeutic effects confirmed by Gd-MRI was noted according to histological results and size of metastasis. The most radiosensitive tumor was small cell lung cancer, of which brain metastases smaller than 5 mm in diameter completely disappeared after 20∼50 Gy irradiation. Prophylactic whole brain irradiation has been an alternative indication for small cell lung cancer when CT showed no evidence of brain metastasis. However, our data strongly suggest that the small or tiny brain metastases negative on CE-CT will become new subjects of 'radical' radiotherapy. The higher sensitivity of Gd-MRI for detecting brain metastasis may propose new clinical prospects in staging, planning of therapy and estimation of therapeutic effect. (author)

  4. Radiotherapy combined with Tegafur (FT-207s) for brain tumors

    International Nuclear Information System (INIS)

    5-Fluorouracil (5-FU) has anti-tumor effects as an anti-metabolite, but it cannot pass the Blood-Brain-Barrier (BBB). FT-207 a masked-compound of 5-FU, is easily lipid soluble and is able to pass the BBB. Twenty eight patients of primary brain tumor and 8 patients of metastatic brain tumor were treated with irradiation combined with 750 mg of FT-207 suppository. Twenty four patients of primary brain tumor were treated only with irradiation as control. The mean survival time was 20.4 +- 11.8 months for the combined therapy group and 17.6 +- 8.6 months for the control. The concentration of FT-207 and 5-FU in serum and in cerebrospinal fluid (CSF) was investigated after administration of 750 mg of FT-207 suppository per annum. The maximum concentration of FT-207 and of 5-FU in serum was 20.4 +- 11.8 mcg/ml and 0.06 +- 0.02 mcg/ml, respectively. There were observed several side effects, such as anorexia, nausea, exanthema and etc. These side effects were not so great as to interrupt the therapy at the dose level of 750 mg of FT-207. However, at the dose of 1500 mg, one case showed disturbance of consciousness, to which attention should be called. (author)

  5. Genetic abnormality predicts benefit for a rare brain tumor

    Science.gov (United States)

    A clinical trial has shown that addition of chemotherapy to radiation therapy leads to a near doubling of median survival time in patients with a form of brain tumor (oligodendroglioma) that carries a chromosomal abnormality called the 1p19q co-deletion.

  6. Automated 3D Brain Tumor Edema Segmentation in FLAIR MRI

    Czech Academy of Sciences Publication Activity Database

    Dvořák, P.; Bartušek, Karel

    Vol. S1. Berlin : Springer-Verlag, 2013, s. 489. ISSN 1352-8661. [ESMRMB 2013. Congress. Tolouse (FR), 03.10.2013-05.10.2013] Institutional support: RVO:68081731 Keywords : Automated 3D * brain tumor edema segmentation * FLAIR MRI Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering

  7. Association Between PARP1 Single Nucleotide Polymorphism and Brain Tumors.

    Science.gov (United States)

    Wang, Hong; Zhang, Kun; Qin, Haifeng; Yang, Lin; Zhang, Liyu; Cao, Yanyan

    2016-05-01

    To systematically evaluate the association between poly(ADP-ribose) polymerase 1 (PARP1) rs1136410 T>C and brain tumor risk, a meta-analysis has been carried out. We performed a meta-analysis of 2004 brain tumor patients and 2944 controls by use of STATA version 12.0 to determine whether the risk of brain tumors was associated with the genotypes or alleles of rs1136410 T>C. We found a significantly decreased risk (ranging from 0.18- to 0.16-fold) in the dominant model (OR = 0.84, 95 % CI = 0.75-0.95), the C vs. T model (OR = 0.82, 95 % CI = 0.74-0.91), and the CT vs. TT model (OR = 0.86, 95 % CI = 0.76-0.98). The same genetic models demonstrated noteworthy associations when analysis was restrained to glioma (OR = 0.85, 95 % CI = 0.75-0.96; OR = 0.83, 95 % CI = 0.74-0.92; OR = 0.87, 95 % CI = 0.76-0.99, respectively). This meta-analysis suggests that PARP1 rs1136410 T>C may play a significant role in the protection against the development of brain tumors and glioma. PMID:25911198

  8. What Are Brain and Spinal Cord Tumors in Children?

    Science.gov (United States)

    ... tissues and cells, which can develop into different types of tumors. Neurons (nerve cells): These are the most important cells ... as long as several feet. Unlike many other types of cells that can grow and divide to repair damage from injury or disease, neurons in the brain and spinal cord largely stop ...

  9. Regulation and function of neurogenesis in the adult vertebrate brain

    Directory of Open Access Journals (Sweden)

    Mendez-Otero R.

    2005-01-01

    Full Text Available Most adult tissues retain a reservoir of self-renewing, multipotent stem cells that can generate differentiated tissue components. Until recently, the brain was thought to be an exception to this rule and for many years the pervasive dogma of neurobiology relegated neurogenesis to the embryonic and earlier postnatal stages of development. The discovery of constant neuronal replacement in the adult brain has changed the way we think about neurological diseases and about the exploration of new strategies for brain repair. In this review we will explore the potential of adult neural stem cells and we will present some of our own work on this subject. We will also discuss the possibility that adult neurogenesis and neuronal replacement may also play a role in therapies aimed at restoring impaired brain function. A better understanding of the various aspects of spontaneous neuronal replacement may also be used to increase the success of procedures with cell therapies.

  10. Tumor angiogenesis in rabbit VX2 brain tumor: model establishment, pathologic study and preliminary imaging observation

    International Nuclear Information System (INIS)

    Objective: To establish a stable implanted model of VX2 rabbit brain tumor, and to evaluate the pathological and imaging features and tumor angiogenesis. Methods: Thirty New Zealand white rabbits were implanted with 100 μl viable VX2 tumor cells (107/ml) through a hole 5 mm to the right of the sagittal suture and 5 mm posterior to the coronal suture bored by a dental drill. MRI was performed every 2 days after 7 days of implantation to evaluate the growth of the tumor, and perfusion CT studies were performed in different days of tumor growth. After that the animals were sacrificed on days 14, 18, 22, 26, and 30 of tumor implantation. 2% Evans blue (2 ml/kg) was given intravenously in 16 of these animals 1 hour prior to sacrifice to detect the breakdown of the blood-brain barrier (BBB). The specimens of the rabbit brains were examined pathologically and histologically. VEGF and MVD were evaluated in immunohistochemical examination. Results: Of the 22 animals included into the study, the tumor grew in 20 animals, which could be seen clearly on MR imaging. Pathologic examination showed characteristics of squamous carcinoma. VEGF was expressed in all tumors with the mean rate of positive cells of (52.51 ± 19.15)% (19.5%-92.9%). Mean MVD was (51.30 ± 14.42) pice piece/microscope (25-81 pice piece/microscope). Using Pearson's linear correlation analysis, positive correlation was found between tumor growth time and volume (r=0.791, P=0.000), between MVD and tumor growth time (r=0.875, P=0.000), and between MVD and tumor volume (r=0.901, P=0.000), respectively. Spearman's rank correlation analysis showed positive correlation between VEGF grade and blue stain of the tumor (rs=0.594, P=0.015). Conclusion: A stable model of VX2 rabbit brain tumor has been established with the method of skull drilling. The method was simple and easy to use, with a high tumor growth rate and remarkable angiogenesis. The model is helpful for the pathological and radiological study of tumor

  11. Cerenkov and radioluminescence imaging of brain tumor specimens during neurosurgery

    Science.gov (United States)

    Spinelli, Antonello Enrico; Schiariti, Marco P.; Grana, Chiara M.; Ferrari, Mahila; Cremonesi, Marta; Boschi, Federico

    2016-05-01

    We presented the first example of Cerenkov luminescence imaging (CLI) and radioluminescence imaging (RLI) of human tumor specimens. A patient with a brain meningioma localized in the left parietal region was injected with 166 MBq of Y90-DOTATOC the day before neurosurgery. The specimens of the tumor removed during surgery were imaged using both CLI and RLI using an optical imager prototype developed in our laboratory. The system is based on a cooled electron multiplied charge coupled device coupled with an f/0.95 17-mm C-mount lens. We showed for the first time the possibility of obtaining CLI and RLI images of fresh human brain tumor specimens removed during neurosurgery.

  12. Cytokine Gene Polymorphisms in Egyptian Cases with Brain Tumors

    International Nuclear Information System (INIS)

    Background: Cytokines are proposed to play important roles in brain tumor biology as well as neuro degeneration or impaired neuronal function. Objectives: This work aimed to check the association of polymorphisms of cytokine genes in Egyptian cases with brain tumors. Methods: This work included 45 cases affected by brain tumors diagnosed as 24 benign and 21 malignant. Their median age was 45 years, and they were 20 males and 25 females. These cases were taken randomly from the Neurosurgery Department of Mansoura University Hospital, Egypt. Case genotypes were compared to 98 healthy unrelated controls from the same locality. DNA was amplified using PCR utilizing sequence specific primers (SSP) for detection of polymorphisms related to TNF-a-308 (G/A), IL-10-1082 (G/A), IL-6-174 (G/C) and IL-1Ra (VNTR) genes. Results: Cases affected with benign brain tumors showed a significant higher frequency of IL-10-1082 A/A [odds ratio (OR=8.0), p<0.001] and IL-6-174 C/C (OR=6.3, p=0.002) homozygous genotypes as compared to controls. Malignant cases, on the other hand, showed significantly higher frequency of IL-6-174 C/C (OR =4.8, p=0.002) homozygous genotype and TNF-a-308 A/A (OR=4.9, p<0.001) homozygous genotype when compared to controls. In the meantime, all cases showed no significant difference regarding the distribution of IL-1Ra VNTR genotype polymorphism compared to controls. Conclusions: Cytokine gene polymorphisms showed a pattern of association with brain tumors which may have potential impact on family counseling and disease management.

  13. Simulation of brain tumor resection in image-guided neurosurgery

    Science.gov (United States)

    Fan, Xiaoyao; Ji, Songbai; Fontaine, Kathryn; Hartov, Alex; Roberts, David; Paulsen, Keith

    2011-03-01

    Preoperative magnetic resonance images are typically used for neuronavigation in image-guided neurosurgery. However, intraoperative brain deformation (e.g., as a result of gravitation, loss of cerebrospinal fluid, retraction, resection, etc.) significantly degrades the accuracy in image guidance, and must be compensated for in order to maintain sufficient accuracy for navigation. Biomechanical finite element models are effective techniques that assimilate intraoperative data and compute whole-brain deformation from which to generate model-updated MR images (uMR) to improve accuracy in intraoperative guidance. To date, most studies have focused on early surgical stages (i.e., after craniotomy and durotomy), whereas simulation of more complex events at later surgical stages has remained to be a challenge using biomechanical models. We have developed a method to simulate partial or complete tumor resection that incorporates intraoperative volumetric ultrasound (US) and stereovision (SV), and the resulting whole-brain deformation was used to generate uMR. The 3D ultrasound and stereovision systems are complimentary to each other because they capture features deeper in the brain beneath the craniotomy and at the exposed cortical surface, respectively. In this paper, we illustrate the application of the proposed method to simulate brain tumor resection at three temporally distinct surgical stages throughout a clinical surgery case using sparse displacement data obtained from both the US and SV systems. We demonstrate that our technique is feasible to produce uMR that agrees well with intraoperative US and SV images after dural opening, after partial tumor resection, and after complete tumor resection. Currently, the computational cost to simulate tumor resection can be up to 30 min because of the need for re-meshing and the trial-and-error approach to refine the amount of tissue resection. However, this approach introduces minimal interruption to the surgical workflow

  14. Anti-angiogenic therapy in pediatric brain tumors : An effective strategy?

    NARCIS (Netherlands)

    Sie, Mariska; den Dunnen, Wilfred F. A.; Hoving, Eelco W.; de Bont, Eveline S. J. M.

    2014-01-01

    Brain tumors are still the leading cause of cancer morbidity and mortality among children, despite different therapeutic options including neurosurgery, chemotherapy and radiation. As angiogenesis is highly crucial in brain tumor growth and progression, numerous clinical trials evaluating diverse an

  15. Chemo-radiotherapy for malignant brain tumors

    International Nuclear Information System (INIS)

    Malignant gliomas: Randomized clinical trials conducted in the USA showed that radiotherapy plus chemotherapy with nitrosoureas offered a long-term survival advantage to patients younger than 60 years old with malignant gliomas. Combination chemotherapy, such as procarbazine/CCNU/vincristine (PCV) must be tested further, and intra-arterial chemotherapy with nitrosoureas offered no survival advantage. Combination chemotherapy with PCV showed efficacy for patients with anaplastic oligodendroglioma and anaplastic oligoastrocytoma. Medulloblastoma: The addition of chemotherapy to radiotherapy improved the survival of patients with poor risk medulloblastoma, and may reduce the required craniospinal radiation dose in patients with good risk medulloblastoma. Primary CNS lymphoma (PCNSL): Combination of chemotherapy with high-dose MTX and radiotherapy improved survival of patients with PCNSL; however, the neurotoxicity produced by this treatment modality is a serious problem in older patients. Intracranial germ cell tumors: The addition of chemotherapy to radiotherapy may produce long term survival with good quality of life in patients with germinoma. Neoadjuvant therapy consisting of chemotherapy and radiotherapy followed by complete surgical excision improved survival of patients with intracranial nongerminomatous germ cell tumors. (author)

  16. Chemo-radiotherapy for malignant brain tumors

    Energy Technology Data Exchange (ETDEWEB)

    Kochi, Masato; Ushio, Yukitaka [Kumamoto Univ. (Japan). School of Medicine

    2002-05-01

    Malignant gliomas: Randomized clinical trials conducted in the USA showed that radiotherapy plus chemotherapy with nitrosoureas offered a long-term survival advantage to patients younger than 60 years old with malignant gliomas. Combination chemotherapy, such as procarbazine/CCNU/vincristine (PCV) must be tested further, and intra-arterial chemotherapy with nitrosoureas offered no survival advantage. Combination chemotherapy with PCV showed efficacy for patients with anaplastic oligodendroglioma and anaplastic oligoastrocytoma. Medulloblastoma: The addition of chemotherapy to radiotherapy improved the survival of patients with poor risk medulloblastoma, and may reduce the required craniospinal radiation dose in patients with good risk medulloblastoma. Primary CNS lymphoma (PCNSL): Combination of chemotherapy with high-dose MTX and radiotherapy improved survival of patients with PCNSL; however, the neurotoxicity produced by this treatment modality is a serious problem in older patients. Intracranial germ cell tumors: The addition of chemotherapy to radiotherapy may produce long term survival with good quality of life in patients with germinoma. Neoadjuvant therapy consisting of chemotherapy and radiotherapy followed by complete surgical excision improved survival of patients with intracranial nongerminomatous germ cell tumors. (author)

  17. Banking Brain Tumor Specimens Using a University Core Facility.

    Science.gov (United States)

    Bregy, Amade; Papadimitriou, Kyriakos; Faber, David A; Shah, Ashish H; Gomez, Carmen R; Komotar, Ricardo J; Egea, Sophie C

    2015-08-01

    Within the past three decades, the significance of banking human cancer tissue for the advancement of cancer research has grown exponentially. The purpose of this article is to detail our experience in collecting brain tumor specimens in collaboration with the University of Miami/Sylvester Tissue Bank Core Facility (UM-TBCF), to ensure the availability of high-quality samples of central nervous system tumor tissue for research. Successful tissue collection begins with obtaining informed consent from patients following institutional IRB and federal HIPAA guidelines, and it needs a well-trained professional staff and continued maintenance of high ethical standards and record keeping. Since starting in 2011, we have successfully banked 225 brain tumor specimens for research. Thus far, the most common tumor histology identified among those specimens has been glioblastoma (22.1%), followed by meningioma (18.1%). The majority of patients were White, non-Hispanics accounting for 45.1% of the patient population; Hispanic/Latinos accounted for 23%, and Black/African Americans accounted for 14%, which represent the particular population of the State of Florida according to the 2010 census data. The most common tumors found in each subgroup were as follows: Black/African American, glioblastoma and meningioma; Hispanic, metastasis and glioblastoma; White, glioblastoma and meningioma. The UM-TBCF is a valuable repository, offering high-quality tumor samples from a unique patient population. PMID:26280502

  18. Stereotactic interstitial brachytherapy for the treatment of oligodendroglial brain tumors

    International Nuclear Information System (INIS)

    We evaluated the treatment of oligodendroglial brain tumors with interstitial brachytherapy (IBT) using 125iodine seeds (125I) and analyzed prognostic factors. Between January 1991 and December 2010, 63 patients (median age 43.3 years, range 20.8-63.4 years) suffering from oligodendroglial brain tumors were treated with 125I IBT either as primary, adjuvantly after incomplete resection, or as salvage therapy after tumor recurrence. Possible prognostic factors influencing disease progression and survival were retrospectively investigated. The actuarial 2-, 5-, and 10-year overall and progression-free survival rates after IBT for WHO II tumors were 96.9, 96.9, 89.8 % and 96.9, 93.8, 47.3 %; for WHO III tumors 90.3, 77, 54.9 % and 80.6, 58.4, 45.9 %, respectively. Magnetic resonance imaging demonstrated complete remission in 2 patients, partial remission in 13 patients, stable disease in 17 patients and tumor progression in 31 patients. Median time to progression for WHO II tumors was 87.6 months and for WHO III tumors 27.8 months. Neurological status improved in 10 patients and remained stable in 20 patients, while 9 patients deteriorated. There was no treatment-related mortality. Treatment-related morbidity was transient in 11 patients. WHO II, KPS ≥ 90 %, frontal location, and tumor surface dose > 50 Gy were associated with increased overall survival (p ≤ 0.05). Oligodendroglioma and frontal location were associated with a prolonged progression-free survival (p ≤ 0.05). Our study indicates that IBT achieves local control rates comparable to surgery and radio-/chemotherapy treatment, is minimally invasive, and safe. Due to the low rate of side effects, IBT may represent an attractive option as part of a multimodal treatment schedule, being supplementary to microsurgery or as a salvage therapy after chemotherapy and conventional irradiation. (orig.)

  19. Differential MRI Diagnosis Between Brain Abscess and Necrotic or Cystic Brain Tumors Using Diffusion Weighted Images

    Directory of Open Access Journals (Sweden)

    Zinat Miabi

    2009-01-01

    Full Text Available "nIntroduction: Differentiating brain abscesses from cystic or necrotic tumors by CT or MR imaging can be difficult. Difficulties in the diagnosis of intracranial abscess are mainly due to the combination of often unspecified clinical findings and similarities in the morphologic appearance of some intracranial mass lesions, such as cystic gliomas, metastases, and brain abscesses. Diffusion-weighted imaging provides a way to evaluate the diffusion properties of water molecules in tissue and has been used for diseases such as ischemia, tumors, epilepsy, and white matter disorders. The goal of this study was to evaluate the diagnostic utility of diffusion MRI to differentiate between brain abscesses and necrotic or cystic brain tumors. "nMaterials and Methods: MRI was performed in 17 patients (12 men and five women; age range, 19–74 years [mean, 55 years] with necrotic lesions and MR imaging evidence of ring-shaped enhancement after the injection of contrast material .In addition to standard MR sequences diffusion weighted MRI with apparent coefficient (ADC maps. "nResults: Eleven patients had tumors, and six had pyogenic abscesses. The tumors were glioblastomas (five patients, anaplastic astrocytoma (three patients, metastases (three patients, and primary malignancy, including lung (2 and breast (1 cancer. Surgical or stereotactic biopsies were obtained, and histologic studies were performed in all except one case (case 5. In the cases of abscess, bacteriologic analysis was also conducted. None of these lesions appeared hemorrhagic on T1-weighted images. "nConclusion: Diffusion-weighted imaging is useful for differentiating brain abscess from cystic or necrotic brain tumor, which is often difficult with conventional MR imaging. Diffusion-weighted imaging is useful as an additional imaging technique for establishing the differential diagnosis between brain abscesses and cystic or necrotic brain tumors. It requires less imaging time and is more

  20. The Role of Surgery, Radiosurgery and Whole Brain Radiation Therapy in the Management of Patients with Metastatic Brain Tumors

    OpenAIRE

    CHAN, MICHAEL D.; Neal, Matthew T.; Ellis, Thomas L.

    2012-01-01

    Brain tumors constitute the most common intracranial tumor. Management of brain metastases has become increasingly complex as patients with brain metastases are living longer and more treatment options develop. The goal of this paper is to review the role of stereotactic radiosurgery (SRS), whole brain radiation therapy (WBRT), and surgery, in isolation and in combination, in the contemporary treatment of brain metastases. Surgery and SRS both offer management options that may help to optimiz...

  1. An anatomically comprehensive atlas of the adult human brain transcriptome

    NARCIS (Netherlands)

    Hawrylycz, M.J.; Beckmann, C.F.; et al., et al.

    2012-01-01

    Neuroanatomically precise, genome-wide maps of transcript distributions are critical resources to complement genomic sequence data and to correlate functional and genetic brain architecture. Here we describe the generation and analysis of a transcriptional atlas of the adult human brain, comprising

  2. Radiation treatment of brain tumors: Concepts and strategies

    Energy Technology Data Exchange (ETDEWEB)

    Marks, J.E. (Loyola Univ. of Chicago Stritch School of Medicine, Maywood, IL (USA))

    1989-01-01

    Ionizing radiation has demonstrated clinical value for a multitude of CNS tumors. Application of the different physical modalities available has made it possible for the radiotherapist to concentrate the radiation in the region of the tumor with relative sparing of the surrounding normal tissues. Correlation of radiation dose with effect on cranial soft tissues, normal brain, and tumor has shown increasing effect with increasing dose. By using different physical modalities to alter the distribution of radiation dose, it is possible to increase the dose to the tumor and reduce the dose to the normal tissues. Alteration of the volume irradiated and the dose delivered to cranial soft tissues, normal brain, and tumor are strategies that have been effective in improving survival and decreasing complications. The quest for therapeutic gain using hyperbaric oxygen, neutrons, radiation sensitizers, chemotherapeutic agents, and BNCT has met with limited success. Both neoplastic and normal cells are affected simultaneously by all modalities of treatment, including ionizing radiation. Consequently, one is unable to totally depopulate a tumor without irreversibly damaging the normal tissues. In the case of radiation, it is the brain that limits delivery of curative doses, and in the case of chemical additives, it is other organ systems, such as bone marrow, liver, lung, kidneys, and peripheral nerves. Thus, the major obstacle in the treatment of malignant gliomas is our inability to preferentially affect the tumor with the modalities available. Until it is possible to directly target the neoplastic cell without affecting so many of the adjacent normal cells, the quest for therapeutic gain will go unrealized.72 references.

  3. Brain Tumor Susceptibility: the Role of Genetic Factors and Uses of Mouse Models to Unravel Risk

    OpenAIRE

    Reilly, Karlyne M.

    2009-01-01

    Brain tumors are relatively rare but deadly cancers, and present challenges in the determination of risk factors in the population. These tumors are inherently difficult to cure because of their protected location in the brain, with surgery, radiation and chemotherapy options carrying potentially lasting morbidity for patients and incomplete cure of the tumor. The development of methods to prevent or detect brain tumors at an early stage is extremely important to reduce damage to the brain fr...

  4. Experience-dependent neural plasticity in the adult damaged brain

    OpenAIRE

    Kerr, Abigail L.; Cheng, Shao-Ying; Jones, Theresa A.

    2011-01-01

    Behavioral experience is at work modifying the structure and function of the brain throughout the lifespan, but it has a particularly dramatic influence after brain injury. This review summarizes recent findings on the role of experience in reorganizing the adult damaged brain, with a focus on findings from rodent stroke models of chronic upper extremity (hand and arm) impairments. A prolonged and widespread process of repair and reorganization of surviving neural circuits is instigated by in...

  5. Diversity of Neural Precursors in the Adult Mammalian Brain.

    Science.gov (United States)

    Bonaguidi, Michael A; Stadel, Ryan P; Berg, Daniel A; Sun, Jiaqi; Ming, Guo-Li; Song, Hongjun

    2016-01-01

    Aided by advances in technology, recent studies of neural precursor identity and regulation have revealed various cell types as contributors to ongoing cell genesis in the adult mammalian brain. Here, we use stem-cell biology as a framework to highlight the diversity of adult neural precursor populations and emphasize their hierarchy, organization, and plasticity under physiological and pathological conditions. PMID:26988967

  6. High-Dose Thiotepa Plus Peripheral Stem Cell Transplantation in Treating Patients With Refractory Solid Tumors

    Science.gov (United States)

    2013-03-06

    Brain and Central Nervous System Tumors; Childhood Germ Cell Tumor; Extragonadal Germ Cell Tumor; Ovarian Cancer; Retinoblastoma; Testicular Germ Cell Tumor; Unspecified Adult Solid Tumor, Protocol Specific; Unspecified Childhood Solid Tumor, Protocol Specific

  7. Skull-stripping for Tumor-bearing Brain Images

    CERN Document Server

    Bauer, Stefan; Reyes, Mauricio

    2012-01-01

    Skull-stripping separates the skull region of the head from the soft brain tissues. In many cases of brain image analysis, this is an essential preprocessing step in order to improve the final result. This is true for both registration and segmentation tasks. In fact, skull-stripping of magnetic resonance images (MRI) is a well-studied problem with numerous publications in recent years. Many different algorithms have been proposed, a summary and comparison of which can be found in [Fennema-Notestine, 2006]. Despite the abundance of approaches, we discovered that the algorithms which had been suggested so far, perform poorly when dealing with tumor-bearing brain images. This is mostly due to additional difficulties in separating the brain from the skull in this case, especially when the lesion is located very close to the skull border. Additionally, images acquired according to standard clinical protocols, often exhibit anisotropic resolution and only partial coverage, which further complicates the task. There...

  8. Brain tumor stem cells as research and treatment targets

    International Nuclear Information System (INIS)

    Glioblastoma multiforme (GBM) is one of the most malignant forms of human cancer. Despite intensive treatment, the mean survival of GBM patients remains about 1 year. Recent cancer studies revealed that cancer tissues are pathologically heterogeneous and only a small population of cells has the specific ability to reinitiate cancer. This small cell population is called cancer stem cells (CSCs); in brain tumors these are known as brain tumor stem cells (BTSCs). The identification of BTSCs yielded new insights into chemo- and radioresistance, by which BTSCs can survive selectively and initiate recurrence. Research focused on BTSCs as treatment targets may contribute to the discovery of new therapeutic strategies. Clinical and basic research studies gradually led to improved outcomes in patients with brain tumors. Stupp et al. reported a mean survival of 14.6 months in glioblastoma multiforme (GBM) patients treated with radiotherapy plus temozolomide and 12.1 months in those subjected to radiotherapy alone. Earlier cancer therapies primarily targeted rapidly dividing cells but not minor populations of slowly dividing cells that contain BTSCs. Accumulating evidence suggests that BTSCs may represent an excellent tool for discovering new strategies to treat GBM patients. In this review, we present evidence supporting the CSC model of tumor progression, and discuss difficulties encountered in CSC research and experimental and therapeutic implications. (author)

  9. Optical spectroscopy for stereotactic biopsy of brain tumors

    Science.gov (United States)

    Markwardt, Niklas; von Berg, Anna; Fiedler, Sebastian; Goetz, Marcus; Haj-Hosseini, Neda; Polzer, Christoph; Stepp, Herbert; Zelenkov, Petr; Rühm, Adrian

    2015-07-01

    Stereotactic biopsy procedure is performed to obtain a tissue sample for diagnosis purposes. Currently, a fiber-based mechano-optical device for stereotactic biopsies of brain tumors is developed. Two different fluorophores are employed to improve the safety and reliability of this procedure: The fluorescence of intravenously applied indocyanine green (ICG) facilitates the recognition of blood vessels and thus helps minimize the risk of cerebral hemorrhages. 5- aminolevulinic-acid-induced protoporphyrin IX (PpIX) fluorescence is used to localize vital tumor tissue. ICG fluorescence detection using a 2-fiber probe turned out to be an applicable method to recognize blood vessels about 1.5 mm ahead of the fiber tip during a brain tumor biopsy. Moreover, the suitability of two different PpIX excitation wavelengths regarding practical aspects was investigated: While PpIX excitation in the violet region (at 405 nm) allows for higher sensitivity, red excitation (at 633 nm) is noticeably superior with regard to blood layers obscuring the fluorescence signal. Contact measurements on brain simulating agar phantoms demonstrated that a typical blood coverage of the tumor reduces the PpIX signal to about 75% and nearly 0% for 633 nm and 405 nm excitation, respectively. As a result, 633 nm seems to be the wavelength of choice for PpIX-assisted detection of high-grade gliomas in stereotactic biopsy.

  10. Brain stem auditory evoked responses in human infants and adults

    Science.gov (United States)

    Hecox, K.; Galambos, R.

    1974-01-01

    Brain stem evoked potentials were recorded by conventional scalp electrodes in infants (3 weeks to 3 years of age) and adults. The latency of one of the major response components (wave V) is shown to be a function both of click intensity and the age of the subject; this latency at a given signal strength shortens postnatally to reach the adult value (about 6 msec) by 12 to 18 months of age. The demonstrated reliability and limited variability of these brain stem electrophysiological responses provide the basis for an optimistic estimate of their usefulness as an objective method for assessing hearing in infants and adults.

  11. Clinicopathological analysis of unusual rosette-forming glioneuronal tumor in brain parenchyma

    Directory of Open Access Journals (Sweden)

    Da-wei LIU

    2014-03-01

    Full Text Available Background Rosette-forming glioneuronal tumor (RGNT is a rare and novel brain tumor. It affects mainly young adults and arises in the midline, primarily involving the cerebellum, and the walls or floor of the fourth ventricle. The tumor is composed of distinctive histological components, uniform neurocytes forming rosettes and (or perivascular pseudorosettes, as well as astrocytic component resembling pilocytic astrocytoma. To our best knowledge, no more than 50 cases of RGNT have been described in the literatures to date and found commonly in association with the ventricular system. Only a few cases have been known to occur at sites outside of its usual location. Herein, we present a rare case of RGNT of brain parenchyma. Due to its rarity and non-specific appearance in radiological examination, it is a diagnostic challenge for radiologists and histopathologists to differentiate RGNT in unusual sites from other intracranial lesions because of its similarities in radiological and histological findings. The aim of this study is to summarize the clinicopathological features of RGNT and discuss the differential diagnosis of histologically similar tumors in brain.  Methods The clinical manifestation of a patient with RGNT occurring in left frontal lobe was presented retrospectively. Resected mass was routinely paraffin-embedded and stained with Hematoxylin and Eosin. Dako EnVision immunohistochemical staining system was used to detect the tumor antigen expressions, including glial fibrillary acidic protein (GFAP, S-100 protein (S-100, cytokeratin (CK, neuronal nuclear antigen (NeuN, synaptophysin (Syn, neuron-specific enolase (NSE, chromogranin A (CgA, oligodendrocytes transcription factor-2 (Olig-2, epithelial membrane antigen (EMA and Ki-67 (MIB-1.  Results A 12-year-old girl presented with 2-year history of twitches and mild headache. MRI revealed a solid well-circumscribed lesion in left frontal lobe with mild heterogeneous enhancement. The

  12. Potential of Neural Stem Cells for the Treatment of Brain Tumors

    Directory of Open Access Journals (Sweden)

    P. Taupin

    2008-01-01

    Full Text Available Neural stem cells (NSCs are self-renewing multipotent cells that generate the main phenotypes of the nervous system, neurons, astrocytes and oligodendrocytes. As such they hold the promise to treat a broad range of neurological diseases and injuries. Neural progenitor and stem cells have been isolated and characterized in vitro, from adult, fetal and post-mortem tissues, providing sources of material for cellular therapy. However, NSCs are still elusive cells and remain to be unequivocally identified and characterized, limiting their potential use for therapy. Neural progenitor and stem cells, isolated and cultured in vitro, can be genetically modified and when transplanted migrate to tumor sites in the brain. These intrinsic properties of neural progenitor and stem cells provide tremendous potential to bolster the translation of NSC research to therapy. It is proposed to combine gene therapy and cellular therapy to treat brain cancers. Hence, neural progenitor and stem cells provide new opportunities for the treatment of brain cancers.

  13. Technological progress in radiation therapy for brain tumors

    LENUS (Irish Health Repository)

    Vernimmen, Frederik Jozef

    2014-01-01

    To achieve a good therapeutic ratio the radiation dose to the tumor should be as high as possible with the lowest possible dose to the surrounding normal tissue. This is especially the case for brain tumors. Technological ad- vancements in diagnostic imaging, dose calculations, and radiation delivery systems, combined with a better un- derstanding of the pathophysiology of brain tumors have led to improvements in the therapeutic results. The widely used technology of delivering 3-D conformal therapy with photon beams (gamma rays) produced by Li-near Accelerators has progressed into the use of Intensity modulated radiation therapy (IMRT). Particle beams have been used for several decades for radiotherapy because of their favorable depth dose characteristics. The introduction of clinically dedicated proton beam therapy facilities has improved the access for cancer patients to this treatment. Proton therapy is of particular interest for pediatric malignancies. These technical improvements are further enhanced by the evolution in tumor physiology imaging which allows for improved delineation of the tumor. This in turn opens the potential to adjust the radiation dose to maximize the radiobiological effects. The advances in both imaging and radiation therapy delivery will be discussed.

  14. Tumor-Like Lesions of the Brain in MRI and CT-scan

    Directory of Open Access Journals (Sweden)

    Gholamreza Bakhshandehpour

    2009-01-01

    Full Text Available "nIntroduction: The objective of this paper is to demonstrate a variety of non-neoplastic pathologies that may present with a mass effect and/or abnormal enhancement, thus simulating neoplasia. "nMaterials and Methods: We collected 77 cases of various tumor mimics from teaching files of three institutions. All patients presented with intra- and/or extra–axial lesions and imaging findings that could, potentially, mimic brain neoplasia. "nResults: Assessment of central nervous system pathology may be very challenging. The usual description of mass effect and abnormal enhancement, typical of brain neoplasia, can also be shared by a variety of non-neoplastic etiologies. Radiologists should be familiar with these tumor mimics, and shold be included as differential diagnoses. We categorized and these non-neoplastic lesions, which could potentially mimic extra-and/or intra- axial brain tumors, into the following groups: "n1 Normal variant (giant (tumefactive perivascular spaces "n2 Infection (tuberculosis, cysticercosis, and fungal lesions "n3 Syndromes (NF1, Rosai-Dorfman Syndrome, Lhermitte-Duclos, Krabbe Disease (adult type. "n4 Vascular lesions (vascular malformations, aneurysms and cerebral venous sinus thrombosis "n5 Autoimmune and inflammatory processes (MS, ADEM, encephalitis, sarcoidosis and PML "n6 Idiopathic (idiopathic hypertrophic pachymeningitis "n7 Congenital brain lesions (cortical dysgenesis and heterotopias "n8 Miscellaneous (postictal brain lesions "nConclusion: In this paper, we present a large collection of non-neoplastic tumor mimics. Awareness, understanding, and recognition of these mimics may permit the radiologist to play a significant role in the prevention of unwanted surgical interventions or extensive diagnostic evaluation procedures.  

  15. Collecting and Storing Blood and Brain Tumor Tissue Samples From Children With Brain Tumors

    Science.gov (United States)

    2016-05-17

    Childhood Atypical Teratoid/Rhabdoid Tumor; Childhood Central Nervous System Germ Cell Tumor; Childhood Choroid Plexus Tumor; Childhood Craniopharyngioma; Childhood Grade I Meningioma; Childhood Grade II Meningioma; Childhood Grade III Meningioma; Childhood High-grade Cerebral Astrocytoma; Childhood Infratentorial Ependymoma; Childhood Low-grade Cerebral Astrocytoma; Childhood Oligodendroglioma; Childhood Supratentorial Ependymoma; Newly Diagnosed Childhood Ependymoma; Recurrent Childhood Cerebellar Astrocytoma; Recurrent Childhood Cerebral Astrocytoma; Recurrent Childhood Ependymoma; Recurrent Childhood Medulloblastoma; Recurrent Childhood Supratentorial Primitive Neuroectodermal Tumor; Recurrent Childhood Visual Pathway and Hypothalamic Glioma; Recurrent Childhood Visual Pathway Glioma

  16. Efficient multilevel brain tumor segmentation with integrated bayesian model classification.

    Science.gov (United States)

    Corso, J J; Sharon, E; Dube, S; El-Saden, S; Sinha, U; Yuille, A

    2008-05-01

    We present a new method for automatic segmentation of heterogeneous image data that takes a step toward bridging the gap between bottom-up affinity-based segmentation methods and top-down generative model based approaches. The main contribution of the paper is a Bayesian formulation for incorporating soft model assignments into the calculation of affinities, which are conventionally model free. We integrate the resulting model-aware affinities into the multilevel segmentation by weighted aggregation algorithm, and apply the technique to the task of detecting and segmenting brain tumor and edema in multichannel magnetic resonance (MR) volumes. The computationally efficient method runs orders of magnitude faster than current state-of-the-art techniques giving comparable or improved results. Our quantitative results indicate the benefit of incorporating model-aware affinities into the segmentation process for the difficult case of glioblastoma multiforme brain tumor. PMID:18450536

  17. Specific features of epilepsy in children with brain tumors

    Directory of Open Access Journals (Sweden)

    G. V. Kalmykova

    2015-03-01

    Full Text Available Objective: to study the specific features of epilepsy in children and adolescents with brain tumors and to define the optimal tactics of management and antiepileptic therapy after surgical treatment. Patients and methods. Sixty-one patients aged 5 months to 15 years were examined. All the patients were diagnosed as having a brain tumor found in the presence of symptomatic epilepsy. They were all followed up for 5 years postsurgery or during their lifetime (in case of death. Comprehensive examination encompassing the assessment of history data and concomitant complaints, brain magnetic resonance imaging, video-EEC monitoring, and the neurological status (the presence of cognitive impairments and eye ground changes was done in all the cases. The probability of epileptic seizures in the clinical presentation of the disease, their semiology, and frequency were studied. Results and discussion. Epileptic seizures were the major complaint in all the patients at the first visit to their doctor. The disease occurred with status epilepticus in 9% of the patients. Different types of generalized seizures were more common (53%; p≥0.05. The tumor was located above the tentorium of the cerebellum in most examinees (77% and beneath it in the others (23%; p≤0.05. The significant clinical sign of a brain tumor in the epileptic children is focal neurological symptoms (72% of the cases. MRI was performed in children who had no focal neurological symptoms in the late periods. There was cerebrospinal fluid hypertension in 51% of the patients (p≥0.05 and cognitive impairments in 33% (p<0.05. The maximum number (74% of children with psycho-speech disorders and cognitive impairments were registered in the age group of 7–15 years. Eye ground changes characteristic of intracranial hypertension were identified in 19 epileptic children; they occurred in 27 patients more than 1 year after the onset of seizures. The late (few months-to-14 years diagnosis of a brain

  18. Using Diffusion-weighted Images to Identify Brain Tumors

    Czech Academy of Sciences Publication Activity Database

    Marcon, P.; Bartušek, Karel; Šprláková, A.

    Cambridge: The Electromagnetics Academy, 2014, s. 2340-2343. ISBN 978-1-934142-28-8. [PIERS 2014. Progress In Electromagnetics Research Symposium /35./. Guangzhou (CN), 25.08.2014-28.08.2014] R&D Projects: GA ČR GAP102/12/1104 Institutional support: RVO:68081731 Keywords : brain tumor * MRI * diffusion-weighted image s Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering

  19. Pediatric brain stem tumors: analysis of 25 cases

    International Nuclear Information System (INIS)

    The charts of 25 pediatric patients with brain stem tumors have been reviewed. The use of computed tomography was found to have been valuable in diagnosis and follow-up, as well as in the design of radiation therapy portals. Radiotherapy and combination chemotherapy with VM-26 (4'-1 demethyl-epipodophyllo toxin B-D-thenylidene glucoside) and CCNU(1-2-chloroethyl-methyl-3-Cyclohexyl-1-nitrosourea) were the treatment employed. (M.A.C.)

  20. Epidemiology of brain tumors in childhood--a review

    International Nuclear Information System (INIS)

    Malignant brain tumors are the leading cause of cancer death among children and the second most common type of pediatric cancer. Despite several decades of epidemiologic investigation, the etiology of childhood brain tumors (CBT) is still largely unknown. A few genetic syndromes and ionizing radiation are established risk factors. Many environmental exposures and infectious agents have been suspected of playing a role in the development of CBT. This review, based on a search of the medical literature through August 2003, summarizes the epidemiologic evidence to date. The types of exposures discussed include ionizing radiation, N-nitroso compounds (NOC), pesticides, tobacco smoke, electromagnetic frequencies (EMF), infectious agents, medications, and parental occupational exposures. We have chosen to focus on perinatal exposures and review some of the recent evidence indicating that such exposures may play a significant role in the causation of CBT. The scientific community is rapidly learning more about the molecular mechanisms by which carcinogenesis occurs and how the brain develops. We believe that advances in genetic and molecular biologic technology, including improved histologic subtyping of tumors, will be of huge importance in the future of epidemiologic research and will lead to a more comprehensive understanding of CBT etiology. We discuss some of the early findings using these technologies

  1. Linear-accelerator-based stereotactic irradiation for metastatic brain tumors

    International Nuclear Information System (INIS)

    To assess the safety and availability of stereotactic radiotherapy (SRT) for metastatic brain tumors, we reviewed 54 consecutive cases with a total of 118 brain metastases treated with linear-accelerator-based stereotactic irradiation (STI). Nineteen patients with a total of 27 brain tumors that were larger than 3 cm or close to critical normal tissues were treated with SRT. The marginal dose of SRT was 15-21 Gy (median 21 Gy) in 3 fractions for 3 days. The median marginal dose of stereotactic radiosurgery (SRS) was 20 Gy. Effective rates of imaging studies were 72.7% and 94.4%, and those of clinical symptoms were 46.7% and 55.6% for SRT and SRS, respectively. One-year and two-year survival rates of SRT were 40.9% and 17.6%, respectively, and the median follow-up period was 6.4 months. The one-year survival rate of SRS was 32.7%, with a median follow-up of 4.6 months. Fourteen cases (7 cases each) had recurrent tumors at STI sites. Early complications were observed in one case of SRT and 8 cases of SRS, and late complications occurred in 3 cases of SRS. There were no significant differences among effective rates, survival rates, median follow-up times, recurrence rates, and complications between SRT and SRS. We concluded that SRT is a safe, effective therapy for large or eloquent area metastases. (author)

  2. Linear-accelerator-based stereotactic irradiation for metastatic brain tumors

    Energy Technology Data Exchange (ETDEWEB)

    Takemoto, Mitsuhiro; Katsui, Kuniaki; Yoshida, Atsushi [Okayama Univ. (Japan). School of Medicine] [and others

    2003-05-01

    To assess the safety and availability of stereotactic radiotherapy (SRT) for metastatic brain tumors, we reviewed 54 consecutive cases with a total of 118 brain metastases treated with linear-accelerator-based stereotactic irradiation (STI). Nineteen patients with a total of 27 brain tumors that were larger than 3 cm or close to critical normal tissues were treated with SRT. The marginal dose of SRT was 15-21 Gy (median 21 Gy) in 3 fractions for 3 days. The median marginal dose of stereotactic radiosurgery (SRS) was 20 Gy. Effective rates of imaging studies were 72.7% and 94.4%, and those of clinical symptoms were 46.7% and 55.6% for SRT and SRS, respectively. One-year and two-year survival rates of SRT were 40.9% and 17.6%, respectively, and the median follow-up period was 6.4 months. The one-year survival rate of SRS was 32.7%, with a median follow-up of 4.6 months. Fourteen cases (7 cases each) had recurrent tumors at STI sites. Early complications were observed in one case of SRT and 8 cases of SRS, and late complications occurred in 3 cases of SRS. There were no significant differences among effective rates, survival rates, median follow-up times, recurrence rates, and complications between SRT and SRS. We concluded that SRT is a safe, effective therapy for large or eloquent area metastases. (author)

  3. Heavy metals and epigenetic alterations in brain tumors.

    Science.gov (United States)

    Caffo, Maria; Caruso, Gerardo; Fata, Giuseppe La; Barresi, Valeria; Visalli, Maria; Venza, Mario; Venza, Isabella

    2014-12-01

    Heavy metals and their derivatives can cause various diseases. Numerous studies have evaluated the possible link between exposure to heavy metals and various cancers. Recent data show a correlation between heavy metals and aberration of genetic and epigenetic patterns. From a literature search we noticed few experimental and epidemiological studies that evaluate a possible correlation between heavy metals and brain tumors. Gliomas arise due to genetic and epigenetic alterations of glial cells. Changes in gene expression result in the alteration of the cellular division process. Epigenetic alterations in brain tumors include the hypermethylation of CpG group, hypomethylation of specific genes, aberrant activation of genes, and changes in the position of various histones. Heavy metals are capable of generating reactive oxygen assumes that key functions in various pathological mechanisms. Alteration of homeostasis of metals could cause the overproduction of reactive oxygen species and induce DNA damage, lipid peroxidation, and alteration of proteins. In this study we summarize the possible correlation between heavy metals, epigenetic alterations and brain tumors. We report, moreover, the review of relevant literature. PMID:25646073

  4. Holmium-166-chico intracavitary radiation therapy for cystic brain tumors

    International Nuclear Information System (INIS)

    Holmium-166-chitosan complex (Ho-166-chico) is injected into the unresectable seven cystic brain tumors (2 cases of metastatic brain tumors from lung cancer, 1 case of recurrent trigeminal neurinoma, 3 cases of recurrent low grade cystic astrocytomas, and 1 case of craniopharyngioma). The Ommaya reservoir was installed stereotactically. The cyst volume and wall thickness were measured by MRI before Ho-166-chico injection. The thickness of the cyst wall is up to 4 mm. Ho-166-chico (555-740 MBq) injected into the cyst to result in 25 Gy of dose to a cyst wall at a depth of 4 mm. Dose to the cyst wall was estimated by Monte Carlo simulation using the EGS4 code. All Ho-166-chico injected was assumed to be uniformly distributed in the spherical cyst. After Ho-166-chico injection, the distribution of isotopes was monitored by gamma camera. Two injections were administrated in two cases, and one injection in all the others. The response was evaluated with MRI. Four of 7 cases were shrunk in size with thinning of the cyst wall, 2 of 7 cases showed growth arrest, and one case showed progression. Estimated surface dose of cyst wall was between 78 and 2566 Gy. No one showed systemic absorption of Ho-166-chico, and specific complication associated with isotope injection. Ho-166-chico intracavitary radiation therapy for cystic brain tumor may be safe, and reliable method and deserves further evaluation

  5. Non-invasive quantification of brain tumor-induced astrogliosis

    Directory of Open Access Journals (Sweden)

    Baird Andrew

    2011-01-01

    Full Text Available Abstract Background CNS injury including stroke, infection, and tumor growth lead to astrogliosis, a process that involves upregulation of glial fibrillary acidic protein (GFAP in astrocytes. However, the kinetics of astrogliosis that is related to these insults (i.e. tumor is largely unknown. Results Using transgenic mice expressing firefly luciferase under the regulation of the GFAP promoter (GFAP-luc, we developed a model system to monitor astrogliosis upon tumor growth in a rapid, non-invasive manner. A biphasic induction of astrogliosis was observed in our xenograft model in which an early phase of activation of GFAP was associated with inflammatory response followed by a secondary, long-term upregulation of GFAP. These animals reveal GFAP activation with kinetics that is in parallel with tumor growth. Furthermore, a strong correlation between astrogliosis and tumor size was observed. Conclusions Our results suggest that non-invasive, quantitative bioluminescent imaging using GFAP-luc reporter animal is a useful tool to monitor temporal-spatial kinetics of host-mediated astrogliosis that is associated with glioma and metastatic brain tumor growth.

  6. Histomorphological Phenotyping of the Adult Mouse Brain.

    Science.gov (United States)

    Mikhaleva, Anna; Kannan, Meghna; Wagner, Christel; Yalcin, Binnaz

    2016-01-01

    This article describes a series of standard operating procedures for morphological phenotyping of the mouse brain using basic histology. Many histological studies of the mouse brain use qualitative approaches based on what the human eye can detect. Consequently, some phenotypic information may be missed. Here we describe a quantitative approach for the assessment of brain morphology that is simple and robust. A total of 78 measurements are made throughout the brain at specific and well-defined regions, including the cortex, the hippocampus, and the cerebellum. Experimental design and timeline considerations, including strain background effects, the importance of sectioning quality, measurement variability, and efforts to correct human errors are discussed. © 2016 by John Wiley & Sons, Inc. PMID:27584555

  7. Brain Tumor Detection Based on Bilateral Symmetry Information

    Directory of Open Access Journals (Sweden)

    Narkhede Sachin,

    2014-06-01

    Full Text Available Advances in computing technology have allowed researchers across many fields of endeavor to collect and maintain vast amounts of observational statistical data such as clinical data, biological patient data, data regarding access of web sites , financial data, and the like. Brain Magnetic Resonance Imaging (MRI segmentation is a complex problem in the field of medical imaging despite various presented methods. MR image of human brain can be divided into several sub-regions especially soft tissues such as gray matter, white matter and cerebrospinal fluid. Although edge information is the main clue in image segmentation, it can’t get a better result in analysis the content of images without combining other information. The segmentation of brain tissue in the magnetic resonance imaging (MRI is very important for detecting the existence and outlines of tumors. In this thesis , an algorithm about segmentation based on the symmetry character of brain MRI image is presented. Our goal is to detect the position and boundary of tumors automatically. Experiments were conducted on real pictures, and the results show that the algorithm is flexible and convenient.

  8. mTHPC-mediated photodynamic diagnosis of malignant brain tumors

    International Nuclear Information System (INIS)

    Radical tumor resection is the basis for prolonged survival of patients suffering from malignant brain tumors such as glioblastoma multiform. We have carried out a phase II study involving 22 patients with malignant brain tumors to assess the feasibility and the effectiveness of the combination of intraoperative photodynamic diagnosis (PDD) and fluorescence-guided resection (FGR) mediated by the second generation photosensitizer meta-tetrahydroxyphenylchlorin (mTHPC). In addition, intraoperative photodynamic therapy (PDT) was performed. Several commercially available fluorescence diagnostic systems were investigated for their applicability for clinical practice. We have adapted and optimized a diagnostic system which includes a surgical microscope, an excitation light source (filtered to 370-440 nm), a video camera detection system, and a spectrometer for clear identification of the mTHPC fluorescence emission at 652 nm. Especially in regions of faint fluorescence it turned out to be essential to maximize the spectral information by optimizing and matching the spectral properties of all components, such as excitation source, camera and color filters. In summary, based on 138 tissue samples derived from 22 tumor specimens we have been able to achieve a sensitivity of 87.9 % and a specificity of 95.7 %. This study demonstrates that mTHPC-mediated intraoperative fluorescence-guided resection followed by photodynamic therapy is a feasible concept. (author)

  9. Changes in liver mitochondrial plasticity induced by brain tumor

    International Nuclear Information System (INIS)

    Accumulating data suggest that liver is a major target organ of systemic effects observed in the presence of a cancer. In this study, we investigated the consequences of the presence of chemically induced brain tumors in rats on biophysical parameters accounting for the dynamics of water in liver mitochondria. Tumors of the central nervous system were induced by intraveinous administration of ethylnitrosourea (ENU) to pregnant females on the 19th day of gestation. The mitochondrial crude fraction was isolated from the liver of each animal and the dynamic parameters of total water and its macromolecule-associated fraction (structured water, H2Ost) were calculated from Nuclear Magnetic Resonance (NMR) measurements. The presence of a malignant brain tumor induced a loss of water structural order that implicated changes in the physical properties of the hydration shells of liver mitochondria macromolecules. This feature was linked to an increase in the membrane cholesterol content, a way to limit water penetration into the bilayer and then to reduce membrane permeability. As expected, these alterations in mitochondrial plasticity affected ionic exchanges and led to abnormal features of mitochondrial biogenesis and caspase activation. This study enlightens the sensitivity of the structured water phase in the liver mitochondria machinery to external conditions such as tumor development at a distant site. The profound metabolic and functional changes led to abnormal features of ion transport, mitochondrial biogenesis and caspase activation

  10. Peritumoral hemorrhage immediately after radiosurgery for metastatic brain tumor

    International Nuclear Information System (INIS)

    We report a case of a 44-year-old woman with metastatic brain tumors who suffered peri-tumoral hemorrhage soon after stereotactic radiosurgery (SRS). She had been suffering from breast cancer with multiple systemic metastasis. She started to have headache, nausea, dizziness and speech disturbance 1 month before admission. There was no bleeding tendency in the hematological examination and the patient was normotensive. Neurological examination disclosed headache and slightly aphasia. Magnetic resonance imaging showed a large round mass lesion in the left temporal lobe. It was a well-demarcated, highly enhanced mass, 45 mm in diameter. SRS was performed on four lesions in a single session (Main mass: maximum dose was 30 Gy in the center and 20 Gy in the margin of the tumor. Others: maximum 25 Gy margin 20 Gy). After radiosurgery, she had severe headache, nausea and vomiting and showed progression of aphasia. CT scan revealed a peritumoral hemorrhage. Conservative therapy was undertaken and the patient's symptoms improved. After 7 days, she was discharged, able to walk. The patient died of extensive distant metastasis 5 months after SRS. Acute transient swelling following conventional radiotherapy is a well-documented phenomenon. However, the present case indicates that such an occurrence is also possible in SRS. We have hypothesized that acute reactions such as brain swelling occur due to breakdown of the fragile vessels of the tumor or surrounding tissue. (author)

  11. Changes in liver mitochondrial plasticity induced by brain tumor

    Directory of Open Access Journals (Sweden)

    Debien Emilie

    2006-10-01

    Full Text Available Abstract Background Accumulating data suggest that liver is a major target organ of systemic effects observed in the presence of a cancer. In this study, we investigated the consequences of the presence of chemically induced brain tumors in rats on biophysical parameters accounting for the dynamics of water in liver mitochondria. Methods Tumors of the central nervous system were induced by intraveinous administration of ethylnitrosourea (ENU to pregnant females on the 19th day of gestation. The mitochondrial crude fraction was isolated from the liver of each animal and the dynamic parameters of total water and its macromolecule-associated fraction (structured water, H2Ost were calculated from Nuclear Magnetic Resonance (NMR measurements. Results The presence of a malignant brain tumor induced a loss of water structural order that implicated changes in the physical properties of the hydration shells of liver mitochondria macromolecules. This feature was linked to an increase in the membrane cholesterol content, a way to limit water penetration into the bilayer and then to reduce membrane permeability. As expected, these alterations in mitochondrial plasticity affected ionic exchanges and led to abnormal features of mitochondrial biogenesis and caspase activation. Conclusion This study enlightens the sensitivity of the structured water phase in the liver mitochondria machinery to external conditions such as tumor development at a distant site. The profound metabolic and functional changes led to abnormal features of ion transport, mitochondrial biogenesis and caspase activation.

  12. Multiclass imbalance learning:Improving classification of pediatric brain tumors from magnetic resonance spectroscopy

    OpenAIRE

    Zarinabad, Niloufar; Wilson, Martin P; Gill, Simrandip K.; Manias, Karen A; Davies, Nigel P; Peet, Andrew C

    2016-01-01

    PURPOSE: Classification of pediatric brain tumors from (1) H-magnetic resonance spectroscopy (MRS) can aid diagnosis and management of brain tumors. However, varied incidence of the different tumor types leads to imbalanced class sizes and introduces difficulties in classifying rare tumor groups. This study assessed different imbalanced multiclass learning techniques and compared the use of complete spectra and quantified metabolite profiles for classification of three main childhood brain tu...

  13. Does Inflammation after Stroke Affect the Developing Brain Differently than Adult Brain?

    OpenAIRE

    Vexler, Zinaida S.; Yenari, Midori A.

    2009-01-01

    The immature brain is prone to hypoxic-ischemic encephalopathy and stroke. The incidence of arterial stroke in newborns is similar to that in the elderly. However, the pathogenesis of ischemic brain injury is profoundly affected by age at the time of the insult. Necrosis is a dominant type of neuronal cell death in adult brain, whereas widespread neuronal apoptosis is unique for the early postnatal synaptogenesis period. The inflammatory response, in conjunction with excitotoxic and oxidative...

  14. Thermal dosimetry studies of ultrasonically induced hyperthermia in normal dog brain and in experimental brain tumors

    International Nuclear Information System (INIS)

    In a series of 16 acute experiments on pentobarbital anesthetized dogs, thermal distributions generated by ultrasonic heating using a 1 MHz PZT transducer were compared with intensity distributions mapped in a test tank. Relatively flat distributions from 1 to 3 cm have been mapped in normal dog brain using ''shaped'' intensity distributions generated from ultrasonic emission patterns which are formed by the interaction between compressional, transverse and flexural modes activated within the crystal. In contrast, these same intensity distributions generated marked temperature variations in 3 malignant brain tumors presumably due to variations in tumor blood flow. The results of this study suggest that a practical clinical system for uniform heating of large tumor volumes with varying volumes and geometries is not an achievable goal. The author's laboratory is developing a scanning ultrasonic rapid hyperthermia treatment system which will be able to sequentially heat small volume of tumor tissue either to temperatures which will sterilize tumor or to a more conventional thermal dose. Time-temperature studies of threshold for thermal damage in normal dog brain are currently in progress

  15. The fibrinolytic system facilitates tumor cell migration across the blood-brain barrier in experimental melanoma brain metastasis

    International Nuclear Information System (INIS)

    Patients with metastatic tumors to the brain have a very poor prognosis. Increased metastatic potential has been associated with the fibrinolytic system. We investigated the role of the fibrinolytic enzyme plasmin in tumor cell migration across brain endothelial cells and growth of brain metastases in an experimental metastatic melanoma model. Metastatic tumors to the brain were established by direct injection into the striatum or by intracarotid injection of B16F10 mouse melanoma cells in C57Bl mice. The role of plasminogen in the ability of human melanoma cells to cross a human blood-brain barrier model was studied on a transwell system. Wild type mice treated with the plasmin inhibitor epsilon-aminocaproic acid (EACA) and plg-/- mice developed smaller tumors and survived longer than untreated wild type mice. Tumors metastasized to the brain of wild type mice treated with EACA and plg-/- less efficiently than in untreated wild type mice. No difference was observed in the tumor growth in any of the three groups of mice. Human melanoma cells were able to cross the human blood-brain barrier model in a plasmin dependent manner. Plasmin facilitates the development of tumor metastasis to the brain. Inhibition of the fibrinolytic system could be considered as means to prevent tumor metastasis to the brain

  16. Fetal dose estimates for radiotherapy of brain tumors during pregnancy

    International Nuclear Information System (INIS)

    Purpose: To determine clinically the fetal dose from irradiation of brain tumors during pregnancy and to quantitate the components of fetal dose using phantom measurements. Methods and Materials: Two patients received radiotherapy during pregnancy for malignant brain tumors. Case 1 was treated with opposed lateral blocked 10 x 15 cm fields and case 2 with 6 x 6 cm bicoronal wedged arcs, using 6 MV photons. Fetal dose was measured clinically and confirmed with phantom measurements using thermoluminescent dosimeters (TLDs). Further phantom measurements quantitated the components of scattered dose. Results: For case 1, both clinical and phantom measurements estimated fetal dose to be 0.09% of the tumor dose, corresponding to a total fetal dose of 0.06 Gy for a tumor dose of 68.0 Gy. Phantom measurements estimated that internal scatter contributed 20% of the fetal dose, leakage 20%, collimator scatter 33%, and block scatter 27%. For case 2, clinical and phantom measurements estimated fetal dose to be 0.04% of the tumor dose, corresponding to a total fetal dose of 0.03 Gy for a tumor dose of 78.0 Gy. Leakage contributed 74% of the fetal dose, internal scatter 13%, collimator scatter 9%, and wedge scatter 4%. Conclusions: When indicated, brain tumors may be irradiated to high dose during pregnancy resulting in fetal exposure < 0.10 Gy, conferring an increased but acceptable risk of leukemia in the child, but no other deleterious effects to the fetus after the fourth week of gestation. For our particular field arrangements and linear accelerators, internal scatter contributed a small component of fetal dose compared to leakage and scatter from the collimators and blocks, and 18 MV photons resulted in a higher estimated fetal dose than 6 MV photons due to increased leakage and collimator scatter. These findings are not universal, but clinical and phantom TLD measurements estimate fetal dose accurately for energies < 10 MV and should be taken for each pregnant patient

  17. Assessment of functional status in children with brain tumors

    International Nuclear Information System (INIS)

    Thirty children treated for brain tumors between 1978 - 1985 at Kurume university hospital were evaluated for alternation in intellectual, emotional, and social function. They were 15 males and 15 females, aged 3 to 16 years, on the averaged 1.7 years after treatment. Twenty-eight children had no neurological deficits and 2 children had slight neurological deficits. It was possible for twenty-eight children to be evaluated for intelligence quotient by Wechsler Intelligence Scale for Children-revised and Tanaka-Binet. The median score and standard deviation of intelligence quotient (IQ) test in children with brain tumors were as follows; verbal IQ: 84 ± 16, performance IQ: 77 ± 20, full scale IQ: 80 ± 20. There children with brain tumors obtained significant low IQ scores than children (t-test, P < 0.01). Twenty-one (72 %) children showed subnormal IQ scores (IQ < 90) and 7 children showed normal IQ scores (IQ ≥ 90). Concerning social and emotional function, twelve children (45.7 %) showed abnormal behaviour. The median scores and standard deviation of IQ scores in cranial irradiated patients were as follows; verbal IQ: 79 ± 13, performance IQ: 71 ± 15, full scale IQ: 71 ± 14. Especially, ten of twelve cranial irradiated patients showed subnormal IQ scores. Also, cranial irradiated patients obtained significant low IQ scores than non-cranial irradiated patients (t-test, P < 0.05). Serial evaluation of three cranial irradiated patients revealed further deterioration without recurrence of tumor and hydrocephalus. The results are discussed to: (1) the effects and mechanism of cranial irradiation on cognitive development: (2) the relationship between cognitive dysfunction and irradiation methods. The effects and mechanism of cranial irradiation on cognitive dysfunction is considered to be not only injury of cortex but also injury of fiber tracts. Also, cognitive dysfunction is apt to be related to age of irradiated patients. (J.P.N.)

  18. Utility of C-11 Choline PET for brain tumors

    International Nuclear Information System (INIS)

    The purpose of the present study was to assess the clinical potential of methyl-11C choline (C-11 choline) in brain tumors. The results of magnetic resonance (MR) imaging in 23 patients suspected of having brain tumors were then compared to the results of C-11 choline and 18F-fluorodeoxyglucose (FDG) positron emission tomography (PET). PET with C-11 choline and FDG, in addition to gadolinium-enhanced MR, were performed in these patients. A pathological diagnosis was made for each patient by open surgery. The standardized uptake values (SUVs) of brain tumors and the tumor-to-white matter count (T/W) ratios were determined. The degree of C-11 choline accumulation noted in PET images was compared to the gadolinium-enhanced areas of MR images. The mean T/W ratio of high-grade gliomas was found to be higher than that of low-grade gliomas. This difference was statistically significant (mean±SD: 8.7±6.2, n=9 versus 1.5±0.7 respectively, n=5, p<0.03) when data pertaining to the prominent uptake of C-11 choline by a patient with a pilocytic astrocytoma was excluded. C-11 choline PET failed to detect non-neoplastic lesions in two patients. Areas of C-11 choline accumulation in PET scans were longer than areas visualized by contrast enhancement on MR images in five cases involving high-grade gliomas. C-11 choline PET differentiated between low-grade gliomas and high-grade gliomas, but did not differentiate between low-grade gliomas and non-neoplasms. A combination of C-11 choline PET and MR imaging may provide investigators with accurate means to identify high-grade gliomas. (author)

  19. Utility of C-11 Choline PET for brain tumors

    Energy Technology Data Exchange (ETDEWEB)

    Ohtani, Toshiyuki; Hashiba, Yasuhiro; Tosaka, Masahiko; Fujimaki, Hiroya; Sasaki, Tomio; Oriuchi, Noboru [Gunma Univ., Maebashi (Japan). School of Medicine; Inoue, Tomio [Yokohama City Univ. (Japan). School of Medicine

    2002-03-01

    The purpose of the present study was to assess the clinical potential of methyl-{sup 11}C choline (C-11 choline) in brain tumors. The results of magnetic resonance (MR) imaging in 23 patients suspected of having brain tumors were then compared to the results of C-11 choline and {sup 18}F-fluorodeoxyglucose (FDG) positron emission tomography (PET). PET with C-11 choline and FDG, in addition to gadolinium-enhanced MR, were performed in these patients. A pathological diagnosis was made for each patient by open surgery. The standardized uptake values (SUVs) of brain tumors and the tumor-to-white matter count (T/W) ratios were determined. The degree of C-11 choline accumulation noted in PET images was compared to the gadolinium-enhanced areas of MR images. The mean T/W ratio of high-grade gliomas was found to be higher than that of low-grade gliomas. This difference was statistically significant (mean{+-}SD: 8.7{+-}6.2, n=9 versus 1.5{+-}0.7 respectively, n=5, p<0.03) when data pertaining to the prominent uptake of C-11 choline by a patient with a pilocytic astrocytoma was excluded. C-11 choline PET failed to detect non-neoplastic lesions in two patients. Areas of C-11 choline accumulation in PET scans were longer than areas visualized by contrast enhancement on MR images in five cases involving high-grade gliomas. C-11 choline PET differentiated between low-grade gliomas and high-grade gliomas, but did not differentiate between low-grade gliomas and non-neoplasms. A combination of C-11 choline PET and MR imaging may provide investigators with accurate means to identify high-grade gliomas. (author)

  20. Distribution of alarin in the mouse brain and in tumors of the central nervous system

    International Nuclear Information System (INIS)

    Alarin is a 25 amino acid peptide that belongs to the galanin neuropeptide family and is a splice variant of the galanin-like peptide (GALP) gene. It was first identified in gangliocytes of neuroblastic tumors and recently, alarin was demonstrated to stimulate food intake as well as the hypothalamic-pituitary-gonadal axis in rodents. However, mRNA and protein expression of alarin in the central nervous system have not been described yet. Therefore, we investigated GALP/alarin promoter activity using a transgenic reporter mouse model. This mouse model expresses YFP when the GALP/alarin promoter is active and therefore is a suitable tool to indicate nuclei where GALP/alarin mRNA is expressed. Immunohistochemical analysis of YFP expression in these transgenic mice revealed a wide distribution of GALP/alarin promoter activity throughout the whole murine brain. As the promoter activity studies cannot discriminate between GALP and alarin expression the next aim was to determine the distribution of alarin peptide- in the adult murine brain with an anti-alarin antibody. The specificity of the antibody against alarin was demonstrated by the absence of labeling after pre-absorption of the antiserum with synthetic alarin peptide and in transgenic mouse brains depleted of cells expressing the GALP/alarin gene. In wild type animals alarin-like immunoreacitivity (alarin-LI) was observed in different areas of the murine brain including the accessory olfactory bulb, medial preoptic area and the hypothalamus. Furthermore, immunohistochemical analysis of alarin expression in peripheral tissues revealed high alarin levels in the testis of adult mice, whereas no alarin-Li was detected in the oesophagus of mice and trachea of rats. The galanin peptide family is known to play a role in cancer and alarin was first described in human neuroblastic tumors. Therefore, alarin expression in different CNS-tumor types was determined in the present study. Immunohistochemical analysis of a variety

  1. Asymmetry of the Structural Brain Connectome in Healthy Older Adults

    OpenAIRE

    Bonilha, Leonardo; Nesland, Travis; Rorden, Chris; Fridriksson, Julius

    2014-01-01

    Background: It is now possible to map neural connections in vivo across the whole brain (i.e., the brain connectome). This is a promising development in neuroscience since many health and disease processes are believed to arise from the architecture of neural networks. Objective: To describe the normal range of hemispheric asymmetry in structural connectivity in healthy older adults. Materials and Methods: We obtained high-resolution structural magnetic resonance images (MRI) from 17 he...

  2. An anatomic gene expression atlas of the adult mouse brain

    OpenAIRE

    Ng, Lydia; Bernard, Amy; Lau, Chris; Overly, Caroline C.; Dong, Hong-Wei; Kuan, Chihchau; Pathak, Sayan; Sunkin, Susan M.; Dang, Chinh; Bohland, Jason W.; Bokil, Hemant; Mitra, Partha P.; Puelles, Luis; Hohmann, John; Anderson, David J.

    2009-01-01

    Studying gene expression provides a powerful means of understanding structure-function relationships in the nervous system. The availability of genome-scale in situ hybridization datasets enables new possibilities for understanding brain organization based on gene expression patterns. The Anatomic Gene Expression Atlas (AGEA) is a new relational atlas revealing the genetic architecture of the adult C57Bl/6J mouse brain based on spatial correlations across expression data for thousands of gene...

  3. Neuronal regeneration in a zebrafish model of adult brain injury

    Directory of Open Access Journals (Sweden)

    Norihito Kishimoto

    2012-03-01

    Neural stem cells in the subventricular zone (SVZ of the adult mammalian forebrain are a potential source of neurons for neural tissue repair after brain insults such as ischemic stroke and traumatic brain injury (TBI. Recent studies show that neurogenesis in the ventricular zone (VZ of the adult zebrafish telencephalon has features in common with neurogenesis in the adult mammalian SVZ. Here, we established a zebrafish model to study injury-induced neurogenesis in the adult brain. We show that the adult zebrafish brain possesses a remarkable capacity for neuronal regeneration. Telencephalon injury prompted the proliferation of neuronal precursor cells (NPCs in the VZ of the injured hemisphere, compared with in the contralateral hemisphere. The distribution of NPCs, viewed by BrdU labeling and ngn1-promoter-driven GFP, suggested that they migrated laterally and reached the injury site via the subpallium and pallium. The number of NPCs reaching the injury site significantly decreased when the fish were treated with an inhibitor of γ-secretase, a component of the Notch signaling pathway, suggesting that injury-induced neurogenesis mechanisms are at least partly conserved between fish and mammals. The injury-induced NPCs differentiated into mature neurons in the regions surrounding the injury site within a week after the injury. Most of these cells expressed T-box brain protein (Tbr1, suggesting they had adopted the normal neuronal fate in this region. These results suggest that the telencephalic VZ contributes to neural tissue recovery following telencephalic injury in the adult zebrafish, and that the adult zebrafish is a useful model for regenerative medicine.

  4. Factors affecting radiation injury after interstitial brachytherapy for brain tumors

    International Nuclear Information System (INIS)

    The effects of brachytherapy on normal brain tissue are not easily delineated in the clinical setting because of the presence of concurrent radiation-induced changes in the coexistent brain tumor. Sequential morphologic studies performed after the implantation of radioactive sources into the brains of experimental animals have provided a better understanding of the character and magnitude of the structural changes produced by interstitial irradiation on normal brain tissue. Furthermore, the clinical experience accumulated thus far provides not only relevant information, but also some guidelines for future treatment policies. In this paper, the authors summarize the experimental findings and review the pathologic and clinical features of brain injury caused by interstitial brachytherapy. A number of studies in the older literature examined the effects of radioisotopes such as radium-226 (38--43), radon-22 (44--46), gold-198 (29,47--50), tantalum-182 (29,51,52) yttrium-9- (50,53,54), and cobalt-60 (29,50,55). This review is restricted to low- and high-activity encapsulated iodine-125 (125I) and iridium-192 (192Ir), the isotopes that are most commonly used in current clinical practice

  5. Simulating ‘structure-function’ patterns of malignant brain tumors

    Science.gov (United States)

    Mansury, Yuri; Deisboeck, Thomas S.

    2004-01-01

    Rapid growth and extensive tissue infiltration are characteristics of highly malignant neuroepithelial brain tumors. Very little is known, however, about the existence of structure-function relationships in these types of neoplasm. Therefore, using a previously developed two-dimensional agent-based model, we have investigated the emergent patterns of multiple tumor cells that proliferate and migrate on an adaptive grid lattice, driven by a local-search mechanism and guided by the presence of distinct environmental conditions. Numerical results indicate a strong correlation between the fractal dimensions of the tumor surface and the average velocity of the tumor's spatial expansion. In particular, when the so called ‘beaten-path advantage’ intensifies, i.e., rising ‘mechanical rewards’ for cells to follow each other along preformed pathways, it results in an increase of the tumor system's fractal dimensions leading to a concomitant acceleration of its spatial expansion. Whereas cell migration is the dominant phenotype responsible for the more extensive branching patterns exhibiting higher fractal dimensions, cell proliferation appears to become more active primarily at lower fracticality associated with stronger mechanical confinements. Implications of these results for experimental and clinical cancer research are discussed.

  6. Detection of Brain Tumor in EEG Signals Using Independent Component Analysis

    OpenAIRE

    Rashid, Akram; Tahir, Seema; Choudhury, Aamer Saleem

    2015-01-01

    The Electroencephalogram(EEG) is Scientifically becoming an important tool of measuring brain activity. The EEG data is used to diagnose brain diseases and brain abnormalities. EEG helps to suit the increasing demand of brain tumor detection on affordable prices with better clinical and healthcare services. This research work presents a technique of efficient brain tumor detection in EEG signals using Independent Component Analysis(ICA). EEG signals which actually are carrying information reg...

  7. Development of neural stem cell in the adult brain

    OpenAIRE

    Duan, Xin; Kang, Eunchai; Liu, Cindy Y.; Ming, Guo-li; Song, Hongjun

    2008-01-01

    New neurons are continuously generated in the dentate gyrus of the mammalian hippocampus and in the subventricular zone of the lateral ventricles throughout life. The origin of these new neurons is believed to be from multipotent adult neural stem cells. Aided by new methodologies, significant progress has been made in the characterization of neural stem cells and their development in the adult brain. Recent studies have also begun to reveal essential extrinsic and intrinsic molecular mechani...

  8. Analysis of Spectral Features of EEG signal in Brain Tumor Condition

    Directory of Open Access Journals (Sweden)

    Selvam V. Salai

    2015-08-01

    Full Text Available The scalp electroencephalography (EEG signal is an important clinical tool for the diagnosis of several brain disorders. The objective of the presented work is to analyze the feasibility of the spectral features extracted from the scalp EEG signals in detecting brain tumors. A set of 16 candidate features from frequency domain is considered. The significance on the mean values of these features between 100 brain tumor patients and 102 normal subjects is statistically evaluated. Nine of the candidate features significantly discriminate the brain tumor case from the normal one. The results encourage the use of (quantitative scalp EEG for the diagnosis of brain tumors

  9. Round Randomized Learning Vector Quantization for Brain Tumor Imaging

    Directory of Open Access Journals (Sweden)

    Siti Norul Huda Sheikh Abdullah

    2016-01-01

    Full Text Available Brain magnetic resonance imaging (MRI classification into normal and abnormal is a critical and challenging task. Owing to that, several medical imaging classification techniques have been devised in which Learning Vector Quantization (LVQ is amongst the potential. The main goal of this paper is to enhance the performance of LVQ technique in order to gain higher accuracy detection for brain tumor in MRIs. The classical way of selecting the winner code vector in LVQ is to measure the distance between the input vector and the codebook vectors using Euclidean distance function. In order to improve the winner selection technique, round off function is employed along with the Euclidean distance function. Moreover, in competitive learning classifiers, the fitting model is highly dependent on the class distribution. Therefore this paper proposed a multiresampling technique for which better class distribution can be achieved. This multiresampling is executed by using random selection via preclassification. The test data sample used are the brain tumor magnetic resonance images collected from Universiti Kebangsaan Malaysia Medical Center and UCI benchmark data sets. Comparative studies showed that the proposed methods with promising results are LVQ1, Multipass LVQ, Hierarchical LVQ, Multilayer Perceptron, and Radial Basis Function.

  10. Round Randomized Learning Vector Quantization for Brain Tumor Imaging

    Science.gov (United States)

    2016-01-01

    Brain magnetic resonance imaging (MRI) classification into normal and abnormal is a critical and challenging task. Owing to that, several medical imaging classification techniques have been devised in which Learning Vector Quantization (LVQ) is amongst the potential. The main goal of this paper is to enhance the performance of LVQ technique in order to gain higher accuracy detection for brain tumor in MRIs. The classical way of selecting the winner code vector in LVQ is to measure the distance between the input vector and the codebook vectors using Euclidean distance function. In order to improve the winner selection technique, round off function is employed along with the Euclidean distance function. Moreover, in competitive learning classifiers, the fitting model is highly dependent on the class distribution. Therefore this paper proposed a multiresampling technique for which better class distribution can be achieved. This multiresampling is executed by using random selection via preclassification. The test data sample used are the brain tumor magnetic resonance images collected from Universiti Kebangsaan Malaysia Medical Center and UCI benchmark data sets. Comparative studies showed that the proposed methods with promising results are LVQ1, Multipass LVQ, Hierarchical LVQ, Multilayer Perceptron, and Radial Basis Function.

  11. Inflammation is detrimental for neurogenesis in adult brain

    Science.gov (United States)

    Ekdahl, Christine T.; Claasen, Jan-Hendrik; Bonde, Sara; Kokaia, Zaal; Lindvall, Olle

    2003-11-01

    New hippocampal neurons are continuously generated in the adult brain. Here, we demonstrate that lipopolysaccharide-induced inflammation, which gives rise to microglia activation in the area where the new neurons are born, strongly impairs basal hippocampal neurogenesis in rats. The increased neurogenesis triggered by a brain insult is also attenuated if it is associated with microglia activation caused by tissue damage or lipopolysaccharide infusion. The impaired neurogenesis in inflammation is restored by systemic administration of minocycline, which inhibits microglia activation. Our data raise the possibility that suppression of hippocampal neurogenesis by activated microglia contributes to cognitive dysfunction in aging, dementia, epilepsy, and other conditions leading to brain inflammation.

  12. Boron Neutron Capture Therapy for Malignant Brain Tumors

    Science.gov (United States)

    MIYATAKE, Shin-Ichi; KAWABATA, Shinji; HIRAMATSU, Ryo; KUROIWA, Toshihiko; SUZUKI, Minoru; KONDO, Natsuko; ONO, Koji

    2016-01-01

    Boron neutron capture therapy (BNCT) is a biochemically targeted radiotherapy based on the nuclear capture and fission reactions that occur when non-radioactive boron-10, which is a constituent of natural elemental boron, is irradiated with low energy thermal neutrons to yield high linear energy transfer alpha particles and recoiling lithium-7 nuclei. Therefore, BNCT enables the application of a high dose of particle radiation selectively to tumor cells in which boron-10 compound has been accumulated. We applied BNCT using nuclear reactors for 167 cases of malignant brain tumors, including recurrent malignant gliomas, newly diagnosed malignant gliomas, and recurrent high-grade meningiomas from January 2002 to May 2014. Here, we review the principle and history of BNCT. In addition, we introduce fluoride-18-labeled boronophenylalanine positron emission tomography and the clinical results of BNCT for the above-mentioned malignant brain tumors. Finally, we discuss the recent development of accelerators producing epithermal neutron beams. This development could provide an alternative to the current use of specially modified nuclear reactors as a neutron source, and could allow BNCT to be performed in a hospital setting. PMID:27250576

  13. CyberKnife stereotactic irradiation for metastatic brain tumors

    International Nuclear Information System (INIS)

    The CyberKnife provides a new technique for performing frameless stereotactic irradiation. So far, few reports have been published on clinical outcomes obtained with the CyberKnife. This report summarizes our clinical experience with CyberKnife irradiation for metastatic brain tumors. Seventy-seven lesions (48 patients) were evaluated and analyzed, and 66 lesions in 41 patients were treated with stereotactic radiosurgery (SRS). The prescribed dose was 9 to 30 Gy. Freedom from progression of the tumors was more likely with a prescribed dose of at least 24 Gy than with one of less than 20 Gy (p=0.0244; log-rank test). The CR (complete response) rate was significantly higher when D99 was at least 24 Gy (p=0.0045). There were no severe side effects. Stereotactic irradiation with the CyberKnife for metastatic brain tumors is effective and safe. D99 should be at least 24 Gy for CyberKnife SRS treatment. (author)

  14. Early Experience of Pre- and Post-Contrast 7.0T MRI in Brain Tumors

    OpenAIRE

    Paek, Seung Leal; Chung, Young Seob; Paek, Sun Ha; Hwang, Jae Ha; Sohn, Chul-Ho; Choi, Seung Hong; Son, Young Don; Kim, Young Bo; Kim, Dong Gyu; Lee, Kendall H.; Cho, Zang-Hee

    2013-01-01

    We investigated the safety and clinical applicability of 7.0 Tesla (T) brain magnetic resonance imaging (MRI) in patients with brain tumors. Twenty-four patients with intraaxial or extraaxial brain tumors were enrolled in this study. 7.0T MRIs of T2*-weighted axial and T1-weighted coronal or sagittal images were obtained and compared with 1.5T brain MRIs. The T2*-weighted images from 7.0T brain MRI revealed detailed microvasculature and the internal contents of supratentorial brain tumors bet...

  15. Colonic duplication in an adult mimicking a tumor of pancreas

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Duplications of the alimentary tract are uncommon congenital malformations that can present diagnostic difficulties.We report a rare case of a cystic colonic duplication in a female adult.Preoperative investigations were suggestive of pancreatic tumor.The diagnosis was established based on the histopathological examination of the resected specimen.We concluded that,though uncommon,intestinal duplication should be considered in differential diagnosis of abdominal mass.

  16. Measurement of fractional anisotropy in normal cerebral white matter and brain tumors with diffusion tensor imaging

    International Nuclear Information System (INIS)

    The purpose of this study was to measure the apparent diffusion coefficient (ADC) and fractional anisotropy (FA) of normal adult brain tissue and tumors, and to compare the differences. Eight normal adults and ten patients in whom intracranial tumors had been diagnosed were included. Imaging was performed using a 1.5 T MR unit and a single-shot spin-echo EPI pulse sequence (TR/TE=4024/94 msec, 128 acquisition/256 reconstruction, 23 cm FOV, 5mm thickness, 2mm interslice gap, 4 NSA), six different direction gradients (x, y, z, xy, yz, xz), and 2 b-values (0, 1000). Isotropic ADC (D) was obtained from seven images per slice, and fractional anisotropy (FA) was calculated from the isotropic ADC and eigenvalues of three directions. A region of interest was drawn at frontal gray and white matter, periventricular white matter, the corpus callosum, internal capsule, caudate nucleus and center of the tumor mass, and for each region, fractional anisotropy readings were obtained. In normal adults, the findings were as follows: frontal gray matter: D=0.81±0.06, FA=0.32±0.03; frontal white matter:D=0.79±0.04, FA=0.56±0.09, periventricular white matter: D=0.77±0.02, FA=0.51±0.04; corpus callosum: D=0.79±0.07, FA=0.82±0.07; internal capsule: D=0.73±0.04, FA=0.77±0.05; caudate nucleus: D=0.76±0.05, FA=0.35±0.05. High anisotropy was demonstrated in white matter, especially in the corpus callosum and internal capsule, and the degree of anisotropy was similar in gray and deep gray matter. For most brain tumors, isotropic ADC was similar to that of white matter, but fractional anisotropy was lower. A low-grade astrocytoma showed higher isotropic ADC and lower fractional anisotropy than normal white matter, and at the center of al meningioma, fractional anisotropy was high. For the classification of brain tumors and determination of the extent of disease, comparison between the apparent diffusion coefficient and fractional anisotropy is useful

  17. Fatigue in adults with traumatic brain injury

    DEFF Research Database (Denmark)

    Mollayeva, Tatyana; Kendzerska, Tetyana; Mollayeva, Shirin;

    2013-01-01

    BACKGROUND: Despite strong indications that fatigue is the most common and debilitating symptom after traumatic brain injury, little is known about its frequency, natural history, or relation to other factors. The current protocol outlines a strategy for a systematic review that will identify......, assess, and critically appraise studies that assessed predictors for fatigue and the consequences of fatigue on at least two separate time points following traumatic brain injury. METHODS/DESIGN: MEDLINE, EMBASE, the Cochrane Database of Systematic Reviews, CINAHL, and PsycINFO will be systematically...... quality appraisal. Randomized control trial data will be treated as a cohort. The quality will be assessed using the criteria defined by Hayden and colleagues. The review will be conducted and reported in compliance with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines...

  18. Adult Brain Plasticity Elicited by Anomia Treatment

    OpenAIRE

    Cornelissen, Katri; Laine, Matti; Tarkiainen, Antti; Järvensivu, Tiina; Martin, Nadine; Salmelin, Riitta

    2003-01-01

    We describe a study where a specific treatment method for word-finding difficulty (so-called contextual priming technique, which combines massive repetition priming with semantic priming) was applied with three chronic left hemisphere-damaged aphasics. Both before and after treatment, which focused on naming of a series of pictures, naming-related brain activity was measured by magnetoencephalography (MEG). Due to its excellent temporal resolution and good spatial resolution, we were able to ...

  19. Identifying the needs of brain tumor patients and their caregivers.

    Science.gov (United States)

    Parvataneni, Rupa; Polley, Mei-Yin; Freeman, Teresa; Lamborn, Kathleen; Prados, Michael; Butowski, Nicholas; Liu, Raymond; Clarke, Jennifer; Page, Margaretta; Rabbitt, Jane; Fedoroff, Anne; Clow, Emelia; Hsieh, Emily; Kivett, Valerie; Deboer, Rebecca; Chang, Susan

    2011-09-01

    The purpose of this study is to identify the needs of brain tumor patients and their caregivers to provide improved health services to these populations. Two different questionnaires were designed for patients and caregivers. Both questionnaires contained questions pertaining to three realms: disease symptoms/treatment, health care provider, daily living/finances. The caregivers' questionnaires contained an additional domain on emotional needs. Each question was evaluated for the degree of importance and satisfaction. Exploratory analyses determined whether baseline characteristics affect responder importance or satisfaction. Also, areas of high agreement/disagreement in satisfaction between the participating patient-caregiver pairs were identified. Questions for which >50% of the patients and caregivers thought were "very important" but >30% were dissatisfied include: understanding the cause of brain tumors, dealing with patients' lower energy, identifying healthful foods and activities for patients, telephone access to health care providers, information on medical insurance coverage, and support from their employer. In the emotional realm, caregivers identified 9 out of 10 items as important but need further improvement. Areas of high disagreement in satisfaction between participating patient-caregiver pairs include: getting help with household chores (P value = 0.006) and finding time for personal needs (P value < 0.001). This study provides insights into areas to improve services for brain tumor patients and their caregivers. The caregivers' highest amount of burden is placed on their emotional needs, emphasizing the importance of providing appropriate medical and psychosocial support for caregivers to cope with emotional difficulties they face during the patients' treatment process. PMID:21311950

  20. Proton and carbon ion radiotherapy for primary brain tumors and tumors of the skull base

    Energy Technology Data Exchange (ETDEWEB)

    Combs, Stephanie E.; Kessel, Kerstin; Habermehl, Daniel; Debus, Jurgen [Univ. Hospital of Heidelberg, Dept. of Radiation Oncology, Heidelberg (Germany)], e-mail: Stephanie.Combs@med.uni-heidelberg.de; Haberer, Thomas [Heidelberger Ionenstrahl Therapiezentrum (HIT), Heidelberg (Germany); Jaekel, Oliver [Univ. Hospital of Heidelberg, Dept. of Radiation Oncology, Heidelberg (Germany); Heidelberger Ionenstrahl Therapiezentrum (HIT), Heidelberg (Germany)

    2013-10-15

    To analyze clinical concepts, toxicity and treatment outcome in patients with brain and skull base tumors treated with photons and particle therapy. Material and methods: In total 260 patients with brain tumors and tumors of the skull base were treated at the Heidelberg Ion Therapy Center (HIT). Patients enrolled in and randomized within prospective clinical trials as well as bony or soft tissue tumors are not included in this analysis. Treatment was delivered as protons, carbon ions, or combinations of photons and a carbon ion boost. All patients are included in a tight follow-up program. The median follow-up time is 12 months (range 2-39 months). Results: Main histologies included meningioma (n = 107) for skull base lesions, pituitary adenomas (n = 14), low-grade gliomas (n = 51) as well as high-grade gliomas (n = 55) for brain tumors. In all patients treatment could be completed without any unexpected severe toxicities. No side effects > CTC Grade III were observed. To date, no severe late toxicities were observed, however, for endpoints such as secondary malignancies or neuro cognitive side effects follow-up time still remains too short. Local recurrences were mainly seen in the group of high-grade gliomas or atypical meningiomas; for benign skull base meningiomas, to date, no recurrences were observed during follow-up. Conclusion: The specific benefit of particle therapy will potentially reduce the risk of secondary malignancies as well as improve neuro cognitive outcome and quality of life (QOL); thus, longer follow-up will be necessary to confirm these endpoints. Indication-specific trials on meningiomas and gliomas are underway to elucidate the role of protons and carbon ions in these indications.

  1. Proton and carbon ion radiotherapy for primary brain tumors and tumors of the skull base

    International Nuclear Information System (INIS)

    To analyze clinical concepts, toxicity and treatment outcome in patients with brain and skull base tumors treated with photons and particle therapy. Material and methods: In total 260 patients with brain tumors and tumors of the skull base were treated at the Heidelberg Ion Therapy Center (HIT). Patients enrolled in and randomized within prospective clinical trials as well as bony or soft tissue tumors are not included in this analysis. Treatment was delivered as protons, carbon ions, or combinations of photons and a carbon ion boost. All patients are included in a tight follow-up program. The median follow-up time is 12 months (range 2-39 months). Results: Main histologies included meningioma (n = 107) for skull base lesions, pituitary adenomas (n = 14), low-grade gliomas (n = 51) as well as high-grade gliomas (n = 55) for brain tumors. In all patients treatment could be completed without any unexpected severe toxicities. No side effects > CTC Grade III were observed. To date, no severe late toxicities were observed, however, for endpoints such as secondary malignancies or neuro cognitive side effects follow-up time still remains too short. Local recurrences were mainly seen in the group of high-grade gliomas or atypical meningiomas; for benign skull base meningiomas, to date, no recurrences were observed during follow-up. Conclusion: The specific benefit of particle therapy will potentially reduce the risk of secondary malignancies as well as improve neuro cognitive outcome and quality of life (QOL); thus, longer follow-up will be necessary to confirm these endpoints. Indication-specific trials on meningiomas and gliomas are underway to elucidate the role of protons and carbon ions in these indications

  2. Combined therapy of radiotherapy and chemotherapy on brain tumor

    International Nuclear Information System (INIS)

    The subjects were 52 patients (5-78 years, average 51.4 years) with primary brain tumor treated in 4 institutes in Chugoku and Shikoku districts during 3 years from April 1991. Histopathologically, the subject diseases were glioblastoma in 16, well differentiated glioblastoma in 19, brain primary lymphoma in 9, and malignant meningioma in 5. In the glioblastoma group, 14 received surgery, radiotherapy, and chemotherapy at the first admission. Three patients who survived more than 1 year and 6 patients who died within 1 year were compared. No significant difference was observed in terms of radiotherapy between the both groups. In the astrocytoma and oligodendroglioma groups, 16 patients received radiotherapy and chemotherapy as the initial treatment, and 14 underwent several course of maintenance therapy. In the comparison between 7 patients who died within 3 years from the first treatment and 9 patients surviving more than 3 years, no significant difference was observed in terms of radiation doses. (S.Y.)

  3. Collective Behavior of Brain Tumor Cells: the Role of Hypoxia

    Science.gov (United States)

    Khain, Evgeniy; Katakowski, Mark; Hopkins, Scott; Szalad, Alexandra; Zheng, Xuguang; Jiang, Feng; Chopp, Michael

    2013-03-01

    We consider emergent collective behavior of a multicellular biological system. Specifically we investigate the role of hypoxia (lack of oxygen) in migration of brain tumor cells. We performed two series of cell migration experiments. The first set of experiments was performed in a typical wound healing geometry: cells were placed on a substrate, and a scratch was done. In the second set of experiments, cell migration away from a tumor spheroid was investigated. Experiments show a controversy: cells under normal and hypoxic conditions have migrated the same distance in the ``spheroid'' experiment, while in the ``scratch'' experiment cells under normal conditions migrated much faster than under hypoxic conditions. To explain this paradox, we formulate a discrete stochastic model for cell dynamics. The theoretical model explains our experimental observations and suggests that hypoxia decreases both the motility of cells and the strength of cell-cell adhesion. The theoretical predictions were further verified in independent experiments.

  4. Phenylalanine-coupled solid lipid nanoparticles for brain tumor targeting

    International Nuclear Information System (INIS)

    The purpose of this study is to investigate the targeting potential of amino acid (phenylalanine)-coupled solid lipid nanoparticles (SLN) loaded with ionically complexed doxorubicin HCl (Dox). Ionic complexation was used to enhance the loading efficiency and release characteristics of water soluble form of Dox. l-Type amino acid transporters (LAT1) are highly expressed on blood brain barrier as well as on many brain cancer cells, thus targeting LAT1 using phenylalanine improved anticancer activity of prepared nanocarrier. The phenylalanine-coupled SLN were characterized by fourier transform infrared spectroscopy, scanning electron microscope, transmission electron microscopy, particle size, zeta potential, entrapment efficiency and in vitro release. The particle size of the resulting SLN was found to be in the range of 163.3 ± 5.2 to 113.0 ± 2.6 nm, with a slightly negative surface charge. In ex vivo study on C6 glioma cell lines, the cellular cytotoxicity of the SLN was highly increased when coupled with phenylalanine. In addition, stealthing sheath of PEG present on the surface of the SLN enhanced the cellular uptake of the SLN on C6 glioma cell line. Results of biodistribution and fluorescence studies clearly revealed that phenylalanine-coupled SLN could deliver high amount of drug into the brain tumor cells and showed the brain-targeting potential

  5. Early dynamic Thallium-201 SPECT in evaluation of brain tumors

    International Nuclear Information System (INIS)

    Purpose: We performed early dynamic 201TlCl SPECT studies on patients with brain tumors to determine the value of 201TlCl dynamics for 15 minutes in distinguishing and evaluating the histologic grade of brain tumors. Method: SPECT studies were performed on 69 patients with brain tumors prior to surgical resection. Histological diagnosis was as follows: 28 patients with glioblastoma (grade IV), 8 patients with anaplastic astrocytoma (grade III), 5 patients with grade II astrocytoma, 1 patients with pilocytic astrocytoma (grade I), and 27 patients with meningioma. Pilocytic astrocytoma and grade II astrocytoma were grouped together as low-grade gliomas. Results: In glioblastomas, the Time-activity ratios(TARs) increased significantly at 6 min (99.2±6.0%, p<0.0001 ), 9 min (103.0±4.6%, p<0.0001), 12 min (102.1±6.4%, p<0.01), and 15 min (102.0±5.0%, p<0.001) after 201TlCl administration when compared to the TAR at 3 min (93.7±6.9%). Unchanged radioactivity was observed on the time-activity curve in anaplastic astrocytomas (3 min: 106.0±17.8%, 6 min: 103.8±9.4%, 9 min: 99.1±6.3%, 12 min: 95.0±11.0%, 15 min: 96.0±13.0%). The TARs decreased significantly at 6 min (104.0±7.1%, p<0.05), 9 min (96.1±4.9%, p<0.02), 12 min(95.0±6.5%, p<0.05), and 15 min (89.8±12.8%, p<0.05) compared to the TAR at 3 min (113.9±9.5%) in low grade gliomas. In meningiomas, the TARs decreased at 12 min (94.0±9.1%, p<0.01), and 15 min (93.6±12.8%, p<0.02) compared to the TAR at 3 min (108.6±18.5%) respectively. Conclusion: In this early dynamic SPECT study, the entire duration of the examination is short, 15 minutes, a period similar to other general laboratory tests. Moreover, there is no need for adjustments of the imaging location with this method since continuous scanning is utilized. This examination method indicated not only 201Tl uptake but accumulative dynamics and also offer more accurate assessment in the diagnosis of brain tumors

  6. Criteria for the evaluation of brachytherapy for malignant brain tumors

    International Nuclear Information System (INIS)

    Thirty two patients with recurrent or unresectable malignant brain tumors were treated by interstitial brachytherapy with Ir-192 seeds. After-loading catheters were stereotactically implanted under local anesthesia using a Brown-Roberts-wells (BRW) CT guided stereotactic system. The response to the therapy was followed by serial CT and MRI scans and evaluated three months after implantation by the standard criteria for the evaluation of chemotherapy because there is no set of criteria available for radiation therapy. After interstitial brachytherapy, the most commonly observed CT and MRI finding was central low attenuation, that is, the central enhanced tumor replaced by the radiation necrosis. Three months after the treatment, these findings were observed in 23 patients out of 32 patients on the CT and MRI. We observed complete response (CR) in 6 of 32 patients, partial response (PR) in 9, no change (NC) in 7 and progressive disease (PD) in 9. In 6 CR patients, the tumor disappeared by three months after treatment. In 15 patients of 17 NC and PD patients, the central low attenuation was observed and their prognosis was better than those without central necrosis. The results suggested the standard criteria for the evaluation of chemotherapy, such as CR, PR etc, cannot be applicable to our series because the tumor mass replaced by necrotic tissue and remained as a mass lesion in most cases and new criteria in consideration of this low attenuation on CT and MRI will be needed for the evaluation of brachytherapy on neuroimagings. (author)

  7. Intracranial yolk sac tumor in an adult patient: MRI, diffusion-weighted imaging and 1H MR spectroscopy features

    Directory of Open Access Journals (Sweden)

    Mačvanski Marija

    2012-01-01

    Full Text Available Introduction. Yolk sac tumors represent only 5%-7% of intracranial germ cell tumors, which comprise about 1% of all primary brain tumors in adults. Literature data about nonspecific imaging characteristics of these tumors are scant. We presented magnetic resonance imaging findings with diffusion-weighted imaging and proton magnetic resonance spectroscopy of this rare type of tumor in an adult patient. Case report. A 55-year-old man with progressive left side weakness, headache, dizziness and ataxia, underwent preoperative magnetic resonance imaging, diffusion-weighted imaging and proton magnetic resonance spectroscopy. After surgical resection and histological analysis, the final diagnosis of yolk sac tumor was established. Retrospective imaging analysis were performed in order to determine imaging and biochemical parameters that could be useful in the diagnostic evaluation of this tumor type. Conclusion. Though the imaging features of yolk sac tumor are not specific, morphoanatomical and metabolic imaging could offer the information that provides new insights into this tumor that may facilitate further therapeutic decision process and potentially provides better information regarding the disease prognosis.

  8. P03.09PHARMACOLOGICAL MODULATION OF BLOOD-BRAIN BARRIER: FUTURE STRATEGY FOR TREATMENT OF BRAIN TUMORS

    OpenAIRE

    Sardi, I.; Cardellicchio, S.; Iorio, A.L.; da Ros, M.; la Marca, G.; Giunti, L.; Massimino, M.; L. Genitori

    2014-01-01

    A prerequisite for the efficacy of chemotherapy is that it reaches the tumor mass at a therapeutic concentration. In brain tumors this phenomenon is hampered by the presence of the blood brain barrier (BBB) which limits the spread of chemotherapeutic agents within the brain. It is lately emerged as this Multi Drug Resistance (MDR) phenomenon is explained through the cooperation of P-glycoprotein (P-gp, ABCB1) and breast cancer resistance protein (BCRP, ABCG2), two “gatekeeper" transporters th...

  9. MRI changes due to early-delayed conformal radiotherapy and postsurgical effects in patients with brain tumors

    International Nuclear Information System (INIS)

    Purpose: Discernment of radiotherapy (XRT) effects vs. tumor activity is difficult in brain tumor patients during the months after XRT when white matter hyperintensities sometimes emerge. We examined brain scans in XRT-treated vs. untreated patients for early-delayed post-XRT effects. Methods and Materials: Brain regions susceptible to XRT injury were examined on magnetic resonance imaging (MRI) for T2-weighted hyperintensities and atrophy in 37 adults with low-grade primary brain tumors (13 nonirradiated and 24 irradiated). Cases evidencing recurrence/growth over the study period were censored. Interactions with age, mood, fatigue, medications, tumor type and grade, extent of resection, and laterality of MRI changes were examined. Results: Hyperintensity and atrophy ratings over time for the treated and untreated groups were not significantly different. White matter atrophy increased unrelated to XRT. In all patients combined, white matter atrophy and hyperintensities were greater at all time points and more lateralized in surgically treated patients. Conclusions: Radiotherapy status was not related to changes in MRI ratings during the weeks/months after XRT. Findings contradict assumptions about radiographically evidenced early-delayed XRT effects. Increases in T2-weighted hyperintensities during the 1-6-month period postconformal radiotherapy for low-grade tumors are likely not related to early-delayed XRT effects

  10. Staging Childhood Central Nervous System Embryonal Tumors

    Science.gov (United States)

    ... children. See the PDQ summary on Adult Central Nervous System Tumors Treatment for more information on the treatment of adults. There are different types of CNS embryonal tumors. Enlarge Anatomy of the inside of the brain, showing the ...

  11. DNA synthesis and cell division in the adult primate brain

    International Nuclear Information System (INIS)

    It is generally accepted that the adult human brain is incapable of producing new neuron. Even cursory examination of neurologic, neuropathologic, or neurobiological textbooks published during the past 50 years will testify that this belief is deeply entrenched. In his classification of cell populations on the basis of their proliferative behavior, Leblond regarded neurons of the central nervous system as belonging to a category of static, nonrenewing epithelial tissue incapable of expanding or replenishing itself. This belief, however needs to re reexamined for two major reasons: First, as reviewed below, a number of reports have provided evidence of neurogenesis in adult brain of several vertebrate species. Second, the capacity for neurogenesis in the adult primate central nervous system has never been examined by modern methods. In this article the author described recent results from an extensive autoradiographic analysis performed on twelve rhesus monkeys injected with the specific DNA precursor [3H] thymidine at ages ranging from 6 postnatal months to 17 years

  12. Pedophilic brain potential responses to adult erotic stimuli.

    Science.gov (United States)

    Knott, Verner; Impey, Danielle; Fisher, Derek; Delpero, Emily; Fedoroff, Paul

    2016-02-01

    Cognitive mechanisms associated with the relative lack of sexual interest in adults by pedophiles are poorly understood and may benefit from investigations examining how the brain processes adult erotic stimuli. The current study used event-related brain potentials (ERP) to investigate the time course of the explicit processing of erotic, emotional, and neutral pictures in 22 pedophilic patients and 22 healthy controls. Consistent with previous studies, early latency anterior ERP components were highly selective for erotic pictures. Although the ERPs elicited by emotional stimuli were similar in patients and controls, an early frontal positive (P2) component starting as early as 185 ms was significantly attenuated and slow to onset in pedophilia, and correlated with a clinical measure of cognitive distortions. Failure of rapid attentional capture by erotic stimuli suggests a relative reduction in early processing in pedophilic patients which may be associated with relatively diminished sexual interest in adults. PMID:26683083

  13. Effective dose evaluation for BNCT brain tumor treatment based on voxel phantoms

    International Nuclear Information System (INIS)

    For BNCT treatments, in addition to tumor target doses, non-negligible doses will result in all the remaining organs of the body. This work aims to evaluate the effective dose as well as the average absorbed doses of each of organs of patients with brain tumor treated in the BNCT epithermal neutron beam at THOR. The effective doses were evaluated according to the definitions of ICRP Publications 60 and 103 for the reference male and female computational phantoms developed in ICRP Publication 110 by using the MCNP5 Monte Carlo code with the THOR-Y09 beam source. The effective dose acquired in this work was compared with the results of our previous work calculated for an adult hermaphrodite mathematical phantom. It was found that the effective dose for the female voxel phantom is larger than that for the male voxel phantom by a factor of 1.2–1.5 and the effective dose for the voxel phantom is larger than that for the mathematical phantom by a factor of 1.3–1.6. For a typical brain tumor BNCT, the effective dose was calculated to be 1.51 Sv and the average absorbed dose for eye lenses was 1.07 Gy. - Highlights: • For a typical brain tumor BNCT, the effective dose was calculated to be 1.51 Sv. • The average absorbed dose for eye lenses was 1.07 Gy. • The effective doses for both male and female voxel phantoms were calculated. • The effective doses were compared between voxel and mathematical phantoms

  14. Comparison of two brain tumor-localizing MRI agent. GD-BOPTA and GD-DTPA. MRI and ICP study of rat brain tumor model

    International Nuclear Information System (INIS)

    In this study, we compared the behavior of Gd-BOPTA as a brain tumor selective contrast agent with Gd-DTPA in a common dose of 0.1 mmol/kg. We performed a MRI study using those two agent as contrast material, and we measured tissue Gd-concentrations by ICP-AES. As a result, Gd-BOPTA showed a better MRI enhancement in brain tumor. ICP showed significantly greater uptake of Gd-BOPTA in tumor samples, at all time course peaked at 5 minutes after administration, Gd being retained for a longer time in brain tumor till 2 hours, without rapid elimination as Gd-DTPA. We conclude that Gd-BOPTA is a new useful contrast material for MR imaging in brain tumor and an effective absorption agent for neutron capture therapy for further research. (author)

  15. The role of Intravenous Levetiracetam in Treatment of Seizures in Brain Tumor Patients

    OpenAIRE

    Ekokobe eFonkem; Paul eBricker; Diana eMungall; Jose eAceves; Eromata eEbwe; Wei eTang; Batool F. Kirmani

    2013-01-01

    Levetiracetam, tradename Keppra, is a new second generation antiepileptic drug that is being used increasingly in brain tumor patients. In patients suffering with brain tumors, seizures are one of the leading neurologic complications seen in more than 30% of patients. Levetiracetam is a pyrollidine-derivative drug, which has a unique mechanism of action. Unlike other antiepileptic drugs, Levetiracetam is proposed to bind to a synaptic vesicle protein inhibiting calcium release. Brain tumor...

  16. [Untoward side effects of chemoradiotherapy in children with malignant brain tumors].

    Science.gov (United States)

    Morozova, S K; Begun, I V; Spivak, L V; Radiuk, K A; Papkevich, I I; Savich, T V; Pershaĭ, E B; Vashkevich, T I; Aleĭnikova, O V

    2002-01-01

    Untoward side-effects of chemoradiotherapy were compared in 48 children treated for brain tumors and those in remission lasting from less than 12 months to 11 years. The investigation concerned disturbances in the neurologic, endocrine, cardiovascular, urinary, hepatobiliary and psychic systems; neurologic ones proved the most frequent. No cases of heart failure were reported among patients with brain tumors during remission. Hormonal study revealed inhibited thyroid function in brain tumor sufferers. PMID:12455363

  17. Combined local blood–brain barrier opening and systemic methotrexate for the treatment of brain tumors

    OpenAIRE

    Cooper, Itzik; Last, David; Guez, David; Sharabi, Shirley; Elhaik Goldman, Shirin; Lubitz, Irit; Daniels, Dianne; Salomon,Sharona; Tamar, Gregory; Tamir, Tzur; Mardor, Ronni; Fridkin, Mati; Shechter, Yoram; Mardor, Yael

    2015-01-01

    Despite aggressive therapy, existing treatments offer poor prognosis for glioblastoma multiforme patients, in part due to poor penetration of most drugs across the blood–brain barrier (BBB). We propose a minimal-invasive combined treatment approach consisting of local BBB disruption in the tumor in parallel to systemic drug administration. Local BBB disruption is obtained by convection-enhanced delivery of a novel BBB disruption agent, enabling efficient/targeted delivery of the systemically ...

  18. Brain Imaging with Positron Emission Tomography: Quantification and Biomedical Applications in Alzheimer's Disease and Brain Tumors

    OpenAIRE

    Wardak, Mirwais

    2013-01-01

    Positron emission tomography (PET) is a unique and powerful imaging technique that is used to visualize and quantify various biological processes in living subjects in health and disease. PET imaging can also provide biological information for the assessment of therapies. In this dissertation, we will cover three projects that utilize the quantitative capability of PET for studying two neurological disorders: Alzheimer's disease and brain tumors.One of the goals in PET imaging is to produce...

  19. Safety and efficacy of carmustine (BCNU wafers for metastatic brain tumors

    Directory of Open Access Journals (Sweden)

    Chibawanye I Ene

    2016-01-01

    Conclusions: BCNU wafers are a safe and a potentially efficacious adjunct to surgery and radiation for improving local disease control in metastatic brain tumors. Larger studies, however, are needed to examine overall efficacy and tumor specific efficacy.

  20. Genetic and modifying factors that determine the risk of brain tumors

    DEFF Research Database (Denmark)

    Montelli, Terezinha de Cresci Braga; Peraçoli, Maria Terezinha Serrão; Rogatto, Silvia Regina;

    2011-01-01

    of tumor escape, CNS tumor immunology, immune defects that impair anti-tumor systemic immunity in brain tumor patients and local immuno-suppressive factors within CNS are also reviewed. New hope to treatment perspectives, as dendritic-cell-based vaccines is summarized too. Concluding, it seems well...... established that there is association between brain tumor risk and mutagen sensitivity, which is highly heritable. Primary brain tumors cause depression in systemic host immunity; local immuno-suppressive factors and immunological characteristics of tumor cells may explain the poor prognosis and DNA damages...... responses can alert immune system. However, it is necessary to clarify if individuals with both constitutional defects in immune functions and genetic instability have higher risk of developing brain tumors. Cytogenetic prospective studies and gene copy number variations analysis also must be performed in...

  1. Metastatic Brain Tumors: A Retrospective Review in East Azarbyjan (Tabriz

    Directory of Open Access Journals (Sweden)

    Zinat Miabi

    2011-02-01

    Full Text Available A set of one hundred and twenty nine patients with known primary malignancy and suspected brain metastasis was reviewed in present study. The patients were selected among patients presented to the MRI section of Imam Khomeini Hospital or a private MRI center in Tabriz (Iran. Primary tumor site, clinical manifestations, number and site of lesions were identified in this patient population. The primary tumor site was breast in 55 patients (42.6%, followed by lung (40.3%, kidney (7.7%, colorectal (4.6%, lymphoma (3.1% and melanoma (1.5%. Most patients were presented with features of increased intracranial pressure (headaches and vomiting, seizures and focal neurologic signs. Single brain metastasis occurred in 16.3% of patients, while multiple lesions accounted for 83.7% of patients. Ninety seven patients had supratentorial metastases (75.2%. Twenty cases (15.5% had metastases in both compartments. Infratentorial lesions were observed only in twelve patients (9.3%.

  2. Is outpatient brain tumor surgery feasible in India?

    Science.gov (United States)

    Turel, Mazda K; Bernstein, Mark

    2016-01-01

    The current trend in all fields of surgery is towards less invasive procedures with shorter hospital stays. The reasons for this change include convenience to patients, optimal resource utilization, and cost saving. Technological advances in neurosurgery, aided by improvements in anesthesia, have resulted in surgery that is faster, simpler, and safer with excellent perioperative recovery. As a result of improved outcomes, some centers are performing brain tumor surgery on an outpatient basis, wherein patients arrive at the hospital the morning of their procedure and leave the hospital the same evening, thus avoiding an overnight stay in the hospital. In addition to the medical benefits of the outpatient procedure, its impact on patient satisfaction is substantial. The economic benefits are extremely favorable for the patient, physician, as well as the hospital. In high volume centers, a day surgery program can exist alongside those for elective and emergency surgeries, providing another pathway for patient care. However, due to skepticism surrounding the medicolegal aspects, and how radical the concept at first sounds, these procedures have not gained widespread popularity. We provide an overview of outpatient brain tumor surgery in the western world, discussing the socioeconomic, medicolegal, and ethical issues related to its adaptability in a developing nation. PMID:27625225

  3. Adult type granulosa cell tumor in adult testis: report of a case and review of the literature

    Directory of Open Access Journals (Sweden)

    Zhao Song

    2011-10-01

    Full Text Available Granulosa cell tumors can be classified into juvenile and adult types and more commonly occur in ovaries. Adult testicular granulosa cell tumors are extremely rare and only 29 cases of adult type have previously been reported. We report here a 28-year-old Caucasian man with a left testicular adult type granulosa cell tumor. The tumor measured 2.6 x 2.6 x 2.5 cm and was mitotically active (10/10 HPF. Immunohistochemical stains showed the tumor diffusely positive for inhibin and vimentin, and negative for epithelial membrane antigen, cytokeratins, synaptophysin, HMB-45, OCT-4, placental-like alkaline phosphatase and lymphoid markers . The reported granulosa cell tumors in adult testis were briefly reviewed.

  4. File list: NoD.Neu.10.AllAg.Adult_brains [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available NoD.Neu.10.AllAg.Adult_brains hg19 No description Neural Adult brains ERX161917,SRX...019404 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/NoD.Neu.10.AllAg.Adult_brains.bed ...

  5. File list: InP.Neu.10.AllAg.Adult_brains [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available InP.Neu.10.AllAg.Adult_brains hg19 Input control Neural Adult brains SRX643470,SRX6...43468,SRX643467,SRX643464,SRX643465,SRX643462,SRX643466,SRX643469,SRX643463 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/InP.Neu.10.AllAg.Adult_brains.bed ...

  6. File list: DNS.Neu.05.AllAg.Adult_brains [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.Neu.05.AllAg.Adult_brains hg19 DNase-seq Neural Adult brains SRX189408,SRX18941...3 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/DNS.Neu.05.AllAg.Adult_brains.bed ...

  7. File list: DNS.Neu.20.AllAg.Adult_brains [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.Neu.20.AllAg.Adult_brains hg19 DNase-seq Neural Adult brains SRX189408,SRX18941...3 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/DNS.Neu.20.AllAg.Adult_brains.bed ...

  8. File list: ALL.Neu.10.AllAg.Adult_brains [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Neu.10.AllAg.Adult_brains hg19 All antigens Neural Adult brains SRX643470,SRX11...643463,SRX189413 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/ALL.Neu.10.AllAg.Adult_brains.bed ...

  9. File list: ALL.Neu.05.AllAg.Adult_brains [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Neu.05.AllAg.Adult_brains hg19 All antigens Neural Adult brains SRX643470,SRX01...189408,SRX189413 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/ALL.Neu.05.AllAg.Adult_brains.bed ...

  10. File list: NoD.Neu.05.AllAg.Adult_brains [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available NoD.Neu.05.AllAg.Adult_brains hg19 No description Neural Adult brains SRX019404,ERX...161917 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/NoD.Neu.05.AllAg.Adult_brains.bed ...

  11. File list: NoD.Neu.50.AllAg.Adult_brains [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available NoD.Neu.50.AllAg.Adult_brains hg19 No description Neural Adult brains ERX161917,SRX...019404 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/NoD.Neu.50.AllAg.Adult_brains.bed ...

  12. File list: ALL.Neu.20.AllAg.Adult_brains [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Neu.20.AllAg.Adult_brains hg19 All antigens Neural Adult brains SRX643470,SRX11...189408,SRX189413 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/ALL.Neu.20.AllAg.Adult_brains.bed ...

  13. File list: DNS.Neu.50.AllAg.Adult_brains [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.Neu.50.AllAg.Adult_brains hg19 DNase-seq Neural Adult brains SRX189408,SRX18941...3 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/DNS.Neu.50.AllAg.Adult_brains.bed ...

  14. File list: DNS.Neu.10.AllAg.Adult_brains [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.Neu.10.AllAg.Adult_brains hg19 DNase-seq Neural Adult brains SRX189408,SRX18941...3 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/DNS.Neu.10.AllAg.Adult_brains.bed ...

  15. File list: InP.Neu.50.AllAg.Adult_brains [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available InP.Neu.50.AllAg.Adult_brains hg19 Input control Neural Adult brains SRX643470,SRX6...43464,SRX643462,SRX643465,SRX643469,SRX643463,SRX643466,SRX643468,SRX643467 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/InP.Neu.50.AllAg.Adult_brains.bed ...

  16. File list: ALL.Neu.50.AllAg.Adult_brains [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Neu.50.AllAg.Adult_brains hg19 All antigens Neural Adult brains SRX643470,SRX11...189408,SRX189413 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/ALL.Neu.50.AllAg.Adult_brains.bed ...

  17. Fetal brain tumors: Prenatal diagnosis by ultrasound and magnetic resonance imaging

    Institute of Scientific and Technical Information of China (English)

    Hérbene; José; Milani; Edward; Araujo; Júnior; Sérgio; Cavalheiro; Patrícia; Soares; Oliveira; Wagner; Jou; Hisaba; Enoch; Quinderé; Sá; Barreto; Maurício; Mendes; Barbosa; Luciano; Marcondes; Nardozza; Antonio; Fernandes; Moron

    2015-01-01

    Congenital central nervous system tumors diagnosed during pregnancy are rare, and often have a poor prognosis. The most frequent type is the teratoma. Use of ultrasound and magnetic resonance image allows the suspicion of brain tumors during pregnancy. However, the definitive diagnosis is only confirmed after birth by histology. The purpose of this mini-review article is to describe the general clinical aspects of intracranial tumors and describe the main fetal brain tumors.

  18. HMGB1 Mediates Endogenous TLR2 Activation and Brain Tumor Regression

    OpenAIRE

    Curtin, James; Liu, Naiyou; Candolfi, Marianela; Xiong, Weidong; Assi, Hikmat; Yagiz, Kader; Edwards, Matthew; Michelsen, Kathrin; Kroeger, Kurt; Liu, Chunyan; Muhammad, AKM Ghulam; Clark, Mary; Arditi, Moshe; Comin-Anduix, Begonya; Ribas, Antoni

    2009-01-01

    Editors' Summary Background. Every year, more than 175,000 people develop a primary brain tumor (a cancer that starts in the brain rather than spreading in from elsewhere). Like all cancers, brain tumors develop when a cell acquires genetic changes that allow it to grow uncontrollably and that change other aspects of its behavior, including the proteins it makes. There are many different types of cells in the brain and, as a result, there are many different types of brain tumors. However, one...

  19. Utility of 99mTc-GHA Brain SPECT in the grading of brain tumors

    International Nuclear Information System (INIS)

    Full text: Brain tumors are of diverse histological types, the most common being derived from glial tissue. The clinical management and prognosis of brain tumor patients is dependent on accurate neuro-pathologic diagnosis and grading. Radiological imaging is not always a good modality for assessing the exact nature and grade of a malignant tumor. Magnetic resonance imaging (MRI) has a very high soft tissue resolution and is helpful in classifying the grade of tumor. Radionuclide imaging techniques that can reveal metabolic activity within tumor cells are very helpful in predicting the degree of malignancy. Usefulness of Tl-201 SPECT and FDG PET studies have been widely reported to evaluate malignant lesions by measuring increased regional glucose metabolism and amino acid uptake. 99mTc-GHA (Glucoheptonate), more or less analogous to 18F-FDG, may show increased glucose metabolism and help in grading tumors. This study was carried out to determine the utility of 99mTc-GHA SPECT for grading cerebral gliomas. Nineteen patients (12M, 7F) aged 22 to 51 years (36.1 ± 8.3) diagnosed clinically and radiologically to have a brain tumor were evaluated with 99mTc-GHA brain SPECT. All the patients had undergone CT/ MRI examination prior to the brain SPECT study. No patient had undergone surgery, radiation therapy or chemotherapy before the imaging studies. Brain SPECT was performed twice, i.e 40 min and 3 hours after intravenous administration of 20 mCi of Tc99m-GHA under a dual head SPECT gamma camera (Ecam, Siemens), with a low energy high-resolution collimator. A total of 128 frames of 30 seconds each, 64 per detector, were acquired in 128 x 128 matrix, with 360-degree rotation in step and shoot mode. Reconstruction of the SPECT data was done using standard software. Abnormal concentration of tracer at the tumor site was compared to normal uptake on the contralateral side, and ratios obtained for early (40 min) and delayed (3 hours) uptake of tracer. Retention ratio (RR), a

  20. Stereotactic interstitial brachytherapy for the treatment of oligodendroglial brain tumors

    Energy Technology Data Exchange (ETDEWEB)

    El Majdoub, Faycal; Neudorfer, Clemens; Maarouf, Mohammad [University Hospital of Cologne, Department of Stereotaxy and Functional Neurosurgery, Cologne (Germany); University of Witten/Herdecke, Department of Stereotaxy and Functional Neurosurgery, Center of Neurosurgery, Cologne-Merheim Medical Center (CMMC), Cologne (Germany); Blau, Tobias; Deckert, Martina [University Hospital of Cologne, Department of Neuropathology, Cologne (Germany); Hellmich, Martin [University Hospital of Cologne, Institute of Statistics, Informatics and Epidemiology, Cologne (Germany); Buehrle, Christian [University Hospital of Cologne, Department of Stereotaxy and Functional Neurosurgery, Cologne (Germany); Sturm, Volker [University Hospital of Cologne, Department of Stereotaxy and Functional Neurosurgery, Cologne (Germany); University Hospital of Wurzburg, Department of Neurosurgery, Wuerzburg (Germany)

    2015-12-15

    We evaluated the treatment of oligodendroglial brain tumors with interstitial brachytherapy (IBT) using {sup 125}iodine seeds ({sup 125}I) and analyzed prognostic factors. Between January 1991 and December 2010, 63 patients (median age 43.3 years, range 20.8-63.4 years) suffering from oligodendroglial brain tumors were treated with {sup 125}I IBT either as primary, adjuvantly after incomplete resection, or as salvage therapy after tumor recurrence. Possible prognostic factors influencing disease progression and survival were retrospectively investigated. The actuarial 2-, 5-, and 10-year overall and progression-free survival rates after IBT for WHO II tumors were 96.9, 96.9, 89.8 % and 96.9, 93.8, 47.3 %; for WHO III tumors 90.3, 77, 54.9 % and 80.6, 58.4, 45.9 %, respectively. Magnetic resonance imaging demonstrated complete remission in 2 patients, partial remission in 13 patients, stable disease in 17 patients and tumor progression in 31 patients. Median time to progression for WHO II tumors was 87.6 months and for WHO III tumors 27.8 months. Neurological status improved in 10 patients and remained stable in 20 patients, while 9 patients deteriorated. There was no treatment-related mortality. Treatment-related morbidity was transient in 11 patients. WHO II, KPS ≥ 90 %, frontal location, and tumor surface dose > 50 Gy were associated with increased overall survival (p ≤ 0.05). Oligodendroglioma and frontal location were associated with a prolonged progression-free survival (p ≤ 0.05). Our study indicates that IBT achieves local control rates comparable to surgery and radio-/chemotherapy treatment, is minimally invasive, and safe. Due to the low rate of side effects, IBT may represent an attractive option as part of a multimodal treatment schedule, being supplementary to microsurgery or as a salvage therapy after chemotherapy and conventional irradiation. (orig.) [German] Die Behandlung oligodendroglialer Hirntumoren durch die interstitielle Brachytherapie

  1. Using Ferumoxytol-Enhanced MRI to Measure Inflammation in Patients With Brain Tumors or Other Conditions of the CNS

    Science.gov (United States)

    2016-07-08

    Brain Injury; Central Nervous System Degenerative Disorder; Central Nervous System Infectious Disorder; Central Nervous System Vascular Malformation; Hemorrhagic Cerebrovascular Accident; Ischemic Cerebrovascular Accident; Primary Brain Neoplasm; Brain Cancer; Brain Tumors

  2. Germ Cell Tumors in Adolescents and Young Adults.

    Science.gov (United States)

    Calaminus, Gabriele; Joffe, Jonathan

    2016-01-01

    Germ cell tumors (GCTs) represent a group of biologically complex malignancies that affect patients at different sites within the body and at different ages. The varying nature of these tumors reflects their cell of origin which is the primordial germ cell, which normally gives rise to ovarian and testicular egg and sperm producing cells. These cells retain an ability to give rise to all types of human tissues, and this is illustrated by the different kinds of GCTs that occur. In adolescent and young adult (AYA) patients, GCTs predominantly present as testicular, ovarian or mediastinal primary GCTs, and represent some of the most complex therapeutic challenges within any AYA practice. The varying types of GCTs, defined by primary site and/or age at presentation, can look very similar microscopically. However, there is growing evidence that they may have different molecular characteristics, different biology and different requirements for curative treatments. Whilst in adult testicular GCTs there is evidence for an environmental cause during fetal development and a genetic component, these causative factors are much less well understood in other GCTs. GCTs are some of the most curable cancers in adults, but some patients exhibit resistance to standard treatments. Because of this, today's clinical research is directed at understanding how to best utilize toxic therapies and promote healthy survivorship. This chapter explores the biology, behavior and treatment of GCTs and discusses how the AYA group of GCTs may hold some of the keys to understanding fundamental unanswered questions of biological variance and curability in GCTs. PMID:27595361

  3. The Role of Fast Cell Cycle Analysis in Pediatric Brain Tumors.

    Science.gov (United States)

    Alexiou, George A; Vartholomatos, George; Stefanaki, Kalliopi; Lykoudis, Efstathios G; Patereli, Amalia; Tseka, Georgia; Tzoufi, Meropi; Sfakianos, George; Prodromou, Neofytos

    2015-01-01

    Cell cycle analysis by flow cytometry has not been adequately studied in pediatric brain tumors. We investigated the value of a modified rapid (within 6 min) cell cycle analysis protocol for the characterization of malignancy of pediatric brain tumors and for the differentiation of neoplastic from nonneoplastic tissue for possible intraoperative application. We retrospectively studied brain tumor specimens from patients treated at our institute over a 5-year period. All tumor samples were histopathologically verified before flow-cytometric analysis. The histopathological examination of permanent tissue sections was the gold standard. There were 68 brain tumor cases. All tumors had significantly lower G0/G1 and significantly higher S phase and mitosis fractions than normal brain tissue. Furthermore low-grade tumors could be differentiated from high-grade tumors. DNA aneuploidy was detected in 35 tumors. A correlation between S phase fraction and Ki-67 index was found in medulloblastomas and anaplastic ependymomas. Rapid cell cycle analysis by flow cytometry is a promising method for the identification of neoplastic tissue intraoperatively. Low-grade tumors could be differentiated from high-grade tumors. Thus, cell cycle analysis can be a valuable adjunct to the histopathological evaluation of pediatric brain tumors, whereas its intraoperative application warrants further investigation. PMID:26287721

  4. Noninvasive detection of temozolomide in brain tumor xenografts by magnetic resonance spectroscopy

    DEFF Research Database (Denmark)

    Kato, Y.; Holm, David Alberg; Okollie, B.;

    2010-01-01

    Poor drug delivery to brain tumors caused by aberrant tumor vasculature and a partly intact blood-brain barrier (BBB) and blood-brain tumor barrier (BTB) can significantly impair the efficacy of chemotherapy. Determining drug delivery to brain tumors is a challenging problem, and the noninvasive...... detection of drug directly in the tumor can be critically important for accessing, predicting, and eventually improving effectiveness of therapy. In this study, in vivo magnetic resonance spectroscopy (MRS) was used to detect an anticancer agent, temozolomide (TMZ), in vivo in murine xenotransplants of U87...... of similar to 140 mg/kg (450 mg/m(2), well within the maximal clinical dose of 1000 mg/m(2) used in humans) during the course of in vivo MRS experiments. Heteronuclear multiple-quantum coherence (HMQC) MRS of brain tumors was performed before and after i.p. administration of [C-13]TMZ. Dynamic MRI...

  5. Pre Operative Brain Mapping with Functional MRI in Patient with Brain Tumors: Preliminary Report

    Directory of Open Access Journals (Sweden)

    Sina Hooshmand

    2010-05-01

    Full Text Available Background/Objective: Functional Magnetic Resonance Imaging (fMRI plays a significant role in pre-neurosurgical planning at present. FMRI is a possible candidate to replace invasive methods for determination of the language dominant hemisphere and cortical areas associated with language and memory. We used this method to explore language and motor functions in healthy volunteers before creating standard paradigms for Persian language. In this study, we used the standard protocol of language and motor brain mapping in patients harboring brain tumors."nPatients and Methods: Ten patients with brain tumor were included in this study. Each subject performed three to five language related tasks during fMRI scan and also one motor related task. These tasks included; "Word Generation" (WG, "Object Naming" (ON, and "Word Reading" (WR, "Word Production" (WP and "Reverse Word Reading" (RWR. They also performed the thumb apposition task for activating primary sensory-motor areas. Fifteen continuous slices were acquired, and data analysis was carried out using FSL 4.1. After evaluating the individual results, the lateralization index (LI for each subject-task was calculated and the dominant hemisphere for language production was reported. Also localization of critical language areas in the cerebral cortex was performed and the coordinates of epicenter for language production in Broca's area was calculated."nResults: We found that WP, RWR, and WG activate language related areas in the dominant hemisphere robustly in patients with brain tumors and can predict the dominant hemisphere along with eloquent language cortices. However, ON and WR fail to delineate these activation areas optimally. In addition, the results reveal that higher activation intensities are obtained by WP in the frontal lobe including Broca's area, whereas RWR leads to the highest LI among all examined tasks. In patients harboring brain tumors, precise lateralization and

  6. Wilms tumor in adult: case report; Tumor de Wilms em adulto: relato de caso

    Energy Technology Data Exchange (ETDEWEB)

    Albuquerque, Mauro Guimaraes; Vieira, Sabas Carlos; Rego, Cristiane Fortes Napoleao do [Universidade Estadual do Piaui (UESPI), Teresina, PI (Brazil); Fortes, Emanuel Augusto de C.; Santana, Gerusia Ibiapina [Hospital Sao Marcos, Teresina, PI (Brazil)]. E-mail: sabasvieira@uol.com.br

    2004-07-01

    Wilms' tumor is the renal tumor with the higher incidence on the childhood, however it rarely occurs in adults.The incidence in this group is estimated at about 1% of all the cases and they have an obscure prognosis. In this report is related a new case in a 52 years old man presenting intensive abdominal pain associated by weightiness. Abdominal ultrasound revealed expansive and complex lesion with indefinite contour in the left flank. Computed tomography of abdomen demonstrated solid lesion on antero-superior pole of the left kidney invading para-vertebral musculature, peri and para-renal spaces. Total nephrectomy and the histopathologic analysis were realized. A nephroblastoma (Wilms' tumor) in stage II without anaplasia was diagnosed by the anatomopathological studies.Local radiotherapy was applied. Thereafter was diagnosed pulmonary and hepatic metastasis, and then initiated the chemotherapy with adriamycin, actinomycin and vincristine. The prognosis of Wilms' tumor is worse in adult and it requires an aggressive therapeutic and follow up. (author)

  7. Brain Magnetic Resonance Imaging After High-Dose Chemotherapy and Radiotherapy for Childhood Brain Tumors

    International Nuclear Information System (INIS)

    Purpose: Brain necrosis or other subacute iatrogenic reactions has been recognized as a potential complication of radiotherapy (RT), although the possible synergistic effects of high-dose chemotherapy and RT might have been underestimated. Methods and Materials: We reviewed the clinical and radiologic data of 49 consecutive children with malignant brain tumors treated with high-dose thiotepa and autologous hematopoietic stem cell rescue, preceded or followed by RT. The patients were assessed for neurocognitive tests to identify any correlation with magnetic resonance imaging (MRI) anomalies. Results: Of the 49 children, 18 (6 of 25 with high-grade gliomas and 12 of 24 with primitive neuroectodermal tumors) had abnormal brain MRI findings occurring a median of 8 months (range, 2-39 months) after RT and beginning to regress a median of 13 months (range, 2-26 months) after onset. The most common lesion pattern involved multiple pseudonodular, millimeter-size, T1-weighted unevenly enhancing, and T2-weighted hyperintense foci. Four patients with primitive neuroectodermal tumors also had subdural fluid leaks, with meningeal enhancement over the effusion. One-half of the patients had symptoms relating to the new radiographic findings. The MRI lesion-free survival rate was 74% ± 6% at 1 year and 57% ± 8% at 2 years. The number of marrow ablative courses correlated significantly to the incidence of radiographic anomalies. No significant difference was found in intelligent quotient scores between children with and without radiographic changes. Conclusion: Multiple enhancing cerebral lesions were frequently seen on MRI scans soon after high-dose chemotherapy and RT. Such findings pose a major diagnostic challenge in terms of their differential diagnosis vis-a-vis recurrent tumor. Their correlation with neurocognitive results deserves further investigation

  8. Neuropsychological assessment of individuals with brain tumor: comparison of approaches used in the classification of impairment.

    Science.gov (United States)

    Dwan, Toni Maree; Ownsworth, Tamara; Chambers, Suzanne; Walker, David G; Shum, David H K

    2015-01-01

    Approaches to classifying neuropsychological impairment after brain tumor vary according to testing level (individual tests, domains, or global index) and source of reference (i.e., norms, controls, and pre-morbid functioning). This study aimed to compare rates of impairment according to different classification approaches. Participants were 44 individuals (57% female) with a primary brain tumor diagnosis (mean age = 45.6 years) and 44 matched control participants (59% female, mean age = 44.5 years). All participants completed a test battery that assesses pre-morbid IQ (Wechsler adult reading test), attention/processing speed (digit span, trail making test A), memory (Hopkins verbal learning test-revised, Rey-Osterrieth complex figure-recall), and executive function (trail making test B, Rey-Osterrieth complex figure copy, controlled oral word association test). Results indicated that across the different sources of reference, 86-93% of participants were classified as impaired at a test-specific level, 61-73% were classified as impaired at a domain-specific level, and 32-50% were classified as impaired at a global level. Rates of impairment did not significantly differ according to source of reference (p > 0.05); however, at the individual participant level, classification based on estimated pre-morbid IQ was often inconsistent with classification based on the norms or controls. Participants with brain tumor performed significantly poorer than matched controls on tests of neuropsychological functioning, including executive function (p = 0.001) and memory (p  0.05). These results highlight the need to examine individuals' performance across a multi-faceted neuropsychological test battery to avoid over- or under-estimation of impairment. PMID:25815271

  9. A hybrid neural network analysis of subtle brain volume differences in children surviving brain tumors.

    Science.gov (United States)

    Reddick, W E; Mulhern, R K; Elkin, T D; Glass, J O; Merchant, T E; Langston, J W

    1998-05-01

    In the treatment of children with brain tumors, balancing the efficacy of treatment against commonly observed side effects is difficult because of a lack of quantitative measures of brain damage that can be correlated with the intensity of treatment. We quantitatively assessed volumes of brain parenchyma on magnetic resonance (MR) images using a hybrid combination of the Kohonen self-organizing map for segmentation and a multilayer backpropagation neural network for tissue classification. Initially, we analyzed the relationship between volumetric differences and radiologists' grading of atrophy in 80 subjects. This investigation revealed that brain parenchyma and white matter volumes significantly decreased as atrophy increased, whereas gray matter volumes had no relationship with atrophy. Next, we compared 37 medulloblastoma patients treated with surgery, irradiation, and chemotherapy to 19 patients treated with surgery and irradiation alone. This study demonstrated that, in these patients, chemotherapy had no significant effect on brain parenchyma, white matter, or gray matter volumes. We then investigated volumetric differences due to cranial irradiation in 15 medulloblastoma patients treated with surgery and radiation therapy, and compared these with a group of 15 age-matched patients with low-grade astrocytoma treated with surgery alone. With a minimum follow-up of one year after irradiation, all radiation-treated patients demonstrated significantly reduced white matter volumes, whereas gray matter volumes were relatively unchanged compared with those of age-matched patients treated with surgery alone. These results indicate that reductions in cerebral white matter: 1) are correlated significantly with atrophy; 2) are not related to chemotherapy; and 3) are correlated significantly with irradiation. This hybrid neural network analysis of subtle brain volume differences with magnetic resonance may constitute a direct measure of treatment-induced brain damage

  10. Wnts in adult brain: from synaptic plasticity to cognitive deficiencies

    OpenAIRE

    Carolina A. Oliva; Vargas, Jessica Y.; Nibaldo C Inestrosa

    2013-01-01

    During development of the central nervous system the Wnt signaling pathway has been implicated in a wide spectrum of physiological processes, including neuronal connectivity and synapse formation. Despite Wnt proteins and components of the Wnt pathway are expressed in the brain since early development to the adult life, little is known about its role in mature synapses. Here, we review evidences indicating that Wnt proteins participate in the remodeling of pre- and postsynaptic regions, thus ...

  11. Differential role of tumor necrosis factor receptors in mouse brain inflammatory responses in cryolesion brain injury

    DEFF Research Database (Denmark)

    Quintana, Albert; Giralt, Mercedes; Rojas, Santiago;

    2005-01-01

    Tumor necrosis factor-alpha (TNF-alpha) is one of the mediators dramatically increased after traumatic brain injury that leads to the activation, proliferation, and hypertrophy of mononuclear, phagocytic cells and gliosis. Eventually, TNF-alpha can induce both apoptosis and necrosis via intracell......Tumor necrosis factor-alpha (TNF-alpha) is one of the mediators dramatically increased after traumatic brain injury that leads to the activation, proliferation, and hypertrophy of mononuclear, phagocytic cells and gliosis. Eventually, TNF-alpha can induce both apoptosis and necrosis via...... intracellular signaling. This cytokine exerts its functions via interaction with two receptors: type-1 receptor (TNFR1) and type-2 receptor (TNFR2). In this work, the inflammatory response after a freeze injury (cryolesion) in the cortex was studied in wild-type (WT) animals and in mice lacking TNFR1 (TNFR1 KO...... affected by TNFR1 deficiency. Overall, these results suggest that TNFR1 is involved in the early establishment of the inflammatory response and that its deficiency causes a decreased inflammatory response and tissue damage following brain injury....

  12. Awake brain mapping of cortex and subcortical pathways in brain tumor surgery.

    Science.gov (United States)

    Freyschlag, C F; Duffau, H

    2014-12-01

    Awake surgery is not a new technique: this is a new philosophy. Indeed, in surgery for diffuse gliomas performed in awake patients, the goal is not anymore to remove a "tumor mass" according to oncological boundaries (which in essence do not exist in infiltrating neoplasms), but to resect a part of the brain invaded by a chronic tumoral disease, according to functional limits both at cortical and subcortical levels. Therefore, intraoperative electrical mapping is accepted as the gold standard in order to gain information about the functionality of the underlying tissue when performing neuro-oncological surgery. This review should give the reader an overview of principles and indications of mapping of eloquent cortex and subcortical pathways with practical considerations for cerebral tumors. In gliomas, awake mapping has been demonstrated as increasing the surgical indications in so-called "critical areas" with nonetheless a significant decrease of postoperative morbidity‑while maximizing the extent of resection. Beyond clinical implications, awake surgery represents a unique opportunity to study neural networks underpinning sensorimotor, visuospatial, language, executive and even behavioral functions in humans. This led to propose new models of connectomics, breaking with the localizationist view of brain processing, and opening the window to the concept of neuroplasticity. In summary, awake mapping enables to make a link between surgical neurooncology and cognitive neurosciences, to improve both survival and quality of life of glioma patients. PMID:25418274

  13. Metabolomics and proteomics studies of brain tumors : a chemometric bioinformatics approach

    OpenAIRE

    Mörén, Lina

    2015-01-01

    The WHO classification of brain tumors is based on histological features and the aggressiveness of the tumor is classified from grade I to IV, where grade IV is the most aggressive. Today, the correlation between prognosis and tumor grade is the most important component in tumor classification. High grade gliomas, glioblastomas, are associated with poor prognosis and a median survival of 14 months including all available treatments. Low grade meningiomas, usually benign grade I tumors, are in...

  14. Brain tumor epilepsy: A reappraisal and six remaining issues to be debated.

    OpenAIRE

    Vercueil, Laurent

    2011-01-01

    International audience Epilepsy associated with brain tumors presents with specific features deserving medical attention. Although commonly reported in patients with brain tumor, either as revealing mode or as a remote complication, limited knowledge is available regarding their epidemiology, clinical evolution, surgical outcome, physiopathology and treatment, providing only clues for clinical management. Seizures appear even more threatening for patients and caregivers, providing seizures...

  15. Automatic Brain Tumor Detection in T2-weighted Magnetic Resonance Images

    Czech Academy of Sciences Publication Activity Database

    Dvořák, Pavel; Kropatsch, W.G.; Bartušek, Karel

    2013-01-01

    Roč. 13, č. 5 (2013), s. 223-230. ISSN 1335-8871 R&D Projects: GA ČR GAP102/12/1104; GA MŠk ED0017/01/01 Institutional support: RVO:68081731 Keywords : Brain tumor * Brain tumor detection * Symmetry analysis Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering Impact factor: 1.162, year: 2013

  16. Cognitive deficits in long-term survivors of childhood brain tumors: Identification of predictive factors

    DEFF Research Database (Denmark)

    Reimers, Tonny Solveig; Ehrenfels, Susanne; Mortensen, Erik Lykke; Schmiegelow, Marianne; Sønderkaer, Signe; Carstensen, Mads Henrik; Schmiegelow, Kjeld; Müller, Jørn

    2003-01-01

    To describe cognitive function and to evaluate the association between potentially predictive factors and cognitive outcome in an unselected population of survivors of childhood brain tumors.......To describe cognitive function and to evaluate the association between potentially predictive factors and cognitive outcome in an unselected population of survivors of childhood brain tumors....

  17. Brain tumors in children and adolescents and exposure to animals and farm life

    DEFF Research Database (Denmark)

    Christensen, Jeppe Schultz; Mortensen, Laust Hvas; Röösli, Martin; Feychting, Maria; Tynes, Tore; Andersen, Tina Veje; Schmidt, Lisbeth Samsø; Poulsen, Aslak Harbo; Aydin, Denis; Kuehni, Claudia E; Prochazka, Michaela; Lannering, Birgitta; Klaeboe, Lars; Eggen, Tone; Schüz, Joachim

    2012-01-01

    The etiology of brain tumors in children and adolescents is largely unknown, and very few environmental risk factors have been identified. The aim of this study was to examine the relationship between pre- or postnatal animal contacts or farm exposures and the risk of childhood brain tumors (CBTs...

  18. New therapeutic approach for brain tumors: Intranasal delivery of telomerase inhibitor GRN163.

    Science.gov (United States)

    Hashizume, Rintaro; Ozawa, Tomoko; Gryaznov, Sergei M; Bollen, Andrew W; Lamborn, Kathleen R; Frey, William H; Deen, Dennis F

    2008-04-01

    The blood-brain barrier is a substantial obstacle for delivering anticancer agents to brain tumors, and new strategies for bypassing it are greatly needed for brain-tumor therapy. Intranasal delivery provides a practical, noninvasive method for delivering therapeutic agents to the brain and could provide an alternative to intravenous injection and convection-enhanced delivery. We treated rats bearing intracerebral human tumor xenografts intranasally with GRN163, an oligonucleotide N3'-->P5'thio-phosphoramidate telomerase inhibitor. 3'-Fuorescein isothiocyanate (FITC)-labeled GRN163 was administered intranasally every 2 min as 6 microl drops into alternating sides of the nasal cavity over 22 min. FITC-labeled GRN163 was present in tumor cells at all time points studied, and accumulation of GRN163 peaked at 4 h after delivery. Moreover, GRN163 delivered intranasally, daily for 12 days, significantly prolonged the median survival from 35 days in the control group to 75.5 days in the GRN163-treated group. Thus, intranasal delivery of GRN163 readily bypassed the blood-brain barrier, exhibited favorable tumor uptake, and inhibited tumor growth, leading to a prolonged lifespan for treated rats compared to controls. This delivery approach appears to kill tumor cells selectively, and no toxic effects were noted in normal brain tissue. These data support further development of intranasal delivery of tumor-specific therapeutic agents for brain tumor patients. PMID:18287341

  19. 3-D in vivo brain tumor geometry study by scaling analysis

    Science.gov (United States)

    Torres Hoyos, F.; Martín-Landrove, M.

    2012-02-01

    A new method, based on scaling analysis, is used to calculate fractal dimension and local roughness exponents to characterize in vivo 3-D tumor growth in the brain. Image acquisition was made according to the standard protocol used for brain radiotherapy and radiosurgery, i.e., axial, coronal and sagittal magnetic resonance T1-weighted images, and comprising the brain volume for image registration. Image segmentation was performed by the application of the k-means procedure upon contrasted images. We analyzed glioblastomas, astrocytomas, metastases and benign brain tumors. The results show significant variations of the parameters depending on the tumor stage and histological origin.

  20. Study of Inter- and Intra-fraction Motion in Brain Tumor Patients Undergoing VMAT Treatment

    International Nuclear Information System (INIS)

    Conforming dose to the tumor and sparing normal tissue can be challenging for brain tumors with complex shapes in close proximity to critical structures. The goal of this study was to evaluate the inter- and intra-fraction motion in brain tumor patients undergoing volumetric modulated arc therapy (VMAT). The image matching software was found to be very sensitive to the choice of the region of matching. It is recommended to use the same region of interest for comparing the image sets and perform the automatic matching based on bony landmarks in brain tumor cases. (Author)

  1. Neural Network Based Augmented Reality for Detection of Brain Tumor

    Directory of Open Access Journals (Sweden)

    P.Mithun

    2013-04-01

    Full Text Available The development in technology opened the door of fiction and reached reality. Major medical applications deals on robot-assisted surgery and image guided surgery. Because of this, substantial research is going on to implement Augmented Reality (AR in instruments which incorporate the surgeon’s intuitive capabilities. Augmented reality is the grouping of virtual entity or 3D stuffs which are overlapped on live camera feed information. The decisive aim of augmented reality is to enhancing the virtual video and a 3D object onto a real world on which it will raise the person’s conceptual understanding of the subject. In this paper we described a solution for initial prediction of tumour cells in MRI images of human brain using image processing technique the output of which will be the 3D slicedimage of the human brain. The sliced image is then virtually embedded on the top of human head during the time of surgery so that the surgeon can exactly locate the spot to be operated. Before augmenting the 3D sliced image Artificial neural network is used to select the appropriate image that contains tumor automatically in order to make the system more efficient.

  2. Towards the use of HIFU, in Conjunction with Surgery, in the Treatment of Malignant Brain Tumors

    Science.gov (United States)

    Dahl, Elizabeth; Nguyen, Lisa T.; Sparks, Rachel E.; Brayman, Andy A.; Olios, Ryan J.; Silbergeld, Daniel L.; Vaezy, Sarah; Mourad, Pierre D.

    2006-05-01

    The first medical response to the presence of a brain tumor is often its resection, both to alleviate mass effect, and to obtain tissue for diagnosis, itself necessary for guiding adjunctive therapy. Malignant brain tumors typically recur at the tumor resection margin. Most current chemotherapy and radiotherapy strategies target local recurrence with limited success. Here we review a new strategy for delivering chemotherapeutics for brain tumor recurrence. It uses intra-operative high-intensity focused ultrasound (HIFU) to transiently open the blood-brain barrier (BBB) over a significantly large volume of brain at and near the resection margin to enhance the subsequent delivery of systemically delivered chemotherapeutic agents into the region of tumor recurrence.

  3. EXPRESSION OF IL-13Ra2 GENE IN HUMAN BRAIN TUMORS

    Institute of Scientific and Technical Information of China (English)

    WU An-hua; TIE Xin-xin; WANG Yun-jie; YANG Guo-rui

    2005-01-01

    Objective: To investigate the expression of IL-13Ra2 gene in brain tumors. Methods: Seventy-nine human brain tumors were obtained from the department of Neurosurgery of China Medical University. Human IL-13Ra2 expression was evaluated by reverse transcriptase polymerase chain reaction and immunohistochemical analysis. Results: IL-13Ra2 gene was highly expressed in glioblastoma, medulloblastoma, malignant meningioma and benign meningioma. Conclusion:Human IL-13Ra2 gene is expressed in brain tumors in addition to gliomas, and our result indicates that the IL-13Ra2 gene promoter based gene therapy method can be used to treat brain tumors in addition to gliomas. Further studies involving larger numbers of samples are necessary to fully understand the expression profile of IL-13Ra2 gene in the brain tumors.

  4. Tumor cell killing effect of boronated dipeptide. Boromethylglycylphenylalanine on boron neutron capture therapy for malignant brain tumors

    Energy Technology Data Exchange (ETDEWEB)

    Takagaki, Masao; Ono, Koji; Masunaga, Shinichiro; Kinashi, Yuko; Kobayashi, Toru [Kyoto Univ., Kumatori, Osaka (Japan). Research Reactor Inst.; Oda, Yoshifumi; Kikuchi, Haruhiko; Spielvogel, B.F.

    1994-03-01

    The killing effect of Boron Neutron Capture Therapy; BNCT, is dependant on the boron concentration ratio of tumor to normal brain (T/N ratio), and also that of tumor to blood (T/B ratio). The clinical boron carrier of boro-captate (BSH) showed the large T/N ratio of ca. 8, however the T/B ratio was around 1, which indicated nonselective accumulation into tumor. Indeed high boron concentration of blood restrict the neutron irradiation dose in order to circumvent the normal endothelial damage, especially in the case of deeply seated tumor. Phenylalanine analogue of para borono-phenylalanine (BPA) is an effective boron carrier on BNCT for malignant melanoma. For the BNCT on brain tumors, however, BPA concentration in normal brain was reported to be intolerably high. In order to improve the T/N ratio of BPA in brain, therefore, a dipeptide of boromethylglycylphenylalanine (BMGP) was synthesized deriving from trimethylglycine conjugated with BPA. It is expected to be selectively accumulated into tumor with little uptake into normal brain. Because a dipeptide might not pass through the normal blood brain barrier (BBB). Its killing effect on cultured glioma cell, T98G, and its distribution in rat brain bearing 9L glioma have been investigated in this paper. The BNCT effect of BMGP on cultured cells was nearly triple in comparison with DL-BPA. The neutron dose yielding 1% survival ratio were 7x10{sup 12}nvt for BMGP and 2x10{sup 13}nvt for BPA respectively on BNCT after boron loading for 16 hrs in the same B-10 concentration of 20ppm. Quantitative study of boron concentration via the {alpha}-auto radiography and the prompt gamma ray assay on 9L brain tumor rats revealed that T/N ratio and T/B ratio are 12.0 and 3.0 respectively. Those values are excellent for BNCT use. (author).

  5. Imaging of non tumorous and tumorous human brain tissue with full-field optical coherence tomography

    CERN Document Server

    Assayag, Osnath; Devaux, Bertrand; Harms, Fabrice; Pallud, Johan; Chretien, Fabrice; Boccara, Claude; Varlet, Pascale

    2013-01-01

    A prospective study was performed on neurosurgical samples from 18 patients to evaluate the use of Full-Field Optical Coherence Tomography (FF-OCT) in brain tumor diagnosis. FF-OCT captures en face slices of tissue samples at 1\\mum resolution in 3D with a typical 200\\mum imaging depth. A 1cm2 specimen is scanned at a single depth and processed in about 5 minutes. This rapid imaging process is non-invasive and 30 requires neither contrast agent injection nor tissue preparation, which makes it particularly well suited to medical imaging applications. Temporal chronic epileptic parenchyma and brain tumors such as meningiomas, low- grade and high-grade gliomas, and choroid plexus papilloma were imaged. A subpopulation of neurons, myelin fibers and CNS vasculature were clearly identified. Cortex could be discriminated from white matter, but individual glial cells as astrocytes (normal or reactive) or oligodendrocytes were not observable. This study reports for the first time on the feasibility of using FF-OCT in a...

  6. Occupational and Environmental Risk Factors of Adult Primary Brain Cancers: A Systematic Review

    Directory of Open Access Journals (Sweden)

    A Guzman

    2011-03-01

    Full Text Available The incidence of brain neoplasm has been progressively increasing in recent years in the industrialized countries. One of the reasons for this increased incidence could be better access to health care and improved diagnosis in the industrialized countries. It also appears that Caucasians have a higher incidence than blacks or Hispanics or Asians. A number of risk factors have been identified and described including the genetic, ethnic and age-based factors. Certain occupational and environmental factors are also believed to influence the risk of primary adult brain tumors. Potential occupational and environmental factors include exposure to diagnostic and therapeutic radiations, electromagnetic radiation from cellular phones and other wireless devices, infectious agents, air pollution and residence near landfills and highvoltage power lines and jobs as firefighters, farmers, physician, chemists and jobs in industries such as petrochemical, power generation, synthetic rubber manufacturing, agricultural chemicals manufacturing. The purpose of this systematic review is to examine occupational and environmental risk factors of brain neoplasm. A range of occupational and environmental exposures are evaluated for significance of their relationship with adult primary brain tumors. On the basis of this review we suggest a concurrent evaluation of multiple risk factors both within and beyond occupational and environmental domains. The concurrent approach needs to consider better exposure assessment techniques, lifetime occupational exposures, genotypic and phenotypic characteristics and lifestyle and dietary habits. This approach needs to be interdisciplinary with contributions from neurologists, oncologists, epidemiologists and molecular biologists. Conclusive evidence that has eluded multitude of studies with single focus and single exposure needs to multifaceted and multidisciplinary.

  7. A Correlative Optical Microscopy and Scanning Electron Microscopy Approach to Locating Nanoparticles in Brain Tumors

    OpenAIRE

    Kempen, Paul J.; Kircher, Moritz F; DE LA ZERDA, ADAM; Zavaleta, Cristina L.; Jokerst, Jesse V.; Mellinghoff, Ingo K.; Gambhir, Sanjiv S.; Sinclair, Robert

    2014-01-01

    The growing use of nanoparticles in biomedical applications, including cancer diagnosis and treatment, demands the capability to exactly locate them within complex biological systems. In this work a correlative optical and scanning electron microscopy technique was developed to locate and observe multi-modal gold core nanoparticle accumulation in brain tumor models. Entire brain sections from mice containing orthotopic brain tumors injected intravenously with nanoparticles were imaged using b...

  8. Analysis of Spectral Features of EEG signal in Brain Tumor Condition

    OpenAIRE

    Selvam V. Salai; Devi S. Shenbaga

    2015-01-01

    The scalp electroencephalography (EEG) signal is an important clinical tool for the diagnosis of several brain disorders. The objective of the presented work is to analyze the feasibility of the spectral features extracted from the scalp EEG signals in detecting brain tumors. A set of 16 candidate features from frequency domain is considered. The significance on the mean values of these features between 100 brain tumor patients and 102 normal subjects is statistically evaluated. Nine of the c...

  9. Diagnostic significance of arterial spin labeling in the assessment of tumor grade in brain

    OpenAIRE

    Yu-Fang Wang; Bo Hou; Su-Jun Yang; Xiao-Rui Zhang; Xiaolei Dong; Min Zhang; Gen-Dong Yao

    2016-01-01

    Background: The objective of the current meta.analysis was to assess the arterial spin labeling. (ASL) perfusion imaging measurement of cerebral blood flow. (CBF) in patients with brain tumors, and assessing preoperative tumor grade in brain. Materials and Methods: PubMed, Web of Science, Embase, China BioMedicine (CBM), CINAHL, Cochrane Library, and China National Knowledge Infrastructure (CNKI) databases were chosen to evaluate the associations between ASL and brain cancer. Two reviewers...

  10. Safety and efficacy of carmustine (BCNU) wafers for metastatic brain tumors

    OpenAIRE

    Chibawanye I Ene; Nerva, John D.; Morton, Ryan P.; Barkley, Ariana S.; Jason K Barber; Ko, Andrew L.; Silbergeld, Daniel L.

    2016-01-01

    Background: Carmustine (BCNU) wafers (Gliadel) prolongs local disease control and progression-free survival (PFS) in patients with malignant gliomas. However, in metastatic brain tumors, there is a paucity of evidence in support of its safety and efficacy. The goal of this study was to assess the safety and efficacy of Gliadel wafers in patients with metastatic brain tumors. Methods: We retrospectively reviewed the University of Washington experience with Gliadel wafers for metastatic brain t...

  11. MRI Evaluation in the Diagnosis and Treatment of Primary Brain Tumors

    International Nuclear Information System (INIS)

    The progress of the radiology methods, namely introducing mostly MRI into clinical practice, have been useful in pre surgery assessment of brain tumors. Advanced MRI (such as DWI, MRS, PMR) lead to more precise preoperative assessment of brain tumor. MRI is also most suitable method for assessment of brian tumors after neurosurgery, radiotherapy and chemotherapy as well as for distinguishing the progression, pseudo progression and postterapeutic injuries. (author)

  12. Awake brain tumor resection during pregnancy: Decision making and technical nuances

    OpenAIRE

    Meng, L.; Han, SJ; Rollins, MD; Gelb, AW; Chang, EF

    2016-01-01

    © Published by Elsevier Ltd. The co-occurrence of primary brain tumor and pregnancy poses unique challenges to the treating physician. If a rapidly growing lesion causes life-threatening mass effect, craniotomy for tumor debulking becomes urgent. The choice between awake craniotomy versus general anesthesia becomes complicated if the tumor is encroaching on eloquent brain because considerations pertinent to both patient safety and oncological outcome, in addition to fetal wellbeing, are invol...

  13. Perfusion and Volume Response of Canine Brain Tumors to Stereotactic Radiosurgery and Radiotherapy.

    OpenAIRE

    Zwingenberger, AL; Pollard, RE; Taylor, SL; Chen, RX; Nunley, J; Kent, MS

    2016-01-01

    Stereotactic radiosurgery (SRS) and stereotactic radiotherapy (SRT) are highly conformal, high-dose radiation treatment techniques used to treat people and dogs with brain tumors.To evaluate the response to SRS- and SRT-treated tumors using volume and perfusion variables and to measure the survival times of affected dogs.Prospective study of 34 dogs with evidence of brain tumors undergoing stereotactic radiosurgery (SRS) or stereotactic radiotherapy (SRT).Computed tomography and MRI imaging w...

  14. MethPed: an R package for the identification of pediatric brain tumor subtypes

    OpenAIRE

    Ahamed, Mohammad Tanvir; Danielsson, Anna; Nemes, Szilárd; Carén, Helena

    2016-01-01

    Background DNA methylation profiling of pediatric brain tumors offers a new way of diagnosing and subgrouping these tumors which improves current clinical diagnostics based on histopathology. We have therefore developed the MethPed classifier, which is a multiclass random forest algorithm, based on DNA methylation profiles from many subgroups of pediatric brain tumors. Results We developed an R package that implements the MethPed classifier, making it easily available and accessible. The pack...

  15. Brain Tumor Extraction from T1- Weighted MRI using Co-clustering and Level Set Methods

    OpenAIRE

    Satheesh, S.; Dr.K.V.S.V.R Prasad; Dr.K.Jitender Reddy

    2013-01-01

    The aim of the paper is to propose effective technique for tumor extraction from T1-weighted magnetic resonance brain images with combination of co-clustering and level set methods. The co-clustering is the effective region based segmentation technique for the brain tumor extraction but have a drawback at the boundary of tumors. While, the level set without re-initialization which is good edge based segmentation technique but have some drawbacks in providing initial contour. Therefore, in thi...

  16. An anatomic gene expression atlas of the adult mouse brain.

    Science.gov (United States)

    Ng, Lydia; Bernard, Amy; Lau, Chris; Overly, Caroline C; Dong, Hong-Wei; Kuan, Chihchau; Pathak, Sayan; Sunkin, Susan M; Dang, Chinh; Bohland, Jason W; Bokil, Hemant; Mitra, Partha P; Puelles, Luis; Hohmann, John; Anderson, David J; Lein, Ed S; Jones, Allan R; Hawrylycz, Michael

    2009-03-01

    Studying gene expression provides a powerful means of understanding structure-function relationships in the nervous system. The availability of genome-scale in situ hybridization datasets enables new possibilities for understanding brain organization based on gene expression patterns. The Anatomic Gene Expression Atlas (AGEA) is a new relational atlas revealing the genetic architecture of the adult C57Bl/6J mouse brain based on spatial correlations across expression data for thousands of genes in the Allen Brain Atlas (ABA). The AGEA includes three discovery tools for examining neuroanatomical relationships and boundaries: (1) three-dimensional expression-based correlation maps, (2) a hierarchical transcriptome-based parcellation of the brain and (3) a facility to retrieve from the ABA specific genes showing enriched expression in local correlated domains. The utility of this atlas is illustrated by analysis of genetic organization in the thalamus, striatum and cerebral cortex. The AGEA is a publicly accessible online computational tool integrated with the ABA (http://mouse.brain-map.org/agea). PMID:19219037

  17. Regional genome transcriptional response of adult mouse brain to hypoxia

    Directory of Open Access Journals (Sweden)

    Lu Aigang

    2011-10-01

    Full Text Available Abstract Background Since normal brain function depends upon continuous oxygen delivery and short periods of hypoxia can precondition the brain against subsequent ischemia, this study examined the effects of brief hypoxia on the whole genome transcriptional response in adult mouse brain. Result Pronounced changes of gene expression occurred after 3 hours of hypoxia (8% O2 and after 1 hour of re-oxygenation in all brain regions. The hypoxia-responsive genes were predominantly up-regulated in hindbrain and predominantly down-regulated in forebrain - possibly to support hindbrain survival functions at the expense of forebrain cognitive functions. The up-regulated genes had a significant role in cell survival and involved both shared and unshared signaling pathways among different brain regions. Up-regulation of transcriptional signaling including hypoxia inducible factor, insulin growth factor (IGF, the vitamin D3 receptor/retinoid X nuclear receptor, and glucocorticoid signaling was common to many brain regions. However, many of the hypoxia-regulated target genes were specific for one or a few brain regions. Cerebellum, for example, had 1241 transcripts regulated by hypoxia only in cerebellum but not in hippocampus; and, 642 (54% had at least one hepatic nuclear receptor 4A (HNF4A binding site and 381 had at least two HNF4A binding sites in their promoters. The data point to HNF4A as a major hypoxia-responsive transcription factor in cerebellum in addition to its known role in regulating erythropoietin transcription. The genes unique to hindbrain may play critical roles in survival during hypoxia. Conclusion Differences of forebrain and hindbrain hypoxia-responsive genes may relate to suppression of forebrain cognitive functions and activation of hindbrain survival functions, which may coordinately mediate the neuroprotection afforded by hypoxia preconditioning.

  18. Increased Nanoparticle Delivery to Brain Tumors by Autocatalytic Priming for Improved Treatment and Imaging.

    Science.gov (United States)

    Han, Liang; Kong, Derek K; Zheng, Ming-Qiang; Murikinati, Sasidhar; Ma, Chao; Yuan, Peng; Li, Liyuan; Tian, Daofeng; Cai, Qiang; Ye, Chunlin; Holden, Daniel; Park, June-Hee; Gao, Xiaobin; Thomas, Jean-Leon; Grutzendler, Jaime; Carson, Richard E; Huang, Yiyun; Piepmeier, Joseph M; Zhou, Jiangbing

    2016-04-26

    The blood-brain barrier (BBB) is partially disrupted in brain tumors. Despite the gaps in the BBB, there is an inadequate amount of pharmacological agents delivered into the brain. Thus, the low delivery efficiency renders many of these agents ineffective in treating brain cancer. In this report, we proposed an "autocatalytic" approach for increasing the transport of nanoparticles into the brain. In this strategy, a small number of nanoparticles enter into the brain via transcytosis or through the BBB gaps. After penetrating the BBB, the nanoparticles release BBB modulators, which enables more nanoparticles to be transported, creating a positive feedback loop for increased delivery. Specifically, we demonstrated that these autocatalytic brain tumor-targeting poly(amine-co-ester) terpolymer nanoparticles (ABTT NPs) can readily cross the BBB and preferentially accumulate in brain tumors at a concentration of 4.3- and 94.0-fold greater than that in the liver and in brain regions without tumors, respectively. We further demonstrated that ABTT NPs were capable of mediating brain cancer gene therapy and chemotherapy. Our results suggest ABTT NPs can prime the brain to increase the systemic delivery of therapeutics for treating brain malignancies. PMID:26967254

  19. The Role of Surgery, Radiosurgery and Whole Brain Radiation Therapy in the Management of Patients with Metastatic Brain Tumors

    Directory of Open Access Journals (Sweden)

    Thomas L. Ellis

    2012-01-01

    Full Text Available Brain tumors constitute the most common intracranial tumor. Management of brain metastases has become increasingly complex as patients with brain metastases are living longer and more treatment options develop. The goal of this paper is to review the role of stereotactic radiosurgery (SRS, whole brain radiation therapy (WBRT, and surgery, in isolation and in combination, in the contemporary treatment of brain metastases. Surgery and SRS both offer management options that may help to optimize therapy in selected patients. WBRT is another option but can lead to late toxicity and suboptimal local control in longer term survivors. Improved prognostic indices will be critical for selecting the best therapies. Further prospective trials are necessary to continue to elucidate factors that will help triage patients to the proper brain-directed therapy for their cancer.

  20. Halofuginone Inhibits Angiogenesis and Growth in Implanted Metastatic Rat Brain Tumor Model-an MRI Study

    Directory of Open Access Journals (Sweden)

    Rinat Abramovitch

    2004-09-01

    Full Text Available Tumor growth and metastasis depend on angiogenesis; therefore, efforts are made to develop specific angiogenic inhibitors. Halofuginone (HF is a potent inhibitor of collagen type α1(I. In solid tumor models, HF has a potent antitumor and antiangiogenic effect in vivo, but its effect on brain tumors has not yet been evaluated. By employing magnetic resonance imaging (MRI, we monitored the effect of HF on tumor progression and vascularization by utilizing an implanted malignant fibrous histiocytoma metastatic rat brain tumor model. Here we demonstrate that treatment with HF effectively and dose-dependently reduced tumor growth and angiogenesis. On day 13, HF-treated tumors were fivefold smaller than control (P < .001. Treatment with HF significantly prolonged survival of treated animals (142%; P = .001. In HF-treated rats, tumor vascularization was inhibited by 30% on day 13 and by 37% on day 19 (P < .05. Additionally, HF treatment inhibited vessel maturation (P = .03. Finally, in HF-treated rats, we noticed the appearance of a few clusters of satellite tumors, which were distinct from the primary tumor and usually contained vessel cores. This phenomenon was relatively moderate when compared to previous reports of other antiangiogenic agents used to treat brain tumors. We therefore conclude that HF is effective for treatment of metastatic brain tumors.

  1. Biphasic modeling of brain tumor biomechanics and response to radiation treatment.

    Science.gov (United States)

    Angeli, Stelios; Stylianopoulos, Triantafyllos

    2016-06-14

    Biomechanical forces are central in tumor progression and response to treatment. This becomes more important in brain cancers where tumors are surrounded by tissues with different mechanical properties. Existing mathematical models ignore direct mechanical interactions of the tumor with the normal brain. Here, we developed a clinically relevant model, which predicts tumor growth accounting directly for mechanical interactions. A three-dimensional model of the gray and white matter and the cerebrospinal fluid was constructed from magnetic resonance images of a normal brain. Subsequently, a biphasic tissue growth theory for an initial tumor seed was employed, incorporating the effects of radiotherapy. Additionally, three different sets of brain tissue properties taken from the literature were used to investigate their effect on tumor growth. Results show the evolution of solid stress and interstitial fluid pressure within the tumor and the normal brain. Heterogeneous distribution of the solid stress exerted on the tumor resulted in a 35% spatial variation in cancer cell proliferation. Interestingly, the model predicted that distant from the tumor, normal tissues still undergo significant deformations while it was found that intratumoral fluid pressure is elevated. Our predictions relate to clinical symptoms of brain cancers and present useful tools for therapy planning. PMID:27086116

  2. Effects of NOS inhibitor on dentate gyrus neurogenesis after diffuse brain injury in the adult rats

    Institute of Scientific and Technical Information of China (English)

    SunLi-Sha; XuJiang-ping

    2004-01-01

    Objective To investigate the effects of selective nitric oxide synthase (NOS) inhibitors on dentate gyrus neurogenesis after diffuse brain injury (DBI) in the adult rat brain. Methods Adult male SD rats were subjected to diffuse brain injury (DBI) model. By using systemic bromodeoxyuridine (BrdU) to label dividing cells, we compared the proliferation rate of

  3. Acute moderate exercise enhances compensatory brain activation in older adults.

    Science.gov (United States)

    Hyodo, Kazuki; Dan, Ippeita; Suwabe, Kazuya; Kyutoku, Yasushi; Yamada, Yuhki; Akahori, Mitsuya; Byun, Kyeongho; Kato, Morimasa; Soya, Hideaki

    2012-11-01

    A growing number of reports state that regular exercise enhances brain function in older adults. Recently a functional near-infrared spectroscopy (fNIRS) study revealed that an acute bout of moderate exercise enhanced activation of the left dorsolateral prefrontal cortex (L-DLPFC) associated with Stroop interference in young adults. Whether this acute effect is also applicable to older adults was examined. Sixteen older adults performed a color-word matching Stroop task before and after 10 minutes of exercise on a cycle ergometer at a moderate intensity. Cortical hemodynamics of the prefrontal area was monitored with a fNIRS during the Stroop task. We analyzed Stroop interference (incongruent-neutral) as Stroop performance. Though activation for Stroop interference was found in the bilateral prefrontal area before the acute bout of exercise, activation of the right frontopolar area (R-FPA) was enhanced after exercise. In the majority of participants, this coincided with improved performance reflected in Stroop interference results. Thus, an acute bout of moderate exercise improved Stroop performance in older adults, and this was associated with contralateral compensatory activation. PMID:22300952

  4. Neuroimaging in adult penetrating brain injury: a guide for radiographers

    Energy Technology Data Exchange (ETDEWEB)

    Temple, Nikki; Donald, Cortny; Skora, Amanda [Discipline of Medical Radiation Sciences, The University of Sydney, Lidcombe, New South Wales (Australia); Reed, Warren, E-mail: warren.reed@sydney.edu.au [Medical Image Optimisation and Perception Group, Discipline of Medical Radiation Sciences, The University of Sydney, Lidcombe, New South Wales (Australia)

    2015-06-15

    Penetrating brain injuries (PBI) are a medical emergency, often resulting in complex damage and high mortality rates. Neuroimaging is essential to evaluate the location and extent of injuries, and to manage them accordingly. Currently, a myriad of imaging modalities are included in the diagnostic workup for adult PBI, including skull radiography, computed tomography (CT), magnetic resonance imaging (MRI) and angiography, with each modality providing their own particular benefits. This literature review explores the current modalities available for investigating PBI and aims to assist in decision making for the appropriate use of diagnostic imaging when presented with an adult PBI. Based on the current literature, the authors have developed an imaging pathway for adult penetrating brain injury that functions as both a learning tool and reference guide for radiographers and other health professionals. Currently, CT is recommended as the imaging modality of choice for the initial assessment of PBI patients, while MRI is important in the sub-acute setting where it aids prognosis prediction and rehabilitation planning, Additional follow-up imaging, such as angiography, should be dependent upon clinical findings.

  5. Neuroimaging in adult penetrating brain injury: a guide for radiographers

    International Nuclear Information System (INIS)

    Penetrating brain injuries (PBI) are a medical emergency, often resulting in complex damage and high mortality rates. Neuroimaging is essential to evaluate the location and extent of injuries, and to manage them accordingly. Currently, a myriad of imaging modalities are included in the diagnostic workup for adult PBI, including skull radiography, computed tomography (CT), magnetic resonance imaging (MRI) and angiography, with each modality providing their own particular benefits. This literature review explores the current modalities available for investigating PBI and aims to assist in decision making for the appropriate use of diagnostic imaging when presented with an adult PBI. Based on the current literature, the authors have developed an imaging pathway for adult penetrating brain injury that functions as both a learning tool and reference guide for radiographers and other health professionals. Currently, CT is recommended as the imaging modality of choice for the initial assessment of PBI patients, while MRI is important in the sub-acute setting where it aids prognosis prediction and rehabilitation planning, Additional follow-up imaging, such as angiography, should be dependent upon clinical findings

  6. Morphological brain differences between adult stutterers and non-stutterers

    Directory of Open Access Journals (Sweden)

    Hänggi Jürgen

    2004-12-01

    Full Text Available Abstract Background The neurophysiological and neuroanatomical foundations of persistent developmental stuttering (PDS are still a matter of dispute. A main argument is that stutterers show atypical anatomical asymmetries of speech-relevant brain areas, which possibly affect speech fluency. The major aim of this study was to determine whether adults with PDS have anomalous anatomy in cortical speech-language areas. Methods Adults with PDS (n = 10 and controls (n = 10 matched for age, sex, hand preference, and education were studied using high-resolution MRI scans. Using a new variant of the voxel-based morphometry technique (augmented VBM the brains of stutterers and non-stutterers were compared with respect to white matter (WM and grey matter (GM differences. Results We found increased WM volumes in a right-hemispheric network comprising the superior temporal gyrus (including the planum temporale, the inferior frontal gyrus (including the pars triangularis, the precentral gyrus in the vicinity of the face and mouth representation, and the anterior middle frontal gyrus. In addition, we detected a leftward WM asymmetry in the auditory cortex in non-stutterers, while stutterers showed symmetric WM volumes. Conclusions These results provide strong evidence that adults with PDS have anomalous anatomy not only in perisylvian speech and language areas but also in prefrontal and sensorimotor areas. Whether this atypical asymmetry of WM is the cause or the consequence of stuttering is still an unanswered question.

  7. Vorinostat and Temozolomide in Treating Young Patients With Relapsed or Refractory Primary Brain Tumors or Spinal Cord Tumors

    Science.gov (United States)

    2013-05-01

    Childhood Atypical Teratoid/Rhabdoid Tumor; Childhood Central Nervous System Choriocarcinoma; Childhood Central Nervous System Embryonal Tumor; Childhood Central Nervous System Germinoma; Childhood Central Nervous System Mixed Germ Cell Tumor; Childhood Central Nervous System Teratoma; Childhood Central Nervous System Yolk Sac Tumor; Childhood Choroid Plexus Tumor; Childhood Craniopharyngioma; Childhood Ependymoblastoma; Childhood Grade I Meningioma; Childhood Grade II Meningioma; Childhood Grade III Meningioma; Childhood High-grade Cerebellar Astrocytoma; Childhood High-grade Cerebral Astrocytoma; Childhood Infratentorial Ependymoma; Childhood Low-grade Cerebellar Astrocytoma; Childhood Low-grade Cerebral Astrocytoma; Childhood Medulloepithelioma; Childhood Mixed Glioma; Childhood Oligodendroglioma; Childhood Supratentorial Ependymoma; Extra-adrenal Paraganglioma; Recurrent Childhood Brain Stem Glioma; Recurrent Childhood Central Nervous System Embryonal Tumor; Recurrent Childhood Cerebellar Astrocytoma; Recurrent Childhood Cerebral Astrocytoma; Recurrent Childhood Ependymoma; Recurrent Childhood Medulloblastoma; Recurrent Childhood Pineoblastoma; Recurrent Childhood Spinal Cord Neoplasm; Recurrent Childhood Subependymal Giant Cell Astrocytoma; Recurrent Childhood Supratentorial Primitive Neuroectodermal Tumor; Recurrent Childhood Visual Pathway and Hypothalamic Glioma

  8. Arrested neuronal proliferation and impaired hippocampal function following fractionated brain irradiation in the adult rat

    DEFF Research Database (Denmark)

    Madsen, Torsten Meldgaard; Kristjansen, P.E.G.; Bolwig, Tom Gert;

    2003-01-01

    The generation of new neurons in the adult mammalian brain has been documented in numerous recent reports. Studies undertaken so far indicate that adult hippocampal neurogenesis is related in a number of ways to hippocampal function.Here, we report that subjecting adult rats to fractionated brain...

  9. 10B compound distribution in rat tissue of transplanted and ethylnitrosourea-induced brain tumors

    International Nuclear Information System (INIS)

    The distribution of 10B compound, sodium mercaptoundecahydrododecaborate Na210B12H11SH, which is now in practical use for boron neutron capture therapy for brain tumors, was studied qualitatively and quantitatively using neutron-induced alpha autoradiography. Transplanted intracerebral tumors and brain tumors induced by ethylnitrosourea (ENU) in SD rats were used. 10B accumulated in the brain tumors in close relation to the actual tumor cells. The concentration of 10B in transplanted brain tumors was usually less in the central viable tumor tissue. The concentration and the distribution of 10B in ENU-induced gliomas varied with the size and histological type of the tumor and correlated to the permeability of vessels to horse-radish peroxidase and Evans blue. The tumor/blood concentration ratio of 10B increased with time after injection and reached 1, 12 and 7 hours after injection in the transplanted tumor and ENU-induced tumor, respectively. The tumor concentrations calculated at that time were 18 μg 10B/cm3 and 30 μg 10B/cm3, respectively. As for other tissues, a large amount of 10B was found in the pituitary gland, trigeminal ganglion, cornea, sclera and choroidea of the eyes and skin. This study clearly shows that the distribution of this 10B compound in brain tumors is roughly proportionate to the vascularity and to the vascular permeability of tumors and suggests that irradiation of thermal neutrons into the cranium in 7 to 12 hours after 10B injection should destroy the tumor tissue but yet inflict very little damage on normal tissue, and few untoward effects on pituitary gland and ganglia of nerves in rats. (J.P.N.)

  10. Tumor necrosis factor receptor superfamily member 9 is upregulated in the endothelium and tumor cells in melanoma brain metastasis

    Directory of Open Access Journals (Sweden)

    Patrick N Harter

    2014-12-01

    Full Text Available Aim: The cytokine receptor tumor necrosis factor receptor superfamily member 9 (TNFRSF9 is mainly considered to be a co-stimulatory activation marker in hematopoietic cells. Several preclinical models have shown a dramatic beneficial effect of treatment approaches targeting TNFRSF9 with agonistic antibodies. However, preliminary clinical phase I/II studies were stopped after the occurrence of several severe deleterious side effects. In a previous study, it was demonstrated that TNFRSF9 was strongly expressed by reactive astrocytes in primary central nervous system (CNS tumors, but was largely absent from tumor or inflammatory cells. The aim of the present study was to address the cellular source of TNFRSF9 expression in the setting of human melanoma brain metastasis, a highly immunogenic tumor with a prominent tropism to the CNS. Methods: Melanoma brain metastasis was analyzed in a cohort of 78 patients by immunohistochemistry for TNFRSF9 and its expression was correlated with clinicopathological parameters including sex, age, survival, tumor size, number of tumor spots, and BRAF V600E expression status. Results: Tumor necrosis factor receptor superfamily member 9 was frequently expressed independently on both melanoma and endothelial cells. In addition, TNFRSF9 was also present on smooth muscle cells of larger vessels and on a subset of lymphomonocytic tumor infiltrates. No association between TNFRSF9 expression and patient survival or other clinicopathological parameters was seen. Of note, several cases showed a gradual increase in TNFRSF9 expression on tumor cells with increasing distance from blood vessels, an observation that might be linked to hypoxia-driven TNFRSF9 expression in tumor cells. Conclusion: The findings indicate that the cellular source of TNFRSF9 in melanoma brain metastasis largely exceeds the lymphomonocytic pool, and therefore further careful (re- assessment of potential TNFRSF9 functions in cell types other than

  11. Treatment Option Overview (Childhood Central Nervous System Embryonal Tumors)

    Science.gov (United States)

    ... children. See the PDQ summary on Adult Central Nervous System Tumors Treatment for more information on the treatment of adults. There are different types of CNS embryonal tumors. Enlarge Anatomy of the inside of the brain, showing the ...

  12. General Information about Childhood Central Nervous System Embryonal Tumors

    Science.gov (United States)

    ... children. See the PDQ summary on Adult Central Nervous System Tumors Treatment for more information on the treatment of adults. There are different types of CNS embryonal tumors. Enlarge Anatomy of the inside of the brain, showing the ...

  13. Intranasal Delivery of Camptothecin-Loaded Tat-Modified Nanomicells for Treatment of Intracranial Brain Tumors

    Directory of Open Access Journals (Sweden)

    Yuuki Takashima

    2012-10-01

    Full Text Available The blood-brain barrier is a substantial obstacle for delivering anticancer agents to brain tumors, and new strategies for bypassing it are sorely needed for brain tumor therapy. Intranasal delivery provides a practical, noninvasive method for delivering therapeutic agents to the brain. Intranasal application of nano-sized micelles that have been modified with Tat peptide facilitates brain delivery of fluorescent model materials. In this study, we evaluated a nose-to-brain delivery system for brain tumor therapy. We nasally administered the anti-tumor drug camptothecin (CPT in solution and in methoxy poly(ethylene glycol (MPEG/poly(e-caprolactone (PCL amphiphilic block copolymers (MPEG-PCL and cell penetrating peptide, Tat analog-modified MPEG-PCL (MPEG-PCL-Tat MPEG-PCL-Tat to rats bearing intracranial glioma tumors and quantified the cytotoxicity against glioma cells, and the therapeutic effects. CPT-loaded MPEG-PCL-Tat micelles showed higher cytotoxicity than CPT-loaded MPEG-PCL. CPT-free MPEG-PCL-Tat didn’t show any cytotoxicity, even at high concentrations (2 mmol/mL. CPT-loaded MPEG-PCL-Tat micelles significantly prolonged the median survival of rats. These results indicate that intranasal delivery of anti-cancer drugs with cell penetrating peptide-modified nanomicelles might be an effective therapy for brain tumors.

  14. Distribution of polymer nanoparticles by convection-enhanced delivery to brain tumors.

    Science.gov (United States)

    Saucier-Sawyer, Jennifer K; Seo, Young-Eun; Gaudin, Alice; Quijano, Elias; Song, Eric; Sawyer, Andrew J; Deng, Yang; Huttner, Anita; Saltzman, W Mark

    2016-06-28

    Glioblastoma multiforme (GBM) is a fatal brain tumor characterized by infiltration beyond the margins of the main tumor mass and local recurrence after surgery. The blood-brain barrier (BBB) poses the most significant hurdle to brain tumor treatment. Convection-enhanced delivery (CED) allows for local administration of agents, overcoming the restrictions of the BBB. Recently, polymer nanoparticles have been demonstrated to penetrate readily through the healthy brain when delivered by CED, and size has been shown to be a critical factor for nanoparticle penetration. Because these brain-penetrating nanoparticles (BPNPs) have high potential for treatment of intracranial tumors since they offer the potential for cell targeting and controlled drug release after administration, here we investigated the intratumoral CED infusions of PLGA BPNPs in animals bearing either U87 or RG2 intracranial tumors. We demonstrate that the overall volume of distribution of these BPNPs was similar to that observed in healthy brains; however, the presence of tumors resulted in asymmetric and heterogeneous distribution patterns, with substantial leakage into the peritumoral tissue. Together, our results suggest that CED of BPNPs should be optimized by accounting for tumor geometry, in terms of location, size and presence of necrotic regions, to determine the ideal infusion site and parameters for individual tumors. PMID:27063424

  15. Awake brain tumor resection during pregnancy: Decision making and technical nuances.

    Science.gov (United States)

    Meng, Lingzhong; Han, Seunggu J; Rollins, Mark D; Gelb, Adrian W; Chang, Edward F

    2016-02-01

    The co-occurrence of primary brain tumor and pregnancy poses unique challenges to the treating physician. If a rapidly growing lesion causes life-threatening mass effect, craniotomy for tumor debulking becomes urgent. The choice between awake craniotomy versus general anesthesia becomes complicated if the tumor is encroaching on eloquent brain because considerations pertinent to both patient safety and oncological outcome, in addition to fetal wellbeing, are involved. A 31-year-old female at 30 weeks gestation with twins presented to our hospital seeking awake craniotomy to resect a 7 × 6 × 5 cm left frontoparietal brain tumor with 7 mm left-to-right subfalcine herniation on imaging that led to word finding difficulty, dysfluency, right upper extremity paralysis, and right lower extremity weakness. She had twice undergone tumor debulking under general anesthesia during the same pregnancy at an outside hospital at 16 weeks and 28 weeks gestation. There were considerations both for and against awake brain tumor resection over surgery under general anesthesia. The decision-making process and the technical nuances related to awake brain tumor resection in this neurologically impaired patient are discussed. Awake craniotomy benefits the patient who harbors a tumor that encroaches on the eloquent brain by allowing a greater extent of resection while preserving the language and sensorimotor function. It can be successfully done in pregnant patients who are neurologically impaired. The patient should be motivated and well informed of the details of the process. A multidisciplinary and collaborative effort is also crucial. PMID:26498092

  16. Cerebral infarction mimicking brain tumor on Tc-99m tetrofosmin brain SPECT imaging

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Soon [College of Medicine, Dongguk Univ., Gyeongju (Korea, Republic of); Zeon, Seok Kil; Won, Kyoung Sook [School of Medicine, Keimyung Univ., Daegu (Korea, Republic of)

    2004-06-01

    A 43-year-old man was presented with persistent headache for two weeks. T2 weighted MR imaging showed high signal intensity with surrounding edema in the left frontal lobe. These findings were considered with intracranial tumor such as glioma or metastasis. Tc-99m tetrofosmin SPECT showed focal radiotracer accumulation in the left frontal lobe. The operative specimen contained cerebral infarction with organizing leptomeningeal hematoma by pathologist. Another 73-year-old man was hospitalized for chronic headache. Initial CT showed ill-defined hypodensity with mass effect in the right parietal lobe. Tc-99m tetrofosmin SPECT showed focal radiotracer uptake in the right parietal lobe. These findings were considered with low-grade glioma or infarction. Follow-up CT after 5 months showed slightly decreased in size of low density in the right parietal lobe, and cerebral infarction is more likely than others. Tc-99m tetrofosmin has been proposed as a cardiotracer of myocardial perfusion imaging and an oncotropic radiotracer. Tc-99 tetrofosmin SPECT image provides a better attractive alternative agent than TI-201 as a tumor-imaging agent, with characteristics such as high-energy flux, short half-life, favorable biodistribution, dosimetry and lower background radioactivity. We have keep in mind on the analysis of Tc-99m tetrofosmin imaging when cerebral infarction is being differentiated from brain tumor.

  17. Testosterone affects language areas of the adult human brain.

    Science.gov (United States)

    Hahn, Andreas; Kranz, Georg S; Sladky, Ronald; Kaufmann, Ulrike; Ganger, Sebastian; Hummer, Allan; Seiger, Rene; Spies, Marie; Vanicek, Thomas; Winkler, Dietmar; Kasper, Siegfried; Windischberger, Christian; Swaab, Dick F; Lanzenberger, Rupert

    2016-05-01

    Although the sex steroid hormone testosterone is integrally involved in the development of language processing, ethical considerations mostly limit investigations to single hormone administrations. To circumvent this issue we assessed the influence of continuous high-dose hormone application in adult female-to-male transsexuals. Subjects underwent magnetic resonance imaging before and after 4 weeks of testosterone treatment, with each scan including structural, diffusion weighted and functional imaging. Voxel-based morphometry analysis showed decreased gray matter volume with increasing levels of bioavailable testosterone exclusively in Broca's and Wernicke's areas. Particularly, this may link known sex differences in language performance to the influence of testosterone on relevant brain regions. Using probabilistic tractography, we further observed that longitudinal changes in testosterone negatively predicted changes in mean diffusivity of the corresponding structural connection passing through the extreme capsule. Considering a related increase in myelin staining in rodents, this potentially reflects a strengthening of the fiber tract particularly involved in language comprehension. Finally, functional images at resting-state were evaluated, showing increased functional connectivity between the two brain regions with increasing testosterone levels. These findings suggest testosterone-dependent neuroplastic adaptations in adulthood within language-specific brain regions and connections. Importantly, deteriorations in gray matter volume seem to be compensated by enhancement of corresponding structural and functional connectivity. Hum Brain Mapp 37:1738-1748, 2016. © 2016 Wiley Periodicals, Inc. PMID:26876303

  18. Are preoperative sex-related differences of affective symptoms in primary brain tumor patients associated with postoperative histopathological grading?

    Science.gov (United States)

    Richter, Andre; Jenewein, J; Krayenbühl, N; Woernle, C; Bellut, D

    2016-01-01

    Our objective was to explore the impact of the histopathological tumor type on affective symptoms before surgery among male and female patients with supratentorial primary brain tumors. A total of 44 adult patients were included in the study. Depression and anxiety were measured using the Beck Depression Inventory (BDI) and the State-Trait Anxiety Inventory. Additionally, clinical interviews, including the Hamilton Depression Rating Scale (HDRS), were conducted. The general function of patients was measured with the Karnofsky Performance Status scale (KPS). All measures were obtained before surgery and therefore before the final histopathological diagnosis. All self-rating questionnaires but not the HDRS, showed significantly higher scores in female patients. The functional status assessed with the KPS was lower in female patients and correlated to the somatic part of the BDI. We further found a tendency for higher HDRS scores in male patients with a WHO grade 4 tumor stage compared to female patients. This finding was supported by positive correlations between HDRS scores and WHO grade in male and negative correlations between HDRS scores and WHO grade in female patients. In conclusion the preoperative evaluation of affective symptoms with self-rating questionnaires in patients with brain tumors may be invalidated by the patient’s functional status. Depression should be explored with clinical interviews in these patients. Sex differences of affective symptoms in this patient group may also be related to the malignancy of the tumor, but further studies are needed to disentangle this relationship. PMID:26468140

  19. Levofloxacin to Prevent Infection Following Chemotherapy in Treating Patients With Solid Tumors or Lymphoma

    Science.gov (United States)

    2013-08-01

    Brain and Central Nervous System Tumors; Breast Cancer; Extragonadal Germ Cell Tumor; Infection; Lung Cancer; Lymphoma; Ovarian Cancer; Small Intestine Cancer; Testicular Germ Cell Tumor; Unspecified Adult Solid Tumor, Protocol Specific

  20. Prevalence estimates for primary brain tumors in China: a multi-center cross-sectional study

    Institute of Scientific and Technical Information of China (English)

    JIANG Tao; WU Nai-feng; CHEN Xiao-jun; XING Hou-xun; SU Tong-yong; WANG Zhong-cheng; TANG Gen-fu; LIN Yi; PENG Xiao-xia; ZHANG Xiao; ZHAI Xiu-wei; PENG Xiang; YANG Jin-qing; HUANG Hong-er

    2011-01-01

    half of all reported tumors (52.57%) were either gliomas or meningiomas.For the youngest (aged from 0-19)strata of the population,glioma appeared to occur more than other subtypes,accounting for 55.56% of all of cases.The majority of brain tumors presented in those aged from 20 to 59 years was pituitary adenomas (45.12%) and gliomas (31.10%).Opposed to brain tumors in adults and teenage,gliomas only accounted for 22.22%.Meanwhile,the median ages at diagnosis of the patients with PBT were similar between males and females except for pituitary adenomas (male: 59 years old; female: 45 years old).Conclusions Age standardized prevalence of PBT is 22.52 per 100 000 (95% CI,13.22 to 31.82) for all populations,17.64 per 100 000 (95% CI,9.41 to 25.87)for men,and 27.94 par 100 000 (95% CI,17.58 to 38.30)for women.Age standardization to China's 2010 population yielded an estimated population of 304 954 cases with PBT.Our prevalence estimates provide a conservative basis on which to plan health care services and to develop programmatic strategies for surviving.In the future,it would be helpful to have long-term observed survival rates that would make the assumptions and the resulting imprecision in the current estimates unnecessary.

  1. Induction of brain tumors by a newly isolated JC virus (Tokyo-1 strain).

    OpenAIRE

    Nagashima, K.; Yasui, K; Kimura, J; Washizu, M.; Yamaguchi, K.; Mori, W.

    1984-01-01

    A newly isolated virus from a patient with progressive multifocal leukoencephalopathy (PML) (Tokyo-1 strain) was found serologically identical to JC virus (Mad-1 strain) and showed high neurooncogenicity in hamsters. Twenty-one animals inoculated intracerebrally with the virus developed brain tumors during a period that averaged 5 months. The tumors were cerebellar medulloblastoma (n = 20); plexus tumor (n = 2) occurred in 1 animal as a single tumor and in another in combination with a medull...

  2. Brain micro-ecologies: neural stem cell niches in the adult mammalian brain

    OpenAIRE

    Riquelme, Patricio A; Drapeau, Elodie; Doetsch, Fiona

    2007-01-01

    Neurogenesis persists in two germinal regions in the adult mammalian brain, the subventricular zone of the lateral ventricles and the subgranular zone in the hippocampal formation. Within these two neurogenic niches, specialized astrocytes are neural stem cells, capable of self-renewing and generating neurons and glia. Cues within the niche, from cell–cell interactions to diffusible factors, are spatially and temporally coordinated to regulate proliferation and neurogenesis, ultimately affect...

  3. Neurogenesis in the adult brain: implications for Alzheimer's disease.

    Science.gov (United States)

    Galvan, Veronica; Bredesen, Dale E

    2007-10-01

    The function of neurogenesis in the adult brain is still unknown. Interventions such as environmental enrichment and exercise impinge on neurogenesis, suggesting that the process is regulated by experience. Conversely, a role for neurogenesis in learning has been proposed through 'cellular plasticity', a process akin to synaptic plasticity but operating at the network level. Although neurogenesis is stimulated by acute injury, and possibly by neurodegenerative processes such as Alzheimer's disease (AD), it does not suffice to restore function. While the role and direction of change in the neurogenic response at different stages of AD is still a matter of debate, it is possible that a deficit in neurogenesis may contribute to AD pathogenesis since at least one of the two regions ostensibly neurogenic in the adult human brain (the subgranular zone of the dentage gyrus and the ventriculo-olfactory neurogenic system) support high-level functions affected in early AD (associative memory and olfaction respectively). The age of onset and the rate of progression of sporadic forms of AD are highly variable. Sporadic AD may have a component of insufficient neurogenic replacement or insufficient neurogenic stimulation that is correlated with traits of personal history; the rate of neurogenesis and the survival of replicating progenitors is strongly modified by behavioral interventions known to impinge on the rate of neurogenesis and the probability of survival of newly born neurons--exercise, enriched experience, and learning. This view is consistent with epidemiological data suggesting that higher education and increased participation in intellectual, social and physical aspects of daily life are associated with slower cognitive decline in healthy elderly ("cognitive reserve") and may reduce the risk of AD. Although neurogenesis can be modulated exogenously by growth factors, stimulation of neurogenesis as a mean to treat neurodegeneration is still for the most part

  4. Bevacizumab in Reducing CNS Side Effects in Patients Who Have Undergone Radiation Therapy to the Brain for Primary Brain Tumor, Meningioma, or Head and Neck Cancer

    Science.gov (United States)

    2014-04-21

    Adult Anaplastic Astrocytoma; Adult Anaplastic Ependymoma; Adult Anaplastic Meningioma; Adult Anaplastic Oligodendroglioma; Adult Brain Stem Glioma; Adult Central Nervous System Germ Cell Tumor; Adult Choroid Plexus Tumor; Adult Diffuse Astrocytoma; Adult Ependymoma; Adult Grade II Meningioma; Adult Grade III Meningioma; Adult Malignant Hemangiopericytoma; Adult Mixed Glioma; Adult Oligodendroglioma; Adult Papillary Meningioma; Adult Pineocytoma; Malignant Neoplasm; Meningeal Melanocytoma; Radiation Toxicity; Recurrent Adenoid Cystic Carcinoma of the Oral Cavity; Recurrent Adult Brain Tumor; Recurrent Basal Cell Carcinoma of the Lip; Recurrent Esthesioneuroblastoma of the Paranasal Sinus and Nasal Cavity; Recurrent Inverted Papilloma of the Paranasal Sinus and Nasal Cavity; Recurrent Lymphoepithelioma of the Nasopharynx; Recurrent Lymphoepithelioma of the Oropharynx; Recurrent Midline Lethal Granuloma of the Paranasal Sinus and Nasal Cavity; Recurrent Mucoepidermoid Carcinoma of the Oral Cavity; Recurrent Salivary Gland Cancer; Recurrent Squamous Cell Carcinoma of the Hypopharynx; Recurrent Squamous Cell Carcinoma of the Larynx; Recurrent Squamous Cell Carcinoma of the Lip and Oral Cavity; Recurrent Squamous Cell Carcinoma of the Nasopharynx; Recurrent Squamous Cell Carcinoma of the Oropharynx; Recurrent Squamous Cell Carcinoma of the Paranasal Sinus and Nasal Cavity; Recurrent Verrucous Carcinoma of the Larynx; Recurrent Verrucous Carcinoma of the Oral Cavity; Stage I Adenoid Cystic Carcinoma of the Oral Cavity; Stage I Basal Cell Carcinoma of the Lip; Stage I Esthesioneuroblastoma of the Paranasal Sinus and Nasal Cavity; Stage I Inverted Papilloma of the Paranasal Sinus and Nasal Cavity; Stage I Lymphoepithelioma of the Nasopharynx; Stage I Lymphoepithelioma of the Oropharynx; Stage I Midline Lethal Granuloma of the Paranasal Sinus and Nasal Cavity; Stage I Mucoepidermoid Carcinoma of the Oral Cavity; Stage I Salivary Gland Cancer; Stage I Squamous Cell Carcinoma

  5. Brain tumor and psychiatric manifestations: a case report and brief review.

    Science.gov (United States)

    Madhusoodanan, Subramoniam; Danan, Deepa; Brenner, Ronald; Bogunovic, Olivera

    2004-01-01

    Brain tumors may present multiple psychiatric symptoms such as depression, personality change, abulia, auditory and visual hallucinations, mania, panic attacks, or amnesia. A case of a 79-year-old woman who presented with depressive symptoms but showed minimal neurological signs and symptoms is discussed. Neuroimaging revealed a brain tumor in the left parietal lobe, and patient underwent neurosurgical treatment and subsequently received chemotherapy and radiation. Some patients with neurologically silent brain tumors may present with psychiatric symptoms only. Therefore, we emphasize the consideration of neuroimaging in patients with a change in mental status regardless of a lack of neurological symptoms. PMID:15328904

  6. The diagnostic accuracy of multiparametric MRI to determine pediatric brain tumor grades and types.

    Science.gov (United States)

    Koob, Mériam; Girard, Nadine; Ghattas, Badih; Fellah, Slim; Confort-Gouny, Sylviane; Figarella-Branger, Dominique; Scavarda, Didier

    2016-04-01

    Childhood brain tumors show great histological variability. The goal of this retrospective study was to assess the diagnostic accuracy of multimodal MR imaging (diffusion, perfusion, MR spectroscopy) in the distinction of pediatric brain tumor grades and types. Seventy-six patients (range 1 month to 18 years) with brain tumors underwent multimodal MR imaging. Tumors were categorized by grade (I-IV) and by histological type (A-H). Multivariate statistical analysis was performed to evaluate the diagnostic accuracy of single and combined MR modalities, and of single imaging parameters to distinguish the different groups. The highest diagnostic accuracy for tumor grading was obtained with diffusion-perfusion (73.24 %) and for tumor typing with diffusion-perfusion-MR spectroscopy (55.76 %). The best diagnostic accuracy was obtained for tumor grading in I and IV and for tumor typing in embryonal tumor and pilocytic astrocytoma. Poor accuracy was seen in other grades and types. ADC and rADC were the best parameters for tumor grading and typing followed by choline level with an intermediate echo time, CBV for grading and Tmax for typing. Multiparametric MR imaging can be accurate in determining tumor grades (primarily grades I and IV) and types (mainly pilocytic astrocytomas and embryonal tumors) in children. PMID:26732081

  7. Ex vivo brain tumor analysis using spectroscopic optical coherence tomography

    Science.gov (United States)

    Lenz, Marcel; Krug, Robin; Welp, Hubert; Schmieder, Kirsten; Hofmann, Martin R.

    2016-03-01

    A big challenge during neurosurgeries is to distinguish between healthy tissue and cancerous tissue, but currently a suitable non-invasive real time imaging modality is not available. Optical Coherence Tomography (OCT) is a potential technique for such a modality. OCT has a penetration depth of 1-2 mm and a resolution of 1-15 μm which is sufficient to illustrate structural differences between healthy tissue and brain tumor. Therefore, we investigated gray and white matter of healthy central nervous system and meningioma samples with a Spectral Domain OCT System (Thorlabs Callisto). Additional OCT images were generated after paraffin embedding and after the samples were cut into 10 μm thin slices for histological investigation with a bright field microscope. All samples were stained with Hematoxylin and Eosin. In all cases B-scans and 3D images were made. Furthermore, a camera image of the investigated area was made by the built-in video camera of our OCT system. For orientation, the backsides of all samples were marked with blue ink. The structural differences between healthy tissue and meningioma samples were most pronounced directly after removal. After paraffin embedding these differences diminished. A correlation between OCT en face images and microscopy images can be seen. In order to increase contrast, post processing algorithms were applied. Hence we employed Spectroscopic OCT, pattern recognition algorithms and machine learning algorithms such as k-means Clustering and Principal Component Analysis.

  8. Thyroid function after treatment of brain tumors in children.

    Science.gov (United States)

    Ogilvy-Stuart, A L; Shalet, S M; Gattamaneni, H R

    1991-11-01

    In 134 children who had been treated for a brain tumor not involving the hypothalamic-pituitary axis, thyroid function was assessed up to 24 years after treatment with cranial or craniospinal irradiation. In addition, 78 children received up to 2 years of cytotoxic chemotherapy. Of 85 children who received craniospinal irradiation, 30 (35%) had abnormalities of thyroid function, and 10 (20%) of 49 who received cranial irradiation had such abnormalities. Frank hypothyroidism developed in three children and thyrotoxicosis in one. Thirty-six children had an elevated thyroid-stimulating hormone level in the presence of a normal thyroxine level; in 16 of them the thyroid-stimulating hormone level subsequently returned to normal. Twenty-eight children who were treated between 1960 and 1970 were excluded from the analysis. Of 34 children who received cranial irradiation, five had thyroid dysfunction and 24 of 72 who received craniospinal irradiation had such dysfunction (p = 0.013). Thyroid dysfunction was present in 4 of 35 children who received no chemotherapy and in 25 of 71 who received chemotherapy (p = 0.014). Direct irradiation plus chemotherapy was more damaging than irradiation alone. These data confirm the high incidence of thyroid dysfunction when the thyroid gland is included in the radiation field. However, in a high proportion, the thyroid abnormalities are minor and revert to normal with time; life-long replacement therapy with thyroxine may be unnecessary. PMID:1941379

  9. Efficacy of whole brain radiotherapy combined with fractionated stereotactic radiotherapy in metastatic brain tumors, and prognostic factors

    International Nuclear Information System (INIS)

    We attempted to analyze the effectiveness of whole brain radiotherapy (WBRT) combined with fractionated stereotactic radiotherapy (FSRT) in brain metastases. Thirty-seven metastatic brain tumors in 29 patients without previous treatment were treated with WBRT plus FSRT, from October 1996 to February 2002. Four of the patients received stereotactic radiosurgery (SRS) prior to WBRT. Non-small cell lung cancer was the most common type of primary tumor (20/29). The total dose to the whole brain ranged from 30 Gy to 40 Gy, and the boost dose from FSRT ranged from 12 Gy to 40 Gy. End points were survival rate and local control rates. Factors influencing survival were evaluated. Median survival was 13 months, and actuarial survival rates at one and two years were 81% and 39%, respectively. Actuarial one and two year local control rates for all lesions were 78% and 71%, respectively. Survival was significantly associated with age, tumor size, presence of active extracranial tumors, and performance status. No acute or delayed complications were observed. We believe that WBRT plus FSRT should be included in the treatment options for metastatic brain tumors, and we consider the effect of this non-invasive method to be quite good in patients with good prognostic factors, although other invasive modalities could also be effective in them. (author)

  10. Monitoring of 57Co-bleomycin delivery to brain metastases and their tumors of origin

    International Nuclear Information System (INIS)

    The concentration of cobalt-57 (57Co)-labeled bleomycin delivered to three brain metastases and to their tumors of origin in the lungs was measured using a single-photon emission computerized tomography technique. In two brain metastases the 57Co-bleomycin concentration measured at different times after the intravenous injection was significantly lower than that in the originating lung tumors (p less than 0.01 and p less than 0.001). In these two patients, the tumor cumulative concentration (TCC) of drug in the brain neoplasm compared to the lung carcinoma was 12.92 versus 15.12 and 10.30 versus 19.74 micrograms/cc/min. In the third patient there was no significant difference in drug concentration between the tumor in the brain and in the lung (TCC 16.02 vs. 15.09 micrograms/cc/min). There was a significant difference in the drug TCC between the three brain metastases: the difference between the lowest and highest concentrations was more than 50% (10.3 vs. 16.02 micrograms/cc/min). When the concentration in the tumor over time (CT(t)) of the 57Co-bleomycin was compared in the brain and lung tumors, a good correlation was found in each of the three cases (r = 0.93, 0.99, and 0.97). This suggests that the difference in drug uptake between brain metastases and their originating lung tumor is a quantitative rather than a qualitative phenomenon. The results show that the amount of drug to which brain metastases are exposed varies and may be very low in some tumors; therefore, effectiveness of drug delivery may play a role in the nonresponsiveness of brain metastases to treatment

  11. The role of Intravenous Levetiracetam in Treatment of Seizures in Brain Tumor Patients

    Directory of Open Access Journals (Sweden)

    Ekokobe eFonkem

    2013-10-01

    Full Text Available Levetiracetam, tradename Keppra, is a new second generation antiepileptic drug that is being used increasingly in brain tumor patients. In patients suffering with brain tumors, seizures are one of the leading neurologic complications seen in more than 30% of patients. Levetiracetam is a pyrollidine-derivative drug, which has a unique mechanism of action. Unlike other antiepileptic drugs, Levetiracetam is proposed to bind to a synaptic vesicle protein inhibiting calcium release. Brain tumor patients are frequently on chemotherapy or other drugs that induce cytochrome P450, causing significant drug interactions. However, levetiracetam does not induce the P450 system and does not exhibit any relevant drug interactions. Intravenous delivery is as bioavailable as the oral medication allowing it to be used in emergency situations. Levetiracetam is an attractive option for brain tumor patients suffering from seizures, but also can be used prophylactically in patients with brain tumors or patients undergoing neurological surgery. Emerging studies have also demonstrated that levetiracetam can increase the sensitivity of Glioblastoma tumors to the chemotherapy drug Temozolomide. Levetiracetam is a safe alternative to conventional Antiepileptic drugs and an emerging tool for brain tumor patients combating seizures.

  12. {sup 18}F-labeled RGD peptide: initial evaluation for imaging brain tumor angiogenesis

    Energy Technology Data Exchange (ETDEWEB)

    Chen Xiaoyuan; Park, Ryan; Shahinian, Anthony H.; Tohme, Michel; Khankaldyyan, Vazgen; Bozorgzadeh, Mohammed H.; Bading, James R.; Moats, Rex; Laug, Walter E.; Conti, Peter S. E-mail: pconti@usc.edu

    2004-02-01

    Brain tumors are highly angiogenesis dependent. The cell adhesion receptor integrin {alpha}{sub v}{beta}{sub 3} is overexpressed in glioma and activated endothelial cells and plays an important role in brain tumor growth, spread and angiogenesis. Suitably labeled {alpha}{sub v}{beta}{sub 3}-integrin antagonists may therefore be useful for imaging brain tumor associated angiogenesis. Cyclic RGD peptide c(RGDyK) was labeled with {sup 18}F via N-succinimidyl-4-[{sup 18}F]fluorobenzoate through the side-chain {epsilon}-amino group of the lysine residue. The radiotracer was evaluated in vivo for its tumor targeting efficacy and pharmacokinetics in subcutaneously implanted U87MG and orthotopically implanted U251T glioblastoma nude mouse models by means of microPET, quantitative autoradiography and direct tissue sampling. The N-4-[{sup 18}F]fluorobenzoyl-RGD ([{sup 18}F]FB-RGD) was produced in less than 2 h with 20-25% decay-corrected yields and specific activity of 230 GBq/{mu}mol at end of synthesis. The tracer showed very rapid blood clearance and both hepatobiliary and renal excretion. Tumor-to-muscle uptake ratio at 30 min was approximately 5 in the subcutaneous U87MG tumor model. MicroPET imaging with the orthotopic U251T brain tumor model revealed very high tumor-to-brain ratio, with virtually no uptake in the normal brain. Successful blocking of tumor uptake of [{sup 18}F]FB-RGD in the presence of excess amount of c(RGDyK) revealed receptor specific activity accumulation. Hence, N-4-[{sup 18}F]fluorobenzoyl labeled cyclic RGD peptide [{sup 18}F]FB-RGD is a potential tracer for imaging {alpha}{sub v}{beta}{sub 3}-integrin positive tumors in brain and other anatomic locations.

  13. False positive Tc-99m tetrofosmin brain tumor SPECT imaging in cerebral infarction

    International Nuclear Information System (INIS)

    Aim: The Tc-99m tetrofosmin brain SPECT imaging is known to be useful for the therapeutic efficacy evaluation of brain tumor, follow-up study for the detection of tumor recurrence and differential diagnosis between radiation necrosis and recurred brain tumor. We would like to report two cases of brain infarction in the brain tumor SPECT with Tc-99m tetrofosmin. Materials and Methods: Thirty-one patients with suspected brain tumor underwent Tc-99m tetrofosmin SPECT from March, 1997 to July, 2001. Each patient received 800 MBq tetrofosmin intravenously followed by SPECT using a dual-head gamma camera after the rest of 30 minutes. Regions of interest were outlined in the tumor area using a computer-automated program to include all counts above background activity. Mean tumor activity were obtained from this region of interest. The tumor region of interest was mirrored to the contralateral uninvolved cerebral hemisphere to obtain background control count activity. Then tumor to background activity ratios were calculated. Results: Two of 31 patients were cerebral infarction. In these patients the clinical and radiological findings necessitated more information about the nature of the lesion before treatment planning. One of two patients was 43 year-old male and the other patient was 73 year-old male. Both patients complained continuous severe headache for two weeks. Their MRI and CT findings suggested inconclusive brain tumor. Thus Tc-99m tetrofosmin brain SPECT was performed that revealed an abnormal uptake in the left frontal lobe in one patient and in the right parietal lobe in the other patient. The tumor to background activity ratios were 10.0 and 3.35, respectively. Cerebral infarction was finally confirmed by excisional biopsy in the former patient and by follow-up CT after 5 months in the other patient. Conclusion: Two cases of intracranial Tc-99m tetrofosmin uptake, reported as positive tumor activity in patients with a final diagnosis of cerebral infarction

  14. Efficient Analysis of Brain Tumor Detection and Identification Using Different Algorithms

    Directory of Open Access Journals (Sweden)

    Richa Aggarwal*1

    2014-05-01

    Full Text Available Brain tumor is one of the major causes of death among people. It is evident that the chances of survival can be increased if the tumor is detected and classified correctly at its early stage. The segmentation of brain tumors in magnetic resonance images (MRI is a challenging and difficult task because of the variety of their possible shapes, locations, image intensities. In this paper, it is intended to summarize and compare the methods of automatic detection of brain tumor through Magnetic Resonance Image using Histogram Thresholding with Region growing and K-mean segmentation. The proposed method can be successfully applied to detect the contour of the tumor and its geometrical dimension. MRI brain tumor images detection is a difficult task due to the variance and complexity of tumors. This paper presents three techniques for the detection purpose; first one is Histogram Thresholding, second is Region growing technique and third is K-mean. In this paper, the purposed method is more accurate and effective for the brain tumor detection and segmentation for MRI (DICOM images. For the implementation of this proposed work we use the Image Processing Toolbox under Matlab Software.

  15. A survey of MRI-based medical image analysis for brain tumor studies

    Science.gov (United States)

    Bauer, Stefan; Wiest, Roland; Nolte, Lutz-P.; Reyes, Mauricio

    2013-07-01

    MRI-based medical image analysis for brain tumor studies is gaining attention in recent times due to an increased need for efficient and objective evaluation of large amounts of data. While the pioneering approaches applying automated methods for the analysis of brain tumor images date back almost two decades, the current methods are becoming more mature and coming closer to routine clinical application. This review aims to provide a comprehensive overview by giving a brief introduction to brain tumors and imaging of brain tumors first. Then, we review the state of the art in segmentation, registration and modeling related to tumor-bearing brain images with a focus on gliomas. The objective in the segmentation is outlining the tumor including its sub-compartments and surrounding tissues, while the main challenge in registration and modeling is the handling of morphological changes caused by the tumor. The qualities of different approaches are discussed with a focus on methods that can be applied on standard clinical imaging protocols. Finally, a critical assessment of the current state is performed and future developments and trends are addressed, giving special attention to recent developments in radiological tumor assessment guidelines.

  16. Noncanonical Sites of Adult Neurogenesis in the Mammalian Brain.

    Science.gov (United States)

    Feliciano, David M; Bordey, Angélique; Bonfanti, Luca

    2015-10-01

    Two decades after the discovery that neural stem cells (NSCs) populate some regions of the mammalian central nervous system (CNS), deep knowledge has been accumulated on their capacity to generate new neurons in the adult brain. This constitutive adult neurogenesis occurs throughout life primarily within remnants of the embryonic germinal layers known as "neurogenic sites." Nevertheless, some processes of neurogliogenesis also occur in the CNS parenchyma commonly considered as "nonneurogenic." This "noncanonical" cell genesis has been the object of many claims, some of which turned out to be not true. Indeed, it is often an "incomplete" process as to its final outcome, heterogeneous by several measures, including regional location, progenitor identity, and fate of the progeny. These aspects also strictly depend on the animal species, suggesting that persistent neurogenic processes have uniquely adapted to the brain anatomy of different mammals. Whereas some examples of noncanonical neurogenesis are strictly parenchymal, others also show stem cell niche-like features and a strong link with the ventricular cavities. This work will review results obtained in a research field that expanded from classic neurogenesis studies involving a variety of areas of the CNS outside of the subventricular zone (SVZ) and subgranular zone (SGZ). It will be highlighted how knowledge concerning noncanonical neurogenic areas is still incomplete owing to its regional and species-specific heterogeneity, and to objective difficulties still hampering its full identification and characterization. PMID:26384869

  17. What's New in Research and Treatment for Brain Tumors in Children?

    Science.gov (United States)

    ... into the body, where they settle in the bone marrow and start making new blood cells. Although some children with certain brain or spinal cord tumors (such as medulloblastomas) have responded well ...

  18. No Evidence Linking Cell Phone Use to Risk of Brain Tumors

    Science.gov (United States)

    ... Blood & Biologics Articulos en Espanol No Evidence Linking Cell Phone Use to Risk of Brain Tumors Printer-friendly ... Minimizing RF Exposure Do the radio waves that cell phones emit pose a threat to health? Although research ...

  19. EGFRvIII-specific chimeric antigen receptor T cells migrate to and kill tumor deposits infiltrating the brain parenchyma in an invasive xenograft model of glioblastoma.

    Directory of Open Access Journals (Sweden)

    Hongsheng Miao

    Full Text Available Glioblastoma (GBM is the most common primary malignant brain tumor in adults and is uniformly lethal. T-cell-based immunotherapy offers a promising platform for treatment given its potential to specifically target tumor tissue while sparing the normal brain. However, the diffuse and infiltrative nature of these tumors in the brain parenchyma may pose an exceptional hurdle to successful immunotherapy in patients. Areas of invasive tumor are thought to reside behind an intact blood brain barrier, isolating them from effective immunosurveillance and thereby predisposing the development of "immunologically silent" tumor peninsulas. Therefore, it remains unclear if adoptively transferred T cells can migrate to and mediate regression in areas of invasive GBM. One barrier has been the lack of a preclinical mouse model that accurately recapitulates the growth patterns of human GBM in vivo. Here, we demonstrate that D-270 MG xenografts exhibit the classical features of GBM and produce the diffuse and invasive tumors seen in patients. Using this model, we designed experiments to assess whether T cells expressing third-generation chimeric antigen receptors (CARs targeting the tumor-specific mutation of the epidermal growth factor receptor, EGFRvIII, would localize to and treat invasive intracerebral GBM. EGFRvIII-targeted CAR (EGFRvIII+ CAR T cells demonstrated in vitro EGFRvIII antigen-specific recognition and reactivity to the D-270 MG cell line, which naturally expresses EGFRvIII. Moreover, when administered systemically, EGFRvIII+ CAR T cells localized to areas of invasive tumor, suppressed tumor growth, and enhanced survival of mice with established intracranial D-270 MG tumors. Together, these data demonstrate that systemically administered T cells are capable of migrating to the invasive edges of GBM to mediate antitumor efficacy and tumor regression.

  20. Consistency of parametric registration in serial MRI studies of brain tumor progression

    International Nuclear Information System (INIS)

    The consistency of parametric registration in multi-temporal magnetic resonance (MR) imaging studies was evaluated. Serial MRI scans of adult patients with a brain tumor (glioma) were aligned by parametric registration. The performance of low-order spatial alignment (6/9/12 degrees of freedom) of different 3D serial MR-weighted images is evaluated. A registration protocol for the alignment of all images to one reference coordinate system at baseline is presented. Registration results were evaluated for both, multimodal intra-timepoint and mono-modal multi-temporal registration. The latter case might present a challenge to automatic intensity-based registration algorithms due to ill-defined correspondences. The performance of our algorithm was assessed by testing the inverse registration consistency. Four different similarity measures were evaluated to assess consistency. Careful visual inspection suggests that images are well aligned, but their consistency may be imperfect. Sub-voxel inconsistency within the brain was found for allsimilarity measures used for parametric multi-temporal registration. T1-weighted images were most reliable for establishing spatial correspondence between different timepoints. The parametric registration algorithm is feasible for use in this application. The sub-voxel resolution mean displacement error of registration transformations demonstrates that the algorithm converges to an almost identical solution for forward and reverse registration. (orig.)

  1. SU-E-J-212: MR Diffusion Tensor Imaging for Assessment of Tumor and Normal Brain Tissue Responses of Juvenile Pilocytic Astrocytoma Treated by Proton Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Hou, P; Park, P; Li, H; Zhu, X; Mahajan, A; Grosshans, D [M.D. Anderson Cancer Center, Houston, TX (United States)

    2015-06-15

    Purpose: Diffusion tensor imaging (DTI) can measure molecular mobility at the cellular level, quantified by the apparent diffusion coefficient (ADC). DTI may also reveal axonal fiber directional information in the white matter, quantified by the fractional anisotropy (FA). Juvenile pilocytic astrocytoma (JPA) is a rare brain tumor that occurs in children and young adults. Proton therapy (PT) is increasingly used in the treatment of pediatric brain tumors including JPA. However, the response of both tumors and normal tissues to PT is currently under investigation. We report tumor and normal brain tissue responses for a pediatric case of JPA treated with PT assessed using DTI. Methods: A ten year old male with JPA of the left thalamus received passive scattered PT to a dose of 50.4 Gy (RBE) in 28 fractions. Post PT, the patient has been followed up in seven years. At each follow up, MRI imaging including DTI was performed to assess response. MR images were registered to the treatment planning CT and the GTV mapped onto each MRI. The GTV contour was then mirrored to the right side of brain through the patient’s middle line to represent normal brain tissue. ADC and FA were measured within the ROIs. Results: Proton therapy can completely spare contra lateral brain while the target volume received full prescribed dose. From a series of MRI ADC images before and after PT at different follow ups, the enhancement corresponding to GTV had nearly disappeared more than 2 years after PT. Both ADC and FA demonstrate that contralateral normal brain tissue were not affect by PT and the tumor volume reverted to normal ADC and FA values. Conclusion: DTI allowed quantitative evaluation of tumor and normal brain tissue responses to PT. Further study in a larger cohort is warranted.

  2. SU-E-J-212: MR Diffusion Tensor Imaging for Assessment of Tumor and Normal Brain Tissue Responses of Juvenile Pilocytic Astrocytoma Treated by Proton Therapy

    International Nuclear Information System (INIS)

    Purpose: Diffusion tensor imaging (DTI) can measure molecular mobility at the cellular level, quantified by the apparent diffusion coefficient (ADC). DTI may also reveal axonal fiber directional information in the white matter, quantified by the fractional anisotropy (FA). Juvenile pilocytic astrocytoma (JPA) is a rare brain tumor that occurs in children and young adults. Proton therapy (PT) is increasingly used in the treatment of pediatric brain tumors including JPA. However, the response of both tumors and normal tissues to PT is currently under investigation. We report tumor and normal brain tissue responses for a pediatric case of JPA treated with PT assessed using DTI. Methods: A ten year old male with JPA of the left thalamus received passive scattered PT to a dose of 50.4 Gy (RBE) in 28 fractions. Post PT, the patient has been followed up in seven years. At each follow up, MRI imaging including DTI was performed to assess response. MR images were registered to the treatment planning CT and the GTV mapped onto each MRI. The GTV contour was then mirrored to the right side of brain through the patient’s middle line to represent normal brain tissue. ADC and FA were measured within the ROIs. Results: Proton therapy can completely spare contra lateral brain while the target volume received full prescribed dose. From a series of MRI ADC images before and after PT at different follow ups, the enhancement corresponding to GTV had nearly disappeared more than 2 years after PT. Both ADC and FA demonstrate that contralateral normal brain tissue were not affect by PT and the tumor volume reverted to normal ADC and FA values. Conclusion: DTI allowed quantitative evaluation of tumor and normal brain tissue responses to PT. Further study in a larger cohort is warranted

  3. Patent foramen ovale as a preferential mechanism for increasing the likelihood of brain tumor metastasis

    OpenAIRE

    Rigatelli, Gianluca; Rossi, Andrea; Dell'Avvocata, Fabio; Cardaioli, Paolo

    2011-01-01

    Metastases are the most common tumors of the central nervous system which may lie dormant behind the brain blood- barrier sheltering from chemiotherapeutic drugs, and whose presence usually indicates a poor prognosis. Development of brain metastases includes the intravasation of the cancer cells through the tumor blood vessels, their circulation within the venous system, passing through the pulmonary filter thus reaching the systemic circulation. Patent foramen ovale (PFO) is a natural commun...

  4. Clinical Feature And Pathogeny Analysis Of Brain Hemorrhage In Young Adult Group

    Institute of Scientific and Technical Information of China (English)

    Wang Jianming; Zeng Xiaoyun

    2000-01-01

    Objection: The trend of brain hemorrhage cases of young adults have increased recently. In this article, We studied brain hemorrhage clinical feature and pathogenic causes of 72 young adults, Whose ages are all beneath 45Y. We found That the major pathogen reasons of young adult brain hemorrhage are blood system diseases、 arteriovenous malformation of cerebral blood vessel、 hypertension arteriosclerosis、 arteritis and rheumatic heart disease et. We also found that the trend can be related to hard work、 tense life、 drinking too much alcohol and eating high lipid food, and cercbral vascular disease family history. So in order to reduce the incidence of young adult brain hemorrhage, Young adults should not drink and smoke heavily, should not eat too much high lipid food. Young adults who have hypertension and brain vessel disease family history should be regularly measured blood pressure and blood lipid. If they had hypertension, should be treated regularly.

  5. Necessity of medical imaging registration for brain tumor radiotherapy

    International Nuclear Information System (INIS)

    Introduction: For brain tumors, the GTV contouring on a CT scan is not precise enough since the soft tissue is hard to be determined. Considering this, the magnetic resonance is the superior method. The goal of this paper is to present the difference in dose distribution if GTV is contoured on a CT scan instead of on an MRI scan. Materials and methods: All 20 analysed patients had pretreatment CT scan of the head, immobilized with thermoplastic mask. Pre-operative MRI is attached to the patient. Both 3D scans are registered. Two plans are made for each patient. Pr is the real one made according to PTV, where GTV is contoured on MRI slices and all other volumes (CTV, PTV and OARs) on CT-slices. Pc is a plan for comparison, made according to PTVc. Like all other structures, GTVc is contoured on a CT-scan. Results: Three parameters are analysed, GTV, CTV dose distribution and conformity index. Analysis results show differences in the volumes of structures GTV and GTVc between 4 and 100 cm3 (Fig. 3), or between 2,3 and 21 mm in diameter if we transform volumes in spheres. The minimal dose coverage of CTV with all plans Pr is above 95 %, except in two cases (93,5 % and 94,5) But, only with three Pc plans the dose coverage of CTV is above 90 %. Index conformity values from the analysis show high level of conformation for all Pr plans and for one half of the Pc plans. For one third of the Pc plans, that values are not acceptable. The results presented in this paper show that the contouring of GTV without using MRI in modern radiotherapy results in sub-dosing of the volume of interest; and that multiple increase of uncertainty results in lower local tumour control. (Author)

  6. Assessment of serum L-fucose in brain tumor cases

    OpenAIRE

    Manjula S; Monteiro Flama; Aroor Annaya; Rao Suryanarayan; Annaswamy Raja; Rao Anjali

    2010-01-01

    Background: Glycosylation of altered tumor cell in relation to cellular heterogeneity in human intracranial tumors remains relatively unexposed. Serum protein-bound carbohydrate, L-Fucose is reported to be overexpressed during tumor progression by many investigators. Therefore, there is a need to determine the diagnostic, prognostic, functional significance of glycoprotein elevations in various cases of tumors. Objective: The objective of the present study was to evaluate the clinical util...

  7. SPECT quantitation of cobalt-57 bleomycin delivery to human brain tumors

    International Nuclear Information System (INIS)

    A newly developed and validated noninvasive quantitative SPECT method was used to measure the in vivo uptake of [57Co]bleomycin (Co-bleo) in 13 human brain tumors and the uptake of [/sup 99m/Tc]glucoheptonate (GH) in 23 brain tumors. Significant differences in tumor uptake were found. The tumor concentration over time, the tumor to blood radioactivity at 30 min and the tumor cumulative concentration of radioactivity showed marked differences even between tumors with the same histology. Only a weak correlation was found between tumor concentration of Co-bleo and of GH. Therefore, a simple imaging agent such as GH cannot, at the present time, serve as an indicator of individual tumor uptake and further experience with other agents is still necessary. Contrary to the generally held view, no correlation was found between the concentration of drug in the blood and its tumor concentration. It is suggested, therefore, that the level of a drug in the blood cannot be used as a criterion of the amount that will penetrate the tumor. Direct SPECT measurement of the concentration of the drug in the tumor itself should be performed. The bioavailability of a drug is critical in order for it to exert it tumoricidal effect. The results, showing marked differences in uptake between brain tumors, suggest that before chemotherapy is administered, uptake of the chemotherapeutic drug in the individual tumor to be treated should be assessed and comparisons should be made between the uptake of a series of drugs to determine which drug would be most efficacious on the basis of its uptake as well as its tumor cell killing potential

  8. Effect of M-CSF for pancytopenia after adjuvant radiochemotherapy for malignant brain tumors

    International Nuclear Information System (INIS)

    Concerning the radiochemotherapy for malignant brain tumors, pancytopenia remains a severe problem. The beneficial effect of macrophage colony stimulating factor (M-CSF) on pancytopenia after adjuvant radiochemotherapy in 10 eligible patients with malignant brain tumors was investigated. There were five patients with glioblastoma multiforme, 1 with malignant astrocytoma, 1 with metastatic brain tumor, and others with malignant brain tumor. PAR therapy (30 mg/m2 of CDDP x 3, 70 mg/m2 of ACNU x 2 and 50-60 Gy radiation) was performed for virgin cases of malignant gliomas, CEV therapy (CDDP, etoposide, vincristine) for recurrence cases and PER therapy (CDDP, etoposide, radiation) for germinoma and metastatic brain tumor. Eight million units of M-CSF was injected intravenously once daily for 7 consecutive days after a second course of radiochemotherapy, and the numbers of granulocytes and platelets were determined. The overall response rate was 50%. No severe side effect was recognized. In 3 cases treated with ACNU, the nadir of granulocytes and platelets occurred 3 or 4 weeks after administration of ACNU due to prolonged side effects, and so additional administration of M-CSF was needed. The authors conclude that M-CSF might have clinical worth in adjuvant radiochemotherapy for malignant brain tumors considering the side effects. (author)

  9. Family history of cancer in benign brain tumor subtypes versus gliomas

    Directory of Open Access Journals (Sweden)

    Quinn eOstrom

    2012-02-01

    Full Text Available Purpose: Family history is associated with gliomas, but this association has not ben established for benign brain tumors. Using information from newly diagnosed primary brain tumor patients, we describe patterns of family cancer histories in patients with benign brain tumors and compare those to patients with gliomas. Methods: Newly diagnosed primary brain tumor patients were identified as part of the Ohio Brain Tumor Study (OBTS. Each patient was asked to participate in a telephone interview about personal medical history, family history of cancer, and other exposures. Information was available from 33 acoustic neuroma (65%, 78 meningioma (65%, 49 pituitary adenoma (73.1% and 152 glioma patients (58.2%. The association between family history of cancer and each subtype was compared with gliomas using unconditional logistic regression models generating odds ratios (ORs and 95% confidence intervals (95% CI. Results: There was no significant difference in family history of cancer between patients with glioma and benign subtypes. Conclusions: The results suggest that benign brain tumor may have an association with family history of cancer. More studies are warranted to disentangle the potential genetic and/or environmental causes for these diseases.

  10. MRI findings of multiple malignant gliomas. Differentiation from multiple metastatic brain tumors

    International Nuclear Information System (INIS)

    Multiple malignant gliomas are relatively uncommon, but are sometimes difficult to differentiate from multiple metastatic brain tumors. We analyzed the MR finding of four cases of multiple gliomas, comparing them with 12 cases of multiple metastatic brain tumors. All tumors were pathologically proven by surgical operation or autopsy. Gliomas were located in the deep white matter of the cerebrum, with none found in the posterior fossa. Tumors were relatively large, and irregular, thick, ring-like enhancement was noted after the administration of Gd-DTPA. Intratumoral hemorrhage was noted in only one case. High signal intensity on T2WI around the tumor suggested that edema was greater and more extensive than in metastatic tumors and was seen even in the corpus callosum. One autopsied case that showed this high intensity presented not only edema but also tumor infiltration. Metastatic tumors were located mainly in the corticomedullary junction of the brain. They were relatively small, and eight of 12 tumors showed, nodular or smooth ring-like enhancement. Intratumoral hemorrhage was noted in four cases. Edema was noted mainly around the tumor. We conclude that differential diagnosis between gliomas and metastases is possible to some extent by MRI. (author)

  11. Organs at risk in the brain and their dose-constraints in adults and in children: A radiation oncologist’s guide for delineation in everyday practice

    International Nuclear Information System (INIS)

    Purpose: Accurate organs at risk definition is essential for radiation treatment of brain tumors. The aim of this study is to provide a stepwise and simplified contouring guide to delineate the OARs in the brain as it would be done in the everyday practice of planning radiotherapy for brain cancer treatment. Methods: Anatomical descriptions and neuroimaging atlases of the brain were studied. The dosimetric constraints used in literature were reviewed. Results: A Computed Tomography and Magnetic Resonance Imaging based detailed atlas was developed jointly by radiation oncologists, a neuroradiologist and a neurosurgeon. For each organ brief anatomical notion, main radiological reference points and useful considerations are provided. Recommended dose-constraints both for adult and pediatric patients were also provided. Conclusions: This report provides guidelines for OARs delineation and their dose-constraints for the treatment planning of patients with brain tumors

  12. Association rule mining based study for identification of clinical parameters akin to occurrence of brain tumor.

    Science.gov (United States)

    Sengupta, Dipankar; Sood, Meemansa; Vijayvargia, Poorvika; Hota, Sunil; Naik, Pradeep K

    2013-01-01

    Healthcare sector is generating a large amount of information corresponding to diagnosis, disease identification and treatment of an individual. Mining knowledge and providing scientific decision-making for the diagnosis & treatment of disease from the clinical dataset is therefore increasingly becoming necessary. Aim of this study was to assess the applicability of knowledge discovery in brain tumor data warehouse, applying data mining techniques for investigation of clinical parameters that can be associated with occurrence of brain tumor. In this study, a brain tumor warehouse was developed comprising of clinical data for 550 patients. Apriori association rule algorithm was applied to discover associative rules among the clinical parameters. The rules discovered in the study suggests - high values of Creatinine, Blood Urea Nitrogen (BUN), SGOT & SGPT to be directly associated with tumor occurrence for patients in the primary stage with atleast 85% confidence and more than 50% support. A normalized regression model is proposed based on these parameters along with Haemoglobin content, Alkaline Phosphatase and Serum Bilirubin for prediction of occurrence of STATE (brain tumor) as 0 (absent) or 1 (present). The results indicate that the methodology followed will be of good value for the diagnostic procedure of brain tumor, especially when large data volumes are involved and screening based on discovered parameters would allow clinicians to detect tumors at an early stage of development. PMID:23888095

  13. Deregulation of c-myc and SV40Tag causing brain tumor in mice

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Deregulated expressions of both c-myc and simian virus 40 large T antigen (SV40Tag) are consistent features of lots of tumors. To investigate whether the expression of c-myc and SV40Tag in mouse might help develop a model of human tumor, we generated c-myc transgenics by inserting human c-myc gene into pTRE2 of Tet-On system. We obtained conditional expression of SV40Tag transgenics by the Tet-On system from Yangzhou University. Crossing the c-myc transgenic mouse with the SV40Tag transgenic mice to generate bitransgenics we got double-transgenic mice expressing c-myc and SV40Tag by the Tet-On system. After being treated with doxycycline continuously, single-transgenic SV40Tag mice developed brain tumor infrequently (3 of 84, 3.6%) with a long onset (185 d on average). In contrast, double-transgenic c-myc/SV40Tag mice developed brain tumor with a short onset (96 days on average) and a 41% brain tumor incidence rate (7 of 17, 41%). This tumor was assumed to be medulloblastoma. Our experiments suggest that deregulated expression of c-myc and SV40Tag in brain might generate a mouse model of human brain tumor that recapitulates some features of human medulloblastoma.

  14. A correlative study on the functional disturbances and the organic changes in patients with brain tumors

    International Nuclear Information System (INIS)

    In a total of 132 patients with supratentorial tumors, tumor localization, pathology, and the presence of low density area surrounding the tumor were examined in relation to cerebral function, using conventional EEG, topographic EEG, computed tomography (CT), single photon emission computed tomography (SPECT), and magnetic resonance imaging (MRI). For superficial tumors, meningioma had less EEG abnormalities than glioma, regardless of the presence of low density area. Slow wave focus as shown by topographic EEG corresponded well with tumor localization detected on CT. For deep-seated tumors, topographic EEG showed diffuse δ waves and θ waves along the median. In 7 patients with meningioma, there was no uniform cerebral blood flow within the tumor; however, low blood flow surrounding the tumor was detected on CT, regardless of the presence of low density area. In 4 patients with intra-axial tumors, low blood flow was detected both within and surrounding the tumor. Location of tumors, as detected on CT, was well coincident with areas of decreased local cerebral blood flow and slow waves, as detected on topographic EEG. MRI was more reliable than CT in disclosing brain tumors, peritumoral edemas, and involvement of brain stem. (Namekawa, K)

  15. Clinical Analysis for Brain Tumor-Related Epilepsy during Chemotherapy for Systemic Cancer with Single Brain Metastasis

    OpenAIRE

    Kim, Young Zoon; Lee, Eun Hee; Lee, Kyoung Soo

    2011-01-01

    Purpose The purpose of this prospective observational study was to determine the incidence, patterns, and predisposing factors for brain tumor-related epilepsy (BTRE) during chemotherapy for systemic cancer with single brain metastasis (BM). Materials and Methods Between February 2006 and June 2010, 103 patients who underwent chemotherapy for systemic cancer with single BM were enrolled. We compared the clinical factors of patients and BM between patients with and without BTRE. We determined ...

  16. Tc-99m-MIBI brain SPECT in differentiating tumor recurrences from necrosis

    International Nuclear Information System (INIS)

    Brain SPECT using 99m-TC MIBI can distinguish between local tumor recurrence and radio necrosis of the primary brain tumor, whereas CT scan and MRI do not have this ability. 1. Is it possible to search for tumoral cells in the brain by using TC-99m MIBI? 2. How sensitive and specific is the SPECT in distinguishing the presence of active tumor in the brain and differentiating it from post-therapy necrosis? 3. Is it feasible to substitute this diagnostic modality for stereotactic biopsy surgery? Patients who presented to the neurosurgery clinic with the clinical manifestations of brain tumor relapse between 22nd August 1999 and 1.; February 2000 and were candidates for stereotactic biopsy were chosen. A 99m-TC MIBI SPECT was performed before biopsy. The total number of patients was 13. Five patients had the diagnosis of brain tumor by surgery and biopsy and had undergone a course of radiotherapy and chemotherapy. These patients were normal clinically and MIBI SPECT was done for the purpose of follow-up. Clinical manifestations consisted of, Weakness, Vertigo visual disorders, loss of consciousness, headache, aphasia and hemiparesis. The primary tumors were composed of a variety of lei sons including: grade I, II astrocytoma (62.5%), glioblastoma (25%) and medulloblastoma (12.5%). eight patients who had MIBI SPECT firstly and then had biopsy, brain tumor relapse was reported by both biopsy and SPECT in seven patients. This proved a 100% sensitivity and a 100% specificity for MIBI SPECT in differentiating, between tumor relapse and necrosis, a result comparable to stereotactic biopsy. Also in 5 patients with clinical evidence of remission, MIBI SPECT was negative for tumor recurrence in all. Patients who present with the clinical manifestations of brain tumor relapse, usually have a history of surgery, radiotherapy or chemotherapy and any invasive procedures like stereotactic biopsy on these patients carries a high risk for anesthesia and surgery, besides being costly

  17. Rapid Detection of high-level oncogene amplifications in ultrasonic surgical aspirations of brain tumors

    Directory of Open Access Journals (Sweden)

    Truong Long N

    2012-06-01

    Full Text Available Abstract Background Genomic tumor information, such as identification of amplified oncogenes, can be used to plan treatment. The two sources of a brain tumor that are commonly available include formalin-fixed, paraffin-embedded (FFPE sections from the small diagnostic biopsy and the ultrasonic surgical aspiration that contains the bulk of the tumor. In research centers, frozen tissue of a brain tumor may also be available. This study compared ultrasonic surgical aspiration and FFPE specimens from the same brain tumors for retrieval of DNA and molecular assessment of amplified oncogenes. Methods Surgical aspirations were centrifuged to separate erythrocytes from the tumor cells that predominantly formed large, overlying buffy coats. These were sampled to harvest nuclear pellets for DNA purification. Four glioblastomas, 2 lung carcinoma metastases, and an ependymoma were tested. An inexpensive PCR technique, multiplex ligation-dependent probe amplification (MLPA, quantified 79 oncogenes using 3 kits. Copy number (CN results were normalized to DNA from non-neoplastic brain (NB in calculated ratios, [tumor DNA]/[NB DNA]. Bland-Altman and Spearman rank correlative comparisons were determined. Regression analysis identified outliers. Results Purification of DNA from ultrasonic surgical aspirations was rapid ( Conclusions Buffy coats of centrifuged ultrasonic aspirations contained abundant tumor cells whose DNA permitted rapid, multiplex detection of high-level oncogene amplifications that were confirmed in FFPE. Virtual slides http://www.diagnosticpathology.diagnomx.eu/vs/1883718801686466

  18. Usefulness of three-dimensional MR images of brain tumors for surgical simulation

    International Nuclear Information System (INIS)

    The purpose of this study was to determine the usefulness of three-dimensional (3D) MR imaging of brain tumors for surgical planning. Sixty-nine patients with various tumors of the brain were included in the present study. Using a volume-rendering (VR) method on an independent workstation, 3D-MR images were obtained with the fast-spoiled gradient recalled acquisition in the steady state (SPGR) sequence after Gd-DTPA administration. VR images could show an exact relationship between the surface of the brain and major vessels. However, in patients with deeply located tumors, VR images did not necessarily provide sufficient information as to the relationship between the tumor and vessels. In combination with a surface-rendering method, 3D-MR imaging could demonstrate the exact relationships among the tumors, major vessels, and surface of the brain. In tumors without contrast enhancement, this method was able to show 3D images of tumors with surrounding structures. For neurosurgeons, 3D-MR images were useful for understanding the surface anatomy and surrounding structures of the tumors prior to surgery. These images were also helpful in explaining the condition of the disease to patients and their families. (author)

  19. Detection of brain tumors using fluorescence diffuse optical tomography and nanoparticles as contrast agents

    Science.gov (United States)

    Fortin, Pierre-Yves; Genevois, Coralie; Koenig, Anne; Heinrich, Emilie; Texier, Isabelle; Couillaud, Franck

    2012-12-01

    Near-infrared fluorescence-enhanced diffuse optical tomography (fDOT) is used to localize tumors in mice using fluorescent nanoparticles as a blood pool contrast agent. The infrared dye DiR is loaded in the lipid core of nontargeted nanoparticles (DiR-lipidots) and injected systemically via the tail vein in mice bearing U87 tumors. Distribution and time-course of DiR-lipidots are followed using in vivo fluorescence reflectance imaging and reveal enhanced fluorescent signal within the subcutaneous tumors up to seven days due to the enhanced permeability and retention effect. Tumor growth into the brain is followed using bioluminescent imaging, and tumor localization is further determined by magnetic resonance imaging. The fDOT provides three-dimensional fluorescent maps that allow for consistent localization for both subcutaneous and brain tumors.

  20. Coloring brain tumor with multi-potent micellar nanoscale drug delivery system

    Science.gov (United States)

    Chong, Kyuha; Choi, Kyungsun; Kim, EunSoo; Han, Eun Chun; Lee, Jungsul; Cha, Junghwa; Ku, Taeyun; Yoon, Jonghee; Park, Ji Ho; Choi, Chulhee

    2012-10-01

    Brain tumor, especially glioblastoma multiforme (GBM), is one of the most malignant tumors, which not only demands perplexing treatment approaches but also requires potent and effective treatment modality to deal with recurrence of the tumor. Photodynamic therapy (PDT) is a treatment which has been recommended as a third-level treatment. We are trying to investigate possibility of the PDT as an efficient adjuvant therapeutic modality for the treatment of brain tumor. Inhibition of tumor progression with photosensitizer was verified, in vitro. With micellar nanoscale drug delivery system, localization of the tumor was identified, in vivo, which is able to be referred as photodynamic diagnosis. With consequent results, we are suggesting photodynamic diagnosis and therapy is able to be performed simultaneously with our nanoscale drug delivery system.

  1. Anatomically standardized statistical mapping of 123I-IMP SPECT in brain tumors

    International Nuclear Information System (INIS)

    123I-iodoamphetamine Single Photon Emission Computed Tomography (IMP SPECT) is used to evaluate cerebral blood flow. However, application of IMP SPECT to patients with brain tumors has been rarely reported. Primary central nervous system lymphoma (PCNSL) is a rare tumor that shows delayed IMP uptake. The relatively low spatial resolution of SPECT is a clinical problem in diagnosing brain tumors. We examined anatomically standardized statistical mapping of IMP SPECT in patients with brain lesions. This study included 49 IMP SPECT images for 49 patients with brain lesions: 20 PCNSL, 1 Burkitt's lymphoma, 14 glioma, 4 other tumor, 7 inflammatory disease and 3 without any pathological diagnosis but a clinical diagnosis of PCNSL. After intravenous injection of 222 MBq of 123I-IMP, early (15 minutes) and delayed (4 hours) images were acquired using a multi-detector SPECT machine. All SPECT data were transferred to a newly developed software program iNeurostat+ (Nihon Medi-physics). SPECT data were anatomically standardized on normal brain images. Regions of increased uptake of IMP were statistically mapped on the tomographic images of normal brain. Eighteen patients showed high uptake in the delayed IMP SPECT images (16 PCNSL, 2 unknown). Other tumor or diseases did not show high uptake of delayed IMP SPECT, so there were no false positives. Four patients with pathologically proven PCNSL showed no uptake in original IMP SPECT. These tumors were too small to detect in IMP SPECT. However, statistical mapping revealed IMP uptake in 18 of 20 pathologically verified PCNSL patients. A heterogeneous IMP uptake was seen in homogenous tumors in MRI. For patients with a hot IMP uptake, statistical mapping showed clearer uptake. IMP SPECT is a sensitive test to diagnose of PCNSL, although it produced false negative results for small posterior fossa tumor. Anatomically standardized statistical mapping is therefore considered to be a useful method for improving the diagnostic

  2. Blood interference in fluorescence spectrum : Experiment, analysis and comparison with intraoperativemeasurements on brain tumor

    OpenAIRE

    Lowndes, Shannely

    2010-01-01

    The optical touch pointer (OTP), a fluorescence spectroscopy based system, assists brain surgeons during guided brain tumor resection in patients with glioblastoma multiforme (GBM). After recording and analyzing the autofluorescence spectrum of the tissue, it is possible to distinguish malignant from healthy brain tissue. A challenge during the intraoperative measurements is the interference of blood. If it gets in contact with the laser pointer, the blood blocks the light transmission to and...

  3. Treatment Options by Type of Adult Brain Tumor

    Science.gov (United States)

    ... Unknown Primary Treatment Colon Cancer Treatment Leukemia Home Page Melanoma Treatment Nasopharyngeal Cancer Treatment Non-Small Cell Lung Cancer Treatment Renal Cell Cancer Treatment Small Cell ...

  4. Improving the accuracy of brain tumor surgery via Raman-based technology

    Science.gov (United States)

    Hollon, Todd; Lewis, Spencer; Freudiger, Christian W.; Xie, X. Sunney; Orringer, Daniel A.

    2016-01-01

    Despite advances in the surgical management of brain tumors, achieving optimal surgical results and identification of tumor remains a challenge. Raman spectroscopy, a laser-based technique that can be used to nondestructively differentiate molecules based on the inelastic scattering of light, is being applied toward improving the accuracy of brain tumor surgery. Here, the authors systematically review the application of Raman spectroscopy for guidance during brain tumor surgery. Raman spectroscopy can differentiate normal brain from necrotic and vital glioma tissue in human specimens based on chemical differences, and has recently been shown to differentiate tumor-infiltrated tissues from noninfiltrated tissues during surgery. Raman spectroscopy also forms the basis for coherent Raman scattering (CRS) microscopy, a technique that amplifies spontaneous Raman signals by 10,000-fold, enabling real-time histological imaging without the need for tissue processing, sectioning, or staining. The authors review the relevant basic and translational studies on CRS microscopy as a means of providing real-time intraoperative guidance. Recent studies have demonstrated how CRS can be used to differentiate tumor-infiltrated tissues from noninfiltrated tissues and that it has excellent agreement with traditional histology. Under simulated operative conditions, CRS has been shown to identify tumor margins that would be undetectable using standard bright-field microscopy. In addition, CRS microscopy has been shown to detect tumor in human surgical specimens with near-perfect agreement to standard H & E microscopy. The authors suggest that as the intraoperative application and instrumentation for Raman spectroscopy and imaging matures, it will become an essential component in the neurosurgical armamentarium for identifying residual tumor and improving the surgical management of brain tumors. PMID:26926067

  5. (18)F-Fluorodeoxyglucose PET/Computed Tomography for Primary Brain Tumors

    DEFF Research Database (Denmark)

    Antonsen Segtnan, Eivind; Hess, Søren; Grupe, Peter;

    2015-01-01

    Structural imaging with computed tomography (CT) and MR imaging is the mainstay in primary diagnosis of primary brain tumors, but these modalities depend on morphologic appearance and an intact blood-brain barrier, and important aspects of tumor biology are not addressed. Such issues may be...... alleviated by (18)F-fluorodeoxyglucose (FDG)-PET and FDG-PET/CT imaging, which may provide clinically important information with regard to primary differentiation between tumor types, initial staging and risk stratification, therapy planning, response evaluation, and recurrence detection. This article...

  6. Postoperative Stereotactic Radiosurgery Without Whole-Brain Radiation Therapy for Brain Metastases: Potential Role of Preoperative Tumor Size

    International Nuclear Information System (INIS)

    Purpose: Radiation therapy following resection of a brain metastasis increases the probability of disease control at the surgical site. We analyzed our experience with postoperative stereotactic radiosurgery (SRS) as an alternative to whole-brain radiotherapy (WBRT), with an emphasis on identifying factors that might predict intracranial disease control and overall survival (OS). Methods and Materials: We retrospectively reviewed all patients through December 2008, who, after surgical resection, underwent SRS to the tumor bed, deferring WBRT. Multiple factors were analyzed for time to intracranial recurrence (ICR), whether local recurrence (LR) at the surgical bed or “distant” recurrence (DR) in the brain, for time to WBRT, and for OS. Results: A total of 49 lesions in 47 patients were treated with postoperative SRS. With median follow-up of 9.3 months (range, 1.1-61.4 months), local control rates at the resection cavity were 85.5% at 1 year and 66.9% at 2 years. OS rates at 1 and 2 years were 52.5% and 31.7%, respectively. On univariate analysis (preoperative) tumors larger than 3.0 cm exhibited a significantly shorter time to LR. At a cutoff of 2.0 cm, larger tumors resulted in significantly shorter times not only for LR but also for DR, ICR, and salvage WBRT. While multivariate Cox regressions showed preoperative size to be significant for times to DR, ICR, and WBRT, in similar multivariate analysis for OS, only the graded prognostic assessment proved to be significant. However, the number of intracranial metastases at presentation was not significantly associated with OS nor with other outcome variables. Conclusions: Larger tumor size was associated with shorter time to recurrence and with shorter time to salvage WBRT; however, larger tumors were not associated with decrements in OS, suggesting successful salvage. SRS to the tumor bed without WBRT is an effective treatment for resected brain metastases, achieving local control particularly for tumors up to

  7. Postoperative Stereotactic Radiosurgery Without Whole-Brain Radiation Therapy for Brain Metastases: Potential Role of Preoperative Tumor Size

    Energy Technology Data Exchange (ETDEWEB)

    Hartford, Alan C., E-mail: Alan.C.Hartford@Hitchcock.org [Section of Radiation Oncology, Dartmouth-Hitchcock Medical Center, Lebanon, New Hampshire (United States); Paravati, Anthony J. [Section of Radiation Oncology, Dartmouth-Hitchcock Medical Center, Lebanon, New Hampshire (United States); Spire, William J. [Section of Neurosurgery, Dartmouth-Hitchcock Medical Center, Lebanon, New Hampshire (United States); Li, Zhongze [Biostatistics Shared Resource, Norris Cotton Cancer Center, Lebanon, New Hampshire (United States); Jarvis, Lesley A. [Section of Radiation Oncology, Dartmouth-Hitchcock Medical Center, Lebanon, New Hampshire (United States); Fadul, Camilo E. [Section of Hematology/Oncology, Dartmouth-Hitchcock Medical Center, Lebanon, New Hampshire (United States); Rhodes, C. Harker [Department of Pathology, Dartmouth-Hitchcock Medical Center, Lebanon, New Hampshire (United States); Erkmen, Kadir [Section of Neurosurgery, Dartmouth-Hitchcock Medical Center, Lebanon, New Hampshire (United States); Friedman, Jonathan [Department of Surgery, Texas A and M College of Medicine, College Station, Texas (United States); Gladstone, David J. [Section of Radiation Oncology, Dartmouth-Hitchcock Medical Center, Lebanon, New Hampshire (United States); Hug, Eugen B. [ProCure, New York, New York (United States); Roberts, David W.; Simmons, Nathan E. [Section of Neurosurgery, Dartmouth-Hitchcock Medical Center, Lebanon, New Hampshire (United States)

    2013-03-01

    Purpose: Radiation therapy following resection of a brain metastasis increases the probability of disease control at the surgical site. We analyzed our experience with postoperative stereotactic radiosurgery (SRS) as an alternative to whole-brain radiotherapy (WBRT), with an emphasis on identifying factors that might predict intracranial disease control and overall survival (OS). Methods and Materials: We retrospectively reviewed all patients through December 2008, who, after surgical resection, underwent SRS to the tumor bed, deferring WBRT. Multiple factors were analyzed for time to intracranial recurrence (ICR), whether local recurrence (LR) at the surgical bed or “distant” recurrence (DR) in the brain, for time to WBRT, and for OS. Results: A total of 49 lesions in 47 patients were treated with postoperative SRS. With median follow-up of 9.3 months (range, 1.1-61.4 months), local control rates at the resection cavity were 85.5% at 1 year and 66.9% at 2 years. OS rates at 1 and 2 years were 52.5% and 31.7%, respectively. On univariate analysis (preoperative) tumors larger than 3.0 cm exhibited a significantly shorter time to LR. At a cutoff of 2.0 cm, larger tumors resulted in significantly shorter times not only for LR but also for DR, ICR, and salvage WBRT. While multivariate Cox regressions showed preoperative size to be significant for times to DR, ICR, and WBRT, in similar multivariate analysis for OS, only the graded prognostic assessment proved to be significant. However, the number of intracranial metastases at presentation was not significantly associated with OS nor with other outcome variables. Conclusions: Larger tumor size was associated with shorter time to recurrence and with shorter time to salvage WBRT; however, larger tumors were not associated with decrements in OS, suggesting successful salvage. SRS to the tumor bed without WBRT is an effective treatment for resected brain metastases, achieving local control particularly for tumors up to

  8. Cancer Stem Cells in Brain Tumors and Their Lineage Hierarchy

    OpenAIRE

    Kong, Doo-Sik

    2012-01-01

    Despite recent advances in the development of novel targeted chemotherapies, the prognosis of malignant glioma remains dismal. The chemo-resistance of this tumor is attributed to tumor heterogeneity. To explain this unique chemo- resistance, the concept of cancer stem cells has been evoked. Cancer stem cells, a subpopulation of whole tumor cells, are now regarded as candidate therapeutic targets. Here, the author reviews and discusses the cancer stem cell concept.

  9. Role of mitochondrial DNA mutations in brain tumors: A mini-review.

    Science.gov (United States)

    Mohamed Yusoff, Abdul Aziz

    2015-01-01

    Brain tumor is molecularly a heterogeneous group of diseases, and genetic factors seem to play a crucial role in its genesis. Even though multiple alterations in the nuclear-encoded genes such as tumor suppressor and oncogenes are believed to play a key role in brain tumorigenesis, the involvement of the mitochondrial genome to this event remains controversial to date. Mitochondrial DNA (mtDNA) has been suspected to be associated with the carcinogenesis because of its high sensitivity to mutations and inefficient repair mechanisms in comparison to nuclear DNA. Thus, defects in mtDNA could also lead to the development of brain tumor. By virtue of their clonal nature and high copy number, mtDNA mutations may provide a new effective molecular biomarker for the cancer detection. It has been suggested that establishing mtDNA defective pattern might be useful in cancer diagnostics and detection, the prognosis of cancer outcome, and/or the response to certain treatments. This mini-review gives a brief overview on the several aspects of mtDNA, with a particular focus on its role in tumorigenesis and progression of brain tumor. Understanding the role of mitochondria and brain tumor development could potentially translate into therapeutic strategies for patients with these tumors. PMID:26458578

  10. Role of mitochondrial DNA mutations in brain tumors: A mini-review

    Directory of Open Access Journals (Sweden)

    Abdul Aziz Mohamed Yusoff

    2015-01-01

    Full Text Available Brain tumor is molecularly a heterogeneous group of diseases, and genetic factors seem to play a crucial role in its genesis. Even though multiple alterations in the nuclear-encoded genes such as tumor suppressor and oncogenes are believed to play a key role in brain tumorigenesis, the involvement of the mitochondrial genome to this event remains controversial to date. Mitochondrial DNA (mtDNA has been suspected to be associated with the carcinogenesis because of its high sensitivity to mutations and inefficient repair mechanisms in comparison to nuclear DNA. Thus, defects in mtDNA could also lead to the development of brain tumor. By virtue of their clonal nature and high copy number, mtDNA mutations may provide a new effective molecular biomarker for the cancer detection. It has been suggested that establishing mtDNA defective pattern might be useful in cancer diagnostics and detection, the prognosis of cancer outcome, and/or the response to certain treatments. This mini-review gives a brief overview on the several aspects of mtDNA, with a particular focus on its role in tumorigenesis and progression of brain tumor. Understanding the role of mitochondria and brain tumor development could potentially translate into therapeutic strategies for patients with these tumors.

  11. Wnts in adult brain: from synaptic plasticity to cognitive deficiencies

    Science.gov (United States)

    Oliva, Carolina A.; Vargas, Jessica Y.; Inestrosa, Nibaldo C.

    2013-01-01

    During development of the central nervous system the Wnt signaling pathway has been implicated in a wide spectrum of physiological processes, including neuronal connectivity and synapse formation. Wnt proteins and components of the Wnt pathway are expressed in the brain since early development to the adult life, however, little is known about its role in mature synapses. Here, we review evidences indicating that Wnt proteins participate in the remodeling of pre- and post-synaptic regions, thus modulating synaptic function. We include the most recent data in the literature showing that Wnts are constantly released in the brain to maintain the basal neural activity. Also, we review the evidences that involve components of the Wnt pathway in the development of neurological and mental disorders, including a special emphasis on in vivo studies that relate behavioral abnormalities to deficiencies in Wnt signaling. Finally, we include the evidences that support a neuroprotective role of Wnt proteins in Alzheimer’s disease. We postulate that deregulation in Wnt signaling might have a fundamental role in the origin of neurological diseases, by altering the synaptic function at stages where the phenotype is not yet established but when the cognitive decline starts. PMID:24348327

  12. Survival Rates for Selected Childhood Brain and Spinal Cord Tumors

    Science.gov (United States)

    ... Type of Tumor 5-Year Survival Rate Pilocytic astrocytoma About 95% Fibrillary (diffuse) astrocytoma About 80% to 85% Anaplastic astrocytoma About 30% Glioblastoma About 20% Oligodendroglioma About 90% ...

  13. 1H chemical shift imaging characterization of human brain tumor and edema

    International Nuclear Information System (INIS)

    Longitudinal (T1) and transverse (T2) relaxation times of metabolites in human brain tumor, peritumoral edema, and unaffected brain tissue were assessed from point resolved spectroscopy (PRESS) 1H chemical shift imaging results at different repetition times (TR=1500 and 5000 ms; T1: n=19) and echo times (TE=135 and 270 ms; T2: n=7). Metabolite T1 and T2 relaxation times in unaffected brain tissue corresponded with those published for healthy volunteers. T2 relaxation times were reduced in tumor (choline, N-acetyl aspartate) and edema (choline, creatine) compared with unaffected brain tissue (p1H chemical shift imaging is most suited in the use of choline elevation as tumor marker. (orig.)

  14. Development of brain tumor at six years after the onset of acute lymphoblastic leukemia

    Energy Technology Data Exchange (ETDEWEB)

    Kumazaki, Hisami; Hanada, Ryoji; Kikuti, Akira; Ichikawa, Masataka; Yamamoto, Keiko; Aihara, Toshinori; Ogawa, Yoshihiro [Saitama Children`s Medical Center, Iwatsuki (Japan)

    1996-06-01

    In October 1994, a 16-year-old boy was diagnosed as having a brain tumor in the left fronto-temporal region 5 years after completing treatment for acute lymphoblastic leukemia (ALL). The patient had been treated for ALL starting in 1988 when he was 10-year-old. He had received systemic chemotherapy and central nervous system prophylaxis, consisting of cranial irradiation (24 Gy) and intrathecal methotrexate. When the brain tumor was detected he was still in complete remission. The patient received only supportive therapy mainly for relief of increased intracranial pressure because the tumor was too large to resect in addition to being inappropriate for surgical treatment. He died in December 1994. On autopsy, pathological diagnosis of the brain tumor was anaplastic astrocytoma, which is a rare secondary malignancy though glioma is common. (author)

  15. Development of brain tumor at six years after the onset of acute lymphoblastic leukemia

    International Nuclear Information System (INIS)

    In October 1994, a 16-year-old boy was diagnosed as having a brain tumor in the left fronto-temporal region 5 years after completing treatment for acute lymphoblastic leukemia (ALL). The patient had been treated for ALL starting in 1988 when he was 10-year-old. He had received systemic chemotherapy and central nervous system prophylaxis, consisting of cranial irradiation (24 Gy) and intrathecal methotrexate. When the brain tumor was detected he was still in complete remission. The patient received only supportive therapy mainly for relief of increased intracranial pressure because the tumor was too large to resect in addition to being inappropriate for surgical treatment. He died in December 1994. On autopsy, pathological diagnosis of the brain tumor was anaplastic astrocytoma, which is a rare secondary malignancy though glioma is common. (author)

  16. Superior mesenteric artery syndrome caused by surgery and radiation therapy for a brain tumor: A case report

    Science.gov (United States)

    LEI, QIUCHENG; WANG, XINYING; WU, CHAO; BI, JINGCHENG; ZHANG, LI

    2015-01-01

    Superior mesenteric artery syndrome (SMAS) is defined as an obstruction of the third part of duodenum due to compression by the superior mesenteric artery. Although traumatic brain injury is a risk factor for SMAS, few cases of SMAS resulting from brain surgery have been reported. SMAS has been observed to occur following neurosurgical surgery in pediatric patients but, to the best of our knowledge, no such cases have been reported in adults. The present study reports the case of a 21-year-old female patient who developed SMAS after persistent vomiting and prolonged weight loss following cerebellar tumor resection and cranial irradiation. The SMAS was confirmed by computed tomography and resolved following successful nutritional management. PMID:26622529

  17. TTF-1 may not be a Reliable Marker for Differentiating Metastasis from Brain Tumors

    Directory of Open Access Journals (Sweden)

    Betül ÜNAL

    2014-09-01

    Full Text Available Objective: TTF-1 is widely used as an immunohistochemical marker of lung and thyroid tumors. However, TTF-1 expression has been described in tumors from other sites. The presence of TTF-1 expression in primary brain tumors is largely unclear and has not been clearly specified yet. We characterized expression of two TTF-1 clones in primary brain tumors with relevance to tumor types and grades. Material and Method: We studied immunohistochemistry with tissue micro-array, using both clones (8G7G3/1 and SPT24 in 45 primary brain tumors of different types and grades. Our cases consisted of 1 grade I, 7 grade II, 4 grade III, 20 grade IV astrocytic tumors; 9 meningiomas, 2 oligodendrogliomas, 1 schwannoma and 1 medulloblastoma. Results: We have found TTF-1 nuclear staining using the SPT24 clone in 4 cases (3 cases were grade IV and 1 was grade III. Focal and weak staining was seen in three cases and moderate-strong and diffuse staining was seen in one case. All the tumors were negative with clone 8G7G3/1. Clone SPT24 was more sensitive but less specific. Conclusion: TTF-1 can also be expressed in primary brain tumors, particularly grade III to IV tumors. TTF-1 expression was a rare finding in previous studies, however strong and diffuse staining was not observed until today. We think that TTF-1 nuclear expression in high-grade astrocytic tumors cannot rule out primaries even when diffuse and strong staining. Clinical and pathological parameters should be evaluated together.

  18. Traumatic brain injury: endocrine consequences in children and adults.

    Science.gov (United States)

    Richmond, Erick; Rogol, Alan D

    2014-02-01

    Traumatic brain injury (TBI) is a common cause of death and disability in young adults with consequences ranging from physical disabilities to long-term cognitive, behavioral, psychological and social defects. Recent data suggest that pituitary hormone deficiency is not infrequent among TBI survivors; the prevalence of reported hypopituitarism following TBI varies widely among published studies. The most common cause of TBI is motor vehicle accidents, including pedestrian-car and bicycle car encounters, falls, child abuse, violence and sports injuries. Prevalence of hypopituitarism, from total to isolated pituitary deficiency, ranges from 5 to 90 %. The time interval between TBI and pituitary function evaluation is one of the major factors responsible for variations in the prevalence of hypopituitarism reported. Endocrine dysfunction after TBI in children and adolescents is common. Adolescence is a time of growth, freedom and adjustment, consequently TBI is also common in this group. Sports-related TBI is an important public health concern, but many cases are unrecognized and unreported. Sports that are associated with an increased risk of TBI include those involving contact and/or collisions such as boxing, football, soccer, ice hockey, rugby, and the martial arts, as well as high velocity sports such as cycling, motor racing, equestrian sports, skiing and roller skating. The aim of this paper is to summarize the best evidence of TBI as a cause of pituitary deficiency in children and adults. PMID:24030696

  19. Disseminated lesions of the central nervous system in course of pediatric brain tumors

    International Nuclear Information System (INIS)

    Neoplasms of the central nervous system (CNS) are, apart from leukemia, the most frequent malignant disorders in the childhood. Among the brain tumors, those of poorly differentiated cells - give metastatic lesions to the CNS. The aim of the paper was to evaluate the features of CT and MR images detecting dissemination of the primary brain tumors. From 1993 to 2005 in the Department of Radiology of the Polish Mother's Memorial Hospital - Research Institute, the disseminations to CNS were observed in 35 children who were previously operated for primary brain tumors. CT and MR examinations of the brain were performed in all patients (22 males and 13 females; age: 5 mo - 18 y) and MR imaging of the spinal cord was done in 18 children. Multiple metastases to the cerebral structures were detected more often (in 23 patients - 66%) as compared to single lesions. The most frequent disseminations were observed in patients with diagnosis of medulloblastoma - 13 children, PNET - 4 and pineoblastoma - 3 patients. Twelve children had single metastatic tumors (out of the primary neoplasm location): in the course of medulloblastoma - 6, and PNET - 2 patients. Eighteen MR examinations of the spinal canal showed disseminations of the brain tumors in 9 children; concomitant metastatic nodules in the brain were detected in 4 patients. CT and MR imaging of the CNS enables evaluating the dissemination of primary brain tumors in children. Any asymptomatic progression of the primary neoplastic disease may be detected by means of control diagnostic imaging, which reveals the tumor spread. Especially in patients with medulloblastoma and pineoblastoma, the spine MR imaging with gadolinium is mandatory. (author)

  20. Comparison of brain activation to purposefully activate a tool in healthy subjects and brain tumor patients using fMRI

    International Nuclear Information System (INIS)

    The purpose of this study was to determine the functional organization of the human brain involved in tool-manipulation. Blood Oxygen Level Dependent was measured by functional magnetic resonance imaging in seventeen right-handed healthy volunteers and two brain tumor patients during two tool-manipulation tasks: simulated tightening a bolt with a screwdriver (Simulation), and tightening a bolt with a screwdriver (Real). Subjects performed the experiment without watching the tasks. Bilateral pre-supplementary motor areas, bilateral cerebellar posterior lobes, right ventral premotor area, right calcarine sulcus, and cerebellar vermis were activated during Real but not during Simulation tasks in healthy volunteers. In addition, brain tumor patients activated the prefrontal areas. Our results suggest that the human brain mechanisms for tool-manipulation have a neural-network comprised of presupplementary motor area, ventral premotor area, and bilateral cerebellar posterior lobes. In the patients with brain dusfurction diee to tumors, activation at the prefrontal area provided function compensation without motor paralysis. (author)

  1. Treatment Option Overview (Childhood Brain and Spinal Cord Tumors)

    Science.gov (United States)

    ... membranes are surrounded by the vertebrae (back bones). Spinal cord nerves carry messages between the brain and the rest ... of questions and tests to check the brain, spinal cord, and nerve function. The exam checks a person’s mental status, ...

  2. Brain Function Differences in Language Processing in Children and Adults with Autism

    OpenAIRE

    Williams, Diane L.; Vladimir L Cherkassky; Mason, Robert A.; Keller, Timothy A.; Minshew, Nancy J.; Just, Marcel Adam

    2013-01-01

    Comparison of brain function between children and adults with autism provides an understanding of the effects of the disorder and associated maturational differences on language processing. Functional imaging (functional magnetic resonance imaging) was used to examine brain activation and cortical synchronization during the processing of literal and ironic texts in 15 children with autism, 14 children with typical development, 13 adults with autism, and 12 adult controls. Both the children an...

  3. Centralized databases available for describing primary brain tumor incidence, survival, and treatment: Central Brain Tumor Registry of the United States; Surveillance, Epidemiology, and End Results; and National Cancer Data Base.

    OpenAIRE

    Davis, F. G.; McCarthy, B J; Berger, M.S.

    1999-01-01

    Characteristics of three databases--the Central Brain Tumor Registry of the United States (CBTRUS) database; the Surveillance, Epidemiology and End Results (SEER) database; and the National Cancer Data Base (NCDB)--containing information on primary brain tumors are discussed. The recently developed population-based CBTRUS database comprises incidence data on all primary brain tumors from 11 collaborating state registries; however, follow-up data are not available. SEER, the population-based g...

  4. Pathophysiological aspects of malignant brain tumors studied with positron emission tomography

    International Nuclear Information System (INIS)

    To further understand the control of brain tumor fluid balance and pH, the following studies were undertaken. The transport of a water soluble molecule across the brain and tumor capillary endothelium was studied during glucocorticoid and radiation treatment. The brain and brain-tumor acidity (pH) was evaluated as a single measurement in patients receiving a low maintenance dose of glucocorticoid. Transport changes and pH were measured in 61 patients with cerebral tumors using 82Rubidium (82Rb) and 11C-Dimethyloxa-zolidindione (11C-DMO), respectively, and Positron Emission Tomography (PET). Supplementary studies of tumor and contralateral brain blood flow and blood volume using the C15O2/PET and C15O/PET technique, respectively, were included to validate the 82Rb/PET model and obtain further information. A total of 125 PET scans were performed. Supplementary studies were undertaken to estimate delay of blood registration and form distribution of arterial blood isotope activity curves. Blood-to-tumor barrier transport was outlined at baseline and at 6 and 24 hours after the start of glucocorticoid treatment, finding a significant decrease in the transpfort. Radiation treatment (2-6 gray) did not alter the blood-to-tumor barrier transport when restudied within one hour in patients receiving glucocorticoid. The pH in brain tumors was as high as 6.88-7.26, suggesting that tumors are more alkalotic than the normal brain. The permeability surface area product and the permeability coefficient were determined form the 82Rb/PET transport and C15O2/PET flow studies. Baseline permeability values were comparable to the literature values both for 82Rb and potassium. No difference in tissue blood volume was seen between 82Rb/PET and C15O/PET models and was of the same magnitude in the tumor and the contralateral tissue. Aspects of tumor alkalosis, tumor edema production, glucocorticoid edema clearance, and relationship between the anti-edema effect of glucocorticoid and the

  5. Detection of Hypoxia in Human Brain Tumor Xenografts Using a Modified Comet Assay

    Directory of Open Access Journals (Sweden)

    Jingli Wang

    2003-07-01

    Full Text Available We used the standard comet assay successfully to generate in vitro dose-response curves under oxic and hypoxic conditions. We then made mixtures of cells that had been irradiated with 3 and 9 Gy of X-rays to simulate two subpopulations in a tumor, but efforts to accurately detect and quantify the subpopulations using the standard comet assay were unsuccessful. Therefore, we investigated a modified comet assay to determine whether it could be used for measuring hypoxia in our model systems. U251 MG cells were grown as subcutaneous tumors in athymic mice; U251 MG and U87 MG cells were grown as intracerebral (i.c. tumors in athymic rats. Animals were injected with RSU 1069, irradiated, and euthanized. Tumors and normal brains were removed, and the cells were analyzed using a modified comet assay. Differences in comet tail moment distributions between tumor and contralateral normal brain, using tail moments at either the 25th or 50th percentile in each distribution, were taken as measures of the degree of tumor hypoxia. For U251 MG tumors, there was a positive relationship between tumor size and the degree of hypoxia, whereas preliminary data from U87 MG i.c. tumors showed less hypoxia and no apparent relationship between tumor size and hypoxia.

  6. Detection of Hypoxia in Human Brain Tumor Xenografts Using a Modified Comet Assay1

    Science.gov (United States)

    Wang, Jingli; Klem, Jack; Wyrick, Jan B; Ozawa, Tomoko; Cunningham, Erin; Golinveaux, Jay; Allen, Max J; Lamborn, Kathleen R; Deen, Dennis F

    2003-01-01

    Abstract We used the standard comet assay successfully to generate in vitro dose-response curves under oxic and hypoxic conditions. We then made mixtures of cells that had been irradiated with 3 and 9 Gy of X-rays to simulate two subpopulations in a tumor, but efforts to accurately detect and quantify the subpopulations using the standard comet assay were unsuccessful. Therefore, we investigated a modified comet assay to determine whether it could be used for measuring hypoxia in our model systems. U251 MG cells were grown as subcutaneous tumors in athymic mice; U251 MG and U87 MG cells were grown as intracerebral (i.c.) tumors in athymic rats. Animals were injected with RSU 1069, irradiated, and euthanized. Tumors and normal brains were removed, and the cells were analyzed using a modified comet assay. Differences in comet tail moment distributions between tumor and contralateral normal brain, using tail moments at either the 25th or 50th percentile in each distribution, were taken as measures of the degree of tumor hypoxia. For U251 MG tumors, there was a positive relationship between tumor size and the degree of hypoxia, whereas preliminary data from U87 MG i.c. tumors showed less hypoxia and no apparent relationship between tumor size and hypoxia. PMID:14511400

  7. Long-term BPA infusions. Evaluation in the rat brain tumor and rat spinal cord models

    International Nuclear Information System (INIS)

    In the BPA-based dose escalation clinical trial, the observations of tumor recurrence in areas of extremely high calculated tumor doses suggest that the BPA distribution is non-uniform. Longer (6-hour) i.v. infusions of BPA are evaluated in the rat brain tumor and spinal cord models to address the questions of whether long-term infusions are more effective against the tumor and whether long-term infusions are detrimental in the central nervous system. In the rat spinal cord, the 50% effective doses (ED50) for myeloparesis were not significantly different after a single i.p. injection of BPA-fructose or a 6 hour i.v. infusion. In the rat 9L gliosarcoma brain tumor model, BNCT following 2-hr or 6-hr infusions of BPA-F produced similar levels of long term survival. (author)

  8. A Comparison of Two Human Brain Tumor Segmentation Methods for MRI Data

    CERN Document Server

    Egger, Jan; Bauer, Miriam H A; Kuhnt, Daniela; Carl, Barbara; Freisleben, Bernd; Kolb, Andreas; Nimsky, Christopher

    2011-01-01

    The most common primary brain tumors are gliomas, evolving from the cerebral supportive cells. For clinical follow-up, the evaluation of the preoperative tumor volume is essential. Volumetric assessment of tumor volume with manual segmentation of its outlines is a time-consuming process that can be overcome with the help of computerized segmentation methods. In this contribution, two methods for World Health Organization (WHO) grade IV glioma segmentation in the human brain are compared using magnetic resonance imaging (MRI) patient data from the clinical routine. One method uses balloon inflation forces, and relies on detection of high intensity tumor boundaries that are coupled with the use of contrast agent gadolinium. The other method sets up a directed and weighted graph and performs a min-cut for optimal segmentation results. The ground truth of the tumor boundaries - for evaluating the methods on 27 cases - is manually extracted by neurosurgeons with several years of experience in the resection of glio...

  9. Brain tumors in children: long-term survival after radiation treatment

    International Nuclear Information System (INIS)

    Purpose: To determine the cause of death in children who survive more than 5 years after radiation treatment of a brain tumor. Methods and Material: Nine hundred and twelve consecutive children with a primary brain tumor irradiated at the Princess Margaret Hospital or Toronto-Bayview Regional Cancer Center from 1958 to 1991, were evaluated for long-term outcome. Results: Overall 10- and 20-year survival rates were 44% and 37%. Subsequent survival of 377 5-year survivors was, at an additional 10 and 20 years, 78% and 67%. Most (83%) deaths that occurred more than 5 years from diagnosis were a result of relapse of the original tumor. The 10-year survival rate subsequent to relapse was 9% when the first relapse occurred less than one year from diagnosis, 17% for 1-2 years, and 31% when the time to relapse was 3 years or greater. The cumulative actuarial incidence of, and death from, second malignant tumors at 30 years from diagnosis was 18% and 13%, respectively. Conclusions: Death later than 5 years from diagnosis of a brain tumor in children is common and is usually due to progressive disease in slowly evolving low grade tumors. Death from a second malignant tumor becomes more frequent than death from the original tumor after 15 years from diagnosis

  10. Diffusion tensor magnetic resonance imaging of glial brain tumors

    International Nuclear Information System (INIS)

    Aim: To evaluate the author's experience with the use of diffusion tensor magnetic resonance imaging (DTI) on patients with glial tumors. Methods: A retrospective evaluation of a group of 24 patients with glial tumors was performed. There were eight patients with Grade II, eight patients with Grade III and eight patients with Grade IV tumors with a histologically proven diagnosis. All the patients underwent routine imaging including T2 weighted images, multidirectional diffusion weighted imaging (measured in 60 non-collinear directions) and T1 weighted non-enhanced and contrast enhanced images. The imaging sequence and evaluation software were produced by Massachusetts General Hospital Corporation (Boston, MA, USA). Fractional anisotropy (FA) maps were calculated in all patients. The white matter FA changes were assessed within the tumorous tissue, on the tumorous borderline and in the normally appearing white matter adjacent to the tumor. A three-dimensional model of the white matter tract was created to demonstrate the space relationship of the tumor and the capsula interna or corpus callosum in each case using the following fiber tracing parameters: FA step 0.25 and a tensor declination angle of 45 gr. An additional assessment of the tumorous tissue enhancement was performed. Results: A uniform homogenous structure with sharp demargination of the Grade II tumors and the wide rim of the intermedial FA in all Grade III tumors respectively, were found during the evaluation of the FA maps. In Grade IV tumors a variable demargination was noted on the FA maps. The sensitivity and specificity for the discrimination of low- and high-grade glial tumors using FA maps was revealed to be 81% and 87% respectively. If the evaluation of the contrast enhancement was combined with the evaluation of the FA maps, both sensitivity and specificity were 100%. Conclusion: Although the evaluation of the fractional anisotropy maps is not sufficient for glioma grading, the combination of

  11. Diffusion tensor magnetic resonance imaging of glial brain tumors

    Energy Technology Data Exchange (ETDEWEB)

    Ferda, Jiri, E-mail: ferda@fnplzen. [Department of Radiology, Charles University Hospital Plzen, Medical Faculty Plzen, Alej Svobody 80, 304 60 Plzen (Czech Republic); Kastner, Jan [Department of Radiology, Charles University Hospital Plzen, Medical Faculty Plzen, Alej Svobody 80, 304 60 Plzen (Czech Republic); Mukensnabl, Petr [Sikl' s Institute of Pathological Anatomy, Charles University Hospital Plzen, Medical Faculty Plzen, Alej Svobody 80, 304 60 Plzen (Czech Republic); Choc, Milan [Department of Neurosurgery, Charles University Hospital Plzen, Medical Faculty Plzen, Alej Svobody 80, 304 60 Plzen (Czech Republic); Horemuzova, Jana; Ferdova, Eva; Kreuzberg, Boris [Department of Radiology, Charles University Hospital Plzen, Medical Faculty Plzen, Alej Svobody 80, 304 60 Plzen (Czech Republic)

    2010-06-15

    Aim: To evaluate the author's experience with the use of diffusion tensor magnetic resonance imaging (DTI) on patients with glial tumors. Methods: A retrospective evaluation of a group of 24 patients with glial tumors was performed. There were eight patients with Grade II, eight patients with Grade III and eight patients with Grade IV tumors with a histologically proven diagnosis. All the patients underwent routine imaging including T2 weighted images, multidirectional diffusion weighted imaging (measured in 60 non-collinear directions) and T1 weighted non-enhanced and contrast enhanced images. The imaging sequence and evaluation software were produced by Massachusetts General Hospital Corporation (Boston, MA, USA). Fractional anisotropy (FA) maps were calculated in all patients. The white matter FA changes were assessed within the tumorous tissue, on the tumorous borderline and in the normally appearing white matter adjacent to the tumor. A three-dimensional model of the white matter tract was created to demonstrate the space relationship of the tumor and the capsula interna or corpus callosum in each case using the following fiber tracing parameters: FA step 0.25 and a tensor declination angle of 45 gr. An additional assessment of the tumorous tissue enhancement was performed. Results: A uniform homogenous structure with sharp demargination of the Grade II tumors and the wide rim of the intermedial FA in all Grade III tumors respectively, were found during the evaluation of the FA maps. In Grade IV tumors a variable demargination was noted on the FA maps. The sensitivity and specificity for the discrimination of low- and high-grade glial tumors using FA maps was revealed to be 81% and 87% respectively. If the evaluation of the contrast enhancement was combined with the evaluation of the FA maps, both sensitivity and specificity were 100%. Conclusion: Although the evaluation of the fractional anisotropy maps is not sufficient for glioma grading, the

  12. Beauty product-related exposures and childhood brain tumors in seven countries: results from the SEARCH International Brain Tumor Study.

    Science.gov (United States)

    Efird, J T; Holly, E A; Cordier, S; Mueller, B A; Lubin, F; Filippini, G; Peris-Bonet, R; McCredie, M; Arslan, A; Bracci, P; Preston-Martin, S

    2005-04-01

    Data from 1218 cases of childhood brain tumors (CBT) diagnosed between 1976 and 1994 and 2223 matched controls from the general population were included in an analysis of maternal beauty product exposure and beauty-related employment in 9 centers in 7 countries. A 50% increased odds ratio (OR) [95% confidence interval (CI) = 1.0-2.1] for CBT was observed among children of mothers who were exposed via personal use of and/or possible ambient contact with beauty products during the 5 years preceding the index child's birth compared with children of mothers never exposed to beauty products during this time period. Overall maternal personal use of hair-coloring agents in the month before or during the pregnancy of the index child's birth was not associated with CBT (OR = 1.0, CI = 0.83-1.3) or with astroglial (OR = 1.1, CI = 0.85-1.4), PNET (OR = 1.0, CI = 0.71-1.5) and other glial subtypes (OR = 1.0, CI = 0.62-1.0). Similarly, no statistically increased ORs or discernable pattern of risk estimates were observed for period of use or for number of applications per year for maternal personal use of hair-coloring agents overall or by histologic type. Among children born on or after 1980, increased ORs for CBT were associated with maternal non-work-related exposure to any beauty products (OR = 2.6, CI = 1.2-5.9), hair-dyes (OR = 11, CI = 1.2-90), and hair sprays (OR = 3.4, CI = 1.0-11). No overall increased OR for CBT was observed among children of mothers employed in beauty-related jobs during the 5 years preceding the index child's birth compared with those who reported no beauty-related employment. In general, other specific beauty product-related exposures were not associated with increased ORs for CBT. Data from our study provide little evidence of an increased risk for CBT with mothers' exposures to beauty products. PMID:15925993

  13. Factors associated with tumor response and survival in radiosurgery for brain metastasis

    International Nuclear Information System (INIS)

    We reviewed our experience with radiosurgery for brain metastasis and focused on factors associated with tumor response and survival. Our study consists of 19 patients with 25 brain metastases who underwent linear accelerator radiosurgery. There was evidence of extra-central nervous system (CNS) tumors in 15 patients. The maximum diameter of the tumors ranged from 3 to 40 mm with a mean of 20 mm. Tumor doses at the isocenter varied from 16 to 25 Gy with a mean of 21 Gy. Eighteen lesions were treated by radiosurgery alone and 7 lesions received combined radiosurgery with fractionated radiotherapy. Of the 11 patients who experienced CNS failure either in or out of the radiosurgery field, 6 patients had salvage radiotherapy. Median survival was 7 months, and the 1-year actuarial survival rate was 40%. Death was due to extra-CNS tumor manifestations in 11 patients. In 3 patients, CNS failure was the cause of death. One died of local progression, and the other 2 died of newly developed metastases. Poor Karnofsky performance scores and the presence of extra-CNS tumors significantly affected 1-year survival in univariate analysis (p<0.05). Local tumor control was achieved in 80% of the lesions. The 1-year actuarial tumor control rate was 51%. Newly developed brain metastases were observed in 7 patients. The tumor diameter was mostly associated with tumor response in multiple regression analysis (p=0.0031). We concluded that radiosurgery is effective in controlling small brain metastases. Survival benefit is expected for those with good performance status and adequately controlled extra-CNS disease. (author)

  14. Neurogenesis in the embryonic and adult brain: same regulators, different roles.

    Directory of Open Access Journals (Sweden)

    Noelia eUrban

    2014-11-01

    Full Text Available Neurogenesis persists in adult mammals in specific brain areas, known as neurogenic niches. Adult neurogenesis is highly dynamic and is modulated by multiple physiological stimuli and pathological states. There is a strong interest in understanding how this process is regulated, particularly since active neuronal production has been demonstrated in both the hippocampus and the subventricular zone of adult humans.The molecular mechanisms that control neurogenesis have been extensively studied during embryonic development. Therefore, we have a broad knowledge of the intrinsic factors and extracellular signalling pathways driving proliferation and differentiation of embryonic neural precursors. Many of these factors also play important roles during adult neurogenesis, but essential differences exist in the biological responses of neural precursors in the embryonic and adult contexts. Because adult neural stem cells are normally found in a quiescent state, regulatory pathways can affect adult neurogenesis in ways that have no clear counterpart during embryogenesis. BMP signalling, for instance, regulates neural stem cell behaviour both during embryonic and adult neurogenesis. However, this pathway maintains stem cell proliferation in the embryo, while it promotes quiescence to prevent stem cell exhaustion in the adult brain. In this review, we will compare and contrast the functions of transcription factors and other regulatory molecules in the embryonic brain and in adult neurogenic regions of the adult brain in the mouse, with a special focus on the hippocampal niche and on the regulation of the balance between quiescence and activation of adult neural stem cells in this region.

  15. Interobserver variations in gross tumor volume delineation of brain tumors on computed tomography and impact of magnetic resonance imaging

    International Nuclear Information System (INIS)

    Purpose: (1) To assess the interobserver variability of brain tumor delineation on computed tomography (CT). (2) To assess the impact of the addition of magnetic resonance imaging (MRI) information. Methods: Nine physicians were asked to delineate the gross tumor volume (GTV) of five patients with supratentorial inoperable brain tumors on CT scans and 2 weeks (or more) later on MRIs. The delineations were performed on a computer screen. During delineation on MRI, the registered CT images (without delineation) were displayed on the screen (MRI+CT). Results: A high interobserver variability in GTV delineation on CT is found: the ratio of the largest to the smallest defined volumes varies for the five patients by factors of resp. 2.8, 1.8, 1.8, 1.9 and 1.7. The interobserver variability is as large on MRI+CT as on CT alone (ratio largest/smallest volume: 2.4, 1.7, 1.9, 2.7 and 1.5). Volumes delineated on MRI+CT (mean: 69.6 cm3) are larger than on CT alone (mean: 59.5 cm3). Residual volumes (volume delineated on one image modality but not on the other) are >0 for CT alone and for MRI+CT. Conclusions: A large interobserver variability in GTV delineation of brain tumors is demonstrated. The addition of MRI to CT does not reduce interobserver variability. GTVs delineated on MRI+CT are larger than on CT alone, but some volumes are delineated on CT and not on MRI. Therefore, a combination of the two image modalities is recommended for brain tumor delineation for treatment planning

  16. Cerebral function estimation using electro-encephalography for the patients with brain tumor managed by radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Mariya, Yasushi [Hirosaki Univ., Aomori (Japan). School of Medicine; Saito, Fumio; Kimura, Tamaki (and others)

    1999-10-01

    Cerebral function of 12 patients accompanied with brain tumor, managed by radiotherapy, were serially estimated using electroencephalography (EEG), and the results were compared with tumor responses, analyzed by magnetic resonance imaging (MRI), and clinical courses. After radiotherapy, EEG findings were improved in 7 patients, unchanged in 3, and worsened in 1. Clinical courses were generally correlated with serial changes in EEG findings and tumor responses. However, in 3 patients, clinical courses were explained better with EEG findings than tumor responses. It is suggested that the combination of EEG and image analysis is clinically useful for comprehensive estimation of radiotherapeutic effects. (author)

  17. Cerebral function estimation using electro-encephalography for the patients with brain tumor managed by radiotherapy

    International Nuclear Information System (INIS)

    Cerebral function of 12 patients accompanied with brain tumor, managed by radiotherapy, were serially estimated using electroencephalography (EEG), and the results were compared with tumor responses, analyzed by magnetic resonance imaging (MRI), and clinical courses. After radiotherapy, EEG findings were improved in 7 patients, unchanged in 3, and worsened in 1. Clinical courses were generally correlated with serial changes in EEG findings and tumor responses. However, in 3 patients, clinical courses were explained better with EEG findings than tumor responses. It is suggested that the combination of EEG and image analysis is clinically useful for comprehensive estimation of radiotherapeutic effects. (author)

  18. Treatment Options for Childhood Central Nervous System Embryonal Tumors and Childhood Pineoblastoma

    Science.gov (United States)

    ... children. See the PDQ summary on Adult Central Nervous System Tumors Treatment for more information on the treatment of adults. There are different types of CNS embryonal tumors. Enlarge Anatomy of the inside of the brain, showing the ...

  19. Problems of radiotherapy on the brain tumors in children less than two years of age

    International Nuclear Information System (INIS)

    Impaired growth and mental or developmental disturbance due to radiotherapy for 10 cases of brain tumors in the children ages less than 2 years old were evaluated. Six cases of brain tumor which did not involve the hypothalamic-pituitary axis, were followed more than 2 years after cranial or craniospinal irradiation. Four cases irradiated greater than 2900 rad to the whole brain all revealed markedly lower body heights than -2 SD of the medium. Growth impairment was found to be progressive over time, and markedly evident after 2 years following cranial or craniospinal radiotherapy. Somatomedin C in the blood was measured in 8 cases of brain tumors in childhood receiving radiotherapy. The measurement of Somatomedin C showed markedly low values measuring 0.19 to 0.54 U/ml (medium; 0.36 U/ml) in children having lower body height than -2 SD. Mental retardation or developmental disturbances were found in IQ or DQ tests in all of 5 infants or children younger than 2 years with brain tumors who got radiotherapy over 2900 rad to the whole brain. A case of craniopharyngioma, which had 5400 rad for tumor localization at the hypothalamus-pituitary axis and showed markedly low height, was given growth hormone and grew to normal height without distinct side effects. It was suggested that radiotherapy for brain tumors in infants or children should have special care in deciding the dose, field and time of radiation. If low height due to radiotherapy results, growth hormone therapy should be used for its treatment in childhood. (author)

  20. Application of 3{sup 1P} MR spectroscopy to the brain tumors

    Energy Technology Data Exchange (ETDEWEB)

    Ha, Dong Ho; Choi, Sun Seob; Oh, Jong Young; Yoon, Seong Kuk; Kang, Myong Jin; Kim, Ki Uk [College of Medicine, Dong-A University, Busan (Korea, Republic of)

    2013-06-15

    To evaluate the clinical feasibility and obtain useful parameters of 3{sup 1P} magnetic resonance spectroscopy (MRS) study for making the differential diagnosis of brain tumors. Twenty-eight patients with brain tumorous lesions (22 cases of brain tumor and 6 cases of abscess) and 11 normal volunteers were included. The patients were classified into the astrocytoma group, lymphoma group, metastasis group and the abscess group. We obtained the intracellular pH and the metabolite ratios of phosphomonoesters/phosophodiesters (PME/PDE), PME/inorganic phosphate (Pi), PDE/Pi, PME/adenosine triphosphate (ATP), PDE/ATP, PME/phosphocreatine (PCr), PDE/PCr, PCr/ATP, PCr/Pi, and ATP/Pi, and evaluated the statistical significances. The brain tumors had a tendency of alkalization (pH = 7.28 ± 0.27, p = 0.090), especially the pH of the lymphoma was significantly increased (pH = 7.45 ± 0.32, p = 0.013). The brain tumor group showed increased PME/PDE ratio compared with that in the normal control group (p 0.012). The ratios of PME/PDE, PDE/Pi, PME/PCr and PDE/PCr showed statistically significant differences between each brain lesion groups (p < 0.05). The astrocytoma showed an increased PME/PDE and PME/PCr ratio. The ratios of PDE/Pi, PME/PCr, and PDE/PCr in lymphoma group were lower than those in the control group and astrocytoma group. The metastasis group showed an increased PME/PDE ratio, compared with that in the normal control group. We have obtained the clinically applicable 3{sup 1}'P MRS, and the pH, PME/PDE, PDE/Pi, PME/PCr, and PDE/PCr ratios are helpful for differentiating among the different types of brain tumors.