WorldWideScience

Sample records for adult brain tumor

  1. Brain tumor - primary - adults

    Science.gov (United States)

    ... Vestibular schwannoma (acoustic neuroma) - adults; Meningioma - adults; Cancer - brain tumor (adults) ... Primary brain tumors include any tumor that starts in the brain. Primary brain tumors can start from brain cells, ...

  2. Life satisfaction in adult survivors of childhood brain tumors.

    Science.gov (United States)

    Crom, Deborah B; Li, Zhenghong; Brinkman, Tara M; Hudson, Melissa M; Armstrong, Gregory T; Neglia, Joseph; Ness, Kirsten K

    2014-01-01

    Adult survivors of childhood brain tumors experience multiple, significant, lifelong deficits as a consequence of their malignancy and therapy. Current survivorship literature documents the substantial impact such impairments have on survivors' physical health and quality of life. Psychosocial reports detail educational, cognitive, and emotional limitations characterizing survivors as especially fragile, often incompetent, and unreliable in evaluating their circumstances. Anecdotal data suggest some survivors report life experiences similar to those of healthy controls. The aim of our investigation was to determine whether life satisfaction in adult survivors of childhood brain tumors differs from that of healthy controls and to identify potential predictors of life satisfaction in survivors. This cross-sectional study compared 78 brain tumor survivors with population-based matched controls. Chi-square tests, t tests, and linear regression models were used to investigate patterns of life satisfaction and identify potential correlates. Results indicated that life satisfaction of adult survivors of childhood brain tumors was similar to that of healthy controls. Survivors' general health expectations emerged as the primary correlate of life satisfaction. Understanding life satisfaction as an important variable will optimize the design of strategies to enhance participation in follow-up care, reduce suffering, and optimize quality of life in this vulnerable population.

  3. Brain Tumors

    Science.gov (United States)

    A brain tumor is a growth of abnormal cells in the tissues of the brain. Brain tumors can be benign, with no cancer cells, ... cancer cells that grow quickly. Some are primary brain tumors, which start in the brain. Others are ...

  4. Epidemiology of Brain Tumors.

    Science.gov (United States)

    McNeill, Katharine A

    2016-11-01

    Brain tumors are the commonest solid tumor in children, leading to significant cancer-related mortality. Several hereditary syndromes associated with brain tumors are nonfamilial. Ionizing radiation is a well-recognized risk factor for brain tumors. Several industrial exposures have been evaluated for a causal association with brain tumor formation but the results are inconclusive. A casual association between the common mutagens of tobacco, alcohol, or dietary factors has not yet been established. There is no clear evidence that the incidence of brain tumors has changed over time. This article presents the descriptive epidemiology of the commonest brain tumors of children and adults.

  5. Adult Pilomyxoid Astrocytoma Mimicking a Cortical Brain Tumor: MR Imaging Findings

    Energy Technology Data Exchange (ETDEWEB)

    Jang, Jong Chang; Weon, Young Cheol; Suh, Jae Hee; Kim, Young; Hwang, Jae Cheol [Ulsan University Hospital, Ulsan (Korea, Republic of)

    2010-08-15

    A pilomyxoid astrocytoma (PMA) is a recently identified low-grade neoplasm that was previously classified as a pilocytic astrocytoma (PA), yet demonstrates unique histological features and more aggressive behavior. Although a PMA is generally a tumor of early childhood and typically occurs in the hypothalamic/chiasmatic region, it can mimic cortical tumors, especially in adults. We report the MR findings of a PMA presenting as a cortical brain tumor in an adult with neurofibromatosis 1 (NF1)

  6. Adding chemo after radiation treatment improves survival for adults with a type of brain tumor

    Science.gov (United States)

    Adults with low-grade gliomas, a form of brain tumor, who received chemotherapy following completion of radiation therapy lived longer than patients who received radiation therapy alone, according to long-term follow-up results from a NIH-supported random

  7. The long-term side effects of radiation therapy for benign brain tumors in adults

    Energy Technology Data Exchange (ETDEWEB)

    al-Mefty, O.; Kersh, J.E.; Routh, A.; Smith, R.R. (Univ. of Mississippi Medical Center, Jackson (USA))

    1990-10-01

    Radiation therapy plays an integral part in managing intracranial tumors. While the risk:benefit ratio is considered acceptable for treating malignant tumors, risks of long-term complications of radiotherapy need thorough assessment in adults treated for benign tumors. Many previously reported delayed complications of radiotherapy can be attributed to inappropriate treatment or to the sensitivity of a developing child's brain to radiation. Medical records, radiological studies, autopsy findings, and follow-up information were reviewed for 58 adult patients (31 men and 27 women) treated between 1958 and 1987 with radiotherapy for benign intracranial tumors. Patient ages at the time of irradiation ranged from 21 to 87 years (mean 47.7 years). The pathology included 46 pituitary adenomas, five meningiomas, four glomus jugulare tumors, two pineal area tumors, and one craniopharyngioma. Average radiation dosage was 4984 cGy (range 3100 to 7012 cGy), given in an average of 27.2 fractions (range 15 to 45 fractions), over a period averaging 46.6 days. The follow-up period ranged from 3 to 31 years (mean 8.1 years). Findings related to tumor recurrence or surgery were excluded. Twenty-two patients had complications considered to be delayed side effects of radiotherapy. Two patients had visual deterioration developing 3 and 6 years after treatment; six had pituitary dysfunction; and 17 had varying degrees of parenchymal changes of the brain, occurring mostly in the temporal lobes and relating to the frequent presentation of pituitary tumors. One clival tumor with the radiographic appearance of a meningioma, developed 30 years post-irradiation for acromegaly. This study unveils considerable delayed sequelae of radiotherapy in a series of adult patients receiving what is considered safe treatment for benign brain tumors. 163 refs.

  8. The long-term side effects of radiation therapy for benign brain tumors in adults.

    Science.gov (United States)

    al-Mefty, O; Kersh, J E; Routh, A; Smith, R R

    1990-10-01

    Radiation therapy plays an integral part in managing intracranial tumors. While the risk:benefit ratio is considered acceptable for treating malignant tumors, risks of long-term complications of radiotherapy need thorough assessment in adults treated for benign tumors. Many previously reported delayed complications of radiotherapy can be attributed to inappropriate treatment or to the sensitivity of a developing child's brain to radiation. Medical records, radiological studies, autopsy findings, and follow-up information were reviewed for 58 adult patients (31 men and 27 women) treated between 1958 and 1987 with radiotherapy for benign intracranial tumors. Patient ages at the time of irradiation ranged from 21 to 87 years (mean 47.7 years). The pathology included 46 pituitary adenomas, five meningiomas, four glomus jugulare tumors, two pineal area tumors, and one craniopharyngioma. Average radiation dosage was 4984 cGy (range 3100 to 7012 cGy), given in an average of 27.2 fractions (range 15 to 45 fractions), over a period averaging 46.6 days. The follow-up period ranged from 3 to 31 years (mean 8.1 years). Findings related to tumor recurrence or surgery were excluded. Twenty-two patients had complications considered to be delayed side effects of radiotherapy. Two patients had visual deterioration developing 3 and 6 years after treatment; six had pituitary dysfunction; and 17 had varying degrees of parenchymal changes of the brain, occurring mostly in the temporal lobes and relating to the frequent presentation of pituitary tumors (two of these also had pituitary dysfunction). One clival tumor with the radiographic appearance of a meningioma, developed 30 years post-irradiation for acromegaly. This study unveils considerable delayed sequelae of radiotherapy in a series of adult patients receiving what is considered "safe" treatment for benign brain tumors.

  9. Brain tumor - children

    Science.gov (United States)

    ... children; Neuroglioma - children; Oligodendroglioma - children; Meningioma - children; Cancer - brain tumor (children) ... The cause of primary brain tumors is unknown. Primary brain tumors may ... (spread to nearby areas) Cancerous (malignant) Brain tumors ...

  10. Understanding Brain Tumors

    Science.gov (United States)

    ... to Know About Brain Tumors . What is a Brain Tumor? A brain tumor is an abnormal growth
 ... Tumors” from Frankly Speaking Frankly Speaking About Cancer: Brain Tumors Download the full book Questions to ask ...

  11. Yoga Therapy in Treating Patients With Malignant Brain Tumors

    Science.gov (United States)

    2017-01-17

    Adult Anaplastic Astrocytoma; Adult Anaplastic Ependymoma; Adult Anaplastic Meningioma; Adult Anaplastic Oligodendroglioma; Adult Brain Stem Glioma; Adult Choroid Plexus Tumor; Adult Diffuse Astrocytoma; Adult Ependymoblastoma; Adult Ependymoma; Adult Giant Cell Glioblastoma; Adult Glioblastoma; Adult Gliosarcoma; Adult Grade II Meningioma; Adult Medulloblastoma; Adult Meningeal Hemangiopericytoma; Adult Mixed Glioma; Adult Oligodendroglioma; Adult Papillary Meningioma; Adult Pineal Gland Astrocytoma; Adult Pineoblastoma; Adult Pineocytoma; Adult Supratentorial Primitive Neuroectodermal Tumor (PNET); Recurrent Adult Brain Tumor

  12. Efficacy of 68Ga-DOTATOC Positron Emission Tomography (PET) CT in Children and Young Adults With Brain Tumors

    Science.gov (United States)

    2016-09-07

    Acoustic Schwannoma; Adult Anaplastic Astrocytoma; Adult Anaplastic Ependymoma; Adult Anaplastic Meningioma; Adult Anaplastic Oligodendroglioma; Adult Brain Stem Glioma; Adult Choroid Plexus Tumor; Adult Craniopharyngioma; Adult Diffuse Astrocytoma; Adult Ependymoblastoma; Adult Ependymoma; Adult Giant Cell Glioblastoma; Adult Glioblastoma; Adult Gliosarcoma; Adult Grade I Meningioma; Adult Grade II Meningioma; Adult Medulloblastoma; Adult Meningeal Hemangiopericytoma; Adult Mixed Glioma; Adult Myxopapillary Ependymoma; Adult Oligodendroglioma; Adult Papillary Meningioma; Adult Pilocytic Astrocytoma; Adult Pineal Gland Astrocytoma; Adult Pineoblastoma; Adult Pineocytoma; Adult Subependymal Giant Cell Astrocytoma; Adult Subependymoma; Adult Supratentorial Primitive Neuroectodermal Tumor (PNET); Childhood Choroid Plexus Tumor; Childhood Craniopharyngioma; Childhood Ependymoblastoma; Childhood Grade I Meningioma; Childhood Grade II Meningioma; Childhood Grade III Meningioma; Childhood High-grade Cerebellar Astrocytoma; Childhood High-grade Cerebral Astrocytoma; Childhood Infratentorial Ependymoma; Childhood Low-grade Cerebellar Astrocytoma; Childhood Low-grade Cerebral Astrocytoma; Childhood Medulloepithelioma; Childhood Supratentorial Ependymoma; Meningeal Melanocytoma; Newly Diagnosed Childhood Ependymoma; Recurrent Adult Brain Tumor; Recurrent Childhood Anaplastic Astrocytoma; Recurrent Childhood Anaplastic Oligoastrocytoma; Recurrent Childhood Anaplastic Oligodendroglioma; Recurrent Childhood Brain Stem Glioma; Recurrent Childhood Cerebellar Astrocytoma; Recurrent Childhood Cerebral Astrocytoma; Recurrent Childhood Diffuse Astrocytoma; Recurrent Childhood Ependymoma; Recurrent Childhood Fibrillary Astrocytoma; Recurrent Childhood Gemistocytic Astrocytoma; Recurrent Childhood Giant Cell Glioblastoma; Recurrent Childhood Glioblastoma; Recurrent Childhood Gliomatosis Cerebri; Recurrent Childhood Gliosarcoma; Recurrent Childhood Medulloblastoma; Recurrent Childhood

  13. Brain Tumors (For Parents)

    Science.gov (United States)

    ... Old Feeding Your 1- to 2-Year-Old Brain Tumors KidsHealth > For Parents > Brain Tumors Print A ... radiation therapy or chemotherapy, or both. Types of Brain Tumors There are many different types of brain ...

  14. Notch Signaling and Brain Tumors

    DEFF Research Database (Denmark)

    Stockhausen, Marie; Kristoffersen, Karina; Poulsen, Hans Skovgaard

    2011-01-01

    Human brain tumors are a heterogenous group of neoplasms occurring inside the cranium and the central spinal cord. In adults and children, astrocytic glioma and medulloblastoma are the most common subtypes of primary brain tumors. These tumor types are thought to arise from cells in which Notch...

  15. Stereotactic Radiosurgery in Treating Patients With Brain Tumors

    Science.gov (United States)

    2012-03-21

    Adult Central Nervous System Germ Cell Tumor; Adult Malignant Meningioma; Adult Medulloblastoma; Adult Noninfiltrating Astrocytoma; Adult Oligodendroglioma; Adult Craniopharyngioma; Adult Meningioma; Brain Metastases; Adult Ependymoma; Adult Pineal Parenchymal Tumor; Adult Brain Stem Glioma; Adult Infiltrating Astrocytoma; Mixed Gliomas; Stage IV Peripheral Primitive Neuroectodermal Tumor

  16. Epidemiological features of brain tumors

    Directory of Open Access Journals (Sweden)

    Živković Nenad

    2013-01-01

    Full Text Available Brain tumors account for 1.4% of all cancers and 2.4% of all cancer-related deaths. The incidence of brain tumors varies and it is higher in developed countries of Western Europe, North America, Australia and New Zealand. In Serbia, according to data from 2009, malignant brain tumors account for 2. 2 of all tumors, and from all cancer­related deaths, 3.2% is caused by malignant brain tumors. According to recent statistical reports, an overall incidence of brain tumors for benign and malignant tumors combined is 18.71 per 100,000 persons/year. The most common benign brain tumor in adults is meningioma, which is most present in women, and the most common malignant tumor is glioblastoma, which is most present in adult men. Due to high mortality, especially in patients diagnosed with glioblastoma and significant brain tumor morbidity, there is a constant interest in understanding its etiology in order to possibly prevent tumor occurrence in future and enable more efficient treatment strategies for this fatal brain disease. Despite the continuously growing number of epidemiological studies on possible factors of tumor incidence, the etiology remains unclear. The only established environmental risk factor of gliomas is ionizing radiation exposure. Exposure to radiofrequency electromagnetic fields via cell phone use has gained a lot of attention as a potential risk factor of brain tumor development. However, studies have been inconsistent and inconclusive, so more definite results are still expected.

  17. Childhood Brain Tumors

    Science.gov (United States)

    Brain tumors are abnormal growths inside the skull. They are among the most common types of childhood ... still be serious. Malignant tumors are cancerous. Childhood brain and spinal cord tumors can cause headaches and ...

  18. Metastatic Brain Tumors

    Directory of Open Access Journals (Sweden)

    Ersin Haciyakupoglu

    2014-04-01

    Full Text Available Metastatic tumor is secondary spread to the central nervous system of primer systemic cancers originating from tissues other than the central nervous system. In adults; there are metastases respectively from lungs, breasts, malign melanoma, renal cell carcinoma, colon and thyroid cancers. 30-60% of lung cancers metastasis to the brain. In children there are quite a few cerebral metastases. Most commonly leukemia, lymphoma, osteogenic sarcoma, rhabdomyosarcoma and germ cell tumors metastasis to the brain. %50 of malign melanoma, lung, breast and colon cancers intend to make multipl metastases but renal cell cancers intend to make solitary metastasis.While lung cancers metastasis to brain in 6-9 months after the definitive diagnosis, renal cancers in 1 year, colon cancers in 2 years, breast cancers and malign melanoma in 3 years metastasis to brain. In 6% of cases there are cerebral metastasis while there isn’t a symptom of a primary tumor. For treatment corticosteroids, surgery, Radiotherapy(RT, Chemotherapy(CT and Stereotactic Radiosurgery(SRS can be implemented. Small cell lung cancers, lymphoma, germ cell tumors are sensitive to RT and CT. Non small cell lung cancers, renal, colon cancers and malign melanoma are radioresistant. The purposes in the surgery of the metastatic brain tumors are; total resection of tumors without neurologic deficits, decreasing the intracranial pressure and decreasing the dose of postoperative radiotherapy. Key Words: Metastatic brain tumors, Stereotactic radiosurgery, Malign melanoma, Lung cancers, Renal cell carcinoma, Radiotherapy, Chemotherapy [Cukurova Med J 2014; 39(2.000: 191-202

  19. Pediatric brain tumors

    Energy Technology Data Exchange (ETDEWEB)

    Poussaint, Tina Y. [Department of Radiology, Boston, MA (United States); Panigrahy, Ashok [Children' s Hospital of Pittsburgh of University of Pittsburgh Medical Center, Department of Radiology, Pittsburgh, PA (United States); Huisman, Thierry A.G.M. [Charlotte R. Bloomberg Children' s Center, Johns Hopkins Hospital, Division of Pediatric Radiology and Pediatric Neuroradiology, Baltimore, MD (United States)

    2015-09-15

    Among all causes of death in children from solid tumors, pediatric brain tumors are the most common. This article includes an overview of a subset of infratentorial and supratentorial tumors with a focus on tumor imaging features and molecular advances and treatments of these tumors. Key to understanding the imaging features of brain tumors is a firm grasp of other disease processes that can mimic tumor on imaging. We also review imaging features of a common subset of tumor mimics. (orig.)

  20. Pediatric Brain Tumor Foundation

    Science.gov (United States)

    ... you insights into your child's treatment. LEARN MORE Brain tumors and their treatment can be deadly so ... Cancer Foundation joins the PBTF Read more >> Pediatric Brain Tumor Foundation 302 Ridgefield Court, Asheville, NC 28806 ...

  1. Brain Tumor Surgery

    Science.gov (United States)

    ... Meningitis Brain swelling Stroke Excess fluid in the brain Coma Death Recovery Time Recovery time depends on: The procedure performed. The part of the brain where the tumor is/was located. The areas ...

  2. Epilepsy and Brain Tumors

    Institute of Scientific and Technical Information of China (English)

    Zhi-yi Sha

    2009-01-01

    @@ Epidemiology It is estimated 61,414 new cases of primary brain tumors are expected to be diagnosed in 2009 in the U.S. The incidence statistic of 61,414 persons diagnosed per year includes both malignant (22,738) and non-malignant (38,677) brain tumors. (Data from American Brain Tumor Association). During the years 2004-2005, approximately 359,000 people in the United States were living with the diagnosis of a primary brain or central nervous system tumor. Specifically, more than 81,000 persons were living with a malignant tumor, more than 267,000 persons with a benign tumor. For every 100,000 people in the United States, approximately 131 are living following the diagnosis of a brain tumor. This represents a prevalence rate of 130.8 per 100,000 person years[1].

  3. Brain tumor survivors speak out.

    Science.gov (United States)

    Carlson-Green, Bonnie

    2009-01-01

    Although progress has been made in the treatment of childhood brain tumors,work remains to understand the complexities of disease, treatment, and contextual factors that underlie individual differences in outcome. A combination of both an idiographic approach (incorporating observations made by adult survivors of childhood brain tumors) and a nomothetic approach (reviewing the literature for brain tumor survivors as well as childhood cancer survivors) is presented. Six areas of concern are reviewed from both an idiographic and nomothetic perspective, including social/emotional adjustment, insurance, neurocognitive late effects, sexuality and relationships, employment, and where survivors accessed information about their disease and treatment and possible late effects. Guidelines to assist health care professionals working with childhood brain tumor survivors are offered with the goal of improving psychosocial and neurocognitive outcomes in this population.

  4. Brain Tumors and Fatigue

    Science.gov (United States)

    ... can help calm the mind. Meditation, guided imagery, music therapy, and yoga are just a few worth investigating. Home Donor and Privacy Policies Find Resources Disclaimer Donate Subscribe Login American Brain Tumor Association 8550 W. Bryn Mawr Ave. Ste ...

  5. Polymorphisms in apoptosis and cell cycle control genes and risk of brain tumors in adults.

    Science.gov (United States)

    Rajaraman, Preetha; Wang, Sophia S; Rothman, Nathaniel; Brown, Merideth M; Black, Peter M; Fine, Howard A; Loeffler, Jay S; Selker, Robert G; Shapiro, William R; Chanock, Stephen J; Inskip, Peter D

    2007-08-01

    Despite the potential importance of the cell cycle and apoptosis pathways in brain tumor etiology, little has been published regarding brain tumor risk associated with common gene variants in these pathways. Using data from a hospital-based case-control study conducted by the National Cancer Institute between 1994 and 1998, we evaluated risk of glioma (n = 388), meningioma (n = 162), and acoustic neuroma (n = 73) with respect to 12 single nucleotide polymorphisms from 10 genes involved in apoptosis and cell cycle control: CASP8, CCND1, CCNH, CDKN1A, CDKN2A, CHEK1, CHEK2, MDM2, PTEN, and TP53. We observed significantly decreased risk of meningioma with the CASP8 Ex14-271A>T variant [odds ratio (OR)(AT), 0.8; 95% confidence interval (95% CI), 0.5-1.2; OR(AA), 0.5; 95% CI, 0.3-0.9; P(trend) = 0.03] and increased risk of meningioma with the CASP8 Ex13+51G>C variant (OR(GC), 1.4; 95% CI, 0.9-2.1; OR(CC), 3.6; 95% CI, 1.0-13.1; P(trend) = 0.04). The CT haplotype of the two CASP8 polymorphisms was associated with significantly increased risk of meningioma (OR, 1.7; 95% CI, 1.1-2.6), but was not associated with risk of glioma or acoustic neuroma. The CCND1 Ex4-1G>A variant was associated with increased risk for glioma, and the Ex8+49T>C variant of CCNH was associated with increased risk of glioma and acoustic neuroma. The MDM2 Ex12+162A>G variant was associated with significantly reduced risk of glioma. Our results suggest that common variants in the CASP8, CCND1, CCNH, and MDM2 genes may influence brain tumor risk. Future research in this area should include more detailed coverage of genes in the apoptosis/cell cycle control pathways.

  6. Screening for psychological distress in adult primary brain tumor patients and caregivers: considerations for cancer care coordination

    Directory of Open Access Journals (Sweden)

    Wafa eTrad

    2015-09-01

    Full Text Available IntroductionThis study aimed to assess psychological distress (PD as scored by the Distress Thermometer (DT in adult primary brain tumor (PBT patients and caregivers in a clinic setting, and ascertain if any high risk sub-groups for PD exist. Material and MethodsFrom May 2012 to August 2013, n=96 patients and n=32 caregivers (CG underwent DT screening at diagnosis, and a differing cohort of n=12 patients and n=14 caregivers at first recurrence. Groups were described by diagnosis (high grade, low grade and benign, and English versus non-English speaking. Those with DT score≥4 met caseness criteria for referral to psycho-oncology services. One-way ANOVA tests were conducted to test for between group differences where appropriate.ResultsAt diagnosis and first recurrence, 37.5% and 75.0% (respectively of patients had DT scores above the cut-off for distress. At diagnosis, 78.1% of caregivers met caseness criteria for distress. All caregivers at recurrence met distress criterion. Patients with high grade glioma had significantly higher scores than those with a benign tumor. For patients at diagnosis, non-English speaking participants did not report significantly higher DT scores than English speaking participants.DiscussionPsychological distress is particularly elevated in caregivers, and in patients with high grade glioma at diagnosis. Effective PD screening, triage and referral by skilled care coordinators is vital to enable timely needs assessment, psychological support and effective intervention.

  7. Brain tumors in children; Hirntumoren beim Kind

    Energy Technology Data Exchange (ETDEWEB)

    Harting, I.; Seitz, A. [Universitaetsklinikum Heidelberg (Germany). Abt. Neuroradiologie

    2009-06-15

    Brain tumors are common in children; in Germany approximately 400 children are diagnosed every year. In the posterior fossa, cerebellar neoplasms outnumber brainstem gliomas. In contrast to their rarity in adults, brainstem gliomas are not uncommon in children. Supratentorial tumors can be subdivided by location into neoplasms of the cerebral hemispheres, suprasellar and pineal tumors. Astrocytoma is the most common pediatric brain tumor followed by medulloblastoma, ependymoma and craniopharyngeoma. The combination of imaging morphology, tumor localisation and patient age at manifestation form the basis of the neuroradiological differential diagnosis. (orig.)

  8. Brain tumors in infants

    Directory of Open Access Journals (Sweden)

    Seyyed Mohammad Ghodsi

    2015-01-01

    Full Text Available Background: Brain tumors in infants have different clinical presentations, anatomical distribution, histopathological diagnosis, and clinical prognosis compared with older children. Materials and Methods: A retrospective analysis was done in patients <12 months old who were operated on for primary brain tumor in Children's Hospital Medical Center since 2008 to 2014. Results: Thirty-one infants, 20 males and 11 females, with the mean age of 7.13 months (0.5–12 were enrolled. There were 16 supratentorial and 15 infratentorial tumors. The presenting symptoms included increased head circumference (16; bulge fontanel (15; vomiting (15; developmental regression (11; sunset eye (7; seizure (4; loss of consciousness (4; irritability (3; nystagmus (2; visual loss (2; hemiparesis (2; torticollis (2; VI palsy (3; VII, IX, X nerve palsy (each 2; and ptosis (1. Gross total and subtotal resection were performed in 19 and 11 cases, respectively. Fourteen patients needed external ventricular drainage in the perioperative period, from whom four infants required a ventriculoperitoneal shunt. One patient underwent ventriculoperitoneal shunting without tumor resection. The most common histological diagnoses were primitive neuroectodermal tumor (7, followed by anaplastic ependymoma (6 and grade II ependymoma. The rate of 30-day mortality was 19.3%. Eighteen patients are now well-controlled with or without adjuvant therapy (overall survival; 58%, from whom 13 cases are tumor free (disease free survival; 41.9%, 3 cases have residual masses with fixed or decreased size (progression-free survival; 9.6%, and 2 cases are still on chemotherapy. Conclusion: Brain tumors in infants should be treated with surgical resection, followed by chemotherapy when necessary.

  9. Acceptance and commitment therapy program for distressed adults with a primary brain tumor: a case series study.

    Science.gov (United States)

    Kangas, Maria; McDonald, Skye; Williams, Janet R; Smee, Robert I

    2015-10-01

    Research has indicated that adults diagnosed with a primary brain tumor (BT) are susceptible to experiencing anxiety and depressive problems post-diagnosis. However, there is a notable paucity of psychological interventions which have been tested with adult BT patients. An acceptance and commitment therapy (ACT)-based manualized program was developed for anxious and/or depressed BT patients. The preliminary efficacy of this program was initially tested using a proof-of-concept study design based on a case series of four clinically distressed BT patients. Three of the four participants no longer met criteria for anxiety and/or depressive disorders at post-therapy, and these effects were maintained at 3 months of follow-up. The fourth participant, who had a premorbid psychiatric history, experienced a stabilization of anxiety and depressive symptoms. Given the current dearth of studies which have tested psychological interventions for distressed BT survivors, these preliminary findings have promising clinical utility. However, the efficacy of psychological interventions tailored for clinically distressed BT patients needs to be further tested using larger-scale controlled trial designs.

  10. Tumor Microenvironment in the Brain

    Energy Technology Data Exchange (ETDEWEB)

    Lorger, Mihaela [Leeds Institute of Molecular Medicine, University of Leeds, St. James’s University Hospital, Beckett Street, Leeds, LS9 7TF (United Kingdom)

    2012-02-22

    In addition to malignant cancer cells, tumors contain a variety of different stromal cells that constitute the tumor microenvironment. Some of these cell types provide crucial support for tumor growth, while others have been suggested to actually inhibit tumor progression. The composition of tumor microenvironment varies depending on the tumor site. The brain in particular consists of numerous specialized cell types such as microglia, astrocytes, and brain endothelial cells. In addition to these brain-resident cells, primary and metastatic brain tumors have also been shown to be infiltrated by different populations of bone marrow-derived cells. The role of different cell types that constitute tumor microenvironment in the progression of brain malignancies is only poorly understood. Tumor microenvironment has been shown to be a promising therapeutic target and diagnostic marker in extracranial malignancies. A better understanding of tumor microenvironment in the brain would therefore be expected to contribute to the development of improved therapies for brain tumors that are urgently required due to a poor availability of treatments for these malignancies. This review summarizes some of the known interactions between brain tumors and different stromal cells, and also discusses potential therapeutic approaches within this context.

  11. Tumor Types: Understanding Brain Tumors

    Science.gov (United States)

    ... Classification of Tumors of the Central Nervous System Purchase WHO Blue Book NBTS Official Statement Questions and ... Privacy Copyright Site Search Search term Submit Submit Facebook Twitter YouTube Flickr

  12. NANOROBOTS IN BRAIN TUMOR

    Directory of Open Access Journals (Sweden)

    Sayyed Tarannum, Garje Dattatray H

    2011-02-01

    Full Text Available Nanomedicine is the process of diagnosing, treating, and preventing disease and traumatic injury, of relieving pain, and of preserving and improving human health, using molecular tools and molecular knowledge of the human body. In the relatively near term, nanomedicine can address many important medical problems by using nanoscale-structured materials and simple nanodevices that can be manufactured today, including the interaction of nanostructured materials with biological systems. The authors predict that technology-assisted medicine and robotics in particular, will have a significant impact over the next few decades. Robots will augment the surgeon’s motor performance, diagnosis capability, and senses with haptics (feel, augmented reality (sight, and ultrasound (sound. Robotic devices have been used in cardiac surgery, urology, fetal surgery, pediatrics, neurosurgery, orthopedics, and many other medical disciplines. In this article, we present the Nanorobot drug delivery to brain tumor, paying special attention to the transformation trends of organizations, and the integration of robots in brain tumor and underscoring potential repercussions which may deserve more attention and further research.

  13. Brain Tumor Epidemiology Consortium (BTEC)

    Science.gov (United States)

    The Brain Tumor Epidemiology Consortium is an open scientific forum organized to foster the development of multi-center, international and inter-disciplinary collaborations that will lead to a better understanding of the etiology, outcomes, and prevention of brain tumors.

  14. Childhood brain tumor epidemiology: a brain tumor epidemiology consortium review.

    Science.gov (United States)

    Johnson, Kimberly J; Cullen, Jennifer; Barnholtz-Sloan, Jill S; Ostrom, Quinn T; Langer, Chelsea E; Turner, Michelle C; McKean-Cowdin, Roberta; Fisher, James L; Lupo, Philip J; Partap, Sonia; Schwartzbaum, Judith A; Scheurer, Michael E

    2014-12-01

    Childhood brain tumors are the most common pediatric solid tumor and include several histologic subtypes. Although progress has been made in improving survival rates for some subtypes, understanding of risk factors for childhood brain tumors remains limited to a few genetic syndromes and ionizing radiation to the head and neck. In this report, we review descriptive and analytical epidemiology childhood brain tumor studies from the past decade and highlight priority areas for future epidemiology investigations and methodological work that is needed to advance our understanding of childhood brain tumor causes. Specifically, we summarize the results of a review of studies published since 2004 that have analyzed incidence and survival in different international regions and that have examined potential genetic, immune system, developmental and birth characteristics, and environmental risk factors. Cancer Epidemiol Biomarkers Prev; 23(12); 2716-36. ©2014 AACR.

  15. Study Design for a Case Control Investigation of Cellular Telephones and Other Risk Factors for Brain Tumors in Adults

    Energy Technology Data Exchange (ETDEWEB)

    Inskip, P.D.; Hatch, E.E.; Stewart, P.A.; Heineman, E.F.; Ziegler, R.G.; Dosemeci, M.; Parry, D.; Rothman, N.; Boice, J.D. Jr.; Wilcosky, T.C.; Watson, D.J.; Shapiro, W.R.; Selker, R.G.; Fine, H.A.; Black, P. McL.; Loeffler, J.S.; Linet, M.S

    1999-07-01

    The aetiology of brain tumours is poorly understood. Due, in part, to public concern about a postulated relationship between the use of cellular telephones or other increasingly prevalent environmental exposures and the incidence of brain cancer in adults, the National Cancer Institute is collaborating with three US hospitals in a comprehensive case control study of malignant and benign brain tumours. Factors under consideration include use of cellular phones and other wireless communication devices, workplace exposures to chemical agents and electromagnetic fields, dietary factors, family history of tumours, genetic determinants of susceptibility, home appliance use, reproductive history and hormonal exposures, viruses, medical and dental exposure to ionising radiation, and other aspects of medical history. Approximately 800 newly diagnosed brain tumour cases and 800 controls were enrolled at hospitals in Boston, Phoenix and Pittsburgh from 1994 to 1998. Cases include all adults (age {>=} 18 y) newly diagnosed with a histologically confirmed intracranial glioma, histologically confirmed intracranial meningioma or acoustic neuroma. Controls are patients admitted to the same hospitals as the cases, and treated for any of a variety of non-malignant conditions. Key features of the study include its large size, the emphasis on rapid ascertainment of incident cases and interview of study subjects rather than surrogate respondents, the use of detailed, job-specific questions developed by industrial hygienists to ascertain occupational exposures, and the storage of blood samples for future evaluation of inherited susceptibility, biomarkers of exposure and gene environment interactions. (author)

  16. Heterogeneity of ductular reactions in adult rat and human liver revealed by novel expression of deleted in malignant brain tumor 1

    DEFF Research Database (Denmark)

    Bisgaard, Hanne Cathrine; Holmskov, Uffe; Santoni-Rugiu, Eric

    2002-01-01

    DNA library screening approach, we identified 48 enriched, nonredundant gene products associated with liver injury and oval cell proliferation in the adult rat liver. Of these, only two, namely alpha-fetoprotein and a novel transcript with high homology to human DMBT1 (deleted in malignant brain tumor 1......), were specifically associated with the emergence of ductular (oval) cell populations in injured liver. Subsequent cloning and characterization of the rat DMBT1 homologue revealed a highly inducible expression in ductular reactions composed of transit-amplifying ductular (oval) cells, but not in ductular...

  17. Common genetic variations in cell cycle and DNA repair pathways associated with pediatric brain tumor susceptibility

    DEFF Research Database (Denmark)

    Adel Fahmideh, Maral; Lavebratt, Catharina; Schüz, Joachim

    2016-01-01

    Knowledge on the role of genetic polymorphisms in the etiology of pediatric brain tumors (PBTs) is limited. Therefore, we investigated the association between single nucleotide polymorphisms (SNPs), identified by candidate gene-association studies on adult brain tumors, and PBT risk.The study...... cycle and DNA repair pathways variations associated with susceptibility to adult brain tumors also seem to be associated with PBT risk, suggesting pediatric and adult brain tumors might share similar etiological pathways....

  18. Metabolic brain imaging correlated with clinical features of brain tumors

    Energy Technology Data Exchange (ETDEWEB)

    Alavi, J.; Alavi, A.; Dann, R.; Kushner, M.; Chawluk, J.; Powlis, W.; Reivich, M.

    1985-05-01

    Nineteen adults with brain tumors have been studied with positron emission tomography utilizing FDG. Fourteen had biopsy proven cerebral malignant glioma, one each had meningioma, hemangiopericytoma, primitive neuroectodermal tumor (PNET), two had unbiopsied lesions, and one patient had an area of biopsy proven radiation necrosis. Three different patterns of glucose metabolism are observed: marked increase in metabolism at the site of the known tumor in (10 high grade gliomas and the PNET), lower than normal metabolism at the tumor (in 1 grade II glioma, 3 grade III gliomas, 2 unbiopsied low density nonenhancing lesions, and the meningioma), no abnormality (1 enhancing glioma, the hemangiopericytoma and the radiation necrosis.) The metabolic rate of the tumor or the surrounding brain did not appear to be correlated with the history of previous irradiation or chemotherapy. Decreased metabolism was frequently observed in the rest of the affected hemisphere and in the contralateral cerebellum. Tumors of high grade or with enhancing CT characteristics were more likely to show increased metabolism. Among the patients with proven gliomas, survival after PETT scan tended to be longer for those with low metabolic activity tumors than for those with highly active tumors. The authors conclude that PETT may help to predict the malignant potential of tumors, and may add useful clinical information to the CT scan.

  19. Occupational and residential exposure to electromagnetic fields and risk of brain tumors in adults: a case-control study in Gironde, France.

    Science.gov (United States)

    Baldi, Isabelle; Coureau, Gaëlle; Jaffré, Anne; Gruber, Anne; Ducamp, Stéphane; Provost, Dorothée; Lebailly, Pierre; Vital, Anne; Loiseau, Hugues; Salamon, Roger

    2011-09-15

    The etiology of brain tumors remains largely unknown. Among potential risk factors, exposure to electromagnetic fields is suspected. We analyzed the relationship between residential and occupational exposure to electromagnetic field and brain tumors in adults. A case-control study was carried out in southwestern France between May 1999 and April 2001. A total of 221 central nervous system tumors (105 gliomas, 67 meningiomas, 33 neurinomas and 16 others) and 442 individually age- and sex-matched controls selected from general population were included. Electromagnetic field exposure [extremely low frequency (ELF) and radiofrequency separately was assessed in occupational settings through expert judgement based on complete job calendar, and at home by assessing the distance to power lines with the help of a geographical information system. Confounders such as education, use of home pesticide, residency in a rural area and occupational exposure to chemicals were taken into account. Separate analyses were performed for gliomas, meningiomas and acoustic neurinomas. A nonsignificant increase in risk was found for occupational exposure to electromagnetic fields  [odds ratio (OR = 1.52, 0.92-2.51)]. This increase became significant for meningiomas, especially when considering ELF separately [OR = 3.02; 95 percent confidence interval (95% CI) =1.10-8.25]. The risk of meningioma was also higher in subjects living in the vicinity of power lines (exposure to ELF may play a role in the occurrence of meningioma.

  20. Monitoring Radiographic Brain Tumor Progression

    Directory of Open Access Journals (Sweden)

    John H. Sampson

    2011-03-01

    Full Text Available Determining radiographic progression in primary malignant brain tumors has posed a significant challenge to the neuroncology community. Glioblastoma multiforme (GBM, WHO Grade IV through its inherent heterogeneous enhancement, growth patterns, and irregular nature has been difficult to assess for progression. Our ability to detect tumor progression radiographically remains inadequate. Despite the advanced imaging techniques, detecting tumor progression continues to be a clinical challenge. Here we review the different criteria used to detect tumor progression, and highlight the inherent challenges with detection of progression.

  1. Childhood Brain and Spinal Cord Tumors Treatment Overview

    Science.gov (United States)

    ... the following: Brain Tumor Signs and Symptoms Morning headache or headache that goes away after vomiting . Frequent nausea and ... Cancer Late Effects of Treatment for Childhood Cancer Adolescents and Young Adults with Cancer Children with Cancer: ...

  2. General Information about Childhood Brain and Spinal Cord Tumors

    Science.gov (United States)

    ... the following: Brain Tumor Signs and Symptoms Morning headache or headache that goes away after vomiting . Frequent nausea and ... Cancer Late Effects of Treatment for Childhood Cancer Adolescents and Young Adults with Cancer Children with Cancer: ...

  3. Photodynamic therapy for implanted VX2 tumor in rabbit brains

    Science.gov (United States)

    Li, Fei; Feng, Hua; Lin, Jiangkai; Zhu, Gang; Chen, Zhi; Li, Cong-yan

    2005-07-01

    To evaluate the therapeutic effect and the safety of single photodynamic therapy (PDT) with hematoporphyrin derivative produced in China, 60 New Zealand adult rabbits with VX2 tumor implanted into the brain were divided randomly into non-PDT-group and PDT-group. 36 rabbits of the PDT-group were performed photodynamic therapy. The survival time, neurological deteriorations, intracranial pressure (ICP), histology, pathology, tumor volume and brain water content were measured. Other 12 rabbits were received hematoporphyrin derivative and light irradiation of the normal brain. The ICP, histology, pathology, and brain water content were measured. The result indicated that Simple PDT may elongate the average survival time of the rabbits with VX2 tumors significantly; kill tumor cells; cause transient brain edema and increase ICP, but it is safe to be used in treating brain tumor.

  4. A North American brain tumor consortium phase II study of Poly-ICLC for adult patients with recurrent anaplastic gliomas

    Science.gov (United States)

    Butowski, Nicholas; Lamborn, Kathleen R.; Lee, Bee L; Prados, Michael D.; Cloughesy, Timothy; DeAngelis, Lisa M.; Abrey, Lauren; Fink, Karen; Lieberman, Frank; Mehta, Minesh; Robins, H. Ian; Junck, Larry; Salazar, Andres M.; Chang, Susan M.

    2011-01-01

    Purpose This phase II study was designed to determine the objective response rate and 6-month progression free survival of adult patients with recurrent supratentorial anaplastic glioma when treated with the immune modulator, polyinosinic-polycytidylic acid stabilized with polylysine and carboxymethylcellulose (poly-ICLC). Methods and Materials This was an open-labeled, single arm phase II study. Patients were treated with poly-ICLC alone. Patients may have had treatment for no more than two prior relapses. Treatment with poly-ICLC continued until tumor progression. Results 55 patients were enrolled in the study. 10 were ineligible after central review of pathology. 11% of patients (5 of 45) had a radiographic response. Time to progression was known for 39 patients and 6 remain on treatment. The estimated 6-month progression free survival was 24%. The median survival time was 43 weeks. Conclusions Poly-ICLC was well tolerated, but there was no improvement in 6-month progression free survival compared to historical database nor was there an encouraging objective radiographic response rate. Based on this study, poly-ICLC does not improve 6moPFS in patients with recurrent anaplastic gliomas but may be worth further study in combination with agents such as temozolomide. PMID:18850068

  5. Gene therapy for brain tumors.

    Science.gov (United States)

    Bansal, K; Engelhard, H H

    2000-09-01

    "Gene therapy" can be defined as the transfer of genetic material into a patient's cells for therapeutic purposes. To date, a diverse and creative assortment of treatment strategies utilizing gene therapy have been devised, including gene transfer for modulating the immune system, enzyme prodrug ("suicide gene") therapy, oncolytic therapy, replacement/therapeutic gene transfer, and antisense therapy. For malignant glioma, gene-directed prodrug therapy using the herpes simplex virus thymidine kinase gene was the first gene therapy attempted clinically. A variety of different strategies have now been pursued experimentally and in clinical trials. Although, to date, gene therapy for brain tumors has been found to be reasonably safe, concerns still exist regarding issues related to viral delivery, transduction efficiency, potential pathologic response of the brain, and treatment efficacy. Improved viral vectors are being sought, and potential use of gene therapy in combination with other treatments is being investigated.

  6. Disseminated Cerebrospinal Embryonal Tumor in the Adult

    Science.gov (United States)

    Armocida, Daniele; Caporlingua, Federico; Lapadula, Gennaro; Elefante, Grazia Maria; Antonelli, Manila; Salvati, Maurizio

    2016-01-01

    Introduction. According to the 2016 World Health Organization classification of Tumors of the Central Nervous System, the term Primitive Neuroectodermal Tumor has been replaced by the term Embryonal Tumor (ET). We present a case of disseminated cerebrospinal ET presenting in an adult patient. Illustrative Case. A 49-year-old male presenting with low back pain, dysuria, and hypoesthesia of the lower extremities referred to our emergency department. Brain and whole spine contrast-enhanced MRI documented a diffusively disseminated heterogeneous neoplasm with intradural extra- and intramedullary involvement of the cervicothoracic tract and cauda equina. A primary biopsy of the lumbosacral localization was performed through L5 bilateral laminectomy. Histologic diagnosis was Embryonal Tumor Not Otherwise Specified. The patient underwent chemotherapy with postoperative adjuvant alternating Vincristine-Doxorubicin-Ifosfamide (VAI) and Ifosfamide-Etoposide (IE). Discussion. Spinal ETs are exceedingly rare especially when presenting in the adult patient. Neurosurgical and oncologic management is still unclear. When feasible, surgical removal should always be performed to obtain a histologic diagnosis. Postoperative adjuvant therapy might entail both chemo- and radiotherapy; however a consensus on this matter is still lacking. PMID:27818821

  7. Surgical management of pediatric brain tumors.

    Science.gov (United States)

    Heuer, Gregory G; Jackson, Eric M; Magge, Suresh N; Storm, Phillip B

    2007-12-01

    Brain tumors are the most common cause of cancer-related death and the second most common form of cancer in pediatric patients. Many of these tumors are treated primarily with surgery, either alone or in combination with radiation or chemotherapy. Recent advances have lead to greater survival and decreased morbidities in childhood brain tumor patients. A full understanding of the biology and primary treatment modalities for the particular tumor are essential for any professional treating these patients, including the neurosurgeon. Each tumor type has features in common with, and unique from, other tumors that need to be understood prior to undertaking a rational treatment plan. This article summarizes some of these features.

  8. Cell Mediated Photothermal Therapy of Brain Tumors.

    Science.gov (United States)

    Hirschberg, Henry; Madsen, Steen J

    2017-03-01

    Gold based nanoparticles with strong near infra-red (NIR) absorption are ideally suited for photothermal therapy (PTT) of brain tumors. The goal of PTT is to induce rapid heating in tumor tissues while minimizing thermal diffusion to normal brain. PTT efficacy is sensitively dependent on both nanoparticle concentration and distribution in tumor tissues. Nanoparticle delivery via passive approaches such as the enhanced permeability and retention (EPR) effect is unlikely to achieve sufficient nanoparticle concentrations throughout tumor volumes required for effective PTT. A simple approach for improving tumor biodsitribution of nanoparticles is the use of cellular delivery vehicles. Specifically, this review focuses on the use of monocytes/macrophages (Mo/Ma) as gold nanoparticle delivery vectors for PTT of brain tumors. Although the efficacy of this delivery approach has been demonstrated in both in vitro and animal PTT studies, its clinical potential for the treatment of brain tumors remains uncertain.

  9. Air pollution from traffic and risk for brain tumors

    DEFF Research Database (Denmark)

    Poulsen, Aslak Harbo; Sørensen, Mette; Andersen, Zorana J

    2016-01-01

    PURPOSE: Air pollution is an established lung carcinogen, and there is increasing evidence that air pollution also negatively affects the brain. We have previously reported an association between air pollution and risk of brain tumors in a cohort study based on only 95 cases. We set out to replic......PURPOSE: Air pollution is an established lung carcinogen, and there is increasing evidence that air pollution also negatively affects the brain. We have previously reported an association between air pollution and risk of brain tumors in a cohort study based on only 95 cases. We set out...... to replicate that finding in a large nationwide case-control study. METHODS: We identified all 4,183 adult brain tumor cases in Denmark in the years 2000-2009 and 8,018 risk set sampled population controls matched on gender and year of birth. We extracted residential address histories and estimated mean...... and risk of brain tumors which was found in our previous study. The suggestion of an increased brain tumor risk at high exposures merits further attention as does the differing results according to tumor morphology....

  10. Dynamic perfusion CT in brain tumors.

    Science.gov (United States)

    Yeung, Timothy Pok Chi; Bauman, Glenn; Yartsev, Slav; Fainardi, Enrico; Macdonald, David; Lee, Ting-Yim

    2015-12-01

    Dynamic perfusion CT (PCT) is an imaging technique for assessing the vascular supply and hemodynamics of brain tumors by measuring blood flow, blood volume, and permeability-surface area product. These PCT parameters provide information complementary to histopathologic assessments and have been used for grading brain tumors, distinguishing high-grade gliomas from other brain lesions, differentiating true progression from post-treatment effects, and predicting prognosis after treatments. In this review, the basic principles of PCT are described, and applications of PCT of brain tumors are discussed. The advantages and current challenges, along with possible solutions, of PCT are presented.

  11. Bleomycin treatment of brain tumors: an evaluation

    DEFF Research Database (Denmark)

    Linnert, Mette; Gehl, Julie

    2009-01-01

    Bleomycin has been used in the treatment of brain tumors for over 30 years. Currently, we are evaluating electrochemotherapy (the use of electric pulses to enhance uptake of bleomycin) for patients with secondary brain tumors. We, therefore, reviewed the literature with specific reference...... to the tolerability and toxicity of bleomycin. Using the keywords 'brain' and 'bleomycin', a database search without date restriction was performed and over 500 articles were found. Twenty-five articles were used for this study based on relevance determined by: (i) clinical studies, (ii) use of bleomycin, and (iii......) direct injection into brain tissue or cysts. There were two main indications for the use of bleomycin directly into the brain: (i) cystic tumors in the form of craniopharyngiomas and (ii) solid brain tumors such as glioblastomas and astrocytomas. The most frequent adverse effects reported were transient...

  12. Brain tumors in patients primarly treated psychiatrically

    Directory of Open Access Journals (Sweden)

    Ignjatović-Ristić Dragana

    2011-01-01

    Full Text Available Introduction. Psychiatric symptoms are not rare manifestations of brain tumors. Brain tumors presented by symptoms of raised intracranial pressure, focal neurological signs, or convulsions are usually first seen by the neurologist or less frequently by the neurosurgeon in routine diagnostic procedures. On the other hand, when psychiatric symptoms are the first manifestation in “neurologically silent” brain tumors, the patients are sent to the psychiatrist for the treatment of psychiatric symptoms and brain tumors are left misdiagnosed for a long period of time. Case Report. We presented three patients with the diagnosed brain tumor where psychiatrist had been the first specialist to be consulted. In all three cases neurological examination was generally unremarkable with no focal signs or features of raised intracranial pressure. CT scan demonstrated right insular tumor in a female patient with obsessive-compulsive disorder (OCD; right parietal temporal tumor in a patient with delusions and depression and left frontal tumor in a patient with history of alcohol dependency. Conclusion. Psychiatric symptoms/disorders in patients with brain tumors are not specific enough and can have the same clinical presentation as the genuine psychiatric disorder. Therefore, we emphasize the consideration of neuroimaging in patients with abrupt beginning of psychiatric symptoms, in those with a change in mental status, or when headaches suddenly appear or in cases of treatment resistant psychiatric disorders regardless the lack of neurological symptoms.

  13. Asymptomatic brain tumor detected at brain check-up

    Energy Technology Data Exchange (ETDEWEB)

    Onizuka, Masanari; Suyama, Kazuhiko; Shibayama, Akira; Hiura, Tsuyoshi; Horie, Nobutaka; Miyazaki, Hisaya [Sankoukai Miyazaki Hospital, Isahaya, Nagasaki (Japan)

    2001-09-01

    Brain check-up was performed in 4000 healthy subjects who underwent medical and radiological examinations for possible brain diseases in our hospital from April 1996 to March 2000. Magnetic resonance imaging revealed 11 brain tumors which consisted of six meningiomas, three pituitary adenomas, one astrocytoma, and one epidermoid cyst. The detection rate of incidental brain tumor in our hospital was 0.3%. Nine patients underwent surgery, with one case of morbidity due to postoperative transient oculomotor nerve paresis. The widespread use of brain check-up may increasingly detect asymptomatic brain tumors. Surgical indications for such lesions remain unclear, and the strategy for treatment should be determined with consideration of the patient's wishes. (author)

  14. Cognitive deficits in patients with brain tumor

    Institute of Scientific and Technical Information of China (English)

    SHEN Chao; BAO Wei-min; YANG Bo-jie; XIE Rong; CAO Xiao-yun; LUAN Shi-hai; MAO Ying

    2012-01-01

    Objective To discuss the present status and progress of clinical research on the cognitive effects caused by different types of brain tumors and common treatments.Data sources The data used in this review were mainly from PubMed articles published in English from 1990 to Febuary 2012.Research terms were "cognitive deficits" or "cognitive dysfunction".Study selection Articals including any information about brain tumor related cognitive deficits were selected.Results It is widely accepted that brain tumors and related treatments can impair cognitive function across manydomains,and can impact on patients' quality of life.Tumor localization,lateralization,surgery,drugs,radiotherapy and chemotherapy are all thought to be important factors in this process.However,some conflicting findings regarding brain tumor-related cognitive deficits have been reported.It can be difficult to determine the mechanism of these treatments,such as chemotherapy,antibiotics,antiepileptics,and steroids.Future research is needed to clarify these potential treatment effects.Conclusions Cognitive function is important for patients with brain tumor.Much more focus has been paid on this field.It should be regarded as an important prognostic index for the patients with brain tumor,and neuropsychological tests should be used in regular examinations.

  15. Fluorescent Nanoparticle Uptake for Brain Tumor Visualization

    Directory of Open Access Journals (Sweden)

    Rachel Tréhin

    2006-04-01

    Full Text Available Accurate delineation of tumor margins is vital to the successful surgical resection of brain tumors. We have previously developed a multimodal nanoparticle CLIO-Cy5.5, which is detectable by both magnetic resonance imaging and fluorescence, to assist in intraoperatively visualizing tumor boundaries. Here we examined the accuracy of tumor margin determination of orthotopic tumors implanted in hosts with differing immune responses to the tumor. Using a nonuser-based signal intensity method applied to fluorescent micrographs of 9L gliosarcoma green fluorescent protein (GFP tumors, mean overestimations of 2 and 24 µm were obtained using Cy5.5 fluorescence, compared to the true tumor margin determined by GFP fluorescence, in nude mice and rats, respectively. To resolve which cells internalized the nanoparticle and to quantitate degree of uptake, tumors were disaggregated and cells were analyzed by flow cytometry and fluorescence microscopy. Nanoparticle uptake was seen in both CD11b+ cells (representing activated microglia and macrophages and tumor cells in both animal models by both methods. CD11b+ cells were predominantly found at the tumor margin in both hosts, but were more pronounced at the margin in the rat model. Additional metastatic (CT26 colon and primary (Gli36 glioma brain tumor models likewise demonstrated that the nanoparticle was internalized both by tumor cells and by host cells. Together, these observations suggest that fluorescent nanoparticles provide an accurate method of tumor margin estimation based on a combination of tumor cell and host cell uptake for primary and metastatic tumors in animal model systems and offer potential for clinical translation.

  16. Similarity on neural stem cells and brain tumor stem cells in transgenic brain tumor mouse models

    Institute of Scientific and Technical Information of China (English)

    Guanqun Qiao; Qingquan Li; Gang Peng; Jun Ma; Hongwei Fan; Yingbin Li

    2013-01-01

    Although it is believed that glioma is derived from brain tumor stem cells, the source and molecular signal pathways of these cells are stil unclear. In this study, we used stable doxycycline-inducible transgenic mouse brain tumor models (c-myc+/SV40Tag+/Tet-on+) to explore the malignant trans-formation potential of neural stem cells by observing the differences of neural stem cel s and brain tumor stem cells in the tumor models. Results showed that chromosome instability occurred in brain tumor stem cells. The numbers of cytolysosomes and autophagosomes in brain tumor stem cells and induced neural stem cel s were lower and the proliferative activity was obviously stronger than that in normal neural stem cells. Normal neural stem cells could differentiate into glial fibril ary acidic protein-positive and microtubule associated protein-2-positive cells, which were also negative for nestin. However, glial fibril ary acidic protein/nestin, microtubule associated protein-2/nestin, and glial fibril ary acidic protein/microtubule associated protein-2 double-positive cells were found in induced neural stem cells and brain tumor stem cel s. Results indicate that induced neural stem cells are similar to brain tumor stem cells, and are possibly the source of brain tumor stem cells.

  17. Proton MRS imaging in pediatric brain tumors

    Energy Technology Data Exchange (ETDEWEB)

    Zarifi, Maria [Aghia Sophia Children' s Hospital, Department of Radiology, Athens (Greece); Tzika, A.A. [Harvard Medical School, Department of Surgery, Massachusetts General Hospital, Boston, MA (United States); Shriners Burn Hospital, Boston, MA (United States)

    2016-06-15

    Magnetic resonance (MR) techniques offer a noninvasive, non-irradiating yet sensitive approach to diagnosing and monitoring pediatric brain tumors. Proton MR spectroscopy (MRS), as an adjunct to MRI, is being more widely applied to monitor the metabolic aspects of brain cancer. In vivo MRS biomarkers represent a promising advance and may influence treatment choice at both initial diagnosis and follow-up, given the inherent difficulties of sequential biopsies to monitor therapeutic response. When combined with anatomical or other types of imaging, MRS provides unique information regarding biochemistry in inoperable brain tumors and can complement neuropathological data, guide biopsies and enhance insight into therapeutic options. The combination of noninvasively acquired prognostic information and the high-resolution anatomical imaging provided by conventional MRI is expected to surpass molecular analysis and DNA microarray gene profiling, both of which, although promising, depend on invasive biopsy. This review focuses on recent data in the field of MRS in children with brain tumors. (orig.)

  18. IT-36PHASE 1/2 STUDY OF THE COMBINATION OF INDOXIMOD AND TEMOZOLOMIDE FOR ADULT PATIENTS WITH TEMOZOLOMIDE-REFRACTORY PRIMARY MALIGNANT BRAIN TUMORS

    Science.gov (United States)

    Zakharia, Yousef; Johnson, Theodore; Colman, Howard; Vahanian, Nicholas; Link, Charles; Kennedy, Eugene; Sadek, Ramses; Kong, Feng-Ming; Vender, John; Munn, David; Rixe, Olivier

    2014-01-01

    BACKGROUND: Indoleamine 2, 3-dioxygenase (IDO) is a key immune-modulatory enzyme that inhibits CD8+ T cells and enhances the suppressor activity of Tregs. IDO is expressed in 50 to 90% of glioblastoma (GBM) and is correlated with poor prognosis. IDO pathway inhibitors such as indoximod (1-Methyl-D-tryptophan) can improve anti-tumor T cell response slowing the tumor growth in vivo. We have demonstrated a synergistic effect of indoximod when combined with temozolomide (TMZ) and radiation in a syngeneic orthotopic brain tumor model. This phase 1 study is designed to determine maximal tolerated dose (MTD) of indoximod in combination with TMZ in GBM followed by an expansion phase 2 testing the preliminary activity of the combination in relevant situations with the addition of bevacizumab or stereotactic radiosurgery. METHODS: After progression to standard front line-therapy, patients with GBM are enrolled in a dose escalation study of indoximod (600, 1000 or 1200 mg twice daily given orally) with a standard fixed dose of TMZ. In the phase 2 part, patients are separated into 3 cohorts: cohort 2a: indoximod with TMZ, cohort 2b: indoximod with TMZ and bevacizumab (for patients who are currently on bevacizumab), cohort 2c: indoximod with TMZ and stereotactic radiosurgery. STATISTICAL ANALYSIS: The study uses a 3 + 3 dose escalation design, until reaching the MTD or the maximal specified dose. Sample size in phase 2 is based on the primary endpoint of 6 months progression free survival (PFS). CORRELATIVE STUDIES: Assessment of primary tumor samples for IDO expression, evaluation of serum for potential biomarkers of IDO pathway activity (kynurenine and tryptophan) and a pharmacokinetic analysis will be performed. RESULTS: Study is ongoing. Updates are to be presented at the meeting.

  19. MRI and MRS of human brain tumors.

    Science.gov (United States)

    Hou, Bob L; Hu, Jiani

    2009-01-01

    The purpose of this chapter is to provide an introduction to magnetic resonance imaging (MRI) and magnetic resonance spectroscopy (MRS) of human brain tumors, including the primary applications and basic terminology involved. Readers who wish to know more about this broad subject should seek out the referenced books (1. Tofts (2003) Quantitative MRI of the brain. Measuring changes caused by disease. Wiley; Bradley and Stark (1999) 2. Magnetic resonance imaging, 3rd Edition. Mosby Inc; Brown and Semelka (2003) 3. MRI basic principles and applications, 3rd Edition. Wiley-Liss) or reviews (4. Top Magn Reson Imaging 17:127-36, 2006; 5. JMRI 24:709-724, 2006; 6. Am J Neuroradiol 27:1404-1411, 2006).MRI is the most popular means of diagnosing human brain tumors. The inherent difference in the magnetic resonance (MR) properties of water between normal tissues and tumors results in contrast differences on the image that provide the basis for distinguishing tumors from normal tissues. In contrast to MRI, which provides spatial maps or images using water signals of the tissues, proton MRS detects signals of tissue metabolites. MRS can complement MRI because the observed MRS peaks can be linked to inherent differences in biochemical profiles between normal tissues and tumors.The goal of MRI and MRS is to characterize brain tumors, including tumor core, edge, edema, volume, types, and grade. The commonly used brain tumor MRI protocol includes T2-weighted images and T1-weighted images taken both before and after the injection of a contrast agent (typically gadolinium: Gd). The commonly used MRS technique is either point-resolved spectroscopy (PRESS) or stimulated echo acquisition mode (STEAM).

  20. Tumor cerebral e gravidez Brain tumors and pregnancy

    Directory of Open Access Journals (Sweden)

    José Carlos Lynch

    2007-12-01

    Full Text Available O diagnóstico de um tumor cerebral durante a gravidez é um fato raro que coloca a mãe e o concepto em risco de vida. OBJETIVO: Avaliar a melhor forma de conduzir uma paciente grávida portadora de um tumor cerebral. MÉTODO: Realizamos análise retrospectiva dos prontuários e imagens de seis pacientes grávidas portadoras de tumor cerebral. RESULTADOS: Vários tipos histológicos de tumor cerebral podem estar associados à gravidez. O meningioma é o mais freqüente. Nessa série não observamos óbito cirúrgico materno. Em duas pacientes, o parto ocorreu antes da craniotomia e em outras quatro o parto foi realizado após a neurocirurgia. CONCLUSÃO: O momento mais adequado para a realização da craniotomia para remoção tumoral irá depender da gravidade do quadro neurológico, do tipo histológico presumível da lesão, e da idade gestacional do embrião.BACKGROUND: Despite not being a common fact, the occurrence of brain tumors during pregnancy poses a risk to both the mother and infant. AIM: To identify the best medical procedure to be followed for a pregnant patient harboring a brain tumor. METHOD: The records of 6 patients with brain tumors, diagnosed during pregnancy were examined. RESULTS: Several types of brain tumors have been associated with pregnancy, but the meningioma is, by far, the most frequent. It seems that pregnancy aggravates the clinical course of intracranial tumors. There were no operative mortality in these series. In 2 patients the labor occurred before the craniotomy and in others, the delivery occurred after the surgery. CONCLUSION: The best moment to recommend the craniotomy and the neurosurgical removal of the tumor will depend of the mother’s neurological condition, the tumor histological type as well as the gestational age.

  1. GLCM textural features for Brain Tumor Classification

    Directory of Open Access Journals (Sweden)

    N S Zulpe

    2012-05-01

    Full Text Available Automatic recognition system for medical images is challenging task in the field of medical image processing. Medical images acquired from different modalities such as Computed Tomography (CT, Magnetic Resonance Imaging (MRI, etc which are used for the diagnosis purpose. In the medical field, brain tumor classification is very important phase for the further treatment. Human interpretation of large number of MRI slices (Normal or Abnormal may leads to misclassification hence there is need of such a automated recognition system, which can classify the type of the brain tumor. In this research work, we used four different classes of brain tumors and extracted the GLCM based textural features of each class, and applied to two-layered Feed forward Neural Network, which gives 97.5% classification rate.

  2. Confronting pediatric brain tumors: parent stories.

    Science.gov (United States)

    McMillan, Gigi

    2014-01-01

    This narrative symposium brings to light the extreme difficulties faced by parents of children diagnosed with brain tumors. NIB editorial staff and narrative symposium editors, Gigi McMillan and Christy A. Rentmeester, developed a call for stories that was distributed on several list serves and posted on Narrative Inquiry in Bioethics' website. The call asks parents to share their personal experience of diagnosis, treatment, long-term effects of treatment, social issues and the doctor-patient-parent dynamic that develops during this process. Thirteen stories are found in the print version of the journal and an additional six supplemental stories are published online only through Project MUSE. One change readers may notice is that the story authors are not listed in alphabetical order. The symposium editors had a vision for this issue that included leading readers through the timeline of this topic: diagnosis-treatment-acute recovery-recurrence-treatment (again)-acute recovery (again)-long-term quality of life-(possibly) end of life. Stories are arranged to help lead the reader through this timeline.Gigi McMillan is a patient and research subject advocate, co-founder of We Can, Pediatric Brain Tumor Network, as well as, the mother of a child who suffered from a pediatric brain tumor. She also authored the introduction for this symposium. Christy Rentmeester is an Associate Professor of Health Policy and Ethics in the Creighton University School of Medicine. She served as a commentator for this issue. Other commentators for this issue are Michael Barraza, a clinical psychologist and board member of We Can, Pediatric Brain Tumor Network; Lisa Stern, a pediatrician who has diagnosed six children with brain tumors in her 20 years of practice; and Katie Rose, a pediatric brain tumor patient who shares her special insights about this world.

  3. MRI Brain Tumor Segmentation Methods- A Review

    OpenAIRE

    Gursangeet, Kaur; Jyoti, Rani

    2016-01-01

    Medical image processing and its segmentation is an active and interesting area for  researchers. It has reached at the tremendous place in diagnosing tumors after the discovery of CT and MRI. MRI is an useful tool to detect the brain tumor and segmentation is performed to carry out the useful portion from an image. The purpose of this paper is to provide an overview of different image segmentation methods like watershed algorithm, morphological operations, neutrosophic sets, thresholding, K-...

  4. Primary brain tumours in adults.

    Science.gov (United States)

    Ricard, Damien; Idbaih, Ahmed; Ducray, François; Lahutte, Marion; Hoang-Xuan, Khê; Delattre, Jean-Yves

    2012-05-26

    Important advances have been made in the understanding and management of adult gliomas and primary CNS lymphomas--the two most common primary brain tumours. Progress in imaging has led to a better analysis of the nature and grade of these tumours. Findings from large phase 3 studies have yielded some standard treatments for gliomas, and have confirmed the prognostic value of specific molecular alterations. High-throughput methods that enable genome-wide analysis of tumours have improved the knowledge of tumour biology, which should lead to a better classification of gliomas and pave the way for so-called targeted therapy trials. Primary CNS lymphomas are a group of rare non-Hodgkin lymphomas. High-dose methotrexate-based regimens increase survival, but the standards of care and the place of whole-brain radiotherapy remain unclear, and are likely to depend on the age of the patient. The focus now is on the development of new polychemotherapy regimens to reduce or defer whole-brain radiotherapy and its delayed complications.

  5. Dexamethasone alleviates tumor-associated brain damage and angiogenesis.

    Directory of Open Access Journals (Sweden)

    Zheng Fan

    Full Text Available Children and adults with the most aggressive form of brain cancer, malignant gliomas or glioblastoma, often develop cerebral edema as a life-threatening complication. This complication is routinely treated with dexamethasone (DEXA, a steroidal anti-inflammatory drug with pleiotropic action profile. Here we show that dexamethasone reduces murine and rodent glioma tumor growth in a concentration-dependent manner. Low concentrations of DEXA are already capable of inhibiting glioma cell proliferation and at higher levels induce cell death. Further, the expression of the glutamate antiporter xCT (system Xc-; SLC7a11 and VEGFA is up-regulated after DEXA treatment indicating early cellular stress responses. However, in human gliomas DEXA exerts differential cytotoxic effects, with some human glioma cells (U251, T98G resistant to DEXA, a finding corroborated by clinical data of dexamethasone non-responders. Moreover, DEXA-resistant gliomas did not show any xCT alterations, indicating that these gene expressions are associated with DEXA-induced cellular stress. Hence, siRNA-mediated xCT knockdown in glioma cells increased the susceptibility to DEXA. Interestingly, cell viability of primary human astrocytes and primary rodent neurons is not affected by DEXA. We further tested the pharmacological effects of DEXA on brain tissue and showed that DEXA reduces tumor-induced disturbances of the microenvironment such as neuronal cell death and tumor-induced angiogenesis. In conclusion, we demonstrate that DEXA inhibits glioma cell growth in a concentration and species-dependent manner. Further, DEXA executes neuroprotective effects in brains and reduces tumor-induced angiogenesis. Thus, our investigations reveal that DEXA acts pleiotropically and impacts tumor growth, tumor vasculature and tumor-associated brain damage.

  6. The delivery of BCNU to brain tumors.

    Science.gov (United States)

    Wang, C C; Li, J; Teo, C S; Lee, T

    1999-08-27

    This paper reports the development of three-dimensional simulations to study the effect of various factors on the delivery of 1-3-bis(2-chloroethyl)-1-nitrosourea (BCNU) to brain tumors. The study yields information on the efficacy of various delivery methods, and the optimal location of polymer implantation. Two types of drug deliveries, namely, systemic administration and controlled release from polymers, were simulated using fluid dynamics analysis package (FIDAP) to predict the temporal and spatial variation of drug distribution. Polymer-based delivery provides higher mean concentration, longer BCNU exposure time and reduced systemic toxicity than bolus injection. Polymer implanted in the core gives higher concentration of drug in both the core and viable zone than the polymer in the viable zone case. The penetration depth of BCNU is very short. This is because BCNU can get drained out of the system before diffusing to any appreciable distance. Since transvascular permeation is the dominant means of BCNU delivery, the interstitial convection has minor effect because of the extremely small transvascular Peclet number. The reaction of BCNU with brain tissues reduces the drug concentration in all regions and its effect increases with rate constant. The implantation of BCNU/ethylene-vinyl acetate copolymer (EVAc) matrix at the lumen of the viable zone immediately following the surgical removal of 80% of the tumor may be an effective treatment for the chemotherapy of brain tumors. The present study provides a quantitative examination on the working principle of Gliadel wafer for the treatment of brain tumors.

  7. MicroRNA and Brain Tumors

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    MicroRNAs (miRNAs) were first described in 1993 by Lee and colleagues, and the term microRNA was only introduced in 2001 in a set of three articles in Science[1]. One of the biggest surprises in the past few years has been the emergence of miRNAs as a major new class of gene expression regulators. Recent studies suggest that miRNA alterations are involved in the initiation and progression of human cancer. The brain tumor,glioblastoma multiforme, is the most malignant and deadly form of gliomas.The prognosis is poor and the median survival with combined radiotherapy and chemotherapy is only 14.6 months. With the discovery of miRNA, the miRNA profiles may become useful biomarkers for brain tumor diagnostics,and miRNA therapy could be a powerful tool for brain tumor prevention and therapeutics. This review outlines the background of miRNA and its expression and therapeutic potential for brain tumors.

  8. [Differential infratentorial brain tumor diagnosis in children].

    Science.gov (United States)

    Warmuth-Metz, M; Kühl, J; Rutkowski, S; Krauss, J; Solymosi, L

    2003-11-01

    With the exception of the first year of life, infratentorial brain tumors are more frequent in the first decade than tumors in the supratentorial compartment. In particular these are cerebellar low-grade astrocytomas, medulloblastomas, brainstem gliomas and ependymomas of the fourth ventricle. The morphology on MRI and CT and the mode of dissemination permit differential diagnosis in many cases. To allow correct stratification into different treatments in possibly disseminating malignant brain tumors, knowledge of the status of dissemination is essential, and therefore not only cranial but also spinal MRI is indispensable for staging. If the spinal MRI is performed in the immediate postoperative period, knowledge of the normal non-specific purely postoperative changes, often seen as enhancement in the subdural spinal spaces, is necessary in order to avoid misinterpretation as meningial seeding. The differential diagnosis of pediatric infratentorial brain tumors and the morphology of subdural enhancement are illustrated with typical images. The natural history of the most frequent tumors and its importance for treatment decisions is discussed in light of the literature.

  9. Brain tumors: Special characters for research and banking

    Directory of Open Access Journals (Sweden)

    Majid Kheirollahi

    2015-01-01

    Full Text Available A brain tumor is an intracranial neoplasm within the brain or in the central spinal canal. Primary malignant brain tumors affect about 200,000 people worldwide every year. Brain cells have special characters. Due to the specific properties of brain tumors, including epidemiology, growth, and division, investigation of brain tumors and the interpretation of results is not simple. Research to identify the genetic alterations of human tumors improves our knowledge of tumor biology, genetic interactions, progression, and preclinical therapeutic assessment. Obtaining data for prevention, diagnosis, and therapy requires sufficient samples, and brain tumors have a wide range. As a result, establishing the bank of brain tumors is very important and essential.

  10. Solid Tumors of the Mediastinum in Adults.

    Science.gov (United States)

    Azizad, Shameem; Sannananja, Bhagya; Restrepo, Carlos S

    2016-06-01

    A wide spectrum of solid tumors can develop in the mediastinum of adults. Like for any other tumor evaluation, the location and morphology play equally important role for lesion characterization. Compartmentalizing the mediastinal masses greatly narrows the number of possible differential diagnosis. Cross sectional imaging mainly with computed tomography (CT) and magnetic resonance imaging (MRI) are the preferred modalities of choice as they can establish the presence, location and morphology of the lesion allowing to suggest a possible diagnosis.

  11. Combination radiotherapy in an orthotopic mouse brain tumor model.

    Science.gov (United States)

    Kramp, Tamalee R; Camphausen, Kevin

    2012-03-06

    Glioblastoma multiforme (GBM) are the most common and aggressive adult primary brain tumors. In recent years there has been substantial progress in the understanding of the mechanics of tumor invasion, and direct intracerebral inoculation of tumor provides the opportunity of observing the invasive process in a physiologically appropriate environment. As far as human brain tumors are concerned, the orthotopic models currently available are established either by stereotaxic injection of cell suspensions or implantation of a solid piece of tumor through a complicated craniotomy procedure. In our technique we harvest cells from tissue culture to create a cell suspension used to implant directly into the brain. The duration of the surgery is approximately 30 minutes, and as the mouse needs to be in a constant surgical plane, an injectable anesthetic is used. The mouse is placed in a stereotaxic jig made by Stoetling (figure 1). After the surgical area is cleaned and prepared, an incision is made; and the bregma is located to determine the location of the craniotomy. The location of the craniotomy is 2 mm to the right and 1 mm rostral to the bregma. The depth is 3 mm from the surface of the skull, and cells are injected at a rate of 2 μl every 2 minutes. The skin is sutured with 5-0 PDS, and the mouse is allowed to wake up on a heating pad. From our experience, depending on the cell line, treatment can take place from 7-10 days after surgery. Drug delivery is dependent on the drug composition. For radiation treatment the mice are anesthetized, and put into a custom made jig. Lead covers the mouse's body and exposes only the brain of the mouse. The study of tumorigenesis and the evaluation of new therapies for GBM require accurate and reproducible brain tumor animal models. Thus we use this orthotopic brain model to study the interaction of the microenvironment of the brain and the tumor, to test the effectiveness of different therapeutic agents with and without

  12. Phase II trial of pazopanib (GW786034), an oral multi-targeted angiogenesis inhibitor, for adults with recurrent glioblastoma (North American Brain Tumor Consortium Study 06-02)

    Science.gov (United States)

    Iwamoto, Fabio M.; Lamborn, Kathleen R.; Robins, H. Ian; Mehta, Minesh P.; Chang, Susan M.; Butowski, Nicholas A.; DeAngelis, Lisa M.; Abrey, Lauren E.; Zhang, Wei-Ting; Prados, Michael D.; Fine, Howard A.

    2010-01-01

    The objective of this phase II single-arm study was to evaluate the efficacy and safety of pazopanib, a multi-targeted tyrosine kinase inhibitor, against vascular endothelial growth factor receptor (VEGFR)-1, -2, and -3, platelet-derived growth factor receptor-α and -β, and c-Kit, in recurrent glioblastoma. Patients with ≤2 relapses and no prior anti-VEGF/VEGFR therapy were treated with pazopanib 800 mg daily on 4-week cycles without planned interruptions. Brain magnetic resonance imaging and clinical reassessment were made every 8 weeks. The primary endpoint was efficacy as measured by 6-month progression-free survival (PFS6). Thirty-five GBM patients with a median age of 53 years and median Karnofsky performance scale of 90 were accrued. Grade 3/4 toxicities included leukopenia (n = 1), lymphopenia (n = 2), thrombocytopenia (n = 1), ALT elevation (n = 3), AST elevation (n = 1), CNS hemorrhage (n = 1), fatigue (n = 1), and thrombotic/embolic events (n = 3); 8 patients required dose reduction. Two patients had a partial radiographic response by standard bidimensional measurements, whereas 9 patients (6 at the 8-week point and 3 only within the first month of treatment) had decreased contrast enhancement, vasogenic edema, and mass effect but <50% reduction in tumor. The median PFS was 12 weeks (95% confidence interval [CI]: 8–14 weeks) and only 1 patient had a PFS time ≥6 months (PFS6 = 3%). Thirty patients (86%) had died and median survival was 35 weeks (95% CI: 24–47 weeks). Pazopanib was reasonably well tolerated with a spectrum of toxicities similar to other anti-VEGF/VEGFR agents. Single-agent pazopanib did not prolong PFS in this patient population but showed in situ biological activity as demonstrated by radiographic responses. ClinicalTrials.gov identifier: NCT00459381. PMID:20200024

  13. Calcium-activated potassium channels mediated blood-brain tumor barrier opening in a rat metastatic brain tumor model

    Directory of Open Access Journals (Sweden)

    Ong John M

    2007-03-01

    Full Text Available Abstract Background The blood-brain tumor barrier (BTB impedes the delivery of therapeutic agents to brain tumors. While adequate delivery of drugs occurs in systemic tumors, the BTB limits delivery of anti-tumor agents into brain metastases. Results In this study, we examined the function and regulation of calcium-activated potassium (KCa channels in a rat metastatic brain tumor model. We showed that intravenous infusion of NS1619, a KCa channel agonist, and bradykinin selectively enhanced BTB permeability in brain tumors, but not in normal brain. Iberiotoxin, a KCa channel antagonist, significantly attenuated NS1619-induced BTB permeability increase. We found KCa channels and bradykinin type 2 receptors (B2R expressed in cultured human metastatic brain tumor cells (CRL-5904, non-small cell lung cancer, metastasized to brain, human brain microvessel endothelial cells (HBMEC and human lung cancer brain metastasis tissues. Potentiometric assays demonstrated the activity of KCa channels in metastatic brain tumor cells and HBMEC. Furthermore, we detected higher expression of KCa channels in the metastatic brain tumor tissue and tumor capillary endothelia as compared to normal brain tissue. Co-culture of metastatic brain tumor cells and brain microvessel endothelial cells showed an upregulation of KCa channels, which may contribute to the overexpression of KCa channels in tumor microvessels and selectivity of BTB opening. Conclusion These findings suggest that KCa channels in metastatic brain tumors may serve as an effective target for biochemical modulation of BTB permeability to enhance selective delivery of chemotherapeutic drugs to metastatic brain tumors.

  14. Unarmed, tumor-specific monoclonal antibody effectively treats brain tumors

    Science.gov (United States)

    Sampson, John H.; Crotty, Laura E.; Lee, Samson; Archer, Gary E.; Ashley, David M.; Wikstrand, Carol J.; Hale, Laura P.; Small, Clayton; Dranoff, Glenn; Friedman, Allan H.; Friedman, Henry S.; Bigner, Darell D.

    2000-01-01

    The epidermal growth factor receptor (EGFR) is often amplified and rearranged structurally in tumors of the brain, breast, lung, and ovary. The most common mutation, EGFRvIII, is characterized by an in-frame deletion of 801 base pairs, resulting in the generation of a novel tumor-specific epitope at the fusion junction. A murine homologue of the human EGFRvIII mutation was created, and an IgG2a murine mAb, Y10, was generated that recognizes the human and murine equivalents of this tumor-specific antigen. In vitro, Y10 was found to inhibit DNA synthesis and cellular proliferation and to induce autonomous, complement-mediated, and antibodydependent cell-mediated cytotoxicity. Systemic treatment with i.p. Y10 of s.c. B16 melanomas transfected to express stably the murine EGFRvIII led to long-term survival in all mice treated (n = 20; P < 0.001). Similar therapy with i.p. Y10 failed to increase median survival of mice with EGFRvIII-expressing B16 melanomas in the brain; however, treatment with a single intratumoral injection of Y10 increased median survival by an average 286%, with 26% long-term survivors (n = 117; P < 0.001). The mechanism of action of Y10 in vivo was shown to be independent of complement, granulocytes, natural killer cells, and T lymphocytes through in vivo complement and cell subset depletions. Treatment with Y10 in Fc receptor knockout mice demonstrated the mechanism of Y10 to be Fc receptor-dependent. These data indicate that an unarmed, tumor-specific mAb may be an effective immunotherapy against human tumors and potentially other pathologic processes in the “immunologically privileged” central nervous system. PMID:10852962

  15. p53 protein alterations in adult astrocytic tumors and oligodendrogliomas

    Directory of Open Access Journals (Sweden)

    Nayak Anupma

    2004-04-01

    Full Text Available BACKGROUND: p53 is a tumor suppressor gene implicated in the genesis of a variety of malignancies including brain tumors. Overexpression of the p53 protein is often used as a surrogate indicator of alterations in the p53 gene. AIMS: In this study, data is presented on p53 protein expression in adult cases (>15 years of age of astrocytic (n=152 and oligodendroglial (n=28 tumors of all grades. Of the astrocytic tumors, 86% were supratentorial in location while remaining 14% were located infratentorially - 8 in the the cerebellum and 13 in the brainstem. All the oligodendrogliomas were supratentorial. MATERIALS AND METHODS: p53 protein expression was evaluated on formalin-fixed paraffin-embedded sections using streptavidin biotin immunoperoxidase technique after high temperature antigen retrieval. RESULTS: Overall 52% of supratentorial astrocytic tumors showed p53 immunopositivity with no correlation to the histological grade. Thus, 58.8% of diffuse astrocytomas (WHO Grade II, 53.8% of anaplastic astrocytomas (WHO Grade III and 50% of glioblastomas (WHO Grade IV were p53 protein positive. In contrast, all the infratentorial tumors were p53 negative except for one brainstem glioblastoma. Similarly, pilocytic astrocytomas were uniformly p53 negative irrespective of the location. Among oligodendroglial tumors, the overall frequency of p53 immunopositivity was lower (only 28%, though a trend of positive correlation with the tumor grade was noted - 25% in Grade II and 31.5% in grade III (anaplastic oligodendroglioma. Interestingly, p53 labeling index (p53 LI did not correlate with the histopathological grade in both astrocytic and oligodendroglial tumors. CONCLUSIONS: Thus, this study gives an insight into the genetic and hence biological heterogeneity of gliomas, not only between astrocytic tumors vs. oligodendrogliomas but also within astrocytic tumors with regard to their grade and location. With p53 gene therapy trials in progress, this will

  16. Spectrum of pediatric brain tumors in India: A multi-institutional study

    Directory of Open Access Journals (Sweden)

    Ayushi Jain

    2011-01-01

    Full Text Available Background : Till date there is no published multi-institutional data regarding the epidemiological profile of pediatric brain tumors in India. Aim : The present retrospective study analyses the histological spectrum of pediatric age group brain tumors in seven tertiary care hospitals in India. Material and Methods : Data regarding frequencies of various primary brain tumors (diagnosed according to the World Health Organization (WHO classification, in 3936 pediatric patients (<18 yrs of age, was collected from seven tertiary care hospitals in India.Results : The most common primary pediatric brain tumors were astrocytic tumors (34.7%, followed by medulloblastoma and supratentorial primitive neuro-ectodermal tumors (22.4%, craniopharyngiomas (10.2% and ependymal tumors (9.8%. The most common astrocytic tumor was pilocytic astrocytoma. In comparison to adults, oligodendrogliomas and lymphomas were rare in children. Conclusions : Our study is the first such report on the histological spectrum of brain tumors in children in India. Except for a slightly higher frequency of craniopharyngiomas, the histological profile of pediatric brain tumors in India is similar to that reported in the Western literature.

  17. Measles may be a Risk Factor for Malignant Brain Tumors

    OpenAIRE

    Lehrer, Steven; Green, Sheryl; Rendo, Angela; Rosenzweig, Kenneth E.

    2015-01-01

    Background A possible risk factor for brain tumor might be measles, since late neurologic sequelae are part of measles pathology. Subacute sclerosing panencephalitis, a devastating neurologic illness, is prone to develop years after measles infection. Methods Because measles damage to the brain might increase the risk of brain tumor, we examined the relationship of measles incidence in 1960 and brain tumor incidence in 50 US States and the District of Columbia, 2004-2007. Data on number of ca...

  18. Brain Tumor Database, a free relational database for collection and analysis of brain tumor patient information.

    Science.gov (United States)

    Bergamino, Maurizio; Hamilton, David J; Castelletti, Lara; Barletta, Laura; Castellan, Lucio

    2015-03-01

    In this study, we describe the development and utilization of a relational database designed to manage the clinical and radiological data of patients with brain tumors. The Brain Tumor Database was implemented using MySQL v.5.0, while the graphical user interface was created using PHP and HTML, thus making it easily accessible through a web browser. This web-based approach allows for multiple institutions to potentially access the database. The BT Database can record brain tumor patient information (e.g. clinical features, anatomical attributes, and radiological characteristics) and be used for clinical and research purposes. Analytic tools to automatically generate statistics and different plots are provided. The BT Database is a free and powerful user-friendly tool with a wide range of possible clinical and research applications in neurology and neurosurgery. The BT Database graphical user interface source code and manual are freely available at http://tumorsdatabase.altervista.org.

  19. Brain tumor segmentation with Deep Neural Networks.

    Science.gov (United States)

    Havaei, Mohammad; Davy, Axel; Warde-Farley, David; Biard, Antoine; Courville, Aaron; Bengio, Yoshua; Pal, Chris; Jodoin, Pierre-Marc; Larochelle, Hugo

    2017-01-01

    In this paper, we present a fully automatic brain tumor segmentation method based on Deep Neural Networks (DNNs). The proposed networks are tailored to glioblastomas (both low and high grade) pictured in MR images. By their very nature, these tumors can appear anywhere in the brain and have almost any kind of shape, size, and contrast. These reasons motivate our exploration of a machine learning solution that exploits a flexible, high capacity DNN while being extremely efficient. Here, we give a description of different model choices that we've found to be necessary for obtaining competitive performance. We explore in particular different architectures based on Convolutional Neural Networks (CNN), i.e. DNNs specifically adapted to image data. We present a novel CNN architecture which differs from those traditionally used in computer vision. Our CNN exploits both local features as well as more global contextual features simultaneously. Also, different from most traditional uses of CNNs, our networks use a final layer that is a convolutional implementation of a fully connected layer which allows a 40 fold speed up. We also describe a 2-phase training procedure that allows us to tackle difficulties related to the imbalance of tumor labels. Finally, we explore a cascade architecture in which the output of a basic CNN is treated as an additional source of information for a subsequent CNN. Results reported on the 2013 BRATS test data-set reveal that our architecture improves over the currently published state-of-the-art while being over 30 times faster.

  20. Non-FDG PET imaging of brain tumors

    Institute of Scientific and Technical Information of China (English)

    HUANG Zemin; GUAN Yihui; ZUO Chuantao; ZHANG Zhengwei; XUE Fangping; LIN Xiangtong

    2007-01-01

    Due to relatively high uptake of glucose in the brain cortex, the use of FDG PET imaging is greatly limited in brain tumor imaging, especially for low-grade gliomas and some metastatic tumours. More and more tracers with higher specificity were developed lately for brain tumor imaging. There are 3 main types of non-FDG PET tracers:amino acid tracers, choline tracers and nucleic acid tracers. These tracers are now widely applied in many aspects of brain tumor imaging. This article summarized the general use of non-FDG PET in different aspects of brain tumor imaging.

  1. Intraoperative MRI in pediatric brain tumors

    Energy Technology Data Exchange (ETDEWEB)

    Choudhri, Asim F. [Le Bonheur Children' s Hospital, Department of Radiology, Memphis, TN (United States); University of Tennessee Health Science Center, Department of Radiology, Memphis, TN (United States); University of Tennessee Health Science Center, Department of Neurosurgery, Memphis, TN (United States); University of Tennessee Health Science Center, Department of Ophthalmology, Memphis, TN (United States); Le Bonheur Children' s Hospital, Le Bonheur Neuroscience Institute, Memphis, TN (United States); Siddiqui, Adeel [University of Tennessee Health Science Center, Department of Radiology, Memphis, TN (United States); Le Bonheur Children' s Hospital, Le Bonheur Neuroscience Institute, Memphis, TN (United States); Klimo, Paul; Boop, Frederick A. [University of Tennessee Health Science Center, Department of Neurosurgery, Memphis, TN (United States); Le Bonheur Children' s Hospital, Le Bonheur Neuroscience Institute, Memphis, TN (United States); Semmes-Murphey Neurologic and Spine Institute, Memphis, TN (United States); St. Jude Children' s Hospital, Division of Neurosurgery, Department of Surgery, Memphis, TN (United States)

    2015-09-15

    Intraoperative magnetic resonance imaging (iMRI) has emerged as an important tool in guiding the surgical management of children with brain tumors. Recent advances have allowed utilization of high field strength systems, including 3-tesla MRI, resulting in diagnostic-quality scans that can be performed while the child is on the operating table. By providing information about the possible presence of residual tumor, it allows the neurosurgeon to both identify and resect any remaining tumor that is thought to be safely accessible. By fusing the newly obtained images with the surgical guidance software, the images have the added value of aiding in navigation to any residual tumor. This is important because parenchyma often shifts during surgery. It also gives the neurosurgeon insight into whether any immediate postoperative complications have occurred. If any complications have occurred, the child is already in the operating room and precious minutes lost in transport and communications are saved. In this article we review the three main approaches to an iMRI system design. We discuss the possible roles for iMRI during intraoperative planning and provide guidance to help radiologists and neurosurgeons alike in the collaborative management of these children. (orig.)

  2. Positron Scanner for Locating Brain Tumors

    Science.gov (United States)

    Rankowitz, S.; Robertson, J. S.; Higinbotham, W. A.; Rosenblum, M. J.

    1962-03-01

    A system is described that makes use of positron emitting isotopes for locating brain tumors. This system inherently provides more information about the distribution of radioactivity in the head in less time than existing scanners which use one or two detectors. A stationary circular array of 32 scintillation detectors scans a horizontal layer of the head from many directions simultaneously. The data, consisting of the number of counts in all possible coincidence pairs, are coded and stored in the memory of a Two-Dimensional Pulse-Height Analyzer. A unique method of displaying and interpreting the data is described that enables rapid approximate analysis of complex source distribution patterns. (auth)

  3. Yes-associated protein 1 is widely expressed in human brain tumors and promotes glioblastoma growth.

    Science.gov (United States)

    Orr, Brent A; Bai, Haibo; Odia, Yazmin; Jain, Deepali; Anders, Robert A; Eberhart, Charles G

    2011-07-01

    The hippo pathway and its downstream mediator yes-associated protein 1 (YAP1) regulate mammalian organ size in part through modulating progenitor cell numbers. YAP1 has also been implicated as an oncogene in multiple human cancers. Currently, little is known about the expression of YAP1 either in normal human brain tissue or in central nervous system neoplasms. We used immunohistochemistry to evaluate nuclear YAP1 expression in the fetal and normal adult human brains and in 264 brain tumors. YAP1 was expressed in fetal and adult brain regions known to harbor neural progenitor cells, but there was little YAP1 immunoreactivity in the adult cerebral cortex. YAP1 protein was also readily detected in the nuclei of human brain tumors. In medulloblastoma, the expression varied between histologic subtypes and was most prominent in nodular/desmoplastic tumors. In gliomas, it was frequently expressed in infiltrating astrocytomas and oligodendrogliomas but rarely in pilocytic astrocytomas. Using a loss-of-function approach, we show that YAP1 promoted growth of glioblastoma cell lines in vitro. High levels of YAP1 messenger RNA expression were associated with aggressive molecular subsets of glioblastoma and with a nonsignificant trend toward reduced mean survival in human astrocytoma patients. These findings suggest that YAP1 may play an important role in normal human brain development and that it could represent a new target in human brain tumors.

  4. Human primary brain tumor cell growth inhibition in serum-free medium optimized for neuron survival.

    Science.gov (United States)

    Brewer, Gregory J; LeRoux, Peter D

    2007-07-09

    Glioblastoma is the most common primary brain tumor in adults from which about 15,000 patients die each year in the United States. Despite aggressive surgery, radiotherapy and chemotherapy, median survival remains only 1 year. Here we evaluate growth of primary human brain tumor cells in a defined nutrient culture medium (Neuregen) that was optimized for neuron regeneration. We hypothesized that Neuregen would inhibit tumor cell growth because of its ability to inhibit gliosis in rat brain. Tumor tissue was collected from 18 patients including 10 males and 8 females (mean age 60+/-12 years) who underwent craniotomy for newly diagnosed, histologically confirmed brain tumors. The tissue was shipped overnight in Hibernate transport medium. Tumor cells were isolated and plated in Neurobasal/serum or Neuregen on culture plastic. After 1 week, growth in Neuregen was significantly less in 9/10 glioblastoma multiforme cases, 5/5 meningioma cases and 3/3 cases of brain metastasis. Analysis of deficient formulations of Neuregen and formulations to which selected components were added back implicate no single active component. However, individual cases were sensitive to corticosterone, selenium, ethanolamine, fatty acids and/or antioxidants. Therefore, a defined culture medium that promotes neuron regeneration inhibits the growth of human primary glioblastoma, meningioma and metastatic tumor cells in culture. The possible in vivo efficacy of Neuregen for treatment of brain tumor resections remains to be determined.

  5. Fetal antigen 2 in primary and secondary brain tumors

    DEFF Research Database (Denmark)

    Rasmussen, H Boje; Teisner, B; Schrøder, H D

    1991-01-01

    Immunohistochemical deposition and distribution of fetal antigen 2 (FA2) was examined in normal brain tissue and in primary and metastatic tumors of the brain. In normal brain tissue FA2 was exclusively found linearly around the vessels, along pia and in arachnoidea. A similar localization was seen...... in primary brain tumors except in gliosarcoma where FA2 was distributed diffusely in the sarcoma region and was absent in the glioma region. In metastatic carcinoma with tumor stroma a diffuse staining reaction was seen in the stroma and with a basement membrane (BM) like staining at the tumor cell....../stroma interface. Intracytoplasmic FA2 staining of the tumor cells was seen in areas without tumor stroma. In metastatic melanoma a BM like FA2 staining was seen around and between individual tumor cells. The staining patterns seen in the metastatic tumors were in accordance with that of the corresponding primary...

  6. What Are Brain and Spinal Cord Tumors in Children?

    Science.gov (United States)

    ... cells in the brain. They transmit chemical and electric signals that determine thought, memory, emotion, speech, muscle movement, ... brain and spinal cord. This helps neurons send electric signals through the axons. Tumors starting in these cells ...

  7. Therapeutic vaccines for malignant brain tumors

    Directory of Open Access Journals (Sweden)

    Michael P Gustafson

    2008-12-01

    Full Text Available Michael P Gustafson1, Keith L Knutson2, Allan B Dietz11Division of Transfusion Medicine; 2Department of Immunology, Mayo Clinic, Rochester, MN, USAAbstract: Malignant gliomas are the most common and aggressive form of brain tumors. Current therapy consists of surgical resection, followed by radiation therapy and concomitant chemotherapy. Despite these treatments, the prognosis for patients is poor. As such, investigative therapies including tumor vaccines have targeted this devastating condition. Recent clinical trials involving immunotherapy, specifically dendritic cell (DC based vaccines, have shown promising results. Overall, these vaccines are well tolerated with few documented side effects. In many patients receiving vaccines, tumor progression was delayed and the median overall survival of these patients was prolonged. Despite these encouraging results, several factors have limited the efficacy of DC vaccines. Here we discuss the potential of DC vaccines as adjuvant therapy and current obstacles of generating highly pure and potent DC vaccines in the context of malignant glioma. Taken together, the results from earlier clinical studies justify additional clinical trials aimed at improving the efficacy of DC vaccines.Keywords: malignant glioma, glioblastoma multiforme, vaccine, immunotherapy, dendritic cells

  8. Increased expression of aquaporin-4 in human traumatic brain injury and brain tumors

    Institute of Scientific and Technical Information of China (English)

    HU Hua; YAO Hong-tian; ZHANG Wei-ping; ZHANG LEI; DING Wei; ZHANG Shi-hong; CHEN Zhong; WEI Er-qing

    2005-01-01

    Objective: To characterize the expression of aquaporin-4 (AQP4), one of the aquaporins (AQPs), in human brain specimens from patients with traumatic brain injury or brain tumors. Methods: Nineteen human brain specimens were obtained from the patients with traumatic brain injury, brain tumors, benign meningioma or early stage hemorrhagic stroke. MRI or CT imaging was used to assess brain edema. Hematoxylin and eosin staining were used to evaluate cell damage. Immunohistochemistry was used to detect the AQP4 expression. Results: AQP4 expression was increased from 15h to at least 8 d after injury. AQP4immunoreactivity was strong around astrocytomas, ganglioglioma and metastatic adenocarcinoma. However, AQP4 immunoreactivity was only found in the centers of astrocytomas and ganglioglioma, but not in metastatic adenocarcinoma derived from lung.Conclusion: AQP4 expression increases in human brains after traumatic brain injury, within brain-derived tumors, and around brain tumors.

  9. Intensity-Modulated Radiation Therapy for Primary Brain Tumors

    Institute of Scientific and Technical Information of China (English)

    Zhong-min Wang

    2004-01-01

    Radiation therapy has been used to treat primary brain tumors as standard primary and/or adjunctive therapies for decades. It is difficult for conventional radiotherapy to deliver a lethal dose of radiation to the tumors while sparing surrounding normal brain due to complicated structures and multifunction in human brain. With the understanding of radiation physics and computer technology, a number of novel and more precise radiotherapies have been developed in recent years. Intensity modulated radiotherapy (IMRT) is one of these strategies. The use of IMRT in the treatment of primary brain tumors is being increasing nowadays. It shows great promise for some of primary brain tumors and also presents some problems, This review highlights current IMRT in the treatment of mainly primary brain tumors.

  10. Increased expression of aquaporin-4 in human traumatic brain injury and brain tumors

    Institute of Scientific and Technical Information of China (English)

    HuaHu; Wei-PingZhang; LeiZhang; ZhongChen; Er-QingWei

    2004-01-01

    Aquaporin-4 (AQP4) is one of the aquaporins (AQPs), a water channel family. In the brain, AQP4 is expressed in astroeyte foot processes, and plays an important role in water homeostasis and in the formation of brain edema. In our study, AQP4 expression in human brain specimens from patients with traumatic brain injury or different brain tumors was detected

  11. Growth Patterns of Microscopic Brain Tumors

    CERN Document Server

    Sander, L M; Sander, Leonard M.; Deisboeck, Thomas S.

    2002-01-01

    Highly malignant brain tumors such as Glioblastoma Multiforme (GBM) form complex growth patterns in vitro in which invasive cells organize in tenuous branches. Here, we formulate a chemotaxis model for this sort of growth. A key element controlling the pattern is homotype attraction, i.e., the tendency for invasive cells to follow pathways previously explored. We investigate this in two ways: we show that there is an intrinsic instability in the model, which leads to branch formation. We also give a discrete description for the expansion of the invasive zone, and a continuum model for the nutrient supply. The results indicate that both, strong heterotype chemotaxis and strong homotype chemo-attraction are required for branch formation within the invasive zone. Our model thus can give a way to assess the importance of the various processes, and a way to explore and analyze transitions between different growth regimes.

  12. Anticonvulsant therapy in brain-tumor related epilepsy

    Directory of Open Access Journals (Sweden)

    Fröscher Walter

    2016-06-01

    Full Text Available Background. The lifetime risk of patients with brain tumors to have focal epileptic seizures is 10-100%; the risk depends on different histology. Specific guidelines for drug treatment of brain tumor-related seizures have not yet been established.

  13. Bone Mineral Density Reduction Following Irradiation of Brain Tumors

    Directory of Open Access Journals (Sweden)

    J Gordon Millichap

    2006-11-01

    Full Text Available Total body bone mineral density (TBBMD was measured by X-ray absorptiometry in 46 brain tumor patients aged from 3.8 to 28.7 years (mean 14.9 y at a mean of 6.4 y (range 1.4-14.8 y after end of treatment for brain tumor.

  14. Diagnosis and prognosis of brain tumors in clinical trials

    NARCIS (Netherlands)

    T.S. Gorlia (Thierry)

    2013-01-01

    textabstractAccording to the Central Brain Registry Of The United States (CBTRUS) statistical report (February 2012) the incidence rate of all primary non malignant and malignant brain and central nervous system tumors is 19.89 cases per 100.000 (11.58 for non-malignant tumors and 7.31 for malignant

  15. Recruited brain tumor-derived mesenchymal stem cells contribute to brain tumor progression.

    Science.gov (United States)

    Behnan, Jinan; Isakson, Pauline; Joel, Mrinal; Cilio, Corrado; Langmoen, Iver A; Vik-Mo, Einar O; Badn, Wiaam

    2014-05-01

    The identity of the cells that contribute to brain tumor structure and progression remains unclear. Mesenchymal stem cells (MSCs) have recently been isolated from normal mouse brain. Here, we report the infiltration of MSC-like cells into the GL261 murine glioma model. These brain tumor-derived mesenchymal stem cells (BT-MSCs) are defined with the phenotype (Lin-Sca-1+CD9+CD44+CD166+/-) and have multipotent differentiation capacity. We show that the infiltration of BT-MSCs correlates to tumor progression; furthermore, BT-MSCs increased the proliferation rate of GL261 cells in vitro. For the first time, we report that the majority of GL261 cells expressed mesenchymal phenotype under both adherent and sphere culture conditions in vitro and that the non-MSC population is nontumorigenic in vivo. Although the GL261 cell line expressed mesenchymal phenotype markers in vitro, most BT-MSCs are recruited cells from host origin in both wild-type GL261 inoculated into green fluorescent protein (GFP)-transgenic mice and GL261-GFP cells inoculated into wild-type mice. We show the expression of chemokine receptors CXCR4 and CXCR6 on different recruited cell populations. In vivo, the GL261 cells change marker profile and acquire a phenotype that is more similar to cells growing in sphere culture conditions. Finally, we identify a BT-MSC population in human glioblastoma that is CD44+CD9+CD166+ both in freshly isolated and culture-expanded cells. Our data indicate that cells with MSC-like phenotype infiltrate into the tumor stroma and play an important role in tumor cell growth in vitro and in vivo. Thus, we suggest that targeting BT-MSCs could be a possible strategy for treating glioblastoma patients.

  16. Brain size and limits to adult neurogenesis.

    Science.gov (United States)

    Paredes, Mercedes F; Sorrells, Shawn F; Garcia-Verdugo, Jose M; Alvarez-Buylla, Arturo

    2016-02-15

    The walls of the cerebral ventricles in the developing embryo harbor the primary neural stem cells from which most neurons and glia derive. In many vertebrates, neurogenesis continues postnatally and into adulthood in this region. Adult neurogenesis at the ventricle has been most extensively studied in organisms with small brains, such as reptiles, birds, and rodents. In reptiles and birds, these progenitor cells give rise to young neurons that migrate into many regions of the forebrain. Neurogenesis in adult rodents is also relatively widespread along the lateral ventricles, but migration is largely restricted to the rostral migratory stream into the olfactory bulb. Recent work indicates that the wall of the lateral ventricle is highly regionalized, with progenitor cells giving rise to different types of neurons depending on their location. In species with larger brains, young neurons born in these spatially specified domains become dramatically separated from potential final destinations. Here we hypothesize that the increase in size and topographical complexity (e.g., intervening white matter tracts) in larger brains may severely limit the long-term contribution of new neurons born close to, or in, the ventricular wall. We compare the process of adult neuronal birth, migration, and integration across species with different brain sizes, and discuss how early regional specification of progenitor cells may interact with brain size and affect where and when new neurons are added.

  17. Molecular Mechanism of Adult Neurogenesis and its Association with Human Brain Diseases

    Science.gov (United States)

    Liu, He; Song, Ni

    2016-01-01

    Recent advances in neuroscience challenge the old dogma that neurogenesis occurs only during embryonic development. Mounting evidence suggests that functional neurogenesis occurs throughout adulthood. This review article discusses molecular factors that affect adult neurogenesis, including morphogens, growth factors, neurotransmitters, transcription factors, and epigenetic factors. Furthermore, we summarize and compare current evidence of associations between adult neurogenesis and human brain diseases such as Alzheimer’s disease, Parkinson’s disease, Huntington’s disease, and brain tumors. PMID:27375363

  18. Acupuncture stimulation induces neurogenesis in adult brain.

    Science.gov (United States)

    Nam, Min-Ho; Ahn, Kwang Seok; Choi, Seung-Hoon

    2013-01-01

    The discovery of adult neurogenesis was a turning point in the field of neuroscience. Adult neurogenesis offers an enormous possibility to open a new therapeutic paradigm of neurodegenerative diseases and stroke. Recently, several studies suggested that acupuncture may enhance adult neurogenesis. Acupuncture has long been an important treatment for brain diseases in the East Asia. The scientific mechanisms of acupuncture treatment for the diseases, such as Alzheimer's disease, Parkinson's disease, and stroke, have not been clarified yet; however, the neurogenic effect of acupuncture can be a possible reason. Here, we have reviewed the studies on the effect of stimulation at various acupoints for neurogenesis, such as ST36 and GV20. The suggested mechanisms are also discussed including upregulation of brain-derived neurotrophic factor, glial cell line-derived neurotrophic factor, basic fibroblast growth factor and neuropeptide Y, and activation of the function of primo vascular system.

  19. CARS and non-linear microscopy imaging of brain tumors

    Science.gov (United States)

    Galli, Roberta; Uckermann, Ortrud; Tamosaityte, Sandra; Geiger, Kathrin; Schackert, Gabriele; Steiner, Gerald; Koch, Edmund; Kirsch, Matthias

    2013-06-01

    Nonlinear optical microscopy offers a series of techniques that have the potential to be applied in vivo, for intraoperative identification of tumor border and in situ pathology. By addressing the different content of lipids that characterize the tumors with respect to the normal brain tissue, CARS microscopy enables to discern primary and secondary brain tumors from healthy tissue. A study performed in mouse models shows that the reduction of the CARS signal is a reliable quantity to identify brain tumors, irrespective from the tumor type. Moreover it enables to identify tumor borders and infiltrations at a cellular resolution. Integration of CARS with autogenous TPEF and SHG adds morphological and compositional details about the tissue. Examples of multimodal CARS imaging of different human tumor biopsies demonstrate the ability of the technique to retrieve information useful for histopathological diagnosis.

  20. Patients With Brain Tumors: Who Receives Postacute Occupational Therapy Services?

    Science.gov (United States)

    Chan, Vincy; Xiong, Chen; Colantonio, Angela

    2015-01-01

    Data on the utilization of occupational therapy among patients with brain tumors have been limited to those with malignant tumors and small samples of patients outside North America in specialized palliative care settings. We built on this research by examining the characteristics of patients with brain tumors who received postacute occupational therapy services in Ontario, Canada, using health care administrative data. Between fiscal years 2004-2005 and 2008-2009, 3,199 patients with brain tumors received occupational therapy services in the home care setting after hospital discharge; 12.4% had benign brain tumors, 78.2% had malignant brain tumors, and 9.4% had unspecified brain tumors. However, patients with benign brain tumors were older (mean age=63.3 yr), and a higher percentage were female (65.2%). More than 90% of patients received in-home occupational therapy services. Additional research is needed to examine the significance of these differences and to identify factors that influence access to occupational therapy services in the home care setting.

  1. How do brain tumors alter functional connectivity? : A magnetoencephalography study

    NARCIS (Netherlands)

    Bartolomei, Fabrice; Bosma, Ingeborg; Klein, Martin; Baayen, Johannes C; Reijneveld, Jaap C; Postma, Tjeerd J; Heimans, Jan J; van Dijk, Bob W; de Munck, Jan C; de Jongh, Arent; Cover, Keith S; Stam, Cornelis J

    2006-01-01

    OBJECTIVE: This study was undertaken to test the hypothesis that brain tumors interfere with normal brain function by disrupting functional connectivity of brain networks. METHODS: Functional connectivity was assessed by computing the synchronization likelihood in a broad band (0.5-60Hz) or in the g

  2. Clinical topographical correlation upon brain tumors in children

    Directory of Open Access Journals (Sweden)

    A.M. Dolgov

    2014-01-01

    Full Text Available The aim of the study was to explore the most characteristic clinical manifestations of brain tumors in children, depending on their localization, and to detect the earliest of them. Patients and methods. A total of 56 children (32 boys and 24 girls with brain tumor, aged from 1.5 months to 15 years, were examined. The time elapsed between the onset of disease to the emergence of clinical symptoms was assessed. Neurological symptomatology was compared to the localization of a tumor diagnosed using neuroimaging techniques (computed tomography or magnetic resonance imaging and during surgery. Surgery was performed in 18 children (in all of them, localization of the process was observed in the posterior cranial fossa, PCF. Results. The highest incidence of brain tumors was revealed in children aged 3–13 years; most patients became ill at the age between 3 and 6 years. Tumors of the PCF predominated in terms of their localization (67.9% of cases. Intracerebral tumors of the hemispheres or vermis were observed in most (63.2% patients with tumors of the PCF. In 11 (61% of the 18 operated children with subtentorial tumors, astrocytomas of various degrees of differentiation and medulloblastomas were detected using the histological examination. Tumors of the IV ventricle were ependymal. Tumors of the cerebral hemispheres (19.6%, of the pineal and chiasmosellar regions (8.9% predominated among supratentorial tumors. The time between the emergence of initial symptoms of a disease and admission to hospital ranged from 1 month to 3 years. The most characteristic and earliest symptoms for tumors of the PCF and brain ventricles were headache, nausea and vomiting. For tumors of the cerebellar vermis and hemispheres, these symptoms included impairment of the coordination of movements and the muscle tone change. For brain stem tumors, these symptoms included dysfunction of the cranial nerves. For tumors of the cerebral hemispheres, these were seizures and motor

  3. Research on Perfusion CT in Rabbit Brain Tumor Model

    Energy Technology Data Exchange (ETDEWEB)

    Ha, Bon Chul; Kwak, Byung Kook; Jung, Ji Sung [Dept. of Diagnostic Radiology, Chung Ang University Hospital, Seoul (Korea, Republic of); Lim, Cheong Hwan; Jung, Hong Ryang [Dept. of Radiological Science, Hanseo University, Seosan (Korea, Republic of)

    2012-06-15

    We investigated the vascular characteristics of tumors and normal tissue using perfusion CT in the rabbit brain tumor model. The VX2 carcinoma concentration of 1 x 10{sup 7} cells/ml(0.1 ml) was implanted in the brain of nine New Zealand white rabbits (weight: 2.4 kg-3.0 kg, mean: 2.6 kg). The perfusion CT was scanned when the tumors were grown up to 5 mm. The tumor volume and perfusion value were quantitatively analyzed by using commercial workstation (advantage windows workstation, AW, version 4.2, GE, USA). The mean volume of implanted tumors was 316{+-}181 mm{sup 3}, and the biggest and smallest volumes of tumor were 497 mm{sup 3} and 195 mm{sup 3}, respectively. All the implanted tumors in rabbits are single-nodular tumors, and intracranial metastasis was not observed. In the perfusion CT, cerebral blood volume (CBV) were 74.40{+-}9.63, 16.8{+-}0.64, 15.24{+-}3.23 ml/100g in the tumor core, ipsilateral normal brain, and contralateral normal brain, respectively (p{<=}0.05). In the cerebral blood flow (CBF), there were significant differences between the tumor core and both normal brains (p{<=}0.05), but no significant differences between ipsilateral and contralateral normal brains (962.91{+-}75.96 vs. 357.82{+-}12.82 vs. 323.19{+-}83.24 ml/100g/min). In the mean transit time (MTT), there were significant differences between the tumor core and both normal brains (p{<=}0.05), but no significant differences between ipsilateral and contralateral normal brains (4.37{+-}0.19 vs. 3.02{+-}0.41 vs. 2.86{+-}0.22 sec). In the permeability surface (PS), there were significant differences among the tumor core, ipsilateral and contralateral normal brains (47.23{+-}25.44 vs. 14.54{+-}1.60 vs. 6.81{+-}4.20 ml/100g/min)(p{<=}0.05). In the time to peak (TTP) were no significant differences among the tumor core, ipsilateral and contralateral normal brains. In the positive enhancement integral (PEI), there were significant differences among the tumor core, ipsilateral and

  4. Pediatric Brain Tumors: Genomics and Epigenomics Pave the Way.

    Science.gov (United States)

    Fontebasso, Adam M; Jabado, Nada

    2015-01-01

    Primary malignant brain tumors remain a disproportionate cause of morbidity and mortality in humans. A number of studies exploring the cancer genome of brain tumors across ages using integrated genetics and epigenetics and next-generation sequencing technologies have recently emerged. This has led to considerable advances in the understanding of the basic biology and pathogenesis of brain tumors, including the most malignant and common variants in children: gliomas and medulloblastoma. Notably, studies of pediatric brain tumors have identified unexpected oncogenic pathways implicated in tumorigenesis. These range from a single pathway/molecule defect such as abnormalities of the mitogen-activated protein kinase pathway, considered to be a hallmark of pilocytic astrocytomas, to alterations in the epigenome as a critical component altered in many subgroups of high-grade brain tumors. Importantly, the type, timing, and spatial clustering of these molecular alterations provide a better understanding of the pathogenesis of the respective brain tumor they target and critical markers for therapy that will help refine pathological grading. We summarize these novel findings in pediatric brain tumors, which also are put in the context of the evolving notion of molecular pathology, now a mandated tool for proper classification and therapy assignment in the clinical setting.

  5. Absence of pathogenic mitochondrial DNA mutations in mouse brain tumors

    Directory of Open Access Journals (Sweden)

    Seyfried Thomas N

    2005-08-01

    Full Text Available Abstract Background Somatic mutations in the mitochondrial genome occur in numerous tumor types including brain tumors. These mutations are generally found in the hypervariable regions I and II of the displacement loop and unlikely alter mitochondrial function. Two hypervariable regions of mononucleotide repeats occur in the mouse mitochondrial genome, i.e., the origin of replication of the light strand (OL and the Arg tRNA. Methods In this study we examined the entire mitochondrial genome in a series of chemically induced brain tumors in the C57BL/6J strain and spontaneous brain tumors in the VM mouse strain. The tumor mtDNA was compared to that of mtDNA in brain mitochondrial populations from the corresponding syngeneic mouse host strain. Results Direct sequencing revealed a few homoplasmic base pair insertions, deletions, and substitutions in the tumor cells mainly in regions of mononucleotide repeats. A heteroplasmic mutation in the 16srRNA gene was detected in a spontaneous metastatic VM brain tumor. Conclusion None of the mutations were considered pathogenic, indicating that mtDNA somatic mutations do not likely contribute to the initiation or progression of these diverse mouse brain tumors.

  6. Stem Cells and the Origin and Propagation of Brain Tumors

    OpenAIRE

    2008-01-01

    In recent years there has been a flood of interest in the relationship between brain tumors and stem cells. Some investigators have focused on the sensitivity of normal stem cells to transformation, others have described phenotypic or functional similarities between tumor cells and stem cells, and still others have suggested that tumors contain a subpopulation of “cancer stem cells” that is crucial for tumor maintenance or propagation. While all these concepts are interesting and provide insi...

  7. Brain tumor classification of microscopy images using deep residual learning

    Science.gov (United States)

    Ishikawa, Yota; Washiya, Kiyotada; Aoki, Kota; Nagahashi, Hiroshi

    2016-12-01

    The crisis rate of brain tumor is about one point four in ten thousands. In general, cytotechnologists take charge of cytologic diagnosis. However, the number of cytotechnologists who can diagnose brain tumors is not sufficient, because of the necessity of highly specialized skill. Computer-Aided Diagnosis by computational image analysis may dissolve the shortage of experts and support objective pathological examinations. Our purpose is to support a diagnosis from a microscopy image of brain cortex and to identify brain tumor by medical image processing. In this study, we analyze Astrocytes that is a type of glia cell of central nerve system. It is not easy for an expert to discriminate brain tumor correctly since the difference between astrocytes and low grade astrocytoma (tumors formed from Astrocyte) is very slight. In this study, we present a novel method to segment cell regions robustly using BING objectness estimation and to classify brain tumors using deep convolutional neural networks (CNNs) constructed by deep residual learning. BING is a fast object detection method and we use pretrained BING model to detect brain cells. After that, we apply a sequence of post-processing like Voronoi diagram, binarization, watershed transform to obtain fine segmentation. For classification using CNNs, a usual way of data argumentation is applied to brain cells database. Experimental results showed 98.5% accuracy of classification and 98.2% accuracy of segmentation.

  8. Radiosurgery-induced brain tumor. Case report.

    Science.gov (United States)

    Kaido, T; Hoshida, T; Uranishi, R; Akita, N; Kotani, A; Nishi, N; Sakaki, T

    2001-10-01

    The authors describe a case of glioblastoma multiforme (GBM) associated with previous gamma knife radiosurgery for a cerebral arteriovenous malformation (AVM). A 14-year-old boy had undergone radiosurgery for an AVM, which was performed using a 201-source 60Co gamma knife system at another institution. The maximum and margin radiation doses used in the procedure were 40 and 20 Gy, respectively. One year after radiosurgery, the patient noticed onset of mild left hemiparesis due to radiation necrosis. Six and one-half years after radiosurgery, at the age of 20 years, the patient experienced an attack of generalized tonic-clonic seizure. Magnetic resonance (MR) imaging revealed the existence of a brain tumor in the right parietal lobe. The patient underwent an operation and the histological diagnosis of the lesion was GBM. Ten months following the operation, that is, 99 months postradiosurgery, this patient died. To the best of the authors' knowledge, this is the first reported case of a neoplasm induced by radiosurgery for an AVM and the second case in which it occurred following radiosurgery for intracranial disease.

  9. Labeled Putrescine as a Probe in Brain Tumors

    Science.gov (United States)

    Volkow, Nora; Goldman, Stephen S.; Flamm, Eugene S.; Cravioto, Humberto; Wolf, Alfred P.; Brodie, Jonathan D.

    1983-08-01

    The polyamine metabolism of transplanted N-nitrosomethylurea-derived rat glioma was determined with radiolabeled putrescine used as a marker for malignancy. The uptake of putrescine in vivo was complete within 5 minutes and was specific for tumor tissue. The conversion of putrescine to spermine and other metabolites by the tumor was rapid, in contrast to the case for adjacent normal brain. These results suggest that putrescine labeled with carbon-11 may be used as a positron-emission tomographic tracer for the selective metabolic imaging of brain tumor and may be used in an appropriate model as a marker for tumor growth rate.

  10. Cilengitide in Treating Children With Refractory Primary Brain Tumors

    Science.gov (United States)

    2013-09-27

    Childhood Central Nervous System Germ Cell Tumor; Childhood Choroid Plexus Tumor; Childhood Craniopharyngioma; Childhood Ependymoblastoma; Childhood Grade I Meningioma; Childhood Grade II Meningioma; Childhood Grade III Meningioma; Childhood High-grade Cerebellar Astrocytoma; Childhood High-grade Cerebral Astrocytoma; Childhood Infratentorial Ependymoma; Childhood Low-grade Cerebellar Astrocytoma; Childhood Low-grade Cerebral Astrocytoma; Childhood Medulloepithelioma; Childhood Mixed Glioma; Childhood Oligodendroglioma; Childhood Supratentorial Ependymoma; Recurrent Childhood Brain Stem Glioma; Recurrent Childhood Brain Tumor; Recurrent Childhood Cerebellar Astrocytoma; Recurrent Childhood Cerebral Astrocytoma; Recurrent Childhood Ependymoma; Recurrent Childhood Medulloblastoma; Recurrent Childhood Pineoblastoma; Recurrent Childhood Subependymal Giant Cell Astrocytoma; Recurrent Childhood Supratentorial Primitive Neuroectodermal Tumor; Recurrent Childhood Visual Pathway and Hypothalamic Glioma

  11. State of the art survey on MRI brain tumor segmentation.

    Science.gov (United States)

    Gordillo, Nelly; Montseny, Eduard; Sobrevilla, Pilar

    2013-10-01

    Brain tumor segmentation consists of separating the different tumor tissues (solid or active tumor, edema, and necrosis) from normal brain tissues: gray matter (GM), white matter (WM), and cerebrospinal fluid (CSF). In brain tumor studies, the existence of abnormal tissues may be easily detectable most of the time. However, accurate and reproducible segmentation and characterization of abnormalities are not straightforward. In the past, many researchers in the field of medical imaging and soft computing have made significant survey in the field of brain tumor segmentation. Both semiautomatic and fully automatic methods have been proposed. Clinical acceptance of segmentation techniques has depended on the simplicity of the segmentation, and the degree of user supervision. Interactive or semiautomatic methods are likely to remain dominant in practice for some time, especially in these applications where erroneous interpretations are unacceptable. This article presents an overview of the most relevant brain tumor segmentation methods, conducted after the acquisition of the image. Given the advantages of magnetic resonance imaging over other diagnostic imaging, this survey is focused on MRI brain tumor segmentation. Semiautomatic and fully automatic techniques are emphasized.

  12. Clinical results of BNCT for malignant brain tumors in children

    Energy Technology Data Exchange (ETDEWEB)

    Nakagawa, Yoshinobu [Department of Neurosurgery, Kagawa National Children' s Hospital, Kagawa 765-8501 (Japan)], E-mail: ynakagawa0517@yahoo.co.jp; Kageji, Teruyoshi; Mizobuchi, Yoshifumi [Department of Neurosurgery, University of Tokushima, Tokushima 770-8503 (Japan); Kumada, Hiroaki [Department of Research Reactor, Japan Atomic Energy Research Institute, Ibaragi 319-1195 (Japan); Nakagawa, Yoshiaki [Department of Medical Informatics, Post Graduated School, Kyoto University, Kyoto (Japan)

    2009-07-15

    It is very difficult to treat the patients with malignant brain tumor in children, especially under 3 years, because the conventional irradiation cannot be applied due to the damage of normal brain tissue. However, boron neutron capture therapy (BNCT) has tumor selectivity such that it can make damage only in tumor cells. We evaluated the clinical results and courses in patients with malignant glioma under 15 years. Among 183 patients with brain tumors treated by our group using BSH-based intra-operative BNCT, 23 patients were under 15 years. They included 4 patients under 3 years. There were 3 glioblastomas (GBM), 6 anaplastic astrocytomas(AAS), 7 primitive neuroectodermal tumors (PNET), 6 pontine gliomas and 1 anaplastic ependymoma. All GBM and PNET patients died due to CSF and/or CNS dissemination without local tumor regrowth. All pontine glioma patients died due to regrowth of the tumor. Four of 6 anaplastic astrocytoma and 1 anaplastic ependymoma patients alive without tumor recurrence. BNCT can be applied to malignant brain tumors in children, especially under 3 years instead of conventional radiation. Although it can achieve the local control in the primary site, it cannot prevent CSF dissemination in patients with glioblastoma.

  13. Current state of our knowledge on brain tumor epidemiology.

    Science.gov (United States)

    Ostrom, Quinn T; Barnholtz-Sloan, Jill S

    2011-06-01

    The overall incidence of brain tumors for benign and malignant tumors combined is 18.71 per 100,000 person-years; 11.52 per 100,000 person-years for benign tumors and 7.19 per 100,000 person-years for malignant tumors. Incidence, response to treatment, and survival after diagnosis vary greatly by age at diagnosis, histologic type of tumor, and degree of neurologic compromise. The only established environmental risk factor for brain tumors is ionizing radiation exposure. Exposure to radiofrequency electromagnetic fields via cell phone use has gained a lot of attention as a potential risk factor for brain tumor development. However, studies have been inconsistent and inconclusive due to systematic differences in study designs and difficulty of accurately measuring cell phone use. Recently studies of genetic risk factors for brain tumors have expanded to genome-wide association studies. In addition, genome-wide studies of somatic genetic changes in tumors show correlation with clinical outcomes.

  14. From reverse transcription to human brain tumors

    Directory of Open Access Journals (Sweden)

    Dmitrenko V. V.

    2013-05-01

    Full Text Available Reverse transcriptase from avian myeloblastosis virus (AMV was the subject of the study, from which the investi- gations of the Department of biosynthesis of nucleic acids were started. Production of AMV in grams quantities and isolation of AMV reverse transcriptase were established in the laboratory during the seventies of the past cen- tury and this initiated research on the cDNA synthesis, cloning and investigation of the structure and functions of the eukaryotic genes. Structures of salmon insulin and insulin-like growth factor (IGF family genes and their transcripts were determined during long-term investigations. Results of two modern techniques, microarray-ba- sed hybridization and SAGE, were used for the identification of the genes differentially expressed in astrocytic gliomas and human normal brain. Comparison of SAGE results on the genes overexpressed in glioblastoma with the results of microarray analysis revealed a limited number of common genes. 105 differentially expressed genes, common to both methods, can be included in the list of candidates for the molecular typing of glioblastoma. The first experiments on the classification of glioblastomas based on the data of the 20 genes expression were conducted by using of artificial neural network analysis. The results of these experiments showed that the expression profiles of these genes in 224 glioblastoma samples and 74 normal brain samples could be according to the Koho- nen’s maps. The CHI3L1 and CHI3L2 genes of chitinase-like cartilage protein were revealed among the most overexpressed genes in glioblastoma, which could have prognostic and diagnostic potential. Results of in vitro experiments demonstrated that both proteins, CHI3L1 and CHI3L2, may initiate the phosphorylation of ERK1/ ERK2 and AKT kinases leading to the activation of MAPK/ERK1/2 and PI3K/AKT signaling cascades in human embryonic kidney 293 cells, human glioblastoma U87MG, and U373 cells. The new human cell line

  15. Extracellular proteolysis in the adult murine brain.

    Science.gov (United States)

    Sappino, A P; Madani, R; Huarte, J; Belin, D; Kiss, J Z; Wohlwend, A; Vassalli, J D

    1993-08-01

    Plasminogen activators are important mediators of extracellular metabolism. In the nervous system, plasminogen activators are thought to be involved in the remodeling events required for cell migration during development and regeneration. We have now explored the expression of the plasminogen activator/plasmin system in the adult murine central nervous system. Tissue-type plasminogen activator is synthesized by neurons of most brain regions, while prominent tissue-type plasminogen activator-catalyzed proteolysis is restricted to discrete areas, in particular within the hippocampus and hypothalamus. Our observations indicate that tissue-type plasminogen activator-catalyzed proteolysis in neural tissues is not limited to ontogeny, but may also contribute to adult central nervous system physiology, for instance by influencing neuronal plasticity and synaptic reorganization. The identification of an extracellular proteolytic system active in the adult central nervous system may also help gain insights into the pathogeny of neurodegenerative disorders associated with extracellular protein deposition.

  16. Imaging of brain tumors with histological correlations. 2. ed.

    Energy Technology Data Exchange (ETDEWEB)

    Drevelegas, Antonios (ed.)

    2011-07-01

    This volume provides a deeper understanding of the diagnosis of brain tumors by correlating radiographic imaging features with the underlying pathological abnormalities. All modern imaging modalities are used to complete a diagnostic overview of brain tumors with emphasis on recent advances in diagnostic neuroradiology. High-quality illustrations depicting common and uncommon imaging characteristics of a wide range of brain tumors are presented and analysed, drawing attention to the ways in which these characteristics reflect different aspects of pathology. Important theoretical considerations are also discussed. Since the first edition, chapters have been revised and updated and new material has been added, including detailed information on the clinical application of functional MRI and diffusion tensor imaging. Radiologists and other clinicians interested in the current diagnostic approach to brain tumors will find this book to be an invaluable and enlightening clinical tool. (orig.)

  17. Mathematical modeling of brain tumors: effects of radiotherapy and chemotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Powathil, G [Department of Applied Mathematics, University of Waterloo, Waterloo, Ontario, N2L 3G1 (Canada); Kohandel, M [Department of Applied Mathematics, University of Waterloo, Waterloo, Ontario, N2L 3G1 (Canada); Sivaloganathan, S [Department of Applied Mathematics, University of Waterloo, Waterloo, Ontario, N2L 3G1 (Canada); Oza, A [Center for Mathematical Medicine, Fields Institute for Research in Mathematical Sciences, Toronto, Ontario M5T 3J1 (Canada); Milosevic, M [Radiation Medicine Program, Princess Margaret Hospital, and Department of Radiation Oncology, University of Toronto, Toronto, Ontario M5G 2M9 (Canada)

    2007-06-07

    Gliomas, the most common primary brain tumors, are diffusive and highly invasive. The standard treatment for brain tumors consists of a combination of surgery, radiation therapy and chemotherapy. Over the past few years, mathematical models have been applied to study untreated and treated brain tumors. In an effort to improve treatment strategies, we consider a simple spatio-temporal mathematical model, based on proliferation and diffusion, that incorporates the effects of radiotherapeutic and chemotherapeutic treatments. We study the effects of different schedules of radiation therapy, including fractionated and hyperfractionated external beam radiotherapy, using a generalized linear quadratic (LQ) model. The results are compared with published clinical data. We also discuss the results for combination therapy (radiotherapy plus temozolomide, a new chemotherapy agent), as proposed in recent clinical trials. We use the model to predict optimal sequencing of the postoperative (combination of radiotherapy and adjuvant, neo-adjuvant or concurrent chemotherapy) treatments for brain tumors.

  18. How Are Brain and Spinal Cord Tumors in Children Diagnosed?

    Science.gov (United States)

    ... tumor. This still requires making an incision and drilling a small hole into the skull. The biopsy ... requests, please see our Content Usage Policy . Early Detection, Diagnosis, and Staging Can Brain and Spinal Cord ...

  19. FDTD analysis of a noninvasive hyperthermia system for brain tumors

    Directory of Open Access Journals (Sweden)

    Yacoob Sulafa M

    2012-08-01

    Full Text Available Abstract Background Hyperthermia is considered one of the new therapeutic modalities for cancer treatment and is based on the difference in thermal sensitivity between healthy tissues and tumors. During hyperthermia treatment, the temperature of the tumor is raised to 40–45°C for a definite period resulting in the destruction of cancer cells. This paper investigates design, modeling and simulation of a new non-invasive hyperthermia applicator system capable of effectively heating deep seated as well as superficial brain tumors using inexpensive, simple, and easy to fabricate components without harming surrounding healthy brain tissues. Methods The proposed hyperthermia applicator system is composed of an air filled partial half ellipsoidal chamber, a patch antenna, and a head model with an embedded tumor at an arbitrary location. The irradiating antenna is placed at one of the foci of the hyperthermia chamber while the center of the brain tumor is placed at the other focus. The finite difference time domain (FDTD method is used to compute both the SAR patterns and the temperature distribution in three different head models due to two different patch antennas at a frequency of 915 MHz. Results The obtained results suggest that by using the proposed noninvasive hyperthermia system it is feasible to achieve sufficient and focused energy deposition and temperature rise to therapeutic values in deep seated as well as superficial brain tumors without harming surrounding healthy tissue. Conclusions The proposed noninvasive hyperthermia system proved suitable for raising the temperature in tumors embedded in the brain to therapeutic values by carefully selecting the systems components. The operator of the system only needs to place the center of the brain tumor at a pre-specified location and excite the antenna at a single frequency of 915 MHz. Our study may provide a basis for a clinical applicator prototype capable of heating brain tumors.

  20. Multiscale CNNs for Brain Tumor Segmentation and Diagnosis

    Science.gov (United States)

    Zhao, Liya; Jia, Kebin

    2016-01-01

    Early brain tumor detection and diagnosis are critical to clinics. Thus segmentation of focused tumor area needs to be accurate, efficient, and robust. In this paper, we propose an automatic brain tumor segmentation method based on Convolutional Neural Networks (CNNs). Traditional CNNs focus only on local features and ignore global region features, which are both important for pixel classification and recognition. Besides, brain tumor can appear in any place of the brain and be any size and shape in patients. We design a three-stream framework named as multiscale CNNs which could automatically detect the optimum top-three scales of the image sizes and combine information from different scales of the regions around that pixel. Datasets provided by Multimodal Brain Tumor Image Segmentation Benchmark (BRATS) organized by MICCAI 2013 are utilized for both training and testing. The designed multiscale CNNs framework also combines multimodal features from T1, T1-enhanced, T2, and FLAIR MRI images. By comparison with traditional CNNs and the best two methods in BRATS 2012 and 2013, our framework shows advances in brain tumor segmentation accuracy and robustness. PMID:27069501

  1. Brain tumor imaging of rat fresh tissue using terahertz spectroscopy

    Science.gov (United States)

    Yamaguchi, Sayuri; Fukushi, Yasuko; Kubota, Oichi; Itsuji, Takeaki; Ouchi, Toshihiko; Yamamoto, Seiji

    2016-07-01

    Tumor imaging by terahertz spectroscopy of fresh tissue without dye is demonstrated using samples from a rat glioma model. The complex refractive index spectrum obtained by a reflection terahertz time-domain spectroscopy system can discriminate between normal and tumor tissues. Both the refractive index and absorption coefficient of tumor tissues are higher than those of normal tissues and can be attributed to the higher cell density and water content of the tumor region. The results of this study indicate that terahertz technology is useful for detecting brain tumor tissue.

  2. Nanocarrier drugs in the treatment of brain tumors

    Institute of Scientific and Technical Information of China (English)

    Tereza Cerna; Marie Stiborova; Vojtech Adam; Rene Kizek; Tomas Eckschlager

    2016-01-01

    Nanoparticle-mediated targeted delivery of drugs might signiifcantly reduce the dosage and optimize their release properties, increase speciifcity and bioavailability, improve shelf life, and reduce toxicity. Some nanodrugs are able to overcome the blood-brain barrier that is an obstacle to treatment of brain tumors. Vessels in tumors have abnormal architecture and are highly permeable; moreover, tumors also have poor lymphatic drainage, allowing for accumulation of macromolecules greater than approximately 40 kDa within the tumor microenvironment. Nanoparticles exploit this feature, known as the enhanced permeability and retention effect, to target solid tumors. Active targeting, i.e. surface modiifcation of nanoparticles, is a way to decrease uptake in normal tissue and increase accumulation in a tumor, and it usually involves targeting surface membrane proteins that are upregulated in cancer cells. The targeting molecules are typically antibodies or their fragments; aptamers; oligopeptides or small molecules. There are currently several FDA-approved nanomedicines, but none approved for brain tumor therapy. This review, based both on the study of literature and on the authors own experimental work describes a comprehensive overview of preclinical and clinical research of nanodrugs in therapy of brain tumors.

  3. Prevalence of abnormal findings on brain magnetic resonance (MR examinations in adult participants of brain docking

    Directory of Open Access Journals (Sweden)

    Taketomi-Takahashi Ayako

    2005-10-01

    Full Text Available Abstract Background To determine the prevalence of abnormal findings on brain magnetic resonance (MR examinations in adult participants of brain docking in order to assess its usefulness. Methods We analyzed screening brain MR examinations for 1113 adults (age, 52.6+/-8.5 years; range, 22–84; 761 male and 352 female performed during 6-year period from April 1998 to March 2004. All participants voluntarily sought a brain MR examination at their own expense. All subjects were studied using the same 1.0-T MR scanner, on axial T1-weighted spin echo (SE images, proton-density-weighted and T2-weighted fast SE images, and intracranial MR angiography (MRA. All abnormal findings were classified into three basic categories: (1 findings with no referral necessary; (2 findings not requiring further evaluation, but which needed to be reported to the referring physician; (3 findings requiring further evaluation. Results Participants with abnormal MR findings requiring further evaluation accounted for 1.3 %, but five of seven suspected intracranial aneurysms were not confirmed by other imaging modalities (false positive. No malignant tumors or other life-threatening pathology was detected, and only three participants (0.27 % with abnormalities underwent surgical treatment. No participant groups were identified from our data as being high risk for MR abnormal findings requiring further evaluation. Conclusion Brain-docking participants had a variety of abnormalities on brain MR examinations, but only a small percentage of these findings required further evaluation. The usefulness of the brain docking with MRI and MRA has yet to be proven, and at this time we cannot approve this screening procedure.

  4. Crossing the barrier: treatment of brain tumors using nanochain particles.

    Science.gov (United States)

    Karathanasis, Efstathios; Ghaghada, Ketan B

    2016-09-01

    Despite advancements in surgery and radiotherapy, the aggressive forms of brain tumors, such as gliomas, are still uniformly lethal with current therapies offering only palliation complicated by significant toxicities. Gliomas are characteristically diffuse with infiltrating edges, resistant to drugs and nearly inaccessible to systemic therapies due to the brain-tumor barrier. Currently, aggressive efforts are underway to further understand brain-tumor's microenvironment and identify brain tumor cell-specific regulators amenable to pharmacologic interventions. While new potent agents are continuously becoming available, efficient drug delivery to brain tumors remains a limiting factor. To tackle the drug delivery issues, a multicomponent chain-like nanoparticle has been developed. These nanochains are comprised of iron oxide nanospheres and a drug-loaded liposome chemically linked into a 100-nm linear, chain-like assembly with high precision. The nanochain possesses a unique ability to scavenge the tumor endothelium. By utilizing effective vascular targeting, the nanochains achieve rapid deposition on the vascular bed of glioma sites establishing well-distributed drug reservoirs on the endothelium of brain tumors. After reaching the target sites, an on-command, external low-power radiofrequency field can remotely trigger rapid drug release, due to mechanical disruption of the liposome, facilitating widespread and effective drug delivery into regions harboring brain tumor cells. Integration of the nanochain delivery system with the appropriate combination of complementary drugs has the potential to unfold the field and allow significant expansion of therapies for the disease where success is currently very limited. WIREs Nanomed Nanobiotechnol 2016, 8:678-695. doi: 10.1002/wnan.1387 For further resources related to this article, please visit the WIREs website.

  5. Brain Tumor Segmentation Using a Generative Model with an RBM Prior on Tumor Shape

    DEFF Research Database (Denmark)

    Agn, Mikael; Puonti, Oula; Rosenschöld, Per Munck af;

    2016-01-01

    In this paper, we present a fully automated generative method for brain tumor segmentation in multi-modal magnetic resonance images. The method is based on the type of generative model often used for segmenting healthy brain tissues, where tissues are modeled by Gaussian mixture models combined...... with a spatial atlas-based tissue prior. We extend this basic model with a tumor prior, which uses convolutional restricted Boltzmann machines (cRBMs) to model the shape of both tumor core and complete tumor, which includes edema and core. The cRBMs are trained on expert segmentations of training images, without...

  6. Comparison of CT and MRI brain tumor imaging using a canine glioma model.

    Science.gov (United States)

    Whelan, H T; Clanton, J A; Wilson, R E; Tulipan, N B

    1988-01-01

    A canine gliosarcoma model was used to study the effectiveness of magnetic resonance imaging (MRI) with gadolinium contrast enhancement in defining the histologic margins of brain tumors. The effectiveness of this technique was compared to conventional computed tomography (CT) using iodinated contrast enhancement. Cultured canine gliosarcoma cells were injected into the left hemisphere of adult mongrel dogs. The dogs developed brain tumors and progressive clinical signs. Serial MRI with and without gadolinium diethylene triamine penta-acetic acid was compared to serial CT with and without sodium iothalamate obtained on the same days. After the final scans, animals were sacrificed; the brains were removed and processed for routine histopathologic study. All tumors were visualized with contrast-enhanced MRI which proved most sensitive. Gadolinium di-ethylene triamine penta-acetic acid caused bright enhancement of tumors in a distribution that consistently corresponded to areas of pathologically proved tumor infiltration. Gross and microscopic autopsy findings correlated better with MRI than with CT which tended to produce poorer resolution and underrepresent the size of viable tumor. Gadolinium-enhanced MRI is more accurate than unenhanced MRI, unenhanced CT, or enhanced CT in defining the histologic margins of tumors.

  7. Evolution of Brain Tumor and Stability of Geometric Invariants

    Directory of Open Access Journals (Sweden)

    K. Tawbe

    2008-01-01

    Full Text Available This paper presents a method to reconstruct and to calculate geometric invariants on brain tumors. The geometric invariants considered in the paper are the volume, the area, the discrete Gauss curvature, and the discrete mean curvature. The volume of a tumor is an important aspect that helps doctors to make a medical diagnosis. And as doctors seek a stable calculation, we propose to prove the stability of some invariants. Finally, we study the evolution of brain tumor as a function of time in two or three years depending on patients with MR images every three or six months.

  8. Gadobutrol Versus Gadopentetate Dimeglumine or Gadobenate Dimeglumine Before DCE-MRI in Diagnosing Patients With Multiple Sclerosis, Grade II-IV Glioma, or Brain Metastases

    Science.gov (United States)

    2016-11-15

    Adult Anaplastic (Malignant) Meningioma; Adult Anaplastic Astrocytoma; Adult Anaplastic Ependymoma; Adult Anaplastic Oligodendroglioma; Adult Brain Stem Glioma; Adult Choroid Plexus Neoplasm; Adult Diffuse Astrocytoma; Adult Ependymoblastoma; Adult Ependymoma; Adult Giant Cell Glioblastoma; Adult Glioblastoma; Adult Gliosarcoma; Adult Grade II Meningioma; Adult Medulloblastoma; Adult Mixed Glioma; Adult Oligodendroglioma; Adult Papillary Meningioma; Adult Pineal Gland Astrocytoma; Adult Pineoblastoma; Adult Primary Melanocytic Lesion of Meninges; Adult Supratentorial Primitive Neuroectodermal Tumor; Malignant Adult Intracranial Hemangiopericytoma; Metastatic Malignant Neoplasm in the Brain; Multiple Sclerosis; Recurrent Adult Brain Neoplasm

  9. Critical Care Management of Cerebral Edema in Brain Tumors.

    Science.gov (United States)

    Esquenazi, Yoshua; Lo, Victor P; Lee, Kiwon

    2017-01-01

    Cerebral edema associated with brain tumors is extremely common and can occur in both primary and metastatic tumors. The edema surrounding brain tumors results from leakage of plasma across the vessel wall into the parenchyma secondary to disruption of the blood-brain barrier. The clinical signs of brain tumor edema depend on the location of the tumor as well as the extent of the edema, which often exceeds the mass effect induced by the tumor itself. Uncontrolled cerebral edema may result in increased intracranial pressure and acute herniation syndromes that can result in permanent neurological dysfunction and potentially fatal herniation. Treatment strategies for elevated intracranial pressure consist of general measures, medical interventions, and surgery. Alhough the definitive treatment for the edema may ultimately be surgical resection of the tumor, the impact of the critical care management cannot be underestimated and thus patients must be vigilantly monitored in the intensive care unit. In this review, we discuss the pathology, pathophysiology, and clinical features of patients presenting with cerebral edema. Imaging findings and treatment modalities used in the intensive care unit are also discussed.

  10. The therapy of infantile malignant brain tumors: current status?

    Science.gov (United States)

    Kalifa, Chantal; Grill, Jacques

    2005-12-01

    Malignant brain tumors are not uncommon in infants as their occurrence before the age of three represents 20-25% of all malignant brain tumors in childhood [1]. Genetic predisposition to infantile malignant brain tumors are known in Gorlin syndrome for example who present with desmoplastic medulloblastoma in about 5% of the affected patients. In addition, sequelae from tumor and its treatment are more severe at this age [2]. Thus, malignant brain tumors represent a true therapeutic challenge in neuro-oncology. Before the era of modern imaging and modern neurosurgery these malignant brain tumors were misdiagnosed or could not benefit of the surgical procedures as well as older children because of increased risks in this age group. Since the end of the 80s, noninvasive imaging procedures produce accurate diagnosis of brain tumors and improvement in neurosurgery, neuroanesthesia and perioperative intensive care permit safe tumor resections or at least biopsies. Consequently, the pediatric oncologists are more often confronted with very young children who need a complementary treatment. Before the development of specific approaches for this age group, these children received the same kind of treatment than the older children did, but their survival and quality of life were significantly worse. The reasons of these poor results were probably due in part to the fear of late effects induced by radiation therapy, leading to decrease the necessary doses of irradiation which increased treatment failures without avoiding treatment related complications [3]. At the end of the 80s, pilot studies were performed using postoperative chemotherapy in young medulloblastoma patients. Van Eys treated 12 selected children with medulloblastoma with MOPP regimen and without irradiation; 8 of them were reported to be long term survivors [4]. Subsequently, the pediatric oncology cooperative groups studies have designed therapeutic trials for very young children with malignant brain tumors

  11. Prognosis by tumor location in adults with intracranial ependymomas.

    Science.gov (United States)

    Sayegh, Eli T; Aranda, Derick; Kim, Joseph M; Oh, Taemin; Parsa, Andrew T; Oh, Michael C

    2014-12-01

    Intracranial ependymomas are rare tumors in adults. Thus, factors affecting prognosis are poorly understood. We performed a study to investigate whether tumor location is an important prognostic factor in adults who undergo surgery for intracranial ependymomas. PubMed was searched to identify studies that reported clinical outcomes in adult patients with intracranial ependymoma. Data were extracted for patient and tumor characteristics, extent of resection, progression-free survival (PFS), and overall survival (OS). Tumors were categorized as supratentorial or infratentorial and extraventricular or intraventricular. Presenting clinical features and tumor characteristics were tabulated. Kaplan-Meier and multivariate Cox regression survival analyses were performed to determine PFS and OS by tumor location. Extent of resection was also analyzed by tumor location. A total of 183 patients were included in the meta-analysis. Patients presented at a mean of 8.2months with a myriad of clinical features. The mean tumor size was 3.38 cm, and 19.3% of tumors were cystic. Supratentorial tumors were most commonly located in the frontal and parietal lobes, and infratentorial tumors in the fourth ventricle. Supratentorial tumors demonstrated significantly poorer PFS (pinfratentorial tumors, despite a higher rate of gross total resection (GTR) for the supratentorial tumors (72.6% versus 42.1%). Extraventricular ependymomas displayed significantly poorer PFS than intraventricular ependymomas (p=0.009). In summary, supratentorial ependymomas have significantly poorer PFS and OS than their infratentorial counterparts, despite being more conducive to GTR, suggesting increased clinical aggressiveness. Extraventricular location is also associated with significantly poorer PFS than intraventricular location.

  12. Multiple skin tumors of indeterminate cells in an adult.

    Science.gov (United States)

    Kolde, G; Bröcker, E B

    1986-10-01

    An adult patient with multiple unusual histiocytic tumors of the skin is described. As shown by immunohistologic study, electron microscopy, and immunoelectron microscopy, the tumors represent circumscribed proliferations of the Langerhans cell-related indeterminate dendritic cells of the skin. This distinct cutaneous histiocytosis may represent a paraneoplastic syndrome.

  13. Infantile and adult testicular germ cell tumors : a different pathogenesis?

    NARCIS (Netherlands)

    van Echten, J; Timmer, A; van der Veen, AY; Molenaar, WM; de Jong, B

    2002-01-01

    Most adult testicular germ cell tumors have a characteristic chromosomal abnormality that is an isochromosome 12p [i(12p)]. Furthermore. these tumors are characterized by a chromosome number in the triploid range and gains and losses of (parts of) specific chromosomes. Cytogenetic investigation of t

  14. Brain and Spinal Tumors: Hope through Research

    Science.gov (United States)

    ... which can trigger neurological conditions and symptoms including hyperthyroidism and Cushing’s syndrome (the harmful over-production of the hormone cortisol). Treatment options include tumor resection, radiation therapy, and drug ...

  15. Nonlinear microscopy, infrared, and Raman microspectroscopy for brain tumor analysis

    Science.gov (United States)

    Meyer, Tobias; Bergner, Norbert; Bielecki, Christiane; Krafft, Christoph; Akimov, Denis; Romeike, Bernd F. M.; Reichart, Rupert; Kalff, Rolf; Dietzek, Benjamin; Popp, Jürgen

    2011-02-01

    Contemporary brain tumor research focuses on two challenges: First, tumor typing and grading by analyzing excised tissue is of utmost importance for choosing a therapy. Second, for prognostication the tumor has to be removed as completely as possible. Nowadays, histopathology of excised tissue using haematoxylin-eosine staining is the gold standard for the definitive diagnosis of surgical pathology specimens. However, it is neither applicable in vivo, nor does it allow for precise tumor typing in those cases when only nonrepresentative specimens are procured. Infrared and Raman spectroscopy allow for very precise cancer analysis due to their molecular specificity, while nonlinear microscopy is a suitable tool for rapid imaging of large tissue sections. Here, unstained samples from the brain of a domestic pig have been investigated by a multimodal nonlinear imaging approach combining coherent anti-Stokes Raman scattering, second harmonic generation, and two photon excited fluorescence microscopy. Furthermore, a brain tumor specimen was additionally analyzed by linear Raman and Fourier transform infrared imaging for a detailed assessment of the tissue types that is required for classification and to validate the multimodal imaging approach. Hence label-free vibrational microspectroscopic imaging is a promising tool for fast and precise in vivo diagnostics of brain tumors.

  16. Primary intracranial Parachordoma: An unusual tumor in brain

    Directory of Open Access Journals (Sweden)

    Rajesh K Ghanta

    2014-01-01

    Full Text Available Background: Parachordomas are rare soft tissue tumors commonly occurring in limbs, chest, Abdomen, and back. The World Health Organization (WHO classification includes parachordomas in the same group as mixed tumors and myoepitheliomas. Exact histogenesis of this tumor is unclear. Case Description: A 52-year-old male presented with headache and blurring of vision since one month. Preoperative computed tomography (CT scan of brain revealed left parieto-occipital tumor extending up to the trigone. Total excision of the tumor was done. Histopathologically, the tumor was composed of relatively uniform cells with eosinophilic cytoplasm in a myxoid stroma and with cartilaginous and osseous metaplasia. The tumoral cells were immunoreactive for cytokeratin, epithelial membrane antigen (EMA, S-100, and vimentin. The constellation of findings revealed the tumor to be parachordoma. Magnetic resonance imaging (MRI brain during follow-up at one year showed no recurrent tumor. No adjuvant therapy was given to this patient. Conclusion: This is the first reported case of primary intracranial parachordoma. It is difficult to diagnose the lesion preoperatively by imaging alone. Long-term follow-up is necessary in view of few reports in literature of recurrence and metastasis, of parachordomas in other anatomical locations.

  17. Bilateral Symmetry Information for Brain Tumor Detection

    Directory of Open Access Journals (Sweden)

    Krunal J Pimple,

    2014-03-01

    Full Text Available Image segmentation is used to separate an image into several “meaningful” parts. It is an old research topic, which started around 1970, but there is still no robust solution toward it. There are two main reasons; the first is that the content variety of images is too large, and the second one is that there is no benchmark standard to judge the performance. Various subjects that are paired usually are not identically the same, asymmetry is perfectly normal but sometimes asymmetry can benoticeable too much. Structural and functional asymmetry in the human brain and nervous system is reviewed in a historical perspective. Brain asymmetry is one of such examples, which is a difference in size or shape, or both. Asymmetry analysis of brain has great importance because it is not only indicator for brain cancer but also predict future potential risk for the same. In our work, we have concentrated to segment the anatomical regions of brain, isolate the two halves of brain and to investigate each half for the presence of asymmetry of anatomical regions in MRI.

  18. Assessment of serum L-fucose in brain tumor cases

    Directory of Open Access Journals (Sweden)

    Manjula S

    2010-01-01

    Full Text Available Background: Glycosylation of altered tumor cell in relation to cellular heterogeneity in human intracranial tumors remains relatively unexposed. Serum protein-bound carbohydrate, L-Fucose is reported to be overexpressed during tumor progression by many investigators. Therefore, there is a need to determine the diagnostic, prognostic, functional significance of glycoprotein elevations in various cases of tumors. Objective: The objective of the present study was to evaluate the clinical utility of serum L-fucose in patients with brain tumor. Materials and Methods: Serum glyco-conjugate levels were estimated in 99 patients with brain tumors. Estimation of L-fucose was carried out colorimetrically by the method of Winzler using cysteine hydrochloride. Results: There was a significant increase in L-fucose level in most of the patients. In the posttreatment cases, the L-fucose levels were apparently low compared to preoperative values. Conclusion: Our results showed that the rise in serum L-fucose may be used as a general marker for brain tumors in addition to other markers.

  19. Primitive Neuroectodermal Tumor with Glioblastoma Multiforme Components in an Adult: A Collision Tumor.

    Science.gov (United States)

    Forbes, Victoria; Vredenburgh, James

    2016-01-11

    We report a rare case of a central nervous system collision tumor in a 40-year-old woman. Histopathological examination of her large temporal tumor revealed two different components making up the tumor tissue. The predominant component of the tumor was found to be a primitive neuroectodermal tumor. The other component was glioblastoma multiforme. Both of these tumors carry a poor prognosis, and primitive neuroectodermal tumors are extremely uncommon in adults. Central nervous system neoplasms with the combined features of both primitive neuroectodermal tumor and malignant glioma are very rare and represent a diagnostic and treatment predicament. The patient underwent surgical resection, radiation therapy, and chemotherapy targeting both the primitive neuroectodermal tumor and glioblastoma. Our patient has been fortunate in not showing any sign of recurrence and will celebrate the third anniversary since her diagnosis this January.

  20. Photon spectrum and absorbed dose in brain tumor

    Energy Technology Data Exchange (ETDEWEB)

    Silva S, A. [General Electric Healthcare, Antonio Dovali Jaime 70, Torre A 3er. piso, Col. Santa Fe, 01210 Mexico D. F. (Mexico); Vega C, H. R. [Universidad Autonoma de Zacatecas, Unidad Academica de Estudios Nucleares, Cipres No. 10, Fracc. La Penuela, 98068 Zacatecas, Zac. (Mexico); Rivera M, T. [IPN, Centro de Investigacion en Ciencia Aplicada y Tecnologia Avanzada, Av. Legaria No. 694, 11500 Mexico D. F. (Mexico)

    2015-10-15

    Using Monte Carlo methods a BOMAB phantom inside a treatment hall with a brain tumor nearby the pituitary gland was treated with photons produced by a Varian 6 MV linac. The photon spectrum and the absorbed dose were calculated in the tumor, pituitary gland and the head. The treatment beam was collimated to illuminate only the tumor volume; however photons were noticed in the gland. Photon fluence reaching the tumor is 78.1 times larger than the fluence in the pituitary gland, on the other hand the absorbed dose in the tumor is 188 times larger than the dose in the gland because photons that reach the pituitary gland are scattered, by the head and the tumor, through Compton effect. (Author)

  1. Generation of neuronal progenitor cells in response to tumors in the human brain.

    Science.gov (United States)

    Macas, Jadranka; Ku, Min-Chi; Nern, Christian; Xu, Yuanzhi; Bühler, Helmut; Remke, Marc; Synowitz, Michael; Franz, Kea; Seifert, Volker; Plate, Karl H; Kettenmann, Helmut; Glass, Rainer; Momma, Stefan

    2014-01-01

    Data from transgenic mouse models show that neuronal progenitor cells (NPCs) migrate toward experimental brain tumors and modulate the course of pathology. However, the pathways whereby NPCs are attracted to CNS neoplasms are not fully understood and it is unexplored if NPCs migrate toward brain tumors (high-grade astrocytomas) in humans. We analyzed the tumor-parenchyma interface of neurosurgical resections for the presence of (NPCs) and distinguished these physiological cells from the tumor mass. We observed that polysialic acid neural cell adhesion molecule-positive NPCs accumulate at the border of high-grade astrocytomas and display a marker profile consistent with immature migratory NPCs. Importantly, these high-grade astrocytoma-associated NPCs did not carry genetic aberrations that are indicative of the tumor. Additionally, we observed NPCs accumulating in CNS metastases. These metastatic tumors are distinguished from neural cells by defined sets of markers. Transplanting murine glioma cells embedded in a cell-impermeable hollow fiber capsule into the brains of nestin-gfp reporter mice showed that diffusible factors are sufficient to induce a neurogenic reaction. In vitro, vascular endothelial growth factor (VEGF) secreted from glioma cells increases the migratory and proliferative behavior of adult human brain-derived neural stem and progenitor cells via stimulation of VEGF receptor-2 (VEGFR-2). In vivo, inhibiting VEGFR-2 signaling with a function-blocking antibody led to a reduction in NPC migration toward tumors. Overall, our data reveal a mechanism by which NPCs are attracted to CNS tumors and suggest that NPCs accumulate in human high-grade astrocytomas.

  2. Histone modification as a drug resistance driver in brain tumors

    Institute of Scientific and Technical Information of China (English)

    Guifa Xi; Barbara Mania-Farnell; Ting Lei; Tadanori Tomita

    2016-01-01

    Patients with brain tumors, specificaly, malignant forms such as glioblastoma, meduloblas-toma and ependymoma, exhibit dismal survival rates despite advances in treatment strategies. Chemotherapeutics, the primary adjuvant treatment for human brain tumors folowing surgery, commonly lack eficacy due to either intrinsic or acquired drug resistance. New treatments tar-geting epigenetic factors are being explored. Post-translational histone modification provides a critical regulatory platform for processes such as chromosome condensation and segregation, apoptosis, gene transcription, and DNA replication and repair. This work reviews how aberrant histone modifications and alterations in histone-modifying enzymes can drive the acquisition of drug resistance in brain tumors. Elucidating these mechanisms should lead to new treatments for overcoming drug resistance.

  3. Automated Brain Tumor Segmentation on MR Images Based on Neutrosophic Set Approach

    OpenAIRE

    Mohan J; Krishnaveni V; Yanhui Huo

    2015-01-01

    Brain tumor segmentation for MR images is a difficult and challenging task due to variation in type, size, location and shape of tumors. This paper presents an efficient and fully automatic brain tumor segmentation technique. This proposed technique includes non local preprocessing, fuzzy intensification to enhance the quality of the MR images, k - means clustering method for brain tumor segmentation.

  4. Expression of iron-related genes in human brain and brain tumors

    Directory of Open Access Journals (Sweden)

    Britton Robert S

    2009-04-01

    Full Text Available Abstract Background Defective iron homeostasis may be involved in the development of some diseases within the central nervous system. Although the expression of genes involved in normal iron balance has been intensively studied in other tissues, little is known about their expression in the brain. We investigated the mRNA levels of hepcidin (HAMP, HFE, neogenin (NEO1, transferrin receptor 1 (TFRC, transferrin receptor 2 (TFR2, and hemojuvelin (HFE2 in normal human brain, brain tumors, and astrocytoma cell lines. The specimens included 5 normal brain tissue samples, 4 meningiomas, one medulloblastoma, 3 oligodendrocytic gliomas, 2 oligoastrocytic gliomas, 8 astrocytic gliomas, and 3 astrocytoma cell lines. Results Except for hemojuvelin, all genes studied had detectable levels of mRNA. In most tumor types, the pattern of gene expression was diverse. Notable findings include high expression of transferrin receptor 1 in the hippocampus and medulla oblongata compared to other brain regions, low expression of HFE in normal brain with elevated HFE expression in meningiomas, and absence of hepcidin mRNA in astrocytoma cell lines despite expression in normal brain and tumor specimens. Conclusion These results indicate that several iron-related genes are expressed in normal brain, and that their expression may be dysregulated in brain tumors.

  5. Gonadal status in male survivors following childhood brain tumors

    DEFF Research Database (Denmark)

    Schmiegelow, M; Lassen, S; Poulsen, H S

    2001-01-01

    The effect of radiotherapy (RT) and chemotherapy (CT) on gonadal function was assessed in males treated for a childhood brain tumor not directly involving the hypothalamus/pituitary (HP) axis in a population-based study with a long follow-up time. All males......The effect of radiotherapy (RT) and chemotherapy (CT) on gonadal function was assessed in males treated for a childhood brain tumor not directly involving the hypothalamus/pituitary (HP) axis in a population-based study with a long follow-up time. All males...

  6. Training stem cells for treatment of malignant brain tumors

    Institute of Scientific and Technical Information of China (English)

    Shengwen; Calvin; Li; Mustafa; H; Kabeer; Long; T; Vu; Vic; Keschrumrus; Hong; Zhen; Yin; Brent; A; Dethlefs; Jiang; F; Zhong; John; H; Weiss; William; G; Loudon

    2014-01-01

    The treatment of malignant brain tumors remains a challenge. Stem cell technology has been applied in the treatment of brain tumors largely because of the ability of some stem cells to infiltrate into regions within the brain where tumor cells migrate as shown in preclinical studies. However, not all of these efforts can translate in the effective treatment that improves the quality of life for pa-tients. Here, we perform a literature review to identify the problems in the field. Given the lack of efficacy of most stem cell-based agents used in the treatment of malignant brain tumors, we found that stem cell distribution(i.e., only a fraction of stem cells applied capable of targeting tumors) are among the limiting factors. We provide guidelines for potential improvements in stem cell distribution. Specifically, we use an engineered tissue graft platform that replicates the in vivo microenvironment, and provide our data to validate that this culture platform is viable for producing stem cells that have better stem cell distribution than with the Petri dish culture system.

  7. Clinical features of depressive disorders in patients with brain tumors

    Directory of Open Access Journals (Sweden)

    Ogorenko V.V.

    2014-03-01

    Full Text Available The aim of the study was to examine the structure of psychopathology and clinical features of depressive disorders in patients with brain oncopathology. Polymorphic mental disorders of various clinical content and severity in most cases not only are comorbid to oncological pathology of the brain, but most often are the first clinical signs of early tumors. The study was conducted using the following methods: clinical psychiatric, questionnaire Simptom Check List- 90 -Revised-SCL- 90 -R, Luscher test and mathematical processing methods. Sample included 175 patients with brain tumors with non-psychotic level of mental disorders. The peculiarities of mental disorders and psychopathological structure of nonpsychotic depressive disorders have been a clinical option of cancer debut in patients with brain tumors. We found that nonpsychotic depression is characterized by polymorphism and syndromal incompletion; this causes ambiguity of diagnoses interpretation on stages of diagnostic period. Features of depressive symptoms depending on the signs of malignancy / nonmalignancy of brain tumor were defined.

  8. Dysphagia outcomes in patients with brain tumors undergoing inpatient rehabilitation.

    Science.gov (United States)

    Wesling, Michele; Brady, Susan; Jensen, Mary; Nickell, Melissa; Statkus, Donna; Escobar, Nelson

    2003-01-01

    The purpose of this retrospective study was to compare functional dysphagia outcomes following inpatient rehabilitation for patients with brain tumors with that of patients following a stroke. Group 1 (n = 24) consisted of consecutive admissions to the brain injury program with the diagnosis of brain tumor and dysphagia. Group 2 (n = 24) consisted of matched, consecutive admissions, with the diagnosis of acute stroke and dysphagia. Group 2 was matched for age, site of lesion, and initial composite cognitive FIM score. The main outcome measures for this study included the American Speech-Language-Hearing Association (ASHA) National Outcome Measurement System (NOMS) swallowing scale, length of stay, hospital charges, and medical complications. Results showed that swallowing gains made by both groups as evaluated by the admission and discharge ASHA NOMS levels were considered to be statistically significant. The differences for length of stay, total hospital charges, and speech charges between the two groups were not considered to be statistically significant. Three patients in the brain tumor group (12.5%) demonstrated dysphagia complications of either dehydration or pneumonia during their treatment course as compared to 0% in the stroke group. This study confirms that functional dysphagia gains can be achieved for patients with brain tumors undergoing inpatient rehabilitation and that they should be afforded the same type and intensity of rehabilitation for their swallowing that is provided to patients following a stroke.

  9. Tumor-infiltrating lymphocytes expressing IOT-10 marker. An immunohistochemical study of a series of 185 brain tumors.

    Science.gov (United States)

    Zurita, M; Vaquero, J; Coca, S; Oya, S; Garcia, N

    1993-04-01

    The presence of IOT-10-positive lymphocytes among the tumor-infiltrating-lymphocyte (TIL) population was studied in a series of 185 brain tumors. In most of the tumors, IOT-10-positive lymphocytes were identified, but generally they were scarce and masked among the tumor cells, suggesting that NK-cells exercise a poor participation in the tissular response against brain tumors. Isolated tumor cells showing IOT-10-positivity were found in low-grade astrocytomas, neurinomas and medulloblastomas. IOT-10-positivity on both tumor neuropil and tumor cells was considered a characteristic finding in oligodendrogliomas. The number of IOT-10-positive NK-cells in brain metastases and in cerebellar hemangioblastomas was comparatively greater than in other types of brain tumor. Since in brain metastases, the presence of IOT-10-positive NK-cells can be related to the tissular response to an extracerebral malignancy, their considerable presence in cerebellar hemangioblastomas is an enigmatic finding that deserves further attention.

  10. Brain tumors induced in rats by human adenovirus type 12

    Directory of Open Access Journals (Sweden)

    Murao,Tsuyoshi

    1974-02-01

    Full Text Available Oncogenesis of human adenovirus type 12 in the brain of rats was examined. Newborn rats of Sprague-Dawley and Donryu strains were injected intracranially with human adenovirus type 12. The incidence of intracranial tumors was 91% (30/33 in SpragueDawley and 56% (14/25 in Donryu rats. Except for one tumor nodule located in the parietal cortex of a Sprague.Dawley rat, all tumors developed in the paraventricular areas or in the meninges. Tumors were quite similar histologically to those induced in hamsters and mice resembling the undifferentiated human brain tumors such as medulloblastoma, ependymoblastoma and embryonic gliomas. From the histological features and primary sites of tumor development, it is suggested that the tumors in the brain of rats induced by adenovirus type 12 originate from the embryonic cells in the paraventricular area and also from the undifferentiated supporting cells of the peripheral nerves in the leptomeninges.

  11. Aerobic Glycolysis as a Marker of Tumor Aggressiveness: Preliminary Data in High Grade Human Brain Tumors

    Directory of Open Access Journals (Sweden)

    Andrei G. Vlassenko

    2015-01-01

    Full Text Available Objectives. Glucose metabolism outside of oxidative phosphorylation, or aerobic glycolysis (AG, is a hallmark of active cancer cells that is not directly measured with standard 18F-fluorodeoxyglucose (FDG positron emission tomography (PET. In this study, we characterized tumor regions with elevated AG defined based on PET measurements of glucose and oxygen metabolism. Methods. Fourteen individuals with high-grade brain tumors underwent structural MR scans and PET measurements of cerebral blood flow (CBF, oxygen (CMRO2 and glucose (CMRGlu metabolism, and AG, using 15O-labeled CO, O2 and H2O, and FDG, and were compared to a normative cohort of 20 age-matched individuals. Results. Elevated AG was observed in most high-grade brain tumors and it was associated with decreased CMRO2 and CBF, but not with significant changes in CMRGlu. Elevated AG was a dramatic and early sign of tumor growth associated with decreased survival. AG changes associated with tumor growth were differentiated from the effects of nonneoplastic processes such as epileptic seizures. Conclusions. Our findings demonstrate that high-grade brain tumors exhibit elevated AG as a marker of tumor growth and aggressiveness. AG may detect areas of active tumor growth that are not evident on conventional FDG PET.

  12. Enhanced Performance of Brain Tumor Classification via Tumor Region Augmentation and Partition.

    Science.gov (United States)

    Cheng, Jun; Huang, Wei; Cao, Shuangliang; Yang, Ru; Yang, Wei; Yun, Zhaoqiang; Wang, Zhijian; Feng, Qianjin

    2015-01-01

    Automatic classification of tissue types of region of interest (ROI) plays an important role in computer-aided diagnosis. In the current study, we focus on the classification of three types of brain tumors (i.e., meningioma, glioma, and pituitary tumor) in T1-weighted contrast-enhanced MRI (CE-MRI) images. Spatial pyramid matching (SPM), which splits the image into increasingly fine rectangular subregions and computes histograms of local features from each subregion, exhibits excellent results for natural scene classification. However, this approach is not applicable for brain tumors, because of the great variations in tumor shape and size. In this paper, we propose a method to enhance the classification performance. First, the augmented tumor region via image dilation is used as the ROI instead of the original tumor region because tumor surrounding tissues can also offer important clues for tumor types. Second, the augmented tumor region is split into increasingly fine ring-form subregions. We evaluate the efficacy of the proposed method on a large dataset with three feature extraction methods, namely, intensity histogram, gray level co-occurrence matrix (GLCM), and bag-of-words (BoW) model. Compared with using tumor region as ROI, using augmented tumor region as ROI improves the accuracies to 82.31% from 71.39%, 84.75% from 78.18%, and 88.19% from 83.54% for intensity histogram, GLCM, and BoW model, respectively. In addition to region augmentation, ring-form partition can further improve the accuracies up to 87.54%, 89.72%, and 91.28%. These experimental results demonstrate that the proposed method is feasible and effective for the classification of brain tumors in T1-weighted CE-MRI.

  13. Enhanced Performance of Brain Tumor Classification via Tumor Region Augmentation and Partition.

    Directory of Open Access Journals (Sweden)

    Jun Cheng

    Full Text Available Automatic classification of tissue types of region of interest (ROI plays an important role in computer-aided diagnosis. In the current study, we focus on the classification of three types of brain tumors (i.e., meningioma, glioma, and pituitary tumor in T1-weighted contrast-enhanced MRI (CE-MRI images. Spatial pyramid matching (SPM, which splits the image into increasingly fine rectangular subregions and computes histograms of local features from each subregion, exhibits excellent results for natural scene classification. However, this approach is not applicable for brain tumors, because of the great variations in tumor shape and size. In this paper, we propose a method to enhance the classification performance. First, the augmented tumor region via image dilation is used as the ROI instead of the original tumor region because tumor surrounding tissues can also offer important clues for tumor types. Second, the augmented tumor region is split into increasingly fine ring-form subregions. We evaluate the efficacy of the proposed method on a large dataset with three feature extraction methods, namely, intensity histogram, gray level co-occurrence matrix (GLCM, and bag-of-words (BoW model. Compared with using tumor region as ROI, using augmented tumor region as ROI improves the accuracies to 82.31% from 71.39%, 84.75% from 78.18%, and 88.19% from 83.54% for intensity histogram, GLCM, and BoW model, respectively. In addition to region augmentation, ring-form partition can further improve the accuracies up to 87.54%, 89.72%, and 91.28%. These experimental results demonstrate that the proposed method is feasible and effective for the classification of brain tumors in T1-weighted CE-MRI.

  14. Analysis of p53- immunoreactivity in astrocytic brain tumors

    Directory of Open Access Journals (Sweden)

    Shinkarenko T.V.

    2016-12-01

    Full Text Available P53 is an antioncogene with the frequently occured mutations in human tumor cells, leading to corresponding protein overexpression which can be detected by immunohistochemistry. Researches dedicated to the investigation of possibilities of using this technique gave controversial results. The authors investigated features of p53 protein expression in astrocytic brain tumors with different degrees of malignancy. Analyzed the relationship of the expression level of p53 by tumor cells with clinical parameters and Ki-67 proliferation index (PI as well. Tissues were collected from 52 cases with diagnosed astrocytic brain tumors. The sections were immunohistochemically stained with p53 and Ki-67. For each marker, 1000 tumor cells were counted and the ratio of positive tumor cells was calculated using software package ImageJ 1,47v. In normal brain tissue p53- expression was not identified. p53-immunoreactive tumor cells were detected in 25% (1/4 pilocytic astrocytomas, 33.3% (2/6 of diffuse astrocytomas, 53.8% (7/13 anaplastic astrocytomas, 58.6% (17/29 glioblastomas. A high proportion of p53-immunoreactive cells (> 30% was observed only in glioblastomas. The level of p53-imunoreactivity was not related to the age, gender and Grade WHO (p> 0,05. Spearman correlation coefficient between the relative quantity of ki-67- and p53-immunoreactive nuclei showed weak direct correlation (0.023, but the one was not statistically significant (p> 0,05. The level of p53-imunoreactivity is not dependent from age and sex of patients, Grade (WHO and proliferative activity (p>0,05 but the high level of p53-immunoreactive cells (>30% is found in glioblastoma specimens only, that may be due to the accumulation of mutations in DNA of tumor cells. There is insignificant weak relationship between relative quantities of ki-67- and p53-immunoreactive tumor cells (p>0,05.

  15. Implementing Tumor Detection and Area Calculation in Mri Image of Human Brain Using Image Processing Techniques

    OpenAIRE

    Sunil L. Bangare; Madhura Patil

    2015-01-01

    This paper is based on the research on Human Brain Tumor which uses the MRI imaging technique to capture the image. In this proposed work Brain Tumor area is calculated to define the Stage or level of seriousness of the tumor. Image Processing techniques are used for the brain tumor area calculation and Neural Network algorithms for the tumor position calculation. Also in the further advancement the classification of the tumor based on few parameters is also expected. Proposed wor...

  16. Development of multifunctional nanoparticles for brain tumor diagnosis and therapy

    Science.gov (United States)

    Veiseh, Omid

    Magnetic nanoparticles (MNPs) represent a class of non-invasive imaging agents developed for magnetic resonance (MR) imaging and drug delivery. MNPs have traditionally been developed for disease imaging via passive targeting, but recent advances in nanotechnology have enabled cellular-specific targeting, drug delivery and multi-modal imaging using these nanoparticles. Opportunities now exist to engineer MNP with designated features (e.g., size, coatings, and molecular functionalizations) for specific biomedical applications. The goal of this interdisciplinary research project is to develop targeting multifunctional nanoparticles, serving as both contrast agents and drug carriers that can effectively pass biological barriers, for diagnosis, staging and treatment of brain tumors. The developed nanoparticle system consists of a superparamagnetic iron oxide nanoparticle core (NP) and a shell comprised of biodegradable polymers such as polyethylene glycol (PEG) and chitosan. Additionally, near-infrared fluorescing (NIRF) molecules were integrated onto the NP shell to enable optical detection. Tumor targeting was achieved by the addition of chlorotoxin, a peptide with that has high affinity to 74 out of the 79 classifications of primary brain tumors and ability to illicit a therapeutic effect. This novel NP system was tested both in vitro and in vivo and was shown to specifically target gliomas in tissue culture and medulloblastomas in transgenic mice with an intact blood brain barriers (BBB), and delineate tumor boundaries in both MR and optical imaging. Additionally, the therapeutic potential of this NP system was explored in vitro, which revealed a unique nanoparticle-enabled pathway that enhances the therapeutic potential of bound peptides by promoting the internalization of membrane bound cell surface receptors. This NP system was further modified with siRNA and evaluated as a carrier for brain tumor targeted gene therapy. Most significantly, the evaluation of

  17. Dynamic Quantitative T1 Mapping in Orthotopic Brain Tumor Xenografts

    Directory of Open Access Journals (Sweden)

    Kelsey Herrmann

    2016-04-01

    Full Text Available Human brain tumors such as glioblastomas are typically detected using conventional, nonquantitative magnetic resonance imaging (MRI techniques, such as T2-weighted and contrast enhanced T1-weighted MRI. In this manuscript, we tested whether dynamic quantitative T1 mapping by MRI can localize orthotopic glioma tumors in an objective manner. Quantitative T1 mapping was performed by MRI over multiple time points using the conventional contrast agent Optimark. We compared signal differences to determine the gadolinium concentration in tissues over time. The T1 parametric maps made it easy to identify the regions of contrast enhancement and thus tumor location. Doubling the typical human dose of contrast agent resulted in a clearer demarcation of these tumors. Therefore, T1 mapping of brain tumors is gadolinium dose dependent and improves detection of tumors by MRI. The use of T1 maps provides a quantitative means to evaluate tumor detection by gadolinium-based contrast agents over time. This dynamic quantitative T1 mapping technique will also enable future quantitative evaluation of various targeted MRI contrast agents.

  18. Cyclosporin safety in a simplified rat brain tumor implantation model

    Directory of Open Access Journals (Sweden)

    Francisco H. C. Felix

    2012-01-01

    Full Text Available Brain cancer is the second neurological cause of death. A simplified animal brain tumor model using W256 (carcinoma 256, Walker cell line was developed to permit the testing of novel treatment modalities. Wistar rats had a cell tumor solution inoculated stereotactically in the basal ganglia (right subfrontal caudate. This model yielded tumor growth in 95% of the animals, and showed absence of extracranial metastasis and systemic infection. Survival median was 10 days. Estimated tumor volume was 17.08±6.7 mm³ on the 7th day and 67.25±19.8 mm³ on 9th day post-inoculation. Doubling time was 24.25 h. Tumor growth induced cachexia, but no hematological or biochemical alterations. This model behaved as an undifferentiated tumor and can be promising for studying tumor cell migration in the central nervous system. Dexamethasone 3.0 mg/kg/day diminished significantly survival in this model. Cyclosporine 10 mg/kg/day administration was safely tolerated.

  19. American brain tumor patients treated with BNCT in Japan

    Energy Technology Data Exchange (ETDEWEB)

    Laramore, G.E.; Griffin, B.R.; Spence, A.

    1995-11-01

    The purpose of this work is to establish and maintain a database for patients from the United States who have received BNCT in Japan for malignant gliomas of the brain. This database will serve as a resource for the DOE to aid in decisions relating to BNCT research in the United States, as well as assisting the design and implementation of clinical trials of BNCT for brain cancer patients in this country. The database will also serve as an information resource for patients with brain tumors and their families who are considering this form of therapy.

  20. Application of nanoparticles in brain tumor treatment

    CERN Document Server

    Caruso, Gerardo; Raudino, Giuseppe

    2012-01-01

    Despite progress in surgery, radiotherapy, and chemotherapy, an effective treatment of gliomas does not yet exist. This new monograph in the ASME-Momentum Press series on Biomedical & Nanomedical Technologies book shows how nanotechnology could be used both to improve the treatment efficacy and to reduce the adverse side effects. It will explain how nanotechnology-based approaches to targeted delivery of drugs across the brain-blood barrier may potentially be engineered to carry out specific functions as needed.

  1. Brain hyaluronan binding protein inhibits tumor growth

    Institute of Scientific and Technical Information of China (English)

    高锋; 曹曼林; 王蕾

    2004-01-01

    Background Great efforts have been made to search for the angiogenic inhibitors in avascular tissues. Several proteins isolated from cartilage have been proved to have anti-angiogenic or anti-tumour effects. Because cartilage contains a great amount of hyaluronic acid (HA) oligosaccharides and abundant HA binding proteins (HABP), therefore, we speculated that HABP might be one of the factors regulating vascularization in cartilage or anti-angiogenesis in tumours. The purpose of this research was to evaluale the effects of hyaluronan binding protein on inhibiting tumour growth both in vivo and vitro. Methods A unique protein termed human brain hyaluronan (HA) binding protein (b-HABP) was cloned from human brain cDNA library. MDA-435 human breast cancer cell line was chosen as a transfectant. The in vitro underlying mechanisms were investigated by determining the possibilities of MDA-435/b-HABP colony formation on soft agar, the effects of the transfectant on the proliferation of endothelial cells and the expression levels of caspase 3 and FasL from MDA-435/b-HABP. The in vivo study included tumour growth on the chorioallantoic membrane (CAM) of chicken embryos and nude mice. Results Colony formation assay revealed that the colonies formed by MDA-435/b-HABP were greatly reduced compared to mock transfectants. The conditioned media from MDA-435/b-HABP inhibited the growth of endothelial cells in culture. Caspase 3 and FasL expressions were induced by MDA-435/b-HABP. The size of tumours of MDA-435/b-HABP in both CAM and nude mice was much smaller than that of MDA-435 alone. Conclusions Human brain hyaluronan binding protein (b-HABP) may represent a new kind of naturally existing anti-tumour substance. This brain-derived glycoprotein may block tumour growth by inducing apoptosis of cancer cells or by decreasing angiogenesis in tumour tissue via inhibiting proliferation of endothelial cells.

  2. Experience-Dependent Neural Plasticity in the Adult Damaged Brain

    Science.gov (United States)

    Kerr, Abigail L.; Cheng, Shao-Ying; Jones, Theresa A.

    2011-01-01

    Behavioral experience is at work modifying the structure and function of the brain throughout the lifespan, but it has a particularly dramatic influence after brain injury. This review summarizes recent findings on the role of experience in reorganizing the adult damaged brain, with a focus on findings from rodent stroke models of chronic upper…

  3. Imaging brain tumor proliferative activity with [I-124]iododeoxyuridine

    NARCIS (Netherlands)

    Blasberg, RG; Roelcke, U; Weinreich, R; Beattie, B; von Ammon, K; Yonekawa, Y; Landolt, H; Guenther, [No Value; Crompton, NEA; Vontobel, P; Missimer, J; Maguire, RP; Koziorowski, J; Knust, EJ; Finn, RD; Leenders, KL

    2000-01-01

    Iododeoxyuridine (IUdR) uptake and retention was imaged by positron emission tomography (PET) at 0-48 min and 24 h after administration of 28.0-64.4 MBq (0.76-1.74 mCi) of [I-124]IUdR in 20 patients with brain tumors, including meningiomas and gliomas, The PET images were directly compared with gado

  4. Melphalan, Carboplatin, Mannitol, and Sodium Thiosulfate in Treating Patients With Recurrent or Progressive CNS Embryonal or Germ Cell Tumors

    Science.gov (United States)

    2016-11-07

    Adult Central Nervous System Germ Cell Tumor; Adult Ependymoblastoma; Adult Medulloblastoma; Adult Pineoblastoma; Adult Supratentorial Primitive Neuroectodermal Tumor; Childhood Atypical Teratoid/Rhabdoid Tumor; Childhood Central Nervous System Germ Cell Tumor; Childhood Ependymoblastoma; Medulloepithelioma; Ototoxicity; Recurrent Adult Brain Neoplasm; Recurrent Childhood Central Nervous System Embryonal Neoplasm; Recurrent Childhood Malignant Germ Cell Tumor; Recurrent Childhood Medulloblastoma; Recurrent Childhood Pineoblastoma; Recurrent Childhood Supratentorial Primitive Neuroectodermal Tumor

  5. 3D Brain Tumors and Internal Brain Structures Segmentation in MR Images

    Directory of Open Access Journals (Sweden)

    P.NARENDRAN

    2012-02-01

    Full Text Available The main topic of this paper is to segment brain tumors, their components (edema and necrosis and internal structures of the brain in 3D MR images. For tumor segmentation we propose a framework that is a combination of region-based and boundary-based paradigms. In this framework, segment the brain using a method adapted for pathological cases and extract some global information on the tumor by symmetry based histogram analysis. We propose a new and original method that combines region and boundary information in two phases: initialization and refinement. The method relies on symmetry-based histogram analysis. The initial segmentation of the tumor is refined relying on boundary information of the image. We use a deformable model which is again constrained by the fused spatial relations of the structure. The method was also evaluated on 10 contrast enhanced T1-weighted images to segment the ventricles, caudate nucleus and thalamus.

  6. Brain Tumor Segmentation Based on Random Forest

    Directory of Open Access Journals (Sweden)

    László Lefkovits

    2016-09-01

    Full Text Available In this article we present a discriminative model for tumor detection from multimodal MR images. The main part of the model is built around the random forest (RF classifier. We created an optimization algorithm able to select the important features for reducing the dimensionality of data. This method is also used to find out the training parameters used in the learning phase. The algorithm is based on random feature properties for evaluating the importance of the variable, the evolution of learning errors and the proximities between instances. The detection performances obtained have been compared with the most recent systems, offering similar results.

  7. Cerenkov and radioluminescence imaging of brain tumor specimens during neurosurgery

    Science.gov (United States)

    Spinelli, Antonello Enrico; Schiariti, Marco P.; Grana, Chiara M.; Ferrari, Mahila; Cremonesi, Marta; Boschi, Federico

    2016-05-01

    We presented the first example of Cerenkov luminescence imaging (CLI) and radioluminescence imaging (RLI) of human tumor specimens. A patient with a brain meningioma localized in the left parietal region was injected with 166 MBq of Y90-DOTATOC the day before neurosurgery. The specimens of the tumor removed during surgery were imaged using both CLI and RLI using an optical imager prototype developed in our laboratory. The system is based on a cooled electron multiplied charge coupled device coupled with an f/0.95 17-mm C-mount lens. We showed for the first time the possibility of obtaining CLI and RLI images of fresh human brain tumor specimens removed during neurosurgery.

  8. Perivascular Wall Tumor in the Brain of a Dog

    Directory of Open Access Journals (Sweden)

    Margaret Cohn-Urbach

    2015-01-01

    Full Text Available A 9-year-old spayed female German shepherd mixed-breed dog presented for seizures. Magnetic resonance imaging revealed an irregularly marginated intraparenchymal cerebral mass. Microscopic examination of brain tissue collected postmortem demonstrated perivascular whorling and interwoven bundles of spindle-shaped cells. On immunohistochemistry, the tumor cells tested positive for vimentin and negative for factor VIII-related antigen, CD18, CD45, CD3, CD20, GFAP, S-100, and desmin. Immunohistochemistry results, in combination with histopathologic morphology, were suggestive of a perivascular wall tumor. To the authors’ knowledge, this is the first case report to utilize both histopathology and immunohistochemistry to describe a perivascular wall tumor in the brain of a dog.

  9. Adult thoracic primitive neuroectodermal tumor - clinical, radiological and pathological features; Tumor neuroectodermico primitivo toracico em adulto

    Energy Technology Data Exchange (ETDEWEB)

    Setubal, Roger; Santos, Leynalze Lins Ramos; Georges, Silvana Habib; Souza, Ricardo Pires de [Hospital Heliopolis, Sao Paulo, SP (Brazil). Servico de Diagnostico por Imagem; Menezes, Yara de [Hospital heliopolis, Sao Paulo, SP (Brazil). Servico de Patologia; Gomes, Marcio Rogerio Alcala; Mayo, Suzete Varela; Leiro, Luis Carlos Filgueira [Hospital Heliopolis, Sao Paulo, SP (Brazil). Servico de Pneumologia e Cirurgia Toracica

    1997-03-01

    Precise diagnosis of small round cell tumors, which include the thoracic primitive neuroectodermal tumor, is often a challenge to the clinical, oncologist, radiologist and pathologist. Different terms have been used to designate these tumors, depending on their location and extent of neural differentiation. With the progress of immuno-histochemical and cytogenetic diagnosis method, some of this tumors are now classified a unique clinical entity with several locations and mode of presentation. Therefore, tumors-like peripheral neuro epithelioma, Askin`s tumor, adult neuroblastoma, and primitive neuroectodermal tumor are now named peripheral primitive neuroectodermal tumor. The most common location of peripheral primitive neuroectodermal tumor is the thorax, and the mean age are close of the adolescence. This study reports the clinical, radiological and pathological features of 5 adults (3 men and 2 women) seen at the Hospital Heliopolis, Sao Paulo, SP Brazil, between 1991 and 1995 (5 years), with diagnosis of peripheral primitive neuroectodermal tumor made by immuno-histochemical and pathological studies. The mean age of the patients was 34 years, ranged between 17 and 57 years, and the most common location was the chest wall (n=3), followed by the posterior mediastinum (n=2). All the patients were symptomatic and undergone plain films and computed tomography. (author) 12 refs., 5 figs.

  10. Therapeutic Potential of Curcumin for the Treatment of Brain Tumors

    Science.gov (United States)

    Klinger, Neil V.

    2016-01-01

    Brain malignancies currently carry a poor prognosis despite the current multimodal standard of care that includes surgical resection and adjuvant chemotherapy and radiation. As new therapies are desperately needed, naturally occurring chemical compounds have been studied for their potential chemotherapeutic benefits and low toxicity profile. Curcumin, found in the rhizome of turmeric, has extensive therapeutic promise via its antioxidant, anti-inflammatory, and antiproliferative properties. Preclinical in vitro and in vivo data have shown it to be an effective treatment for brain tumors including glioblastoma multiforme. These effects are potentiated by curcumin's ability to induce G2/M cell cycle arrest, activation of apoptotic pathways, induction of autophagy, disruption of molecular signaling, inhibition of invasion, and metastasis and by increasing the efficacy of existing chemotherapeutics. Further, clinical data suggest that it has low toxicity in humans even at large doses. Curcumin is a promising nutraceutical compound that should be evaluated in clinical trials for the treatment of human brain tumors.

  11. Anti-angiogenic therapy in pediatric brain tumors : An effective strategy?

    NARCIS (Netherlands)

    Sie, Mariska; den Dunnen, Wilfred F. A.; Hoving, Eelco W.; de Bont, Eveline S. J. M.

    2014-01-01

    Brain tumors are still the leading cause of cancer morbidity and mortality among children, despite different therapeutic options including neurosurgery, chemotherapy and radiation. As angiogenesis is highly crucial in brain tumor growth and progression, numerous clinical trials evaluating diverse an

  12. Critical care management of severe traumatic brain injury in adults

    OpenAIRE

    Haddad Samir H; Arabi Yaseen M

    2012-01-01

    Abstract Traumatic brain injury (TBI) is a major medical and socio-economic problem, and is the leading cause of death in children and young adults. The critical care management of severe TBI is largely derived from the "Guidelines for the Management of Severe Traumatic Brain Injury" that have been published by the Brain Trauma Foundation. The main objectives are prevention and treatment of intracranial hypertension and secondary brain insults, preservation of cerebral perfusion pressure (CPP...

  13. Clinicopathological pattern of brain tumors: A 3-year study in a tertiary care hospital in India

    OpenAIRE

    Sajeeb Mondal; Rajashree Pradhan; Subrata Pal; Biswajit Biswas; Arindam Banerjee; Debosmita Bhattacharyya

    2016-01-01

    Background: Brain tumors are heterogeneous group of neoplasms, affecting different age groups. Although some studies have been published regarding pathological pattern of brain tumors from different countries of the world and also from India, comprehensive clinicopathological studies from Eastern India is lacking. Aims: The aim of this study was to observe recent incidence of different brain tumors and to study clinical and histopathological spectrum of brain tumors in Eastern India. Material...

  14. The Multimodal Brain Tumor Image Segmentation Benchmark (BRATS)

    DEFF Research Database (Denmark)

    Menze, Bjoern H.; Jakab, Andras; Bauer, Stefan

    2015-01-01

    In this paper we report the set-up and results of the Multimodal Brain Tumor Image Segmentation Benchmark (BRATS) organized in conjunction with the MICCAI 2012 and 2013 conferences. Twenty state-of-the-art tumor segmentation algorithms were applied to a set of 65 multi-contrast MR scans of low......- and high-grade glioma patients – manually annotated by up to four raters – and to 65 comparable scans generated using tumor image simulation software. Quantitative evaluations revealed considerable disagreement between the human raters in segmenting various tumor sub-regions (Dice scores in the range 74...... a hierarchical majority vote yielded segmentations that consistently ranked above all individual algorithms, indicating remaining opportunities for further methodological improvements. The BRATS image data and manual annotations continue to be publicly available through an online evaluation system as an ongoing...

  15. History and evolution of brain tumor imaging: insights through radiology.

    Science.gov (United States)

    Castillo, Mauricio

    2014-11-01

    This review recounts the history of brain tumor diagnosis from antiquity to the present and, indirectly, the history of neuroradiology. Imaging of the brain has from the beginning held an enormous interest because of the inherent difficulty of this endeavor due to the presence of the skull. Because of this, most techniques when newly developed have always been used in neuroradiology and, although some have proved to be inappropriate for this purpose, many were easily incorporated into the specialty. The first major advance in modern neuroimaging was contrast agent-enhanced computed tomography, which permitted accurate anatomic localization of brain tumors and, by virtue of contrast enhancement, malignant ones. The most important advances in neuroimaging occurred with the development of magnetic resonance imaging and diffusion-weighted sequences that allowed an indirect estimation of tumor cellularity; this was further refined by the development of perfusion and permeability mapping. From its beginnings with indirect and purely anatomic imaging techniques, neuroradiology now uses a combination of anatomic and physiologic techniques that will play a critical role in biologic tumor imaging and radiologic genomics.

  16. Skull-stripping for Tumor-bearing Brain Images

    CERN Document Server

    Bauer, Stefan; Reyes, Mauricio

    2012-01-01

    Skull-stripping separates the skull region of the head from the soft brain tissues. In many cases of brain image analysis, this is an essential preprocessing step in order to improve the final result. This is true for both registration and segmentation tasks. In fact, skull-stripping of magnetic resonance images (MRI) is a well-studied problem with numerous publications in recent years. Many different algorithms have been proposed, a summary and comparison of which can be found in [Fennema-Notestine, 2006]. Despite the abundance of approaches, we discovered that the algorithms which had been suggested so far, perform poorly when dealing with tumor-bearing brain images. This is mostly due to additional difficulties in separating the brain from the skull in this case, especially when the lesion is located very close to the skull border. Additionally, images acquired according to standard clinical protocols, often exhibit anisotropic resolution and only partial coverage, which further complicates the task. There...

  17. Technological progress in radiation therapy for brain tumors

    LENUS (Irish Health Repository)

    Vernimmen, Frederik Jozef

    2014-01-01

    To achieve a good therapeutic ratio the radiation dose to the tumor should be as high as possible with the lowest possible dose to the surrounding normal tissue. This is especially the case for brain tumors. Technological ad- vancements in diagnostic imaging, dose calculations, and radiation delivery systems, combined with a better un- derstanding of the pathophysiology of brain tumors have led to improvements in the therapeutic results. The widely used technology of delivering 3-D conformal therapy with photon beams (gamma rays) produced by Li-near Accelerators has progressed into the use of Intensity modulated radiation therapy (IMRT). Particle beams have been used for several decades for radiotherapy because of their favorable depth dose characteristics. The introduction of clinically dedicated proton beam therapy facilities has improved the access for cancer patients to this treatment. Proton therapy is of particular interest for pediatric malignancies. These technical improvements are further enhanced by the evolution in tumor physiology imaging which allows for improved delineation of the tumor. This in turn opens the potential to adjust the radiation dose to maximize the radiobiological effects. The advances in both imaging and radiation therapy delivery will be discussed.

  18. Electroretinography and Visual Evoked Potentials in Childhood Brain Tumor Survivors.

    Science.gov (United States)

    Pietilä, Sari; Lenko, Hanna L; Oja, Sakari; Koivisto, Anna-Maija; Pietilä, Timo; Mäkipernaa, Anne

    2016-07-01

    This population-based cross-sectional study evaluates the clinical value of electroretinography and visual evoked potentials in childhood brain tumor survivors. A flash electroretinography and a checkerboard reversal pattern visual evoked potential (or alternatively a flash visual evoked potential) were done for 51 survivors (age 3.8-28.7 years) after a mean follow-up time of 7.6 (1.5-15.1) years. Abnormal electroretinography was obtained in 1 case, bilaterally delayed abnormal visual evoked potentials in 22/51 (43%) cases. Nine of 25 patients with infratentorial tumor location, and altogether 12 out of 31 (39%) patients who did not have tumors involving the visual pathways, had abnormal visual evoked potentials. Abnormal electroretinographies are rarely observed, but abnormal visual evoked potentials are common even without evident anatomic lesions in the visual pathway. Bilateral changes suggest a general and possibly multifactorial toxic/adverse effect on the visual pathway. Electroretinography and visual evoked potential may have clinical and scientific value while evaluating long-term effects of childhood brain tumors and tumor treatment.

  19. Numerical Simulations of MREIT Conductivity Imaging for Brain Tumor Detection

    Directory of Open Access Journals (Sweden)

    Zi Jun Meng

    2013-01-01

    Full Text Available Magnetic resonance electrical impedance tomography (MREIT is a new modality capable of imaging the electrical properties of human body using MRI phase information in conjunction with external current injection. Recent in vivo animal and human MREIT studies have revealed unique conductivity contrasts related to different physiological and pathological conditions of tissues or organs. When performing in vivo brain imaging, small imaging currents must be injected so as not to stimulate peripheral nerves in the skin, while delivery of imaging currents to the brain is relatively small due to the skull’s low conductivity. As a result, injected imaging currents may induce small phase signals and the overall low phase SNR in brain tissues. In this study, we present numerical simulation results of the use of head MREIT for brain tumor detection. We used a realistic three-dimensional head model to compute signal levels produced as a consequence of a predicted doubling of conductivity occurring within simulated tumorous brain tissues. We determined the feasibility of measuring these changes in a time acceptable to human subjects by adding realistic noise levels measured from a candidate 3 T system. We also reconstructed conductivity contrast images, showing that such conductivity differences can be both detected and imaged.

  20. Numerical simulations of MREIT conductivity imaging for brain tumor detection.

    Science.gov (United States)

    Meng, Zi Jun; Sajib, Saurav Z K; Chauhan, Munish; Sadleir, Rosalind J; Kim, Hyung Joong; Kwon, Oh In; Woo, Eung Je

    2013-01-01

    Magnetic resonance electrical impedance tomography (MREIT) is a new modality capable of imaging the electrical properties of human body using MRI phase information in conjunction with external current injection. Recent in vivo animal and human MREIT studies have revealed unique conductivity contrasts related to different physiological and pathological conditions of tissues or organs. When performing in vivo brain imaging, small imaging currents must be injected so as not to stimulate peripheral nerves in the skin, while delivery of imaging currents to the brain is relatively small due to the skull's low conductivity. As a result, injected imaging currents may induce small phase signals and the overall low phase SNR in brain tissues. In this study, we present numerical simulation results of the use of head MREIT for brain tumor detection. We used a realistic three-dimensional head model to compute signal levels produced as a consequence of a predicted doubling of conductivity occurring within simulated tumorous brain tissues. We determined the feasibility of measuring these changes in a time acceptable to human subjects by adding realistic noise levels measured from a candidate 3 T system. We also reconstructed conductivity contrast images, showing that such conductivity differences can be both detected and imaged.

  1. Collecting and Storing Blood and Brain Tumor Tissue Samples From Children With Brain Tumors

    Science.gov (United States)

    2016-11-21

    Childhood Atypical Teratoid/Rhabdoid Tumor; Childhood Central Nervous System Germ Cell Tumor; Childhood Choroid Plexus Tumor; Childhood Craniopharyngioma; Childhood Grade I Meningioma; Childhood Grade II Meningioma; Childhood Grade III Meningioma; Childhood High-grade Cerebral Astrocytoma; Childhood Infratentorial Ependymoma; Childhood Low-grade Cerebral Astrocytoma; Childhood Oligodendroglioma; Childhood Supratentorial Ependymoma; Newly Diagnosed Childhood Ependymoma; Recurrent Childhood Cerebellar Astrocytoma; Recurrent Childhood Cerebral Astrocytoma; Recurrent Childhood Ependymoma; Recurrent Childhood Medulloblastoma; Recurrent Childhood Supratentorial Primitive Neuroectodermal Tumor; Recurrent Childhood Visual Pathway and Hypothalamic Glioma; Recurrent Childhood Visual Pathway Glioma

  2. Tumor

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    2008479 Preliminary study of MR elastography in brain tumors. XU Lei(徐磊), et al.Neurosci Imaging Center, Beijing Tiantan Hosp, Capital Med Univ, Beijing 100050.Chin J Radiol 2008;42(6):605-608. Objective To investigate the potential values of magnetic resonance elastography (MRE) for evaluating the brain tumor consistency in vivo. Methods Fourteen patients with known solid brain tumor (5 male, 9 female; age range: 16-63 years)

  3. Brain congenital tumors of atypical presentation. Tumores cerebrales congenitos de presentacion atipica

    Energy Technology Data Exchange (ETDEWEB)

    Borden Ferre, F.; Menor Serrano, F.; Martinez Fernandez, M.; Moreno Flores, A.; Poyatos, C. (Hospital La Fe. Valencia (Spain))

    1994-01-01

    We present four cases of brain tumor within the first year of life, with atypical clinical and radiological onset. Two astrocytomas of the visual pathway presented with visual changes without involving the ventricular system. The other two, not histologically confirmed, were located in the medial portion of the temporal lobe, the first sign of which was a cyanotic crisis.

  4. Guidelines for Better Communication with Brain Impaired Adults

    Science.gov (United States)

    ... FCA - A A + A You are here Home Guidelines for Better Communication with Brain Impaired Adults Printer- ... there are no easy solutions, following some basic guidelines should ease communication, and lower levels of stress ...

  5. Classification of Brain Tumor Using Support Vector Machine Classfiers

    Directory of Open Access Journals (Sweden)

    Dr.D. J. Pete

    2014-03-01

    Full Text Available Magnetic resonance imagi ng (MRI is an imaging technique that has played an important role in neuro science research for studying brain images. Classification is an important part in order to distinguish between normal patients and those who have the possibility of having abnormalities or tumor. The proposed method consists of two stages: feature extraction and classification. In first stage features are extracted from images using GLCM. In the next stage, extracted features are fed as input to Kernel-Based SVM classifier. It classifies the images between normal and abnormal along with Grade of tumor depending upon features. For Brain MRI images; features extracted with GLCM gives 98% accuracy with Kernel-Based SVM Classifiesr. Software used is MATLAB R2011a.

  6. Efficient multilevel brain tumor segmentation with integrated bayesian model classification.

    Science.gov (United States)

    Corso, J J; Sharon, E; Dube, S; El-Saden, S; Sinha, U; Yuille, A

    2008-05-01

    We present a new method for automatic segmentation of heterogeneous image data that takes a step toward bridging the gap between bottom-up affinity-based segmentation methods and top-down generative model based approaches. The main contribution of the paper is a Bayesian formulation for incorporating soft model assignments into the calculation of affinities, which are conventionally model free. We integrate the resulting model-aware affinities into the multilevel segmentation by weighted aggregation algorithm, and apply the technique to the task of detecting and segmenting brain tumor and edema in multichannel magnetic resonance (MR) volumes. The computationally efficient method runs orders of magnitude faster than current state-of-the-art techniques giving comparable or improved results. Our quantitative results indicate the benefit of incorporating model-aware affinities into the segmentation process for the difficult case of glioblastoma multiforme brain tumor.

  7. Tumor-Like Lesions of the Brain in MRI and CT-scan

    Directory of Open Access Journals (Sweden)

    Gholamreza Bakhshandehpour

    2009-01-01

    Full Text Available "nIntroduction: The objective of this paper is to demonstrate a variety of non-neoplastic pathologies that may present with a mass effect and/or abnormal enhancement, thus simulating neoplasia. "nMaterials and Methods: We collected 77 cases of various tumor mimics from teaching files of three institutions. All patients presented with intra- and/or extra–axial lesions and imaging findings that could, potentially, mimic brain neoplasia. "nResults: Assessment of central nervous system pathology may be very challenging. The usual description of mass effect and abnormal enhancement, typical of brain neoplasia, can also be shared by a variety of non-neoplastic etiologies. Radiologists should be familiar with these tumor mimics, and shold be included as differential diagnoses. We categorized and these non-neoplastic lesions, which could potentially mimic extra-and/or intra- axial brain tumors, into the following groups: "n1 Normal variant (giant (tumefactive perivascular spaces "n2 Infection (tuberculosis, cysticercosis, and fungal lesions "n3 Syndromes (NF1, Rosai-Dorfman Syndrome, Lhermitte-Duclos, Krabbe Disease (adult type. "n4 Vascular lesions (vascular malformations, aneurysms and cerebral venous sinus thrombosis "n5 Autoimmune and inflammatory processes (MS, ADEM, encephalitis, sarcoidosis and PML "n6 Idiopathic (idiopathic hypertrophic pachymeningitis "n7 Congenital brain lesions (cortical dysgenesis and heterotopias "n8 Miscellaneous (postictal brain lesions "nConclusion: In this paper, we present a large collection of non-neoplastic tumor mimics. Awareness, understanding, and recognition of these mimics may permit the radiologist to play a significant role in the prevention of unwanted surgical interventions or extensive diagnostic evaluation procedures.  

  8. Specific features of epilepsy in children with brain tumors

    Directory of Open Access Journals (Sweden)

    G. V. Kalmykova

    2015-01-01

    Full Text Available Objective: to study the specific features of epilepsy in children and adolescents with brain tumors and to define the optimal tactics of management and antiepileptic therapy after surgical treatment. Patients and methods. Sixty-one patients aged 5 months to 15 years were examined. All the patients were diagnosed as having a brain tumor found in the presence of symptomatic epilepsy. They were all followed up for 5 years postsurgery or during their lifetime (in case of death. Comprehensive examination encompassing the assessment of history data and concomitant complaints, brain magnetic resonance imaging, video-EEC monitoring, and the neurological status (the presence of cognitive impairments and eye ground changes was done in all the cases. The probability of epileptic seizures in the clinical presentation of the disease, their semiology, and frequency were studied. Results and discussion. Epileptic seizures were the major complaint in all the patients at the first visit to their doctor. The disease occurred with status epilepticus in 9% of the patients. Different types of generalized seizures were more common (53%; p≥0.05. The tumor was located above the tentorium of the cerebellum in most examinees (77% and beneath it in the others (23%; p≤0.05. The significant clinical sign of a brain tumor in the epileptic children is focal neurological symptoms (72% of the cases. MRI was performed in children who had no focal neurological symptoms in the late periods. There was cerebrospinal fluid hypertension in 51% of the patients (p≥0.05 and cognitive impairments in 33% (p<0.05. The maximum number (74% of children with psycho-speech disorders and cognitive impairments were registered in the age group of 7–15 years. Eye ground changes characteristic of intracranial hypertension were identified in 19 epileptic children; they occurred in 27 patients more than 1 year after the onset of seizures. The late (few months-to-14 years diagnosis of a brain

  9. Drosophila neural stem cells in brain development and tumor formation.

    Science.gov (United States)

    Jiang, Yanrui; Reichert, Heinrich

    2014-01-01

    Neuroblasts, the neural stem cells in Drosophila, generate the complex neural structure of the central nervous system. Significant progress has been made in understanding the mechanisms regulating the self-renewal, proliferation, and differentiation in Drosophila neuroblast lineages. Deregulation of these mechanisms can lead to severe developmental defects and the formation of malignant brain tumors. Here, the authors review the molecular genetics of Drosophila neuroblasts and discuss some recent advances in stem cell and cancer biology using this model system.

  10. Perivascular Wall Tumor in the Brain of a Dog

    OpenAIRE

    Margaret Cohn-Urbach; Annie Chen; Gary Haldorson; Stephanie Thomovsky

    2015-01-01

    A 9-year-old spayed female German shepherd mixed-breed dog presented for seizures. Magnetic resonance imaging revealed an irregularly marginated intraparenchymal cerebral mass. Microscopic examination of brain tissue collected postmortem demonstrated perivascular whorling and interwoven bundles of spindle-shaped cells. On immunohistochemistry, the tumor cells tested positive for vimentin and negative for factor VIII-related antigen, CD18, CD45, CD3, CD20, GFAP, S-100, and desmin. Immunohistoc...

  11. Optimizing brain tumor resection. High-field interventional MR imaging.

    Science.gov (United States)

    Tummala, R P; Chu, R M; Liu, H; Truwit, C L; Hall, W A

    2001-11-01

    High-field strength iMRI guidance is an effective tool for brain tumor resection. Although its use lengthens the average time for a craniotomy, the reward is a more extensive tumor excision compared with conventional neurosurgery without an increased risk to the patient (Table 4). Although intraoperative patient transfer into and out of the magnet is cumbersome, the possibility for complete resection, especially for a low-grade glioma, makes the effort worthwhile. The cost and technical support required for this system presently limits its use to only a few sites worldwide. As with any technology, further refinements will make this system less expensive and more attainable. Practical consideration aside, high-field strength iMRI is presently [table: see text] the most effective tool available for brain tumor resection. Because of its novelty, future studies are necessary to determine if this technology lowers the incidence of and extends the duration to tumor recurrence as the preliminary data in children suggests. These are the ultimate measures of efficacy for any brain tumor treatment. Based on the rapid advancement of technology, will today's high-field strength interventional magnet become tomorrow's low-field system? Very high-field strength designs may improve diagnostic capabilities through higher resolution, but their interventional applications may be hindered by increased sensitivity for clinically insignificant abnormalities and decreased specificity for clinically relevant lesions. As new technology is developed, clinicians must continue to explore and refine the existing high-field strength iMRI to make it cost-effective and widely applicable.

  12. Gene markers in brain tumors: what the epileptologist should know.

    Science.gov (United States)

    Ostrom, Quinn; Cohen, Mark L; Ondracek, Annie; Sloan, Andrew; Barnholtz-Sloan, Jill

    2013-12-01

    Gene markers or biomarkers can be used for diagnostic or prognostic purposes for all different types of complex disease, including brain tumors. Prognostic markers can be useful to explain differences not only in overall survival but also in response to treatment and for development of targeted therapies. Multiple genes with specific types of alterations have now been identified that are associated with improved response to chemotherapy and radiotherapy, such as O(6)-methylguanine methyltranferase (MGMT) or loss of chromosomes 1p and/or 19q. Other alterations have been identified that are associated with improved overall survival, such as mutations in isocitrate dehydrogenase 1 (IDH1) and/or isocitrate dehydrogenase 2 (IDH2) or having the glioma CpG island DNA methylator phenotype (G-CIMP). There are many biomarkers that may have relevance in brain tumor-associated epilepsy that do not respond to treatment. Given the rapidly changing landscape of high throughput "omics" technologies, there is significant potential for gaining further knowledge via integration of multiple different types of high genome-wide data. This knowledge can be translated into improved therapies and clinical outcomes for patients with brain tumors.

  13. Distribution of cysteinyl leukotriene receptor 2 in human traumatic brain injury and brain tumors

    Institute of Scientific and Technical Information of China (English)

    Hua HU; Er-qing WEI; Gao CHEN; Jian-min ZHANG; Wei-ping ZHANG; Lei ZHANG; Qiu-fu GE; Hong-tian YAO; Wei DING; Zhong CHEN

    2005-01-01

    Aim: To determine the distribution of cysteinyl leukotriene receptor 2 (CysLT2),one of the cysteinyl leukotriene receptors, in human brains with traumatic injury and tumors. Methods: Brain specimens were obtained from patients who underwent brain surgery. CysLT2 in brain tissues was examined using immunohistochemical analysis. Results: CysLT2 was expressed in the smooth muscle cells (not in the endothelial cells) of arteries and veins. CysLT2 was also expressed in the granulocytes in both vessels and in the brain parenchyma. In addition, CysLT2 was detected in neuron- and glial-appearing cells in either the late stages of traumatic injury or in the area surrounding the tumors. Microvessels regenerated 8 d after trauma and CysLT2 expression was recorded in their endothelial cells.Conclusion: CysLT2 is distributed in vascular smooth muscle cells and granulocytes, and brain trauma and tumor can induce its expression in vascular endothelial cells and in a number of other cells.

  14. Cell proliferation and neurogenesis in adult mouse brain.

    Directory of Open Access Journals (Sweden)

    Olivia L Bordiuk

    Full Text Available Neurogenesis, the formation of new neurons, can be observed in the adult brain of many mammalian species, including humans. Despite significant progress in our understanding of adult neurogenesis, we are still missing data about the extent and location of production of neural precursors in the adult mammalian brain. We used 5-ethynyl-2'-deoxyuridine (EdU to map the location of proliferating cells throughout the entire adult mouse brain and found that neurogenesis occurs at two locations in the mouse brain. The larger one we define as the main proliferative zone (MPZ, and the smaller one corresponds to the subgranular zone of the hippocampus. The MPZ can be divided into three parts. The caudate migratory stream (CMS occupies the middle part of the MPZ. The cable of proliferating cells emanating from the most anterior part of the CMS toward the olfactory bulbs forms the rostral migratory stream. The thin layer of proliferating cells extending posteriorly from the CMS forms the midlayer. We have not found any additional aggregations of proliferating cells in the adult mouse brain that could suggest the existence of other major neurogenic zones in the adult mouse brain.

  15. Measurement of blood-brain barrier permeability with t1-weighted dynamic contrast-enhanced MRI in brain tumors: a comparative study with two different algorithms.

    Science.gov (United States)

    Bergamino, Maurizio; Saitta, Laura; Barletta, Laura; Bonzano, Laura; Mancardi, Giovanni Luigi; Castellan, Lucio; Ravetti, Jean Louis; Roccatagliata, Luca

    2013-01-01

    The purpose of this study was to assess the feasibility of measuring different permeability parameters with T1-weighted dynamic contrast-enhanced (DCE) magnetic resonance imaging (MRI) in order to investigate the blood brain-barrier permeability associated with different brain tumors. The Patlak algorithm and the extended Tofts-Kety model were used to this aim. Twenty-five adult patients with tumors of different histological grades were enrolled in this study. MRI examinations were performed at 1.5 T. Multiflip angle, fast low-angle shot, and axial 3D T1-weighted images were acquired to calculate T1 maps, followed by a DCE acquisition. A region of interest was placed within the tumor of each patient to calculate the mean value of different permeability parameters. Differences in permeability measurements were found between different tumor grades, with higher histological grades characterized by higher permeability values. A significant difference in transfer constant (K (trans)) values was found between the two methods on high-grade tumors; however, both techniques revealed a significant correlation between the histological grade of tumors and their K (trans) values. Our results suggest that DCE acquisition is feasible in patients with brain tumors and that K (trans) maps can be easily obtained by these two algorithms, even if the theoretical model adopted could affect the final results.

  16. Tumor metabolism, the ketogenic diet and β-hydroxybutyrate: novel approaches to adjuvant brain tumor therapy

    Directory of Open Access Journals (Sweden)

    Eric C. Woolf

    2016-11-01

    Full Text Available Malignant brain tumors are devastating despite aggressive treatments such as surgical resection, chemotherapy and radiation therapy. The average life expectancy of patients with newly diagnosed glioblastoma is approximately ~18 months. It is clear that increased survival of brain tumor patients requires the design of new therapeutic modalities, especially those that enhance currently available treatments and/or limit tumor growth. One novel therapeutic arena is the metabolic dysregulation that results in an increased need for glucose in tumor cells. This phenomenon suggests that a reduction in tumor growth could be achieved by decreasing glucose availability, which can be accomplished through pharmacological means or through the use of a high-fat, low-carbohydrate ketogenic diet (KD. The KD, as the name implies, also provides increased blood ketones to support the energy needs of normal tissues. Preclinical work from a number of laboratories has shown that the KD does indeed reduce tumor growth in vivo. In addition, the KD has been shown to reduce angiogenesis, inflammation, peri-tumoral edema, migration and invasion. Furthermore, this diet can enhance the activity of radiation and chemotherapy in a mouse model of glioma, thus increasing survival. Additional studies in vitro have indicated that increasing ketones such as β-hydroxybutyrate in the absence of glucose reduction can also inhibit cell growth and potentiate the effects of chemotherapy and radiation. Thus, while we are only beginning to understand the pluripotent mechanisms through which the KD affects tumor growth and response to conventional therapies, the emerging data provide strong support for the use of a KD in the treatment of malignant gliomas. This has led to a limited number of clinical trials investigating the use of a KD in patients with primary and recurrent glioma.

  17. Tumor Metabolism, the Ketogenic Diet and β-Hydroxybutyrate: Novel Approaches to Adjuvant Brain Tumor Therapy

    Science.gov (United States)

    Woolf, Eric C.; Syed, Nelofer; Scheck, Adrienne C.

    2016-01-01

    Malignant brain tumors are devastating despite aggressive treatments such as surgical resection, chemotherapy and radiation therapy. The average life expectancy of patients with newly diagnosed glioblastoma is approximately ~18 months. It is clear that increased survival of brain tumor patients requires the design of new therapeutic modalities, especially those that enhance currently available treatments and/or limit tumor growth. One novel therapeutic arena is the metabolic dysregulation that results in an increased need for glucose in tumor cells. This phenomenon suggests that a reduction in tumor growth could be achieved by decreasing glucose availability, which can be accomplished through pharmacological means or through the use of a high-fat, low-carbohydrate ketogenic diet (KD). The KD, as the name implies, also provides increased blood ketones to support the energy needs of normal tissues. Preclinical work from a number of laboratories has shown that the KD does indeed reduce tumor growth in vivo. In addition, the KD has been shown to reduce angiogenesis, inflammation, peri-tumoral edema, migration and invasion. Furthermore, this diet can enhance the activity of radiation and chemotherapy in a mouse model of glioma, thus increasing survival. Additional studies in vitro have indicated that increasing ketones such as β-hydroxybutyrate (βHB) in the absence of glucose reduction can also inhibit cell growth and potentiate the effects of chemotherapy and radiation. Thus, while we are only beginning to understand the pluripotent mechanisms through which the KD affects tumor growth and response to conventional therapies, the emerging data provide strong support for the use of a KD in the treatment of malignant gliomas. This has led to a limited number of clinical trials investigating the use of a KD in patients with primary and recurrent glioma. PMID:27899882

  18. Systematic review of wireless phone use and brain cancer and other head tumors.

    Science.gov (United States)

    Repacholi, Michael H; Lerchl, Alexander; Röösli, Martin; Sienkiewicz, Zenon; Auvinen, Anssi; Breckenkamp, Jürgen; d'Inzeo, Guglielmo; Elliott, Paul; Frei, Patrizia; Heinrich, Sabine; Lagroye, Isabelle; Lahkola, Anna; McCormick, David L; Thomas, Silke; Vecchia, Paolo

    2012-04-01

    We conducted a systematic review of scientific studies to evaluate whether the use of wireless phones is linked to an increased incidence of the brain cancer glioma or other tumors of the head (meningioma, acoustic neuroma, and parotid gland), originating in the areas of the head that most absorb radiofrequency (RF) energy from wireless phones. Epidemiology and in vivo studies were evaluated according to an agreed protocol; quality criteria were used to evaluate the studies for narrative synthesis but not for meta-analyses or pooling of results. The epidemiology study results were heterogeneous, with sparse data on long-term use (≥ 10 years). Meta-analyses of the epidemiology studies showed no statistically significant increase in risk (defined as P phone use. Analyses of the in vivo oncogenicity, tumor promotion, and genotoxicity studies also showed no statistically significant relationship between exposure to RF fields and genotoxic damage to brain cells, or the incidence of brain cancers or other tumors of the head. Assessment of the review results using the Hill criteria did not support a causal relationship between wireless phone use and the incidence of adult cancers in the areas of the head that most absorb RF energy from the use of wireless phones. There are insufficient data to make any determinations about longer-term use (≥ 10 years).

  19. Brain stem auditory evoked responses in human infants and adults

    Science.gov (United States)

    Hecox, K.; Galambos, R.

    1974-01-01

    Brain stem evoked potentials were recorded by conventional scalp electrodes in infants (3 weeks to 3 years of age) and adults. The latency of one of the major response components (wave V) is shown to be a function both of click intensity and the age of the subject; this latency at a given signal strength shortens postnatally to reach the adult value (about 6 msec) by 12 to 18 months of age. The demonstrated reliability and limited variability of these brain stem electrophysiological responses provide the basis for an optimistic estimate of their usefulness as an objective method for assessing hearing in infants and adults.

  20. Brain CT of non-pineal intracranial germ cell tumors

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Hang Young; Chung, Eun Cheul; Lee, Dong Ho; Choo, In Wook; Chang, Kee Hyun [Seoul National University College of Medicine, Seoul (Korea, Republic of)

    1986-02-15

    19 cases of non-pineal intracranial germ cell tumors were reviewed retrospectively with both radiologic and clinical features. The results were as follows: 1. The age distribution was 8 to 32 year old (16 year old of mean age) and the sex distribution shows male predominance (15:4). 2. The histopathologic diagnosis includes 11 cases of germinoma, 2 case of mixed germ cell tumor, 1 case of embryonal cell carcinoma and 5 cases of unknown. 3. The location of tumors was the sarsaparilla region in 8 cases, the left basal ganglia and thalamus in 5 cases, and the right frontal lobe in 1 case. Among 11 cases of germinoma, 6 cases involve the sarsaparilla region and 3 cases the left basal ganglia and thalamus. 4. In clinical features, there were visual disturbance, diabetes indispose, increased ICP signs, motor weakness, hormonal disorders, and personal changes in order. 5. In tumor marker study of 6 cases of germinoma, 5 cases show increase in HCG titer, but all 6 cases were normal in AFP titer. 6. In brain CT, most of all revealed well-defined homogeneous high density with or without small central low density and homogeneous enhancement at solid portion, and there was calcification in only case with mixed germ cell tumor.

  1. Anatomy of the Brain

    Science.gov (United States)

    ... Menu Brain Tumor Information Brain Anatomy Brain Structure Neuron Anatomy Brain Tumor Symptoms Diagnosis Types of Tumors Risk Factors ... form Brain Tumor Information Brain Anatomy Brain Structure Neuron Anatomy Brain Tumor Symptoms Diagnosis Types of Tumors Risk Factors ...

  2. Radiosurgery in the management of pediatric brain tumors.

    Science.gov (United States)

    Raco, A; Raimondi, A J; D'Alonzo, A; Esposito, V; Valentino, V

    2000-05-01

    A total of 114 patients with benign and malignant intracranial tumors were treated by Valentino at the Flaminia Radiosurgical Center using a Philips 6-MeV linear accelerator between 1987 and 1995. The tumor locations break down as follows: 36 in the cerebral hemispheres, 14 in the region of the hypothalamus/optic chiasm, 21 in the III ventricle/pineal region, 3 in the basal ganglia, 27 in the posterior fossa, 13 in the brain stem. Seventy-nine patients had multivariate/combined treatment consisting of surgery or biopsy followed by chemotherapy, radiotherapy and/or radiosurgery. Thirty-five were not operated on or biopsied but were treated primarily by radiosurgery, which was associated with chemotherapy and conventional radiotherapy. The short- and long-term results were evaluated separately for each pathology in an attempt to derive guidelines for future treatment. For tumors of the pineal region, we are of the opinion that radiosurgery is the treatment of choice in children and that more than one-third of patients can be cured by this means. The remaining patients require surgery and/or chemotherapy in addition. For medulloblastomas radiosurgery may be useful to control local recurrence if coupled with chemotherapy. In the case of ependymomas, partly because of the extreme malignancy of the lesions in our series, radiosurgery did not succeed in controlling local recurrence. We fear that limiting treatment to radiosurgery, rather than prescribing conventional radiotherapy when indicated, could permit CNS seeding. For craniopharyngiomas radiosurgery proved useful for controlling solid remnants. In glial tumors radiosurgery helped either to "sterilize" the tumor bed after removal or to treat remnants of the lesions in critical areas; for diffuse brain stem gliomas it should be considered the treatment of choice.

  3. Differential expression of human homeodomain TGIFLX in brain tumor cell lines.

    Directory of Open Access Journals (Sweden)

    Reza Raoofian

    2013-12-01

    Full Text Available Glioblastoma is the most common and the most lethal primary brain cancer. This malignancy is highly locally invasive, rarely metastatic and resistant to current therapies. Little is known about the distinct molecular biology of glioblastoma multiforme (GBM in terms of initiation and progression. So far, several molecular mechanisms have been suggested to implicate in GBM development. Homeodomain (HD transcription factors play central roles in the expression of genomic information in all known eukaryotes. The TGIFX homeobox gene was originally discovered in human adult testes. Our previous study showed implications of TGIFLX in prostate cancer and azoospermia, although the molecular mechanism by which TGIFLX acts is unknown. Moreover, studies reported that HD proteins are involved in normal and abnormal brain developments. We examined the expression pattern of TGIFLX in different human brain tumor cell lines including U87MG, A172, Daoy and 1321N1. Interestingly, real time RT-PCR and western blot analysis revealed a high level of TGIFLX expression in A172 cells but not in the other cell lines. We subsequently cloned the entire coding sequence of TGIFLX gene into the pEGFP-N1 vector, eukaryotic expression vector encoding eGFP, and transfected into the U-87 MG cell line. The TGIFLX-GFP expression was confirmed by real time RT-PCR and UV-microscopic analysis. Upon transfection into U87 cells, fusion protein TGIFLX-GFP was found to locate mainly in the nucleus. This is the first report to determine the nuclear localization of TGIFLX and evaluation of its expression level between different brain tumor cell lines. Our data also suggest that TGIFLX gene dysregulation could be involved in the pathogenesis of some human brain tumors.

  4. Outcome of supratentorial intraaxial extra ventricular primary pediatric brain tumors: A prospective study

    Directory of Open Access Journals (Sweden)

    Mohana Rao Patibandla

    2014-01-01

    Full Text Available Introduction: Tumors of the central nervous system (CNS are the second most frequent malignancy of childhood and the most common solid tumor in this age group. CNS tumors represent approximately 17% of all malignancies in the pediatric age range, including adolescents. Glial neoplasms in children account for up to 60% of supratentorial intraaxial tumors. Their histological distribution and prognostic features differ from that of adults. Aims and Objectives: To study clinical and pathological characteristics, and to analyze the outcome using the Engel′s classification for seizures, Karnofsky′s score during the available follow-up period of minimum 1 year following the surgical and adjuvant therapy of supratentorial intraaxial extraventricular primary pediatric (SIEPP brain tumors in children equal or less than 18 years. Materials and Methods: The study design is a prospective study done in NIMS from October 2008 to January 2012. All the patients less than 18 years of age operated for SIEPP brain tumors proven histopathologically were included in the study. All the patients with recurrent or residual primary tumors or secondaries were excluded from the study. Post operative CT or magnetic resonance imaging (MRI is done following surgery. Results and Analysis: There were 2, 8 and 20 patients in the age range of 0-2 years, >2-10 years and 10-18 years, respectively. There were 21 male patients and 9 female patients. Out of 30 patients, 16 had lesion in the temporal lobe, 6 in frontal lobe, 4 in thalamus, 3 in parietal lobe and 1 in occipital lobe. Out of 30 patients, 11 patients had malignant lesions and nineteen patients had benign lesions. Gross total excision could be achieved in 19 patients and subtotal in 11 patients. Seven patients had mortality and four of the remaining 23 patients had increased deficits postoperatively. Remaining 19 patients either improved or remained same. Conclusions: SIEPP brain tumors have male preponderance, occur

  5. Colonic duplication in an adult mimicking a tumor of pancreas

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Duplications of the alimentary tract are uncommon congenital malformations that can present diagnostic difficulties.We report a rare case of a cystic colonic duplication in a female adult.Preoperative investigations were suggestive of pancreatic tumor.The diagnosis was established based on the histopathological examination of the resected specimen.We concluded that,though uncommon,intestinal duplication should be considered in differential diagnosis of abdominal mass.

  6. Boron Neutron Capture Therapy for Malignant Brain Tumors

    Science.gov (United States)

    MIYATAKE, Shin-Ichi; KAWABATA, Shinji; HIRAMATSU, Ryo; KUROIWA, Toshihiko; SUZUKI, Minoru; KONDO, Natsuko; ONO, Koji

    2016-01-01

    Boron neutron capture therapy (BNCT) is a biochemically targeted radiotherapy based on the nuclear capture and fission reactions that occur when non-radioactive boron-10, which is a constituent of natural elemental boron, is irradiated with low energy thermal neutrons to yield high linear energy transfer alpha particles and recoiling lithium-7 nuclei. Therefore, BNCT enables the application of a high dose of particle radiation selectively to tumor cells in which boron-10 compound has been accumulated. We applied BNCT using nuclear reactors for 167 cases of malignant brain tumors, including recurrent malignant gliomas, newly diagnosed malignant gliomas, and recurrent high-grade meningiomas from January 2002 to May 2014. Here, we review the principle and history of BNCT. In addition, we introduce fluoride-18-labeled boronophenylalanine positron emission tomography and the clinical results of BNCT for the above-mentioned malignant brain tumors. Finally, we discuss the recent development of accelerators producing epithermal neutron beams. This development could provide an alternative to the current use of specially modified nuclear reactors as a neutron source, and could allow BNCT to be performed in a hospital setting. PMID:27250576

  7. Boron Neutron Capture Therapy for Malignant Brain Tumors.

    Science.gov (United States)

    Miyatake, Shin-Ichi; Kawabata, Shinji; Hiramatsu, Ryo; Kuroiwa, Toshihiko; Suzuki, Minoru; Kondo, Natsuko; Ono, Koji

    2016-07-15

    Boron neutron capture therapy (BNCT) is a biochemically targeted radiotherapy based on the nuclear capture and fission reactions that occur when non-radioactive boron-10, which is a constituent of natural elemental boron, is irradiated with low energy thermal neutrons to yield high linear energy transfer alpha particles and recoiling lithium-7 nuclei. Therefore, BNCT enables the application of a high dose of particle radiation selectively to tumor cells in which boron-10 compound has been accumulated. We applied BNCT using nuclear reactors for 167 cases of malignant brain tumors, including recurrent malignant gliomas, newly diagnosed malignant gliomas, and recurrent high-grade meningiomas from January 2002 to May 2014. Here, we review the principle and history of BNCT. In addition, we introduce fluoride-18-labeled boronophenylalanine positron emission tomography and the clinical results of BNCT for the above-mentioned malignant brain tumors. Finally, we discuss the recent development of accelerators producing epithermal neutron beams. This development could provide an alternative to the current use of specially modified nuclear reactors as a neutron source, and could allow BNCT to be performed in a hospital setting.

  8. Adaptive Intuitionistic Fuzzy Enhancement of Brain Tumor MR Images.

    Science.gov (United States)

    Deng, He; Deng, Wankai; Sun, Xianping; Ye, Chaohui; Zhou, Xin

    2016-10-27

    Image enhancement techniques are able to improve the contrast and visual quality of magnetic resonance (MR) images. However, conventional methods cannot make up some deficiencies encountered by respective brain tumor MR imaging modes. In this paper, we propose an adaptive intuitionistic fuzzy sets-based scheme, called as AIFE, which takes information provided from different MR acquisitions and tries to enhance the normal and abnormal structural regions of the brain while displaying the enhanced results as a single image. The AIFE scheme firstly separates an input image into several sub images, then divides each sub image into object and background areas. After that, different novel fuzzification, hyperbolization and defuzzification operations are implemented on each object/background area, and finally an enhanced result is achieved via nonlinear fusion operators. The fuzzy implementations can be processed in parallel. Real data experiments demonstrate that the AIFE scheme is not only effectively useful to have information from images acquired with different MR sequences fused in a single image, but also has better enhancement performance when compared to conventional baseline algorithms. This indicates that the proposed AIFE scheme has potential for improving the detection and diagnosis of brain tumors.

  9. Therapeutic Potential of Curcumin for the Treatment of Brain Tumors

    Directory of Open Access Journals (Sweden)

    Neil V. Klinger

    2016-01-01

    Full Text Available Brain malignancies currently carry a poor prognosis despite the current multimodal standard of care that includes surgical resection and adjuvant chemotherapy and radiation. As new therapies are desperately needed, naturally occurring chemical compounds have been studied for their potential chemotherapeutic benefits and low toxicity profile. Curcumin, found in the rhizome of turmeric, has extensive therapeutic promise via its antioxidant, anti-inflammatory, and antiproliferative properties. Preclinical in vitro and in vivo data have shown it to be an effective treatment for brain tumors including glioblastoma multiforme. These effects are potentiated by curcumin’s ability to induce G2/M cell cycle arrest, activation of apoptotic pathways, induction of autophagy, disruption of molecular signaling, inhibition of invasion, and metastasis and by increasing the efficacy of existing chemotherapeutics. Further, clinical data suggest that it has low toxicity in humans even at large doses. Curcumin is a promising nutraceutical compound that should be evaluated in clinical trials for the treatment of human brain tumors.

  10. MR Vascular Fingerprinting in Stroke and Brain Tumors Models

    Science.gov (United States)

    Lemasson, B.; Pannetier, N.; Coquery, N.; Boisserand, Ligia S. B.; Collomb, Nora; Schuff, N.; Moseley, M.; Zaharchuk, G.; Barbier, E. L.; Christen, T.

    2016-11-01

    In this study, we evaluated an MRI fingerprinting approach (MRvF) designed to provide high-resolution parametric maps of the microvascular architecture (i.e., blood volume fraction, vessel diameter) and function (blood oxygenation) simultaneously. The method was tested in rats (n = 115), divided in 3 models: brain tumors (9 L, C6, F98), permanent stroke, and a control group of healthy animals. We showed that fingerprinting can robustly distinguish between healthy and pathological brain tissues with different behaviors in tumor and stroke models. In particular, fingerprinting revealed that C6 and F98 glioma models have similar signatures while 9 L present a distinct evolution. We also showed that it is possible to improve the results of MRvF and obtain supplemental information by changing the numerical representation of the vascular network. Finally, good agreement was found between MRvF and conventional MR approaches in healthy tissues and in the C6, F98, and permanent stroke models. For the 9 L glioma model, fingerprinting showed blood oxygenation measurements that contradict results obtained with a quantitative BOLD approach. In conclusion, MR vascular fingerprinting seems to be an efficient technique to study microvascular properties in vivo. Multiple technical improvements are feasible and might improve diagnosis and management of brain diseases.

  11. Proton and carbon ion radiotherapy for primary brain tumors and tumors of the skull base

    Energy Technology Data Exchange (ETDEWEB)

    Combs, Stephanie E.; Kessel, Kerstin; Habermehl, Daniel; Debus, Jurgen [Univ. Hospital of Heidelberg, Dept. of Radiation Oncology, Heidelberg (Germany)], e-mail: Stephanie.Combs@med.uni-heidelberg.de; Haberer, Thomas [Heidelberger Ionenstrahl Therapiezentrum (HIT), Heidelberg (Germany); Jaekel, Oliver [Univ. Hospital of Heidelberg, Dept. of Radiation Oncology, Heidelberg (Germany); Heidelberger Ionenstrahl Therapiezentrum (HIT), Heidelberg (Germany)

    2013-10-15

    To analyze clinical concepts, toxicity and treatment outcome in patients with brain and skull base tumors treated with photons and particle therapy. Material and methods: In total 260 patients with brain tumors and tumors of the skull base were treated at the Heidelberg Ion Therapy Center (HIT). Patients enrolled in and randomized within prospective clinical trials as well as bony or soft tissue tumors are not included in this analysis. Treatment was delivered as protons, carbon ions, or combinations of photons and a carbon ion boost. All patients are included in a tight follow-up program. The median follow-up time is 12 months (range 2-39 months). Results: Main histologies included meningioma (n = 107) for skull base lesions, pituitary adenomas (n = 14), low-grade gliomas (n = 51) as well as high-grade gliomas (n = 55) for brain tumors. In all patients treatment could be completed without any unexpected severe toxicities. No side effects > CTC Grade III were observed. To date, no severe late toxicities were observed, however, for endpoints such as secondary malignancies or neuro cognitive side effects follow-up time still remains too short. Local recurrences were mainly seen in the group of high-grade gliomas or atypical meningiomas; for benign skull base meningiomas, to date, no recurrences were observed during follow-up. Conclusion: The specific benefit of particle therapy will potentially reduce the risk of secondary malignancies as well as improve neuro cognitive outcome and quality of life (QOL); thus, longer follow-up will be necessary to confirm these endpoints. Indication-specific trials on meningiomas and gliomas are underway to elucidate the role of protons and carbon ions in these indications.

  12. Spatial organization and correlations of cell nuclei in brain tumors.

    Directory of Open Access Journals (Sweden)

    Yang Jiao

    Full Text Available Accepting the hypothesis that cancers are self-organizing, opportunistic systems, it is crucial to understand the collective behavior of cancer cells in their tumorous heterogeneous environment. In the present paper, we ask the following basic question: Is this self-organization of tumor evolution reflected in the manner in which malignant cells are spatially distributed in their heterogeneous environment? We employ a variety of nontrivial statistical microstructural descriptors that arise in the theory of heterogeneous media to characterize the spatial distributions of the nuclei of both benign brain white matter cells and brain glioma cells as obtained from histological images. These descriptors, which include the pair correlation function, structure factor and various nearest neighbor functions, quantify how pairs of cell nuclei are correlated in space in various ways. We map the centroids of the cell nuclei into point distributions to show that while commonly used local spatial statistics (e.g., cell areas and number of neighboring cells cannot clearly distinguish spatial correlations in distributions of normal and abnormal cell nuclei, their salient structural features are captured very well by the aforementioned microstructural descriptors. We show that the tumorous cells pack more densely than normal cells and exhibit stronger effective repulsions between any pair of cells. Moreover, we demonstrate that brain gliomas are organized in a collective way rather than randomly on intermediate and large length scales. The existence of nontrivial spatial correlations between the abnormal cells strongly supports the view that cancer is not an unorganized collection of malignant cells but rather a complex emergent integrated system.

  13. Intracranial yolk sac tumor in an adult patient: MRI, diffusion-weighted imaging and 1H MR spectroscopy features

    Directory of Open Access Journals (Sweden)

    Mačvanski Marija

    2012-01-01

    Full Text Available Introduction. Yolk sac tumors represent only 5%-7% of intracranial germ cell tumors, which comprise about 1% of all primary brain tumors in adults. Literature data about nonspecific imaging characteristics of these tumors are scant. We presented magnetic resonance imaging findings with diffusion-weighted imaging and proton magnetic resonance spectroscopy of this rare type of tumor in an adult patient. Case report. A 55-year-old man with progressive left side weakness, headache, dizziness and ataxia, underwent preoperative magnetic resonance imaging, diffusion-weighted imaging and proton magnetic resonance spectroscopy. After surgical resection and histological analysis, the final diagnosis of yolk sac tumor was established. Retrospective imaging analysis were performed in order to determine imaging and biochemical parameters that could be useful in the diagnostic evaluation of this tumor type. Conclusion. Though the imaging features of yolk sac tumor are not specific, morphoanatomical and metabolic imaging could offer the information that provides new insights into this tumor that may facilitate further therapeutic decision process and potentially provides better information regarding the disease prognosis.

  14. The Multimodal Brain Tumor Image Segmentation Benchmark (BRATS).

    Science.gov (United States)

    Menze, Bjoern H; Jakab, Andras; Bauer, Stefan; Kalpathy-Cramer, Jayashree; Farahani, Keyvan; Kirby, Justin; Burren, Yuliya; Porz, Nicole; Slotboom, Johannes; Wiest, Roland; Lanczi, Levente; Gerstner, Elizabeth; Weber, Marc-André; Arbel, Tal; Avants, Brian B; Ayache, Nicholas; Buendia, Patricia; Collins, D Louis; Cordier, Nicolas; Corso, Jason J; Criminisi, Antonio; Das, Tilak; Delingette, Hervé; Demiralp, Çağatay; Durst, Christopher R; Dojat, Michel; Doyle, Senan; Festa, Joana; Forbes, Florence; Geremia, Ezequiel; Glocker, Ben; Golland, Polina; Guo, Xiaotao; Hamamci, Andac; Iftekharuddin, Khan M; Jena, Raj; John, Nigel M; Konukoglu, Ender; Lashkari, Danial; Mariz, José Antonió; Meier, Raphael; Pereira, Sérgio; Precup, Doina; Price, Stephen J; Raviv, Tammy Riklin; Reza, Syed M S; Ryan, Michael; Sarikaya, Duygu; Schwartz, Lawrence; Shin, Hoo-Chang; Shotton, Jamie; Silva, Carlos A; Sousa, Nuno; Subbanna, Nagesh K; Szekely, Gabor; Taylor, Thomas J; Thomas, Owen M; Tustison, Nicholas J; Unal, Gozde; Vasseur, Flor; Wintermark, Max; Ye, Dong Hye; Zhao, Liang; Zhao, Binsheng; Zikic, Darko; Prastawa, Marcel; Reyes, Mauricio; Van Leemput, Koen

    2015-10-01

    In this paper we report the set-up and results of the Multimodal Brain Tumor Image Segmentation Benchmark (BRATS) organized in conjunction with the MICCAI 2012 and 2013 conferences. Twenty state-of-the-art tumor segmentation algorithms were applied to a set of 65 multi-contrast MR scans of low- and high-grade glioma patients-manually annotated by up to four raters-and to 65 comparable scans generated using tumor image simulation software. Quantitative evaluations revealed considerable disagreement between the human raters in segmenting various tumor sub-regions (Dice scores in the range 74%-85%), illustrating the difficulty of this task. We found that different algorithms worked best for different sub-regions (reaching performance comparable to human inter-rater variability), but that no single algorithm ranked in the top for all sub-regions simultaneously. Fusing several good algorithms using a hierarchical majority vote yielded segmentations that consistently ranked above all individual algorithms, indicating remaining opportunities for further methodological improvements. The BRATS image data and manual annotations continue to be publicly available through an online evaluation system as an ongoing benchmarking resource.

  15. Phenylalanine-coupled solid lipid nanoparticles for brain tumor targeting

    Science.gov (United States)

    Kharya, Parul; Jain, Ashish; Gulbake, Arvind; Shilpi, Satish; Jain, Ankit; Hurkat, Pooja; Majumdar, Subrata; Jain, Sanjay K.

    2013-11-01

    The purpose of this study is to investigate the targeting potential of amino acid (phenylalanine)-coupled solid lipid nanoparticles (SLN) loaded with ionically complexed doxorubicin HCl (Dox). Ionic complexation was used to enhance the loading efficiency and release characteristics of water soluble form of Dox. l-Type amino acid transporters (LAT1) are highly expressed on blood brain barrier as well as on many brain cancer cells, thus targeting LAT1 using phenylalanine improved anticancer activity of prepared nanocarrier. The phenylalanine-coupled SLN were characterized by fourier transform infrared spectroscopy, scanning electron microscope, transmission electron microscopy, particle size, zeta potential, entrapment efficiency and in vitro release. The particle size of the resulting SLN was found to be in the range of 163.3 ± 5.2 to 113.0 ± 2.6 nm, with a slightly negative surface charge. In ex vivo study on C6 glioma cell lines, the cellular cytotoxicity of the SLN was highly increased when coupled with phenylalanine. In addition, stealthing sheath of PEG present on the surface of the SLN enhanced the cellular uptake of the SLN on C6 glioma cell line. Results of biodistribution and fluorescence studies clearly revealed that phenylalanine-coupled SLN could deliver high amount of drug into the brain tumor cells and showed the brain-targeting potential.

  16. Phenylalanine-coupled solid lipid nanoparticles for brain tumor targeting

    Energy Technology Data Exchange (ETDEWEB)

    Kharya, Parul; Jain, Ashish; Gulbake, Arvind; Shilpi, Satish; Jain, Ankit; Hurkat, Pooja [Dr. Hari Singh Gour University, Pharmaceutical Research Projects Laboratory, Department of Pharmaceutical Sciences (India); Majumdar, Subrata [Bose Institute, Division of Molecular Medicine (India); Jain, Sanjay K., E-mail: drskjainin@yahoo.com [Dr. Hari Singh Gour University, Pharmaceutical Research Projects Laboratory, Department of Pharmaceutical Sciences (India)

    2013-11-15

    The purpose of this study is to investigate the targeting potential of amino acid (phenylalanine)-coupled solid lipid nanoparticles (SLN) loaded with ionically complexed doxorubicin HCl (Dox). Ionic complexation was used to enhance the loading efficiency and release characteristics of water soluble form of Dox. l-Type amino acid transporters (LAT1) are highly expressed on blood brain barrier as well as on many brain cancer cells, thus targeting LAT1 using phenylalanine improved anticancer activity of prepared nanocarrier. The phenylalanine-coupled SLN were characterized by fourier transform infrared spectroscopy, scanning electron microscope, transmission electron microscopy, particle size, zeta potential, entrapment efficiency and in vitro release. The particle size of the resulting SLN was found to be in the range of 163.3 ± 5.2 to 113.0 ± 2.6 nm, with a slightly negative surface charge. In ex vivo study on C6 glioma cell lines, the cellular cytotoxicity of the SLN was highly increased when coupled with phenylalanine. In addition, stealthing sheath of PEG present on the surface of the SLN enhanced the cellular uptake of the SLN on C6 glioma cell line. Results of biodistribution and fluorescence studies clearly revealed that phenylalanine-coupled SLN could deliver high amount of drug into the brain tumor cells and showed the brain-targeting potential.

  17. The effects of vitamin D on brain development and adult brain function.

    Science.gov (United States)

    Kesby, James P; Eyles, Darryl W; Burne, Thomas H J; McGrath, John J

    2011-12-05

    A role for vitamin D in brain development and function has been gaining support over the last decade. Multiple lines of evidence suggest that this vitamin is actually a neuroactive steroid that acts on brain development, leading to alterations in brain neurochemistry and adult brain function. Early deficiencies have been linked with neuropsychiatric disorders, such as schizophrenia, and adult deficiencies have been associated with a host of adverse brain outcomes, including Parkinson's disease, Alzheimer's disease, depression and cognitive decline. This review summarises the current state of research on the actions of vitamin D in the brain and the consequences of deficiencies in this vitamin. Furthermore, we discuss specific implications of vitamin D status on the neurotransmitter, dopamine.

  18. Fatigue in adults with traumatic brain injury

    DEFF Research Database (Denmark)

    Mollayeva, Tatyana; Kendzerska, Tetyana; Mollayeva, Shirin;

    2013-01-01

    . CONCLUSIONS: The review will summarize the current knowledge in the field with the aim of increasing understanding and guiding future research on the associations between fatigue and clinically important factors, as well as the consequences of fatigue in traumatic brain injury. PROSPERO registry number: CRD......BACKGROUND: Despite strong indications that fatigue is the most common and debilitating symptom after traumatic brain injury, little is known about its frequency, natural history, or relation to other factors. The current protocol outlines a strategy for a systematic review that will identify......, assess, and critically appraise studies that assessed predictors for fatigue and the consequences of fatigue on at least two separate time points following traumatic brain injury. METHODS/DESIGN: MEDLINE, EMBASE, the Cochrane Database of Systematic Reviews, CINAHL, and PsycINFO will be systematically...

  19. Effective dose evaluation for BNCT brain tumor treatment based on voxel phantoms.

    Science.gov (United States)

    Wang, Jeng-Ning; Lee, Kuo-Wei; Jiang, Shiang-Huei

    2014-06-01

    For BNCT treatments, in addition to tumor target doses, non-negligible doses will result in all the remaining organs of the body. This work aims to evaluate the effective dose as well as the average absorbed doses of each of organs of patients with brain tumor treated in the BNCT epithermal neutron beam at THOR. The effective doses were evaluated according to the definitions of ICRP Publications 60 and 103 for the reference male and female computational phantoms developed in ICRP Publication 110 by using the MCNP5 Monte Carlo code with the THOR-Y09 beam source. The effective dose acquired in this work was compared with the results of our previous work calculated for an adult hermaphrodite mathematical phantom. It was found that the effective dose for the female voxel phantom is larger than that for the male voxel phantom by a factor of 1.2-1.5 and the effective dose for the voxel phantom is larger than that for the mathematical phantom by a factor of 1.3-1.6. For a typical brain tumor BNCT, the effective dose was calculated to be 1.51Sv and the average absorbed dose for eye lenses was 1.07Gy.

  20. Clinicopathological pattern of brain tumors: A 3-year study in a tertiary care hospital in India

    Directory of Open Access Journals (Sweden)

    Sajeeb Mondal

    2016-01-01

    Full Text Available Background: Brain tumors are heterogeneous group of neoplasms, affecting different age groups. Although some studies have been published regarding pathological pattern of brain tumors from different countries of the world and also from India, comprehensive clinicopathological studies from Eastern India is lacking. Aims: The aim of this study was to observe recent incidence of different brain tumors and to study clinical and histopathological spectrum of brain tumors in Eastern India. Materials and Methods: The present study was a cross-sectional observational study involving 130 cases of brain tumors which were diagnosed during the 3-year study period (January 2010–December 2012. Data regarding clinical presentation and radiological features of all cases were collected from all patients. Histopathological diagnosis was correlated with clinical and radiological diagnosis. Results: We found 130 cases of brain tumor with a male preponderance. The cases were distributed in a wide age range from 4 years to 78 years with the mean age of 42.38 years. Most common tumor type in our study was neuroepithelial tumor (92 cases, 70.76%. Among the neuroepithelial tumors, most frequent subtype was astrocytic tumor (54 cases, 41.5%. The second most frequent brain tumor was meningioma (20 cases, 15.3%. We found higher incidence of oligodendroglial tumor (8.46% and medulloblastoma (7.69% in our series. Conclusion: Males are more predispose to brain tumors in comparison to females. Astrocytic tumors are most common subtype in Eastern India. However, the WHO Grade I neoplasms are more frequent brain tumors.

  1. Metastatic Brain Tumors: A Retrospective Review in East Azarbyjan (Tabriz

    Directory of Open Access Journals (Sweden)

    Zinat Miabi

    2011-02-01

    Full Text Available A set of one hundred and twenty nine patients with known primary malignancy and suspected brain metastasis was reviewed in present study. The patients were selected among patients presented to the MRI section of Imam Khomeini Hospital or a private MRI center in Tabriz (Iran. Primary tumor site, clinical manifestations, number and site of lesions were identified in this patient population. The primary tumor site was breast in 55 patients (42.6%, followed by lung (40.3%, kidney (7.7%, colorectal (4.6%, lymphoma (3.1% and melanoma (1.5%. Most patients were presented with features of increased intracranial pressure (headaches and vomiting, seizures and focal neurologic signs. Single brain metastasis occurred in 16.3% of patients, while multiple lesions accounted for 83.7% of patients. Ninety seven patients had supratentorial metastases (75.2%. Twenty cases (15.5% had metastases in both compartments. Infratentorial lesions were observed only in twelve patients (9.3%.

  2. Endocrine abnormalities after radiation therapy for brain tumors in children

    Energy Technology Data Exchange (ETDEWEB)

    Aida, Toshimitsu; Sugimoto, Shinji; Abe, Hiroshi; Fujieda, Kenji; Matsuura, Nobuo (Hokkaido Univ., Sapporo (Japan). School of Medicine)

    1990-12-01

    Endocrine evaluations were performed in 5 children, previously treated for brain tumors which did not directly involve the hypothalamic-pituitary axis, who had received cranial irradiation 2 to 4 years earlier. Their rate of growth was considerably reduced during the year following the completion of cranial irradiation. Impaired growth hormone (GH) responses to an insulin tolerance test (ITT) were observed in all 6 and to an arginine tolerance test (ATT) in 5 children. Three children had a prolonged response of thyroid-stimulating hormone (TSH) to thyrotrophin releasing hormone (TRH). The remaining pituitary functions were essentially normal. Four children received human GH therapy. The growth rate of each was improved by GH therapy, but 2 of the 4 were still short with a standing height standard deviation score (SDS) below 2. Close monitoring of the growth and hormonal status of children with brain tumors treated with cranial irradiation is necessary, and the timing of the initiation of GH therapy is very important for partial or complete restoration of the normal growth rate. (author).

  3. Identifying the needs of brain tumor patients and their caregivers.

    Science.gov (United States)

    Parvataneni, Rupa; Polley, Mei-Yin; Freeman, Teresa; Lamborn, Kathleen; Prados, Michael; Butowski, Nicholas; Liu, Raymond; Clarke, Jennifer; Page, Margaretta; Rabbitt, Jane; Fedoroff, Anne; Clow, Emelia; Hsieh, Emily; Kivett, Valerie; Deboer, Rebecca; Chang, Susan

    2011-09-01

    The purpose of this study is to identify the needs of brain tumor patients and their caregivers to provide improved health services to these populations. Two different questionnaires were designed for patients and caregivers. Both questionnaires contained questions pertaining to three realms: disease symptoms/treatment, health care provider, daily living/finances. The caregivers' questionnaires contained an additional domain on emotional needs. Each question was evaluated for the degree of importance and satisfaction. Exploratory analyses determined whether baseline characteristics affect responder importance or satisfaction. Also, areas of high agreement/disagreement in satisfaction between the participating patient-caregiver pairs were identified. Questions for which >50% of the patients and caregivers thought were "very important" but >30% were dissatisfied include: understanding the cause of brain tumors, dealing with patients' lower energy, identifying healthful foods and activities for patients, telephone access to health care providers, information on medical insurance coverage, and support from their employer. In the emotional realm, caregivers identified 9 out of 10 items as important but need further improvement. Areas of high disagreement in satisfaction between participating patient-caregiver pairs include: getting help with household chores (P value = 0.006) and finding time for personal needs (P value needs, emphasizing the importance of providing appropriate medical and psychosocial support for caregivers to cope with emotional difficulties they face during the patients' treatment process.

  4. Permeability of PEGylated Immunoarsonoliposomes Through In Vitro Blood Brain Barrier-Medulloblastoma Co-culture Models for Brain Tumor Therapy

    NARCIS (Netherlands)

    Al-Shehri, A.; Favretto, M.E.; Ioannou, P.V.; Romero, I.A.; Couraud, P.O.; Weksler, B.B.; Parker, T.L.; Kallinteri, P.

    2015-01-01

    PURPOSE: Owing to restricted access of pharmacological agents into the brain due to blood brain barrier (BBB) there is a need: 1. to develop a more representative 3-D-co-culture model of tumor-BBB interaction to investigate drug and nanoparticle transport into the brain for diagnostic and therapeuti

  5. Perioperative Management of Adult Traumatic Brain Injury

    OpenAIRE

    Sharma, Deepak; Vavilala, Monica S.

    2012-01-01

    This article presents an overview of the management of traumatic brain injury (TBI) as relevant to the practicing anesthesiologist. Key concepts surrounding the pathophysiology, anesthetic principles are used to describe potential ways to reduce secondary insults and improve outcomes after TBI.

  6. Treatment-related changes in functional connectivity in brain tumor patients : a magnetoencephalography study

    NARCIS (Netherlands)

    Douw, Linda; Baayen, Hans; Bosma, Ingeborg; Klein, Martin; Vandertop, Peter; Heimans, Jan; Stam, Kees; de Munck, Jan; Reijneveld, Jaap

    2008-01-01

    Widespread disturbances in resting state functional connectivity between remote brain areas have been demonstrated in patients with brain tumors. Functional connectivity has been associated with neurocognitive deficits in these patients. Thus far, it is unknown how (surgical) treatment affects funct

  7. Fetal brain tumors: Prenatal diagnosis by ultrasound and magnetic resonance imaging

    Institute of Scientific and Technical Information of China (English)

    Hérbene; José; Milani; Edward; Araujo; Júnior; Sérgio; Cavalheiro; Patrícia; Soares; Oliveira; Wagner; Jou; Hisaba; Enoch; Quinderé; Sá; Barreto; Maurício; Mendes; Barbosa; Luciano; Marcondes; Nardozza; Antonio; Fernandes; Moron

    2015-01-01

    Congenital central nervous system tumors diagnosed during pregnancy are rare, and often have a poor prognosis. The most frequent type is the teratoma. Use of ultrasound and magnetic resonance image allows the suspicion of brain tumors during pregnancy. However, the definitive diagnosis is only confirmed after birth by histology. The purpose of this mini-review article is to describe the general clinical aspects of intracranial tumors and describe the main fetal brain tumors.

  8. Automatic metastatic brain tumor segmentation for stereotactic radiosurgery applications

    Science.gov (United States)

    Liu, Yan; Stojadinovic, Strahinja; Hrycushko, Brian; Wardak, Zabi; Lu, Weiguo; Yan, Yulong; Jiang, Steve B.; Timmerman, Robert; Abdulrahman, Ramzi; Nedzi, Lucien; Gu, Xuejun

    2016-12-01

    The objective of this study is to develop an automatic segmentation strategy for efficient and accurate metastatic brain tumor delineation on contrast-enhanced T1-weighted (T1c) magnetic resonance images (MRI) for stereotactic radiosurgery (SRS) applications. The proposed four-step automatic brain metastases segmentation strategy is comprised of pre-processing, initial contouring, contour evolution, and contour triage. First, T1c brain images are preprocessed to remove the skull. Second, an initial tumor contour is created using a multi-scaled adaptive threshold-based bounding box and a super-voxel clustering technique. Third, the initial contours are evolved to the tumor boundary using a regional active contour technique. Fourth, all detected false-positive contours are removed with geometric characterization. The segmentation process was validated on a realistic virtual phantom containing Gaussian or Rician noise. For each type of noise distribution, five different noise levels were tested. Twenty-one cases from the multimodal brain tumor image segmentation (BRATS) challenge dataset and fifteen clinical metastases cases were also included in validation. Segmentation performance was quantified by the Dice coefficient (DC), normalized mutual information (NMI), structural similarity (SSIM), Hausdorff distance (HD), mean value of surface-to-surface distance (MSSD) and standard deviation of surface-to-surface distance (SDSSD). In the numerical phantom study, the evaluation yielded a DC of 0.98  ±  0.01, an NMI of 0.97  ±  0.01, an SSIM of 0.999  ±  0.001, an HD of 2.2  ±  0.8 mm, an MSSD of 0.1  ±  0.1 mm, and an SDSSD of 0.3  ±  0.1 mm. The validation on the BRATS data resulted in a DC of 0.89  ±  0.08, which outperform the BRATS challenge algorithms. Evaluation on clinical datasets gave a DC of 0.86  ±  0.09, an NMI of 0.80  ±  0.11, an SSIM of 0.999  ±  0.001, an HD of 8

  9. Stereotactic interstitial brachytherapy for the treatment of oligodendroglial brain tumors

    Energy Technology Data Exchange (ETDEWEB)

    El Majdoub, Faycal; Neudorfer, Clemens; Maarouf, Mohammad [University Hospital of Cologne, Department of Stereotaxy and Functional Neurosurgery, Cologne (Germany); University of Witten/Herdecke, Department of Stereotaxy and Functional Neurosurgery, Center of Neurosurgery, Cologne-Merheim Medical Center (CMMC), Cologne (Germany); Blau, Tobias; Deckert, Martina [University Hospital of Cologne, Department of Neuropathology, Cologne (Germany); Hellmich, Martin [University Hospital of Cologne, Institute of Statistics, Informatics and Epidemiology, Cologne (Germany); Buehrle, Christian [University Hospital of Cologne, Department of Stereotaxy and Functional Neurosurgery, Cologne (Germany); Sturm, Volker [University Hospital of Cologne, Department of Stereotaxy and Functional Neurosurgery, Cologne (Germany); University Hospital of Wurzburg, Department of Neurosurgery, Wuerzburg (Germany)

    2015-12-15

    We evaluated the treatment of oligodendroglial brain tumors with interstitial brachytherapy (IBT) using {sup 125}iodine seeds ({sup 125}I) and analyzed prognostic factors. Between January 1991 and December 2010, 63 patients (median age 43.3 years, range 20.8-63.4 years) suffering from oligodendroglial brain tumors were treated with {sup 125}I IBT either as primary, adjuvantly after incomplete resection, or as salvage therapy after tumor recurrence. Possible prognostic factors influencing disease progression and survival were retrospectively investigated. The actuarial 2-, 5-, and 10-year overall and progression-free survival rates after IBT for WHO II tumors were 96.9, 96.9, 89.8 % and 96.9, 93.8, 47.3 %; for WHO III tumors 90.3, 77, 54.9 % and 80.6, 58.4, 45.9 %, respectively. Magnetic resonance imaging demonstrated complete remission in 2 patients, partial remission in 13 patients, stable disease in 17 patients and tumor progression in 31 patients. Median time to progression for WHO II tumors was 87.6 months and for WHO III tumors 27.8 months. Neurological status improved in 10 patients and remained stable in 20 patients, while 9 patients deteriorated. There was no treatment-related mortality. Treatment-related morbidity was transient in 11 patients. WHO II, KPS ≥ 90 %, frontal location, and tumor surface dose > 50 Gy were associated with increased overall survival (p ≤ 0.05). Oligodendroglioma and frontal location were associated with a prolonged progression-free survival (p ≤ 0.05). Our study indicates that IBT achieves local control rates comparable to surgery and radio-/chemotherapy treatment, is minimally invasive, and safe. Due to the low rate of side effects, IBT may represent an attractive option as part of a multimodal treatment schedule, being supplementary to microsurgery or as a salvage therapy after chemotherapy and conventional irradiation. (orig.) [German] Die Behandlung oligodendroglialer Hirntumoren durch die interstitielle Brachytherapie

  10. Brain connectivity study of brain tumor patients using MR-PET data: preliminary results

    Energy Technology Data Exchange (ETDEWEB)

    Mendes, Ana Carina [Institute of Biophysics and Biomedical Engineering, Faculty of Sciences of the University of Lisbon (Portugal); Ribeiro, Andre Santos [Institute of Biophysics and Biomedical Engineering, Faculty of Sciences of the University of Lisbon (Portugal); Centre for Neuropsychopharmacology, Division of Brain Sciences, Department of Medicine, Imperial College London, London (United Kingdom); Oros-Peusquens, Ana Maria; Langen, Karl Josef; Shah, Jon [Institute of Neuroscience and Medicine - 4, Forschungszentrum Juelich (Germany); Ferreira, Hugo Alexandre [Institute of Biophysics and Biomedical Engineering, Faculty of Sciences of the University of Lisbon (Portugal)

    2015-05-18

    Brain activity results from anatomical and functional connections that can be disrupted or altered due to trauma or lesion. This work presents a first approach on the study of whole-brain connectivity of brain tumor patients using the Multimodal Imaging Brain Connectivity (MIBCA) toolbox. Two patients with glioblastoma lesions located in the left hemisphere (one in the motor cortex and the other in the temporal lobe) underwent simultaneous MRI and dynamic PET scans using a 3T MRI scanner with a BrainPET insert. The following data was acquired: T1-w MPRAGE (1x1x1mm{sup 3}), DTI (dir=30, b=0,800s/mm2, 2x2x2mm{sup 3}), and dynamic 18F-FET PET. The MIBCA toolbox was used to automatically pre-process MRI-PET data and to derive imaging and connectivity metrics from the multimodal data. Computed metrics included: cortical thickness from T1-w data; mean diffusivity (MD), fractional anisotropy (FA), node degree, clustering coefficient and pairwise ROI fibre tracking (structural connectivity) from DTI data; and standardized uptake value (SUV) from PET data. For all the metrics, the differences between left and right hemispherical structures were obtained, followed by a 25% threshold (except for SUV thresholded at 15%). Data was visualized in a connectogram, and both structural connectivity and metrics were studied in regions surrounding lesions. Preliminary results showed increased SUV values in regions surrounding the tumor for both patients. Patients also showed changes in structural connectivity involving these regions and also other more spatially distant regions such as the putamen and the pallidum, including decreased number of fibers between the subcortical structures themselves and with frontal regions. These findings suggest that the presence of a tumor may alter both local and more distant structural connections. Presently, a larger patient sample is being studied along with the inclusion of a control group to test the consistency of the findings.

  11. Brain abscess caused by Citrobacter koseri infection in an adult.

    Science.gov (United States)

    Liu, Heng-Wei; Chang, Chih-Ju; Hsieh, Cheng-Ta

    2015-04-01

    Citrobacter koseri is a gram-negative bacillus that causes mostly meningitis and brain abscesses in neonates and infants. However, brain abscess caused by Citrobacter koseri infection in an adult is extremely rare, and only 2 cases have been described. Here, we reported a 73-year-old male presenting with a 3-week headache. A history of diabetes mellitus was noted. The images revealed a brain abscess in the left frontal lobe and pus culture confirmed the growth of Citrobacter koseri. The clinical symptoms improved completely postoperatively.

  12. Inflammation is detrimental for neurogenesis in adult brain

    Science.gov (United States)

    Ekdahl, Christine T.; Claasen, Jan-Hendrik; Bonde, Sara; Kokaia, Zaal; Lindvall, Olle

    2003-11-01

    New hippocampal neurons are continuously generated in the adult brain. Here, we demonstrate that lipopolysaccharide-induced inflammation, which gives rise to microglia activation in the area where the new neurons are born, strongly impairs basal hippocampal neurogenesis in rats. The increased neurogenesis triggered by a brain insult is also attenuated if it is associated with microglia activation caused by tissue damage or lipopolysaccharide infusion. The impaired neurogenesis in inflammation is restored by systemic administration of minocycline, which inhibits microglia activation. Our data raise the possibility that suppression of hippocampal neurogenesis by activated microglia contributes to cognitive dysfunction in aging, dementia, epilepsy, and other conditions leading to brain inflammation.

  13. [Factors significant for cerebral circulacion in patients with supratentorial brain tumors].

    Science.gov (United States)

    Sboev, A Yu; Dolgih, V T; Larkin, V I

    2013-01-01

    Using the Doppler ultrasonography method the condition of brain blood circulation of 90 patients with supratentorial brain tumors (gliomas--43, meningiomas--34, metastasis--9) during pre-surgical period was studied. The factors changing brain blood circulation at patients with with supratentorial brain tumors were brain displacement, increase of intracranial pressure, histologic structure and the first symptoms duration of illness. Localization (for an exception of an occipital lobe) and the size of a tumor directly didn't render influence on blood circulation parameters.

  14. Surgical management of 143 patients with adult primary retroperitoneal tumor

    Institute of Scientific and Technical Information of China (English)

    Yuan-Hong Xu; Ke-Jian Guo; Ren-Xuan Guo; Chun-Lin Ge; Yu-Lin Tian; San-Guang He

    2007-01-01

    AIM: To analyze the surgical management of adult primary retroperitoneal tumors (APRT) and the factors influencing the outcome after operation.METHODS: Data of 143 cases of APRT from 1990 to 2003 in the First Affiliated Hospital of China Medical University were evaluated retrospectively.RESULTS: A total of 143 cases of APRT were treated surgically. Among them, 122 (85.3%) underwent complete resection, 16 (11.2%) incomplete resection,and 3 (3%) surgical biopsies. Twenty-nine (20.2%)underwent tumor resection plus multiple organ resections. Ninety-five malignant cases were followed up for 1 mo to 5 years. The 1-year, 3-year, and 5-year survival rates of the patients subject to complete resection was 94.9%, 76.6% and 34.3% and that of patients with incomplete resection was 80.4%, 6.7%,and 0%, respectively (P < 0.001). The Cox multi-various regression analysis showed the completeness of tumor,sex and histological type were associated closely with local recurrence.CONCLUSION: Sufficient preoperative preparation and complete tumor resection play important roles in reducing recurrence and improving survival.

  15. Using Ferumoxytol-Enhanced MRI to Measure Inflammation in Patients With Brain Tumors or Other Conditions of the CNS

    Science.gov (United States)

    2016-07-08

    Brain Injury; Central Nervous System Degenerative Disorder; Central Nervous System Infectious Disorder; Central Nervous System Vascular Malformation; Hemorrhagic Cerebrovascular Accident; Ischemic Cerebrovascular Accident; Primary Brain Neoplasm; Brain Cancer; Brain Tumors

  16. New Brain Tumor Entities Emerge from Molecular Classification of CNS-PNETs

    NARCIS (Netherlands)

    Sturm, Dominik; Orr, Brent A.; Toprak, Umut H.; Hovestadt, Volker; Jones, David T W; Capper, David; Sill, Martin; Buchhalter, Ivo; Northcott, Paul A.; Leis, Irina; Ryzhova, Marina; Koelsche, Christian; Pfaff, Elke; Allen, Sariah J.; Balasubramanian, Gnanaprakash; Worst, Barbara C.; Pajtler, Kristian W.; Brabetz, Sebastian; Johann, Pascal D.; Sahm, Felix; Reimand, Jüri; Mackay, Alan; Carvalho, Diana M.; Remke, Marc; Phillips, Joanna J.; Perry, Arie; Cowdrey, Cynthia; Drissi, Rachid; Fouladi, Maryam; Giangaspero, Felice; Łastowska, Maria; Grajkowska, Wiesława; Scheurlen, Wolfram; Pietsch, Torsten; Hagel, Christian; Gojo, Johannes; Lötsch, Daniela; Berger, Walter; Slavc, Irene; Haberler, Christine; Jouvet, Anne; Holm, Stefan; Hofer, Silvia; Prinz, Marco; Keohane, Catherine; Fried, Iris; Mawrin, Christian; Scheie, David; Mobley, Bret C.; Schniederjan, Matthew J.; Santi, Mariarita; Buccoliero, Anna M.; Dahiya, Sonika; Kramm, Christof M.; Von Bueren, André O.; Von Hoff, Katja; Rutkowski, Stefan; Herold-Mende, Christel; Frühwald, Michael C.; Milde, Till; Hasselblatt, Martin; Wesseling, Pieter; Rößler, Jochen; Schüller, Ulrich; Ebinger, Martin; Schittenhelm, Jens; Frank, Stephan; Grobholz, Rainer; Vajtai, Istvan; Hans, Volkmar; Schneppenheim, Reinhard; Zitterbart, Karel; Collins, V. Peter; Aronica, Eleonora; Varlet, Pascale; Puget, Stephanie; Dufour, Christelle; Grill, Jacques; Figarella-Branger, Dominique; Wolter, Marietta; Schuhmann, Martin U.; Shalaby, Tarek; Grotzer, Michael; Van Meter, Timothy; Monoranu, Camelia Maria; Felsberg, Jörg; Reifenberger, Guido; Snuderl, Matija; Forrester, Lynn Ann; Koster, Jan; Versteeg, Rogier; Volckmann, Richard; Van Sluis, Peter; Wolf, Stephan; Mikkelsen, Tom; Gajjar, Amar; Aldape, Kenneth; Moore, Andrew S.; Taylor, Michael D.; Jones, Chris; Jabado, Nada; Karajannis, Matthias A.; Eils, Roland; Schlesner, Matthias; Lichter, Peter; Von Deimling, Andreas; Pfister, Stefan M.; Ellison, David W.; Korshunov, Andrey; Kool, Marcel

    2016-01-01

    Summary Primitive neuroectodermal tumors of the central nervous system (CNS-PNETs) are highly aggressive, poorly differentiated embryonal tumors occurring predominantly in young children but also affecting adolescents and adults. Herein, we demonstrate that a significant proportion of institutionall

  17. New Brain Tumor Entities Emerge from Molecular Classification of CNS-PNETs

    NARCIS (Netherlands)

    Sturm, D.; Orr, B.A.; Toprak, U.H.; Hovestadt, V.; Jones, D.T.W.; Capper, D.; Sill, M.; Buchhalter, I.; Northcott, P.A.; Leis, I.; Ryzhova, M.; Koelsche, C.; Pfaff, E.; Allen, S.J.; Balasubramanian, G.; Worst, B.C.; Pajtler, K.W.; Brabetz, S.; Johann, P.D.; Sahm, F.; Reimand, J.; Mackay, A.; Carvalho, D.M.; Remke, M.; Phillips, J.J.; Perry, A.; Cowdrey, C.; Drissi, R.; Fouladi, M.; Giangaspero, F.; Łastowska, M.; Grajkowska, W.; Scheurlen, W.; Pietsch, T.; Hagel, C.; Gojo, J.; Lötsch, D.; Berger, W.; Slavc, I.; Haberler, C.; Jouvet, A.; Holm, S.; Hofer, S.; Prinz, M.; Keohane, C.; Fried, I.; Mawrin, C.; Scheie, D.; Mobley, B.C.; Schniederjan, M.J.; Santi, M.; Buccoliero, A.M.; Dahiya, S.; Kramm, C.M.; von Bueren, A.O.; von Hoff, K.; Rutkowski, S.; Herold-Mende, C.; Frühwald, M.C.; Milde, T.; Hasselblatt, M.; Wesseling, P.; Rößler, J.; Schüller, U.; Ebinger, M.; Schittenhelm, J.; Frank, S.; Grobholz, R.; Vajtai, I.; Hans, V.; Schneppenheim, R.; Zitterbart, K.; Collins, V.P.; Aronica, E.; Varlet, P.; Puget, S.; Dufour, C.; Grill, J.; Figarella-Branger, D.; Wolter, M.; Schuhmann, M.U.; Shalaby, T.; Grotzer, M.; van Meter, T.; Monoranu, C.M.; Felsberg, J.; Reifenberger, G.; Snuderl, M.; Forrester, L.A.; Koster, J.; Versteeg, R.; Volckmann, R.; van Sluis, P.; Wolf, S.; Mikkelsen, T.; Gajjar, A.; Aldape, K.; Moore, A.S.; Taylor, M.D.; Jones, C.; Jabado, N.; Karajannis, M.A.; Eils, R.; Schlesner, M.; Lichter, P.; von Deimling, A.; Pfister, S.M.; Ellison, D.W.; Korshunov, A.; Kool, M.

    2016-01-01

    Primitive neuroectodermal tumors of the central nervous system (CNS-PNETs) are highly aggressive, poorly differentiated embryonal tumors occurring predominantly in young children but also affecting adolescents and adults. Herein, we demonstrate that a significant proportion of institutionally diagno

  18. Decreased segregation of brain systems across the healthy adult lifespan.

    Science.gov (United States)

    Chan, Micaela Y; Park, Denise C; Savalia, Neil K; Petersen, Steven E; Wig, Gagan S

    2014-11-18

    Healthy aging has been associated with decreased specialization in brain function. This characterization has focused largely on describing age-accompanied differences in specialization at the level of neurons and brain areas. We expand this work to describe systems-level differences in specialization in a healthy adult lifespan sample (n = 210; 20-89 y). A graph-theoretic framework is used to guide analysis of functional MRI resting-state data and describe systems-level differences in connectivity of individual brain networks. Young adults' brain systems exhibit a balance of within- and between-system correlations that is characteristic of segregated and specialized organization. Increasing age is accompanied by decreasing segregation of brain systems. Compared with systems involved in the processing of sensory input and motor output, systems mediating "associative" operations exhibit a distinct pattern of reductions in segregation across the adult lifespan. Of particular importance, the magnitude of association system segregation is predictive of long-term memory function, independent of an individual's age.

  19. Peripheral nerve injury induces adult brain neurogenesis and remodelling.

    Science.gov (United States)

    Rusanescu, Gabriel; Mao, Jianren

    2017-02-01

    Unilateral peripheral nerve chronic constriction injury (CCI) has been widely used as a research model of human neuropathic pain. Recently, CCI has been shown to induce spinal cord adult neurogenesis, which may contribute to the chronic increase in nociceptive sensitivity. Here, we show that CCI also induces rapid and profound asymmetrical anatomical rearrangements in the adult rodent cerebellum and pons. This remodelling occurs throughout the hindbrain, and in addition to regions involved in pain processing, also affects other sensory modalities. We demonstrate that these anatomical changes, partially reversible in the long term, result from adult neurogenesis. Neurogenic markers Mash1, Ngn2, doublecortin and Notch3 are widely expressed in the rodent cerebellum and pons, both under normal and injured conditions. CCI-induced hindbrain structural plasticity is absent in Notch3 knockout mice, a strain with impaired neuronal differentiation, demonstrating its dependence on adult neurogenesis. Grey matter and white matter structural changes in human brain, as a result of pain, injury or learned behaviours have been previously detected using non-invasive neuroimaging techniques. Because neurogenesis-mediated structural plasticity is thought to be restricted to the hippocampus and the subventricular zone, such anatomical rearrangements in other parts of the brain have been thought to result from neuronal plasticity or glial hypertrophy. Our findings suggest the presence of extensive neurogenesis-based structural plasticity in the adult mammalian brain, which may maintain a memory of basal sensory levels, and act as an adaptive mechanism to changes in sensory inputs.

  20. Pedophilic brain potential responses to adult erotic stimuli.

    Science.gov (United States)

    Knott, Verner; Impey, Danielle; Fisher, Derek; Delpero, Emily; Fedoroff, Paul

    2016-02-01

    Cognitive mechanisms associated with the relative lack of sexual interest in adults by pedophiles are poorly understood and may benefit from investigations examining how the brain processes adult erotic stimuli. The current study used event-related brain potentials (ERP) to investigate the time course of the explicit processing of erotic, emotional, and neutral pictures in 22 pedophilic patients and 22 healthy controls. Consistent with previous studies, early latency anterior ERP components were highly selective for erotic pictures. Although the ERPs elicited by emotional stimuli were similar in patients and controls, an early frontal positive (P2) component starting as early as 185 ms was significantly attenuated and slow to onset in pedophilia, and correlated with a clinical measure of cognitive distortions. Failure of rapid attentional capture by erotic stimuli suggests a relative reduction in early processing in pedophilic patients which may be associated with relatively diminished sexual interest in adults.

  1. Implementing Tumor Detection and Area Calculation in Mri Image of Human Brain Using Image Processing Techniques

    Directory of Open Access Journals (Sweden)

    Sunil L. Bangare

    2015-04-01

    Full Text Available This paper is based on the research on Human Brain Tumor which uses the MRI imaging technique to capture the image. In this proposed work Brain Tumor area is calculated to define the Stage or level of seriousness of the tumor. Image Processing techniques are used for the brain tumor area calculation and Neural Network algorithms for the tumor position calculation. Also in the further advancement the classification of the tumor based on few parameters is also expected. Proposed work is divided in to following Modules: Module 1: Image Pre-Processing Module 2: Feature Extraction, Segmentation using K-Means Algorithm and Fuzzy C-Means Algorithm Module 3: Tumor Area calculation & Stage detection Module 4: Classification and position calculation of tumor using Neural Network

  2. [Endocrine functions of the brain in adult and developing mammals].

    Science.gov (United States)

    Ugriumov, M V

    2009-01-01

    The main prerequisite for organism's viability is the maintenance of the internal environment despite changes in the external environment, which is provided by the neuroendocrine control system. The key unit in this system is hypothalamus exerting endocrine effects on certain peripheral organs and anterior pituitary. Physiologically active substances of neuronal origin enter blood vessels in the neurohemal parts of hypothalamus where no blood-brain barrier exists. In other parts of the adult brain, the arrival of physiologically active substances is blocked by the blood-brain barrier. According to the generally accepted concept, the neuroendocrine system formation in ontogeny starts with the maturation of peripheral endocrine glands, which initially function autonomously and then are controlled by the anterior pituitary. The brain is engaged in neuroendocrine control after its maturation completes, which results in a closed control system typical of adult mammals. Since neurons start to secrete physiologically active substances soon after their formation and long before interneuronal connections are formed, these cells are thought to have an effect on brain development as inducers. Considering that there is no blood-brain barrier during this period, we proposed the hypothesis that the developing brain functions as a multipotent endocrine organ. This means that tens of physiologically active substances arrive from the brain to the systemic circulation and have an endocrine effect on the whole body development. Dopamine, serotonin, and gonadotropin-releasing hormone were selected as marker physiologically active substances of cerebral origin to test this hypothesis. In adult animals, they act as neurotransmitters or neuromodulators transmitting information from neuron to neuron as well as neurohormones arriving from the hypothalamus with portal blood to the anterior pituitary. Perinatal rats--before the blood-brain barrier is formed--proved to have equally high

  3. Double-echo perfusion-weighted MR imaging: basic concepts and application in brain tumors for the assessment of tumor blood volume and vascular permeability

    OpenAIRE

    Uematsu, Hidemasa; Maeda, Masayuki

    2006-01-01

    Perfusion-weighted magnetic resonance (MR) imaging using contrast agents plays a key role in characterizing tumors of the brain. We have shown that double-echo perfusion-weighted MR imaging (DEPWI) is potentially useful in assessing brain tumors. Quantitative indices, such as tumor blood volume, are obtained using DEPWI, which allows correction of underestimation of tumor blood volume due to leakage of contrast agents from tumor vessels, in addition to simultaneous acquisition of tumor vessel...

  4. Brain tumor segmentation based on a hybrid clustering technique

    Directory of Open Access Journals (Sweden)

    Eman Abdel-Maksoud

    2015-03-01

    This paper presents an efficient image segmentation approach using K-means clustering technique integrated with Fuzzy C-means algorithm. It is followed by thresholding and level set segmentation stages to provide an accurate brain tumor detection. The proposed technique can get benefits of the K-means clustering for image segmentation in the aspects of minimal computation time. In addition, it can get advantages of the Fuzzy C-means in the aspects of accuracy. The performance of the proposed image segmentation approach was evaluated by comparing it with some state of the art segmentation algorithms in case of accuracy, processing time, and performance. The accuracy was evaluated by comparing the results with the ground truth of each processed image. The experimental results clarify the effectiveness of our proposed approach to deal with a higher number of segmentation problems via improving the segmentation quality and accuracy in minimal execution time.

  5. Isolated angiitis in the hypothalamus mimicking brain tumor.

    Science.gov (United States)

    Tsutsumi, Satoshi; Ito, Masanori; Yasumoto, Yukimasa; Kaneda, Kazuhiko

    2008-01-01

    A 64-year-old female presented with exaggerating somnolence without contributory medical and lifestyle histories. She was not aware of any preceding infection or headache. Cerebral magnetic resonance imaging demonstrated an isolated enhanced mass in the hypothalamus without meningeal enhancement. Blood and cerebrospinal fluid examinations showed no significant findings except for hypernatremia and hyperprolactinemia. She underwent an open biopsy via the interhemispheric route. Histological examination revealed marked perivascular lymphocytic aggregation with polyclonal immunostaining both for B and T lymphocytes. No findings suggestive of underlying malignancy were recognized. Extensive work-up aiming at systemic vasculitis and lymphoma revealed no signs of extracranial lesion, so the most probable diagnosis was isolated angiitis in the hypothalamus. Angiitis may originate from the hypothalamus and should be considered in the differential diagnosis of hypothalamic lesion mimicking brain tumor on neuroimaging.

  6. Brain Tumor Epidemiology - A Hub within Multidisciplinary Neuro-oncology. Report on the 15th Brain Tumor Epidemiology Consortium (BTEC) Annual Meeting, Vienna, 2014.

    Science.gov (United States)

    Woehrer, Adelheid; Lau, Ching C; Prayer, Daniela; Bauchet, Luc; Rosenfeld, Myrna; Capper, David; Fisher, Paul G; Kool, Marcel; Müller, Martin; Kros, Johan M; Kruchko, Carol; Wiemels, Joseph; Wrensch, Margaret; Danysh, Heather E; Zouaoui, Sonia; Heck, Julia E; Johnson, Kimberly J; Qi, Xiaoyang; O'Neill, Brian P; Afzal, Samina; Scheurer, Michael E; Bainbridge, Matthew N; Nousome, Darryl; Bahassi, El Mustapha; Hainfellner, Johannes A; Barnholtz-Sloan, Jill S

    2015-01-01

    The Brain Tumor Epidemiology Consortium (BTEC) is an open scientific forum, which fosters the development of multi-center, international and inter-disciplinary collaborations. BTEC aims to develop a better understanding of the etiology, outcomes, and prevention of brain tumors (http://epi.grants.cancer.gov/btec/). The 15th annual Brain Tumor Epidemiology Consortium Meeting, hosted by the Austrian Societies of Neuropathology and Neuro-oncology, was held on September 9 - 11, 2014 in Vienna, Austria. The meeting focused on the central role of brain tumor epidemiology within multidisciplinary neuro-oncology. Knowledge of disease incidence, outcomes, as well as risk factors is fundamental to all fields involved in research and treatment of patients with brain tumors; thus, epidemiology constitutes an important link between disciplines, indeed the very hub. This was reflected by the scientific program, which included various sessions linking brain tumor epidemiology with clinical neuro-oncology, tissue-based research, and cancer registration. Renowned experts from Europe and the United States contributed their personal perspectives stimulating further group discussions. Several concrete action plans evolved for the group to move forward until next year's meeting, which will be held at the Mayo Clinic at Rochester, MN, USA.

  7. Brain Tumor Epidemiology – A Hub within Multidisciplinary Neuro-oncology. Report on the 15th Brain Tumor Epidemiology Consortium (BTEC) Annual Meeting, Vienna, 2014

    Science.gov (United States)

    Woehrer, Adelheid; Lau, Ching C.; Prayer, Daniela; Bauchet, Luc; Rosenfeld, Myrna; Capper, David; Fisher, Paul G.; Kool, Marcel; Müller, Martin; Kros, Johan M.; Kruchko, Carol; Wiemels, Joseph; Wrensch, Margaret; Danysh, Heather E.; Zouaoui, Sonia; Heck, Julia E.; Johnson, Kimberly J.; Qi, Xiaoyang; O’Neill, Brian P.; Afzal, Samina; Scheurer, Michael E.; Bainbridge, Matthew N.; Nousome, Darryl; El Bahassi, Mustapha; Hainfellner, Johannes A.; Barnholtz-Sloan, Jill S.

    2015-01-01

    The Brain Tumor Epidemiology Consortium (BTEC) is an open scientific forum, which fosters the development of multi-center, international and inter-disciplinary collaborations. BTEC aims to develop a better understanding of the etiology, outcomes, and prevention of brain tumors (http://epi.grants.cancer.gov/btec/). The 15th annual Brain Tumor Epidemiology Consortium Meeting, hosted by the Austrian Societies of Neuropathology and Neuro-oncology, was held on September 9 – 11, 2014 in Vienna, Austria. The meeting focused on the central role of brain tumor epidemiology within multidisciplinary neuro-oncology. Knowledge of disease incidence, outcomes, as well as risk factors is fundamental to all fields involved in research and treatment of patients with brain tumors; thus, epidemiology constitutes an important link between disciplines, indeed the very hub. This was reflected by the scientific program, which included various sessions linking brain tumor epidemiology with clinical neuro-oncology, tissue-based research, and cancer registration. Renowned experts from Europe and the United States contributed their personal perspectives stimulating further group discussions. Several concrete action plans evolved for the group to move forward until next year’s meeting, which will be held at the Mayo Clinic at Rochester, MN, USA. PMID:25518914

  8. Cognitive dysfunction in children with brain tumors at diagnosis

    Science.gov (United States)

    Studer, Martina; Ritter, Barbara Catherine; Steinlin, Maja; Leibundgut, Kurt; Heinks, Theda

    2015-01-01

    Background Survivors of brain tumors have a high risk for a wide range of cognitive problems. These dysfunctions are caused by the lesion itself and its surgical removal, as well as subsequent treatments (chemo‐ and/or radiation therapy). Multiple recent studies have indicated that children with brain tumors (BT) might already exhibit cognitive problems at diagnosis, i.e., before the start of any medical treatment. The aim of the present study was to investigate the baseline neuropsychological profile in children with BT compared to children with an oncological diagnosis not involving the central nervous system (CNS). Methods Twenty children with BT and 27 children with an oncological disease without involvement of the CNS (age range: 6.1–16.9 years) were evaluated with an extensive battery of neuropsychological tests tailored to the patient's age. Furthermore, the child and his/her parent(s) completed self‐report questionnaires about emotional functioning and quality of life. In both groups, tests were administered before any therapeutic intervention such as surgery, chemotherapy, or irradiation. Groups were comparable with regard to age, gender, and socioeconomic status. Results Compared to the control group, patients with BTs performed significantly worse in tests of working memory, verbal memory, and attention (effect sizes between 0.28 and 0.47). In contrast, the areas of perceptual reasoning, processing speed, and verbal comprehension were preserved at the time of measurement. Conclusion Our results highlight the need for cognitive interventions early in the treatment process in order to minimize or prevent academic difficulties as patients return to school. Pediatr Blood Cancer 2015;62:1805–1812. © 2015 The Authors. Pediatric Blood & Cancer, published by Wiley Periodicals, Inc. PMID:26053691

  9. Differential role of tumor necrosis factor receptors in mouse brain inflammatory responses in cryolesion brain injury

    DEFF Research Database (Denmark)

    Quintana, Albert; Giralt, Mercedes; Rojas, Santiago

    2005-01-01

    Tumor necrosis factor-alpha (TNF-alpha) is one of the mediators dramatically increased after traumatic brain injury that leads to the activation, proliferation, and hypertrophy of mononuclear, phagocytic cells and gliosis. Eventually, TNF-alpha can induce both apoptosis and necrosis via intracell......Tumor necrosis factor-alpha (TNF-alpha) is one of the mediators dramatically increased after traumatic brain injury that leads to the activation, proliferation, and hypertrophy of mononuclear, phagocytic cells and gliosis. Eventually, TNF-alpha can induce both apoptosis and necrosis via...... signaling also affected the expression of apoptosis/cell death-related genes (Fas, Rip, p53), matrix metalloproteinases (MMP3, MMP9, MMP12), and their inhibitors (TIMP1), suggesting a role of TNFR1 in extracellular matrix remodeling after injury. However, GDNF, NGF, and BDNF expression were not affected...... by TNFR1 deficiency. Overall, these results suggest that TNFR1 is involved in the early establishment of the inflammatory response and that its deficiency causes a decreased inflammatory response and tissue damage following brain injury....

  10. Imaging of non tumorous and tumorous human brain tissue with full-field optical coherence tomography

    CERN Document Server

    Assayag, Osnath; Devaux, Bertrand; Harms, Fabrice; Pallud, Johan; Chretien, Fabrice; Boccara, Claude; Varlet, Pascale

    2013-01-01

    A prospective study was performed on neurosurgical samples from 18 patients to evaluate the use of Full-Field Optical Coherence Tomography (FF-OCT) in brain tumor diagnosis. FF-OCT captures en face slices of tissue samples at 1\\mum resolution in 3D with a typical 200\\mum imaging depth. A 1cm2 specimen is scanned at a single depth and processed in about 5 minutes. This rapid imaging process is non-invasive and 30 requires neither contrast agent injection nor tissue preparation, which makes it particularly well suited to medical imaging applications. Temporal chronic epileptic parenchyma and brain tumors such as meningiomas, low- grade and high-grade gliomas, and choroid plexus papilloma were imaged. A subpopulation of neurons, myelin fibers and CNS vasculature were clearly identified. Cortex could be discriminated from white matter, but individual glial cells as astrocytes (normal or reactive) or oligodendrocytes were not observable. This study reports for the first time on the feasibility of using FF-OCT in a...

  11. Navigation-guided endoscopic biopsy for intraparenchymal brain tumor.

    Science.gov (United States)

    Tsuda, Kyoji; Ishikawa, Eiichi; Zaboronok, Alexander; Nakai, Kei; Yamamoto, Tetsuya; Sakamoto, Noriaki; Uemae, Yoji; Tsurubuchi, Takao; Akutsu, Hiroyoshi; Ihara, Satoshi; Ayuzawa, Satoshi; Takano, Shingo; Matsumura, Akira

    2011-01-01

    To evaluate the efficacy of intraparenchymal brain tumor biopsy using endoscopy and a navigation system (navigation-guided endoscopic biopsy) as a diagnostic tool, a case series of intraparenchymal tumor biopsies was reviewed. Navigation-guided endoscopic biopsy was applied in 9 cases, stereotactic needle biopsy in 16 cases, and open biopsy with or without navigation system in 34 cases. In all biopsy cases, 84.7% of biopsy points were sampled accurately, and 93.2% of diagnoses by biopsy were correct. Comparison of each type of biopsy showed that the resected volumes in navigation-guided endoscopic biopsy and open biopsy tended to be larger than those in stereotactic biopsy, and the mean operation time for the open biopsy procedure was the longest. To define the most applicable device or examination method to increase sampling accuracy, various factors were analyzed in 59 procedures. Navigation-guided endoscopic biopsy was the most accurate of the three types of biopsy, although the statistical difference was not significant. Older patients, histological diagnosis of high-grade glioma or malignant lymphoma, positive photodynamic diagnosis, and positive intraoperative pathology were significant factors in improving the sampling accuracy. Navigation-guided endoscopic biopsy could provide a larger sample volume within a relatively short operation time. The biopsy can be easily combined with both photodynamic diagnosis and intraoperative pathology, significantly improving the histological diagnostic yield.

  12. (18)F-Fluorodeoxyglucose PET/Computed Tomography for Primary Brain Tumors

    DEFF Research Database (Denmark)

    Antonsen Segtnan, Eivind; Hess, Søren; Grupe, Peter

    2015-01-01

    Structural imaging with computed tomography (CT) and MR imaging is the mainstay in primary diagnosis of primary brain tumors, but these modalities depend on morphologic appearance and an intact blood-brain barrier, and important aspects of tumor biology are not addressed. Such issues may...... be alleviated by (18)F-fluorodeoxyglucose (FDG)-PET and FDG-PET/CT imaging, which may provide clinically important information with regard to primary differentiation between tumor types, initial staging and risk stratification, therapy planning, response evaluation, and recurrence detection. This article...... describes some of the potential contemporary applications of FDG and PET in primary brain tumors....

  13. EXPRESSION OF IL-13Ra2 GENE IN HUMAN BRAIN TUMORS

    Institute of Scientific and Technical Information of China (English)

    WU An-hua; TIE Xin-xin; WANG Yun-jie; YANG Guo-rui

    2005-01-01

    Objective: To investigate the expression of IL-13Ra2 gene in brain tumors. Methods: Seventy-nine human brain tumors were obtained from the department of Neurosurgery of China Medical University. Human IL-13Ra2 expression was evaluated by reverse transcriptase polymerase chain reaction and immunohistochemical analysis. Results: IL-13Ra2 gene was highly expressed in glioblastoma, medulloblastoma, malignant meningioma and benign meningioma. Conclusion:Human IL-13Ra2 gene is expressed in brain tumors in addition to gliomas, and our result indicates that the IL-13Ra2 gene promoter based gene therapy method can be used to treat brain tumors in addition to gliomas. Further studies involving larger numbers of samples are necessary to fully understand the expression profile of IL-13Ra2 gene in the brain tumors.

  14. A mathematical model to elucidate brain tumor abrogation by immunotherapy with T11 target structure.

    Directory of Open Access Journals (Sweden)

    Sandip Banerjee

    Full Text Available T11 Target structure (T11TS, a membrane glycoprotein isolated from sheep erythrocytes, reverses the immune suppressed state of brain tumor induced animals by boosting the functional status of the immune cells. This study aims at aiding in the design of more efficacious brain tumor therapies with T11 target structure. We propose a mathematical model for brain tumor (glioma and the immune system interactions, which aims in designing efficacious brain tumor therapy. The model encompasses considerations of the interactive dynamics of glioma cells, macrophages, cytotoxic T-lymphocytes (CD8(+ T-cells, TGF-β, IFN-γ and the T11TS. The system undergoes sensitivity analysis, that determines which state variables are sensitive to the given parameters and the parameters are estimated from the published data. Computer simulations were used for model verification and validation, which highlight the importance of T11 target structure in brain tumor therapy.

  15. The establishment and initial application of emotional disorder database in brain tumor patients

    Directory of Open Access Journals (Sweden)

    Hong-bo ZHANG

    2015-09-01

    Full Text Available  Objective To establish database for brain tumor patients with mood disorders and to explore the status and epidemiological characteristics of emotional function. Methods By using computer software, establish database of brain tumor with affective disorder based on clinical requirements. Record the data of 140 cases of brain tumors undergoing operation treatment, so as to found perfect public data platform and realize resource sharing. Results The clinical data of 140 brain tumor patients were successfully filled in the registration query system. The database provides simple and complex mood data queries for users to browse. Conclusions The mood disorder database for patients with brain tumors can provide related data samples and resources for basic and clinical research. Besides, it can effectively share clinical research data and reduce research costs. DOI: 10.3969/j.issn.1672-6731.2015.09.010

  16. File list: DNS.Neu.20.AllAg.Adult_brains [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.Neu.20.AllAg.Adult_brains hg19 DNase-seq Neural Adult brains SRX189408,SRX18941...3 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/DNS.Neu.20.AllAg.Adult_brains.bed ...

  17. File list: DNS.Neu.05.AllAg.Adult_brains [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.Neu.05.AllAg.Adult_brains hg19 DNase-seq Neural Adult brains SRX189408,SRX18941...3 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/DNS.Neu.05.AllAg.Adult_brains.bed ...

  18. File list: InP.Neu.05.AllAg.Adult_brains [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available InP.Neu.05.AllAg.Adult_brains hg19 Input control Neural Adult brains SRX643470,SRX6...43466,SRX643468,SRX643467,SRX643463,SRX643464,SRX643465,SRX643469,SRX643462 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/InP.Neu.05.AllAg.Adult_brains.bed ...

  19. File list: ALL.Neu.10.AllAg.Adult_brains [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Neu.10.AllAg.Adult_brains hg19 All antigens Neural Adult brains SRX643470,SRX11...643463,SRX189413 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/ALL.Neu.10.AllAg.Adult_brains.bed ...

  20. File list: NoD.Neu.05.AllAg.Adult_brains [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available NoD.Neu.05.AllAg.Adult_brains hg19 No description Neural Adult brains SRX019404,ERX...161917 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/NoD.Neu.05.AllAg.Adult_brains.bed ...

  1. File list: NoD.Neu.20.AllAg.Adult_brains [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available NoD.Neu.20.AllAg.Adult_brains hg19 No description Neural Adult brains ERX161917,SRX...019404 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/NoD.Neu.20.AllAg.Adult_brains.bed ...

  2. File list: ALL.Neu.50.AllAg.Adult_brains [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Neu.50.AllAg.Adult_brains hg19 All antigens Neural Adult brains SRX643470,SRX11...189408,SRX189413 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/ALL.Neu.50.AllAg.Adult_brains.bed ...

  3. File list: ALL.Neu.05.AllAg.Adult_brains [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Neu.05.AllAg.Adult_brains hg19 All antigens Neural Adult brains SRX643470,SRX01...189408,SRX189413 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/ALL.Neu.05.AllAg.Adult_brains.bed ...

  4. File list: DNS.Neu.50.AllAg.Adult_brains [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.Neu.50.AllAg.Adult_brains hg19 DNase-seq Neural Adult brains SRX189408,SRX18941...3 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/DNS.Neu.50.AllAg.Adult_brains.bed ...

  5. File list: DNS.Neu.10.AllAg.Adult_brains [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.Neu.10.AllAg.Adult_brains hg19 DNase-seq Neural Adult brains SRX189408,SRX18941...3 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/DNS.Neu.10.AllAg.Adult_brains.bed ...

  6. File list: ALL.Neu.20.AllAg.Adult_brains [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Neu.20.AllAg.Adult_brains hg19 All antigens Neural Adult brains SRX643470,SRX11...189408,SRX189413 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/ALL.Neu.20.AllAg.Adult_brains.bed ...

  7. File list: NoD.Neu.10.AllAg.Adult_brains [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available NoD.Neu.10.AllAg.Adult_brains hg19 No description Neural Adult brains ERX161917,SRX...019404 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/NoD.Neu.10.AllAg.Adult_brains.bed ...

  8. File list: InP.Neu.10.AllAg.Adult_brains [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available InP.Neu.10.AllAg.Adult_brains hg19 Input control Neural Adult brains SRX643470,SRX6...43468,SRX643467,SRX643464,SRX643465,SRX643462,SRX643466,SRX643469,SRX643463 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/InP.Neu.10.AllAg.Adult_brains.bed ...

  9. File list: NoD.Neu.50.AllAg.Adult_brains [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available NoD.Neu.50.AllAg.Adult_brains hg19 No description Neural Adult brains ERX161917,SRX...019404 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/NoD.Neu.50.AllAg.Adult_brains.bed ...

  10. File list: InP.Neu.50.AllAg.Adult_brains [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available InP.Neu.50.AllAg.Adult_brains hg19 Input control Neural Adult brains SRX643470,SRX6...43464,SRX643462,SRX643465,SRX643469,SRX643463,SRX643466,SRX643468,SRX643467 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/InP.Neu.50.AllAg.Adult_brains.bed ...

  11. Characteristics of children's brain tumors%儿童颅脑肿瘤的特点

    Institute of Scientific and Technical Information of China (English)

    曹利华

    2013-01-01

    Childrens brain tumors are the common tumors in children, which males are frequently affected than females, and most of patients are children aged 5-14 years old. The incidence rate of infratentorial tumor is higher than that of supratentorial tumor. The cases of infratentorial tumor in children accounted for 60% , and the main part is the fourth ventricle, followed by cerebellar hemisphere and cerebellar vermis, which often occurred in posterior fossa and near the midline. The main part of supratentorial tumor is the cerebral hemispheres, followed by the third ventricle and lateral ventricle. The clinical symptoms of childhood brain tumors are different with the size, characteristics, location and the damage around brain structure. The histopathological types of children's brain tumors are significantly different from that in adults. The benign tumors rarely happen in children, but the incidence rate of glioma in children is greatly higher than that in adults. The mostly pathological types were astrocytoma, medulloblastoma, ependy-moma, germ cell tumor and craniopharyngioma. The diagnosis of brain tumor in children should pay attention to the pediatric clinical characteristics, atypical clinical manifestation and detailed medical history, especially the correct and complete symptoms. Then according to the actual situation, it is urgent to carry out the necessary examination, to confirm the diagnosis and reduce the early misdiagnosis rate. The imaging examination plays a very important role in the diagnosis of children's brain tumors, so CT and MR examinations should be carried out in suspected cases as soon as possible. Surgical resection is the first choice, and reasonable postoperative radiotherapy can consolidate the operation effect and prolong survival duration. The radiotherapy accompanied with chemotherapy can improve the curative effect in malignant tumor patients after surgery.%目的 儿童颅脑肿瘤为常见的儿童肿瘤.以5~ 14岁组患儿居

  12. Double-echo perfusion-weighted MR imaging: basic concepts and application in brain tumors for the assessment of tumor blood volume and vascular permeability

    Energy Technology Data Exchange (ETDEWEB)

    Uematsu, Hidemasa [University of Fukui, Department of Radiology, Faculty of Medical Sciences, Fukui (Japan); Maeda, Masayuki [Mie University School of Medicine, Department of Radiology, Mie (Japan)

    2006-01-01

    Perfusion-weighted magnetic resonance (MR) imaging using contrast agents plays a key role in characterizing tumors of the brain. We have shown that double-echo perfusion-weighted MR imaging (DEPWI) is potentially useful in assessing brain tumors. Quantitative indices, such as tumor blood volume, are obtained using DEPWI, which allows correction of underestimation of tumor blood volume due to leakage of contrast agents from tumor vessels, in addition to simultaneous acquisition of tumor vessel permeability. This article describes basic concepts of DEPWI and demonstrates clinical applications in brain tumors. (orig.)

  13. Genetic and modifying factors that determine the risk of brain tumors

    DEFF Research Database (Denmark)

    Montelli, Terezinha de Cresci Braga; Peraçoli, Maria Terezinha Serrão; Rogatto, Silvia Regina

    2011-01-01

    of tumor escape, CNS tumor immunology, immune defects that impair anti-tumor systemic immunity in brain tumor patients and local immuno-suppressive factors within CNS are also reviewed. New hope to treatment perspectives, as dendritic-cell-based vaccines is summarized too. Concluding, it seems well...... of these treatments, the prognosis for patients is poor. In this review, we highlight general aspects concerning genetic alterations in brain tumors, namely astrocytomas, glioblastomas, oligodendrogliomas, medulloblastomas and ependymomas. The influence of these genetic alterations in patients' prognosis is discussed....... Mutagen sensitivity is associated with cancer risk. The convincing studies that linked DNA damages and DNA repair alterations with brain tumors are also described. Another important modifying factor is immunity. General immune response against cancer, tumor microenvironment and immune response, mechanisms...

  14. Halofuginone Inhibits Angiogenesis and Growth in Implanted Metastatic Rat Brain Tumor Model-an MRI Study

    Directory of Open Access Journals (Sweden)

    Rinat Abramovitch

    2004-09-01

    Full Text Available Tumor growth and metastasis depend on angiogenesis; therefore, efforts are made to develop specific angiogenic inhibitors. Halofuginone (HF is a potent inhibitor of collagen type α1(I. In solid tumor models, HF has a potent antitumor and antiangiogenic effect in vivo, but its effect on brain tumors has not yet been evaluated. By employing magnetic resonance imaging (MRI, we monitored the effect of HF on tumor progression and vascularization by utilizing an implanted malignant fibrous histiocytoma metastatic rat brain tumor model. Here we demonstrate that treatment with HF effectively and dose-dependently reduced tumor growth and angiogenesis. On day 13, HF-treated tumors were fivefold smaller than control (P < .001. Treatment with HF significantly prolonged survival of treated animals (142%; P = .001. In HF-treated rats, tumor vascularization was inhibited by 30% on day 13 and by 37% on day 19 (P < .05. Additionally, HF treatment inhibited vessel maturation (P = .03. Finally, in HF-treated rats, we noticed the appearance of a few clusters of satellite tumors, which were distinct from the primary tumor and usually contained vessel cores. This phenomenon was relatively moderate when compared to previous reports of other antiangiogenic agents used to treat brain tumors. We therefore conclude that HF is effective for treatment of metastatic brain tumors.

  15. Vorinostat and Temozolomide in Treating Young Patients With Relapsed or Refractory Primary Brain Tumors or Spinal Cord Tumors

    Science.gov (United States)

    2013-05-01

    Childhood Atypical Teratoid/Rhabdoid Tumor; Childhood Central Nervous System Choriocarcinoma; Childhood Central Nervous System Embryonal Tumor; Childhood Central Nervous System Germinoma; Childhood Central Nervous System Mixed Germ Cell Tumor; Childhood Central Nervous System Teratoma; Childhood Central Nervous System Yolk Sac Tumor; Childhood Choroid Plexus Tumor; Childhood Craniopharyngioma; Childhood Ependymoblastoma; Childhood Grade I Meningioma; Childhood Grade II Meningioma; Childhood Grade III Meningioma; Childhood High-grade Cerebellar Astrocytoma; Childhood High-grade Cerebral Astrocytoma; Childhood Infratentorial Ependymoma; Childhood Low-grade Cerebellar Astrocytoma; Childhood Low-grade Cerebral Astrocytoma; Childhood Medulloepithelioma; Childhood Mixed Glioma; Childhood Oligodendroglioma; Childhood Supratentorial Ependymoma; Extra-adrenal Paraganglioma; Recurrent Childhood Brain Stem Glioma; Recurrent Childhood Central Nervous System Embryonal Tumor; Recurrent Childhood Cerebellar Astrocytoma; Recurrent Childhood Cerebral Astrocytoma; Recurrent Childhood Ependymoma; Recurrent Childhood Medulloblastoma; Recurrent Childhood Pineoblastoma; Recurrent Childhood Spinal Cord Neoplasm; Recurrent Childhood Subependymal Giant Cell Astrocytoma; Recurrent Childhood Supratentorial Primitive Neuroectodermal Tumor; Recurrent Childhood Visual Pathway and Hypothalamic Glioma

  16. The impact of age on oncogenic potential: tumor-initiating cells and the brain microenvironment.

    Science.gov (United States)

    Stoll, Elizabeth A; Horner, Philip J; Rostomily, Robert C

    2013-10-01

    Paradoxically, aging leads to both decreased regenerative capacity in the brain and an increased risk of tumorigenesis, particularly the most common adult-onset brain tumor, glioma. A shared factor contributing to both phenomena is thought to be age-related alterations in neural progenitor cells (NPCs), which function normally to produce new neurons and glia, but are also considered likely cells of origin for malignant glioma. Upon oncogenic transformation, cells acquire characteristics known as the hallmarks of cancer, including unlimited replication, altered responses to growth and anti-growth factors, increased capacity for angiogenesis, potential for invasion, genetic instability, apoptotic evasion, escape from immune surveillance, and an adaptive metabolic phenotype. The precise molecular pathogenesis and temporal acquisition of these malignant characteristics is largely a mystery. Recent studies characterizing NPCs during normal aging, however, have begun to elucidate mechanisms underlying the age-associated increase in their malignant potential. Aging cells are dependent upon multiple compensatory pathways to maintain cell cycle control, normal niche interactions, genetic stability, programmed cell death, and oxidative metabolism. A few multi-functional proteins act as 'critical nodes' in the coordination of these various cellular activities, although both intracellular signaling and elements within the brain environment are critical to maintaining a balance between senescence and tumorigenesis. Here, we provide an overview of recent progress in our understanding of how mechanisms underlying cellular aging inform on glioma pathogenesis and malignancy.

  17. [Interdisciplinary neuro-oncology: part 2: systemic therapy of primary brain tumors].

    Science.gov (United States)

    Tabatabai, G; Hattingen, E; Schlegel, J; Stummer, W; Schlegel, U

    2014-08-01

    By combining the expertise of clinical neuroscience, the aim of neuro-oncology is to optimize diagnostic planning and therapy of primary brain tumors in an interdisciplinary setting together with radio-oncology and medical oncology. High-end imaging frequently allows brain tumors to be diagnosed preoperatively with respect to tumor entity and even tumor malignancy grade. Moreover, neuroimaging is indispensable for guidance of biopsy resection and monitoring of therapy. Surgical resection of intracranial lesions with preservation of neurological function has become dramatically more extensive. Tools to achieve this goal are, for example neuronavigation, functional magnetic resonance imaging (fMRI), tractography, intraoperative cortical stimulation and precise intraoperative definition of tumor margins by virtue of various techniques. In addition to classical histopathological diagnosis and tumor classification, modern neuropathology is supplemented by molecular characterization of brain tumors in order to provide clinicians with prognostic and predictive (of therapy) markers, such as codeletion of chromosomes 1p and 19q in anaplastic gliomas and O6-methylguanine-DNA methyltransferase (MGMT) promoter methylation in glioblastomas. Although this is not yet individualized tumor therapy, the increasingly more detailed analysis of the molecular pathogenesis of an individual glioma will eventually lead to specific pharmacological blockade of disturbed intracellular pathways in individual patients. This article gives an overview of the state of the art of interdisciplinary neuro-oncology whereby part 1 deals with the diagnostics and surgical therapy of primary brain tumors and part 2 describes the medical therapy of primary brain tumors.

  18. [Interdisciplinary neuro-oncology: part 1: diagnostics and operative therapy of primary brain tumors].

    Science.gov (United States)

    Tabatabai, G; Hattingen, E; Schlegel, J; Stummer, W; Schlegel, U

    2014-08-01

    By combining the expertise of clinical neuroscience, the aim of neuro-oncology is to optimize diagnostic planning and therapy of primary brain tumors in an interdisciplinary setting together with radio-oncology and medical oncology. High-end imaging frequently allows brain tumors to be diagnosed preoperatively with respect to tumor entity and even tumor malignancy grade. Moreover, neuroimaging is indispensable for guidance of biopsy resection and monitoring of therapy. Surgical resection of intracranial lesions with preservation of neurological function is increasingly feasible. Tools to achieve this goal are, for example neuronavigation, functional magnetic resonance imaging (fMRI), tractography, intraoperative cortical stimulation and precise intraoperative definition of tumor margins by virtue of various techniques. In addition to classical histopathological diagnosis and tumor classification, modern neuropathology is supplemented by molecular characterization of brain tumors in order to provide clinicians with prognostic and predictive (of therapy) markers, such as codeletion of chromosomes 1p and 19q in anaplastic gliomas and O6-methylguanine-DNA methyltransferase (MGMT) promoter methylation in glioblastomas. Although this is not yet individualized tumor therapy, the increasingly more detailed analysis of the molecular pathogenesis of an individual glioma will eventually lead to specific pharmacological blockade of disturbed intracellular pathways in individual patients. This article gives an overview of the state of the art of interdisciplinary neuro-oncology whereby part 1 deals with the diagnostics and surgical therapy of primary brain tumors and part 2 describes the medical therapy of primary brain tumors.

  19. Differentiation of Glioblastomas from Metastatic Brain Tumors by Tryptophan Uptake and Kinetic Analysis: A Positron Emission Tomographic Study with Magnetic Resonance Imaging Comparison

    Directory of Open Access Journals (Sweden)

    David O. Kamson

    2013-07-01

    Full Text Available Differentiating high-grade gliomas from solitary brain metastases is often difficult by conventional magnetic resonance imaging (MRI; molecular imaging may facilitate such discrimination. We tested the accuracy of α[11C]methyl-L-tryptophan (AMT–positron emission tomography (PET to differentiate newly diagnosed glioblastomas from brain metastases. AMT-PET was performed in 36 adults with suspected brain malignancy. Tumoral AMT accumulation was measured by standardized uptake values (SUVs. Tracer kinetic analysis was also performed to separate tumoral net tryptophan transport (by AMT volume of distribution [VD] from unidirectional uptake rates using dynamic PET and blood input function. Differentiating the accuracy of these PET variables was evaluated and compared to conventional MRI. For glioblastoma/metastasis differentiation, tumoral AMT SUV showed the highest accuracy (74% and the tumor/cortex VD ratio had the highest positive predictive value (82%. The combined accuracy of MRI (size of contrast-enhancing lesion and AMT-PET reached up to 93%. For ring-enhancing lesions, tumor/cortex SUV ratios were higher in glioblastomas than in metastatic tumors and could differentiate these two tumor types with > 90% accuracy. These results demonstrate that evaluation of tryptophan accumulation by PET can enhance pretreatment differentiation of glioblastomas and metastatic brain tumors. This approach may be particularly useful in patients with a newly diagnosed solitary ring-enhancing mass.

  20. Invited review--neuroimaging response assessment criteria for brain tumors in veterinary patients.

    Science.gov (United States)

    Rossmeisl, John H; Garcia, Paulo A; Daniel, Gregory B; Bourland, John Daniel; Debinski, Waldemar; Dervisis, Nikolaos; Klahn, Shawna

    2014-01-01

    The evaluation of therapeutic response using cross-sectional imaging techniques, particularly gadolinium-enhanced MRI, is an integral part of the clinical management of brain tumors in veterinary patients. Spontaneous canine brain tumors are increasingly recognized and utilized as a translational model for the study of human brain tumors. However, no standardized neuroimaging response assessment criteria have been formulated for use in veterinary clinical trials. Previous studies have found that the pathophysiologic features inherent to brain tumors and the surrounding brain complicate the use of the response evaluation criteria in solid tumors (RECIST) assessment system. Objectives of this review are to describe strengths and limitations of published imaging-based brain tumor response criteria and propose a system for use in veterinary patients. The widely used human Macdonald and response assessment in neuro-oncology (RANO) criteria are reviewed and described as to how they can be applied to veterinary brain tumors. Discussion points will include current challenges associated with the interpretation of brain tumor therapeutic responses such as imaging pseudophenomena and treatment-induced necrosis, and how advancements in perfusion imaging, positron emission tomography, and magnetic resonance spectroscopy have shown promise in differentiating tumor progression from therapy-induced changes. Finally, although objective endpoints such as MR imaging and survival estimates will likely continue to comprise the foundations for outcome measures in veterinary brain tumor clinical trials, we propose that in order to provide a more relevant therapeutic response metric for veterinary patients, composite response systems should be formulated and validated that combine imaging and clinical assessment criteria.

  1. Comprehensive cellular-resolution atlas of the adult human brain.

    Science.gov (United States)

    Ding, Song-Lin; Royall, Joshua J; Sunkin, Susan M; Ng, Lydia; Facer, Benjamin A C; Lesnar, Phil; Guillozet-Bongaarts, Angie; McMurray, Bergen; Szafer, Aaron; Dolbeare, Tim A; Stevens, Allison; Tirrell, Lee; Benner, Thomas; Caldejon, Shiella; Dalley, Rachel A; Dee, Nick; Lau, Christopher; Nyhus, Julie; Reding, Melissa; Riley, Zackery L; Sandman, David; Shen, Elaine; van der Kouwe, Andre; Varjabedian, Ani; Write, Michelle; Zollei, Lilla; Dang, Chinh; Knowles, James A; Koch, Christof; Phillips, John W; Sestan, Nenad; Wohnoutka, Paul; Zielke, H Ronald; Hohmann, John G; Jones, Allan R; Bernard, Amy; Hawrylycz, Michael J; Hof, Patrick R; Fischl, Bruce; Lein, Ed S

    2016-11-01

    Detailed anatomical understanding of the human brain is essential for unraveling its functional architecture, yet current reference atlases have major limitations such as lack of whole-brain coverage, relatively low image resolution, and sparse structural annotation. We present the first digital human brain atlas to incorporate neuroimaging, high-resolution histology, and chemoarchitecture across a complete adult female brain, consisting of magnetic resonance imaging (MRI), diffusion-weighted imaging (DWI), and 1,356 large-format cellular resolution (1 µm/pixel) Nissl and immunohistochemistry anatomical plates. The atlas is comprehensively annotated for 862 structures, including 117 white matter tracts and several novel cyto- and chemoarchitecturally defined structures, and these annotations were transferred onto the matching MRI dataset. Neocortical delineations were done for sulci, gyri, and modified Brodmann areas to link macroscopic anatomical and microscopic cytoarchitectural parcellations. Correlated neuroimaging and histological structural delineation allowed fine feature identification in MRI data and subsequent structural identification in MRI data from other brains. This interactive online digital atlas is integrated with existing Allen Institute for Brain Science gene expression atlases and is publicly accessible as a resource for the neuroscience community. J. Comp. Neurol. 524:3127-3481, 2016. © 2016 The Authors The Journal of Comparative Neurology Published by Wiley Periodicals, Inc.

  2. Metabolic reprogramming: a new relevant pathway in adult adrenocortical tumors

    Science.gov (United States)

    Longatto-Filho, Adhemar; Faria, André M.; Fragoso, Maria C. B. V.; Lovisolo, Silvana M.; Lerário, Antonio M.; Almeida, Madson Q.

    2015-01-01

    Adrenocortical carcinomas (ACCs) are complex neoplasias that may present unexpected clinical behavior, being imperative to identify new biological markers that can predict patient prognosis and provide new therapeutic options. The main aim of the present study was to evaluate the prognostic value of metabolism-related key proteins in adrenocortical carcinoma. The immunohistochemical expression of MCT1, MCT2, MCT4, CD147, CD44, GLUT1 and CAIX was evaluated in a series of 154 adult patients with adrenocortical neoplasia and associated with patients' clinicopathological parameters. A significant increase in was found for membranous expression of MCT4, GLUT1 and CAIX in carcinomas, when compared to adenomas. Importantly MCT1, GLUT1 and CAIX expressions were significantly associated with poor prognostic variables, including high nuclear grade, high mitotic index, advanced tumor staging, presence of metastasis, as well as shorter overall and disease free survival. In opposition, MCT2 membranous expression was associated with favorable prognostic parameters. Importantly, cytoplasmic expression of CD147 was identified as an independent predictor of longer overall survival and cytoplasmic expression of CAIX as an independent predictor of longer disease-free survival. We provide evidence for a metabolic reprogramming in adrenocortical malignant tumors towards the hyperglycolytic and acid-resistant phenotype, which was associated with poor prognosis. PMID:26587828

  3. Brain Network Activity in Monolingual and Bilingual Older Adults

    Science.gov (United States)

    Grady, Cheryl L.; Luk, Gigi; Craik, Fergus I.M.; Bialystok, Ellen

    2016-01-01

    Bilingual older adults typically have better performance on tasks of executive control (EC) than do their monolingual peers, but differences in brain activity due to language experience are not well understood. Based on studies showing a relation between the dynamic range of brain network activity and performance on EC tasks, we hypothesized that life-long bilingual older adults would show increased functional connectivity relative to monolinguals in networks related to EC. We assessed intrinsic functional connectivity and modulation of activity in task vs. fixation periods in two brain networks that are active when EC is engaged, the frontoparietal control network (FPC) and the salience network (SLN). We also examined the default mode network (DMN), which influences behavior through reduced activity during tasks. We found stronger intrinsic functional connectivity in the FPC and DMN in bilinguals than in monolinguals. Although there were no group differences in the modulation of activity across tasks and fixation, bilinguals showed stronger correlations than monolinguals between intrinsic connectivity in the FPC and task-related increases of activity in prefrontal and parietal regions. This bilingual difference in network connectivity suggests that language experience begun in childhood and continued throughout adulthood influences brain networks in ways that may provide benefits in later life. PMID:25445783

  4. Numeric Investigation of Brain Tumor Influence on the Current Distributions During Transcranial Direct Current Stimulation.

    Science.gov (United States)

    Song, Bo; Wen, Peng; Ahfock, Tony; Li, Yan

    2016-01-01

    This study constructed a series of high-resolution realistic human-head models with brain tumors, and numerically investigated the influence of brain tumor's location and grade on the current distributions, under different electrode montages during tDCS. The threshold area and the peak current density were also derived and analyzed in the region of interest. The simulation result showed that it is safe to apply tDCS on the patients with brain tumors to treat their neuropsychiatric conditions and cancer pain caused by the tumor; although considerable changes of the current distributions are induced by the presence of a brain tumor. In addition, several observations on the global and local influences of tumor grade and possible edema have been made as well. These findings should be helpful for researchers and clinical doctors to treat patients with brain tumors. This study is also the first numerical study to fill in the gap of tDCS applications on the patients with brain tumors.

  5. Time Spent Caregiving and Help Received by Spouses and Adult Children of Brain-Impaired Adults.

    Science.gov (United States)

    Enright, Robert B., Jr.

    1991-01-01

    Surveyed 233 family caregivers for brain-impaired adults. Spousal caregivers (both husbands and wives) devoted much time to caregiving. Most caregivers received little assistance from other family members and friends, but husbands received more than others. Employed spouses received more paid help than unemployed spouses; employment did not affect…

  6. Intranasal Delivery of Camptothecin-Loaded Tat-Modified Nanomicells for Treatment of Intracranial Brain Tumors

    Directory of Open Access Journals (Sweden)

    Yuuki Takashima

    2012-10-01

    Full Text Available The blood-brain barrier is a substantial obstacle for delivering anticancer agents to brain tumors, and new strategies for bypassing it are sorely needed for brain tumor therapy. Intranasal delivery provides a practical, noninvasive method for delivering therapeutic agents to the brain. Intranasal application of nano-sized micelles that have been modified with Tat peptide facilitates brain delivery of fluorescent model materials. In this study, we evaluated a nose-to-brain delivery system for brain tumor therapy. We nasally administered the anti-tumor drug camptothecin (CPT in solution and in methoxy poly(ethylene glycol (MPEG/poly(e-caprolactone (PCL amphiphilic block copolymers (MPEG-PCL and cell penetrating peptide, Tat analog-modified MPEG-PCL (MPEG-PCL-Tat MPEG-PCL-Tat to rats bearing intracranial glioma tumors and quantified the cytotoxicity against glioma cells, and the therapeutic effects. CPT-loaded MPEG-PCL-Tat micelles showed higher cytotoxicity than CPT-loaded MPEG-PCL. CPT-free MPEG-PCL-Tat didn’t show any cytotoxicity, even at high concentrations (2 mmol/mL. CPT-loaded MPEG-PCL-Tat micelles significantly prolonged the median survival of rats. These results indicate that intranasal delivery of anti-cancer drugs with cell penetrating peptide-modified nanomicelles might be an effective therapy for brain tumors.

  7. Prognostic Significance of Hyperglycemia in Patients with Brain Tumors: a Meta-Analysis.

    Science.gov (United States)

    Liu, Hongwei; Liu, Zhixiong; Jiang, Bing; Ding, Xiping; Huo, Lei; Wan, Xin; Liu, Jinfang; Xia, Zhenyun

    2016-04-01

    Hyperglycemia has been associated with poor outcomes of patients with various diseases. There were several studies published to assess the association between hyperglycemia and prognosis of patients with brain tumors, but no consistent conclusion was available. We therefore performed a meta-analysis of available studies to evaluate the prognostic role of hyperglycemia in brain tumors. Several common databases were searched for eligible studies on the association between hyperglycemia and survival of patients with brain tumors. Two investigators used a set of predefined inclusion criteria to assess eligible studies independently. The pooled hazard ratios (HRs) with 95% confidence intervals (95% CIs) were used to assess the prognostic role of hyperglycemia. Finally, seven studies with a total of 2168 patients with brain tumors were included into the meta-analysis. Meta-analysis of total seven studies showed that hyperglycemia was significantly associated with shorter overall survival of brain tumors (HR = 2.04, 95% CI 1.51-2.76, P Meta-analysis of studies focusing on hyperglycemia showed that hyperglycemia was still significantly associated with shorter overall survival of brain tumors (HR = 1.82, 95% CI 1.29-2.59, P = 0.001). Meta-analysis of three studies on diabetes showed that diabetes was significantly associated with shorter overall survival of brain tumors (HR = 2.09, 95% CI 1.22-3.57, P = 0.007). Meta-regression analysis showed that there was no obvious difference in the roles of between hyperglycemia caused by glucocorticoids and hyperglycemia from diabetes (P = 0.25). Thus, hyperglycemia has an obvious prognostic significance in patients with brain tumors, and hyperglycemia is significantly associated with shorter overall survival of brain tumors.

  8. Cerebral infarction mimicking brain tumor on Tc-99m tetrofosmin brain SPECT imaging

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Soon [College of Medicine, Dongguk Univ., Gyeongju (Korea, Republic of); Zeon, Seok Kil; Won, Kyoung Sook [School of Medicine, Keimyung Univ., Daegu (Korea, Republic of)

    2004-06-01

    A 43-year-old man was presented with persistent headache for two weeks. T2 weighted MR imaging showed high signal intensity with surrounding edema in the left frontal lobe. These findings were considered with intracranial tumor such as glioma or metastasis. Tc-99m tetrofosmin SPECT showed focal radiotracer accumulation in the left frontal lobe. The operative specimen contained cerebral infarction with organizing leptomeningeal hematoma by pathologist. Another 73-year-old man was hospitalized for chronic headache. Initial CT showed ill-defined hypodensity with mass effect in the right parietal lobe. Tc-99m tetrofosmin SPECT showed focal radiotracer uptake in the right parietal lobe. These findings were considered with low-grade glioma or infarction. Follow-up CT after 5 months showed slightly decreased in size of low density in the right parietal lobe, and cerebral infarction is more likely than others. Tc-99m tetrofosmin has been proposed as a cardiotracer of myocardial perfusion imaging and an oncotropic radiotracer. Tc-99 tetrofosmin SPECT image provides a better attractive alternative agent than TI-201 as a tumor-imaging agent, with characteristics such as high-energy flux, short half-life, favorable biodistribution, dosimetry and lower background radioactivity. We have keep in mind on the analysis of Tc-99m tetrofosmin imaging when cerebral infarction is being differentiated from brain tumor.

  9. Prevalence estimates for primary brain tumors in China: a multi-center cross-sectional study

    Institute of Scientific and Technical Information of China (English)

    JIANG Tao; WU Nai-feng; CHEN Xiao-jun; XING Hou-xun; SU Tong-yong; WANG Zhong-cheng; TANG Gen-fu; LIN Yi; PENG Xiao-xia; ZHANG Xiao; ZHAI Xiu-wei; PENG Xiang; YANG Jin-qing; HUANG Hong-er

    2011-01-01

    half of all reported tumors (52.57%) were either gliomas or meningiomas.For the youngest (aged from 0-19)strata of the population,glioma appeared to occur more than other subtypes,accounting for 55.56% of all of cases.The majority of brain tumors presented in those aged from 20 to 59 years was pituitary adenomas (45.12%) and gliomas (31.10%).Opposed to brain tumors in adults and teenage,gliomas only accounted for 22.22%.Meanwhile,the median ages at diagnosis of the patients with PBT were similar between males and females except for pituitary adenomas (male: 59 years old; female: 45 years old).Conclusions Age standardized prevalence of PBT is 22.52 per 100 000 (95% CI,13.22 to 31.82) for all populations,17.64 per 100 000 (95% CI,9.41 to 25.87)for men,and 27.94 par 100 000 (95% CI,17.58 to 38.30)for women.Age standardization to China's 2010 population yielded an estimated population of 304 954 cases with PBT.Our prevalence estimates provide a conservative basis on which to plan health care services and to develop programmatic strategies for surviving.In the future,it would be helpful to have long-term observed survival rates that would make the assumptions and the resulting imprecision in the current estimates unnecessary.

  10. NI-78LABEL-FREE MULTIPHOTON MICROSCOPY: A NOVEL TOOL FOR THE IMAGING OF BRAIN TUMORS

    Science.gov (United States)

    Uckermann, Ortrud; Galli, Roberta; Geiger, Kathrin; Koch, Edmund; Schackert, Gabriele; Steiner, Gerald; Kirsch, Matthias

    2014-01-01

    Changes in tissue composition caused by brain tumor growth involve a series of complex biochemical alterations which can be imaged on unstained native tissue using multiphoton microscopy: We used coherent anti-Stokes Raman scattering (CARS) imaging that resonantly excites the symmetric stretching vibration of CH2 groups at 2850 cm−1 and visualizes lipid content in combination with imaging of endogenous two-photon excited fluorescence (TPEF) and second harmonic generation (SHG) to discern different types of tumors from normal tissue in unstained, native brain samples. Experimental brain tumors were induced in nude mice NMRI nu/nu (n = 25) by stereotactic implantation of glioblastoma (U87), melanoma (A375) and breast cancer (MCF-7) cell lines. Label-free multiphoton microscopy of brain cryosections provided exhaustive information of the tumor morphochemistry. The tumor border was defined with cellular resolution by a strong reduction of CARS signal intensity to 61% (glioblastoma), 71% (melanoma) and 68% (breast cancer). This reduction of lipid content within the tumor was confirmed by Raman spectroscopy. Micrometastases infiltrating normal tissue (size 50 - 200 µm) were identified in glioblastoma and melanoma. Additionally, multiphoton microscopy proved a reduction of CARS signal intensity in all human glioblastoma samples analyzed (to 72%, n = 6). Additionally, relevant SHG and TPEF signals were detected in human primary and secondary brain tumor samples and enabled to image variations in tumor associated vasculature, fibrosis, necrosis and nuclear size and density. All primary or secondary brain tumors investigated were characterized by a lower intensity of the CARS signal, therefore offering a simple tool for objective tumor detection and delineation. The combination of techniques allows retrieving a quantity of information on native unstained tissue which is comparable to H&E staining. Therefore, label-free multiphoton microscopy has the potential to become a

  11. Occupational and Environmental Risk Factors of Adult Primary Brain Cancers: A Systematic Review

    Directory of Open Access Journals (Sweden)

    A Guzman

    2011-03-01

    Full Text Available The incidence of brain neoplasm has been progressively increasing in recent years in the industrialized countries. One of the reasons for this increased incidence could be better access to health care and improved diagnosis in the industrialized countries. It also appears that Caucasians have a higher incidence than blacks or Hispanics or Asians. A number of risk factors have been identified and described including the genetic, ethnic and age-based factors. Certain occupational and environmental factors are also believed to influence the risk of primary adult brain tumors. Potential occupational and environmental factors include exposure to diagnostic and therapeutic radiations, electromagnetic radiation from cellular phones and other wireless devices, infectious agents, air pollution and residence near landfills and highvoltage power lines and jobs as firefighters, farmers, physician, chemists and jobs in industries such as petrochemical, power generation, synthetic rubber manufacturing, agricultural chemicals manufacturing. The purpose of this systematic review is to examine occupational and environmental risk factors of brain neoplasm. A range of occupational and environmental exposures are evaluated for significance of their relationship with adult primary brain tumors. On the basis of this review we suggest a concurrent evaluation of multiple risk factors both within and beyond occupational and environmental domains. The concurrent approach needs to consider better exposure assessment techniques, lifetime occupational exposures, genotypic and phenotypic characteristics and lifestyle and dietary habits. This approach needs to be interdisciplinary with contributions from neurologists, oncologists, epidemiologists and molecular biologists. Conclusive evidence that has eluded multitude of studies with single focus and single exposure needs to multifaceted and multidisciplinary.

  12. Evaluation of therapeutic effects of radiosurgery using 99 Tcm-MIBI brain SPECT in patients with brain tumor

    Institute of Scientific and Technical Information of China (English)

    FAN Yi-xiang; SHI Wei-min; PENG Wu-he

    2002-01-01

    Objective: To evaluate the therapeutic effects of radiosurgery on brain tumor using 99Tcm-MIBI brain single-photon emission computed tomography (SPECT). Methods : Fifteen normal volunteers and 49patients with brain tumor underwent 99Tcm-MIBI brain SPECT, and the tumor to non-tumor ratio (T/N)was calculated and compared before and after radiosurgery. The patients were regrouped according to different schedules for postoperative reexamination, and diagnostic sensitivity and specificity of 99Tcm-MIBI SPECT evaluated against that of conventional CT and magnetic resonance imaging. Results: After radiosurgery, the lesions were reduced or even disappeared in 22 cases, and tumor remnants or recurrence were found in 27 cases. The sensitivity, specificity and accuracy of 99Tcm-MIBI brain SPECT were 85.2%, 68. 2% and 77.6%,respectively. The sensitivity of postoperative 99Tcm-MIBI brain SPECT at 5.8 months was 92%, significantly higher than that at 3.1 months (89%, u=2. 2545, P<0. 05), and its accuracy was also higher than those at3. 1 months (u=2. 5927, P<0. 05) and at 9. 4 months (u=2. 1760, P<0. 05). The preoperative T/N ratio averaged 9.5±7. 6, significantly lowered to 2.9±5.1 postoperatively (t=4. 4373, P<0. 001). T/N ratio of recurrence group was remarkably higher than those of tumor remnants group (t=2. 1496, P<0. 05), edema group (t= 9. 2186, P<0. 001) and cicatrization group (t= 6. 3906, P<0. 001). Conclusion: 99Tcm-MIBI brain SPECT is more accurate than CT in distinguishing tumor residuals from benign lesions such as edema and cicatrization. At about 6 months after radiosurgery, 99Tcm-MIBI SPECT can obtain optimal diagnostic effects.

  13. Objective evaluation of fourth ventricle displacement in brain CT findings. 4 cases of brain stem tumor

    Energy Technology Data Exchange (ETDEWEB)

    Okino, Fumiko; Eguchi, Tsuyako; Shinohara, Teruo; Hatano, Mitsunori (Yamaguchi Univ., Ube (Japan). School of Medicine)

    1983-11-01

    Distance between the ridge of the sella turcica and the anterior wall of the fourth ventricle (a) and the distance between the ridge of the sella and the posterior pole in the occipital region (b) were measured on the slice visualizing the fourth ventricle and sella. The location of the fourth ventricle was expressed by a/b, and its normal value was calculated for comparison with that in a patient group. The a/b values of the control group were in the range of 0.33 and 0.48 with a mean +- SD of 0.41+-0.3 and was not subject to the influences of age, sex distinction, cranial shape or slicing direction. The a/b values of the patient group were all abnormal (more than mean +- 2SD of the control group) on initial CT and showed an increase with progress of the disease activity. Measurement of the a/b on brain CT was thought to serve as a useful indicator for early detection and follow-up of the course of lesions occupying the brain stem (especially brain stem tumors).

  14. Nanoparticle-Mediated Photothermal Therapy of Brain Tumors

    Science.gov (United States)

    Makkouk, Amani R.; Madsen, Steen J.

    Nanoparticles (10-1,000 nm diameter) have been investigated for use in numerous diagnostic and therapeutic applications. Gold nanoparticles are particularly appealing due to their biological inertness and the ability to conjugate a wide variety of ligands to their surface. Additionally, their optical properties can be tuned through variations of their size, shape, and composition. For example, gold-silica nanoshells, consisting of a spherical dielectric silica core (100-120 nm diameter) surrounded by a 10-20 nm gold shell, have a strong resonant absorption at approximately 800 nm where light has significant penetration in biological tissues. Following light absorption, surface electrons are photoexcited and the resultant heated electron gas is dissipated to the surrounding medium causing thermal damage. The ability of nanoparticles to convert optical energy to thermal energy makes them ideally suited for photothermal therapy (PTT). This review focuses on the utility of gold-silica nanoshells in PTT of brain tumors. PTT has proven effective in a number of in vitro and in vivo studies. Of particular clinical relevance are results demonstrating PTT efficacy in an orthotopic canine model.

  15. Ex vivo brain tumor analysis using spectroscopic optical coherence tomography

    Science.gov (United States)

    Lenz, Marcel; Krug, Robin; Welp, Hubert; Schmieder, Kirsten; Hofmann, Martin R.

    2016-03-01

    A big challenge during neurosurgeries is to distinguish between healthy tissue and cancerous tissue, but currently a suitable non-invasive real time imaging modality is not available. Optical Coherence Tomography (OCT) is a potential technique for such a modality. OCT has a penetration depth of 1-2 mm and a resolution of 1-15 μm which is sufficient to illustrate structural differences between healthy tissue and brain tumor. Therefore, we investigated gray and white matter of healthy central nervous system and meningioma samples with a Spectral Domain OCT System (Thorlabs Callisto). Additional OCT images were generated after paraffin embedding and after the samples were cut into 10 μm thin slices for histological investigation with a bright field microscope. All samples were stained with Hematoxylin and Eosin. In all cases B-scans and 3D images were made. Furthermore, a camera image of the investigated area was made by the built-in video camera of our OCT system. For orientation, the backsides of all samples were marked with blue ink. The structural differences between healthy tissue and meningioma samples were most pronounced directly after removal. After paraffin embedding these differences diminished. A correlation between OCT en face images and microscopy images can be seen. In order to increase contrast, post processing algorithms were applied. Hence we employed Spectroscopic OCT, pattern recognition algorithms and machine learning algorithms such as k-means Clustering and Principal Component Analysis.

  16. Perceived social competency in children with brain tumors: comparison between children on and off therapy.

    Science.gov (United States)

    Hardy, Kristina K; Willard, Victoria W; Watral, Melody Ann; Bonner, Melanie J

    2010-01-01

    Children with brain tumors are at risk for a number of cognitive, academic, and social difficulties as a consequence of their illness and its treatment. Of these, the least is known about social functioning, particularly over the course of the illness. Thirty children with brain tumors were evaluated using neurocognitive and psychological measures, including a measure of perceived competency. Results indicated that off-therapy brain tumor patients reported more concerns about their social competence than both a normative sample and children on treatment. Findings highlight the need for more research aimed at helping survivors cope with long-term stressors associated with their illness.

  17. Origins and clinical implications of the brain tumor stem cell hypothesis

    OpenAIRE

    2009-01-01

    With the advent of the cancer stem cell hypothesis, the field of cancer research has experienced a revolution in how we think of and approach cancer. The discovery of “brain tumor stem cells” has offered an explanation for several long-standing conundrums on why brain tumors behave the way they do to treatment. Despite the great amount of research that has been done in order to understand the molecular aspects of malignant gliomas, the prognosis of brain tumors remains dismal. The slow progre...

  18. Primitive Neuroectodermal Tumor of Mediastinum in an Adult: A Case Report

    Energy Technology Data Exchange (ETDEWEB)

    Sung, Young Jae; Kim, Jeung Sook [Dongguk University Ilsan Hospital, Goyang (Korea, Republic of)

    2009-11-15

    A peripheral primitive neuroectodermal tumor (PNET) is a rare and aggressive malignant tumor, which most frequently occurs in children and young adults. The most well described site of origin is the chest wall. We report the case of a primitive neuroectodermal tumor in the anterior mediastinum with unusual CT findings.

  19. Targeted Doxorubicin Delivery to Brain Tumors via Minicells: Proof of Principle Using Dogs with Spontaneously Occurring Tumors as a Model.

    Directory of Open Access Journals (Sweden)

    Jennifer A MacDiarmid

    Full Text Available Cytotoxic chemotherapy can be very effective for the treatment of cancer but toxicity on normal tissues often limits patient tolerance and often causes long-term adverse effects. The objective of this study was to assist in the preclinical development of using modified, non-living bacterially-derived minicells to deliver the potent chemotherapeutic doxorubicin via epidermal growth factor receptor (EGFR targeting. Specifically, this study sought to evaluate the safety and efficacy of EGFR targeted, doxorubicin loaded minicells (designated EGFRminicellsDox to deliver doxorubicin to spontaneous brain tumors in 17 companion dogs; a comparative oncology model of human brain cancers.EGFRminicellsDox were administered weekly via intravenous injection to 17 dogs with late-stage brain cancers. Biodistribution was assessed using single-photon emission computed tomography (SPECT and magnetic resonance imaging (MRI. Anti-tumor response was determined using MRI, and blood samples were subject to toxicology (hematology, biochemistry and inflammatory marker analysis. Targeted, doxorubicin-loaded minicells rapidly localized to the core of brain tumors. Complete resolution or marked tumor regression (>90% reduction in tumor volume were observed in 23.53% of the cohort, with lasting anti-tumor responses characterized by remission in three dogs for more than two years. The median overall survival was 264 days (range 49 to 973. No adverse clinical, hematological or biochemical effects were observed with repeated administration of EGFRminicellsDox (30 to 98 doses administered in 10 of the 17 dogs.Targeted minicells loaded with doxorubicin were safely administered to dogs with late stage brain cancer and clinical activity was observed. These findings demonstrate the strong potential for clinical applications of targeted, doxorubicin-loaded minicells for the effective treatment of patients with brain cancer. On this basis, we have designed a Phase 1 clinical study of

  20. Targeted Doxorubicin Delivery to Brain Tumors via Minicells: Proof of Principle Using Dogs with Spontaneously Occurring Tumors as a Model

    Science.gov (United States)

    MacDiarmid, Jennifer A.; Langova, Veronika; Bailey, Dale; Pattison, Scott T.; Pattison, Stacey L.; Christensen, Neil; Armstrong, Luke R.; Brahmbhatt, Vatsala N.; Smolarczyk, Katarzyna; Harrison, Matthew T.; Costa, Marylia; Mugridge, Nancy B.; Sedliarou, Ilya; Grimes, Nicholas A.; Kiss, Debra L.; Stillman, Bruce; Hann, Christine L.; Gallia, Gary L.; Graham, Robert M.; Brahmbhatt, Himanshu

    2016-01-01

    Background Cytotoxic chemotherapy can be very effective for the treatment of cancer but toxicity on normal tissues often limits patient tolerance and often causes long-term adverse effects. The objective of this study was to assist in the preclinical development of using modified, non-living bacterially-derived minicells to deliver the potent chemotherapeutic doxorubicin via epidermal growth factor receptor (EGFR) targeting. Specifically, this study sought to evaluate the safety and efficacy of EGFR targeted, doxorubicin loaded minicells (designated EGFRminicellsDox) to deliver doxorubicin to spontaneous brain tumors in 17 companion dogs; a comparative oncology model of human brain cancers. Methodology/Principle Findings EGFRminicellsDox were administered weekly via intravenous injection to 17 dogs with late-stage brain cancers. Biodistribution was assessed using single-photon emission computed tomography (SPECT) and magnetic resonance imaging (MRI). Anti-tumor response was determined using MRI, and blood samples were subject to toxicology (hematology, biochemistry) and inflammatory marker analysis. Targeted, doxorubicin-loaded minicells rapidly localized to the core of brain tumors. Complete resolution or marked tumor regression (>90% reduction in tumor volume) were observed in 23.53% of the cohort, with lasting anti-tumor responses characterized by remission in three dogs for more than two years. The median overall survival was 264 days (range 49 to 973). No adverse clinical, hematological or biochemical effects were observed with repeated administration of EGFRminicellsDox (30 to 98 doses administered in 10 of the 17 dogs). Conclusions/Significance Targeted minicells loaded with doxorubicin were safely administered to dogs with late stage brain cancer and clinical activity was observed. These findings demonstrate the strong potential for clinical applications of targeted, doxorubicin-loaded minicells for the effective treatment of patients with brain cancer. On

  1. Third harmonic generation imaging for fast, label-free pathology of human brain tumors.

    Science.gov (United States)

    Kuzmin, N V; Wesseling, P; Hamer, P C de Witt; Noske, D P; Galgano, G D; Mansvelder, H D; Baayen, J C; Groot, M L

    2016-05-01

    In brain tumor surgery, recognition of tumor boundaries is key. However, intraoperative assessment of tumor boundaries by the neurosurgeon is difficult. Therefore, there is an urgent need for tools that provide the neurosurgeon with pathological information during the operation. We show that third harmonic generation (THG) microscopy provides label-free, real-time images of histopathological quality; increased cellularity, nuclear pleomorphism, and rarefaction of neuropil in fresh, unstained human brain tissue could be clearly recognized. We further demonstrate THG images taken with a GRIN objective, as a step toward in situ THG microendoscopy of tumor boundaries. THG imaging is thus a promising tool for optical biopsies.

  2. Clinical Application of {sup 18}F-FDG PET in Brain Tumors

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Il Ki [College of Medicine, Hanyang University, Seoul (Korea, Republic of); Kim, Jae Seung [Asan Medical Center, University of Ulsan College of Medicine, Seoul (Korea, Republic of)

    2008-12-15

    Primary brain tumor accounts for 1.4% of entire cancer. For males between the ages of 15 and 34 years, central nervous system tumors account for the leading cause of cancer death. 18F-FDG PET has been reported that it can provide important diagnostic information relating to tumor grading and differentiation from non- tumorous condition. In addition, the degree of FDG metabolism carries prognostic significance. By mapping the metabolic pattern of heterogeneous tumors, 18F-FDG PET can aid in targeting for stereotactic biopsy by selecting the subregions within the tumor that are most hypermetabolic and potentially have the highest grade. According to clinical research data, FDG PET is expected to be a helpful diagnostic tool in the management of brain tumors.

  3. Targeting Potassium Channels for Increasing Delivery of Imaging Agents and Therapeutics to Brain Tumors

    Directory of Open Access Journals (Sweden)

    Nagendra Sanyasihally Ningaraj

    2013-05-01

    Full Text Available Every year in the US, 20,000 new primary and nearly 200,000 metastatic brain tumor cases are reported. The cerebral microvessels/ capillaries that form the blood–brain barrier (BBB not only protect the brain from toxic agents in the blood but also pose a significant hindrance to the delivery of small and large therapeutic molecules. Different strategies have been employed to circumvent the physiological barrier posed by blood-brain tumor barrier (BTB. Studies in our laboratory have identified significant differences in the expression levels of certain genes and proteins between normal and brain tumor capillary endothelial cells. In this study, we validated the non-invasive and clinically relevant Dynamic Contrast Enhancing-Magnetic Resonance Imaging (DCE-MRI method with invasive, clinically irrelevant but highly accurate Quantitative Autoradiography (QAR method using rat glioma model. We also showed that DCE-MRI metric of tissue vessel perfusion-permeability is sensitive to changes in blood vessel permeability following administration of calcium-activated potassium (BKCa channel activator NS-1619. Our results show that human gliomas and brain tumor endothelial cells that overexpress BKCa channels can be targeted for increased BTB permeability for MRI enhancing agents to brain tumors. We conclude that monitoring the outcome of increased MRI enhancing agents’ delivery to microsatellites and leading tumor edges in glioma patients would lead to beneficial clinical outcome.

  4. Anosmin-1 contributes to brain tumor malignancy through integrin signal pathways

    Science.gov (United States)

    Choy, Catherine T; Kim, Haseong; Lee, Ji-Young; Williams, David M; Palethorpe, David; Fellows, Greg; Wright, Alan J; Laing, Ken; Bridges, Leslie R; Howe, Franklyn A; Kim, Soo-Hyun

    2014-01-01

    Anosmin-1, encoded by the KAL1 gene, is an extracellular matrix (ECM)-associated protein which plays essential roles in the establishment of olfactory and GNRH neurons during early brain development. Loss-of-function mutations of KAL1 results in Kallmann syndrome with delayed puberty and anosmia. There is, however, little comprehension of its role in the developed brain. As reactivation of developmental signal pathways often takes part in tumorigenesis, we investigated if anosmin-1-mediated cellular mechanisms associated with brain tumors. Our meta-analysis of gene expression profiles of patients' samples and public microarray datasets indicated that KAL1 mRNA was significantly upregulated in high-grade primary brain tumors compared with the normal brain and low-grade tumors. The tumor-promoting capacity of anosmin-1 was demonstrated in the glioblastoma cell lines, where anosmin-1 enhanced cell motility and proliferation. Notably, anosmin-1 formed a part of active β1 integrin complex, inducing downstream signaling pathways. ShRNA-mediated knockdown of anosmin-1 attenuated motility and growth of tumor cells and induced apoptosis. Anosmin-1 may also enhance the invasion of tumor cells within the ECM by modulating cell adhesion and activating extracellular proteases. In a mouse xenograft model, anosmin-1-expressing tumors grew faster, indicating the role of anosmin-1 in tumor microenvironment in vivo. Combined, these data suggest that anosmin-1 can facilitate tumor cell proliferation, migration, invasion, and survival. Therefore, although the normal function of anosmin-1 is required in the proper development of GNRH neurons, overexpression of anosmin-1 in the developed brain may be an underlying mechanism for some brain tumors. PMID:24189182

  5. Bevacizumab in Reducing CNS Side Effects in Patients Who Have Undergone Radiation Therapy to the Brain for Primary Brain Tumor, Meningioma, or Head and Neck Cancer

    Science.gov (United States)

    2014-04-21

    Adult Anaplastic Astrocytoma; Adult Anaplastic Ependymoma; Adult Anaplastic Meningioma; Adult Anaplastic Oligodendroglioma; Adult Brain Stem Glioma; Adult Central Nervous System Germ Cell Tumor; Adult Choroid Plexus Tumor; Adult Diffuse Astrocytoma; Adult Ependymoma; Adult Grade II Meningioma; Adult Grade III Meningioma; Adult Malignant Hemangiopericytoma; Adult Mixed Glioma; Adult Oligodendroglioma; Adult Papillary Meningioma; Adult Pineocytoma; Malignant Neoplasm; Meningeal Melanocytoma; Radiation Toxicity; Recurrent Adenoid Cystic Carcinoma of the Oral Cavity; Recurrent Adult Brain Tumor; Recurrent Basal Cell Carcinoma of the Lip; Recurrent Esthesioneuroblastoma of the Paranasal Sinus and Nasal Cavity; Recurrent Inverted Papilloma of the Paranasal Sinus and Nasal Cavity; Recurrent Lymphoepithelioma of the Nasopharynx; Recurrent Lymphoepithelioma of the Oropharynx; Recurrent Midline Lethal Granuloma of the Paranasal Sinus and Nasal Cavity; Recurrent Mucoepidermoid Carcinoma of the Oral Cavity; Recurrent Salivary Gland Cancer; Recurrent Squamous Cell Carcinoma of the Hypopharynx; Recurrent Squamous Cell Carcinoma of the Larynx; Recurrent Squamous Cell Carcinoma of the Lip and Oral Cavity; Recurrent Squamous Cell Carcinoma of the Nasopharynx; Recurrent Squamous Cell Carcinoma of the Oropharynx; Recurrent Squamous Cell Carcinoma of the Paranasal Sinus and Nasal Cavity; Recurrent Verrucous Carcinoma of the Larynx; Recurrent Verrucous Carcinoma of the Oral Cavity; Stage I Adenoid Cystic Carcinoma of the Oral Cavity; Stage I Basal Cell Carcinoma of the Lip; Stage I Esthesioneuroblastoma of the Paranasal Sinus and Nasal Cavity; Stage I Inverted Papilloma of the Paranasal Sinus and Nasal Cavity; Stage I Lymphoepithelioma of the Nasopharynx; Stage I Lymphoepithelioma of the Oropharynx; Stage I Midline Lethal Granuloma of the Paranasal Sinus and Nasal Cavity; Stage I Mucoepidermoid Carcinoma of the Oral Cavity; Stage I Salivary Gland Cancer; Stage I Squamous Cell Carcinoma

  6. Acute moderate exercise enhances compensatory brain activation in older adults.

    Science.gov (United States)

    Hyodo, Kazuki; Dan, Ippeita; Suwabe, Kazuya; Kyutoku, Yasushi; Yamada, Yuhki; Akahori, Mitsuya; Byun, Kyeongho; Kato, Morimasa; Soya, Hideaki

    2012-11-01

    A growing number of reports state that regular exercise enhances brain function in older adults. Recently a functional near-infrared spectroscopy (fNIRS) study revealed that an acute bout of moderate exercise enhanced activation of the left dorsolateral prefrontal cortex (L-DLPFC) associated with Stroop interference in young adults. Whether this acute effect is also applicable to older adults was examined. Sixteen older adults performed a color-word matching Stroop task before and after 10 minutes of exercise on a cycle ergometer at a moderate intensity. Cortical hemodynamics of the prefrontal area was monitored with a fNIRS during the Stroop task. We analyzed Stroop interference (incongruent-neutral) as Stroop performance. Though activation for Stroop interference was found in the bilateral prefrontal area before the acute bout of exercise, activation of the right frontopolar area (R-FPA) was enhanced after exercise. In the majority of participants, this coincided with improved performance reflected in Stroop interference results. Thus, an acute bout of moderate exercise improved Stroop performance in older adults, and this was associated with contralateral compensatory activation.

  7. Effects of NOS inhibitor on dentate gyrus neurogenesis after diffuse brain injury in the adult rats

    Institute of Scientific and Technical Information of China (English)

    SunLi-Sha; XuJiang-ping

    2004-01-01

    Objective To investigate the effects of selective nitric oxide synthase (NOS) inhibitors on dentate gyrus neurogenesis after diffuse brain injury (DBI) in the adult rat brain. Methods Adult male SD rats were subjected to diffuse brain injury (DBI) model. By using systemic bromodeoxyuridine (BrdU) to label dividing cells, we compared the proliferation rate of

  8. Neuroimaging in adult penetrating brain injury: a guide for radiographers

    Energy Technology Data Exchange (ETDEWEB)

    Temple, Nikki; Donald, Cortny; Skora, Amanda [Discipline of Medical Radiation Sciences, The University of Sydney, Lidcombe, New South Wales (Australia); Reed, Warren, E-mail: warren.reed@sydney.edu.au [Medical Image Optimisation and Perception Group, Discipline of Medical Radiation Sciences, The University of Sydney, Lidcombe, New South Wales (Australia)

    2015-06-15

    Penetrating brain injuries (PBI) are a medical emergency, often resulting in complex damage and high mortality rates. Neuroimaging is essential to evaluate the location and extent of injuries, and to manage them accordingly. Currently, a myriad of imaging modalities are included in the diagnostic workup for adult PBI, including skull radiography, computed tomography (CT), magnetic resonance imaging (MRI) and angiography, with each modality providing their own particular benefits. This literature review explores the current modalities available for investigating PBI and aims to assist in decision making for the appropriate use of diagnostic imaging when presented with an adult PBI. Based on the current literature, the authors have developed an imaging pathway for adult penetrating brain injury that functions as both a learning tool and reference guide for radiographers and other health professionals. Currently, CT is recommended as the imaging modality of choice for the initial assessment of PBI patients, while MRI is important in the sub-acute setting where it aids prognosis prediction and rehabilitation planning, Additional follow-up imaging, such as angiography, should be dependent upon clinical findings.

  9. Tai Ji Quan, the brain, and cognition in older adults

    Directory of Open Access Journals (Sweden)

    Yu-Kai Chang

    2014-03-01

    Full Text Available The relationship between physical activity (PA and cognition has received much attention recently. While evidence of improved cognition following PA has consistently been observed, the majority of studies have spotlighted aerobic exercise and the effects of other modes of PA, such as Tai Ji Quan, on cognition have received limited attention. This article provides a brief review of the literature concerning the influence of Tai Ji Quan on cognition in older adults, including those with intact cognition and those with cognitive impairment. In addition, this review proposes potential mechanisms (cardiovascular fitness, motor fitness, movement coordination, social interaction, and meditation statuses as well brain structure and function evaluated from a neuroimaging perspective that may explain the Tai Ji Quan–cognition relationship. Finally, we present suggestions for future research. In conclusion, Tai Ji Quan, with its multi-faceted characteristics, shows promise as a mode of PA for enhancing cognition, as well as brain health, in older adults. Based on the findings in this review, further exploration of the effects of Tai Ji Quan on cognition in older adults is warranted.

  10. Morphological brain differences between adult stutterers and non-stutterers

    Directory of Open Access Journals (Sweden)

    Hänggi Jürgen

    2004-12-01

    Full Text Available Abstract Background The neurophysiological and neuroanatomical foundations of persistent developmental stuttering (PDS are still a matter of dispute. A main argument is that stutterers show atypical anatomical asymmetries of speech-relevant brain areas, which possibly affect speech fluency. The major aim of this study was to determine whether adults with PDS have anomalous anatomy in cortical speech-language areas. Methods Adults with PDS (n = 10 and controls (n = 10 matched for age, sex, hand preference, and education were studied using high-resolution MRI scans. Using a new variant of the voxel-based morphometry technique (augmented VBM the brains of stutterers and non-stutterers were compared with respect to white matter (WM and grey matter (GM differences. Results We found increased WM volumes in a right-hemispheric network comprising the superior temporal gyrus (including the planum temporale, the inferior frontal gyrus (including the pars triangularis, the precentral gyrus in the vicinity of the face and mouth representation, and the anterior middle frontal gyrus. In addition, we detected a leftward WM asymmetry in the auditory cortex in non-stutterers, while stutterers showed symmetric WM volumes. Conclusions These results provide strong evidence that adults with PDS have anomalous anatomy not only in perisylvian speech and language areas but also in prefrontal and sensorimotor areas. Whether this atypical asymmetry of WM is the cause or the consequence of stuttering is still an unanswered question.

  11. Emerging Techniques in Brain Tumor Imaging: What Radiologists Need to Know

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Minjae; Kim, Ho Sung [Department of Radiology and Research Institute of Radiology, University of Ulsan College of Medicine, Asan Medical Center, Seoul 05505 (Korea, Republic of)

    2016-11-01

    Among the currently available brain tumor imaging, advanced MR imaging techniques, such as diffusion-weighted MR imaging and perfusion MR imaging, have been used for solving diagnostic challenges associated with conventional imaging and for monitoring the brain tumor treatment response. Further development of advanced MR imaging techniques and postprocessing methods may contribute to predicting the treatment response to a specific therapeutic regimen, particularly using multi-modality and multiparametric imaging. Over the next few years, new imaging techniques, such as amide proton transfer imaging, will be studied regarding their potential use in quantitative brain tumor imaging. In this review, the pathophysiologic considerations and clinical validations of these promising techniques are discussed in the context of brain tumor characterization and treatment response.

  12. Emerging techniques in brain tumor imaging: What radiologists need to know

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Min Jae; Kim, Ho Sung [University of Ulsan College of Medicine, Asan Medical Center, Seoul (Korea, Republic of)

    2016-09-15

    Among the currently available brain tumor imaging, advanced MR imaging techniques, such as diffusion-weighted MR imaging and perfusion MR imaging, have been used for solving diagnostic challenges associated with conventional imaging and for monitoring the brain tumor treatment response. Further development of advanced MR imaging techniques and postprocessing methods may contribute to predicting the treatment response to a specific therapeutic regimen, particularly using multi-modality and multiparametric imaging. Over the next few years, new imaging techniques, such as amide proton transfer imaging, will be studied regarding their potential use in quantitative brain tumor imaging. In this review, the pathophysiologic considerations and clinical validations of these promising techniques are discussed in the context of brain tumor characterization and treatment response.

  13. Histopathological evaluation of surgically treated adult renal tumors: Report from a tertiary care center in India

    Directory of Open Access Journals (Sweden)

    B Datta

    2016-01-01

    Full Text Available Background: This retrospective study was performed in a tertiary care center from India analyzing the histopathological reports and the clinical data of the adult patients admitted in this institute with a diagnosis of renal tumors and had undergone nephrectomy for the disease. Objective: The objective of this study is to determine the relative frequencies of different renal tumors in adults (above the age of 16 years and to analyze the histopathological characters of the tumors. Materials and Methods: In this retrospective study, we have analyzed the histopathology reports along with the demographic and clinical data of the adult patients who had undergone nephrectomy for renal tumors in our institute from January 2005 to December 2011. Results: A total 113 adult patients underwent tumor nephrectomy during the last 7 years in our institute. Mean age of the patients was 54.5 years (range 16-69 years. Male:Female ratio was 1.9:1. Out of 131 cases of adult renal tumors, 91.6% cases were malignant and 8.45 cases were benign tumors. Among the malignant tumors, renal cell carcinoma was the most common type. There were 2 cases of renal primitive neuroectodermal tumors and one case of renal myofibroblastoma in our series. Conclusion: The spectrum of adult renal tumors in this series is consistent with the other series of cases reported by different authors. Only few cases of the renal tumors were diagnosed incidentally among our patients which is just opposite to the rate of renal tumors diagnosed incidentally in the developed countries. Myofibroblastoma, a benign kidney tumor diagnosed in our series is probably the first reported case in the world.

  14. Brain tumors in children and adolescents and exposure to animals and farm life

    DEFF Research Database (Denmark)

    Christensen, Jeppe Schultz; Mortensen, Laust Hvas; Röösli, Martin;

    2012-01-01

    The etiology of brain tumors in children and adolescents is largely unknown, and very few environmental risk factors have been identified. The aim of this study was to examine the relationship between pre- or postnatal animal contacts or farm exposures and the risk of childhood brain tumors (CBTs......), since infectious agents may pose a risk factor and a proposed mechanism is transferral of infectious agents from animals to humans....

  15. Family history of cancer in benign brain tumor subtypes versus gliomas

    Directory of Open Access Journals (Sweden)

    Quinn eOstrom

    2012-02-01

    Full Text Available Purpose: Family history is associated with gliomas, but this association has not ben established for benign brain tumors. Using information from newly diagnosed primary brain tumor patients, we describe patterns of family cancer histories in patients with benign brain tumors and compare those to patients with gliomas. Methods: Newly diagnosed primary brain tumor patients were identified as part of the Ohio Brain Tumor Study (OBTS. Each patient was asked to participate in a telephone interview about personal medical history, family history of cancer, and other exposures. Information was available from 33 acoustic neuroma (65%, 78 meningioma (65%, 49 pituitary adenoma (73.1% and 152 glioma patients (58.2%. The association between family history of cancer and each subtype was compared with gliomas using unconditional logistic regression models generating odds ratios (ORs and 95% confidence intervals (95% CI. Results: There was no significant difference in family history of cancer between patients with glioma and benign subtypes. Conclusions: The results suggest that benign brain tumor may have an association with family history of cancer. More studies are warranted to disentangle the potential genetic and/or environmental causes for these diseases.

  16. Constructing the meaning of survivor with former pediatric brain tumor patients.

    Science.gov (United States)

    Zwiers, Angela; Campbell, Craig; Evans, Marilyn; Kirkwood, Ken

    2015-01-01

    Although the term survivor is frequently used in cancer discourse, the meaning of survivor and how people identify with this term can be difficult to understand. The purpose of this qualitative study is to explore the meaning of the term survivor from the perspective of young adults who have experienced a pediatric brain tumor (PBT). A constructivist grounded theory was utilized in this study with 6 young adults who had a PBT. This study also used semistructured interviews with participants who also completed reflective journals, which were focused on the survivor concept. Data were analyzed through coding strategies and constant comparative methods. Findings present 4 major themes of process: (a) reviewing the illness experience, (b) qualifying as a survivor, (c) thinking positive, and (d) being changed. These themes are important to consider in the construction, interpretation, and understanding of how the majority of this population do not identify with the current social use of the term survivor. Clearly, there is a need for a clearer understanding of survivor and how it specifically applies to those who have had a PBT. Everyone should remain conscious and consider how a broad, generalizing term such as survivor may influence a person's attitude and advocacy toward their health.

  17. SU-E-J-212: MR Diffusion Tensor Imaging for Assessment of Tumor and Normal Brain Tissue Responses of Juvenile Pilocytic Astrocytoma Treated by Proton Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Hou, P; Park, P; Li, H; Zhu, X; Mahajan, A; Grosshans, D [M.D. Anderson Cancer Center, Houston, TX (United States)

    2015-06-15

    Purpose: Diffusion tensor imaging (DTI) can measure molecular mobility at the cellular level, quantified by the apparent diffusion coefficient (ADC). DTI may also reveal axonal fiber directional information in the white matter, quantified by the fractional anisotropy (FA). Juvenile pilocytic astrocytoma (JPA) is a rare brain tumor that occurs in children and young adults. Proton therapy (PT) is increasingly used in the treatment of pediatric brain tumors including JPA. However, the response of both tumors and normal tissues to PT is currently under investigation. We report tumor and normal brain tissue responses for a pediatric case of JPA treated with PT assessed using DTI. Methods: A ten year old male with JPA of the left thalamus received passive scattered PT to a dose of 50.4 Gy (RBE) in 28 fractions. Post PT, the patient has been followed up in seven years. At each follow up, MRI imaging including DTI was performed to assess response. MR images were registered to the treatment planning CT and the GTV mapped onto each MRI. The GTV contour was then mirrored to the right side of brain through the patient’s middle line to represent normal brain tissue. ADC and FA were measured within the ROIs. Results: Proton therapy can completely spare contra lateral brain while the target volume received full prescribed dose. From a series of MRI ADC images before and after PT at different follow ups, the enhancement corresponding to GTV had nearly disappeared more than 2 years after PT. Both ADC and FA demonstrate that contralateral normal brain tissue were not affect by PT and the tumor volume reverted to normal ADC and FA values. Conclusion: DTI allowed quantitative evaluation of tumor and normal brain tissue responses to PT. Further study in a larger cohort is warranted.

  18. Deregulation of c-myc and SV40Tag causing brain tumor in mice

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Deregulated expressions of both c-myc and simian virus 40 large T antigen (SV40Tag) are consistent features of lots of tumors. To investigate whether the expression of c-myc and SV40Tag in mouse might help develop a model of human tumor, we generated c-myc transgenics by inserting human c-myc gene into pTRE2 of Tet-On system. We obtained conditional expression of SV40Tag transgenics by the Tet-On system from Yangzhou University. Crossing the c-myc transgenic mouse with the SV40Tag transgenic mice to generate bitransgenics we got double-transgenic mice expressing c-myc and SV40Tag by the Tet-On system. After being treated with doxycycline continuously, single-transgenic SV40Tag mice developed brain tumor infrequently (3 of 84, 3.6%) with a long onset (185 d on average). In contrast, double-transgenic c-myc/SV40Tag mice developed brain tumor with a short onset (96 days on average) and a 41% brain tumor incidence rate (7 of 17, 41%). This tumor was assumed to be medulloblastoma. Our experiments suggest that deregulated expression of c-myc and SV40Tag in brain might generate a mouse model of human brain tumor that recapitulates some features of human medulloblastoma.

  19. The Methanol Extract of Angelica sinensis Induces Cell Apoptosis and Suppresses Tumor Growth in Human Malignant Brain Tumors

    Directory of Open Access Journals (Sweden)

    Yu-Ling Lin

    2013-01-01

    Full Text Available Glioblastoma multiforme (GBM is a highly vascularized and invasive neoplasm. The methanol extract of Angelica sinensis (AS-M is commonly used in traditional Chinese medicine to treat several diseases, such as gastric mucosal damage, hepatic injury, menopausal symptoms, and chronic glomerulonephritis. AS-M also displays potency in suppressing the growth of malignant brain tumor cells. The growth suppression of malignant brain tumor cells by AS-M results from cell cycle arrest and apoptosis. AS-M upregulates expression of cyclin kinase inhibitors, including p16, to decrease the phosphorylation of Rb proteins, resulting in arrest at the G0-G1 phase. The expression of the p53 protein is increased by AS-M and correlates with activation of apoptosis-associated proteins. Therefore, the apoptosis of cancer cells induced by AS-M may be triggered through the p53 pathway. In in vivo studies, AS-M not only suppresses the growth of human malignant brain tumors but also significantly prolongs patient survival. In addition, AS-M has potent anticancer effects involving cell cycle arrest, apoptosis, and antiangiogenesis. The in vitro and in vivo anticancer effects of AS-M indicate that this extract warrants further investigation and potential development as a new antibrain tumor agent, providing new hope for the chemotherapy of malignant brain cancer.

  20. Detection of brain tumors using fluorescence diffuse optical tomography and nanoparticles as contrast agents

    Science.gov (United States)

    Fortin, Pierre-Yves; Genevois, Coralie; Koenig, Anne; Heinrich, Emilie; Texier, Isabelle; Couillaud, Franck

    2012-12-01

    Near-infrared fluorescence-enhanced diffuse optical tomography (fDOT) is used to localize tumors in mice using fluorescent nanoparticles as a blood pool contrast agent. The infrared dye DiR is loaded in the lipid core of nontargeted nanoparticles (DiR-lipidots) and injected systemically via the tail vein in mice bearing U87 tumors. Distribution and time-course of DiR-lipidots are followed using in vivo fluorescence reflectance imaging and reveal enhanced fluorescent signal within the subcutaneous tumors up to seven days due to the enhanced permeability and retention effect. Tumor growth into the brain is followed using bioluminescent imaging, and tumor localization is further determined by magnetic resonance imaging. The fDOT provides three-dimensional fluorescent maps that allow for consistent localization for both subcutaneous and brain tumors.

  1. Predictive value of clinical evaluation in the follow-up of children with a brain tumor.

    NARCIS (Netherlands)

    Graaf, N. de; Hew, J.M.; Fock, J.M.; Kamps, W.A.; Graaf, S.S.N. de

    2002-01-01

    BACKGROUND: During follow-up of children with a brain tumor, traditionally surveillance-imaging studies are done in addition to clinical evaluations. The purpose of this study was to determine the role of clinical evaluations by a multidisciplinary team for the detection of recurrent tumor. PROCEDUR

  2. Predictive value of clinical evaluation in the follow-up of children with a brain tumor

    NARCIS (Netherlands)

    Hew, JM; Fock, JM; Kamps, WA

    2002-01-01

    Background. During follow-up of children with a brain tumor, traditionally surveillance-imaging studies are done in addition to clinical evaluations, The purpose of this study was to determine the role of clinical evaluations by a multidisciplinary team for the detection of recurrent tumor. Procedur

  3. Non-invasive monitoring of hemodynamic changes in orthotropic brain tumor

    Science.gov (United States)

    Kashyap, Dheerendra; Sharma, Vikrant; Liu, Hanli

    2007-02-01

    Radio surgical interventions such as Gamma Knife and Cyberknife have become attractive as therapeutic interventions. However, one of the drawbacks of cyberknife is radionecrosis, which is caused by excessive radiation to surrounding normal tissues. Radionecrosis occurs in about 10-15% of cases and could have adverse effects leading to death. Currently available imaging techniques have failed to reliably distinguish radionecrosis from tumor growth. Development of imaging techniques that could provide distinction between tumor growth and radionecrosis would give us ability to monitor effects of radiation therapy non-invasively. This paper investigates the use of near infrared spectroscopy (NIRS) as a new technique to monitor the growth of brain tumors. Brain tumors (9L glioma cell line) were implanted in right caudate nucleus of rats (250-300 gms, Male Fisher C) through a guide screw. A new algorithm was developed, which used broadband steady-state reflectance measurements made using a single source-detector pair, to quantify absolute concentrations of hemoglobin derivatives and reduced scattering coefficients. Preliminary results from the brain tumors indicated decreases in oxygen saturation, oxygenated hemoglobin concentrations and increases in deoxygenated hemoglobin concentrations with tumor growth. The study demonstrates that NIRS technology could provide an efficient, noninvasive means of monitoring vascular oxygenation dynamics of brain tumors and further facilitate investigations of efficacy of tumor treatments.

  4. Direct cortical stimulation but not transcranial electrical stimulation motor evoked potentials detect brain ischemia during brain tumor resection.

    Science.gov (United States)

    Li, Fenghua; Deshaies, Eric M; Allott, Geoffrey; Canute, Gregory; Gorji, Reza

    2011-09-01

    Motor evoked potentials (MEPs) elicited by both direct cortical stimulation (DCS) and transcranial electrical stimulation are used during brain tumor resection. Parallel use of direct cortical stimulation motor evoked potentials (DCS-MEPs) and transcranial electrical stimulation motor evoked potentials (TCeMEPs) has been practiced during brain tumor resection. We report that DCS-MEPs elicited by direct subdural grid stimulation, but not TCeMEPs, detected brain ischemia during brain tumor resection. Following resection of a brainstem high-grade glioma in a 21-year-old, the threshold of cortical motor-evoked-potentials (cMEPs) increased from 13 mA to 20 mA while amplitudes decreased. No changes were noted in transcranial motor evoked potentials (TCMEPs), somatosensory evoked potentials (SSEPs), auditory evoked potentials (AEPs), anesthetics, or hemodynamic parameters. Our case showed the loss of cMEPs and SSEPs, but not TCeMEPs. Permanent loss of DCS-MEPs and SSEPs was correlated with permanent left hemiplegia in our patient even when appropriate action was taken. Parallel use of DCS- and TCeMEPs with SSEPs improves sensitivity of intraoperative detection of motor impairment. DCS may be superior to TCeMEPs during brain tumor resection.

  5. The Relationship between Parkinson Disease and Brain Tumor: A Meta-Analysis

    Science.gov (United States)

    Ye, Rong; Shen, Ting; Jiang, Yasi; Xu, Lingjia; Si, Xiaoli; Zhang, Baorong

    2016-01-01

    Objective Epidemiological studies have investigated the association between Parkinson disease (PD) occurrence and the risk of brain tumors, while the results remain controversial. We performed a meta-analysis to clarify the exact relationship between PD and brain tumors. Methods A systematic literature search was conducted using PubMed, Embase, ScienceDirect and CBM (China Biology Medicine Disc) before February 2016. Eligible studies were those that reported risk estimates of brain tumors among patients with PD or vice versa. A random-effects model was used to calculate the pooled odds ratio (OR) of the outcomes. Subgroup analyses and sensitivity analysis were conducted to explore the potential sources of heterogeneity. Results In total, eight studies involving 329,276 participants met our inclusion criteria. The pooled OR was 1.51 (95%CI 1.21–1.89), indicating that PD carried a higher risk of brain tumor. Analyses by temporal relationship found that the occurrence of brain tumor was significantly higher after the diagnosis of PD (OR 1.55, 95% CI 1.18–2.05), but not statistically significant before PD diagnosis (OR 1.21, 95%CI 0.93–1.58). Subgroup analysis showed that gender differences, ethnicity differences and the characteristic of the tumor (benign or malignant) did not make much change in the association between brain tumor and PD. Conclusions Our meta-analysis collecting epidemiological studies suggested a positive association of PD with brain tumors, while the influence of anti-parkinson drugs and ascertainment bias could not be excluded. Further studies with larger sample size and more strict inclusion criteria should be conducted in the future. PMID:27764145

  6. Phosphodiesterase type 5 inhibitors increase Herceptin transport and treatment efficacy in mouse metastatic brain tumor models.

    Directory of Open Access Journals (Sweden)

    Jinwei Hu

    Full Text Available BACKGROUND: Chemotherapeutic drugs and newly developed therapeutic monoclonal antibodies are adequately delivered to most solid and systemic tumors. However, drug delivery into primary brain tumors and metastases is impeded by the blood-brain tumor barrier (BTB, significantly limiting drug use in brain cancer treatment. METHODOLOGY/PRINCIPAL FINDINGS: We examined the effect of phosphodiesterase 5 (PDE5 inhibitors in nude mice on drug delivery to intracranially implanted human lung and breast tumors as the most common primary tumors forming brain metastases, and studied underlying mechanisms of drug transport. In vitro assays demonstrated that PDE5 inhibitors enhanced the uptake of [(14C]dextran and trastuzumab (Herceptin, a humanized monoclonal antibody against HER2/neu by cultured mouse brain endothelial cells (MBEC. The mechanism of drug delivery was examined using inhibitors for caveolae-mediated endocytosis, macropinocytosis and coated pit/clathrin endocytosis. Inhibitor analysis strongly implicated caveolae and macropinocytosis endocytic pathways involvement in the PDE5 inhibitor-enhanced Herceptin uptake by MBEC. Oral administration of PDE5 inhibitor, vardenafil, to mice with HER2-positive intracranial lung tumors led to an increased tumor permeability to high molecular weight [(14C]dextran (2.6-fold increase and to Herceptin (2-fold increase. Survival time of intracranial lung cancer-bearing mice treated with Herceptin in combination with vardenafil was significantly increased as compared to the untreated, vardenafil- or Herceptin-treated mice (p0.05. CONCLUSIONS/SIGNIFICANCE: These findings suggest that PDE5 inhibitors may effectively modulate BTB permeability, and enhance delivery and therapeutic efficacy of monoclonal antibodies in hard-to-treat brain metastases from different primary tumors that had metastasized to the brain.

  7. Quality of life and symptoms in pediatric brain tumor survivors: a systematic review.

    Science.gov (United States)

    Macartney, Gail; Harrison, Margaret B; VanDenKerkhof, Elizabeth; Stacey, Dawn; McCarthy, Patricia

    2014-01-01

    Little is known about the quality of life of children and youth under the age of 20 who have completed treatment for a pediatric brain tumor. This systematic review was conducted to (a) describe the health-related quality of life (HRQL) outcomes in pediatric brain tumor survivors, (b) identify instruments used to measure HRQL, and (c) determine the relationship between symptoms and HRQL. Using a systematic search and review methodology, databases searched included CINAHL, Medline, Embase, and PsycInfo. No date restrictions were used. Search results elicited 485 articles, of which16 met the inclusion criteria. Compared with their healthy peers, pediatric brain tumor survivors did worse on most measures of physical, psychosocial, social, and cognitive domains of HRQL. Compared with other cancer patients, survivors scored themselves significantly lower on the Pediatric Quality of Life Inventory (PedsQL) social functioning scale, and parents of brain tumor survivors reported lower PedsQL social and total functioning scores for their children. Other variables that were associated with decreased HRQL were degree of hypothalamic tumor involvement, osteopenia, need for special education, older age at diagnosis, greater than 1 year since treatment, and radiation treatment. In these studies, pediatric brain tumor survivors fared worse compared with other cancer survivors or healthy peers on several HRQL domains. Only 3 studies explored the relationship between symptoms, including pain or fatigue, and HRQL in pediatric brain tumor survivors. The relationship between symptoms and HRQL was not well elucidated. More research is needed to explore the multidimensional symptom experience and HRQL outcomes in pediatric brain tumor survivors.

  8. Imaging Features of Primary Tumors and Metastatic Patterns of the Extraskeletal Ewing Sarcoma Family of Tumors in Adults: A 17-Year Experience at a Single Institution

    Science.gov (United States)

    Huh, Jimi; Park, Seong Joon; Kim, Hyoung Jung; Lee, Jong Seok; Ha, Hyun Kwon; Tirumani, Sree Harsha; Ramaiya, Nikhil H.

    2015-01-01

    Objective To comprehensively analyze the spectrum of imaging features of the primary tumors and metastatic patterns of the Extraskeletal Ewing sarcoma family of tumors (EES) in adults. Materials and Methods We performed a computerized search of our hospital's data-warehouse from 1996 to 2013 using codes for Ewing sarcoma and primitive neuroectodermal tumors as well as the demographic code for ≥ 18 years of age. We selected subjects who were histologically confirmed to have Ewing sarcoma of extraskeletal origin. Imaging features of the primary tumor and metastatic disease were evaluated for lesion location, size, enhancement pattern, necrosis, margin, and invasion of adjacent organs. Results Among the 70 patients (mean age, 35.8 ± 15.6 years; range, 18-67 years) included in our study, primary tumors of EES occurred in the soft tissue and extremities (n = 20), abdomen and pelvis (n = 18), thorax (n = 14), paravertebral space (n = 8), head and neck (n = 6), and an unknown primary site (n = 4). Most primary tumors manifested as large and bulky soft-tissue masses (mean size, 9.0 cm; range, 1.3-23.0 cm), frequently invading adjacent organs (45.6%) and showed heterogeneous enhancement (73.7%), a well-defined (66.7%) margin, and partial necrosis/cystic degeneration (81.9%). Notably, 29 patients had metastatic disease detected at their initial diagnosis. The most frequent site of metastasis was lymph nodes (75.9%), followed by bone (31.0%), lung (20.7%), abdominal solid organs (13.8%), peritoneum (13.8%), pleura (6.9%), and brain (3.4%). Conclusion Primary tumors of EES can occur anywhere and mostly manifest as large and bulky, soft-tissue masses. Lymph nodes are the most frequent metastasis sites. PMID:26175577

  9. Role of hormonal factor in development of primary and secondary tumorous process in the brain

    Directory of Open Access Journals (Sweden)

    O. I. Kit

    2016-01-01

    Full Text Available Introduction. Causes of the development onset of primary malignant cerebral neoplasms have not yet been determined. Not excluded is a possibility of unfavorable effect of the environment, genetic abnormalities, changes alterations in the hormonal background as well as metabolism, ionizing radiation: possible is also the role of viral infections and injuries. One of the main most severest complications of malignant tumors remain are metastatic lesions of the central nervous system whose proportion increases as with the patients’ longlivity. Cerebral metastases of malignant tumors are encountered more often than primary neoplasms of the central nervous system. The brain is not only a hormone-dependent organ the effect of sex hormones as early the embryonic state conditions normal development of the body as a whole and controls the sex related differentiation. It is known that neurons and glyocites like gonads and adrenal glands are able to produce steroid hormones. The enzymes responsible for the synthesis of neurosteroids were detected in the brain tissue in the embryonic period of the development. The human brain is not only a hormone-dependent organ effect influence of sex hormones as early as in the embrional state conditiones normal development of the body as a whole and controls sexual gender differentiation. It is known that neurons and glyocytes like gonads and adrenal glands are able to produce steroid hormones. Enzymes responsible for synthesis of neurosteroids were revealed in cerebral tissue both in during the embryonic period of the development and in adult condition. Besides there are have been obtained large amount of data on the presence in the cerebral cells of receptors to steroidal hormones. In various periods of life the influence effect exerted by steroids on nervous cells can change the morphofunctional state of the brain and manifests as altering myelinization, neuronal growth, and differentiation of nerve cells

  10. Evaluation of an automatic brain segmentation method developed for neonates on adult MR brain images

    Science.gov (United States)

    Moeskops, Pim; Viergever, Max A.; Benders, Manon J. N. L.; Išgum, Ivana

    2015-03-01

    Automatic brain tissue segmentation is of clinical relevance in images acquired at all ages. The literature presents a clear distinction between methods developed for MR images of infants, and methods developed for images of adults. The aim of this work is to evaluate a method developed for neonatal images in the segmentation of adult images. The evaluated method employs supervised voxel classification in subsequent stages, exploiting spatial and intensity information. Evaluation was performed using images available within the MRBrainS13 challenge. The obtained average Dice coefficients were 85.77% for grey matter, 88.66% for white matter, 81.08% for cerebrospinal fluid, 95.65% for cerebrum, and 96.92% for intracranial cavity, currently resulting in the best overall ranking. The possibility of applying the same method to neonatal as well as adult images can be of great value in cross-sectional studies that include a wide age range.

  11. Management of childhood brain tumors: consensus report by the Pediatric Hematology Oncology (PHO) Chapter of Indian Academy of Pediatrics (IAP).

    Science.gov (United States)

    Bhat, Sunil; Yadav, Satya Prakash; Suri, Vaishali; Patir, Rana; Kurkure, Purna; Kellie, Stewart; Sachdeva, Anupam

    2011-12-01

    Brain tumors are the second most common childhood tumors and remain the leading cause of cancer related deaths in children. Appropriate diagnosis and management of these tumors are essential to improve survival. There are no clinical practical guidelines available for the management of brain tumors in India. This document is a consensus report prepared after a National Consultation on Pediatric Brain Tumors held in Delhi on 06 Nov 2008. The meeting was attended by eminent experts from all over the country, in the fields of Neurosurgery, Radiation Oncology, Pediatric Oncology, Neuropathology, Diagnostic Imaging, Pediatric Endocrinology and Allied Health Professionals. This article highlights that physicians looking after children with brain tumors should work as part of a multidisciplinary team to improve the survival, quality of life, neuro-cognitive outcomes and standards of care for children with brain tumors. Recommendations for when to suspect, diagnostic workup, initial management, long-term follow up and specific management of individual tumors are outlined.

  12. Raven's progressive matrices performance in adults with traumatic brain injury.

    Science.gov (United States)

    Hiscock, Merrill; Inch, Roxanne; Gleason, Angela

    2002-01-01

    Raven's Progressive Matrices (RPM), a widely used test of reasoning, is sensitive to aging, but it has not proven to be helpful in the assessment of acquired focal or lateralized brain damage. Clinical experience suggests that the test is insensitive to traumatic brain injury (TBI), but the data are difficult to interpret because of rapid inflation of norms over time (the Flynn effect). In examining data from 64 adult patients with TBI who were administered the Standard RPM between 1981 and 1989, we used previous and subsequent norms conjointly to adjust for the Flynn effect. Anterograde and retrograde adjustment of norms led to highly convergent results. After adjustment for the Flynn effect, RPM performance was comparable to Wechsler IQ, significantly below estimated premorbid IQ, and nearly 2 SD above performance on 2 TBI-sensitive neuropsychological tests. We conclude that RPM performance is neither more nor less sensitive than Wechsler IQ to the consequences of TBI in the adult, but erroneous conclusions are likely to be reached if the Flynn effect is not taken into account.

  13. Doublecortin in Oligodendrocyte Precursor Cells in the Adult Mouse Brain

    Science.gov (United States)

    Boulanger, Jenna J.; Messier, Claude

    2017-01-01

    Key Points Oligodendrocyte precursor cells express doublecortin, a microtubule-associated protein.Oligodendrocyte precursor cells express doublecortin, but at a lower level of expression than in neuronal precursor.Doublecortin is not associated with a potential immature neuronal phenotype in Oligodendrocyte precursor cells. Oligodendrocyte precursor cells (OPC) are glial cells that differentiate into myelinating oligodendrocytes during embryogenesis and early stages of post-natal life. OPCs continue to divide throughout adulthood and some eventually differentiate into oligodendrocytes in response to demyelinating lesions. There is growing evidence that OPCs are also involved in activity-driven de novo myelination of previously unmyelinated axons and myelin remodeling in adulthood. Considering these roles in the adult brain, OPCs are likely mobile cells that can migrate on some distances before they differentiate into myelinating oligodendrocytes. A number of studies have noted that OPCs express doublecortin (DCX), a microtubule-associated protein expressed in neural precursor cells and in migrating immature neurons. Here we describe the distribution of DCX in OPCs. We found that almost all OPCs express DCX, but the level of expression appears to be much lower than what is found in neural precursor. We found that DCX is downregulated when OPCs start expressing mature oligodendrocyte markers and is absent in myelinating oligodendrocytes. DCX does not appear to signal an immature neuronal phenotype in OPCs in the adult mouse brain. Rather, it could be involved either in cell migration, or as a marker of an immature oligodendroglial cell phenotype.

  14. Noncanonical Sites of Adult Neurogenesis in the Mammalian Brain.

    Science.gov (United States)

    Feliciano, David M; Bordey, Angélique; Bonfanti, Luca

    2015-09-18

    Two decades after the discovery that neural stem cells (NSCs) populate some regions of the mammalian central nervous system (CNS), deep knowledge has been accumulated on their capacity to generate new neurons in the adult brain. This constitutive adult neurogenesis occurs throughout life primarily within remnants of the embryonic germinal layers known as "neurogenic sites." Nevertheless, some processes of neurogliogenesis also occur in the CNS parenchyma commonly considered as "nonneurogenic." This "noncanonical" cell genesis has been the object of many claims, some of which turned out to be not true. Indeed, it is often an "incomplete" process as to its final outcome, heterogeneous by several measures, including regional location, progenitor identity, and fate of the progeny. These aspects also strictly depend on the animal species, suggesting that persistent neurogenic processes have uniquely adapted to the brain anatomy of different mammals. Whereas some examples of noncanonical neurogenesis are strictly parenchymal, others also show stem cell niche-like features and a strong link with the ventricular cavities. This work will review results obtained in a research field that expanded from classic neurogenesis studies involving a variety of areas of the CNS outside of the subventricular zone (SVZ) and subgranular zone (SGZ). It will be highlighted how knowledge concerning noncanonical neurogenic areas is still incomplete owing to its regional and species-specific heterogeneity, and to objective difficulties still hampering its full identification and characterization.

  15. Rapid, label-free detection of brain tumors with stimulated Raman scattering microscopy

    Science.gov (United States)

    Ji, Minbiao; Orringer, Daniel A.; Freudiger, Christian W.; Ramkissoon, Shakti; Liu, Xiaohui; Lau, Darryl; Golby, Alexandra J.; Norton, Isaiah; Hayashi, Marika; Agar, Nathalie Y.R.; Young, Geoffrey S.; Spino, Cathie; Santagata, Sandro; Camelo-Piragua, Sandra; Ligon, Keith L.; Sagher, Oren; Xie, X. Sunney

    2013-01-01

    Surgery is an essential component in the treatment of brain tumors. However, delineating tumor from normal brain remains a major challenge. Here we describe the use of stimulated Raman scattering (SRS) microscopy for differentiating healthy human and mouse brain tissue from tumor-infiltrated brain based on histoarchitectural and biochemical differences. Unlike traditional histopathology, SRS is a label-free technique that can be rapidly performed in situ. SRS microscopy was able to differentiate tumor from non-neoplastic tissue in an infiltrative human glioblastoma xenograft mouse model based on their different Raman spectra. We further demonstrated a correlation between SRS and H&E microscopy for detection of glioma infiltration (κ=0.98). Finally, we applied SRS microscopy in vivo in mice during surgery to reveal tumor margins that were undetectable under standard operative conditions. By providing rapid intraoperative assessment of brain tissue, SRS microscopy may ultimately improve the safety and accuracy of surgeries where tumor boundaries are visually indistinct. PMID:24005159

  16. Neuroimaging of pediatric brain tumors: from basic to advanced magnetic resonance imaging (MRI).

    Science.gov (United States)

    Panigrahy, Ashok; Blüml, Stefan

    2009-11-01

    In this review, the basic magnetic resonance concepts used in the imaging approach of a pediatric brain tumor are described with respect to different factors including understanding the significance of the patient's age. Also discussed are other factors directly related to the magnetic resonance scan itself including evaluating the location of the tumor, determining if the lesion is extra-axial or intra-axial, and evaluating the contrast characteristics of the lesion. Of note, there are key imaging features of pediatric brain tumors, which can give information about the cellularity of the lesion, which can then be confirmed with advanced magnetic resonance imaging (MRI) techniques. The second part of this review will provide an overview of the major advanced MRI techniques used in pediatric imaging, particularly, magnetic resonance diffusion, magnetic resonance spectroscopy, and magnetic resonance perfusion. The last part of the review will provide more specific information about the use of advanced magnetic resonance techniques in the evaluation of pediatric brain tumors.

  17. Level set method with automatic selective local statistics for brain tumor segmentation in MR images.

    Science.gov (United States)

    Thapaliya, Kiran; Pyun, Jae-Young; Park, Chun-Su; Kwon, Goo-Rak

    2013-01-01

    The level set approach is a powerful tool for segmenting images. This paper proposes a method for segmenting brain tumor images from MR images. A new signed pressure function (SPF) that can efficiently stop the contours at weak or blurred edges is introduced. The local statistics of the different objects present in the MR images were calculated. Using local statistics, the tumor objects were identified among different objects. In this level set method, the calculation of the parameters is a challenging task. The calculations of different parameters for different types of images were automatic. The basic thresholding value was updated and adjusted automatically for different MR images. This thresholding value was used to calculate the different parameters in the proposed algorithm. The proposed algorithm was tested on the magnetic resonance images of the brain for tumor segmentation and its performance was evaluated visually and quantitatively. Numerical experiments on some brain tumor images highlighted the efficiency and robustness of this method.

  18. Biodistribution of ultra small gadolinium-based nanoparticles as theranostic agent: application to brain tumors.

    Science.gov (United States)

    Miladi, Imen; Duc, Géraldine Le; Kryza, David; Berniard, Aurélie; Mowat, Pierre; Roux, Stéphane; Taleb, Jacqueline; Bonazza, Pauline; Perriat, Pascal; Lux, François; Tillement, Olivier; Billotey, Claire; Janier, Marc

    2013-09-01

    Gadolinium-based nanoparticles are novel objects with interesting physical properties, allowing their use for diagnostic and therapeutic applications. Gadolinium-based nanoparticles were imaged following intravenous injection in healthy rats and rats grafted with 9L gliosarcoma tumors using magnetic resonance imaging and scintigraphic imaging. Quantitative biodistribution using gamma-counting of each sampled organ confirmed that these nanoparticles were rapidly cleared essentially by renal excretion. Accumulation of these nanoparticles in 9L gliosarcoma tumors implanted in the rat brain was quantitated. This passive and long-duration accumulation of gadolinium-based nanoparticles in tumor, which is related to disruption of the blood-brain barrier, is in good agreement with the use of these nanoparticles as radiosensitizers for brain tumors.

  19. Postoperative Stereotactic Radiosurgery Without Whole-Brain Radiation Therapy for Brain Metastases: Potential Role of Preoperative Tumor Size

    Energy Technology Data Exchange (ETDEWEB)

    Hartford, Alan C., E-mail: Alan.C.Hartford@Hitchcock.org [Section of Radiation Oncology, Dartmouth-Hitchcock Medical Center, Lebanon, New Hampshire (United States); Paravati, Anthony J. [Section of Radiation Oncology, Dartmouth-Hitchcock Medical Center, Lebanon, New Hampshire (United States); Spire, William J. [Section of Neurosurgery, Dartmouth-Hitchcock Medical Center, Lebanon, New Hampshire (United States); Li, Zhongze [Biostatistics Shared Resource, Norris Cotton Cancer Center, Lebanon, New Hampshire (United States); Jarvis, Lesley A. [Section of Radiation Oncology, Dartmouth-Hitchcock Medical Center, Lebanon, New Hampshire (United States); Fadul, Camilo E. [Section of Hematology/Oncology, Dartmouth-Hitchcock Medical Center, Lebanon, New Hampshire (United States); Rhodes, C. Harker [Department of Pathology, Dartmouth-Hitchcock Medical Center, Lebanon, New Hampshire (United States); Erkmen, Kadir [Section of Neurosurgery, Dartmouth-Hitchcock Medical Center, Lebanon, New Hampshire (United States); Friedman, Jonathan [Department of Surgery, Texas A and M College of Medicine, College Station, Texas (United States); Gladstone, David J. [Section of Radiation Oncology, Dartmouth-Hitchcock Medical Center, Lebanon, New Hampshire (United States); Hug, Eugen B. [ProCure, New York, New York (United States); Roberts, David W.; Simmons, Nathan E. [Section of Neurosurgery, Dartmouth-Hitchcock Medical Center, Lebanon, New Hampshire (United States)

    2013-03-01

    Purpose: Radiation therapy following resection of a brain metastasis increases the probability of disease control at the surgical site. We analyzed our experience with postoperative stereotactic radiosurgery (SRS) as an alternative to whole-brain radiotherapy (WBRT), with an emphasis on identifying factors that might predict intracranial disease control and overall survival (OS). Methods and Materials: We retrospectively reviewed all patients through December 2008, who, after surgical resection, underwent SRS to the tumor bed, deferring WBRT. Multiple factors were analyzed for time to intracranial recurrence (ICR), whether local recurrence (LR) at the surgical bed or “distant” recurrence (DR) in the brain, for time to WBRT, and for OS. Results: A total of 49 lesions in 47 patients were treated with postoperative SRS. With median follow-up of 9.3 months (range, 1.1-61.4 months), local control rates at the resection cavity were 85.5% at 1 year and 66.9% at 2 years. OS rates at 1 and 2 years were 52.5% and 31.7%, respectively. On univariate analysis (preoperative) tumors larger than 3.0 cm exhibited a significantly shorter time to LR. At a cutoff of 2.0 cm, larger tumors resulted in significantly shorter times not only for LR but also for DR, ICR, and salvage WBRT. While multivariate Cox regressions showed preoperative size to be significant for times to DR, ICR, and WBRT, in similar multivariate analysis for OS, only the graded prognostic assessment proved to be significant. However, the number of intracranial metastases at presentation was not significantly associated with OS nor with other outcome variables. Conclusions: Larger tumor size was associated with shorter time to recurrence and with shorter time to salvage WBRT; however, larger tumors were not associated with decrements in OS, suggesting successful salvage. SRS to the tumor bed without WBRT is an effective treatment for resected brain metastases, achieving local control particularly for tumors up to

  20. Distribution of anionic sites on the capillary endothelium in an experimental brain tumor model.

    Science.gov (United States)

    Vincent, S; DePace, D; Finkelstein, S

    1988-02-01

    The distribution of anionic domains on the capillary endothelium of experimental brain tumors was determined using cationic ferritin (CF) in order to ascertain whether the pattern of these domains is different from that on normal cerebral capillaries. Tumors were induced by stereotaxic injection of cultured neoplastic glial cells, A15A5, into the caudate nucleus of Sprague-Dawley rats. Following a 14-21 day growth period tumors appeared as vascularized, sharply circumscribed masses which caused compression of the surrounding brain tissue. Anionic domains were distributed in a patchy and irregular pattern on the luminal plasma membrane of the endothelia of blood vessels in the tumors. Some variability in this pattern was observed infrequently in limited regions of the tumor where there was either a continuous layer of CF or an absence of CF binding. Plasmalemmal vesicles, coated vesicles, coated pits, multivesicular bodies, and some junctional complexes showed varying degrees of labeling with the probe. Capillaries in the tumor periphery and normal cerebral vessels showed a uniform distribution of anionic groups. These results indicate that there is an altered surface charge on the endothelial luminal plasma membrane of blood vessels in brain tumors. A correlation may exist between the altered surface charge and the degree to which the blood-brain barrier is impaired in these vessels.

  1. An empirical EEG analysis in brain death diagnosis for adults.

    Science.gov (United States)

    Chen, Zhe; Cao, Jianting; Cao, Yang; Zhang, Yue; Gu, Fanji; Zhu, Guoxian; Hong, Zhen; Wang, Bin; Cichocki, Andrzej

    2008-09-01

    Electroencephalogram (EEG) is often used in the confirmatory test for brain death diagnosis in clinical practice. Because EEG recording and monitoring is relatively safe for the patients in deep coma, it is believed to be valuable for either reducing the risk of brain death diagnosis (while comparing other tests such as the apnea) or preventing mistaken diagnosis. The objective of this paper is to study several statistical methods for quantitative EEG analysis in order to help bedside or ambulatory monitoring or diagnosis. We apply signal processing and quantitative statistical analysis for the EEG recordings of 32 adult patients. For EEG signal processing, independent component analysis (ICA) was applied to separate the independent source components, followed by Fourier and time-frequency analysis. For quantitative EEG analysis, we apply several statistical complexity measures to the EEG signals and evaluate the differences between two groups of patients: the subjects in deep coma, and the subjects who were categorized as brain death. We report statistically significant differences of quantitative statistics with real-life EEG recordings in such a clinical study, and we also present interpretation and discussions on the preliminary experimental results.

  2. Brain correlates of negative and positive visuospatial priming in adults.

    Science.gov (United States)

    Wright, Christopher I; Keuthen, Nancy J; Savage, Cary R; Martis, Brian; Williams, Danielle; Wedig, Michelle; McMullin, Katherine; Rauch, Scott L

    2006-04-15

    A balance of inhibitory and facilitatory mechanisms is essential for efficient and goal-directed behaviors. These mechanisms may go awry in several neuropsychiatric disorders characterized by uncontrolled, repetitive behaviors. The visuospatial priming paradigm is a well-established probe of inhibition and facilitation that has been used to demonstrate behavioral deficits in patients with Tourette syndrome and obsessive-compulsive disorder. However, the brain correlates of this visuospatial priming paradigm are not yet well established. In the present study, we used a visuospatial priming paradigm and event-related functional MRI, to probe inhibitory and facilitatory brain mechanisms in healthy adult women. When subjects performed the negative priming (i.e., inhibitory) task, several regions of the prefrontal cortex were selectively activated relative to the neutral condition. Non-overlapping regions of the prefrontal cortex were deactivated in the positive priming condition. These results support the notion that the prefrontal cortex is involved in both inhibitory and facilitatory processing and demonstrate that this visuospatial priming task shares brain correlates with other positive and negative priming tasks. In conjunction with functional MRI, this visuospatial priming task may be useful for studying the pathophysiology of neuropsychiatric disorders in which deficient inhibitory processing or excessive facilitation is a feature.

  3. Traumatic Brain Injury Severity Affects Neurogenesis in Adult Mouse Hippocampus.

    Science.gov (United States)

    Wang, Xiaoting; Gao, Xiang; Michalski, Stephanie; Zhao, Shu; Chen, Jinhui

    2016-04-15

    Traumatic brain injury (TBI) has been proven to enhance neural stem cell (NSC) proliferation in the hippocampal dentate gyrus. However, various groups have reported contradictory results on whether TBI increases neurogenesis, partially due to a wide range in the severities of injuries seen with different TBI models. To address whether the severity of TBI affects neurogenesis in the injured brain, we assessed neurogenesis in mouse brains receiving different severities of controlled cortical impact (CCI) with the same injury device. The mice were subjected to mild, moderate, or severe TBI by a CCI device. The effects of TBI severity on neurogenesis were evaluated at three stages: NSC proliferation, immature neurons, and newly-generated mature neurons. The results showed that mild TBI did not affect neurogenesis at any of the three stages. Moderate TBI promoted NSC proliferation without increasing neurogenesis. Severe TBI increased neurogenesis at all three stages. Our data suggest that the severity of injury affects adult neurogenesis in the hippocampus, and thus it may partially explain the inconsistent results of different groups regarding neurogenesis following TBI. Further understanding the mechanism of TBI-induced neurogenesis may provide a potential approach for using endogenous NSCs to protect against neuronal loss after trauma.

  4. Quantitative Apparent Diffusion Coefficients in the Characterization of Brain Tumors and Associated Peritumoral Edema

    Energy Technology Data Exchange (ETDEWEB)

    Server, A.; Schellhorn, T.; Nakstad, P.H. (Dept. of Neuroradiology, Div. of Radiology, Ullevaal Univ. Hospital, Univ. of Oslo, Oslo (Norway)); Kulle, B. (Epi-Gen Faculty Div. Akershus Univ. Hospital and Dept. of Biostatistics, Univ. of Oslo, Oslo (Norway)); Maehlen, J.; Kumar, T. (Dept. of Pathology, Ullevaal Univ. Hospital, Univ. of Oslo, Oslo (Norway)); Josefsen, R. (Dept. of Neurosurgery, Ullevaal Univ. Hospital, Univ. of Oslo, Oslo (Norway)); Langberg, C.W. (Cancer Centre, Ullevaal Univ. Hospital, Univ. of Oslo, Oslo (Norway))

    2009-07-15

    Background: Conventional magnetic resonance (MR) imaging has a number of limitations in the diagnosis of the most common intracranial brain tumors, including tumor specification and the detection of tumoral infiltration in regions of peritumoral edema. Purpose: To prospectively assess if diffusion-weighted MR imaging (DWI) could be used to differentiate between different types of brain tumors and to distinguish between peritumoral infiltration in high-grade gliomas, lymphomas, and pure vasogenic edema in metastases and meningiomas. Material and Methods: MR imaging and DWI was performed on 93 patients with newly diagnosed brain tumors: 59 patients had histologically verified high-grade gliomas (37 glioblastomas multiforme, 22 anaplastic astrocytomas), 23 patients had metastatic brain tumors, five patients had primary cerebral lymphomas, and six patients had meningiomas. Apparent diffusion coefficient (ADC) values of tumor (enhancing regions or the solid portion of tumor) and peritumoral edema, and ADC ratios (ADC of tumor or peritumoral edema to ADC of contralateral white matter, ADC of tumor to ADC of peritumoral edema) were compared with the histologic diagnosis. ADC values and ratios of high-grade gliomas, primary cerebral lymphomas, metastases, and meningiomas were compared by using ANOVA and multiple comparisons. Optimal thresholds of ADC values and ADC ratios for distinguishing high-grade gliomas from metastases were determined by receiver operating characteristic (ROC) curve analysis. Results: Statistically significant differences were found for minimum and mean of ADC tumor and ADC tumor ratio values between metastases and high-grade gliomas when including only one factor at a time. Including a combination of in total four parameters (mean ADC tumor, and minimum, maximum and mean ADC tumor ratio) resulted in sensitivity, specificity, positive (PPV), and negative predictive values (NPV) of 72.9, 82.6, 91.5, and 54.3% respectively. In the ROC curve analysis

  5. A dynamic in vivo-like organotypic blood-brain barrier model to probe metastatic brain tumors

    Science.gov (United States)

    Xu, Hui; Li, Zhongyu; Yu, Yue; Sizdahkhani, Saman; Ho, Winson S.; Yin, Fangchao; Wang, Li; Zhu, Guoli; Zhang, Min; Jiang, Lei; Zhuang, Zhengping; Qin, Jianhua

    2016-11-01

    The blood-brain barrier (BBB) restricts the uptake of many neuro-therapeutic molecules, presenting a formidable hurdle to drug development in brain diseases. We proposed a new and dynamic in vivo-like three-dimensional microfluidic system that replicates the key structural, functional and mechanical properties of the blood-brain barrier in vivo. Multiple factors in this system work synergistically to accentuate BBB-specific attributes–permitting the analysis of complex organ-level responses in both normal and pathological microenvironments in brain tumors. The complex BBB microenvironment is reproduced in this system via physical cell-cell interaction, vascular mechanical cues and cell migration. This model possesses the unique capability to examine brain metastasis of human lung, breast and melanoma cells and their therapeutic responses to chemotherapy. The results suggest that the interactions between cancer cells and astrocytes in BBB microenvironment might affect the ability of malignant brain tumors to traverse between brain and vascular compartments. Furthermore, quantification of spatially resolved barrier functions exists within a single assay, providing a versatile and valuable platform for pharmaceutical development, drug testing and neuroscientific research.

  6. Detection of Hypoxia in Human Brain Tumor Xenografts Using a Modified Comet Assay

    Directory of Open Access Journals (Sweden)

    Jingli Wang

    2003-07-01

    Full Text Available We used the standard comet assay successfully to generate in vitro dose-response curves under oxic and hypoxic conditions. We then made mixtures of cells that had been irradiated with 3 and 9 Gy of X-rays to simulate two subpopulations in a tumor, but efforts to accurately detect and quantify the subpopulations using the standard comet assay were unsuccessful. Therefore, we investigated a modified comet assay to determine whether it could be used for measuring hypoxia in our model systems. U251 MG cells were grown as subcutaneous tumors in athymic mice; U251 MG and U87 MG cells were grown as intracerebral (i.c. tumors in athymic rats. Animals were injected with RSU 1069, irradiated, and euthanized. Tumors and normal brains were removed, and the cells were analyzed using a modified comet assay. Differences in comet tail moment distributions between tumor and contralateral normal brain, using tail moments at either the 25th or 50th percentile in each distribution, were taken as measures of the degree of tumor hypoxia. For U251 MG tumors, there was a positive relationship between tumor size and the degree of hypoxia, whereas preliminary data from U87 MG i.c. tumors showed less hypoxia and no apparent relationship between tumor size and hypoxia.

  7. A Comparison of Two Human Brain Tumor Segmentation Methods for MRI Data

    CERN Document Server

    Egger, Jan; Bauer, Miriam H A; Kuhnt, Daniela; Carl, Barbara; Freisleben, Bernd; Kolb, Andreas; Nimsky, Christopher

    2011-01-01

    The most common primary brain tumors are gliomas, evolving from the cerebral supportive cells. For clinical follow-up, the evaluation of the preoperative tumor volume is essential. Volumetric assessment of tumor volume with manual segmentation of its outlines is a time-consuming process that can be overcome with the help of computerized segmentation methods. In this contribution, two methods for World Health Organization (WHO) grade IV glioma segmentation in the human brain are compared using magnetic resonance imaging (MRI) patient data from the clinical routine. One method uses balloon inflation forces, and relies on detection of high intensity tumor boundaries that are coupled with the use of contrast agent gadolinium. The other method sets up a directed and weighted graph and performs a min-cut for optimal segmentation results. The ground truth of the tumor boundaries - for evaluating the methods on 27 cases - is manually extracted by neurosurgeons with several years of experience in the resection of glio...

  8. Novel Polyomavirus associated with Brain Tumors in Free-Ranging Raccoons, Western United States

    Science.gov (United States)

    Dela Cruz, Florante N.; Giannitti, Federico; Li, Linlin; Woods, Leslie W.; Del Valle, Luis; Delwart, Eric

    2013-01-01

    Tumors of any type are exceedingly rare in raccoons. High-grade brain tumors, consistently located in the frontal lobes and olfactory tracts, were detected in 10 raccoons during March 2010–May 2012 in California and Oregon, suggesting an emerging, infectious origin. We have identified a candidate etiologic agent, dubbed raccoon polyomavirus, that was present in the tumor tissue of all affected animals but not in tissues from 20 unaffected animals. Southern blot hybridization and rolling circle amplification showed the episomal viral genome in the tumors. The multifunctional nuclear protein large T-antigen was detectable by immunohistochemical analyses in a subset of neoplastic cells. Raccoon polyomavirus may contribute to the development of malignant brain tumors of raccoons. PMID:23260029

  9. Segmentation of Brain Tumors in MRI Images Using Three-Dimensional Active Contour without Edge

    Directory of Open Access Journals (Sweden)

    Ali M. Hasan

    2016-11-01

    Full Text Available Brain tumor segmentation in magnetic resonance imaging (MRI is considered a complex procedure because of the variability of tumor shapes and the complexity of determining the tumor location, size, and texture. Manual tumor segmentation is a time-consuming task highly prone to human error. Hence, this study proposes an automated method that can identify tumor slices and segment the tumor across all image slices in volumetric MRI brain scans. First, a set of algorithms in the pre-processing stage is used to clean and standardize the collected data. A modified gray-level co-occurrence matrix and Analysis of Variance (ANOVA are employed for feature extraction and feature selection, respectively. A multi-layer perceptron neural network is adopted as a classifier, and a bounding 3D-box-based genetic algorithm is used to identify the location of pathological tissues in the MRI slices. Finally, the 3D active contour without edge is applied to segment the brain tumors in volumetric MRI scans. The experimental dataset consists of 165 patient images collected from the MRI Unit of Al-Kadhimiya Teaching Hospital in Iraq. Results of the tumor segmentation achieved an accuracy of 89% ± 4.7% compared with manual processes.

  10. Donor-derived brain tumor following neural stem cell transplantation in an ataxia telangiectasia patient.

    Directory of Open Access Journals (Sweden)

    Ninette Amariglio

    2009-02-01

    Full Text Available BACKGROUND: Neural stem cells are currently being investigated as potential therapies for neurodegenerative diseases, stroke, and trauma. However, concerns have been raised over the safety of this experimental therapeutic approach, including, for example, whether there is the potential for tumors to develop from transplanted stem cells. METHODS AND FINDINGS: A boy with ataxia telangiectasia (AT was treated with intracerebellar and intrathecal injection of human fetal neural stem cells. Four years after the first treatment he was diagnosed with a multifocal brain tumor. The biopsied tumor was diagnosed as a glioneuronal neoplasm. We compared the tumor cells and the patient's peripheral blood cells by fluorescent in situ hybridization using X and Y chromosome probes, by PCR for the amelogenin gene X- and Y-specific alleles, by MassArray for the ATM patient specific mutation and for several SNPs, by PCR for polymorphic microsatellites, and by human leukocyte antigen (HLA typing. Molecular and cytogenetic studies showed that the tumor was of nonhost origin suggesting it was derived from the transplanted neural stem cells. Microsatellite and HLA analysis demonstrated that the tumor is derived from at least two donors. CONCLUSIONS: This is the first report of a human brain tumor complicating neural stem cell therapy. The findings here suggest that neuronal stem/progenitor cells may be involved in gliomagenesis and provide the first example of a donor-derived brain tumor. Further work is urgently needed to assess the safety of these therapies.

  11. Notch1 and notch2 have opposite effects on embryonal brain tumor growth.

    Science.gov (United States)

    Fan, Xing; Mikolaenko, Irina; Elhassan, Ihab; Ni, Xingzhi; Wang, Yunyue; Ball, Douglas; Brat, Daniel J; Perry, Arie; Eberhart, Charles G

    2004-11-01

    The role of Notch signaling in tumorigenesis can vary; Notch1 acts as an oncogene in some neoplasms, and a tumor suppressor in others. Here, we show that different Notch receptors can have opposite effects in a single tumor type. Expression of truncated, constitutively active Notch1 or Notch2 in embryonal brain tumor cell lines caused antagonistic effects on tumor growth. Cell proliferation, soft agar colony formation, and xenograft growth were all promoted by Notch2 and inhibited by Notch1. We also found that Notch2 receptor transcripts are highly expressed in progenitor cell-derived brain tumors such as medulloblastomas, whereas Notch1 is scarce or undetectable. This parallels normal cerebellar development, during which Notch2 is predominantly expressed in proliferating progenitors and Notch1 in postmitotic differentiating cells. Given the oncogenic effects of Notch2, we analyzed its gene dosage in 40 embryonal brain tumors, detecting an increased copy number in 15% of cases. Notch2 gene amplification was confirmed by fluorescence in situ hybridization in one case with extremely high Notch2 mRNA levels. In addition, expression of the Notch pathway target gene Hes1 in medulloblastomas was associated with significantly shorter patient survival (P = 0.01). Finally, pharmacological inhibition of Notch signaling suppresses growth of medulloblastoma cells. Our data indicate that Notch1 and Notch2 can have opposite effects on the growth of a single tumor type, and show that Notch2 can be overexpressed after gene amplification in human tumors.

  12. Diffusion tensor magnetic resonance imaging of glial brain tumors

    Energy Technology Data Exchange (ETDEWEB)

    Ferda, Jiri, E-mail: ferda@fnplzen. [Department of Radiology, Charles University Hospital Plzen, Medical Faculty Plzen, Alej Svobody 80, 304 60 Plzen (Czech Republic); Kastner, Jan [Department of Radiology, Charles University Hospital Plzen, Medical Faculty Plzen, Alej Svobody 80, 304 60 Plzen (Czech Republic); Mukensnabl, Petr [Sikl' s Institute of Pathological Anatomy, Charles University Hospital Plzen, Medical Faculty Plzen, Alej Svobody 80, 304 60 Plzen (Czech Republic); Choc, Milan [Department of Neurosurgery, Charles University Hospital Plzen, Medical Faculty Plzen, Alej Svobody 80, 304 60 Plzen (Czech Republic); Horemuzova, Jana; Ferdova, Eva; Kreuzberg, Boris [Department of Radiology, Charles University Hospital Plzen, Medical Faculty Plzen, Alej Svobody 80, 304 60 Plzen (Czech Republic)

    2010-06-15

    Aim: To evaluate the author's experience with the use of diffusion tensor magnetic resonance imaging (DTI) on patients with glial tumors. Methods: A retrospective evaluation of a group of 24 patients with glial tumors was performed. There were eight patients with Grade II, eight patients with Grade III and eight patients with Grade IV tumors with a histologically proven diagnosis. All the patients underwent routine imaging including T2 weighted images, multidirectional diffusion weighted imaging (measured in 60 non-collinear directions) and T1 weighted non-enhanced and contrast enhanced images. The imaging sequence and evaluation software were produced by Massachusetts General Hospital Corporation (Boston, MA, USA). Fractional anisotropy (FA) maps were calculated in all patients. The white matter FA changes were assessed within the tumorous tissue, on the tumorous borderline and in the normally appearing white matter adjacent to the tumor. A three-dimensional model of the white matter tract was created to demonstrate the space relationship of the tumor and the capsula interna or corpus callosum in each case using the following fiber tracing parameters: FA step 0.25 and a tensor declination angle of 45 gr. An additional assessment of the tumorous tissue enhancement was performed. Results: A uniform homogenous structure with sharp demargination of the Grade II tumors and the wide rim of the intermedial FA in all Grade III tumors respectively, were found during the evaluation of the FA maps. In Grade IV tumors a variable demargination was noted on the FA maps. The sensitivity and specificity for the discrimination of low- and high-grade glial tumors using FA maps was revealed to be 81% and 87% respectively. If the evaluation of the contrast enhancement was combined with the evaluation of the FA maps, both sensitivity and specificity were 100%. Conclusion: Although the evaluation of the fractional anisotropy maps is not sufficient for glioma grading, the

  13. Clinical Feature And Pathogeny Analysis Of Brain Hemorrhage In Young Adult Group

    Institute of Scientific and Technical Information of China (English)

    Wang Jianming; Zeng Xiaoyun

    2000-01-01

    Objection: The trend of brain hemorrhage cases of young adults have increased recently. In this article, We studied brain hemorrhage clinical feature and pathogenic causes of 72 young adults, Whose ages are all beneath 45Y. We found That the major pathogen reasons of young adult brain hemorrhage are blood system diseases、 arteriovenous malformation of cerebral blood vessel、 hypertension arteriosclerosis、 arteritis and rheumatic heart disease et. We also found that the trend can be related to hard work、 tense life、 drinking too much alcohol and eating high lipid food, and cercbral vascular disease family history. So in order to reduce the incidence of young adult brain hemorrhage, Young adults should not drink and smoke heavily, should not eat too much high lipid food. Young adults who have hypertension and brain vessel disease family history should be regularly measured blood pressure and blood lipid. If they had hypertension, should be treated regularly.

  14. Resting-state brain activity in adult males who stutter.

    Directory of Open Access Journals (Sweden)

    Yun Xuan

    Full Text Available Although developmental stuttering has been extensively studied with structural and task-based functional magnetic resonance imaging (fMRI, few studies have focused on resting-state brain activity in this disorder. We investigated resting-state brain activity of stuttering subjects by analyzing the amplitude of low-frequency fluctuation (ALFF, region of interest (ROI-based functional connectivity (FC and independent component analysis (ICA-based FC. Forty-four adult males with developmental stuttering and 46 age-matched fluent male controls were scanned using resting-state fMRI. ALFF, ROI-based FCs and ICA-based FCs were compared between male stuttering subjects and fluent controls in a voxel-wise manner. Compared with fluent controls, stuttering subjects showed increased ALFF in left brain areas related to speech motor and auditory functions and bilateral prefrontal cortices related to cognitive control. However, stuttering subjects showed decreased ALFF in the left posterior language reception area and bilateral non-speech motor areas. ROI-based FC analysis revealed decreased FC between the posterior language area involved in the perception and decoding of sensory information and anterior brain area involved in the initiation of speech motor function, as well as increased FC within anterior or posterior speech- and language-associated areas and between the prefrontal areas and default-mode network (DMN in stuttering subjects. ICA showed that stuttering subjects had decreased FC in the DMN and increased FC in the sensorimotor network. Our findings support the concept that stuttering subjects have deficits in multiple functional systems (motor, language, auditory and DMN and in the connections between them.

  15. Beauty product-related exposures and childhood brain tumors in seven countries: results from the SEARCH International Brain Tumor Study.

    Science.gov (United States)

    Efird, J T; Holly, E A; Cordier, S; Mueller, B A; Lubin, F; Filippini, G; Peris-Bonet, R; McCredie, M; Arslan, A; Bracci, P; Preston-Martin, S

    2005-04-01

    Data from 1218 cases of childhood brain tumors (CBT) diagnosed between 1976 and 1994 and 2223 matched controls from the general population were included in an analysis of maternal beauty product exposure and beauty-related employment in 9 centers in 7 countries. A 50% increased odds ratio (OR) [95% confidence interval (CI) = 1.0-2.1] for CBT was observed among children of mothers who were exposed via personal use of and/or possible ambient contact with beauty products during the 5 years preceding the index child's birth compared with children of mothers never exposed to beauty products during this time period. Overall maternal personal use of hair-coloring agents in the month before or during the pregnancy of the index child's birth was not associated with CBT (OR = 1.0, CI = 0.83-1.3) or with astroglial (OR = 1.1, CI = 0.85-1.4), PNET (OR = 1.0, CI = 0.71-1.5) and other glial subtypes (OR = 1.0, CI = 0.62-1.0). Similarly, no statistically increased ORs or discernable pattern of risk estimates were observed for period of use or for number of applications per year for maternal personal use of hair-coloring agents overall or by histologic type. Among children born on or after 1980, increased ORs for CBT were associated with maternal non-work-related exposure to any beauty products (OR = 2.6, CI = 1.2-5.9), hair-dyes (OR = 11, CI = 1.2-90), and hair sprays (OR = 3.4, CI = 1.0-11). No overall increased OR for CBT was observed among children of mothers employed in beauty-related jobs during the 5 years preceding the index child's birth compared with those who reported no beauty-related employment. In general, other specific beauty product-related exposures were not associated with increased ORs for CBT. Data from our study provide little evidence of an increased risk for CBT with mothers' exposures to beauty products.

  16. Primitive neuro-ectodermal tumor of the lung in an adult

    Directory of Open Access Journals (Sweden)

    Gaude G

    2009-01-01

    Full Text Available A rare case of a thoracic primitive neuro-ectodermal tumor in an adult is presented here. In this case, wide excision surgical excision followed by chemotherapy and radiotherapy were delivered. But due to the rapid aggressive progression of the tumor, which is the characteristic of disease, the patient died within four months after the diagnosis.

  17. Regional cerebral blood flow in various types of brain tumor. Effect of the space-occupying lesion on blood flow in brain tissue close to and remote from tumor site

    DEFF Research Database (Denmark)

    Kuroda, K; Skyhøj Olsen, T; Lassen, N A

    1982-01-01

    Regional cerebral blood flow (rCBF) was measured in 23 patients with brain tumors using the 133Xe intra-carotid injection method and a 254 channel gamma camera. The glioblastomas (4) and astrocytomas (4) all showed hyperemia in the tumor and tumor-near region. This was also seen in several...... meningiomas (4 of 7 cases) in which most of the tumor itself did not receive any isotope. Brain metastases (6) usually had a low flow in the tumor and tumor-near region. The glioblastomas tended to show markedly bending 133Xe wash-out curves pointing to pronounced heterogeneity of blood flow. Most of the flow...... maps, regardless of the tumor types, showed widespread abnormalities of rCBF not only in the tumor region but also in the region remote from the tumor. It is concluded that measurement of rCBF cannot yield accurate differential diagnostic information, but that the widespread derangement of the brain...

  18. Enhanced transfection of brain tumor suppressor genes by photochemical internalization

    Science.gov (United States)

    Chou, Chih H.; Sun, Chung-Ho; Zhou, Yi-Hong; Madsen, Steen J.; Hirschberg, Henry

    2011-03-01

    One of many limitations for cancer gene therapy is the inability of the therapeutic gene to transfect a sufficient number of tumor cells. Photochemical internalization (PCI) is a photodynamic therapy-based approach for improving the delivery of macromolecules and genes into the cell cytosol. The utility of PCI for the delivery of a tumor suppressor gene (PAX-6) was investigated in monolayers and spheroids consisting of F98 rat glioma cells.

  19. Intraoperative fluorescence imaging for personalized brain tumor resection: Current state and future directions

    Directory of Open Access Journals (Sweden)

    Evgenii Belykh

    2016-10-01

    Full Text Available Introduction: Fluorescence-guided surgery is one of the rapidly emerging methods of surgical theranostics. In this review, we summarize current fluorescence techniques used in neurosurgical practice for brain tumor patients, as well as future applications of recent laboratory and translational studies.Methods: Review of the literature.Results: A wide spectrum of fluorophores that have been tested for brain surgery is reviewed. Beginning with a fluorescein sodium application in 1948 by Moore, fluorescence guided brain tumor surgery is either routinely applied in some centers or is under active study in clinical trials. Besides the trinity of commonly used drugs (fluorescein sodium, 5-ALA and ICG, less studied fluorescent stains, such as tetracyclines, cancer-selective alkylphosphocholine analogs, cresyl violet, acridine orange, and acriflavine can be used for rapid tumor detection and pathological tissue examination. Other emerging agents such as activity-based probes and targeted molecular probes that can provide biomolecular specificity for surgical visualization and treatment are reviewed. Furthermore, we review available engineering and optical solutions for fluorescent surgical visualization. Instruments for fluorescent-guided surgery are divided into wide-field imaging systems and hand-held probes. Recent advancements in quantitative fluorescence-guided surgery are discussed.Conclusion: We are standing on the doorstep of the era of marker-assisted tumor management. Innovations in the fields of surgical optics, computer image analysis, and molecular bioengineering are advancing fluorescence-guided tumor resection paradigms, leading to cell-level approaches to visualization and resection of brain tumors.

  20. Metabolism of [U-13C]glucose in Human Brain Tumors In Vivo

    Science.gov (United States)

    Maher, Elizabeth A.; Marin-Valencia, Isaac; Bachoo, Robert M.; Mashimo, Tomoyuki; Raisanen, Jack; Hatanpaa, Kimmo J.; Jindal, Ashish; Jeffrey, F. Mark; Choi, Changho; Madden, Christopher; Mathews, Dana; Pascual, Juan M.; Mickey, Bruce E.; Malloy, Craig R.; DeBerardinis, Ralph J.

    2012-01-01

    Glioblastomas (GBMs) and brain metastases demonstrate avid uptake of 18fluoro-2-deoxyglucose (FDG) by positron emission tomography (PET) and display perturbations of intracellular metabolite pools by 1H magnetic resonance spectroscopy (MRS). These observations suggest that metabolic reprogramming contributes to brain tumor growth in vivo. The Warburg effect, excess metabolism of glucose to lactate in the presence of oxygen, is a hallmark of cancer cells in culture. FDG-positive tumors are assumed to metabolize glucose in a similar manner, with high rates of lactate formation compared to mitochondrial glucose oxidation, but few studies have specifically examined the metabolic fates of glucose in vivo. In particular, the capacity of human brain malignancies to oxidize glucose in the tricarboxylic acid cycle is unknown. Here we studied the metabolism of human brain tumors in situ. [U-13C]glucose was infused during surgical resection, and tumor samples were subsequently subjected to 13C NMR spectroscopy. Analysis of tumor metabolites revealed lactate production, as expected. We also determined that pyruvate dehydrogenase, turnover of the TCA cycle, anaplerosis and de novo glutamine and glycine synthesis contributed significantly to the ultimate disposition of glucose carbon. Surprisingly, less than 50% of the acetyl-CoA pool was derived from blood-borne glucose, suggesting that additional substrates contribute to tumor bioenergetics. This study illustrates a convenient approach that capitalizes on the high information content of 13C NMR spectroscopy and enables the analysis of intermediary metabolism in diverse malignancies growing in their native microenvironment. PMID:22419606

  1. Improving Care in Pediatric Neuro-oncology Patients: An Overview of the Unique Needs of Children With Brain Tumors.

    Science.gov (United States)

    Fischer, Cheryl; Petriccione, Mary; Donzelli, Maria; Pottenger, Elaine

    2016-03-01

    Brain tumors represent the most common solid tumors in childhood, accounting for almost 25% of all childhood cancer, second only to leukemia. Pediatric central nervous system tumors encompass a wide variety of diagnoses, from benign to malignant. Any brain tumor can be associated with significant morbidity, even when low grade, and mortality from pediatric central nervous system tumors is disproportionately high compared to other childhood malignancies. Management of children with central nervous system tumors requires knowledge of the unique aspects of care associated with this particular patient population, beyond general oncology care. Pediatric brain tumor patients have unique needs during treatment, as cancer survivors, and at end of life. A multidisciplinary team approach, including advanced practice nurses with a specialty in neuro-oncology, allows for better supportive care. Knowledge of the unique aspects of care for children with brain tumors, and the appropriate interventions required, allows for improved quality of life.

  2. Application of 3{sup 1P} MR spectroscopy to the brain tumors

    Energy Technology Data Exchange (ETDEWEB)

    Ha, Dong Ho; Choi, Sun Seob; Oh, Jong Young; Yoon, Seong Kuk; Kang, Myong Jin; Kim, Ki Uk [College of Medicine, Dong-A University, Busan (Korea, Republic of)

    2013-06-15

    To evaluate the clinical feasibility and obtain useful parameters of 3{sup 1P} magnetic resonance spectroscopy (MRS) study for making the differential diagnosis of brain tumors. Twenty-eight patients with brain tumorous lesions (22 cases of brain tumor and 6 cases of abscess) and 11 normal volunteers were included. The patients were classified into the astrocytoma group, lymphoma group, metastasis group and the abscess group. We obtained the intracellular pH and the metabolite ratios of phosphomonoesters/phosophodiesters (PME/PDE), PME/inorganic phosphate (Pi), PDE/Pi, PME/adenosine triphosphate (ATP), PDE/ATP, PME/phosphocreatine (PCr), PDE/PCr, PCr/ATP, PCr/Pi, and ATP/Pi, and evaluated the statistical significances. The brain tumors had a tendency of alkalization (pH = 7.28 ± 0.27, p = 0.090), especially the pH of the lymphoma was significantly increased (pH = 7.45 ± 0.32, p = 0.013). The brain tumor group showed increased PME/PDE ratio compared with that in the normal control group (p 0.012). The ratios of PME/PDE, PDE/Pi, PME/PCr and PDE/PCr showed statistically significant differences between each brain lesion groups (p < 0.05). The astrocytoma showed an increased PME/PDE and PME/PCr ratio. The ratios of PDE/Pi, PME/PCr, and PDE/PCr in lymphoma group were lower than those in the control group and astrocytoma group. The metastasis group showed an increased PME/PDE ratio, compared with that in the normal control group. We have obtained the clinically applicable 3{sup 1}'P MRS, and the pH, PME/PDE, PDE/Pi, PME/PCr, and PDE/PCr ratios are helpful for differentiating among the different types of brain tumors.

  3. Brain tumor vessel response to synchrotron microbeam radiation therapy: a short-term in vivo study

    Energy Technology Data Exchange (ETDEWEB)

    Serduc, Raphael; Christen, Thomas; Farion, Regine; Bouchet, Audrey; Sanden, Boudewijn van der; Segebarth, Christoph; Remy, Chantal; Barbier, Emmanuel L [INSERM, U836, F38043 Grenoble (France); Laissue, Jean [Institute of Pathology, University of Bern (Switzerland); Braeuer-Krisch, Elke; Duc, Geraldine Le; Bravin, Alberto [European Synchrotron Radiation Facility, F38043 Grenoble (France)], E-mail: serduc@esrf.fr

    2008-07-07

    The aim of this work focuses on the description of the short-term response of a 9L brain tumor model and its vasculature to microbeam radiation therapy (MRT) using magnetic resonance imaging (MRI). Rat 9L gliosarcomas implanted in nude mice brains were irradiated by MRT 13 days after tumor inoculation using two orthogonal arrays of equally spaced 28 planar microbeams (25 {mu}m width, 211 {mu}m spacing and dose 500 Gy). At 1, 7 and 14 days after MRT, apparent diffusion coefficient, blood volume and vessel size index were mapped by MRI. Mean survival time after tumor inoculation increased significantly between MRT-treated and untreated groups (23 and 28 days respectively, log-rank test, p < 0.0001). A significant increase of apparent diffusion coefficient was observed 24 h after MRT in irradiated tumors versus non-irradiated ones. In the untreated group, both tumor size and vessel size index increased significantly (from 7.6 {+-} 2.2 to 19.2 {+-} 4.0 mm{sup 2} and +23%, respectively) between the 14th and the 21st day after tumor cell inoculation. During the same period, in the MRT-treated group, no difference in tumor size was observed. The vessel size index measured in the MRT-treated group increased significantly (+26%) between 14 and 28 days of tumor growth. We did not observe the significant difference in blood volume between the MRT-treated and untreated groups. MRT slows 9L tumor growth in a mouse brain but MRI results suggest that the increase in survival time after our MRT approach may be rather due to a cytoreduction than to early direct effects of ionizing radiation on tumor vessels. These results suggest that MRT parameters need to be optimized to further damage tumor vessels.

  4. A correlative optical microscopy and scanning electron microscopy approach to locating nanoparticles in brain tumors.

    Science.gov (United States)

    Kempen, Paul J; Kircher, Moritz F; de la Zerda, Adam; Zavaleta, Cristina L; Jokerst, Jesse V; Mellinghoff, Ingo K; Gambhir, Sanjiv S; Sinclair, Robert

    2015-01-01

    The growing use of nanoparticles in biomedical applications, including cancer diagnosis and treatment, demands the capability to exactly locate them within complex biological systems. In this work a correlative optical and scanning electron microscopy technique was developed to locate and observe multi-modal gold core nanoparticle accumulation in brain tumor models. Entire brain sections from mice containing orthotopic brain tumors injected intravenously with nanoparticles were imaged using both optical microscopy to identify the brain tumor, and scanning electron microscopy to identify the individual nanoparticles. Gold-based nanoparticles were readily identified in the scanning electron microscope using backscattered electron imaging as bright spots against a darker background. This information was then correlated to determine the exact location of the nanoparticles within the brain tissue. The nanoparticles were located only in areas that contained tumor cells, and not in the surrounding healthy brain tissue. This correlative technique provides a powerful method to relate the macro- and micro-scale features visible in light microscopy with the nanoscale features resolvable in scanning electron microscopy.

  5. Targeting brain tumor cAMP: the case for sex-specific therapeutics

    Directory of Open Access Journals (Sweden)

    Nicole M Warrington

    2015-07-01

    Full Text Available A relationship between cyclic adenosine 3’, 5’-monophosphate (cAMP levels and brain tumor biology has been evident for nearly as long as cAMP and its synthetase, adenylate cyclase (ADCY have been known. The importance of the pathway in brain tumorigenesis has been demonstrated in vitro and in multiple animal models. Recently, we provided human validation for a cooperating oncogenic role for cAMP in brain tumorigenesis when we found that SNPs in ADCY8 were correlated with glioma (brain tumor risk in individuals with Neurofibromatosis type 1 (NF1. Together, these studies provide a strong rationale for targeting cAMP in brain tumor therapy. However, the cAMP pathway is well known to be sexually dimorphic, and SNPs in ADCY8 affected glioma risk in a sex-specific fashion, elevating the risk for females while protecting males. The cAMP pathway can be targeted at multiple levels in the regulation of its synthesis and degradation. Sex differences in response to drugs that target cAMP regulators indicate that successful targeting of the cAMP pathway for brain tumor patients is likely to require matching specific mechanisms of drug action with patient sex.

  6. Busulfan, Melphalan, Topotecan Hydrochloride, and a Stem Cell Transplant in Treating Patients With Newly Diagnosed or Relapsed Solid Tumor

    Science.gov (United States)

    2016-11-04

    Solid Tumor; Adult Central Nervous System Germ Cell Tumor; Adult Rhabdomyosarcoma; Childhood Central Nervous System Germ Cell Tumor; Childhood Soft Tissue Sarcoma; Ewing Sarcoma; Metastatic Ewing Sarcoma/Peripheral Primitive Neuroectodermal Tumor; Ovarian Mixed Germ Cell Tumor; Previously Untreated Childhood Rhabdomyosarcoma; Recurrent Adult Brain Tumor; Recurrent Adult Soft Tissue Sarcoma; Recurrent Childhood Brain Stem Glioma; Recurrent Childhood Cerebellar Astrocytoma; Recurrent Childhood Cerebral Astrocytoma; Recurrent Childhood Ependymoma; Recurrent Childhood Malignant Germ Cell Tumor; Recurrent Childhood Medulloblastoma; Recurrent Childhood Pineoblastoma; Recurrent Childhood Supratentorial Primitive Neuroectodermal Tumor; Recurrent Childhood Visual Pathway and Hypothalamic Glioma; Recurrent Childhood Visual Pathway Glioma; Recurrent Ewing Sarcoma/Peripheral Primitive Neuroectodermal Tumor; Recurrent Extragonadal Germ Cell Tumor; Recurrent Extragonadal Non-seminomatous Germ Cell Tumor; Recurrent Malignant Testicular Germ Cell Tumor; Recurrent Neuroblastoma; Recurrent Ovarian Germ Cell Tumor; Recurrent Wilms Tumor and Other Childhood Kidney Tumors; Unspecified Adult Solid Tumor, Protocol Specific; Unspecified Childhood Solid Tumor, Protocol Specific

  7. Brain tumor modeling using the CRISPR/Cas9 system: state of the art and view to the future.

    Science.gov (United States)

    Mao, Xiao-Yuan; Dai, Jin-Xiang; Zhou, Hong-Hao; Liu, Zhao-Qian; Jin, Wei-Lin

    2016-05-31

    Although brain tumors have been known tremendously over the past decade, there are still many problems to be solved. The etiology of brain tumors is not well understood and the treatment remains modest. There is in great need to develop a suitable brain tumor models that faithfully mirror the etiology of human brain neoplasm and subsequently get more efficient therapeutic approaches for these disorders. In this review, we described the current status of animal models of brain tumors and analyzed their advantages and disadvantages. Additionally, prokaryotic clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9), a versatile genome editing technology for investigating the functions of target genes, and its application were also introduced in our present work. We firstly proposed that brain tumor modeling could be well established via CRISPR/Cas9 techniques. And CRISPR/Cas9-mediated brain tumor modeling was likely to be more suitable for figuring out the pathogenesis of brain tumors, as CRISPR/Cas9 platform was a simple and more efficient biological toolbox for implementing mutagenesis of oncogenes or tumor suppressors that were closely linked with brain tumors.

  8. Irradiation-injured brain tissues can self-renew in the absence of the pivotal tumor suppressor p53 in the medaka (Oryzias latipes) embryo.

    Science.gov (United States)

    Yasuda, Takako; Kimori, Yoshitaka; Nagata, Kento; Igarashi, Kento; Watanabe-Asaka, Tomomi; Oda, Shoji; Mitani, Hiroshi

    2016-01-01

    The tumor suppressor protein, p53, plays pivotal roles in regulating apoptosis and proliferation in the embryonic and adult central nervous system (CNS) following neuronal injuries such as those induced by ionizing radiation. There is increasing evidence that p53 negatively regulates the self-renewal of neural stem cells in the adult murine brain; however, it is still unknown whether p53 is essential for self-renewal in the injured developing CNS. Previously, we demonstrated that the numbers of apoptotic cells in medaka (Oryzias latipes) embryos decreased in the absence of p53 at 12-24 h after irradiation with 10-Gy gamma rays. Here, we used histology to examine the later morphological development of the irradiated medaka brain. In p53-deficient larvae, the embryonic brain possessed similar vacuoles in the brain and retina, although the vacuoles were much smaller and fewer than those found in wild-type embryos. At the time of hatching (6 days after irradiation), no brain abnormality was observed. In contrast, severe disorganized neuronal arrangements were still present in the brain of irradiated wild-type embryos. Our present results demonstrated that self-renewal of the brain tissue completed faster in the absence of p53 than wild type at the time of hatching because p53 reduces the acute severe neural apoptosis induced by irradiation, suggesting that p53 is not essential for tissue self-renewal in developing brain.

  9. Systems biology of human epilepsy applied to patients with brain tumors.

    Science.gov (United States)

    Mittal, Sandeep; Shah, Aashit K; Barkmeier, Daniel T; Loeb, Jeffrey A

    2013-12-01

    Epilepsy is a disease of recurrent seizures that can be associated with a wide variety of acquired and developmental brain lesions. Current medications for patients with epilepsy can suppress seizures; they do not cure or modify the underlying disease process. On the other hand, surgical removal of focal brain regions that produce seizures can be curative. This surgical procedure can be more precise with the placement of intracranial recording electrodes to identify brain regions that generate seizure activity as well as those that are critical for normal brain function. The detail that goes into these surgeries includes extensive neuroimaging, electrophysiology, and clinical data. Combined with precisely localized tissues removed, these data provide an unparalleled opportunity to learn about the interrelationships of many "systems" in the human brain not possible in just about any other human brain disorder. Herein, we describe a systems biology approach developed to study patients who undergo brain surgery for epilepsy and how we have begun to apply these methods to patients whose seizures are associated with brain tumors. A central goal of this clinical and translational research program is to improve our understanding of epilepsy and brain tumors and to improve diagnosis and treatment outcomes of both.

  10. Increased brain edema following 5-aminolevulinic acid mediated photodynamic in normal and tumor bearing rats

    Science.gov (United States)

    Hirschberg, Henry; Angell-Petersen, Even; Spetalen, Signe; Mathews, Marlon; Madsen, Steen J.

    2007-02-01

    Introduction: Failure of treatment for high grade gliomas is usually due to local recurrence at the site of surgical resection indicating that a more aggressive form of local therapy, such as PDT, could be of benefit. PDT causes damage to both tumor cells as well as cerebral blood vessels leading to degradation of the blood brain barrier with subsequent increase of brain edema. The increase in brain edema following ALA-PDT was evaluated in terms of animal survival, histopatological changes in normal brain and tumor tissue and MRI scanning. The effect of steroid treatment, to reduce post-treatment PDT induced edema, was also examined. Methods:Tumors were established in the brains of inbred BD-IX and Fisher rats. At various times following tumor induction the animals were injected with ALA ip. and four hours later light treatment at escalating fluences and fluence rates were given. Nontumor bearing control animals were also exposed to ALA-PDT in a similar manner to evaluate damage to normal brain and degree of blood brain barrier (BBB) disruption. Results: Despite a very low level of PpIX production in normal brain, with a 200:1 tumor to normal tissue selectivity ratio measured at a distance of 2 mm from the tumor border, many animals succumbed shortly after treatment. A total radiant energy of 54 J to non-tumor bearing animals resulted in 50% mortality within 5 days of treatment. Treatment of tumor bearing animals with moderate fluence levels produced similar brain edema compared to higher fluence levels. ALA PDT in nontumor bearing animals produced edema that was light dose dependent. PDT appeared to open the BBB for a period of 24-48 hrs after which it was restored. The addition of post operative steroid treatment reduced the incident of post treatment morbidity and mortality. Conclusions: T2 and contrast enhanced T1 MRI scanning proved to be a highly effective and non-evasive modality in following the development of the edema reaction and the degree and time

  11. Wnts in adult brain: from synaptic plasticity to cognitive deficiencies

    Science.gov (United States)

    Oliva, Carolina A.; Vargas, Jessica Y.; Inestrosa, Nibaldo C.

    2013-01-01

    During development of the central nervous system the Wnt signaling pathway has been implicated in a wide spectrum of physiological processes, including neuronal connectivity and synapse formation. Wnt proteins and components of the Wnt pathway are expressed in the brain since early development to the adult life, however, little is known about its role in mature synapses. Here, we review evidences indicating that Wnt proteins participate in the remodeling of pre- and post-synaptic regions, thus modulating synaptic function. We include the most recent data in the literature showing that Wnts are constantly released in the brain to maintain the basal neural activity. Also, we review the evidences that involve components of the Wnt pathway in the development of neurological and mental disorders, including a special emphasis on in vivo studies that relate behavioral abnormalities to deficiencies in Wnt signaling. Finally, we include the evidences that support a neuroprotective role of Wnt proteins in Alzheimer’s disease. We postulate that deregulation in Wnt signaling might have a fundamental role in the origin of neurological diseases, by altering the synaptic function at stages where the phenotype is not yet established but when the cognitive decline starts. PMID:24348327

  12. Detection of Brain Tumor and Extraction of Texture Features using Magnetic Resonance Images

    Directory of Open Access Journals (Sweden)

    Prof. Dilip Kumar Gandhi

    2012-10-01

    Full Text Available Brain Cancer Detection system is designed. Aim of this paper is to locate the tumor and determine the texture features from a Brain Cancer affected MRI. A computer based diagnosis is performed in order to detect the tumors from given Magnetic Resonance Image. Basic image processing techniques are used to locate the tumor region. Basic techniques consist of image enhancement, image bianarization, and image morphological operations. Texture features are computed using the Gray Level Co-occurrence Matrix. Texture features consists of five distinct features. Selective features or the combination of selective features will be used in the future to determine the class of the query image. Astrocytoma type of Brain Cancer affected images are used only for simplicity

  13. Atlas to patient registration with brain tumor based on a mesh-free method.

    Science.gov (United States)

    Diaz, Idanis; Boulanger, Pierre

    2015-08-01

    Brain atlas to patient registration in the presence of tumors is a challenging task because its presence cause brain structure deformations and introduce large intensity variation between the affected areas. This large dissimilarity affects the results of traditional registration methods based on intensity or shape similarities. In order to overcome these problems, we propose a novel method that brings closer the atlas and the patient's image by simulating the mechanical behavior of brain deformation under a tumor pressure. The proposed method use a mesh-free total Lagrangian Explicit Dynamic algorithm for the simulation of atlas deformation and a data driven model of the tumor using multi-modal MRI segmentation. Experimental results look structurally very similar to the patient's image and outperform two of the top ranking algorithms.

  14. Synthesis and evaluation of boron compounds for neutron capture therapy of malignant brain tumors

    Energy Technology Data Exchange (ETDEWEB)

    Soloway, A.H.; Barth, R.F.

    1990-01-01

    Boron neutron capture therapy offers the potentiality for treating brain tumors currently resistant to treatment. The success of this form of therapy is directly dependent upon the delivery of sufficient numbers of thermal-neutrons to tumor cells which possess high concentrations of B-10. The objective of this project is to develop chemical methodology to synthesize boron-containing compounds with the potential for becoming incorporated into rapidly-dividing malignant brain tumor cells and excluded from normal components of the brain and surrounding tissues, to develope biological methods for assessing the potential of the compound by use of cell culture or intratumoral injection, to develop analytical methodology for measuring boron in cells and tissue using direct current plasma atomic emission spectroscopy (DCP-AES) and alpha track autoradiography, to develop biochemical and HPLC procedures for evaluating compound uptake and tissue half-life, and to develop procedures required to assess both in vitro and vivo efficacy of BNCT with selected compounds.

  15. Association between FAS and FASL genetic variants and risk of primary brain tumor.

    Science.gov (United States)

    Dalan, Altay Burak; Timirci-Kahraman, Ozlem; Turan, Saime; Kafadar, Ali Metin; Yaylim, Ilhan; Ergen, Arzu; Gormus, Uzay; Gulec-Yilmaz, Seda; Kaspar, Cigdem; Isbir, Turgay

    2014-06-01

    The purpose of this study was to investigate whether functional polymorphisms of apoptosis pathway genes FAS and FASL are associated with the development of primary brain tumors. The study constituted 83 patients with primary brain tumor and 108 healthy individuals. In the present case-control study, the primary brain tumors were divided into two groups: gliomas and meningiomas. Evaluation of FAS -1377 G/A and FASL -844 T/C gene polymorphisms were performed by polymerase chain reaction (PCR) and restriction fragment length polymorphism (RFLP). To confirm the genotyping, results were examined by DNA sequencing method. Our results were analyzed by SPSS. The frequency of the FAS -1377 AA genotype was significantly lower in meningioma and glioma patients compared to controls (p = 0.023; p = 0.001, respectively). Multivariate logistic regression analysis revealed that FAS -1377 AA genotype was associated with decreased risk of meningioma and glioma (OR = 0.092, 95% CI: 0.012-0.719, p = 0.023 for meningiomas; OR = 0.056, 95% CI: 0.007-0.428, p = 0.006 for gliomas). However, there was no significant differences in FASL -844 T/C genotype frequencies between patients with primary brain tumors and controls (p > 0.05). In this study, combined genotypes were evaluated for association with primary brain tumors. Combined genotype analysis showed that the frequencies of AATC and AACC were significantly lower in glioma patients in comparison with those of controls (p = 0.023; p = 0.022, respectively). This study provides the first evidence that FAS -1377 AA genotype may have a protective effect on the developing primary brain tumor in a Turkish population.

  16. Early treatment with metformin induces resistance against tumor growth in adult rats.

    Science.gov (United States)

    Trombini, Amanda B; Franco, Claudinéia Cs; Miranda, Rosiane A; de Oliveira, Júlio C; Barella, Luiz F; Prates, Kelly V; de Souza, Aline A; Pavanello, Audrei; Malta, Ananda; Almeida, Douglas L; Tófolo, Laize P; Rigo, Kesia P; Ribeiro, Tatiane As; Fabricio, Gabriel S; de Sant'Anna, Juliane R; Castro-Prado, Marialba Aa; de Souza, Helenir Medri; de Morais, Hely; Mathias, Paulo Cf

    2015-01-01

    It is known that antidiabetic drug metformin, which is used worldwide, has anti-cancer effects and can be used to prevent cancer growth. We tested the hypothesis that tumor cell growth can be inhibited by early treatment with metformin. For this purpose, adult rats chronically treated with metformin in adolescence or in adulthood were inoculated with Walker 256 carcinoma cells. Adult rats that were treated with metformin during adolescence presented inhibition of tumor growth, and animals that were treated during adult life did not demonstrate any changes in tumor growth. Although we do not have data to disclose a molecular mechanism to the preventive metformin effect, we present, for the first time, results showing that cancer growth in adult life is dependent on early life intervention, thus supporting a new therapeutic prevention for cancer.

  17. BRAIN METASTASES OF GERM CELL TUMORS. THE RUSSIAN CANCER RESEARCH CENTER'S EXPERIENCE

    Directory of Open Access Journals (Sweden)

    A. A. Tryakin

    2014-07-01

    Full Text Available This paper analyzes the experience in treating 20 patients with nonseminomatous germ cell tumors metastasizing to the brain. It presents brain metastasis-associated factors: multiple lung metastases; IGCCCG poor prognosis; and a baseline human chorionic gonadotropin level of > 50000 mIU/ml. The authors have identified a group to be screened for brain metastasis, which includes patients with intermediate/poor prognosis and multiple lung metastases. Long-term survival was achieved in 45 % of patients with baseline brain damage and in 22 % of those with metastases revealed after first-line chemotherapy. The positive prognostic factors associated with long-term survival were a single brain lesion, no neurological symptoms, and achievement of clinical complete personse in the brain.

  18. Pathology, treatment and management of posterior fossa brain tumors in childhood

    Energy Technology Data Exchange (ETDEWEB)

    Bonner, K.; Siegel, K.R.

    1988-04-01

    Brain tumors are the second most common childhood malignancy. Between 1975 and 1985, 462 newly diagnosed patients were treated at the Children's Hospital of Philadelphia; 207 (45%) tumors arose in the posterior fossa and 255 (55%) appeared supratentorially. A wide variety of histological subtypes were seen, each requiring tumor-specific treatment approaches. These included primitive neuroectodermal tumor (n = 86, 19%), astrocytoma (n = 135, 30%), brainstem glioma (n = 47, 10%), anaplastic astrocytoma (n = 32, 7%), and ependymoma (n = 30, 6%). Because of advances in diagnostic abilities, surgery, radiotherapy, and chemotherapy, between 60% and 70% of these patients are alive today. Diagnostic tools such as computed tomography and magnetic resonance imaging allow for better perioperative management and follow-up, while the operating microscope, CO/sub 2/ laser, cavitron ultrasonic aspirator and neurosurgical microinstrumentation allow for more extensive and safer surgery. Disease specific treatment protocols, utilizing radiotherapy and adjuvant chemotherapy, have made survival common in tumors such as medulloblastoma. As survival rates increase, cognitive, endocrinologic and psychologic sequelae become increasingly important. The optimal management of children with brain tumors demands a multidisciplinary approach, best facilitated by a neuro-oncology team composed of multiple subspecialists. This article addresses incidence, classification and histology, clinical presentation, diagnosis, pre-, intra- and postoperative management, long-term effects and the team approach in posterior fossa tumors in childhood. Management of specific tumor types is included as well. 57 references.

  19. Multi-fractal texture features for brain tumor and edema segmentation

    Science.gov (United States)

    Reza, S.; Iftekharuddin, K. M.

    2014-03-01

    In this work, we propose a fully automatic brain tumor and edema segmentation technique in brain magnetic resonance (MR) images. Different brain tissues are characterized using the novel texture features such as piece-wise triangular prism surface area (PTPSA), multi-fractional Brownian motion (mBm) and Gabor-like textons, along with regular intensity and intensity difference features. Classical Random Forest (RF) classifier is used to formulate the segmentation task as classification of these features in multi-modal MRIs. The segmentation performance is compared with other state-of-art works using a publicly available dataset known as Brain Tumor Segmentation (BRATS) 2012 [1]. Quantitative evaluation is done using the online evaluation tool from Kitware/MIDAS website [2]. The results show that our segmentation performance is more consistent and, on the average, outperforms other state-of-the art works in both training and challenge cases in the BRATS competition.

  20. MR spectroscopy in children: protocols and pitfalls in non-tumorous brain pathology

    Energy Technology Data Exchange (ETDEWEB)

    Schneider, Jacques F. [University Children' s Hospital Basel (UKBB), Basel (Switzerland)

    2016-06-15

    Proton nuclear magnetic resonance spectroscopy (MRS) delivers information about cell content and metabolism in a noninvasive manner. The diagnostic strength of MRS lies in its evaluation of pathologies in combination with conventional magnetic resonance imaging (MRI). MRS in children has been most widely used to evaluate brain conditions like tumors, infections, metabolic diseases or learning disabilities and especially in neonates with hypoxic-ischemic encephalopathy. This article reviews some basic theoretical considerations, routine procedures, protocols and pitfalls and will illustrate the range of spectrum alterations occurring in some non-tumorous pediatric brain pathologies. (orig.)

  1. Notching on cancer’s door: Notch signaling in brain tumors

    Directory of Open Access Journals (Sweden)

    Marcin eTeodorczyk

    2015-01-01

    Full Text Available Notch receptors play an essential role in the regulation of central cellular processes during embryonic and postnatal development. The mammalian genome encodes for four Notch paralogs (Notch 1-4, which are activated by three Delta-like (Dll1/3/4 and two Serrate-like (Jagged1/2 ligands. Further, non-canonical Notch ligands such as EGFL7 have been identified and serve mostly as antagonists of Notch signaling. The Notch pathway prevents neuronal differentiation in the central nervous system by driving neural stem cell maintenance and commitment of neural progenitor cells into the glial lineage. Notch is therefore often implicated in the development of brain tumors, as tumor cells share various characteristics with neural stem and progenitor cells. Notch receptors are overexpressed in gliomas and their oncogenicity has been confirmed by gain- and loss-of-function studies in vitro and in vivo. To this end, special attention is paid to the impact of Notch signaling on stem-like brain tumor-propagating cells as these cells contribute to growth, survival, invasion and recurrence of brain tumors. Based on the outcome of ongoing studies in vivo, Notch-directed therapies such as γ secretase inhibitors and blocking antibodies have entered and completed various clinical trials. This review summarizes the current knowledge on Notch signaling in brain tumor formation and therapy.

  2. Magnetic resonance imaging in assessment of treatment response of gamma knife for brain tumors

    Institute of Scientific and Technical Information of China (English)

    GAO Xiao; ZHANG Xue-ning; ZHANG Yun-ting; YU Chun-shui; XU De-sheng

    2011-01-01

    Objective To review the applications of magnetic resonance imaging (MRI) techniques in assessing treatment response to gamma knife radiosurgery for brain tumors.Data sources Published articles about assessing treatment response to gamma knife radiosurgery for brain tumors were selected using PubMed. The search terms were "MRI", "gamma knife" and "brain tumors".Study selection Articles regarding the MRI techniques using for early assessment of treatment response of gamma knife were selected.Results MRI techniques, especially diffusion weighted imaging, perfusion weighted imaging, magnetic resonance spectroscopy, are useful for early assessment of treatment response of gamma knife by detecting the hemodynamic, metabolic, and cellular alterations. Moreover, they can also provide important information on prognosis.Conclusions Diffusion weighted imaging, perfusion weighted imaging and magnetic resonance spectroscopy can provide early assessment of treatment response of gamma knife for brain tumors, and also information of tumor progression or recurrence earlier than conventional MRI. But there are still many questions to be answered which should be based on the development and advancement of MRI and related disciplines.

  3. In vivo multiphoton tomography and fluorescence lifetime imaging of human brain tumor tissue.

    Science.gov (United States)

    Kantelhardt, Sven R; Kalasauskas, Darius; König, Karsten; Kim, Ella; Weinigel, Martin; Uchugonova, Aisada; Giese, Alf

    2016-05-01

    High resolution multiphoton tomography and fluorescence lifetime imaging differentiates glioma from adjacent brain in native tissue samples ex vivo. Presently, multiphoton tomography is applied in clinical dermatology and experimentally. We here present the first application of multiphoton and fluorescence lifetime imaging for in vivo imaging on humans during a neurosurgical procedure. We used a MPTflex™ Multiphoton Laser Tomograph (JenLab, Germany). We examined cultured glioma cells in an orthotopic mouse tumor model and native human tissue samples. Finally the multiphoton tomograph was applied to provide optical biopsies during resection of a clinical case of glioblastoma. All tissues imaged by multiphoton tomography were sampled and processed for conventional histopathology. The multiphoton tomograph allowed fluorescence intensity- and fluorescence lifetime imaging with submicron spatial resolution and 200 picosecond temporal resolution. Morphological fluorescence intensity imaging and fluorescence lifetime imaging of tumor-bearing mouse brains and native human tissue samples clearly differentiated tumor and adjacent brain tissue. Intraoperative imaging was found to be technically feasible. Intraoperative image quality was comparable to ex vivo examinations. To our knowledge we here present the first intraoperative application of high resolution multiphoton tomography and fluorescence lifetime imaging of human brain tumors in situ. It allowed in vivo identification and determination of cell density of tumor tissue on a cellular and subcellular level within seconds. The technology shows the potential of rapid intraoperative identification of native glioma tissue without need for tissue processing or staining.

  4. Fluorescence microscopy studies of a peripheral-benzodiazepine-receptor-targeted molecular probe for brain tumor imaging

    Science.gov (United States)

    Marcu, Laura; Vernier, P. Thomas; Manning, H. Charles; Salemi, Sarah; Li, Aimin; Craft, Cheryl M.; Gundersen, Martin A.; Bornhop, Darryl J.

    2003-10-01

    This study investigates the potential of a new multi-modal lanthanide chelate complex for specifically targeting brain tumor cells. We report here results from ongoing studies of up-take, sub-cellular localization and binding specificity of this new molecular imaging probe. Fluorescence microscopy investigations in living rat C6 glioma tumor cells demonstrate that the new imaging agent has affinity for glioma cells and binds to mitochondria.

  5. Combining cytotoxic and immune-mediated gene therapy to treat brain tumors.

    Science.gov (United States)

    Curtin, James F; King, Gwendalyn D; Candolfi, Marianela; Greeno, Remy B; Kroeger, Kurt M; Lowenstein, Pedro R; Castro, Maria G

    2005-01-01

    Glioblastoma (GBM) is a type of intracranial brain tumor, for which there is no cure. In spite of advances in surgery, chemotherapy and radiotherapy, patients die within a year of diagnosis. Therefore, there is a critical need to develop novel therapeutic approaches for this disease. Gene therapy, which is the use of genes or other nucleic acids as drugs, is a powerful new treatment strategy which can be developed to treat GBM. Several treatment modalities are amenable for gene therapy implementation, e.g. conditional cytotoxic approaches, targeted delivery of toxins into the tumor mass, immune stimulatory strategies, and these will all be the focus of this review. Both conditional cytotoxicity and targeted toxin mediated tumor death, are aimed at eliminating an established tumor mass and preventing further growth. Tumors employ several defensive strategies that suppress and inhibit anti-tumor immune responses. A better understanding of the mechanisms involved in eliciting anti-tumor immune responses has identified promising targets for immunotherapy. Immunotherapy is designed to aid the immune system to recognize and destroy tumor cells in order to eliminate the tumor burden. Also, immune-therapeutic strategies have the added advantage that an activated immune system has the capability of recognizing tumor cells at distant sites from the primary tumor, therefore targeting metastasis distant from the primary tumor locale. Pre-clinical models and clinical trials have demonstrated that in spite of their location within the central nervous system (CNS), a tissue described as 'immune privileged', brain tumors can be effectively targeted by the activated immune system following various immunotherapeutic strategies. This review will highlight recent advances in brain tumor immunotherapy, with particular emphasis on advances made using gene therapy strategies, as well as reviewing other novel therapies that can be used in combination with immunotherapy. Another important

  6. Brain Function Differences in Language Processing in Children and Adults with Autism

    OpenAIRE

    2013-01-01

    Comparison of brain function between children and adults with autism provides an understanding of the effects of the disorder and associated maturational differences on language processing. Functional imaging (functional magnetic resonance imaging) was used to examine brain activation and cortical synchronization during the processing of literal and ironic texts in 15 children with autism, 14 children with typical development, 13 adults with autism, and 12 adult controls. Both the children an...

  7. Brain tumor classification and segmentation using sparse coding and dictionary learning.

    Science.gov (United States)

    Salman Al-Shaikhli, Saif Dawood; Yang, Michael Ying; Rosenhahn, Bodo

    2016-08-01

    This paper presents a novel fully automatic framework for multi-class brain tumor classification and segmentation using a sparse coding and dictionary learning method. The proposed framework consists of two steps: classification and segmentation. The classification of the brain tumors is based on brain topology and texture. The segmentation is based on voxel values of the image data. Using K-SVD, two types of dictionaries are learned from the training data and their associated ground truth segmentation: feature dictionary and voxel-wise coupled dictionaries. The feature dictionary consists of global image features (topological and texture features). The coupled dictionaries consist of coupled information: gray scale voxel values of the training image data and their associated label voxel values of the ground truth segmentation of the training data. For quantitative evaluation, the proposed framework is evaluated using different metrics. The segmentation results of the brain tumor segmentation (MICCAI-BraTS-2013) database are evaluated using five different metric scores, which are computed using the online evaluation tool provided by the BraTS-2013 challenge organizers. Experimental results demonstrate that the proposed approach achieves an accurate brain tumor classification and segmentation and outperforms the state-of-the-art methods.

  8. IMPROVED HYBRID SEGMENTATION OF BRAIN MRI TISSUE AND TUMOR USING STATISTICAL FEATURES

    OpenAIRE

    S. Allin Christe; K. Malathy; A.Kandaswamy

    2010-01-01

    Medical image segmentation is the most essential and crucial process in order to facilitate the characterization and visualization of the structure of interest in medical images. Relevant application in neuroradiology is the segmentation of MRI data sets of the human brain into the structure classes gray matter, white matter and cerebrospinal fluid (CSF) and tumor. In this paper, brain image segmentation algorithms such as Fuzzy C means (FCM) segmentation and Kohonen means(K means) segmentati...

  9. A longitudinal magnetic resonance elastography study of murine brain tumors following radiation therapy

    Science.gov (United States)

    Feng, Y.; Clayton, E. H.; Okamoto, R. J.; Engelbach, J.; Bayly, P. V.; Garbow, J. R.

    2016-08-01

    An accurate and noninvasive method for assessing treatment response following radiotherapy is needed for both treatment monitoring and planning. Measurement of solid tumor volume alone is not sufficient for reliable early detection of therapeutic response, since changes in physiological and/or biomechanical properties can precede tumor volume change following therapy. In this study, we use magnetic resonance elastography to evaluate the treatment effect after radiotherapy in a murine brain tumor model. Shear modulus was calculated and compared between the delineated tumor region of interest (ROI) and its contralateral, mirrored counterpart. We also compared the shear modulus from both the irradiated and non-irradiated tumor and mirror ROIs longitudinally, sampling four time points spanning 9-19 d post tumor implant. Results showed that the tumor ROI had a lower shear modulus than that of the mirror ROI, independent of radiation. The shear modulus of the tumor ROI decreased over time for both the treated and untreated groups. By contrast, the shear modulus of the mirror ROI appeared to be relatively constant for the treated group, while an increasing trend was observed for the untreated group. The results provide insights into the tumor properties after radiation treatment and demonstrate the potential of using the mechanical properties of the tumor as a biomarker. In future studies, more closely spaced time points will be employed for detailed analysis of the radiation effect.

  10. Immunofluorescent study of immunoglobulins and complement components in human brain tumors.

    Directory of Open Access Journals (Sweden)

    Kawakami,Yasuto

    1981-04-01

    Full Text Available Using a direct immunofluorescent method, histological locations of immunoglobulins (IgG, IgM, IgA and IgD of heavy chain, and kappa and lambda of light chain and complement components (C3 and C4 were studied in 78 brain tumors, which included 24 astrocytomas, 6 metastatic tumors, 5 medulloblastomas, 4 malignant lymphomas, 15 meningiomas, 8 schwannomas, 8 pituitary adenomas, and 8 other miscellaneous brain tumors. IgG-positive cells were observed in the perivascular regions of astrocytomas, but were more marked in those of high grade, metastatic tumors and meningiomas. Malignant lymphomas demonstrated IgG and IgM-positive cells accompanied by either kappa of lambda light chains. C3 and C4 were much less evident in these tumors. Pituitary adenomas showed slight positive stains for both immunoglobulins and complement components on the blood vessel walls, Immune reactions against brain tumors were discussed including the clinical application of autologous lymphocyte infusion in malignant gliomas and combination chemotherapy in intracranial malignant lymphomas.

  11. Voluntary running prevents progressive memory decline and increases adult hippocampal neurogenesis and growth factor expression after whole-brain irradiation.

    Science.gov (United States)

    Wong-Goodrich, Sarah J E; Pfau, Madeline L; Flores, Catherine T; Fraser, Jennifer A; Williams, Christina L; Jones, Lee W

    2010-11-15

    Whole-brain irradiation (WBI) therapy produces progressive learning and memory deficits in patients with primary or secondary brain tumors. Exercise enhances memory and adult hippocampal neurogenesis in the intact brain, so we hypothesized that exercise may be an effective treatment to alleviate consequences of WBI. Previous studies using animal models to address this issue have yielded mixed results and have not examined potential molecular mechanisms. We investigated the short- and long-term effects of WBI on spatial learning and memory retention and determined whether voluntary running after WBI aids recovery of brain and cognitive function. Forty adult female C57Bl/6 mice given a single dose of 5 Gy or sham WBI were trained 2.5 weeks and up to 4 months after WBI in a Barnes maze. Half of the mice received daily voluntary wheel access starting 1 month after sham or WBI. Daily running following WBI prevented the marked decline in spatial memory retention observed months after irradiation. Bromodeoxyuridine (BrdUrd) immunolabeling and enzyme-linked immunosorbent assay indicated that this behavioral rescue was accompanied by a partial restoration of newborn BrdUrd+/NeuN+ neurons in the dentate gyrus and increased hippocampal expression of brain-derived vascular endothelial growth factor and insulin-like growth factor-1, and occurred despite irradiation-induced elevations in hippocampal proinflammatory cytokines. WBI in adult mice produced a progressive memory decline consistent with what has been reported in cancer patients receiving WBI therapy. Our findings show that running can abrogate this memory decline and aid recovery of adult hippocampal plasticity, thus highlighting exercise as a potential therapeutic intervention.

  12. Brain tumor classification using the diffusion tensor image segmentation (D-SEG) technique

    Science.gov (United States)

    Jones, Timothy L.; Byrnes, Tiernan J.; Yang, Guang; Howe, Franklyn A.; Bell, B. Anthony; Barrick, Thomas R.

    2015-01-01

    Background There is an increasing demand for noninvasive brain tumor biomarkers to guide surgery and subsequent oncotherapy. We present a novel whole-brain diffusion tensor imaging (DTI) segmentation (D-SEG) to delineate tumor volumes of interest (VOIs) for subsequent classification of tumor type. D-SEG uses isotropic (p) and anisotropic (q) components of the diffusion tensor to segment regions with similar diffusion characteristics. Methods DTI scans were acquired from 95 patients with low- and high-grade glioma, metastases, and meningioma and from 29 healthy subjects. D-SEG uses k-means clustering of the 2D (p,q) space to generate segments with different isotropic and anisotropic diffusion characteristics. Results Our results are visualized using a novel RGB color scheme incorporating p, q and T2-weighted information within each segment. The volumetric contribution of each segment to gray matter, white matter, and cerebrospinal fluid spaces was used to generate healthy tissue D-SEG spectra. Tumor VOIs were extracted using a semiautomated flood-filling technique and D-SEG spectra were computed within the VOI. Classification of tumor type using D-SEG spectra was performed using support vector machines. D-SEG was computationally fast and stable and delineated regions of healthy tissue from tumor and edema. D-SEG spectra were consistent for each tumor type, with constituent diffusion characteristics potentially reflecting regional differences in tissue microstructure. Support vector machines classified tumor type with an overall accuracy of 94.7%, providing better classification than previously reported. Conclusions D-SEG presents a user-friendly, semiautomated biomarker that may provide a valuable adjunct in noninvasive brain tumor diagnosis and treatment planning. PMID:25121771

  13. Temozolomide and O6-Benzylguanine in Treating Children With Recurrent Brain Tumors

    Science.gov (United States)

    2013-09-27

    Childhood Central Nervous System Germ Cell Tumor; Childhood Choroid Plexus Tumor; Childhood Craniopharyngioma; Childhood Ependymoblastoma; Childhood Grade I Meningioma; Childhood Grade II Meningioma; Childhood Grade III Meningioma; Childhood High-grade Cerebellar Astrocytoma; Childhood High-grade Cerebral Astrocytoma; Childhood Infratentorial Ependymoma; Childhood Low-grade Cerebellar Astrocytoma; Childhood Low-grade Cerebral Astrocytoma; Childhood Medulloepithelioma; Childhood Mixed Glioma; Childhood Oligodendroglioma; Childhood Supratentorial Ependymoma; Recurrent Childhood Brain Stem Glioma; Recurrent Childhood Cerebellar Astrocytoma; Recurrent Childhood Cerebral Astrocytoma; Recurrent Childhood Ependymoma; Recurrent Childhood Medulloblastoma; Recurrent Childhood Pineoblastoma; Recurrent Childhood Subependymal Giant Cell Astrocytoma; Recurrent Childhood Supratentorial Primitive Neuroectodermal Tumor; Recurrent Childhood Visual Pathway and Hypothalamic Glioma

  14. Molecular imaging of brain tumors personal experience and review of the literature.

    Science.gov (United States)

    Schaller, Bernhard J; Cornelius, Jan F; Sandu, Nora; Buchfelder, Michael

    2008-12-01

    Non-invasive energy metabolism measurements in brain tumors in vivo are now performed widely as molecular imaging by positron emission tomography. This capability has developed from a large number of basic and clinical science investigations that have cross fertilized one another. Apart from precise anatomical localization and quantification, the most intriguing advantage of such imaging is the opportunity to investigate the time course (dynamics) of disease-specific molecular events in the intact organism. Most importantly, molecular imaging represents a key-technology in translational research, helping to develop experimental protocols that may later be applied to human patients. Common clinical indications for molecular imaging of primary brain tumors therefore contain (i) primary brain tumor diagnosis, (ii) identification of the metabolically most active brain tumor reactions (differentiation of viable tumor tissue from necrosis), and (iii) prediction of treatment response by measurement of tumor perfusion, or ischemia. The key-question remains whether the magnitude of biochemical alterations demonstrated by molecular imaging reveals prognostic value with respect to survival. Molecular imaging may identify early disease and differentiate benign from malignant lesions. Moreover, an early identification of treatment effectiveness could influence patient management by providing objective criteria for evaluation of therapeutic strategies for primary brain tumors. Specially, its novel potential to visualize metabolism and signal transduction to gene expression is used in reporter gene assays to trace the location and temporal level of expression of therapeutic and endogenous genes. The authors present here illustrative data of PET imaging: the thymidine kinase gene expression in experimentally transplanted F98 gliomas in cat brain indicates, that [(18)F]FHBG visualizes cells expressing TK-GFP gene in transduced gliomas as well as quantities and localizes transduced

  15. Single-photon emission computed tomography/computed tomography in brain tumors.

    Science.gov (United States)

    Schillaci, Orazio; Filippi, Luca; Manni, Carlo; Santoni, Riccardo

    2007-01-01

    Anatomic imaging procedures (computed tomography [CT] and magnetic resonance imaging [MRI]) have become essential tools for brain tumor assessment. Functional images (positron emission tomography [PET] and single-photon emission computed tomography [SPECT]) can provide additional information useful during the diagnostic workup to determine the degree of malignancy and as a substitute or guide for biopsy. After surgery and/or radiotherapy, nuclear medicine examinations are essential to assess persistence of tumor, to differentiate recurrence from radiation necrosis and gliosis, and to monitor the disease. The combination of functional images with anatomic ones is of the utmost importance for a full evaluation of these patients, which can be obtained by means of imaging fusion. Despite the fast-growing diffusion of PET, in most cases of brain tumors, SPECT studies are adequate and provide results that parallel those obtained with PET. The main limitation of SPECT imaging with brain tumor-seeking radiopharmaceuticals is the lack of precise anatomic details; this drawback is overcome by the fusion with morphological studies that provide an anatomic map to scintigraphic data. In the past, software-based fusion of independently performed SPECT and CT or MRI demonstrated usefulness for brain tumor assessment, but this process is often time consuming and not practical for everyday nuclear medicine studies. The recent development of dual-modality integrated imaging systems, which allow the acquisition of SPECT and CT images in the same scanning session, and their co-registration by means of the hardware, has facilitated this process. In SPECT studies of brain tumors with various radiopharmaceuticals, fused images are helpful in providing the precise localization of neoplastic lesions, and in excluding the disease in sites of physiologic tracer uptake. This information is useful for optimizing diagnosis, therapy monitoring, and radiotherapy treatment planning, with a

  16. Experimental iodine-125 seed irradiation of intracerebral brain tumors in nude mice

    Directory of Open Access Journals (Sweden)

    Haveman Jaap

    2007-09-01

    Full Text Available Abstract Background High-dose radiotherapy is standard treatment for patients with brain cancer. However, in preclinical research external beam radiotherapy is limited to heterotopic murine models– high-dose radiotherapy to the murine head is fatal due to radiation toxicity. Therefore, we developed a stereotactic brachytherapy mouse model for high-dose focal irradiation of experimental intracerebral (orthotopic brain tumors. Methods Twenty-one nude mice received a hollow guide-screw implanted in the skull. After three weeks, 5 × 105 U251-NG2 human glioblastoma cells were injected. Five days later, a 2 mCi iodine-125 brachytherapy seed was inserted through the guide-screw in 11 randomly selected mice; 10 mice received a sham seed. Mice were euthanized when severe neurological or physical symptoms occurred. The cumulative irradiation dose 5 mm below the active iodine-125 seeds was 23.0 Gy after 13 weeks (BEDtumor = 30.6 Gy. Results In the sham group, 9/10 animals (90% showed signs of lethal tumor progression within 6 weeks. In the experimental group, 2/11 mice (18% died of tumor progression within 13 weeks. Acute side effects in terms of weight loss or neurological symptoms were not observed in the irradiated animals. Conclusion The intracerebral implantation of an iodine-125 brachytherapy seed through a stereotactic guide-screw in the skull of mice with implanted brain tumors resulted in a significantly prolonged survival, caused by high-dose irradiation of the brain tumor that is biologically comparable to high-dose fractionated radiotherapy– without fatal irradiation toxicity. This is an excellent mouse model for testing orthotopic brain tumor therapies in combination with radiation therapy.

  17. Characterization of normal brain and brain tumor pathology by chisquares parameter maps of diffusion-weighted image data

    Energy Technology Data Exchange (ETDEWEB)

    Maier, Stephan E. E-mail: stephan@bwh.harvard.edu; Mamata, Hatsuho; Mulkern, Robert V

    2003-03-01

    Objective: To characterize normal and pathologic brain tissue by quantifying the deviation of diffusion-related signal from a simple monoexponential decay, when measured over a wider than usual range of b-factors. Methods and materials: Line scan diffusion imaging (LSDI), with diffusion weighting at multiple b-factors between 100 and 5000 s/mm{sup 2}, was performed on 1.5 T clinical scanners. Diffusion data of single slice sections were acquired in five healthy subjects and 19 brain tumor patients. In-patients, conventional T2-weighted and contrast-enhanced T1-weighted images were obtained for reference purposes. The chisquare ({chi}{sup 2}) error parameter associated with the monoexponential fits of the measured tissue water signals was then used to quantify the departure from a simple monoexponential signal decay on a pixel-by-pixel basis. Results: Diffusion-weighted images over a wider b-factor range than typically used were successfully obtained in all healthy subjects and patients. Normal and pathologic tissues demonstrated signal decays, which clearly deviate from a simple monoexponential behavior. The {chi}{sup 2} of cortical and deep grey matter was considerably lower than in white matter. In peritumoral edema, however, {chi}{sup 2} was 68% higher than in normal white matter. In highly malignant brain tumors, such as glioblastoma multiforme (GBM) or anaplastic astrocytoma, {chi}{sup 2} values were on average almost 400% higher than in normal white matter, while for one low grade astrocytoma and two cases of metastasis, {chi}{sup 2} was not profoundly different from the {chi}{sup 2} value of white matter. Maps of the {chi}{sup 2} values provide good visualization of spatial details. However, the tumor tissue contrast generated appeared in many cases to be different from the enhancement produced by paramagnetic contrast agents. For example, in cases where the contrast agent only highlighted the rim of the tumor, {chi}{sup 2} enhancement was present within the

  18. Malignant Phyllodes Tumor Presenting in Bone, Brain, Lungs, and Lymph Nodes

    Science.gov (United States)

    Johnson, Eric D.; Gulbahce, Evin; McNally, Joseph; Buys, Saundra S.

    2016-01-01

    Introduction Phyllodes tumors (PTs) are rare fibroepithelial tumors of the breast which are classified as benign, borderline, or malignant. Malignant PTs account for tumors, and borderline tumors have potential to progress to malignant tumors. Metastatic recurrences are most commonly documented in bone and lungs. We report an extremely rare presentation of recurrent malignant PTs involving the brain, lung, lymph nodes, and bone. Case A 66-year-old female presented with a large breast mass. Biopsy identified malignant PT, treated by mastectomy. One year later she presented with acute back pain; imaging showed pathological L4 spinal compression fracture. Core biopsy confirmed PT. Staging identified additional metastases in the lymph nodes, brain, and lung. Discussion PTs are rare and fast-growing tumors that originate from periductal stromal tissues and are composed of both epithelial and stromal components. Histologically, they are classified as benign, borderline, or malignant. The prognosis of the malignant type is poorly defined, with local recurrence occurring in 10–40% and metastases in 10%. Chemotherapy and radiotherapy are generally ineffective in this tumor type. The most common metastatic sites for malignant cases are the lung and bones, but in rare instances, PTs may metastasize elsewhere. Conclusion We report a rare presentation of recurrent malignant PT presenting as pathological fracture of the lumbar spine with impingement on the spinal column, along with cerebellar, nodal, and pulmonary metastases. Only 1 similar case has been previously reported. PMID:28203179

  19. Malignant Phyllodes Tumor Presenting in Bone, Brain, Lungs, and Lymph Nodes

    Directory of Open Access Journals (Sweden)

    Eric D. Johnson

    2016-12-01

    Full Text Available Introduction: Phyllodes tumors (PTs are rare fibroepithelial tumors of the breast which are classified as benign, borderline, or malignant. Malignant PTs account for <1% of malignant breast tumors, and borderline tumors have potential to progress to malignant tumors. Metastatic recurrences are most commonly documented in bone and lungs. We report an extremely rare presentation of recurrent malignant PTs involving the brain, lung, lymph nodes, and bone. Case: A 66-year-old female presented with a large breast mass. Biopsy identified malignant PT, treated by mastectomy. One year later she presented with acute back pain; imaging showed pathological L4 spinal compression fracture. Core biopsy confirmed PT. Staging identified additional metastases in the lymph nodes, brain, and lung. Discussion: PTs are rare and fast-growing tumors that originate from periductal stromal tissues and are composed of both epithelial and stromal components. Histologically, they are classified as benign, borderline, or malignant. The prognosis of the malignant type is poorly defined, with local recurrence occurring in 10–40% and metastases in 10%. Chemotherapy and radiotherapy are generally ineffective in this tumor type. The most common metastatic sites for malignant cases are the lung and bones, but in rare instances, PTs may metastasize elsewhere. Conclusion: We report a rare presentation of recurrent malignant PT presenting as pathological fracture of the lumbar spine with impingement on the spinal column, along with cerebellar, nodal, and pulmonary metastases. Only 1 similar case has been previously reported.

  20. Tumors in the parotid are not relatively more often malignant in children than in adults

    DEFF Research Database (Denmark)

    Stevens, E; Andreasen, S; Bjørndal, K;

    2015-01-01

    INTRODUCTION: Tumors of the parotid gland in children are rare and very little data has been published regarding the incidence of these tumors. We present a nationwide survey on this topic. METHODS: Data regarding benign and malignant tumors in the parotid gland in children from January 1st, 1990...... and one with mucoepidermoid carcinoma. Both patients had perineural invasion and involved resection margins at presentation. The incidence was 0.12 and 0.53 per 100,000 children of the malignant and benign tumors, respectively. CONCLUSION: Pleomorphic adenomas were the predominant neoplasm in the parotid...... gland in children. The most frequent of the malignant tumors was the acinic cell carcinoma, which is in contrast to previous studies. The proportion of malignant-to-benign parotid gland tumors is in contrast to earlier study reports not higher in children than in adults....

  1. Multimodal imaging enables early detection and characterization of changes in tumor permeability of brain metastases.

    Science.gov (United States)

    Thorsen, Frits; Fite, Brett; Mahakian, Lisa M; Seo, Jai W; Qin, Shengping; Harrison, Victoria; Johnson, Sarah; Ingham, Elizabeth; Caskey, Charles; Sundstrøm, Terje; Meade, Thomas J; Harter, Patrick N; Skaftnesmo, Kai Ove; Ferrara, Katherine W

    2013-12-28

    Our goal was to develop strategies to quantify the accumulation of model therapeutics in small brain metastases using multimodal imaging, in order to enhance the potential for successful treatment. Human melanoma cells were injected into the left cardiac ventricle of immunodeficient mice. Bioluminescent, MR and PET imaging were applied to evaluate the limits of detection and potential for contrast agent extravasation in small brain metastases. A pharmacokinetic model was applied to estimate vascular permeability. Bioluminescent imaging after injecting d-luciferin (molecular weight (MW) 320 D) suggested that tumor cell extravasation had already occurred at week 1, which was confirmed by histology. 7T T1w MRI at week 4 was able to detect non-leaky 100 μm sized lesions and leaky tumors with diameters down to 200 μm after contrast injection at week 5. PET imaging showed that (18)F-FLT (MW 244 Da) accumulated in the brain at week 4. Gadolinium-based MRI tracers (MW 559 Da and 2.066 kDa) extravasated after 5 weeks (tumor diameter 600 μm), and the lower MW agent cleared more rapidly from the tumor (mean apparent permeabilities 2.27 × 10(-5)cm/s versus 1.12 × 10(-5)cm/s). PET imaging further demonstrated tumor permeability to (64)Cu-BSA (MW 65.55 kDa) at week 6 (tumor diameter 700 μm). In conclusion, high field T1w MRI without contrast may improve the detection limit of small brain metastases, allowing for earlier diagnosis of patients, although the smallest lesions detected with T1w MRI were permeable only to d-luciferin and the amphipathic small molecule (18)F-FLT. Different-sized MR and PET contrast agents demonstrated the gradual increase in leakiness of the blood tumor barrier during metastatic progression, which could guide clinicians in choosing tailored treatment strategies.

  2. Preclinical validation of electrochemotherapy as an effective treatment for brain tumors

    DEFF Research Database (Denmark)

    Agerholm-Larsen, Birgit; Iversen, Helle K; Ibsen, Per

    2011-01-01

    Electrochemotherapy represents a strategy to enhance chemotherapeutic drug uptake by delivering electrical pulses which exceed the dielectric strength of the cell membrane, causing transient formation of structures that enhance permeabilization. Here we show that brain tumors in a rat model can...... treatment. Bleomycin was injected intracranially into male rats inoculated with rat glia-derived tumor cells 2 weeks before the application of the electrical field (32 pulses, 100 V, 0.1 ms, and 1 Hz). In this model, where presence of tumor was confirmed by magnetic resonance imaging (MRI) before treatment......, we found that 9 of 13 rats (69%) receiving electrochemotherapy displayed a complete elimination of tumor, in contrast to control rats treated with bleomycin only, pulses only, or untreated where tumor progression occurred in each case. Necrosis induced by electrochemotherapy was restricted...

  3. Can the standardized uptake value characterize primary brain tumors on FDG-PET?

    Energy Technology Data Exchange (ETDEWEB)

    Hustinx, R.; Smith, R.J.; Benard, F.; Bhatnagar, A.; Alavi, A. [Div. of Nuclear Medicine, Hospital of the University of Pennsylvania, Philadelphia, PA (United States)

    1999-11-01

    The aim of this study was to evaluate the usefulness of measuring the standardized uptake value (SUV) in primary brain tumors on fluorine-18 fluorodeoxyglucose (FDG) positron emission tomography (PET) scans. Two groups of patients were studied. Whole-brain glucose cerebral metabolic rates (wCMRs) and SUVs were obtained in 20 normal subjects. Twenty-seven patients with histology-proven malignant primary CNS tumors (high-grade gliomas n=22, primitive neuroectodermal tumors n=3, ependymomas n=2) were also studied. The degree of FDG uptake was assessed by visual inspection and thereafter regions of interest were placed over the lesion, the contralateral cortex and white matter and the whole brain. Average (avg) and maximum (max) pixel values were determined in each site. Based on these measurements, SUV, tumor to cortex (T/C) and tumor to white matter (T/WM) activity ratios were calculated. There was no correlation between wCMRs (4.55{+-}0.36 mg min{sup -1} 100 g{sup -1}) and wSUVs (5.41{+-}0.43) in the normal subjects (r=0.18, P=0.45). In the second group, 17 lesions were described as definitely and seven as probably malignant. However, SUVs in these tumors and in the contralateral cortex were not significantly different. Although the SUVs were generally higher in the tumor than in the contralateral white matter, there was a significant overlap between the values. The range of the SUVs was wide: 2.54-11.8 for the tumors, 2.98-9.96 for the cortex and 1.87-6.76 for the white matter. SUVs in the normal cortex were negatively correlated with blood glucose level at the time of the injection. SUVs in the whole brain and in the cortex were lower in patients previously treated by irradiation, even months after completion of the treatment. No correlation was detectable between any of the SUVs and the age of the patients, tumor type, time post injection, use of dexamethasone, patient weight, dose injected and visual score. With cutoff levels of 1.5 for T max/WM and 0.6 for T

  4. EXPRESSION OF SV40 Tag AND FORMATION Tag-p53 AND Tag-Rb COMPLEXES IN CHINESE BRAIN TUMORS

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Objective: To investigate the expression of SV40 Tag andformation of Tag-p53 and Tag-Rb complexes in Chinese brain tumors. Methods: SV40 large tumor antigen (Tag) were investigated by immunoprecipitation, silver staining and Western blot in 65 cases of Chinese brain tumors and 8 cases of normal brain tissues. Tag-p53 and Tag-Rb complexes were screened by the same way in 20 and 15 Tag positive tumor tissues respectively. Results: Tag was found in all of 8 ependymomas and 2 choroid plexus papillomas, 90% (9/10) of pituitary adenomas, 73% (11/15) of astrocytomas, 70% (7/10) of meningiomas, 50% (4/8) of glioblastoma multiform, 33% (2/6) of medulloblastomas, 5 oligodendrogliomas, 1 pineocytoma and 8 normal brain tissues were negative for Tag. Tag-p53 complex was detected in all of 20 Tag positive tumors as well as Tag-Rb complex in all of 15 Tag positive tumors. Conclusion: SV40 Tag is not only expressed in human brain tumors, but also it can form specific complexes with tumor suppressors p53 and Rb. SV40 is correlated to human brain tumorigenesis. The inactivation of p53 and Rb due to the formation of Tag-p53 and Tag-Rb complexes is possibly an important mechanism in the etiopathogenesis of human brain tumors.

  5. Differential effects of energy stress on AMPK phosphorylation and apoptosis in experimental brain tumor and normal brain

    Directory of Open Access Journals (Sweden)

    Chiles Thomas C

    2008-05-01

    Full Text Available Abstract Background AMP-activated protein kinase (AMPK is a known physiological cellular energy sensor and becomes phosphorylated at Thr-172 in response to changes in cellular ATP levels. Activated AMPK acts as either an inducer or suppressor of apoptosis depending on the severity of energy stress and the presence or absence of certain functional tumor suppressor genes. Results Here we show that energy stress differentially affects AMPK phosphorylation and cell-death in brain tumor tissue and in tissue from contra-lateral normal brain. We compared TSC2 deficient CT-2A mouse astrocytoma cells with syngeneic normal astrocytes that were grown under identical condition in vitro. Energy stress induced by glucose withdrawal or addition of 2-deoxyglucose caused more ATP depletion, AMPK phosphorylation and apoptosis in CT-2A cells than in the normal astrocytes. Under normal energy conditions pharmacological stimulation of AMPK caused apoptosis in CT-2A cells but not in astrocytes. TSC2 siRNA treated astrocytes are hypersensitive to apoptosis induced by energy stress compared to control cells. AMPK phosphorylation and apoptosis were also greater in the CT-2A tumor tissue than in the normal brain tissue following implementation of dietary energy restriction. Inefficient mTOR and TSC2 signaling, downstream of AMPK, is responsible for CT-2A cell-death, while functional LKB1 may protect normal brain cells under energy stress. Conclusion Together these data demonstrates that AMPK phosphorylation induces apoptosis in mouse astrocytoma but may protect normal brain cells from apoptosis under similar energy stress condition. Therefore, using activator of AMPK along with glycolysis inhibitor could be a potential therapeutic approach for TSC2 deficient human malignant astrocytoma.

  6. Transferrin receptor-targeted theranostic gold nanoparticles for photosensitizer delivery in brain tumors

    Science.gov (United States)

    Dixit, Suraj; Novak, Thomas; Miller, Kayla; Zhu, Yun; Kenney, Malcolm E.; Broome, Ann-Marie

    2015-01-01

    Therapeutic drug delivery across the blood-brain barrier (BBB) is not only inefficient, but also nonspecific to brain stroma. These are major limitations in the effective treatment of brain cancer. Transferrin peptide (Tfpep) targeted gold nanoparticles (Tfpep-Au NPs) loaded with the photodynamic pro-drug, Pc 4, have been designed and compared with untargeted Au NPs for delivery of the photosensitizer to brain cancer cell lines. In vitro studies of human glioma cancer lines (LN229 and U87) overexpressing the transferrin receptor (TfR) show a significant increase in cellular uptake for targeted conjugates as compared to untargeted particles. Pc 4 delivered from Tfpep-Au NPs clusters within vesicles after targeting with the Tfpep. Pc 4 continues to accumulate over a 4 hour period. Our work suggests that TfR-targeted Au NPs may have important therapeutic implications for delivering brain tumor therapies and/or providing a platform for noninvasive imaging.

  7. Use of EPO as an adjuvant in PDT of brain tumors to reduce damage to normal brain

    Science.gov (United States)

    Rendon, Cesar A.; Lilge, Lothar

    2004-10-01

    In order to reduce damage to surrounding normal brain in the treatment of brain tumors with photodynamic therapy (PDT), we have investigated the use of the cytokine erythropoietin (EPO) to exploit its well-established role as a neuroprotective agent. In vitro experiments demonstrated that EPO does not confer protection from PDT to rat glioma cells. In vivo testing of the possibility of EPO protecting normal brain tissue was carried out. The normal brains of Lewis rats were treated with Photofrin mediated PDT (6.25 mg/Kg B.W. 22 hours pre irradiation) and the outcome of the treatment compared between animals that received EPO (5000 U/Kg B.W. 22 hours pre irradiation) and controls. This comparison was made based on the volume of necrosis, as measured with the viability stain 2,3,5- Triphenyl tetrazoium chloride (TTC), and incidence of apoptosis, as measured with in situ end labeling assay (ISEL). Western blotting showed that EPO reaches the normal brain and activates the anti-apoptotic protein PKB/AKT1 within the brain cortex. The comparison based on volume of necrosis showed no statistical significance between the two groups. No clear difference was observed in the ISEL staining between the groups. A possible lack of responsivity in the assays that give rise to these results is discussed and future corrections are described.

  8. Synthesis and evaluation of boron compounds for neutron capture therapy of malignant brain tumors

    Energy Technology Data Exchange (ETDEWEB)

    Soloway, A.H.

    1991-01-01

    Current progress on this research includes the synthesis of chemical structures for malignant brain tumors. These structures include boron-containing derivatives of lipophilic anticonvulsants and CNS depressants; carboranyl precursors of nucleic acids and related structures; and carboranyl amino acids. Cellular uptake and persistence studies have also been carried out with F98 rat glioma cells. 1 fig., 1 tab.

  9. Interstitial laser thermotherapy: developments in the treatment of small deep-seated brain tumors.

    Science.gov (United States)

    Menovsky, T; Beek, J F; Roux, F X; Bown, S G

    1996-12-01

    New technical advances have made feasible the utilization of laser to destroy deep-seated brain tumors under real-time monitoring. Experience with interstitial laser thermotherapy (ILTT) in animal and clinical studies has been obtained. These studies are summarized and the future potential of ILTT in neurosurgery is discussed.

  10. Explorative study on the aftercare of pediatric brain tumor survivors: a parents' perspective

    NARCIS (Netherlands)

    Aukema, E.J.; Last, B.F.; Schouten-van Meeteren, A.Y.N.; Grootenhuis, M.A.

    2011-01-01

    Whilst the need for aftercare for long-term sequelae of brain tumor survivors is well known and evident, information from a parent's perspective is lacking on whether the need for aftercare is detected in time, and whether the aftercare is timely initiated and meets the needs for aftercare. A survey

  11. Surviving a brain tumor in childhood : impact on family functioning in adolescence

    NARCIS (Netherlands)

    Beek, Laura; Schappin, R; Gooskens, Rob; Huisman, Jaap; Jongmans, Marian

    2015-01-01

    ObjectiveTo investigate family functioning in families with an adolescent survivor of a pediatric brain tumor. We explored whether adolescent, parent, disease and treatment factors, and demographic characteristics predicted family functioning. MethodsIn this cross-sectional study, 45 adolescent surv

  12. Drug and cell encapsulation : Alternative delivery options for the treatment of malignant brain tumors

    NARCIS (Netherlands)

    Bhujbal, Swapnil V.; de Vos, Paul; Niclou, Simone P.

    2014-01-01

    Malignant brain tumors including glioblastoma are incurable cancers. Over the last years a number of promising novel treatment approaches have been investigated including the application of inhibitors of receptor tyrosine kinases and downstream targets, immune-based therapies and anti-angiogenic age

  13. Executive functions and social skills in survivors of pediatric brain tumor.

    Science.gov (United States)

    Wolfe, Kelly R; Walsh, Karin S; Reynolds, Nina C; Mitchell, Frances; Reddy, Alyssa T; Paltin, Iris; Madan-Swain, Avi

    2013-01-01

    Medical advances have resulted in increased survival rates for children with brain tumors. Consequently, issues related to survivorship have become more critical. The use of multimodal treatment, in particular cranial radiation therapy, has been associated with subsequent cognitive decline. Specifically, deficits in executive functions have been reported in survivors of various types of pediatric brain tumor. Survivors are left with difficulties, particularly in self-monitoring, initiation, inhibition, and planning, to name a few. Another domain in which survivors of pediatric brain tumor have been reported to show difficulty is that of social skills. Parents, teachers, and survivors themselves have reported decreased social functioning following treatment. Deficits in executive functions and social skills are likely interrelated in this population, as executive skills are needed to navigate various aspects of social interaction; however, this has yet to be studied empirically. Twenty-four survivors of pediatric brain tumor were assessed using a computerized task of executive functions, as well as paper-and-pencil measures of social skills and real-world executive skills. Social functioning was related to a specific aspect of executive functions, that is, the survivors' variability in response time, such that inconsistent responding was associated with better parent-reported and survivor-reported social skills, independent of intellectual abilities. Additionally, parent-reported real-world global executive abilities predicted parent-reported social skills. The implications of these findings for social skills interventions and future research are discussed.

  14. Brain tumor delineation based on CT and MR imaging. Implications for radiotherapy treatment planning

    NARCIS (Netherlands)

    Heesters, M A; Wijrdeman, H K; Struikmans, H; Witkamp, T; Moerland, M A

    1993-01-01

    This paper deals with the impact MRI may have on radiotherapy treatment planning of brain tumors. The authors analyzed differences in size and position of treatment fields as indicated by three observers (two radiotherapists and one neuroradiologist) using CT or MR based radiotherapy planning proced

  15. Brain tumors in children and adolescents: cognitive and psychological disorders at different ages.

    Science.gov (United States)

    Poggi, Geraldina; Liscio, Mariarosaria; Galbiati, Susanna; Adduci, Annarita; Massimino, Maura; Gandola, Lorenza; Spreafico, Filippo; Clerici, Carlo Alfredo; Fossati-Bellani, Franca; Sommovigo, Michela; Castelli, Enrico

    2005-05-01

    Cognitive and psychological disorders are among the most frequently observed sequelae in brain tumor survivors. The goal of this work was to verify the presence of these disorders in a group of children and adolescents diagnosed with brain tumor before age 18 years, differentiate these disorders according to age of assessment, identify correlations between the two types of impairments and define possible associations between these impairments and clinical variables. The study involved 76 patients diagnosed with brain tumor before age 18 years. Three age groups were formed, and all the patients received a standardized battery of age-matched cognitive and psychological tests. According to our findings, all three groups present with cognitive and psychological-behavioral disorders. Their frequency varies according to age of onset and is strongly associated to time since diagnosis. The performance intelligence quotient (PIQ) was more impaired than the verbal intelligence quotient (VIQ). Internalizing problems, withdrawal and social problems were the most frequent psychological disorders. Correlations were found between cognitive impairment and the onset of the main psychological and behavioral disorders. These findings are relevant as they point out the long-term outcome of brain tumor survivors. Hence, the recommendation to diversify psychological interventions and rehabilitation plans according to the patients' age.

  16. Deleted in Malignant Brain Tumors 1 is Present in the Vascular Extracellular Matrix and Promotes Angiogenesis

    DEFF Research Database (Denmark)

    Müller-Enbergs, Helmut; Hu, Jiong; Popp, Rüdiger;

    2012-01-01

    OBJECTIVE: Deleted in malignant brain tumors 1 (DMBT1) belongs to the scavenger receptor cysteine-rich superfamily of proteins and is implicated in innate immunity, cell polarity, and differentiation. Here we studied the role of DMBT1 in endothelial cells. METHODS AND RESULTS: DMBT1 was secreted...

  17. Allelic and haplotype frequencies of the p53 polymorphisms in brain tumor patients.

    Science.gov (United States)

    Biros, E; Kalina, I; Kohút, A; Bogyiová, E; Salagovic, J; Sulla, I

    2002-01-01

    The polymorphisms of the tumor suppressor gene p53 in exon 4 (p53 BstUI) and in intron 6 (p53 MspI) have been suggested to be associated with the genetically determined susceptibility in diverse types of human cancer. In our hospital-based case-control study, we examined the allele and genotype incidence of these polymorphisms as well as their haplotype combinations in 60 brain tumor patients (27 males and 33 females) and 183 controls without malignancies. The genotype characteristics were determined by the PCR-based RFLP method using DNA extracted from peripheral blood. In this study we show that the p53 BstUI and the p53 MspI polymorphisms are not associated with increased risk of brain tumors. Thus, we conclude that the p53 BstUI and the p53 MspI polymorphic sites within the tumor suppressor gene p53 do not represent genetic determinants of susceptibility to brain tumors.

  18. In Vivo Follow-up of Brain Tumor Growth via Bioluminescence Imaging and Fluorescence Tomography

    Directory of Open Access Journals (Sweden)

    Coralie Genevois

    2016-10-01

    Full Text Available Reporter gene-based strategies are widely used in experimental oncology. Bioluminescence imaging (BLI using the firefly luciferase (Fluc as a reporter gene and d-luciferin as a substrate is currently the most widely employed technique. The present paper compares the performances of BLI imaging with fluorescence imaging using the near infrared fluorescent protein (iRFP to monitor brain tumor growth in mice. Fluorescence imaging includes fluorescence reflectance imaging (FRI, fluorescence diffuse optical tomography (fDOT, and fluorescence molecular Imaging (FMT®. A U87 cell line was genetically modified for constitutive expression of both the encoding Fluc and iRFP reporter genes and assayed for cell, subcutaneous tumor and brain tumor imaging. On cultured cells, BLI was more sensitive than FRI; in vivo, tumors were first detected by BLI. Fluorescence of iRFP provided convenient tools such as flux cytometry, direct detection of the fluorescent protein on histological slices, and fluorescent tomography that allowed for 3D localization and absolute quantification of the fluorescent signal in brain tumors.

  19. Taurolidine-Fibrin-Sealant-Matrix using spray application for local treatment of brain tumors.

    Science.gov (United States)

    Stendel, Ruediger; Scheurer, Louis; Schlatterer, Kathrin; Gminski, Richard; Möhler, Hanns

    2004-01-01

    Malignant gliomas tend to recur in the vast majority of cases. Recurrent gliomas may arise from vital tumor cells present in this zone around the resection margin. It appears promising to combine tumor resection with local chemotherapy using an antineoplastic, but non-toxic agent. Taurolidine exerts a selective antineoplastic effect by induction of programmed cell death and has anti-angiogenic activity. Fibrin sealant is completely degradable and firmly adheres to brain tissue, suggesting that it would provide a suitable matrix for taurolidine delivery--a Taurolidine-Fibrin-Sealant-Matrix (TFM)--in the local treatment of brain tumors. The potential of local delivery of taurolidine out of a fibrin sealant matrix was investigated. Taurolidine could be suspended homogeneously in both the thrombin and the procoagulant protein components of the fibrin sealant. The fibrin sealant matrix was a suitable carrier for the suspension of taurolidine at a concentration that ensured the release of therapeutically effective amounts of the drug over a period of 2 weeks in vitro. The antineoplastic action of taurolidine was not affected by embedding in the fibrin sealant matrix. The described drug delivery system may be suitable for local taurolidine treatment of brain tumors following complete or partial resection or of tumors that are non-resectable because of their location.

  20. Effect of dendritic cell vaccine therapy on lymphocyte subpopulation in refractory primary brain tumor

    Directory of Open Access Journals (Sweden)

    J Niu

    2015-01-01

    Full Text Available BACKGROUND: Dendritic cell (DC-based immunotherapy has the potential to induce an antitumor response within the immunologically privileged brain. AIMS: The aim of this study was to evaluate the short-term effect of DC vaccine therapy on lymphocyte subsets in patients with refractory primary brain tumor. MATERIALS AND METHODS: Eighteen cases with refractory primary brain tumor who refused any treatment against tumor within 6 months of the therapy, were referred to one medicine center, from January 2011 to October 2012. All patients received 1 × 107 tumor lysate–pulsed DC vaccinations both intradermal injection and intravenous infusion 3 times/week. RESULTS: There were increases of lymphocytes CD8+ (P = 0.002 and CD56+ (P = 4.207E-10, but no change of lymphocytes CD3+ (P = 0.651. Six patients were positive response of delayed-type hypersensitivity. There were improving of appetite in 14 cases and increasing of physical strength 17 cases. CONCLUSIONS: DC vaccine has the potential for inducing an immune cytotoxic effect directed toward tumor cells.

  1. MEK Inhibitors Reverse Growth of Embryonal Brain Tumors Derived from Oligoneural Precursor Cells

    Directory of Open Access Journals (Sweden)

    Katarzyna Modzelewska

    2016-10-01

    Full Text Available Malignant brain tumors are the leading cause of cancer-related deaths in children. Primitive neuroectodermal tumors of the CNS (CNS-PNETs are particularly aggressive embryonal tumors of unknown cellular origin. Recent genomic studies have classified CNS-PNETs into molecularly distinct subgroups that promise to improve diagnosis and treatment; however, the lack of cell- or animal-based models for these subgroups prevents testing of rationally designed therapies. Here, we show that a subset of CNS-PNETs co-express oligoneural precursor cell (OPC markers OLIG2 and SOX10 with coincident activation of the RAS/MAPK (mitogen-activated protein kinase pathway. Modeling NRAS activation in embryonic OPCs generated malignant brain tumors in zebrafish that closely mimic the human oligoneural/NB-FOXR2 CNS-PNET subgroup by histology and comparative oncogenomics. The zebrafish CNS-PNET model was used to show that MEK inhibitors selectively eliminate Olig2+/Sox10+ CNS-PNET tumors in vivo without impacting normal brain development. Thus, MEK inhibitors represent a promising rationally designed therapy for children afflicted with oligoneural/NB-FOXR2 CNS-PNETs.

  2. Supratentorial primitive neuroectodermal tumor in an adult: a case report and review of the literature

    Directory of Open Access Journals (Sweden)

    Lawandy Shokry

    2012-10-01

    Full Text Available Abstract Introduction Supratentorial primitive neuroectodermal tumors predominantly occur in children, and are rare in the adult population. Less than 100 cases of supratentorial primitive neuroectodermal tumor have been reported in adults internationally. Our case study reports this rare incident. Case presentation A 22-year-old Hispanic man presented with headaches, blurry vision, diplopia, intermittent vomiting, and grossly decreased vision. A magnetic resonance image showed a left posterior parietal heterogeneously enhancing mass measuring 4.2cm × 7.2cm × 7.0cm. After craniotomy for resection and decompression, the mass was histologically revealed to be a supratentorial primitive neuroectodermal tumor. Standardized immunohistochemical studies for this mass were carried out. Conclusion We have concluded that immunohistochemical and genetic workup should be included in the standardized pathological workup for primitive neuroectodermal tumors in order to provide more prognostic information. Based on our current literature review, we propose an immunohistochemical panel.

  3. GABA regulates synaptic integration of newly generated neurons in the adult brain

    Science.gov (United States)

    Ge, Shaoyu; Goh, Eyleen L. K.; Sailor, Kurt A.; Kitabatake, Yasuji; Ming, Guo-Li; Song, Hongjun

    2006-02-01

    Adult neurogenesis, the birth and integration of new neurons from adult neural stem cells, is a striking form of structural plasticity and highlights the regenerative capacity of the adult mammalian brain. Accumulating evidence suggests that neuronal activity regulates adult neurogenesis and that new neurons contribute to specific brain functions. The mechanism that regulates the integration of newly generated neurons into the pre-existing functional circuitry in the adult brain is unknown. Here we show that newborn granule cells in the dentate gyrus of the adult hippocampus are tonically activated by ambient GABA (γ-aminobutyric acid) before being sequentially innervated by GABA- and glutamate-mediated synaptic inputs. GABA, the major inhibitory neurotransmitter in the adult brain, initially exerts an excitatory action on newborn neurons owing to their high cytoplasmic chloride ion content. Conversion of GABA-induced depolarization (excitation) into hyperpolarization (inhibition) in newborn neurons leads to marked defects in their synapse formation and dendritic development in vivo. Our study identifies an essential role for GABA in the synaptic integration of newly generated neurons in the adult brain, and suggests an unexpected mechanism for activity-dependent regulation of adult neurogenesis, in which newborn neurons may sense neuronal network activity through tonic and phasic GABA activation.

  4. New Brain Tumor Entities Emerge from Molecular Classification of CNS-PNETs.

    Science.gov (United States)

    Sturm, Dominik; Orr, Brent A; Toprak, Umut H; Hovestadt, Volker; Jones, David T W; Capper, David; Sill, Martin; Buchhalter, Ivo; Northcott, Paul A; Leis, Irina; Ryzhova, Marina; Koelsche, Christian; Pfaff, Elke; Allen, Sariah J; Balasubramanian, Gnanaprakash; Worst, Barbara C; Pajtler, Kristian W; Brabetz, Sebastian; Johann, Pascal D; Sahm, Felix; Reimand, Jüri; Mackay, Alan; Carvalho, Diana M; Remke, Marc; Phillips, Joanna J; Perry, Arie; Cowdrey, Cynthia; Drissi, Rachid; Fouladi, Maryam; Giangaspero, Felice; Łastowska, Maria; Grajkowska, Wiesława; Scheurlen, Wolfram; Pietsch, Torsten; Hagel, Christian; Gojo, Johannes; Lötsch, Daniela; Berger, Walter; Slavc, Irene; Haberler, Christine; Jouvet, Anne; Holm, Stefan; Hofer, Silvia; Prinz, Marco; Keohane, Catherine; Fried, Iris; Mawrin, Christian; Scheie, David; Mobley, Bret C; Schniederjan, Matthew J; Santi, Mariarita; Buccoliero, Anna M; Dahiya, Sonika; Kramm, Christof M; von Bueren, André O; von Hoff, Katja; Rutkowski, Stefan; Herold-Mende, Christel; Frühwald, Michael C; Milde, Till; Hasselblatt, Martin; Wesseling, Pieter; Rößler, Jochen; Schüller, Ulrich; Ebinger, Martin; Schittenhelm, Jens; Frank, Stephan; Grobholz, Rainer; Vajtai, Istvan; Hans, Volkmar; Schneppenheim, Reinhard; Zitterbart, Karel; Collins, V Peter; Aronica, Eleonora; Varlet, Pascale; Puget, Stephanie; Dufour, Christelle; Grill, Jacques; Figarella-Branger, Dominique; Wolter, Marietta; Schuhmann, Martin U; Shalaby, Tarek; Grotzer, Michael; van Meter, Timothy; Monoranu, Camelia-Maria; Felsberg, Jörg; Reifenberger, Guido; Snuderl, Matija; Forrester, Lynn Ann; Koster, Jan; Versteeg, Rogier; Volckmann, Richard; van Sluis, Peter; Wolf, Stephan; Mikkelsen, Tom; Gajjar, Amar; Aldape, Kenneth; Moore, Andrew S; Taylor, Michael D; Jones, Chris; Jabado, Nada; Karajannis, Matthias A; Eils, Roland; Schlesner, Matthias; Lichter, Peter; von Deimling, Andreas; Pfister, Stefan M; Ellison, David W; Korshunov, Andrey; Kool, Marcel

    2016-02-25

    Primitive neuroectodermal tumors of the central nervous system (CNS-PNETs) are highly aggressive, poorly differentiated embryonal tumors occurring predominantly in young children but also affecting adolescents and adults. Herein, we demonstrate that a significant proportion of institutionally diagnosed CNS-PNETs display molecular profiles indistinguishable from those of various other well-defined CNS tumor entities, facilitating diagnosis and appropriate therapy for patients with these tumors. From the remaining fraction of CNS-PNETs, we identify four new CNS tumor entities, each associated with a recurrent genetic alteration and distinct histopathological and clinical features. These new molecular entities, designated "CNS neuroblastoma with FOXR2 activation (CNS NB-FOXR2)," "CNS Ewing sarcoma family tumor with CIC alteration (CNS EFT-CIC)," "CNS high-grade neuroepithelial tumor with MN1 alteration (CNS HGNET-MN1)," and "CNS high-grade neuroepithelial tumor with BCOR alteration (CNS HGNET-BCOR)," will enable meaningful clinical trials and the development of therapeutic strategies for patients affected by poorly differentiated CNS tumors.

  5. Evaluation of Raman spectra of human brain tumor tissue using the learning vector quantization neural network

    Science.gov (United States)

    Liu, Tuo; Chen, Changshui; Shi, Xingzhe; Liu, Chengyong

    2016-05-01

    The Raman spectra of tissue of 20 brain tumor patients was recorded using a confocal microlaser Raman spectroscope with 785 nm excitation in vitro. A total of 133 spectra were investigated. Spectra peaks from normal white matter tissue and tumor tissue were analyzed. Algorithms, such as principal component analysis, linear discriminant analysis, and the support vector machine, are commonly used to analyze spectral data. However, in this study, we employed the learning vector quantization (LVQ) neural network, which is typically used for pattern recognition. By applying the proposed method, a normal diagnosis accuracy of 85.7% and a glioma diagnosis accuracy of 89.5% were achieved. The LVQ neural network is a recent approach to excavating Raman spectra information. Moreover, it is fast and convenient, does not require the spectra peak counterpart, and achieves a relatively high accuracy. It can be used in brain tumor prognostics and in helping to optimize the cutting margins of gliomas.

  6. Cultured human embryonic neocortical cells survive and grow in infarcted cavities of adult rat brains and interconnect with host brain

    Institute of Scientific and Technical Information of China (English)

    ZENG Jin-sheng; YU Jian; CUI Chun-mei; ZHAO Zhan; HONG Hua; SHENG Wen-li; TAO Yu-qian; LI Ling; HUANG Ru-xun

    2005-01-01

    Background There are no reports on exnografting cultured human fetal neocortical cells in this infracted cavities of adult rat brains. This study was undertaken to observe whether cultured human cortical neurons and astrocytes can survive and grow in the infarcted cavities of adult rat brains and whether they interconnect with host brains.Methods The right middle cerebral artery was ligated distal to the striatal branches in 16 adult stroke-prone renovascular hypertensive rats. One week later, cultured cells from human embryonic cerebral cortexes were stereotaxically transferred to the infarcted cavity of 11 rats. The other 5 rats receiving sham transplants served as controls. For immunosuppression, all transplanted rats received intraperitoneal injection of cyclosporine A daily starting on the day of grafting. Immunohistochemistry for glial fibrillary acidic protein (GFAP), synaptophysin, neurofilament, and microtubule associated protein-2 (MAP-2) was performed on brain sections perfused in situ 8 weeks after transplantation.Results Grafts in the infarcted cavities of 6 of 10 surviving rats consisted of bands of neurons with an immature appearance, bundles of fibers, and GFAP-immunopositive astrocytes, which were unevenly distributed. The grafts were rich in synaptophysin, neurofilament, and MAP2-positive neurons with long processes. The graft/host border was diffuse with dendrites apparently bridging over to the host brain, into which neurofilament immunopositive fibers protruded. Conclusion Cultured human fetal brain cells can survive and grow in the infarcted cavities of immunodepressed rats and integrate with the host brain.

  7. Dietary resistant starch improves selected brain and behavioral functions in adult and aged rodents

    OpenAIRE

    2013-01-01

    Resistant starch (RS) is a dietary fiber that exerts multiple beneficial effects. The current study explored the effects of dietary RS on selected brain and behavioral functions in adult and aged rodents. Because glucokinase (GK) expression in hypothalamic arcuate nucleus and area postrema of the brainstem is important for brain glucose sensing, GK mRNA was measured by brain nuclei microdissection and PCR. Adult RS-fed rats had a higher GK mRNA than controls in both brain nuclei, an indicator...

  8. In vivo pink-beam imaging and fast alignment procedure for rat brain tumor radiation therapy.

    Science.gov (United States)

    Nemoz, Christian; Kibleur, Astrid; Hyacinthe, Jean Noël; Berruyer, Gilles; Brochard, Thierry; Bräuer-Krisch, Elke; Le Duc, Géraldine; Brun, Emmanuel; Elleaume, Hélène; Serduc, Raphaël

    2016-01-01

    A fast positioning method for brain tumor microbeam irradiations for preclinical studies at third-generation X-ray sources is described. The three-dimensional alignment of the animals relative to the X-ray beam was based on the X-ray tomography multi-slices after iodine infusion. This method used pink-beam imaging produced by the ID17 wiggler. A graphical user interface has been developed in order to define the irradiation parameters: field width, height, number of angles and X-ray dose. This study is the first reporting an image guided method for soft tissue synchrotron radiotherapy. It allowed microbeam radiation therapy irradiation fields to be reduced by a factor of ∼20 compared with previous studies. It permitted more targeted, more efficient brain tumor microbeam treatments and reduces normal brain toxicity of the radiation treatment.

  9. Efficacy and toxicity in brain tumor treatment - quantitative Measurements using advanced MRI

    DEFF Research Database (Denmark)

    Ravn, Søren

    2016-01-01

    and are now being used for presurgical and radiation therapy (RT) planning. More advanced MRI sequences have gained attention. Sequences such as diffusion-weighted imaging (DWI), perfusion-weighted imaging (PWI) and functional magnetic resonance imaging (fMRI) have entered the clinical world concurrently......From the clinical introduction in the 1980s, MRI has grown to become an indispensable brain imaging modality, mainly due to its excellent ability to visualize soft tissues. Morphologically, T1- and T2-weighted brain tumor MRI have been part of routine diagnostic radiology for more than two decades...... with the introduction of magnets with higher field strength. Ongoing technical development has enabled a change from semiquantitative measurements to a true quantitative approach. This step is expected to have a great impact on the treatment of brain tumor patients in the future. The aim of this Ph.D. dissertation...

  10. Fusing in vivo and ex vivo NMR sources of information for brain tumor classification

    Science.gov (United States)

    Croitor-Sava, A. R.; Martinez-Bisbal, M. C.; Laudadio, T.; Piquer, J.; Celda, B.; Heerschap, A.; Sima, D. M.; Van Huffel, S.

    2011-11-01

    In this study we classify short echo-time brain magnetic resonance spectroscopic imaging (MRSI) data by applying a model-based canonical correlation analyses algorithm and by using, as prior knowledge, multimodal sources of information coming from high-resolution magic angle spinning (HR-MAS), MRSI and magnetic resonance imaging. The potential and limitations of fusing in vivo and ex vivo nuclear magnetic resonance sources to detect brain tumors is investigated. We present various modalities for multimodal data fusion, study the effect and the impact of using multimodal information for classifying MRSI brain glial tumors data and analyze which parameters influence the classification results by means of extensive simulation and in vivo studies. Special attention is drawn to the possibility of considering HR-MAS data as a complementary dataset when dealing with a lack of MRSI data needed to build a classifier. Results show that HR-MAS information can have added value in the process of classifying MRSI data.

  11. Guiding Brain Tumor Resection Using Surface-Enhanced Raman Scattering Nanoparticles and a Hand-Held Raman Scanner

    OpenAIRE

    Karabeber, Hazem; Huang, Ruimin; Iacono, Pasquale; Samii, Jason M.; Pitter, Ken; Holland, Eric C.; Kircher, Moritz F.

    2014-01-01

    The current difficulty in visualizing the true extent of malignant brain tumors during surgical resection represents one of the major reasons for the poor prognosis of brain tumor patients. Here, we evaluated the ability of a hand-held Raman scanner, guided by surface-enhanced Raman scattering (SERS) nanoparticles, to identify the microscopic tumor extent in a genetically engineered RCAS/tv-a glioblastoma mouse model. In a simulated intraoperative scenario, we tested both a static Raman imagi...

  12. Stereotactic radiation in primary brain tumors in children and adolescents.

    Science.gov (United States)

    Benk, V; Clark, B G; Souhami, L; Algan, O; Bahary, J; Podgorsak, E B; Freeman, C R

    1999-08-01

    To evaluate treatment outcome and morbidity of stereotactic external-beam irradiation (SEBI) in pediatric patients, we reviewed 14 children treated with SEBI, using a 10-MV isocentric linear accelerator at McGill University between 1988 and 1994. The median follow-up was 46 months (range 6-82 months). The median age was 14 years. There were 8 low-grade astrocytomas, 3 neuromas and 4 other histologies. Twelve patients received fractionated treatments. The median collimator diameter was 2.5 cm (range 1-5 cm). The median biological effective dose delivered to the entire tumor volume was 57 Gy for astrocytomas and 43 Gy for the other histologies. The overall actuarial survival rate and disease-free survival rate at 5 years were 83 and 62%, respectively. For the patients with low-grade astrocytomas, the 5-year survival and disease-free survival rates were 100 and 60%, respectively. Four children had recurrence at a median of 37 months. Four patients developed treatment-related complications: 1 had edema alone, 2 had necrosis and 1 had edema associated with necrosis. Neither the physical nor radiobiological parameters were predictive of the treatment outcome or the treatment complications. Stereotactic irradiation is a valid option for progressive nonresectable tumors in children.

  13. Secondary tics or tourettism associated with a brain tumor.

    Science.gov (United States)

    Luat, Aimee F; Behen, Michael E; Juhász, Csaba; Sood, Sandeep; Chugani, Harry T

    2009-12-01

    Tourette syndrome is generally considered to be a genetic disorder, but symptoms mimicking Tourette syndrome can be secondary to an underlying lesion disrupting the basal ganglia circuitry. Described here is a case of secondary tics, or tourettism, in a child with a large oligodendroglioma of the right temporal lobe extending to the basal ganglia. He presented with attention-deficit hyperactivity disorder, obsessive-compulsive disorder, and stimulant-induced tic disorder at the age of 11 years, and later also had also seizures. The family history was unremarkable. Cranial magnetic resonance imaging disclosed a right temporal lobe tumor extending to the basal ganglia. An alpha-[(11)C]methyl-l-tryptophan positron emission tomography scan showed asymmetric uptake in the basal ganglia and intense uptake in the tumor. He had a lesionectomy, and the histopathologic diagnosis was oligodendroglioma. Neuropsychologic testing after surgery revealed no attention-deficit hyperactivity disorder symptomatology, and only minimal features of obsessive-compulsive disorder. The present case provides additional evidence supporting the role of basal ganglia circuitry in the pathophysiology of tic disorder and its comorbid states. Children who present with attention-deficit hyperactivity disorder, obsessive-compulsive disorder, and tic disorder of late onset in the absence of family history should be further investigated with neuroimaging to exclude the presence of a secondary cause.

  14. P18.07PALLIATIVE SEDATION FOR BRAIN TUMOR PATIENTS AT THE END OF LIFE

    Science.gov (United States)

    Pace, A.; Villani, V.; Benincasa, D.; Di Pasquale, A.; Carapella, C.M.; Pompili, A.

    2014-01-01

    BACKGROUND: Therapeutic (or palliative) sedation in the context of palliative medicine is the monitored use of medications intended to induce a state of decreased or absent awareness (unconsciousness) in order to relieve the burden of otherwise intractable suffering in a manner that is ethically acceptable to the patient, family and health-care providers. There is a large debate about the use of palliative sedation, sometime defined as terminal sedation. There are very few data about the role of palliative sedation in brain tumor patients at the end of life. However, in brain tumor patients palliative sedation may be necessary in case of uncontrolled delirium, agitation, death rattle or refractory seizures. METHODS: We retrospectively analyzed the clinical records of patients assisted at home until death by the Regina Elena Cancer Institute Palliative Home Care for brain tumor patients. All patients died for brain tumor in the last 2 years (2012-2013) were included in this study. RESULTS: Out of 190 brain tumor patients assisted at home in 2012-2013, 108 died and were included in this study. All patients were affected by malignant glioma. Palliative sedation was utilized in 12 cases (11%). In 8 cases for the control of refractory seizures and in 4 cases for delirium. Given the lack of advanced directives and low competence of patients, the decision about sedation was discussed by the care team with caregivers and family members. Palliative sedation was started with midazolam 0.5-1 mg/hr and prolonged until symptoms' control. CONCLUSION: The use of palliative sedation is relatively frequent in the practice of a neuro-oncologic palliative team. The most frequent refractory symptoms in this population of patients were seizures and delirium. The process of end of life treatment decisions in neuro-oncology requires to be better defined.

  15. In vivo models of brain tumors: roles of genetically engineered mouse models in understanding tumor biology and use in preclinical studies.

    Science.gov (United States)

    Simeonova, Iva; Huillard, Emmanuelle

    2014-10-01

    Although our knowledge of the biology of brain tumors has increased tremendously over the past decade, progress in treatment of these deadly diseases remains modest. Developing in vivo models that faithfully mirror human diseases is essential for the validation of new therapeutic approaches. Genetically engineered mouse models (GEMMs) provide elaborate temporally and genetically controlled systems to investigate the cellular origins of brain tumors and gene function in tumorigenesis. Furthermore, they can prove to be valuable tools for testing targeted therapies. In this review, we discuss GEMMs of brain tumors, focusing on gliomas and medulloblastomas. We describe how they provide critical insights into the molecular and cellular events involved in the initiation and maintenance of brain tumors, and illustrate their use in preclinical drug testing.

  16. Interstitial irradiation and hyperthermia for the treatment of recurrent malignant brain tumors.

    Science.gov (United States)

    Sneed, P K; Stauffer, P R; Gutin, P H; Phillips, T L; Suen, S; Weaver, K A; Lamb, S A; Ham, B; Prados, M D; Larson, D A

    1991-02-01

    Between June 1987 and June 1989, 29 recurrent malignant gliomas or recurrent solitary brain metastases in 28 patients were treated in a Phase I study of interstitial irradiation and hyperthermia. Patient age ranged from 18 to 65 years, and the Karnofsky Performance Status scores ranged from 40 to 90%. There were 13 glioblastomas, 10 anaplastic astrocytomas, 3 melanomas, and 3 adenocarcinomas. Catheters were implanted stereotactically after computed tomography-based preplanning. Hyperthermia was administered before and after brachytherapy, using one to six 2450- or 915-MHz helical coil microwave antennas and one to three multisensor fiberoptic thermometry probes. The goal was to heat as much of the tumor as possible to 42.5 degrees C for 30 minutes. Within 30 minutes after the first hyperthermia treatment, implant catheters were afterloaded with high-activity iodine-125 seeds delivering tumor doses of 32.6 to 61.0 Gy. Most patients had no sensation of heating. Complications included seizures in 5 patients, reversible neurological changes in 9 patients, a scalp burn in 1, and infections in 3. Of 28 evaluable 2-month follow-up scans, 11 showed definite improvement in the radiological appearance of the tumor, 4 were slightly improved, 7 were stable, and 6 showed tumor progression. Ten patients underwent reoperation for persistent tumor and/or necrosis. Eleven of 28 patients are alive 40 to 97 weeks after treatment. Thirteen patients died of a brain tumor, 2 died of extracranial melanoma metastases, 1 died of new brain melanoma metastases, and 1 died of a pulmonary embolus. The median survival was 55 weeks overall. Median survival has not yet been reached for the anaplastic astrocytoma subgroup. We conclude that interstitial brain hyperthermia using helical coil microwave antennas is technically feasible. The level of toxicity is acceptable, and the computed tomographic response rate is encouraging.

  17. MRI Brain Tumor Segmentation and Necrosis Detection Using Adaptive Sobolev Snakes

    Science.gov (United States)

    Nakhmani, Arie; Kikinis, Ron; Tannenbaum, Allen

    2014-01-01

    Brain tumor segmentation in brain MRI volumes is used in neurosurgical planning and illness staging. It is important to explore the tumor shape and necrosis regions at different points of time to evaluate the disease progression. We propose an algorithm for semi-automatic tumor segmentation and necrosis detection. Our algorithm consists of three parts: conversion of MRI volume to a probability space based on the on-line learned model, tumor probability density estimation, and adaptive segmentation in the probability space. We use manually selected acceptance and rejection classes on a single MRI slice to learn the background and foreground statistical models. Then, we propagate this model to all MRI slices to compute the most probable regions of the tumor. Anisotropic 3D diffusion is used to estimate the probability density. Finally, the estimated density is segmented by the Sobolev active contour (snake) algorithm to select smoothed regions of the maximum tumor probability. The segmentation approach is robust to noise and not very sensitive to the manual initialization in the volumes tested. Also, it is appropriate for low contrast imagery. The irregular necrosis regions are detected by using the outliers of the probability distribution inside the segmented region. The necrosis regions of small width are removed due to a high probability of noisy measurements. The MRI volume segmentation results obtained by our algorithm are very similar to expert manual segmentation. PMID:25302005

  18. Impacts of Blood-Brain Barrier in Drug Delivery and Targeting of Brain Tumors

    Directory of Open Access Journals (Sweden)

    Yadollah Omidi

    2012-02-01

    Full Text Available Introduction: Entry of blood circulating agents into the brain is highly selectively controlled by specific transport machineries at the blood brain barrier (BBB, whose excellent barrier restrictiveness make brain drug delivery and targeting very challenging. Methods: Essential information on BBB cellular microenvironment were reviewed and discussed towards impacts of BBB on brain drug delivery and targeting. Results: Brain capillary endothelial cells (BCECs form unique biological structure and architecture in association with astrocytes and pericytes, in which microenvironment the BCECs express restrictive tight junctional complexes that block the paracellular inward/outward traverse of biomolecules/compounds. These cells selectively/specifically control the transportation process through carrier and/or receptor mediated transport machineries that can also be exploited for the delivery of pharmaceuticals into the brain. Intelligent molecular therapies should be designed using such transport machineries for the efficient delivery of designated drugs into the brain. For better clinical outcomes, these smart pharmaceuticals should be engineered as seamless nanosystems to provide simultaneous imaging and therapy (multimodal theranostics. Conclusion: The exceptional functional presence of BBB selectively controls inward and outward transportation mechanisms, thus advanced smart multifunctional nanomedicines are needed for the effective brain drug delivery and targeting. Fully understanding the biofunctions of BBB appears to be a central step for engineering of intelligent seamless therapeutics consisting of homing device for targeting, imaging moiety for detecting, and stimuli responsive device for on-demand liberation of therapeutic agent.

  19. Near-infrared fluorescence heptamethine carbocyanine dyes mediate imaging and targeted drug delivery for human brain tumor

    Science.gov (United States)

    Wu, Jason Boyang; Shi, Changhong; Chu, Gina Chia-Yi; Xu, Qijin; Zhang, Yi; Li, Qinlong; Yu, John S.; Zhau, Haiyen E.; Chung, Leland W.K.

    2016-01-01

    Brain tumors and brain metastases are among the deadliest malignancies of all human cancers, largely due to the cellular blood-brain and blood-tumor barriers that limit the delivery of imaging and therapeutic agents from the systemic circulation to tumors. Thus, improved strategies for brain tumor visualization and targeted treatment are critically needed. Here we identified and synthesized a group of near-infrared fluorescence (NIRF) heptamethine carbocyanine dyes and derivative NIRF dye-drug conjugates for effective imaging and therapeutic targeting of brain tumors of either primary or metastatic origin in mice, which is mechanistically mediated by tumor hypoxia and organic aniontransporting polypeptide genes. We also demonstrate that these dyes, when conjugated to chemotherapeutic agents such as gemcitabine, significantly restricted the growth of both intracranial glioma xenografts and prostate tumor brain metastases and prolonged survival in mice. These results show promise in the application of NIRF dyes as novel theranostic agents for the detection and treatment of brain tumors. PMID:26197410

  20. Near-infrared fluorescence heptamethine carbocyanine dyes mediate imaging and targeted drug delivery for human brain tumor.

    Science.gov (United States)

    Wu, Jason Boyang; Shi, Changhong; Chu, Gina Chia-Yi; Xu, Qijin; Zhang, Yi; Li, Qinlong; Yu, John S; Zhau, Haiyen E; Chung, Leland W K

    2015-10-01

    Brain tumors and brain metastases are among the deadliest malignancies of all human cancers, largely due to the cellular blood-brain and blood-tumor barriers that limit the delivery of imaging and therapeutic agents from the systemic circulation to tumors. Thus, improved strategies for brain tumor visualization and targeted treatment are critically needed. Here we identified and synthesized a group of near-infrared fluorescence (NIRF) heptamethine carbocyanine dyes and derivative NIRF dye-drug conjugates for effective imaging and therapeutic targeting of brain tumors of either primary or metastatic origin in mice, which is mechanistically mediated by tumor hypoxia and organic anion-transporting polypeptide genes. We also demonstrate that these dyes, when conjugated to chemotherapeutic agents such as gemcitabine, significantly restricted the growth of both intracranial glioma xenografts and prostate tumor brain metastases and prolonged survival in mice. These results show promise in the application of NIRF dyes as novel theranostic agents for the detection and treatment of brain tumors.

  1. Frequent ATRX mutations and loss of expression in adult diffuse astrocytic tumors carrying IDH1/IDH2 and TP53 mutations.

    Science.gov (United States)

    Liu, Xiao-Yang; Gerges, Noha; Korshunov, Andrey; Sabha, Nesrin; Khuong-Quang, Dong-Anh; Fontebasso, Adam M; Fleming, Adam; Hadjadj, Djihad; Schwartzentruber, Jeremy; Majewski, Jacek; Dong, Zhifeng; Siegel, Peter; Albrecht, Steffen; Croul, Sidney; Jones, David T W; Kool, Marcel; Tonjes, Martje; Reifenberger, Guido; Faury, Damien; Zadeh, Gelareh; Pfister, Stefan; Jabado, Nada

    2012-11-01

    Gliomas are the most common primary brain tumors in children and adults. We recently identified frequent alterations in chromatin remodelling pathways including recurrent mutations in H3F3A and mutations in ATRX (α-thalassemia/mental-retardation-syndrome-X-linked) in pediatric and young adult glioblastoma (GBM, WHO grade IV astrocytoma). H3F3A mutations were specific to pediatric high-grade gliomas and identified in only 3.4 % of adult GBM. Using sequencing and/or immunohistochemical analyses, we investigated ATRX alterations (mutation/loss of expression) and their association with TP53 and IDH1 or IDH2 mutations in 140 adult WHO grade II, III and IV gliomas, 17 pediatric WHO grade II and III astrocytomas and 34 pilocytic astrocytomas. In adults, ATRX aberrations were detected in 33 % of grade II and 46 % of grade III gliomas, as well as in 80 % of secondary and 7 % of primary GBMs. They were absent in the 17 grade II and III astrocytomas in children, and the 34 pilocytic astrocytomas. ATRX alterations closely overlapped with mutations in IDH1/2 (p ATRX mutation/loss of expression and alternative lengthening of telomeres was identified in our cohort. In summary, our data show that ATRX alterations are frequent in adult diffuse gliomas and are specific to astrocytic tumors carrying IDH1/2 and TP53 mutations. Combined alteration of these genes may contribute to drive the neoplastic growth in a major subset of diffuse astrocytomas in adults.

  2. Regionally distinct responses of microglia and glial progenitor cells to whole brain irradiation in adult and aging rats.

    Science.gov (United States)

    Hua, Kun; Schindler, Matthew K; McQuail, Joseph A; Forbes, M Elizabeth; Riddle, David R

    2012-01-01

    Radiation therapy has proven efficacy for treating brain tumors and metastases. Higher doses and larger treatment fields increase the probability of eliminating neoplasms and preventing reoccurrence, but dose and field are limited by damage to normal tissues. Normal tissue injury is greatest during development and in populations of proliferating cells but also occurs in adults and older individuals and in non-proliferative cell populations. To better understand radiation-induced normal tissue injury and how it may be affected by aging, we exposed young adult, middle-aged, and old rats to 10 Gy of whole brain irradiation and assessed in gray- and white matter the responses of microglia, the primary cellular mediators of radiation-induced neuroinflammation, and oligodendrocyte precursor cells, the largest population of proliferating cells in the adult brain. We found that aging and/or irradiation caused only a few microglia to transition to the classically "activated" phenotype, e.g., enlarged cell body, few processes, and markers of phagocytosis, that is seen following more damaging neural insults. Microglial changes in response to aging and irradiation were relatively modest and three markers of reactivity - morphology, proliferation, and expression of the lysosomal marker CD68- were regulated largely independently within individual cells. Proliferation of oligodendrocyte precursors did not appear to be altered during normal aging but increased following irradiation. The impacts of irradiation and aging on both microglia and oligodendrocyte precursors were heterogeneous between white- and gray matter and among regions of gray matter, indicating that there are regional regulators of the neural response to brain irradiation. By several measures, the CA3 region of the hippocampus appeared to be differentially sensitive to effects of aging and irradiation. The changes assessed here likely contribute to injury following inflammatory challenges like brain irradiation and

  3. Regionally distinct responses of microglia and glial progenitor cells to whole brain irradiation in adult and aging rats.

    Directory of Open Access Journals (Sweden)

    Kun Hua

    Full Text Available Radiation therapy has proven efficacy for treating brain tumors and metastases. Higher doses and larger treatment fields increase the probability of eliminating neoplasms and preventing reoccurrence, but dose and field are limited by damage to normal tissues. Normal tissue injury is greatest during development and in populations of proliferating cells but also occurs in adults and older individuals and in non-proliferative cell populations. To better understand radiation-induced normal tissue injury and how it may be affected by aging, we exposed young adult, middle-aged, and old rats to 10 Gy of whole brain irradiation and assessed in gray- and white matter the responses of microglia, the primary cellular mediators of radiation-induced neuroinflammation, and oligodendrocyte precursor cells, the largest population of proliferating cells in the adult brain. We found that aging and/or irradiation caused only a few microglia to transition to the classically "activated" phenotype, e.g., enlarged cell body, few processes, and markers of phagocytosis, that is seen following more damaging neural insults. Microglial changes in response to aging and irradiation were relatively modest and three markers of reactivity - morphology, proliferation, and expression of the lysosomal marker CD68- were regulated largely independently within individual cells. Proliferation of oligodendrocyte precursors did not appear to be altered during normal aging but increased following irradiation. The impacts of irradiation and aging on both microglia and oligodendrocyte precursors were heterogeneous between white- and gray matter and among regions of gray matter, indicating that there are regional regulators of the neural response to brain irradiation. By several measures, the CA3 region of the hippocampus appeared to be differentially sensitive to effects of aging and irradiation. The changes assessed here likely contribute to injury following inflammatory challenges like

  4. SU-E-T-471: Improvement of Gamma Knife Treatment Planning Through Tumor Control Probability for Metastatic Brain Tumors

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Z [East Carolina University, Greenville, NC (United States); Feng, Y [East Carolina Univ, Rockville, MD (United States); Lo, S [Case Western Reserve University, Cleveland, OH (United States); Grecula, J [Ohio State University, Columbus, OH (United States); Mayr, N; Yuh, W [University of Washington, Seattle, WA (United States)

    2015-06-15

    Purpose: The dose–volume histogram (DVH) has been normally accepted as a tool for treatment plan evaluation. However, spatial information is lacking in DVH. As a supplement to the DVH in three-dimensional treatment planning, the differential DVH (DDVH) provides the spatial variation, the size and magnitude of the different dose regions within a region of interest, which can be incorporated into tumor control probability model. This study was to provide a method in evaluating and improving Gamma Knife treatment planning. Methods: 10 patients with brain metastases from different primary tumors including melanoma (#1,#4,#5, #10), breast cancer (#2), prostate cancer (#3) and lung cancer (#6–9) were analyzed. By using Leksell GammaPlan software, two plans were prepared for each patient. Special attention was given to the DDVHs that were different for different plans and were used for a comparison between two plans. Dose distribution inside target and tumor control probability (TCP) based on DDVH were calculated, where cell density and radiobiological parameters were adopted from literature. The plans were compared based on DVH, DDVH and TCP. Results: Using DVH, the coverage and selectivity were the same between plans for 10 patients. DDVH were different between two plans for each patient. The paired t-test showed no significant difference in TCP between the two plans. For brain metastases from melanoma (#1, #4–5), breast cancer (#2) and lung cancer (#6–8), the difference in TCP was less than 5%. But the difference in TCP was about 6.5% for patient #3 with the metastasis from prostate cancer, 10.1% and 178.7% for two patients (#9–10) with metastasis from lung cancer. Conclusion: Although DVH provides average dose–volume information, DDVH provides differential dose– volume information with respect to different regions inside the tumor. TCP provides radiobiological information and adds additional information on improving treatment planning as well as adaptive

  5. A Review of Fully Automated Techniques for Brain Tumor Detection From MR Images

    Directory of Open Access Journals (Sweden)

    Anjum Hayat Gondal

    2013-02-01

    Full Text Available Radiologists use medical images to diagnose diseases precisely. However, identification of brain tumor from medical images is still a critical and complicated job for a radiologist. Brain tumor identification form magnetic resonance imaging (MRI consists of several stages. Segmentation is known to be an essential step in medical imaging classification and analysis. Performing the brain MR images segmentation manually is a difficult task as there are several challenges associated with it. Radiologist and medical experts spend plenty of time for manually segmenting brain MR images, and this is a non-repeatable task. In view of this, an automatic segmentation of brain MR images is needed to correctly segment White Matter (WM, Gray Matter (GM and Cerebrospinal Fluid (CSF tissues of brain in a shorter span of time. The accurate segmentation is crucial as otherwise the wrong identification of disease can lead to severe consequences. Taking into account the aforesaid challenges, this research is focused towards highlighting the strengths and limitations of the earlier proposed segmentation techniques discussed in the contemporary literature. Besides summarizing the literature, the paper also provides a critical evaluation of the surveyed literature which reveals new facets of research. However, articulating a new technique is beyond the scope of this paper.

  6. Risk of brain tumors from wireless phone use.

    Science.gov (United States)

    Dubey, Rash Bihari; Hanmandlu, Madasu; Gupta, Suresh Kumar

    2010-01-01

    The debate regarding the health effects of low-intensity electromagnetic radiation from sources such as power lines, base stations, and cell phones has recently been reignited. Wireless communication has dramatically influenced our lifestyle; its impact on human health has not been completely assessed. Widespread concern continues in the community about the deleterious effects of radiofrequency radiations on human tissues and the subsequent potential threat of carcinogenesis. Exposure to low-frequency electromagnetic field has been linked to a variety of adverse health outcomes. This article surveys the results of early cell phone studies, where exposure duration was too short to expect tumor genesis, and 2 sets of more recent studies with longer exposure duration: the Interphone studies and the Swedish studies led by Hardell.

  7. Development of the Japanese version of the Pediatric Quality of Life Inventory™ Brain Tumor Module

    Directory of Open Access Journals (Sweden)

    Terasaki Mizuhiko

    2010-04-01

    Full Text Available Abstract Background The Pediatric Quality of Life Inventory™ (PedsQL™ is a widely-used modular instrument for measuring health-related quality of life in children aged 2 to 18 years. The PedsQL™ Brain Tumor Module is comprised of six scales: Cognitive Problems, Pain and Hurt, Movement and Balance, Procedural Anxiety, Nausea, and Worry. In the present study, we developed the Japanese version of the PedsQL™ Brain Tumor Module and investigated its feasibility, reliability, and validity among Japanese children and their parents. Methods Translation equivalence and content validity were verified using the standard back-translation method and cognitive debriefing tests. Participants were recruited from 6 hospitals in Japan and the Children's Cancer Association of Japan, and questionnaires were completed by 137 children with brain tumors and 166 parents. Feasibility of the questionnaire was determined based on the amount of time required to complete the form and the percentage of missing values. Internal consistency was assessed using Cronbach's coefficient alpha. Test-retest reliability was assessed by retesting 22 children and 27 parents. Factorial validity was verified by exploratory factor analyses. Known-groups validity was described with regard to whole brain irradiation, developmental impairment, infratentorial tumors, paresis, and concurrent chemotherapy. Convergent and discriminant validity were determined using Generic Core Scales and State-Trait Anxiety Inventory for children. Results Internal consistency was relatively high for all scales (Cronbach's coefficient alpha > 0.70 except the Pain and Hurt scale for the child-report, and sufficient test-retest reliability was demonstrated for all scales (intraclass correlation coefficient = 0.45-0.95. Factorial validity was supported through exploratory factor analysis (factor-item correlation = 0.33-0.96 for children, 0.55-1.00 for parents. Evaluation of known-groups validity confirmed

  8. Obesity and Risk for Brain/CNS Tumors, Gliomas and Meningiomas: A Meta-Analysis.

    Directory of Open Access Journals (Sweden)

    Theodoros N Sergentanis

    Full Text Available This meta-analysis aims to examine the association between being overweight/obese and risk of meningiomas and gliomas as well as overall brain/central nervous system (CNS tumors.Potentially eligible publications were sought in PubMed up to June 30, 2014. Random-effects meta-analysis and dose-response meta-regression analysis was conducted. Cochran Q statistic, I-squared and tau-squared were used for the assessment of between-study heterogeneity. The analysis was performed using Stata/SE version 13 statistical software.A total of 22 studies were eligible, namely 14 cohort studies (10,219 incident brain/CNS tumor cases, 1,319 meningioma and 2,418 glioma cases in a total cohort size of 10,143,803 subjects and eight case-control studies (1,009 brain/CNS cases, 1,977 meningioma cases, 1,265 glioma cases and 8,316 controls. In females, overweight status/obesity was associated with increased risk for overall brain/CNS tumors (pooled RR = 1.12, 95%CI: 1.03-1.21, 10 study arms, meningiomas (pooled RR = 1.27, 95%CI: 1.13-1.43, 16 study arms and gliomas (pooled RR = 1.17, 95%CI: 1.03-1.32, six arms. Obese (BMI>30 kg/m2 females seemed particularly aggravated in terms of brain/CNS tumor (pooled RR = 1.19, 95%CI: 1.05-1.36, six study arms and meningioma risk (pooled RR = 1.48, 95%CI: 1.28-1.71, seven arms. In males, overweight/obesity status correlated with increased meningioma risk (pooled RR = 1.58, 95%CI: 1.22-2.04, nine study arms, whereas the respective association with overall brain/CNS tumor or glioma risk was not statistically significant. Dose-response meta-regression analysis further validated the findings.Our findings highlight obesity as a risk factor for overall brain/CNS tumors, meningiomas and gliomas among females, as well as for meningiomas among males.

  9. Tumorer

    DEFF Research Database (Denmark)

    Prause, J.U.; Heegaard, S.

    2005-01-01

    oftalmologi, øjenlågstumorer, conjunctivale tumorer, malignt melanom, retinoblastom, orbitale tumorer......oftalmologi, øjenlågstumorer, conjunctivale tumorer, malignt melanom, retinoblastom, orbitale tumorer...

  10. Neuroendoscopic Intervention for the Deep Midline Brain Tumors with Secondary Occlusive Hydrocephalus

    Directory of Open Access Journals (Sweden)

    Ulugbek M. Asadullaev

    2015-06-01

    Full Text Available This article analyzes the results of a clinical examination of 102 patients (78/76.47% men and 24/23.53% women with a brain tumor (BT complicated with a secondary obstructive hydrocephalus (SOH. All the patients were divided into 3 groups according to the type of surgery. Group I included 38(37.2% patients who underwent Torkildsen's ventriculocisternostomy. Group II consisted of 34(33.3% patients who underwent endoscopic third ventriculocisternostomy (ETV with simultaneous endoscopic tumor removal. Group III included 30 (29.4% patients who underwent a two-stage intervention: ETV in the first stage, and the endoscopic tumor removal in the second stage. The distinct advantages of EVT with tumor removal in the second stage of the operation were revealed.

  11. Pediatric brain tumors of neuroepithelial tissue; Hirntumoren des neuroepithelialen Gewebes im Kindesalter

    Energy Technology Data Exchange (ETDEWEB)

    Papanagiotou, P.; Politi, M. [Klinikum Bremen-Mitte/Bremen-Ost, Klinik fuer Diagnostische und Interventionelle Neuroradiologie, Bremen (Germany); Bergmann, M. [Klinikum Bremen-Mitte, Institut fuer Klinische Neuropathologie, Bremen (Germany); Pekrun, A. [Klinikum Bremen-Mitte, Klinik fuer Kinder- und Jugendmedizin, paed. Haematologie/Onkologie, Neonatologie, Bremen (Germany); Juergens, K.U. [Klinikum Bremen-Mitte, ZEMODI-Zentrum fuer moderne Diagnostik, MRT, Nuklearmedizin und PET-CT, Bremen (Germany)

    2014-08-15

    Tumors of neuroepithelial tissue represent the largest group of pediatric brain tumors by far and has therefore been divided into several discrete tumor subtypes each corresponding to a specific component of the neuropil. The neuropil contains several subtypes of glial cells, including astrocytes, oligodendrocytes, ependymal cells and modified ependymal cells that form the choroid plexus. This review discusses the imaging aspects of the most common pediatric tumors of neuroepithelial tissue. (orig.) [German] Tumoren des neuroepithelialen Gewebes stellen die mit Abstand groesste Gruppe der paediatrischen Hirntumoren dar und werden je nach deren Ursprung in diversen Subtypen unterteilt. Das Neuropil beinhaltet diverse Subtypen von Gliazellen: Astrozyten, Oligodendrozyten, ependymale Zellen und modifizierte ependymale Zellen, die den Plexus choroideus formen. In diesem Review werden die bildgebenden Aspekte mittels CT und MRT der haeufigsten Tumoren des neuroepithelialen Gewebes diskutiert. (orig.)

  12. Age-related changes of normal adult brain structure: analysed with diffusion tensor imaging

    Institute of Scientific and Technical Information of China (English)

    ZHANG Yun-ting; ZHANG Chun-yan; ZHANG Jing; LI Wei

    2005-01-01

    Background It is known that the brain structure changes with normal aging. The objective of this study was to quantify the anisotropy and average diffusion coefficient (DCavg) of the brain in normal adults to demonstrate the microstructure changes of brain with aging.Methods One hundred and six normal adults were examined with diffusion tensor imaging (DTI). The fractional anisotropy (FA), 1-volume ratio (1-VR), relative anisotropy (RA) and average diffusion coefficient (DCavg) of different anatomic sites of brain were measured, correlated with age and compared among three broad age groups.Results Except in lentiform nucleus, the anisotropy increased and DCavg decreased with aging. Both anisotropy and DCavg of lentiform nucleus increased with aging. The normal reference values of DTI parameters of normal Chinese adult in major anatomic sites were acquired. Conclusions DTI data obtained noninvasively can reflect the microstructural changes with aging. The normal reference values acquired can serve as reference standards in differentiation of brain white matter diseases.

  13. Supratentorial primitive neuroectodermal tumor presenting with intracranial hemorrhage in adult

    Directory of Open Access Journals (Sweden)

    Bashar Abuzayed

    2014-01-01

    Full Text Available A 24-year-old female patient presented with complaints of nausea, vomiting and of loss of consciousness lasted for 15 minutes with left sided weakness. Neuroradiological evaluation revealed a hemorrhagic mass lesion in the right frontal lobe. The patient was operated and intraoperative findings showed a cortical-subcortical hematoma including hemorrhagic and disrupted tissue with a pathologic purple tissue on the periphery of the hematoma. Postoperative course was uneventful and postoperative histopathological examination revealed primitive neuroectodermal tumor. The patient was then referred to medical and radiation oncology clinics for further evaluation and treatment.

  14. Plasticity of cognitive functions before and after awake brain tumor surgery

    Directory of Open Access Journals (Sweden)

    Djaina Satoer

    2015-04-01

    Results: P1 and P2 showed opposite preoperative cognitive profiles. P1 obtained normal cognitive results and P2 had clinically significant impairments in all cognitive domains, (language, memory, attentional and executive deficits (z-score ≥-1.50. P3 and P4 also demonstrate opposite preoperative profiles. P4 obtained intact cognitive results, whereas P3 was impaired in memory and executive functions (z-score ≥-1.50. Intraoperatively, in both P3 and P4 positive language sites were found (left inferior frontal gyrus and left parietal lobe. At 3 months postoperatively, P3 presented language deficits followed by recovery at 12 months, whereas P4 appeared to have recovered at 3 months postoperatively from the observed premorbid impairments in memory and executive functioning (z-score <-1.50. Pathological examination revealed a slow growing brain tumor (low-grade in P1 and P3 and a fast growing brain tumor (high-grade in P2 and P4. Conclusion: In patients with similar brain tumor localizations, we found distinct cognitive profiles, possibly affected by different neural plasticity processes. Preoperatively, a favorable plasticity effect on cognition was found in P1 (temporoparietal area, potentially affected by tumor grade. Preserved cognitive functions was possibly facilitated by the slow growth rate of a low-grade tumor allowing functional reorganization (Mandonnet et al., 2003. However, P2 with a brain tumor in the same area showed preoperative deficits in several domains (language, memory and attention/executive functions. A faster growth rate of a high-grade tumor could have more aggressively affected cognition. In P3 and P4 with the same localization (insula, we found a different effect on the cognitive recovery process; at short term (3 months, improvement of the preoperatively observed cognitive impairments in a low-grade tumor P3, whereas a more gradual functional reorganization was found in language (3-12 months in P4, a high-grade tumor, contrasting Habets

  15. THE SOCIAL ENVIRONMENT AND NEUROGENESIS IN THE ADULT MAMMALIAN BRAIN

    Directory of Open Access Journals (Sweden)

    Claudia eLieberwirth

    2012-05-01

    Full Text Available Adult neurogenesis—the formation of new neurons in adulthood—has been shown to be modulated by a variety of endogenous (e.g., trophic factors, neurotransmitters, and hormones as well as exogenous (e.g., physical activity and environmental complexity factors. Research on exogenous regulators of adult neurogenesis has focused primarily on the non-social environment. Most recently, however, evidence has emerged suggesting that the social environment can also affect adult neurogenesis. The present review details the effects of adult-adult (e.g., mating, conspecific, and chemosensory signal exposure and adult-offspring (e.g., gestation, parenthood, and exposure to offspring interactions on adult neurogenesis. In addition, the effects of a stressful social environment (e.g., lack of social support and dominant-subordinate interactions on adult neurogenesis are reviewed. The underlying hormonal mechanisms and potential functional significance of adult-generated neurons in mediating social behaviors are also discussed.

  16. Utility of resting fMRI and connectivity in patients with brain tumor

    Directory of Open Access Journals (Sweden)

    Sandhya Manglore

    2013-01-01

    Full Text Available Background: Resting state (task independent Functional Magnetic Resonance Imaging (fMRI has opened a new avenue in cognitive studies and has found practical clinical applications. Materials and Methods: Resting fMRI analysis was performed in six patients with brain tumor in the motor cortex. For comparison, task-related mapping of the motor cortex was done. Connectivity analysis to study the connections and strength of the connections between the primary motor cortex, premotor cortex, and primary somatosensory cortex on the affected side was also performed and compared with the contralateral normal side and the controls. Results: Resting fMRI in patients with brain tumor in the motor cortex mapped the motor cortex in a task-free state and the results were comparable to the motor task paradigm. Decreased connectivity on the tumor-affected side was observed, as compared to the unaffected side. Conclusion: Resting fMRI and connectivity analysis are useful in the presurgical evaluation of patients with brain tumors and may help in uncooperative or pediatric patients. They can also prognosticate the postoperative outcome. This method also has significant applications due to the ease of image acquisition.

  17. Killing of Brain Tumor Cells by Hypoxia-Responsive Element Mediated Expression of BAX

    Directory of Open Access Journals (Sweden)

    Hangjun Ruan

    1999-11-01

    Full Text Available The presence of radioresistant hypoxic cells in human brain tumors limits the overall effectiveness of conventional fractionated radiation therapy. Tumor-specific therapies that target hypoxic cells are clearly needed. We have investigated the expression of suicide genes under hypoxia by a hypoxia-responsive element (HRE, which can be activated through hypoxia-inducible factor-1 (HIF-1. We transfected plasmids containing multiple copies of HIRE into U-87 MG and U-251 MG-NCI human brain tumor cells and tested their ability to induce LacZ gene expression under anoxia. Gene expression under anoxia versus oxia was increased about 12-fold for U-87 MG cells and about fourfold for U-251 MG-NCI cells. At intermediate hypoxic conditions, increased LacZ gene expression in U-87 MG cells was induced by the plasmid that contained three HREs, but not by the plasmid with two HREs. Lastly, when we placed a suicide gene BAX under the control of HREs, cells transfected with the BAX plasmids were preferentially killed through apoptosis under anoxia. Our studies demonstrate that HRE-regulated gene expression is active in brain tumor cells, and that the amount of increased gene expression obtained is dependent on the cell line, the HIRE copy number, and the degree of hypoxia.

  18. Occurrence of DNET and other brain tumors in Noonan syndrome warrants caution with growth hormone therapy.

    Science.gov (United States)

    McWilliams, Geoffrey D; SantaCruz, Karen; Hart, Blaine; Clericuzio, Carol

    2016-01-01

    Noonan syndrome (NS) is an autosomal dominant developmental disorder caused by mutations in the RAS-MAPK signaling pathway that is well known for its relationship with oncogenesis. An 8.1-fold increased risk of cancer in Noonan syndrome has been reported, including childhood leukemia and solid tumors. The same study found a patient with a dysembryoplastic neuroepithelial tumor (DNET) and suggested that DNET tumors are associated with NS. Herein we report an 8-year-old boy with genetically confirmed NS and a DNET. Literature review identified eight other reports, supporting the association between NS and DNETs. The review also ascertained 13 non-DNET brain tumors in individuals with NS, bringing to 22 the total number of NS patients with brain tumors. Tumor growth while receiving growth hormone (GH) occurred in our patient and one other patient. It is unknown whether the development or progression of tumors is augmented by GH therapy, however there is concern based on epidemiological, animal and in vitro studies. This issue was addressed in a 2015 Pediatric Endocrine Society report noting there is not enough data available to assess the safety of GH therapy in children with neoplasia-predisposition syndromes. The authors recommend that GH use in children with such disorders, including NS, be undertaken with appropriate surveillance for malignancies. Our case report and literature review underscore the association of NS with CNS tumors, particularly DNET, and call attention to the recommendation that clinicians treating NS patients with GH do so with awareness of the possibility of increased neoplasia risk.

  19. Epigenetics in clinical management of children and adolescents with brain tumors.

    Science.gov (United States)

    Morales La Madrid, Andres; Kieran, Mark W

    2017-02-03

    Central nervous system (CNS) tumors represent the second most prevalent group of cancers in children and adolescents, yet account for the majority of childhood cancer-related deaths and considerable morbidity among survivors, due to high-intensity non-selective standard therapies delivered to immature nervous system structures undergoing development. These tumors arise at different ages -not infrequently very early in life-, in different locations and cellular contexts, have varied cell types of origin, and have heterogeneous responses to the "classic" current therapeutic approaches. Demographic, radiologic and morphological characterization have several limitations, putting into the "classic boxes" heterogeneous tumors that are diverse in their genetic and epigenetic background and that will likely behave biologically differently. Given that epigenetic disruption (i.e. DNA methylation, histone modification and chromatin remodeling) is a common feature identified more and more frequently in pediatric cancer, it is logical to speculate that interrogating epigenetic marks may help to further define the molecular profile, and therefore tumor biology, evolution and treatment of these tumors. An integrated approach that incorporates traditional features complemented with genetic and epigenenetic specific markers offers tremendous promise to "risk-group" stratification and better prognostication. Also, it will help unveil key driver pathways for tumor formation and for the discovery of targeted therapy for neoplasms that appear in the developing brain, facilitating early identification of therapy responders and track accurately disease progression. In this paper, we will review the most representative pediatric brain tumors where epigenetic alterations have been identified as initiating or driving events in tumor development, maintenance or progression.

  20. Functional Assays for Specific Targeting and Delivery of RNA Nanoparticles to Brain Tumor

    Science.gov (United States)

    Lee, Tae Jin; Haque, Farzin; Vieweger, Mario; Yoo, Ji Young; Kaur, Balveen; Guo, Peixuan; Croce, Carlo M.

    2017-01-01

    Cumulative progress in nanoparticle development has opened a new era of targeted delivery of therapeutics to cancer cells and tissue. However, developing proper detection methods has lagged behind resulting in the lack of precise evaluation and monitoring of the systemically administered nanoparticles. RNA nanoparticles derived from the bacteriophage phi29 DNA packaging motor pRNA have emerged as a new generation of drugs for cancer therapy. Multifunctional RNA nanoparticles can be fabricated by bottom-up self-assembly of engineered RNA fragments harboring targeting (RNA aptamer or chemical ligand), therapeutic (siRNA, miRNA, ribozymes, and small molecule drugs), and imaging (fluorophore, radiolabels) modules. We have recently demonstrated that RNA nanoparticles can reach and target intracranial brain tumors in mice upon systemic injection with little or no accumulation in adjacent healthy brain tissues or in major healthy internal organs. Herein, we describe various functional imaging methods (fluorescence confocal microscopy, flow cytometry, fluorescence whole body imaging, and magnetic resonance imaging) to evaluate and monitor RNA nanoparticle targeting to intracranial brain tumors in mice. Such imaging techniques will allow in-depth evaluation of specifically delivered RNA therapeutics to brain tumors. PMID:25896001

  1. Brain tumors and CT scan in infants and children, (1). The impact on pediatric neuroradiology

    Energy Technology Data Exchange (ETDEWEB)

    Ohi, S.; Velasco, J.M. (Northwestern Univ., Chicago, IL (USA). Medical School)

    1980-10-01

    The dramatic change in the neuroradiological procedures have been noted after CT scan was introduced in the last several years. Remarkable decreasing numbers of angiographic, pneumoencephalographic and other invasive neuroradiologic studies as well as nuclear brain scan were also found in the pediatric neuroradiology. The authors analyzed the total numbers of these studies performed in the last several years in pediatric neurological/neurosurgical practice in the light of the impact of CT scan especially in the diagnostic procedures and treatments of brain tumor in children. Although the number of these procedures decreased up to 49% in plain skull X-ray, 54% in cerebral angiography, 70% in pneumoencephalography/ventriculography and 79% in nuclear brain scan after CT scan was installed in our results, it is extremely important to renew understanding of those characteristics in each special procedures. Cerebral angiography as well as pneumoencephalography may give the surgeon more precise ideas of the anatomical relationship between the lesion and other normal structures, especially in the posterior fossa tumor in which CT scan occassionally demonstrates only a gross finding. A case with false negative result and another case with a complicated anatomical structure in CT scan were presented. The significance of cerebral angiography and other invasive studies in the diagnosis and follow up of brain tumor in CT scan were discussed.

  2. Tumor necrosis factor α antibody prevents brain damage of rats with acute necrotizing pancreatitis

    Institute of Scientific and Technical Information of China (English)

    Yan-Ling Yang; Ji-Peng Li; Kai-Zong Li; Ke-Feng Dou

    2004-01-01

    AIM: To study the protective effects of tumor necrosis factor á (TNFα) antibody on pancreatic encephalopathy in rats.METHODS:One hundred and twenty SD rats were randomly divided into normal control group,acute necrotizing pancreatitis group and TNFα antibody treated group.Acute hemorrhage necrotizing pancreatitis model in rats was induced by retrograde injection of 50 g/L sodium taurocholate into the pancreatobiliary duct.Serum TNFα was detected and animals were killed 12 h after drug administration.Changes in content of brain water,MDA and SOD as well as leucocyte adhesion of brain microvessels were measured.RESULTS:In TNFα antibody treated group,serum TNFálevel was decreased.Content of brain water,MDA and SOD as well as leucocyte adhesion were decreased significantly in comparison with those of acute necrotizing pancreatitis group (P<0.05).CONCLUSION:TNFα antibody can alleviate the brain damage of rats with acute hemorrhage necrotizing pancreatitis.

  3. Brain-specific ablation of Efr3a promotes adult hippocampal neurogenesis via the brain-derived neurotrophic factor pathway.

    Science.gov (United States)

    Qian, Qi; Liu, Qiuji; Zhou, Dongming; Pan, Hongyu; Liu, Zhiwei; He, Fangping; Ji, Suying; Wang, Dongpi; Bao, Wangxiao; Liu, Xinyi; Liu, Zhaoling; Zhang, Heng; Zhang, Xiaoqin; Zhang, Ling; Wang, Mingkai; Xu, Ying; Huang, Fude; Luo, Benyan; Sun, Binggui

    2017-02-13

    Efr3 is a newly identified plasma membrane protein and plays an important role in the phosphoinositide metabolism on the plasma membrane. However, although it is highly expressed in the brain, the functional significance of Efr3 in the brain is not clear. In the present study, we generated Efr3a(f/f) mice and then crossed them with Nestin-Cre mice to delete Efr3a, one of the Efr3 isoforms, specifically in the brain. We found that brain-specific ablation of Efr3a promoted adult hippocampal neurogenesis by increasing survival and maturation of newborn neurons without affecting their dendritic tree morphology. Moreover, the brain-derived neurotrophic factor (BDNF)-tropomyosin-related kinase B (TrkB) signaling pathway was significantly enhanced in the hippocampus of Efr3a-deficient mice, as reflected by increased expression of BDNF, TrkB, and the downstream molecules, including phospho-MAPK and phospho-Akt. Furthermore, the number of TUNEL(+) cells was decreased in the subgranular zone of dentate gyrus in Efr3a-deficient mice compared with that of control mice. Our data suggest that brain-specific deletion of Efr3a could promote adult hippocampal neurogenesis, presumably by upregulating the expression of BDNF and its receptor, TrkB, and therefore provide new insight into the roles of Efr3 in the brain.-Qian, Q., Liu, Q., Zhou, D., Pan, H., Liu, Z., He, F., Ji, S., Wang, D., Bao, W., Liu, X., Liu, Z., Zhang, H., Zhang, X., Zhang, L., Wang, M., Xu, Y., Huang, F., Luo, B., Sun B. Brain-specific ablation of Efr3a promotes adult hippocampal neurogenesis via the brain-derived neurotrophic factor pathway.

  4. Risk of thyroid cancer, brain cancer, and non-Hodgkin lymphoma after adult leukemia

    DEFF Research Database (Denmark)

    Nielsen, Sune F; Bojesen, Stig E; Birgens, Henrik S

    2011-01-01

    Patients with childhood leukemia surviving into adulthood have elevated risk of developing thyroid cancer, brain cancer, and non-Hodgkin lymphoma (NHL); these risks cannot automatically be extrapolated to patients surviving adult leukemia. We tested whether survivors of adult leukemia...... are at increased risk of developing thyroid cancer, brain cancer, and NHL. We included the entire adult Danish population (14 years of age or older), in a 28-year follow-up period from 1980 through 2007, composed of 6 542 639 persons; during this period, 18 834 developed adult leukemia, 4561 developed thyroid...... cancer, 13 362 developed brain cancer, and 15 967 developed NHL. In nested studies using Cox regression models on individual participant data, we found that, after adult leukemia, the multivariate adjusted hazard ratios were 4.9 (95% confidence interval [CI], 2.8-8.5) for thyroid cancer, 1.9 (95% CI, 1...

  5. Expression of cysteinyl leukotriene receptors in human traumatic brain injury and brain tumors

    Institute of Scientific and Technical Information of China (English)

    Wei-PingZhang; HuaHu; LeiZhangl; ZhongChen; Er-QingWei

    2004-01-01

    Cysteinyl leukotrienes (CysLTs) are potent proinflammatory mediators. Till now only CysLT receptor 1 (CysLT1) and CysLT receptor 2 (CysLT2) have been cloned. Although the existence of CysLT1 and CysLT2 in the brain has been demonstrated by Northern blot and RT-PCR analyses, the exact location of the receptors in the brain remains unknown. The objective

  6. Thermosensitive PLA based nanodispersion for targeting brain tumor via intranasal route

    Energy Technology Data Exchange (ETDEWEB)

    Jain, Darshana S., E-mail: darshanaj_cup@yahoo.com [C.U. Shah College of Pharmacy, S.N.D.T Women' s University, Juhu Tara Road, Santacruz (West), Mumbai 400 049 (India); Bajaj, Amrita N. [C.U. Shah College of Pharmacy, S.N.D.T Women' s University, Juhu Tara Road, Santacruz (West), Mumbai 400 049 (India); Athawale, Rajani B., E-mail: rajani.athawale@gmail.com [C.U. Shah College of Pharmacy, S.N.D.T Women' s University, Juhu Tara Road, Santacruz (West), Mumbai 400 049 (India); Shikhande, Shruti S. [C.U. Shah College of Pharmacy, S.N.D.T Women' s University, Juhu Tara Road, Santacruz (West), Mumbai 400 049 (India); Pandey, Abhijeet [H. R Patel Institute of Pharmaceutical Education and Research, Shirpur, Maharashtra (India); Goel, Peeyush N.; Gude, Rajiv P. [Gude Lab, Advanced Centre for Treatment, Research & Education in Cancer (ACTREC), Tata Memorial Centre, Kharghar, Navi Mumbai 410 210 (India); Patil, Satish; Raut, Preeti [Cipla Pvt. Ltd., Vikhroli (West), Mumbai (India)

    2016-06-01

    Delivery of drugs to the brain via nasal route has been studied by many researchers. However, low residence time, mucociliary clearance and enzymatically active environment of nasal cavity pose many challenges to successful nasal delivery of drugs. We aim to deliver methotrexate by designing thermosensitive nanodispersion exhibiting enhanced residence time in nasal cavity and bypassing the blood brain barrier (BBB). PLA nanoparticles were developed using solvent evaporation technique. The developed nanoparticles were further dispersed in prepared thermosensitive vehicle of poloxamer 188 and Carbopol 934 to impart the property of increased residence time. The formulated nanoparticles demonstrated no interaction with the simulated nasal fluids (SNF), mucin, serum proteins and erythrocytes which demonstrate the safety of developed formulation for nasal administration. The penetration property of nanoparticles though the nasal mucosa was higher than the pure drug due to low mucociliary clearance. The developed nanoparticles diffused though the membrane pores and rapidly distributed into the brain portions compared to the pure drug. There was detectable and quantifiable amount of drug seen in the brain as demonstrated by in vivo brain distribution studies with considerably low amount of drug deposition in the lungs. The pharmacokinetic parameters demonstrated the enhancement in circulation half life, area under curve (AUC) and Cmax of the drug when administered intranasal in encapsulated form. Thus, the thermosensitive nanodispersions are surely promising delivery systems for delivering anticancer agents though the nasal route for potential treatment of brain tumors. - Highlights: • The present investigation explores intra-nasal route as potential route for targeting brain tumor. • Thermosensitive nanodispersion has been formulated for enhancing nasal residence time. • PLA nanoparticles enhance penetration into the brain owing to hydrophobic nature and small size

  7. Brain edema and tumor necrosis factor-like weak inducer of apoptosis in rats with cerebral ischemia

    Institute of Scientific and Technical Information of China (English)

    Renlan Zhou; Peng Xie

    2008-01-01

    BACKGROUND: Recent studies have demonstrated that tumor necrosis factor-like weak inducer of apoptosis (TWEAK) participates in brain edema. However, it is unclear whether blood-brain barrier (BBB) disruption is associated with TWEAK during the process of brain edema OBJECTIVE: To investigate the effects of TWEAK on BBB permeability in brain edema.DESIGN, TIME AND SETTING: An immunohistochemical observation, randomized, controlled animal experiment was pertbrmed at the Laboratory of Neurosurgical Anatomy, Xiangya Medical College, Central South University & Central Laboratory, Third Xiangya Hospital, Central South University between January 2006 and December 2007.MATERIALS: A total of 48 adult Wistar rats were randomly divided into three groups: normal control (n =8), sham-operated (n = 8), and ischemia/reperfusion (n = 32). Rats from the ischemia/reperfusion group were randomly assigned to four subgroups according to different time points, i.e., 2 hours of ischemia followed by 6 hours (n = 8), 12 hours {n = 8), 1 day (n = 8), or 12 days (n = 8) of reperfusion.METHODS: Focal cerebral ischemia/reperfusion injury was induced by middle cerebral artery occlusion (MCAO) using the suture method in rats from the ischemia/reperfusion group. Thread was introduced at a depth of 17-19 mm. Rats in the sham-operated group were subjected to experimental procedures similar to the ischemia/reperfusion group; however, the introducing depth of thread was 10 mm. The normal control group was not given any intervention.MAIN OUTCOME MEASURES: TWEAK expression was examined by immunohistochemistry; brain water content on the ischemic side was calculated as the ratio of dry to wet tissue weight; BBB permeability was measured by Evans blue extravasation.RESULTS: A total of eight rats died prior to and after surgery and an additional eight rats were randomly entered into the study. Thus 48 rats were included in the final analysis. In the ischemia/reperfusion group,TWEAK-positive cells were

  8. Approaches to improvement of treatment results of malignant tumors in adolescents and young adults

    Directory of Open Access Journals (Sweden)

    A. G. Rumyantsev

    2011-01-01

    Full Text Available This article provides an overview of clinical and biological features of most common malignant tumors in adolescents and young adults. The most effective pediatric and oncological treatment approaches to described diseases based on own experience are summarized.

  9. Doublecortin-like knockdown in the adult mouse brain : implications for neurogenesis, neuroplasticity and behaviour

    NARCIS (Netherlands)

    Saaltink, Dirk-Jan

    2014-01-01

    The results in this thesis showed for the first time doublecortin-like (DCL)-specific expression in the adult mouse brain. Besides the expected regions with the capacity to generate new neurons (hippocampus and olfactory forebrain), DCL expression was found in three novel brain areas namely hypothal

  10. Alpha shape theory for 3D visualization and volumetric measurement of brain tumor progression using magnetic resonance images.

    Science.gov (United States)

    Hamoud Al-Tamimi, Mohammed Sabbih; Sulong, Ghazali; Shuaib, Ibrahim Lutfi

    2015-07-01

    Resection of brain tumors is a tricky task in surgery due to its direct influence on the patients' survival rate. Determining the tumor resection extent for its complete information via-à-vis volume and dimensions in pre- and post-operative Magnetic Resonance Images (MRI) requires accurate estimation and comparison. The active contour segmentation technique is used to segment brain tumors on pre-operative MR images using self-developed software. Tumor volume is acquired from its contours via alpha shape theory. The graphical user interface is developed for rendering, visualizing and estimating the volume of a brain tumor. Internet Brain Segmentation Repository dataset (IBSR) is employed to analyze and determine the repeatability and reproducibility of tumor volume. Accuracy of the method is validated by comparing the estimated volume using the proposed method with that of gold-standard. Segmentation by active contour technique is found to be capable of detecting the brain tumor boundaries. Furthermore, the volume description and visualization enable an interactive examination of tumor tissue and its surrounding. Admirable features of our results demonstrate that alpha shape theory in comparison to other existing standard methods is superior for precise volumetric measurement of tumor.

  11. Tumor diagnosis in the adult liver transplant candidate

    Energy Technology Data Exchange (ETDEWEB)

    Mahfouz, A.E. [Department of Radiology, Humboldt Univ. (Germany)]|[Department of Radiology, Cairo University Hospital, Cairo (Egypt); Vogl, T. [Department of Radiology, Humboldt Univ., Berlin (Germany).; Hamm, B. [Department of Radiology, Humboldt Univ. (Germany)

    1999-06-01

    Hepatic transplantation has emerged as a potentially curative treatment of certain malignant hepatic neoplasms such as hepatocellular carcinoma, bile duct carcinoma, fibrolamellar hepatocellular carcinoma, metastases from neuroendocrine tumors, and epithelioid hemangioendothelioma. In the early years of hepatic transplantation, there was great enthusiasm to cure patients with unresectable hepatobiliary malignancy. This early enthusiasm was tempered by the unfavorable outcome of transplantation in advanced cases of malignancy and the organ-donor shortage. Presently, patients have to be selected with predictable likelihood for long-term survival. Pre-transplantation imaging is indispensable for detection, characterization, staging, and surgical road-mapping before the procedure. The present article focuses on the role of imaging modalities in these different aspects of preoperative assessment. (orig.) With 12 figs., 2 tabs., 66 refs.

  12. Nonrigid Registration of Brain Tumor Resection MR Images Based on Joint Saliency Map and Keypoint Clustering

    Directory of Open Access Journals (Sweden)

    Binjie Qin

    2009-12-01

    Full Text Available This paper proposes a novel global-to-local nonrigid brain MR image registration to compensate for the brain shift and the unmatchable outliers caused by the tumor resection. The mutual information between the corresponding salient structures, which are enhanced by the joint saliency map (JSM, is maximized to achieve a global rigid registration of the two images. Being detected and clustered at the paired contiguous matching areas in the globally registered images, the paired pools of DoG keypoints in combination with the JSM provide a useful cluster-to-cluster correspondence to guide the local control-point correspondence detection and the outlier keypoint rejection. Lastly, a quasi-inverse consistent deformation is smoothly approximated to locally register brain images through the mapping the clustered control points by compact support radial basis functions. The 2D implementation of the method can model the brain shift in brain tumor resection MR images, though the theory holds for the 3D case.

  13. Specific expression profile and prognostic significance of peroxiredoxins in grade II-IV astrocytic brain tumors

    OpenAIRE

    Kinnula Vuokko L; Parkkila Seppo; Kallio Heini; Rodriguez Alejandra; Rantala Immo; Järvelä Sally; Soini Ylermi; Haapasalo Hannu

    2010-01-01

    Abstract Background Peroxiredoxins (Prxs) have recently been suggested to have a role in tumorigenesis. Methods We studied the expression of Prx I-VI and their relationship to patient survival in 383 grade II-IV diffuse astrocytic brain tumors. Results Prx I positivity was found in 68%, Prx II in 84%, Prx III in 90%, Prx IV in 5%, Prx V in 4% and Prx VI in 47% of the tumors. Prx I and Prx II expression decreased significantly with increasing malignancy grade (p < 0.001 and p < 0.001). Patient...

  14. Understanding Specific Effects of Prenatal Alcohol Exposure on Brain Structure in Young Adults

    OpenAIRE

    Chen, Xiangchuan; Coles, Claire D.; Lynch, Mary E; Hu, Xiaoping

    2011-01-01

    Prenatal alcohol exposure (PAE) is associated with various adverse effects on human brain and behavior. Recently, neuroimaging studies have begun to identify PAE effects on specific brain structures. Investigation of such specific PAE effects is important for understanding the teratogenic mechanism of PAE on human brain, which is critical for differentiating PAE from other disorders. In this structural MRI study with young adults, PAE effects on the volumes of automatically segmented cortical...

  15. Diagnostic performance of whole brain volume perfusion CT in intra-axial brain tumors: Preoperative classification accuracy and histopathologic correlation

    Energy Technology Data Exchange (ETDEWEB)

    Xyda, Argyro, E-mail: argyro.xyda@med.uni-goettingen.de [Department of Neuroradiology, Georg-August University, University Hospital of Goettingen, Robert-Koch Strasse 40, 37075 Goettingen (Germany); Department of Radialogy, University Hospital of Heraklion, Voutes, 71110 Heraklion, Crete (Greece); Haberland, Ulrike, E-mail: ulrike.haberland@siemens.com [Siemens AG Healthcare Sector, Computed Tomography, Siemensstr. 1, 91301 Forchheim (Germany); Klotz, Ernst, E-mail: ernst.klotz@siemens.com [Siemens AG Healthcare Sector, Computed Tomography, Siemensstr. 1, 91301 Forchheim (Germany); Jung, Klaus, E-mail: kjung1@uni-goettingen.de [Department of Medical Statistics, Georg-August University, Humboldtallee 32, 37073 Goettingen (Germany); Bock, Hans Christoph, E-mail: cbock@gmx.de [Department of Neurosurgery, Johannes Gutenberg University Hospital of Mainz, Langenbeckstraße 1, 55101 Mainz (Germany); Schramm, Ramona, E-mail: ramona.schramm@med.uni-goettingen.de [Department of Neuroradiology, Georg-August University, University Hospital of Goettingen, Robert-Koch Strasse 40, 37075 Goettingen (Germany); Knauth, Michael, E-mail: michael.knauth@med.uni-goettingen.de [Department of Neuroradiology, Georg-August University, University Hospital of Goettingen, Robert-Koch Strasse 40, 37075 Goettingen (Germany); Schramm, Peter, E-mail: p.schramm@med.uni-goettingen.de [Department of Neuroradiology, Georg-August University, University Hospital of Goettingen, Robert-Koch Strasse 40, 37075 Goettingen (Germany)

    2012-12-15

    Background: To evaluate the preoperative diagnostic power and classification accuracy of perfusion parameters derived from whole brain volume perfusion CT (VPCT) in patients with cerebral tumors. Methods: Sixty-three patients (31 male, 32 female; mean age 55.6 ± 13.9 years), with MRI findings suspected of cerebral lesions, underwent VPCT. Two readers independently evaluated VPCT data. Volumes of interest (VOIs) were marked circumscript around the tumor according to maximum intensity projection volumes, and then mapped automatically onto the cerebral blood volume (CBV), flow (CBF) and permeability Ktrans perfusion datasets. A second VOI was placed in the contra lateral cortex, as control. Correlations among perfusion values, tumor grade, cerebral hemisphere and VOIs were evaluated. Moreover, the diagnostic power of VPCT parameters, by means of positive and negative predictive value, was analyzed. Results: Our cohort included 32 high-grade gliomas WHO III/IV, 18 low-grade I/II, 6 primary cerebral lymphomas, 4 metastases and 3 tumor-like lesions. Ktrans demonstrated the highest sensitivity, specificity and positive predictive value, with a cut-off point of 2.21 mL/100 mL/min, for both the comparisons between high-grade versus low-grade and low-grade versus primary cerebral lymphomas. However, for the differentiation between high-grade and primary cerebral lymphomas, CBF and CBV proved to have 100% specificity and 100% positive predictive value, identifying preoperatively all the histopathologically proven high-grade gliomas. Conclusion: Volumetric perfusion data enable the hemodynamic assessment of the entire tumor extent and provide a method of preoperative differentiation among intra-axial cerebral tumors with promising diagnostic accuracy.

  16. Integration of chemotherapy into current treatment strategies for brain metastases from solid tumors

    Directory of Open Access Journals (Sweden)

    Thamm Reinhard

    2006-06-01

    Full Text Available Abstract Patients with brain metastases represent a heterogeneous group where selection of the most appropriate treatment depends on many patient- and disease-related factors. Eventually, a considerable proportion of patients are treated with palliative approaches such as whole-brain radiotherapy. Whole-brain radiotherapy in combination with chemotherapy has recently gained increasing attention and is hoped to augment the palliative effect of whole-brain radiotherapy alone and to extend survival in certain subsets of patients with controlled extracranial disease and good performance status. The randomized trials of whole-brain radiotherapy vs. whole-brain radiotherapy plus chemotherapy suggest that this concept deserves further study, although they failed to improve survival. However, survival might not be the most relevant endpoint in a condition, where most patients die from extracranial progression. Sometimes, the question arises whether patients with newly detected brain metastases and the indication for systemic treatment of extracranial disease can undergo standard systemic chemotherapy with the option of deferred rather than immediate radiotherapy to the brain. The literature contains numerous small reports on this issue, mainly in malignant melanoma, breast cancer, lung cancer and ovarian cancer, but very few sufficiently powered randomized trials. With chemotherapy alone, response rates were mostly in the order of 20–40%. The choice of chemotherapy regimen is often complicated by previous systemic treatment and takes into account the activity of the drugs in extracranial metastatic disease. Because the blood-brain barrier is partially disrupted in most macroscopic metastases, systemically administered agents can gain access to such tumor sites. Our systematic literature review suggests that both chemotherapy and radiochemotherapy for newly diagnosed brain metastases need further critical evaluation before standard clinical

  17. Development of a Conceptual Model to Predict Physical Activity Participation in Adults with Brain Injuries

    Science.gov (United States)

    Driver, Simon

    2008-01-01

    The purpose was to examine psychosocial factors that influence the physical activity behaviors of adults with brain injuries. Two differing models, based on Harter's model of self-worth, were proposed to examine the relationship between perceived competence, social support, physical self-worth, affect, and motivation. Adults numbering 384 with…

  18. New neurons in the adult brain : The role of sleep and consequences of sleep loss

    NARCIS (Netherlands)

    Meerlo, Peter; Mistiberger, Ralph E.; Jacobs, Barry L.; Heller, H. Craig; McGinty, Dennis; Mistlberger, Ralph E.

    2009-01-01

    Research over the last few decades has firmly established that new neurons are generated in selected areas of the adult mammalian brain, particularly the dentate gyrus of the hippocampal formation and the subventricular zone of the lateral ventricles. The function of adult-born neurons is still a ma

  19. Diagnosis of Malignancy of Adult Mediastinal Tumors by Conventional and Transesophageal Echocardiography

    Institute of Scientific and Technical Information of China (English)

    Wei-Wei Zhou; Hong-Wei Wang; Nan-Nan Liu; Jing-Jing Li; Wei Yuan; Rui Zhao; Liang-Bi Xiang

    2015-01-01

    Background:Transesophageal echocardiography (TEE) is a well-established method for detecting and diagnosing heart tumors.In contrast,its role in assessing the presence,growth and evidence of malignant tumors originating from mediastinal sites remains unclear.The aim of this study was to compare the diagnostic impact of TEE and transthoracic echocardiography (TTE) for determining the localization,growth and malignancy of adult mediastinal tumors (MTs).Methods:In a prospective and investigator-blinded study,we evaluated 144 consecutive patients with MT lesions to assess the diagnostic impact of TEE and TTE for detecting the presence of tumors spreading both inside and outside of the heart and for determining infiltration and invasion using pathological examination results as a reference.Results:All tumor lesions were diagnosed and carefully evaluated by biopsy.Biopsy revealed malignant tumors in 79 patients and benign tumors in 65 patients.When compared to histological findings,TEE predicted malignancy from the presence of tumors spreading both inside and outside of the heart and from infiltration and invasion in 49/79 patients (62.0%).TTE predicted malignancy in only 8/79 patients (10.1%,P < 0.005).TEE visualized tumor lesions in 130 patients (90.3%) while the TTE visualized tumor lesions in 110 patients (76.4%) and was less effective at detecting MT lesions (P < 0.001).TTE and TEE could detect anterior MTs and adequately verified MTs (P > 0.05);TEE detected medium MTs better than TTE (P < 0.001).Conclusions:TEE is effective and superior to TTE for predicting the localization and growth of MTs as well as for accessing evidence of tumor malignancy.TTE and TEE were able to detect anterior MTs;TEE was able to detect medium MT better than TTE.

  20. Establishment of 9L/F344 rat intracerebral glioma model of brain tumor stem cells

    Directory of Open Access Journals (Sweden)

    Zong-yu XIAO

    2015-04-01

    Full Text Available Objective To establish the 9L/F344 rat intracerebral glioma model of brain