WorldWideScience

Sample records for adsorption mtsa subassembly

  1. Modeling Of Metabolic Heat Regenerated Temperature Swing Adsorption (MTSA) Subassembly For Prototype Design

    Science.gov (United States)

    Bower, Chad E.; Padilla, Sebastian A.; Iacomini, Christie S.; Paul, Heather L.

    2010-01-01

    This paper describes modeling methods for the three core components of a Metabolic heat regenerated Temperature Swing Adsorption (MTSA) subassembly: a sorbent bed, a sublimation (cooling) heat exchanger (SHX), and a condensing icing (warming) heat exchanger (CIHX). The primary function of the MTSA, removing carbon dioxide from a space suit Portable Life Support System (PLSS) ventilation loop, is performed via the sorbent bed. The CIHX is used to heat the sorbent bed for desorption and to remove moisture from the ventilation loop while the SHX is alternately employed to cool the sorbent bed via sublimation of a spray of water at low pressure to prepare the reconditioned bed for the next cycle. This paper describes subsystem heat a mass transfer modeling methodologies relevant to the description of the MTSA subassembly in Thermal Desktop and SINDA/FLUINT. Several areas of particular modeling interest are discussed. In the sorbent bed, capture of the translating carbon dioxide (CO2) front and associated local energy and mass balance in both adsorbing and desorbing modes is covered. The CIHX poses particular challenges for modeling in SINDA/FLUINT as accounting for solids states in fluid submodels are not a native capability. Methods for capturing phase change and latent heat of ice as well as the transport properties across a layer of low density accreted frost are developed. This extended modeling capacity is applicable to temperatures greater than 258 K. To extend applicability to the minimum device temperature of 235 K, a method for a mapped transformation of temperatures from below the limit temperatures to some value above is given along with descriptions for associated material property transformations and the resulting impacts to total heat and mass transfer. Similar considerations are given for the SHX along with functional relationships for areal sublimation rates as limited by flow mechanics in t1he outlet duct.

  2. Simulated Lunar Testing of Metabolic Heat Regenerated Temperature Swing Adsorption

    Science.gov (United States)

    Padilla, Sebastian A.; Bower, Chad E.; Iacomini, Christie S.; Paul, Heather L.

    2012-01-01

    Metabolic heat regenerated Temperature Swing Adsorption (MTSA) technology is being developed for thermal and carbon dioxide (CO2) control for a Portable Life Support System (PLSS), as well as water recycling. An Engineering Development Unit (EDU) of the MTSA Subassembly (MTSAS) was designed and assembled for optimized Martian operations, but also meets system requirements for lunar operations. For lunar operations the MTSA sorption cycle is driven via a vacuum swing between suit ventilation loop pressure and lunar vacuum. The focus of this effort was testing in a simulated lunar environment. This environment was simulated in Paragon's EHF vacuum chamber. The objective of the testing was to evaluate the full cycle performance of the MTSA Subassembly EDU, and to assess CO2 loading and pressure drop of the wash coated aluminum reticulated foam sorbent bed. Lunar environment testing proved out the feasibility of pure vacuum swing operation, making MTSA a technology that can be tested and used on the Moon prior to going to Mars. Testing demonstrated better than expected CO2 Nomenclature loading on the sorbent and nearly replicates the equilibrium data from the sorbent manufacturer. This exceeded any of the previous sorbent loading tests performed by Paragon. Subsequently, the increased performance of the sorbent bed design indicates future designs will require less mass and volume than the current EDU rendering MTSA as very competitive for Martian PLSS applications.

  3. Simulated Lunar Testing of Metabolic Heat Regenerated Temperature Swing Adsorption Technology

    Science.gov (United States)

    Padilla, Sebastian A.; Bower, Chad; Iacomini, Christie S.; Paul, H.

    2011-01-01

    Metabolic heat regenerated Temperature Swing Adsorption (MTSA) technology is being developed for thermal and carbon dioxide (CO2) control for a Portable Life Support System (PLSS), as well as water recycling. An Engineering Development Unit (EDU) of the MTSA subassembly was designed and assembled for optimized Martian operations, but also meets system requirements for lunar operations. For lunar operations the MTSA sorption cycle is driven via a vacuum swing between suit ventilation loop pressure and lunar vacuum. The focus of this effort is operations and testing in a simulated lunar environment. This environment was simulated in Paragon s EHF vacuum chamber. The objective of this testing was to evaluate the full cycle performance of the MTSA Subassembly EDU, and to assess CO2 loading and pressure drop of the wash coated aluminum reticulated foam sorbent bed. The lunar testing proved out the feasibility of pure vacuum swing operation, making MTSA a technology that can be tested and used on the Moon prior to going to Mars. Testing demonstrated better than expected CO2 loading on the sorbent and nearly replicates the equilibrium data from the sorbent manufacturer. This had not been achieved in any of the previous sorbent loading tests performed by Paragon. Subsequently, the increased performance of the sorbent bed design indicates future designs will require less mass and volume than the current EDU rendering MTSA as very competitive for Martian PLSS applications.

  4. Investigation of Condensing Ice Heat Exchangers for MTSA Technology Development

    Science.gov (United States)

    Padilla, Sebastian; Powers, Aaron; Ball, Tyler; Lacomini, Christie; Paul, Heather L.

    2009-01-01

    Metabolic heat regenerated Temperature Swing Adsorption (MTSA) technology is being developed for thermal, carbon dioxide (CO2) and humidity control for a Portable Life Support Subsystem (PLSS). Metabolically-produced CO2 present in the ventilation gas of a PLSS is collected using a CO2-selective adsorbent via temperature swing adsorption. The temperature swing is initiated through cooling to well below metabolic temperatures. Cooling is achieved with a sublimation heat exchanger using water or liquid carbon dioxide (L CO2) expanded below sublimation temperature when exposed to low pressure or vacuum. Subsequent super heated vapor, as well as additional coolant, is used to further cool the astronaut. The temperature swing on the adsorbent is then completed by warming the adsorbent with a separate condensing ice heat exchanger (CIHX) using metabolic heat from moist ventilation gas. The condensed humidity in the ventilation gas is recycled at the habitat. The water condensation from the ventilation gas represents a significant source of potential energy for the warming of the adsorbent bed as it represents as much as half of the energy potential in the moist ventilation gas. Designing a heat exchanger to efficiently transfer this energy to the adsorbent bed and allow the collection of the water is a challenge since the CIHX will operate in a temperature range from 210K to 280K. The ventilation gas moisture will first freeze and then thaw, sometimes existing in three phases simultaneously.

  5. Investigating Liquid CO2 as a Coolant for a MTSA Heat Exchanger Design

    Science.gov (United States)

    Paul, Heather L.; Padilla, Sebastian; Powers, Aaron; Iacomini, Christie

    2009-01-01

    Metabolic heat regenerated Temperature Swing Adsorption (MTSA) technology is being developed for thermal and carbon dioxide (CO 2) control for a future Portable Life Support System (PLSS), as well as water recycling. CO 2 removal and rejection is accomplished by driving a sorbent through a temperature swing of approximately 210 K to 280 K . The sorbent is cooled to these sub-freezing temperatures by a Sublimating Heat Exchanger (SHX) with liquid coolant expanded to sublimation temperatures. Water is the baseline coolant available on the moon, and if used, provides a competitive solution to the current baseline PLSS schematic. Liquid CO2 (LCO2) is another non-cryogenic coolant readily available from Martian resources which can be produced and stored using relatively low power and minimal infrastructure. LCO 2 expands from high pressure liquid (5800 kPa) to Mars ambient (0.8 kPa) to produce a gas / solid mixture at temperatures as low as 156 K. Analysis and experimental work are presented to investigate factors that drive the design of a heat exchanger to effectively use this sink. Emphasis is given to enabling efficient use of the CO 2 cooling potential and mitigation of heat exchanger clogging due to solid formation. Minimizing mass and size as well as coolant delivery are also considered. The analysis and experimental work is specifically performed in an MTSA-like application to enable higher fidelity modeling for future optimization of a SHX design. In doing so, the work also demonstrates principles and concepts so that the design can be further optimized later in integrated applications (including Lunar application where water might be a choice of coolant).

  6. Metabolic Heat Regenerated Temperature Swing Adsorption for CO2, Thermal and Humidity Control Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Metabolic heat regenerated Temperature Swing Adsorption (MTSA) technology is proposed for a Portable Life Support System to remove and reject heat and carbon...

  7. PFBR subassemblies - materials, machining and welding experience

    International Nuclear Information System (INIS)

    Nuclear Fuel Complex (NFC) has contributed immensely in variety of activities related to successful operation of 13 MWe Fast Breeder Test Reactor (FBTR) and the up coming 500 MWe Prototype Fast Breeder Reactor (PFBR) at Kalpakkam. Raw material with the stringent specifications like chemical, mechanical and metallurgical properties of special grade materials like D9, SS 316LN, 9Cr-1Mo steels etc. are required for PFBR subassemblies. PFBR Subassemblies are highly component specific. The materials from which different components for subassemblies are manufactured are not easily machine able. Large number of components involving precision machining are required for various types of subassemblies for PFBR. The intricacies and the tolerances call for specialized machining and welding techniques, involving special grade tool materials, jigs and fixtures, requiring manufacturing through special purpose machines. Machining of some of the critical components of PFBR like fuel clad tubes, end plugs, hexcans, handling head etc. for Fuel Subassemblies (FSA) and the components like Piston, dash pot cylinder, hard faced parts etc. of Control/Diverse Safety Rod (CSR/DSR) Subassemblies were machined successfully and manufactured for the first time for various type testing. Manufacturing capability of Indian industry was made use of effectively for precision components. Indigenous Design, development and fabrication of Special Purpose Machines for variety of assembly and fabrication operations was mastered including optimization of process parameters and quality control techniques. Welding operations typical to PFBR component fabrication were developed in-house successfully with the help of fixtures and tooling specifically developed for this purpose. Some of them are: a) GTA Welding of Clad Tubes to End Plugs, b) GTA Welding of Coolant Entry Tube to Discriminator and Foot Upper part, c) GTA Welding of Hexagonal Tube to Foot Upper Part and Handling Head, d) Wire Wrapping and Spot

  8. Reactor core calculations incorporating subassembly thermal hydraulics

    Energy Technology Data Exchange (ETDEWEB)

    Lynas, S.W. [Applied Modelling and Computation Group Imperial Coll. Centre for Environmental Technology Royal School of Mines Prince Consort Road London (United Kingdom); Jones, J.R.

    1997-12-31

    Three dimensional reactor physics calculations performed in parallel with subassembly thermal hydraulic analysis can be used to examine local reactivity effects and increase modelling accuracy. Coupling together codes for coarse mesh neutronics and subassembly thermal hydraulics aids fault studies (fuel clad integrity, safety margin indication etc) and the examination of the interaction between physics and thermal hydraulics during transient events such as LOCA, boron dilution and control rod ejection. Local heating of the coolant decreases reactivity and the fission power peaking factor. Doppler feedback is stronger in the hot region of the fuel, also reducing peak power and reactivity. These thermal hydraulic feedback effects can play an important role in decelerating power excursions and their representation is described in this paper. (author)

  9. Reactor core calculations incorporating subassembly thermal hydraulics

    International Nuclear Information System (INIS)

    Three dimensional reactor physics calculations performed in parallel with subassembly thermal hydraulic analysis can be used to examine local reactivity effects and increase modelling accuracy. Coupling together codes for coarse mesh neutronics and subassembly thermal hydraulics aids fault studies (fuel clad integrity, safety margin indication etc) and the examination of the interaction between physics and thermal hydraulics during transient events such as LOCA, boron dilution and control rod ejection. Local heating of the coolant decreases reactivity and the fission power peaking factor. Doppler feedback is stronger in the hot region of the fuel, also reducing peak power and reactivity. These thermal hydraulic feedback effects can play an important role in decelerating power excursions and their representation is described in this paper. (author)

  10. Analysis of local subassembly accident in KALIMER

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, Young Min; Jeong, Kwan Seong; Hahn, Do Hee

    2000-10-01

    Subassembly Accidents (S-A) in the Liquid Metal Reactor (LMR) may cause extensive clad and fuel melting and are thus regarded as a potential whole core accident initiator. The possibility of S-A occurrence must be very low frequency by the design features, and reactor must have specific instrumentation to interrupt the S-A sequences by causing a reactor shutdown. The evaluation of the relevant initiators, the event sequences which follow them, and their detection are the essence of the safety issue. Particularly, the phenomena of flow blockage caused by foreign materials and/or the debris from the failed fuel pin have been researched world-widely. The foreign strategies for dealing with the S-A and the associated safety issues with experimental and theoretical R and D results are reviewed. This report aims at obtaining information to reasonably evaluate the thermal-hydraulic effect of S-A for a wire-wrapped LMR fuel pin bundle. The mechanism of blockage formation and growth within a pin bundle and at the subassembly entrance is reviewed in the phenomenological aspect. Knowledge about the recent LMR subassembly design and operation procedure to prevent flow blockage will be reflected for KALIMER design later. The blockage analysis method including computer codes and related analytical models are reviewed. Especially SABRE4 code is discussed in detail. Preliminary analyses of flow blockage within a 271-pin driver subassembly have been performed using the SABRE4 computer code. As a result no sodium boiling occurred for the central 24-subchannel blockage as well as 6-subchannel blockage.

  11. Coincidence measurements of FFTF breeder fuel subassemblies

    International Nuclear Information System (INIS)

    A prototype coincidence counter developed to assay fast breeder reactor fuel was used to measure four fast-flux test facility subassemblies at the Hanford Engineering Development Laboratory in Richland, Washington. Plutonium contents in the four subassemblies ranged between 7.4 and 9.7 kg with corresponding 240Pu-effective contents between 0.9 and 1.2 kg. Large count rates were observed from the measurements, and plots of the data showed significant multiplication in the fuel. The measured data were corrected for deadtime and multiplication effects using established formulas. These corrections require accurate knowledge of the plutonium isotopics and 241Am content in the fuel. Multiplication-corrected coincidence count rates agreed with the expected count rates based on spontaneous fission-neutron emission rates. These measurements indicate that breeder fuel subassemblies with 240Pu-effective contents up to 1.2 kg can be nondestructively assayed using the shift-register electronics with the prototype counters. Measurements using the standard Los Alamos National Laboratory shift-register coincidence electronics unit can produce an assay value accurate to +-1% in 1000 s. The uncertainty results from counting statistics and deadtime-correction errors. 3 references, 8 figures, 8 tables

  12. Detectability limits of rapid inlet blockages in high powered subassemblies of the PEC reactor

    International Nuclear Information System (INIS)

    The capability of the subassembly coolant outlet temperature monitoring system to detect a rapid inlet blockage formation in single subassemblies of the PEC reactor core has been analyzed with the BLOW-3A code parametrically. After detection reactor shut down is initiated. In worst cases the subassembly concerned will be partially destroyed at the time of detection but safe reactor shut down would be achieved in due time. A thermally induced propagation to neighbouring subassemblies is not expected to occur. (author)

  13. The Conceptual Design of the 40 .deg. C Sector Sub-assembly Process and Tools

    International Nuclear Information System (INIS)

    The ITER tokamak assembly tools are purpose-built tools to complete the ITER tokamak machine which includes the cryostat and the components contained therein. Based on the design description document prepared by the ITER organization, Korea has carried out the conceptual design of assembly tools. Basically, the ITER assembly tools are classified into 5 groups according to machine assembly procedures such as lower cryostat activities, sector subassembly, sector assembly, ex-vessel activities and in vessel activities. The conceptual design of the main tools for lower cryostat activities, sector sub-assembly, sector assembly and ex-vessel activities has been developed to satisfy the ITER basic assembly concept. The upending tool, the sector sub-assembly tool, the sector lifting tool and the vacuum vessel support and bracing tool for the sector sub-assembly procedures have been developed and are described in this paper

  14. Studies on the mechanics of fuel rods and fuel subassemblies - studies on the simulation irradiation project

    International Nuclear Information System (INIS)

    This report includes eight single papers which are a report of activities performed at the IRT on the mechanics of fuel rods and fuel subassemblies and on the Simulation Irradiation Project. (orig./HP)

  15. Study on mixed convective flow penetration into subassembly from reactor hot plenum in FBRs

    Energy Technology Data Exchange (ETDEWEB)

    Kobayashi, J.; Ohshima, H.; Kamide, H.; Ieda, Y. [Power Reactor and Nuclear Fuel Development Corporation, Ibaraki (Japan)

    1995-09-01

    Fundamental experiments using water were carried out in order to reveal the phenomenon of mixed convective flow penetration into subassemblies from a reactor`s upper plenum of fast breeder reactors. This phenomenon appears under a certain natural circulation conditions during the operation of the direct reactor auxiliary cooling system for decay heat removal and might influence the natural circulation head which determines the core flow rate and therefore affects the core coolability. In the experiment, a simplified model which simulates an upper plenum and a subassembly was used and the ultrasonic velocity profile monitor as well as thermocouples were applied for the simultaneous measurement of velocity and temperature distributions in the subassembly. From the measured data, empirical equations related to the penetration flow onset condition and the penetration depth were obtained using relevant parameters which were derived from dimensional analysis.

  16. System for nondestructive assay of spent fuel subassemblies: comparison of calculations and measurements

    International Nuclear Information System (INIS)

    A nondestructive assay system was developed for determining the total fissile content of spent fuel subassemblies at the head end of a reprocessing plant. The system can perform an assay in 20 min with an uncertainty of <5%. Antimony-beryllium neutrons interrogate the subassemblies, and proton recoil counters detect the resulting fission neutrons. Pulse-height discrimination differentiates between the low-energy interrogation neutrons and the higher-energy fission neutrons. Calculated and measured results were compared for (1) interrogation-neutron penetrability, (2) fission-neutron detectability, (3) radial variation of assay sensitivity, (4) axial variation of assay sensitivity, and (5) the variation of detector count rate as a function of the number of fuel rods in a special 61-rod, LMFBR-type subassembly

  17. An analytical tool for PIN contact incident of LMFBR fuel-subassembly

    Energy Technology Data Exchange (ETDEWEB)

    Miyakoshi, Hiroyuki; Haga, Kazuo [Nuclear Power Engineering Corp., Tokyo (Japan)

    1997-12-01

    A subchannel computer code COBRA-41 was modified for LMFBR local faults analysis. Calculational results to a pin contact condition were compared with experimental ones and trial calculations were made to an LMFBR fuel-subassembly geometry. 8 refs., 8 figs., 2 tabs.

  18. Experimental study of temperature field at fast reactor subassembly exit under drastic changes of coolant temperature

    International Nuclear Information System (INIS)

    Failure conditions due to dangerous increasing in power or flow rate drop are the most hazardous in terms of the rise of thermal stresses. Initial rise in temperature may run to 100 C and more. Sodium temperature at the subassembly inlet is varied according to definite time constant which is equal to fuel pin time constant (about 2 sec), that is below the time constant for massive part of subassembly head (4-10 sec). Thus, variations in sodium temperature are, for subassembly head, almost momentary and bring about maximal thermal stresses. Experiments on transient temperature behavior in subassembly head under thermal impact conditions have been performed on the model. Magnitude of temperature has been measured in two cross sections by chromel-alumel thermocouples bond in the middle of the wall, at its outer surface and in the coolant flow for distance of 3 mm from the wall. To measure temperature difference between middle of the wall and its surface fast differential thermocouples chromel-sodium-potassium have been used

  19. Challenges in the Manufacture of Sub-Assemblies for the Indian Fast Reactors

    International Nuclear Information System (INIS)

    Presently NFC is manufacturing the 1st core subassemblies for PFBR. NFC is responsible for manufacturing all types of core subassemblies except for fuel pellets and its encapsulation. This involved development and manufacture of high quality nuclear grade clad tubes and hexcans through cold pilgering route, variety of large number of precision components and complete blanket and other pin manufacturing operations. Indigenous design, development and fabrication of Special Purpose Machines for variety of assembly and fabrication operations were mastered. Optimization of process parameters and quality control techniques, etc., was successfully completed. NFC has manufactured 40% of requirement of all types of replacement and shielding subassemblies for PFBR 1st core. The enormous experience gained by NFC, has given the confidence to meet any future requirements of Fast Reactors, under second stage of Indian Nuclear Power programme by DAE. The paper gives the details of various aspects of different technologies developed at NFC for the manufacture of high performance components and subassemblies for Indian Fast reactor applications. (author)

  20. Experiences with procurement of 316LN steel and machining of components for PFBR subassemblies

    International Nuclear Information System (INIS)

    The manufacture of PFBR core subassemblies requires the bulk procurement of 316LN stainless steel as almost all the subassembly components except the wrapper and the clad tubes are made of this material. The material specification of SS 316LN specified for PFBR core subassemblies is quite stringent than that of AISI/ASTM standard specifications for 316LN as the chemical composition range for different elements are narrowed down to very small margins with addition of ranges for a few extra elements like Niobium, Titanium, Copper, Cobalt and Boron. Also additional requirements of high temperature yield strength, inclusion content, ferrite content, grain size are specified which are difficult to be met. Eddy Current Testing and Ultrasonic Testing methods with tight specifications are recommended as quality checks. Both overseas and indigenous sources for manufacture and supply of the material were developed for the first time. To meet the immediate requirement overseas sources were identified, however, for long term continuous future requirement indigenous sources also were developed. Machining of PFBR subassembly components having intricate profile with high degree of dimensional and geometrical tolerances requirement from SS 316LN also posed several challenges like continuous chip formation because o flow sulfur content. Coated Carbide tool inserts were used to overcome the problem. Higher strength of the material necessitated reduction in the feed rate of machining which made the process slow. The above problems contributed heavily towards the higher cost of material as well as machining. All the problems incurred in the first time procurement and machining of SS 316LN material were successfully overcome and the PFBR core subassemblies are being supplied to BHAVINI. (author)

  1. Low-Cost High-Performance 10 G Transmitter and Receiver Optical Subassembly

    Institute of Scientific and Technical Information of China (English)

    K.S.; Cheng; E.; Cheung; R.; Cheung; S.; Cheung; A.; Chow; C.W.; Fan; H.W.; Ho; A.; Hui; M.W.K.; Mak; S.K.; Lam; S.L.; Lau; K.S.; Lee; A.; Siu; S.K.; Yau; F.; Tong

    2003-01-01

    We describe briefly here the recent R&D activities in the optical subassembly packaging technologies at the Hong Kong Applied Science and Technology Research Institute (ASTRI). We have designed, developed and prototyped multiple of low-cost high performance packages for serial and parallel transmitters and receivers, in particular, the novel chip-in-plastic (CiP) package designed for 10G serial transmission for data communications.

  2. Structural response of reactor-core hexcan subassemblies subjected to dynamic overpressurization under accident conditions

    International Nuclear Information System (INIS)

    This paper presents a two-dimensional structural analysis for the evaluation of a single core subassembly due to internal overpressure associated with possible failure of fuel pins having high fission gas plenum pressure. Structural models are developed for the subassemblies and their surroundings with emphasis on the critical physical aspects of the problem. With these models the strains, deformations and the extent of permanent damage (plastic strain) to the subassemblies can be assessed. The nonlinear structural analyses was performed with a finite element program called STRAW (Structural Transient Response of Assembly Wrappers). This finite element program is applicable to nonlinear large displacement problems. The results of this study indicate that the permanent deformation (damage) is strongly influenced by the rise time (time to reach peak pressure) of the pressure pulse and the pressure in the fuel pin. The rise time is influenced by the opening time of the flow path for release of gas from the fuel pin plenum. Several examples are illustrated with various rise times and pressure magnitudes and the resulting permanent deformation of the hexcan wall

  3. Subassembly experiments and a computer code to analyze the dynamic core deformation during local failure propagation

    International Nuclear Information System (INIS)

    Safety investigations for LMFBRs have to consider local failure situations in one fuel element which may escalate to a hypothetical CDA. Such initiating events could produce high pressure pulses in a single subassembly which may expand and rupture the wrapper as well as load adjacent elements impulsively. The associated nonlinear dynamic core deformation problem is treated in this paper. In particular the multirow structural dynamics code COERE-1 and underlying mechanical models are described. Each subassembly is simulated by an equivalent system of point masses and nonlinear coupling springs. The motion of the coolant layer between the elements is treated by an incompressible, non-stationary frictional flow model. In order to obtain realistic code input four types of static single subassembly deformation experiments are described which provided strongly nonlinear load deformation characteristics. Furthermore the transient pressure distribution within the core is obtained from a full scale explosion test. Finally code application is demonstrated and results are given of a transient analysis of the SNR 300 core. (Auth.)

  4. Preliminary validation of the MATRA-LMR-FB code for the flow blockage in a subassembly

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, H. Y.; Ha, K. S.; Kwon, Y. M.; Chang, W. P.; Lee, Y. B.; Heo, S

    2005-01-01

    To analyze the flow blockage in a subassembly of a Liquid Metal-cooled Reactor (LMR), the MATRA-LMR-FB code has been developed and validated for the existing experimental data. Compared to the MATRA-LMR code, which had been successfully applied for the core thermal-hydraulic design of KALIMER, the MATRA-LMR-FB code includes some advanced modeling features. Firstly, the Distributed Resistance Model (DRM), which enables a very accurate description of the effects of wire-wrap and blockage in a flow path, is developed for the MATRA-LMR-FB code. Secondly, the hybrid difference method is used to minimize the numerical diffusion especially at the low flow region such as recirculating wakes after blockage. In addition, the code is equipped with various turbulent mixing models to describe the active mixing due to the turbulent motions as accurate as possible. For the validation of the MATRA-LMR-FB code the ORNL THORS test and KOS 169-pin test are analyzed. Based on the analysis results for the temperature data, the accuracy of the code is evaluated quantitatively. The MATRA-LMR-FB code predicts very accurately the exit temperatures measured in the subassembly with wire-wrap. However, the predicted temperatures for the experiment with spacer grid show some deviations from the measured. To enhance the accuracy of the MATRA-LMR-FB for the flow path with grid spacers, it is suggested to improve the models for pressure loss due to spacer grid and the modeling method for blockage itself. The developed MATRA-LMR-FB code is evaluated to be applied to the flow blockage analysis of KALIMER-600 which adopts the wire-wrapped subassemblies.

  5. Parametric study of the nonlinear behavior of complete LMFBR subassemblies using the CORTRAN computer code

    International Nuclear Information System (INIS)

    The paper emphasizes the computational aspects of combined analytical-experimental investigations concerning dynamic elastoplastic deformation of a single fuel subassembly under transverse pressure loading. To simulate the situation within a fast reactor core during a postulated local vapor explosion the cushioning effect of the thin sodium layers between subassemblies has to be included. Therefore a new computer code CORTRAN was developed which combines both a one-dimensional axial squeeze flow model as well as a variable cross-section Timoshenko beam model. The paper outlines the salient features of these computational schemes. In particular, different types of dynamic plastic material behavior formulations like the implementation of various hardening rules (e.g. isotropic, kinematic) and a newly proposed catastrophe-theoretic interpretation of strain-rate dependent dynamic unloading are discussed. As applications to fast reactor safety analysis typical results of parametric studies which show the influence of some relevant energy sources (load histories), fluid support conditions or material data on structural damage are compared with experimental findings

  6. A concept of prospective sodium fast reactor with ductless fuel subassemblies in the core

    Energy Technology Data Exchange (ETDEWEB)

    Sedov, A.A.; Alekseev, P.N.; Fomichenko, P.A.; Ponomarev-Stepnoy, N.N.; Proshkin, A.A.; Ponomarev, A.S.; Stukalov, V.A. [Russian Research Center, Kurchatov Institute, Moscow (Russian Federation)

    2007-07-01

    The Kurchatov Institute studies the concept of a sodium fast reactor (SFR) with advanced core design, which is based on the following principle technique solutions: -) application of ductless fuel subassemblies with wide lattice of fuel rods of increased diameter and spaced by grids; -) the usage of dense U-Pu ceramic fuel and low-nickel steels, and -) application of cluster-type control and protection system. Preconceptual studies have shown, that SFR with advanced core design is 3 times more effective in the fuel consumption than project BN-800 reactor due to better neutron balance in the core and CBR (core breeding ratio) {approx} 1, provides getting quite high burn-up of the core fuel (Bmax {approx} 15-20 % of heavy atoms), increases fuel life up to 7-8 years at specific loading of fissile nuclides in the core less than 5 t/GW, decreases electricity demand for pumping the primary coolant (due to low hydraulic resistance of the core) and has bigger safety potential in accidents than the core with traditional liquid metal fast reactor design (due to low core reactivity margin, high level of natural circulation and subassemblies hydraulic interaction). In the paper the main results of preconceptual feasibility study of SFR with advanced core design are presented and discussed with a focus on technique and economic aspects. Some of characteristic features of core neutron physics, thermal hydraulics and fuel rod thermal mechanics behavior are displayed and discussed as well. (authors)

  7. 化脓链球菌中铁结合蛋白MtsA二级结构的研究%The Secondery Structure Study of Iron-binding Protein MtsA from Streptococcus pyogenes

    Institute of Scientific and Technical Information of China (English)

    王红翠; 张静; 徐倩; 许丽娜; 王南杰; 孙雪松

    2012-01-01

    化脓性链球菌是一种革兰氏阳性人类致病菌,其生长和感染离不开铁离子.MtsA是化脓链球菌中直接结合铁离子的一个脂蛋白.通过PCR扩增化脓性链球菌MGAS5005中的MtsA基因,构建高效表达质粒pGEX-MtsA,将其转化到大肠杆菌BL21中并用IPTG进行诱导表达.利用亲和层析方法纯化表达产物.通过多序列比对分析了MtsA铁结合中心的保守性,利用定点突变技术将MtsA的结合配体单位点及多位点进行突变,结合圆二色谱分析这些氨基酸突变后蛋白二级结构的变化.多序列比对结果表明MtsA结合铁离子的氨基酸位点是保守的,4个关键氨基酸位点处于蛋白空间的凹陷处.通过比较空载及饱和铁离子的野生型蛋白以及突变体蛋白的圆二色吸收光谱,发现野生型MtsA结合铁离子后结构更加紧密,H68A,E206A和D281A则比野生型的二级结构松散,而H140A的二级结构和野生型的几乎没有差别.对MtsA 4个结合配体突变后其二级结构变化的研究,为进一步研究细菌中的铁转运机理及开发疫苗候选药物和药靶奠定了一定的理论依据.%Streptococcus pyogenes is a Gram-positive human pathogen, and iron is essential for its survival and infection. MtsA is a lipoprotein of Streptococcus pyogenes, which is responsible for iron binding. MtsA was amplified by PCR from Streptococcus pyogenes MGAS5005 and constructed the recombinant plasmid pGEX-MtsA. The recombinant plasmid was transformed into Escherichia coli BL21 to express the fusion protein after induction with IPTG. The protein was purified using affinity chromatography. The conservative of the MtsA iron binding center was analyzed using multiple alignment. The mutant proteins were constructed by site-directed mutagenesis. Circular dichroism was used to collect the changes of mutants' secondery structure when compared to wild-type protein. The result of multiple alignment showed the four binding amino acids were

  8. The detonation electric effect as applied to the MC-2453 driver subassembly. Progress report, October 1971--December 1971

    Energy Technology Data Exchange (ETDEWEB)

    Boettner, J.K.

    1998-02-01

    The detonation electric effect has been used to measure transit times of the MC-2453 driver subassemblies at 185 F, 212 F and room temperature after the units were subjected to a temperature of 232 F. The test procedure and the results are included in this report.

  9. Fission product concentration evolution in sodium pool following a fuel subassembly failure in an LMFBR

    Energy Technology Data Exchange (ETDEWEB)

    Natesan, K.; Velusamy, K.; Selvaraj, P.; Kasinathan, N.; Chellapandi, P.; Chetal, S.; Bhoje, S. [Indira Gandhi Center for Atomic Research, Kalpakkam (India)

    2003-07-01

    During a fuel element failure in a liquid metal cooled fast breeder reactor, the fission products originating from the failed pins mix into the sodium pool. Delayed Neutron Detectors (DND) are provided in the sodium pool to detect such failures by way of detection of delayed neutrons emitted by the fission products. The transient evolution of fission product concentration is governed by the sodium flow distribution in the pool. Transient hydraulic analysis has been carried out using the CFD code PHOENICS to estimate fission product concentration evolution in hot pool. k- {epsilon} turbulence model and zero laminar diffusivity for the fission product concentration have been considered in the analysis. Times at which the failures of various fuel subassemblies (SA) are detected by the DND are obtained. It has been found that in order to effectively detect the failure of every fuel SA, a minimum of 8 DND in hot pool are essential.

  10. ASFRE: a computer code for single-phase subchannel thermal hydraulic analysis of LMFBR single subassembly

    International Nuclear Information System (INIS)

    The objectives of this work is to develop a computer code ASFRE which analyzes 3D-thermo-hydraulic behaviors of coolant and fuel pins in an LMFBR subassembly under accident conditions such as the local blockage, loss of flow and transient over power accident conditions. Analytical models, calculation procedures and sample calculations for typical experiments are described. The ASFRE code consists of two parts, namely coolant calculation part and fuel pin calculation. The coolant thermal-hydraulic analysis employs basically subchannel analysis approach and the program solves transient mass, momentum and energy conservation equations. The fuel pin thermal analysis program solves transient heat conduction equations by finite difference method in cylindrical coordinate system. Fuel temperature distribution and thermal expansion are calculated taking into account of intra/inter-pin-flux-depression and fuel restructuring. And wire wrap spacer effects for coolant behavior and heat loss through the wrapper tube are also simulated. (author)

  11. Computational analysis of coolant mixing in subassembly and hot pool of an LMFBR

    Energy Technology Data Exchange (ETDEWEB)

    Natesan, K.; Velusamy, K.; Kasinathan, N.; Clement Ravichandar, S.; Selvaraj, P.; Ghosh, D.; Chellapandi, P.; Chetal, S.C. [Reactor Engineering Group, Indira Gandhi Centre for Atomic Research, Kalpakkam - 603 102 (India)

    2005-07-01

    Full text of publication follows: The reactor core of a typical Liquid Metal cooled Fast Breeder Reactor (LMFBR) comprises of several fuel, blanket, storage, reflector and shielding subassemblies (SA) arranged in a hexagonal geometry. Each fuel subassembly (FSA) comprises of 217 fuel pins packed with pellets of fissile and fertile materials. The wire wrapped pins are arranged in triangular pitch within a hexagonal wrapper. Due to the non uniform flow resistance across the cross section, sodium velocity is non uniform within SA. This non uniform velocity distribution coupled with radial power profile causes the sodium coolant to come out of the pin bundles of SA with a non uniform temperature profile. From the fuel pin bundle top, sodium flows axially through various regions comprising of a sodium plenum, shielding bundle region and SA head and adapter assembly. These regions contribute in the mixing of sodium in SA. Due to the non uniform temperature distribution at FSA top, the temperature profile at the possible locations of core monitoring thermocouple (TC) would also be non uniform. During a power campaign of core, FSA top drift outwards with respect to TC location due to irradiation bowing. This causes the temperature recorded by the TC to change in accordance with the temperature of sodium stream washing it from time to time during the power campaign. Apart from this, the non uniform temperature at the FSA exits can also lead to fluctuation in the temperature of sodium at TC locations. Knowledge of these phenomena in hot pool is essential in fixing the SCRAM threshold on the parameters that are derived from the measurements made by these TC. Analyses to study the above phenomena have been carried out in three stages. In the first stage, velocity and temperature distributions in the wire wrap bundle region of FSA have been obtained through subchannel analysis using the SUPER ENERGY code. In the second stage, 3D mixing of sodium in FSA in the region above the

  12. 一种低成本小型化倍频组件的设计%Design of A Low-cost Miniaturized Frequency Multiplication Subassembly

    Institute of Scientific and Technical Information of China (English)

    尹红波

    2012-01-01

    This paper introduces the design of a frequency multiplication subassembly based on PIN diode HSMP 3822. The design reduces the requirements of subassembly inner to filter, which makes the designed subassembly have the advantages of low cost,small size and convenient application. Test results validate that the subassembly can satisfy all of technical index requirements and the performance is perfect.%介绍了一种基于PIN二极管HSMP-3822的倍频组件的设计,该设计降低了组件内部对滤波器的要求,使得设计出来的组件成本低、体积小、使用方便。测试结果验证了该组件满足各项技术指标要求,性能较好。

  13. Specialists' meeting on thermodynamics of FBR fuel subassemblies under nominal and non-nominal operating conditions. Summary report

    Energy Technology Data Exchange (ETDEWEB)

    1979-01-01

    The purpose of the meeting was to provide a forum for exchange of information on thermo- and fluiddynamic investigations of LMFBR-subassembly. Special emphasis was placed on nominal and non-nominal conditions. The technical part of the meeting was divided into four sessions, as follows: status of the thermo- and fluiddynamic activities; physical and mathematical modelling of single phase; rod bundle thermohydraulics; experimental investigations; and future R and D. Separate abstracts are included for each of the papers.

  14. Automotive body-in-white dimensional stability through pre-control application in the subassembly process

    Directory of Open Access Journals (Sweden)

    L.M. Sanches Jr

    2008-12-01

    Full Text Available Purpose: This paper presents a case study and results of a pre-control method that allows for detectingsubassemblies variations with low investments using a methodology that search an improvement in quality ofautomotive body in white assemblies joining processes through dimensional control.Design/methodology/approach: Its main contribution is the statement of pre-control method to manage the weldassembly process since the early step of the project implementation just up to the production phase. Howeverthe pre-control method didn’t substitute any other dimensional control, the scope here was to demonstrate thatsuch alternative method offers a reliable in control process of the dimensional changes and their repeatability, asit only complement the current methods used in the automotive industry. It is emphasized here the dimensionalcontrol as well as some process quality tools.Findings: It is showed the results and impact of a pre-control method in the weld assembly process,highlighting dimensional stability improvements and annual cost reduction through reducing rework hoursand scrap parts quantity.Practical implications: The pre-control, revealed as a simplified tool application and can be used by theproduction operators with low investment cost and operation.Originality/value: The application the pre-control method is more efficient in subassemblies manufacturedfrom manual process or that allows greater interaction of the production operator.

  15. Development of computer code models for analysis of subassembly voiding in the LMFBR

    International Nuclear Information System (INIS)

    The research program discussed in this report was started in FY1979 under the combined sponsorship of the US Department of Energy (DOE), General Electric (GE) and Hanford Engineering Development Laboratory (HEDL). The objective of the program is to develop multi-dimensional computer codes which can be used for the analysis of subassembly voiding incoherence under postulated accident conditions in the LMFBR. Two codes are being developed in parallel. The first will use a two fluid (6 equation) model which is more difficult to develop but has the potential for providing a code with the utmost in flexibility and physical consistency for use in the long term. The other will use a mixture (< 6 equation) model which is less general but may be more amenable to interpretation and use of experimental data and therefore, easier to develop for use in the near term. To assure that the models developed are not design dependent, geometries and transient conditions typical of both foreign and US designs are being considered

  16. STATEN predictions in a CDFR subassembly and the use of simulated outlet temperatures to test decision-making techniques

    International Nuclear Information System (INIS)

    In order to gauge the viability of temperature noise as a blockage detection method the axially changing geometry of a CDFR subassembly outlet region is modelled using STATEN. Five linked axial stages are used, each with different velocities and assumptions of turbulence values, covering the venturi shield region and incorporating the effect of an orientation bar. A number of different intra-bundle blockage sizes, in corner and central locations, together with various cross-subassembly temperature tilts, are used to estimate the corresponding temperature profiles at the bundle exit. These are then input to STATEN to produce simulated temperature signals on the subassembly axis at its outlet. Investigations are made into the performance of an automatic decision technique - the Adaptive Learning Network (ALN) - using these simulated temperature signals. It is demonstrated that, under the assumptions made in the simulation, it is possible for one ALN, trained on data from all blockage and tilt conditions, to detect a 6% blockage with a high probability. (author)

  17. CWDM based HDMI interconnect incorporating passively aligned POF linked optical subassembly modules

    Science.gov (United States)

    Lee, Hak-Soon; Lee, Sang-Shin; Son, Yung-Sung

    2011-08-01

    A four-channel transmitter OSA (TOSA) and a receiver optical sub-assembly (ROSA) module were presented. They take advantage of a coarse WDM (CWDM) scheme, employing two types of VCSELs at 780 and 850 nm, where no wavelength filters are involved in the TOSA. The ROSA and TOSA were constructed through a fully passive alignment process using components produced by virtue of a cost effective plastic injection molding technique. In order to build a high quality optical HDMI interconnect, four channel optical links between these modules ware established via two graded-index plastic optical fibers (GI-POFs). The HDMI interconnect was thoroughly evaluated in terms of the alignment tolerance, the light beam propagation, and the data transmission capability. For the ROSA, the measured tolerance, as affected by the photodiode alignment, was ~45 μm and over 200 μm for the transverse and longitudinal directions, respectively. For the TOSA, the tolerance, which is mostly dependent upon the VCSEL alignment, was ~20 μm and more than 200 μm for the transverse and longitudinal directions, respectively. The beam profiles for the TOSA and ROSA were monitored to confirm their feasibility from the optical coupling perspective. A digital signal at 2.5 Gb/s was efficiently transmitted through the HDMI interconnect with a bit error ratio of below 10-16. A 1080p HDMI signal from a Blu-ray player was delivered through the interconnect to an LCD monitor and successfully displayed a high quality video.

  18. Development of multi-dimensional thermal hydraulic modeling using mixing factors for wire wrapped fuel pin bundles with inter-subassembly heat transfer in fast reactors

    Energy Technology Data Exchange (ETDEWEB)

    Nishimura, M.; Kamide, H.; Ohshima, H. [Power Reactor and Nuclear Fuel Development Corp., Oarai, Ibaraki (Japan). Oarai Engineering Center

    1996-10-01

    Temperature distributions in fuel subassemblies of fast reactors interactively affect heat transfer from center to outer region of the core (inter-subassembly heat transfer) and cooling capability of an inter-wrapper flow, as well as maximum cladding temperature. The prediction of temperature distribution in the sub-assembly is, therefore one of the important issues for the reactor safety assessment. To treat the complex phenomena in the core, a multi-dimensional thermal hydraulic analysis is the most promising method. From the studies on the multi-dimensional thermal hydraulic modeling for the fuel sub-assemblies, the modeling have been recommended through the analysis of sodium experiments using driver subassembly test rig PLANDTL-DHX and blanket subassembly test rig CCTL-CFR. Computations of steady states experiments in the test rigs using the above modeling showed quite good agreement to the experimental data. In the present study, the use of this modeling was extended to transient analyses, and its applicability was examined. Firstly, non-dimensional parameters used to determine the mixing factors were modified from the ones based on bundle-averaged values to the ones by local values. Secondly, a new threshold function was derived and introduced to cut off the mixing factor of thermal plumes under inertia force dominant conditions. In the results of this validation, the accuracy was comparable between the modeling and the experimental instrumentation. Thus the present modeling is capable of predicting the thermal hydraulic fields of the wire wrapped fuel pin bundles with inter-subassembly heat transfer under the conditions from rated steady operations to transitions toward natural circulation decay heat removal modes. (J.P.N.)

  19. Metabolic Heat Regenerated Temperature Swing Adsorption for CO2, Thermal and Humidity Control Project

    Data.gov (United States)

    National Aeronautics and Space Administration — MTSA technology specifically addresses the thermal, CO2 and humidity control challenges faced by Portable Life Support Systems (PLSS) to be used in NASA's...

  20. The evaluation of a group motion for FBR core subassemblies under the seismic condition over Design Basis Earthquake Ground Motion

    International Nuclear Information System (INIS)

    The seismic Probabilistic Risk Assessment (PRA) for Fast Breeder Reactors (FBRs) has been carried out to confirm that the seismic safety is equivalent to that of Light Water Reactors (LWRs). The seismic response on the reactor structure of FBRs causes seismic reactivity. The group motion of fuel assemblies is one of typical seismic response. So that much attention has been paid on the reactivity insertion mechanism due to the group motion of fuel assemblies and it’s consequence during the earthquake over the Design Basis Ground Motion (DBGM) condition. When the displacement of each subassembly is moving toward the same direction, each gap reduces coherently and the radial core compaction occurs, which results in positive reactivity insertion. We evaluate the gap reduction characteristics at the mid-plane of core by using a correlation coefficient. As a result, the fuel subassemblies are most concentrated when the input seismic motion of about 5Hz frequency and 40m/s2 acceleration is applied. The amount of reactivity insertion is estimated approximately 1$ that corresponds to prompt criticality. (author)

  1. Code validation for the structural analysis of a subassembly response to pressure transients: Present status and trends

    International Nuclear Information System (INIS)

    Fast reactor safety studies were in a first step devoted to HCDA analysis and led to the evaluation of primary containment behaviour under severe transient dynamic loading. The J.R.C. Ispra has actively participated in a joint European Code Validation Programme and the COVA series of reduced-scale experiments were correspondingly designed in order to represent flow pattern, hydro-structural coupling and wave propagation conditions similar to fast-breeder whole core accident conditions. Now the safety considerations have moved towards the analysis of local events at subassembly level (COVAS). Here the importance of local structural behaviour becomes a key point as far as the development and possible propagation of the accident is concerned. (orig./GL)

  2. Fire safety assessment for a typical hot cell handling failed fuel sub-assembly. Contributed Paper MS-03

    International Nuclear Information System (INIS)

    This paper presents a systematic study of fire hazard potential within a typical hot cell that handles Failed Fuel SubAssemblies (FSA) for cleaning purposes. A hot cell configuration is considered wherein ethyl alcohol is used as the cleaning agent. The potential for generation of ethyl alcohol vapors due to heat load of FSA, hydrogen generation during the cleaning process, possibility of vapour ignition and sustainability of fire within the cell are discussed. Detailed heat transfer and CFD studies were performed using computational tools developed in-house at SRI to address these issues. Based on this, several recommendations and suggestions are provided for safe operating conditions that could preclude the occurrence of fire within the hot cell. (author)

  3. Conceptual design of a uranyl nitrate fueled reactor for the destructive testing of liquid metal fast breeder reactor fuel subassemblies

    International Nuclear Information System (INIS)

    A preliminary design of a uranyl nitrate test reactor is developed, with emphasis placed on the core neutronics and cross section development. ENDF/B-IV cross section data and the AMPX system were used to develop a 25 group neutron cross section library. A series of one-dimensional transport calculations were made in order to arrive at a reference design. Power densities of 16.5 Kw/1 appear to be attainable in the 217 pin FFTF test subassembly, with a peak neutron flux in the test zone of 2.4 x 1014 n/cm2-sec. Other engineering features pertinent to the overall system design are discussed, including: (1) corrosion, (2) treatment of radiolytic gas, (3) heat removal, and (4) reactor control

  4. Reaction of Explosive Subassembly under Simulated Drop Test%炸药件在模拟跌落试验中的响应

    Institute of Scientific and Technical Information of China (English)

    高大元; 申春迎; 黄谦; 文尚刚; 黄毅民; 李敬明

    2012-01-01

    To understand the effect of accelerated aging on impact safety of explosive subassembly, the accelerated aging test of temperature 65°C , time 180 d and 365 d was done. The simulating drop test method of explosive subassembly with φ100 mm were established. For the novel and accelerated aging PBX-6 explosive subassembly,the simulating drop test with inside and outside shell were done. The reaction grades were estimated according to the reaction over pressure measured by blast pressure gauges, the ignition process of explosive subassembly at different drop velocity shooted by high-speed motion pictures and combined to photographs of experimental scrap. The results showed that for the explosive subassembly of novel or same accelerated aging time, the reaction over pressure and the deflagrate reaction grade were much bigger with drop height increasement. For the explosive subassembly of novel and accelerated aging, the reaction over pressure and the deflagrate reaction grade of accelerated aging explosive subassembly were bigger, the impact safety was decreased at same drop height.%为了解加速老化对炸药件撞击安全性的影响,开展了PBX-6炸药件在温度65℃、时间180d和365d的加速老化试验,建立了Φ100 mm炸药件模拟跌落试验方法.对加速老化前后的PBX-6炸药件进行了带内外壳约束的模拟跌落试验,根据压力传感器测量炸药反应产生的冲击波超压,用高速相机拍摄炸药件不同速度的跌落撞靶过程,结合收集的实验残余物形貌来评定反应等级.结果表明,对于未老化或加速老化时间相同的试样,跌落高度越高,爆炸冲击波超压和爆燃反应程度越大.对于未老化和加速老化试样,跌落高度相同时,老化试样的爆炸冲击波超压和爆燃反应程度较大,撞击安全性降低.

  5. Adsorption Rate Models for Multicomponent Adsorption Systems

    Institute of Scientific and Technical Information of China (English)

    姚春才

    2004-01-01

    Three adsorption rate models are derived for multicomponent adsorption systems under either pore diffusion or surface diffusion control. The linear driving force (LDF) model is obtained by assuming a parabolic intraparticle concentration profile. Models I and Ⅱ are obtained from the parabolic concentration layer approximation. Examples are presented to demonstrate the usage and accuracy of these models. It is shown that Model I is suitable for batch adsorption calculations and Model Ⅱ provides a good approximation in fixed-bed adsorption processes while the LDF model should not be used in batch adsorption and may be considered acceptable in fixed-bed adsorption where the parameter Ti is relatively large.

  6. Adsorption and wetting.

    NARCIS (Netherlands)

    Schlangen, L.J.M.

    1995-01-01

    Adsorption and wetting are related phenomena. In order to improve knowledge of both and their relations, experiments, thermodynamics and a theoretical interpretation have been connected, starring n-alkanes.Starting from the Gibbs adsorption equation thermodynamic relations between vapour adsorption

  7. Adsorption and wetting.

    OpenAIRE

    Schlangen, L.J.M.

    1995-01-01

    Adsorption and wetting are related phenomena. In order to improve knowledge of both and their relations, experiments, thermodynamics and a theoretical interpretation have been connected, starring n-alkanes.Starting from the Gibbs adsorption equation thermodynamic relations between vapour adsorption and wetting are derived. The surface pressure of a film, formed by vapour adsorption on a solid surface, is calculated by integrating the vapour adsorption isotherm. The surface pressure at the sat...

  8. Bidirectional optical subassembly-shaped 20-Gbit/s compact single-mode four-channel wavelength-division multiplexing optical modules for optical multimedia interfaces

    Science.gov (United States)

    Lim, Kwon-Seob; Yu, Hong-Yeon; Park, Hyoung-Jun; Kang, Hyun Seo; Jang, Jae-Hyung

    2016-06-01

    Low-cost single-mode four-channel optical transmitter and receiver modules using the wavelength-division multiplexing (WDM) method have been developed for long-reach fiber optic applications. The single-mode four-channel WDM optical transmitter and receiver modules consist of two dual-wavelength optical transmitter and receiver submodules, respectively. The integration of two channels in a glass-sealed transistor outline-can package is an effective way to reduce cost and size and to extend the number of channels. The clear eye diagrams with more than about 6 dB of the extinction ratio and the minimum receiver sensitivity of lower than -16 dBm at a bit error rate of 10-12 have been obtained for the transmitter and receiver modules, respectively, at 5 Gbps/channel. The 4K ultrahigh definition contents have been transmitted over a 1-km-long single-mode fiber using a pair of proposed four-channel transmitter optical subassembly and receiver optical subassembly.

  9. Summary and implications of out-of-pile investigations of local cooling disturbances in LMFBR subassembly geometry under single-phase and boiling conditions

    International Nuclear Information System (INIS)

    The consequences of local cooling disturbances in subassemblies of LMFBRs have been investigated out-of-pile at KfK. Flow and temperature distributions in the disturbed region as well as cooling under boiling conditions up to loss of cooling were investigated. Fission gas release was simulated by gas injection. A total of 16 different blockages in 20 test set-ups were used, four of them under sodium and the rest under water conditions. Mainly planar plates of different sizes and arrangements were used as blockages. In some of the experiments performed in water also porous blockages were investigated. The test sections consisted of electrically heated pin bundles with a thermal-hydraulic characteristic corresponding to that of an SNR 300 subassembly. With different parameter settings the single-phase tests in water furnished a multitude of test results on flow and temperature fields and on the behaviour of gas in the recirculation zone. In the experiments involving boiling two boiling patterns were observed: steady-state boiling and oscillating boiling. With increasing boiling intensity the boiling region grew to some extent, but it remained always confined to the blocked zone because of the relatively cold sodium flow around this zone. In the experiments simulating fission gas release it was found that under certain conditions gas accumulates in the reverse flow region behind a blockage and leads to loss of cooling. (orig./GL)

  10. R and D program for French sodium fast reactor: On the description and detection of sodium boiling phenomena during sub-assembly blockages

    Energy Technology Data Exchange (ETDEWEB)

    Vanderhaegen, M. [CEA, Nuclear Energy Directorate DEN, Laboratory of Instrumentation and Technological Test, Cadarache, 13108 Saint-Paul-lez-Durance (France); Laboratory of Waves and Acoustic, Institut Langevin, ESPCI ParisTech, 10 rue Vauquelin, 75005 Paris (France); Paumel, K. [CEA, Nuclear Energy Directorate DEN, Laboratory of Instrumentation and Technological Test, Cadarache, 13108 Saint-Paul-lez-Durance (France); Seiler, J. M. [CEA, Nuclear Energy Directorate DEN, Laboratory of Physical Chemistry and Multiphase Thermalhydraulics, 38054 Grenoble (France); Tourin, A. [Laboratory of Waves and Acoustics, Institut Langevin, ESPCI ParisTech, 10 rue Vauquelin, 75005 Paris (France); Jeannot, J. P. [CEA, Nuclear Energy Directorate DEN, Laboratory of Instrumentation and Technological Test, Cadarache, 13108 Saint-Paul-lez-Durance (France); Rodriguez, G. [CEA, Nuclear Energy Directorate DEN, Cadarache, 13108 Saint-Paul-lez-Durance (France)

    2011-07-01

    In support of the French ASTRID (Advanced Sodium Technological Reactor for Industrial Demonstration) reactor program, which aims to demonstrate the industrial applicability of sodium fast reactors with an increased level of safety demonstration and availability compared to the past French sodium fast reactors, emphasis is placed on reactor instrumentation. It is in this framework that CEA studies continuous core monitoring to detect as early as possible the onset of sodium boiling. Such a detection system is of particular interest due to the rapid progress and the consequences of a Total Instantaneous Blockage (TIB) at a subassembly inlet, where sodium boiling intervenes in an early phase. In this paper, the authors describe all the particularities which intervene during the different boiling stages and explore possibilities for their detection. (authors)

  11. Environmental Assessment for DOE permission for off-loading activities to support the movement of Millstone Unit 2 steam generator sub-assemblies across the Savannah River Site

    International Nuclear Information System (INIS)

    The Department of Energy (DOE) has prepared an Environmental Assessment (EA), for the proposed granting of DOE permission of offloading activities to support the movement Millstone Unit 2 steam generator sub-assemblies (SGSAs) across the Savannah River Site (SRS). Based on the analyses in the EA, DOE has determined that the proposed action is not a major Federal action significantly affecting the quality of the human environment within the meaning of the National Environmental Policy Act (NEPA) of 1969. Therefore, an environmental impact statement is not required, and the Department is issuing this Finding of No Significant Impact. On the basis of the floodplain/wetlands assessment in the EA, DOE has determined that there is no practicable alternative to the proposed activities and that the proposed action has been designed to minimize potential harm to or within the floodplain of the SRS boat ramp. No wetlands on SRS would be affected by the proposed action

  12. Investigation of Sub-Assembly of Product for Environment Impact Assessment: Quantitative Evaluation of Shroud Fan Cover assembly and Cylinder Head Cover assembly

    Directory of Open Access Journals (Sweden)

    Ms. SUMAN SHARMA

    2011-09-01

    Full Text Available We live in a changing world. In many countries the systems are under change. The changes are largely driven by environmental considerations and one driving force is the threat of global climate change. When making new strategic decisions related to manufacturing any product it becomes important to consider the environmentalimplications. The total consumption of materials and energy during the Life cycle of product is greatly affecting the environment. The proper selection of engineering materials for manufacturing of a product can minimize the environmental impact. The environmental impact of products and processes has become a key issue that has led companies to investigate ways to minimize their effects on the environment. LCA is a means of deriving a quantitative evaluation of environmental impact of product design and thereby refining product quality and characteristics. The overall aim of the present work is to evaluate the environmental impact of some important sub-assembliesof a two wheeler for main stages of life cycle i.e. manufacturing stages of raw material and part manufacturing. An investigation has been done on two sub-assemblies of engine group of Activa i.e. shroud fan cover and cylinder head cover. It has been presented using EDIP (Environmental Design of Industrial Product as LCA method as per ISO 14040. The study reveals that the environmental impact is more in the case of manufacturing of steel and rubber parts as compared to plastic and aluminium parts of selected subassemblies and eco-toxicityand human toxicity is more as compared to other impact categories.

  13. Interfacial adsorption of insulin - Conformational changes and reversibility of adsorption

    NARCIS (Netherlands)

    Mollmann, SH; Jorgensen, L; Bukrinsky, JT; Elofsson, U; Norde, W; Frokjaer, S

    2006-01-01

    The adsorption of human insulin to Teflon particles was studied with respect to conformational changes and the reversibility of adsorption was examined by total internal reflection fluorescence (TIRF). Adsorption isotherms for the adsorption of human insulin indicated high affinity adsorption, even

  14. Interfacial adsorption of insulin. Conformational changes and reversibility of adsorption

    NARCIS (Netherlands)

    Mollmann, S.H.; Bukrinsky, J.T.; Elofsson, U.; Norde, W.; Frokjaer, S.

    2006-01-01

    The adsorption of human insulin to Teflon particles was studied with respect to conformational changes and the reversibility of adsorption was examined by total internal reflection fluorescence (TIRF). Adsorption isotherms for the adsorption of human insulin indicated high affinity adsorption, even

  15. Structure sensitivity in adsorption

    DEFF Research Database (Denmark)

    Hammer, Bjørk; Nielsen, Ole Holm; Nørskov, Jens Kehlet

    1997-01-01

    The structure sensitivity of CO adsorption on different flat, stepped, kinked and reconstructed Pt surfaces is studied using large-scale density-functional calculations. We find an extremely strong structure sensitivity in the adsorption energy with variations up to 1 eV (or 100%) from one...

  16. A Simple Adsorption Experiment

    Science.gov (United States)

    Guirado, Gonzalo; Ayllon, Jose A.

    2011-01-01

    The study of adsorption phenomenon is one of the most relevant and traditional physical chemistry experiments performed by chemistry undergraduate students in laboratory courses. In this article, we describe an easy, inexpensive, and straightforward way to experimentally determine adsorption isotherms using pieces of filter paper as the adsorbent…

  17. Competitive Protein Adsorption - Multilayer Adsorption and Surface Induced Protein Aggregation

    DEFF Research Database (Denmark)

    Holmberg, Maria; Hou, Xiaolin

    2009-01-01

    In this study, competitive adsorption of albumin and IgG (immunoglobulin G) from human serum solutions and protein mixtures onto polymer surfaces is studied by means of radioactive labeling. By using two different radiolabels (125I and 131I), albumin and IgG adsorption to polymer surfaces...... is monitored simultaneously and the influence from the presence of other human serum proteins on albumin and IgG adsorption, as well as their mutual influence during adsorption processes, is investigated. Exploring protein adsorption by combining analysis of competitive adsorption from complex solutions...... of high concentration with investigation of single protein adsorption and interdependent adsorption between two specific proteins enables us to map protein adsorption sequences during competitive protein adsorption. Our study shows that proteins can adsorb in a multilayer fashion onto the polymer surfaces...

  18. A preliminary design and structural analysis of the lifting tools for 40° sector sub-assembly and handling ITER components

    Energy Technology Data Exchange (ETDEWEB)

    Nam, Kyoungo, E-mail: namko@nfri.re.kr [ITER Korea, Gwahangno 113, Yuseong-gu, Daejeon 305-333 (Korea, Republic of); Park, Hyunki; Im, Kihak; Kim, Dongjin; Ahn, Heejae [ITER Korea, Gwahangno 113, Yuseong-gu, Daejeon 305-333 (Korea, Republic of); Lee, Jaehyuk; Moon, Jaewhan [SFA Inc., 166 Sinhang-ri, Dunpo-myeon, Asan-si, Chungcheongnam-do 336-873 (Korea, Republic of); Watson, Emma; Shaw, Robert [ITER Organization, Route de Vinon sur Verdon, 13115 Saint Paul Lez Durance (France)

    2013-10-15

    The purpose-built, ITER tokamak assembly tools, which are to be provided by Korea, should be designed to meet: the assembly plan, space reservations, safety standards, simple operations, efficient maintenance, and so on. It is very important that the ITER assembly tools are able to lift and transfer ITER components or their sub-assemblies to their assembled position safely. Furthermore, the lifting tools will lift and handle very heavy loads that can be more than 1200 tonnes sometimes. Therefore, the ITER lifting tools must be designed to endure these heavy load conditions with regard to their structural integrity. Also, these designs should be verified through an appropriate method. The preliminary design of the sector lifting tool and associated lifting attachments are introduced in this paper. The sector lifting tool was designed especially to lift and handle various ITER components by adjusting the lifting centre. The structural analysis results using ANSYS are described considering the heaviest load condition. The results of the analysis show that; all stresses applied on the lifting tool are lower than the allowable stress of the applied material.

  19. Hybrid adsorptive membrane reactor

    Science.gov (United States)

    Tsotsis, Theodore T.; Sahimi, Muhammad; Fayyaz-Najafi, Babak; Harale, Aadesh; Park, Byoung-Gi; Liu, Paul K. T.

    2011-03-01

    A hybrid adsorbent-membrane reactor in which the chemical reaction, membrane separation, and product adsorption are coupled. Also disclosed are a dual-reactor apparatus and a process using the reactor or the apparatus.

  20. Hybrid adsorptive membrane reactor

    Science.gov (United States)

    Tsotsis, Theodore T. (Inventor); Sahimi, Muhammad (Inventor); Fayyaz-Najafi, Babak (Inventor); Harale, Aadesh (Inventor); Park, Byoung-Gi (Inventor); Liu, Paul K. T. (Inventor)

    2011-01-01

    A hybrid adsorbent-membrane reactor in which the chemical reaction, membrane separation, and product adsorption are coupled. Also disclosed are a dual-reactor apparatus and a process using the reactor or the apparatus.

  1. Adsorption behaviour of bulgur.

    Science.gov (United States)

    Erbaş, Mustafa; Aykın, Elif; Arslan, Sultan; Durak, Atike N

    2016-03-15

    The aim of this research was to determine the adsorption behaviour of bulgur. Three different particle sizes (2dry matter and 4.96-16.57, respectively. Constant k was between 0.85 and 0.93, and GAB equation was determined to fit very well for bulgur adsorption, because of %E values lower than 10%. Bulgur must be stored below 70% relative humidity and with less than 10 g water per 100 g of dry mater. PMID:26575716

  2. Regenerative adsorption distillation system

    KAUST Repository

    Ng, Kim Choon

    2013-12-26

    There is provided a regenerative adsorption distillation system comprising a train of distillation effects in fluid communication with each other. The train of distillation effects comprises at least one intermediate effect between the first and last distillation effects of the train, each effect comprising a vessel and a condensing tube for flow of a fluid therein. The system further comprises a pair of adsorption-desorption beds in vapour communication with the last effect and at least one intermediate effect, wherein the beds contain an adsorbent that adsorbs vapour from the last effect and transmits desorbed vapour into at least one of the intermediate effect.

  3. Evaluating the Adsorptive Capabilites of Chemsorb 1000 and Chemsorb 1425

    Science.gov (United States)

    Mejia, Oscar Alberto Monje; Surma, Jan M.; Johnsey, Marissa; Melendez, Orlando

    2014-01-01

    The removal of trace contaminants from spacecraft cabin air is necessary for crew health and comfort during long duration space exploration missions. The air revitalization technologies used in these future exploration missions will evolve from current ISS ISS State-of-Art (SOA) and is being designed and tested by the Advanced Exploration Systems (AES) Program's Atmosphere Resource Recovery and Environmental Monitoring (ARREM) project. The ARREM project is working to mature optimum atmosphere revitalization and environmental monitoring system architectures to enable exploration beyond Lower Earth Orbit (LEO). The Air Revitalization Lab at KSC is one of six NASA field centers participating in the ARREM that specializes in adsorbent and catalyst characterization with simulated spacecraft gas streams using combinations of pressure, O2 partial pressure, CO2 partial pressure, and humidity that are representative of a range of anticipated cabin atmospheric conditions and loads. On board ISS, the Trace Contaminant Control Subassembly (TCCS) provides active control of trace contaminants from the cabin atmosphere utilizing physical adsorption, thermal catalytic oxidation, and chemical adsorption processes. High molecular weight contaminants and ammonia (NH3) are removed a granular activated carbon treated with approx. 10% by weight phosphoric acid (H3PO4) (B-S Type 3032 4×6 mesh), which is expendable and is periodically refurbished. The Type 3032 granular activated carbon bed is no longer commercially available and therefore it is important to characterize the efficiency and capacity of commercially available NH3 sorbents. This paper describes the characterization of two Molecular Products LTD activated carbons: Chemsorb 1000 and Chemsorb 1425. Untreated activated carbons (e.g. Chemsorb 1000) remove contaminants by physisorption, which concentrates the contaminant within the pores of the carbon while letting air to pass through the sorbent4. Low molecular weight or polar

  4. Carbonaceous materials for adsorptive refrigerators

    Science.gov (United States)

    Buczek, B.; Wolak, E.

    2012-06-01

    Carbon monoliths prepared from hard coal precursors were obtained. The porous structure of the monoliths was evaluated on the basis of nitrogen adsorption — desorption equilibrium data. The investigated monoliths have a well-developed microporous structure with significant specific surface area (S BET ). Equilibrium studies of methanol vapour adsorption were used to characterize the methanol adsorptive capacity that was determined using a volumetric method. The heat of wetting by methanol was determined in order to estimate the energetic effects of the adsorption process. The results of the investigations show that all monoliths exhibit high adsorption capacity and high heat of wetting with methanol.

  5. Copper adsorption in tropical oxisols

    Directory of Open Access Journals (Sweden)

    Silveira Maria Lucia Azevedo

    2003-01-01

    Full Text Available Cu adsorption, at concentrations between 0 to 800 mg L-1, was evaluated in surface and subsurface samples of three Brazilian soils: a heavy clayey-textured Rhodic Hapludalf (RH, a heavy clayey-textured Anionic ''Rhodic'' Acrudox (RA and a medium-textured Anionic ''Xanthic'' Acrudox (XA. After adsorption, two consecutive extractions were performed to the samples which received 100 mg L-1 copper. Surface samples adsorbed higher amounts of Cu than the subsurface, and exhibited lower Cu removed after the extractions, reinforcing the influence of the organic matter in the reactions. Cu adsorption was significant in the subsurface horizons of the Oxisols, despite the positive balance of charge, demonstrating the existence of mechanisms for specific adsorption, mainly related to the predominance of iron and aluminum oxides in the mineral fractions. In these samples, Cu was easily removed from the adsorption sites. RH demonstrated a higher capacity for the Cu adsorption in both horizons.

  6. Adsorption design for wastewater treatment

    Energy Technology Data Exchange (ETDEWEB)

    Cooney, D.O.

    1998-12-31

    Understand the premier method for removing organic contaminants from water. Straight forward explanations and illustrations allow this overview to fill a dual purpose: study manual and design guide. The book discusses basic properties of activated carbons; explains the kinetics of adsorption processes; describes the design of both fixed-bed and batch process adsorption systems; contains useful knowledge that can be extended to other applications of adsorption, including drinking water treatment; and includes many illustrated examples and practice exercises.

  7. Adsorption of polyhydroxyl based surfactants

    OpenAIRE

    Matsson, Maria

    2005-01-01

    Adsorption on solid surfaces from solution is a fundamental property of a surfactant. It might even be the most important aspect of surfactant behavior, since it influences many applications, such as cleaning, detergency, dispersion, separation, flotation, and lubrication. Consequently, fundamental investigations of surfactant adsorption are relevant to many areas. The main aim of this thesis has been to elucidate the adsorption properties, primarily on the solid/water interface, of a particu...

  8. Adsorption and collective paramagnetism

    CERN Document Server

    Selwood, Pierce W

    1962-01-01

    Adsorption and Collective Paramagnetism describes a novel method for studying chemisorption. The method is based on the change in the number of unpaired electrons in the adsorbent as chemisorption occurs. The method is applicable to almost all adsorbates, but it is restricted to ferromagnetic adsorbents such as nickel, which may be obtained in the form of very small particles, that is to say, to ferromagnetic adsorbents with a high specific surface. While almost all the data used illustratively have been published elsewhere this is the first complete review of the subject. The book is addresse

  9. Liquid-Phase Adsorption Fundamentals.

    Science.gov (United States)

    Cooney, David O.

    1987-01-01

    Describes an experiment developed and used in the unit operations laboratory course at the University of Wyoming. Involves the liquid-phase adsorption of an organic compound from aqueous solution on activated carbon, and is relevant to adsorption processes in general. (TW)

  10. Experimental study on dynamic gas adsorption

    Institute of Scientific and Technical Information of China (English)

    Qin Yueping; Wang Yaru; Yang Xiaobin; Liu Wei; Luo Wei

    2012-01-01

    In order to predict the actual adsorption amount as gas adsorption reaches the equilibrium,this research designed a dynamic gas adsorption experiment under constant temperature and pressure,and also studied the isopiestic adsorption characteristics of coal samples with same quality but different sizes.Through the experiment,the study found the adsorption-time changing relationships under different pressures of four different size samples.After regression analysis,we obtained the functional relationship between adsorption and time.According to this,the research resulted in the actual adsorption amount when gas adsorption reaches the equilibrium.In addition,the current study obtained the relationship between adsorption and pressure as well as the effect of the coal size to the adsorption rate.These results have great theoretical and practical significance for the prediction of gas amount in coal seam and gas adsorption process.

  11. Adsorption of Atenolol on Kaolinite

    Directory of Open Access Journals (Sweden)

    Yingmo Hu

    2015-01-01

    Full Text Available In this study the adsorption of atenolol (AT, a β-blocker, on kaolinite, a clay mineral of low surface charge, was investigated under varying initial AT concentration, equilibrium time, solution pH, ionic strength, and temperature conditions. The results showed that the amounts of AT uptake by kaolinite were close to its cation exchange capacity value and the AT adsorption was almost instantaneous, suggesting a surface adsorption. The adsorption was exothermic and the free energy of adsorption was small negative, indicating physical adsorption. The increase in ionic strength of the solution drastically reduced AT uptake on kaolinite. A significant reduction in AT uptake was found at solution pH below 5 or above 10. The FTIR results showed band shifting and disappearance for NH bending vibration and benzene ring skeletal vibration at 3360 and 1515 cm−1 and band splitting at 1412 and 1240 cm−1 attributed to C–N valence vibration coupled with NH bending vibrations and alkyl aryl ether linkage, suggesting the participation of NH, –O–, and benzene ring for AT adsorption on kaolinite.

  12. Adsorption Desalination: A Novel Method

    KAUST Repository

    Ng, Kim Choon

    2010-11-15

    The search for potable water for quenching global thirst remains a pressing concern throughout many regions of the world. The demand for new and sustainable sources and the associated technologies for producing fresh water are intrinsically linked to the solving of potable water availability and hitherto, innovative and energy efficient desalination methods seems to be the practical solutions. Quenching global thirst by adsorption desalination is a practical and inexpensive method of desalinating the saline and brackish water to produce fresh water for agriculture irrigation, industrial, and building applications. This chapter provides a general overview of the adsorption fundamentals in terms of adsorption isotherms, kinetics, and heat of adsorption. It is then being more focused on the principles of thermally driven adsorption desalination methods. The recent developments of adsorption desalination plants and the effect of operating conditions on the system performance in terms of specific daily water production and performance ratio are presented. Design of a large commercial adsorption desalination plant is also discussed herein.

  13. Carbon nanomaterials for gas adsorption

    CERN Document Server

    Terranova, Maria Letizia

    2012-01-01

    Research in adsorption of gases by carbon nanomaterials has experienced considerable growth in recent years, with increasing interest for practical applications. Many research groups are now producing or using such materials for gas adsorption, storage, purification, and sensing. This book provides a selected overview of some of the most interesting scientific results regarding the outstanding properties of carbon nanomaterials for gas adsorption and of interest both for basic research and technological applications. Topics receiving special attention in this book include storage of H, purific

  14. Potential Theory of Multicomponent Adsorption

    DEFF Research Database (Denmark)

    Shapiro, Alexander; Stenby, Erling Halfdan

    1998-01-01

    We developed a theory of multicomponent adsorption on the basis of the potential concept originally suggested by Polanyi. The mixture is considered as a heterogeneous substance segregated in the external field emitted by the adsorbent. The same standard equation of state, with no additional fitting...... parameters, is used for the segregated and for the bulk phases. With this approach, few parameters are needed to correlate pure component adsorption isotherms. These parameters may be used to predict adsorption equilibria of multicomponent mixtures without additional adjustment. A connection between...... the potential theory and the spreading pressure concept is established, and problems of the theory consistency are studied. Numerical algorithms are suggested for evaluation of the segregated state of the mixture in the potential field of adsorption forces. Comparison with experimental data shows good agreement...

  15. Prediction of Pure Component Adsorption Equilibria Using an Adsorption Isotherm Equation Based on Vacancy Solution Theory

    DEFF Research Database (Denmark)

    Marcussen, Lis; Aasberg-Petersen, K.; Krøll, Annette Elisabeth

    2000-01-01

    An adsorption isotherm equation for nonideal pure component adsorption based on vacancy solution theory and the Non-Random-Two-Liquid (NRTL) equation is found to be useful for predicting pure component adsorption equilibria at a variety of conditions. The isotherm equation is evaluated successfully...... adsorption systems, spreading pressure and isosteric heat of adsorption are also calculated....

  16. Molecular adsorption on graphene

    Science.gov (United States)

    Kong, Lingmei; Enders, Axel; Rahman, Talat S.; Dowben, Peter A.

    2014-11-01

    Current studies addressing the engineering of charge carrier concentration and the electronic band gap in epitaxial graphene using molecular adsorbates are reviewed. The focus here is on interactions between the graphene surface and the adsorbed molecules, including small gas molecules (H2O, H2, O2, CO, NO2, NO, and NH3), aromatic, and non-aromatic molecules (F4-TCNQ, PTCDA, TPA, Na-NH2, An-CH3, An-Br, Poly (ethylene imine) (PEI), and diazonium salts), and various biomolecules such as peptides, DNA fragments, and other derivatives. This is followed by a discussion on graphene-based gas sensor concepts. In reviewing the studies of the effects of molecular adsorption on graphene, it is evident that the strong manipulation of graphene’s electronic structure, including p- and n-doping, is not only possible with molecular adsorbates, but that this approach appears to be superior compared to these exploiting edge effects, local defects, or strain. However, graphene-based gas sensors, albeit feasible because huge adsorbate-induced variations in the relative conductivity are possible, generally suffer from the lack of chemical selectivity.

  17. Protein Adsorption in Three Dimensions

    OpenAIRE

    Vogler, Erwin A.

    2011-01-01

    Recent experimental and theoretical work clarifying the physical chemistry of blood-protein adsorption from aqueous-buffer solution to various kinds of surfaces is reviewed and interpreted within the context of biomaterial applications, especially toward development of cardiovascular biomaterials. The importance of this subject in biomaterials surface science is emphasized by reducing the “protein-adsorption problem” to three core questions that require quantitative answer. An overview of the...

  18. Amphiphile Adsorption on Rigid Polyelectrolytes

    OpenAIRE

    Kuhn, Paulo S.; Levin, Yan; Barbosa, Marcia C.; Ravazzolo, Ana Paula

    2007-01-01

    A theory is presented which quantitatively accounts for the cooperative adsorption of cationic surfactants to anionic polyelectrolytes. For high salt concentration we find that the critical adsorption concentration (CAC) is a bilinear function of the polyion monomer and salt concentrations, with the coefficients dependent only on the type of surfactant used. The results presented in the paper might be useful for designing more efficient gene delivery systems.

  19. ADSORPTION OF POLYCHLORINATED BIPHENYLS BY SOILS

    OpenAIRE

    Mihaela Preda; Radu Lăcătuşu; Dumitru Marian Motelică; Nicoleta Vrînceanu; Veronica Tănase

    2010-01-01

    The behavior of polychlorinated biphenyls (PCBs) in soil is determined by several factors including adsorption, mobility and degradation. Adsorption, directly or indirectly, influences the other factors. Adsorption process is generally evaluated by using adsorption isotherms representing the relationship between the quantity of substance adsorbed per unit weight and concentration of the substance in solution at equilibrium. They allow determination of the adsorption constant, which is directl...

  20. Adsorption refrigeration technology theory and application

    CERN Document Server

    Wang, Ruzhu; Wu, Jingyi

    2014-01-01

    Gives readers a detailed understanding of adsorption refrigeration technology, with a focus on practical applications and environmental concerns Systematically covering the technology of adsorption refrigeration, this book provides readers with a technical understanding of the topic as well as detailed information on the state-of-the-art from leading researchers in the field. Introducing readers to background on the development of adsorption refrigeration, the authors also cover the development of adsorbents, various thermodynamic theories, the design of adsorption systems and adsorption refri

  1. Modeling of Experimental Adsorption Isotherm Data

    OpenAIRE

    Xunjun Chen

    2015-01-01

    Adsorption is considered to be one of the most effective technologies widely used in global environmental protection areas. Modeling of experimental adsorption isotherm data is an essential way for predicting the mechanisms of adsorption, which will lead to an improvement in the area of adsorption science. In this paper, we employed three isotherm models, namely: Langmuir, Freundlich, and Dubinin-Radushkevich to correlate four sets of experimental adsorption isotherm data, which were obtained...

  2. 不锈钢截止阀波纹管组件腐蚀开裂失效分析%Failure Analysis of Corrosion Cracking of Bellows Subassembly in Stainless Steel Sealed Valves

    Institute of Scientific and Technical Information of China (English)

    明卫平; 张怡悦; 王传志; 许元; 刘欣芳; 熊金平

    2016-01-01

    Objective To find out the causes for corrosion cracks by failure analysis in the condition that the bellows subassem-bly made of 06Cr19Ni10 stainless steel in the sealed valves cracked which resulted in the failure of sealed valves. Methods The appearance of the failed bellows subassembly was examined by naked eyes, the metallographic structure and the chemical compo-nents were analyzed respectively by the metallographic microscope and direct reading spectrometer;the morphology and fracture of the failed subassembly were observed by SEM. Results Cleavage plane, cleavage steps and corrosion products were seen on the fracture of the outer wall, which was the typical feature for stress corrosion cracking of austenitic stainless steel. Some dimples were observed on the inner wall fracture, which indicated that the inner wall had ductile fracture. The analysis showed that the quality of microstructure and chemical composition of the bellows subassembly met the requirements on design and usage. The medium test results showed that the content of harmful ions was relatively high in the heat transfer fluid ( HTF) which contained 55 mg/kg chlo-ride ion and over 350 mg/kg sulfur. Conclusion The main fracture causes of outer and inner wall of the double-layer bellows subas-sembly were different;the failure of outer wall was due to the stress corrosion related to the high content of chloride ion, while the fracture of inner wall was ductile fracture, which was due to the significant decrease in compressive strength in the result of the plane instability cause by the failure of outer wall. It is proposed that the content of harmful ions should be reduced in HTF and the stainless steel with better corrosion resistance should be used.%目的:针对某炼油厂波纹管截止阀中双层不锈钢304波纹管组件发生开裂,造成截止阀失效的现况,通过失效分析,寻找腐蚀开裂的原因。方法对失效开裂的不锈钢截止阀双

  3. A biological oil adsorption filter

    Energy Technology Data Exchange (ETDEWEB)

    Pasila, A. [University of Helsinki (Finland). Dept. of Agricultural Engineering and Household Technology

    2005-12-01

    A new oil adsorption method called adsorption filtration (AF) has been developed. It is a technology where by oil residues can be cleaned from water by running it through a simple filter made from freeze treated, dried, milled and then fragmented plant material. By choosing suitable plants and fragmentation sizes it is possible to produce filters, which pass water but adsorb oil. The aim of this study was to investigate the possibilities of manufacturing oil adsorbing filter materials from reed canary grass (Phalaris arundinacea), flax (Linum usitatissimum L.) or hemp fibre (Cannabis sativa L.). The oil (80 ml) was mixed with de-ionised water (200 ml) and this mixture was filtered through 10 or 20 g adsorption filters. Fine spring harvested hemp fibre (diameter less than 1 mm) and reed canary grass fragments adsorb 2-4 g of oil per gram of adsorption material compared to 1-3 g of water. Adsorption filtration is thus a novel way of gathering spilled oil in shallow coastal waters before the oil reaches the shore. (author)

  4. 基于探测器阵列组件的光斑辅助定位系统的设计%Design on Laser Spot Assistant Orientation System Based on Photo-detector Array Subassembly

    Institute of Scientific and Technical Information of China (English)

    曾铮; 孙诗; 邹泽亚; 徐道润; 陈春霞

    2012-01-01

    设计并实现了一种基于探测器阵列组件的光斑辅助定位系统。该系统以120元Si-PIN探测器作为光电传感器,将其排列为正方形,由120路光电转换电路将每个光电传感器采集到的电流信号转换为电压信号并与预先设置的阈值电平进行比较,以判断该点探测器是否探测到光信号,在CPLD时序控制下将每个探测器的响应情况通过数据采集电路实时传送至上位机。将探测器阵列组件放置在指定位置,通过调节光源位置直至上位机反映的图像为对准后的形式,由此实现光斑辅助定位。经测试表明,该系统能实现240mm×240mm大面积、精度2mm的光斑位置实时探测和辅助定位,且相对传统方式更加简单可行。%A 120 unit Si-PIN photo-detector array used as the photoelectric sensor was arranged as a square, the current signal collected by each photoelectric sensor was conversed to voltage signal by the photoelectric conversion circuit. Then the voltage signal was compared with the preset threshold voltage, and the result was transmitted to the computer on the control of the data-collection circuit and the schedule by CPLD. When the photo-detector array subassembly is placed in the destination location, the laser spot assistant orientation could be realized by adjusting the laser spot. According the test result, this subassembly can realize the real time detection and assistant orientation of the 240 mm× 240 mrn laser spot location, the precision can reach 2 mm, and it is more reliable and practical than tradition methods.

  5. Host receptors for bacteriophage adsorption.

    Science.gov (United States)

    Bertozzi Silva, Juliano; Storms, Zachary; Sauvageau, Dominic

    2016-02-01

    The adsorption of bacteriophages (phages) onto host cells is, in all but a few rare cases, a sine qua non condition for the onset of the infection process. Understanding the mechanisms involved and the factors affecting it is, thus, crucial for the investigation of host-phage interactions. This review provides a survey of the phage host receptors involved in recognition and adsorption and their interactions during attachment. Comprehension of the whole infection process, starting with the adsorption step, can enable and accelerate our understanding of phage ecology and the development of phage-based technologies. To assist in this effort, we have established an open-access resource--the Phage Receptor Database (PhReD)--to serve as a repository for information on known and newly identified phage receptors. PMID:26755501

  6. Monomer Adsorption-Desorption Processes

    Institute of Scientific and Technical Information of China (English)

    KE Jian-Hong; LIN Zhen-Quan; CHEN Xiao-Shuang

    2009-01-01

    We propose an adsorption-desorption model for a deposit growth system, in which the adsorption and desorption of particles coexist. By means of the generalized rate equation we investigate the cluster (island) size distribution in the dynamic equilibrium state. The results show that the evolution behaviour of the system depends crucially on the details of the rate kernels. The cluster size distribution can take the ecale-frse power-law form in some cases, while it grows exponentially with size in other cases.

  7. Theoretical insight of adsorption cooling

    KAUST Repository

    Chakraborty, Anutosh

    2011-06-03

    This letter proposes and presents a thermodynamic formulation to calculate the energetic performances of an adsorption cooler as a function of pore widths and volumes of solid adsorbents. The simulated results in terms of the coefficient of performance are validated with experimental data. It is found from the present analysis that the performance of an adsorption cooling device is influenced mainly by the physical characteristics of solid adsorbents, and the characteristics energy between the adsorbent-adsorbate systems. The present study confirms that there exists a special type of silicagel having optimal physical characteristics that allows us to obtain the best performance.

  8. Adsorption of Organics from Domestic Water Supplies.

    Science.gov (United States)

    McGuire, Michael J.; Suffet, Irwin H.

    1978-01-01

    This article discusses the current state of the art of organics removal by adsorption. Various theoretical explanations of the adsorption process are given, along with practical results from laboratory, pilot-scale, and full-scale applications. (CS)

  9. ADSORPTION MALACHITE GREEN ON NATURAL ZEOLITE

    Directory of Open Access Journals (Sweden)

    Eko Ariyanto

    2012-02-01

    Full Text Available A natural zeolite was employed as adsorbent for reducing of malachite green from aqueous solution. A batch system was applied to study the adsorption of malachite green in single system on natural zeolite. The adsorption studies indicate that malachite green in single component system follows the second-order kinetics and the adsorption is diffusion process with two stages for malachite green. Malachite green adsorption isotherm follows the Langmuir model.

  10. Adsorption theory for polydisperse polymers.

    NARCIS (Netherlands)

    Roefs, S.P.F.M.; Scheutjens, J.M.H.M.; Leermakers, F.A.M.

    1994-01-01

    Most polymers are polydisperse. We extend the self-consistent field polymer adsorption theory due to Scheutjens and Fleer to account for an arbitrary polymer molecular weight distribution with a cutoff chain length Nmax. In this paper, the treatment is restricted to homopolymers. For this case a ver

  11. Adsorption of Levofloxacin to Goethite

    NARCIS (Netherlands)

    Qin, Xiaopeng; Liu, Fei; Zhao, Long; Hou, Hong; Wang, Guangcai; Li, Fasheng; Weng, Liping

    2016-01-01

    Batch experiments were conducted to investigate the adsorption of a widely used fluoroquinolone antibiotic levofloxacin (LEV) to goethite and effects of nitrate, sulfate, small organic acids, and humic acid (HA). The concentrations of LEV and small organic acids in single systems or mixtures were

  12. Scaling Laws of Polyelectrolyte Adsorption

    OpenAIRE

    Borukhov, I.; Andelman, D.; Orland, H.

    1997-01-01

    Adsorption of charged polymers (polyelectrolytes) from a semi-dilute solution to a charged surface is investigated theoretically. We obtain simple scaling laws for (i) the amount of polymer adsorbed to the surface, Gamma, and (ii) the width of the adsorbed layer D, as function of the fractional charge per monomer p and the salt concentration c_b. For strongly charged polyelectrolytes (p

  13. Adsorption behavior of bisphenol-A and diethyl phthalate onto bubble surface in nonfoaming adsorptive bubble separation

    OpenAIRE

    Maruyama, Hideo; Seki, Hideshi; Matsukawa, Yasuhiro; Suzuki, Akira; INOUE, Norio

    2008-01-01

    To clarify adsorption equilibrium relationship at liquid-atmosphere interface, adsorption behavior of bisphenol-A (BPA) and diethyl phthalate (DEP) onto bubble surface was studied by using nonfoaming adsorptive bubble separation (NFBS) technique. The adsorption isotherm of BPA and DEP were obtained experimentally. The experimental results showed that adsorption equilibrium of BPA and DEP on bubble surface followed Langmuir's adsorption isotherm. Two adsorption parameters, the adsorption equil...

  14. Heats of adsorption for charcoal nitrogen systems

    Energy Technology Data Exchange (ETDEWEB)

    Prasad, M.; Akkimaradi, B.S.; Rastogi, S.C. [ISRO Satellite Centre, Bangalore (India). Thermal Systems Group; Rao, R.R. [Government College for Boys, Kolar, Karnataka (India); Srinivasan, K. [Indian Institute of Science, Bangalore (India). Dept. of Mechanical Engineering

    1999-07-01

    This paper develops an empirical equation for correlation of the loading dependence of the heat of adsorption for two samples of activated charcoal-nitrogen systems. Details are given of the use of isotherm data, the evaluation of the heat of adsorption using the Clausius-Clapeyron equation, the plotting of primary adsorption data, and the plotting of the heat of adsorption as a function of the loading of the two samples. The need to consider the heat of adsorption property when designing a system in which a gaseous medium is adsorbed by a solid sorbent is discussed. (UK)

  15. Adsorption from solutions of non-electrolytes

    CERN Document Server

    Kipling, J J

    1965-01-01

    Adsorption from Solutions of Non-Electrolytes provides a general discussion of the subject, which has so far been given little or no attention in current textbooks of physical chemistry. A general view of the subject is particularly needed at a time when we wish to see how far it will be possible to use theories of solutions to explain the phenomena of adsorption. The book opens with an introductory chapter on the types of interface, aspects of adsorption from solution, types of adsorption, and classification of systems. This is followed by separate chapters on experimental methods, adsorption

  16. Adsorption of Phosphate on Variable Charge Soils

    Institute of Scientific and Technical Information of China (English)

    HUGUO-SONG; ZHUZU-XIANG; 等

    1992-01-01

    The study about the adsorption of phosphate on four variable charge soils and some minerals revealed that two stage adsorption appeared in the adsorption isothems of phosphate on 4 soils and there was a maximum adsorption on Al-oxide-typed surfaces between pH 3.5 to pH 5.5 as suspension pH changed from 2 to 9,but the adsorption amount of phosphate decreased continually as pH rose on Fe-oxide typed surfaces.The adsorption amount of phosphate and the maximum phosphate adsorption pH decreased in the order of yellow-red soil> lateritic red soil> red soil> paddy soil,which was coincided with the content order of amorphous Al oxide.The removement of organic matter and Fe oxide made the maximum phosphate adsorption pH rise from 4.0 to 5.0 and 4.5,respectively.The desorption curves with pH of four soils showed that phosphate desorbed least at pH 5.Generally the desorption was contrary to the adsorption with pH changing.There was a good accordance between adsorption or desorption and the concentration of Al in the suspension.The possible mechanisms of phosphate adsorption are discussed.

  17. Phosphate adsorption on lanthanum loaded biochar.

    Science.gov (United States)

    Wang, Zhanghong; Shen, Dekui; Shen, Fei; Li, Tianyu

    2016-05-01

    To attain a low-cost and high-efficient phosphate adsorbent, lanthanum (La) loaded biochar (La-BC) prepared by a chemical precipitation method was developed. La-BC and its pristine biochar (CK-BC) were comparatively characterized using zeta potential, BET surface area, scanning electron microscopy/energy dispersive spectrometer (SEM-EDS), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and Fourier transform infrared spectroscopy (FT-IR). The adsorption ability and the mechanisms during adsorption process for the La-BC samples were also investigated. La loaded on the surface of biochar can be termed as La-composites (such as LaOOH, LaONO3 and La(OH)3), leading to the decrease of negative charge and surface area of biochar. La-BC exhibited the high adsorption capacity to phosphate compared to CK-BC. Adsorption isotherm and adsorption kinetic studies showed that the Langmuir isotherm and second order model could well describe the adsorption process of La-BC, indicating that the adsorption was dominated by a homogeneous and chemical process. The calculated maximum adsorption capacity was as high as 46.37 mg g(-1) (computed in P). Thermodynamic analysis revealed that the adsorption was spontaneous and endothermic. SEM, XRD, XPS and FT-IR analysis suggested that the multi-adsorption mechanisms including precipitation, ligand exchange and complexation interactions can be evidenced during the phosphate adsorption process by La-composites in La-BC. PMID:26871732

  18. Adsorption of amitraz on the clay

    Directory of Open Access Journals (Sweden)

    Jale Gülen

    2013-01-01

    Full Text Available Amitraz (AZ that is used as acaridies was tried to extract with a clay. The experimental data were modelled as using Langmuir and Freundlich isotherms. The adsorption data fit well with Langmuir isotherm that indicated the AZ adsorption is homogeneous and monolayer. The monolayer adsorption capacity was found to be 35.02 mg/g at 20 ºC temperature. Effect of the phases contact time, the initial solution pH and the initial pesticide concentration were investigated from the point of adsorption equilibrium and yield. The adsorption kinetics were investigated by applying pseudo first order, pseudo second order and intra particle diffusion laws. Adsorption of AZ was found to be best fitted by the pseudo second order model. The intra particle diffusion also plays an important role in adsorption phenomenon.

  19. Adsorption modeling for macroscopic contaminant dispersal analysis

    Energy Technology Data Exchange (ETDEWEB)

    Axley, J.W.

    1990-05-01

    Two families of macroscopic adsorption models are formulated, based on fundamental principles of adsorption science and technology, that may be used for macroscopic (such as whole-building) contaminant dispersal analysis. The first family of adsorption models - the Equilibrium Adsorption (EA) Models - are based upon the simple requirement of equilibrium between adsorbent and room air. The second family - the Boundary Layer Diffusion Controlled Adsorption (BLDC) Models - add to the equilibrium requirement a boundary layer model for diffusion of the adsorbate from the room air to the adsorbent surface. Two members of each of these families are explicitly discussed, one based on the linear adsorption isotherm model and the other on the Langmuir model. The linear variants of each family are applied to model the adsorption dynamics of formaldehyde in gypsum wall board and compared to measured data.

  20. Fibrinogen adsorption on blocked surface of albumin

    DEFF Research Database (Denmark)

    Holmberg, Maria; Hou, Xiaolin

    2011-01-01

    We have investigated the adsorption of albumin and fibrinogen onto PET (polyethylene terephthalate) and glass surfaces and how pre-adsorption of albumin onto these surfaces can affect the adsorption of later added fibrinogen. For materials and devices being exposed to blood, adsorption...... of fibrinogen is often a non-wanted event, since fibrinogen is part of the clotting cascade and unspecific adsorption of fibrinogen can have an influence on the activation of platelets. Albumin is often used as blocking agent for avoiding unspecific protein adsorption onto surfaces in devices designed to handle...... energies, the adsorption of both albumin and fibrinogen has been monitored simultaneously on the same sample. Information about topography and coverage of adsorbed protein layers has been obtained using AFM (Atomic Force Microscopy) analysis in liquid. Our studies show that albumin adsorbs in a multilayer...

  1. Adsorption in air treatment; Adsorption en traitement de l'air

    Energy Technology Data Exchange (ETDEWEB)

    Le Cloirec, P. [Ecole des Mines de Nantes, Dept. Systemes Energetiques et Environnement, 44 - Nantes (France)

    2003-01-01

    The aim of this article is to present the concepts and technologies of adsorption in air treatment. The following points are more particularly developed: 1 - approach of mechanisms: gas-solid transfer, equilibrium equations, multi-composed adsorption, adsorption influencing parameters, adsorption-desorption capacities and energies, specific case of hydrogen sulfide, the case of ketones; 2 - adsorbents implemented; 3 - adsorption and dynamical adsorber: flow and pressure drop in a porous medium, breakthrough curves, adsorption capacities, modeling of breakthrough curves; 4 - implementation of adsorber: models, dimensioning and practical operating data, process safety; 5 - regeneration of activated charcoals: reactivation, in-situ thermal regeneration. (J.S.)

  2. Adsorption of Carbon Dioxide on Activated Carbon

    Institute of Scientific and Technical Information of China (English)

    Bo Guo; Liping Chang; Kechang Xie

    2006-01-01

    The adsorption of CO2 on a raw activated carbon A and three modified activated carbon samples B, C, and D at temperatures ranging from 303 to 333 K and the thermodynamics of adsorption have been investigated using a vacuum adsorption apparatus in order to obtain more information about the effect of CO2 on removal of organic sulfur-containing compounds in industrial gases. The active ingredients impregnated in the carbon samples show significant influence on the adsorption for CO2 and its volumes adsorbed on modified carbon samples B, C, and D are all larger than that on the raw carbon sample A. On the other hand, the physical parameters such as surface area, pore volume, and micropore volume of carbon samples show no influence on the adsorbed amount of CO2. The Dubinin-Radushkevich (D-R) equation was the best model for fitting the adsorption data on carbon samples A and B, while the Freundlich equation was the best fit for the adsorption on carbon samples C and D. The isosteric heats of adsorption on carbon samples A, B, C, and D derived from the adsorption isotherms using the Clapeyron equation decreased slightly increasing surface loading. The heat of adsorption lay between 10.5 and 28.4 kJ/mol, with the carbon sample D having the highest value at all surface coverages that were studied. The observed entropy change associated with the adsorption for the carbon samples A, B, and C (above the surface coverage of 7 ml/g) was lower than the theoretical value for mobile adsorption. However, it was higher than the theoretical value for mobile adsorption but lower than the theoretical value for localized adsorption for carbon sample D.

  3. Adsorption and Desorption of Methiopyrsulfuron in Soils

    Institute of Scientific and Technical Information of China (English)

    WU Chun-Xian; WANG Jin-Jun; ZHANG Su-Zhi; ZHANG Zhong-Ming

    2011-01-01

    Methiopyrsulfuron is a new low-rate sulfonylurea herbicide for weed control in wheat; however, there is a lack of published information on its behavior in soils. In this study, methiopyrsulfuron adsorption and desorption were measured in seven soils sampled from Heilongjiang, Shandong, Jiangxi, Sichuan, Anhui, and Chongqing provinces of China using a batch equilibrium method. The Freundlich equation was used to described its adsorption and desorption. Adsorption isotherms were nonlinear with the values of Kf-ads, the Freundlich empirical constant indicative of the adsorption capacity,ranging from 0.75 to 2.46, suggesting that little of this herbicide was adsorbed by any of the seven soils. Soil pH and organic matter content (OM) were the main factors influencing adsorption; adsorption was negatively correlated with pH and positively correlated with OM. Methiopyrsulfuron desorption was hysteretic on the soils with high OM content and low pH.

  4. Gibbs adsorption and the compressibility equation

    International Nuclear Information System (INIS)

    A new approach for deriving the equation of state is developed. It is shown that the integral in the compressibility equation is identical to the isotherm for Gibbs adsorption in radial coordinates. The Henry, Langmuir, and Frumkin adsorption isotherms are converted into equations of state. It is shown that using Henry's law gives an expression for the second virial coefficient that is identical to the result from statistical mechanics. Using the Langmuir isotherm leads to a new analytic expression for the hard-sphere equation of state which can be explicit in either pressure or density. The Frumkin isotherm results in a new equation of state for the square-well potential fluid. Conversely, new adsorption isotherms can be derived from equations of state using the compressibility equation. It is shown that the van der Waals equation gives an adsorption isotherm equation that describes both polymolecular adsorption and the unusual adsorption behavior observed for supercritical fluids. copyright 1995 American Institute of Physics

  5. ADSORPTION AND RELEASING PROPERTIES OF BEAD CELLULOSE

    Institute of Scientific and Technical Information of China (English)

    A. Morales; E. Bordallo; V. Leon; J. Rieumont

    2004-01-01

    The adsorption of some dyes on samples of bead cellulose obtained in the Unit of Research-Production "Cuba 9"was studied. Methylene blue, alizarin red and congo red fitted the adsorption isotherm of Langmuir. Adsorption kinetics at pH = 6 was linear with the square root of time indicating the diffusion is the controlling step. At pH = 12 a non-Fickian trend was observed and adsorption was higher for the first two dyes. Experiments carried out to release the methylene blue occluded in the cellulose beads gave a kinetic behavior of zero order. The study of cytochrome C adsorption was included to test a proteinic material. Crosslinking of bead cellulose was performed with epichlorohydrin decreasing its adsorption capacity in acidic or alkaline solution.

  6. Effect of piezoelectric material on hydrogen adsorption

    Energy Technology Data Exchange (ETDEWEB)

    Li, Xuan [Department of Materials Science and Engineering, Michigan Technological University, 1400 Townsend Drive, Houghton, MI, 49931 (United States); Civil and Environmental Engineering School, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing, 100083 (China); Hwang, Jiann-Yang; Shi, Shangzhao; Sun, Xiang; Zhang, Zheng [Department of Materials Science and Engineering, Michigan Technological University, 1400 Townsend Drive, Houghton, MI, 49931 (United States)

    2010-09-15

    In hydrogen storage applications, the primary issue for physisorption of hydrogen onto solid-state materials is the weak interaction force between hydrogen molecules and the adsorbents. It is found that enhanced adsorption can be obtained under an external electric field, because it appears the electric field increases the hydrogen adsorption energy. Experiments were carried out to determine hydrogen adsorption on activated carbon using the piezoelectric material PMN-PT as the charge supplier under hydrogen pressure. Results indicate that more than 20% hydrogen adsorption enhancement was obtained. Parameters related to hydrogen adsorption enhancement include the amount of the charge and temperature. Higher voltage and lower temperature promote the increase of adsorption capacity but room temperature results are very encouraging. (author)

  7. Adsorption of goethite onto quartz and kaolinite

    Science.gov (United States)

    Goldberg, M.C.; Weiner, Eugene R.; Boymel, P.M.

    1984-01-01

    The adsorption of colloidal goethite onto quartz and kaolinite substrates has been studied as a function of pH and NaCl concentration. Goethite adsorption was measured quantitatively by Fourier-transform infrared spectroscopy. The results indicate that adsorption onto both substrates is due primarily to coulombic forces; however, the pH dependence of adsorption is very different for the two substrates. This is explained by the fact that the surface charge on quartz is entirely pH-dependent, while kaolinite has surface faces which carry a permanent negative charge. Adsorption of goethite on to kaolinite increases markedly with increasing NaCl concentration, while adsorption onto quartz is relatively independent of NaCl concentration. This can be explained by the influence of NaCl concentration upon the development of surface charge on the substrates. A method is described for separating surface-bound goethite from free goethite.

  8. Adsorption of octylamine on titanium dioxide

    International Nuclear Information System (INIS)

    Processes of adsorption and desorption of a model active substance (octylamine) on the surface of unmodified titanium dioxide (E 171) have been performed. The effects of concentration of octylamine and time of the process on the character of adsorption have been studied and the efficiency of the adsorption/desorption has been determined. The samples obtained have been studied by X-ray diffraction. The nitrogen adsorption/desorption isotherms, particle size distribution and absorption capacities of water, dibutyl phthalate and paraffin oil have been determined. The efficiency of octylamine adsorption on the surface of the titanium dioxide has been found positively correlated with the concentration of octylamine in the initial solution. The desorption of octylamine has decreased with increasing concentration of this compound adsorbed. For octylamine in low concentrations the physical adsorption has been found to dominate, which is desirable when using TiO2 in the production of pharmaceuticals.

  9. Solar heat utilization for adsorption cooling device

    OpenAIRE

    Malcho Milan; Patsch Marek; Pilát Peter

    2012-01-01

    This article deals with possibility of solar system connection with adsorption cooling system. Waste heat from solar collectors in summer is possible to utilize in adsorption cooling systems, which desorption temperatures have to be lower than temperature of heat transport medium operation temperature. For verification of work of this system was constructed on the Department of power engineering on University of Zilina solar adsorption cooling device.

  10. Solar heat utilization for adsorption cooling device

    Directory of Open Access Journals (Sweden)

    Malcho Milan

    2012-04-01

    Full Text Available This article deals with possibility of solar system connection with adsorption cooling system. Waste heat from solar collectors in summer is possible to utilize in adsorption cooling systems, which desorption temperatures have to be lower than temperature of heat transport medium operation temperature. For verification of work of this system was constructed on the Department of power engineering on University of Zilina solar adsorption cooling device.

  11. Bentazone adsorption and desorption on agricultural soils

    OpenAIRE

    Boivin, A.; Cherrier, R.; Schiavon, M

    2005-01-01

    Herbicide fate and transport in soils greatly depend upon adsorption-desorption processes. Batch adsorption and desorption experiments were performed with the herbicide bentazone using 13 contrasted agricultural soil samples. Bentazone was found to be weakly sorbed by the different soils, showing average Freundlich adsorption coefficients (Kf) value of 1.4 ± 2.3 mg1 - nf Lnf kg-1. Soil organic matter content did not have a significant effect on bentazone sorption (r2 = 0.12), whereas natural ...

  12. High Pressure Multicomponent Adsorption in Porous Media

    DEFF Research Database (Denmark)

    Shapiro, Alexander; Stenby, Erling Halfdan

    1999-01-01

    We analyse adsorption of a multicomponent mixture at high pressure on the basis of the potential theory of adsorption. The adsorbate is considered as a segregated mixture in the external field produced by a solid adsorbent. we derive an analytical equation for the thickness of a multicomponent film...... close to a dew point. This equation (asymptotic adsorption equation, AAE) is a first order approximation with regard to the distance from a phase envelope....

  13. Adsorption of radioactive iodide by natural zeolites

    International Nuclear Information System (INIS)

    Two natural zeolites from Iranian deposits (clinoptilolite and natrolite) were characterized and their ability for adsorption of iodide from nuclear wastewaters was evaluated. The adsorption behavior was studied on natural and modified zeolites by γ-spectrometry using 131I as radiotracer. Adsorption isotherms and distribution coefficient (Kd) were measured. The results showed that clinoptilolite is a more promising zeolite for removal of iodide compared to natrolite. Furthermore, the adsorption was higher in silver, lead and thallium forms, whereas the lowest desorption was observed in lead modified zeolite. (author)

  14. Adsorption from Experimental Isotherms of Supercritical Gases

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    A mathematical method was proposed for the determination of absolute adsorption from experimental isotherms. The method is based on the numerical equality of the absolute and the excess adsorption when either the gas phase density or the amount adsorbed is not quite considerable. The initial part of the experimental isotherms, which represents the absolute adsorption, became linear with some mathematical manipulations. The linear isotherms were reliably formulated. As consequence, either the volume or the density of the supercritical adsorbate could be determined by a non-empirical way. This method was illustrated by the adsorption data of supercritical hydrogen and methane on a superactivated carbon in large ranges of temperature and pressure.

  15. ADSORPTION OF POLYCHLORINATED BIPHENYLS BY SOILS

    Directory of Open Access Journals (Sweden)

    Mihaela Preda

    2010-01-01

    Full Text Available The behavior of polychlorinated biphenyls (PCBs in soil is determined by several factors including adsorption, mobility and degradation. Adsorption, directly or indirectly, influences the other factors. Adsorption process is generally evaluated by using adsorption isotherms representing the relationship between the quantity of substance adsorbed per unit weight and concentration of the substance in solution at equilibrium. They allow determination of the adsorption constant, which is directly proportional to the adsorption of PCBs in soil. PCBs are very insoluble in water, so they tend to accumulate in the lipids. This is the reason why polychlorinated biphenyls are more strongly adsorbed in soils with higher organic matter content. To obtain the adsorption isotherm were used standard solutions of PCB 101with initial concentrations: 0.05, 0.1, 0.5, 1 and 2 g/ml. The adsorption constants were in order: 3072 ml/g for chernozem, 2943 mg/l for chromic luvisol, 998 mg/l for aluviosol and 1443 mg/l for anthrosol. The values of adsorption constants depend on the organic matter and clay content.

  16. Adsorption-induced step formation

    DEFF Research Database (Denmark)

    Thostrup, P.; Christoffersen, Ebbe; Lorensen, Henrik Qvist;

    2001-01-01

    Through an interplay between density functional calculations, Monte Carlo simulations and scanning tunneling microscopy experiments, we show that an intermediate coverage of CO on the Pt(110) surface gives rise to a new rough equilibrium structure with more than 50% step atoms. CO is shown to bind...... so strongly to low-coordinated Pt atoms that it can break Pt-Pt bonds and spontaneously form steps on the surface. It is argued that adsorption-induced step formation may be a general effect, in particular at high gas pressures and temperatures....

  17. Adsorption analysis equilibria and kinetics

    CERN Document Server

    Do, Duong D

    1998-01-01

    This book covers topics of equilibria and kinetics of adsorption in porous media. Fundamental equilibria and kinetics are dealt with for homogeneous as well as heterogeneous particles. Five chapters of the book deal with equilibria and eight chapters deal with kinetics. Single component as well as multicomponent systems are discussed. In kinetics analysis, we deal with the various mass transport processes and their interactions inside a porous particle. Conventional approaches as well as the new approach using Maxwell-Stefan equations are presented. Various methods to measure diffusivity, such

  18. Surfactant adsorption to soil components and soils.

    Science.gov (United States)

    Ishiguro, Munehide; Koopal, Luuk K

    2016-05-01

    Soils are complex and widely varying mixtures of organic matter and inorganic materials; adsorption of surfactants to soils is therefore related to the soil composition. We first discuss the properties of surfactants, including the critical micelle concentration (CMC) and surfactant adsorption on water/air interfaces, the latter gives an impression of surfactant adsorption to a hydrophobic surface and illustrates the importance of the CMC for the adsorption process. Then attention is paid to the most important types of soil particles: humic and fulvic acids, silica, metal oxides and layered aluminosilicates. Information is provided on their structure, surface properties and primary (proton) charge characteristics, which are all important for surfactant binding. Subsequently, the adsorption of different types of surfactants on these individual soil components is discussed in detail, based on mainly experimental results and considering the specific (chemical) and electrostatic interactions, with hydrophobic attraction as an important component of the specific interactions. Adsorption models that can describe the features semi-quantitatively are briefly discussed. In the last part of the paper some trends of surfactant adsorption on soils are briefly discussed together with some complications that may occur and finally the consequences of surfactant adsorption for soil colloidal stability and permeability are considered. When we seek to understand the fate of surfactants in soil and aqueous environments, the hydrophobicity and charge density of the soil or soil particles, must be considered together with the structure, hydrophobicity and charge of the surfactants, because these factors affect the adsorption. The pH and ionic strength are important parameters with respect to the charge density of the particles. As surfactant adsorption influences soil structure and permeability, insight in surfactant adsorption to soil particles is useful for good soil management. PMID

  19. Modeling phase noise in multifunction subassemblies.

    Science.gov (United States)

    Driscoll, Michael

    2012-03-01

    Obtaining requisite phase noise performance in hardware containing multifunction circuitry requires accurate modeling of the phase noise characteristics of each signal path component, including both absolute (oscillator) and residual (non-oscillator) circuit contributors. This includes prediction of both static and vibration-induced phase noise. The model (usually in spreadsheet form) is refined as critical components are received and evaluated. Additive (KTBF) phase noise data can be reasonably estimated, based on device drive level and noise figure. However, accurate determination of component near-carrier (multiplicative) and vibration-induced noise usually must be determined via measurement. The model should also include the effects of noise introduced by IC voltage regulators and properly discriminate between common versus independent signal path residual noise contributors. The modeling can be easily implemented using a spreadsheet.

  20. Preparation of the magnet sub-assemblies

    CERN Multimedia

    maximilien Brice

    2001-01-01

    Photo 01: On a rotation bench, preparation of the lower half-yoke with the bus bars and the pre-curved shell. The components are put on a dummy half-yoke in view of being rotated upside down. Photo 02: On a rotation bench, preparation of the lower half-yoke with the bus bars and the pre-curved shell. The components are put on a dummy half-yoke in view of being rotated upside down. Photo 03: The half-yoke assembly is made of short packs that are assembled together and locked with 15-m long tie-rods on a dedicated bench. Photo 04: The collared-coils assembly is equipped with magnetic inserts and special shims on a rotation bench in view of its installation in the yoke, operation that is called "yoking". At that stage of the assembly, the collared-coils assembly is equipped with the end plates and the electrical connections between the poles and between dipole I and dipoe II are made.

  1. Investigation on Adsorption State of Surface Adsorbate on Silicon Wafer

    Institute of Scientific and Technical Information of China (English)

    1999-01-01

    An adsorption kinetics model for adsorbate on the specularly polished silicon wafer was suggested. The mathematical model of preferential adsorption and the mechanism controlling the adsorption state of adsorbate were discussed.

  2. Adsorption of ferrous ions onto montmorillonites

    Energy Technology Data Exchange (ETDEWEB)

    Qin, Dawei, E-mail: qdw109@163.com [Qilu University of Technology, Jinan, 250353, Shandong (China); Niu, Xia [Qilu University of Technology, Jinan, 250353, Shandong (China); Qiao, Min; Liu, Gang; Li, Hongxin; Meng, Zhenxiao [Shandong SiBang pharmaceutical co., LTD, Jinan, Shandong, 250200 (China)

    2015-04-01

    Highlights: • Adsorption study of ferrous ions on montmorillonites. • Using ascorbic acid as antioxidants in adsorption process. • Fe (II)-MMT had good affinity for phosphate. - Abstract: The adsorption of Fe (II) onto montmorillonites was investigated through initial concentration, contact time, pH and temperature. During the whole adsorption process, the ascorbic acid (Vitamin C) was added as a kind of antioxidant, at the same time, deionized water (after boiling) and nitrogen protection were also used to avoid oxidation. The Fe{sup 2+}/Fe{sub total} ratio of the iron exists in the Fe-montmorillonites was found more than 95%. Two kinetic models, including pseudo-first-order and pseudo-second-order model, were used to analyze the adsorption process of Fe (II) on montmorillonites. The results of our study showed that adsorption process fitted with pseudo-second-order well. Adsorption isotherms showed that Langmuir model was better than Freundlich model. The thermodynamic parameters ΔG{sup 0} and ΔH{sup 0} were 3.696 kJ/mol and 6.689 kJ/mol (we just gave the values at 298 K), respectively. The positive values at different temperatures showed that the adsorption process was non-spontaneous and endothermic. The characteristics of materials were determined by X-ray diffraction (XRD), Fourier transform infrared (FT-IR), Surface area and porosity analyzer, Thermogravimetric analysis (TGA), Differential scanning calorimeter (DSC) and Zeta potential distribution.

  3. Adsorption of Chlortetracycline from Water by Rectories

    Institute of Scientific and Technical Information of China (English)

    吕国诚; 吴丽梅; 王晓龙; 廖立兵; 王小雨

    2012-01-01

    The removal of antibiotics from water by clay minerals has become the focus of research due to their strong adsorptive ability. In this study, adsorption of chlortetracycline (CTC) onto rectories was conducted and the effects of time, concentration, temperature and pH were investigated. Experimental results showed that adsorption equilibrium was reached in 8 h. Based on the Langmuir model, the maximum adsorption capacity of CTC on rectories was 177.7 mg·g 1 at room temperature. By the study on adsorption dynamics, it is found that the kinetic date fit the pseudo-second-order model well. The adsorption of CTC by rectories is endothermic and the free energy is in the range of 10 to 30 kJ·mol 1 . The pH value of solution has significant effects on adsorption and the optimal pH is at acidity (pH 2-6). At concentration of 2500 mg·L 1 , the intercalated CTC produces an interlayer space with a height of 1.38 nm, which is 1.12 nm in raw rectories, suggesting that the adsorption occurs between layers of rectories.

  4. Kinetics of polymer adsorption, desorption and exchange.

    NARCIS (Netherlands)

    Dijt, J.C.

    1993-01-01

    The aim of the study in this thesis was to gain more insight in the kinetics of polymer adsorption. To this end some well-characterised polymers have been systematically investigated.In the process of polymer adsorption one may distinguish three kinetic contributions: transport to the surface, attac

  5. Adsorption of arsenic and boron by soil

    Energy Technology Data Exchange (ETDEWEB)

    Sakata, M.

    1986-01-01

    The author reports a study of the soil adsorption of As (trivalent) and B leached from coal ash. It has been found that the amount of adsorption is greatly affected by the pH of the solution. Maximum adsorption of As occurred from solutions with pH of about 8, while pH 8-9 resulted in maximum B adsorption. Furthermore, the As adsorption is related to the quantity of iron oxides and hydrated iron oxides in the soil, while the adsorption of B is related to the quantity of hydrated aluminium oxides and allophanes. Within the range of concentrations studied, the adsorption isotherm for As obeyed the Langmuir equation, and the B isotherm, that of Freundlich. At low concentrations, both elements conform to the Henry adsorption isotherm. The author also reports that the impact on ground water of elements such as As and B leached from coal ash can be conveniently predicted or evaluated by means of a diffusive flow model. 30 references, 14 figures, 3 tables.

  6. Adsorption Kinetic of 8-Hydroxyquinoline on Malachite

    OpenAIRE

    Oprea, Gabriela; Angela MICHNEA; Mihali, Cristina

    2007-01-01

    Influence of temperature and collector concentration on its adsorption rate on mineral surface was studied as regarding to the 8-hydroxyquinoline/malachite system. Theoretical equations as well as experimental data may be useful to estimate the adsorption rate and kinetics connected to the conditioning stage in mineral flotation in order to optimise the selectivity and the recovery of the desired mineral.

  7. Molecular Simulation of Adsorption in Microporous Materials

    OpenAIRE

    Yiannourakou M.; Ungerer P.; Leblanc B.; Rozanska X.; Saxe P.; Vidal-Gilbert S.; Gouth F.; Montel F.

    2013-01-01

    The development of industrial software, the decreasing cost of computing time, and the availability of well-tested forcefields make molecular simulation increasingly attractive for chemical engineers. We present here several applications of Monte-Carlo simulation techniques, applied to the adsorption of fluids in microporous solids such as zeolites and model carbons (pores < 2 nm). Adsorption was computed in the Grand Canonical ensemble ...

  8. Study on copper adsorption on olivine

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The copper adsorption on olivine supplied by A/S Olivine production plant at Aheim in western Norway has been studied. The factors which affect the uptake of copper have been evaluated. The results reveal that the equilibrium pH in aqueous solution has the greatest influence on the copper adsorption thanks to the competitive adsorption between proton and copper ions, and the adsorption of copper to olivine increases rapidly with the pH increasing from 4 to 6. The initial copper concentration and olivine dose also possess significant effect on copper adsorption. The adsorption efficieny of copper increases with the increase of olivine dose or the decrease of initial copper concentration at the same pH. The ionic strength effect on the adsorption has also been investigated, but it owns little effect on the adsorption process of copper due to the formation of inner sphere surface complexation of copper on olivine. The experimental data show that olivine has a high acid buffer capacity and is an effective adsorbent for copper.

  9. Adsorption Properties of the Cu(115) Surface

    DEFF Research Database (Denmark)

    Godowski, P. J.; Groso, A.; Hoffmann, S. V.;

    2010-01-01

    in context of substrate geometry and compared with the ones of other copper planes. There are no indications of dissociative adsorption of CO, only residual carbon and oxygen were found after adsorbate desorption around 220 K. CO molecules show a strong tendency to "on top" adsorption in sites far from...

  10. Surfactant adsorption to soil components and soils

    NARCIS (Netherlands)

    Ishiguro, Munehide; Koopal, Luuk K.

    2016-01-01

    Soils are complex and widely varying mixtures of organic matter and inorganic materials; adsorption of surfactants to soils is therefore related to the soil composition. We first discuss the properties of surfactants, including the critical micelle concentration (CMC) and surfactant adsorption on

  11. Development of facile property calculation model for adsorption chillers based on equilibrium adsorption cycle

    Science.gov (United States)

    Yano, Masato; Hirose, Kenji; Yoshikawa, Minoru; Thermal management technology Team

    Facile property calculation model for adsorption chillers was developed based on equilibrium adsorption cycles. Adsorption chillers are one of promising systems that can use heat energy efficiently because adsorption chillers can generate cooling energy using relatively low temperature heat energy. Properties of adsorption chillers are determined by heat source temperatures, adsorption/desorption properties of adsorbent, and kinetics such as heat transfer rate and adsorption/desorption rate etc. In our model, dependence of adsorption chiller properties on heat source temperatures was represented using approximated equilibrium adsorption cycles instead of solving conventional time-dependent differential equations for temperature changes. In addition to equilibrium cycle calculations, we calculated time constants for temperature changes as functions of heat source temperatures, which represent differences between equilibrium cycles and real cycles that stemmed from kinetic adsorption processes. We found that the present approximated equilibrium model could calculate properties of adsorption chillers (driving energies, cooling energies, and COP etc.) under various driving conditions quickly and accurately within average errors of 6% compared to experimental data.

  12. Adsorption kinetics of methyl violet onto perlite.

    Science.gov (United States)

    Doğan, Mehmet; Alkan, Mahir

    2003-01-01

    This study examines adsorption kinetics and activation parameters of methyl violet on perlite. The effect of process parameters like contact time, concentration of dye, temperature and pH on the extent of methyl violet adsorption from solution has been investigated. Results of the kinetic studies show that the adsorption reaction is first order with respect to dye solution concentration with activation energy of 13.2 kJ mol(-1). This low activation energy value indicates that the adsorption reaction is diffusion controlled. The activation parameters using Arrhenius and Eyring equations have been calculated. Adsorption increases with increase of variables such as contact time, initial dye concentration, temperature and pH.

  13. ADSORPTION OF PROTEIN ON NANOPARTICLES

    Institute of Scientific and Technical Information of China (English)

    WU Qi

    1994-01-01

    The adsorption of protein on nanoparticles was studied by using dynamic light scattering to measure the hydrodynamic size of both pure protein and nanoparticles adsorbed with different amounts of protein. The thickness of the adsorbed protein layer increases as protein concentration, but decreases as the initial size of nanoparticles. After properly scaling the thickness with the initial diameter, we are able to fit all experimental data with a single master curve. Our experimental results suggest that the adsorbed proteins form a monolayeron the nanoparticle surface and the adsorbed protein molecules are attached to the particle surface at many points through a possible hydrogen-bonding. Our results also indicate that as protein concentration increases, the overall shape of the adsorbed protein molecule continuously changes from a flat layer on the particle surface to a stretched coil extended into water. During the change, the hydrodynamic volume of the adsorbed protein increases linearly with protein concentration.

  14. Adsorption on the carbon nanotubes

    Institute of Scientific and Technical Information of China (English)

    DING Yi; YANG Xiao-bao; NI Jun

    2006-01-01

    Adsorption on single walled carbon nanotubes (SWCNTs) is a subject of growing experimental and theoretical interest.The possible adsorbed patterns of atoms and molecules on the single-walled carbon nanotubes vary with the diameters and chirality of the tubes due to the confinement.The curvature of the carbon nanotube surface enlarges the distance of the adsorbate atoms and thus enhances the stability of high coverage structures of adsorbate.There exist two novel high-coverage stable structures of potassium adsorbed on SWCNTs,which are not stable on graphite.The electronic properties of SWCNTs can be modified by adsorbate atoms and metal-semiconductor and semiconductor-semi-conductor transitions can be achieved by the doping of alkali atoms.

  15. Modeling the adsorption of mixed gases based on pure gas adsorption properties

    Science.gov (United States)

    Tzabar, N.; Holland, H. J.; Vermeer, C. H.; ter Brake, H. J. M.

    2015-12-01

    Sorption-based Joule-Thomson (JT) cryocoolers usually operate with pure gases. A sorption-based compressor has many benefits; however, it is limited by the pressure ratios it can provide. Using a mixed-refrigerant (MR) instead of a pure refrigerant in JT cryocoolers allows working at much lower pressure ratios. Therefore, it is attractive using MRs in sorption- based cryocoolers in order to reduce one of its main limitations. The adsorption of mixed gases is usually investigated under steady-state conditions, mainly for storage and separation processes. However, the process in a sorption compressor goes through various temperatures, pressures and adsorption concentrations; therefore, it differs from the common mixed gases adsorption applications. In order to simulate the sorption process in a compressor a numerical analysis for mixed gases is developed, based on pure gas adsorption characteristics. The pure gas adsorption properties have been measured for four gases (nitrogen, methane, ethane, and propane) with Norit-RB2 activated carbon. A single adsorption model is desired to describe the adsorption of all four gases. This model is further developed to a mixed-gas adsorption model. In future work more adsorbents will be tested using these four gases and the adsorption model will be verified against experimental results of mixed-gas adsorption measurements.

  16. Arsenic Adsorption Equilibrium Concentration and Adsorption Rate of Activated Carbon Coated with Ferric-Aluminum Hydroxides

    Science.gov (United States)

    Zhang, M.; Sugita, H.; Oguma, T.; Hara, J.; Takahashi, S.

    2015-12-01

    In some areas of developing countries, ground or well water contaminated with arsenic has been reluctantly used as drinking water. It is highly desirable that effective and inexpensive arsenic removal agents should be developed and provided to reduce the potential health risk. Previous studies demonstrated that activated carbon coated with ferric-aluminum hydroxides (Fe-Al-C) has high adsorptive potential for removal of arsenic. In this study, a series of experiments using Fe-Al-C were carried to discuss adsorption equilibrium time, adsorption equilibrium concentration and adsorption rate of arsenic for Fe-Al-C. Fe-Al-C used in this study was provided by Astec Co., Ltd. Powder reagent of disodium hydrogen arsenate heptahydrate was dissolved into ion-exchanged water. The solution was then further diluted with ion-exchanged water to be 1 and 10 mg/L as arsenic concentration. The pH of the solution was adjusted to be around 7 by adding HCl and/or NaOH. The solution was used as artificial arsenic contaminated water in two types of experiments (arsenic adsorption equilibrium and arsenic adsorption rate tests). The results of the arsenic equilibrium tests were showed that a time period of about 3 days to reach apparent adsorption equilibrium for arsenic. The apparent adsorption equilibrium concentration and adsorbed amount of arsenic on Fe-Al-C adsorbent could be estimated by application of various adsorption isotherms, but the distribution coefficient of arsenic between solid and liquid varies with experimental conditions such as initial concentration of arsenic and addition concentration of adsorbent. An adsorption rate equation that takes into account the reduction in the number of effective adsorption sites on the adsorbent caused by the arsenic adsorption reaction was derived based on the data obtained from the arsenic adsorption rate tests.

  17. Adsorption of Iminodiacetic Acid Resin for Lutetium

    Institute of Scientific and Technical Information of China (English)

    熊春华; 姚彩萍; 王惠君

    2004-01-01

    The adsorption behavior and mechanism of a novel chelate resin,iminodiacetic acid resin(IDAAR) for Lu(Ⅲ) were investigated.The statically saturated adsorption capacity is 210.8 mg·g-1 at 298 K in HAc-NaAc medium.The Lu(Ⅲ) adsorbed on IDAAR can be eluted by 0.5 mol·L-1 HCl and the elution percentage reaches 96.5%.The resin can be regenerated and reused without obvious decrease in adsorption capacity.The apparent adsorption rate constant is k298=2.0×10-5 s-1.The adsorption behavior of IDAAR for Lu(Ⅲ) obeys the Freundlich isotherm.The thermodynamic adsorption parameters,enthalpy change ΔH,free energy change ΔG and entropy change ΔS of IDAAR for Lu(Ⅲ) are 13.1 kJ·mol-1,-1.37 kJ·mol-1 and 48.4 J·mol-1·K-1,respectively.The apparent activation energy is Ea=31.3 kJ·mol-1.The molar coordination ratio of the functional group of IDAAR to Lu(Ⅲ) is about 3∶1.The adsorption mechanism of IDAAR for Lu(Ⅲ) was examined by chemical method and IR spectrometry.

  18. Adsorption of gases on heterogeneous surfaces

    CERN Document Server

    Rudzinski, W

    1991-01-01

    All real solid surfaces are heterogeneous to a greater or lesser extent and this book provides a broad yet detailed survey of the present state of gas adsorption. Coverage is comprehensive and extends from basic principles to computer simulation of adsorption. Underlying concepts are clarified and the strengths and weaknesses of the various methods described are discussed.Key Features* Adsorption isotherm equations for various types of heterogeneous solid surfaces* Methods of determining the nature of surface heterogeneity and porosity from experimental data* Studies of pha

  19. Adsorption of lead over graphite oxide.

    Science.gov (United States)

    Olanipekun, Opeyemi; Oyefusi, Adebola; Neelgund, Gururaj M; Oki, Aderemi

    2014-01-24

    The adsorption efficiency and kinetics of removal of lead in presence of graphite oxide (GO) was determined using the Atomic Absorption Spectrophotometer (AAS). The GO was prepared by the chemical oxidation of graphite and characterized using FTIR, SEM, TGA and XRD. The adsorption efficiency of GO for the solution containing 50, 100 and 150 ppm of Pb(2+) was found to be 98%, 91% and 71% respectively. The adsorption ability of GO was found to be higher than graphite. Therefore, the oxidation of activated carbon in removal of heavy metals may be a viable option to reduce pollution in portable water.

  20. Thermodynamics of binary gas adsorption in nanopores.

    Science.gov (United States)

    Dutta, Sujeet; Lefort, Ronan; Morineau, Denis; Mhanna, Ramona; Merdrignac-Conanec, Odile; Saint-Jalmes, Arnaud; Leclercq, Théo

    2016-09-21

    MCM-41 nanoporous silicas show a very high selectivity for monoalcohols over aprotic molecules during adsorption of a binary mixture in the gas phase. We present here an original use of gravimetric vapour sorption isotherms to characterize the role played by the alcohol hydrogen-bonding network in the adsorption process. Beyond simple selectivity, vapour sorption isotherms measured for various compositions help to completely unravel at the molecular level the step by step adsorption mechanism of the binary system in the nanoporous solid, from the first monolayers to the complete liquid condensation. PMID:27532892

  1. Adsorption of Cadmium By Silica Chitosan

    OpenAIRE

    Moftah Ali; Ani Mulyasuryani; Akhmad Sabarudin

    2013-01-01

    The adsorption process depends on initial concentration of Cd2+ and ratio of  chitosan in adsorbent. The present study deals with the competitive adsorption of Cd2+ ion onto silica graft with chitosan. Batch adsorption experiments were performed at five different initial Cd2+ concentrations (5, 10, 15, 20 and 25 ppm), on five different proportion from silica to chitosan (100%, 95%, 85%, 75% and 65%) as adsorbent at pH 5. In the recovery process, the high recovery at 0.5 mg and observed the re...

  2. Adsorption affinity of anions on metal oxyhydroxides

    Science.gov (United States)

    Pechenyuk, S. I.; Semushina, Yu. P.; Kuz'mich, L. F.

    2013-03-01

    The dependences of anion (phosphate, carbonate, sulfate, chromate, oxalate, tartrate, and citrate) adsorption affinity anions from geometric characteristics, acid-base properties, and complex forming ability are generalized. It is shown that adsorption depends on the nature of both the anions and the ionic medium and adsorbent. It is established that anions are generally grouped into the following series of adsorption affinity reduction: PO{4/3-}, CO{3/2-} > C2O{4/2-}, C(OH)(CH2)2(COO){3/3-}, (CHOH)2(COO){2/2-} > CrO{4/2-} ≫ SO{4/2-}.

  3. Adsorption-Induced Deformation of Mesoporous Solids

    CERN Document Server

    Gor, Gennady Yu

    2010-01-01

    The Derjaguin - Broekhoff - de Boer theory of capillary condensation is employed to describe deformation of mesoporous solids in the course of adsorption-desorption hysteretic cycles. We suggest a thermodynamic model, which relates the mechanical stress induced by adsorbed phase with the adsorption isotherm. Analytical expressions are derived for the dependence of the solvation pressure on the vapor pressure. The proposed method provides a semi-quantitative description of non-monotonic hysteretic deformation during capillary condensation without invoking any adjustable parameters. The method is showcased drawing on the examples of literature experimental data on adsorption deformation of porous glass and SBA-15 silica.

  4. Albumin (BSA) Adsorption over Graphene in Aqueous Environment: Influence of Orientation, Adsorption Protocol, and Solvent Treatment.

    Science.gov (United States)

    Vilhena, J G; Rubio-Pereda, Pamela; Vellosillo, Perceval; Serena, P A; Pérez, Rubén

    2016-02-23

    We report 150 ns explicit solvent MD simulations of the adsorption on graphene of albumin (BSA) in two orientations and using two different adsorption protocols, i.e., free and forced adsorption. Our results show that free adsorption occurs with little structural rearrangements. Even taking adsorption to an extreme, by forcing it with a 5 nN downward force applied during the initial 20 ns, we show that along a particular orientation BSA is able to preserve the structural properties of the majority of its binding sites. Furthermore, in all the cases considered in this work, the ibuprofen binding site has shown a strong resilience to structural changes. Finally, we compare these results with implicit solvent simulations and find that the latter predicts an extreme protein unfolding upon adsorption. The origin of this discrepancy is attributed to a poor description of the water entropic forces at interfaces in the implicit solvent methods.

  5. Molecular Simulation of Hydrogen Adsorption Density in Single-Walled Carbon Nanotubes and Multilayer Adsorption Mechanism

    Institute of Scientific and Technical Information of China (English)

    Lianquan GUO; Changxiang MA; Shuai WANG; He MA; Xin LI

    2005-01-01

    The adsorption of hydrogen onto single-walled carbon nanotubes (SWCNTs) was studied by molecular dynamics (MD)sim.lation. It was found that the hydrogen molecules distribute regularly inside and outside of the tube. Density distribution was computed for H2 molecule. Theoretical analysis of the result showed the multilayer adsorption mechanism of SWCNTs. The storage of H2 in SWCNTs is computed, which provides essential theoretical reference for further study of hydrogen adsorption in SWCNTs.

  6. Adsorption characteristics of siloxanes in landfill gas by the adsorption equilibrium test

    Energy Technology Data Exchange (ETDEWEB)

    Nam, Sangchul; Namkoong, Wan [Department of Environmental Engineering, Konkuk University, Hwayang-Dong, Gwangjin-Gu, Seoul 143-701 (Korea, Republic of); Kang, Jeong-Hee; Park, Jin-Kyu [Department of Environmental Engineering, Anyang University, Anyang 5-Dong, Manan-Gu, Anyang-Si, Gyeonggi-Do 430-714 (Korea, Republic of); Lee, Namhoon, E-mail: nhlee@anyang.ac.kr [Department of Environmental Engineering, Anyang University, Anyang 5-Dong, Manan-Gu, Anyang-Si, Gyeonggi-Do 430-714 (Korea, Republic of)

    2013-10-15

    Highlights: • Equilibrium test was attempted to evaluate adsorption characteristics of siloxane. • L2 had higher removal efficiency in carbon compared to noncarbon adsorbents. • Total adsorption capacity of siloxane was 300 mg/g by coal activated carbon. • Adsorption characteristics rely on size of siloxane molecule and adsorbent pore. • Conversion of siloxane was caused by adsorption of noncarbon adsorbents. - Abstract: Due to the increase in energy cost by constantly high oil prices and the obligation to reduce greenhouse effect gases, landfill gas is frequently used as an alternative energy source for producing heat and electricity. Most of landfill gas utility facilities, however, are experiencing problems controlling siloxanes from landfill gas as their catalytic oxidizers are becoming fouled by silicon dioxide dust. To evaluate adsorption characteristics of siloxanes, an adsorption equilibrium test was conducted and parameters in the Freundlich and Langmuir isotherms were analyzed. Coconut activated carbon (CA1), coal activated carbon (CA2), impregnated activated carbon (CA3), silicagel (NCA1), and activated alumina (NCA2) were used for the adsorption of the mixed siloxane which contained hexamethyldisiloxane (L2), octamethylcyclotetrasiloxane (D4), and decamethylcyclopentasiloxane (D5). L2 had higher removal efficiency in noncarbon adsorbents compared to carbon adsorbents. The application of Langmuir and Freundlich adsorption isotherm demonstrated that coconut based CA1 and CA3 provided higher adsorption capacity on L2. And CA2 and NCA1 provided higher adsorption capacity on D4 and D5. Based on the experimental results, L2, D4, and D5 were converted by adsorption and desorption in noncarbon adsorbents. Adsorption affinity of siloxane is considered to be affect by the pore size distribution of the adsorbents and by the molecular size of each siloxane.

  7. Analysis of Modified Starch Adsorption Kinetics on Cellulose Fibers via the Modified Langmuir Adsorption Theory

    OpenAIRE

    Zakrajšek, N.; Knez, S.; Ravnjak, D.; Golob, J.

    2009-01-01

    The kinetics of starch adsorption on cellulose fibers is one of the most important criteria regarding the efficient application of papermaking additives due to the continuous nature of paper production and the concomitant need to determine optimum residence times. This study presents an analysis of the kinetics of modified starch adsorption onto cellulose fibers via the application of the modified Langmuir adsorption theory (i.e. the collision theory). A model based on this theory was used to...

  8. Adsorption equilibrium and dynamics of lactase/CM-Sephadex system

    OpenAIRE

    Harsa, Hayriye Şebnem; Göksungur, Yekta; Güvenç, Ulgar

    1995-01-01

    Partitioning behaviour and adsorption isotherms of lactase/CM-Sephadex system at equilibrium were investigated together with the adsorption kinetics in this study. Maximum adsorption was obtained at the pH values between 5.5–6.0. Adsorption isotherm was a close fit to the Langmuir model.

  9. Adsorption of nisin and pediocin on nanoclays.

    Science.gov (United States)

    Meira, Stela Maris Meister; Jardim, Arthur Izé; Brandelli, Adriano

    2015-12-01

    Three different nanoclays (bentonite, octadecylamine-modified montmorillonite and halloysite) were studied as potential carriers for the antimicrobial peptides nisin and pediocin. Adsorption occurred from peptide solutions in contact with nanoclays at room temperature. Higher adsorption of nisin and pediocin was obtained on bentonite. The antimicrobial activity of the resultant bacteriocin-nanoclay systems was analyzed using skimmed milk agar as food simulant and the largest inhibition zones were observed against Gram-positive bacteria for halloysite samples. Bacteriocins were intercalated into the interlayer space of montmorillonites as deduced from the increase of the basal spacing measured by X-ray diffraction (XRD) assay. Infrared spectroscopy suggested non-electrostatic interactions, such as hydrogen bonding between siloxane groups from clays and peptide molecules. Transmission electron microscopy did not show any alteration in morphologies after adsorption of antimicrobial peptides on bentonite and halloysite. These results indicate that nanoclays, especially halloysite, are suitable nanocarriers for nisin and pediocin adsorption.

  10. Fluorocarbon Adsorption in Hierarchical Porous Frameworks

    Energy Technology Data Exchange (ETDEWEB)

    Motkuri, Radha K.; Annapureddy, Harsha V.; Vijayakumar, M.; Schaef, Herbert T.; Martin, P F.; McGrail, B. Peter; Dang, Liem X.; Krishna, Rajamani; Thallapally, Praveen K.

    2014-07-09

    The adsorption behavior of a series of fluorocarbon derivatives was examined on a set of microporous metal organic framework (MOF) sorbents and another set of hierarchical mesoporous MOFs. The microporous M-DOBDC (M = Ni, Co) showed a saturation uptake capacity for R12 of over 4 mmol/g at a very low relative saturation pressure (P/Po) of 0.02. In contrast, the mesoporous MOF MIL-101 showed an exceptionally high uptake capacity reaching over 14 mmol/g at P/Po of 0.4. Adsorption affinity in terms of mass loading and isosteric heats of adsorption were found to generally correlate with the polarizability of the refrigerant with R12 > R22 > R13 > R14 > methane. These results suggest the possibility of exploiting MOFs for separation of azeotropic mixtures of fluorocarbons and use in eco-friendly fluorocarbon-based adsorption cooling and refrigeration applications.

  11. Adsorption Isotherms and Surface Reaction Kinetics

    Science.gov (United States)

    Lobo, L. S.; Bernardo, C. A.

    1974-01-01

    Explains an error that occurs in calculating the conditions for a maximum value of a rate expression for a bimolecular reaction. The rate expression is derived using the Langmuir adsorption isotherm to relate gas pressures and corresponding surface coverages. (GS)

  12. PREPARATION OF ACTIVATED CARBON FIBER AND THEIR XENON ADSORPTION PROPERTIES (Ⅱ)-XENON ADSORPTION PROPERTIES

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The adsorption of xenon from air has an interest in the monitoring of nuclear explosion oraccident, or in the treatment of nuclear waste gas. In this paper, the pore structure of several series ofactivated carbon fibers has been characterized. The adsorption properties of xenon on theseactivated carbon fibers under different temperatures have been studied in details. The results showthat the xenon adsorption amount on activated carbon fibers do not increase with specific surfacearea of adsorbents, but are closely related to their pore size distribution. Pores whose radius equal toor narrow than 0.4nm would be more advantageous to the adsorption of xenon.

  13. Adsorption performances and refrigeration application of adsorption working pair of CaCl2-NH3

    Institute of Scientific and Technical Information of China (English)

    WANG; Liwei; WANG; Ruzhu; WU; Jingyi; WANG; Kai

    2004-01-01

    The adsorption performance of CaCl2-NH3 is studied under the condition of different expansion spaces for adsorbent, andthe relationships between adsorption performance of CaCl2-NH3 and the phenomena of swelling and agglomeration during adsorption are researched. It is found that the performance stability is related to the ratio of expansion space to the volume of adsorbent ras, and the performance attenuation is serious in the case of large ras. Severe adsorption hysteresis exists in the process of adsorption and desorption at the same evaporating and condensing temperatures, which is related to the stability constant of chemical reaction. This phenomenon cannot be explained by the theory of physical adsorption. Moderate agglomeration will be beneficial to the formation of ammoniate complex; the magnitude of expansion space will affect adsorption performance. Analysis shows that the activated energy needed in the process of adsorption for the sample with ras of 2:1 is less than that for the sample with ras of 3:1.The refrigeration performance of CaCl2-NH3 is predicted from experiments. The cooling capacity of one adsorption cycle is about 945.4 kJ/kg for the adsorbent with an ras of 2:1 at the evaporating temperature of 0℃.

  14. Selective adsorption of tannins onto hide collagen fibres

    Institute of Scientific and Technical Information of China (English)

    LIAO; Xuepin(廖学品); LU; Zhongbing(陆忠兵); SHI; Bi(石碧)

    2003-01-01

    Hide collagen of animals is used to prepare adsorbent material and its adsorption properties to tannins are investigated. It is indicated that the collagen fibres has excellent adsorption selectivity and high adsorption capacity to tannins. The adsorption rate of tannins is more than 90% whilst less than 10% of functional components are retained by the adsorbent. The adsorption mechanism of tannins onto hide collagen fibres is hydrogen-bonding association. Freundlich model can be used to describe the adsorption isotherms, and the pseudo-second-order rate model can be used to describe adsorption kinetics.

  15. Adsorption properties of nitrobenzene in wastewater with silica aerogels

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    The adsorption properties of nitrobenzene from wastewater by hydrophobic silica aerogels were investigated.The effects of adsorption intensity by pH value,adsorption temperature,adsorption time and the amount of the silica aerogels were studied.The adsorption principle and mechanism of silica aerogels adsorbing nitrobenzene were discussed along with the Freundlich equation.The results showed that the adsorption intensity of the hydrophobic silica aerogels could reach 68.76% at better adsorption conditions of adsorption temperature 25°C,pH value 8.35,the amount of SiO2 aerogels dosage 3.33 g/L,and adsorption time of 30 min,and that the adsorption properties were related to the hydrophobility of aerogels,surface area of organic solution,structure of aerogels.

  16. Adsorption Characteristics of Remazol Black B on Anoxic Sludge

    Institute of Scientific and Technical Information of China (English)

    HUANG Man-hong; CHEN Liang; CHEN Dong-hui; CHEN Chao-peng

    2009-01-01

    The adsorption characteristics of Remazol Black B on anoxic sludge were investigated. The parameters, such as initial pH, sulphate concentration, and temperature,affecting the dye adsorption were studied. The adsorption data were analyzed with three adsorption isotherm models,namely Langmuir, Freudlich, and linear partition. The results showed that adsorption of Remazol Black B on the sterilized sludge reached equilibrium in 4 h. It also indicated that pH had significant effect on anoxic sludge adsorption behavior. The adsorption capacity of anoxic sludge decreased with the increase of pH value and the maximum adsorption capacity of dyes occurred at pH = 3. The adsorptive capacities increased with the decrease of temperature and increase of sulphate concentration. Results also indicated that the adsorption equilibrium of Remazol Black B on anoxic sludge could be well fitted by Freundlich model.

  17. ADSORPTION OF LDL ON THE MODIFIED CHITOSAN

    Institute of Scientific and Technical Information of China (English)

    LIUManying; ZHAOLirui; 等

    2000-01-01

    In this paper,the selective adsorption of LDL on chitosan modified with PEG and Asp.was studied.The adsorption rate of LDL and HDL on the double modified chitosan was 57% and 12% respoectively,The results shown that the double modified chitosan can be used a adsorbent for selective binding to LDL,this work may help to develop functional columns for hemoperfusion.

  18. Adsorption Kinetic of 8-Hydroxyquinoline on Malachite

    Directory of Open Access Journals (Sweden)

    Gabriela OPREA

    2007-01-01

    Full Text Available Influence of temperature and collector concentration on its adsorption rate on mineral surface was studied as regarding to the 8-hydroxyquinoline/malachite system. Theoretical equations as well as experimental data may be useful to estimate the adsorption rate and kinetics connected to the conditioning stage in mineral flotation in order to optimise the selectivity and the recovery of the desired mineral.

  19. Defluoridation of drinking water using adsorption processes

    International Nuclear Information System (INIS)

    Highlights: ► Comprehensive and critical literature review on various adsorbents used for defluoridation. ► pH, temperature, kinetics and co-existing anions effects on F adsorption. ► Choice of adsorbents for various circumstances. ► Adsorption thermodynamics and mechanisms. ► Future research on efficient, low cost adsorbents which are easily regenerated. -- Abstract: Excessive intake of fluoride (F), mainly through drinking water, is a serious health hazard affecting humans worldwide. There are several methods used for the defluoridation of drinking water, of which adsorption processes are generally considered attractive because of their effectiveness, convenience, ease of operation, simplicity of design, and for economic and environmental reasons. In this paper, we present a comprehensive and a critical literature review on various adsorbents used for defluoridation, their relative effectiveness, mechanisms and thermodynamics of adsorption, and suggestions are made on choice of adsorbents for various circumstances. Effects of pH, temperature, kinetics and co-existing anions on F adsorption are also reviewed. Because the adsorption is very weak in extremely low or high pHs, depending on the adsorbent, acids or alkalis are used to desorb F and regenerate the adsorbents. However, adsorption capacity generally decreases with repeated use of the regenerated adsorbent. Future research needs to explore highly efficient, low cost adsorbents that can be easily regenerated for reuse over several cycles of operations without significant loss of adsorptive capacity and which have good hydraulic conductivity to prevent filter clogging during the fixed-bed treatment process

  20. Nitrate Adsorption on Clay Kaolin: Batch Tests

    Directory of Open Access Journals (Sweden)

    Morteza Mohsenipour

    2015-01-01

    Full Text Available Soils possessing kaolin, gibbsite, goethite, and hematite particles have been found to have a natural capacity to attenuate pollution in aqueous phase. On the other hand, the hydroxyl group in soil increases anion exchange capacity under a low pH condition. The main objective of this paper was to evaluate effects of kaolin on nitrate reduction under acidic condition. In order to analyze the kaolin adsorption behaviour under various conditions, four different concentrations of nitrate, 45, 112.5, 225, and 450 mgNO3-/L, with a constant pH equal to 2, constant temperature equal to 25°C, and exposure period varying from 0 to 150 minutes were considered. The capacity of nitrate adsorption on kaolin has also been studied involving two well-known adsorption isotherm models, namely, Freundlich and Longmuir. The results revealed that approximately 25% of the nitrate present in the solution was adsorbed on clay kaolin. The laboratory experimental data revealed that Freundlich adsorption isotherm model was more accurate than Longmuir adsorption model in predicting of nitrate adsorption. Furthermore, the retardation factor of nitrate pollution in saturated zone has been found to be approximately 4 in presence of kaolin, which indicated that kaolin can be used for natural scavenger of pollution in the environment.

  1. Adsorption of xenon and krypton on shales

    International Nuclear Information System (INIS)

    Parameters for the adsorption of Xe and Kr on shales and related samples have been measured by a method that uses a mass spectrometer as a manometer. The gas partial pressures used were 10-11 atm or less; the corresponding adsorption coverages are only small fractions of a monolayer, and Henry's Law behavior is expected and observed. Heats of adsorption in the range 2 to 7 kcal/mol were observed. Henry constants of the order of magnitude 1 cm3 STP g-1 atm-1 at 0 to 250C are obtained by extrapolation. Adsorption properties are variable by sample, but the general range suggests that shales might be sufficiently good adsorbents that equilibrium adsorption with modern air may account for a nontrivial fraction of the atmospheric inventory of Xe (perhaps even Kr). It seems doubtful, however, that this effect can account for the deficiency of atmospheric Xe in comparison with the planetary gas patterns observed in meteorites. If gas is adsorbed on interior surfaces in shale clays and can communicate with sample exteriors only through very narrow channels, and thus only very slowly, equilibrium adsorption may make substantial contributions to experimentally observed 'trapped' gases without the need for any further trapping mechanism. (author)

  2. Modeling of Experimental Adsorption Isotherm Data

    Directory of Open Access Journals (Sweden)

    Xunjun Chen

    2015-01-01

    Full Text Available Adsorption is considered to be one of the most effective technologies widely used in global environmental protection areas. Modeling of experimental adsorption isotherm data is an essential way for predicting the mechanisms of adsorption, which will lead to an improvement in the area of adsorption science. In this paper, we employed three isotherm models, namely: Langmuir, Freundlich, and Dubinin-Radushkevich to correlate four sets of experimental adsorption isotherm data, which were obtained by batch tests in lab. The linearized and non-linearized isotherm models were compared and discussed. In order to determine the best fit isotherm model, the correlation coefficient (r2 and standard errors (S.E. for each parameter were used to evaluate the data. The modeling results showed that non-linear Langmuir model could fit the data better than others, with relatively higher r2 values and smaller S.E. The linear Langmuir model had the highest value of r2, however, the maximum adsorption capacities estimated from linear Langmuir model were deviated from the experimental data.

  3. Fluoride and lead adsorption on carbon nanotubes

    Institute of Scientific and Technical Information of China (English)

    WANG Shuguang; LI Yanhui

    2004-01-01

    The properties and applications of CNT have been studied extensively since Iijima discovered them in 1991[1,2]. They have exceptional mechanical properties and unique electrical property, highly chemical stability and large specific surface area. Thus far, they have widely potential applications in many fields. They can be used as reinforcing materials in composites[3], field emissions[4], hydrogen storage[5], nanoelectronic components[6], catalyst supports[7], adsorption material and so on. However, the study on the potential application of CNT, environmental protection field in particular, was hardly begun.Long[8] et al. reported that CNT had a significantly higher dioxin removal efficiency than that of activated carbon. The Langmuir adsorption constant is 2.7 × 1052, 1.3 × 1018 respectively. The results indicated that CNT is potential candidate for the removal of micro-organic pollutants. However, the reports on the CNT used as fluoride and heavy metal adsorbent are seldom.In this paper, A novel material, alumina supported on carbon nanotubes (Al2O3/CNT), was prepared from carbon nanotubes and Al(NO3)3. X-ray diffraction (XRD) spectra demonstrate that alumina is amorphous, and scanning electron microscope (SEM) images show that CNT and alumina are homogeneously mixed. Furthermore, the fluoride adsorption behavior on the surface of Al2O3/CNT has been investigated and compared with other adsorbents. The results indicate that Al2O3/CNT has a high adsorption capacity, with a saturation adsorption capacity of 39.4 mg/g. It is also found that the adsorption capacity of Al2O3/CNT is 3.0~4.5 times that of γ-Al2O3while almost equal to that of IRA-410 polymeric resin at 25 ℃. The adsorption isotherms of fluoride on Al2O3/CNT is fit the Freundlich equation well, optimal pH ranging from 5.0 to 9.0.Also in this paper, a novel material, modified carbon nanotubes (CNT), was prepared from carbon nanotubes and HNO3 under boiling condition. Infrared spectroscopy (IR

  4. Adsorption of aqueous copper on peanut hulls

    Science.gov (United States)

    Davis, Kanika Octavia

    A method was established for measuring the adsorption of Cu(II) from aqueous solution to unmodified and modified peanut hulls at constant temperature and pH. Modification of the hulls was performed by oxidation with alkaline hydrogen peroxide. During the modification process, the hydrogen peroxide solubilizes the lignin component, making the surface more porous which increases the availability of binding sites, while simultaneously oxidizing the cellulose. The oxidation of alcohol groups creates more binding sites by creating functional groups such as COO-, which increases chelation to metal ions. Fourier transform infrared spectroscopy confirms delignification of the peanut hulls by the disappearance of carboxyl peaks of the modified hulls, which were originally produced from the lignin content. Although, oxidation is not fully confirmed, it is not ruled out because the expected carboxylate peak (1680 cm-1) maybe overshadowed by a broad peak due to OH bending of water adsorbed to the hulls. Hulls adsorbed copper from solutions in the concentration range of 50-1000 ppm of CuCl2. Concentrations of pre- and post-adsorption solutions were determined using inductively coupled plasma optical emission spectroscopy. The adsorption isotherms were fit to known two and three-parameter models, evaluated and the binding mechanism was inferred. Maximum surface coverage was 3.5 +/- 0.6 mg Cu2+ /g hull for unmodified hulls and 11 +/- 1 mg Cu2+/g hull for modified hulls. The adsorption for the hulls is best described by the Langmuir model, suggesting monolayer, homogeneous adsorption. With a free energy of adsorption of 10.5 +/- 0.9 kJ/mol for unmodified hulls and 14.5 +/-0.4 kJ/mol for modified hulls, the process is categorized as chemisorption for both types of hulls. The adsorption for both hulls is also described by the Redlich-Peterson model, giving beta nearer to 1 than 0, which further suggests homogeneous adsorption described by the Langmuir model. After rinsing the hulls

  5. THERMODYNAMIC STUDY OF HIGH-PRESSURE ADSORPTION OF METHANE AND HEATS OF METHANE ADSORPTION ON MICROPOROUS CARBONS

    Institute of Scientific and Technical Information of China (English)

    杨晓东; 林文胜; 郑青榕; 顾安忠; 鲁雪生; 宋燕

    2002-01-01

    The study was done for high-pressure adsorption of methane on microporous carbons, which has an ANG vehicular application background. Adsorption isotherm of methane on super activated carbon up to 6 MPa was measured and isosteric heats of methane adsorption on a number of microporous carbons were determined from adsorption isosteres by the Clausius-Clapeyron equation. The variation of the isosteric heats of adsorption with the amount of methane adsorbed was discussed.

  6. A review of the thermodynamics of protein association to ligands, protein adsorption, and adsorption isotherms

    DEFF Research Database (Denmark)

    Mollerup, Jørgen

    2008-01-01

    The application of thermodynamic models in the development of chromatographic separation processes is discussed. The paper analyses the thermodynamic principles of protein adsorption. It can be modeled either as a reversible association between the adsorbate and the ligands or as a steady...... of adsorption is discussed. Hydrophobic and reversed phase chromatography are useful techniques for measuring solute activity coefficients at infinite dilution....

  7. Adsorption characteristics of siloxanes in landfill gas by the adsorption equilibrium test.

    Science.gov (United States)

    Nam, Sangchul; Namkoong, Wan; Kang, Jeong-Hee; Park, Jin-Kyu; Lee, Namhoon

    2013-10-01

    Due to the increase in energy cost by constantly high oil prices and the obligation to reduce greenhouse effect gases, landfill gas is frequently used as an alternative energy source for producing heat and electricity. Most of landfill gas utility facilities, however, are experiencing problems controlling siloxanes from landfill gas as their catalytic oxidizers are becoming fouled by silicon dioxide dust. To evaluate adsorption characteristics of siloxanes, an adsorption equilibrium test was conducted and parameters in the Freundlich and Langmuir isotherms were analyzed. Coconut activated carbon (CA1), coal activated carbon (CA2), impregnated activated carbon (CA3), silicagel (NCA1), and activated alumina (NCA2) were used for the adsorption of the mixed siloxane which contained hexamethyldisiloxane (L2), octamethylcyclotetrasiloxane (D4), and decamethylcyclopentasiloxane (D5). L2 had higher removal efficiency in noncarbon adsorbents compared to carbon adsorbents. The application of Langmuir and Freundlich adsorption isotherm demonstrated that coconut based CA1 and CA3 provided higher adsorption capacity on L2. And CA2 and NCA1 provided higher adsorption capacity on D4 and D5. Based on the experimental results, L2, D4, and D5 were converted by adsorption and desorption in noncarbon adsorbents. Adsorption affinity of siloxane is considered to be affect by the pore size distribution of the adsorbents and by the molecular size of each siloxane. PMID:23684695

  8. Heavy metal adsorption changes of EAF steel slag after phosphorus adsorption.

    Science.gov (United States)

    Song, Guanling; Cao, Lijing; Chen, Xiao; Hou, Wenhua; Wang, Qunhui

    2012-01-01

    A kind of electric arc furnace (EAF) steel slag was phosphated, and its isothermal and dynamic adsorptions of copper, cadmium, and lead ions were measured to determine if heavy metal adsorption changes after phosphorus adsorption. The surface area increased greatly after the slag was phosphated. Isothermal adsorption experiments showed that the theoretical Q(max) of the EAF steel slag on Cu(2+), Cd(2+), and Pb(2+) improved 59, 50, and 89% respectively after it was phosphated. Dynamic adsorption results showed that the greatest adsorption capacities of unit volume of Cu(2+), Cd(2+), and Pb(2+) were 2.2, 1.8, and 1.8 times that of the column packed with original EAF steel slag when the column was packed with phosphate EAF steel slag at the same heavy metal ion concentration. The breakthrough time, the exhaustion time and elution efficiency of the column also increased when the column was packed with phosphated EAF steel slag compared with that packed with original EAF steel slag. Phosphorus adsorption could further improve the heavy metal ion adsorption of the EAF steel slag.

  9. Adsorption of zinc on manganite (γ-MnOOH):particle concentration effect and adsorption reversibility

    Institute of Scientific and Technical Information of China (English)

    QIN Yan-wen; PAN Gang; ZHANG Ming-ming; LI Xian-liang

    2004-01-01

    The adsorption and desorption processes of Zn(Ⅱ) on γ-MnOOH as a function of particle concentrations (Cp) were studied. An obvious Cp effect was observed in this adsorption system. The degree of adsorption hysteresis increased greatly with the increasing of Cp, indicating that the extent of the real metastable-equilibrium states deviating from the ideal equilibrium state was enhanced with the increasing of Cp. The Cp-reversibility relationship confirmed the metastable-equilibrium adsorption (MEA) inequality (Pan, 1998a), which was the core formulation of the MEA theory. Because the MEA inequality was based on the basic hypothesis of MEA theory that adsorption density Г is not a state variable, the Cp-reversibility relationship gave indirect evidence to the basic hypothesis of MEA theory.

  10. Apparatus for thermal swing adsorption and thermally-enhanced pressure swing adsorption

    Science.gov (United States)

    Wegeng, Robert S.; Rassat, Scot D.; Stenkamp, Victoria S.; TeGrotenhuis, Ward E.; Matson, Dean W.; Drost, M. Kevin; Viswanathan, Vilayanur V.

    2005-12-13

    The present invention provides compact adsorption systems that are capable of rapid temperature swings and rapid cycling. Novel methods of thermal swing adsorption and thermally-enhanced pressure swing adsorption are also described. In some aspects of the invention, a gas is passed through the adsorbent thus allowing heat exchangers to be very close to all portions of the adsorbent and utilize less space. In another aspect, the adsorption media is selectively heated, thus reducing energy costs. Methods and systems for gas adsorption/desorption having improved energy efficiency with capability of short cycle times are also described. Advantages of the invention include the ability to use (typically) 30-100 times less adsorbent compared to conventional systems.

  11. Method for thermal swing adsorption and thermally-enhanced pressure swing adsorption

    Science.gov (United States)

    Wegeng, Robert S.; Rassat, Scot D.; Stenkamp, Victoria S.; TeGrotenhuis, Ward E.; Matson, Dean W.; Drost, M. Kevin; Viswanathan, Vilayanur V.

    2003-10-07

    The present invention provides compact adsorption systems that are capable of rapid temperature swings and rapid cycling. Novel methods of thermal swing adsorption and thermally-enhanced pressure swing adsorption are also described. In some aspects of the invention, a gas is passed through the adsorbent thus allowing heat exchangers to be very close to all portions of the adsorbent and utilize less space. In another aspect, the adsorption media is selectively heated, thus reducing energy costs. Methods and systems for gas adsorption/desorption having improved energy efficiency with capability of short cycle times are also described. Advantages of the invention include the ability to use (typically) 30-100 times less adsorbent compared to conventional systems.

  12. Conceptual adsorption models and open issues pertaining to performance assessment

    International Nuclear Information System (INIS)

    Recently several articles have been published that question the appropriateness of the distribution coefficient, Rd, concept to quantify radionuclide migration. Several distinct issues surrounding the modeling of nuclide retardation. The first section defines adsorption terminology and discusses various adsorption processes. The next section describes five commonly used adsorption conceptual models, specifically emphasizing what attributes that affect adsorption are explicitly accommodated in each model. I also review efforts to incorporate each adsorption model into performance assessment transport computer codes. The five adsorption conceptual models are (1) the constant Rd model, (2) the parametric Rd model, (3) isotherm adsorption models, (4) mass action adsorption models, and (5) surface-complexation with electrostatics models. The final section discusses the adequacy of the distribution ratio concept, the adequacy of transport calculations that rely on constant retardation factors and the status of incorporating sophisticated adsorption models into transport codes. 86 refs., 1 fig., 1 tab

  13. Competitive adsorption of heavy metal ions on peat

    Institute of Scientific and Technical Information of China (English)

    LIU Zhi-rong; ZHOU Li-min; WEI Peng; ZENG Kai; WEN Chuan-xi; LAN Hui-hua

    2008-01-01

    The uptake capacities, and the adsorption kinetics, of copper, Cu(Ⅱ), nickel, Ni(Ⅱ), and cadmium, Cd(Ⅱ), on peat have been studied under static conditions. The results show that the adsorption rates are rapid: equilibrium is reached in twenty minutes. The adsorption of copper, nickel and cadmium is pH dependent over the pH range from 2 to 6. The adsorption kinetics can be excellently described by the Elovich kinetic equation. The adsorption isotherm fits a Langmuir model very well. The adsorption capacifies follow the order Cu2+>Ni2+>Cd2+ in single-component systems and the competitive adsorption capacities fall in the decreasing order Cu2+> Ni2+>Cd2+ in multi-component systems. The adsorption capacities of these three heavy metal ions on peat are consistent with their observed competitive adsorption capacities.

  14. Adsorption behavior of molybdenum onto D314 ion exchange resin

    Institute of Scientific and Technical Information of China (English)

    王明玉; 蒋长俊; 王学文

    2014-01-01

    The adsorption behavior of molybdenum onto D314 was studied with the static adsorption method. The adsorption process was analyzed from thermodynamic and kinetic aspects. The experimental results show that the equilibrium adsorption data conform satisfactorily to the Langmuir equation. In the adsorption process of D314 for molybdenum, the enthalpy changeΔH is positive when temperature is in the range of 298−338 K, which indicates that the adsorption is an endothermic process, and the elevated temperature benefits to the adsorption. Kinetic analysis shows that the adsorption rate is controlled by intraparticle diffusion and chemical diffusion at the same time. The adsorption mechanism of molybdenum onto D314 was discussed based on IR spectra.

  15. Conceptual adsorption models and open issues pertaining to performance assessment

    International Nuclear Information System (INIS)

    Recently several articles have been published that question the appropriateness of the distribution coefficient, Rd, concept to quantify radionuclide migration. Several distinct issues are raised by various critics. In this paper I provide some perspective on issues surrounding the modeling of nuclide retardation. The first section defines adsorption terminology and discusses various adsorption processes. The next section describes five commonly used adsorption conceptual models, specifically emphasizing what attributes that affect adsorption are explicitly accommodated in each model. I also review efforts to incorporate each adsorption model into performance assessment transport computer codes. The five adsorption conceptual models are (1) the constant Rd model, (2) the parametric Rd model, (3) isotherm adsorption models, (4) mass-action adsorption models, and (5) surface-complexation with electrostatics models. The final section discusses the adequacy of the distribution ratio concept, the adequacy of transport calculations that rely on constant retardation factors and the status of incorporating sophisticated adsorption models into transport codes

  16. Adsorption of tellurium ions by nickel oxide

    Energy Technology Data Exchange (ETDEWEB)

    Edwards, W.J.; Bateman, J.M.

    1976-05-01

    This study was undertaken to investigate the mechanism of the adsorption process, and to provide chemistry data useful for the design of a Failed Fuel Detection and Location system for pressurized water power reactors. Such systems frequently operate by monitoring the level of a selected fission product in the coolant from each rod channel by means of its nuclear radiation. $sup 132$Te is a suitable nuclide for such monitoring and its adsorption on walls of a chamber offers a particularly simple and convenient preconcentration step. The method was to observe the depletion of tellurite ion from a solution of known initial concentration through adsorption by a NiO suspension. The activity of the samples and hence the tellurium concentration were measured with a Ge(Li) spectrometer, which permitted the 230 keV peak of $sup 132$Te to be isolated from the spectrum of the $sup 132$I daughter. The study shows that adsorption process proceeds by a dehydration reaction between -OH groups on the hydroxylated surface and similar groups on the adsorbing species. The equilibrium adsorption ratio is controlled by the solution pH by its effect on the relative distribution of the neutral, monobasic and dibasic tellurite species via the two acid ionization constants.

  17. Adsorption behavior of heavy metals on biomaterials.

    Science.gov (United States)

    Minamisawa, Mayumi; Minamisawa, Hiroaki; Yoshida, Shoichiro; Takai, Nobuharu

    2004-09-01

    We have investigated adsorption of Cd(II) and Pb(II) at pH 2-6.7 onto the biomaterials chitosan, coffee, green tea, tea, yuzu, aloe, and Japanese coarse tea, and onto the inorganic adsorbents, activated carbon and zeolite. High adsorptive capabilities were observed for all of the biomaterials at pH 4 and 6.7. In the adsorption of Cd(II), blend coffee, tea, green tea, and coarse tea have comparable loading capacities to activated carbon and zeolite. Although activated carbon, zeolite, and chitosan are utilized in a variety of fields such as wastewater treatment, chemical and metallurgical engineering, and analytical chemistry, these adsorbents are costly. On the other hand, processing of the test biomaterials was inexpensive, and all the biomaterials except for chitosan were able to adsorb large amounts of Pb(II) and Cd(II) ions after a convenient pretreatment of washing with water followed by drying. The high adsorption capability of the biomaterials prepared from plant materials is promising in the development of a novel, low-cost adsorbent. From these results, it is concluded that heavy metal removal using biomaterials would be an effective method for the economic treatment of wastewater. The proposed adsorption method was applied to the determination of amounts of Cd(II) and Pb(II) in water samples. PMID:15373400

  18. Adsorption of iodine on silver wire

    International Nuclear Information System (INIS)

    It is an important process in which iodine is adsorbed on silver wire during the preparation of 125I seed sources. In this paper, a technique of adsorption of iodine on silver wire was studied. The influence of several factors, such as the type of reagent for halogenation, the time for halogenation, the time for adsorption, pH value, ion concentration, carrier iodine and so on, on the utilization rate of 131I was investigated, and the effectiveness of our proposed technique for adsorption of iodine on silver wire was confirmed. The procedure is summarized as follows: silver wire acidification: using 4 mol/L HNO3 as halogenation agent, stirring acidified for 20 min; silver wire halogenation: used 2 mol/L NaClO3 as halogenated agent, halogenation for 3 h; adsorption of iodine on silver wire: room temperature, pH value for the reaction is about 3, the time for adsorption is 30 min, carrier iodine is 27.5 μg. Original radioactivity of reaction solution was determined based on radioactivity of source-core that user required. (authors)

  19. Adsorption of Cadmium By Silica Chitosan

    Directory of Open Access Journals (Sweden)

    Moftah Ali

    2013-03-01

    Full Text Available The adsorption process depends on initial concentration of Cd2+ and ratio of  chitosan in adsorbent. The present study deals with the competitive adsorption of Cd2+ ion onto silica graft with chitosan. Batch adsorption experiments were performed at five different initial Cd2+ concentrations (5, 10, 15, 20 and 25 ppm, on five different proportion from silica to chitosan (100%, 95%, 85%, 75% and 65% as adsorbent at pH 5. In the recovery process, the high recovery at 0.5 mg and observed the recovery decrease with increasing the initial concentration of Cd2+, and the low recovery at 0.25 mg from Cd2+. In this study, the adsorption capacity of Cd2+ in regard to the ratio of silica and chitosan hybrid adsorbents are examined in detail. The aim of this study to explore effects of initial concentrations of Cd2+, and the ratio of silica to chitosan on the adsorption and recovery of Cd2+.

  20. ADSORPTION OF METHYLENE BLUE FROM AQUEOUS SOLUTION ON ATTAPULGITE

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Batch adsorption experiments were carried out for the removal of methylene blue (MB) from aqueous solution using attapulgite as adsorbent. The effects of various parameters such as temperature, contact time, the pH value, and attapulgite dosage on the adsorption performance were investigated. The standard curve and regression equation were established by spectrophotometry. The adsorption experimental results showed that the adsorption equilibrium data were well in accord with Langmuir adsorptive model. The optimal result was acquired under the experimental condition of attapulgite dosage 0.18g, MB concentration 50.0mg/L, pH 10, and adsorption time 20min at room temperature.

  1. Adsorption on Highly Ordered Porous Alumina

    Science.gov (United States)

    Mistura, Giampaolo; Bruschi, Lorenzo; Lee, Woo

    2016-10-01

    Porous anodic aluminum oxide (AAO) is characterized by a regular arrangement of the pores with a narrow pore size distribution over extended areas, uniform pore depth, and solid pore walls without micropores. Thanks to significant improvements in anodization techniques, structural engineering of AAO allows to accurately tailor the pore morphology. These features make porous AAO an excellent substrate to study adsorption phenomena. In this paper, we review recent experiments involving the adsorption in porous AAO. Particular attention will be devoted to adsorption in straight and structured pores with a closed end which shed new light on fundamental issues like the origin of hysteresis in closed end pores and the nature of evaporation from ink-bottle pores. The results will be compared to those obtained in other synthetic materials like porous silicon and silica.

  2. GENERAL: Cluster Growth Through Monomer Adsorption Processes

    Science.gov (United States)

    Ke, Jian-Hong; Lin, Zhen-Quan; Chen, Xiao-Shuang

    2010-02-01

    We propose a monomer adsorption model, in which only the monomers are allowed to diffuse and adsorb onto other clusters. By means of the generalized rate equation we investigate the kinetic behavior of the system with a special rate kernel. For the system without monomer input, the concentration aj(t) of the Aj clusters (j > 1) asymptotically retains a nonzero quantity, while for the system with monomer input, it decays with time and vanishes finally. We also investigate the kinetics of an interesting model with fixed-rate monomer adsorption. For the case without monomer source, the evolution of the system will halt at a finite time; while the system evolves infinitely in time in the case with monomer source. Finally, we also suggest a connection between the fixed-rate monomer adsorption systems and growing networks.

  3. Adsorption on smooth electrodes: A radiotracer study

    International Nuclear Information System (INIS)

    Adsorption on solids is a complicated process and in most cases, occurs as the early stage of other more complicated processes, i.e. chemical reactions, electrooxidation, electroreduction. The research reported here combines the electroanalytical method, cyclic voltammetry, and the use of radio-labeled isotopes, soft beta emitters, to study adsorption processes at smooth electrodes. The in-situ radiotracer method is highly anion (molecule) specific and provides information on the structure and composition of the electric double layer. The emphasis of this research was on studying adsorption processes at smooth electrodes of copper, gold, and platinum. The application of the radiotracer method to these smooth surfaces have led to direct in-situ measurements from which surface coverage was determined; anions and molecules were identified; and weak interactions of adsorbates with the surface of the electrodes were readily monitored. 179 refs

  4. Adsorption of aluminium by stream particulates.

    Science.gov (United States)

    Tipping, E; Ohnstad, M; Woof, C

    1989-01-01

    An experimental study was made of the adsorption of aluminium by fine particulates from Whitray Beck, a hill stream in NW England. Adsorption increased with Al(3) activity, pH and concentration of particles, and could be quantitatively described by the empirical equation: [Formula: see text] [particles] where square brackets indicate concentrations, curly brackets, activities, and alpha, beta and gamma are constants with values of 5.14x10(-10) (mol litre(-1))(2.015) (g particles litre(-1))(-1), 0.457, and 1.472, respectively. For the experimental data, the equation gave a correlation ratio of 0.99. The equation accounts reasonably well for the adsorption of Al by particulates from seven other streams. In applying the equation, it must be borne in mind that the desorption kinetics of Al depend on pH, and rapid reversibility (or=10%) of total monomeric Al. PMID:15092454

  5. Novel nano bearings constructed by physical adsorption

    Science.gov (United States)

    Zhang, Yongbin

    2015-09-01

    The paper proposes a novel nano bearing formed by the physical adsorption of the confined fluid to the solid wall. The bearing is formed between two parallel smooth solid plane walls sliding against one another, where conventional hydrodynamic lubrication theory predicted no lubricating effect. In this bearing, the stationary solid wall is divided into two subzones which respectively have different interaction strengths with the lubricating fluid. It leads to different physical adsorption and slip properties of the lubricating fluid at the stationary solid wall respectively in these two subzones. It was found that a significant load-carrying capacity of the bearing can be generated for low lubricating film thicknesses, because of the strong physical adsorption and non-continuum effects of the lubricating film.

  6. Hydrophobic nano-carrier for lysozyme adsorption

    Indian Academy of Sciences (India)

    CANAN ALTUNBAS; FULDEN ZEYNEP URAL; MURAT UYGUN; NESIBE AVCIBASI; UGUR AVCIBASI; DENIZ AKTAS UYGUN; SINAN AKGÖL

    2016-04-01

    In this work, poly(HEMA–APH) nanoparticles were synthesized by surfactant-free emulsion polymerization technique.Magnetic behaviour was introduced by simple addition of Fe$_3$O$_4$ into the polymerization medium.Characterization of the nanoparticle was carried out by FTIR, ESR, SEM, AFM and EDX analyses. These synthesized magnetic nanoparticles were used for adsorption of lysozyme. For this purpose, adsorption conditions wereoptimized and maximum lysozyme binding capacity was found to be 278.8 mg g$^{−1}$ polymer in pH 7.0 phosphate buffer at 25$^{\\circ}$C. Desorption and reusability properties of the nanoparticles were investigated and lysozyme adsorption efficiency did not change significantly at the end of the 10 successive reuses.

  7. Adsorption on Highly Ordered Porous Alumina

    Science.gov (United States)

    Mistura, Giampaolo; Bruschi, Lorenzo; Lee, Woo

    2016-04-01

    Porous anodic aluminum oxide (AAO) is characterized by a regular arrangement of the pores with a narrow pore size distribution over extended areas, uniform pore depth, and solid pore walls without micropores. Thanks to significant improvements in anodization techniques, structural engineering of AAO allows to accurately tailor the pore morphology. These features make porous AAO an excellent substrate to study adsorption phenomena. In this paper, we review recent experiments involving the adsorption in porous AAO. Particular attention will be devoted to adsorption in straight and structured pores with a closed end which shed new light on fundamental issues like the origin of hysteresis in closed end pores and the nature of evaporation from ink-bottle pores. The results will be compared to those obtained in other synthetic materials like porous silicon and silica.

  8. Heavy metal adsorption by sulphide mineral surfaces

    Science.gov (United States)

    Jean, Gilles E.; Bancroft, G. Michael

    1986-07-01

    The adsorption of aqueous Hg 2+, Pb 2+, Zn 2+ and Cd 2+ complexes on a variety of sulphide minerals has been studied as a function of the solution pH and also as a function of the nature of the ligands in solution. Sulphide minerals are excellent scavengers for these heavy metals. The adsorption is strongly pH dependent, i.e. there is a critical pH at which the adsorption increases dramatically. The pH dependence is related to the hydrolysis of the metal ions. Indirect evidence suggests that the hydrolyzed species are adsorbed directly on the sulphide groups, probably as a monolayer. The results also suggest the presence of MCI n2- n species physisorbed on the adsorbed monolayer. A positive identification of the adsorbed species was not possible using ESCA/XPS.

  9. Efficient adsorption refrigerators integrated with heat pipes

    Energy Technology Data Exchange (ETDEWEB)

    Wang, R.Z. [Institute of Refrigeration and Cryogenics, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200030 (China)

    2008-03-15

    Several novel ideas to use heat pipes in adsorption water chiller or ice maker are presented in this paper. Experimental results have shown that the adsorption refrigerators are very efficient. The first example of such systems is a small scale silica gel-water adsorption water chiller with cooling power rated as 10 kW; the system could be powered by 60-100 C hot water, a cooling COP = 0.4 has been achieved when driven by 85 C hot water. This adsorption chiller has been used for solar powered air conditioner and also as the chiller for CCHP system. The second example is a silica gel-water adsorption room air conditioner powered by 80 C hot water. The system is very compact and is suggested for potential applications of micro CCHP system based on fuel cells. The system has a COP of over 0.3 and cooling power of about 1 kW. The third example is the use of split heat pipes to heat or cool the adsorber for making ice in fishing boats. The application of these technologies avoids the corrosion of adsorber at the heating phase by exhausted gases and at the cooling phase by seawater, and also has the advantage of high heat transfer performance. With such arrangement and careful considerations of the arrangement of wicks in heat pipes, and also the use of composite adsorbent (calcium chloride and activated carbon)-ammonia adsorption pair, the system test has shown the specific refrigeration power for more than 730 W/kg at -15 C. (author)

  10. Multilayer adsorption mechanism of coal surface adsorption to three oxygen molecule

    Institute of Scientific and Technical Information of China (English)

    WANG Xue-feng; LI Zhi-gang; WANG Xin-yang; SUN Yan-qiu

    2008-01-01

    Compared chemical bonds change situation of coal surface and oxygen mole-cules before and after coal surface adsorption to three oxygen molecules,after adsorption each oxygen molecule's chemical bond got longer,but had not broken,the coal surface's chemical bonds changed a little.It proves that the coal surface adsorption to five oxygen molecules is the physical adsorption and is the multilayer adsorption according to the optimized geometry structure.The oxygen molecule's bond length that adsorbed by the side chain of coal surface changes most from 1.258 2×10 10 m to 1.316 8×10 10 m,which indicates this oxygen molecular to be the liveliest.The analysis of charge population reveals that how many electrons shift in the atom is directly proportional to the change of chemical bonds.The more electrons shift in the atom,the more molecule chemical bond changes.In the adsorption state,which is composed of coal surface and five oxygen molecules,the vibration frequency of oxygen molecules drops off,and the adsorption energy reached by calculation is 202.11 kJ/mol.

  11. Multilayer adsorption mechanism of coal surface adsorption to three oxygen molecule

    Institute of Scientific and Technical Information of China (English)

    WANG Xue-feng; LI Zhi-gang; WANG Xin-yang; SUN Yan-qiu

    2008-01-01

    Compared chemical bonds change situation of coal surface and oxygen mole-cules before and after coal surface adsorption to three oxygen molecules, after adsorption each oxygen molecule's chemical bond got longer, but had not broken, the coal surface's chemical bonds changed a little. It proves that the coal surface adsorption to five oxygen molecules is the physical adsorption and is the multilayer adsorption according to the op-timized geometry structure. The oxygen molecule's bond length that adsorbed by the side chain of coal surface changes most from 1.258 2×10-10 m to 1.316 8×10-10 m, which indi-cates this oxygen molecular to be the liveliest. The analysis of charge population reveals that how many electrons shift in the atom is directly proportional to the change of chemical bonds. The more electrons shift in the atom, the more molecule chemical bond changes. In the adsorption state, which is composed of coal surface and five oxygen molecules, the vibration frequency of oxygen molecules drops off, and the adsorption energy reached by calculation is 202.11 kJ/mol.

  12. Simultaneous metal adsorption on tannin resins

    International Nuclear Information System (INIS)

    Vegetable tannin sorbent is evaluated as ion exchange resin using a multitracer study on the adsorption behavior of various elements. Lisiloma latisiliqua L. tannins, polycondensated into spherical pellets were chosen as sorbent resin material. Sorption evaluation of Ce, Cu(II), U(VI), Eu, Fe(III), Th, Nd as representatives of different classes of metal ions were done at different pH values. The distribution ratio of the studied elements was calculated from laboratory experiments. Tannic ion exchange material shows excellent ability for actinides and rare earth elements adsorption from waters. Using radiotracers, the number of catechins subunits involve in each tannin-metal complex was determined. (author)

  13. Adsorption on mixtures of ion exchangers

    International Nuclear Information System (INIS)

    A theoretical study has been made of adsorption on mixtures of ion exchangers. The effect of variables such as the concentration of the ion being adsorbed, the concentration of the supporting electrolyte, loading, the values of the capacities and equilibrium constants for the various exchange processes, and the fraction of each adsorber in the mixture on the observed distribution coefficient has been investigated. A computer program has been written to facilitate the calculation of distribution coefficients for the adsorption of an ion on a given mixture of ion exchangers under a specified set of conditions

  14. Adsorption Behavior of Plutonium on Clay

    Institute of Scientific and Technical Information of China (English)

    LONG; Hao-qi; BAO; Liang-jin; SONG; Zhi-xin; WANG; Bo

    2013-01-01

    In this study,the adsorption distribution ratios of Pu in the Longdong clays were measured with batch method under hypoxic conditions,and the influence of the liquid-solid ratio and pH on the adsorption distribution ratio also was discussed.The initial concentration of Pu is about 1×10-10 mol/L,and the solution pH value was adjusted with NaOH or HClO4.The temperature of experiments was(30±

  15. Adsorption of amylase enzyme on ultrafiltration membranes

    DEFF Research Database (Denmark)

    Beier, Søren; Enevoldsen, Ann Dorrit; Kontogeorgis, Georgios;

    2007-01-01

    A method to measure the static adsorption on membrane surfaces has been developed and described. The static adsorption of an amylase-F has been measured on two different ultrafiltration membranes, both with a cut-off value of 10 kDa (a PES membrane and the ETNA10PP membrane, which is a surface-mo...... is independent of the membrane type. At higher concentrations of enzyme, concentration polarization effects can not be neglected. Therefore stagnant film theory and the osmotic pressure model can describe the dependency between flux and bulk concentration....

  16. Assessing the adsorption properties of shales

    Science.gov (United States)

    Pini, Ronny

    2015-04-01

    Physical adsorption refers to the trapping of fluid molecules at near liquid-like densities in the pores of a given adsorbent material. Fine-grained rocks, such as shales, contain a significant amount of nanopores that can significantly contribute to their storage capacity. As a matter of fact, the current ability to extract natural gas that is adsorbed in the rock's matrix is limited, and current technology focuses primarily on the free gas in the fractures (either natural or stimulated), thus leading to recovery efficiencies that are very low. Shales constitute also a great portion of so-called cap-rocks above potential CO2 sequestration sites; hereby, the adsorption process may limit the CO2 mobility within the cap-rock, thus minimizing the impact of leakage on the whole operation. Whether it is an unconventional reservoir or a cap-rock, understanding and quantifying the mechanisms of adsorption in these natural materials is key to improve the engineering design of subsurface operations. Results will be presented from a laboratory study that combines conventional techniques for the measurement of adsorption isotherms with novel methods that allows for the imaging of adsorption using x-rays. Various nanoporous materials are considered, thus including rocks, such as shales and coals, pure clay minerals (a major component in mudrocks) and engineered adsorbents with well-defined nanopore structures, such as zeolites. Supercritical CO2 adsorption isotherms have been measured with a Rubotherm Magnetic Suspension balance by covering the pressure range 0.1-20~MPa. A medical x-ray CT scanner has been used to identify three-dimensional patterns of the adsorption properties of a packed-bed of adsorbent, thus enabling to assess the spatial variability of the adsorption isotherm in heterogeneous materials. The data are analyzed by using thermodynamically rigorous measures of adsorption, such as the net- and excess adsorbed amounts and a recently developed methodology is

  17. Removal of Pyrethrin from Aqueous Effluents by Adsorptive Micellar Flocculation

    Directory of Open Access Journals (Sweden)

    Pardon K. Kuipa

    2015-01-01

    Full Text Available The equilibrium adsorption of pyrethrin onto aggregates formed by the flocculation of micelles of the surfactant sodium dodecyl sulphate (SDS with aluminium sulphate is reported. The experimental results were analysed using different adsorption isotherms (Langmuir, Freundlich, Redlich-Peterson, Sips, Radke-Prausnitz, Temkin, linear equilibrium, and the Dubin-Radushkevich isotherms. The Freundlich and linear equilibrium isotherms best describe the adsorption of pyrethrin onto SDS micellar flocs, with the Freundlich adsorption constant, KF, and the mass distribution coefficient, KD, of 64.266 ((mg/g(L/mg1/n and 119.65 L/g, respectively. Applicability of the Freundlich adsorption model suggests that heterogeneous surface adsorption affects the adsorption. The mean free energy value estimated using the Dubinin-Radushkevich isotherm was 0.136 kJ/mol indicating that physisorption may be predominant in the adsorption process.

  18. Adsorption of thorium from aqueous solutions by perlite.

    Science.gov (United States)

    Talip, Z; Eral, M; Hiçsönmez, U

    2009-02-01

    The use of expanded perlite for the adsorption of thorium from aqueous solution by batch technique is presented. The effects of particle size, pH of the solution, initial thorium concentration, shaking time, V/m ratio and temperature were determined. It was found that the adsorption capacity increases by the increase in the pH of the suspensions. The rate of thorium adsorption on expanded perlite was observed to be fast in the first hour of the reaction time. Adsorption isotherms were expressed by Langmuir and Freundlich adsorption models and the adsorption experiments conducted at 30 +/- 1 degrees C showed that the adsorption isotherms correlated well with the Langmuir model. From the adsorption data, thermodynamic parameters such as DeltaG(o), DeltaH(o) and DeltaS(o) were calculated as a function of temperature.

  19. Unexpected coupling between flow and adsorption in porous media.

    Science.gov (United States)

    Vanson, Jean-Mathieu; Coudert, François-Xavier; Rotenberg, Benjamin; Levesque, Maximilien; Tardivat, Caroline; Klotz, Michaela; Boutin, Anne

    2015-08-14

    We study the interplay between transport and adsorption in porous systems under a fluid flow, based on a lattice Boltzmann scheme extended to account for adsorption. We performed simulations on well-controlled geometries with slit and grooved pores, investigating the influence of adsorption and flow on dispersion coefficient and adsorbed density. In particular, we present a counterintuitive effect where fluid flow induces heterogeneity in the adsorbate, displacing the adsorption equilibrium towards downstream adsorption sites in grooves. We also present an improvement of the adsorption-extended lattice Boltzmann scheme by introducing the possibility for saturating Langmuir-like adsorption, while earlier work focused on linear adsorption phenomena. We then highlight the impact of this change in situations of high concentration of adsorbate. PMID:26139013

  20. The Calculation of Adsorption Isotherms from Chromatographic Peak Shapes

    Science.gov (United States)

    Neumann, M. G.

    1976-01-01

    Discusses the relationship between adsorption isotherms and elution peak shapes in gas chromatography, and describes a laboratory experiment which involves the adsorption of hexane, cyclohexane, and benzene on alumina at different temperatures. (MLH)

  1. Research on the chemical adsorption precursor state of CaCl2-NH3 for adsorption refrigeration

    Institute of Scientific and Technical Information of China (English)

    WANG Liwei; WANG Ruzhu; WU Jingyi; WANG Kai

    2005-01-01

    As a type of chemical adsorption working pair, the physical adsorption occurs first for CaCl2-NH3 because the effective reaction distance for van der Waals force is longer than that for chemical reaction force, and this physical adsorption state is named the precursor state of chemical adsorption. In order to get the different precursor states of CaCl2-NH3, the different distances between NH3 gas and Ca2+ are realized by the control of different phenomena of swelling and agglomeration in the process of adsorption. When the serious swelling exists while the agglomeration does not exist in the process of adsorption, experimental results show that the activated energy consumed by adsorption reaction increases for the reason of longer distance between Ca2+ and NH3, and at the same time the performance attenuation occurs in the repeated adsorption cycles. When the agglomeration occurs in the process of adsorption, the activated energy for the transition from precursor state to chemical adsorption decreases because the distance between NH3 gas and Ca2+ is shortened by the limited expansion space of adsorbent, and at the same time the performance attenuation does not occur. The adsorption refrigeration isobars are researched by the precursor state of chemical adsorption; results also show that the precursor state is a key factor for isobaric adsorption performance while the distribution of Ca2+ does not influence the permeation of NH3 gas in adsorbent.

  2. Adsorption of copper ions from aqueous solutions on natural zeolite

    OpenAIRE

    Zendelska, Afrodita; Golomeova, Mirjana; Blažev, Krsto; Krstev, Boris; Golomeov, Blagoj; Krstev, Aleksandar

    2015-01-01

    The adsorption of copper ions from synthetic aqueous solutions on natural zeolite (clinoptilolite) was examined. In order to determine the rate of adsorption and the copper uptake at equilibrium, a series of experiments were performed under batch conditions from single ion solutions. Equilibrium data were evaluated based on adsorption (Langmuir and Freundlich) isotherms. The adsorption kinetics is reasonably fast. In the first 20 min of the experiment, approximately 80% of Cu2+ io...

  3. Adsorption of D113 Resin for Dysprosium(Ⅲ)

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The adsorption behavior and mechanism of D113 resin for Dy(Ⅲ) was investigated by using the method of resin adsorption. Experimental results show that the optimum medium pH of adsorption of D113 resin for Dy3+ is pH=6.00 in the HAc-NaAc medium. The static adsorption capacity of D113 resin for Dy3+chemical analysis and IR spectra.

  4. ADSORPTION OF PHENOL AND NITROPHENOLS ON A HYPERCROSSLINKED POLYMERIC ADSORBENT

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The adsorption of phenol and nitrophenols on hypercrosslinked polymeric adsorbent wasstudied as a function of the solution concentration and temperature. Adsorption isotherms of phenoland nitrophenols on hypercrosslinked resin were determined. These isotherms were modeledaccording to the Freundlich adsorption isotherm. The isotherms for phenol and nitrophenols onhypercrosslinked resin were assigned as L curves. Thermodynamic parameters were calculated for allphenol and nitrophenols. The kinetics experiment results showed that the adsorption rates were of thefirst-order kinetics. The rate constants at 303K were calculated.

  5. Adsorption of microcystins and anatoxin-a on nanofiltration membranes

    OpenAIRE

    Ribau Teixeira, Margarida; Rosa, Maria João

    2011-01-01

    This work pretends to study the adsorption of microcystin-LR (MC-LR) and anatoxin-a (ATX-a) on nanofiltration membranes and to understand the adsorption behaviour with the solution chemistry (background natural organic matter (NOM) and in the presence of ATX-a). Results demonstrate that MC-LR adsorption increases with water recovery due to the increase in MC-LR feed concentration. MC-LR adsorption is governed by hydrophobic interactions established between the membrane surface and...

  6. Theoretical study of adsorption of lithium atom on carbon nanotube

    OpenAIRE

    Senami, Masato; Ikeda, Yuji; Fukushima, Akinori; Tachibana, Akitomo

    2011-01-01

    We investigate the adsorption of lithium atoms on the surface of the (12,0) single wall carbon nanotube (SWCNT) by using ab initio quantum chemical calculations. The adsorption of one lithium atom on the inside of this SWCNT is favored compared to the outside. We check this feature by charge transfer and regional chemical potential density. The adsorption of multiple lithium atoms on the interior of the SWCNT is studied in terms of adsorption energy and charge transfer. We show that repulsive...

  7. Adsorption of Crystal Violet Dye onto Tamarind Seed Powder

    OpenAIRE

    Himanshu Patel; R. T. Vashi

    2010-01-01

    The present investigation describes adsorption of crystal violet dye from its aqueous solution onto tamarind (Tamarindus indica) fruit shell powder. Initial concentration, agitation speed and pH with various temperature have been studied, in which pH was found to be most effective. The adsorption data were mathematically analyzed using adsorption isotherm like Freundlich and Langmuir isotherm to study adsorption mechanism of crystal violet onto this seed powder. Freundlich isotherm was found ...

  8. RADICAL FLOW IN POROUS MEDIA WITH DISPERSION AND ADSORPTION

    Institute of Scientific and Technical Information of China (English)

    LIU Ci-qun; GUO Bai-qi; SONG Fu-quan; WANG Jin-ying

    2004-01-01

    The radical transport of chemical concentration in porous media with dispersion and adsorption was studied in this paper. Using Langmuir's adsorption model, the numerical equation of concentration transport was derived. The flows with and without adsorption were simulated and analyzed.Comparison of the obtained solution with the known analytical solution for flow without adsorption shows the presented numerical method is correct and effective, which can be used in reservoir engineering.

  9. Water adsorption in hydrophilic zeolites: experiment and simulation

    OpenAIRE

    Castillo, Juan Manuel; Silvestre Albero, Joaquín; Rodríguez Reinoso, Francisco; Vlugt, Thijs. J. H.; Calero, Sofía

    2013-01-01

    We have measured experimental adsorption isotherms of water in zeolite LTA4A, and studied the regeneration process by performing subsequent adsorption cycles after degassing at different temperatures. We observed incomplete desorption at low temperatures, and cation rearrangement at successive adsorption cycles. We also developed a new molecular simulation force field able to reproduce experimental adsorption isotherms in the range of temperatures between 273 K and 374 K. Small deviations obs...

  10. Adsorption component of the disjoining pressure in thin liquid films

    OpenAIRE

    Tsekov, R.

    2011-01-01

    The disjoining pressure isotherm in foam films is theoretically studied and an important contribution of adsorption is discovered. On the basis of the interfacial thermodynamics an adsorption disjoining pressure component is derived, which is repulsive and exponentially decaying by the film thickness. Expressions for its magnitude and decay length are derived in terms of well-known thermodynamic characteristics such as the partial Gibbs elasticity and adsorption length. Several adsorption iso...

  11. Adsorption modeling for off-gas treatment

    Energy Technology Data Exchange (ETDEWEB)

    Ladshaw, A.; Sharma, K.; Yiacoumi, S.; Tsouris, C. [Georgia Institute of Technology, Atlanta, GA 30332-0459 (United States); De Paoli, D.W. [Oak Ridge National Laboratory: Oak Ridge, TN 37831-6181 (United States)

    2013-07-01

    Off-gas generated from the reprocessing of used nuclear fuel contains a mixture of several radioactive gases including {sup 129}I{sub 2}, {sup 85}Kr, HTO, and {sup 14}CO{sub 2}. Over the past few decades, various separation and recovery processes have been studied for capturing these gases. Adsorption data for gaseous mixtures of species can be difficult to determine experimentally. Therefore, procedures capable of predicting the adsorption behavior of mixtures need to be developed from the individual isotherms of each of the pure species. A particular isotherm model of interest for the pure species is the Generalized Statistical Thermodynamic Adsorption isotherm. This model contains an adjustable number of parameters and will therefore describe a wide range of adsorption isotherms for a variety of components. A code has been developed in C++ to perform the non-linear regression analysis necessary for the determination of the isotherm parameters, as well as the least number of parameters needed to describe an entire set of data. (authors)

  12. BSA adsorption on bimodal PEO brushes

    NARCIS (Netherlands)

    Bosker, WTE; Iakovlev, PA; Norde, W; Stuart, Martien A. Cohen

    2005-01-01

    BSA adsorption onto bimodal PEO brushes at a solid surface was measured using optical reflectometry. Bimodal brushes consist of long (N = 770) and short (N = 48) PEO chains and were prepared on PS surfaces, applying mixtures of PS29-PEO48 and PS37-PEO770 block copolymers and using the Langmuir-Blodg

  13. BSA adsorption on bimodal PEO brushes

    NARCIS (Netherlands)

    Bosker, W.T.E.; Iakovlev, P.A.; Norde, W.; Cohen Stuart, M.A.

    2005-01-01

    BSA adsorption onto bimodal PEO brushes at a solid surface was measured using optical reflectometry. Bimodal brushes consist of long (N=770) and short (N=48) PEO chains and were prepared on PS surfaces, applying mixtures of PS 29-PEO48 and PS37-PEO770 block copolymers and using the Langmuir-Blodgett

  14. Optimization of Adsorptive Immobilization of Alcohol Dehydrogenases

    NARCIS (Netherlands)

    Trivedi, Archana; Heinemann, Matthias; Spiess, Antje C.; Daussmann, Thomas; Büchs, Jochen

    2005-01-01

    In this work, a systematic examination of various parameters of adsorptive immobilization of alcohol dehydrogenases (ADHs) on solid support is performed and the impact of these parameters on immobilization efficiency is studied. Depending on the source of the enzymes, these parameters differently in

  15. Adsorption Kinetics in Nanoscale Porous Coordination Polymers

    Energy Technology Data Exchange (ETDEWEB)

    Nune, Satish K.; Thallapally, Praveen K.; McGrail, Benard Peter; Annapureddy, Harsha V. R.; Dang, Liem X.; Mei, Donghai; Karri, Naveen; Alvine, Kyle J.; Olszta, Matthew J.; Arey, Bruce W.; Dohnalkova, Alice

    2015-10-07

    Nanoscale porous coordination polymers were synthesized using simple wet chemical method. The effect of various polymer surfactants on colloidal stability and shape selectivity was investigated. Our results suggest that the nanoparticles exhibited significantly improved adsorption kinetics compared to bulk crystals due to decreased diffusion path lengths and preferred crystal plane interaction.

  16. Theoretical study of cisplatin adsorption on silica

    Energy Technology Data Exchange (ETDEWEB)

    Simonetti, S., E-mail: ssimonet@uns.edu.ar [Departamento de Fisica and IFISUR, Universidad Nacional del Sur-CONICET, Av. Alem 1253, 8000 Bahia Blanca (Argentina); Departamentos de Ciencias Basicas e Ingenieria Mecanica, Universidad Tecnologica Nacional, 11 de Abril 461, 8000 Bahia Blanca (Argentina); Company, A. Diaz; Brizuela, G.; Juan, A. [Departamento de Fisica and IFISUR, Universidad Nacional del Sur-CONICET, Av. Alem 1253, 8000 Bahia Blanca (Argentina)

    2011-11-15

    The adsorption of cisplatin and its complexes, cis-[PtCl(NH{sub 3}){sub 2}]{sup +} and cis-[Pt(NH{sub 3}){sub 2}]{sup 2+}, on a SiO{sub 2}(1 1 1) hydrated surface has been studied by the Atom Superposition and Electron Delocalization method. The adiabatic energy curves for the adsorption of the drug and its products on the delivery system were considered. The electronic structure and bonding analysis were also performed. The molecule-surface interactions are formed at expenses of the OH surface bonds. The more important interactions are the Cl-H bond for cis-[PtCl{sub 2}(NH{sub 3}){sub 2}] and cis-[PtCl(NH{sub 3}){sub 2}]{sup +} adsorptions, and the Pt-O interaction for cis-[Pt(NH{sub 3}){sub 2}]{sup 2+} adsorption. The Cl p orbitals and Pt s, p y d orbitals of the molecule and its complexes, and the s H orbital and, the s and p orbitals of the O atoms of the hydrated surface are the main contribution to the surface bonds.

  17. Adsorption Properties of Chalk Reservoir Materials

    DEFF Research Database (Denmark)

    Okhrimenko, Denis

    Understanding adsorption energetics and wetting properties of calcium carbonate surfaces is essential for developing remediation strategies for aquifers, improving oil recovery, minimising risk in CO2 storage and optimising industrial processes. This PhD was focussed on comparing the vapour...

  18. Adsorption Phenomena at Organic-Inorganic Interfaces

    OpenAIRE

    Bachmann, M.; Janke, W.

    2007-01-01

    The qualitative solvent- and temperature-dependent conformational behavior of a peptide in the proximity of solid substrates with different adsorption properties is investigated by means of a simple lattice model. The resulting pseudophase diagrams exhibit a complex structure, which can be understood by analysing the minima of the free-energy landscape in dependence of appropriate system parameters.

  19. Fluorocarbon adsorption in hierarchical porous frameworks

    Science.gov (United States)

    Motkuri, Radha Kishan; Annapureddy, Harsha V. R.; Vijaykumar, M.; Schaef, H. Todd; Martin, Paul F.; McGrail, B. Peter; Dang, Liem X.; Krishna, Rajamani; Thallapally, Praveen K.

    2014-07-01

    Metal-organic frameworks comprise an important class of solid-state materials and have potential for many emerging applications such as energy storage, separation, catalysis and bio-medical. Here we report the adsorption behaviour of a series of fluorocarbon derivatives on a set of microporous and hierarchical mesoporous frameworks. The microporous frameworks show a saturation uptake capacity for dichlorodifluoromethane of >4 mmol g-1 at a very low relative saturation pressure (P/Po) of 0.02. In contrast, the mesoporous framework shows an exceptionally high uptake capacity reaching >14 mmol g-1 at P/Po of 0.4. Adsorption affinity in terms of mass loading and isosteric heats of adsorption is found to generally correlate with the polarizability and boiling point of the refrigerant, with dichlorodifluoromethane >chlorodifluoromethane >chlorotrifluoromethane >tetrafluoromethane >methane. These results suggest the possibility of exploiting these sorbents for separation of azeotropic mixtures of fluorocarbons and use in eco-friendly fluorocarbon-based adsorption cooling.

  20. Adsorption of penicillin by decaffeinated tea waste

    Directory of Open Access Journals (Sweden)

    Gharbani Parvin

    2015-09-01

    Full Text Available Removal of penicillin has been investigated using decaffeinated tea waste (DCTW. Decaffeination of tea waste was investigated using different methods. Results indicate that ozonation was the most effective process for removal of penicillin. Batch adsorption experiments were completed at various temperatures (20, 30, and 40°C, DCTW dosages (2, 4, 6, 8, and 10 g per 250 mL, penicillin concentrations (4, 10, and 14 mg/L, and pH (3, 7, and 10 conditions. Studies showed that adsorption reaches equilibrium within 40 min. The main factor affecting adsorption of penicillin was the solution pH, with maximum adsorption occurring at pH 3. Higher adsorbent dosages and lower penicillin concentrations also resulted in higher percentages of penicillin removal. Results show that data obeyed the pseudo-first-order kinetic and Freundlich isotherm models. This process proves that low-cost DCTW could be used as a high performance adsorbent for removing penicillin from aqueous solutions.

  1. Modeling the Adsorption of Oxalate onto Montmorillonite.

    Science.gov (United States)

    Ramos, M Elena; Emiroglu, Caglayan; García, David; Sainz-Díaz, C Ignacio; Huertas, F Javier

    2015-11-01

    In this work, a multiscale modeling of the interaction of oxalate with clay mineral surfaces from macroscale thermodynamic equilibria simulations to atomistic calculations is presented. Previous results from macroscopic adsorption data of oxalate on montmorillonite in 0.01 M KNO3 media at 25 °C within the pH range from 2.5 to 9 have been used to develop a surface complexation model. The experimental adsorption edge data were fitted using the triple-layer model (TLM) with the aid of the FITEQL 4.0 computer program. Surface complexation of oxalate is described by two reactions: >AlOH + Ox(2-) + 2H(+) = >AlOxH + H2O (log K = 14.39) and >AlOH + Ox(2-) + H(+) = >AlOx(-) + H2O (log K = 10.39). The monodentate complex >AlOxH dominated adsorption below pH 4, and the bidentate complex >AlOx(-) was predominant at higher pH values. Both of the proposed inner-sphere oxalate species are qualitatively consistent with previously published diffuse reflectance FTIR spectroscopic results for oxalate on montmorillonite edge surface (Chem. Geol. 2014, 363, 283-292). Atomistic computational studies have been performed to understand the interactions at the molecular level between adsorbates and mineral surface, showing the atomic structures and IR frequency shifts of the adsorption complexes of oxalate with the edge surface of a periodic montmorillonite model. PMID:26444928

  2. Modeling adsorption with lattice Boltzmann equation.

    Science.gov (United States)

    Guo, Long; Xiao, Lizhi; Shan, Xiaowen; Zhang, Xiaoling

    2016-01-01

    The research of adsorption theory has recently gained renewed attention due to its critical relevance to a number of trending industrial applications, hydrogen storage and shale gas exploration for instance. The existing theoretical foundation, laid mostly in the early twentieth century, was largely based on simple heuristic molecular interaction models and static interaction potential which, although being insightful in illuminating the fundamental mechanisms, are insufficient for computations with realistic adsorbent structure and adsorbate hydrodynamics, both critical for real-life applications. Here we present and validate a novel lattice Boltzmann model incorporating both adsorbate-adsorbate and adsorbate-adsorbent interactions with hydrodynamics which, for the first time, allows adsorption to be computed with real-life details. Connection with the classic Ono-Kondo lattice theory is established and various adsorption isotherms, both within and beyond the IUPAC classification are observed as a pseudo-potential is varied. This new approach not only enables an important physical to be simulated for real-life applications, but also provides an enabling theoretical framework within which the fundamentals of adsorption can be studied. PMID:27256325

  3. Modeling adsorption with lattice Boltzmann equation

    Science.gov (United States)

    Guo, Long; Xiao, Lizhi; Shan, Xiaowen; Zhang, Xiaoling

    2016-01-01

    The research of adsorption theory has recently gained renewed attention due to its critical relevance to a number of trending industrial applications, hydrogen storage and shale gas exploration for instance. The existing theoretical foundation, laid mostly in the early twentieth century, was largely based on simple heuristic molecular interaction models and static interaction potential which, although being insightful in illuminating the fundamental mechanisms, are insufficient for computations with realistic adsorbent structure and adsorbate hydrodynamics, both critical for real-life applications. Here we present and validate a novel lattice Boltzmann model incorporating both adsorbate-adsorbate and adsorbate-adsorbent interactions with hydrodynamics which, for the first time, allows adsorption to be computed with real-life details. Connection with the classic Ono-Kondo lattice theory is established and various adsorption isotherms, both within and beyond the IUPAC classification are observed as a pseudo-potential is varied. This new approach not only enables an important physical to be simulated for real-life applications, but also provides an enabling theoretical framework within which the fundamentals of adsorption can be studied. PMID:27256325

  4. Adsorption and desorption of cellulose derivatives.

    NARCIS (Netherlands)

    Hoogendam, C.W.

    1998-01-01

    Cellulose derivatives, in particular carboxymethyl cellulose (CMC) are used in many (industrial) applications. The aim of this work is to obtain insight into the adsorption mechanism of cellulose derivatives on solid-liquid interfaces.In chapter 1 of this thesis we discuss some appl

  5. Adsorption of Ions at Uncharged Insoluble Monolayers

    Science.gov (United States)

    Peshkova, T. V.; Minkov, I. L.; Tsekov, R.; Slavchov, R. I.

    2016-08-01

    A method is proposed for the experimental determination of the adsorption of inorganic electrolytes at a surface covered with insoluble surfactant monolayer. This task is complicated by the fact that the change of the salt concentration alters both chemical potentials of the electrolyte and the surfactant. Our method resolves the question by combining data for the surface pressure versus area of the monolayer at several salt concentrations with data for the equilibrium spreading pressure of crystals of the surfactant (used to fix a standard state). We applied the method to alcohols spread at the surface of concentrated halide solutions. The measured salt adsorption is positive and has nonmonotonic dependence on the area per surfactant molecule. For the liquid expanded film, depending on the concentration, there is one couple of ions adsorbed per each 3–30 surfactant molecules. We analyzed which ion, the positive or the negative, stands closer to the surface, by measuring the effect of NaCl on the Volta potential of the monolayer. The potentiometric data suggest that Na+ is specifically adsorbed, while Cl– remains in the diffuse layer, i.e., the surface is positively charged. The observed reverse Hofmeister series of the adsorptions of NaF, NaCl, and NaBr suggests the same conclusion holds for all these salts. The force that causes the adsorption of Na+ seems to be the interaction of the ion with the dipole moment of the monolayer.

  6. Exhaustively sampling peptide adsorption with metadynamics.

    Science.gov (United States)

    Deighan, Michael; Pfaendtner, Jim

    2013-06-25

    Simulating the adsorption of a peptide or protein and obtaining quantitative estimates of thermodynamic observables remains challenging for many reasons. One reason is the dearth of molecular scale experimental data available for validating such computational models. We also lack simulation methodologies that effectively address the dual challenges of simulating protein adsorption: overcoming strong surface binding and sampling conformational changes. Unbiased classical simulations do not address either of these challenges. Previous attempts that apply enhanced sampling generally focus on only one of the two issues, leaving the other to chance or brute force computing. To improve our ability to accurately resolve adsorbed protein orientation and conformational states, we have applied the Parallel Tempering Metadynamics in the Well-Tempered Ensemble (PTMetaD-WTE) method to several explicitly solvated protein/surface systems. We simulated the adsorption behavior of two peptides, LKα14 and LKβ15, onto two self-assembled monolayer (SAM) surfaces with carboxyl and methyl terminal functionalities. PTMetaD-WTE proved effective at achieving rapid convergence of the simulations, whose results elucidated different aspects of peptide adsorption including: binding free energies, side chain orientations, and preferred conformations. We investigated how specific molecular features of the surface/protein interface change the shape of the multidimensional peptide binding free energy landscape. Additionally, we compared our enhanced sampling technique with umbrella sampling and also evaluated three commonly used molecular dynamics force fields. PMID:23706011

  7. Water adsorption on the Be(0001) surface:from monomer to trimer adsorption

    Institute of Scientific and Technical Information of China (English)

    Ning Hua; Tao Xiang-Ming; Tan Ming-Qiu

    2012-01-01

    In this paper,the density functional theory has been used to perform a comparative theoretical study of water monomer,dimer,trimer,and bilayer adsorptions on the Be(0001) surface. In our calculations,the adsorbed water molecules are energetically favoured adsorbed on the atop sites,and the dimer adsorption is found to be the most stable with a peak adsorption energy of ~ 437 meV.Further analyses have revealed that the essential bonding interaction between the water monomer and the metal substrate is the hybridization of the water 3a1-like molecular orbital with the (s,pz) orbitals of the surface beryllium atoms.While in the case of the water dimer adsorption,the lb1-like orbital of the H2O molecule plays a dominant role.

  8. Adsorption materials for the recovery and separation of biobased molecules

    NARCIS (Netherlands)

    IJzer, Anne Corine

    2016-01-01

    In this thesis we studied several strategies to improve adsorption technology for the adsorption of biobased molecules. These strategies are based on the adsorbent as well as the adsorption process. A systematic investigation of the chemical and physical structure of resin materials and their relati

  9. ADSORPTION OF GOLD ON TBP EXTRACTING RESIN FROM HCl SOLUTION

    Institute of Scientific and Technical Information of China (English)

    GaoHaoqi; CaoZhikai; 等

    1998-01-01

    Adsorption of gold on TBP extracting resin from HCl solution was researched.All the effects of factors,such as solution acidity,TBP content,temperature,etc.,on adsorption equilibrium were discussed and the equilibrium equation was formulated.The breakthough time of adsorption process with fixed bed was studied through experiment.

  10. Visualizing Gas Adsorption on Porous Solids: Four Simple, Effective Demonstrations

    Science.gov (United States)

    Cheung, Ocean

    2014-01-01

    Gas adsorption on porous solids is a topic that is often discussed in an undergraduate chemistry or chemical engineering course. The idea of porosity and gas adsorption on a porous solid is usually discussed with adsorption isotherms recorded using commercially available equipment. This discussion can be rather abstract and can be difficult for…

  11. Monte Carlo Simulation for the Adsorption of Symmetric Triblock Copolymers

    Institute of Scientific and Technical Information of China (English)

    彭昌军; 李健康; 刘洪来; 胡英

    2004-01-01

    The adsorption behavior of symmetric triblock copolymers, Am/2BnAm/2, from a nonselective solvent at solid-liquid interface has been studied by Monte Carlo simulations on a simple lattice model. Either segment A or segment B is attractive, while the other is non-attractive to the surface. Influences of the adsorption energy,bulk concentration, chain composition and chain length on the microstructure of adsorbed layers are presented.The results show that the total surface coverage and the adsorption amount increases monotonically as the bulk concentration increases. The larger the adsorption energy and the higher the fraction of adsorbing segments, the higher the total surface coverage is exhibited. The product of surface coverage and the proportion of non-attractive segments are nearly independent of the chain length, and the logarithm of the adsorption amount is a linear function of the reciprocal of the reduced temperature. When the adsorption energy is larger, the adsorption amount exhibits a maximum as the fraction of adsorbing segment increases. The adsorption isotherms of copolymers with different length of non-attractive segments can be mapped onto a single curve under given adsorption energy. The adsorption layer thickness decreases as the adsorption energy and the fraction of adsorbing segments increases, but it increhses as the length of non-attractive segments increases. The tails mainly govern the adsorption layer thickness.

  12. Competitive protein adsorption to polymer surface from human serum

    DEFF Research Database (Denmark)

    Holmberg, Maria; Jensen, Karin Bagger Stibius; Larsen, Niels Bent;

    2008-01-01

    and on the presence and concentration of other proteins in bulk solutions during adsorption. Generally, lower albumin and IgG adsorption was observed on the modified and more hydrophilic polymer surfaces, but otherwise the modified and unmodified polymer surfaces showed the same adsorption characteristics....

  13. Influence of adsorption properties on radionuclide transport in fractured rock

    International Nuclear Information System (INIS)

    Most models predicting radionuclide transport in fractured rock include mechanisms of advection, dispersion, radioactive decay, and equilibrium adsorption between the solid and liquid phases. Recently, nonequilibrium adsorption has been given a great deal of attention. In this paper, the authors have successfully derived the analytical solutions to transport equations for a single fracture under various conditions covering no sorption, nonequilibrium adsorption, and equilibrium sorption

  14. Adsorption of nonionic surfactants onto polystyrene : kinetics and reversibility

    NARCIS (Netherlands)

    Geffroy, C.; Cohen Stuart, M.A.; Wong, K.; Cabane, B.; Bergeron, V.

    2000-01-01

    The reversible adsorption and desorption kinetics of nonionic surfactants at a hydrophobic surface have been studied by reflectometry. This enables the measurement of the adsorption isotherm with unprecedented accuracy. It is shown that the adsorption mechanism can be split into three processes. The

  15. Adsorption isotherm of non-azeotropic solution onto porous adsorbents

    Science.gov (United States)

    Bono, A.; Ramlan, N. A.; Anisuzzaman, S. M.; Chu, C. M.; Farm, Y. Y.

    2016-06-01

    Adsorption isotherm is essential component in the understanding of the adsorption process. Several methods of the measurements, analysis and interpretation of adsorption from solution have been reported in the literature. Most of the measurements of adsorption isotherm from solution were involved the measurement of excess isotherm conducted at low region of sorbates concentration. Direct interpretation of excess adsorption isotherm as adsorption isotherm is always been practice. Therefore, in this work a study on the measurement of the adsorption isotherm from solution of non-azeotropic organic solvent mixture onto porous adsorbents for whole range of liquid concentration was conducted. The study included the measurement of excess adsorption isotherm using conventional technique. Theoretical analysis and interpretation of adsorption isotherm from the excess isotherm were conducted using Pseudo Ideal Adsorption, Gibbs Dividing Plane Model and Langmuir-Fruendlich binary isotherm model. For organic solvents, acetone and propanol were chosen as the adsorbates due to the non-azeotropic properties in the mixture. Activated carbon and silicalite were chosen as adsorbents due to the different in their porosity such as macro porous and micro porous structure. The result of the study has revealed that the adsorption isotherm of non-azeotropic mixture onto activated carbon and silicalite can be interpreted as monolayer type of adsorption.

  16. [Adsorption and Desorption Characteristics of Endosulfan in Purple Soil].

    Science.gov (United States)

    Zhao, Yan; Zheng, Guo-can; Zhu, Heng; Zhang, Jin-zhong; Zhu, Xiu-ying; Hu, Shu-chun; Wu, Ya-lin

    2015-09-01

    In order to reveal the residual process of endosulfan in purple soil and protect soil ecological environment, the adsorption and desorption characteristics of endosulfan in purple soil were investigated, and effects of temperature, adsorbent amount, and initial pH of adsorption solution on the adsorption capacity were also examined by static adsorption and desorption experiments. The results showed that the adsorption kinetic process could be well described by the second-order kinetic equation with the initial rate constants of α-, β-endosulfan as 0. 157 and 0. 115 mg.(g.min)-1, respectively. The adsorption thermodynamic process could be well described by the Langmuir isotherm with the maximum adsorption capacities of α-, β-endosulfan as 0. 257 mg . g -1 and 0. 155 mg . g -1, respectively. The adsorption process of endosulfan in purple soil may be an exothermic physicochemical process, and is dominated by physical adsorption. Under the experimental conditions examined in this study, the initial pH of adsorption solution had a relative great influence on the adsorption capacity, whereas the temperature and adsorbent amount had no significant influence. The desorption experiments found that the maximum desorption capacities of α-, β-endosulfan adsorbed in purple soil were 0. 029 mg . g -1 and 0. 017 mg . g -1 at 6 and 4 h, and accounted for 10. 5% and 16. 1% in the maximum adsorption capacities, respectively. PMID:26717711

  17. Adsorption of Pb(Ⅱ) on Sediment of the Dianshan Lake:Adsorption Models and Kinetics

    Institute of Scientific and Technical Information of China (English)

    黄莉桦; 孙为民

    2004-01-01

    The adsorption characteristics of Pb on sediments of the Dianshan Lake in Shanghai was studied. The results show that (1)the relationship between the amount q of apparent equilibrium adsorption and the equilibrium concentration C conforms to the Freundlich isothermal adsorption equation; (2) the adsorption and desorption of Pb on sediments are not reversible, that is, adsorption/desorption of Pb exhibits hysteresis; (3) Pb adsorption behavior is initially fast, followed by a slow reaction, and the slow reaction conforms to a reversible first-order reaction; (4) by deducing the Pb adsorption kinetics, four kinetics parameters n, k1, k2, qmax independent of C could be worked out; (5) the equilibrium parameter (K) and the free energy change (ΔG) could also be determined,and the negative values of free energy change (ΔG) indicate the spontaneous nature of the adsorption.

  18. The adsorption of HCl on volcanic ash

    Science.gov (United States)

    Gutiérrez, Xochilt; Schiavi, Federica; Keppler, Hans

    2016-03-01

    Understanding the interaction between volcanic gases and ash is important to derive gas compositions from ash leachates and to constrain the environmental impact of eruptions. Volcanic HCl could potentially damage the ozone layer, but it is unclear what fraction of HCl actually reaches the stratosphere. The adsorption of HCl on volcanic ash was therefore studied from -76 to +150 °C to simulate the behavior of HCl in the dilute parts of a volcanic plume. Finely ground synthetic glasses of andesitic, dacitic, and rhyolitic composition as well as a natural obsidian from Vulcano (Italy) served as proxies for fresh natural ash. HCl adsorption is an irreversible process and appears to increase with the total alkali content of the glass. Adsorption kinetics follow a first order law with rate constants of 2.13 ṡ10-6 s-1 to 1.80 ṡ10-4 s-1 in the temperature range investigated. For dacitic composition, the temperature and pressure dependence of adsorption can be described by the equation ln ⁡ c = 1.26 + 0.27 ln ⁡ p - 715.3 / T, where c is the surface concentration of adsorbed HCl in mg/m2, T is temperature in Kelvin, and p is the partial pressure of HCl in mbar. A comparison of this model with a large data set for the composition of volcanic ash suggests that adsorption of HCl from the gas phase at relatively low temperatures can quantitatively account for the majority of the observed Cl concentrations. The model implies that adsorption of HCl on ash increases with temperature, probably because of the increasing number of accessible adsorption sites. This temperature dependence is opposite to that observed for SO2, so that HCl and SO2 are fractionated by the adsorption process and the fractionation factor changes by four orders of magnitude over a temperature range of 250 K. The assumption of equal adsorption of different species is therefore not appropriate for deriving volcanic gas compositions from analyses of adsorbates on ash. However, with the experimental

  19. Adsorption Model for Off-Gas Separation

    Energy Technology Data Exchange (ETDEWEB)

    Veronica J. Rutledge

    2011-03-01

    The absence of industrial scale nuclear fuel reprocessing in the U.S. has precluded the necessary driver for developing the advanced simulation capability now prevalent in so many other countries. Thus, it is essential to model complex series of unit operations to simulate, understand, and predict inherent transient behavior and feedback loops. A capability of accurately simulating the dynamic behavior of advanced fuel cycle separation processes will provide substantial cost savings and many technical benefits. The specific fuel cycle separation process discussed in this report is the off-gas treatment system. The off-gas separation consists of a series of scrubbers and adsorption beds to capture constituents of interest. Dynamic models are being developed to simulate each unit operation involved so each unit operation can be used as a stand-alone model and in series with multiple others. Currently, an adsorption model has been developed in gPROMS software. Inputs include gas stream constituents, sorbent, and column properties, equilibrium and kinetic data, and inlet conditions. It models dispersed plug flow in a packed bed under non-isothermal and non-isobaric conditions for a multiple component gas stream. The simulation outputs component concentrations along the column length as a function of time from which the breakthrough data is obtained. It also outputs temperature along the column length as a function of time and pressure drop along the column length. Experimental data will be input into the adsorption model to develop a model specific for iodine adsorption on silver mordenite as well as model(s) specific for krypton and xenon adsorption. The model will be validated with experimental breakthrough curves. Another future off-gas modeling goal is to develop a model for the unit operation absorption. The off-gas models will be made available via the server or web for evaluation by customers.

  20. Cryogels: morphological, structural and adsorption characterisation.

    Science.gov (United States)

    Gun'ko, Vladimir M; Savina, Irina N; Mikhalovsky, Sergey V

    2013-01-01

    Experimental results on polymer, protein, and composite cryogels and data treatment methods used for morphological, textural, structural, adsorption and diffusion characterisation of the materials are analysed and compared. Treatment of microscopic images with specific software gives quantitative structural information on both native cryogels and freeze-dried materials that is useful to analyse the drying effects on their structure. A combination of cryoporometry, relaxometry, thermoporometry, small angle X-ray scattering (SAXS), equilibrium and kinetic adsorption of low and high-molecular weight compounds, diffusion breakthrough of macromolecules within macroporous cryogel membranes, studying interactions of cells with cryogels provides a consistent and comprehensive picture of textural, structural and adsorption properties of a variety of cryogels. This analysis allows us to establish certain regularities in the cryogel properties related to narrow (diameter 0.4100 μm) with boundary sizes within modified life science pore classification. Particular attention is paid to water bound in cryogels in native superhydrated or freeze-dried states. At least, five states of water - free unbound, weakly bound (changes in the Gibbs free energy-ΔG0.8 kJ/mol), and weakly associated (chemical shift of the proton resonance δ(H)=1-2 ppm) and strongly associated (δ(H)=3-6 ppm) waters can be distinguished in hydrated cryogels using (1)H NMR, DSC, TSDC, TG and other methods. Different software for image treatment or developed to analyse the data obtained with the adsorption, diffusion, SAXS, cryoporometry and thermoporometry methods and based on regularisation algorithms is analysed and used for the quantitative morphological, structural and adsorption characterisation of individual and composite cryogels, including polymers filled with solid nano- or microparticles.

  1. Adsorption Model for Off-Gas Separation

    International Nuclear Information System (INIS)

    The absence of industrial scale nuclear fuel reprocessing in the U.S. has precluded the necessary driver for developing the advanced simulation capability now prevalent in so many other countries. Thus, it is essential to model complex series of unit operations to simulate, understand, and predict inherent transient behavior and feedback loops. A capability of accurately simulating the dynamic behavior of advanced fuel cycle separation processes will provide substantial cost savings and many technical benefits. The specific fuel cycle separation process discussed in this report is the off-gas treatment system. The off-gas separation consists of a series of scrubbers and adsorption beds to capture constituents of interest. Dynamic models are being developed to simulate each unit operation involved so each unit operation can be used as a stand-alone model and in series with multiple others. Currently, an adsorption model has been developed in gPROMS software. Inputs include gas stream constituents, sorbent, and column properties, equilibrium and kinetic data, and inlet conditions. It models dispersed plug flow in a packed bed under non-isothermal and non-isobaric conditions for a multiple component gas stream. The simulation outputs component concentrations along the column length as a function of time from which the breakthrough data is obtained. It also outputs temperature along the column length as a function of time and pressure drop along the column length. Experimental data will be input into the adsorption model to develop a model specific for iodine adsorption on silver mordenite as well as model(s) specific for krypton and xenon adsorption. The model will be validated with experimental breakthrough curves. Another future off-gas modeling goal is to develop a model for the unit operation absorption. The off-gas models will be made available via the server or web for evaluation by customers.

  2. How specific halide adsorption varies hydrophobic interactions.

    Science.gov (United States)

    Stock, Philipp; Müller, Melanie; Utzig, Thomas; Valtiner, Markus

    2016-03-11

    Hydrophobic interactions (HI) are driven by the water structure around hydrophobes in aqueous electrolytes. How water structures at hydrophobic interfaces and how this influences the HI was subject to numerous studies. However, the effect of specific ion adsorption on HI and hydrophobic interfaces remains largely unexplored or controversial. Here, the authors utilized atomic force microscopy force spectroscopy at well-defined nanoscopic hydrophobic interfaces to experimentally address how specific ion adsorption of halide ions as well as NH4 (+), Cs(+), and Na(+) cations alters interaction forces across hydrophobic interfaces. Our data demonstrate that iodide adsorption at hydrophobic interfaces profoundly varies the hydrophobic interaction potential. A long-range and strong hydration repulsion at distances D > 3 nm, is followed by an instability which could be explained by a subsequent rapid ejection of adsorbed iodides from approaching hydrophobic interfaces. In addition, the authors find only a weakly pronounced influence of bromide, and as expected no influence of chloride. Also, all tested cations do not have any significant influence on HI. Complementary, x-ray photoelectron spectroscopy and quartz-crystal-microbalance with dissipation monitoring showed a clear adsorption of large halide ions (Br(-)/I(-)) onto hydrophobic self-assembled monolayers (SAMs). Interestingly, iodide can even lead to a full disintegration of SAMs due to specific and strong interactions of iodide with gold. Our data suggest that hydrophobic surfaces are not intrinsically charged negatively by hydroxide adsorption, as it was generally believed. Hydrophobic surfaces rather interact strongly with negatively charged large halide ions, leading to a surface charging and significant variation of interaction forces.

  3. 76 FR 14038 - TWIC/MTSA Policy Advisory Council; Voluntary Use of TWIC Readers

    Science.gov (United States)

    2011-03-15

    ... Evaluation Test to confirm that the biometric template stored on the TWIC matches the fingerprint of the... in the January 17, 2008, issue of the Federal Register (73 FR 3316). Background and Purpose In... Good Guidance Practices,'' which was published in the Federal Register on January 25, 2007 (72 FR...

  4. Adsorption of ammonium dinitramide (ADN) from aqueous solutions. 1. Adsorption on powdered activated charcoal.

    Science.gov (United States)

    Santhosh, G; Venkatachalam, S; Ninan, K N; Sadhana, R; Alwan, S; Abarna, V; Joseph, M A

    2003-03-17

    Investigations on the adsorption of ammonium dinitramide (NH(4)N(NO(2))(2)) (ADN) from aqueous solutions on powdered activated charcoal (PAC) were carried out in order to find out an effective and easier method of separating ADN from aqueous solutions. The effectiveness of PAC in the selective adsorption of ADN from aqueous solutions of ADN (ADN-F) and ADN in presence of sulfate (SO(4)(2-)) and nitrate (NO(3)(-)) ions (ADN-PS) was examined and compared using batch and column methods. The adsorption process follows both Langmuir and Freundlich adsorption isotherms and the isotherm parameters for the models were determined. The observed data favor the formation of monolayer adsorption. The adsorption capacities were found to be 63.3, 119, 105.3 and 82 mg of ADN per g of PAC for ADN-F (batch), ADN-PS (batch), ADN-F (column) and ADN-PS (column), respectively. Break-through curves for ADN-F and ADN-PS were obtained for the optimization of separation of ADN from aqueous solutions. Elution curves were generated for the desorption of ADN from PAC using hot water as eluent.

  5. Description of adsorption of hydrophobic organic compounds on sediment using multi-component adsorption model

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    A chemical sequential separation procedure for sediment bas been developed for the adsorptive investigation of hydrophobic organic compounds(HOCs) including four fractions: carbonate, hydrous metallic oxide(ferric oxide, manganese oxide and alumina), clay and organic matter. Adsorption isotherms of these hydrophobic solute probes, such as hexachloroethane, lindane and 1,2,4,5-tetrachlorobenzene were measured for model sorbents, model and natural sediment, and the latter of which was pretreated with the simplified sequential separation method. The linear and Langmuir models are applied to correlate the experimental data of humic substance and other model sorbents respectively. Multi-component Adsorptive Model (MCAM) was used to simulate adsorption isotherms of model and natural sediment. The results reveal that( 1 ) the separation efficiencies of carbonate, organic matter, ferric oxide, manganese oxide and alumina are 98. 1 % , 72.5% ,82.6%, 93.5% and 83.3%, respectively; (2) except for removing metallic oxide, the external structure of sediment is not changed greatly after separation; (3) the MCAM correlates the data of adsorption isotherm rather well with the maximal relative deviations of 9.76 % , 6.78 %and 9.53% for hexachloroethane, lindane and 1,2,4,5-tetrachlorobenaze in model sediment, respectively. The MCAM can clearly give expression to the different adsorptive mechanisms for HOCs in organic and inorganic matter, though the experimental data in each component are not very accurate due to the sequential separation efficiency.

  6. Adsorption of ammonium dinitramide (ADN) from aqueous solutions. 1. Adsorption on powdered activated charcoal.

    Science.gov (United States)

    Santhosh, G; Venkatachalam, S; Ninan, K N; Sadhana, R; Alwan, S; Abarna, V; Joseph, M A

    2003-03-17

    Investigations on the adsorption of ammonium dinitramide (NH(4)N(NO(2))(2)) (ADN) from aqueous solutions on powdered activated charcoal (PAC) were carried out in order to find out an effective and easier method of separating ADN from aqueous solutions. The effectiveness of PAC in the selective adsorption of ADN from aqueous solutions of ADN (ADN-F) and ADN in presence of sulfate (SO(4)(2-)) and nitrate (NO(3)(-)) ions (ADN-PS) was examined and compared using batch and column methods. The adsorption process follows both Langmuir and Freundlich adsorption isotherms and the isotherm parameters for the models were determined. The observed data favor the formation of monolayer adsorption. The adsorption capacities were found to be 63.3, 119, 105.3 and 82 mg of ADN per g of PAC for ADN-F (batch), ADN-PS (batch), ADN-F (column) and ADN-PS (column), respectively. Break-through curves for ADN-F and ADN-PS were obtained for the optimization of separation of ADN from aqueous solutions. Elution curves were generated for the desorption of ADN from PAC using hot water as eluent. PMID:12628781

  7. Phosphate adsorption on aluminum-coordinated functionalized macroporous–mesoporous silica: Surface structure and adsorption behavior

    International Nuclear Information System (INIS)

    Graphical abstract: - Highlights: • Al-coordinated functionalized macroporous–mesoporous silica for phosphate removal. • It had the maximum adsorption capacity of 23.59 mg P/g. • Over 95% of the final adsorption capacity reached in the first 1 min. - Abstract: In this study, Al(III)-coordinated diamino-functionalized macroporous–mesoporous silica was synthesized and characterized by X-ray diffraction, N2 adsorption–desorption, Fourier transform infrared spectroscopy, scanning and transmission electron microscopy. Because of well-defined and interconnecting macroporous–mesoporous networks, the resulting adsorbent (MM-SBA) exhibited a significantly better phosphate adsorption performance and faster removal rate, as compared with the mesoporous adsorbent (M-SBA). Based on the Freundlich and Langmuir models, the phosphate adsorption capacity and the maximum adsorption capacity of MM-SBA were 7.99 mg P/g and 23.59 mg P/g, respectively. In the kinetic study of MM-SBA, over 95% of its final adsorption capacity reached in the first 1 min; whereas that of M-SBA was less than 79%

  8. Phosphate adsorption on aluminum-coordinated functionalized macroporous–mesoporous silica: Surface structure and adsorption behavior

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Weiya [Department of Chemistry, Jinan University, Guangzhou 510632 (China); Department of Materials Science and Engineering, Taizhou University, Linhai 317000 (China); Li, Dan [Environmetal Engineering, School of Engineering and Information Technology, Murdoch University, Murdoch, Western Australia 6150 (Australia); Zhu, Yi; Xu, Kai; Li, Jianqiang [Department of Chemistry, Jinan University, Guangzhou 510632 (China); Han, Boping [Institute of Hydrobiology, Jinan University, Guangzhou 510460 (China); Zhang, Yuanming, E-mail: tzhangym@jnu.edu.cn [Department of Chemistry, Jinan University, Guangzhou 510632 (China)

    2013-12-15

    Graphical abstract: - Highlights: • Al-coordinated functionalized macroporous–mesoporous silica for phosphate removal. • It had the maximum adsorption capacity of 23.59 mg P/g. • Over 95% of the final adsorption capacity reached in the first 1 min. - Abstract: In this study, Al(III)-coordinated diamino-functionalized macroporous–mesoporous silica was synthesized and characterized by X-ray diffraction, N{sub 2} adsorption–desorption, Fourier transform infrared spectroscopy, scanning and transmission electron microscopy. Because of well-defined and interconnecting macroporous–mesoporous networks, the resulting adsorbent (MM-SBA) exhibited a significantly better phosphate adsorption performance and faster removal rate, as compared with the mesoporous adsorbent (M-SBA). Based on the Freundlich and Langmuir models, the phosphate adsorption capacity and the maximum adsorption capacity of MM-SBA were 7.99 mg P/g and 23.59 mg P/g, respectively. In the kinetic study of MM-SBA, over 95% of its final adsorption capacity reached in the first 1 min; whereas that of M-SBA was less than 79%.

  9. Adsorption dynamics and equilibrium studies of Zn (II) onto chitosan

    Indian Academy of Sciences (India)

    G Karthikeyan; K Anbalagan; N Muthulakshmi Andal

    2004-03-01

    Batch equilibration studies are conducted to determine the nature of adsorption of zinc (II) over chitosan. The factors affecting the adsorption process like particle size, contact time, dosage, pH, effects of chloride and nitrate are identified. The influence of temperature and co-ions on the adsorption process is verified. The fraction of adsorption, and the intraparticle diffusion rate constant, are calculated at different environments and the results are discussed. The nature of adsorption of the zinc (II) - chitosan system is explained using Freundlich, Langmuir isotherms and thermodynamic parameters.

  10. Protein adsorption on materials surfaces with nano-topography

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Protein adsorption behavior on the surfaces of biomedical materials is highly related to the biocompatibility of the materials. In the past, numerous research reports were mainly focused on the effect of chemical components of a material's surface on protein adsorption. The effect of surface topography on protein adsorption, the topic of this review, has recently receuvedkeen interest. The influence of surface nano-topographic factors, including roughness, curvature and geometry, on protein adsorption as well as the protein adsorption behavior, such as the amount of protein adsorbed, the activity and morphology of adsorbed protein, is introduced.

  11. Dynamic analysis of the CTAR (constant temperature adsorption refrigeration) cycle

    International Nuclear Information System (INIS)

    The basic SAR (solar-driven adsorption refrigeration) machine is an intermittent cold production system. Recently, the CO-SAR (continuous operation solar-powered adsorption refrigeration) system is developed. The CO-SAR machine is based on the theoretical CTAR (constant temperature adsorption refrigeration) cycle in which the adsorption process takes place at a constant temperature that equals the ambient temperature. Practically, there should be a temperature gradient between the adsorption bed and the surrounding atmosphere to provide a driving potential for heat transfer. In the present study, the dynamic analysis of the CTAR cycle is developed. This analysis provides a comparison between the theoretical and the dynamic operation of the CTAR cycle. The developed dynamic model is based on the D-A adsorption equilibrium equation and the energy and mass balances in the adsorption reactor. Results obtained from the present work demonstrate that, the idealization of the constant temperature adsorption process in the theoretical CTAR cycle is not far from the real situation and can be approached. Furthermore, enhancing the heat transfer between the adsorption bed and the ambient during the bed pre-cooling process helps accelerating the heat rejection process from the adsorption reactor and therefore approaching the isothermal process. - Highlights: • The dynamic analysis of the CTAR (constant temperature adsorption refrigeration) cycle is developed. • The CTAR theoretical and dynamic cycles are compared. • The dynamic cycle approaches the ideal one by enhancing the bed precooling

  12. Influences of Soluble Salts on Adsorption Properties of Polycarboxylate Superplasticizers

    Institute of Scientific and Technical Information of China (English)

    WANG Dongmin; CHENG Peifu; XIONG Weifeng; SONG Taowen; WU Zengli

    2012-01-01

    Polycarboxylate (PC) superplasticizers with different chemical structures were synthesized through free radical co-polymerization reaction.A total organic carbon analyzer was used to investigate adsorption behaviors of PCs,and to evaluate influences of soluble salts on absorption properties of PCs.It is found that adsorption ratios of PCs on cement particles decrease greatly with the addition of Na2SO4; the adsorption ratio of ethers PC with Hydroxyethyl methacrylate (HEMA) group first increases then decreases with the addition of NaCl; the adsorption ratio of esters PC with short side chains first decreases then increases,while the adsorption ratio of ethers PC with HEMA group decreases with the addition of CaCl2; the adsorption ratio of esters PC with short side chains decreases with the addition of Ca(NO3)2; AlCl3 causes the decrease of the adsorption ratio of ethers PC with HEMA group.

  13. CrⅥ adsorption on four typical soil colloids: equilibrium and kinetics

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    It is observed that the adsorption of chromium are greater on kaolinite minerals, red soil (R) and laterite (L) colloids than that on montmorillonite, indicotic black (IB) and yellow brown (YB) soil colloids. The adsorption process of CrⅥ on these media can be further described by Langmuir or Freundlich equation quite well. The adsorption reaction of CrⅥ is fast, and the adsorption equilibrium can be reached within the first two hours in moderate temperature. The adsorption quantity of CrⅥ to kaolinite mineral increased with the increasing pH in the range of 2.0 to 7.0, then decreased at higher pH. But it showed some consistence among the four soil colloids. The lower the pH, the stronger the adsorption. The possible mechanisms are further discussed here. Meanwhile the influence of temperature on CrⅥ adsorption on different soil colloid and clay minerals are also investigated.

  14. Hydrogen adsorption on bimetallic PdAu(111) surface alloys

    DEFF Research Database (Denmark)

    Takehiro, Naoki; Liu, Ping; Bergbreiter, Andreas;

    2014-01-01

    The adsorption of hydrogen on structurally well defined PdAu-Pd(111) monolayer surface alloys was investigated in a combined experimental and theoretical study, aiming at a quantitative understanding of the adsorption and desorption properties of individual PdAu nanostructures. Combining...... the structural information obtained by high resolution scanning tunneling microscopy (STM), in particular on the abundance of specific adsorption ensembles at different Pd surface concentrations, with information on the adsorption properties derived from temperature programmed desorption (TPD) spectroscopy...... and high resolution electron energy loss spectroscopy (HREELS) provides conclusions on the minimum ensemble size for dissociative adsorption of hydrogen and on the adsorption energies on different sites active for adsorption. Density functional theory (DFT) based calculations give detailed insight...

  15. Adsorption behavior of 239Pu by Gaomiaozi bentonite

    International Nuclear Information System (INIS)

    Adsorption behavior of 239Pu by Gaomiaozi bentonite as a function of the factors of aqueous phase pH value, 239Pu initial concentration and ionic species is studied by static adsorption experiments in this paper. The following results are obtained. Adsorption equilibrium time of 239Pu by Gaomiaozi bentonite samples is about 24 h, and the adsorption distribution ratio Kd value of 239Pu increases with the pH value, but decreases with increasing initial concentration of 239Pu. And adsorption of 239Pu by bentonite samples with different ionic species show that anions affect the most on adsorption of bentonite is CO32-, followed by HCO3- and SO42-, whereas Cl- and NO3- hardly have any influence on the adsorption of bentonite. (authors)

  16. Adsorption of Congo Red onto Lignocellulose/Montmorillonite Nanocomposite

    Institute of Scientific and Technical Information of China (English)

    ZHAO Yahong; XUE Zhenhua; WANG Ximing; WANG Li; WANG Aiqin

    2012-01-01

    Lignocellulose/montmorillonite (LNC/MMT) nanocomposites were prepared and characterized by FTIR and XRD.The adsorption of congo red (CR) on LNC/MMT nanocomposite was studied in detail.The effects of contact temperature,pH value of the dye solutions,contact time and concentration of dye solutions on the adsorption capacities of lignocellulose (LNC),montmorillonite (MMT) and the nanocomposite were investigated.The adsorption kinetics and isotherms and adsorption thermodynamics of the nanocomposite for CR were also studied.The results show that the adsorption capacity of LNC/MMT nanocomosite is higher than that of LNC and MMT.All the adsorption processes fit very well with the pseudo-second-order and the Langmuir equation.From thermodynamic studies,it is seen that the adsorption is spontaneous and endothermic.

  17. Adsorption of catechol from aqueous solution by aminated hypercrosslinked polymers

    Institute of Scientific and Technical Information of China (English)

    SUN Yue; LI Xiao-tao; XU Chao; CHEN Jin-long; LI Ai-min; ZHANG Quan-xing

    2005-01-01

    Adsorption of catechol from aqueous solution with the hypercrosslinked polymeric adsorbent NDA-100 and its derivatives AH-1,AH-2 and AH-3 aminated by dimethylamine, the commercial resin Amberlite XAD-4 and weakly basic anion exchanger resin D301 was compared. It was found that the aminated hypercrosslinked resins had the highest adsorption capacities among the tested polymers. The empirical Freundlich equation was successfully employed to describe the adsorption process. Specific surface area and micropore structure of the adsorbent, in company with tertiary amino groups on matrix affected the adsorption performance towards catechol. In addition,thermodynamic study was carried out to interpret the adsorption mechanism. Kinetic study testified that the tertiary amino groups on the polymer matrix could decrease the adsorption rate and increase the adsorption apparent activation energy.

  18. Adsorption of Anionic Dyes onto Chitosan-modified Diatomite

    Institute of Scientific and Technical Information of China (English)

    ZHANG Ge-shan; XUE Hong-hai; TANG Xiao-jian; PENG Fei; KANG Chun-li

    2011-01-01

    The purpose of this work is to study the possibility of anionic dyes Reactive Red M-8B(RR)and Direct Green B(DG)adsorbed on chitosan-modified diatomite.The characteristics of adsorbent,adsorption isotherms and the influence of adsorption time,temperature and pH were researched in this work.The results show that the modified diatomite had a much better adsorption capability than the natural diatomite.The adsorption capacities of chitosan-modified diatomite for RR and DG were 94.46 and 137.0 mg/g,respectively.Both adsorption time and adsorption temperature provided a positive effect on the dye adsorption.Within the experimental pH range,the adsorbance was enhanced at lower pH but reduced sharply at high pH.On the basis of the experimental results and discussion,electrostatic attraction is considered as the main mechanism of this chemisorption.

  19. Determination of Differential Enthalpy and Isotherm by Adsorption Calorimetry

    Directory of Open Access Journals (Sweden)

    V. Garcia-Cuello

    2008-01-01

    Full Text Available An adsorption microcalorimeter for the simultaneous determination of the differential heat of adsorption and the adsorption isotherm for gas-solid systems are designed, built, and tested. For this purpose, a Calvet heat-conducting microcalorimeter is developed and is connected to a gas volumetric unit built in stainless steel to record adsorption isotherms. The microcalorimeter is electrically calibrated to establish its sensitivity and reproducibility, obtaining K=154.34±0.23 WV−1. The adsorption microcalorimeter is used to obtain adsorption isotherms and the corresponding differential heats for the adsorption of CO2 on a reference solid, such as a NaZSM-5 type zeolite. Results for the behavior of this system are compared with those obtained with commercial equipment and with other studies in the literature.

  20. Adsorption dynamics of methyl violet onto granulated mesoporous carbon: Facile synthesis and adsorption kinetics.

    Science.gov (United States)

    Kim, Yohan; Bae, Jiyeol; Park, Hosik; Suh, Jeong-Kwon; You, Young-Woo; Choi, Heechul

    2016-09-15

    A new and facile one-step synthesis method for preparing granulated mesoporous carbon (GMC) with three-dimensional spherical mesoporous symmetry is prepared to remove large molecular weight organic compounds in aqueous phase. GMC is synthesized in a single step using as-synthesized mesoporous carbon particles and organic binders through a simple and economical synthesis approach involving a simultaneous calcination and carbonization process. Characterization results obtained from SEM, XRD, as well as surface and porosity analysis indicate that the synthesized GMC has similar physical properties to those of the powdered mesoporous carbon and maintains the Brunauer-Emmett-Teller (BET) surface area and pore volume because the new synthesis method prevents the collapse of the pores during the granulation process. Batch adsorption experiments revealed GMC showed a substantial adsorption capacity (202.8 mg/g) for the removal of methyl violet as a target large molecular contaminant in aqueous phase. The mechanisms and dynamics modeling of GMC adsorption were also fully examined, which revealed that surface diffusion was rate limiting step on adsorption process of GMC. Adsorption kinetics of GMC enables 3 times faster than that of granular activated carbon in terms of surface diffusion coefficient. This is the first study, to the best of our knowledge, to synthesize GMC as an adsorbent for water purification by using facile granulation method and to investigate the adsorption kinetics and characteristics of GMC. This study introduces a new and simple method for the synthesis of GMC and reveals its adsorption characteristics for large molecular compounds in a water treatment. PMID:27262123

  1. The Use Of New Adsorption Technology

    International Nuclear Information System (INIS)

    Adsorption is widely used in Gas Dehydration. Recently, new technology has been applied by using a new type of silica gel adsorbent for both gas dehydration and hydrocarbon dew pointing. A study to evaluate the different methods of hydrocarbon dew pointing was performed by Enppi and proved that the use of adsorption process with a new type of silica gel has significant cost benefits over the life of field. In Egypt, this new technology has been used in the Rosetta gas plant, which was designed for 302 MMSCFD (275 + 10%). The plant has been operational for about 4 years and experience demonstrated that the new type of silica gel has high performance, excellent reliability and low operating cost. Following these good results, the plant has been tested up to 380 MMSCFD and again the adsorbent proved its high performance and efficiency

  2. Adsorption of octadecyltrichlorosilane on mesoporous SBA-15

    International Nuclear Information System (INIS)

    Adsorption of octadecyltrichlorosilane (OTS) on mesoporous SBA-15 has been studied by using Brunauer-Emmett-Teller (BET) surface area analysis, scanning electron microscopy (SEM), energy dispersive X-ray analysis (EDAX), Fourier transform infrared (FTIR) spectroscopy, X-ray photoelectron spectroscopy (XPS) and thermo-gravimetric analysis (TGA) techniques. BET surface area analysis shows decrease of surface area from 930 to 416 m2/g after OTS adsorption. SEM pictures show close attachment of SBA-15 particles. EDAX measurements show increase of carbon weight percentage and decrease of oxygen and silicon weight percentage. XPS results closely support EDAX analysis. FTIR spectra shows presence of methyl (-CH3) and methylene (-CH2) bands and oriented OTS monolayer on SBA-15. Thermo-gravimetric analysis shows that the OTS adsorbed on SBA-15 are stable up to a temperature of 230 deg. C and that the OTS monolayers decompose between 230 and 400 deg. C

  3. Adsorption of octadecyltrichlorosilane on mesoporous SBA-15

    Energy Technology Data Exchange (ETDEWEB)

    Mirji, S.A. [Physical Chemistry Division, National Chemical Laboratory, Pune 411008 (India)]. E-mail: mirji@dalton.ncl.res.in; Halligudi, S.B. [Inorganic and Catalysis Division, National Chemical Laboratory, Pune 411008 (India); Sawant, Dhanashri P. [Inorganic and Catalysis Division, National Chemical Laboratory, Pune 411008 (India); Jacob, Nalini E. [Inorganic and Catalysis Division, National Chemical Laboratory, Pune 411008 (India); Patil, K.R. [Center for Material Characterization, National Chemical Laboratory, Pune 411008 (India); Gaikwad, A.B. [Center for Material Characterization, National Chemical Laboratory, Pune 411008 (India); Pradhan, S.D. [Center for Material Characterization, National Chemical Laboratory, Pune 411008 (India)

    2006-04-15

    Adsorption of octadecyltrichlorosilane (OTS) on mesoporous SBA-15 has been studied by using Brunauer-Emmett-Teller (BET) surface area analysis, scanning electron microscopy (SEM), energy dispersive X-ray analysis (EDAX), Fourier transform infrared (FTIR) spectroscopy, X-ray photoelectron spectroscopy (XPS) and thermo-gravimetric analysis (TGA) techniques. BET surface area analysis shows decrease of surface area from 930 to 416 m{sup 2}/g after OTS adsorption. SEM pictures show close attachment of SBA-15 particles. EDAX measurements show increase of carbon weight percentage and decrease of oxygen and silicon weight percentage. XPS results closely support EDAX analysis. FTIR spectra shows presence of methyl (-CH{sub 3}) and methylene (-CH{sub 2}) bands and oriented OTS monolayer on SBA-15. Thermo-gravimetric analysis shows that the OTS adsorbed on SBA-15 are stable up to a temperature of 230 deg. C and that the OTS monolayers decompose between 230 and 400 deg. C.

  4. Adsorption of maleic anhydride on Pt(111)

    Science.gov (United States)

    Sinha, Godhuli; Heikkinen, Olli; Vestberg, Matias; Mether, Lotta; Nordlund, Kai; Lahtinen, Jouko

    2014-02-01

    The surface chemistry of maleic anhydride (MA) has been studied on Pt(111) with temperature programmed desorption (TPD), X-ray photoelectron spectroscopy (XPS) and density functional theory (DFT) calculations. Adsorption of MA takes place at 170 K forming multilayers. We have studied the behavior of distinct carbon and oxygen species of MA depending on the surface temperature. MA-TPD indicates three main desorption temperatures; at 240 K, approximately 60% of total MA on the surface shows molecular desorption. At high temperatures (360 and 550 K) MA shows dissociative decomposition with production of C2H2, CO and CO2 fragments. A plausible decomposition pathway of MA on the Pt(111) surface is discussed. DFT calculations provide details of the adsorption geometry.

  5. [Water binding of adsorptive immobilized lipases].

    Science.gov (United States)

    Loose, S; Meusel, D; Muschter, A; Ruthe, B

    1990-01-01

    It is supposed that not only the total water content of lipase preparations but more their state of water binding is of technological importance in enzymatic interesterification reactions in systems nearly free from water. The isotherms at 65 degrees C of two microbial lipases immobilized on various adsorbents as well as different adsorbents themselves are shown. The water binding capacity in the range of water content of technological interest decreases from the anion exchange resin Amberlyst A 21 via nonpolar adsorbent Amberlite XAD-2 to kieselguhr Celite 545. It is demonstrated that water binding by lipases is depending on temperature but is also affected by adsorptive immobilization. Adsorptive immobilized lipases show hysteresis, which is very important for preparing a definite water content of the enzyme preparations. PMID:2325750

  6. Removal of mercury by adsorption: a review.

    Science.gov (United States)

    Yu, Jin-Gang; Yue, Bao-Yu; Wu, Xiong-Wei; Liu, Qi; Jiao, Fei-Peng; Jiang, Xin-Yu; Chen, Xiao-Qing

    2016-03-01

    Due to natural and production activities, mercury contamination has become one of the major environmental problems over the world. Mercury contamination is a serious threat to human health. Among the existing technologies available for mercury pollution control, the adsorption process can get excellent separation effects and has been further studied. This review is attempted to cover a wide range of adsorbents that were developed for the removal of mercury from the year 2011. Various adsorbents, including the latest adsorbents, are presented along with highlighting and discussing the key advancements on their preparation, modification technologies, and strategies. By comparing their adsorption capacities, it is evident from the literature survey that some adsorbents have shown excellent potential for the removal of mercury. However, there is still a need to develop novel, efficient adsorbents with low cost, high stability, and easy production and manufacture for practical utility. PMID:26620868

  7. Adsorption of formaldehyde on graphene and graphyne

    Science.gov (United States)

    Majidi, R.; Karami, A. R.

    2014-05-01

    The adsorption of formaldehyde on graphene and graphyne was investigated to search high sensitivity sensors for detection of formaldehyde. We have used density functional theory to study the effect of formaldehyde on the electronic properties of graphene and graphyne. It is found that formaldehyde is physisorbed on the graphene and graphyne with small binding energy, large binding distance, and small charge transfer. The calculations also indicate that formaldehyde adsorption modifies the electronic properties of semimetallic graphene, α-graphyne, and β-graphyne and semiconducting γ-graphyne. The graphene and graphyne show semiconducting property in the presence of formaldehyde. The effect of formaldehyde on the electronic properties of graphene and graphyne suggests the potential application of these carbon nanomaterials for formaldehyde detection.

  8. Adsorption kinetics,isotherm,and thermodynamic studies of adsorption of pollutant from aqueous solutions onto humic acid

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    In the present study,humic acid was used as an adsorbent for the investigation of the adsorption kinetics,isotherms,and thermo-dynamic parameters of hexavalent chromium from aqueous solution at varying pH,temperatures,and concentrations.Adsorption isotherms and equilibrium adsorption capacities were determined by the fittings of the experimental data to three well-known iso-therm models:Langmuir,Freundlich,and Redlich-Peterson.The results showed that the Langmuir and Redlich-Peterson models appear to fit the adsorption better than did the Freundlich adsorption model for the adsorption of chromium onto humic acid.The equilibrium constants were used to calculate thermodynamic parameters such as the change of free energy,enthalpy,and entropy.The derived adsorption constants (logaL) and their temperature dependencies from Langmuir isotherm have been used to calculate the corresponding thermodynamic quantities such as the free energy of adsorption,heat,and entropy of adsorption.The thermo-dynamic data indicate that Cr (VI) adsorption onto humic acid is entropically driven and characterized by physical adsorption.

  9. Managing numerical errors in random sequential adsorption

    Science.gov (United States)

    Cieśla, Michał; Nowak, Aleksandra

    2016-09-01

    Aim of this study is to examine the influence of a finite surface size and a finite simulation time on a packing fraction estimated using random sequential adsorption simulations. The goal of particular interest is providing hints on simulation setup to achieve desired level of accuracy. The analysis is based on properties of saturated random packing of disks on continuous and flat surfaces of different sizes.

  10. Estrogenic micropollutant adsorption dynamics onto nanofiltration membranes

    OpenAIRE

    Correia Semiao, Andrea; Schaefer, Andrea

    2011-01-01

    Nanofiltration (NF) is used in water and wastewater treatment as well as water recycling applications, treating micropollutants such as hormones. Due to their potential health risk it is critical to develop effective treatment processes. Polymeric NF membranes should be effective in removing such micropollutants based on molecular size. However, the occurrence of adsorption onto the membranes results in unpredictable performance. It is hence important to understand NF retention mechanisms.The...

  11. Arsenic Adsorption Onto Iron Oxides Minerals

    Science.gov (United States)

    Aredes, S.; Klein, B.; Pawlik, M.

    2004-12-01

    The predominant form of arsenic in water is as an inorganic ion. Under different redox conditions arsenic in water is stable in the +5 and +3 oxidation states. Arsenic oxidation state governs its toxicity, chemical form and solubility in natural and disturbed environments. As (III) is found in anoxic environments such as ground water , it is toxic and the common species is the neutral form, H3AsO3. As (V) is found in aerobic conditions such as surface water, it is less toxic and the common species in water are: H2AsO4 - and HAsO4 {- 2}. The water pH determines the predominant arsenate or arsenite species, however, both forms of arsenic can be detected in natural water systems. Iron oxides minerals often form in natural waters and sediments at oxic-anoxic boundaries. Over time they undergo transformation to crystalline forms, such as goethite or hematite. Both As(V) and As(III) sorbs strongly to iron oxides, however the sorption behavior of arsenic is dependent on its oxidation state and the mineralogy of the iron oxides. Competition between arsenic and others ions, such fluoride, sulphate and phosphate also play a role. On the other hand, calcium may increase arsenic adsorption onto iron oxides. Electrokinetic studies and adsorption experiments were carried out in order to determine which conditions favour arsenic adsorption. Hematite, goethite and magnetite as iron based sorbents were used. Test were also conducted with a laterite soil rich in iron minerals. The focus of this study is to evaluate physical and chemical conditions which favour arsenic adsorption onto iron oxides minerals, the results contribute to an understanding of arsenic behaviour in natural and disturbed environments. Furthermore, results could contribute in developing an appropriate remediation technology for arsenic removal in water using iron oxides minerals.

  12. Nitrate Adsorption on Clay Kaolin: Batch Tests

    OpenAIRE

    Morteza Mohsenipour; Shamsuddin Shahid; Kumars Ebrahimi

    2015-01-01

    Soils possessing kaolin, gibbsite, goethite, and hematite particles have been found to have a natural capacity to attenuate pollution in aqueous phase. On the other hand, the hydroxyl group in soil increases anion exchange capacity under a low pH condition. The main objective of this paper was to evaluate effects of kaolin on nitrate reduction under acidic condition. In order to analyze the kaolin adsorption behaviour under various conditions, four different concentrations of nitrate, 45, 112...

  13. Adsorption edge study about cadmium, copper, nickel and zinc adsorption by variable charge soils

    Science.gov (United States)

    Casagrande, J. C.; Mouta, E. R.; Soares, M. R.

    2009-04-01

    The improper discharge of industrial and urban residues and the inadvertent use of fertilizers and pesticides can result in soil and water pollution and improve the potential of trace metals to enter in the human food chain. Adsorption reactions occur at the solid/liquid interface and are the most important mechanisms for controlling the activity of metal ions in soil solution. In a complex system with amphoteric behavior, the comprehension of the mobility, availability and fate of pollutants in the soil system is crucial for the prediction of the environmental consequences and for development of prevention/remediation strategies. A comparative study of cadmium (Cd), copper (Cu), nickel (Ni) and zinc (Zn) adsorption by highly weathered soils was carried out. Surface (0-0.2m) and subsoil (B horizon) samples were taken from a Rhodic Kandiudalf (RH), an Anionic "Xanthic" Acrudox (XA) and an Anionic "Rhodic" Acrudox (RA), located in brazilian humid tropical area. As the pH and the ionic strength are important environmental factors influencing the solution chemistry of heavy metals in variable charge systems, adsorption envelopes, in a batch adsorption experiment, were elaborated by reacting, for 24 h, soil samples with individual 0.01, 0.1 and 1.0 mol L-1 Ca(NO3)2 aqueous solutions containing nitrate salts of the adsorptive heavy metal (Cd, Cu, Ni and Zn) at the initial concentration of 5 mg L-1, with an increasing pH value from 3.0 to 8.0. pH50-100%, the difference between the pH of 100 and 50 percent metal adsorption was determined. A sharp increase of adsorption density (adsorption edge) was observed within a very narrow pH range, usually less than two pH units. Commonly, the relative affinity of a soil for a metal cation increases with the tendency of the cation to form inner-sphere surface complexes. This may be caused by differences in extent of hydrolysis of Cu ions and in affinity of adsorption sites for Cu. In general, subsurface samples showed low pH50

  14. Adsorption isotherm special study. Final report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1993-05-01

    The study was designed to identify methods to determine adsorption applicable to Uranium Mill Tailings Remedial Action (UMTRA) Project sites, and to determine how changes in aquifer conditions affect metal adsorption, resulting retardation factors, and estimated contaminant migration rates. EPA and ASTM procedures were used to estimate sediment sorption of U, As, and Mo under varying groundwater geochemical conditions. Aquifer matrix materials from three distinct locations at the DOE UMTRA Project site in Rifle, CO, were used as the adsorbents under different pH conditions; these conditions stimulated geochemical environments under the tailings, near the tailings, and downgradient from the tailings. Grain size, total surface area, bulk and clay mineralogy, and petrography of the sediments were characterized. U and Mo yielded linear isotherms, while As had nonlinear ones. U and Mo were adsorbed strongly on sediments acidified to levels similar to tailings leachate. Changes in pH had much less effect on As adsorption. Mo was adsorbed very little at pH 7-7.3, U was weakly sorbed, and As was moderately sorbed. Velocities were estimated for metal transport at different pHs. Results show that the aquifer materials must be characterized to estimate metal transport velocities in aquifers and to develop groundwater restoration strategies for the UMTRA project.

  15. Adsorption of tetrahydroxybenzene on metal surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Bebensee, Fabian; Bombis, Christian; Masini, Federico; Laegsgaard, Erik; Besenbacher, Flemming; Linderoth, Trolle R. [NANO, Aarhus University, Aarhus (Denmark); Klyatskaya, Svetlana; Ruben, Mario [Karlsruhe Institure of Technology (KIT), Institut fuer Nanotechnologie, Karlsruhe (Germany)

    2011-07-01

    The synthesis of extended, well-ordered bi-dimensional molecular networks on surfaces has received a great deal of interest over the past years, fueled not least by potential applications such as functionalized surface coatings, sensors and molecular electronics. Here, we employ scanning tunneling microscopy (STM) and X-ray photoelectron spectroscopy (XPS) to study the adsorption of tetrahydroxybenzene (THB) on the Au(111) and Cu(111) surfaces. The molecule shows a complex adsorption behavior despite being structurally rather simple. Depending on post-deposition treatment, coverage and substrate, we find different adsorption structures: a hexagonal close-packed phase and a porous network structure exhibiting a high degree of order. The XPS results reveal that the transformation from the hexagonal close-packed phase to the porous network is linked to a chemical modification of THB, possibly involving dehydrogenation of the molecules. We tentatively propose that the porous network, which was observed solely on the Cu(111) surface, is a metal complexation structure involving native Cu released during post-deposition annealing.

  16. Adsorption of ions onto treated natural zeolite

    Directory of Open Access Journals (Sweden)

    Cristiane da Rosa Oliveira

    2007-12-01

    Full Text Available This work presents studies of modification of a natural zeolite by activation with Na+ cations and functionalisation with Ba+2 and/or Cu2+ ions (FZ. The zeolite was characterized, modified and applied in adsorption studies of sulphate and isopropilxanthate ions as flocculated and powdered forms. The reuse of SO4Ba-FZ was investigated by adsorption-removal of either Ba2+ or sulphate ions in stages. Equilibrium data showed that the FZ, flocculated or as powder, provide considerable removal of sulphate ions (q mLangmuir: 1.15 and 1.35 meq.g-1, respectively and isopropilxanthate (q mLangmuir: 0.35 and 0.93 meq.g-1, respectively. The reuse of the SO4-FZ, either powdered or flocculated also uptake significant amount of Ba2+ or sulphate ions (q mLangmuir: 1.15 meq.g-1, providing a new alternative for the exhausted adsorbent. Thus the activated and functionalised zeolites create new options on the materials engineering area with applications in environmental applied adsorption processes.

  17. Research of Porization and Adsorptions in High-Porous Adsorptive Layers of Vermiculite

    Directory of Open Access Journals (Sweden)

    K. Syrmanova

    2016-06-01

    Full Text Available Adsorption capacity of the adsorbent is dependent on the concentration of the substance in the liquid or vapor phase, its partial pressure, temperature, and the initial state of the adsorbent. At the swelling a cellular porous structure is formed, total porosity that connects with the entered number and the content of the gaseous component masses. The rheological characteristics of porous masses have the decisive effect on the porous structure. Common state for all versions of swelling is a plastic-viscous porous mass condition during their porization. The interlayer structure and inter-packet intervals may be considered as vermiculite plate micropores with dimensions of 0.3 – 1.2 nm. Vermiculite cation exchange capacity is in the range of 100-150 mEq / 100 g, i.e. from clay minerals it is one of the most interchangeable. The research results of the internal structure of adsorption layers by the adsorption isotherms means indicative of the internal surface of the porous layer is characterized by an extremely complex and developed form and can be described by means of fractal geometry. A model of the geometric structure of mica materials formed in the process of blistering during heat treatment is developed. The presented model has sufficiently general form and can be used both in the organization of systematic experimental studies of porization and adsorption in the adsorption layers of highly porous, and for the porization vermiculite optimization.

  18. Arsenate Adsorption Mechanism on Nano-ball Allophane by Langmuir Adsorption Equation

    Directory of Open Access Journals (Sweden)

    Elvis Anup Shukla

    2011-12-01

    Full Text Available Arsenic is considered as the synonym of death. High toxicity of arsenic in nature is a worldwide problem and often referred to as 20th -21st century calamity. High arsenic concentration has been reported recently from USA, China, Chile, Bangladesh, Taiwan, Mexico, Argentina, Poland, Canada, Hungry, Japan and India. Among all the countries Bangladesh and West Bengal of India are at the high risk. Thus arsenic disposal became an important task. In the present study an attempt is made to study the adsorption of toxic arsenic on allophanes.The adsorption of arsenate on a low Si/Al ratio allophane (KyP was found to be very effective in reducing the amount of arsenic below the toxic level. The examination of adsorption isotherm of arsenate on allophane by Langmuir theory indicated that arsenate adsorption increased with the increasing bulk solution concentration. The observed increase in the pH can be attributed to the ligand exchange on allophane. Aluminol groups, Al-OH or Al-OH2, on allophane are responsible for the adsorption in soil.

  19. A simplified adsorption model for water vapor adsorption on activated carbon

    Institute of Scientific and Technical Information of China (English)

    姚小龙; 李立清; 李海龙; 马卫武

    2014-01-01

    A simplified model was developed to describe the water vapor adsorption on activated carbon. The development of the simplified model was started from the original model proposed by DO and his co-workers. Two different kinds of carbon materials were prepared for water vapor adsorption, and the adsorption experiments were conducted at different temperatures (20-50 °C) and relative humidities (5%-99%) to test the model. It is shown that the amount of adsorbed water vapor in micropore decreases with the temperature increasing, and the water molecules form larger water clusters around the functional group as the temperature is up to a higher value. The simplified model describes reasonably well for all the experimental data. According to the fitted values, the parameters of simplified model were represented by the temperature and then the model was used to calculate the water vapor adsorption amount at 25 °C and 35 °C. The results show that the model can get relatively accurate values to calculate the water vapor adsorption on activated carbon.

  20. Ethanol adsorption onto carbonaceous and composite adsorbents for adsorptive cooling system

    International Nuclear Information System (INIS)

    The aim of the present paper is the experimental characterization of adsorbent materials suitable for practical applications in adsorption refrigeration systems, employing ethanol as refrigerant. Different commercial activated carbons as well as a properly synthesized porous composite, composed of LiBr inside a silica gel host matrix, have been tested. A complete thermo-physical characterization, comprising nitrogen physi-sorption, specific heat and thermo-gravimetric equilibrium curves of ethanol adsorption over the sorbents, has been carried out. The equilibrium data have been fitted by means of the Dubinin – Astakhov equation. On the basis of the experimental data, a thermodynamic evaluation of the achievable performance of each adsorbent pair has been estimated by calculating the maximum COP (Coefficient of Performance) under typical working boundary conditions for refrigeration and air conditioning applications. The innovative composite material shows the highest thermodynamic performances of 0.64–0.72 for both tested working conditions. Nevertheless, the best carbonaceous material reaches COP value comparable with the synthesized composite. The results have demonstrated the potential of the chosen adsorbents for utilization in adsorption cooling systems. - Highlights: • We studied ethanol adsorption for adsorption cooling systems. • Commercial activated carbons and composite sorbent, LiBr/SiO2, are tested by complete thermo-physical characterization. • A thermodynamic evaluation has been carried out on each working pairs to estimate the performance of a refrigeration cycle

  1. Study on the adsorption isosteres of the composite adsorbent CaCl2 and expanded graphite

    International Nuclear Information System (INIS)

    A test setup was built to study the adsorption performance of the composite adsorbent used in the adsorption system. The isovolume measurement method is adopted in the test setup to measure the adsorption isosteres of the composite adsorbent and ammonia working pair. The adsorption isosteres are the curves of the adsorption pressures variation with adsorption temperatures at constant adsorption quantity, which are convenient for the calculation of the adsorption heat and selection of the adsorption working pairs. The adsorption heats were calculated according to the adsorption isosteres, three clear crest values indicate that there were three types of reaction during the reaction processes of ammoniate calcium chloride and ammonia. The kinetic model of adsorption isosteres is obtained by the Temkin model, it is useful to estimate the adsorption performance of the working pairs and useful to guide the design of adsorption system.

  2. [Treatment of organic waste gas by adsorption rotor].

    Science.gov (United States)

    Zhu, Run-Ye; Zheng, Liang-Wei; Mao, Yu-Bo; Wang, Jia-De

    2013-12-01

    The adsorption rotor is applicable to treating organic waste gases with low concentration and high air volume. The performance of adsorption rotor for purifying organic waste gases was investigated in this paper. Toluene was selected as the simulative gaseous pollutant and the adsorption rotor was packed with honeycomb modified 13X molecular sieves (M-13X). Experimental results of the fixed adsorption and the rotor adsorption were analyzed and compared. The results indicated that some information on the fixed adsorption was useful for the rotor adsorption. Integrating the characteristics of the adsorbents, waste gases and the structures of the rotor adsorption, the formulas on optimal rotor speed and cycle removal efficiency of the adsorption rotor were deduced, based on the mass and heat balances of the adsorbing process. The numerical results were in good agreement with the experimental data, which meant that the formulas on optimal rotor speed and cycle removal efficiency could be effectively applied in design and operation of the adsorption rotor.

  3. Kinetics of salicylic acid adsorption on activated carbon.

    Science.gov (United States)

    Polakovic, Milan; Gorner, Tatiana; Villiéras, Frédéric; de Donato, Philippe; Bersillon, Jean Luc

    2005-03-29

    The adsorption and desorption of salicylic acid from water solutions was investigated in HPLC microcolumns packed with activated carbon. The adsorption isotherm was obtained by the step-up frontal analysis method in a concentration range of 0-400 mg/L and was well fitted with the Langmuir equation. The investigation of rate aspects of salicylic acid adsorption was based on adsorption/desorption column experiments where different inlet concentrations of salicylic acid were applied in the adsorption phase and desorption was conducted with pure water. The concentration profiles of individual adsorption/desorption cycles data were fitted using several single-parameter models of the fixed-bed adsorption to assess the influence of different phenomena on the column behavior. It was found that the effects of axial dispersion and extraparticle mass transfer were negligible. A rate-determining factor of fixed-bed column dynamics was the kinetics of pore surface adsorption. A bimodal kinetic model reflecting the heterogeneous character of adsorbent pores was verified by a simultaneous fit of the column outlet concentration in four adsorption/desorption cycles. The fitted parameters were the fraction of mesopores and the adsorption rate constants in micropores and mesopores, respectively. It was shown that the former rate constant was an intrinsic one whereas the latter one was an apparent value due to the effects of pore blocking and diffusional hindrances in the micropores. PMID:15779975

  4. The Adsorption Mechanism of Modified Activated Carbon on Phenol

    Directory of Open Access Journals (Sweden)

    Lin J. Q.

    2016-01-01

    Full Text Available Modified activated carbon was prepared by thermal treatment at high temperature under nitrogen flow. The surface properties of the activated carbon were characterized by Boehm titration, BET and point of zero charge determination. The adsorption mechanism of phenol on modified activated carbon was explained and the adsorption capacity of modified activated carbon for phenol when compared to plain activated carbon was evaluated through the analysis of adsorption isotherms, thermodynamic and kinetic properties. Results shows that after modification the surface alkaline property and pHpzc value of the activated carbon increase and the surface oxygen-containing functional groups decrease. The adsorption processes of the plain and modified carbon fit with Langmuir isotherm equation well, and the maximum adsorption capacity increase from 123.46, 111.11, 103.09mg/g to 192.31, 178.57, 163,93mg/g under 15, 25 and 35°C after modification, respectively. Thermodynamic parameters show that the adsorption of phenol on activated carbon is a spontaneously exothermic process of entropy reduction, implying that the adsorption is a physical adsorption. The adsorption of phenol on activated carbon follows the pseudo-second-order kinetics (R2>0.99. The optimum pH of adsorption is 6~8.

  5. Adsorption of Na, Mg, and Al atoms on BN nanotubes

    International Nuclear Information System (INIS)

    Adsorption of three metals (Na, Mg, and Al) on the surface of BN nanotubes (BNNT) has been investigated by using density functional theory. Adsorption energies for Na and Al atoms have been calculated to be about − 0.22 to − 0.61 eV, respectively. Upon the metal adsorption, energy gap between highest occupied and lowest unoccupied orbitals of the tube is dramatically decreased, resulting in enhanced electrical conductivity. However, in the case of Mg atom, the low adsorption energy cannot change electronic property of the tube. The semi-conductive BNNT transform to n-type semiconductor after adsorption of Na atom. The metal adsorption modifies work function of the BNNT and consequently the field-emission current densities of metal-BNNT may be significantly enhanced. - Highlights: ► Adsorption of Na, Mg, and Al atoms on the BN nanotubes (BNNT) was studied. ► Adsorption energies for Na and Al atoms are about − 0.22 to − 0.61 eV, respectively. ► Energy gap of the tube dramatically decreases upon the metals adsorption. ► Semiconductor BNNT transform to n-type ones upon adsorption of Na and Al atoms. ► The field-emission current densities of metal-BNNT may be significantly enhanced.

  6. Calcium lignosulfonate adsorption and desorption on Berea sandstone.

    Science.gov (United States)

    Grigg, Reid B; Bai, Baojun

    2004-11-01

    This paper describes adsorption and desorption studies carried out with calcium lignosulfonate (CLS) on Berea sandstone. Circulation experiments were performed to determine CLS adsorption isotherms and the effects of CLS concentration, temperature, salinity, brine hardness, and injection rate on adsorption density. Flow-through experiments were performed to assess the reversibility of CLS adsorption and the influence of postflush rate, brine concentration, brine hardness, brine pH, and temperature on the desorption process. Results indicate that CLS adsorption isotherms on Berea sandstone follow the Freundlich isotherm law. The results presented in this paper on the effects of CLS adsorption and desorption on Berea sandstone show that: (1) increasing CLS concentration and salinity increases CLS adsorption density; (2) increasing temperature will decrease adsorption density; (3) increasing injection rate of CLS solution will slightly decrease CLS adsorption density; (4) postflush rate and salinity of brine have a large impact on the CLS desorption process; (5) the adsorption and desorption process are not completely reversible; and (5) temperature and pH of the postflush brine have little effect on desorption.

  7. Adsorption behavior of condensed phosphate on aluminum hydroxide

    Institute of Scientific and Technical Information of China (English)

    GUAN Xiao-hong; CHEN Guang-hao; SHANG Chii

    2007-01-01

    Sodium pyrophosphate(pyro-P,Na4P207),sodium tripolyphosphate(tripoly-P,NasP3010),and sodium hexametaphosphate(metaP,(NaP03)6)were selected as the model compounds of condensed phosphate to investigate the adsorption behavior of condensed phosphate on aluminum hydroxide.The adsorption was found to be endothermic and divisible into two stages:(1)fast adsorption within 1 h:and(2)slow adsorption between 1 and 24 h.The modified Freundlich model simulated the fast adsorption stage well;the slow adsorption stage was described well by the first-order kinetics.The activation energies of pyro-P,tripoly-P,and meta-P adsorption on aluminum hydroxide were determined to be 20.2,22.8 and 10.9 kJ/mol P adsorbed,respectively,in the fast adsorption stage and to be 66.3.53.5 and 72.5 kJ/tool P adsorbed,respectively,in the slow adsorption stage.The adsorption increased the negative charge of the aluminum hydroxide surface.Transmission electron microscopy and energy dispersive X-ray analysis analyses provided evidence that the adsorption was not uniform on the surface and that the small crystals contfibuted more to the fast adsorption than the normal sites did.The results from X-ray fluorescence spectrometry and X-ray photoelectron spectroscopy tests also revealed the uneven adsorption of condensed phosphate as a function of the penetration depth.More condensed phosphates were adsorbed on the outer surface of aluminum hydroxide than in its inner parts.

  8. Study of albumin adsorption on ion beam irradiated polymer surfaces

    International Nuclear Information System (INIS)

    The process of adsorption of human serum albumin has been studied for poly-hydroxy-methylsiloxane and poly-ethylene-terephtalate surfaces modified by 5 keV Ar+ irradiation. The adsorption kinetics of albumin has been investigated as a function of the modifications induced by irradiation of the two polymer surfaces. Fluorescence spectroscopy, X-ray photoelectron spectroscopy and contact angle technique, respectively, have been used to determine the adsorption kinetics and to characterize the chemical composition and the surface free energy of the irradiated surfaces. Two basic classes of adsorption kinetics were found in connection with two different adsorption mechanisms. The irradiation-induced effects have been seen to be able to change the type of the adsorption process from one class to the other one as a function of the total surface free energy modification

  9. Adsorption of cadmium from aqueous solutions by perlite.

    Science.gov (United States)

    Mathialagan, T; Viraraghavan, T

    2002-10-14

    The present study examined the use of perlite for the removal of cadmium from aqueous solutions. The effects of pH and contact time on the adsorption process were examined. The optimum pH for adsorption was found to be 6.0. Residual cadmium concentration reached equilibrium in 6h and the rate of cadmium adsorption by perlite was rapid in the first hour of the reaction time. Ho's pseudo-second-order model best described the kinetics of the reaction. Batch adsorption experiments conducted at room temperature (22+/-1 degrees C) showed that the adsorption pattern followed the Freundlich isotherm model. The maximum removal of cadmium obtained from batch studies was 55%. Thomas model was used to describe the adsorption data from column studies. The results generally showed that perlite could be considered as a potential adsorbent for cadmium removal from aqueous solutions.

  10. Adsorption studies of methylene blue dye on tunisian activated lignin

    Science.gov (United States)

    Kriaa, A.; Hamdi, N.; Srasra, E.

    2011-02-01

    Activated carbon prepared from natural lignin, providing from a geological deposit, was used as the adsorbent for the removal of methylene blue (MB) dye from aqueous solutions. Batch adsorption studies were conducted to evaluate various experimental parameters like pH and contact time for the removal of this dye. Effective pH for MB removal was 11. Kinetic study showed that the adsorption of dye was gradual process. Quasi equilibrium reached in 4 h. Pseudo-first-order, pseudo-second-order were used to fit the experimental data. Pseudo-second-order rate equation was able to provide realistic description of adsorption kinetics. The experimental isotherms data were also modelled by the Langmuir and Freundlich equation of adsorption. Equilibrium data fitted well with the Langmuir model with maximum monolayer adsorption capacity of 147 mg/g. Activated lignin was shown to be a promising material for adsorption of MB from aqueous solutions.

  11. Adsorption and desorption kinetics of carbofuran in acid soils.

    Science.gov (United States)

    Bermúdez-Couso, Alipio; Fernández-Calviño, David; Pateiro-Moure, Miriam; Nóvoa-Muñoz, Juan Carlos; Simal-Gándara, Jesús; Arias-Estévez, Manuel

    2011-06-15

    Carbofuran adsorption and desorption were investigated in batch and stirred flow chamber (SFC) tests. The carbofuran adsorption capacity of the soils was found to be low and strongly dependent on their clay and organic carbon contents. Carbofuran sorption was due mainly (>80%) to fast adsorption processes governed by intraparticle diffusion. The adsorption kinetic constant for the pesticide ranged from 0.047 to 0.195 min(-1) and was highly correlated with constant n in the Freundlich equation (r=0.965, Pcarbofuran desorption to be highly variable and negatively correlated with eCEC and the clay content. The SFC tests showed that soil organic carbon (C) plays a key role in the irreversibility of carbofuran adsorption. Carbofuran desorption increased rapidly at C contents below 4%. The desorption kinetic constant for the compound (0.086-0.195 min(-1)) was generally higher than its adsorption kinetic constant; therefore, carbofuran is more rapidly desorbed than it is adsorbed in soil.

  12. Communication: Thermodynamic analysis of critical conditions of polymer adsorption

    Energy Technology Data Exchange (ETDEWEB)

    Cimino, R.; Neimark, A. V., E-mail: aneimark@rutgers.edu [Department of Chemical and Biochemical Engineering, Rutgers, The State University of New Jersey, 98 Brett Road, Piscataway, New Jersey 08854 (United States); Rasmussen, C. J. [DuPont Central Research and Development, Corporate Center for Analytical Sciences, Macromolecular Characterization, Route 141 and Henry Clay, Wilmington, Delaware 19803 (United States)

    2013-11-28

    Polymer adsorption to solid surfaces is a ubiquitous phenomenon, which has attracted long-lasting attention. Dependent on the competition between the polymer-solid adsorption and polymer-solvent solvation interactions, a chain may assume either 3d solvated conformation when adsorption is weak or 2d adsorbed conformation when adsorption is strong. The transition between these conformations occurring upon variation of adsorption strength is quite sharp, and in the limit of “infinite” chain length, can be treated as a critical phenomenon. We suggest a novel thermodynamic definition of the critical conditions of polymer adsorption from the equality of incremental chemical potentials of adsorbed and free chains. We show with the example of freely jointed Lennard-Jones chains tethered to an adsorbing surface that this new definition provides a link between thermodynamic and geometrical features of adsorbed chains and is in line with classical scaling relationships for the fraction of adsorbed monomers, chain radii of gyration, and free energy.

  13. Study on Adsorption of Rare Earth Elements by Kaolinite

    Institute of Scientific and Technical Information of China (English)

    Wan Yingxin; Liu Congqiang

    2005-01-01

    For better understanding the adsorption of rare earth elements (REEs) by clay minerals and its controlling factors, the experiments on adsorption of REEs in solutions with 1 g·L-1 kaolinite were performed at different conditions. The results are as follows: the REEs reach equilibrium in the adsorption-desorption process for 24; Langmuir's adsorption curve is used for modeling the adsorption of REEs by kaolinite; a general trend is that the higher the contents of REEs are, the less obvious the fractionation is. Furthermore, there is significant effect of pH on the adsorption and fractionation of REEs by kaolinite, and the REEs distribution coefficient increases with increasing pH. When pH is nearly neutral, as reaches 7, heavy REEs are more adsorbed than light REEs.

  14. Methane adsorption behavior on coal having different pore structures

    Institute of Scientific and Technical Information of China (English)

    Zhao; Yi; Jiang; Chengfa; Chu; Wei

    2012-01-01

    The adsorption of methane onto five dry coal samples was measured at 298 K over the pressure range from 0 to 3.5 MPa using a volumetric method.The isotherm data were fitted to the Langmuir and the Freundlich equations.The kinetic data were fitted to a pseudo second order equation,the linear driving force equation(LDF),and an intra-particle diffusion model.These results showed that higher methane adsorption is correlated with larger micro-pore volumes and specific surface areas.The adsorption was related to the narrow micro-pore size distribution when the previous two parameters are large.The kinetics study showed that the kinetics of methane adsorption onto these five dry coal samples followed a pseudo second order model very well.Methane adsorption rates are controlled by intra-particle diffusion.The faster the intra-particle diffusion,the faster the methane adsorption rate will be.

  15. Methane adsorption behavior on coal having different pore structures

    Institute of Scientific and Technical Information of China (English)

    Zhao Yi; Jiang Chengfa; Chu Wei

    2012-01-01

    The adsorption of methane onto five dry coal samples was measured at 298 K over the pressure range from 0 to 3.5 MPa using a volumetric method.The isotherm data were fitted to the Langmuir and the Freundlich equations.The kinetic data were fitted to a pseudo second order equation,the linear driving force equation (LDF),and an intra-particle diffusion model.These results showed that higher methane adsorption is correlated with larger micro-pore volumes and specific surface areas.The adsorption was related to the narrow micro-pore size distribution when the previous two parameters are large.The kinetics study showed that the kinetics of methane adsorption onto these five dry coal samples followed a pseudo second order model very well.Methane adsorption rates are controlled by intra-particle diffusion.The faster the intra-particle diffusion,the faster the methane adsorption rate will be.

  16. Adsorption Geometry Determination of Single Molecules by Atomic Force Microscopy

    OpenAIRE

    Schuler, Bruno; Liu, Wei; Tkatchenko, Alexandre; Moll, Nikolaj; Meyer, Gerhard; Mistry, Anish; Fox, David; GROSS, Leo

    2013-01-01

    We measured the adsorption geometry of single molecules with intramolecular resolution using noncontact atomic force microscopy with functionalized tips. The lateral adsorption position was determined with atomic resolution, adsorption height differences with a precision of 3 pm, and tilts of the molecular plane within 0.2 degrees. The method was applied to five pi-conjugated molecules, including three molecules from the olympicene family, adsorbed on Cu(111). For the olympicenes, we found th...

  17. Possibility of using adsorption refrigeration unit in district heating network

    OpenAIRE

    Grzebielec Andrzej; Rusowicz Artur; Jaworski Maciej; Laskowski Rafał

    2015-01-01

    Adsorption refrigeration systems are able to work with heat sources of temperature starting with 50 °C. The aim of the article is to determine whether in terms of technical and economic issues adsorption refrigeration equipment can work as elements that produce cold using hot water from the district heating network. For this purpose, examined was the work of the adsorption air conditioning equipment cooperating with drycooler, and the opportunities offered by the district heating network in W...

  18. Competitive Adsorption: A Physical Model for Lung Surfactant Inactivation

    OpenAIRE

    Fernsler, Jonathan G.; Zasadzinski, Joseph A.

    2009-01-01

    Charged, surface-active serum proteins can severely reduce or eliminate the adsorption of lung surfactant from the subphase to the alveolar air-liquid interface via a kinetically controlled competitive adsorption process. The decreased surfactant concentration at the interface leads to higher surface tensions during the compression of the interface during breathing. The correspondence between the factors governing colloid stability and competitive adsorption is validated via a new method of m...

  19. Enantiomeric Selective Adsorption of Amino Acid by Polysaccharide Composite Materials

    OpenAIRE

    Duri, Simon; Tran, Chieu D.

    2014-01-01

    A composite containing cellulose (CEL) and chitosan (CS) synthesized by a simple and recyclable method by using butylmethylimmidazolium chloride, an ionic liquid, was found to exhibit remarkable enantiomeric selectivity toward adsorption of amino acids. 100%CS shows the highest adsorption capacity and enantiomeric selectivity. A racemic amino acid can be enantiomerically resolved by 100%CS in about 96–120 hrs. Interestingly, adsorption by 50:50 CEL:CS is more similar to that by 100%CS than to...

  20. Mechanism of amitriptyline adsorption on Ca-montmorillonite (SAz-2)

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Po-Hsiang [Department of Earth Sciences, National Cheng Kung University, 1 University Road, Tainan 70101, Taiwan (China); Jiang, Wei-Teh, E-mail: atwtj@mail.ncku.edu.tw [Department of Earth Sciences, National Cheng Kung University, 1 University Road, Tainan 70101, Taiwan (China); Li, Zhaohui, E-mail: li@uwp.edu [Department of Geosciences, University of Wisconsin – Parkside, 900 Wood Road, Kenosha, WI 53144 (United States); Kuo, Chung-Yih [Department of Public Health, College of Health Care and Management, Chung Shan Medical University, No. 110, Sec. 1, Chien-kuo N Road, Taichung 40242, Taiwan (China); Jean, Jiin-Shuh [Department of Earth Sciences, National Cheng Kung University, 1 University Road, Tainan 70101, Taiwan (China); Chen, Wan-Ru [Department of Environmental Engineering, National Cheng Kung University, 1 University Road, Tainan 70101, Taiwan (China); Lv, Guocheng [School of Materials Science and Technology, China University of Geosciences, Beijing 100083 (China)

    2014-07-30

    Graphical abstract: XRD patterns to show AMI intercalation into SAz-2 vs. direct mixing of the same amount of AMI with SAz-2. - Highlights: • Ca-montmorillonite is proven to be an efficient adsorbent or sink for amitriptyline. • The high adsorption capacity is accompanied with intercalation into interlayers. • The adsorption is mainly governed by a cation exchange mechanism. • Horizontal mono- and bi-layer conformations occur at low and high adsorption levels. • The process is an endothermic physisorption at high adsorption levels. - Abstract: The uptake of amitriptyline (AMI) from aqueous environment by Ca-montmorillonite (SAz-2) was studied in a batch system under different physicochemical conditions. The adsorbent was characterized by X-ray diffraction and Fourier transform infrared (FTIR) analyses. The AMI adsorption on SAz-2 obeyed the Langmuir isotherm with a capacity of 330 mg/g (1.05 mmol/g) at pH 6–7. The adsorption kinetics was fast, almost reaching equilibrium in 2 h, and followed a pseudo-second-order kinetic model. Desorption of exchangeable cations correlated with the AMI adsorption well, indicating that cation exchange was the major mechanism. X-ray diffraction patterns showing significant expansions of the d{sub 0} {sub 0} {sub 1} spacing and characteristic FTIR band shifts toward higher frequencies after AMI adsorption onto SAz-2 indicated that the adsorbed AMI molecules were intercalated into the interlayers of the mineral. Thermodynamic parameters based on partitioning coefficients suggested that the AMI adsorption was an endothermic physisorption at high adsorption levels. At low and higher AMI adsorption levels, the intercalated AMI molecules take a horizontal monolayer and bilayer conformation, respectively. The higher adsorption capacity suggested that SAz-2 could be a good candidate to remove AMI from wastewater and would be an important environmental sink for the fate and transport of AMI in soils and groundwater.

  1. Characterization of zeolite-based coatings for adsorption heat pumps

    CERN Document Server

    Freni, Angelo; Bonaccorsi, Lucio; Chmielewski, Stefanie; Frazzica, Andrea; Calabrese, Luigi; Restuccia, Giovanni

    2015-01-01

    This book proposes a radically new approach for characterizing thermophysical and mechanical properties of zeolite-based adsorbent coatings for Adsorptive Heat Transformers (AHT). It presents a developed standard protocol for the complete characterization of advanced coated adsorbers. Providing an in-depth analysis of the different procedures necessary for evaluating the performance of adsorbers, it also presents an analysis of their stability under the hydrothermal and mechanical stresses during their entire life cycle. Adsorptive Heat Transformers (AHT), especially adsorption chillers and

  2. A dynamic multi-level model for adsorptive solar cooling

    OpenAIRE

    Santori, Giulio; Sapienza, Alessio; Freni, Angelo

    2012-01-01

    This paper focuses on the development of a dynamic multi-level model for simulating of a solar cooling system adopting an adsorption chiller. The model integrates detailed simulation of the adsorption cycle (component level) into the transient simulation of the solar cooling system (system level). The chiller investigated was a standard two bed silica gel/water unit. The model was used to ascertain the feasibility of solar-driven adsorption cooling and for optimization purposes. In the base c...

  3. Tailoring fibre and paper properties using physical adsorption of polyelectrolytes

    OpenAIRE

    Marais, Andrew

    2012-01-01

    The adsorption of polyelectrolytes, both as monolayers and as multilayers, was investigated as an easy and non-expensive way of producing lignocellulosic fibrous materials with enhanced mechanical properties. In the first part of the work described in this thesis, the adsorption of a polyelectrolyte monolayer onto the surface of unbleached and unbeaten kraft pulp fibres with different kappa numbers was investigated. Adsorption isotherms were obtained in order to determine the amounts of polym...

  4. Mechanisms of Ions Adsorption by Nanodiamonds in Aqueous Suspensions

    Directory of Open Access Journals (Sweden)

    K.A. Laptinskiy

    2013-12-01

    Full Text Available This work is devoted to the study of adsorption properties and adsorption mechanisms of the original (I6, modified (I6COOH nanodiamonds and charcoal dispersed in water, with respect to dissolved ions (Cu2 +, Pb2 +, NO3 –, CH3COO – using optical spectroscopy methods: Raman and IR spectroscopies, absorption, dynamic light scattering. Mechanisms of anions and cations adsorption were studied.

  5. Monte Carlo simulation of hydrogen adsorption on Ni surfaces

    Institute of Scientific and Technical Information of China (English)

    WANG Rui; DENG Hui-qiu; YUAN Xiao-jian; HU Wang-yu

    2007-01-01

    In the present paper the adsorption kinetics of the hydrogen molecule on the(111)and(100)surfaces have been studied with the model proposed by Panczyk and the grand canonical Monte Carlo simulation method.The equilibrium adsorption isotherms are calculated at five different temperatures ranging from 314 K to 376 K and compared with the experimental equilibrium adsorption isotherms.The effects of temperature and pressure on coverage are also analyzed.

  6. THE ADSORPTION OF IMAZAPYR BY THREE SOIL TYPES IN INDONESIA

    OpenAIRE

    S. TJITROSEMITO; S. MATSUNAKA; M. Nakata

    1992-01-01

    The adsorption of imazapyr in three Indonesian soil types was investigated with labelled 14C-imazapyr using Freundlich adsorption isotherm. The availability of adsorbed imazapyr to plants as affected by washing and liming was assayed using root elongation of rice seedlings. Red-Yellow Podsolic soil adsorbed imazapyr more than Andosol and sandy soil of Laladon. The adsorption was greater at lower pH. Washing seemed to reduce the concentration of imazapyr as shown by the increasing length of ri...

  7. Adsorption of hydrogen and deuterium on modified molecular sieves

    International Nuclear Information System (INIS)

    The adsorption characteristics of hydrogen isotopes on 5A, ZSM-5 and their modified molecular sieves were studied at liquid nitrogen temperature with volumetric method. The effects of modification methods such as transition metal salt loading and ball milling on the adsorption behavior were discussed. It is observed that the adsorption amounts on the modified molecular sieves are reduced. but some modifications contribute to the separation between H2 and D2. (authors)

  8. Adsorption Capacity of Kaolinite for Copper (II) under Magnetic Field

    Institute of Scientific and Technical Information of China (English)

    DONG Wei

    2004-01-01

    The adsorption of Cu2+ on kaolinite under magnetic field was studied at 25℃.The magnetic effects were investigated by designing the variation of exposure time,magnetic flux density and the method of magnetic exposure.The results from these study show that the magnetic treatment significantly enhance the fraction of adsorption of Cu2+,the adsorption of Cu2+ by kaolinite increases with the increase of pH value from 2 to 6.Both the magnetic exposure time and the magnetic flux density promote the fraction of adsorption Cu2+ on kaolinite.

  9. Industrial water treatment, by adsorption, using organized mesoporous materials

    Science.gov (United States)

    Koubaissy, Bachar; Toufaily, Joumana; Kafrouny, Lina; Joly, Guy; Magnoux, Patrick; Hamieh, Tayssir

    In this work, pure silica SBA-15 was synthesized by a sol-gel method and in-situ functionalized by a series of organosilane. These mesoporous materials are used to absorb polluants from wastewater. We studied the influence of functional groups on adsorption of phenol drifts. The carboxylic acid groups and substituted chlorine on phenol have been studied. There is a sharp increase of adsorption (more than double compared to phenol) which is very encouraging. Furthermore we note that the percentage of grafted ligands also plays an important role in adsorption. Finally, the adsorption capacity also depends on the nature and percentage of ligands present.

  10. ADSORPTION OF PHENYLACETIC ACID ON MACROPOROUS POLYMERIC ADSORBENTS

    Institute of Scientific and Technical Information of China (English)

    PANBingcai; CHENJinlong; 等

    2002-01-01

    Several macroporous polymeric adsorbents(NDA-999,XAD-8,X-5 and XAD-2)were emplyed in the study to adsorb phenylacetic acid from aqueous solution.Effect of salt and ambient temperature on adsorption was studied using NDA-999 adsorbent and the adsorption process conforms to Freundlich′s model reasonably.Adsorption dynamics were conducted in batch experiments in order to make clear the mechanism of adsorption process.It is proved that the squared driving force mass transfer model can be adopted to elucidate the process.The treatment process of industrial wastewater containing high strength of phenylacetic acid was proposed for cleaner production of phenylacetic acid.

  11. ADSORPTION OF PHENYLACETIC ACID ON MACROPOROUS POLYMERIC ADSORBENTS

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Several macroporous polymeric adsorbents (NDA-999, XAD-8, X-5 and XAD-2) wereemployed in the study to adsorb phenylacetic acid from aqueous solution. Effect of salt and ambienttemperature on adsorption was studied using NDA-999 adsorbent and the adsorption processconforms to Freundlich's model reasonably. Adsorption dynamics were conducted in batchexperiments in order to make clear the mechanism of adsorption process. It is proved that thesquared driving force mass transfer model can be adopted to elucidate the process. The treatmentprocess of industrial wastewater containing high strength of phenylacetic acid was proposed forcleaner production of phenylacetic acid.

  12. Adsorption of light alkanes on coconut nanoporous activated carbon

    Directory of Open Access Journals (Sweden)

    K. S. Walton

    2006-12-01

    Full Text Available This paper presents experimental results for adsorption equilibrium of methane, ethane, and butane on nanoporous activated carbon obtained from coconut shells. The adsorption data were obtained gravimetrically at temperatures between 260 and 300K and pressures up to 1 bar. The Toth isotherm was used to correlate the data, showing good agreement with measured values. Low-coverage equilibrium constants were estimated using virial plots. Heats of adsorption at different loadings were also estimated from the equilibrium data. Adsorption properties for this material are compared to the same properties for BPL activated carbon and BAX activated carbon.

  13. Adsorption characteristics of arsenic and boron by soil

    Energy Technology Data Exchange (ETDEWEB)

    Sakata, M.

    1986-01-01

    In order to obtain baseline data concerning the surface and ground water pollution caused by coal ash disposal, adsorption characteristics of arsenic (III) and boron by soil have been studied through laboratory experiments. The main results are as follows: (1) Arsenic (III) and boron adsorption on soil was strongly dependent on pH with adsorption maxima at pH 8 and 8-9, respectively. (2) Arsenic (III) and boron adsorption on soil over the entire concentration ranges investigated could be described by the Langmuir adsorption isotherm and the Freundlich adsorption isotherm, respectively. The Henry adsorption isotherm was also applicable over the lower concentration ranges of arsenic (III) and boron (As (III): < 0.1 deltag/ml; B: < 5deltag/ml.) (3) Arsenic (III) and boron adsorption on soil is controlled mainly by the contents of extractable Fe oxide and hydroxide for arsenic (III) and by the contents of extractable Al hydroxide and allophane (amorphous aluminium silicates) for boron. (4) Adsorption and movement of arsenic (III) and boron during the infiltration of coal ash leachate in soil layer were investigated by means of the unsteady-state, one-dimensional convective-diffusive mass transport model. This model is very useful for evaluation and prediction of the contamination of ground water by trace elements such as arsenic (III) and boron leached at coal ash disposal site.

  14. (Amino acid + silica) adsorption thermodynamics: Effects of temperature

    International Nuclear Information System (INIS)

    Highlights: • High resolution, low concentration Gly, Lys and Glu solution adsorption isotherms. • All isotherms fitted with Langmuir–Freundlich isotherm model. • Gly, Lys and Glu show exothermic adsorption processes. • Isosteric heat analyses reveal changes in interaction strength with surface coverage. - Abstract: A thorough understanding of amino acid adsorption by mineral and oxide surfaces has a major impact on a variety of industrial and biomedical applications. Little information currently exists regarding temperature effects on most of these adsorption processes. Deeper thermodynamic analyses of their multiple temperature adsorption isotherms would aid the interpretation of the interfacial interactions. Low solution concentration adsorption isotherms for glycine, lysine and glutamic acid on a silica adsorbent were generated for T = (291, 298 and 310) K. Data analysis via the Clausius–Clapeyron method yielded the isosteric heat of adsorption as a function of fractional monolayer coverage for each adsorptive. Each amino acid showed an exothermic adsorption response. Glycine and lysine experienced a greater negative effect of increased temperature compared with glutamic acid, indicating a greater number of adsorbed molecules than glutamic acid, with the former undergoing intermolecular clustering within the adsorbed phase. Isosteric heat analyses suggest ionic interactions for lysine and hydrogen bonding for glutamic acid, both weakening with increased coverage. In contrast, initial hydrogen bonding led to ionic bonding for glycine with increasing coverage

  15. Fractal-like adsorption kinetics of Pb2+ in rocks

    Institute of Scientific and Technical Information of China (English)

    XU Longjun; ZHOU Zhengguo; LIU Chenglun; XIAN Xuefu

    2008-01-01

    The adsorption kinetics of Pb2+ in rocks has been studied using ion selective electrodes and atomic absorption spectrophotometer. The results showed that the adsorption process is a fractal-like reaction. The adsorption rate was relatively high before 30 minutes, and then dropped. The saturated adsorption capacity (a) of Pb2+ and kinetic parameters (b, α , D and k) increased with increasing initial concentrations of Pb2+. These parameters (except a) decreased while Na+ was present in the solution. Furthermore, the smaller the rocks were in grain size, the bigger these kinetic parameters would be, though the parameter a was almost constant.

  16. Adsorption kinetics of propane on energetically heterogeneous activated carbon

    KAUST Repository

    Ismail, Azhar Bin

    2014-11-01

    The modeling of the adsorption isotherms and kinetics of the adsorbent+adsorbate pair is essential in simulating the performance of a pressurized adsorption chiller. In this work, the adsorption kinetics is analyzed from data measured using a magnetic suspension balance. The Statistical Rate Theory describes the Dubinin-Astakhov (DA) equation and extended to obtain an expression for transient analysis. Hence both the experimental excess equilibria data and the adsorption kinetics data may then be fitted to obtain the necessary parameters to fit the curves. The results fit the data very well within 6% of the error of regression. © 2014 Elsevier Ltd.

  17. Adsorption of phenol from water by ultrafine coal powders

    Institute of Scientific and Technical Information of China (English)

    LIU Zhuan-nian; ZHOU An-ning; YANG Fan; JIN Qi-ting

    2007-01-01

    Seven Shenfu coal powders different in particle size obtained by sieving and ball milling were used to probe their adsorption properties to phenol from water.The results show that the kinetics of phenol on coal powders follow the second-Order adsorption kinetic model well.Adsorption processes are governed by film diffusion and the kinetic parameters and the effective diffusion coefficients were calculated through plotting.Adsorption capacities to phenol increase exponentially with decreasing of diameter of coal described in terms of Freundlich isotherm,while for ultrafine coal powders with d50 of 4.28and 4.82 μm fit Langmuir isotherm well.

  18. Adsorption of glucose, cellobiose, and cellotetraose onto cellulose model surfaces.

    Science.gov (United States)

    Hoja, Johannes; Maurer, Reinhard J; Sax, Alexander F

    2014-07-31

    Reliable simulation of molecular adsorption onto cellulose surfaces is essential for the design of new cellulose nanocomposite materials. However, the applicability of classical force field methods to such systems remains relatively unexplored. In this study, we present the adsorption of glucose, cellobiose, and cellotetraose on model surfaces of crystalline cellulose Iα and Iβ. The adsorption of the two large carbohydrates was simulated with the GLYCAM06 force field. To validate this approach, quantum theoretical calculations for the adsorption of glucose were performed: Equilibrium geometries were studied with density functional theory (DFT) and dispersion-corrected DFT, whereas the adsorption energies were calculated with two standard density functional approximations and five dispersion-containing DFT approaches. We find that GLYCAM06 gives a good account of geometries and, in most cases, accurate adsorption energies when compared to dispersion-corrected DFT energies. Adsorption onto the (100) surface of cellulose Iα is, in general, stronger than onto the (100) surface of cellulose Iβ. Contrary to intuition, the adsorption energy is not directly correlated with the number of hydrogen bonds; rather, it is dominated by dispersion interactions. Especially for bigger adsorbates, a neglect of these interactions leads to a dramatic underestimation of adsorption energies. PMID:25036217

  19. Adsorption of diethyl phthalate ester to clay minerals.

    Science.gov (United States)

    Wu, Yanhua; Si, Youbin; Zhou, Dongmei; Gao, Juan

    2015-01-01

    Phthalate esters are a group of plasticizers, which have been widely detected in China's agricultural and industrial soils. In this study, batch adsorption experiments were conducted to investigate the environmental effects on the adsorption of diethyl phthalate ester (DEP) to clay minerals. The results showed that DEP adsorption isotherms were well fitted with the Freundlich model; the interlayer spacing of K(+) saturated montmorillonite (K-mont) was the most important adsorption area for DEP, and di-n-butyl ester (DnBP) was limited to intercalate into the interlayer of K-mont due to the bigger molecular size; there was no significant effect of pH and ionic strength on DEP adsorption to K-mont/Ca-mont, but to Na-mont clay. The adsorption to kaolinite was very limited. Data of X-ray diffraction and FTIR spectra further proved that DEP molecules could intercalate into K-/Ca-mont interlayer, and might interact with clay through H-bonding between carbonyl groups and clay adsorbed water. Coated humic acid on clay surface would enhance DEP adsorption at low concentration, but not at high concentration (eg. Ce>0.26 mM). The calculated adsorption enthalpy (ΔHobs) and adsorption isotherms at varied temperatures showed that DEP could be adsorbed easier as more adsorbed. This study implied that clay type, compound structure, exchangeable cation, soil organic matter and temperature played important roles in phthalate ester's transport in soil.

  20. Effect of Zn Adsorption on Charge of Variable Charge Soils

    Institute of Scientific and Technical Information of China (English)

    SUNHAN-YUAN

    1993-01-01

    The variation in appa rent carge of two typical variable charge soils resulting from Zn adsorption were studied by KCl saturation and NH4NO3 replacement methods.Results showed that zinc were adsorbed specifically to those sites with negative charge.As in different pH ranges,the percantages of specific and electrostatic adsorptions of zine and the mechanisms of specific adsorption were different,the effects of Zn adsorption on apparent charge were varied and could be characterized as:when 1 mmol Zn2+ was adsorbed,a change about 1 mmol in the apparent charge was observed in the low pH range(1),1.4 to 1.5mmol in the moderate pH range(II) and 0.55 to 0.6mmol in the high pH range (III).These experimental data,in terms of soil charge,proved once more author's conclusion in the preceding paper(Sun,1993) that in accordance with the behaviors of Zn adsorption by the variable charge soils in relation to pH,three pH ranges with different adsorption mechanisms were delineated;that is,in Range I,specific adsorption was the predominant mechanism,in Ranges II and III,specific and electrostatic adsorptions co-existed,but their specific adsorption mechanisms were not identical.

  1. Removal of copper by modified chitosan adsorptive membrane

    Institute of Scientific and Technical Information of China (English)

    Xiaoshuai LIU; Zihong CHENG; Wei MA

    2009-01-01

    In this study, a novel adsorptive membrane was prepared from chitosan as the functional polymer and some additive blend solutions by solution casting method.The modified chitosan membrane was characterized by FTIR and its Water Swelling Ratio (WSR). The adsorption of copper ions on the adsorptive membrane was investi-gated in batch experiments. The results obtained from the experiments indicated that the membrane had a good adsorption capacity for copper ions, the optimal ionic strength and pH were 0.1 and 5-6, respectively. Compared with the Langmuir isotherm model, the experimental data were found to be following the Freundlich model.

  2. Counterion adsorption effects on the swelling pressure in clays

    Energy Technology Data Exchange (ETDEWEB)

    Greathouse, J.A.; McQuarrie, D.A. [Univ. of California, Davis, CA (United States)

    1995-10-01

    The effects arising due to counterion adsorption in interacting planar electrical double layers is studied using modified Gouy-Chapman theory. The conditions used here model clay swelling experiments that have shown a strong dependence on the choice of counterion. The results show that the swelling pressure between charged plates depends on counterion adsorption, but they do not explain the experimental data. If the adsorption is strong enough, the swelling pressure becomes so small that it is unaffected by the plate separation. The swelling pressure is also affected by the bulk electrolyte concentration, although for a given adsorption parameter the adsorbed charge density is independent of ion concentration.

  3. Comments on "Ion adsorption components in liquid/solid systems"

    Institute of Scientific and Technical Information of China (English)

    LI Wei; PAN Gang

    2007-01-01

    @@ Recently, Wu et al. (J Environ Sci 18(2006) 1167-1175) published a paper entitled as above. In the paper, the authors proposed a plotting method for describing adsorption isotherm, where adsorption density (q e) was plotted against the ratio of equilibrium concentration/particle concentration (Ce/W0) rather than (Ce) as traditionally defined. The authors claimed that this plot can eliminate the "particle concentration effect" (i.e., adsorption isotherm declines with increasing particle concentration), which may otherwise be inevasible with traditionally defined adsorption isotherms. We think that their conclusion is conceptually flawed and the plot may cause substantial inconstancy problems in practice.

  4. Solution of adsorption problems involving steep moving profiles

    DEFF Research Database (Denmark)

    Kiil, Søren; Bhatia, Suresh K.

    1998-01-01

    . Numerical solutions were found to match the analytical solution when it exists (i.e. when the adsorption isotherm is linear). Results of this application study show that the method is simple yet sufficiently accurate for use in adsorption problems with steep moving gradients, where global collocation......The moving finite element collocation method proposed by Kiil et al. (1995) for solution of problems with steep gradients is further developed to solve transient problems arising in the field of adsorption. The technique is applied to a model of adsorption in solids with bidisperse pore structures...

  5. Adsorption Properties of Lac Dyes on Wool, Silk, and Nylon

    Directory of Open Access Journals (Sweden)

    Bo Wei

    2013-01-01

    Full Text Available There has been growing interest in the dyeing of textiles with natural dyes. The research about the adsorption properties of natural dyes can help to understand their adsorption mechanism and to control their dyeing process. This study is concerned with the kinetics and isotherms of adsorption of lac dyes on wool, silk, and nylon fibers. It was found that the adsorption kinetics of lac dyes on the three fibers followed the pseudosecond-order kinetic model, and the adsorption rate of lac dyes was the fastest for silk and the slowest for wool. The activation energies for the adsorption process on wool, silk, and nylon were found to be 107.15, 87.85, and 45.31 kJ/mol, respectively. The adsorption of lac dyes on the three fibers followed the Langmuir mechanism, indicating that the electrostatic interactions between lac dyes and those fibers occurred. The saturation values for lac adsorption on the three fibers decreased in the order of wool > silk > nylon; the Langmuir affinity constant of lac adsorption on nylon was much higher than those on wool and silk.

  6. Competitive Adsorption of Arsenite and Silicic Acid on Goethite

    OpenAIRE

    Luxton, Todd Peter

    2002-01-01

    The adsorption behavior of silicic acid and arsenite alone and competitively on goethite over a broad pH range (3-11) at environmentally relevant concentrations was investigated utilizing pH adsorption data and zeta potential measurements. Both addition scenarios (Si before As(III) and As(III) before Si) were examined. The results of the adsorption experiments and zeta potential measurements were then used to model the single ion and competitive ion adsorption on goethite with the CD-MUSIC ...

  7. Adsorption, mobility, and dimerization of benzaldehyde on Pt(111)

    DEFF Research Database (Denmark)

    Rasmussen, Anton Michael Havelund; Hammer, Bjørk

    2012-01-01

    Building on results for the adsorption of benzene on Pt(111), the adsorption of benzaldehyde is investigated using density functional theory. Benzaldehyde is found to chemisorb preferentially with its aromatic ring in the flat-lying bridge geometry that is also preferred for benzene. Across...... the investigated geometries, adsorption is homogeneously weakened compared to corresponding benzene geometries. This is found to be true for very different adsorption modes, namely, η6 and η8 modes, the latter having metal atoms inserted in the carbonyl bond. Reorientation and diffusion of benzaldehyde is found...

  8. Molecular Simulation of Adsorption in Microporous Materials

    Directory of Open Access Journals (Sweden)

    Yiannourakou M.

    2013-11-01

    Full Text Available The development of industrial software, the decreasing cost of computing time, and the availability of well-tested forcefields make molecular simulation increasingly attractive for chemical engineers. We present here several applications of Monte-Carlo simulation techniques, applied to the adsorption of fluids in microporous solids such as zeolites and model carbons (pores < 2 nm. Adsorption was computed in the Grand Canonical ensemble with the MedeA®-GIBBS software, using energy grids to decrease computing time. MedeA®-GIBBS has been used for simulations in the NVT or NPT ensembles to obtain the density and fugacities of fluid phases. Simulation results are compared with experimental pure component isotherms in zeolites (hydrocarbon gases, water, alkanes, aromatics, ethanethiol, etc., and mixtures (methane-ethane, n-hexane-benzene, over a large range of temperatures. Hexane/benzene selectivity inversions between silicalite and Na-faujasites are well predicted with published forcefields, providing an insight on the underlying mechanisms. Also, the adsorption isotherms in Na-faujasites for light gases or ethane-thiol are well described. Regarding organic adsorbents, models of mature kerogen or coal were built in agreement with known chemistry of these systems. Obtaining realistic kerogen densities with the simple relaxation approach considered here is encouraging for the investigation of other organic systems. Computing excess sorption curves in qualitative agreement with those recently measured on dry samples of gas shale is also favorable. Although still preliminary, such applications illustrate the strength of molecular modeling in understanding complex systems in conditions where experiments are difficult.

  9. A comparison of three adsorption equations and sensitivity study of parameter uncertainty effects on adsorption refrigeration thermal performance estimation

    Science.gov (United States)

    Zhao, Yongling; Hu, Eric; Blazewicz, Antoni

    2012-02-01

    This paper presents isosteric-based adsorption equilibrium tests of three activated carbon samples with methanol as an adsorbate. Experimental data was fitted into Langmuir equation, Freundlich equation and Dubinin-Astakov (D-A) equation, respectively. The fitted adsorption equations were compared in terms of agreement with experimental data. Moreover, equation format's impacts on calculation of the coefficient of performance (COP) and refrigeration capacity of an adsorption refrigeration system was analyzed. In addition, the sensitivity of each parameter in each adsorption equation format to the estimation of cycle's COP and refrigeration capacity was investigated. It was found that the D-A equation is the best form for presenting the adsorptive property of a carbon-methanol working pair. The D-A equation is recommended for estimating thermal performance of an adsorption refrigeration system because simulation results obtained using the D-A equation are less sensitive to errors of experimentally determined D-A equation's parameters.

  10. Irreversible adsorption from concentrated polymer solutions

    Science.gov (United States)

    Auvray, Loïc; Cruz, Margerida; Auroy, Philippe

    1992-05-01

    We study the adsorption of concentrated Poly(dimethylsiloxane) (PDMS) solutions in Dichloromethane on porous silica. We vary the plymerization index N and the chain volume fraction Φ from the overlap concentration to the melt. The adsorption of PDMS on silica by hydrogen bonding is very strong and a large amount of polymer remains bound to the surface after the washing of the silica with a good solvent of the chains. We measure this quantity Γ by small angle neutron scattering. If there is no chain desorption, Γ represents the weight of polymer attached to the solid in the initial solution, which varies as the product N^{1/2} Φ^{7/8} according to a recent prediction. This relation of proportionality indeed interprets our experimental results. When the size of the chains is comparable to the pore diameter (either 500, 1 200, or 3 000 Å depending on the samples) we observe confinement effects which lower the adsorbed amount. Nous étudions d'adsorption de solutions concentrées de Poly(dimethylsiloxane) (PDMS) dans le chlorure de méthylène sur de la silice poreuse. Nous varions le degré de polymérisation N et la fraction volumique Φ des chaînes depuis la concentration de recouvrement jusqu'au fondu. L'adsorption de PDMS sur la silice par liaison hydrogène est très forte et une grande quantité de polymère reste liée à la surface après lavage de la silice par du bon solvant. Nous mesurons cette quantité Γ par diffusion centrale des neutrons. S'il n'y a pas eu désorption des chaînes, Γ représente le poids de polymère attaché au solide dans la solution initiale qui varie selon une prédiction récente comme le produit N^{1/2} Φ^{7/8}. Cette relation de proportionnalité rend effectivement compte de nos résultats. Quand la taille des chaînes est du même ordre de grandeur que le diamètre des pores (qui prend les valeurs 500, 1 200 et 3 000 Å selon les échantillons), nous observons des effets de confinement abaissant la quantité adsorbée.

  11. Water Adsorption on TiO2

    DEFF Research Database (Denmark)

    Hammer, Bjørk; Wendt, Stefan; Besenbacher, Flemming

    2010-01-01

    Scanning Tunneling Microscopy (STM) studies and Density Functional Theory (DFT) investigations of the interaction of water with the rutile TiO2 (110) surface are summarized. From high-resolution STM the following reactions have been revealed: water adsorption and diffusion in the Ti troughs, water...... dissociation in bridging oxygen vacancies, assembly of adsorbed water monomers into rapidly diffusing water dimers, and formation of water dimers by reduction of oxygen molecules. The STM results are rationalized based on DFT calculations, revealing the bonding geometries and reaction pathways of the water...

  12. Arsenite adsorption on goethite at elevated temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Kersten, Michael [Environmental Geochemistry Group, Institute of Geosciences, Johannes Gutenberg-University, Mainz 55099 (Germany)], E-mail: kersten@uni-mainz.de; Vlasova, Nataliya [Environmental Geochemistry Group, Institute of Geosciences, Johannes Gutenberg-University, Mainz 55099 (Germany)

    2009-01-15

    Experimental closed-system {delta}T acid-base titrations between 10 deg. C and 75 deg. C were used to constrain a temperature-dependent 1-pK basic Stern model of the goethite surface complexation reactions. Experimental data for the temperature dependence of pH{sub PZC} determined by the one-term Van't Hoff extrapolation yield a value for goethite surface protonation enthalpy of -49.6 kJ mol{sup -1} in good agreement with literature data. Batch titration data between 10 deg. C and 75 deg. C with arsenite concentrations between 10 {mu}M and 100 {mu}M yield adsorption curves, which increases with pH, peak at a pH of 9, and decrease at higher pH values. The slope of this bend becomes steeper with increasing temperature. A 1-pK charge distribution model in combination with a basic Stern layer option could be established for the pH-dependent arsenite adsorption. Formation of two inner-sphere bidentate surface complexes best matched the experimental data in agreement with published EXAFS spectroscopic information. The temperature behaviour of the thus derived intrinsic equilibrium constants can be well represented by the linear Van't Hoff logK{sub T}{sup int} vs. 1/T plot. Adsorption of arsenite on the goethite surface is exothermic (negative {delta}{sub r}H{sub 298} values) and therefore becomes weaker with increasing temperature. Application of the new constants with the aqueous speciation code VMINTEQ predicts that the As(III) concentration in presence of goethite sorbent decreases by 10 times once the hydrothermal solution is cooled from 99 deg. C to 1 deg. C. The model curve matches data from a natural thermal water spring system. The increase of adsorption efficiency for As along the temperature gradient may well serve as an additional process to prevent ecosystem contamination by As-rich water seepage from geothermal energy generation facilities.

  13. Hydrogen adsorption on hexagonal silicon nanotubes

    OpenAIRE

    Ryou, Junga; Hong, Suklyun; Kim, Gunn

    2009-01-01

    We present a first-principles study of geometrical structure and energetics of hydrogen adsorbed on hexagonal single-walled silicon nanotubes (SiNTs). The adsorption behaviors of hydrogen molecules in SiNTs are investigated. The binding energies for the most stable physisorbed configurations are calculated to be less than 0.1 eV. The energy barriers are also investigated for dissociation of H2 molecules. Finally, we consider encapsulation of H2 molecules in SiNTs. The possibility of SiNTs as ...

  14. Novel modified pectin for heavy metal adsorption

    Institute of Scientific and Technical Information of China (English)

    Feng Ting Li; Hong Yang; Yan Zhao; Ran Xu

    2007-01-01

    Modified pectin cross-linked with adipic acid, was synthesized and used for heavy metal removal from wastewater. SEM and FrIR were used to investigate its structure and morphology. The modified pectin had a rough, porous phase covered with carboxy groups, resulting a high adsorption capacity. And at the room temperature, the saturated loading capacity for Pb2+, Cu2+ and Zn2+ reached 1.82 mmol/g, 1.794 mmol/g and 0.964 mmol/g, respectively. The results proved its potential application to remove of the heavy metal.

  15. Treatment of Textile Wastewaterby Adsorption and Coagulation

    OpenAIRE

    Himanshu Patel; R. T. Vashi

    2010-01-01

    The composite of wastewater treatment was carried out using activated charcoal as adsorbent to remove COD, BOD, color in which various parameters like adsorbent dose, contact duration, temperature and agitator speed were considered. The adsorbent behavior can be explained on the basis of Freundlich and Langmuir adsorption isotherm model. Maximum removal (87.6, 81.0 and 90.0%) of COD, BOD and color respectively was found at adsorbent dosage of 11 g/L. Also, the textile mill wastewater was trea...

  16. Adsorption and co-adsorption of diclofenac and Cu(II) on calcareous soils.

    Science.gov (United States)

    Graouer-Bacart, Mareen; Sayen, Stéphanie; Guillon, Emmanuel

    2016-02-01

    Pharmaceuticals are emerging contaminants and their presence in different compartments of the environment has been detected in many countries. In this study, laboratory batch experiments were conducted to characterize the adsorption of diclofenac, a widely used non-steroidal anti-inflammatory drug, on six calcareous soils. The adsorption of diclofenac was relatively low, which may lead to a risk of groundwater contamination and plant uptake. A correlation between the soil-water distribution coefficient Kd and soil characteristics has been highlighted. Indeed, diclofenac adsorption as a function of soil organic matter content (% OM) and Rt=% CaCO3/% OM was successfully described through a simple empirical model, indicating the importance of considering the inhibiting effect of CaCO3 on OM retention properties for a better assessment of diclofenac fate in the specific case of calcareous soils. The simultaneous co-adsorption of diclofenac and copper - a ubiquitous pollutant in the environment - at the water/soil interface, was also investigated. It appeared quite unexpectedly that copper did not have a significant influence on diclofenac retention. PMID:26599281

  17. Cadmium-109 Radioisotope Adsorption onto Polypyrrole Coated Sawdust of Dryobalanops aromatic: Kinetics and Adsorption Isotherms Modelling

    Science.gov (United States)

    Olatunji, Michael Adekunle; Khandaker, Mayeen Uddin; Amin, Yusoff Mohd; Mahmud, Habibun Nabi Muhammad Ekramul

    2016-01-01

    A radiotracer study was conducted to investigate the removal characteristics of cadmium (109Cd) from aqueous solution by polypyrrole/ sawdust composite. Several factors such as solution pH, sorbent dosage, initial concentration, contact time, temperature and interfering metal ions were found to have influence on the adsorption process. The kinetics of adsorption was relatively fast, reaching equilibrium within 3 hours. A lowering of the solution pH reduced the removal efficiency from 99.3 to ~ 46.7% and an ambient temperature of 25°C was found to be optimum for maximum adsorption. The presence of sodium and potassium ions inhibited 109Cd removal from its aqueous solution. The experimental data for 109Cd adsorption showed a very good agreement with the Langmuir isotherm and a pseudo-first order kinetic model. The surface condition of the adsorbent before and after cadmium loading was investigated using BET, FESEM and FTIR. Considering the low cost of the precursor’s materials and the toxicity of 109Cd radioactive metal, polypyrrole synthesized on the sawdust of Dryobalanops aromatic could be used as an efficient adsorbent for the removal of 109Cd radioisotope from radionuclide-containing effluents. PMID:27706232

  18. Structural determinants for protein adsorption/non-adsorption to silica surface

    International Nuclear Information System (INIS)

    The understanding of the mechanisms involved in the interaction of proteins with inorganic surfaces is of major interest in both fundamental research and applications such as nano-technology. However, despite intense research, the mechanisms and the structural determinants of protein/surface interactions are still unclear. We developed a strategy consisting in identifying, in a mixture of hundreds of soluble proteins, those proteins that are adsorbed on the surface and those that are not. If the two protein subsets are large enough, their statistical comparative analysis must reveal the physicochemical determinants relevant for adsorption versus non-adsorption. This methodology was tested with silica nanoparticles. We found that the adsorbed proteins contain a higher number of charged amino acids, particularly arginine, which is consistent with involvement of this basic amino acid in electrostatic interactions with silica. The analysis also identified a marked bias toward low aromatic amino acid content (phenylalanine, tryptophan, tyrosine and histidine) in adsorbed proteins. Structural analyses and molecular dynamics simulations of proteins from the two groups indicate that non-adsorbed proteins have twice as many p-p interactions and higher structural rigidity. The data are consistent with the notion that adsorption is correlated with the flexibility of the protein and with its ability to spread on the surface. Our findings led us to propose a refined model of protein adsorption. (authors)

  19. Spatial modulation of the physical adsorption potential by diffusion and the theoretical consequences on multilayer adsorption

    International Nuclear Information System (INIS)

    The spatial variations of the adsorption potential parallel to the adsorbing surface were studied by measurement of the superficial diffusion coefficient. The force of attraction induced at the surface of the adsorbed film as a function of the geometry of the substrate was then examined in a non-uniform multilayer adsorption model. The superficial diffusion coefficient was determined by the use of a radioactive tracer which gives direct information without perturbing the measurement. It was shown that tritium can be physisorbed in mobile form at low temperature on monocristalline nickel without subjacent chemisorption. Similarly krypton at 40 deg K is adsorbed on graphite with a mobility strongly dependent on the degree of coverage. The potential barrier between sites, for krypton adsorbed in two-dimensional gas form, lies in the region of 250 calories per mole. With regard to multilayer adsorption the above-mentioned force of attraction, entropie in origin, must be added to the Van der Waals forces to obtain the adsorption isotherms. A theory of this pseudo-force is given for a gas adsorbed on a solid surface, based on the BET model (Brunauer, Emmett and Teller) but accounting for lateral interactions in a molecular field approximation

  20. Mechanism of Cr(VI) adsorption by coir pith studied by ESR and adsorption kinetic

    Energy Technology Data Exchange (ETDEWEB)

    Suksabye, Parinda [Joint Graduate School of Energy and Environment, King Mongkut' s University of Technology Thonburi, 91 Pracha-Utit Road, Bangmod, Thungkru, Bangkok 10140 (Thailand); Nakajima, Akira [Division of Chemistry, Department of Medical Science, Faculty of Medicine, University of Miyazaki, Kiyotake, Miyazaki 889 1692 (Japan); Thiravetyan, Paitip [Division of Biotechnology, School of Bioresources and Technology, King Mongkut' s University of Technology Thonburi, 83 Moo.8 Thakham, Bangkhuntien, Bangkok 10150 (Thailand)], E-mail: paitip.thi@kmutt.ac.th; Baba, Yoshinari [Department of applied Chemistry, Faculty of Technology, University of Miyazaki, Gakuen-Kibabadai, Miyazaki 889 2192 (Japan); Nakbanpote, Woranan [Pilot Plant Development and Training Institute, King Mongkut' s University of Technology Thonburi, 83 Moo.8 Thakham, Bangkhuntien, Bangkok 10150 (Thailand)

    2009-01-30

    The oxidation state of chromium in coir pith after Cr(VI) adsorption from aqueous solution was investigated using electron spin resonance (ESR). To elucidate the mechanism of chromium adsorption on coir pith, the adsorption studies of Cr(VI) onto lignin, {alpha}-cellulose and holocellulose extracted from coir pith were also studied. ESR signals of Cr(V) and Cr(III) were observed in coir pith adsorbed Cr(VI) at solution pH 2, while ESR spectra of lignin extracted from coir pith revealed only the Cr(III) signal. In addition, ESR signal of Cr(V) was observed in {alpha}-cellulose and holocellulose extracted from coir pith adsorbed Cr(VI). These results confirmed that lignin in coir pith reduced Cr(VI) to Cr(III) while {alpha}-cellulose and holocellulose extracted from coir pith reduced Cr(VI) to Cr(V). The Cr(V) signal exhibited in ESR of {alpha}-cellulose and holocellulose might be bound with glucose in cellulose part of coir pith. In addition, xylose which is main in pentosan part of coir pith, indicated that it is involved in form complex with Cr(V) on coir pith. The adsorption kinetic of Cr(VI) from aqueous solution on coir pith was also investigated and described well with pseudo second order model. ESR and desorption experiments confirmed that Cr(VI), Cr(V) and Cr(III), exist in coir pith after Cr(VI) adsorption. The desorption data indicated that the percentage of Cr(VI), Cr(V) and Cr(III) in coir pith were 15.63%, 12.89% and 71.48%, respectively.

  1. Adsorption Properties of Adsorption Tower Filled with Calcium Superphosphate on NH3 Emitted from Composting System of Animal Wastes

    Institute of Scientific and Technical Information of China (English)

    Dandan LUI; Yunxiao CHONG; Qitang WU; Genyi WU; Dechun HE; Jinrong QIU; Zhencheng XU

    2012-01-01

    [Objective] This study aimed to investigate the adsorption properties of the adsorption tower filled with calcium superphosphate on ammonia volatilized with aer- ation. [Method] Adsorption tower filled with calcium superphosphate was adopted as experimental apparatus, which was constructed by poly vinyl chloride (PVC) circular tubes. With hartshorn as the source of ammonia volatilization, the effect of different ratios of height to diameter of the tower filled with equal amount of calcium super-phosphate on ammonia adsorption was investigated. In addition, adsorption tower with height-diameter ratio of 9.9 was selected to adsorb the ammonia emitted from the composting systems of pig manure and chicken manure with optimized and reg- ulated carbon-nitrogen ratio. [Result] Under certain volatilization rate, calcium super- phosphate particles in the adsorption tower could effectively adsorb the ammonia, and the adsorption efficiency was enhanced with the increase of height-diameter ra-tio, which could reach above 90% with height-diameter ratio of more than 1.1; the ammonia emitted from composting systems of pig manure and chicken manure with optimized and regulated carbon-nitrogen ratio could be completely absorbed using adsorption tower with height-diameter ratio of 9.9 filled with calcium superphosphate accounting for about 8% of the weight of composting materials. [Conclusion] Experi- mental results of this study provided reference for the application of adsorption tower filled with calcium superphosphate in the treatment of waste gas emitted from com- posting materials.

  2. Van der Waals effect in weak adsorption affecting trends in adsorption, reactivity, and the view of substrate nobility

    DEFF Research Database (Denmark)

    Kelkkanen, Kari André; Lundqvist, Bengt; Nørskov, Jens Kehlet

    2011-01-01

    The ubiquitous van der Waals (vdW) force, particularly discernible in weak adsorption, is studied on noble and transition metals. In calculations with the vdW density functional (DF) [ M. Dion et al., Phys. Rev. Lett. 92, 246401 (2004)], the atomic structure near the adsorption site is systematic......The ubiquitous van der Waals (vdW) force, particularly discernible in weak adsorption, is studied on noble and transition metals. In calculations with the vdW density functional (DF) [ M. Dion et al., Phys. Rev. Lett. 92, 246401 (2004)], the atomic structure near the adsorption site...

  3. Trichloroethylene (TCE) adsorption using sustainable organic mulch

    International Nuclear Information System (INIS)

    Soluble substrates (electron donors) have been commonly injected into chlorinated solvent contaminated plume to stimulate reductive dechlorination. Recently, different types of organic mulches with economic advantages and sustainable benefits have received much attention as new supporting materials that can provide long term sources of electron donors for chlorinated solvent bioremediation in engineered biowall systems. However, sorption capacities of organic mulches for chlorinated solvents have not been studied yet. In this study, the physiochemical properties of organic mulches (pine, hardwood and cypress mulches) were measured and their adsorption capacity as a potential media was elucidated. Single, binary and quaternary isotherm tests were conducted with trichloroethylene (TCE), tetrachloroethylene (PCE), trans-dichloroethylene (trans-DCE) and cis-dichloroethylene (cis-DCE). Among the three tested mulches, pine mulch showed the highest sorption capacity for the majority of the tested chemicals in single isotherm test. In binary or quaternary isotherm tests, competition among chemicals appears to diminish the differences in Qe for tested mulches. However, pine mulch also showed higher adsorption capacity for most chemicals when compared to hardwood and cypress mulches in the two isotherm tests. Based upon physicochemical properties of the three mulches, higher sorption capacity of pine mulch over hardwood and cypress mulches appears to be attributed to a higher organic carbon content and the lower polarity.

  4. Acoustic and adsorption properties of submerged wood

    Science.gov (United States)

    Hilde, Calvin Patrick

    Wood is a common material for the manufacture of many products. Submerged wood, in particular, is used in niche markets, such as the creation of musical instruments. An initial study performed on submerged wood from Ootsa Lake, British Columbia, provided results that showed that the wood was not suitable for musical instruments. This thesis re-examined the submerged wood samples. After allowing the wood to age unabated in a laboratory setting, the wood was retested under the hypothesis that the physical acoustic characteristics would improve. It was shown, however, that the acoustic properties became less adequate after being left to sit. The adsorption properties of the submerged wood were examined to show that the submerged wood had a larger accessible area of wood than that of control wood samples. This implied a lower amount of crystalline area within the submerged wood. From the combined adsorption and acoustic data for the submerged wood, relationships between the moisture content and speed of sound were created and combined with previous research to create a proposed model to describe how the speed of sound varies with temperature, moisture content and the moisture content corresponding to complete hydration of sorption sites within the wood.

  5. Atomistic Modeling of Gas Adsorption in Nanocarbons

    Directory of Open Access Journals (Sweden)

    G. Zollo

    2012-01-01

    Full Text Available Carbon nanostructures are currently under investigation as possible ideal media for gas storage and mesoporous materials for gas sensors. The recent scientific literature concerning gas adsorption in nanocarbons, however, is affected by a significant variation in the experimental data, mainly due to the different characteristics of the investigated samples arising from the variety of the synthesis techniques used and their reproducibility. Atomistic simulations have turned out to be sometimes crucial to study the properties of these systems in order to support the experiments, to indicate the physical limits inherent in the investigated structures, and to suggest possible new routes for application purposes. In consideration of the extent of the theme, we have chosen to treat in this paper the results obtained within some of the most popular atomistic theoretical frameworks without any purpose of completeness. A significant part of this paper is dedicated to the hydrogen adsorption on C-based nanostructures for its obvious importance and the exceptional efforts devoted to it by the scientific community.

  6. Adsorption of Environmental Pollutants on Pillared Montmorillonite

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Both inorganic and organic pillared montmorillonites were used to adsorb phenol.Batch kinetics and isotherm studies were carried out to evaluate the effect of equilibrium time and pH on adsorption of phenol by montmorillouites and re-adsorbing characteristics of pillared montmorillonites.The adsorption of phenol increased with increasing solution pH values.The elimination ratio of phenol from the solution by the absorption of organic modified pillared montmorillonite (OrPMt) reached equilibrium quickly after vibrating for 5 minutes.Meanwhile for organic montmorillonite (OrMt),pillared montmorillouite (PMt) and montmorillonite (Mt),the time to reach phenol-absorption equilibrium were 20,30 and 90 minutes,respectively.The adsorbing capacity of the pillared montmorillonite modified with surfactant improved greatly.The phenol-adsorbing capacity of pillared montmorillonites mainly depended on microporous structure and surface component of the modified clays.After calcination at 500 ℃,the pillar structure and the basal spacing (1.83 nm) were still stable.So the pillared montmorillonite could be recycled,and it was a potential material for adsorbing environmental pollutants.

  7. Wetting and adsorption modification in the system

    Directory of Open Access Journals (Sweden)

    Yuliya Bogdanova

    2015-09-01

    Full Text Available Regularities of wetting and adsorption modification of surfaces of continual membranes made from highly permeable glassy polymers poly[1-(trimethylsilyl-1-propyne] (PTMSP and poly(4-methyl-2-pentyn (PMP with aqueous ethanol solutions and alcohol solutions containing organic dyes (Solvent Blue 35 and Remazol Brilliant Blue were investigated. Isotherms of stress wetting of polymer membrane surface by etanol solutions were found out to have maximums in the range of concentrations corresponding to the beginning of liquid sorption into the membrane and polymer swelling. Thus, the principal possibility of optimization of nanofiltration experiments by liquid wetting angle measurements on continuous polymer membrane surfaces was shown. The presence of the dye was shown not to affect PMP wetting. But in the case of PTMSP, it leads to shear of the maximum of stress wetting isotherms to the range of higher concentrations. It was found out the effectiveness of the adsorption surface modification of continuous polymer membrane surfaces by ethanol solutions containing dyes does not dependent on chemical nature of the dye. At the same time, there are different trends in the energy characteristics of the membrane surface.

  8. Adsorption of azo dyes on polymer materials

    Directory of Open Access Journals (Sweden)

    Panić Vesna V.

    2013-01-01

    Full Text Available The use of polymeric adsorbents for the removal of azo dyes from solution has been reviewed. Adsorption techniques are widely used to remove certain classes of pollutants from waters, especially those which are not easily biodegradable. The removal of azo dyes as pollutants from wastewaters of textile, paper, printing, leather, pharmaceutical and other industries has been addressed by the researchers. The wider use of already available adsorbents is restricted due to their high costs which lead to investigation and development of new materials that can be cheaper, eficient and easy regenerated. The aim of this article is to present to the readers the widespread investigations in recent years of synthetic and natural polymers as adsorbents and potential replacement of conventional adsorbents. This review presents only the data obtained using raw, hydrogel, grafted and crosslinked forms of synthetic and nature based polymers, and the discussion is limited to these polymer-based materials and their adsorption properties. [Projekat Ministarstva nauke Republike Srbije, br. 43009 i br. 172062.

  9. Adsorption capacity of hydrophobic SiO2 aerogel/activated carbon composite materials for TNT

    Institute of Scientific and Technical Information of China (English)

    ZHOU; XiaoFang; CUI; Sheng; LIU; Yu; LIU; XueYong; SHEN; XiaoDong; WU; ZhanWu

    2013-01-01

    The adsorption properties of TNT from wastewater by hydrophobic silica aerogel/activated carbon composite materials were investigated. The effects of adsorption time, pH value, adsorption temperature, and the amount of the composite materials on the adsorption rate were studied. The adsorption principle and mechanism of the composite materials were discussed along with the Freundlich equation. The results showed that the best adsorption rate of the hydrophobic silica aerogel/activated car-bon composite materials could reach 96.5% with adsorption conditions of adsorption temperature 25°C, pH value 7, the amount of SiO2aerogel dosage 3.33 g/L, and adsorption time of 120 min. The adsorption of hydrophobic SiO2aero-gel/activated carbon composite materials for TNT solution is mainly surface adsorption, and also has some chemical adsorp-tion when the aerogel hydrophobicity is modified.

  10. Arsenate Adsorption On Ruthenium Oxides: A Spectroscopic And Kinetic Investigation

    Science.gov (United States)

    Arsenate adsorption on amorphous (RuO2•1.1H2O) and crystalline (RuO2) ruthenium oxides was evaluated using spectroscopic and kinetic methods to elucidate the adsorption mechanism. Extended X-ray absorption fine structure spectroscopy (EXAFS) was ...

  11. Behavior of phenol adsorption on thermal modified activated carbon☆

    Institute of Scientific and Technical Information of China (English)

    Dengfeng Zhang; Peili Huo; Wei Liu

    2016-01-01

    Adsorption process is acknowledged as an effective option for phenolic wastewater treatment. In this work, the activated carbon (AC) samples after thermal modification were prepared by using muffle furnace. The phenol ad-sorption kinetics and equilibrium measurements were carried out under static conditions at temperature ranging from 25 to 55 °C. The test results show that the thermal modification can enhance phenol adsorption on AC samples. The porous structure and surface chemistry analyses indicate that the decay in pore morphology and decrease of total oxygen-containing functional groups are found for the thermal modified AC samples. Thus, it can be further inferred that the decrease of total oxygen-containing functional groups on the modified AC sam-ples is the main reason for the enhanced phenol adsorption capacity. For both the raw sample and the optimum modified AC sample at 900 °C, the pseudo-second order kinetics and Langmuir models are found to fit the exper-imental data very well. The maximum phenol adsorption capacity of the optimum modified AC sample can reach 144.93 mg·g−1 which is higher than that of the raw sample, i.e. 119.53 mg·g−1. Adsorption thermodynamics analysis confirms that the phenol adsorption on the optimum modified AC sample is an exothermic process and mainly via physical adsorption.

  12. Synthesis of magnetic wheat straw for arsenic adsorption

    International Nuclear Information System (INIS)

    Highlights: → This work provides a way for fabricating low-cost arsenic adsorbents using agro- or plant-residues. → The introduction of wheat straw template highly enhances the arsenic adsorption of Fe3O4. → This magnetic adsorbent can be separated and collected by magnetic control easily and rapidly. → This adsorbent can be regenerated. → - Abstract: Magnetic wheat straw (MWS) with different Fe3O4 content was synthesized by using in-situ co-precipitation method. It was characterized by powder X-ray diffraction (XRD) and vibrating sample magnetometer (VSM). This material can be used for arsenic adsorption from water, and can be easily separated by applied magnetic field. The introduction of wheat straw template highly enhanced the arsenic adsorption of Fe3O4. Among three adsorption isotherm models examined, the data fitted Langmuir model better. Fe3O4 content and initial pH value influenced its adsorption behavior. Higher Fe3O4 content corresponded to a higher adsorption capacity. In the pH range of 3-11, As(V) adsorption was decreased with increasing of pH; As(III) adsorption had the highest capacity at pH 7-9. Moreover, by using 0.1 mol L-1 NaOH aqueous solution, it could be regenerated. This work provided an efficient way for making use of agricultural waste.

  13. Lead adsorption capacities of different components in natural surface coatings

    Institute of Scientific and Technical Information of China (English)

    DONG De-ming; HUA Xiu-yi; LI Yu; JI Liang; ZHANG Jing-jing

    2004-01-01

    Pb adsorption capacities of Fe oxide, Mn oxide and organic materials in natural surface coatings( biofilms and associated minerals) collected in three lakes, two ponds and a river in Jilin Province, China and Cayuga Lake in US were studied. A novel extraction technique was employed to remove one or more component(s) from the surface coatings. Pb adsorption to surface coatings before and after extraction was performed to determine the adsorptive properties of the extracted component(s). The statistical analysis of observed Pb adsorption was carried out using nonlinear least squares fitting(NLSF) to estimate the Pb adsorption capacity of each component of surface coatings. For each body of water, the estimated Pb adsorption capacity of Mn oxide(mol Pb/mol Mn) was significantly higher than that of Fe oxide( mol Pb/ mol Fe). The value of estimated adsorption capacities of organic materials with the unit mol Pb per kg COD was similar to or less than that of Fe oxides with the unit mol Pb per mol Fe. Comparison of components of surface coatings in different waters showed that the estimated Pb adsorption capacities of components in surface coatings developed in different natural waters were different,especially for Mn oxides.

  14. Adsorption characteristics of thiobacillus ferrooxidans on surface of sulfide minerals

    Institute of Scientific and Technical Information of China (English)

    LIU Jian-she; XIE Xue-hui; LI Bang-mei; DONG Qing-hai

    2005-01-01

    By using thiobacillus ferrooxidans (T.f) from Qixiashan, Hubei Province, China, the adsorption characteristics of T.f on surface of sulfide mineral were studied. The influences of adsorption time, pH value, temperature, initial inoculated concentration of bacteria, concentration of sulfide mineral powder, and variety of minerals on the adsorption characteristics were firstly investigated by using the ninhydrin colorimetric method, and the changes of contact angles and Zeta potentials of mineral surface during the bacterial adsorption were then determined. The results show that when the leaching experiments are performed for a long time from several days to a month, the maximal quantity of adsorption of T.f on the surface of pyrite is obtained under the following conditions: leaching for 20 d, pH value in range of 1-2 and temperature at 30 ℃, respectively; when the bio-leaching experiments are performed for a shorter leaching time, the maximal quantity of adsorption is obtained under the conditions: bio-leaching for 2 h, at 2.4×10 7 cell/mL of initial inoculated bacteria concentration, and at 10% of mineral powder concentration; and the adsorption quantities are different form one sulfide mineral to another, and the adsorption of T.f on the surface of sulfide minerals includes three phases: increasing phase, stationary phase and decreasing phase.

  15. Influencing the selectivity of zeolite Y for triglycine adsorption

    NARCIS (Netherlands)

    Wijntje, R.; Bosch, H.; Haan, de A.B.; Bussmann, P.J.T.

    2007-01-01

    In prior work we studied the adsorption of triglycine on zeolite Y under reference conditions. This study aims to solve the question of which adsorbent properties and process conditions influence the adsorption triglycine from an aqueous solution by zeolite Y. Relevant zeolite parameters to study ar

  16. [Adsorption of perfluorooctanesulfonate (PFOS) onto modified activated carbons].

    Science.gov (United States)

    Tong, Xi-Zhen; Shi, Bao-You; Xie, Yue; Wang, Dong-Sheng

    2012-09-01

    Modified coal and coconut shell based powdered activated carbons (PACs) were prepared by FeCl3 and medium power microwave treatment, respectively. Batch experiments were carried out to evaluate the characteristics of adsorption equilibrium and kinetics of perfluorooctanesulfonate (PFOS) onto original and modified PACs. Based on pore structure and surface functional groups characterization, the adsorption behaviors of modified and original PACs were compared. The competitive adsorption of humic acid (HA) and PFOS on original and modified coconut shell PACs were also investigated. Results showed that both Fe3+ and medium power microwave treatments changed the pore structure and surface functional groups of coal and coconut shell PACs, but the changing effects were different. The adsorption of PFOS on two modified coconut shell-based PACs was significantly improved. While the adsorption of modified coal-based activated carbons declined. The adsorption kinetics of PFOS onto original and modified coconut shell-based activated carbons were the same, and the time of reaching adsorption equilibrium was about 6 hours. In the presence of HA, the adsorption of PFOS by modified PAC was reduced but still higher than that of the original. PMID:23243870

  17. Adsorption of azithromycin dehydrate at stationary mercury and solid electrode

    OpenAIRE

    Karbainov, Yu. A.; Puchkovskaya, E. S.; Karbainova, S. N.

    2007-01-01

    Adsorptive component in oxidation and renewal processes at different types of electrodes for antibiotic-macrolide azithromycin dihydrate has been studied. Adsorption parameters for azithromycin oxidation processes at glass-carbon electrode and for renewal processes at mercury-film electrode were calculated

  18. Adsorptive removal of PPCPs by biomorphic HAP templated from cotton.

    Science.gov (United States)

    Huang, Bin; Xiong, Dan; Zhao, Tingting; He, Huan; Pan, Xuejun

    2016-01-01

    Biomorphic nano-hydroxyapatite (HAP) was fabricated by a co-precipitation method using cotton as bio-templates and employed in adsorptive removal of ofloxacin (OFL) and triclosan (TCS) that are two representative pharmaceuticals and personal care products (PPCPs). The surface area and porosity, crystal phase, functional group, morphology and micro-structure of the synthesized HAP were characterized by Brunauer-Emmett-Teller isotherm, X-ray powder diffraction, Fourier transform infrared spectroscopy, scanning electron macroscopic and transmission electron microscopy. The effects of initial pH, ionic strength, initial concentration, contact time and temperature on the removal of PPCPs were studied in a batch experiment. The adsorption of OFL and TCS was rapid and almost accomplished within 50 min. Kinetic studies indicated that the adsorption process of OFL and TCS followed the pseudo-first-order and pseudo-second-order models, respectively. The Freundlich isotherm described the OFL adsorption process well but the adsorption of TCS fitted the Langmuir isotherm better. Thermodynamics and isotherm parameters suggested that both OFL and TCS adsorption were feasible and spontaneous. Hydrogen bond and Lewis acid-base reaction may be the dominating adsorption mechanism of OFL and TCS, respectively. Compared to other adsorbents, biomorphic HAP is environmentally friendly and has the advantages of high adsorption capacity, exhibiting potential application for PPCPs removal. PMID:27387006

  19. Adsorption of oleic acid at sillimanite/water interface.

    Science.gov (United States)

    Kumar, T V Vijaya; Prabhakar, S; Raju, G Bhaskar

    2002-03-15

    The interaction of oleic acid at sillimanite-water interface was studied by adsorption, FT-IR, and zeta potential measurements. The isoelectric point (IEP) of sillimanite obtained at pH 8.0 was found to shift in the presence of oleic acid. This shift in IEP was attributed to chemisorption of oleic acid on sillimanite. Adsorption experiments were conducted at pH 8.0, where the sillimanite surface is neutral. The adsorption isotherm exhibited a plateau around 5 micromol/m2 that correspond to a monolayer formation. Adsorption of oleic acid on sillimanite, alumina, and aluminum hydroxide was studied by FT-IR. Chemisorption of oleic acid on the above substrates was confirmed by FT-IR studies. Hydroxylation of mineral surface was found to be essential for the adsorption of oleic acid molecules. These surface hydroxyl sites were observed to facilitate deprotonation of oleic acid and its subsequent adsorption. Thus protons from oleic acid react with surface hydroxyl groups and form water molecules. Based on the experimental results, the mechanism of oleic acid adsorption on mineral substrate was proposed. Free energy of adsorption was estimated using the Stern-Graham equation for a sillimanite-oleate system. PMID:16290466

  20. Ion adsorption components in liquid/solid systems

    Institute of Scientific and Technical Information of China (English)

    WU Xiao-fu; HU Yue-li; ZHAO Fang; HUANG Zhong-zi; LEI Dian

    2006-01-01

    Experiments on Zn2+ and Cd2+ adsorptions on vermiculite in aqueous solutions were conducted to investigate the widely observed adsorbent concentration effect on the traditionally defined adsorption isotherm in the adsorbate range 25-500 mg/L and adsorbent range 10-150 g/L. The results showed that the equilibrium ion adsorption density did not correspond to a unique equilibrium ion concentration in liquid phase. Three adsorbate/adsorbent ratios, the equilibrium adsorption density, the ratio of equilibrium adsorbate concentration in liquid phase to adsorbent concentration, and the ratio of initial adsorbate concentration to adsorbent concentration, were found to be related with unique values in the tested range. Based on the assumption that the equilibrium state of a liquid/solid adsorption system is determined by four mutually related components: adsorbate in liquid phase, adsorbate in solid phase, uncovered adsorption site and covered adsorption site, and that the equilibrium chemical potentials of these components should be equalized, a new model was presented for describing ion adsorption isotherm in liquid/solid systems. The proposed model fit well the experimental data obtained from the examined samples.

  1. FEATURES OF ADSORPTION REFINING RAPESEED OIL DIATOMACEOUS ADSORBENTS

    Directory of Open Access Journals (Sweden)

    Stryzhenok A. A.

    2013-12-01

    Full Text Available The results of the studies of the effectiveness of diatomaceous bleached soil for the adsorption of rapeseed oil impurities are discussed. We have established that a mixture of diatomaceous bleached soil with activated carbon has a high degree of adsorption in relation to the pigments of rapeseed oil

  2. Propylene/propane mixture adsorption on faujasite sorbents

    NARCIS (Netherlands)

    Van Miltenburg, A.; Gascon, J.; Zhu, W.; Kapteijn, F.; Moulijn, J.A.

    2008-01-01

    The adsorption of propylene and propane on zeolite NaX with and without a saturated (36 wt%) amount of CuCl have been investigated. The single component adsorption isotherms could be well described with a Dual-Site Langmuir model. The dispersion of CuCl results in a decrease of the maximum adsorptio

  3. Ligand and ensemble effects in adsorption on alloy surfaces

    DEFF Research Database (Denmark)

    Liu, Ping; Nørskov, Jens Kehlet

    2001-01-01

    Density functional theory is used to study the adsorption of carbon monoxide, oxygen and nitrogen on various Au/Pd(111) bimetallic alloy surfaces. By varying the Au content in the surface we are able to make a clear separation into geometrical (or ensemble) effects and electronic (or ligand......) effects determining the adsorption properties....

  4. Adsorption of Pyrene onto the Agricultural By-Product: Corncob.

    Science.gov (United States)

    Li, Xiaojun; Tong, Dongli; Allinson, Graeme; Jia, Chunyun; Gong, Zongqing; Liu, Wan

    2016-01-01

    The adsorption behavior of pyrene on corncob was studied to provide a theoretical basis for the possible use of this material as an immobilized carrier for improving the bioremediation of PAH-contaminated soil. The results were as follows. Kinetic experiments showed that the adsorption processes obeyed a pseudo-second-order model. The intraparticle diffusion of Weber-Morris model fitting showed that the film and intraparticle diffusions were the key rate-limiting processes, and the adsorption process mainly consisted of three steps: boundary layer diffusion and two intra-particle diffusions. Experimental adsorption data for pyrene were successfully described by the adsorption-partition equilibrium model. The maximum adsorption capacity at 25°C was 214.8 μg g(-1). The adsorption contribution decreased significantly when the Ce/Sw (the equilibrium concentration/solubility in water) was higher than 1. Adsorption decreased with increased temperature. Based on the above results, the corncob particles could be helpful in the bioremediation of pyrene-contaminated soil.

  5. Derivation of the Freundlich Adsorption Isotherm from Kinetics

    Science.gov (United States)

    Skopp, Joseph

    2009-01-01

    The Freundlich adsorption isotherm is a useful description of adsorption phenomena. It is frequently presented as an empirical equation with little theoretical basis. In fact, a variety of derivations exist. Here a new derivation is presented using the concepts of fractal reaction kinetics. This derivation provides an alternative basis for…

  6. Lithium adsorption on amorphous aluminum hydroxides and gibbsite

    Directory of Open Access Journals (Sweden)

    Konstantinos P. Prodromou

    2016-01-01

    Full Text Available Lithium (Li adsorption on both amorphous aluminum hydroxides and gibbsite was studied. For the amorphous Al(OH3 the adsorption was found to be pH dependent. Generally, 1.6 times more Li was adsorbed at initial pH value 8.0 compared with pH value 6.50. Gibbsite adsorbed 11.6 to 45.5 times less Li quantities compared with amorphous Al(OH3. Lithium adsorption was not depended on equilibrium times. It remained stable for all equilibrium times used. Lithium quantities extracted with 1N CH3COONH4 pH 7 , represent the physical adsorption, while the remaining Li that was adsorbed on Al(OH3, represents the chemical adsorption. During the desorption process 19% of Li extracted with NH4+, represents the physical adsorption, while the remaining 81% of Li, which was adsorbed represents the chemical adsorption. In gibbsite, 9.6% of Li represents the physical adsorption and 90.4% the chemical one. The experimental data conformed well to Freundlich isotherm equation.

  7. EFFECT OF GAC CHARACTERISTICS ON ADSORPTION OF ORGANIC POLLUTANTS

    Science.gov (United States)

    The impact of the characteristics of granular activated carbon (GAC) on adsorption capacity and on the potential for polymerization of phenolic compounds on the surface of GAC in the presence of molecular oxygen is evaluated in this study. Adsorption isotherm data were collected...

  8. Mechanism of amitriptyline adsorption on Ca-montmorillonite (SAz-2).

    Science.gov (United States)

    Chang, Po-Hsiang; Jiang, Wei-Teh; Li, Zhaohui; Kuo, Chung-Yih; Jean, Jiin-Shuh; Chen, Wan-Ru; Lv, Guocheng

    2014-07-30

    The uptake of amitriptyline (AMI) from aqueous environment by Ca-montmorillonite (SAz-2) was studied in a batch system under different physicochemical conditions. The adsorbent was characterized by X-ray diffraction and Fourier transform infrared (FTIR) analyses. The AMI adsorption on SAz-2 obeyed the Langmuir isotherm with a capacity of 330mg/g (1.05mmol/g) at pH 6-7. The adsorption kinetics was fast, almost reaching equilibrium in 2h, and followed a pseudo-second-order kinetic model. Desorption of exchangeable cations correlated with the AMI adsorption well, indicating that cation exchange was the major mechanism. X-ray diffraction patterns showing significant expansions of the d001 spacing and characteristic FTIR band shifts toward higher frequencies after AMI adsorption onto SAz-2 indicated that the adsorbed AMI molecules were intercalated into the interlayers of the mineral. Thermodynamic parameters based on partitioning coefficients suggested that the AMI adsorption was an endothermic physisorption at high adsorption levels. At low and higher AMI adsorption levels, the intercalated AMI molecules take a horizontal monolayer and bilayer conformation, respectively. The higher adsorption capacity suggested that SAz-2 could be a good candidate to remove AMI from wastewater and would be an important environmental sink for the fate and transport of AMI in soils and groundwater. PMID:24373983

  9. Adsorption Characteristics of Polyvinyl Alcohols in Solution on Expanded Graphite

    Directory of Open Access Journals (Sweden)

    Xiu-Yan Pang

    2012-01-01

    Full Text Available Expanded graphite (EG adsorbent was prepared with 50 mesh graphite as raw materials, potassium permanganate as oxidant, and vitriol as intercalation compound. Three kinds of polyvinyl alcohol (PVA with different degree of polymerization (DP in aqueous solution were used as adsorbates. We have studied the influence of initial PVA concentration, temperature and ionic strength on adsorption capacity. Langmuir constants and Gibbs free energy change (⊿G° were calculated according to experimental data respectively. Thermodynamic analysis indicates the equilibrium adsorbance of PVA on EG increase with the rise of SO42– concentration. Adsorption isotherms of PVA with different degree of polymerization are all types and we deduce PVA molecules lie flat on EG surface. Adsorption processes are all spontaneous. Kinetic studies show that the kinetic data can be described by pseudo second-order kinetic model. Second-order rate constants and the initial adsorption rate rise with the increasing of temperature and half-adsorption time decreases with the increasing of temperature. The adsorption activation energy of each PVA is less than 20 kJ•mol−1, physical adsorption is the major mode of the overall adsorption process.

  10. Ivestigation of uranium adsorption by using coconut shell

    International Nuclear Information System (INIS)

    At the present study, we investigated the basic features of uranium uptake from dilute aqueous solution by using coconut shell and the effect of uranium on this adsorption phenomena. It has also been shown that the adsorption of uranium was affected with some factors such as pH, uranium concentration, and contact time

  11. Adsorption of a multicomponent rhamnolipid surfactant to soil

    Energy Technology Data Exchange (ETDEWEB)

    Noordmann, W.H.; Brusseau, M.L.; Janssen, D.B.

    2000-03-01

    The adsorption of rhamnolipid, a multicomponent biosurfactant with potential application in soil remediation, to two sandy soils was investigated using batch and column studies. The surfactant mixture contained six anionic components differing in lipid chain length and number of rhamnose moieties. Batch adsorption experiments indicated that the overall adsorption isotherms of total surfactant and of the individual components leveled off above a concentration at which micelles were formed. Column experiments showed that the retardation factors for the total surfactant and for the individual components decreased with increasing influent concentration. Extended tailing was observed in the distal portion of the surfactant breakthrough curve. The concentration-dependent retardation factors and the extended tailing are in accordance with the nonlinear (concave) adsorption isotherms found in the batch adsorption studies. The more hydrophobic rhamnolipid components were preferentially adsorbed, but adsorption was not correlated with the organic carbon content of the soil. This suggests that adsorption of rhamnolipid to soil is not a partitioning process but mainly an interfacial adsorption process.

  12. Molecular simulations in microporous materials: adsorption and separation

    NARCIS (Netherlands)

    Castillo, J.M.

    2010-01-01

    The adsorption of water on hydrophobic zeolites such as silicalite and on hydrophilic MOF (metal-organic framework), Cu-BTC, is completely different, as described in chapters 2 and 4. While in hydrophobic materials water adsorption isotherms are very steep and difficult to measure, both experimental

  13. HYDROGEN BONDING IN POLYMERIC ADSORBENTS BASED ADSORPTION AND SEPARATION

    Institute of Scientific and Technical Information of China (English)

    XUMancai; SHIZuoqing; 等

    2000-01-01

    After a concise introduction of hydrogen bonding effects in solute-solute and solute-solvent bonding,the design of polymeric adsorbents based on hydrogen bonding ,selectivity in adsorption through hydrogen bonding,and characterization of hydrogen bonding in adsorption and separation were reviewed with 28 references.

  14. Adsorption of Fluoride Ion by Inorganic Cerium Based Adsorbent

    Institute of Scientific and Technical Information of China (English)

    Jiao Zhongzhi(焦中志); Chen Zhonglin; Yang Min; Zhang Yu; Li Guibai

    2004-01-01

    Excess of fluoride in drinking water is harmful to human health, the concentration of F- ions must be maintained in the range of 0.5 to 1.5 mg/L. An inorganic cerium based adsorbent (CTA) is developed on the basis of research of adsorption of fluoride on cerium oxide hydrate. Some adsorption of fluoride by CTA adsorbent experiments were carried out, and results showed that CTA adsorbent has a quick adsorption speed and a large adsorption capacity. Adsorption follows Freundlich isotherm, and low pH value helps fluoride removal. Some physical-chemical characteristics of CTA adsorbent were experimented, fluoride removal mechanism was explored, and results showed that hydroxyl group of CTA adsorbent played an important role in the fluoride removal.

  15. ADSORPTION OF DINITROPHENOLS ONTO POLYMERIC ADSORBENTS AND ITS MECHANISM

    Institute of Scientific and Technical Information of China (English)

    SHIZuoqing; XUMancai; 等

    2000-01-01

    The adsorption of 2,4-dinitrophenol and 2,6-dinitrophenol on non-polar and polar adsorbents was studied.The results showed that the equilibrium adsorption did not comply with the Langmuir equation and was not mono-layer adsorption .It is of interest to notice that the effect of pH on the adsorption of 2,4-or 2,6-dinitrophenol onto ADS-7 and ADS-21 was very small,The result is explained by hydrogen bonding interaction between 2,4-or 2,6-dinitrophenol and the adsorbent ADS-21.The large adsorption capacity of dinitrophenol onto ADS-21,which was about 500mg/g at an equilibrium concentration of 400mg/L,and the small dinitrophenol leakage in the effluent from ADS-21 column presented a good prospect for treatment of wastewater containing dinitrophenol with adsorbent ADS-21.

  16. Batch and continuous adsorption of strontium by plant root tissues

    Energy Technology Data Exchange (ETDEWEB)

    Jyhping Chen [Chang Gung Coll. of Medicience and Technology, Taoyuan, Taiwan (China). Dept. of Chemical Engineering

    1997-06-01

    Strontium (Sr) ions in aqueous solutions could be adsorbed by root tissue powders of Amaranthus spinosus, a common weed found in the fields. The adsorption isotherm could be fitted by either the Langmuir or the Freundlich model with the maximum adsorption capacity being 12.89 mg/g from the Langmuir isotherm. The maximum adsorption capacity of the biosorbent decreased with increasing temperature, whereas alkaline pretreatment enhanced the adsorption capacity 1.9 fold. Alginate gel beads (1 mm diameter) containing the root tissue powders were prepared and packed in a column for continuous adsorption/desorption of Sr in solution. Efficient desorption of Sr could be carried out with 0.1 M CaCl{sub 2} to give a concentrated Sr solution with 94% recovery. (author).

  17. Adsorption calorimetry of conjugated organic molecules on metal surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Lytken, Ole; Drescher, Hans-Joerg; Bebensee, Fabian; Steinrueck, Hans-Peter; Gottfried, J. Michael [Universitaet Erlangen-Nuernberg, Lehrstuhl fuer Physikalische Chemie II (Germany)

    2011-07-01

    Traditional experimental methods for determining adsorption energies, such as temperature programmed desorption (TPD) and equilibrium adsorption isotherms, rely on desorption. However, on many metal surfaces large conjugated organic molecules, such as PTCDA and pentacene, decompose at elevated temperatures before or simultaneously with desorption. Discussions about relative bond strengths are, therefore, typically based on indirect arguments, such as the height of the adsorbed species above the surface as measured with normal incidence X-ray standing waves (NIXSW) or chemical shifts in spectroscopic techniques such as X-ray photoelectron spectroscopy (XPS). Unlike the more traditional methods, nanojoule adsorption calorimetry does not require desorption of the molecules; instead, the heat of adsorption is measured directly as an adsorption-induced temperature change of the sample. We will describe the construction of such a calorimeter at the Universitaet Erlangen-Nuernberg.

  18. ADSORPTION OF ATRAZINE ON SELECTED VERTISOLS AND ALFISOLS

    Directory of Open Access Journals (Sweden)

    K.V. Naga Madhuri

    2012-08-01

    Full Text Available Adsorption of atrazine was studied on two Vertisols and two Alfisols varying in their physico-chemical properties. Soils were equilibrated with various concentrations of atrazine using batch techniques.Adsorption affinity for atrazine was approximated by Freundlich constant (Kf, which is a measure of the strength ordegree of adsorption. Kdvalues were calculated for atrazine despite some non-linearity in adsorption on bothVertisols and Alfisols. The Kdvalues are greater for Vertisols than Alfisols and increased with organic carboncontent. Correlations were worked out between extent of adsorption and soil properties and were positivelycorrelated with organic carbon (r = 0.688, clay content ( r = 0.712 and clay + organic carbon (r = 0.708. KOCvalues were calculated taking into account the organic carbon content for both Vertisols and Alfisols

  19. Cadmium adsorption in montmorillonite as affected by glyphosate

    Institute of Scientific and Technical Information of China (English)

    WANG Yu-jun; ZHOU Dong-mei; LUO Xiao-san; SUN Rui-juan; CHEN Huai-man

    2004-01-01

    Behaviors of soil heavy metals are often affected by coexisting herbicides due to their physical and chemical interaction. Effect of glyphosate, an herbicide containing -PO32- and -COOH groups, on cadmium adsorption in montmorillonite was studied in detail. The results showed that cadmium adsorption quantity in montmorillonite increased with increasing soil solution pH and cadmium concentration as usual, but decreased with glyphosate, which is due to the formation of a low affinity complex of Cd and glyphosate and decreasing solution pH induced by glyphosate addition. When the equilibrium solution pH was below 6.7, glyphosate has little effect on cadmium adsorption, but when the equilibrium solution pH was above 6.7, glyphosate significantly decreased cadmium adsorption quantity in montmorillonite. In addition, the adding order of Cd and glyphosate also influenced Cd adsorption quantity in montmorillonite.

  20. Adsorption studies of iron(III) on chitin

    Indian Academy of Sciences (India)

    G Karthikeyan; N Muthulakshmi Andal; K Anbalagan

    2005-11-01

    Adsorption of ferric ions by chitin was studied by the batch equilibration method. The influence of particle size and dosage of the adsorbant, contact time, initial concentration of the adsorbate and temperature were experimentally verified. The effect of anions like chloride, nitrate and sulphate and also of cations like zinc, chromium and copper on the adsorption of iron(III) was determined. The time dependence of fraction of adsorption, , at varying particle sizes and doses of chitin and the intraparticle diffusion rate constants, , of the adsorption process were calculated. Thermodynamic and equilibrium parameters of the reaction were determined to understand the sorption behaviour of chitin. The results revealed that the adsorption of iron(III) by chitin is spontaneous, endothermic and favourable.

  1. An Adsorption Equilibria Model for Steady State Analysis

    KAUST Repository

    Ismail, Azhar Bin

    2016-02-29

    The investigation of adsorption isotherms is a prime factor in the ongoing development of adsorption cycles for a spectrum of advanced, thermally-driven engineering applications, including refrigeration, natural gas storage, and desalination processes. In this work, a novel semi-empirical mathematical model has been derived that significantly enhances the prediction of the steady state uptake in adsorbent surfaces. This model, a combination of classical Langmuir and a novel modern adsorption isotherm equation, allows for a higher degree of regression of both energetically homogenous and heterogeneous adsorbent surfaces compared to several isolated classical and modern isotherm models, and has the ability to regress isotherms for all six types under the IUPAC classification. Using a unified thermodynamic framework, a single asymmetrical energy distribution function (EDF) has also been proposed that directly relates the mathematical model to the adsorption isotherm types. This fits well with the statistical rate theory approach and offers mechanistic insights into adsorption isotherms.

  2. Batch and continuous adsorption of strontium by plant root tissues

    International Nuclear Information System (INIS)

    Strontium (Sr) ions in aqueous solutions could be adsorbed by root tissue powders of Amaranthus spinosus, a common weed found in the fields. The adsorption isotherm could be fitted by either the Langmuir or the Freundlich model with the maximum adsorption capacity being 12.89 mg/g from the Langmuir isotherm. The maximum adsorption capacity of the biosorbent decreased with increasing temperature, whereas alkaline pretreatment enhanced the adsorption capacity 1.9 fold. Alginate gel beads (1 mm diameter) containing the root tissue powders were prepared and packed in a column for continuous adsorption/desorption of Sr in solution. Efficient desorption of Sr could be carried out with 0.1 M CaCl2 to give a concentrated Sr solution with 94% recovery. (author)

  3. High capacity adsorption media and method of producing

    Science.gov (United States)

    Tranter, Troy J.; Mann, Nicholas R.; Todd, Terry A.; Herbst, Ronald S.

    2010-10-05

    A method of producing an adsorption medium to remove at least one constituent from a feed stream. The method comprises dissolving and/or suspending at least one metal compound in a solvent to form a metal solution, dissolving polyacrylonitrile into the metal solution to form a PAN-metal solution, and depositing the PAN-metal solution into a quenching bath to produce the adsorption medium. The at least one constituent, such as arsenic, selenium, or antimony, is removed from the feed stream by passing the feed stream through the adsorption medium. An adsorption medium having an increased metal loading and increased capacity for arresting the at least one constituent to be removed is also disclosed. The adsorption medium includes a polyacrylonitrile matrix and at least one metal hydroxide incorporated into the polyacrylonitrile matrix.

  4. Influence of Metals on Lindane Adsorption onto Pine Bark

    International Nuclear Information System (INIS)

    Some persistent pesticides, as organochlorines, are not efficiently removed from usual wastewater treatment plants, unless a tertiary treatment, commonly activated carbon adsorption, is applied. The downside of this practice rests on its high regeneration costs. This fact motivated the research for alternative processes involving the use of natural materials. Pine bark was used in this work, to remove lindane from contaminated waters. The adsorptive capabilities of this material were studied (equilibrium time, adsorption model and saturation of the adsorbent) and the interference of some metals (iron, cadmium, copper, nickel and lead) was also investigated. Results showed an excellent efficiency of adsorption (average 80,65%) and that the presence of the studied metals did not affect both efficiency and the model of the adsorption, within the range of the concentration of the pesticide studied

  5. Modeling adsorption of binary and ternary mixtures on microporous media

    DEFF Research Database (Denmark)

    Monsalvo, Matias Alfonso; Shapiro, Alexander

    2007-01-01

    The goal of this work is to analyze the adsorption of binary and ternary mixtures on the basis of the multicomponent potential theory of adsorption (MPTA). In the MPTA, the adsorbate is considered as a segregated mixture in the external potential field emitted by the solid adsorbent. This makes...... it possible using the same equation of state to describe the thermodynamic properties of the segregated and the bulk phases. For comparison, we also used the ideal adsorbed solution theory (IAST) to describe adsorption equilibria. The main advantage of these two models is their capabilities to predict...... multicomponent adsorption equilibria on the basis of single-component adsorption data. We compare the MPTA and IAST models to a large set of experimental data, obtaining reasonable good agreement with experimental data and high degree of predictability. Some limitations of both models are also discussed....

  6. Fenhexamid adsorption behavior on soil amended with wine lees.

    Science.gov (United States)

    Pinna, Maria Vittoria; Budroni, Marilena; Farris, Giovanni Antonio; Pusino, Alba

    2008-11-26

    The adsorption of fenhexamid (FEN) [N-(2,3-dichloro-4-hydroxyphenyl)-1-methylcyclohexanecarboxamide] on vineyard soil amended with wine lees (WL) produced by vinery was studied. The adsorption extent depends on WL fraction. The addition of the centrifuged solid lees (SWL) increases the FEN adsorption on soil. Most likely, the organic insoluble fraction formed mainly by dead fermentation yeasts is responsible for the observed increase. The adsorption measured on some deactivated yeasts of wine fermentation shows that Saccharomyces cerevisiae are the most active in FEN retention. On the other hand, the soil amendment with whole WL decreases considerably the fungicide adsorption. This opposite effect may be the result of FEN hydrophobic bonds with the dissolved organic matter of lees that keeps fungicide in solution. This hypothesis is substantiated by the increased FEN solubility in the supernatant of centrifuged wine lees (LWL). The results of soil column mobility confirm that the elution with LWL increases the mobility of FEN in soil.

  7. Adsorption Cooling System Using Metal-Impregnated Zeolite-4A

    Directory of Open Access Journals (Sweden)

    Somsuk Trisupakitti

    2016-01-01

    Full Text Available The adsorption cooling systems have been developed to replace vapor compression due to their benefits of being environmentally friendly and energy saving. We prepared zeolite-4A and experimental cooling performance test of zeolite-water adsorption system. The adsorption cooling test-rig includes adsorber, evaporator, and condenser which perform in vacuum atmosphere. The maximum and minimum water adsorption capacity of different zeolites and COP were used to assess the performance of the adsorption cooling system. We found that loading zeolite-4A with higher levels of silver and copper increased COP. The Cu6%/zeolite-4A had the highest COP at 0.56 while COP of zeolite-4A alone was 0.38. Calculating the acceleration rate of zeolite-4A when adding 6% of copper would accelerate the COP at 46%.

  8. Dynamics of polydisperse irreversible adsorption: a pharmacological example

    CERN Document Server

    Erban, R; Fisher, K D; Kevrekidis, Yu G; Seymour, L W; Chapman, Jonathan; Erban, Radek; Fisher, Kerry D.; Kevrekidis, Ioannis G.; Seymour, Leonard W.

    1999-01-01

    Many drug delivery systems suffer from undesirable interactions with the host immune system. It has been experimentally established that covalent attachment (irreversible adsorption) of suitable macromolecules to the surface of the drug carrier can reduce such undesirable interactions. A fundamental understanding of the adsorption process is still lacking. In this paper, the classical random irreversible adsorption model is generalized to capture certain essential processes involved in pharmacological applications, allowing for macromolecules of different sizes, partial overlapping of the tails of macromolecules, and the influence of reactions with the solvent on the adsorption process. Working in one dimension, an integro-differential evolution equation for the adsorption process is derived and the asymptotic behaviour of the surface area covered and the number of molecules attached to the surface is studied. Finally, equation-free dynamic renormalization tools are applied to study the asymptotically self-si...

  9. Preparation and adsorption properties of macroporous tannin resins

    Institute of Scientific and Technical Information of China (English)

    Zhang Li-ping; Du Jie; Liu Jian

    2006-01-01

    In this paper, a new kind of adsorption resin with multi-phenolic hydroxyl was created by immobilizing black wattle bark tannins to chloromethyl polystyrene resin. Its adsorption capacity to cation dye was tested. With an orthogonal test the optimal conditions of synthesis were determined: the concentration of sodium hydroxide solution 1.0 mol·L-1; the reaction time is one hour and the mass concentration of tannins 5%. With single factorial experiment the optimal conditions of adsorption were confirmed: a solidified pH of 5.0; an adsorption temperature of 25℃ and a cation dye concentration of 100 mg·L-1. The adsorption for cation dye can be similar to Langmuir isotherms.

  10. Adsorption of hexavalent chromium by graphite–chitosan binary composite

    Indian Academy of Sciences (India)

    RAJENDRA S DONGRE

    2016-06-01

    Graphite chitosan binary (GCB) composite was prepared for hexavalent chromium adsorption from studied water. GCB was characterized by TGA, FTIR, SEM and X-ray diffraction techniques.Wide porous sorptive surface of 3.89 m$^2$ g$^{−1}$ and absorptive functionalities of GCB was due to 20% (w/w) graphite support on chitosan evidenced from FTIR and SEM that impart maximum adsorption at pH 4, agitation with 200 rpm for 180 min. Adsorption studies revealed intraparticle diffusion models and best-fitted kinetics was pseudo 2nd order one. A wellfitted Langmuir isotherm model suggested monolayer adsorption with an adsorption capacity ($q_m$) of 105.6 mg g$^{−1}$ and $R^2 = 0.945$. Sorption mechanisms based on metal ionic interactions, intrusion/diffusion and chemisorptions onto composite. This graphite chitosan binary composite improve sorbent capacity for Cr(VI).

  11. Hydrogen Adsorption on Pt, Rh and Pt-Rh Electrodes

    Institute of Scientific and Technical Information of China (English)

    贾梦秋; A.M.Meretskyi

    2005-01-01

    The hydrogen adsorption on Pt-Rh alloys in sulfuric acid aqueous solutions was studied by the method of cathode pulses. Hydrogen adsorption on the electrode with all ratio of alloy components (ωRh = 0-100%) is well described by the Temkin logarithmic isotherm. The surface coverage by adsorbed hydrogen at the same potential is decreased with increasing content of rhodium in the system. A linear dependence of adsorption peak potential on the alloy compositions in the case of weakly bonded adsorbed hydrogen is established. Hydrogen adsorption heat as a function of surface coverage for Pt-Rh-electrodes was obtained. The shape of the current-potential curve and position of the weakly bonded hydrogen adsorption on the potential scale are all related to alloy compositions, thus can serve as the basis for the determination surface composition of allovs.

  12. Phase 2 Methyl Iodide Deep-Bed Adsorption Tests

    Energy Technology Data Exchange (ETDEWEB)

    Soelberg, Nick [Idaho National Lab. (INL), Idaho Falls, ID (United States); Watson, Tony [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2014-09-01

    Nuclear fission produces fission products (FPs) and activation products, including iodine-129, which could evolve into used fuel reprocessing facility off-gas systems, and could require off-gas control to limit air emissions to levels within acceptable emission limits. Research, demonstrations, and some reprocessing plant experience have indicated that diatomic iodine can be captured with efficiencies high enough to meet regulatory requirements. Research on the capture of organic iodides has also been performed, but to a lesser extent. Several questions remain open regarding the capture of iodine bound in organic compounds. Deep-bed methyl iodide adsorption testing has progressed according to a multi-laboratory methyl iodide adsorption test plan. This report summarizes the second phase of methyl iodide adsorption work performed according to this test plan using the deep-bed iodine adsorption test system at the Idaho National Laboratory (INL), performed during the second half of Fiscal Year (FY) 2014. Test results continue to show that methyl iodide adsorption using AgZ can achieve total iodine decontamination factors (DFs, ratios of uncontrolled and controlled total iodine levels) above 1,000, until breakthrough occurred. However, mass transfer zone depths are deeper for methyl iodide adsorption compared to diatomic iodine (I2) adsorption. Methyl iodide DFs for the Ag Aerogel test adsorption efficiencies were less than 1,000, and the methyl iodide mass transfer zone depth exceeded 8 inches. Additional deep-bed testing and analyses are recommended to (a) expand the data base for methyl iodide adsorption under various conditions specified in the methyl iodide test plan, and (b) provide more data for evaluating organic iodide reactions and reaction byproducts for different potential adsorption conditions.

  13. Carbon monoxide adsorptive capability of low rank coal's maceral

    Institute of Scientific and Technical Information of China (English)

    WANG Yue-hong; GUO Li-wen; ZHANG Jiu-ling

    2008-01-01

    The centrifugal separation with gravity experiment was made for getting every pure macerals like inertinite and vitrinite,and the isothermal adsorption tests of pure maceral are carried out at 30,40,50,55,60,65 ℃,respectively,after analyzing the proximate,element and maceral of coal samples,which was aimed to study the CO adsorptive capability of every maceral of low rank coal at difference temperature and pressure.The results show that the adsorption isotherm of CO can be described by Langmuir equation because it belongs to the Type I adsorption isotherm at low temperature(T≤50 ℃),and the temperature effect on coal adsorption is greater than of pressure in lower temperature and pressure area; what's more,the relationship is linear between the coal adsorption quantity of CO and the pressure at high temperature(T>50 ℃),it can be described by Henry equation(Q=KP),which increases with pressure.Both temperature and pressure has great influence on CO adsorptive capability of low rank coals,especially the temperature's effect is so very complex that the mechanism need to study further.At the same time,the volatile matter,inertinite,oxygen-function groups and negative functional groups are high populady in low rank coal samples,especially,the content of hydroxide(--OH) has great influence on CO adsorption in that the inertinite has stronger effect than vitrinite on adsorptive capability of low rank coal samples,the result is same to the research on CH4 adsorption.

  14. Carbon monoxide adsorptive capability of low rank coal's maceral

    Institute of Scientific and Technical Information of China (English)

    WANG Yue-hong; GUO Li-wen; ZHANG Jiu-ling

    2008-01-01

    The centrifugal separation with gravity experiment was made for getting every pure macerals like inertinite and vitrinite, and the isothermal adsorption tests of pure mac-eral are carried out at 30, 40, 50, 55, 60, 65 ~C, respectively, after analyzing the proximate, element and maceral of coal samples, which was aimed to study the CO adsorptive capa-bility of every maceral of low rank coal at difference temperature and pressure. The results show that the adsorption isotherm of CO can be described by Langmuir equation because it belongs to the Type I adsorption isotherm at low temperature(T≤50 ℃), and the tem-perature effect on coal adsorption is greater than of pressure in lower temperature and pressure area; what's more, the relationship is linear between the coal adsorption quantity of CO and the pressure at high temperature(T>50 ℃), it can be described by Henry equation(Q=KP), which increases with pressure. Both temperature and pressure has great influence on CO adsorptive capability of low rank coals, especially the temperature's effect is so very complex that the mechanism need to study further. At the same time, the volatile matter, inertinite, oxygen-function groups and negative functional groups are high popu-larly in low rank coal samples, especially, the content of hydroxide(-OH) has great influ-ence on CO adsorption in that the inertinite has stronger effect than vitrinite on adsorptive capability of low rank coal samples, the result is same to the research on CH4 adsorption.

  15. HYDROGEN SULFIDE ADSORPTION BY ALKALINE IMPREGNATED COCONUT SHELL ACTIVATED CARBON

    Directory of Open Access Journals (Sweden)

    HUI SUN CHOO

    2013-12-01

    Full Text Available Biogas is one type of renewable energy which can be burnt to produce heat and electricity. However, it cannot be burnt directly due to the presence of hydrogen sulfide (H2S which is highly corrosive to gas engine. In this study, coconut shell activated carbon (CSAC was applied as a porous adsorbent for H2S removal. The effect of amount of activated carbon and flow rate of gas stream toward adsorption capacity were investigated. Then, the activated carbons were impregnated by three types of alkaline (NaOH, KOH and K2CO3 with various ratios. The effects of various types of alkaline and their impregnation ratio towards adsorption capacity were analysed. In addition, H2S influent concentration and the reaction temperature on H2S adsorption were also investigated. The result indicated that adsorption capacity increases with the amount of activated carbon and decreases with flow rate of gas stream. Alkaline impregnated activated carbons had better performance than unimpregnated activated carbon. Among all impregnated activated carbons, activated carbon impregnated by K2CO3 with ratio 2.0 gave the highest adsorption capacity. Its adsorption capacity was 25 times higher than unimpregnated activated carbon. The result also indicated that the adsorption capacity of impregnated activated carbon decreased with the increment of H2S influent concentration. Optimum temperature for H2S adsorption was found to be 50˚C. In this study, the adsorption of H2S on K2CO3 impregnated activated carbon was fitted to the Langmuir isotherm. The fresh and spent K2CO3 impregnated activated carbon were characterized to study the adsorption process.

  16. Correlation between Cr~(6+) and Mn~(2+) Adsorption in Rock-soil Medium with Combined Pollution

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    [Objective] The aim was to study the correlation between Cr6+ and Mn2+ adsorption in rock-soil medium with combined pollution. [Method] Combining single Cr6+ and Mn2+ adsorption test with combined pollution test, the adsorption laws of Cr6+ and Mn2+ were studied, and the correlation between Cr6+ and Mn2+ adsorption was analysed by using correlation analysis and regression analysis. [Result] According to the comparative analysis on adsorption tests, the adsorption time, adsorption amount and adsorption speed...

  17. Treatment of Textile Wastewaterby Adsorption and Coagulation

    Directory of Open Access Journals (Sweden)

    Himanshu Patel

    2010-01-01

    Full Text Available The composite of wastewater treatment was carried out using activated charcoal as adsorbent to remove COD, BOD, color in which various parameters like adsorbent dose, contact duration, temperature and agitator speed were considered. The adsorbent behavior can be explained on the basis of Freundlich and Langmuir adsorption isotherm model. Maximum removal (87.6, 81.0 and 90.0% of COD, BOD and color respectively was found at adsorbent dosage of 11 g/L. Also, the textile mill wastewater was treated with different doses of coagulants like alum, ferric sulphate and ferrous sulphate at constant contact duration (4 hours and room temperature (300 K. Percentage reduction (maximum corresponds to 80.2, 74.0 and 84.9% was obtained for removal of COD, BOD and color respectively.

  18. Optimization of adsorptive immobilization of alcohol dehydrogenases.

    Science.gov (United States)

    Trivedi, Archana; Heinemann, Matthias; Spiess, Antje C; Daussmann, Thomas; Büchs, Jochen

    2005-04-01

    In this work, a systematic examination of various parameters of adsorptive immobilization of alcohol dehydrogenases (ADHs) on solid support is performed and the impact of these parameters on immobilization efficiency is studied. Depending on the source of the enzymes, these parameters differently influence the immobilization efficiency, expressed in terms of residual activity and protein loading. Residual activity of 79% was achieved with ADH from bakers' yeast (YADH) after optimizing the immobilization parameters. A step-wise drying process has been found to be more effective than one-step drying. A hypothesis of deactivation through bubble nucleation during drying of the enzyme/glass bead suspension at low drying pressure (300% residual activity was found after drying. Hyperactivation of the enzyme is probably caused by structural changes in the enzyme molecule during the drying process. ADH from Thermoanaerobacter species (ADH T) is found to be stable under drying conditions (>15 kPa) in contrast to LBADH and YADH.

  19. Boron adsorption on hematite and clinoptilolite

    International Nuclear Information System (INIS)

    This thesis describes experiments performed to determine the suitability of boron as a potential reactive tracer for use in saturated-zone C-well reactive tracer studies for the Yucca Mountain Project (YMP). Experiments were performed to identify the prevalent sorption mechanism of boron and to determine adsorption of boron on hematite and clinoptilolite as a function of pH. These minerals are present in the Yucca Mountain tuff in which the C-well studies will be conducted. Evaluation of this sorption mechanism was done by determining the equilibration time of boron-mineral suspensions, by measuring changes in equilibrium to titrations, and by measuring electrophoretic mobility. Experiments were performed with the minerals suspended in NaCl electrolytes of concentrations ranging from 0.1 N NaCl to 0.001 N NaCl. Experimentalconditions included pH values between 3 and 12 and temperature of about 38 degrees C

  20. Operational strategy of adsorption desalination systems

    KAUST Repository

    Thu, Kyaw

    2009-03-01

    This paper presents the performances of an adsorption desalination (AD) system in two-bed and four-bed operational modes. The tested results are calculated in terms of key performance parameters namely, (i) specific daily water production (SDWP), (ii) cycle time, and (iii) performance ratio (PR) for various heat source temperatures, mass flow rates, cycle times along with a fixed heat sink temperature. The optimum input parameters such as driving heat source and cycle time of the AD cycle are also evaluated. It is found from the present experimental data that the maximum potable water production per tonne of adsorbent (silica gel) per day is about 10 m3 whilst the corresponding performance ratio is 0.61, and a longer cycle time is required to achieve maximum water production at lower heat source temperatures. This paper also provides a useful guideline for the operational strategy of the AD cycle. © 2008 Elsevier Ltd. All rights reserved.

  1. REMOVAL OF COPPER ELECTROLYTE CONTAMINANTS BY ADSORPTION

    Directory of Open Access Journals (Sweden)

    B Gabai

    1997-09-01

    Full Text Available Abstract - Selective adsorbents have become frequently used in industrial processes. Recent studies have shown the possibility of using adsorption to separate copper refinery electrolyte contaminants, with better results than those obtained with conventional techniques. During copper electrorefinning, many impurities may be found as dissolved metals present in the anode slime which forms on the electrode surface, accumulated in the electrolyte or incorporated into the refined copper on the cathode by deposition. In this study, synthetic zeolites, chelating resins and activated carbons were tested as adsorbents to select the best adsorbent performance, as well as the best operating temperature for the process. The experimental method applied was the finite bath, which consists in bringing the adsorbent into contact with a finite volume of electrolyte while controlling the temperature. The concentration of metals in the liquid phase was continuously monitored by atomic absorption spectrophotometry (AAS

  2. Ammonia Process by Pressure Swing Adsorption

    Energy Technology Data Exchange (ETDEWEB)

    Dr Felix Jegede

    2010-12-27

    The overall objective of the project is to design, develop and demonstrate a technically feasible and commercially viable system to produce ammonia along with recovery of the products by adsorption separation methods and significantly decrease the energy requirement in ammonia production. This is achieved through a significantly more efficient ammonia psa recovery system. The new ammonia recovery system receives the reactor effluents and achieves complete ammonia recovery, (which completely eliminates the energy intensive refrigeration and condensation system currently used in ammonia production). It also recovers the unused reactants and recycles them back to the reactor, free of potential reactor contaminants, and without the need for re-compression and re-heat of recycle stream thereby further saving more energy. The result is a significantly lower energy consumption, along with capital cost savings.

  3. Adsorption Studies of Radish Leaf Powder

    Directory of Open Access Journals (Sweden)

    Ankita

    2016-01-01

    Full Text Available Radish leaves (Raphanus sativus powder fractions was subjected to moisture adsorption isotherms at different isothermal temperature conditions from 15-45°C with an equal interval of 10°C. The sorption data obtained in gravimetric static method under 0.11–0.90 water activity conditions were subjected for sorption isotherms and found to be typical sigmoid trend. Experimental data were assessed for the applicability in the prediction through sorption models fitting and found that Polynomial and GAB equations performed well over all fitted models in describing equilibrium moisture content – equilibrium relative humidity (EMC–ERH relationships for shelf stable dehydrated radish leaf powder, over the entire range of temperatures condition under study. The net isosteric heat of sorption, differential entropy and free energy were determined at different temperatures and their dependence was seen with respect to equilibrium moisture content.

  4. Adsorption of fulvic acid on goethite

    Science.gov (United States)

    Filius, Jeroen D.; Lumsdon, David G.; Meeussen, Johannes C. L.; Hiemstra, Tjisse; Van Riemsdijk, Willem H.

    2000-01-01

    The adsorption of fulvic acid by goethite was determined experimentally as a function of concentration, pH, and ionic strength. The data were described with the CD-MUSIC model of Hiemstra and Van Riemsdijk (1996), which allows the distribution of charge of the bound fulvate molecule over a surface region. Simultaneously, the concentration, pH, and salt dependency of the binding of fulvic acid can be described. Using the same parameters, the basic charging behavior of the goethite in the absence of fulvic acid could be described well. The surface species used in the model indicate that inner sphere coordination of carboxylic groups of the fulvate molecule is important at low pH, whereas at high pH the outer sphere coordination with reactive groups of the fulvate molecule with high proton affinity is important.

  5. Adsorption and regenerative oxidation of trichlorophenol with synthetic zeolite: Ozone dosage and its influence on adsorption performance.

    Science.gov (United States)

    Zhang, Yongjun; Prigent, Bastien; Geißen, Sven-Uwe

    2016-07-01

    Regeneration of loaded adsorbents is a key step for the sustainability of an adsorption process. In this study, ozone was applied to regenerate a synthetic zeolite for the adsorption of trichlorophenol (TCP) as an organic model pollutant. Three initial concentrations of TCP in water phase were used in adsorption tests. After the equilibrium, zeolite loaded different amounts of TCP was dried and then regenerated with ozone gas. It was found that the adsorption capacity of zeolite was increased through three regeneration cycles. However, the adsorption kinetics was compromised after the regeneration with slightly declined 2nd order reaction constants. The ozone demand for the regeneration was highly dependent on the TCP mass loaded onto the zeolite. It was estimated that the mass ratio of ozone to TCP was 1.2 ± 0.3 g O3/g TCP. PMID:27043379

  6. Influence of PtMo Structure and Composition on the Adsorption Energies, Adsorption Site and Vibrational Frequency of Carbon Monoxide

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Density functional theory periodic slab calculations were carried out for CO adsorption on a series of Mo modified Pt(111) surfaces to provide an insight into the interaction between CO and doped metal surface, an important issue in CO oxidation as well as in promotion and poisoning effects of catalysis. The modification of adsorption properties with respect to those of adsorption on the pure Mo(110) and Pt(111) is described in terms of changes in the adsorption energies, adsorption sites and vibrational properties occurring upon alloying. We believe that the present DFT calculations can provide important information into optimal alloy composition for CO-tolerance, which is not easily obtained by experimental methods.

  7. The adsorption of plutonium IV and V on goethite

    Science.gov (United States)

    Sanchez, Arthur L.; Murray, James W.; Sibley, Thomas H.

    1985-11-01

    The adsorption of Pu(IV) and Pu(V) on goethite (αFeOOH) from NaNO 3 solution shows distinct differences related to the different hydrolytic character of these two oxidation states. Under similar solution conditions, the adsorption edge of the more strongly hydrolyzable Pu(IV) occurs in the pH range 3 to 5 while that for Pu(V) is at pH 5 to 7. The adsorption edge for Pu(V) shifts with time to lower pH values and this appears to be due to the reduction of Pu(V) to Pu(IV) in the presence of the goethite surface. These results suggest that redox transformations may be an important aspect of Pu adsorption chemistry and the resulting scavenging of Pu from natural waters. Increasing ionic strength (from 0.1 M to 3 M NaCl or NaNO 3 and 0.03 M to 0.3 M Na 2SO 4) did not influence Pu(IV) or Pu(V) adsorption. In the presence of dissolved organic carbon (DOC), Pu(V) reduction to Pu(IV) occurred in solution. Pu(IV) adsorption on goethite decreased by 30% in the presence of 240 ppm natural DOC found in Soap Lake, Washington waters. Increasing concentrations of carbonate ligands decreased Pu(IV) and Pu(V) adsorption on goethite, with an alkalinity of 1000 meq/l totally inhibiting adsorption. The Pu-goethite adsorption system provides the data base for developing a thermodynamic model of Pu interaction with an oxide surface and with dissolved ligands, using the MINEQL computer program. From the model calculations we determined equilibrium constants for the adsorption of Pu(IV) hydrolysis species. The model was then applied to Pu adsorption in carbonate media to see how the presence of CO 3-2 could influence the mobility of Pu. The decrease in adsorption appears to be due to formation of a Pu-CO 3 complex. Model calculations were used to predict what the adsorption curves would look like if Pu-CO 3 complexes formed.

  8. Numerical estimation of adsorption energy distributions from adsorption isotherm data with the expectation-maximization method

    Energy Technology Data Exchange (ETDEWEB)

    Stanley, B.J.; Guiochon, G. [Tennessee Univ., Knoxville, TN (United States). Dept. of Chemistry]|[Oak Ridge National Lab., TN (United States)

    1993-08-01

    The expectation-maximization (EM) method of parameter estimation is used to calculate adsorption energy distributions of molecular probes from their adsorption isotherms. EM does not require prior knowledge of the distribution function or the isotherm, requires no smoothing of the isotherm data, and converges with high stability towards the maximum-likelihood estimate. The method is therefore robust and accurate at high iteration numbers. The EM algorithm is tested with simulated energy distributions corresponding to unimodal Gaussian, bimodal Gaussian, Poisson distributions, and the distributions resulting from Misra isotherms. Theoretical isotherms are generated from these distributions using the Langmuir model, and then chromatographic band profiles are computed using the ideal model of chromatography. Noise is then introduced in the theoretical band profiles comparable to those observed experimentally. The isotherm is then calculated using the elution-by-characteristic points method. The energy distribution given by the EM method is compared to the original one. Results are contrasted to those obtained with the House and Jaycock algorithm HILDA, and shown to be superior in terms of robustness, accuracy, and information theory. The effect of undersampling of the high-pressure/low-energy region of the adsorption is reported and discussed for the EM algorithm, as well as the effect of signal-to-noise ratio on the degree of heterogeneity that may be estimated experimentally.

  9. Silicate Adsorption in Paddy Soils of Guangdong Province, China

    Institute of Scientific and Technical Information of China (English)

    HUANG Li-Yuan; LI Hua-Xing; ZHANG Xin-Ming; LU Wei-Sheng; LIU Yuan-Jin

    2006-01-01

    Silicate adsorption in eight paddy soils developed from four different parent materials in Guangdong Province, China was examined to obtain fundamental knowledge of silicate adsorption to improve the efficacy of silicate fertilizer use in these areas. A correlation analysis showed that silicate adsorption did not obey the Langmuir equation (r = -0.664-0.301) but did obey the Freundlich and Temkin equations (P ≤ 0.01, r = 0.885-0.990). When the equilibrium silicate concentration (Ci) was less than 45 mg SiO2 kg-1, the adsorption capacity was in the following decreasing order of paddy soils: basalt-derived > Pearl River Delta sediment-derived > granite-derived > sand-shale-derived. Stepwise regression and path analysis showed that for the investigated paddy soils amorphous MnO and Al2O3 were the two most important materials that affected silicate adsorption. Moreover, as Ci increased, amorphous Al2O3 tended to play a more important role in silicate adsorption, while the effects of amorphous MnO on silicate adsorption tended to decrease.

  10. Continuous water treatment by adsorption and electrochemical regeneration.

    Science.gov (United States)

    Mohammed, F M; Roberts, E P L; Hill, A; Campen, A K; Brown, N W

    2011-05-01

    This study describes a process for water treatment by continuous adsorption and electrochemical regeneration using an air-lift reactor. The process is based on the adsorption of dissolved organic pollutants onto an adsorbent material (a graphite intercalation compound, Nyex(®)1000) and subsequent electrochemical regeneration of the adsorbent leading to oxidation of the adsorbed pollutant. Batch experiments were carried out to determine the adsorption kinetics and equilibrium isotherm for adsorption of a sample contaminant, the organic dye Acid Violet 17. The adsorbent circulation rate, the residence time distribution (RTD) of the reactor, and treatment by continuous adsorption and electrochemical regeneration were studied to investigate the process performance. The RTD behaviour could be approximated as a continuously stirred tank. It was found that greater than 98% removal could be achieved for continuous treatment by adsorption and electrochemical regeneration for feed concentrations of up to 300 mg L(-1). A steady state model has been developed for the process performance, assuming full regeneration of the adsorbent in the electrochemical cell. Experimental data and modelled predictions (using parameters for the adsorbent circulation rate, adsorption kinetics and isotherm obtained experimentally) of the dye removal achieved were found to be in good agreement.

  11. Neon and CO2 adsorption on open carbon nanohorns.

    Science.gov (United States)

    Krungleviciute, Vaiva; Ziegler, Carl A; Banjara, Shree R; Yudasaka, Masako; Iijima, S; Migone, Aldo D

    2013-07-30

    We present the results of a thermodynamics and kinetics study of the adsorption of neon and carbon dioxide on aggregates of chemically opened carbon nanohorns. Both the equilibrium adsorption characteristics, as well as the dependence of the kinetic behavior on sorbent loading, are different for these two adsorbates. For neon the adsorption isotherms display two steps before reaching the saturated vapor pressure, corresponding to adsorption on strong and on weak binding sites; the isosteric heat of adsorption is a decreasing function of sorbent loading (this quantity varies by about a factor of 2 on the range of loadings studied), and the speed of the adsorption kinetics increases with increasing loading. By contrast, for carbon dioxide there are no substeps in the adsorption isotherms; the isosteric heat is a nonmonotonic function of loading, the value of the isosteric heat never differs from the bulk heat of sublimation by more than 15%, and the kinetic behavior is opposite to that of neon, with equilibration times increasing for higher sorbent loadings. We explain the difference in the equilibrium properties observed for neon and carbon dioxide in terms of differences in the relative strengths of adsorbate-adsorbate to adsorbate-sorbent interaction for these species.

  12. Competitive and cooperative adsorption of arsenate and citrate on goethite

    Institute of Scientific and Technical Information of China (English)

    SHI Rong; JIA Yongfeng; WANG Chengzhi

    2009-01-01

    The fate of arsenic in natural environments is influenced by adsorption onto metal (hydr)oxides. The extent of arsenic adsorption is strongly affected by coexisting dissolved natural organic acids. Recently, some studies reported that there existed competitive adsorption between arsenate and citrate on goethite. Humic acid is known to interact strongly with arsenate by forming complexes in aqueous solution, hence it is necessary to undertake a comprehensive study of the adsorption of arsenate/citrate onto goethite in the presence of one another. The results showed that at the arsenate concentrations used in this study (0.006--0.27 mmol/L), citrate decreased arsenate adsorption at acidic pH but no effect was observed at alkaline pH. In comparison, citrate adsorption was inhibited at acidic pH, but enhanced at alkaline pH by arsenate. This was probably due to the formation of complex between arsenate and citrate like the case of arsenate with humic acid. These results implied that the mechanism of the adsorption of arsenate and citrate onto goethite in the presence of one another involved not only competition for binding sites, but the cooperation between the two species at the water-goethite interface as well.

  13. Effect of DOM Size on Organic Micropollutant Adsorption by GAC.

    Science.gov (United States)

    Kennedy, Anthony M; Summers, R Scott

    2015-06-01

    Granular activated carbon (GAC) adsorption of the micropollutants 2-methylisoborneol (MIB) and warfarin (WFN) at ng/L levels was investigated in five waters with isolated natural dissolved organic matter (DOM) held at a constant dissolved organic carbon concentration. Each water was evaluated for competitive adsorption effects based on the pretreatment of ultrafiltration, coagulation, and additional background micropollutants. Using the breakthrough with unfractionated DOM as a baseline, on average, the water with lower molecular weight (MW) DOM decreased MIB and WFN adsorption capacity by 59%, whereas the water with higher MW DOM increased MIB and WFN adsorption capacity by 64%. All waters showed similar decreasing MIB and WFN adsorption capacity with increasing empty bed contact time (EBCT), with more dramatic effects seen for the more strongly adsorbing WFN. On average, MIB and WFN adsorption kinetics were two times slower in the water with higher MW DOM compared to the water with lower MW DOM, as described by the intraparticle pore diffusion tortuosity. Increased adsorption competition from 27 micropollutants other than MIB and WFN at environmentally relevant concentrations had little to no effect on MIB and WFN breakthrough behavior. Any competitive effect from background micropollutants became indiscernible at longer EBCTs. PMID:25955134

  14. Adsorption of ammonia on treated stainless steel and polymer surfaces

    Science.gov (United States)

    Vaittinen, O.; Metsälä, M.; Persijn, S.; Vainio, M.; Halonen, L.

    2014-05-01

    Adsorption of dynamically diluted ammonia at part-per-billion to low part-per-million concentrations in dry nitrogen was studied with treated and non-treated stainless steel and polymer test tubes. The treatments included electropolishing and two types of coatings based on amorphous silicon. Cavity ring-down spectroscopy with an external cavity diode laser operating in the near-infrared wavelength range was used to monitor the adsorption process in real time in continuous-flow conditions to obtain quantitative assessment of the adsorptive properties of the studied surfaces. The investigated polymers were all less adsorptive than any of the treated or non-treated stainless steel surfaces. Some of the commercial coatings reduced the adsorption loss of stainless steel by a factor of ten or more. Polyvinylidene fluoride was found to be superior (less adsorption) to the four other studied polymer coatings. The number of adsorbed ammonia molecules per surface area obtained at different ammonia gas phase concentrations was modeled with Langmuir and Freundlich isotherms. The time behavior of the adsorption-desorption process occurring in the time scale of seconds and minutes was simulated with a simple kinetic model.

  15. Adsorption characteristics of water vapor on ferroaluminophosphate for desalination cycle

    KAUST Repository

    Kim, Youngdeuk

    2014-07-01

    The adsorption characteristics of microporous ferroaluminophosphate adsorbent (FAM-Z01, Mitsubishi Plastics) are evaluated for possible application in adsorption desalination and cooling (AD) cycles. A particular interest is its water vapor uptake behavior at assorted adsorption temperatures and pressures whilst comparing them to the commercial silica gels of AD plants. The surface characteristics are first carried out using N2 gas adsorption followed by the water vapor uptake analysis for temperature ranging from 20°C to 80°C. We propose a hybrid isotherm model, composing of the Henry and the Sips isotherms, which can be integrated to satisfactorily fit the experimental data of water adsorption on the FAM-Z01. The hybrid model is selected to fit the unusual isotherm shapes, that is, a low adsorption in the initial section and followed by a rapid vapor uptake leading to a likely micropore volume filling by hydrogen bonding and cooperative interaction in micropores. It is shown that the equilibrium adsorption capacity of FAM-Z01 can be up to 5 folds higher than that of conventional silica gels. Owing to the quantum increase in the adsorbate uptake, the FAM-Z01 has the potential to significantly reduce the footprint of an existing AD plant for the same output capacity. © 2014 Elsevier B.V.

  16. Adsorption of cadmium(II) on waste biomaterial.

    Science.gov (United States)

    Baláž, M; Bujňáková, Z; Baláž, P; Zorkovská, A; Danková, Z; Briančin, J

    2015-09-15

    Significant increase of the adsorption ability of the eggshell biomaterial toward cadmium was observed upon milling, as is evidenced by the value of maximum monolayer adsorption capacity of 329mgg(-1), which is markedly higher than in the case of most "green" sorbents. The main driving force of the adsorption was proven to be the presence of aragonite phase as a consequence of phase transformation from calcite occurring during milling. Cadmium is adsorbed in a non-reversible way, as documented by different techniques (desorption tests, XRD and EDX measurements). The optimum pH for cadmium adsorption was 7. The adsorption process was accompanied by the increase of the value of specific surface area. The course of adsorption has been described by Langmuir, Freundlich and Dubinin-Radushkevich isotherms. The adsorption kinetics was evaluated using three models, among which the best correlation coefficients and the best normalized standard deviation values were achieved for the pseudo-second order model and the intraparticle diffusion model, respectively.

  17. ADSORPTION CHARACTERISTICS OF SACFs FORA VARIETY OF DYES

    Institute of Scientific and Technical Information of China (English)

    ChenShuixia; LuYun; 等

    1998-01-01

    The isothermal adsorption of dyes on a variety of sisal based activated carbon fibers (SACFs),and the influence of pH and temperature on adsorption are discussed in this paper.The results indicate that the adsorption of methylene blue,crystal violet and Eriochrome blue black R on SACFs shows type I isotherms and can be described by the Langmuir equation or the Freudlich equation.The acidity of solution has greatly influence over the adsorption amounts of methylene blue,crystal violet and Eriochrome blue black R.As pHs of the solutions were adjusted to increase or decrease from the original acidity of the solution(4.7,4.1 and 4.0 for methylene blue,crystal violet and Eriochrome blue black R,respectively),the amounts of dyes adsorbed on SACFs increased.The adsorption temperature(in the range of 25-50℃) exerts little influence on the adsorption amount of methylene blue,crystal violet and fluorescein.For azo dyes (Eriochrome blue black R and Eriochrome black T),however,the adsorption amount increases slightly with the elevation of temperature.

  18. Adsorption Refrigeration Performance of Shaped MIL-101-Water Working Pair

    Institute of Scientific and Technical Information of China (English)

    芮征球; 李全国; 崔群; 王海燕; 陈海军; 姚虎卿

    2014-01-01

    A new metal-organic framework of MIL-101 was synthesized by hydrothermal method and the powder prepared was pressed into a desired shape. The effects of molding on specific surface area and pore structure were investigated using a nitrogen adsorption method. The water adsorption isotherms were obtained by high vacuum gravimetric method, the desorption temperature of water on shaped MIL-101 was measured by thermo gravimetric analyzer, and the adsorption refrigeration performance of shaped MIL-101-water working pair was studied on the simulation device of adsorption refrigeration cycle system. The results indicate that an apparent hysteresis loop ap-pears in the nitrogen adsorption/desorption isotherms when the forming pressure is 10 MPa. The equilibrium ad-sorption capacity of water is up to 0.95 kg·kg-1 at the forming pressure of 3 MPa (MIL-101-3). The desorption peak temperature of water on MIL-101-3 is 82 °C, which is 7 °C lower than that of silica gel, and the desorption temperature is no more than 100 °C. At the evaporation temperature of 10 °C, the refrigeration capacity of MIL-101-3-water is 1059 kJ·kg-1, which is 2.24 times higher than that of silica gel-water working pair. Thus MIL-101-water working pair presents an excellent adsorption refrigeration performance.

  19. Possibility of using adsorption refrigeration unit in district heating network

    Science.gov (United States)

    Grzebielec, Andrzej; Rusowicz, Artur; Jaworski, Maciej; Laskowski, Rafał

    2015-09-01

    Adsorption refrigeration systems are able to work with heat sources of temperature starting with 50 °C. The aim of the article is to determine whether in terms of technical and economic issues adsorption refrigeration equipment can work as elements that produce cold using hot water from the district heating network. For this purpose, examined was the work of the adsorption air conditioning equipment cooperating with drycooler, and the opportunities offered by the district heating network in Warsaw during the summer. It turns out that the efficiency of the adsorption device from the economic perspective is not sufficient for production of cold even during the transitional period. The main problem is not the low temperature of the water supply, but the large difference between the coefficients of performance, COPs, of adsorption device and a traditional compressor air conditioning unit. When outside air temperature is 25 °C, the COP of the compressor type reaches a value of 4.49, whereas that of the adsorption device in the same conditions is 0.14. The ratio of the COPs is 32. At the same time ratio between the price of 1 kWh of electric power and 1 kWh of heat is only 2.85. Adsorption refrigeration equipment to be able to compete with compressor devices, should feature COPads efficiency to be greater than 1.52. At such a low driving temperature and even changing the drycooler into the evaporative cooler it is not currently possible to achieve.

  20. Hydrogen adsorption on sulphur-doped SiC nanotubes

    Science.gov (United States)

    Sevak Singh, Ram

    2016-07-01

    Hydrogen (H2) is an energy carrier and clean fuel that can be used for a broad range of applications that include fuel cell vehicles. Therefore, development of materials for hydrogen storage is demanded. Nanotubes, in this context, are appropriate materials. Recently, silicon carbide nanotube (SiCNTs) have been predicted as potential nanomaterials for hydrogen storage, and atomic doping into the nanotubes improves the H2 adsorption. Here, we report H2 adsorption properties of sulphur-doped (S-doped) SiCNTs using first-principles calculations based on density functional theory. The H2 adsorption properties are investigated by calculations of energy band structures, density of states (DOS), adsorption energy and Mulliken charge population analysis. Our findings show that, compared to the intrinsic SiCNT, S-doped SiCNT is more sensitive to H2 adsorption. H2 gas adsorption on S-doped C-sites of SiCNT brings about significant modulation of the electronic structure of the nanotube, which results in charge transfer from the nanotube to the gas, and dipole–dipole interactions cause chemisorptions of hydrogen. However, in the case of H2 gas adsorption on S-doped Si-sites of the nanotube, lesser charge transfer from the nanotube to the gas results in physisorptions of the gas. The efficient hydrogen sensing properties of S-doped SiCNTs, studied here, may have potential for its practical realization for hydrogen storage application.

  1. Albumin adsorption on oxide thin films studied by spectroscopic ellipsometry

    Energy Technology Data Exchange (ETDEWEB)

    Silva-Bermudez, P., E-mail: suriel21@yahoo.com [Instituto de Investigaciones en Materiales, Universidad Nacional Autonoma de Mexico, Circuito Exterior s/n, C.U., 04510, Mexico D.F. (Mexico); Unidad de Posgrado, Facultad de Odontologia, Universidad Nacional Autonoma de Mexico, CU, 04510, Mexico D.F. (Mexico); Rodil, S.E.; Muhl, S. [Instituto de Investigaciones en Materiales, Universidad Nacional Autonoma de Mexico, Circuito Exterior s/n, C.U., 04510, Mexico D.F. (Mexico)

    2011-12-15

    Thin films of tantalum, niobium, zirconium and titanium oxides were deposited by reactive magnetron sputtering and their wettability and surface energy, optical properties, roughness, chemical composition and microstructure were characterized using contact angle measurements, spectroscopic ellipsometry, profilometry, X-ray photoelectron spectroscopy and X-ray diffraction, respectively. The purpose of the work was to correlate the surface properties of the films to the Bovine Serum Albumin (BSA) adsorption, as a first step into the development of an initial in vitro test of the films biocompatibility, based on standardized protein adsorption essays. The films were immersed into BSA solutions with different protein concentrations and protein adsorption was monitored in situ by dynamic ellipsometry; the adsorption-rate was dependent on the solution concentration and the immersion time. The overall BSA adsorption was studied in situ using spectroscopic ellipsometry and it was found to be influenced by the wettability of the films; larger BSA adsorption occurred on the more hydrophobic surface, the ZrO{sub 2} film. On the Ta{sub 2}O{sub 5}, Nb{sub 2}O{sub 5} and TiO{sub 2} films, hydrophilic surfaces, the overall BSA adsorption increased with the surface roughness or the polar component of the surface energy.

  2. N-doped mesoporous alumina for adsorption of carbon dioxide

    Institute of Scientific and Technical Information of China (English)

    Jayshri A.Thote; Ravikrishna V.Chatti; Kartik S.Iyer; Vivek Kumar; Arti N.Valechha; Nitin K.Labhsetwar; Rajesh B.Biniwale; M.K.N.Yenkie; Sadhana S.Rayalu

    2012-01-01

    N-doped mesoporous alumina has been synthesized using chitosan as the biopolymer template.The adsorbent has been thoroughly investigated for the adsorption of CO2 from a simulated flue gas stream (15% CO2 balanced with N2) and compared with commercially available mesoporous alumina procured from SASOL,Germany.CO2 adsorption was studied under different conditions of pretreatment and adsorption temperature,inlet CO2 concentration and in the presence of oxygen and moisture.The adsorption capacity was determined to be 29.4 mg CO2/g of adsorbent at 55℃.This value was observed to be 4 times higher in comparison to that of commercial mesoporous alumina at a temperature of 55℃.Basicity of alumina surface coupled with the presence of nitrogen in template in synthesized sample is responsible for this enhanced CO2 adsorption.Adsorption capacity for CO2 was retained in the presence of oxygen; however moisture had a deteriorating effect on the adsorption capacity reducing it to nearly half the value.

  3. Static Adsorption of Xenon on ACF at 257 K

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The static adsorption of xenon on active carbon fiber (ACF) at 257 K was measured with ASAP2010 specific surface area and pore diameter distribution instrument by changing the working gas from nitrogen to xenon. Compared with grain activated carbon (GAC), the results were as follows: (1) The adsorption performance of Viscose-based ACF (VACF-As) was the best among all absorbents tested. VACF-A3 was the superior xenon absorbent. The performance of pitch-based ACF (PACF-Cs) approached that of GAC, (2) Due to the difference of aperture distribution, the adsorption performances of ACF with different radics were different under the same experiment conditions even though the specific surface area was similar, (3) There were some differences of adsorptive capacity among ACF absorbents which had the same radic, however there was not definite relationship between their specific surface area and adsorptive capacity, (4) The adsorption of xenon on all kinds of ACF agrees with Langmuir equation, (5) The adsorptive curves can be fitted with a binomial equation.

  4. Kinetics and isotherms of Neutral Red adsorption on peanut husk

    Institute of Scientific and Technical Information of China (English)

    HAN Runping; HAN Pan; CAI Zhaohui; ZHAO Zhenhui; TANG Mingsheng

    2008-01-01

    Adsorption of Neutral Red (NR) onto peanut husk in aqueous solutions was investigated at 295 K. Experiments were carded out as function of pH, adsorbent dosage, contact time, and initial concentration. The equilibrium adsorption data were analyzed by Langmuir, Freundlich, Temkin, Dubinin-Radushkevich, and Toth isotherm models. The results indicated that the Toth and Langmuir models provided the best correlation of the experimental data. The adsorption capacity of peanut husk for the removal of NR was determined with the Langmuir and found to be 37.5 mg/g at 295 K. The adsorption kinetic data were modeled using the pseudo-first order, pseudo-second order, and intra-particle diffusion kinetic equations. It was seen that the pseudo-first order and pseudo-second order kinetic equations could describe the adsorption kinetics. The intraparticle diffusion model was also used to express the adsorption process at the two-step stage. It was implied that peanut husk may be suitable as adsorbent material for adsorption of NR from aqueous solutions.

  5. Influence of organobentonite structure on toluene adsorption from water solution

    Directory of Open Access Journals (Sweden)

    Nuria Vidal

    2012-12-01

    Full Text Available Due to increase water pollution by organic compound derived from hydrocarbons such as toluene, several alternative technologies for remediation of polluted water have been originated. In this work natural bentonites were modified with cetyltrimethylammonium (CTMA+ for obtaining organophilic bentonites. The obtained CTMA-bentonites would be suitable for use as adsorbents of toluene present in water. The influence of structural characteristics of CTMA-bentonites on their adsorption capacity was studied. It was shown that adsorption of toluene depended on homogeneous interlayer space associated with arrangements of CTMA+ paraffin-monolayer and bilayer models, accompanied by a high degree ordering of the carbon chain of organic cation in both arrangements. However, packing density would not have an evident influence on the retention capacity of these materials. The solids obtained were characterized by chemical analysis, X-ray diffractions and infrared spectroscopy. Toluene adsorption was measured by UV-visible spectrophotometer. Adsorption capacity was studied by determining adsorption isotherms and adsorption coefficient calculation. The adsorption isotherms were straight-line indicating a partition phenomenon of toluene between the aqueous and organic phase present in organophilic bentonites.

  6. Cu and Cd Adsorption on Carbon Aerogel and Xerogel

    Directory of Open Access Journals (Sweden)

    Cotet L. C.

    2013-04-01

    Full Text Available Carbon aerogel (CA and xerogel (CX were proposed as new carbon adsorbent materials for Cu and Cd ions from contaminated water (synthetic water samples. These materials were prepared by a sol-gel process that involves a polycondensation of resorcinol and formaldehyde in Na2CO3 catalysis, followed by a drying step, either in supercritical conditions of CO2 to aerogel obtaining or in normal conditions to xerogel obtaining, and a pyrolytic step. Nitrogen adsorption, AFM, SEM, TEM and XRD were used for morpho-structural adsorbent investigation. Cu and Cd ions adsorption experiments were carried out in batch conditions under magnetic stirring. Adsorbent quantity and grain size influence over the adsorption efficiency were considered. Adsorption results expressed as adsorption capacities showed that prepared CA is a better adsorbent than CX. Adsorption capacities up to 14.2 mg g-1 and 8.5 mg g-1 were obtained for Cd2+ and Cu2+ adsorption on CA, respectively.

  7. Hydrogen adsorption on sulphur-doped SiC nanotubes

    Science.gov (United States)

    Sevak Singh, Ram

    2016-07-01

    Hydrogen (H2) is an energy carrier and clean fuel that can be used for a broad range of applications that include fuel cell vehicles. Therefore, development of materials for hydrogen storage is demanded. Nanotubes, in this context, are appropriate materials. Recently, silicon carbide nanotube (SiCNTs) have been predicted as potential nanomaterials for hydrogen storage, and atomic doping into the nanotubes improves the H2 adsorption. Here, we report H2 adsorption properties of sulphur-doped (S-doped) SiCNTs using first-principles calculations based on density functional theory. The H2 adsorption properties are investigated by calculations of energy band structures, density of states (DOS), adsorption energy and Mulliken charge population analysis. Our findings show that, compared to the intrinsic SiCNT, S-doped SiCNT is more sensitive to H2 adsorption. H2 gas adsorption on S-doped C-sites of SiCNT brings about significant modulation of the electronic structure of the nanotube, which results in charge transfer from the nanotube to the gas, and dipole-dipole interactions cause chemisorptions of hydrogen. However, in the case of H2 gas adsorption on S-doped Si-sites of the nanotube, lesser charge transfer from the nanotube to the gas results in physisorptions of the gas. The efficient hydrogen sensing properties of S-doped SiCNTs, studied here, may have potential for its practical realization for hydrogen storage application.

  8. Adsorption-Desorption Characteristics of Chlorimuron-Ethyl in Soils

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The adsorption-desorption characteristics of chlorimuron-ethyl in soils were investigated to provide the basic data for evaluating the safety in field and the risk to water resource. The adsorption-desorption experiment was conducted by the batch equilibration and HPLC techniques; furthermore, data were analyzed with 5 mathematic models to describe the characteristics and mechanism of adsorption-desorption and translocation of the herbicide in soils. The results showed that the adsorption-desorption isotherms of chlorimuron-ethyl fitted for the Freundlich model well, and the physical reaction presents the main contribution during the adsorption-desorption process. The adsorption values (Kads-f) of chlorimuron-ethyl in 8 types of soil ranged from 0.798 to 6.891. The isotherms of 2# (Jiangxi clay) and 3# (Jiangxi sand loam)soils belong to the S-type curve, while the isotherms of another 6 type soils belong to the L-type isotherm. The results of desorption indicated that the hysteresis phenomena appeared during the desorption process, and the hysteresis coefficients(H) of the herbicides in 8 soils varied from 0.259-0.980. Furthermore, Kads-f and desorption values (Kdes-f) increased with the OM (%) and the clay content increasing, while the values decreased with the soils pH increasing. The H values decreased with the OM and the clay content increasing, and increased with the soils pH increasing. It can be concluded that the low adsorption abilities of chlorimuron-ethyl in test soils and un-reversible adsorption existed in the process, which will induce the great translocation of the herbicide after application in field. It can be transported to ground or groundwater causing risk to environments. The physical and chemical properties of soils, including the OM, the clay content, and the pH of soil were the dominating factors during the adsorption-desorption.

  9. Nutrient depletion modifies cell wall adsorption activity of wine yeast.

    Science.gov (United States)

    Sidari, R; Caridi, A

    2016-06-01

    Yeast cell wall is a structure that helps yeasts to manage and respond to many environmental stresses. The mannosylphosphorylation is a modification in response to stress that provides the cell wall with negative charges able to bind compounds present in the environment. Phenotypes related to the cell wall modification such as the filamentous growth in Saccharomyces cerevisiae are affected by nutrient depletion. The present work aimed at describing the effect of carbon and/or nitrogen limitation on the aptitude of S. cerevisiae strains to bind coloured polyphenols. Carbon- and nitrogen-rich or deficient media supplemented with grape polyphenols were used to simulate different grape juice conditions-early, mid, 'adjusted' for nitrogen, and late fermentations. In early fermentation condition, the R+G+B values range from 106 (high adsorption, strain Sc1128) to 192 (low adsorption, strain Σ1278b), in mid-fermentation the values range from 111 (high adsorption, strain Sc1321) to 258 (low adsorption, strain Sc2306), in 'adjusted' for nitrogen conditions the values range from 105 (high adsorption, strain Sc1321) to 194 (low adsorption, strain Sc2306) while in late fermentation conditions the values range from 101 (high adsorption, strain Sc384) to 293 (low adsorption, strain Sc2306). The effect of nutrient availability is not univocal for all the strains and the different media tested modified the strains behaviour. In all the media the strains show significant differences. Results demonstrate that wine yeasts decrease/increase their parietal adsorption activity according to the nutrient availability. The wide range of strain variability observed could be useful in selecting wine starters. PMID:27116955

  10. Adsorption behavior and mechanism of glufosinate onto goethite.

    Science.gov (United States)

    Xu, Jian; Gu, Xueyuan; Guo, Yong; Tong, Fei; Chen, Liangyan

    2016-08-01

    The adsorption of glufosinate (GLU), a widely used herbicide similar to glyphosate (GLY), onto goethite was investigated as a function of the pH, ionic strength, background cations and anions, heavy metal ions and fulvic acids (FAs) by using batch adsorption experiments. In situ ATR-FTIR spectroscopy and density functional theory (DFT) calculations were carried out to characterize the molecular interactions between GLU and goethite surfaces. The macroscopic results indicated that an increasing pH exerted an adverse effect on GLU adsorption because of the electrostatic repulsion, and the adsorption was not sensitive to ionic strengths or background cation types, indicating that an inner-sphere surface complex was involved. GLU adsorption can be considerably depressed by PO4(3-), SO4(2-), and a high level of FA because of the competitive effect, while being enhanced by Cu(2+) with a maximum adsorption at approximately pH5 because of the metal ion bridging effect. Other examined divalent metal cations (Cd(2+), Zn(2+), and Pb(2+)) showed almost no effect on GLU adsorption, indicating weak interaction between them. ATR-FTIR spectra and the DFT calculations further proved that GLU was bonded to goethite surfaces through the formation of a monodentate mononuclear inner-sphere complex between the phosphinic moiety and surface Fe(III) centers under an acidic condition. The results showed that GLU had a similar adsorption mechanism to that of GLY onto goethite, but with a lower adsorption affinity, possibly exerting higher mobility and risk in soils. PMID:27096492

  11. Study of cesium and strontium adsorption on slovak bentonite

    International Nuclear Information System (INIS)

    Bentonite is a natural clay and one of the most promising candidates for use as a buffer material in the geological disposal systems for high-level radioactive waste and spent nuclear fuel. It is intended to isolate metal canisters with highly radioactive waste products from the surrounding rocks because of its ability to retard the movement of radionuclides by adsorption. Slovak Republic avails of many significant deposits of bentonite. Adsorption of Cs and Sr on five Slovak bentonite of deposits (Jelsovy potok, Kopernica, Lieskovec, Lastovce and Dolna Ves) and montmorillonite K10 (Sigma-Aldrich) has been studied with the using batch of radiometric techniques. Natural, irradiated and natrified samples, in three different kinds of grain size: 15, 45 and 250 μm have been used in the experiments. The adsorptions of Cs and Sr on bentonite under various experimental conditions, such as contact time, adsorbent and adsorbate concentrations, pH after adsorption and effect of pH change, chemical modification, competitive ions and organic agents on the adsorption have been studied. The Kd have been determined for adsorbent-Cs/Sr solution system as a function of contact time and adsorbate and adsorbent concentration. The data have been interpreted in terms of Langmuir isotherm. The adsorption of Cs and Sr has increased with increasing metal concentrations. Adsorption of Cs and Sr has been suppressed by presence of organic agents; and of bivalent cations more than univalent cations. By adsorption on natrified samples colloidal particles and pH value increase have been formed. Adsorption experiments carried out show that the most suitable materials intended for use as barriers surrounding a canister of spent nuclear fuel are bentonite of the Jelsovy potok and Kopernica deposits. (author)

  12. Dealuminization treatment effect of krypton gas adsorption on zeolite

    Energy Technology Data Exchange (ETDEWEB)

    Shin, J. M.; Shin, S. W.; Park, J. J.; Lee, H. H.; Yang, M. S. [KAERI, Taejon (Korea, Republic of)

    2003-10-01

    During the OREOX process of DUPIC fuel fabrication, krypton is released as a noble fission gas. In order to treat Kr safely, adsorption method on solids havs been selected. In order to determine the optimum extraction conditions of zeolite for Kr adsorption, the preliminary experiments for the concentration of hydrochloric acid were conducted. It was found that zeolite treated with 2N hydrochloric acid solution is superior to the zeolite untreated with HCl solution. When the zeolite was treated with 2N hydrochloric acid, it was found that the surface area was decreased. The micropores and the pore volume were increased and the adsorption amount of Kr gas was increased.

  13. Adsorption of Si on Gu(100) and (111) Surfaces

    Institute of Scientific and Technical Information of China (English)

    HE Guo-Min

    2004-01-01

    @@ Employing the density-functional theory within the generalized gradient approximation, we investigate the interaction between atomic Si and the Cu(100) and (111) surfaces. Various structures of on-surface adsorption as well as surface-substitutional adsorption for a wide range of Si coverage are considered. Our results show that both Cu(100) and (111) surfaces are active for adsorption of Si. The c(2 × 2)-Si/Cu(100) surface alloy is energetically favourable for a large range of Si chemical potential while c(2 × 2)-Si/Cu(111) is energetically favourable only under Si rich conditions.

  14. Adsorption of PTCDA on Si(001) - 2 × 1 surface

    Science.gov (United States)

    Suzuki, Takayuki; Yoshimoto, Yoshihide; Yagyu, Kazuma; Tochihara, Hiroshi

    2015-03-01

    Adsorption structures of the 3,4,9,10-perylenetetracarboxylic dianhydride (PTCDA) molecule on the clean Si(001) - 2 × 1 surface were investigated using scanning tunneling microscopy (STM) experiments in conjunction with first principles theoretical calculations. Four dominant adsorption structures were observed in the STM experiments and their atomic coordinates on the Si(001) surface were determined by comparison between the experimental STM images and the theoretical simulations. Maximizing the number of the Si—O bonds is more crucial than that of the Si—C bonds in the PTCDA adsorption.

  15. Comment on "Selective adsorption of tannins onto hide collagen fibres"

    Institute of Scientific and Technical Information of China (English)

    Yuh-Shan Ho

    2005-01-01

    @@ In a recent publication by Liao et al.[1], the section 1.3 Modeling of adsorption kinetics, authors mentioned a pseudo- second-order model from eq. (3) to eq. (5). In fact, the second order kinetic expression for the adsorption systems of divalent metal ions using sphagnum moss peat has been reported by Ho[2]. In order to distinguish the kinetics equation based on adsorption capacity of solid from concentration of solution, Ho's second order rate expression has been named pseudo-second order[2-5]. The most frequently cited papers were published in Chemical Engineering Journal[3], Process Biochemistry[4] and Water Research[5].

  16. Possible selective adsorption of enantiomers by Na-montmorillonite

    Science.gov (United States)

    Friebele, E.; Shimoyama, A.; Ponnamperuma, C.

    1981-01-01

    Racemic amino acids including (D,L) alpha-alamine, (D,L) alpha-aminobutyric acid, (D,L) valine, and (D,L) norvaline were incubated with Na-montmorillonite at 100% CEC at three hydrogen ion concentrations, and amino acid adsorption was determined by ion exchange chromatography. Enantiomers were analyzed by gas chromatography. Differences in the quantities of D and L enantiomers in any of the fractions was no larger than a few percent. Although a large difference in the adsorption of the amino acid enantiomers was not observed, the analysis may indicate a small preferential adsorption (0.5-2%) of L-amino acids by Na-montmorillonite.

  17. Comment on "Selective adsorption of tannins onto hide collagen fibres"

    Institute of Scientific and Technical Information of China (English)

    Yuh-Shan; Ho

    2005-01-01

    In a recent publication by Liao et al.[1], the section 1.3 Modeling of adsorption kinetics, authors mentioned a pseudo- second-order model from eq. (3) to eq. (5). In fact, the second order kinetic expression for the adsorption systems of divalent metal ions using sphagnum moss peat has been reported by Ho[2]. In order to distinguish the kinetics equation based on adsorption capacity of solid from concentration of solution, Ho's second order rate expression has been named pseudo-second order[2-5]. The most frequently cited papers were published in Chemical Engineering Journal[3], Process Biochemistry[4] and Water Research[5].……

  18. Adsorption of PTCDA on Si(001) - 2 × 1 surface.

    Science.gov (United States)

    Suzuki, Takayuki; Yoshimoto, Yoshihide; Yagyu, Kazuma; Tochihara, Hiroshi

    2015-03-14

    Adsorption structures of the 3,4,9,10-perylenetetracarboxylic dianhydride (PTCDA) molecule on the clean Si(001) - 2 × 1 surface were investigated using scanning tunneling microscopy (STM) experiments in conjunction with first principles theoretical calculations. Four dominant adsorption structures were observed in the STM experiments and their atomic coordinates on the Si(001) surface were determined by comparison between the experimental STM images and the theoretical simulations. Maximizing the number of the Si-O bonds is more crucial than that of the Si-C bonds in the PTCDA adsorption. PMID:25770493

  19. Heavy Metal Removal from Water by Adsorption Using Pillared Montmorillonite

    Institute of Scientific and Technical Information of China (English)

    LIU Yun; WU Pingxiao; DANG Zhi; YE Daiqi

    2006-01-01

    Removal of Cu2+, Cr3+ and Cd2+ from aqueous solutions by adsorption on montmorillonite modified by sodium dodecylsulfate (SDS) and hydroxy-alumino-silicate (HAS) was investigated.Experiments were carried out as a function of solution pH, solute concentration, and time. The Langmuir model was adopted to describe the single-solute adsorption isotherm, in which the Langmuir parameters were directly taken from those obtained in single-solute systems. The kinetics of metal ions adsorption was examined and the pseudo-first-order rate constant was finally evaluated.

  20. Studies of the adsorption thermodynamics of oxamyl on fly ash

    Energy Technology Data Exchange (ETDEWEB)

    Singh, D. [Government Postgraduate School, Sawai Madhopur (India). Faculty of Agriculture, Dept. of Soil Science

    2000-07-01

    The adsorption thermodynamics of oxamyl on fly ash at 10, 25 and 50{degree}C have been studied via the relevant adsorption isotherms, Freundlich constants, distribution coefficient and other thermodynamic parameters. The data were well fitted by the Freundlich equation and yielded S-shaped isotherms at all the temperatures studied. Thermodynamic parameters such as the thermodynamic equilibrium constant, the standard free energy change, the standard enthalpy change and the standard entropy change have been calculated as a means of predicting the nature of the adsorption process.

  1. Analysis of the use of adsorption processes in trigeneration systems

    Science.gov (United States)

    Grzebielec, Andrzej; Rusowicz, Artur

    2013-12-01

    The trigeneration systems for production of cold use sorption refrigeration machines: absorption and adsorption types. Absorption systems are characterized namely by better cooling coefficient of performance, while the adsorptive systems are characterized by the ability to operate at lower temperatures. The driving heat source temperature can be as low as 60-70 °C. Such temperature of the driving heat source allows to use them in district heating systems. The article focuses on the presentation of the research results on the adsorption devices designed to work in trigeneration systems.

  2. Monte Carlo model of CO adsorption on supported Pt nanoparticle

    International Nuclear Information System (INIS)

    For molecular simulations with thousands of atoms it is desirable to use a lattice gas model because it is fast and easy-to-use for computations. Unfortunately, simulation of adsorption on heterogeneous surfaces within this model is rather complicated due to a large variety of available adsorption site types. We propose the combined model with lattice representation of adsorbent atoms and arbitrary location of adsorbate atoms. Using this model simulation of CO adsorption on supported Pt nanoparticles has been performed. With the proposed approach the above-mentioned difficulties were successfully overcome.

  3. Adsorption of highly charged Gaussian polyelectrolytes onto oppositely charged surfaces

    Science.gov (United States)

    Dutta, Sandipan; Jho, Y. S.

    2016-03-01

    In many biological processes highly charged biopolymers are adsorbed onto oppositely charged surfaces of macroions and membranes. They form strongly correlated structures close to the surface which cannot be explained by the conventional Poisson-Boltzmann theory. In this work strong coupling theory is used to study the adsorption of highly charged Gaussian polyelectrolytes. Two cases of adsorptions are considered, when the Gaussian polyelectrolytes are confined (a) by one charged wall, and (b) between two charged walls. The effects of salt and the geometry of the polymers on their adsorption-depletion transitions in the strong coupling regime are discussed.

  4. New and general framework for adsorption processes on dynamic interfaces

    CERN Document Server

    Schmuck, Markus

    2013-01-01

    We introduce a new and general continuum thermodynamic framework for the mathematical analysis and computation of adsorption on dynamic interfaces. To the best of our knowledge, there is no formulation available that accounts for the coupled dynamics of interfaces and densities of adsorbants. Our framework leads to analytic adsorption isotherms which also take the interfacial geometry fully into account. We demonstrate the utility and physical consistency of our framework with a new computational multi-level discretization strategy. In the computations, we recover the experimentally observed feature that the adsorption of particles minimizes the interfacial tension.

  5. THE ADSORPTION OF IMAZAPYR BY THREE SOIL TYPES IN INDONESIA

    Directory of Open Access Journals (Sweden)

    S. TJITROSEMITO

    1992-01-01

    Full Text Available The adsorption of imazapyr in three Indonesian soil types was investigated with labelled 14C-imazapyr using Freundlich adsorption isotherm. The availability of adsorbed imazapyr to plants as affected by washing and liming was assayed using root elongation of rice seedlings. Red-Yellow Podsolic soil adsorbed imazapyr more than Andosol and sandy soil of Laladon. The adsorption was greater at lower pH. Washing seemed to reduce the concentration of imazapyr as shown by the increasing length of rice roots. On the other hand liming facilitated higher concentrations of imazapyr in the solution as shown by the reduction of rice root length. The practical implication is discussed.

  6. Effects of Capillary Forces and Adsorption on Reserves Distribution

    DEFF Research Database (Denmark)

    Shapiro, Alexander; Stenby, Erling Halfdan

    1996-01-01

    The purpose of this study is to evaluate the effects of capillary forces and adsorption on the distribution of a hydrocarbon mixture in an oil-gas-condensate reservoir. These effects consist in the precipitation of the liquid phase in thin pores and on the internal surface of the reservoir rock....... To estimate the amount of the dispersed liquid condensate, analytical methods based on the generalization of the Kelvin equation and on the potential theory of adsorption have been developed. Sample calculations show significant role of adsorption, especially, in the neighborhood of the critical point...

  7. An assay for measurement of protein adsorption to glass vials.

    Science.gov (United States)

    Varmette, Elizabeth; Strony, Brianne; Haines, Daniel; Redkar, Rajendra

    2010-01-01

    Protein adsorption to primary packaging is one of the problems faced by biopharmaceutical drug companies. An assay was developed to quantify loss of proteins to glass vial surfaces. The assay involves the labeling of protein with a fluorescent dye, incubation of the labeled protein with the vial surface, elution of the adsorbed protein using a stripping buffer, and determination of fluorescence of the adsorbed protein using a fluorometer. The assay is simple to set up, accurate, sensitive, and flexible. The assay can be modified for indirect measurement of protein adsorption and offers an attractive alternative for researchers to quantify protein adsorption to glass vials and syringes. PMID:21502031

  8. Water vapor adsorption on activated carbon preadsorbed with naphtalene.

    Science.gov (United States)

    Zimny, T; Finqueneisel, G; Cossarutto, L; Weber, J V

    2005-05-01

    The adsorption of water vapor on a microporous activated carbon derived from the carbonization of coconut shell has been studied. Preadsorption of naphthalene was used as a tool to determine the location and the influence of the primary adsorbing centers within the porous structure of active carbon. The adsorption was studied in the pressure range p/p0=0-0.95 in a static water vapor system, allowing the investigation of both kinetic and equilibrium experimental data. Modeling of the isotherms using the modified equation of Do and Do was applied to determine the effect of preadsorption on the mechanism of adsorption. PMID:15797395

  9. Alkali cation specific adsorption onto fcc(111) transition metal electrodes.

    Science.gov (United States)

    Mills, J N; McCrum, I T; Janik, M J

    2014-07-21

    The presence of alkali cations in electrolyte solutions is known to impact the rate of electrocatalytic reactions, though the mechanism of such impact is not conclusively determined. We use density functional theory (DFT) to examine the specific adsorption of alkali cations to fcc(111) electrode surfaces, as specific adsorption may block catalyst sites or otherwise impact surface catalytic chemistry. Solvation of the cation-metal surface structure was investigated using explicit water models. Computed equilibrium potentials for alkali cation adsorption suggest that alkali and alkaline earth cations will specifically adsorb onto Pt(111) and Pd(111) surfaces in the potential range of hydrogen oxidation and hydrogen evolution catalysis in alkaline solutions.

  10. Adsorption mechanism of sodium dodecyl benzene sulfonate on carbon blacks by adsorption isotherm and zeta potential determinations.

    Science.gov (United States)

    Zhao, Yapei; Lu, Pei; Li, Caiting; Fan, Xiaopeng; Wen, Qingbo; Zhan, Qi; Shu, Xin; Xu, Tieliang; Zeng, Guangming

    2013-01-01

    Surfactant solutions were propounded to remove fine and hydrophobic carbon black particles from coal-fired flue gas. The adsorption mechanisms between sodium dodecyl benzene sulfonate (SDBS, an anionic surfactant) and carbon black particles in suspension were investigated. The influence of inorganic salt (NaCl) was also considered. As results showed, hydrophobic interactions contributed to the strong adsorption between SDBS and carbon black particles in the absence of NaCl, and adding NaCl affected the adsorption process. The adsorption amount of SDBS significantly increased when NaCl was added into the SDBS solution; however, when SDBS was in low concentration, the amount of adsorbed SDBS, which was responsible for the shift of zeta potentials, varied little under different concentrations of NaCl. This indicated that the adsorption of SDBS was mainly caused by hydrophobic interaction and Na+ could not change the adsorption of SDBS on adsorption site when SDBS was in low concentration. Moreover, the adsorbed SDBS and Na+ were retained in the Stern layer. PMID:23530331

  11. Adsorption-induced deformation of microporous materials: coal swelling induced by CO2-CH4 competitive adsorption.

    Science.gov (United States)

    Brochard, Laurent; Vandamme, Matthieu; Pellenq, Roland J-M; Fen-Chong, Teddy

    2012-02-01

    Carbon dioxide injection in coal seams is known to improve the methane production of the coal seam, while ensuring a safe and long-term carbon sequestration. This improvement is due to the preferential adsorption of CO(2) in coal with respect to CH(4): an injection of CO(2) thus results in a desorption of CH(4). However, this preferential adsorption is also known to cause a differential swelling of coal, which results in a significant decrease in the reservoir permeability during the injection process. Recent studies have shown that adsorption in coal micropores (few angströms in size) is the main cause of the swelling. In this work, we focus on the competitive adsorption behavior of CO(2) and CH(4) in micropores. We perform molecular simulations of adsorption with a realistic atomistic model for coal. The competitive adsorption is studied at various temperatures and pressures representative of those in geological reservoirs. With the help of a poromechanical model, we then quantify the subsequent differential swelling induced by the computed adsorption behaviors. The differential swelling is almost insensitive to the geological temperatures and pressures considered here and is proportional to the CO(2) mole fraction in the coal. PMID:22185459

  12. 多组分吸附过程的吸附速率模型%Adsorption Rate Models for Multicomponent Adsorption Systems

    Institute of Scientific and Technical Information of China (English)

    姚春才

    2004-01-01

    Three adsorption rate models are derived for multicomponent adsorption systems under either pore diffusion or surface diffusion control. The linear driving force (LDF) model is obtained by assuming a parabolic intraparticle concentration profile. Models I and Ⅱ are obtained from the parabolic concentration layer approximation. Examples are presented to demonstrate the usage and accuracy of these models. It is shown that Model I is suitable for batch adsorption calculations and Model H provides a good approximation in fixed-bed adsorption processes while the LDF model should not be used in batch adsorption and may be considered acceptable in fixed-bed adsorption where the parameter Ti is relatively large.

  13. Investigation of Microgranular Adsorptive Filtration System

    Science.gov (United States)

    Cai, Zhenxiao

    Over the past few decades, enormous advances have been made in the application of low-pressure membrane filtration to both drinking water and wastewater treatment. Nevertheless, the full potential of this technology has not been reached, due primarily to limitations imposed by membrane fouling. In drinking water treatment, much of the fouling is caused by soluble and particulate natural organic matter (NOM). Efforts to overcome the problem have focused on removal of NOM from the feed solution, usually by addition of conventional coagulants like alum and ferric chloride (FeCl3) or adsorbents like powdered activated carbon (PAC). While coagulants and adsorbents can remove a portion of the NOM, their performance with respect to fouling control has been inconsistent, often reducing fouling but sometimes having no effect or even exacerbating fouling. This research investigated microgranular adsorptive filtration (muGAF), a process that combines three existing technologies---granular media filtration, packed bed adsorption, and membrane filtration---in a novel way to reduce membrane fouling while simultaneously removing NOM from water. In this technology, a thin layer of micron-sized adsorbent particles is deposited on the membrane prior to delivering the feed to the system. The research reported here represents the first systematic study of muGAF, and the results demonstrate the promising potential of this process. A new, aluminum-oxide-based adsorbent---heated aluminum oxide particles (HAOPs)---was synthesized and shown to be very effective for NOM removal as well as fouling reduction in muGAF systems. muGAF has also been demonstrated to work well with powdered activated carbon (PAC) as the adsorbent, but not as well as when HAOPs are used; the process has also been successful when used with several different membrane types and configurations. Experiments using a wide range of operational parameters and several analytical tools lead to the conclusion that the fouling

  14. Adsorption of levofloxacin onto goethite: Effects of pH, calcium and phosphate

    NARCIS (Netherlands)

    Qin, X.P.; Liu, F.; Wang, G.C.; Weng, L.; Li, L.

    2014-01-01

    Adsorption of levofloxacin (LEV), one of the extensively used antibiotics, onto goethite was investigated using batch experiments. The adsorption of LEV on goethite was pH-dependent. A maximum adsorption was reached at pH 6. Above or below pH 6, the adsorption decreased. In the presence of calcium (

  15. Investigation of the surface adsorption and biotribological properties of mucins

    DEFF Research Database (Denmark)

    Madsen, Jan Busk

    impacts their adsorption- and tribological properties in comparison to either no purification or mildly purifying dialysis treatment. We show that the properties of the mucins are influenced by the presence of other biomolecules. Bovine serum albumin was determined to be the main protein contaminant...... other in solution. We have also investigated the thermostability of BSM. Most proteins denature at elevated temperatures. In this context, BSM displayed amazing resilience. PH was another environmental factor that was investigated. The results showed that the mucins surface adsorption and tribological...... properties is highly environment dependent. Lastly, the importance of the hydrophobic terminal domains in 7 surface adsorption and subsequent aqueous lubrication efficiency was investigated by proteolytic digestion. Our studies show that the hydrophobic terminal domains are integral for adsorption...

  16. Removal of Volatile Organic Compounds by Adsorption and Photocatalytic Oxydation

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Based on the study of equilibrium adsorption on viscose rayon-based activated carbon fiber (ACF) by gravimetric method, mounting of TiO2 on PAN-based activated carbon cloth (ACC) and their photocatalytic activity as well as adsorption performance for benzene were investigated. The crystallinity of TiO2 and pore structure were characterized by XRD and N2 adsorption. The results show that crystallinity of TiO2 and pore structure could be postulated by heat treatment condition. Both crystallinity of TiO2 and pore structure of hybrid have effects on photocatalytic performance of TiO2-mounted ACC. It would be more attractive and prospective for the combination of TiO2 photocatalytic activity and adsorption ability of porous materials.

  17. Treatment of arsenic-contaminated water using akaganeite adsorption

    Energy Technology Data Exchange (ETDEWEB)

    Cadena C., Fernando (Las Cruces, NM); Johnson, Michael D. (Las Cruces, NM)

    2008-01-01

    The present invention comprises a method and composition using akaganeite, an iron oxide, as an ion adsorption medium for the removal of arsenic from water and affixing it onto carrier media so that it can be used in filtration systems.

  18. Improved adsorption technology for gas treatment in LNG installations

    Energy Technology Data Exchange (ETDEWEB)

    Templeman, J.J.

    1990-06-01

    The production and storage of Liquefied Natural Gas plays an important role in the British Gas strategy for meeting winter peak demands for gas in the UK. The feed gas to the liquefaction plants must be purified to remove carbon dioxide and water vapour which would otherwise freeze and cause blockages in the liquefaction plant. To remove carbon dioxide and water to the very low levels required an adsorption process is used. Faced with the problem of processing natural gas containing carbon dioxide concentrations in excess of the design values, the true adsorption capacity of commercially available adsorbents was investigated and the adsorption purification process examined in detail. Mathematical models of adsorption and regeneration were developed, which have allowed these purification plants to be more precisely designed, and existing plants to process gases containing carbon dioxide concentrations up to eight times the design value. (author).

  19. Optimization of salt adsorption rate in membrane capacitive deionization.

    Science.gov (United States)

    Zhao, R; Satpradit, O; Rijnaarts, H H M; Biesheuvel, P M; van der Wal, A

    2013-04-01

    Membrane capacitive deionization (MCDI) is a water desalination technique based on applying a cell voltage between two oppositely placed porous electrodes sandwiching a spacer channel that transports the water to be desalinated. In MCDI, ion-exchange membranes are positioned in front of each porous electrode to prevent co-ions from leaving the electrode region during ion adsorption, thereby enhancing the salt adsorption capacity. MCDI can be operated at constant cell voltage (CV), or at a constant electrical current (CC). In this paper, we present both experimental and theoretical results for desalination capacity and rate in MCDI (both in the CV- and the CC-mode) as function of adsorption/desorption time, salt feed concentration, electrical current, and cell voltage. We demonstrate how by varying each parameter individually, it is possible to systematically optimize the parameter settings of a given system to achieve the highest average salt adsorption rate and water recovery. PMID:23395310

  20. Adsorption hysteresis for a slit-like pore model

    Science.gov (United States)

    Kutarov, V. V.; Tarasevich, Yu. I.; Aksenenko, E. V.; Ivanova, Z. G.

    2011-07-01

    The Frenkel-Halsey-Hill equation is used to describe the adsorption branch of a hysteresis loop upon polylayer adsorption with an H3 loop according to IUPAC nomenclature. The equation for the desorption branch of a hysteresis loop is derived from a combined solution to the equation for the Gibbs potential change, given the adsorbent swelling and pore connectivity function, and the Laplace equation taken for the conditions of infinitely elongated meniscus. This equation is shown to connect the adsorbate relative pressure in a bulk phase for the desorption branch of a hysteresis loop with the key parameters of the adsorption system. The equation obtained was verified by a water adsorption isotherm on natural mineral schungite.

  1. Adsorption of CTAB onto perlite samples from aqueous solutions.

    Science.gov (United States)

    Alkan, Mahir; Karadaş, Mecit; Doğan, Mehmet; Demirbaş, Ozkan

    2005-11-15

    In this study, the adsorption properties of unexpanded and expanded perlite samples in aqueous cetyltrimethylammonium bromide (CTAB) solutions were investigated as a function of ionic strength, pH, and temperature. It was found that the amount of cetyltrimethylammonium bromide adsorbed onto unexpanded perlite was greater than that onto expanded perlite. For both perlite samples, the sorption capacity increased with increasing ionic strength and pH and decreasing temperature. Experimental data were analyzed by Langmuir and Freundlich isotherms and it was found that the experimental data were correlated reasonably well by the Freundlich adsorption isotherm. Furthermore, the isotherm parameters (KF and n) were also calculated. The adsorption enthalpy was determined from experimental data at different temperatures. Results have shown that the interaction between the perlite surface and CTAB is a physical interaction, and the adsorption process is an exothermic one.

  2. Evaluating the Adsorptive Capacities of Chemsorb 1000 and Chemsorb 1425

    Science.gov (United States)

    Monje, Oscar Alberto Monje; Surma, Jan M.; Johnsey, Marissa N.; Melendez, Orlando

    2014-01-01

    The Air Revitalization Lab at KSC tested Chemsorb 1000 and 1425, two candidate sorbents for use in future air revitalization technologies being evaluated by the ARREM project. Chemsorb 1000 and 1425 are granular coconut-shell activated carbon sorbents produced by Molecular Products, Inc. that may be used in the TCCS. Chemsorb 1000 is a high grade activated carbon for organic vapor adsorption. In contrast, Chemsorb 1425 is a high-grade impregnated activated carbon for adsorption of airborne ammonia and amines. Chemsorb 1000 was challenged with simulated spacecraft gas streams in order to determine its adsorptive capacities for mixtures of volatile organics compounds. Chemsorb 1425 was challenged with various NH3 concentrations to determine its adsorptive capacity.

  3. Adsorption and thermodynamic behavior of uranium on natural zeolite

    International Nuclear Information System (INIS)

    Adsorptive behavior of natural clinoptilolite-rich zeolite from Balikesir deposites in Turkey was assessed for the removal of uranium from aqueous solutions. The uranium uptake and cation exchange capacities of zeolite were determined. The effect of initial uranium concentrations in solution was studied in detail at the optimum conditions determined before (pH 2.0, contact time: 60 minutes, temperature: 20 deg C). The uptake equilibrium is best described by Langmuir adsorption isotherm. Some thermodynamic parameters (ΔH deg, ΔS deg, ΔG deg) of the adsorption system were also determined. Application to fixation of uranium to zeolite was performed. The uptake of uranium complex on zeolite followed Langmuir adsorption isotherm for the initial concentration (25 to 100 μg/ml). Thermodynamic values of ΔG deg, ΔS deg and ΔH deg found show the spontaneous and exothermic nature of the process of uranium ions uptake by natural zeolite. (author)

  4. Modelling of copper and zinc adsorption onto zeolite

    Directory of Open Access Journals (Sweden)

    H. Pavolová

    2016-10-01

    Full Text Available Adsorption of Cu(II and Zn(II ions from metallurgical solutions has been studied and the adsorption capacity of zeolite (Nižný Hrabovec, SK has been determined. Zeolites are characterized by relatively high sorption capacity, i.e. Cu(II and Zn(II can be removed even at relatively low concentrations. The experiments were realised in a batch system and evaluated using isotherms. According to the results of the experiments the adsorption equilibrium of Cu(II and Zn(II on zeolite was best described by Freundlich isotherm. The maximum sorption capacity was 1,48 and 1,49 mg/g for Cu(II and Zn(II, respectively. The experimental results of this study demonstrate that zeolite is suitable for adsorption of copper and zinc from aqueous solutions at low concentrations.

  5. Improved Isotherm Data for Adsorption of Methane on Activated Carbons

    KAUST Repository

    Loh, Wai Soong

    2010-08-12

    This article presents the adsorption isotherms of methane onto two different types of activated carbons, namely, Maxsorb III and ACF (A-20) at temperatures from (5 to 75) °C and pressures up to 2.5 MPa. The volumetric technique has been employed to measure the adsorption isotherms. The experimental results presented herein demonstrate the improved accuracy of the uptake values compared with previous measurement techniques for similar adsorbate-adsorbent combinations. The results are analyzed with various adsorption isotherm models. The heat of adsorption, which is concentration and temperature dependent, has been calculated from the measured isotherm data. Henry\\'s law coefficients for these adsorbent-methane pairs are also evaluated at various temperatures. © 2010 American Chemical Society.

  6. Adsorption of remazol brilliant blue on an orange peel adsorbent

    Directory of Open Access Journals (Sweden)

    M. R. Mafra

    2013-09-01

    Full Text Available A novel orange peel adsorbent developed from an agricultural waste material was characterised and utilised for the removal of Remazol Brilliant Blue from an artificial textile-dye effluent. The adsorption thermodynamics of this dye-adsorbent pair was studied in a series of equilibrium experiments. The time to reach equilibrium was 15 h for the concentration range of 30 mg L-1 to 250 mg L-1. The adsorption capacity decreased with increasing temperature, from 9.7 mg L-1 at 20 ºC to 5.0 mg L-1 at 60 ºC. Both the Langmuir and Freundlich isotherm models fitted the adsorption data quite reasonably. The thermodynamic analysis of dye adsorption onto the orange peel adsorbent indicated its endothermic and spontaneous nature. Thus, the application of orange peel adsorbent for the removal of dye from a synthetic textile effluent was successfully demonstrated.

  7. Adsorption and strain: The CO 2-induced swelling of coal

    Science.gov (United States)

    Vandamme, M.; Brochard, L.; Lecampion, B.; Coussy, O.

    2010-10-01

    Enhanced coal bed methane recovery (ECBM) consists in injecting carbon dioxide in coal bed methane reservoirs in order to facilitate the recovery of the methane. The injected carbon dioxide gets adsorbed at the surface of the coal pores, which causes the coal to swell. This swelling in confined conditions leads to a closure of the coal reservoir cleat system, which hinders further injection. In this work we provide a comprehensive framework to calculate the macroscopic strains induced by adsorption in a porous medium from the molecular level. Using a thermodynamic approach we extend the realm of poromechanics to surface energy and surface stress. We then focus on how the surface stress is modified by adsorption and on how to estimate adsorption behavior with molecular simulations. The developed framework is here applied to the specific case of the swelling of CO 2-injected coal, although it is relevant to any problem in which adsorption in a porous medium causes strains.

  8. Selective adsorption of bacteria on sulfide minerals surface

    Institute of Scientific and Technical Information of China (English)

    JIA Chun-yun; WEI De-zhou; LIU Wen-gang; HAN Cong; GAO Shu-ling; WANG Yu-juan

    2008-01-01

    The adsorption of bacteria on sulfide minerals surface was studied, and the selective adsorption mechanism of cells on the sulfide minerals was investigated by means of FTIR, UVS and XPS. The results show that the three strains of bacteria adsorbed more preferentially on pyrite than on other two sulfide minerals surface at neutral and alkaline pH conditions. FTIR and UVS of three strains of bacteria indicate that there are more functional groups on their surface, such as O-H, C=O, N-H, C-O, and the content of saccharide is more than that of protein. The state of every element on sulfide minerals surface was analyzed by XPS. The empty orbital number of electronic shell of metal ions on minerals surface is important in selective adsorption process, and some stable constants of metal coordinates can be used to explain the contribution of some groups in saccharide of cell wall to the selective adsorption.

  9. Radioanalysis of RE enrichment of ion adsorption type RE ores

    CERN Document Server

    Zhao Shu Quan; Hu He Ping; Li Fu Sheng; Chen Ying Min; LiuShiMing

    2002-01-01

    Objective: To analyze the radioactivity in Rare Earth (RE) enrichment of ion adsorption type RE ores. Methods: Using HPGe-gamma spectrometer to analyze the activity ratio of gamma radionuclides in kind of samples, using FJ-2603 low background alpha, beta measurement apparatus to measure their total alpha and total beta activities, and using X-ray fluorescence spectrometer to analyze contents of La sub 2 O sub 3 and Y sub 2 O sub 3 , respectively. Results: HPGe gamma spectroscopy and X-ray fluorescence spectroscopy are simple, convenient and non-destructive methods of analyzing radionuclides and La sub 2 O sub 3 , Y sub 2 O sub 3 in RE enrichment of ion adsorption type RE ores, respectively. Conclusion: The basic data were provided for radiation protection and treatment of gas, liquid and solid waste in RE production of ion adsorption type RE ores; method and experience were provided for studying ion adsorption type RE ores

  10. AIR SEPARATION BY PRESSURE SWING ADSORPTION USING SUPERIOR ADSORBENTS

    Energy Technology Data Exchange (ETDEWEB)

    Ralph T. Yang

    2001-08-31

    Li-X zeolite (Si/Al = 1.0) is currently the best sorbent for use in the separation of air by adsorption processes. In particular, pressure swing adsorption (PSA) using zeolite sorbents is being increasingly used for air separation. Silver is also known to strongly affect the adsorptive properties of zeolites; and it is known that thermal vacuum dehydration of silver zeolites leads to the formation of silver clusters within the zeolite. In this work we have synthesized type X zeolites containing Ag and also varying mixtures of Li and Ag. In this project, we developed the Ag-containing zeolite as the best sorbent for air separation. We have also studied Co-ligand compounds as oxygen-selective sorbents. Syntheses, structural characterization and adsorption properties have been performed on all sorbents. The results are described in detail in 5 chapters.

  11. Phase IV Simulant Testing of Monosodium Titanate Adsorption Kinetics

    International Nuclear Information System (INIS)

    The Salt Disposition Systems Engineering Team identified the adsorption kinetics of actinides and strontium onto monosodium titanate (MST) as a technical risk in several of the processing alternatives selected for additional evaluation in Phase III of their effort

  12. Methods of using adsorption media for separating or removing constituents

    Science.gov (United States)

    Tranter, Troy J.; Herbst, R. Scott; Mann, Nicholas R.; Todd, Terry A.

    2011-10-25

    Methods of using an adsorption medium to remove at least one constituent from a feed stream. The method comprises contacting an adsorption medium with a feed stream comprising at least one constituent and removing the at least one constituent from the feed stream. The adsorption medium comprises a polyacrylonitrile (PAN) matrix and at least one metal hydroxide homogenously dispersed therein. The adsorption medium may comprise from approximately 15 wt % to approximately 90 wt % of the PAN and from approximately 10 wt % to approximately 85 wt % of the at least one metal hydroxide. The at least one metal hydroxide may be selected from the group consisting of ferric hydroxide, zirconium hydroxide, lanthanum hydroxide, cerium hydroxide, titanium hydroxide, copper hydroxide, antimony hydroxide, and molybdenum hydroxide.

  13. Multicomponent Adsorption Model for Polar and Associating Mixtures

    DEFF Research Database (Denmark)

    Nesterov, Igor; Shapiro, Alexander; Kontogeorgis, Georgios M.

    2015-01-01

    The multicomponent potential adsorption theory (MPTA) is revisited in this work for polar and associating systems. MPTA is used in combination with the CPA equation of state. Previous Studies have shown that both MPTA and other theories present difficulties for complex systems. Some of these prob......The multicomponent potential adsorption theory (MPTA) is revisited in this work for polar and associating systems. MPTA is used in combination with the CPA equation of state. Previous Studies have shown that both MPTA and other theories present difficulties for complex systems. Some......-Radushkevich-Astakhov potentials and the potentials directly restored from experimental data by solving the inverse problem. Application of the latter potentials Clearly demonstrates the importance of the difference in adsorption capacities. However, the quality of prediction of binary adsorption is similar for both potentials...

  14. Advanced adsorption cooling cum desalination cycle: A thermodynamic framework

    KAUST Repository

    Chakraborty, Anutosh

    2011-01-01

    We have developed a thermodynamic framework to calculate adsorption cooling cum desalination cycle performances as a function of pore widths and pore volumes of highly porous adsorbents, which are formulated from the rigor of thermodynamic property surfaces of adsorbent-adsorbate system and the adsorption interaction potential between them. Employing the proposed formulations, the coefficient of performance (COP) and overall performance ratio (OPR) of adsorption cycle are computed for various pore widths of solid adsorbents. These results are compared with experimental data for verifying the proposed thermodynamic formulations. It is found from the present analysis that the COP and OPR of adsorption cooling cum desalination cycle is influenced by (i) the physical characteristics of adsorbents, (ii) characteristics energy and (iii) the surface-structural heterogeneity factor of adsorbent-water system. The present study confirms that there exists a special type of adsorbents having optimal physical characteristics that allows us to obtain the best performance.

  15. Microbial desalination cell with capacitive adsorption for ion migration control.

    Science.gov (United States)

    Forrestal, Casey; Xu, Pei; Jenkins, Peter E; Ren, Zhiyong

    2012-09-01

    A new microbial desalination cell with capacitive adsorption capability (cMDC) was developed to solve the ion migration problem facing current MDC systems. Traditional MDCs remove salts by transferring ions to the anode and cathode chambers, which may prohibit wastewater beneficial reuse due to increased salinity. The cMDC uses adsorptive activated carbon cloth (ACC) as the electrodes and utilizes the formed capacitive double layers for electrochemical ion adsorption. The cMDC removed an average of 69.4% of the salt from the desalination chamber through electrode adsorption during one batch cycle, and it did not add salts to the anode or cathode chamber. It was estimated that 61-82.2mg of total dissolved solids (TDS) was adsorbed to 1g of ACC electrode. The cMDC provides a new approach for salt management, organic removal, and energy production. Further studies will be conducted to optimize reactor configuration and achieve in situ electrode regeneration. PMID:22784594

  16. Benzene ring chains with lithium adsorption: Vibrations and their implications

    CERN Document Server

    Stegmann, Thomas; Seligman, Thomas H

    2016-01-01

    Lithium adsorption on aromatic molecules and polyacenes have been found to produce strong distortions associated to spontaneous symmetry breaking and lesser ones in more general cases. For polyphenyls we find similar, but more varied behaviour; an important feature is the fact that adsorption largely suppresses the torsion present in naked polyphenyl. The spectra of the vibrational modes distinguish the different structures of skeletons and adsorbates. In the more regular adsorption schemes the lowest states are bending and torsion modes of the skeleton, which are essential followed by the adsorbate. Based on this we propose the possible use of such a chain of adsorbates on a chain of benzene rings as a quantum register with the lowest vibrations transmitting qubits for control gates. To strengthen this view and to show the effect of heavier alkalines we also present the very symmetric adsorption of ten rubidium atoms on pentaphenyl.

  17. Impact of supercritical adsorption mechanism on research of hydrogen carrier

    Institute of Scientific and Technical Information of China (English)

    SUN Yan; ZHOU Li; SU Wei; ZHOU YaPing

    2007-01-01

    Hydrogen storage receives the worldwide attention due to its importance in sustainable energy and the solution of greenhouse effect. Adsorption provides an efficient way to compress gases and, therefore,has been applied to the development of hydrogen storage technology. However, hydrogen is a supercritical gas at the temperature of engineering interest and follows a different adsorption mechanism compared to the sub-critical gases. The present work shows why only monolayer coverage mechanism functions at above-critical temperatures and what consequences will result in the application study.Although there are pros and cons to this point of view, understanding the adsorption mechanism is, indeed, essential for the research of hydrogen storage method since it claims that any storage material based on adsorption will not satisfy the practical need of on board storage no matter how novel the material is.

  18. Adsorption of vitamin E on mesoporous titania nanocrystals

    International Nuclear Information System (INIS)

    Tri-block nonionic surfactant and titanium chloride were used as starting materials for the synthesis of mesoporous titania nanocrystallite powders. The main objective of the present study was to examine the synthesis of mesoporous titania nanocrystals and the adsorption of vitamin E on those nanocrystals using X-ray diffraction (XRD), transmission electron microscopy, and nitrogen adsorption and desorption isotherms. When the calcination temperature was increased to 300 oC, the reflection peaks in the XRD pattern indicated the presence of an anatase phase. The crystallinity of the nanocrystallites increased from 80% to 98.6% with increasing calcination temperature from 465 oC to 500 oC. The N2 adsorption data and XRD data taken after vitamin E adsorption revealed that the vitamin E molecules were adsorbed in the mesopores of the titania nanocrystals.

  19. Adsorption of vitamin E on mesoporous titania nanocrystals

    Energy Technology Data Exchange (ETDEWEB)

    Shih, C.J., E-mail: cjshih@kmu.edu.tw [Department of Fragrance and Cosmetic Science, Kaohsiung Medical University, Kaohsiung 807, Taiwan (China); Lin, C.T.; Wu, S.M. [School of Pharmacy, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 807, Taiwan (China)

    2010-07-15

    Tri-block nonionic surfactant and titanium chloride were used as starting materials for the synthesis of mesoporous titania nanocrystallite powders. The main objective of the present study was to examine the synthesis of mesoporous titania nanocrystals and the adsorption of vitamin E on those nanocrystals using X-ray diffraction (XRD), transmission electron microscopy, and nitrogen adsorption and desorption isotherms. When the calcination temperature was increased to 300 {sup o}C, the reflection peaks in the XRD pattern indicated the presence of an anatase phase. The crystallinity of the nanocrystallites increased from 80% to 98.6% with increasing calcination temperature from 465 {sup o}C to 500 {sup o}C. The N{sub 2} adsorption data and XRD data taken after vitamin E adsorption revealed that the vitamin E molecules were adsorbed in the mesopores of the titania nanocrystals.

  20. Oxygen adsorption on pyrite (100) surface by density functional theory

    Institute of Scientific and Technical Information of China (English)

    孙伟; 胡岳华; 邱冠周; 覃文庆

    2004-01-01

    Pyrite (FeS2) bulk and (100) surface properties and the oxygen adsorption on the surface were studied by using density functional theory methods. The results show that in the formation of FeS2 (100) surface, there exists a process of electron transfer from Fe dangling bond to S dangling bond. In this situation, surface Fe and S atoms have more ionic properties. Both Fe2+ and S2- have high electrochemistry reduction activity, which is the base for oxygen adsorption. From the viewpoint of adsorption energy, the parallel form oxygen adsorption is in preference.The result also shows that the state of oxygen absorbed on FeS2 surface acts as peroxides rather than O2.

  1. Coulometric study of ethanol adsorption at a polycrystalline platinum electrode

    Science.gov (United States)

    Gilman, Sol

    2012-01-01

    For the first time, use of a novel pre-conditioning sequence and measurements of hydrogen blockage during fast cathodic scans has enabled the determination of rates of accumulation of ethanolic species on the surface of a platinum electrode under well-controlled conditions of surface cleanliness/activity and mass transport. For dilute solutions of ethanol in 1 N perchloric acid (HClO4), oxidative adsorption rates maximize at 0.3 V, drop off at more cathodic potentials due to competition with adsorbed hydrogen and drop off at more anodic potentials due to oxidative processes that produce products released to the electrolyte. The time and concentration dependence of adsorption follows relationships that are common for adsorption on a heterogeneous surface. Some evidence are presented supporting a mechanism for production of soluble products that does not involve the adsorbed species that are detected through the measurement of blockage of hydrogen adsorption sites.

  2. Enhancing protein adsorption simulations by using accelerated molecular dynamics.

    Directory of Open Access Journals (Sweden)

    Christian Mücksch

    Full Text Available The atomistic modeling of protein adsorption on surfaces is hampered by the different time scales of the simulation ([Formula: see text][Formula: see text]s and experiment (up to hours, and the accordingly different 'final' adsorption conformations. We provide evidence that the method of accelerated molecular dynamics is an efficient tool to obtain equilibrated adsorption states. As a model system we study the adsorption of the protein BMP-2 on graphite in an explicit salt water environment. We demonstrate that due to the considerably improved sampling of conformational space, accelerated molecular dynamics allows to observe the complete unfolding and spreading of the protein on the hydrophobic graphite surface. This result is in agreement with the general finding of protein denaturation upon contact with hydrophobic surfaces.

  3. A review on chitosan-based adsorptive membranes.

    Science.gov (United States)

    Salehi, Ehsan; Daraei, Parisa; Arabi Shamsabadi, Ahmad

    2016-11-01

    Membrane adsorbents have emerged as powerful and attractive tools for the removal of hazardous materials such as dyes and heavy metal ions, mainly in trace amounts, from water resources. Among membrane adsorbents, those prepared from or modified with chitosan biopolymer and its derivatives are cases of interest because of chitosan advantages including biocompatibility, biodegradability, nontoxicity, reactivity, film and fiber forming capacity and favorable hydrophilicity. This review is oriented to provide a framework for better insight into fabrication methods and applications of chitosan-based adsorptive membranes. Critical aspects including thermokinetic analyses of adsorption and regeneration capacity of the membrane adsorbents have been also overviewed. Future of chitosan-based adsorptive membranes might include efforts for the improvement of mechanical stability and reusability and also most targeted application of appropriate copolymers as well as nanostructures in preparing high performance adsorptive membranes. PMID:27516289

  4. A DFT study of formaldehyde adsorption on functionalized graphene nanoribbons

    Science.gov (United States)

    Maaghoul, Zohreh; Fazileh, Farhad; Kakemam, Jamal

    2015-02-01

    Density functional theory (DFT) based ab initio calculations were done to monitor the formaldehyde (CHOH) adsorptive behavior on pristine and Ni-decorated graphene sheet. Structural optimization indicates that the formaldehyde molecule is physisorbed on the pristine sheet via partly weak van der Waals attraction having the adsorption energy of about -15.7 kcal/mol. Metal decorated sheet is able to interact with the CHOH molecule, so that single Ni atoms prefer to bind strongly at the bridge site of graphene and each metal atom bound on sheet may adsorb up to four CHOH. The findings also show that the Ni decoration on graphene surface results in some changes in electronic properties of the sheet and its Eg is remained unchanged after adsorption of CHOH molecules. It is noteworthy to say that no bond cleavage was observed for the adsorption of CHOH on Ni-decorated graphene.

  5. Study on the adsorption of 233Pa in glass

    International Nuclear Information System (INIS)

    It is intended to examine the adsorption of protactinium on glass in relation to pH, presence of complexing agents concentration and type of electrolytes. The study was made by using carrier-free 233Pa solution and Pyrex glass tube was selected as adsorbent glass material surface. The adsorption curve of protactinium on glass surface as a function of the pH of the tracer solution showed the existence of two pronounced adsorption regions. It was found that this adsorption can be reduced by using electrolytes or complexing agents. Desorption of protactinium previously adsorbed on the Pyrex glass tube was also studied. Hidrochloric, oxalic and hydrofluoric acid solutions were used for the desorption experiments. (Author)

  6. Adsorption characteristics of zinc ions on sodium dodecyl sulfate in process of micellar-enhanced ultrafiltration

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    To separate zinc ions from aqueous solution efficiently, micellar-enhanced ultrafiltration(MEUF) of hollow ultrafiltration membrane was used with sodium dodecyl sulfate(SDS) as surfactant. The formation of micellar and the adsorption mechanism were investigated, including the influence of the ratio of SDS to zinc ions on the micelle quantity, the micelle ratio, the gross adsorptive capacity, the rejection of zinc ions and the adsorption isotherm law. The results show that the rejection rate of zinc ions reaches 97% and the adsorption of zinc ions on SDS conforms to the Langmuir adsorption isotherm and the adsorption is a chemical adsorption process.

  7. Enhanced fluoride adsorption by nano crystalline γ-alumina: adsorption kinetics, isotherm modeling and thermodynamic studies

    Science.gov (United States)

    Chinnakoti, Prathibha; Chunduri, Avinash L. A.; Vankayala, Ranganayakulu K.; Patnaik, Sandeep; Kamisetti, Venkataramaniah

    2016-06-01

    Nano materials in particular nano oxides with enhanced surface area and an excellent catalytic surface serve as potential adsorbents for defluoridation of water. In the present study nano γ-alumina was synthesized through a simple and low cost, surfactant assisted solution combustion method. As synthesized material was characterized by XRD and FESEM for its phase, size and morphological characteristics. Surface properties have been investigated by BET method. Nano γ-alumina was further used for a detailed adsorption study to remove fluoride from water. Batches of experiments were performed at various experimental conditions such as solution pH, adsorbent dose, initial fluoride concentration and contact time to test the defluoridation ability of γ-alumina. Fluoride Adsorption by nano sized γ-alumina was rapid and reached equilibrium within two hours. The adsorption worked well at pH 4.0, where ˜96 % of fluoride was found to be adsorbed on adsorbent. It was possible to reduce fluoride levels to as low as 0.3 mg/L (within the safe limit of WHO: ≤1.5 mg/L) from an initial fluoride levels of 10 mg/L. This could be achieved using a very small quantity, 1 g/L of γ-alumina at pH 4 within 1 h of contact time. Defluoridation capacity of nano γ-alumina was further investigated by fitting the equilibrium data to various isotherm as well as kinetic models. The present study revealed that γ-alumina could be an efficient adsorbent for treating fluoride contaminated water.

  8. Thin films of xyloglucans for BSA adsorption

    Energy Technology Data Exchange (ETDEWEB)

    Jo, T.A. [Department of Biochemistry and Molecular Biology, Federal University of Parana, Curitiba, PR (Brazil); Laboratory of Biopolymers, Department of Chemistry, Federal University of Parana, Curitiba, PR (Brazil); Petri, D.F.S. [Institute of Chemistry, University of Sao Paulo, Sao Paulo, SP (Brazil); Valenga, F. [Department of Biochemistry and Molecular Biology, Federal University of Parana, Curitiba, PR (Brazil); Laboratory of Biopolymers, Department of Chemistry, Federal University of Parana, Curitiba, PR (Brazil); Lucyszyn, N. [Laboratory of Biopolymers, Department of Chemistry, Federal University of Parana, Curitiba, PR (Brazil); Sierakowski, M.-R. [Laboratory of Biopolymers, Department of Chemistry, Federal University of Parana, Curitiba, PR (Brazil)], E-mail: mariarita.sierakowski@ufpr.br

    2009-03-01

    In this work, XG extracted from Tamarindus indica (XGT) and Copaifera langsdorffii (XGC) seeds were deposited onto Si wafers as thin films. The characteristics of XGT and XGC adsorbed layers were compared with a commercial XG sample (TKP, Tamarind kernel powder) by ellipsometry and atomic force microscopy (AFM). Moreover, the adsorption of oxidized derivative of XGT (To60) onto amino-terminated Si wafers and the immobilization of bovine serum albumin (BSA) onto polysaccharides covered wafers, as a function of pH, were also investigated. The XG samples presented molar ratios Glc:Xyl:Gal of 2.4:2.1:1 (XGC); 2.8: 2.3: 1 (XGT) and 1.9:1.9:1 (TKP). The structure of XGT and XGC was determined by O-methy alditol acetate derivatization and showed similar features, but XGC confirmed the presence of more {alpha}-D-Xyl branches due to more {beta}-D-Gal ends. XGT deposited onto Si adsorbed as fibers and small entities uniformly distributed, as evidenced by AFM, while TPK and XGC formed larger aggregates. The thickness of To60 onto amino-terminated surface was similar to that determined for XGT onto Si wafers. A maximum in the adsorbed amount of BSA occurred close to its isoelectric point (5.5). These findings indicate that XGT and To60 are potential materials for the development of biomaterials and biotechnological devices.

  9. Field demonstrations of radon adsorption units

    International Nuclear Information System (INIS)

    Four radon gas removal units have been installed in homes in the Northeast U.S. These units utilize dynamic adsorption of the radon gas onto activated charcoal to remove the radon from room air. Two beds of charcoal are used so that one bed removes radon while the second bed is regenerated using outdoor air in a unique process. The beds reverse at the end of a predetermined cycle time, providing continuous removal of radon from the room air. The process and units have undergone extensive development work in the laboratory as well as in homes and a summary of this work is discussed. This work showed that the system performs very effectively over a range of operating conditions similar to those found in a home. The field test data that is presented shows that scale up from the laboratory work was without problem and the units are functioning as expected. This unit provides homeowners and mitigation contractors with another option to solve the radon gas problem in homes, particularly in homes that it is difficult to prevent radon from entering

  10. Effects of heavy metal adsorption on silicene

    KAUST Repository

    Kaloni, Thaneshwor P.

    2014-06-02

    Based on first-principles calculations, we study the effects of heavy metal atoms (Au, Hg, Tl, and Pb) adsorbed on silicene. We find that the hollow site is energetically favorable in each case. We particulary address the question how the adsorption modifies the band structure in the vicinity of the Fermi energy. Our results demonstrate that the heavy metal adatoms result in substantial energy gaps and band splittings in the silicene sheet as long as the binding is strong, which, however, is not always the case. (© 2014 WILEY-VCH Verlag GmbH &Co. KGaA, Weinheim) Carbon nanotube flexible sponge was manufactured as high performance electromagnetic shielding material. Chemical vapour deposition (CVD) synthesized sponges with extreme light weight show an electromagnetic shielding above 20 dB and a specific electromagnetic shielding as high as 1100 dB cm3g-1 in the whole 1-18 GHz range. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Development of adsorption cooling system. 3

    Energy Technology Data Exchange (ETDEWEB)

    Kim, J.N.; Cho, S.H.; Chue, K.T.; You, Y.J.; Lee, K.H.; Eun, T.H. [Korea Inst. of Energy Research, Taejon (Korea, Republic of)

    1995-12-01

    This report describes the third year study to develop adsorption chiller using silica gel/water pair for the recovery of low level waste heat. A pilot plant was fabricated and tested. In a typical run, the cooling capacity of 1.66 USRT and COP of 0.38 was obtained under the following operating conditions; chilled water temperature of 12{yields}8.9 degree C, hot water temperature of 72.7 degree C, cooling water temperature of 23.2 degree C, and half cycle time of 600(s). The COP of the pilot plant is comparable to 0.4 of Nishiyodo pilot plant having 3.68 USRT. In order to enhance the thermal conductivity of adsorbent layer, consolidated silica gel and graphite block was prepared and its characteristics was analyzed. A slurry method using water was appropriate of silica gel and graphite in the block, in which adsorbed amount of water is not much smaller than that on silica gel, was 6:1. The thermal conductivity of this block was 6.53 W/mk which was 37 times larger than that of silica gel. (author). 12 refs., 37 figs., 8 tabs.

  12. Competitive adsorption of heavy metals onto sesame straw biochar in aqueous solutions.

    Science.gov (United States)

    Park, Jong-Hwan; Ok, Yong Sik; Kim, Seong-Heon; Cho, Ju-Sik; Heo, Jong-Soo; Delaune, Ronald D; Seo, Dong-Cheol

    2016-01-01

    Objective of this research was to evaluate adsorption of heavy metals in mono and multimetal forms onto sesame straw biochar (SSB). Competitive sorption of metals by SSB has never been reported previously. The maximum adsorption capacities (mgg(-1)) of metals by SSB were in the order of Pb (102)≫Cd (86)≫Cr (65)>Cu (55)≫Zn (34) in the monometal adsorption isotherm and Pb (88)≫Cu (40)≫Cr (21)>Zn (7)⩾Cd (5) in the multimetal adsorption isotherm. Based on data obtained from the distribution coefficients, Freundlich and Langmuir adsorption models, and three-dimensional simulation, multimetal adsorption behaviors differed from monometal adsorption due to competition. Especially, during multimetal adsorption, Cd was easily exchanged and substituted by other metals. Further competitive adsorption studies are necessary in order to accurately estimate the heavy metal adsorption capacity of biochar in natural environments.

  13. Adsorption of lead ions from aqueous solutions using clinoptilolite

    OpenAIRE

    Golomeova, Mirjana; Zendelska, Afrodita; Krstev, Boris; Golomeov, Blagoj; Blažev, Krsto; Krstev, Aleksandar

    2014-01-01

    The adsorption of lead ions from synthetic aqueous solutions was performed by using natural zeolite (clinoptilolite). In order to determine the effectivity of clinoptilolite a series of experiments were performed under batch conditions from single ion solutions. Experiments were carried out at different initial concentration of lead ions, different initial pH values and different adsorbent mass. The adsorption kinetics is reasonably fast. It means that in the first 20 min approximately 90...

  14. Adsorption of phenol and chlorophenols on pure and modified sepiolite

    OpenAIRE

    Yildiz, A; A. GÜR

    2007-01-01

    In this work, pure sepiolite and sepiolite modified by nitric acid (HNO3), ethylenediaminetetraacetic acid (EDTA) and hexadecyltrimethyl-ammonium (HDTMA) were used ad adsorbents. The changes on the surface were studied by IR spectroscopy. The adsorption of solutions of phenol and phenol derivatives in pure ethanol on these adsorbents were examined by means of gas chromatography. It was found that the adsorption capacities of the clay–organic complexes (sepiolite–EDTA and sepiolite–HDTMA) were...

  15. The Adsorption Effect of Quaternized Chitosan Derivatives on Bile Acid

    Institute of Scientific and Technical Information of China (English)

    Shu Xian MENG; Ya Qing FENG; Wen Jin LI; Cai Xia YIN; Jin Ping DENG

    2006-01-01

    Three quaternized chitosan derivatives were synthesized and their adsorption performance of bile acid from aqueous solution was studied. The adsorption capacities and rates of bile acid onto quaternized chitosan derivatives were evaluated. The kinetic experimental data properly correlated with the second-order kinetic model, which indicated that the chemical sorption is the rate-limiting step. The results showed that the quaternized chitosan derivatives are favorable adsorbents for bile acid.

  16. UNBINDING OF SURFACE DEFECTS UNDER THE DEFECT-SELECTIVE ADSORPTION

    Directory of Open Access Journals (Sweden)

    E.V.Vakarin

    2003-01-01

    Full Text Available Unbinding of surface topological defects in the presence of the defect-selective adsorption is investigated using a coupled Coulomb Gas - Lattice Gas model. The unbinding temperature increases with the increasing selectivity (and coverage for both, sign-dependent and sign-independent adsorption. In the latter case, the adsorbates tend to increase the number density of defects. The stability requirement implies that the adsorbate cluster size must be coherent with the screening length of free defects.

  17. Modellierung der Adsorption von Proteinen an Oberflächen

    OpenAIRE

    Steudle, Alexander Patrick

    2009-01-01

    Die Adsorption von Proteinen an Oberflächen ist ein äußerst komplexer Prozess, der in vielen Bereichen, wie der Medizin, Pharmazie, Nanotechnologie und Biotechnologie, von großer Bedeutung ist. In der vorliegenden Arbeit wurden computergestützte Methoden zur Vorhersage der Orientierung und des Bindungsverhaltens von Proteinen bei der Adsorption entwickelt. Die Arbeit konzentrierte sich hierbei auf die Gebiete der Ionenaustauschchromatografie, der hydrophoben Interaktionschromatografie und ...

  18. Adsorption capacity of various adsorbents for decolorization of wastewater

    OpenAIRE

    Romčević, Gorana

    2014-01-01

    Adsorption is applied for the removal of dyes from wastewater effluent from textile and other industries. Dyes from wastewater need to be removed before it mixes with water bodies. Among the treatment options, adsorption appears to have considerable potential for the removal of colour from wastewaters. Activated carbon is the most widely used adsorbent, but its use is limited due to its high cost. This cost problem has led to a search for the use of alternate cheap and efficient materials. ...

  19. Coagulation and Adsorption Treatment of Printing Ink Wastewater

    OpenAIRE

    Maja Klančnik

    2014-01-01

    The intention of the study was to improve the efficiency of total organic carbon (TOC) and colour removal from the wastewater samples polluted with flexographic printing ink following coagulation treatments with further adsorption onto activated carbons and ground orange peel. The treatment efficiencies were compared to those of further flocculation treatments and of coagulation and adsorption processes individually. Coagulation was a relatively effective single-treatment method, removing 99...

  20. The adsorption of nitrogen oxides on crystalline ice

    Directory of Open Access Journals (Sweden)

    T. Bartels

    2002-04-01

    Full Text Available The partitioning of nitrogen oxides between ice and air is of importance to the ozone budget in the upper troposphere. In the present study, adsorption of nitrogen oxides on ice was investigated at atmospheric pressure using a chromatographic technique with radioactively labelled nitrogen oxides at low concentrations. The measured retentions solely depended on molecular adsorption and were not influenced by dimerisation, formation of encapsulated hydrates on the ice surface, dissociation of the acids, nor by migration into a quasi-liquid layer or grain boundaries. Based on the chromatographic retention and the model of thermo-chromatography, the standard adsorption enthalpy of -20 kJ mol-1 for NO, -22kJ mol-1 for NO2, -30kJ mol-1 for peroxyacetyl nitrate, -32kJ mol-1 for HON} and -44 kJ mol-1 for HNO3 was calculated. To perform those calculations within the model of thermo-chromatography, the standard adsorption entropy was calculated based on statistical thermodynamics. In this work, two different choices of standard states were applied, and consequently different values of the standard adsorption entropy, of either between -39 kJ mol-1 and -45kJ mol-1, or -164 kJ mol-1 and -169 kJ mol-1 for each nitrogen oxide were derived. The standard adsorption enthalpy was identical for both standard adsorption entropies and thus shown to be independent of the choice of standard state. A brief outlook on environmental implications of our findings indicates that adsorption on ice might be an important removal process of HNO3. In addition, it might be of some importance for HONO and peroxyacetyl nitrate and irrelevant for NO and NO2.