Sample records for adsorption filtration photo-catalysis

  1. New trends on liquid effluent treatments: coprecipitation, adsorption, filtration, photo-catalysis, a complementary association of innovative tools

    Energy Technology Data Exchange (ETDEWEB)

    Barre, Yves [CEA, DEN, MAR, DTCD, SPDE, Laboratoire des Procedes Avances de Decontamination, 30207 Bagnols sur Ceze (France); Pacary, Vincent [CEA, DEN, MAR, DRCP, SCPS, LCSE, 30207 Bagnols sur Ceze (France); Schrive, Luc [CEA, DEN, MAR, DTCD, SPDE, Laboratoire des Fluides Supercritiques et Membranes, 30207 Bagnols sur Ceze (France); Guibal, Eric [Ecole des Mines d' Ales, Centre de Recherche LGEI, 6 avenue de Clavieres, 30319 Ales Cedex (France)


    The ever increasing pressure to reduce the release of radioactive and other toxic substances into environment requires constant improvement/upgrading of processes and technologies for treatment and conditioning of liquid radioactive wastes. The extensive research is carried out on various processes including ion exchange, sorption, coprecipitation, membrane separation and photo-catalytic degradation of organics substances. A judicious combination of the processes is being pursued to meet the end objectives of improved decontamination and waste volume reduction. In a previous study, an elaborated model is proposed to predict the radioactive strontium decontamination factor of nuclear waste solutions which can be realized by using a coprecipitation process with barium sulphate. Simulations of the coprecipitation of strontium ions with barium sulphate have been performed in continuous and semibatch reactors. Thanks to these simulations, laws of the treatment efficiency variation as a function of several process parameters (mean residence time, stirring speed, concentration) have been determined and experimentally verified. This study leads to the determination of optimal treatment conditions. Three apparatus (recycling apparatus, fluidized bed and reactor/settling tank) providing these optimal conditions have been successfully tested and offered significant outlooks for the reduction of the residual sludge volume. Since the development of new ceramic membranes with large filtration area and their long term use verification in conventional water purification fields, these membrane processes have been adopted by the nuclear industry as a viable alternative treatment method for liquid radioactive wastes. Ion exchange is one of the most common and effective treatment methods for liquid radioactive. Spent ion exchange resins are considered to be problematic waste that requires precautions during its immobilization to meet the acceptance criteria for disposal. Efforts to

  2. Degradation of Residual Formaldehyde in Fabric by Photo-catalysis

    Institute of Scientific and Technical Information of China (English)

    YAO Yadong; GUO Xiangli; KANG Yunqing; LI Xieji; CHEN Aizheng; YANG Weizhong; YIN Guangfu


    The residual formaldehyde (HCHO) in fabric was degraded using photo-catalysis assisted by the compound catalyst of nano-TiO2 and nano-ZnO. The effects of several factors on the degradation,such as the composing of catalyst, irradiation time, pH value and the H2CHO concentration of the immersed solution were investigated. Results showed that H2CHO of the immersed solution had degraded 93% after 5 h irradiation, and the degradation ratio of formaldehyde could be improved and the aging of the fabric can be avoided with the addition of ZnO nanoparticles and pH value of the immersed-fibric solution. The fabric with residual formaldehyde about 1 800 μg/g can be efficiently treated to satisfy the China National Standard(GB/2912.1-1998) with the photo-catalytic degradation.

  3. 77 FR 38857 - Design, Inspection, and Testing Criteria for Air Filtration and Adsorption Units of Normal... (United States)


    ... COMMISSION Design, Inspection, and Testing Criteria for Air Filtration and Adsorption Units of Normal..., Inspection, and Testing Criteria for Air Filtration and Adsorption Units of Normal Atmosphere Cleanup Systems..., entitled, ``Design, Inspection, and Testing Criteria for Air Filtration and Adsorption Units of...

  4. 76 FR 82323 - Design, Inspection, and Testing Criteria for Air Filtration and Adsorption Units (United States)


    ... COMMISSION Design, Inspection, and Testing Criteria for Air Filtration and Adsorption Units AGENCY: Nuclear...-1274, ``Design, Inspection, and Testing Criteria for Air Filtration and Adsorption Units of....'' This guide applies to the design, inspection, and testing of air filtration and iodine adsorption...

  5. Simulations of Microbial-Enhanced Oil Recovery: Adsorption and Filtration

    DEFF Research Database (Denmark)

    Nielsen, Sidsel Marie; Nesterov, Igor; Shapiro, Alexander


    In the context of microbial-enhanced oil recovery (MEOR) with injection of surfactant-producing bacteria into the reservoir, different types of bacteria attachment and growth scenarios are studied using a 1D simulator. The irreversible bacteria attachment due to filtration similar to the deep bed...... filtration (DBF) is examined along with the commonly used reversible equilibrium adsorption (REA). The characteristics of the two models are highlighted. The options for bacteria growth are the uniform growth in both phases and growth of attached bacteria only. It is found that uniform growth scenario...... applied to filtration model provides formation of two oil banks during recovery. This feature is not reproduced by application of REA model or DBF with growth in attached phase. This makes it possible to select a right model based on the qualitative analysis of the experimental data. A criterion...

  6. Heterogeneous photo-catalysis system for the degradation of azo dye Reactive Black 5 (RB5). (United States)

    Huang, Yao-Hui; Wei, Hau-Cheng; Chen, Hung-Ta


    This study investigated a heterogeneous photo-catalysis system by introducing a novel brick supported iron oxide (denoted as B1) for the heterogeneous photoassisted degradation of Reactive Black 5 (RB5) at pH value from 3 to 7 in a three-phase (gas-liquid-solid) fluidized bed reactor (3P-FBR). Scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS), X-ray powder diffraction (XRD) and N(2) adsorption/desorption were used to characterize the B1 catalyst. The in situ formation of hydrogen peroxide and the depletion of oxalic acid by photochemical cycle of Fe(III)-oxalate complex under UVA light (λ = 365 nm) were studied. The effects of the solution pH and the concentration of oxalic acid on the degradation of RB5 are elucidated. About 90% decolourization was measured and 80% of the total organic carbon (TOC) was eliminated at pH 5.0 after 120 min for 20 mg/L RB5 in presence of 10 g/L B1 catalyst, 30 mg/L oxalic acid under 15 W UVA light. A mechanism for the photocatalytic degradation of RB5 over B1 catalyst is proposed.

  7. Solar photo-catalysis to remove paper mill wastewater pollutants

    Energy Technology Data Exchange (ETDEWEB)

    Amat, A.M.; Arques, A. [Departamento de Ingenieria Textil y Papelera, Universidad Politecnica de Valencia, EPSA-UPV, Paseo del Viaducto 1, E-03801 Alcoy (Spain); Lopez, F. [Departamento de Ingenieria Quimica y Nuclear, Universidad Politecnica de Valencia, EPSA-UPV, Paseo del Viaducto 1, E-03801 Alcoy (Spain); Miranda, M.A. [Departamento de Quimica, Instituto de Tecnologia Quimica, Universidad Politecnica de Valencia, UPV-CSIC, 46071 Valencia (Spain)


    Solar degradation of effluents in board paper industries has been studied using different photo-catalysts: Fenton reagent and TiO{sub 2}. p-Toluenesulfonic acid was chosen as a model compound for sulfonated pollutants already present in the incoming waters. The abatement of a 0.005M solution of this pollutant after 6h was found to be 47% for photo-Fenton and 27% for TiO{sub 2} (pseudo-first-order rate constants 0.002 and 0.001min{sup -1}, respectively). Eugenol and guaiacol were chosen as models for lignin degradation products. They were efficiently degraded by both photo-catalysts, and reaction rates were higher for eugenol (0.0024min{sup -1}) than for guaiacol (0.0018min{sup -1}). A solution of sodium acetate, sodium butyrate and d-glucose was chosen to study the effect of photo-catalysis towards volatile fatty acids and saccharides arising from starch degradation. In this case a clearly worse performance was observed: only 20% degradation was observed after 7h of treatment. When the real wastewater was treated with photo-catalytic methods, the best performance was obtained in closed circuits, when the COD values were higher. This fact can be explained by taking into account that closure of the circuits results in an accumulation of reluctant phenolic pollutants, while starch derivatives are continuously degraded by microorganisms in the circuits; as phenolic compounds are more easily degraded by photo-catalytic means, these methods are suitable for closed circuits. Finally, changes in the BOD{sub st} were determined by means of active sludges respirometry. A noticeable BOD{sub st} increase (30-50%) was observed in all cases, attributable to chemical oxidation of biodegradable species. (author)

  8. The Use of Coupled Plasma Filtration Adsorption in Traumatic Rhabdomyolysis

    Directory of Open Access Journals (Sweden)

    Mario Pezzi


    Full Text Available Severe musculoskeletal injuries induce the release of sarcoplasmic elements such as muscle enzymes, potassium, and myoglobin in the systemic circulation. The circulating myoglobin damages the glomerulus and renal tubules. Conventional haemodialysis is not able to remove myoglobin, due to its high molecular weight (17,8 kilodaltons [kDa]. We treated four traumatic rhabdomyolysis patients with Coupled Plasma Filtration Adsorption (CPFA in order to remove myoglobin followed by 14 hours of Continuous Veno-Venous Hemofiltration (CVVH. During the treatment, all patients showed clinical improvement with a decrease in muscular (creatine kinase [CK] and myoglobin and renal (creatinine and potassium damage indices. One patient, in spite of full renal recovery, died of cerebral haemorrhage on the 26th day of hospital stay.

  9. 77 FR 60481 - Design, Inspection, and Testing Criteria for Air Filtration and Adsorption Units of Post-Accident... (United States)


    ... COMMISSION Design, Inspection, and Testing Criteria for Air Filtration and Adsorption Units of Post-Accident..., and Testing Criteria for Air Filtration and Adsorption Units of Post-accident Engineered-Safety... design, inspection, and testing of air filtration and iodine adsorption units of...

  10. Adsorptive removal of nitrilotris(methylenephosphonic acid) antiscalant from membrane concentrates by iron-coated waste filtration sand. (United States)

    Boels, L; Tervahauta, T; Witkamp, G J


    Iron-coated waste filtration sand was investigated as a low-cost adsorbent for the removal of nitrilotris(methylenephosphonic acid) (NTMP) from membrane concentrates. The adsorption of this phosphonate-based antiscalant on this material was measured and compared with two commercially available anion exchange resins and activated carbon. Comprehensive adsorption experiments were conducted in several synthetic concentrate solutions and in a concentrate collected from a full scale nano-filtration brackish water desalination plant. The effect of pH, ionic strength and the presence of competitive anions on the equilibrium adsorption were investigated. The results showed that, in contrast to the anion exchange resins, the adsorption on coated filtration sand is not suppressed at increasing ionic strength and is much less affected by the competitive anions carbonate and sulphate. The adsorption decreased slightly when the pH was raised from 7.0 to 8.0. The adsorption isotherms in the real nano-filtration concentrate, measured in the concentration interval of 5-50 mg dm(-1) NTMP, showed that the maximum adsorption capacity of coated filtration sand was 4.06 mg g(-1). The adsorption capacity per unit mass of the adsorbents at low NTMP concentration (12.5 mg dm(-3)) followed the decreasing order Amberlite IRA-410>coated filtration sand>Amberlite IRA-900>Norit SAE Super. This demonstrates that the use of iron-coated waste filtration sand offers a promising means for the removal of NTMP from membrane concentrates.

  11. Phosphate adsorption from wastewater using zirconium (IV) hydroxide: Kinetics, thermodynamics and membrane filtration adsorption hybrid system studies. (United States)

    Johir, M A H; Pradhan, M; Loganathan, P; Kandasamy, J; Vigneswaran, S


    Excessive phosphate in wastewater should be removed to control eutrophication of water bodies. The potential of employing amorphous zirconium (Zr) hydroxide to remove phosphate from synthetic wastewater was studied in batch adsorption experiments and in a submerged membrane filtration adsorption hybrid (MFAH) reactor. The adsorption data satisfactorily fitted to Langmuir, pseudo-first order and pseudo-second order models. Langmuir adsorption maxima at 22 °C and pHs of 4.0, 7.1, and 10.0 were 30.40, 18.50, and 19.60 mg P/g, respectively. At pH 7.1 and temperatures of 40 °C and 60 °C, they were 43.80 and 54.60 mg P/g, respectively. The thermodynamic parameters, ΔG° and ΔS° were negative and ΔH° was positive. FTIR, zeta potential and competitive phosphate, sulphate and nitrate adsorption data showed that the mechanism of phosphate adsorption was inner-sphere complexation. In the submerged MFAH reactor experiment, when Zr hydroxide was added at doses of 1-5 g/L once only at the start of the experiment, the removal of phosphate from 3 L of wastewater containing 10 mg P/L declined after 5 h of operation. However, when Zr hydroxide was repeatedly added at 5 g/L dose every 24 h, satisfactory removal of phosphate was maintained for 3 days.

  12. Membrane filtration of two sulphonamides in tertiary effluents and subsequent adsorption on activated carbon. (United States)

    Hartig, C; Ernst, M; Jekel, M


    The adsorption behaviour of two polar organic micropollutants (N-n-butylbenzenesulphonamide and sulphmethoxazole) onto powdered activated carbon (PAC) under competitive conditions prior to and after filtration with a tight ultrafiltration membrane was examined. The sulphonamides were spiked into microfiltered tertiary municipal effluent in microg L(-1) quantities. Ultrafiltration of these effluents resulted in better adsorbability for both the micropollutants and the background organic matter in the permeates compared to the feed waters. This behaviour seems to be caused by a reduced blocking of micropores by lower concentrations of high molecular weight compounds in membrane filtrates. A combined treatment of ultrafiltration prior to adsorption can therefore reduce the carbon demand for potentially harmful micropollutants in effluents.

  13. Cytokine filtration and adsorption during pre- and postdilution hemofiltration in four different membranes. (United States)

    Bouman, C S; van Olden, R W; Stoutenbeek, C P


    In the present in vitro study we investigated filtration and adsorption of tumor necrosis factor-alpha (TNF-alpha), interleukin-6 (IL-6) and interleukin-8 (IL-8) during predilution and postdilution hemofiltration with polysulfone, polyacrylonitrile, polyamide and cellulose triacetate membranes. The median sieving coefficient (SC) for all membranes was 0.0 for TNF-alpha, below 0.15 for IL-6 and below 0.15 for IL-8 during postdilution hemofiltration. Differences in SC between filtration modes were less than 0.05. Maximal differences in SC between membranes were 0.11 for IL-6, 0.0 for TNF-alpha, and 0.11 for IL-8. The progressive decrease in cytokine concentrations was identical between the two filtration modes and most pronounced with the polyacrylonitrile membrane (reduction 77% for IL-6, 39% for TNF-alpha and 95% for IL-8 after 4 h of hemofiltration). The relative contribution of adsorption to the reduction in cytokines was 100% for TNF-alpha for all membranes, between 53 (cellulose triacetate) and 83% (polyacrylonitrile) for IL-6, and for IL-8 between 0 (polysulfone) and 100% (polyacrylonitrile). In conclusion, the reduction in TNF-alpha, IL-6 and IL-8 was most impressive with the polyacrylonitrile membrane after 4 h of hemofiltration and was largely due to adsorption. Adsorption of TNF-alpha, IL-6 and IL-8 was also seen with the other membranes. None of the membranes filtered TNF-alpha. Sieving of IL-6 and IL-8 was low for all membranes with only marginal differences between membranes or between filtration modes.

  14. TiO2-assisted photo-catalysis degradation process of dye chemicals

    Institute of Scientific and Technical Information of China (English)


    The photo-catalytic degradation pathway and degradation products of methylene blue, rhodamine B, methyl orange, and malachite green in aqueous TiO2 suspension irradiated by high pressure mercury lamp by means of UV-visible absorption spectra and ion chromatography were investigated. The photo-catalysis degradation of dye solutions with charges was greatly affected by pH value owing to the electrostatic model. The photo-degradation rate of dyes anion increased with the decrease of pH value, in contrast, the photo-degradation rate of dyes cation increased with the increase of pH value. And the absorption peaks diminished with a blue shift. After illuminated for 30 minutes, a part of dye chemicals were completely mineralized and transferred into inorganic species including chloride ion, ammonium ion, nitrate ion, sulfate ion. And the addition of 100 mmmol/L H2O2 promoted the formation of inorganic species. In this study, the quantity of ammonium ion was much more than that of nitrate ion. That indicated the formation of nitrate is from ammonium. The purification rate of COD in four kinds of dye solution was 71.7%-88.7%. The decrease of COD of dyes solution implies the feasibility of the environmental application of photo-catalyzed process.

  15. TiO2-assisted photo-catalysis degradation process of dye chemicals. (United States)

    Li, F B; Gu, G B; Huang, G F; Gu, Y L; Wan, H F


    The photo-catalytic degradation pathway and degradation products of methylene blue, rhodamine B, methyl orange, and malachite green in aqueous TiO2 suspension irradiated by high pressure mercury lamp by means of UV-visible absorption spectra and ion chromatography were investigated. The photo-catalysis degradation of dye solutions with charges was greatly effected by pH value owing to the electrostatic model. The photo-degradation rate of dyes anion increased with the decrease of pH value, in contrast, the photo-degradation rate of dyes cation increased with the increase of pH value. And the absorption peaks diminished with a blue shift. After illuminated for 30 minutes, a part of dye chemicals were completely mineralized and transferred into inorganic species including chloride ion, ammonium ion, nitrate ion, sulfate ion. And the addition of 100 mmol/L H2O2 promoted the formation of inorganic species. In this study, the quantity of ammonium ion was much more than that of nitrate ion. That indicated the formation of nitrate is from ammonium. The purification rate of COD in four kinds of dye solution was 71.7%-88.7%. The decrease of COD of dyes solution implies the feasibility of the environmental application of photo-catalyzed process.

  16. Titanium oxide modification with oxides of mixed cobalt valence for photo catalysis

    Energy Technology Data Exchange (ETDEWEB)

    Alanis O, R.; Jimenez B, J., E-mail: jaime.jimenez@inin.gob.m [ININ, Departamento de Quimica, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico)


    In the present work, heterogenous photo catalysis, a technique often used for organic compound degradation toxic in water, was used. The photo catalyst most often used in this technique is TiO{sub 2}, which due to its physical and chemical properties, can degrade a great number of organic compounds. In addition, in recent years it has been verified that the doping of semiconductors with metals or metallic oxides increases the photo catalytic activity of these semiconductors, which is why it was proposed for doping by the impregnating method using commercial TiO{sub 2} synthesized by the Degussa company (TiO{sub 2} Degussa P25) with and oxide of mixed cobalt valence (Co{sub 3}O{sub 4}) synthesized using the sol-gel method. The synthesized photo catalyst TiO{sub 2}/Co{sub 3}O{sub 4} was characterized by the techniques of X-ray diffraction, scanning electronic microscopy, Raman spectroscopy and finally, photo catalytic tests by means of the degradation of methylene blue. (Author)

  17. Advanced phosphorus removal from membrane filtrates by adsorption on activated aluminium oxide and granulated ferric hydroxide. (United States)

    Genz, Arne; Kornmüller, Anja; Jekel, Martin


    The advanced phosphorus (P) removal by adsorption was studied for its suitability as a post-treatment step for membrane bioreactor (MBR) effluents low in P concentration and particle content. Two commercial adsorbents, granulated ferric hydroxide (GFH) and activated aluminium oxide (AA), were studied in batch tests and lab-scale filter tests for P adsorption in MBR filtrates. GFH showed a higher maximum capacity for phosphate and a higher affinity at low P concentrations compared to AA. Competition by inorganic ions was negligible for both adsorbents at the original pH (8.2). When equilibrium P concentrations exceeded 2 mg L(-1) in the spiked MBR filtrates, a precipitation of calcium phosphates occurred additionally to adsorption. During column studies the effluent criteria of 50 microgL(-1) P was reached after a throughput of 8000 bed volumes for GFH and 4000 for AA. Dissolved organic carbon appears to be the strongest competitor for adsorption sites. A partial regeneration and reloading of both adsorbents could be achieved by the use of sodium hydroxide.

  18. Coupled plasma filtration adsorption in experimental peritonitis-induced septic shock. (United States)

    Sykora, Roman; Chvojka, Jiri; Krouzecky, Ales; Radej, Jaroslav; Kuncova, Jitka; Varnerova, Veronika; Karvunidis, Thomas; Novak, Ivan; Matejovic, Martin


    The coupled plasma filtration adsorption (CPFA) was developed as an adsorptive hemopurification method aimed at nonselective removal of circulating soluble mediators potentially involved in the pathogenesis of sepsis. We hypothesized that this nonselective hemopurification could protect from detrimental consequences of long-term, volume-resuscitated porcine septic shock. In 16 anesthetized, mechanically ventilated, and instrumented pigs, the hyperdynamic septic shock secondary to peritonitis was induced by intraperitoneally inoculating feces and maintained for 22 h with fluid resuscitation and norepinephrine infusion as needed to maintain MAP above 65 mmHg. After 12 h of peritonitis, animals were randomized to receive either supportive treatment (control, n = 8) or CPFA treatment (CPFA, n = 8). Systemic, hepatosplanchnic, and renal hemodynamics; oxygen exchange; energy metabolism (lactate/pyruvate and ketone body ratios); ileal mucosal and renal cortex microcirculation; systemic inflammation (TNF-alpha, IL-6); nitrosative/oxidative stress (thiobarbituric acid reactive species, nitrates + nitrites); and endothelial/coagulation dysfunction (asymmetric dimethylarginine, von Willebrand factor, thrombin-antithrombin complexes, platelet count) were assessed before and 12, 18, and 22 h of peritonitis. Coupled plasma filtration adsorption neither delayed the development of hypotension nor reduced the dose of norepinephrine. The treatment failed to attenuate sepsis-induced alterations in microcirculation, surrogate markers of cellular energetics, endothelial injury, and systemic inflammation. Similarly, CPFA did not protect from lung and liver dysfunction and even aggravated sepsis-induced disturbances in coagulation and oxidative/nitrosative stress. In this porcine model of septic shock, the early treatment with CPFA was not capable of reversing the sepsis-induced disturbances in various biological pathways and organ systems. Both the efficacy and safety of this method

  19. NOM removal by adsorption and membrane filtration using heated aluminum oxide particles. (United States)

    Cai, Zhenxiao; Kim, Jaeshin; Benjamin, Mark M


    Heated aluminum oxide particles (HAOPs) are a newly synthesized adsorbent with attractive properties for use in hybrid adsorption/membrane filtration systems. This study compared removal of natural organic matter (NOM) from water by adsorption onto HAOPs with that by adsorption onto powdered activated carbon (PAC) or coagulation with alum or ferric chloride (FeCl3); explored the overlap between the NOM molecules that preferentially adsorb to HAOPs and those that are removed by the more conventional approaches; and evaluated NOM removal and fouling in hybrid adsorbent/membrane systems. For equivalent molar doses of the trivalent metals, HAOPs remove more NOM, and NOM with higher SUVA254, than alum or FeCl3. Most of the HAOPs-nonadsorbable fraction of the NOM can be adsorbed by PAC; in fact, that fraction appears to be preferentially adsorbed compared to the average NOM in untreated water. Predeposition of the adsorbents on a microfiltration membrane improves system performance. For the water tested, at a flux of 100 L/m2-hr, predeposition of 11 mg/L PAC and 5 mg/L HAOPs (as Al3+) allowed the system to operate 5 times as long before the transmembrane pressure increased by 1 psi and to remove 10-20 times as much NOM as when no adsorbents were added.

  20. Photo-catalysis Plants from basic research to commercial reality; Plantas de tratamiento mediante fotocatalisis solar: de la investigacion basica a una realidad comercial

    Energy Technology Data Exchange (ETDEWEB)

    Blanco, J.; Malato, S.


    The degradation process of nonbiodegradable organic substances by means of photo catalysis techniques allows the effective elimination of pollutants presents in water and air. The development during the last years of the solar photo catalysis technology, commonly called solar detoxification, has allowed that the first commercial plants based on solar collectors for the treatment of waste water containing persistent organic compounds become a reality. CIEMAT has played an essential roll on this process. This technology is based on the application of two different techniques (photo-Fenton and UV/TiO{sub 2} processes) implemented in static solar collectors CPC type (parabolic-compound). (Author)

  1. Study of the combining adsorption-micro filtration process for the treatment of coloured waters

    Energy Technology Data Exchange (ETDEWEB)

    Addaou, A.; Laajeb, A.; Lahsini, A.; Bentama, J.; Rodriguez, M. A.


    Generally textile effluents are highly coloured, contain non-biodegradable compounds and they have high content of solid wastes, comprising fibres and paper wastes. The discharge of such effluents in the environment is worrying for both toxicological and esthetical reasons. The aim of the present work is to study the performances of the combining micro filtration-adsorption process for the treatment of coloured waters. Methylene Blue (MB) was used as model compound. The effects of significant operating parameters such as transmembrane pressure (TMP) and bentonite concentration on the process performance characterized by flux and rejection factor were investigated. Experiments carried out with Methylene Blue solutions confirmed the potential of this combined process for the treatment of dyed waters. (Author) 13 refs.

  2. Increasing parvovirus filter throughput of monoclonal antibodies using ion exchange membrane adsorptive pre-filtration. (United States)

    Brown, Arick; Bechtel, Charity; Bill, Jerome; Liu, Hui; Liu, Jun; McDonald, Dan; Pai, Satyan; Radhamohan, Asha; Renslow, Ryan; Thayer, Brooke; Yohe, Stefan; Dowd, Chris


    Pre-filtration using ion exchange membrane adsorbers can improve parvovirus filter throughput of monoclonal antibodies (mAbs). The membranes work by binding trace foulants, and although some antibody product also binds, yields > or =99% are easily achieved by overloading. Results show that foulant adsorption is dependent on pH and conductivity, but independent of scale and adsorber brand. The ability to use ion exchange membranes as pre-filters is significant because it provides a clean, well defined, chemically stable option for enhancing throughput. Additionally, ion exchange membranes facilitate characterization of parvovirus filter foulants. Examination of adsorber elution samples using sedimentation velocity analysis and SEC-MALS/QELS revealed the presence of high molecular weight species ranging from 8 to 13 nm in hydrodynamic radius, which are similar in size to parvoviruses and thus would be expected to plug the pores of a parvovirus filter. A study of two identical membranes in-series supports the hypothesis that the foulants are soluble, trace level aggregates in the feed. This study's significance lies in a previously undiscovered application of membrane chromatography, leading to a more cost effective and robust approach to parvovirus filtration for the production of monoclonal antibodies.

  3. Air purification: photo catalysis to fight smells; Epuration de l'air: la photocatalyse pour lutter contre les odeurs

    Energy Technology Data Exchange (ETDEWEB)

    Kartheuser, B. [Certech (Belgium)


    The insufficient ventilation of buildings and the emission of volatile organic compounds (VOCs) by the modern building materials are at the origin of the decay of the indoor air quality. The photo-catalysis is a technique that can ensure a complete destruction of the air pollutants. This technique uses a semiconductor material (in general TiO{sub 2}) and a light radiation (UV or visible). When submitted to the light radiation, the semiconductor material produces highly-oxidizing radicals which allow the destruction of the pollutants adsorbed on its surface. A new configuration of photo-catalytic reactor has been developed by the Certech (centre of technological resources in chemistry) which allows to process the air of a 40 m{sup 3} room with a 100 W power consumption. This system has many other advantages, like: very good efficiency with low cost commercial catalysts, reaction at ambient temperature and pressure, compactness etc.. (J.S.)

  4. Purification of olive mill wastewater phenols through membrane filtration and resin adsorption/desorption. (United States)

    Zagklis, Dimitris P; Vavouraki, Aikaterini I; Kornaros, Michael E; Paraskeva, Christakis A


    Olive tree cultivation has a long history in the Mediterranean countries, and even today consists an important cultural, economic, and environmental aspect of the area. The production of olive oil through 3-phase extraction systems, leads to the co-production of large quantities of olive mill wastewater (OMW), with toxic compounds that inhibit its biodegradation. Membrane filtration has been used for the exploitation of this byproduct, through the isolation of valuable phenolic compounds. In the current work, a fraction of the waste occurring from a membrane process was used. More specifically the reverse osmosis concentrate, after a nanofiltration, containing the low-molecular-weight compounds, was further treated with resin adsorption/desorption. The non ionic XAD4, XAD16, and XAD7HP resins were implemented, for the recovery of phenols and their separation from carbohydrates. The recovered phenolic compounds were concentrated through vacuum evaporation reaching a final concentration of 378 g/L in gallic acid equivalents containing 84.8 g/L hydroxytyrosol.

  5. Palm Oil Mill Effluent Treatment Through Combined Process Adsorption and Membrane Filtration

    Directory of Open Access Journals (Sweden)

    Muhammad Said


    Full Text Available The growth in palm oil production also leads to an Increase in the production of palm oil mill effluent (POME. Nowadays, POME was treated using an open lagoon but this method is ineffectiveness in complying with the standards for water disposal. Therefore, efficient and cohesive treatment system is highly desired to ensure the final discharge of the treated water meets the effluent discharge standards. Initially, the POME was treated through adsorption, followed by UF membranes roomates were intended to reduce COD, TSS and turbidity up to 88%, 99%, and 98%, while the final treatment of RO membranes can reduce BOD, COD and color up to 92%, 98% and 99%. To determine the optimum condition of the RO membrane, response surface methodology (RSM was used. The results showed there was correlation between all key variables. POME concentration, trans-membrane pressure, pH and time would give significant effects in reducing the parameters in POME treatment with the optimum condition of 15.77% for POME concentration, 3.73 for pH, 0.5 bar trans-membrane pressure and 5 hours for filtration time. To predict COD removal, the results were analyzed by applying the artificial neural network (ANN to derive a mathematical model.

  6. Part of plasmapheresis with plasma filtration adsorption combined with continuous hemodiafiltration in the treatment of severe acute liver failure (United States)

    Li, Maoqin; Wang, Zhidong; Wang, Yining; Du, Changhong; Li, Songhai; Shi, Zaixiang; Lu, Bo


    The present study is a retrospective analysis of 11 cases with severe acute liver failure combined with multiple organ dysfunction syndrome (MODS) performed during the period June, 2012 to December, 2014. After part of plasmapheresis with plasma filtration adsorption combined with continuous hemodiafiltration treatment, good curative effects were obtained and the main clinical symptoms and biochemical index were significantly improved. Following treatment, 8 of the 11 patients survived at a survival rate of 72.7%, and 3 patients succumbed with a mortality of 27.3%. The results suggested that part of plasmapheresis with plasma filtration adsorption combined with continuous venovenous hemodiafiltration (CVVHDF) treatment is beneficial in the removal of metabolites and toxins. Additonally, it can effectively improve liver function and clinical symptoms, improve hepatic encephalopathy, correct the disorder of internal environment, and improve the prognosis of patients. PMID:27698760

  7. Continuous plasma filtration adsorption in treatment of severe infection-induced multiple organ dysfunction syndrome. (United States)

    Yin, S L; Lan, C; Pei, H; Zu, Z Q


    Multiple organ dysfunction syndrome (MODS), a high-risk disease, has a fatality rate of 70%. To improve treatment of this disease, in recent years many scholars have explored the pathological and physiological changes of MODS. To observe the curative effect of continuous plasma filtration adsorption (CPFA) in the treatment of MODS, we selected 96 patients who were diagnosed with severe infection-induced MODS and were treated in the First Affiliated Hospital of Zhengzhou University between February 2012 and October 2014 and divided them into an observation group and a control group. Besides conventional treatment, the observation group was also given CFPA in combination with high volume hemofiltration (HVHF), while the control group only received HVHF. Changes of blood routine index, balance of electrolyte and acid-base as well as vital signs were observed before and after treatment. Also, blood, kidney and blood gas were examined. For all patients, tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6) and C-reactive protein (CRP) were recorded at the start of treatment (0 h), and 5 h and 10 h after treatment. It was found that both therapies could lower blood urea nitrogen (BUN) and creatinine levels and maintain balance of electrolyte and acid-base, but had no obvious influence on leukocyte, blood platelet and hematocrit. In the observation group, PaO(2)/FiO(2) and mean arterial pressure (MAP) were significantly improved after surgery (P less than 0.05), while Acute Physiology and Chronic Health Evaluation (APACHE) II score had an obvious decrease (P less than 0.05). In contrast, the control group was observed with insignificantly changed PaO(2)/FiO(2), MAP and APACHE II score (P>0.05). TNF-α, IL-6 and CRP levels of the two groups had no statistically significant difference at the start of treatment (P>0.05), but TNF-α, IL-6 and CRP levels of the observation group became remarkably lower than those of the control group 5 h and 10 h after treatment (P less than

  8. Ultrasound efficiency in relation to sodium hypochlorite and filtration adsorption in microbial elimination in a water treatment plant

    Directory of Open Access Journals (Sweden)

    Antonio Roberto Crystal Bello


    Full Text Available Processes like ultrasound, chlorination and filtration-adsorption were compared to eliminate microorganisms and to adjust established parameters of public drinking water. A mini water treatment plant (WTP-CB, in pilot scale, was projected and built to evaluate each process influence as: decontamination, coagulation-flocculation, sedimentation and filtration. Total and fecal coliforms, Escherichia coli and heterotrophic bacteria and physic/chemical parameters were quantified from water. Ultrasound, chlorination and filtration-adsorption were efficient to inactivate and/or eliminate bacteria. Ultrasound decontamination in addition to coagulation-flocculation, sedimentation and filtration, could be considered as an alternative treatment water solution where prechlorination, coagulation-flocculation, sedimentation and filtration were used. The chlorination itself was efficient in inactivating bacteria despite of the coagulation-flocculation process; however, in the absence of the coagulation process, the resultant water did not achieve the established parameters. The filtration-adsorption was an important process to eliminate bacteria, showing that the filter retained particles, suspended solids, besides chemical substances and microorganisms.Comparou-se diferentes processos: ultra-som, cloração e filtração/adsorção para eliminação de microrganismos e adequação de outros parâmetros exigidos para água de abastecimento público. Para avaliar a influência de cada processo: desinfecção, coagulação/floculação, decantação e filtração foi projetada e construída uma Estação de Tratamento de Água (ETA-CB em escala piloto. Foram avaliados coliformes, bactérias heterotróficas e parâmetros físico/químicos. Ondas ultra-sônicas, cloração e filtração/adsorção mostraram-se eficientes na inativação e/ou eliminação de bactérias. O processo de desinfecção com ultra-som juntamente com a coagulação/floculação, decanta

  9. Integrating organic micropollutant removal into tertiary filtration: Combining PAC adsorption with advanced phosphorus removal. (United States)

    Altmann, Johannes; Sperlich, Alexander; Jekel, Martin


    Direct addition of powdered activated carbon (PAC) to a deep-bed filter was investigated at pilot-scale as a single advanced treatment stage for simultaneous removal of organic micropollutants (OMPs) and phosphorus from secondary effluent. PAC doses of 10-50 mg/L were assessed with regard to their impacts on filter performance and removal of 15 selected OMPs over a period of 18 months. The PAC was effectively retained by the filter and had no negative effect on filter head loss. Filter runtime until particle breakthrough depended mainly on coagulant dose and did not decrease significantly due to the additional PAC load. Removal of suspended solids and phosphorus by coagulation was effective independent of the PAC dose. A PAC dose of 35 mg/L PAC was suitable to remove well-adsorbing OMPs (e.g. carbamazepine, diclofenac) by >80% and medium adsorbing OMPs (e.g. primidone, sulfamethoxazole) by 50-80%. Median removals were 50-80% for well-adsorbing and 30-50% for medium adsorbing OMPs with 20 mg/L PAC. Abatement of all OMPs was low (PAC, possibly because of the high effluent organic matter content (median dissolved organic carbon (DOC) concentrations of 11.2 mg/L). In addition to adsorptive removal, relevant concentration decreases of certain OMPs (e.g. 4-formylaminoantipyrine) were attributed to biological transformation in the filter. Adsorption onto accumulating PAC in the top layer of the filter bed led to improved OMP adsorption with increasing filter runtime. The comparison of OMP removal in the pilot filter with laboratory adsorption tests demonstrates that batch test results can be applied to estimate adsorptive OMP removal in real applications.

  10. Boron nitride ultrathin fibrous nanonets: one-step synthesis and applications for ultrafast adsorption for water treatment and selective filtration of nanoparticles. (United States)

    Lian, Gang; Zhang, Xiao; Si, Haibin; Wang, Jun; Cui, Deliang; Wang, Qilong


    Novel boron nitride (BN) ultrathin fibrous networks are firstly synthesized via an one-step solvothermal process. The average diameter of BN nanofibers is only ~8 nm. This nanonets exhibit excellent performance for water treatment. The maximum adsorption capacity for methyl blue is 327.8 mg g(-1). Especially, they present the property of ultrafast adsorption for dye removal. Only ~1 min is enough to almost achieve the adsorption equilibrium. In addition, the BN fibrous nanonets could be applied for the size-selective separation of nanoparticles via a filtration process.

  11. Combination of granular activated carbon adsorption and deep-bed filtration as a single advanced wastewater treatment step for organic micropollutant and phosphorus removal. (United States)

    Altmann, Johannes; Rehfeld, Daniel; Träder, Kai; Sperlich, Alexander; Jekel, Martin


    Adsorption onto granular activated carbon (GAC) is an established technology in water and advanced wastewater treatment for the removal of organic substances from the liquid phase. Besides adsorption, the removal of particulate matter by filtration and biodegradation of organic substances in GAC contactors has frequently been reported. The application of GAC as both adsorbent for organic micropollutant (OMP) removal and filter medium for solids retention in tertiary wastewater filtration represents an energy- and space saving option, but has rarely been considered because high dissolved organic carbon (DOC) and suspended solids concentrations in the influent of the GAC adsorber put a significant burden on this integrated treatment step and might result in frequent backwashing and unsatisfactory filtration efficiency. This pilot-scale study investigates the combination of GAC adsorption and deep-bed filtration with coagulation as a single advanced treatment step for simultaneous removal of OMPs and phosphorus from secondary effluent. GAC was assessed as upper filter layer in dual-media downflow filtration and as mono-media upflow filter with regard to filtration performance and OMP removal. Both filtration concepts effectively removed suspended solids and phosphorus, achieving effluent concentrations of 0.1 mg/L TP and 1 mg/L TSS, respectively. Analysis of grain size distribution and head loss within the filter bed showed that considerable head loss occurred in the topmost filter layer in downflow filtration, indicating that most particles do not penetrate deeply into the filter bed. Upflow filtration exhibited substantially lower head loss and effective utilization of the whole filter bed. Well-adsorbing OMPs (e.g. benzotriazole, carbamazepine) were removed by >80% up to throughputs of 8000-10,000 bed volumes (BV), whereas weakly to medium adsorbing OMPs (e.g. primidone, sulfamethoxazole) showed removals activated carbon (PAC) to deep-bed filtration as a direct


    Directory of Open Access Journals (Sweden)

    A.V. Vatazin


    Full Text Available Aim. To study the effect of hemofi ltration and coupled plasma fi ltration adsorption on tacrolimus blood concentration in renal transplant recipients.Methods and results. The study included 8 renal transplant recipients. In these patients immediately after the operation was performed the coupled plasma fi ltration adsorption with hemofiltration using a cartridge Mediasorb to reduce the severity of reperfusion injury. We have found that during this extracorporeal blood correction procedure there was statistically not signifi cant decrease of tacrolimus blood concentration. However, concentration of tacrolimus remained in the therapeutic range even after the procedure and it was not signifi cantly different from the control point С0.Conclusion. Coupled plasma fi ltration adsorption is safe in renal transplant recipients and has no signifi cant impact on tacrolimus blood concentration. However, the downward trend in the concentration of tacrolimus in the course of these procedures, especially in continuous or semicontinuous mode, as well as in patients with low hematocrit and hypoalbuminemia, requires individual monitoring.

  13. How can liver toxins be removed? Filtration and adsorption with the Prometheus system. (United States)

    Vienken, Joerg; Christmann, Horst


    The application of extracorporeal blood circuits in liver failure therapy has its roots in the two functions of the liver, first as a detoxifying and second as a synthetizing organ. In contrast to hydrophilic uremic toxins, most liver toxins are hydrophobic and bind preferentially to blood proteins. Consequently, the majority of these compounds cannot be removed by hemodialysis or similar dialytic procedures. Current systems use albumin as a transport vehicle for hydrophobic compounds across high flux membranes (e.g. albumin-dialysis, molecular adsorbent recirculating system (MARS)). In contrast to these devices, the Prometheus system (Fresenius Medical Care, Bad Homburg, Germany) applies filtration across highly permeable membranes with a molecular weight cut-off of >300.000. These membranes facilitate a direct filtration of most of the toxin-bearing proteins. In a secondary circuit these toxins are then removed by adsorber beads assembled in specially designed cartridges. The protein-containing toxin-free solution returns to the primary circuit. Clinical testing of the Prometheus system's safety and efficacy parameters showed that cell counts and coagulation factors were not significantly affected. Total bilirubin-, bile acid- and plasma ammonia-levels were reduced in vivo by -21%, -43% and -40%, respectively. First successful therapeutic results have been obtained for patients treated for drug abuse and for patients waiting for transplantation. Thus, a combination of plasma fractionation with highly permeable membranes followed by a secondary circuit with adsorber cartridges proves to be the most effective method of removing toxic waste in liver failure. Further investigations will follow in order to extend the application of the Prometheus system to larger cohorts of patients.

  14. A perfectly aligned 63 helical tubular cuprous bromide single crystal for selective photo-catalysis, luminescence and sensing of nitro-explosives. (United States)

    Yao, Ru-Xin; Hailili, Reshalaiti; Cui, Xin; Wang, Li; Zhang, Xian-Ming


    A perfectly aligned 63 helical tubular cuprous bromide single crystal has been synthesized and characterized, which can selectively decompose negatively charged dyes of Methyl Orange (MO) and Kermes Red (KR), and the photocatalytic efficiency is higher than that of nanosized (∼25 nm) TiO2 and ZnO. The direction and magnitude of the dipole moments as well as the band structure were calculated to reveal high photocatalytic efficiency. Moreover, luminescence studies indicate that the CuBr tube materials show very strong yellowish green emissions in the solid state and emulsion even at room temperature, and exhibit extremely high detection sensitivity towards nitro-explosives via fluorescence quenching. Detectable luminescence responses were observed at a very low concentration of 20 ppm with a high quenching efficiency of 94.90%. The results suggest that they may be promising multifunctional materials for photo-catalysis, luminescence and sensing of nitro-explosives.

  15. Coupled plasma filtration adsorption for the treatment of a patient with acute respiratory distress syndrome and acute kidney injury: a case report. (United States)

    Lucisano, Gaetano; Capria, Maria; Matera, Giovanni; Presta, Pierangela; Comi, Nicolino; Talarico, Roberta; Rametti, Linda; Quirino, Angela; Giancotti, Aida; Fuiano, Giorgio


    Coupled plasma filtration adsorption (CPFA) is an extracorporeal blood purification therapy based on non-specific pro- and anti-inflammatory mediator adsorption on a special resin cartridge coupled with continuous veno-venous haemofiltration or continuous veno-venous haemodiafiltration and is one of the emerging treatments for septic patients. However, in the literature, there are limited data about its efficacy in treating patients with acute diseases but without the traditional criteria for sepsis. We describe the case of a 43-year-old male who developed acute respiratory distress syndrome secondary to pneumonia and acute kidney injury, whose clinical conditions rapidly improved after early CPFA therapy.

  16. Influence of the charge of low molecular weight proteins on their efficacy of filtration and/or adsorption on dialysis membranes with different intrinsic properties. (United States)

    Moachon, N; Boullange, C; Fraud, S; Vial, E; Thomas, M; Quash, G


    Hemodialysis membranes eliminate by filtration low-molecular-weight toxic metabolites (urea and creatinine) with minimum interactions between blood components and the membrane itself. However, the ability of a membrane to adsorb specific proteins could be beneficial if the accumulation of these same proteins is implicated in the genesis of a pathological condition. Beta-amyloidosis which accompanies the elevation of beta2-microglobulin (11.8 kDa) in the plasma of dialysed patients is one such condition (Biochem. Biophys. Res. Commun. 129 (3) (1985) 701-706: Lancet 1 (1986) 1240-1311). To determine whether increases in plasma beta2-microglobulin levels were due to differences in filtration efficacy of the membrane used and/or to certain characteristics of this protein, e.g. its charge (pI 5.7) the adsorption and filtration of [3H] beta2-microglobulin and [3H] lysozyme of similar MW 14.5 kDa, but pI: 10.8 were compared on different membranes. It was found that, neither [3H] beta2-microglobulin nor [3H] lysozyme are removed by cuprophan, whereas over 75% of beta2-microglobulin is removed by filtration on polyacrylonitrile, polyacrylonitrile-polyethyleneimine, polysulfone and >95% by adsorption to polymethylmethacrylate-BK. For lysozyme, removal by adsorption is >95% on polyacrylonitrile and polyacrylonitrile-polyethyleneimine, 72% on polymethylmethacrylate-BK and by filtration is 95% on polysulfone. Hemodialysis membranes must therefore not simply be considered as filters of low-molecular-weight metabolites but should be equally assessed for their capacity to eliminate potentially deleterious low-molecular-weight plasma proteins.

  17. Mainstream Smoke Gas Phase Filtration Performance of Adsorption Materials Evaluated With A Puff-by-Puff Multiplex GC-MS Method

    Directory of Open Access Journals (Sweden)

    Xue L


    Full Text Available The mainstream smoke filtration performance of activated carbon, silica gel and polymeric aromatic resins for gas-phase components was evaluated using a puff-by-puff multiplex gas chromatography-mass spectrometry (GC-MS analysis method (1. The sample 1R4F Kentucky reference cigarettes were modified by placing the adsorbents in a plug/space/plug filter configuration. Due to differences in surface area and structural characteristics, the adsorbent materials studied showed different levels of filtration activities for the twenty-six constituents monitored. Activated carbon had significant adsorption activity for all the gas-phase smoke constituents observed except ethane and carbon dioxide, while silica gel had significant activities for polar components such as aldehydes, acrolein, ketones, and diacetyl. XAD-16 polyaromatic resins showed varied levels of activity for aromatic compounds, cyclic dienes and ketones.

  18. Severe Hemolysis in a Patient With Erythrocytosis During Coupled Plasma Filtration Adsorption Therapy Was Prevented by Changing From Membrane-Based Technique to a Centrifuge-Based One. (United States)

    Fan, Rong; Wu, Buyun; Kong, Ling; Gong, Dehua


    Coupled plasma filtration adsorption (CPFA) usually adopts membrane to separate plasma from blood. Here, we reported a case with erythrocytosis experienced severe hemolysis and membrane rupture during CPFA, which was avoided by changing from membrane-based technique to a centrifuge-based one. A 66-year-old man was to receive CPFA for severe hyperbilirubinemia (total bilirubin 922 μmol/L, direct bilirubin 638 μmol/L) caused by obstruction of biliary tract. He had erythrocytosis (hemoglobin 230 g/L, hematocrit 0.634) for years because of untreated tetralogy of Fallot. Severe hemolysis and membrane rupture occurred immediately after blood entering into the plasma separator even at a low flow rate (50 mL/min) and persisted after changing a new separator. Finally, centrifugal plasma separation technique was used for CPFA in this patient, and no hemolysis occurred. After 3 sessions of CPFA, total bilirubin level decreased to 199 μmol/L with an average decline by 35% per session. Thereafter, the patient received endoscopic biliary stent implantation, and total bilirubin level returned to nearly normal. Therefore, centrifugal-based plasma separation can also be used in CPFA and may be superior to a membrane-based one in patients with hyperviscosity.

  19. Adsorption

    Directory of Open Access Journals (Sweden)

    Denis J.L. Guerra


    Full Text Available Nontronite is an important phyllosilicate with a high concentration of ferric iron in the octahedral layer. A new occurrence of Brazilian nontronite sample was used for the organofunctionalization process with 3-aminopropyltriethoxysilane. Due to the increment of basic centers attached to the pendant chains, the metal adsorption capability of the final chelating material, was found to be higher than its precursor. The ability of these materials to remove Pb2+, Mn2+, and Zn2+ from aqueous solutions was followed by a series of adsorption isotherms at room temperature and pH 6.0, in batch adsorption experiments in order to explain the adsorption mechanism. In order to evaluate the phyllosilicate samples as adsorbents in a dynamic system, a glass column was fulfilled with nontronite samples (1.5 g and it was fed with 2.1 mmol dm−3 divalent cations at pH 6.0. The energetic effects caused by metal cations adsorption were determined through calorimetric titrations. The effects of three divalent metals adsorption in the zero point of charge of each material were investigated.

  20. Filtration Fundamentals. (United States)

    Ward, Ken; Hunsaker, Scot


    Examines how choice of commercial swimming-pool filtration systems is driven by the project-specific needs of the pools. Also highlighted are definitions of specific terms used when discussing filtration systems. Questions that pool designers can answer to make filtration-system purchasing decisions are listed. (GR)

  1. Rapid removal and decomposition of gaseous acetaldehyde by the thermo- and photo-catalysis of gold nanoparticle-loaded anatase titanium(IV) oxide. (United States)

    Nikawa, Tomoyuki; Naya, Shin-ichi; Tada, Hiroaki


    Gold nanoparticles (NPs) with a mean particle size ranging from 2.1 to 7.4 nm were loaded on anatase TiO2 particles (Au/TiO2) by the heating temperature-varied deposition precipitation technique. This study has shown that Au/TiO2 with Au particle size TiO2 surface area >50 m(2) g(-1) can be a promising environmental catalyst for the rapid removal and decomposition of gaseous acetaldehyde in a closed space. The Au loading on TiO2 causes a drastic enhancement of the acetaldehyde adsorption in the dark, and the adsorption amount increases as the Au particle size decreases. This result originates from the thermocatalytic activity of Au/TiO2 for the oxidation of acetaldehyde to acetic acid under ambient conditions. The resulting acetic acid spontaneously moves to the TiO2 surface due to the great adsorptivity for the carboxyl group. Consequently, the acetaldehyde adsorption amount strongly depends on the TiO2 surface area in addition to the Au particle size. UV-light irradiation of acetaldehyde (or acetate)-adsorbed Au/TiO2 leads to the complete decomposition to carbon dioxide by the high photocatalytic activity of anatase TiO2.

  2. Synthesis and characterization of thin films of Pd/TiO{sub 2} with possible applications in photo catalysis; Sintesis y caracterizacion de peliculas delgadas de Pd/TiO{sub 2} con posibles aplicaciones en fotocatalisis

    Energy Technology Data Exchange (ETDEWEB)

    Tirado G, S. [IPN, Escuela Superior de Fisica y Matematicas, U. P. Adolfo Lopez Mateos Edif. 9, San Pedro Zacatenco, 07738 Mexico D. F. (Mexico); Valenzuela Z, M. A., E-mail: [IPN, Escuela Superior de Ingenieria Quimica e Industrias Extractivas, Laboratorio de Catalisis y Materiales, U. P. Adolfo Lopez Mateos Edif. 8, San Pedro Zacatenco, 07738 Mexico D. F. (Mexico)


    In this paper the synthesis and study of thin films of titanium oxide is reported, as well as those that were surface modified with palladium nanoparticles Pd/TiO{sub 2}. First, the TiO{sub 2} films are grown on substrates of soda-lime glass using chemical sol-gel route and the repeated immersion procedure. The salt precursor titanium oxy-acetylacetonate to 0.2 M, in the solvent 2-methoxyethanol and monoethanolamine was used as stabilizer. The number of used immersions gave an average thickness estimate for these films of 172.8 nm. Second, the series of Pd/TiO{sub 2} films surface modified were obtained from a solution of palladium nitrate dehydrate at low concentration, with the same procedure. The films grown TiO{sub 2} and those surface-modified films were characterized in its structure by X-ray diffraction, morphology by scanning electron microscopy, the topography with atomic force microscopy, optical properties by UV-Vis, among others. Photoluminescence properties and/or possible applications in photo catalysis are reported in this paper. (Author)

  3. Shortening filtrations

    Institute of Scientific and Technical Information of China (English)

    ENOCHS Edgar E.


    Let C be a set of modules.We argue that there is an ordinal κ such that if a module has a filtration by modules in C,then it has a filtration of length κ by direct sums of modules in C.As an application we give another way to prove a result of Saorín and (S)(t)oví(c)ek and of (S)(t)oví(c)ek.

  4. GSPEL - Air Filtration Laboratory (United States)

    Federal Laboratory Consortium — Evaluation capabilities for air filtration devices The Air Filtration Lab provides testing of air filtration devices to demonstrate and validate new or legacy system...

  5. Modus of filtration. (United States)

    Meltzer, Theodore H


    Experience teaches that particles larger than the pores of a filter cannot negotiate its passage. Other retention mechanisms are less obvious than sieve retention or size exclusion. They are electrical in nature, and find expression in the bonding alliances that mutually attract (or repel) filters and particles. The influence of hydrogen bonds, of van der Waals forces, of hydrophobic adsorptions, and of transient polarities on particle retentions are set forth in terms of the double electrical layer concept that also governs colloidal destabilizations. The origins of differences in membrane porosities is explained, as also the importance of the filtration conditions. The singularity of the particle-fluid-filter relationship on organism and/or pore size alteration is stressed.

  6. GSPEL - Air Filtration Laboratory (United States)

    Federal Laboratory Consortium — Evaluation capabilities for air filtration devicesThe Air Filtration Lab provides testing of air filtration devices to demonstrate and validate new or legacy system...


    Directory of Open Access Journals (Sweden)

    L. V. Belskikh


    value or continued to increase progressively. In this subgroup of the patients purulent complications progressed in 9 patients, mortality was 35%. Conclusion. Thus, the level of thrombocyte hemostasis in different phases of pancreatic necrosis can be quantified using indicators of morphofunctional status of circulating platelets. When dealing with coagulation version of disseminated intravascular coagulation syndrome the number of activated cells is on the rise up to 40% or more. The development of consumption coagulopathy is characterized with progressive increase of degenerative platelets up to 10% or more. Combined plasma filtration, selective adsorption of cytokines with hemofiltration and exchange plasmapheresis are effective methods for adjusting of platelet and coagulation hemostasis in patients with necrotizing pancreatitis.

  8. Organic micropollutant removal during river bank filtration

    NARCIS (Netherlands)

    Bertelkamp, C.


    This study investigated the factors influencing the main removal mechanisms (adsorption and biodegradation) for organic micropollutant (OMP) removal during river bank filtration (RBF) and the possibility of developing a predictive model of this process for OMP removal during RBF. Chapter 2 analysed

  9. Glomerular filtration rate (United States)

    ... page: // Glomerular filtration rate To use the sharing features on this page, please enable JavaScript. Glomerular filtration rate (GFR) is a test used to check ...

  10. 光催化/内电解协同处理分散蓝E-4R的研究%Removal of Disperse Blue E-4R Dye from Wastewater by Synergetic MW-UV Photo-catalysis and Internal Electrolysis

    Institute of Scientific and Technical Information of China (English)

    卢胜红; 夏东升; 曾庆福


    建立了微波无极紫外光催化氧化/内电解协同处理印染废水的新工艺.采用微波无极紫外光,以活性炭为光催化剂TiO2的载体,与外加铁屑构成内电解反应,处理分散蓝E-4R模拟废水.研究结果表明:协同工艺中主要是通过内电解过程产生的Fe3+捕获光电子来提高光催化作用的效率,而通过Fe2+催化H2O2形成光Fenton反应生成·OH的效应则较小.在曝气量为0.5 L/min、pH为5、铁屑投加量为40 g、染料初始浓度为50 mg/L时,分散蓝E-4R的脱色率和COD去除率分别达到99.56%、68.45%.%A bench-scale experiment was conducted to investigate dyestuff degradation under the synergetic action of microwave-ultraviolet photo-catalysis and internal electrolysis, in which simulated wastewater containing Disperse Blue E-4R was treated using an experimental apparatus with microwave electrode-less UV as a light source, activated carbon as a photo-catalyst (TiOJ carrier and activated carbon/ iron chips as the micro-electrodes. Results showed the increased efficiency of photo-catalysis mainly attributed to the synergetic processes in which Fe3+ produced could capture electrons rather than the contribution of photo-Fenton reaction, and in conclusion, the optimum condition for the synergetic action that resulted in removals of 99.56% and 68.45% for colority and COD respectively.

  11. Rotary filtration system (United States)

    Herman, David T.; Maxwell, David N.


    A rotary filtration apparatus for filtering a feed fluid into permeate is provided. The rotary filtration apparatus includes a container that has a feed fluid inlet. A shaft is at least partially disposed in the container and has a passageway for the transport of permeate. A disk stack made of a plurality of filtration disks is mounted onto the shaft so that rotation of the shaft causes rotation of the filtration disks. The filtration disks may be made of steel components and may be welded together. The shaft may penetrate a filtering section of the container at a single location. The rotary filtration apparatus may also incorporate a bellows seal to prevent leakage along the shaft, and an around the shaft union rotary joint to allow for removal of permeate. Various components of the rotary filtration apparatus may be removed as a single assembly.

  12. Methylene blue and 4-chloro phenol degradation by photo catalysis with ultraviolet light, using TiO{sub 2} as catalyst; Degradacion de azul de metileno y 4-clorofenol por fotocatalisis con luz ultravioleta, utilizando TiO{sub 2} como catalizador

    Energy Technology Data Exchange (ETDEWEB)

    Martinez H, A.


    Within the decontamination and remediation processes of the contaminated waters, as the refining or tertiary processes are the Advanced Oxidation Technologies. Among this technology is the heterogeneous photo catalysis, which is the object of this work to de grate 4-chloro phenol and methylene blue, using as semiconductor commercial titanium dioxide (TiO{sub 2}). On the degradation the combination is exposed in the use of TiO{sub 2} under gamma irradiation of {sup 60}Co at different doses 400, 500, 800, 1000 and 1500 kGy. The organic compounds degradation was determined and the results show that to more radiation dose, the material is modified in such way that shows a major absorption of the organic compound, in the same way it is determined that to more dose which undergoes the TiO{sub 2} generally a major degradation is observed, but also it is has to give a more time of previous stabilization, for that the degradation is observed of better way. (Author)

  13. Magnetic-seeding filtration

    Energy Technology Data Exchange (ETDEWEB)

    Ying, T.Y.; Chin, C.J.; Lu, S.C.; Yiacoumi, S. [Georgia Institute of Technology, Atlanta, GA (United States). School of Civil and Environmental Engineering] [and others


    Magnetic-seeding filtration consists of two steps: heterogeneous particle flocculation of magnetic and nonmagnetic particles in a stirred tank and high-gradient magnetic filtration (HGMF). The effects of various parameters affecting magnetic-seeding filtration (HGMF). The effects of various parameters affecting magnetic seeding filtration are theoretically and experimentally investigated. A trajectory model that includes hydrodynamic resistance, van der Waals, and electrostatic forces is developed to calculate the flocculation frequency in a turbulent-shear regime. Fractal dimension is introduced to simulate the open structure of aggregates. A magnetic-filtration model that consists of trajectory analysis, a particle build-up model, a breakthrough model, and a bivariate population-balance model is developed to predict the breakthrough curve of magnetic-seeding filtration. A good agreement between modeling results and experimental data is obtained. The results show that the model developed in this study can be used to predict the performance of magnetic-seeding filtration without using empirical coefficients or fitting parameters. 35 refs., 7 figs., 1 tab.

  14. Filtration in Porous Media

    DEFF Research Database (Denmark)

    Yuan, Hao; Shapiro, Alexander

    There is a considerable and ongoing effort aimed at understanding the transport and the deposition of suspended particles in porous media, especially non-Fickian transport and non-exponential deposition of particles. In this work, the influential parameters in filtration models are studied...... to understand their effects on the non-Fickian transport and the non-exponential deposition. The filtration models are validated by the comparisons between the modelling results and the experimental data.The elliptic equation with distributed filtration coefficients may be applied to model non-Fickian transport...... and hyperexponential deposition. The filtration model accounting for the migration of surface associated particles may be applied for non-monotonic deposition....

  15. Water Filtration Products (United States)


    American Water Corporation manufactures water filtration products which incorporate technology originally developed for manned space operations. The formula involves granular activated charcoal and other ingredients, and removes substances by catalytic reactions, mechanical filtration, and absorption. Details are proprietary. A NASA literature search contributed to development of the compound. The technology is being extended to a deodorizing compound called Biofresh which traps gas and moisture inside the unit. Further applications are anticipated.

  16. Visualization of water flow during filtration using flat filtration materials

    Directory of Open Access Journals (Sweden)

    Hrůza Jakub


    Full Text Available Filtration materials are very important elements of some industrial appliances. Water filtration is a separation of solid materials from fluid. Solid particles are captured on the frontal area of the filtration textile and only liquid passes through it. It is important to know the filtration process in a detailed way to be able to develop filtration materials. Visualization of filtration process enables a better view of the filtration. This method also enables to determine efficiency and homogeneity of filtration using image analysis. For this purpose, a new waterfiltration measuring setup was proposed and constructed. Filtration material is mounted into the optically transparent place in the setup. Laser sheet is directed into this place as in the case of Particle Image Velocimetry measuring method. Monochrome and sensitive camera records the light scattered by seeding particles in water. The seeding particles passing through the filter serve for measuring filtration efficiency, and also for visualization of filtration process. Filtration setup enables to measure also the pressure drop and a flow. The signals are processed by National Instruments compactDAQ system and UMA software. Microfibrous and nanofibrous filtration materials are tested by this measuring method. In the case of nanofibrous filtration, appropriate size of seeding particles is needed to be used to perform a process of filtration.

  17. Microfluidic colloid filtration (United States)

    Linkhorst, John; Beckmann, Torsten; Go, Dennis; Kuehne, Alexander J. C.; Wessling, Matthias


    Filtration of natural and colloidal matter is an essential process in today’s water treatment processes. The colloidal matter is retained with the help of micro- and nanoporous synthetic membranes. Colloids are retained in a “cake layer” – often coined fouling layer. Membrane fouling is the most substantial problem in membrane filtration: colloidal and natural matter build-up leads to an increasing resistance and thus decreasing water transport rate through the membrane. Theoretical models exist to describe macroscopically the hydrodynamic resistance of such transport and rejection phenomena; however, visualization of the various phenomena occurring during colloid retention is extremely demanding. Here we present a microfluidics based methodology to follow filter cake build up as well as transport phenomena occuring inside of the fouling layer. The microfluidic colloidal filtration methodology enables the study of complex colloidal jamming, crystallization and melting processes as well as translocation at the single particle level.


    Energy Technology Data Exchange (ETDEWEB)

    Daniel J. Stepan; Bradley G. Stevens; Melanie D. Hetland


    The overall project consists of several integrated research phases related to the applicability, continued development, demonstration, and commercialization of the SpinTek centrifugal membrane filtration process. Work performed during this reporting period consisted of Phase 2 evaluation of the SpinTek centrifugal membrane filtration technology and Phase 3, Technology Partnering. During Phase 1 testing conducted at the EERC using the SpinTek ST-IIL unit operating on a surrogate tank waste, a solids cake developed on the membrane surface. The solids cake was observed where linear membrane velocities were less than 17.5 ft/s and reduced the unobstructed membrane surface area up to 25%, reducing overall filtration performance. The primary goal of the Phase 2 research effort was to enhance filtration performance through the development and testing of alternative turbulence promoter designs. The turbulence promoters were designed to generate a shear force across the entire membrane surface sufficient to maintain a self-cleaning membrane capability and improve filtration efficiency and long-term performance. Specific Phase 2 research activities included the following: System modifications to accommodate an 11-in.-diameter, two-disk rotating membrane assembly; Development and fabrication of alternative turbulence promoter designs; Testing and evaluation of the existing and alternative turbulence promoters under selected operating conditions using a statistically designed test matrix; and Data reduction and analysis; The objective of Phase 3 research was to demonstrate the effectiveness of SpinTek's centrifugal membrane filtration as a pretreatment to remove suspended solids from a liquid waste upstream of 3M's WWL cartridge technology for the selective removal of technetium (Tc).

  19. Magnetic-seeding filtration

    Energy Technology Data Exchange (ETDEWEB)

    Depaoli, D. [Oak Ridge National Lab., TN (United States)


    This task will investigate the capabilities of magnetic-seeding filtration for the enhanced removal of magnetic and nonmagnetic particulates from liquids. This technology appies to a wide range of liquid wastes, including groundwater, process waters, and tank supernatant. Magnetic-seeding filtration can be used in several aspects of treatment, such as (1) removal of solids, particularly those in the colloidal-size range that are difficult to remove by conventional means; (2) removal of contaminants by precipitation processes; and (3) removal of contaminants by sorption processes.

  20. Filtration by eyelashes (United States)

    Vistarakula, Krishna; Bergin, Mike; Hu, David


    Nearly every mammalian and avian eye is rimmed with lashes. We investigate experimentally the ability of lashes to reduce airborne particle deposition in the eye. We hypothesize that there is an optimum eyelash length that maximizes both filtration ability and extent of peripheral vision. This hypothesis is tested using a dual approach. Using preserved heads from 36 species of animals at the American Museum of Natural History, we determine the relationship between eye size and eyelash geometry (length and spacing). We test the filtration efficacy of these geometries by deploying outdoor manikins and measuring particle deposition rate as a function of eyelash length.

  1. 钆、硫共掺杂TiO2光催化处理染料废水的研究%Research on the treatment of dye wastewater by Gd and S co-doped TiO2 photo-catalysis process

    Institute of Scientific and Technical Information of China (English)

    刘杰; 汪恂; 朱雷; 肖锋


    Gd/S co-doped TiO2 photocatalysts have been prepared with Ti (OC4H9)4,GdNO3,H2NCSNH2 as raw mate-rials by sol-gel method. The experimental results show that a small amount of Gd doping can improve the photo-cata-lysis effect of TiO2,but excessive Gd doping will inhibit the photo-catalysis effect. When the calcination temperature is 650℃,and gadolinium and sulfur doping ratios are 0.2%and 1%,respectively,the TiO2 photocatalysts have the best effect,and its light response range expands significantly. X-ray diffraction characterization shows that Gd/S co-doped TiO2 has the highest photocatalytic capacity when TiO2 anatase crystal formation is doped with a small amount of rutile.%以钛酸四正丁酯、硝酸钆、硫脲为原料,采用溶胶-凝胶法制备了Gd、S掺杂TiO2光催化剂。实验结果表明:少量Gd的掺杂能提高TiO2的光催化效率,掺杂过多Gd对光催化剂有抑制作用。当煅烧温度为650℃,钆、硫的掺杂比分别为0.2%、1.0%时,TiO2光催化剂效果最好,而且其光响应范围也明显拓展。 XRD表征表明,当TiO2锐钛矿晶型中掺杂少量金红石相时,Gd、S共掺杂TiO2光催化性能最好。

  2. TiO 2光催化处理炼化污水回用反渗透浓水的研究%Study on Treatment in the Concentrated Water from Wastewater Recycling RO Unite by TiO2 Photo-catalysis*TiO2 photocatalysis treatment of petrochemical wastewater reuse reverse osmosis concentrated water

    Institute of Scientific and Technical Information of China (English)

    赵朝成; 焦叙来; 崔爱玲; 刘春爽


    Using suspended TiO 2 , photo-catalysis of concentrated water from wastewater recycling reverse osmosis units was studied under ultraviolet.The different variables affecting the removal efficiency such as reaction time , TiO2 quantity, pH value, UV irradiation intensity, H2O2 quantity and aeration quantity were investigated.The result showed that the removal rates of COD and chromaticity were 93.63% and 98.15%, respectively , under the following optimum conditions of reaction time of 2 h, TiO2 quantity of 0.6 g/L, pH value of 4, irradiation of high-pressure mercury-lamp of 500 W, H2 O2 quantity of 0.8 ml/L and aeration quantity of 0.75 L/min.%以悬浮态TiO2为催化剂,在紫外光下对炼化污水回用装置反渗透浓水进行光催化处理,采用单因素实验,考察了反应时间、 pH值、光照强度、 TiO2投加量、 H2 O2投加量、曝气量对处理效果的影响。结果表明:在反应时间为2 h, pH为4,500 W高压汞灯, TiO2投加量为0.6 g/L, H2 O2投加量为0.8 ml/L,曝气量为0.75 L/min的条件下,反渗透浓水COD的去除率可达93.63%,脱色率可达98.15%。

  3. Enlargements of filtrations and applications

    CERN Document Server

    Corcuera, J M


    In this paper we review some old and new results about the enlargement of filtrations problem, as well as their applications to credit risk and insider trading problems. The enlargement of filtrations problem consists in the study of conditions under which a semimartingale remains a semimartingale when the filtration is enlarged, and, in such a case, how to find the Doob-Meyer decomposition. Filtrations may be enlarged in different ways. In this paper we consider initial and progressive filtration enlargements made by random variables and processes. Keywords: Credit Risk, Insider Trading, Enlargement of Filtrations

  4. Water Treatment Technology - Filtration. (United States)

    Ross-Harrington, Melinda; Kincaid, G. David

    One of twelve water treatment technology units, this student manual on filtration provides instructional materials for six competencies. (The twelve units are designed for a continuing education training course for public water supply operators.) The competencies focus on the following areas: purposes of sedimentation basins and flocculation…

  5. A Possible Macroscopic-Photo-Catalysis Mechanism in Solar Furnace (United States)

    Ho, Tsohsiu; Qing, Cheng-Rui; Chen, Ying-Tian


    Based on the experimental results of Chen et al. to use the solar furnace and medium frequency induction furnace to extract boron impurity from metallurgical silicon, we propose a strong radiation catalysis mechanism to explain the difference of reaction rates in these two furnaces. The postulate assuming the photons striking on the material not only increase the thermal energy of the molecules of reactants but also lower down the energy barrier of the reaction to speed up the chemical reaction. It is believed the photon catalysis mechanism is universal in most of high temperature chemical reactions and looking forward to more evidences for the postulate proposed in this article.

  6. A Possible Macroscopic-Photo-Catalysis Mechanism in Solar Furnace

    Institute of Scientific and Technical Information of China (English)

    HO Tsohsiu; QING Cheng-Rui; CHEN Ying-Tian


    Based on the experimental results of Chen et use the solar furnace and medium frequency induction furnace to extract boron impurity from metallurgical silicon, we propose a strong radiation catalysis mechanism to explain the difference of reaction rates in these two furnaces.The postulate assuming the photons striking on the material not only increase the thermal energy of the molecules of reactants but also lower down the energy barrier of the reaction to speed up the chemical reaction.It is believed the photon catalysis mechanism is universall in most of high temperature chemical reactions and looking forward to more evidences for the postulate proposed in this article.

  7. 基于可调控多肽纳米管和石墨烯复合纳米结构的光吸收催化平台∗%A photo catalysis system based on comp osite nanostructures of controlable p eptide nanotub es and graphene

    Institute of Scientific and Technical Information of China (English)

    薛斌; 王洪阳; 秦猛; 曹毅; 王炜


    Self-assembly is the way that is used by Mother Nature to create complex materials of hierarchical shapes and diverse functionalities. The photosynthesis apparatus of plant is an example of such complex materials that can direct convert the sunlight energy into chemical energy. Inspired by this, many artificial photosynthesis systems have been successfully engineered. However, most of these systems were based on only one type of simple nanostructure, such as nanosphere or nanotube. The charge separation and exciton transfer in such systems may be further improved by combining multiple nano-structures. Here, we report a novel photo catalysis system based on composite nanostructures of controllable peptide nanotubes and graphene. We use the mixture of diphenylalanine (FF) and carboxyl graphene for the photo catalysis because they are stable under different solvent conditions and highly conductive, which can provide more paths for exciton transfer. Moreover, the diameters of the peptide nanotubes become thinner in the presence of carboxyl graphene, leading to a more uniformly distributed system than simply using the peptide nanotubes alone. The FF peptide nanotubes can connect with the carbonyl graphene (CG) to form the composite nanostructures because of the π-π stacking interaction between benzene rings of FF and conjugated π bond of CG. The composite nanostructures of controllable peptide nanotubes and graphene provide more transmission channels for the excitions since they can travel on the nanotubes, CG or the compound of the both. We also demonstrate that when the photo-harvesting ruthenium complex and catalytic platinum nanoparticles are deposited on the system, the nicotinamide adenine dinucleotide (NADP+) can reduce to NADPH. The catalytic efficiency and rate are much higher than thaose of other artificial photosynthesis systems reported in the literature. Surprisingly, we find that the catalytic efficiency of the combined system is better than the sum of

  8. Treatment of arsenic-contaminated water using akaganeite adsorption (United States)

    Cadena C., Fernando; Johnson, Michael D.


    The present invention comprises a method and composition using akaganeite, an iron oxide, as an ion adsorption medium for the removal of arsenic from water and affixing it onto carrier media so that it can be used in filtration systems.

  9. Magnetic flocculation and filtration

    Energy Technology Data Exchange (ETDEWEB)

    Yiacoumi, Sotira; Chin, Ching-Ju; Yin, Tung-Yu [Georgia Inst. of Tech., Atlanta, GA (United States). School of Civil and Environmental Engineering; Tsouris, C., DePaoli, D.W.; Chattin, M.R.; Spurrier, M. [Oak Ridge National Lab., TN (United States)


    A model is available in predicting flocculation frequencies between particles of various properties under the influence of a magnetic field. This model provides a basic understanding of fundamental phenomena, such as particle-particle and particle-collector interactions, occurring in HGMF (high gradient magnetic field), and will be extended to describe experimental data of particle flocculation and filtration and predict the performance of high- gradient magnetic filters. It is also expected that this model will eventually lead to a tool for design and optimization of magnetic filters for environmental, metallurgical, biochemical, and other applications.

  10. Dynamic optical filtration (United States)

    Chretien, Jean-Loup (Inventor); Lu, Edward T. (Inventor)


    A dynamic optical filtration system and method effectively blocks bright light sources without impairing view of the remainder of the scene. A sensor measures light intensity and position so that selected cells of a shading matrix may interrupt the view of the bright light source by a receptor. A beamsplitter may be used so that the sensor may be located away from the receptor. The shading matrix may also be replaced by a digital micromirror device, which selectively sends image data to the receptor.

  11. Magnetic-seeding filtration

    Energy Technology Data Exchange (ETDEWEB)

    DePaoli, D.W.; Tsouris, C. [Oak Ridge National Lab., TN (United States); Yiacoumi, Sotira


    Magnetic-seeding filtration is a technology under development for the enhanced removal of magnetic and non-magnetic particulates from liquids. This process involves the addition of a small amount of magnetic seed particles (such as naturally occurring iron oxide) to a waste suspension, followed by treatment with a magnetic filter. Non-magnetic and weakly magnetic particles are made to undergo nonhomogeneous flocculation with the seed particles, forming flocs of high magnetic susceptibility that are readily removed by a conventional high-gradient magnetic filter. This technology is applicable to a wide range of liquid wastes, including groundwater, process waters, and tank supernatants. Magnetic-seeding filtration may be used in several aspects of treatment, such as (1) removal of solids, particularly those in the colloidal size range that are difficult to remove by conventional means; (2) removal of contaminants by precipitation processes; and (3) removal of contaminants by sorption processes. Waste stream characteristics for which the technology may be applicable include (1) particle sizes ranging from relatively coarse (several microns) to colloidal particles, (2) high or low radiation levels, (3) broad-ranging flow rates, (4) low to moderate solids concentration, (5) cases requiring high decontamination factors, and (6) aqueous or non-aqueous liquids. At this point, the technology is at the bench-scale stage of development; laboratory studies and fundamental modeling are currently being employed to determine the capabilities of the process.

  12. Perlite filtration of phenolic compounds from cigarette smoke. (United States)

    Rostami-Charati, Faramarz; Robati, Gholamreza Moradi; Naghizadeh, Farhad; Hosseini, Shahnaz; Chaichi, Mohammad Javad


    Adsorption of phenolic compounds and chemical analysis of them from a local production cigarette (named by Farvardin cigarette) smoke have been investigated by using perlite filtration. In this research, the mainstream smoke was tested by three filtration methods: Perlite filter, Cambridge filter and general cigarette filter. Then the used filter was extracted by pure methanol as solvent. After that, the extracted solution was analysed by GC-MS. By this consideration, the phenolic derivatives such as phenol, hydroquinone, resorcinol, pyrocatechol, m-cresol, p-cresol and o-cresol were detected. The structure of the perlite filtration after absorption was studied by SEM. In addition, its chemical structure was investigated by XRD and XRF.

  13. Hydrous iron oxide modified diatomite as an active filtration medium for phosphate capture. (United States)

    Wang, Zhe; Lin, Yan; Wu, Deyi; Kong, Hainan


    A simple method to functionalize diatomite with hydrous iron oxide was attempted and its performance as a new active filtration material to remove and recover phosphate from water was investigated under varying solution conditions. The Langmuir phosphate adsorption capacity increased from 0.6 mgP/g for raw diatomite to 4.89, 14.71, 25.02 mgP/g for hydrous iron oxide modified diatomite (HIOMD), depending on the amount of iron loaded. Loading of hydrous iron oxide caused the increase in true and bulk density and a decline in filtration rate, but to a lesser extent. It was shown that the HIOMD product with suitable iron content could retain a good filtration performance with a greatly increased adsorption capacity for phosphate. The phosphate adsorption increased by decreasing pH and by increasing ionic strength at high pH levels. The adsorption process was interpreted by ligand exchange. Coexisting oxyanions of sulfate, nitrate, citrate, carbonate, silicate and humic acid showed different effects on phosphate fixation but it was presumed that their influence at their concentrations and pH levels commonly encountered in effluent or natural waters was limited, i.e., HIOMD had a reasonably good selectivity. Results in repeated adsorption, desorption and regeneration experiment showed that the adsorbed phosphate could be recovered and the material could be reused after regeneration. The column test showed that HIOMD could be potentially utilized as an adsorption filtration medium for phosphate removal and recovery from water.

  14. Filtration properties of nonwovens. (United States)

    Gador, W; Jankowska, E


    This paper presents the results and conclusions from experimental investigations concerning filtration properties of nonwovens. The needled nonwovens were made from polyester fibres (PTE) with average fibre diameter 12 micrometres and polypropylene fibres (PP) with average fibre diameter 32 micrometres. Nonwovens were produced out of each of those fibres or out of a mixture of polyester and polypropylene fibres. This paper also presents investigations of nonwoven fabric made of polypropylene fibres (PP) with average fibre diameter 2.6 micrometres, which was formed according to melt-blown technology. Oil mist, as challenge aerosol, was used to evaluate the performance of filter media at various aerosol velocities. The average oil mist test aerosol particle diameter was 0.3 micrometre. Filter penetration was measured at oil mist concentration 0.24 g/m(3).

  15. Removal of benzocaine from water by filtration with activated carbon (United States)

    Howe, G.E.; Bills, T.D.; Marking, L.L.


    Benzocaine is a promising candidate for registration with the U.S. Food and Drug Administration for use as an anesthetic in fish culture, management, and research. A method for the removal of benzocaine from hatchery effluents could speed registration of this drug by eliminating requirements for data on its residues, tolerances, detoxification, and environmental hazards. Carbon filtration effectively removes many organic compounds from water. This study tested the effectiveness of three types of activated carbon for removing benzocaine from water by column filtration under controlled laboratory conditions. An adsorptive capacity was calculated for each type of activated carbon. Filtrasorb 400 (12 x 40 mesh; U.S. standard sieve series) showed the greatest capacity for benzocaine adsorption (76.12 mg benzocaine/g carbon); Filtrasorb 300 (8 x 30 mesh) ranked next (31.93 mg/g); and Filtrasorb 816 (8 x 16 mesh) absorbed the least (1.0 mg/g). Increased adsorptive capacity was associated with smaller carbon particle size; however, smaller particle size also impeded column flow. Carbon filtration is a practical means for removing benzocaine from treated water.

  16. A biological oil adsorption filter. (United States)

    Pasila, Antti


    A new oil adsorption method called adsorption filtration (AF) has been developed. It is a technology where by oil residues can be cleaned from water by running it through a simple filter made from freeze treated, dried, milled and then fragmented plant material. By choosing suitable plants and fragmentation sizes it is possible to produce filters, which pass water but adsorb oil. The aim of this study was to investigate the possibilities of manufacturing oil adsorbing filter materials from reed canary grass (Phalaris arundinacea), flax (Linum usitatissimum L.) or hemp fibre (Cannabis sativa L.). The oil (80 ml) was mixed with de-ionised water (200 ml) and this mixture was filtered through 10 or 20 g adsorption filters. Fine spring harvested hemp fibre (diameter less than 1 mm) and reed canary grass fragments adsorb 2-4 g of oil per gram of adsorption material compared to 1-3 g of water. Adsorption filtration is thus a novel way of gathering spilled oil in shallow coastal waters before the oil reaches the shore.

  17. A biological oil adsorption filter

    Energy Technology Data Exchange (ETDEWEB)

    Pasila, A. [University of Helsinki (Finland). Dept. of Agricultural Engineering and Household Technology


    A new oil adsorption method called adsorption filtration (AF) has been developed. It is a technology where by oil residues can be cleaned from water by running it through a simple filter made from freeze treated, dried, milled and then fragmented plant material. By choosing suitable plants and fragmentation sizes it is possible to produce filters, which pass water but adsorb oil. The aim of this study was to investigate the possibilities of manufacturing oil adsorbing filter materials from reed canary grass (Phalaris arundinacea), flax (Linum usitatissimum L.) or hemp fibre (Cannabis sativa L.). The oil (80 ml) was mixed with de-ionised water (200 ml) and this mixture was filtered through 10 or 20 g adsorption filters. Fine spring harvested hemp fibre (diameter less than 1 mm) and reed canary grass fragments adsorb 2-4 g of oil per gram of adsorption material compared to 1-3 g of water. Adsorption filtration is thus a novel way of gathering spilled oil in shallow coastal waters before the oil reaches the shore. (author)

  18. Air filtration in HVAC systems

    CERN Document Server

    Ginestet, Alain; Tronville, Paolo; Hyttinen, Marko


    Air filtration Guidebook will help the designer and user to understand the background and criteria for air filtration, how to select air filters and avoid problems associated with hygienic and other conditions at operation of air filters. The selection of air filters is based on external conditions such as levels of existing pollutants, indoor air quality and energy efficiency requirements.

  19. Adsorption of amylase enzyme on ultrafiltration membranes. (United States)

    Beier, Søren Prip; Enevoldsen, Ann Dorrit; Kontogeorgis, Georgios M; Hansen, Ernst B; Jonsson, Gunnar


    A method to measure the static adsorption on membrane surfaces has been developed and described. The static adsorption of amylase-F has been measured on two different ultrafiltration membranes, both with a cutoff value of 10 kDa (a PES membrane and the ETNA10PP membrane, which is a surface-modified PVDF membrane). The adsorption follows the Langmuir adsorption theory. Thus, the static adsorption consists of monolayer coverage and is expressed both as a permeability drop and an adsorption resistance. From the adsorption isotherms, the maximum static permeability drops and the maximum static adsorption resistances are determined. The maximum static permeability drop for the hydrophobic PES membrane is 75%, and the maximum static adsorption resistance is 0.014 The maximum static permeability drop for the hydrophilic surface-modified PVDF membrane (ETNA10PP) is 23%, and the maximum static adsorption resistance is 0.0046 The difference in maximum static adsorption, by a factor of around 3, affects the performance during the filtration of a 5 g/L amylase-F solution at 2 bar. The two membranes behave very similarly during filtration with almost equal fluxes and retentions even though the initial water permeability of the PES membrane is around 3 times larger than the initial water permeability of the ETNA10PP membrane. This is mainly attributed to the larger maximum static adsorption of the PES membrane. The permeability drop during filtration exceeds the maximum static permeability drop, indicating that the buildup layer on the membranes during filtration exceeds monolayer coverage, which is also seen by the increase in fouling resistance during filtration. The accumulated layer on the membrane surface can be described as a continually increasing cake-layer thickness, which is independent of the membrane type. At higher concentrations of enzyme, concentration polarization effects cannot be neglected. Therefore, stagnant film theory and the osmotic

  20. Emulsions for interfacial filtration.

    Energy Technology Data Exchange (ETDEWEB)

    Grillet, Anne Mary; Bourdon, Christopher Jay; Souza, Caroline Ann; Welk, Margaret Ellen; Hartenberger, Joel David; Brooks, Carlton, F.


    We have investigated a novel emulsion interfacial filter that is applicable for a wide range of materials, from nano-particles to cells and bacteria. This technology uses the interface between the two immiscible phases as the active surface area for adsorption of targeted materials. We showed that emulsion interfaces can effectively collect and trap materials from aqueous solution. We tested two aqueous systems, a bovine serum albumin (BSA) solution and coal bed methane produced water (CBMPW). Using a pendant drop technique to monitor the interfacial tension, we demonstrated that materials in both samples were adsorbed to the liquid-liquid interface, and did not readily desorb. A prototype system was built to test the emulsion interfacial filter concept. For the BSA system, a protein assay showed a progressive decrease in the residual BSA concentration as the sample was processed. Based on the initial prototype operation, we propose an improved system design.

  1. Problems of multiphase fluid filtration

    CERN Document Server

    Konovalov, AN


    This book deals with a spectrum of problems related to the mathematical modeling of multiphase filtration. Emphasis is placed on an inseparable triad: model - algorithm - computer code. An analysis of new and traditional filtration problems from the point of view of both their numerical implementation and the reproduction of one or another technological characteristics of the processes under consideration is given. The basic principles which underlie the construction of efficient numerical methods taking into account the filtration problems are discussed: non-evolutionary nature, degeneration,

  2. Health benefits of particle filtration. (United States)

    Fisk, W J


    The evidence of health benefits of particle filtration in homes and commercial buildings is reviewed. Prior reviews of papers published before 2000 are summarized. The results of 16 more recent intervention studies are compiled and analyzed. Also, reviewed are four studies that modeled health benefits of using filtration to reduce indoor exposures to particles from outdoors. Prior reviews generally concluded that particle filtration is, at best, a source of small improvements in allergy and asthma health effects; however, many early studies had weak designs. A majority of recent intervention studies employed strong designs and more of these studies report statistically significant improvements in health symptoms or objective health outcomes, particularly for subjects with allergies or asthma. The percentage improvement in health outcomes is typically modest, for example, 7% to 25%. Delivery of filtered air to the breathing zone of sleeping allergic or asthmatic persons may be more consistently effective in improving health than room air filtration. Notable are two studies that report statistically significant improvements, with filtration, in markers that predict future adverse coronary events. From modeling, the largest potential benefits of indoor particle filtration may be reductions in morbidity and mortality from reducing indoor exposures to particles from outdoor air.

  3. Health Benefits of Particle Filtration

    Energy Technology Data Exchange (ETDEWEB)

    Fisk, William J.


    The evidence of health benefits of particle filtration in homes and commercial buildings is reviewed. Prior reviews of papers published before 2000 are summarized. The results of 16 more recent intervention studies are compiled and analyzed. Also reviewed are four studies that modeled health benefits of using filtration to reduce indoor exposures to particles from outdoors. Prior reviews generally concluded that particle filtration is, at best, a source of small improvements in allergy and asthma health effects; however, many early studies had weak designs. A majority of recent intervention studies employed strong designs and more of these studies report statistically significant improvements in health symptoms or objective health outcomes, particularly for subjects with allergies or asthma. The percentage improvement in health outcomes is typically modest, e.g., 7percent to 25percent. Delivery of filtered air to the breathing zone of sleeping allergic or asthmatic persons may be more consistently effective in improving health than room air filtration. Notable are two studies that report statistically significant improvements, with filtration, in markers that predict future adverse coronary events. From modeling, the largest potential benefits of indoor particle filtration may be reductions in morbidity and mortality from reducing indoor exposures to particles from outdoor air.

  4. Health Benefits of Particle Filtration

    Energy Technology Data Exchange (ETDEWEB)

    Fisk, William J.


    The evidence of health benefits of particle filtration in homes and commercial buildings is reviewed. Prior reviews of papers published before 2000 are summarized. The results of 16 more recent intervention studies are compiled and analyzed. Also, reviewed are four studies that modeled health benefits of using filtration to reduce indoor exposures to particles from outdoors. Prior reviews generally concluded that particle filtration is, at best, a source of small improvements in allergy and asthma health effects; however, many early studies had weak designs. A majority of recent intervention studies employed strong designs and more of these studies report statistically significant improvements in health symptoms or objective health outcomes, particularly for subjects with allergies or asthma. The percent age improvement in health outcomes is typically modest, for example, 7percent to 25percent. Delivery of filtered air to the breathing zone of sleeping allergic or asthmatic persons may be more consistently effective in improving health than room air filtration. Notable are two studies that report statistically significant improvements, with filtration, in markers that predict future adverse coronary events. From modeling, the largest potential benefits of indoor particle filtration may be reductions in morbidity and mortality from reducing indoor exposures to particles from outdoor air.

  5. Virus removal vs. subsurface water velocity during slow sand filtration. (United States)

    Dizer, Halim; Brackmann, Bernhard; Rahman, M Azizur; Szewzyk, Regine; Sprenger, Christoph; Holzbecher, Ekkehard; López-Pila, Juan M


    In an attempt to obtain a conservative estimate of virus removal during slow sand and river bank filtration, a somatic phage was isolated with slow decay and poor adsorption to coarse sand. We continuously fed a phage suspension to a 7-m infiltration path and measured the phage removal. In a second set of experiments, we fed the phage suspension to 1-m long columns run at different pore water velocities. Using the data obtained, a mathematical model was constructed describing removal vs. pore water velocity (PWV), assuming different statistical distributions of the adsorption coefficient λ. The bimodal distribution best fit the results for PWVs higher than 1 m/d. It predicted a removal of approximately 4 log10 after 50 days infiltration at 1 m/d. At PWVs below 1 m/d the model underestimated removal. Sand-bound phages dissociated slowly into the liquid phase, with a detachment constant kdet of 2.6 × 10⁻⁵. This low kdet suggests that river bank filtration plants should be intermittently operated when viral overload is suspected, e.g. during flooding events or at high water-marks in rivers, in order for viruses to become soil-associated during the periods of standstill. Resuming filtration will allow only a very slow virus release from the soil.

  6. 40 CFR 141.73 - Filtration. (United States)


    ... 40 Protection of Environment 22 2010-07-01 2010-07-01 false Filtration. 141.73 Section 141.73... PRIMARY DRINKING WATER REGULATIONS Filtration and Disinfection § 141.73 Filtration. A public water system..., and does not meet all of the criteria in § 141.71 (a) and (b) for avoiding filtration, must...

  7. Integrated pore blockage-cake filtration model for crossflow filtration

    Energy Technology Data Exchange (ETDEWEB)

    Daniel, Richard C.; Billing, Justin M.; Russell, Renee L.; Shimskey, Rick W.; Smith, Harry D.; Peterson, Reid A.


    Crossflow filtration is to be a key process in the treatment and disposal of approximately 60,000 metric tons of high-level radioactive waste stored at the Hanford Site in Richland, Washington. Pacific Northwest National Laboratory is assessing filter performance with waste simulant materials that mimic the chemical and physical properties of Hanford tank waste. Prior simulant studies indicated that waste filtration performance may be limited by pore and cake fouling. To limit the shutdown of waste treatment operations, the pre-treatment facility plans to recover filter flux losses from cake formation and filter fouling by frequently backpulsing the filter elements. The objective of the current paper is to develop a simple model of flux decline resulting from cake and pore fouling and potential flux recovery through backpulsing of the filters for Hanford waste filtration operations. To this end, a model capable of characterizing the decline in waste-simulant filter flux as a function of both irreversible pore blockage and reversible cake formation is proposed. This model is used to characterize the filtration behavior of Hanford waste simulants in both continuous and backpulsed operations. The model is then used to infer the optimal backpulse frequency under specific operating conditions.

  8. Cake creep during filtration of flocculated manure

    DEFF Research Database (Denmark)

    Christensen, Morten Lykkegaard; Keiding, Kristian

    the distribution of N and P on the fields. Filtration is a useful method for such a separation. Furthermore, chemicals can be added to flocculate the solids and thereby increase the filterability i.e. the specific filter-cake resistance can be reduced from 1015 m/kg to 1011 m/kg. Both the amount of added chemicals......, and the mixing procedure affect the result, and lab-scale experiments are often used to study how these pre-treatments influence the filtration process. However, the existing mathematical filtration models are based on filtration of inorganic particles and cannot simulate the filtration data obtained when manure...... that the discrepancy between the filtration theory and the observed filtration behaviour is due to a time-dependent collapse of the formed cake (creep). This can also explain the observed behaviour when flocculated manure is filtered. The filtration data can be simulated if cake creep is adopted in the filtration...

  9. How to dose powdered activated carbon in deep bed filtration for efficient micropollutant removal. (United States)

    Altmann, Johannes; Ruhl, Aki S; Sauter, Daniel; Pohl, Julia; Jekel, Martin


    Direct addition of powdered activated carbon (PAC) to the inlet of a deep bed filter represents an energy- and space-saving option to remove organic micropollutants (OMPs) during advanced wastewater treatment or drinking water purification. In this lab-scale study, continuous dosing, preconditioning a filter with PAC and combinations thereof were investigated as possible dosing modes with respect to OMP adsorption efficiency. Continuous dosing resulted in decreasing effluent concentrations with increasing filter runtime due to adsorption onto accumulating PAC in the filter bed. Approximately constant removal levels were achieved at longer filter runtimes, which were mainly determined by the dose of fresh PAC, rather than the total PAC amount embedded. The highest effluent concentrations were observed during the initial filtration stage. Meanwhile, preconditioning led to complete OMP adsorption at the beginning of filtration and subsequent gradual OMP breakthrough. PAC distribution in the pumice filter was determined by the loss on ignition of PAC and pumice and was shown to be relevant for adsorption efficiency. Preconditioning with turbulent upflow led to a homogenous PAC distribution and improved OMP adsorption significantly. Combining partial preconditioning and continuous dosing led to low initial effluent concentrations, but ultimately achieved concentrations similar to filter runs without preconditioning. Furthermore, a dosing stop prior to the end of filtration was suitable to increase PAC efficiency without affecting overall OMP removals.


    Directory of Open Access Journals (Sweden)

    Petronela Nechita


    Full Text Available This study concerns the implementation and performance evaluation of fibrous composites in sterile filtration of wine. Conditions of preparation were established having in view that the separation of particulate contaminants from liquids by depth filtration is occurring by mechanical entrapment into structural pores and by electrokinetic adsorption, and both retention mechanisms are influenced by various factors. Functional characteristics and behaviour of the filtering composite in industrial filtration of wine were evaluated. It was found that the effectiveness with which micro-organisms were retained was substantially improved by a porous structure characterized by small pores, and respectively by high resistance to air filtration, as well as by a higher content of cationic charges in the system.

  11. Demonstration of creep during filtration

    DEFF Research Database (Denmark)

    Christensen, Morten Lykkegaard; Bugge, Thomas Vistisen; Kirchheiner, Anders Løvenbalk

    The classical filtration theory assumes a unique relationship between the local filter cake porosity and the local effective pressure. For a number of compressible materials, it has however been observed that during the consolidation stage this may not be the case. It has been found that the prod......The classical filtration theory assumes a unique relationship between the local filter cake porosity and the local effective pressure. For a number of compressible materials, it has however been observed that during the consolidation stage this may not be the case. It has been found...... that the production of filtrate also depends on the characteristic time for the filter cake solids to deform. This is formulated in the Terzaghi-Voigt model in which a secondary consolidation is introduced. The secondary consolidation may be visualized by plots of the relative cake deformation (U) v.s. the square...... magnitude as the primary consolidation (defined by the hydraulic retardation), the creep phenomenon may occur during filtration. This will lead to Ruth's plots characterized by a concave with two (more or less) distinct slopes. The slopes are defined by the relationship between the porosity...

  12. Improving IAQ Via Air Filtration. (United States)

    Monk, Brian


    Provides tips on using air filtration to control indoor air quality in educational facilities, including dedicated spaces with unique air quality conditions such as in libraries, museums and archival storage areas, kitchens and dining areas, and laboratories. The control of particulate contaminants, gaseous contaminants, and moisture buildup are…

  13. Filtration combustion: Smoldering and SHS (United States)

    Matkowsky, Bernard J.


    Smolder waves and SHS (self-propagating high-temperature synthesis) waves are both examples of combustion waves propagating in porous media. When delivery of reactants through the pores to the reaction site is an important aspect of the process, it is referred to as filtration combustion. The two types of filtration combustion have a similar mathematical formulation, describing the ignition, propagation and extinction of combustion waves in porous media. The goal in each case, however, is different. In smoldering the desired goal is to prevent propagation, whereas in SHS the goal is to insure propagation of the combustion wave, leading to the synthesis of desired products. In addition, the scales in the two areas of application may well differ. For example, smoldering generally occurs at a relatively low temperature and with a smaller propagation velocity than SHS filtration combustion waves. Nevertheless, the two areas of application have much in common, so that mechanisms learned about in one application can be used to advantage in the other. In this paper we discuss recent results in the areas of filtration combustion.

  14. Filtration Understanding: FY10 Testing Results and Filtration Model Update

    Energy Technology Data Exchange (ETDEWEB)

    Daniel, Richard C.; Billing, Justin M.; Burns, Carolyn A.; Peterson, Reid A.; Russell, Renee L.; Schonewill, Philip P.; Shimskey, Rick W.


    This document completes the requirements of Milestone 2-4, Final Report of FY10 Testing, discussed in the scope of work outlined in the EM31 task plan WP-2.3.6-2010-1. The focus of task WP 2.3.6 is to improve the U.S. Department of Energy’s (DOE’s) understanding of filtration operations for high-level waste (HLW) to improve filtration and cleaning efficiencies, thereby increasing process throughput and reducing the Na demand (through acid neutralization). Developing the cleaning/backpulsing requirements will produce much more efficient operations for both the Hanford Tank Waste Treatment and Immobilization Plant (WTP) and the Savannah River Site (SRS), thereby significantly increasing throughput by limiting cleaning cycles. The scope of this work is to develop the understanding of filter fouling to allow developing this cleaning/backpulsing strategy.

  15. Seed-mediated synthesis and the photo-degradation activity of ZnO-graphene hybrids excluding the influence of dye adsorption (United States)

    Fu, Dongying; Han, Gaoyi; Yang, Feifei; Zhang, Tianwen; Chang, Yunzhen; Liu, Feifei


    The nano-sized ZnO-graphene hybrid has been prepared through combining the facile sol-gel process and hydrothermal method by using Zn(NO3)2·6H2O and hexamethylenetetramine (HMT) as growing reactants in the presence of ZnO-graphene oxide (ZnO-GO) seeds. The obtained products have been characterized by X-ray diffraction, scanning electron microscopy, transmission electron microscopy, X-ray photoelectron spectroscopy, Raman spectroscopy and UV-vis absorption spectroscopy. The results show that the GO has been converted to reduced-graphene oxide during the hydrothermal process due to the released reductant from HMT. The photo-degradation of methylene blue in the presence of ZnO-graphene (excluding the influence of the dye adsorption on the catalyst) has also been investigated in detail. It is found that the preparation conditions have significant effects on photo-catalytic properties of the composites, and that ZnO-graphene prepared in the optimal conditions exhibits the optimum activity. This facile and low-cost method will make the composite a perfect candidate in applications of photo-catalysis and other areas.

  16. Seed-mediated synthesis and the photo-degradation activity of ZnO–graphene hybrids excluding the influence of dye adsorption

    Energy Technology Data Exchange (ETDEWEB)

    Fu, Dongying; Han, Gaoyi, E-mail:; Yang, Feifei; Zhang, Tianwen; Chang, Yunzhen; Liu, Feifei


    The nano-sized ZnO–graphene hybrid has been prepared through combining the facile sol–gel process and hydrothermal method by using Zn(NO{sub 3}){sub 2}·6H{sub 2}O and hexamethylenetetramine (HMT) as growing reactants in the presence of ZnO–graphene oxide (ZnO–GO) seeds. The obtained products have been characterized by X-ray diffraction, scanning electron microscopy, transmission electron microscopy, X-ray photoelectron spectroscopy, Raman spectroscopy and UV–vis absorption spectroscopy. The results show that the GO has been converted to reduced-graphene oxide during the hydrothermal process due to the released reductant from HMT. The photo-degradation of methylene blue in the presence of ZnO–graphene (excluding the influence of the dye adsorption on the catalyst) has also been investigated in detail. It is found that the preparation conditions have significant effects on photo-catalytic properties of the composites, and that ZnO–graphene prepared in the optimal conditions exhibits the optimum activity. This facile and low-cost method will make the composite a perfect candidate in applications of photo-catalysis and other areas.

  17. 40 CFR 141.173 - Filtration. (United States)


    ... 40 Protection of Environment 22 2010-07-01 2010-07-01 false Filtration. 141.173 Section 141.173... PRIMARY DRINKING WATER REGULATIONS Enhanced Filtration and Disinfection-Systems Serving 10,000 or More People § 141.173 Filtration. A public water system subject to the requirements of this subpart that...

  18. Density functional theory study of oxygen and water adsorption on SrTiO{sub 3}(001)

    Energy Technology Data Exchange (ETDEWEB)

    Guhl, Hannes


    Strontium titanate is an extensively studied material with a wide range of application, for instance in photo-catalysis and most importantly, it is used as a substrate in growth of functional oxides. The surface chemistry is crucial and hence understanding the surface structure on atomic scale is essential for gaining insight into the fundamental processes in the aforementioned applications. Moreover, there exist a lot of evidence that this surface chemistry might be controlled to considerably by extrinsic species, such as residual hydrogen and water. Investigating the properties of water and oxygen on the strontium titanate surface is certainly a natural starting point for a theoretical study based on density functional theory, because these species are practically present on the surface on a wide range of experimental conditions and they are computationally feasible. For the oxygen and water adsorption the binding energy is controlled by long-range surface relaxations leading to an effective repulsion of the adsorbed specimen. The isolated oxygen ad-atom forms a covalently bonded ''quasi-peroxide anion'' in combination with a lattice oxygen atom. Contrariwise, in all investigated configurations containing water molecules and hydroxyl groups, the respective oxygen atoms assumed positions close to the oxygen sites of the continued perovskite lattice of the substrate. Most remarkably, on the strontium oxide termination, the water molecules adsorbs and dissociates effortlessly leading to the formation of a pair of hydroxyl groups. For the titanium dioxide termination, a coverage dependent adsorption mode is observed. Densely packings stabilize water molecules, whereas at lower coverage and finite temperatures the formation of hydroxyl groups is found. The energetics responsible for this behavior is consistent with recent experiments by Iwahori and coworkers. (orig.)

  19. Mobile surface water filtration system

    Directory of Open Access Journals (Sweden)

    Aashish Vatsyayan


    Full Text Available To design a mobile system for surface water filtrationMethodology: the filtration of surface impurities begins with their retraction to concentrated thickness using non ionising surfactants, then isolation using surface tension property and sedimentation of impurities in process chamber using electrocoagulation. Result:following studies done to determine the rate of spreading of crude oil on water a method for retraction of spread crude oil to concentrated volumes is developed involving addition of non -ionising surfactants in contrast to use of dispersants. Electrocoagulation process involves multiple processes taking place to lead to depositionof impurities such as oil, grease, metals. Studies of experiments conducted reveals parameters necessary for design of electrocoagulation process chamber though a holistic approach towards system designing is still required. Propeller theory is used in determining the required design of propeller and the desired thrust, the overall structure will finally contribute in deciding the choice of propeller.

  20. Chemical filtration of Cr (VI) with electrospun chitosan nanofiber membranes. (United States)

    Li, Lei; Li, Yanxiang; Yang, Chuanfang


    Chitosan nanofibers (average diameter of 75nm) were electrospun on polyester (PET) scrim to form composite nanofiber membranes with controlled pore size. The membranes were then stacked as a membrane bed for chemical filtration of Cr (VI) of 1-5mg/L. The performance of the bed with respect to loading capacity at breakthrough, bed saturation and utilization efficiency were carefully investigated. The results showed that while these three parameters were dependent on pH, flow rate, flow distribution and packed pattern of the membrane, the latter two were less affected by feed Cr (VI) concentration and bed length. The maximum bed loading capacity for 1mg/L Cr (VI) filtration at breakthrough was found to be 16.5mg-chromium/g-chitosan, higher than the static adsorption capacity of 11.0mg-chromium/g-chitosan using nanofiber mats, indicating the membranes' better potential for dynamic adsorption. The minimum bed length required to avoid breakthrough was determined to be three layers of stacked membranes with nanofiber deposition density of 1g/m(2) by applying bed depth service time (BDST) model.

  1. Centrifugal membrane filtration -- Task 9

    Energy Technology Data Exchange (ETDEWEB)



    The Energy and Environmental Research Center (EERC) has teamed with SpinTek Membrane Systems, Inc., the developer of a centrifugal membrane filtration technology, to demonstrate applications for the SpinTek technology within the US Department of Energy (DOE) Environmental management (EM) Program. The technology uses supported microporous membranes rotating at high rpm, under pressure, to separate suspended and colloidal solids from liquid streams, yielding a solids-free permeate stream and a highly concentrated solids stream. This is a crosscutting technology that falls under the Efficient Separations and Processing Crosscutting Program, with potential application to tank wastes, contaminated groundwater, landfill leachate, and secondary liquid waste streams from other remediation processes, including decontamination and decommissioning systems. Membrane-screening tests were performed with the SpinTek STC-X4 static test cell filtration unit, using five ceramic membranes with different pore size and composition. Based on permeate flux, a 0.25-{micro}m TiO{sub 2}/Al{sub 2}O{sub 3} membrane was selected for detailed performance evaluation using the SpinTek ST-IIL centrifugal membrane filtration unit with a surrogate tank waste solution. An extended test run of 100 hr performed on a surrogate tank waste solution showed some deterioration in filtration performance, based on flux, apparently due to the buildup of solids near the inner portion of the membrane where relative membrane velocities were low. Continued testing of the system will focus on modifications to the shear pattern across the entire membrane surface to affect improved long-term performance.

  2. Cake Filtration in Viscoelastic Polymer Solutions (United States)

    Surý, Alexander; Machač, Ivan


    In this contribution, the filtration equations for a cake filtration in viscoelastic fluids are presented. They are based on a capillary hybrid model for the flow of a power law fluid. In order to express the elastic pressure drop excess in the flow of viscoelastic filtrate through the filter cake and filter screen, modified Deborah number correction functions are included into these equations. Their validity was examined experimentally. Filtration experiments with suspensions of hardened polystyrene particles (Krasten) in viscoelastic aqueous solutions of polyacryl amides (0.4% and 0.6%wt. Kerafloc) were carried out at a constant pressure on a cylindrical filtration unit using filter screens of different resistance.

  3. Water Filtration Using Plant Xylem

    CERN Document Server

    Lee, Jongho; Chambers, Valerie; Venkatesh, Varsha; Karnik, Rohit


    Effective point-of-use devices for providing safe drinking water are urgently needed to reduce the global burden of waterborne disease. Here we show that plant xylem from the sapwood of coniferous trees - a readily available, inexpensive, biodegradable, and disposable material - can remove bacteria from water by simple pressure-driven filtration. Approximately 3 cm3 of sapwood can filter water at the rate of several liters per day, sufficient to meet the clean drinking water needs of one person. The results demonstrate the potential of plant xylem to address the need for pathogen-free drinking water in developing countries and resource-limited settings.

  4. Pig manure treatment and purification by filtration. (United States)

    Makara, A; Kowalski, Z


    This study aimed to develop a new, complex pig manure treatment and filtration process. The final scheme, called the AMAK process, comprised the following successive steps: mineralization with mineral acids, alkalization with lime milk, superphosphate addition, a second alkalization, thermal treatment, and pressure filtration. The proposed method produced a filtrate with 95%, 80%, and 96% reductions in chemical oxygen demand, nitrogen content, and phosphorus content, respectively. An advantage of the proposed method was that it incorporated a crystalline phase into the solid organic part of the manure, which enabled high filtration rates (>1000 kg m(-2) h(-1)) and efficient separation. The process also eliminated odor emissions from the filtrate and sediment. The treated filtrate could be used to irrigate crops or it could be further treated in conventional biological wastewater treatment plants. The sediment could be used for producing mineral-organic fertilizer. The AMAK process is inexpensive, and it requires low investment costs.

  5. Side Stream Filtration for Cooling Towers

    Energy Technology Data Exchange (ETDEWEB)



    This technology evaluation assesses side stream filtration options for cooling towers, with an objective to assess key attributes that optimize energy and water savings along with providing information on specific technology and implementation options. This information can be used to assist Federal sites to determine which options may be most appropriate for their applications. This evaluation provides an overview of the characterization of side stream filtration technology, describes typical applications, and details specific types of filtration technology.

  6. Glomerular Filtration Barrier Assembly: An insight


    Arif, Ehtesham; Nihalani, Deepak


    A glomerulus is the network of capillaries that resides in the Bowman’s capsule that functions as a filtration unit of kidney. The glomerular function ensures that essential plasma proteins are retained in blood and the filtrate is passed on as urine. The glomerular filtration assembly is composed of three main cellular barriers that are critical for the ultrafiltration process, the fenestrated endothelium, glomerular basement membrane and highly specialized podocytes. The podocytes along wit...

  7. Adsorption of proteins from plasma at polyester non-wovens

    NARCIS (Netherlands)

    Klomp, A.J.A.; Engbers, G.H.M.; Mol, J.; Terlingen, J.G.A.; Feijen, J.


    Polyester non-wovens in filters for the removal of leukocytes from platelet concentrates (PCs) must be platelet compatible. In PC filtration, the adsorption of proteins at the plasma–non-woven interface can be of great importance with respect to the yield of platelets. Unmodified and radio frequency

  8. Persistent homology in graph power filtrations. (United States)

    Parks, Allen D; Marchette, David J


    The persistence of homological features in simplicial complex representations of big datasets in R (n) resulting from Vietoris-Rips or Čech filtrations is commonly used to probe the topological structure of such datasets. In this paper, the notion of homological persistence in simplicial complexes obtained from power filtrations of graphs is introduced. Specifically, the rth complex, r ≥ 1, in such a power filtration is the clique complex of the rth power G(r) of a simple graph G. Because the graph distance in G is the relevant proximity parameter, unlike a Euclidean filtration of a dataset where regional scale differences can be an issue, persistence in power filtrations provides a scale-free insight into the topology of G. It is shown that for a power filtration of G, the girth of G defines an r range over which the homology of the complexes in the filtration are guaranteed to persist in all dimensions. The role of chordal graphs as trivial homology delimiters in power filtrations is also discussed and the related notions of 'persistent triviality', 'transient noise' and 'persistent periodicity' in power filtrations are introduced.

  9. Filtration and compression of organic materials

    DEFF Research Database (Denmark)

    Christensen, Morten Lykkegaard; Keiding, Kristian

    The conventional filtration theory has been based on filtrations of incompressible particles such as anatase, kaolin and clay. The filtration models have later been used for organic slurries but can often not explain the observed experimental data. At constant pressure, the filtrate volume does...... not increase in proportion with square root time when e.g. sewage sludge and manure are filtered. Different explanations have been suggested. However, organic slurries are complex mixtures and it is therefore difficult to evaluate the suggested explanations and develops new models. One possible solution...

  10. Air filtration and indoor air quality

    DEFF Research Database (Denmark)

    Bekö, Gabriel


    decent ventilation and air cleaning/air filtration, high indoor air quality cannot be accomplished. The need for effective air filtration has increased with increasing evidence on the hazardous effects of fine particles. Moreover, the air contains gaseous pollutants, removal of which requires various air....... These contradictions should motivate manufacturers and researchers to develop new efficient filtration techniques and/or improve the existing ones. Development of low polluting filtration techniques, which are at the same time easy and inexpensive to maintain is the way forward in the future....

  11. Tangential flow filtration of hemoglobin. (United States)

    Palmer, Andre F; Sun, Guoyong; Harris, David R


    Bovine and human hemoglobin (bHb and hHb, respectively) was purified from bovine and human red blood cells via tangential flow filtration (TFF) in four successive stages. TFF is a fast and simple method to purify Hb from RBCs using filtration through hollow fiber (HF) membranes. Most of the Hb was retained in stage III (100 kDa HF membrane) and displayed methemoglobin levels less than 1%, yielding final concentrations of 318 and 300 mg/mL for bHb and hHb, respectively. Purified Hb exhibited much lower endotoxin levels than their respective RBCs. The purity of Hb was initially assessed via SDS-PAGE, and showed tiny impurity bands for the stage III retentate. The oxygen affinity (P(50)) and cooperativity coefficient (n) were regressed from the measured oxygen-RBC/Hb equilibrium curves of RBCs and purified Hb. These results suggest that TFF yielded oxygen affinities of bHb and hHb that are comparable to values in the literature. LC-MS was used to measure the molecular weight of the alpha (alpha) and beta (beta) globin chains of purified Hb. No impurity peaks were present in the HPLC chromatograms of purified Hb. The mass of the molecular ions corresponding to the alpha and beta globin chains agreed well with the calculated theoretical mass of the alpha- and beta- globin chains. Taken together, our results demonstrate that HPLC-grade Hb can be generated via TFF. In general, this method can be more broadly applied to purify Hb from any source of RBCs. This work is significant, since it outlines a simple method for generating Hb for synthesis and/or formulation of Hb-based oxygen carriers.

  12. Adsorption Rate Models for Multicomponent Adsorption Systems

    Institute of Scientific and Technical Information of China (English)



    Three adsorption rate models are derived for multicomponent adsorption systems under either pore diffusion or surface diffusion control. The linear driving force (LDF) model is obtained by assuming a parabolic intraparticle concentration profile. Models I and Ⅱ are obtained from the parabolic concentration layer approximation. Examples are presented to demonstrate the usage and accuracy of these models. It is shown that Model I is suitable for batch adsorption calculations and Model Ⅱ provides a good approximation in fixed-bed adsorption processes while the LDF model should not be used in batch adsorption and may be considered acceptable in fixed-bed adsorption where the parameter Ti is relatively large.

  13. Hierarchically structured polysulfone/titania fibrous membranes with enhanced air filtration performance. (United States)

    Wan, Huigao; Wang, Na; Yang, Jianmao; Si, Yinsong; Chen, Kun; Ding, Bin; Sun, Gang; El-Newehy, Mohamed; Al-Deyab, Salem S; Yu, Jianyong


    Hierarchically structured, superhydrophobic filter medium exhibiting robust filtration performance to airborne particulate were prepared by a facile deposition of electrospun polysulfone/titania nanoparticles (PSU/TiO2 NPs) on a conventional nonwoven substrate. The air permeability, tensile strength and abrasion resistance of pristine PSU fibrous membranes could be finely controlled by regulating the solvent composition and number ratios of jets. By employing the TiO2 NPs incorporation, the pristine PSU fibers were endowed with promising superhydrophobicity with a water contact angle of up to 152°. The quantitative hierarchical roughness analysis using N2 adsorption method has confirmed the major contribution of TiO2 NPs on enhancing the porous structure and surface fractal features with irregular rough structure. Filtration performance studies have revealed that the filtration efficiency and pressure drop of resultant hybrid membranes could be manipulated by tuning the surface composition as well as the hierarchical structures. Furthermore, the as-prepared PSU/TiO2-5 membrane exhibited improved filtration efficiency (99.997%) and pressure drop (45.3 Pa) compared with pristine PSU membrane, which would make them a promising media for fine particle filtration, and a new insight was also provided into the design and development of high performance filter medium based on hierarchical structured fibers.

  14. Particle contamination of parenteralia and in-line filtration of proteinaceous drugs. (United States)

    Werner, Benjamin Patrick; Winter, Gerhard


    Protein drug products play an important role in the treatment of severe diseases. However, due to the instability of these complex molecules, protein aggregates can form which can compromise drug safety and efficacy including immunogenic reactions. In-line filtration during the administration of these drugs can serve as a final safeguarding step to protect patients from risks associated with proteinaceous particles. A unique analysis of more than 300 marketed protein drug products revealed that already around 16% of all these products are filtered during preparation or administration. Further, the research revealed that no standardized filtration practice exists. Broad variances regarding filter membrane or pore size are found and sometimes no specifications are mentioned at all. The benefits as well as possible negative impacts of filtration like filter shedding, extractables or drug adsorption are critically assessed. Several proposals to improve the current filtration practice and to expand the number of in-line filtered protein drug products are made. The suggestions include the demand for the specific usage of one filter membrane type, the establishment of a filtration routine for unfiltered protein drugs and a statistical analysis between filtered and non-filtered products with similar formulations to identify possible differences in the immunogenicity rate.

  15. Adsorption and wetting.

    NARCIS (Netherlands)

    Schlangen, L.J.M.


    Adsorption and wetting are related phenomena. In order to improve knowledge of both and their relations, experiments, thermodynamics and a theoretical interpretation have been connected, starring n-alkanes.Starting from the Gibbs adsorption equation thermodynamic relations between vapour adsorption

  16. PDF-based heterogeneous multiscale filtration model. (United States)

    Gong, Jian; Rutland, Christopher J


    Motivated by modeling of gasoline particulate filters (GPFs), a probability density function (PDF) based heterogeneous multiscale filtration (HMF) model is developed to calculate filtration efficiency of clean particulate filters. A new methodology based on statistical theory and classic filtration theory is developed in the HMF model. Based on the analysis of experimental porosimetry data, a pore size probability density function is introduced to represent heterogeneity and multiscale characteristics of the porous wall. The filtration efficiency of a filter can be calculated as the sum of the contributions of individual collectors. The resulting HMF model overcomes the limitations of classic mean filtration models which rely on tuning of the mean collector size. Sensitivity analysis shows that the HMF model recovers the classical mean model when the pore size variance is very small. The HMF model is validated by fundamental filtration experimental data from different scales of filter samples. The model shows a good agreement with experimental data at various operating conditions. The effects of the microstructure of filters on filtration efficiency as well as the most penetrating particle size are correctly predicted by the model.

  17. Filtrating forms of soil bacteria (United States)

    Van'kova, A. A.; Ivanov, P. I.; Emtsev, V. T.


    Filtrating (ultramicroscopic) forms (FF) of bacteria were studied in a soddy-podzolic soil and the root zone of alfalfa plants as part of populations of the most widespread physiological groups of soil bacteria. FF were obtained by filtering soil solutions through membrane filters with a pore diameter of 0.22 μm. It was established that the greater part of the bacteria in the soil and in the root zone of the plants has an ultramicroscopic size: the average diameter of the cells is 0.3 μm, and their length is 0.6 μm, which is significantly less than the cell size of banal bacteria. The number of FF varies within a wide range depending on the physicochemical conditions of the habitat. The FF number's dynamics in the soil is of a seasonal nature; i.e., the number of bacteria found increases in the summer and fall and decreases in the winter-spring period. In the rhizosphere of the alfalfa, over the vegetation period, the number of FF and their fraction in the total mass of the bacteria increase. A reverse tendency is observed in the rhizoplane. The morphological particularities (identified by an electron microscopy) and the nature of the FF indicate their physiological activity.

  18. 丙烯酸接枝改性聚丙烯非织造布及其对染料过滤吸附与解吸作用的研究%Photo-grafting modification of polypropylene nonwovens with acrylic acid and its filtration adsorption and desorption toward cationic dye

    Institute of Scientific and Technical Information of China (English)

    艾丽; 刘颖; 王宇阳; 石小丽; 朱新生


    采用紫外照射方法对聚丙烯( PP)非织造布进行改性。将丙烯酸( AA)接枝聚合到PP非织造布表面,制得PP-g-AA改性非织造布。研究了交联剂浓度对接枝率的影响,并研究了接枝前后非织造布的形态和微观结构的变化,以及接枝非织造布对染液的吸附与解吸行为及其透水性。结果表明:AA可有效接枝到PP非织造布上;接枝非织造布对阳离子红X-GRL的最大吸附量为146.4 mg/g,显示出优异的吸附性能;等温吸附符合Freundlich模型,吸附动力学模型符合Lagegren准二级动力学方程;接枝非织造布的水通量表现出强烈的酸碱性和电解质依赖性;接枝PP非织造布对阳离子染料的吸附能再生循环利用。采用吸附过滤方式使用PP-g-AA非织造布可对印染废水进行深度处理。%Poly( acrylic acid) was grafted onto the polypropylene nonwovens surfaces under ultraviolet irradiation . PP-g-AA nonwovens was made by grafting poly (acrylic acid) (PAA) on the surface of PP.The effect of crosslinking agent on the grafting degree , as well as the microstructure of the grafted nonwovens and ungrafted nonwovens , the adsorption , desorption and water permeability of the grafted nonwovens were carefully investigated .The results indicated that , poly ( acrylic acid ) was enwrapped evenly on the fiber surfaces.The maximum equilibrium adsorption capacity of the cationic dye was up to 146.4 mg/g in this experimental setup , indicating the excellent adsorption performance .The absorption isotherm of the grafted nonwovens follows Freundlich model .The dynamic adsorption process is in accordance with the Lagergren’s pseudo-second order model .The water permeability strongly was depended on acidity and the ionic strength of electrolyte solution .The results of the repeating adsorption and desorption recycles implies reusability , and applicability for deeply treating the dyeing and printing wastewaters .

  19. Filtration in coal liquefaction - Influence of filtration conditions in non-hydrogenated systems (United States)

    Clarke, J. W.; Rantell, T. D.


    A series of experiments has been carried out to study the effects of filtration conditions upon the rate of filtration of non-hydrogenated coal digests. The results show the dependence of cake resistivity on both the filtration temperature and pressure. Filter cakes were found to be compressible, resulting in smaller increases in rate with increasing pressure than with incompressible cakes. The filtration temperature determines the packing of residual solids in the cake which in turn affects the cake resistivity. An empirical relation has been derived between filtration temperature and resistivity. With increasing temperature there is an increase in filtration rate due to the reduced viscosity, but a reduction owing to a higher packing density of solids in the filter cake.

  20. The Glomerular Filtration Barrier: Components and Crosstalk


    Madhav C. Menon; Chuang, Peter Y.; Cijiang John He


    The glomerular filtration barrier is a highly specialized blood filtration interface that displays a high conductance to small and midsized solutes in plasma but retains relative impermeability to macromolecules. Its integrity is maintained by physicochemical and signalling interplay among its three core constituents—the glomerular endothelial cell, the basement membrane and visceral epithelial cell (podocyte). Understanding the pathomechanisms of inherited and acquired human diseases as well...

  1. Complications and Management of the Filtration Bleb

    Institute of Scientific and Technical Information of China (English)

    Clement; W; N; Chan


    Filtration surgery is the commonest operation performed for closed angle or open angle glaucoma when medical treatment or laser trabeculoplasty has failed to control the intraocular pressure. It is characterized by the formation of an artificial drainage fistula between the anterior chamber and subconjunctival space. The successful operation is evidenced by the appearance of a subconjunctival filtration bleb which in turn depends on the patency of this pathway. Despite numerous modification, the procedu...

  2. 21 CFR 177.2910 - Ultra-filtration membranes. (United States)


    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Ultra-filtration membranes. 177.2910 Section 177... Components of Articles Intended for Repeated Use § 177.2910 Ultra-filtration membranes. Ultra-filtration... the processing of food, under the following prescribed conditions; (a)(1) Ultra-filtration...

  3. Biological Chitin-MOF Composites with Hierarchical Pore Systems for Air-Filtration Applications. (United States)

    Wisser, Dorothea; Wisser, Florian M; Raschke, Silvia; Klein, Nicole; Leistner, Matthias; Grothe, Julia; Brunner, Eike; Kaskel, Stefan


    Metal-organic frameworks (MOFs) are promising materials for gas-separation and air-filtration applications. However, for these applications, MOF crystallites need to be incorporated in robust and manageable support materials. We used chitin-based networks from a marine sponge as a non-toxic, biodegradable, and low-weight support material for MOF deposition. The structural properties of the material favor predominant nucleation of the MOF crystallites at the inside of the hollow fibers. This composite has a hierarchical pore system with surface areas up to 800 m(2)  g(-1) and pore volumes of 3.6 cm(3)  g(-1) , allowing good transport kinetics and a very high loading of the active material. Ammonia break-through experiments highlight the accessibility of the MOF crystallites and the adsorption potential of the composite indicating their high potential for filtration applications for toxic industrial gases.

  4. Low Cost Solar Array Project: Composition Measurements by Analytical Photo Catalysis (United States)

    Sutton, D. G.; Galvan, L.; Melzer, J.; Heidner, R. F., III


    The applicability of the photon catalysis technique for effecting composition analysis of silicon samples is discussed. A detector for the impurities Al, Cr, Fe, Mn, Ti, V, Mo and Zr is evaluated. During the first reporting period Al, Cr, Fe, and Mn were detected with the photon catalysis method. The best fluorescence lines to monitor and determine initial sensitivities to each of these elements by atomic absorption calibration were established. In the course of these tests vapor pressure curves for these four pure substances were also mapped. Ti and Si were detected. The best lines to monitor were catalogued and vapor pressure curves were determined. Attempts to detect vanadium were unsuccessful due to the refractory nature of this element and the limited temperature range of the evaporator.

  5. Optimization of pharmaceutical wastewater treatment by solar/ferrioxalate photo-catalysis. (United States)

    Monteagudo, J M; Durán, A; Culebradas, R; San Martín, I; Carnicer, A


    The degradation of a pharmaceutical wastewater using a ferrioxalate-assisted solar/photo-Fenton system has been studied. The photochemical reaction was carried out in a pilot plant consisting of a compound parabolic collector (CPC) solar reactor. An optimization study was performed combining a multivariate experimental design and Neuronal Networks that included the following variables: initial concentrations of H2O2, catalyst Fe (II) and oxalic acid (H2C2O4), temperature and solar power. Under optimal conditions, 84% TOC (Total Organic Carbon) removal was achieved in 115 min. Oxalic acid had a positive effect on mineralization when solar power was above 30 W m(-2). The minimum amount of H2O2 to degrade 1 mol of TOC was found to be 3.57 mol. Both the H2O2 conversion efficiency and the degree of mineralization were highest when the oxalic/Fe(II) initial molar relation was close to 3. HO radicals were the main oxidative intermediate species in the process, although hydroperoxyl radicals (HO(2)(·)) also played a role.

  6. Degradation of lincomycin in aqueous medium: coupling of solar photo catalysis and membrane separation

    Energy Technology Data Exchange (ETDEWEB)

    Augugliaro, V.; Garcia-Lopez, E.; Loddo, V.; Malato-Rodriguez, S.; Maldonado, I.; Marci, G.; Molinari, R.; Palmisano, L.


    The photo catalytic oxidation of a common antibiotic, the lincomycin, was carried out in aqueous suspensions of polycrystalline TiO2 (anatase) irradiated by sunlight. For improving the performance of lincomycin degradation, a hybrid system consisting of a solar photo reactor with the photo catalyst in suspension coupled with a membrane module, used to confine both photocatalyst and pollutants in the reaction environment, was tested. A preliminary study was carried out in order to determine some kinetics parameters of the drug photodegradation. The dependence of lincomycin photooxidation rate on the substrate concentration was investigated. At the used experimental conditions the photooxidation rate followed pseudo-first order kinetics with respect to the lincomycin concentration. The presence of the membrane reactor allowed to separate the catalyst and to operate in continuous mode as the membrane rejection for lincomycin and its oxidation products was quite high. (Author) 14 refs.

  7. The degradation mechanism of methyl orange under photo-catalysis of TiO2. (United States)

    Yu, Lihong; Xi, Jingyu; Li, Ming-De; Chan, Hung Tat; Su, Tao; Phillips, David Lee; Chan, Wai Kin


    The properties of photo-generated reactive species, holes and electrons in bulk TiO(2) (anatase) film and nano-sized TiO(2) were studied and their effects towards decomposing pollutant dye methyl orange (MO) were compared by transient absorption spectroscopies. The recombination of holes and electrons in nano-sized TiO(2) was found to be on the microsecond time scale consistent with previous reports in the literature. However, in bulk TiO(2) film, the holes and electrons were found to be on the order of picoseconds due to ultra fast free electrons. The time-correlated single-photon counting (TCSPC) technique combined with confocal fluorescence microscopy revealed that the fluorescence intensity of MO is at first enhanced noticeably by TiO(2) under UV excitation and soon afterwards weakened dramatically, with the lifetime prolonged. Photo-generated holes in nano-sized TiO(2) can directly oxidize MO on the time scale of nanoseconds, while free electrons photo-generated in bulk TiO(2) film can directly inject into MO on the order of picoseconds. Through cyclic voltammetry measurements, it was found that MO can be reduced at -0.28 V and oxidized at 1.4 V (vs. SCE) and this provides thermodynamic evidence for MO to be degraded by electrons and holes in TiO(2). Through comparison of the hole-scavenging effect of MO and water, it was found that in polluted water when MO is above 1.6 × 10(-4) M, the degradation is mainly due to a direct hole oxidation process, while below 1.6 × 10(-4) M, hydroxyl oxidation competes strongly and might exceed the hole oxidation.

  8. Quenching of TiO2 photo catalysis by silver nanoparticles

    NARCIS (Netherlands)

    Di Vece, M.; Laursen, A.B.; Bech, L.; Maden, C.N.; Duchamp, M.; Mateiu, R.V.; Dahl, S.; Chorkendorff, I.


    The plasmon resonance of metal nanostructures affects neighboring semiconductors, quenching or enhancing optical transitions depending on various parameters. These plasmonic properties are currently investigated with respect to topics such as photovoltaics and optical detection and could also have i

  9. Quenching of TiO2 photo catalysis by silver nanoparticles

    DEFF Research Database (Denmark)

    Di Vece, Marcel; Laursen, Anders Bo; Bech, Lone


    important consequences for photocatalysis. Here the effect of silver nanoparticles of a size up to 30nm and at maximum 0.50 monolayers on the photocatalytic oxidation of ethylene on TiO2 is studied. Since the plasmon resonance energy of silver nanoparticles is comparable with the TiO2 band gap, dipole...

  10. Cake formation and growth in cake filtration

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Y.S.; Hsiau, S.S. [National Central University, Chungli (Taiwan)


    In this study we develop an experimental method to help understand the formation and growth of dust cakes. An on-line pressure-displacement measurement system is developed to measure the thickness of the dust cakes. A higher filtration superficial velocity resulted in a higher degree of compaction in the dust cakes and thus a higher specific cake resistance, hence a better collection efficiency could be achieved. The empirical equations for cake solidosity, and specific cake resistance as a function of the filtration superficial velocity are derived. We find that the cake filter is influenced by the cake thickness and the filtration superficial velocity. The results of this study can be applied to granular bed filters for the removal of dust particulates in advanced coal-fired power systems.

  11. The Glomerular Filtration Barrier: Components and Crosstalk

    Directory of Open Access Journals (Sweden)

    Madhav C. Menon


    Full Text Available The glomerular filtration barrier is a highly specialized blood filtration interface that displays a high conductance to small and midsized solutes in plasma but retains relative impermeability to macromolecules. Its integrity is maintained by physicochemical and signalling interplay among its three core constituents—the glomerular endothelial cell, the basement membrane and visceral epithelial cell (podocyte. Understanding the pathomechanisms of inherited and acquired human diseases as well as experimental injury models of this barrier have helped to unravel this interdependence. Key among the consequences of interference with the integrity of the glomerular filtration barrier is the appearance of significant amounts of proteins in the urine. Proteinuria correlates with kidney disease progression and cardiovascular mortality. With specific reference to proteinuria in human and animal disease phenotypes, the following review explores the roles of the endothelial cell, glomerular basement membrane, and the podocyte and attempts to highlight examples of essential crosstalk within this barrier.

  12. Salt disposition alternatives filtration at SRTC

    Energy Technology Data Exchange (ETDEWEB)

    Walker, B. W.; Hobbs, D.


    Several of the prospective salt disposition alternative technologies require a monosodium titanate (MST) contact to remove strontium and actinides from inorganic salt solution feedstock. This feedstock also contains sludge solids from waste removal operations and may contain defoamers added in the evaporator systems. Filtration is required to remove the sludge and MST solids before sending the salt solution for further processing. This report describes testing performed using the Parallel Theological Experimental Filter (PREF). The PREF contains two single tube Mott sintered metal crossflow filters. For this test one filter was isolated so that the maximum velocities could be achieved. Previous studies showed slurries of MST and sludge in the presence of sodium tetraphenylborate (NaTPB) were filterable since the NaTPB slurry formed a filter cake which aided in removing the smaller MST and sludge particles. Some of the salt disposition alternative technologies do not use NaTPB raising the question of how effective crossflow filtration is with a feed stream containing only sludge and MST. Variables investigated included axial velocity, transmembrane pressure, defoamer effects, and solids concentration (MST and sludge). Details of the tests are outlined in the technical report WSRC-RP-98-O0691. Key conclusions from this study are: (1) Severe fouling of the Mott sintered metal filter did not occur with any of the solutions filtered. (2) The highest fluxes, in the range of .46 to 1.02 gpm/f{sup 2}, were obtained when salt solution decanted from settled solids was fed to the filter. These fluxes would achieve 92 to 204 gpm filtrate production for the current ITP filters. The filtrate fluxes were close to the flux of 0.42 gpm/f{sup 2} reported for In Tank Precipitation Salt Solution by Morrisey. (3) For the range of solids loading studied, the filter flux ranged from .04 to .17 gpm/f{sup 2} which would result in a filtrate production rate of 9 to 31 gpm for the current HP

  13. Projective Dimension in Filtrated K-Theory

    DEFF Research Database (Denmark)

    Bentmann, Rasmus Moritz


    Under mild assumptions, we characterise modules with projective resolutions of length n∈N in the target category of filtrated K-theory over a finite topological space in terms of two conditions involving certain Tor -groups. We show that the filtrated K-theory of any separable C∗dash-algebra over...... any topological space with at most four points has projective dimension 2 or less. We observe that this implies a universal coefficient theorem for rational equivariant KK-theory over these spaces. As a contrasting example, we find a separable C∗dash-algebra in the bootstrap class over a certain five...

  14. Maize genome sequencing by methylation filtration. (United States)

    Palmer, Lance E; Rabinowicz, Pablo D; O'Shaughnessy, Andrew L; Balija, Vivekanand S; Nascimento, Lidia U; Dike, Sujit; de la Bastide, Melissa; Martienssen, Robert A; McCombie, W Richard


    Gene enrichment strategies offer an alternative to sequencing large and repetitive genomes such as that of maize. We report the generation and analysis of nearly 100,000 undermethylated (or methylation filtration) maize sequences. Comparison with the rice genome reveals that methylation filtration results in a more comprehensive representation of maize genes than those that result from expressed sequence tags or transposon insertion sites sequences. About 7% of the repetitive DNA is unmethylated and thus selected in our libraries, but potentially active transposons and unmethylated organelle genomes can be identified. Reverse transcription polymerase chain reaction can be used to finish the maize transcriptome.

  15. Mechanisms of pressure filtration of liquid aluminum alloys (United States)

    Cao, X.


    The Prefil Footprinter, a portable pressure filtration instrument, is usually used to detect the quality of liquid aluminum alloys. However, no investigations have ever been done to calculate the cake resistance to date. Based on the identification and classification of flow behavior using the first derivative method for filtrate mass vs filtration time curves, conventional filtration equations are successfully employed to understand the filtration behaviors. From the analyses of the variations of cake resistance with filtration time, the filtration mechanisms are discussed in detail over the different filtration stages. During the steady stage, either incompressible or compressible cake mode is the main mechanism. At the initial and terminal transient stages, however, deep-bed filtration, complete straining, and solidification clogging may appear. Solid inclusions in liquid metal have significant influence on the cake structures and properties. Some important issues related to the heterogeneity of filter media and test methodology are highlighted in this work.

  16. Aerosol filtration - performance of filter media; Filtration des aerosols - performances des medias filtrants

    Energy Technology Data Exchange (ETDEWEB)

    Bemer, D.; Regnier, R. [Institut National de Recherche et de Securite (INRS), Dept. Ingenierie des Procedes, 75 - Paris (France); Calle, S.; Thomas, D.; Simon, X.; Appert-Collin, J.Ch. [Centre National de la Recherche Scientifique (CNRS), Lab. des Sciences du Genie Chimique de Nancy, 54 - Vandoeuvre-les-Nancy (France)


    Set up in 2000, the Laboratoire de Filtration des Aerosols in Nancy (LFA), associating research teams from INRS (Institut National de Recherche et de Securite and LSGC (Laboratoire des Sciences du Genie Chimique - CNRS), has been commissioned to provide expertise in the aerosol filtration field to both CRAM (Caisse Regionale de l'Assurance Maladie) prevention specialists and industrialists. Following a theoretical review of fibre medium filtration, this paper summarises the different actions undertaken by the LFA: filter performance during clogging with liquid and solid aerosols, modelling, pneumatic unclogging of baghouse dust collectors, influence of micro-leaks, etc. (authors)

  17. Prevention of febrile nonhemolytic transfusion reaction with leucocyte filtrated concentrates

    Institute of Scientific and Technical Information of China (English)

    ZHAO Shu-ming; XIANG Guo-chun; ZHANG Jia-si; CHENG Xiao-ling; LI Ru-qing


    Objective: To assess the clinical efficiency of the transfusion of leucocyte filtrated RBC concentrates to prevent febrile nonhemolytic transfusion reactions (FNHTRs). Methods: One hundred patients with liver cirrhosis, gastric ulcer or cancer were subjected to receive RBC concentrates after leucocyte filtration.Another 50 patients with similar diseases were selected to receive non-filtrated RBC concentrates. The incidence of FNHTRs in all patients was investigated. Results: There was no FNHTR in 100 transfusions with leucocyte filtrated RBC concentrates, while FNHTRs occurred in 8 of 50 patients with non-filtrated RBC concentrates, with the incidence of 160%. Conclusion: FNHTRs to RBC transfusion can be prevented with leucocyte filtration.

  18. Using Digital Filtration for Hurst Parameter Estimation

    Directory of Open Access Journals (Sweden)

    J. Prochaska


    Full Text Available We present a new method to estimate the Hurst parameter. The method exploits the form of the autocorrelation function for second-order self-similar processes and is based on one-pass digital filtration. We compare the performance and properties of the new method with that of the most common methods.

  19. Advances in hot gas filtration technology

    Energy Technology Data Exchange (ETDEWEB)

    Weber, C.

    The past decade has seen the introduction of new filter media specifically designed for 'hot-gas' filtration. These media are available as woven or knitted fabrics and as non-wovens, i.e. needled felts. Needlefelted fabrics have proven so highly successful in the dedusting of hot gases that they are widely used nowadays in this new and necessary technology. Hot-gas filtration offers advantages in, for example, the saving or recycling of energy, the elimination of the cooling process, and the short-circuiting of process steps. This paper gives a survey of the types of textile fibres available for hot-gas filtration from the more recently developed organic fibres to refractory fibres. It describes, compares and contrasts their salient properties and lists the uses to which they may be put. It concentrates on such fibres which are generally referred to as 'high performance materials', since they are expected to provide satisfactory performance under extreme conditions of temperature, chemical environment and mechanical stress. It touches on filtration theory governing the collection mechanism. 9 refs., 7 figs., 3 tabs.

  20. [Clinical experience of automated double filtration plasmapheresis]. (United States)

    Lee, C T; Chuang, F R; Hsu, K T; Lam, K K; Liao, S C; Liu, C C; Chen, J B; Jang, S W; Chien, Y S; Pan, H H


    Double filtration plasmapheresis, one kind of fractionation plasmapheresis, was developed from membrane type plasmapheresis to remove only the pathogen and return the normal protein back to the patient. We started our automated double filtration plasmapheresis since December 1993. There were 13 patients who received one hundred treatments totally during one year period. And they are myasthenia gravis (8 patients); acute inflammatory demyelinating polyneuropathy (1 patient), multiple myeloma (1 patient); acquired factor VIII inhibitor (1 patient); autoimmune hemolytic anemia (1 patient); systemic lupus erythematous (1 patient). Technically double filtration plasmapheresis is easy to perform and time-saving. It also makes necessity of replacement fluid less frequent. Incidence of complication is rare, and this includes hypotension 2%, palpitation 1%, headache 1%, hemolysis 4%, air emboli 1%, high secondary pressure 2%, and no motality during our treatment. Clinical response is documented in cases of myasthenia gravis; acute inflammatory demyelinating polyneuropathy and acquired factor VIII inhibitor in our study. In conclusion, double filtration plasmapheresis is a time-saving, convenient, and safe therapeutic modality with rare complication. Because its effectiveness on limited kinds of diseases and costs relatively high price, thus plasmapheresis should be used in selected cases and treat aggressively if indicated.

  1. Plasma discharge self-cleaning filtration system (United States)

    Cho, Young I.; Fridman, Alexander; Gutsol, Alexander F.; Yang, Yong


    The present invention is directed to a novel method for cleaning a filter surface using a plasma discharge self-cleaning filtration system. The method involves utilizing plasma discharges to induce short electric pulses of nanoseconds duration at high voltages. These electrical pulses generate strong Shockwaves that disintegrate and dislodge particulate matter located on the surface of the filter.


    Directory of Open Access Journals (Sweden)

    A. A. Shevtsov


    Full Text Available The interactions of various factors affecting the process of drying the filtrate distillery dregs are investigated. Rational conditions for the process of drying the filtrate distillery dregs in a spray dryer are obtained.

  3. Internal filtration, filtration fraction, and blood flow resistance in high- and low-flux dialyzers. (United States)

    Schneditz, Daniel; Zierler, Edda; Vanholder, Raymond; Eloot, Sunny


    It was the aim to examine the fluid flow in blood and dialysate compartments of highly permeable hollow fiber dialyzers where internal filtration contributes to solute removal but where excessive filtration bears a risk of cell activation and damage. Flow characteristics of high- (HF) and low-flux (LF) dialyzers were studied in lab-bench experiments using whole bovine blood. Measurements obtained under different operating conditions and under zero net ultrafiltration were compared to theoretical calculations obtained from a mathematical model. Experimental resistances in the blood compartment were within ±2% of those calculated from the model when dialysate was used as a test fluid. With whole blood, the experimental resistances in the blood compartment were only 81.8 ± 2.8% and 83.7 ± 4.3% of those calculated for the LF and HF dialyzer, respectively. Surprisingly, measured blood flow resistance slightly but significantly decreased with increasing flow rate (p filtration fraction, while overall internal filtration increased. The increase in internal filtration when increasing blood flow is associated with a beneficial reduction in internal filtration fraction. Concerns of increased hemoconcentration when increasing blood flow therefore appear to be unwarranted.

  4. Technology Review of Modern Gas Turbine Inlet Filtration Systems



    An inlet air filtration system is essential for the successful operation of a gas turbine. The filtration system protects the gas turbine from harmful debris in the ambient air, which can lead to issues such as FOD, erosion, fouling, and corrosion. These issues if not addressed will result in a shorter operational life and reduced performance of the gas turbine. Modern day filtration systems are comprised of multiple filtration stages. Each stage is selected based on the local operating envir...

  5. 40 CFR 141.171 - Criteria for avoiding filtration. (United States)


    ... 40 Protection of Environment 22 2010-07-01 2010-07-01 false Criteria for avoiding filtration. 141... PROGRAMS (CONTINUED) NATIONAL PRIMARY DRINKING WATER REGULATIONS Enhanced Filtration and Disinfection-Systems Serving 10,000 or More People § 141.171 Criteria for avoiding filtration. In addition to...

  6. 40 CFR 141.174 - Filtration sampling requirements. (United States)


    ... 40 Protection of Environment 22 2010-07-01 2010-07-01 false Filtration sampling requirements. 141... PROGRAMS (CONTINUED) NATIONAL PRIMARY DRINKING WATER REGULATIONS Enhanced Filtration and Disinfection-Systems Serving 10,000 or More People § 141.174 Filtration sampling requirements. (a)...

  7. 40 CFR 141.71 - Criteria for avoiding filtration. (United States)


    ... 40 Protection of Environment 22 2010-07-01 2010-07-01 false Criteria for avoiding filtration. 141... PROGRAMS (CONTINUED) NATIONAL PRIMARY DRINKING WATER REGULATIONS Filtration and Disinfection § 141.71 Criteria for avoiding filtration. A public water system that uses a surface water source must meet all...

  8. Origins of the poor filtration characteristics of wheat starch hydrolysates

    NARCIS (Netherlands)

    Matser, A.M.; Steeneken, P.A.M.


    The effects of wheat starch components on the filtration characteristics of wheat starch hydrolysates were investigated with a model-based approach. The filtration rate was not affected by the removal of the pentosans or by altering the conformation of the protein. On the other hand, the filtration

  9. Integrative filtration research and sustainable nanotechnology

    Institute of Scientific and Technical Information of China (English)

    Jing Wang; Drew Thompson; David Y.H.Pui


    With the wide applications of nanomaterials in an array of industries,more concerns are being raised about the occupational health and safety of nanoparticles in the workplace,and implications of nanotechnology on the environment and living systems.Studies on environmental,health and safety (EHS) issues of nanomaterials play a significant role in public acceptance,and eventual sustainability,of nanotechnology.We present research results on three aspects of the EHS studies:characterization and measurement of nanoparticles,nanoparticle emission and exposure at workplaces,and control and abatement of nanoparticle release using filtration technology.Measurement of nanoparticle agglomerates using a newly developed instrument,the Universal Nanoparticle Analyzer,is discussed.Nanoparticle emission and exposure measurement results for carbon nanotubes in the manufacture of nanocomposites and for silicon nanoparticles in their production at a pilot scale facility are presented.Filtration of nanoparticles and nanoparticle agglomerates are also studied.

  10. Nanoparticles filtration by leaked fibrous filters

    Energy Technology Data Exchange (ETDEWEB)

    Mouret, Guillaume; Calle-Chazelet, Sandrine; Thomas, Dominique; Appert-Collin, Jean-Christophe [Nancy-Universite/LSGC/CNRS - 1 rue Grandville - BP 20451 - F-54001 Nancy Cedex (France)], E-mail:; Bemer, Denis [INRS - Avenue de Bourgogne - F-54501 Vandoeuvre les Nancy Cedex (France)


    The aim of this work is first to measured nanoparticles penetration through three different fiberglass filters intentionally-pierced with calibrated needles at different filtration velocity. Then a semi-empirical model based on the air flow resistances of the new and perforated filter media and on the mechanism of Brownian diffusion for the collection of ultrafine particles by the media enables to well predict the efficiency observed for all tested operating conditions. Results show that the increase of particles penetration is all the more important that the pinhole is large and that the particle diameter is low. Another result is that the filtration efficiency of the new filter media controlled the penetration. A high efficiency filter with a high resistance to air flow will be more damaged than a low efficiency filter when being perforated.

  11. Ultrasonic filtration of industrial chemical solutions (United States)

    Cosma, T.


    The practical results obtained as a result of filtering industrial chemical solutions under continuous flow conditions with the aid of an ultrasonic filter are presented. The main part of the assembly consists of an ultrasonic generator with an output power of about 400 W and the filtration assembly, in which there is a magnetostrictive amplifier constructed for 20.5 kHz. In addition to ensuring a continuous flow of filtered solution, ultrasonic filters can be replaced or cleaned at intervals of time that are 8-10 times greater than in the case of mechanical filters. They yield considerably better results as far as the size of the filtered particles is concerned. The parameters on which filtration quality depends are also presented.

  12. Interfacial adsorption of insulin - Conformational changes and reversibility of adsorption

    NARCIS (Netherlands)

    Mollmann, SH; Jorgensen, L; Bukrinsky, JT; Elofsson, U; Norde, W; Frokjaer, S


    The adsorption of human insulin to Teflon particles was studied with respect to conformational changes and the reversibility of adsorption was examined by total internal reflection fluorescence (TIRF). Adsorption isotherms for the adsorption of human insulin indicated high affinity adsorption, even

  13. Interfacial adsorption of insulin. Conformational changes and reversibility of adsorption

    NARCIS (Netherlands)

    Mollmann, S.H.; Bukrinsky, J.T.; Elofsson, U.; Norde, W.; Frokjaer, S.


    The adsorption of human insulin to Teflon particles was studied with respect to conformational changes and the reversibility of adsorption was examined by total internal reflection fluorescence (TIRF). Adsorption isotherms for the adsorption of human insulin indicated high affinity adsorption, even

  14. Symptomatic hyponatremia during glomerular filtration rate testing



    Hyponatremia affects nearly one in five of all hospitalized patients. Severe hyponatremia is associated with significant morbidity and mortality, and is therefore important to recognize. Prior reports have linked duloxetine with hyponatremia, but it is uncommon. In this case report, we describe a research subject taking duloxetine who developed severe symptomatic hyponatremia during glomerular filtration rate testing despite having undergone such testing uneventfully in the past.

  15. Portable Hybrid Powered Water Filtration Device

    Directory of Open Access Journals (Sweden)

    Maria Lourdes V. Balansay


    Full Text Available The existing water filtration device has features that can be developed to be more useful and functional during emergency situations. The project’s development has been aided by following provisions in PEC, NEC, NEMA and Philippine National Standard for Safe Drinking Water provide standards for the construction of the project. These standards protect both the prototype and the user. These also served as guide for the maintenance of every component. The design of the portable hybrid powered water filtration device shows that the project has more advanced features such as portability and the power supply used such as photovoltaic module solar cells and manually operated generator. This also shows its effectiveness and reliability based on the results of discharging test, water quality test and water production test. Based on analysis of the overall financial aspects, the machine can be profitable and the amount of revenue and operating cost will increase as years pass. Using the proper machine/ tools and methods of fabrication helps in easy assembly of the project. The materials and components used are cost effective and efficient. The best time for charging the battery using solar panel is 9:00 am onwards while the hand crank generator is too slow because the generated current is little. The water filtration device is very efficient regarding the operating hours and water production. The machine may have a great effect to society and economy in generation of clean available water at less cost.

  16. Aerosol Filtration Application Using Fibrous Media An Industrial Perspective

    Institute of Scientific and Technical Information of China (English)



    Filtration of aerosol particles using non-woven fibrous media is a common practice for air cleaning. It has found wide applications in industries and our daily lives. This paper overviews some of these applications and provides an industrial perspective. It starts from discussing aerosol filtration theory, followed by a brief review on the advancement of filtration media. After that, filtration applications in respiratory protection, dust collection, and engine in-take air cleaning are elaborated. These are the areas that the author sees as the typical needed ones in China's fast pace economical development endeavor, where air filtration enables the protection of human health, environment and equipment for sustainability.

  17. Nanofiber filter media for air filtration (United States)

    Raghavan, Bharath Kumar

    Nanofibers have higher capture efficiencies in comparison to microfibers in the submicron particle size range of 100-500 nm because of small fiber diameter and increased surface area of the fibers. Pressure drop across the filter increases tremendously with decrease in fiber diameter in the continuum flow regime. Nanofibers with fiber diameter less than 300 nm are in the slip flow regime as a consequence of which steep increase in pressure drop is considerably reduced due to slip effect. The outlet or inlet gases have broad range of particle size distribution varying from few micrometers to nanometers. The economic benefits include capture of a wide range of particle sizes in the gas streams using compact filters composed of nanofibers and microfibers. Electrospinning technique was used to successfully fabricate polymeric and ceramic nanofibers. The nanofibers were long, continuous, and flexible with diameters in the range of 200--300 nm. Nanofibers were added to the filter medium either by mixing microfibers and nanofibers or by directly electrospinning nanofibers as thin layer on the surface of the microfiber filter medium. Experimental results showed that either by mixing Nylon 6 nanofibers with B glass fibers or by electrospinning Nylon 6 nanofibers as a thin layer on the surface of the microfiber medium in the surface area ratio of 1 which is 0.06 g of nanofibers for 2 g of microfibers performed better than microfiber filter media in air filtration tests. This improved performance is consistent with numerical modeling. The particle loading on a microfibrous filter were studied for air filtration tests. The experimental and modeling results showed that both pressure drop and capture efficiency increased with loading time. Nanofiber filter media has potential applications in many filtration applications and one of them being hot gas filtration. Ceramic nanofibers made of alumina and titania nanofibers can withstand in the range of 1000°C. Ceramic nanofibers

  18. Filtration Combustion in Smoldering and SHS (United States)

    Matkowsky, Bernard J.


    Smolder waves and SHS (self-propagating high-temperature synthesis) waves are both examples of filtration combustion waves propagating in porous media. Smoldering combustion is important for the study of fire safety. Smoldering itself can cause damage, its products are toxic and it can also lead to the more dangerous gas phase combustion which corresponds to faster propagation at higher temperatures. In SHS , a porous solid sample, consisting of a finely ground powder mixture of reactants, is ignited at one end. A high temperature thermal wave, having a frontal structure, then propagates through the sample converting reactants to products. The SHS technology appears to enjoy a number of advantages over the conventional technology, in which the sample is placed in a furnace and "baked" until it is "well done". The advantages include shorter synthesis times, greater economy, in that the internal energy of the reactions is employed rather than the costly external energy of the furnace, purer products, simpler equipment and no intrinsic limitation on the size of the sample to be synthesized as exists in the conventional technology. When delivery of reactants through the pores to the reaction site is an important aspect of the combustion process, it is referred to as filtration combustion. The two types of filtration combustion have a similar mathematical formulation, describing the ignition, propagation and extinction of combustion waves in porous media. The goal in each case, however, is different. In smoldering the desired goal is to prevent propagation, whereas in SHS the goal is to ensure propagation of the combustion wave, leading to the synthesis of desired products. In addition, the scales in the two areas of application differ. Smoldering generally occurs at lower temperatures and propagation velocities than in SHS nevertheless, the two applications have much in common so that what is learned fit make application can be used to advantage in the other. In porous

  19. Filtration Efficiency of Functionalized Ceramic Foam Filters for Aluminum Melt Filtration (United States)

    Voigt, Claudia; Jäckel, Eva; Taina, Fabio; Zienert, Tilo; Salomon, Anton; Wolf, Gotthard; Aneziris, Christos G.; Le Brun, Pierre


    The influence of filter surface chemistry on the filtration efficiency of cast aluminum alloys was evaluated for four different filter coating compositions (Al2O3—alumina, MgAl2O4—spinel, 3Al2O3·2SiO2—mullite, and TiO2—rutile). The tests were conducted on a laboratory scale with a filtration pilot plant, which facilitates long-term filtration tests (40 to 76 minutes). This test set-up allows the simultaneous use of two LiMCAs (before and after the filter) for the determination of the efficiency of inclusion removal. The four tested filter surface chemistries exhibited good thermal stability and mechanical robustness after 750 kg of molten aluminum had been cast. All four filter types exhibited a mean filtration efficiency of at least 80 pct. However, differences were also observed. The highest filtration efficiencies were obtained with alumina- and spinel-coated filter surfaces (>90 pct), and the complete removal of the largest inclusions (>90 µm) was observed. The efficiency was slightly lower with mullite- and rutile-coated filter surfaces, in particular for large inclusions. These observations are discussed in relation to the properties of the filters, in particular in terms of, for example, the surface roughness.

  20. Filtration Efficiency of Functionalized Ceramic Foam Filters for Aluminum Melt Filtration (United States)

    Voigt, Claudia; Jäckel, Eva; Taina, Fabio; Zienert, Tilo; Salomon, Anton; Wolf, Gotthard; Aneziris, Christos G.; Le Brun, Pierre


    The influence of filter surface chemistry on the filtration efficiency of cast aluminum alloys was evaluated for four different filter coating compositions (Al2O3—alumina, MgAl2O4—spinel, 3Al2O3·2SiO2—mullite, and TiO2—rutile). The tests were conducted on a laboratory scale with a filtration pilot plant, which facilitates long-term filtration tests (40 to 76 minutes). This test set-up allows the simultaneous use of two LiMCAs (before and after the filter) for the determination of the efficiency of inclusion removal. The four tested filter surface chemistries exhibited good thermal stability and mechanical robustness after 750 kg of molten aluminum had been cast. All four filter types exhibited a mean filtration efficiency of at least 80 pct. However, differences were also observed. The highest filtration efficiencies were obtained with alumina- and spinel-coated filter surfaces (>90 pct), and the complete removal of the largest inclusions (>90 µm) was observed. The efficiency was slightly lower with mullite- and rutile-coated filter surfaces, in particular for large inclusions. These observations are discussed in relation to the properties of the filters, in particular in terms of, for example, the surface roughness.

  1. Removal of aqueous nC60 fullerene from water by low pressure membrane filtration. (United States)

    Floris, R; Nijmeijer, K; Cornelissen, E R


    The potential environmental and health risks of engineered nanoparticles such as buckminsterfullerene C60 in water require their removal during the production of drinking water. We present a study focusing on (i) the removal mechanism and (ii) the elucidation of the role of the membrane pore size during removal of nC60 fullerene nanoparticle suspensions in dead-end microfiltration and ultrafiltration mimicking separation in real industrial water treatment plants. Membranes were selected with pore sizes ranging from 18 nm to 500 nm to determine the significance of the nC60 to membrane pore size ratio and the adsorption affinity between nC60 and membrane material during filtration. Experiments were carried out with a dead-end bench-scale system operated at constant flux conditions including a hydraulic backwash cleaning procedure. nC60 nanoparticles can be efficiently removed by low pressure membrane technology with smaller and, unexpectedly, also by mostly similar or larger pores than the particle size, although the nC60 filtration behaviour appeared to be different. The nC60 size to membrane pore size ratio and the ratio of the cake-layer deposition resistance to the clean membrane resistance, both play an important role on the nC60 filtration behaviour and on the efficiency of the backwash procedure recovering the initial membrane filtration conditions. These results become specifically significant in the context of drinking water production, for which they provide relevant information for an accurate selection between membrane processes and operational parameters for the removal of nC60 in the drinking water treatment.

  2. Structure sensitivity in adsorption

    DEFF Research Database (Denmark)

    Hammer, Bjørk; Nielsen, Ole Holm; Nørskov, Jens Kehlet


    The structure sensitivity of CO adsorption on different flat, stepped, kinked and reconstructed Pt surfaces is studied using large-scale density-functional calculations. We find an extremely strong structure sensitivity in the adsorption energy with variations up to 1 eV (or 100%) from one...

  3. A Simple Adsorption Experiment (United States)

    Guirado, Gonzalo; Ayllon, Jose A.


    The study of adsorption phenomenon is one of the most relevant and traditional physical chemistry experiments performed by chemistry undergraduate students in laboratory courses. In this article, we describe an easy, inexpensive, and straightforward way to experimentally determine adsorption isotherms using pieces of filter paper as the adsorbent…

  4. Transfer and transport of aluminum in filtration unit

    Institute of Scientific and Technical Information of China (English)


    Aluminum salt coagulants were used prevalently in various water works. In this article, the effects of filtration on residual aluminum concentration and species distribution were researched by determining the concentration of different Aluminum species before and after single layer filter, double layer filter, and membrane filtration units. In the research, size exclusion chromatography (SEC) was used to separate colloidal and soluble aluminum, ion exchange chromatography (IEC) was used to separate organic and inorganic aluminum, and inductivity coupled plasma-atomic emission spectrometry (ICP-AES) was used to determine the aluminum concentration. The results showed that the rapid filtration process had the ability of removing residual aluminum from coagulant effluent water, and that double layer filtration was more effective in residual aluminum removal than single layer filtration, while Nano filtration was more effective than micro filtration. It was found that when the residual aluminum concentration was below 1mg/L in sediment effluent, the residual aluminum concentration in treated water was above 0.2 mg/L. The direct rapid filtration process mainly removed the suspended aluminum. The removal of soluble and colloidal aluminum was always less than 10% and the natural small particles that adsorbed the amount of soluble or small particles aluminum on their surface were difficult to be removed in this process. Micro filtration and nano filtration were good technologies for removing aluminum; the residual aluminum concentration in the effluent was less than 0.05 mg/L.

  5. Martingale representation property in progressively enlarged filtrations

    CERN Document Server

    Jeanblanc, M


    Consider $\\mathbb{G}$ the progressive enlargement of a filtration $\\mathbb{F}$ with a random time $\\tau$. Assuming that, in $\\mathbb{F}$, the martingale representation property holds, we examine conditions under which the martingale representation property holds also in $\\mathbb{G}$. It is noted that the classical results on this subject are no more sufficient to deal with all examples coming from credit risk modeling. In this paper, we introduce a new methodology which extends the various classical results and applies on recent examples.

  6. The effect of cyanobacterial biomass enrichment by centrifugation and GF/C filtration on subsequent microcystin measurement. (United States)

    Rogers, Shelley; Puddick, Jonathan; Wood, Susanna A; Dietrich, Daniel R; Hamilton, David P; Prinsep, Michele R


    Microcystins are cyclic peptides produced by multiple cyanobacterial genera. After accumulation in the liver of animals they inhibit eukaryotic serine/threonine protein phosphatases, causing liver disease or death. Accurate detection/quantification of microcystins is essential to ensure safe water resources and to enable research on this toxin. Previous methodological comparisons have focused on detection and extraction techniques, but have not investigated the commonly used biomass enrichment steps. These enrichment steps could modulate toxin production as recent studies have demonstrated that high cyanobacterial cell densities cause increased microcystin levels. In this study, three microcystin-producing strains were processed using no cell enrichment steps (by direct freezing at three temperatures) and with biomass enrichment (by centrifugation or GF/C filtration). After extraction, microcystins were analyzed using liquid chromatography-tandem mass spectrometry. All processing methods tested, except GF/C filtration, resulted in comparable microcystin quotas for all strains. The low yields observed for the filtration samples were caused by adsorption of arginine-containing microcystins to the GF/C filters. Whilst biomass enrichment did not affect microcystin metabolism over the time-frame of normal sample processing, problems associated with GF/C filtration were identified. The most widely applicable processing method was direct freezing of samples as it could be utilized in both field and laboratory environments.

  7. The Effect of Cyanobacterial Biomass Enrichment by Centrifugation and GF/C Filtration on Subsequent Microcystin Measurement

    Directory of Open Access Journals (Sweden)

    Shelley Rogers


    Full Text Available Microcystins are cyclic peptides produced by multiple cyanobacterial genera. After accumulation in the liver of animals they inhibit eukaryotic serine/threonine protein phosphatases, causing liver disease or death. Accurate detection/quantification of microcystins is essential to ensure safe water resources and to enable research on this toxin. Previous methodological comparisons have focused on detection and extraction techniques, but have not investigated the commonly used biomass enrichment steps. These enrichment steps could modulate toxin production as recent studies have demonstrated that high cyanobacterial cell densities cause increased microcystin levels. In this study, three microcystin-producing strains were processed using no cell enrichment steps (by direct freezing at three temperatures and with biomass enrichment (by centrifugation or GF/C filtration. After extraction, microcystins were analyzed using liquid chromatography-tandem mass spectrometry. All processing methods tested, except GF/C filtration, resulted in comparable microcystin quotas for all strains. The low yields observed for the filtration samples were caused by adsorption of arginine-containing microcystins to the GF/C filters. Whilst biomass enrichment did not affect microcystin metabolism over the time-frame of normal sample processing, problems associated with GF/C filtration were identified. The most widely applicable processing method was direct freezing of samples as it could be utilized in both field and laboratory environments.

  8. Dynamic optimization of a dead-end filtration trajectory : Blocking filtration laws

    NARCIS (Netherlands)

    Blankert, Bastiaan; Betlem, Ben H.L.; Roffel, Brian


    An operating model for dead-end membrane filtration is proposed based on the well-known blocking laws. The resulting model contains three parameters representing, the operating strategy, the fouling mechanism and the fouling potential of the feed. The optimal control strategy is determined by minimi

  9. Dynamic optimization of a dead-end filtration trajectory : Non-ideal cake filtration

    NARCIS (Netherlands)

    Blankert, Bastiaan; Kattenbelt, Carolien; Betlem, Ben H.L.; Roffel, Brian


    A control strategy aimed at minimizing energy consumption is formulated for non-ideal dead-end cake filtration with an inside-out hollow fiber ultrafiltration membrane system. The non-ideal behavior was assumed to originate from cake compression, non-linear cake resistance and a variable pump effici

  10. Reverse osmosis concentrate treatment via a PAC-MF accumulative countercurrent adsorption process. (United States)

    Zhao, Chunxia; Gu, Ping; Cui, Hangyu; Zhang, Guanghui


    Organic pollutants in reverse osmosis (RO) concentrates from wastewater reclamation are mainly comprised of low molecular weight biorefractory compounds. Generally, advanced oxidation methods for oxidizing these organics require a relatively high level of energy consumption. In addition, conventional adsorption removal methods require a large dose of activated carbon. However, the dose can be reduced if its full adsorption capacity can be used. Therefore, the combined technology of powdered activated carbon (PAC) adsorption and microfiltration (MF) membrane filtration was studied to develop a countercurrent two-stage adsorption process. A PAC accumulative adsorption prediction method was proposed based on the verification of a PAC multi-stage adsorption capacity equation. Moreover, the prediction method was amended for a more accurate prediction of the effluent quality because adsorption isotherm constants were affected by the initial adsorbate concentration. The required PAC dose for the accumulative countercurrent two-stage adsorption system was 0.6 g/L, whereas that of the conventional adsorption process was 1.05 g/L when the dilution factor(F) was 0.1 and the COD and DOC removal rates were set to 70% and 68.1%, respectively. Organic pollutants were satisfactorily removed with less consumption of PAC. Effluent from this combined technology can be further reclaimed by an RO process to improve the overall recovery rate to between 91.0% and 93.8% with both economic and environmental benefits.

  11. Adsorption combined with ultrafiltration to remove organic matter from seawater. (United States)

    Tansakul, Chatkaew; Laborie, Stéphanie; Cabassud, Corinne


    Organic fouling and biofouling are the major severe types of fouling of reverse osmosis (RO) membranes in seawater (SW) desalination. Low pressure membrane filtration such as ultrafiltration (UF) has been developed as a pre-treatment before reverse osmosis. However, UF alone may not be an effective enough pre-treatment because of the existence of low-molecular weight dissolved organic matter in seawater. Therefore, the objective of the present work is to study a hybrid process, powdered activated carbon (PAC) adsorption/UF, with real seawater and to evaluate its performance in terms of organic matter removal and membrane fouling. The effect of different PAC types and concentrations is evaluated. Stream-activated wood-based PAC addition increased marine organic matter removal by up to 70% in some conditions. Moreover, coupling PAC adsorption with UF decreased UF membrane fouling and the fouling occurring during short-term UF was totally reversible. It can be concluded that the hybrid PAC adsorption/UF process performed in crossflow filtration mode is a relevant pre-treatment process before RO desalination, allowing organic matter removal of 75% and showing no flux decline for short-term experiments.

  12. A study of dynamic filtration; Um estudo sobre filtracao dinamica

    Energy Technology Data Exchange (ETDEWEB)

    Girao, Joaquim Helder S. [PETROBRAS, Natal, RN (Brazil). Distrito de Perfuracao da Bacia Potiguar. Div. de Tecnicas de Perfuracao


    The problems that cause cost increase such as: formation damage and borehole swelling or caving lead us to study the filtration of the liquid part of formation drilling fluid. With the aim of comparing static and dynamic filtration rates, we developed a modest dynamic filtration equipment, consisting of a modified API filter, connected to reservoir by means of a positive injection pump. We carried out various tests, and the results were set in charts and tables. Through these, it is possible to notice how the static and dynamic filtration curves come apart for a same pressure value. We also evaluated the effects of circulation speed, starch concentration and counter pressure. This paper does not include calculations or mathematical models accounting for filtrate invasion radii, but it demonstrates, for example, that cleaning circulation will cause lower filtration rates at lower flows. (author) 5 refs., 11 figs., 14 tabs.

  13. The effect of filter cake viscoelasticity on filtration

    DEFF Research Database (Denmark)

    Christensen, Morten Lykkegaard

    Wastewater is usually treated biologically, and a by-product from this treatment is waste-activated sludge with high water content. Sludge is therefore often filtrated to reduce the volume for handling and disposal, and to minimise the water content before incineration of the sludge. However......, it is difficult to use the existing mathematical filtration models to simulate and optimise the filtration process. Activated sludge as well as synthetic model particles has been filtrated in this project. The study shows that compression of the formed filter cake is a time dependent process, and not only...... a function of pressure as assumed when using the conventional models. Moreover, it is shown how the existing filtration models can be modified and the filtration process for activated sludge simulated....

  14. Tailoring Supramolecular Nanofibers for Air Filtration Applications. (United States)

    Weiss, Daniel; Skrybeck, Dominik; Misslitz, Holger; Nardini, David; Kern, Alexander; Kreger, Klaus; Schmidt, Hans-Werner


    The demand of new materials and processes for nanofiber fabrication to enhance the performance of air filters is steadily increasing. Typical approaches to obtain nanofibers are based on top-down processes such as melt blowing, centrifugal spinning, and electrospinning of polymer materials. However, fabrication of polymer nanofibers is limited with respect to either a sufficiently high throughput or the smallest achievable fiber diameter. This study reports comprehensively on a fast and simple bottom-up process to prepare supramolecular nanofibers in situ inside viscose/polyester microfiber nonwovens. Here, selected small molecules of the materials class of 1,3,5-benzenetrisamides are employed. The microfiber-nanofiber composites exhibit a homogeneous nanofiber distribution and morphology throughout the entire nonwoven scaffold. Small changes in molecular structure and processing solvent have a strong influence on the final nanofiber diameter and diameter distribution and, consequently, on the filtration performance. Choosing proper processing conditions, microfiber-nanofiber composites with surprisingly high filtration efficiencies of particulate matter are obtained. In addition, the microfiber-nanofiber composite integrity at elevated temperatures was determined and revealed that the morphology of supramolecular nanofibers is maintained compared to that of the utilized polymer nonwoven.

  15. Renal filtration function in patients with gout

    Directory of Open Access Journals (Sweden)

    N. N. Kushnarenko


    Full Text Available Aim. To study circadian blood pressure (BP profile in patients with gout depending on the presence of arterial hypertension (HT and their relationship to the renal filtration function.Material and methods. Patients with gout (n=87 were included into the study. All the patients underwent ambulatory BP monitoring (ABPM with the assessment of circadian BP profile, determination of uric acid serum levels, glomerular filtration rate (GFR was evaluated by CKD-EPI method. Depending on GFR level, all the patients were divided into 2 groups - with renal dysfunction or without one.Results. ABPM revealed circadian BP dysregulation in 55% of gout patients both with HT and without HT. Chronic kidney disease (CKD was revealed in 72.4% of male patients, with the prevalence in patients with HT (76.6 vs 61%; p<0.001. Correlations between uric acid levels and some ABPM indicators and GFR were determined.Conclusion. Obtained data suggest the contribution of hyperuricemia in disorders of systemic and renal hemodynamics, leading to the early development of CKD.

  16. METC CFD simulations of hot gas filtration

    Energy Technology Data Exchange (ETDEWEB)

    O`Brien, T.J.


    Computational Fluid Dynamic (CFD) simulations of the fluid/particle flow in several hot gas filtration vessels will be presented. These simulations have been useful in designing filtration vessels and in diagnosing problems with filter operation. The simulations were performed using the commercial code FLUENT and the METC-developed code MFIX. Simulations of the initial configuration of the Karhula facility indicated that the dirty gas flow over the filter assemblage was very non-uniform. The force of the dirty gas inlet flow was inducing a large circulation pattern that caused flow around the candles to be in opposite directions on opposite sides of the vessel. By introducing a system of baffles, a more uniform flow pattern was developed. This modification may have contributed to the success of the project. Several simulations of configurations proposed by Industrial Filter and Pump were performed, varying the position of the inlet. A detailed resolution of the geometry of the candles allowed determination of the flow between the individual candles. Recent simulations in support of the METC/CeraMem Cooperative Research and Development Agreement have analyzed the flow in the vessel during the cleaning back-pulse. Visualization of experiments at the CeraMem cold-flow facility provided confidence in the use of CFD. Extensive simulations were then performed to assist in the design of the hot test facility being built by Ahlstrom/Pyropower. These tests are intended to demonstrate the CeraMem technology.

  17. In-Water Hull Cleaning & Filtration System (United States)

    George, Dan


    Dan George R & D Mining Technology LinkedIn GRD Franmarine have received the following prestigious awards in 2014 for their research & development of an in-water hull cleaning and filtration system "The Envirocart: Golden Gecko Award for Environmental Excellence; WA Innovator of the Year - Growth Sector; Department of Fisheries - Excellence in Marine Biosecurity Award - Innovation Category; Lloyd's List Asia Awards - Environmental Award; The Australian Innovation Challenge - Environment, Agriculture and Food Category; and Australian Shipping and Maritime Industry Award - Environmental Transport Award. The Envirocart developed and patented by GRD Franmarine is a revolutionary new fully enclosed capture and containment in-water hull cleaning technology. The Envirocart enables soft Silicon based antifouling paints and coatings containing pesticides such as Copper Oxide to be cleaned in situ using a contactless cleaning method. This fully containerised system is now capable of being deployed to remote locations or directly onto a Dive Support Vessel and is rated to offshore specifications. This is the only known method of in-water hull cleaning that complies with the Department of Agriculture Fisheries and Forestry (DAFF) and Department of Fisheries WA (DoF) Guidelines. The primary underwater cleaning tool is a hydraulically powered hull cleaning unit fitted with rotating discs. The discs can be fitted with conventional brushes for glass or epoxy based coatings or a revolutionary new patented blade system which can remove marine biofouling without damaging the antifouling paint (silicone and copper oxide). Additionally there are a patented range of fully enclosed hand cleaning tools for difficult to access niche areas such as anodes and sea chests, providing an innovative total solution that enables in-water cleaning to be conducted in a manner that causes no biological risk to the environment. In full containment mode or when AIS are present, material is pumped

  18. Removal of cytomegalovirus DNA from donor blood by filtration. (United States)

    Smith, K L; Cobain, T; Dunstan, R A


    Blood from five donors, previously shown to be positive for cytomegalovirus (CMV) DNA following polymerase chain reaction (PCR) amplification, was filtered through commercially available leucocyte filters. Analysis of pre- and post-filtration samples by PCR with ethidium bromide staining has shown that filtration was successful in removing CMV DNA from all samples. This is evidence that leucocyte filtration of red cell concentrates may greatly decrease the risk of CMV disease following transfusion to susceptible patients.

  19. New magnetic-enhanced adsorption process for wastewater treatment

    Energy Technology Data Exchange (ETDEWEB)

    Cotten, G.B.; Navratil, J.D. [Idaho National Engineering and Environmental Lab., Idaho Falls, ID (United States); Sebesta, F. [Czech Tech Univ. (Czech Republic)


    Radioactive and nonradioactive metal ion and particulate species in aqueous solutions present a formidable treatment problem for the nuclear and commercial industries. An economical and highly effective system for the treatment of wastewater containing these metal species is presented that uses a new magnetic enhanced adsorption technique. The process employs low-cost magnetite (FeO{center_dot}Fe{sub 2}O{sub 3}) supported on various organic and inorganic support media, and an external magnetic field to couple the inherent sorption properties of the magnetite with a high gradient magnetic separation technique. This combination of sorption techniques offers several advantages over current filtration and ion exchange systems and removes a variety of heavy metals and radioactive species. Filtration systems do not remove ionic species, and ion exchange systems can be plugged by particulate matter, which may limit the amount of exchange sites able to be accessed.

  20. Competitive Protein Adsorption - Multilayer Adsorption and Surface Induced Protein Aggregation

    DEFF Research Database (Denmark)

    Holmberg, Maria; Hou, Xiaolin


    In this study, competitive adsorption of albumin and IgG (immunoglobulin G) from human serum solutions and protein mixtures onto polymer surfaces is studied by means of radioactive labeling. By using two different radiolabels (125I and 131I), albumin and IgG adsorption to polymer surfaces...... is monitored simultaneously and the influence from the presence of other human serum proteins on albumin and IgG adsorption, as well as their mutual influence during adsorption processes, is investigated. Exploring protein adsorption by combining analysis of competitive adsorption from complex solutions...... of high concentration with investigation of single protein adsorption and interdependent adsorption between two specific proteins enables us to map protein adsorption sequences during competitive protein adsorption. Our study shows that proteins can adsorb in a multilayer fashion onto the polymer surfaces...

  1. Filtration of triazine herbicides by polymer-clay sorbents: coupling an experimental mechanistic approach with empirical modeling. (United States)

    Gardi, Ido; Nir, Shlomo; Mishael, Yael G


    Triazine herbicides detected in surface and groundwater pose environmental and health risks. Removal of triazine herbicides (simazine, atrazine and terbuthylazine) by polymer-clay composites was studied and modeled. Their binding by a poly 4-vinyl pyridine co styrene-montmorillonite (HPVP-CoS-MMT) composite was especially high due to specific interactions between the herbicides and polymer, mainly hydrogen bonds and π-π stacking. The binding kinetics to the composite was in the order of simazine > atrazine > terbuthylazine, which was in accord with their equilibrium Langmuir binding coefficients; 44,000, 17,500 and 16,500 M(-1), respectively, which correlated with herbicide accessibility to form specific interaction with the polymer. Simazine binding kinetics to the composite was significantly faster than to granulated activated carbon (GAC), reaching 93% vs 38% of the maximal adsorption within 10 min, respectively. Herbicide filtration by composite columns was adequately fitted by a model which considers convection and employs Langmuir formalism for kinetics of adsorption/desorption. Filtration of simazine (10 μg L(-1)) by composite columns (40 cm long, which included 26 g composite mixed with sand 1:40 (weight ratio)), was well predicted by the model with nearly 120 L purified, i.e., effluent concentrations were below regulation limit (3 μg L(-1)). Effluent concentrations from GAC columns exceeded the limit after filtering 5 L. Experimental results and model predictions suggest that while GAC has a high capacity for simazine binding, the composite has higher affinity towards the herbicide and its adsorption is faster, which yields more efficient filtration by composite columns.

  2. Hybrid adsorptive membrane reactor (United States)

    Tsotsis, Theodore T. (Inventor); Sahimi, Muhammad (Inventor); Fayyaz-Najafi, Babak (Inventor); Harale, Aadesh (Inventor); Park, Byoung-Gi (Inventor); Liu, Paul K. T. (Inventor)


    A hybrid adsorbent-membrane reactor in which the chemical reaction, membrane separation, and product adsorption are coupled. Also disclosed are a dual-reactor apparatus and a process using the reactor or the apparatus.

  3. Hybrid adsorptive membrane reactor (United States)

    Tsotsis, Theodore T.; Sahimi, Muhammad; Fayyaz-Najafi, Babak; Harale, Aadesh; Park, Byoung-Gi; Liu, Paul K. T.


    A hybrid adsorbent-membrane reactor in which the chemical reaction, membrane separation, and product adsorption are coupled. Also disclosed are a dual-reactor apparatus and a process using the reactor or the apparatus.

  4. Selective Adsorption of Sodium Aluminum Fluoride Salts from Molten Aluminum

    Energy Technology Data Exchange (ETDEWEB)

    Leonard S. Aubrey; Christine A. Boyle; Eddie M. Williams; David H. DeYoung; Dawid D. Smith; Feng Chi


    Aluminum is produced in electrolytic reduction cells where alumina feedstock is dissolved in molten cryolite (sodium aluminum fluoride) along with aluminum and calcium fluorides. The dissolved alumina is then reduced by electrolysis and the molten aluminum separates to the bottom of the cell. The reduction cell is periodically tapped to remove the molten aluminum. During the tapping process, some of the molten electrolyte (commonly referred as “bath” in the aluminum industry) is carried over with the molten aluminum and into the transfer crucible. The carryover of molten bath into the holding furnace can create significant operational problems in aluminum cast houses. Bath carryover can result in several problems. The most troublesome problem is sodium and calcium pickup in magnesium-bearing alloys. Magnesium alloying additions can result in Mg-Na and Mg-Ca exchange reactions with the molten bath, which results in the undesirable pickup of elemental sodium and calcium. This final report presents the findings of a project to evaluate removal of molten bath using a new and novel micro-porous filter media. The theory of selective adsorption or removal is based on interfacial surface energy differences of molten aluminum and bath on the micro-porous filter structure. This report describes the theory of the selective adsorption-filtration process, the development of suitable micro-porous filter media, and the operational results obtained with a micro-porous bed filtration system. The micro-porous filter media was found to very effectively remove molten sodium aluminum fluoride bath by the selective adsorption-filtration mechanism.

  5. Dynamical Systems, Cytokine Storms, and Blood Filtration (United States)

    Foster, Glenn; Hubler, Alfred


    Various infections and non-infectious diseases can trigger immune cells and the proteins (cytokines) the cells use to communicate with each other to be caught in a positive feedback loop; this ``cytokine storm'' is frequently fatal. By examining the network of cytokine-immune cell interactions we will illustrate why anti-mediator drugs have been generally ineffective in stopping this feedback. A more effective approach may be to try and reduce interactions by dampening many signals at once by filtering the cytokines out of the blood directly (think dialysis). We will argue that feedback on an out of control nonlinear dynamical system is easier to understand than its normal healthy state and apply filtration to a toy model of immune response.

  6. Pattern recognition using inverse resonance filtration

    CERN Document Server

    Sofina, Olga; Kvetnyy, Roman


    An approach to textures pattern recognition based on inverse resonance filtration (IRF) is considered. A set of principal resonance harmonics of textured image signal fluctuations eigen harmonic decomposition (EHD) is used for the IRF design. It was shown that EHD is invariant to textured image linear shift. The recognition of texture is made by transfer of its signal into unstructured signal which simple statistical parameters can be used for texture pattern recognition. Anomalous variations of this signal point on foreign objects. Two methods of 2D EHD parameters estimation are considered with the account of texture signal breaks presence. The first method is based on the linear symmetry model that is not sensitive to signal phase jumps. The condition of characteristic polynomial symmetry provides the model stationarity and periodicity. Second method is based on the eigenvalues problem of matrices pencil projection into principal vectors space of singular values decomposition (SVD) of 2D correlation matrix....

  7. Membraneless water filtration using CO2 (United States)

    Shin, Sangwoo; Shardt, Orest; Warren, Patrick; Stone, Howard


    Water purification technologies such as ultrafiltration and reverse osmosis utilize porous membranes to remove suspended particles and solutes. These membranes, however, cause many drawbacks such as a high pumping cost and a need for periodic replacement due to fouling. Here we show an alternative membraneless method for separating suspended particles by exposing the colloidal suspension to CO2. Dissolution of CO2 into the suspension creates solute gradients that drive phoretic motion of particles, or so-called diffusiophoresis. Due to the large diffusion potential built up by the dissociation of carbonic acid, colloidal particles move either away from or towards the gas-liquid interface depending on their surface charge. Our findings suggest a means to separate particles without membranes or filters, thus reducing operating and maintenance costs. Using the directed motion of particles induced by exposure to CO2, we demonstrate a scalable, continuous flow, membraneless particle filtration process that exhibits very low pressure drop and is essentially free from fouling.

  8. Gravity filtration of suspensions: permeability effects (United States)

    Soori, Tejaswi; Wang, Mengyu; Ward, Thomas


    This paper examines the filtration rates of mono-modal suspensions as a function of time and a cake layer builds up through theory and experimentation. Darcy's Law, which describes fluid flow through porous media, was applied along with the Kynch theory of sedimentation, which provides the basis for analyzing low concentration (ϕ filter media. A CCD camera was used to capture images of the cake formation and fluid drainage processes, and subsequent image and theoretical analysis found the fluid flow experienced a constant pressure loss due to the permeability of the filter media, whereas the experienced pressure loss due to the cake formation varies as a function of time, ϕ and d. The rate of cake formation was also found to be independent of ϕ but dependent on d which can be attributed to a change in porosity affecting permeability. Studies on similar systems with multi-modal suspensions are in-progress.

  9. Simulation of impaction filtration by a porous filter

    NARCIS (Netherlands)

    Ghazaryan, L.; Lopez Penha, D.J.; Geurts, B.J.; Stolz, S.; Winkelmann, C.; Vafai, K.


    We present a new numerical approach for estimating filtration through porous media from first principles. We numerically simulate particle motion as arises in a carrier gas flow. The filtration we look at occurs due to impaction of particles with obstructing surfaces that are contained in the solid

  10. On the Newton filtration for functions on complete intersections

    CERN Document Server

    Hamm, Helmut A


    W.Ebeling and S.M.Gusein-Zade have started to look at multi-index Newton filtrations for hypersurface singularities. In this paper we pass to complete intersections. One motivation is the possibility to compare with the "classical" Newton filtration introduced by A.G.Kushnirenko in connection with the Milnor number.

  11. Scaling and particulate fouling in membrane filtration systems

    NARCIS (Netherlands)

    Boerlage, S.F.E.


    In the last decade, pressure driven membrane filtration processes; reverse osmosis, nano, ultra and micro-filtration have undergone steady growth. Drivers for this growth include desalination to combat water scarcity and the removal of various material from water to comply with increasingly stringen

  12. Purification of contaminated water by filtration through porous glass (United States)

    Wydeven, T.; Leban, M. I.


    Method for purifying water that is contaminated with mineral salts and soluble organic compounds is described. Method consists of high pressure filtration of contaminated water through stabilized porous glass membranes. Procedure for conducting filtration is described. Types of materials by percentage amounts removed from the water are identified.

  13. 40 CFR 141.719 - Additional filtration toolbox components. (United States)


    ...) WATER PROGRAMS (CONTINUED) NATIONAL PRIMARY DRINKING WATER REGULATIONS Enhanced Treatment for... separate stage of filtration if both filtration stages treat entire plant flow taken from a surface water or GWUDI source and no disinfectant residual is present in the influent water to the slow...

  14. Model and optimization of electromagnetic filtration of metals

    Directory of Open Access Journals (Sweden)

    S. Golak


    Full Text Available Electromagnetic buoyancy force causes the movement of non-conducive particles in a conducting liquid under electromagnetic field. The phenomenon allows filtration of small inclusions from molten metals. This paper presents a mathematical model of the filtration process under alternating electromagnetic field and the methodology for maximizing its efficiency.

  15. Analysis of the Medium Resistance for Constant Pressure Filtration

    Institute of Scientific and Technical Information of China (English)

    吴燕翔; 王碧玉


    A mathematical model for constant pressure filtration is established. The distribution of hydraulic pressure within the cake and the medium resistance are measured. The medium resistance Rm is calculated from the suppositional filtration time Ore. It is demonstrated that Rm is nearly a constant for a given filter cloth.

  16. Vibrating membrane filtration as improved technology for microalgae dewatering. (United States)

    Nurra, Claudia; Clavero, Ester; Salvadó, Joan; Torras, Carles


    The effect of shear-enhanced filtration by vibratory process in microalgae dewatering is presented in this paper. The aim of this research was to investigate the technical performance and improvement of vibrating membrane filtration compared with conventional tangential cross-flow filtration in microalgae concentration. An industrial-scale available commercial set-up was used. Several membrane materials as polyethersulfone, polyacrylonitrile, etc., and mean pore sizes (from 7000Da to 0.2μm) were tested and compared in both filtration set-ups. Experiments were carried-out with Nannochloropsis gaditana and Phaeodactylum tricornutum microalgae. It has been demonstrated that, even if the choice of the membrane depends on its cut-off, its material and the type of microalgae filtrated, dynamic filtration is always the best technology over a conventional one. If with conventional filtration permeability values were in the vicinity of 10L/h/m(2)/bar in steady state phase, with dynamic filtration these values increased to 30L/h/m(2)/bar or more.

  17. Phosphate adsorption performance of a novel filter substrate made from drinking water treatment residuals. (United States)

    Wang, Wendong; Ma, Cui; Zhang, Yinting; Yang, Shengjiong; Shao, Yue; Wang, Xiaochang


    Phosphate is one of the most predominant pollutants in natural waters. Laboratory experiments were conducted to investigate the phosphate adsorption performance of a (NFS) made from drinking water treatment residuals. The adsorption of phosphate on the NFS fitted well with the Freundlich isotherm and pseudo second-order kinetic models. At pH7.0, the maximum adsorption capacity of 1.03mg/g was achieved at 15°C corresponding to the wastewater temperature in cold months, and increased notably to 1.31mg/g at 35°C. Under both acidic conditions (part of the adsorption sites was consumed) and basic conditions (negative charges formed on the surface of NFS, which led to a static repulsion of PO4(3-) and HPO4(2-)), the adsorption of phosphate was slightly inhibited. Further study showed that part of the adsorption sites could be recovered by 0.25mol/L NaOH. The activation energy was calculated to be above 8.0kJ/mol, indicating that the adsorption of phosphate on NFS was probably a chemical process. Considering the strong phosphate adsorption capacity and recoverability, NFS showed great promise on enhancing phosphate removal from the secondary treated wastewater in the filtration process.

  18. Random sequential adsorption of human adenovirus 2 onto polyvinylidene fluoride surface influenced by extracellular polymeric substances. (United States)

    Lu, Ruiqing; Li, Qi; Nguyen, Thanh H


    Virus removal by membrane bioreactors depends on virus-membrane and virus-foulant interactions. The adsorption of human adenovirus 2 (HAdV-2) on polyvinylidene fluoride (PVDF) membrane and a major membrane foulant, extracellular polymeric substances (EPS), were measured in a quartz crystal microbalance. In 3-100mM CaCl2 solutions, irreversible adsorption of HAdV-2 was observed on both pristine and EPS-fouled PVDF surfaces. The HAdV-2 adsorption kinetics was successfully fitted with the random sequential adsorption (RSA) model. The applicability of the RSA model for HAdV-2 adsorption is confirmed by comparing the two fitting parameters, adsorption rate constant k(a) and area occupied by each adsorbed HAdV-2 particle a, with experimentally measured parameters. A linear correlation between the fitting parameter k(a) and the measured attachment efficiency was found, suggesting that the RSA model correctly describes the interaction forces dominating the HAdV-2 adsorption. By comparing the fitting parameter d(ads) with the hydrodynamic diameter of HAdV-2, we conclude that virus-virus and virus-surface interactions determine the area occupied by each adsorbed HAdV-2 particle, and thus influence the adsorption capacity. These results provide insights into virus retention and will benefit improving virus removal in membrane filtration.

  19. Physicochemical interaction and its influence on deep bed filtration process

    Institute of Scientific and Technical Information of China (English)

    GUO Jin-long; MENG Jun; LI GUI-ping; LUAN Zhao-kun; TANG Hong-xiao


    The capillary model was used to analyze the hydraulic conditions in the deep bed filtration process. Thephysicochemical interaction forces between the filter media and suspended particles and their influence on deep bedfiltration process were also studied theoretically. Through the comparison of the hydraulic and physicochemicalforces, the key influencing factors on the filtration process were proposed and investigated. Pilot study of the micro-flocculation deep bed filtration was carried out in the No. 9 Potable Water Treatment Plant of Beijing, and theexperimental results of hydraulic head loss, particle distribution and entrapment were presented. The theoreticalprediction was reasonably consistent with the experimental results under different conditions, which indicated that theregulation and control of micro-flocculation and deep bed filtration could be realized by the evaluation of thephysicochemical interactions. Further theoretical and experimental research should be carried out to investigate theinteraction mechanism and its application in the deep bed filtration and other cases.

  20. Screening culture filtrates of fungi for activity against Tylenchulus semipenetrans

    Energy Technology Data Exchange (ETDEWEB)

    Verdejo-Lucas, S.; Viera, A.; Stchigel, A. M.; Sorribas, F. J.


    Culture filtrates of 20 fungi isolated from citrus soils were screened for their activity against Tylenchulus semipenetrans in both in vitro and greenhouse tests. The filtrates of Talaromyces cyanescens (isolates 2-4 and 2-5), Paecilomyces lilacinus, Chaetomium robustum, Acremonium strictum, Engyodontium album, Myrothecium verrucaria, Emericella rugulosa, and Tarracomyces gigaspora consistently inhibited the motility of second-stage juveniles at various concentrations of the filtrate. Dose-response models were used to determine the filtrate concentration required to inhibit the motility of 50% of the juveniles (CI50). The culture filtrate of P. lilacinus showed the highest activity with a CI50 value of 58% that differed from that of C. robustum (CI50 = 68%), and A. strictum CI50 = 82%. The culture filtrates of P. lilacinus, E. album, and T. cyanescens 2-5 maintained their activity when autoclaved at 120 degree centigrade for 20 min. The autoclaved filtrate of T. cyanescens 2-4 was more effective at inhibiting juvenile motility (CI50 = 28%) than that of T. cyanescens 2-5 (CI50 = 80%), C. robustum (CI50 = 72 %) and P. lilacinus (CI50 = 72%). The culture filtrate of T. cyanescens 2-4 also inhibited egg hatching. Nematode reproduction on Cleopatra mandarin and Carrizo citrange were respectively reduced by the culture filtrate of P. lilacinus and the autoclaved filtrate of T. cyanescens 2-4. These results support the hypothesis that soil fungi may contribute to regulate nematode densities by the production of secondary metabolites with nematicidal activity. (Author) 30 refs.

  1. Filtration Process of the Spiramycin Fermentation Broth

    Institute of Scientific and Technical Information of China (English)


    This paper presents the effects of acidity and additive pretreatment on the filtering rate and Spiramycin (SPM) concentration in the filter liquor of SPM fermentation broth. The experimental results show that the SPM peak value in filter liquor is obtained at pH 5.5 with either 0.1% methanal or 0.1% BAPE. It is also indicated that there exists a dissolution equilibrium of proteins from the experiment results. The soluble proteins are denatured due to the too high/low acidity and then precipitate. Usually, the amount of soluble proteins reaches its lowest level in pH range of 6.0-6.5. The protein precipitation will, together with other suspended solids particles, contribute to the final SPM concentration in the filter liquor. This paper assumes that the contribution is the result of the adsorption equilibrium of SPM on the surfaces of suspended solids. For a satisfactory explanation, the revised Langmuir adsorption theory was employed and a model was developed.

  2. Syringe filtration methods for examining dissolved and colloidal trace element distributions in remote field locations (United States)

    Shiller, Alan M.


    It is well-established that sampling and sample processing can easily introduce contamination into dissolved trace element samples if precautions are not taken. However, work in remote locations sometimes precludes bringing bulky clean lab equipment into the field and likewise may make timely transport of samples to the lab for processing impossible. Straightforward syringe filtration methods are described here for collecting small quantities (15 mL) of 0.45- and 0.02-microm filtered river water in an uncontaminated manner. These filtration methods take advantage of recent advances in analytical capabilities that require only small amounts of waterfor analysis of a suite of dissolved trace elements. Filter clogging and solute rejection artifacts appear to be minimal, although some adsorption of metals and organics does affect the first approximately 10 mL of water passing through the filters. Overall the methods are clean, easy to use, and provide reproducible representations of the dissolved and colloidal fractions of trace elements in river waters. Furthermore, sample processing materials can be prepared well in advance in a clean lab and transported cleanly and compactly to the field. Application of these methods is illustrated with data from remote locations in the Rocky Mountains and along the Yukon River. Evidence from field flow fractionation suggests that the 0.02-microm filters may provide a practical cutoff to distinguish metals associated with small inorganic and organic complexes from those associated with silicate and oxide colloids.

  3. Modeling Adsorption Kinetics (Bio-remediation of Heavy Metal Contaminated Water) (United States)

    McCarthy, Chris

    My talk will focus on modeling the kinetics of the adsorption and filtering process using differential equations, stochastic methods, and recursive functions. The models have been developed in support of our interdisciplinary lab group which is conducting research into bio-remediation of heavy metal contaminated water via filtration through biomass such as spent tea leaves. The spent tea leaves are available in large quantities as a result of the industrial production of tea beverages. The heavy metals bond with the surfaces of the tea leaves (adsorption). Funding: CUNY Collaborative Incentive Research Grant.

  4. Efficient filtration system for paraffin-catalyst slurry separation

    Directory of Open Access Journals (Sweden)

    Khodagholi Mohammad Ali


    Full Text Available The filtration efficiency for separating liquid paraffin (or water from a slurry consisting of 25 weight% spherical alumina in a Slurry Bubble Column Reactor (SBCR comprised of a cylindrical tube of 10 cm diameter and 150 cm length was studied. Various differential pressures (ΔP were applied to two separate tubular sintered metal stainless steel filter elements with nominal pore size of 4 and 16μm. The experimental results disclosed that the rate of filtrations increased on applying higher differential pressure to the filter element. Albeit this phenomenon is limited to moderate ΔPs and for ΔP more than 1 bar is neither harmful nor helpful. The highest filtration rates at ΔPs higher than 1 bar were 170 and 248 ml/minute for 4 and 16μm respectively. Using water as the liquid in slurry the rate of filtration enhanced to 4 folds, and this issue reveals impact of viscosity on filtration efficiency clearly. In all situations, the total amount of particles present in the filtrate part never exceeded a few parts per million (ppm. The statistical analysis of the SEM image of the filtrate indicated that by applying higher pressure difference to the filter element the frequency percent of larger particle size increases. The operation of filter cake removing was performed with back flashing of 300 ml of clean liquid with pressures of 3-5 bar of N2 gas.

  5. Estimating Glomerular Filtration Rate in Older People

    Directory of Open Access Journals (Sweden)

    Sabrina Garasto


    Full Text Available We aimed at reviewing age-related changes in kidney structure and function, methods for estimating kidney function, and impact of reduced kidney function on geriatric outcomes, as well as the reliability and applicability of equations for estimating glomerular filtration rate (eGFR in older patients. CKD is associated with different comorbidities and adverse outcomes such as disability and premature death in older populations. Creatinine clearance and other methods for estimating kidney function are not easy to apply in older subjects. Thus, an accurate and reliable method for calculating eGFR would be highly desirable for early detection and management of CKD in this vulnerable population. Equations based on serum creatinine, age, race, and gender have been widely used. However, these equations have their own limitations, and no equation seems better than the other ones in older people. New equations specifically developed for use in older populations, especially those based on serum cystatin C, hold promises. However, further studies are needed to definitely accept them as the reference method to estimate kidney function in older patients in the clinical setting.

  6. Capturing phosphates with iron enhanced sand filtration. (United States)

    Erickson, Andrew J; Gulliver, John S; Weiss, Peter T


    Most treatment practices for urban runoff capture pollutants such as phosphorus by either settling or filtration while dissolved phosphorus, typically as phosphates, is untreated. Dissolved phosphorus, however, represents an average 45% of total phosphorus in stormwater runoff and can be more than 95%. In this study, a new stormwater treatment technology to capture phosphate, called the Minnesota Filter, is introduced. The filter comprises iron filings mixed with sand and is tested for phosphate removal from synthetic stormwater. Results indicate that sand mixed with 5% iron filings captures an average of 88% phosphate for at least 200 m of treated depth, which is significantly greater than a sand filter without iron filings. Neither incorporation of iron filings into a sand filter nor capture of phosphates onto iron filings in column experiments had a significant effect on the hydraulic conductivity of the filter at mixtures of 5% or less iron by weight. Field applications with up to 10.7% iron were operated over 1 year without detrimental effects upon hydraulic conductivity. A model is applied and fit to column studies to predict the field performance of iron-enhanced sand filters. The model predictions are verified through the predicted performance of the filters in removing phosphates in field applications. Practical applications of the technology, both existing and proposed, are presented so stormwater managers can begin implementation.

  7. Pulmonary interstitial compliance and microvascular filtration coefficient. (United States)

    Goldberg, H S


    Static and dynamic properties governing the fluid movement into the pulmonary interstitium were examined in isolated canine lobes. The system was driven by altering intravascular presure (Piv) when the lobe was isogravimetric (change in weight (W) = 0) and allowing the lobe to become isogravimetric again. By making use of an analogy to charging a capacitor across a resistor, calculation of the filtration coefficient for transvascular fluid movement (KF) and determination of the pressure-volume relationship of the pulmonary interstitial space (Pis-Vis), with a minimum of untested assumptions, was possible. KF was found to be the same for fluid moving out of or into the intravascular space, and when the relationship between Piv and alveolar pressure (PAlv) was constant, KF was independent of transpulmonary pressure (PL). When PAlv exceeded Piv, changes in Piv did not influence KF, suggesting no significant change in either surface area available for fluid transudation or vascular permeability. The Pis-Vis curve for increasing values of Vis and Pis is best described by an exponential relationhip and is independent of PL. However, the Pis-Vis curve with decreasing values of Vis and Pis is dependent on PL.

  8. Crosslinked polytriazole membranes for organophilic filtration

    KAUST Repository

    Chisca, Stefan


    We report the preparation of crosslinked membranes for organophilic filtration, by reacting a new polytriazole with free OH groups, using non-toxic poly (ethylene glycol) diglycidyl ether (PEGDE). The OH-functionalized polymer was obtained by converting the oxadiazole to triazole rings with high yield (98%). The maximum degree of crosslinking is achieved after 6 h of reaction. The crosslinked polytriazole membranes are stable in a wide range of organic solvents and show high creep recovery, indicating the robustness of crosslinked membranes. The influence of different casting solutions and different crosslinking time on the membrane morphology and membrane performance was investigated. The membranes performance was studied in dimethylformamide (DMF) and (tetrahydrofuran) THF. We achieved a permeance for THF of 49 L m−2 h−1 bar−1 for membranes with molecular weight cut off (MWCO) of 7 kg mol−1 and a permeance for THF of 17.5 L m−2 h−1 bar−1 for membranes with MWCO of 3 kg mol−1. Our data indicate that by using the new polytriazole is possible to adjust the pore dimensions of the membranes to have a MWCO, which covers ultra- and nanofiltration range.

  9. Sorghum genome sequencing by methylation filtration.

    Directory of Open Access Journals (Sweden)

    Joseph A Bedell


    Full Text Available Sorghum bicolor is a close relative of maize and is a staple crop in Africa and much of the developing world because of its superior tolerance of arid growth conditions. We have generated sequence from the hypomethylated portion of the sorghum genome by applying methylation filtration (MF technology. The evidence suggests that 96% of the genes have been sequence tagged, with an average coverage of 65% across their length. Remarkably, this level of gene discovery was accomplished after generating a raw coverage of less than 300 megabases of the 735-megabase genome. MF preferentially captures exons and introns, promoters, microRNAs, and simple sequence repeats, and minimizes interspersed repeats, thus providing a robust view of the functional parts of the genome. The sorghum MF sequence set is beneficial to research on sorghum and is also a powerful resource for comparative genomics among the grasses and across the entire plant kingdom. Thousands of hypothetical gene predictions in rice and Arabidopsis are supported by the sorghum dataset, and genomic similarities highlight evolutionarily conserved regions that will lead to a better understanding of rice and Arabidopsis.

  10. Sorghum genome sequencing by methylation filtration. (United States)

    Bedell, Joseph A; Budiman, Muhammad A; Nunberg, Andrew; Citek, Robert W; Robbins, Dan; Jones, Joshua; Flick, Elizabeth; Rholfing, Theresa; Fries, Jason; Bradford, Kourtney; McMenamy, Jennifer; Smith, Michael; Holeman, Heather; Roe, Bruce A; Wiley, Graham; Korf, Ian F; Rabinowicz, Pablo D; Lakey, Nathan; McCombie, W Richard; Jeddeloh, Jeffrey A; Martienssen, Robert A


    Sorghum bicolor is a close relative of maize and is a staple crop in Africa and much of the developing world because of its superior tolerance of arid growth conditions. We have generated sequence from the hypomethylated portion of the sorghum genome by applying methylation filtration (MF) technology. The evidence suggests that 96% of the genes have been sequence tagged, with an average coverage of 65% across their length. Remarkably, this level of gene discovery was accomplished after generating a raw coverage of less than 300 megabases of the 735-megabase genome. MF preferentially captures exons and introns, promoters, microRNAs, and simple sequence repeats, and minimizes interspersed repeats, thus providing a robust view of the functional parts of the genome. The sorghum MF sequence set is beneficial to research on sorghum and is also a powerful resource for comparative genomics among the grasses and across the entire plant kingdom. Thousands of hypothetical gene predictions in rice and Arabidopsis are supported by the sorghum dataset, and genomic similarities highlight evolutionarily conserved regions that will lead to a better understanding of rice and Arabidopsis.

  11. Filtration application from recycled expanded polystyrene. (United States)

    Shin, C


    Water-in-oil emulsion with drop size less than 100 mum is difficult to separate. Coalescence filtration is economical and effective for separation of secondary dispersions. Coalescence performance depends on flow rate, bed depth, fiber surface properties, and drop size. The amount of surface area of the fibers directly affects the efficiency. A new recycling method was investigated in the previous work in which polystyrene (PS) sub-mum fibers were electro-spun from recycled expanded polystyrene (EPS). These fibers are mixed with micro glass fibers to modify the glass fiber filter media. The filter media are tested in the separation of water droplets from an emulsion of water droplets in oil. The experimental results in this work show that adding nanofibers to conventional micron sized fibrous filter media improves the separation efficiency of the filter media but also increases the pressure drop. An optimum in the performance occurs (significant increase in efficiency with minimal increase in pressure drop) with the addition of about 4% by mass of 500 nm diameter PS nanofibers to glass fibers for the filters.

  12. Regenerative adsorption distillation system

    KAUST Repository

    Ng, Kim Choon


    There is provided a regenerative adsorption distillation system comprising a train of distillation effects in fluid communication with each other. The train of distillation effects comprises at least one intermediate effect between the first and last distillation effects of the train, each effect comprising a vessel and a condensing tube for flow of a fluid therein. The system further comprises a pair of adsorption-desorption beds in vapour communication with the last effect and at least one intermediate effect, wherein the beds contain an adsorbent that adsorbs vapour from the last effect and transmits desorbed vapour into at least one of the intermediate effect.

  13. Removal of Arsenic from Drinking Water by Adsorption and Coagulation (United States)

    Zhang, M.; Sugita, H.; Hara, J.; Takahashi, S.


    Removal of arsenic from drinking water has been an important issue worldwide, which has attracted greater attentions in recent years especially for supplying safe drinking water in developing countries. Although many kinds of treatment approaches that are available or applicable both in principle and practice, such as adsorption, coagulation, membrane filtration, ion exchange, biological process, electrocoagulation and so on, the first 2 approaches (i.e., adsorption and coagulation) are most promising due to the low-cost, high-efficiency, simplicity of treating systems, and thus can be practically used in developing countries. In this study, a literature survey on water quality in Bangladesh was performed to understand the ranges of arsenic concentration and pH of groundwater in Bangladesh. A series of tests were then organized and performed to investigate the effects of arsenic concentration, arsenic forms, pH, chemical compositions of the materials used for adsorption and coagulation, particle size distribution and treatment time on quality of treated water. The experimental results obtained in the study illustrated that both adsorption and coagulation can be used to effectively reduce the concentrations of either arsenic (V) or arsenic (III) from the contaminated water. Coagulation of arsenic with a magnesium-based material developed in this study can be very effective to remove arsenic, especially arsenic (V), from contaminated water with a concentration of 10 ppm to an undetectable level of 0.002 ppm by ICP analyses. Compared to arsenic (III), arsenic (V) is easier to be removed. The materials used for adsorption and coagulation in this study can remove arsenic (V) up to 9 mg/g and 6 mg/g, and arsenic (III) up to 4 mg/g and 3 mg/g, respectively, depending on test conditions and compositions of the materials being used. The control of pH during treatment can be a challenging technical issue for developing both adsorbent and coagulant. Keywords: Water Treatment

  14. Additive Difference Schemes for Filtration Problems in Multilayer Systems

    CERN Document Server

    Ayrjan, E A; Pavlush, M; Fedorov, A V


    In the present paper difference schemes for solution of the plane filtration problem in multilayer systems are analyzed within the framework of difference schemes general theory. Attention is paid to splitting the schemes on physical processes of filtration along water-carring layers and vertical motion between layers. Some absolutely stable additive difference schemes are obtained the realization of which needs no software modification. Parallel algorithm connected with the solving of the filtration problem in every water-carring layer on a single processor is constructed. Program realization on the multi-processor system SPP2000 at JINR is discussed.


    Institute of Scientific and Technical Information of China (English)

    Jia Ruiqing; Wang Luping; Wu Xueping


    In this paper, the course of the filtration is analyzed.In order to study the filtration efficiency of the filter material, the computer program was edited.According to the results of the computer program, some important parameters of the filter material are discussed.It shows that the filtration efficiency is closely related to the diameter (d) and the size (b).In addition, by using these results and the computer program, we can analysis the relationship between the fiber structure and filter properties quantitatively.

  16. Forward osmosis filtration for removal of organic foulants: Effects of combined tannic and alginic acids. (United States)

    Wang, Lin; Zhang, Wanzhu; Chu, Huaqiang; Dong, Bingzhi


    The filtration performance of combined organic foulants by forward osmosis (FO) in active-layer-facing-the-draw-solution (AL-facing-DS) orientation was investigated systematically. Tannic acid and alginate were used as model organic foulants for polysaccharides and humic dissolved organic matters, respectively. The FO could reject combined and single tannic acid and alginate foulants effectively. The more severe fouling flux decline, accompanied with lower combined foulants' retention, was observed with increasing proportions of tannic acid in the combined foulants-containing feed, which was ascribed mainly to the more severe fouling resulting from tannic acid adsorption within the porous support layer of the FO membrane compared to minor alginate deposition on the membrane surface. It was found that the higher the initial flux level and cross flow velocity, the faster the flux decline with lower mixed foulants retention. It was also revealed that the calcium ions in a basic solution enhanced the combined fouling flux reduction and combined foulants retention. As the major constituent of the combined fouling layer, the adsorption of tannic acid might play a more significant role in the mixed fouling of the FO membrane, which was probably influenced by permeation drag caused by water flux and chemical interactions induced by feed solution pH and calcium ion concentration.

  17. Filtration performance of microporous ceramic supports. (United States)

    Belouatek, Aissa; Ouagued, Abdellah; Belhakem, Mustapha; Addou, Ahmed


    The use of inorganic membranes in pollution treatment is actually limited by the cost of such membranes. Advantages of inorganic membranes are their chemical, thermal and pH properties. The purpose of this work was the development of microporous ceramic materials based on clay for liquid waste processing. The supports or ceramic filters having various compositions were prepared and thermally treated at 1100 degrees C. The results show that, at the temperature studied, porosity varied according to the support composition from 12% for the double-layered (ceramic) support to 47% for the activated carbon- filled support with a mean pore diameter between 0.8 and 1.3 microm, respectively. Volumes of 5 l of distilled water were filtered tangentially for 3 h under an applied pressure of 3.5 and 5.5 bar. The retention of tubular supports prepared was tested with molecules of varying size (Evans blue, NaCl and Sacharose). The study of the liquid filtration and flow through these supports showed that the retention rate depends on support composition and pore diameter, and solute molecular weight. The S1 support (mixture of barbotine and 1% (w/w) activated carbon) gave a flux for distilled water of 68 L/m2 h while the double-layered support resulted in a flux of 8 L/m2 h for the same solution at the pressure of 3.5 bar. At a pressure of 5.5 bar an increase in the distilled water flux through the various supports was observed. It was significant for the S1 support (230 L/m h).

  18. CoFe2O4@MIL-100(Fe) hybrid magnetic nanoparticles exhibit fast and selective adsorption of arsenic with high adsorption capacity (United States)

    Yang, Ji-Chun; Yin, Xue-Bo


    In this study, we report the synthesis and application of mesoporous CoFe2O4@MIL-100(Fe) hybrid magnetic nanoparticles (MNPs) for the simultaneous removal of inorganic arsenic (iAs). The hybrid adsorbent had a core-shell and mesoporous structure with an average diameter of 260 nm. The nanoscale size and mesoporous character impart a fast adsorption rate and high adsorption capacity for iAs. In total, 0.1 mg L−1 As(V) and As(III) could be adsorbed within 2 min, and the maximum adsorption capacities were 114.8 mg g−1 for As(V) and 143.6 mg g−1 for As(III), higher than most previously reported adsorbents. The anti-interference capacity for iAs adsorption was improved by the electrostatic repulsion and size exclusion effects of the MIL-100(Fe) shell, which also decreased the zero-charge point of the hybrid absorbent for a broad pH adsorption range. The adsorption mechanisms of iAs on the MNPs are proposed. An Fe-O-As structure was formed on CoFe2O4@MIL-100(Fe) through hydroxyl substitution with the deprotonated iAs species. Monolayer adsorption of As(V) was observed, while hydrogen bonding led to the multi-layer adsorption of neutral As(III) for its high adsorption capacity. The high efficiency and the excellent pH- and interference-tolerance capacities of CoFe2O4@MIL-100(Fe) allowed effective iAs removal from natural water samples, as validated with batch magnetic separation mode and a portable filtration strategy. PMID:28102334

  19. CoFe2O4@MIL-100(Fe) hybrid magnetic nanoparticles exhibit fast and selective adsorption of arsenic with high adsorption capacity (United States)

    Yang, Ji-Chun; Yin, Xue-Bo


    In this study, we report the synthesis and application of mesoporous CoFe2O4@MIL-100(Fe) hybrid magnetic nanoparticles (MNPs) for the simultaneous removal of inorganic arsenic (iAs). The hybrid adsorbent had a core-shell and mesoporous structure with an average diameter of 260 nm. The nanoscale size and mesoporous character impart a fast adsorption rate and high adsorption capacity for iAs. In total, 0.1 mg L‑1 As(V) and As(III) could be adsorbed within 2 min, and the maximum adsorption capacities were 114.8 mg g‑1 for As(V) and 143.6 mg g‑1 for As(III), higher than most previously reported adsorbents. The anti-interference capacity for iAs adsorption was improved by the electrostatic repulsion and size exclusion effects of the MIL-100(Fe) shell, which also decreased the zero-charge point of the hybrid absorbent for a broad pH adsorption range. The adsorption mechanisms of iAs on the MNPs are proposed. An Fe-O-As structure was formed on CoFe2O4@MIL-100(Fe) through hydroxyl substitution with the deprotonated iAs species. Monolayer adsorption of As(V) was observed, while hydrogen bonding led to the multi-layer adsorption of neutral As(III) for its high adsorption capacity. The high efficiency and the excellent pH- and interference-tolerance capacities of CoFe2O4@MIL-100(Fe) allowed effective iAs removal from natural water samples, as validated with batch magnetic separation mode and a portable filtration strategy.

  20. Scaling and particulate fouling in membrane filtration systems

    NARCIS (Netherlands)

    Boerlage, S.F.E.


    Membrane filtration technologies have emerged as cost competitive and viable techniques in drinking and industrial water production. Despite advancements in membrane manufacturing and technology, membrane scaling and fouling remain major problems and may limit future growth in the industry. Scaling

  1. Granular bed filtration of high temperature biomass gasification gas. (United States)

    Stanghelle, Daniel; Slungaard, Torbjørn; Sønju, Otto K


    High temperature cleaning of producer gas from biomass gasification has been investigated with a granular filter. Field tests were performed for several hours on a single filter element at about 550 degrees C. The results show cake filtration on the granular material and indicate good filtration of the biomass gasification producer gas. The relatively low pressure drop over the filter during filtration is comparable to those of bag filters. The granular filter can operate with high filtration velocities compared to bag filters and maintain high efficiency and a low residual pressure. This work is a part of the BioSOFC-up project that has a goal of utilizing the producer gas from the gasification plant in a solid oxide fuel cell (SOFC). The BioSOFC-up project will continue to the end of 2007.

  2. Development of injection moulded, ultrasonically welded immiscible phase filtration devices

    DEFF Research Database (Denmark)

    Kistrup, Kasper

    . The device appliesmagnetic bead-based solid-phase extraction for nucleic acid extraction from biological samples, using the immiscible phase filtration (IPF) approach. Device development has employed injection moulding for part fabrication and ultrasonic welding for bonding. Rapid prototyping...

  3. Effect of Nanofibers on Spore Penetration and Lunar Dust Filtration


    Phil Gibson, Ph.D.; Heidi Schreuder-Gibson, Ph.D.; Robert Stote; Margaret Roylance, Ph.D.; Cathy Capone; Masami Nakagawa, Ph.D.


    The results of two separate studies on biological spore penetration and simulated lunar dust filtration illustrate the use of nanofibers in some nonstandard filtration applications (nanofibers are generally defined as having diameters of less than a micron). In the first study, a variety of microporous liners containing microfibers and nanofibers were combined with cotton-based fabrics in order to filter aerosolized spores. The aerosol penetration resistance of the nanofiber-lined fabrics was...

  4. Pesticide removal by combined ozonation and granular activated carbon filtration


    Orlandini, E.


    Since the seventies, new water treatment processes have been introduced in the production of drinking water from surface water. Their major aim was to adequately cope with the disinfection of this water, and/or with the removal of pesticides and other organic micropollutants from it. This research focused on Biological Activated Carbon (BAC) filtration, which is a combination of ozonation and GAC filtration. Its general goal was identification and understanding of the mechanisms that underlie...

  5. Water Clarity Simulant for K East Basin Filtration Testing

    Energy Technology Data Exchange (ETDEWEB)

    Schmidt, Andrew J.


    This document provides a simulant formulation intended to mimic the behavior of the suspended solids in the K East (KE) Basin fuel storage pool. The simulant will be used to evaluate alternative filtration apparatus to improve Basin water clarity and to possibly replace the existing sandfilter. The simulant was formulated based on the simulant objectives, the key identified parameters important to filtration, the composition and character of the KE Basin suspended sludge particles, and consideration of properties of surrogate materials.

  6. Sampling Rate Independent Filtration Approach for Automatic ECG Delineation

    CERN Document Server

    Chereda, Hryhorii; Tymoshenko, Yury


    In this paper different types of ECG automatic delineation approaches were overviewed. A combination of these approaches was used to create sampling rate independent filtration algorithm for automatic ECG delineation that is capable of distinguishing different morphologies of T and P waves and QRS complexes. Created filtration algorithm was compared with algorithme \\`a trous. It was investigated that continuous wavelets transform with proposed automatic adaptation for different sampling rates procedure can be used for delineation problem.

  7. Surface modification influencing adsorption of red wine constituents: The role of functional groups

    Energy Technology Data Exchange (ETDEWEB)

    Mierczynska-Vasilev, Agnieszka, E-mail:; Smith, Paul A., E-mail:


    Highlights: • Chemical surface composition affects behaviour of wine adsorption. • SO{sub 3}H and COOH groups adsorb more of the wine nitrogen-containing compounds. • NH{sub 2} and NR{sub 3} groups encourage carbon-containing compounds adsorption. • Red wine constituents after filtration adsorbed more on NR{sub 3} and CHO surfaces. - Abstract: The adsorption of wine constituents at solid surfaces is important in applications such as filtration and membrane fouling, binding to tanks and fittings and interactions with processing aids such as bentonite. The interaction of wine constituents with surfaces is mediated through adsorbed wine components, where the type of constituents, amount, orientation, and conformation are of consequence for the surface response. This study examines the effect of surface chemical functionalities on the adsorption of red wine constituents. Plasma-polymerized films rich in amine, carboxyl, hydroxyl, formyl and methyl functional groups were generated on solid substrates whereas, glycidyltrimethylammonium chloride was covalently attached to allylamine plasma-polymer modified surface and poly(sodium styrenesulfonate) was electrostatically adsorbed to an amine plasma-polymerized surface. The surface chemical functionalities were characterized by X-ray photoelectron spectroscopy. The ability of different substrates to adsorb red wine constituents was evaluated by quartz crystal microbalance and atomic force microscopy. The results showed that substrates modified with −SO{sub 3}H and –COOH groups can adsorb more of the wine nitrogen-containing compounds whereas −NH{sub 2} and −NR{sub 3} groups encourage carbon-containing compounds adsorption. Red wine constituents after filtration were adsorbed in higher extend on −NR{sub 3} and –CHO surfaces. The –OH modified surfaces had the lowest ability to absorb wine components.

  8. Carbonaceous materials for adsorptive refrigerators (United States)

    Buczek, B.; Wolak, E.


    Carbon monoliths prepared from hard coal precursors were obtained. The porous structure of the monoliths was evaluated on the basis of nitrogen adsorption — desorption equilibrium data. The investigated monoliths have a well-developed microporous structure with significant specific surface area (S BET ). Equilibrium studies of methanol vapour adsorption were used to characterize the methanol adsorptive capacity that was determined using a volumetric method. The heat of wetting by methanol was determined in order to estimate the energetic effects of the adsorption process. The results of the investigations show that all monoliths exhibit high adsorption capacity and high heat of wetting with methanol.

  9. C*-Algebras over Topological Spaces: Filtrated K-Theory

    CERN Document Server

    Meyer, Ralf


    We define the filtrated K-theory of a C*-algebra over a finite topological space X and explain how to construct a spectral sequence that computes the bivariant Kasparov theory over X in terms of filtrated K-theory. For finite spaces with totally ordered lattice of open subsets, this spectral sequence becomes an exact sequence as in the Universal Coefficient Theorem, with the same consequences for classification. We also exhibit an example where filtrated K-theory is not yet a complete invariant. We describe a space with four points and two C*-algebras over this space in the bootstrap class that have isomorphic filtrated K-theory but are not KK(X)-equivalent. For this particular space, we enrich filtrated K-theory by another K-theory functor, so that there is again a Universal Coefficient Theorem. Thus the enriched filtrated K-theory is a complete invariant for purely infinite, stable C*-algebras with this particular spectrum and belonging to the appropriate bootstrap class.

  10. Characterization and modification of particulate properties to enhance filtration performance

    Energy Technology Data Exchange (ETDEWEB)

    Snyder, T.R.; Vann Bush, P.; Robinson, M.S.


    The specific objectives of this project are to characterize the particulate properties that determine the filtration performance of fabric filters, and to investigate methods for modifying these particulate properties to enhance filtration performance. Inherent in these objectives is the development of an experimental approach that will lead to full-scale implementation of beneficial conditioning processes identified during the project. The general approach has included a large number of laboratory evaluations to be followed by optional field tests of a new successful conditioning processes performed on a sidestream device. This project was divided into five tasks. The schedule followed for these tasks is shown in Figure 4. Tasks 2 and 3 each focus on one of the two complementary parts of the project. Task 2 Parametric Tests of Ashes and Fabrics, evaluates the degree to which ash properties and fabric design determine filtration performance. Task 3 Survey of Methods to Modify the Particle Filtration Properties, provides a literature review and laboratory study of techniques to modify ash properties. The results of these two tasks were used in Task 4 Proof-of-Concept Tests of Methods to Modify Particle Filtration Properties to demonstrate the effects on filtration performance of modifying ash properties. The findings of all the tasks are summarized in this Final Report. 13 refs.

  11. Wind Turbine Gearbox Oil Filtration and Condition Monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Sheng, Shuangwen


    This is an invited presentation for a pre-conference workshop, titled advances and opportunities in lubrication: wind turbine, at the 2015 Society of Tribologists and Lubrication Engineers (STLE) Tribology Frontiers Conference held in Denver, CO. It gives a brief overview of wind turbine gearbox oil filtration and condition monitoring by highlighting typical industry practices and challenges. The presentation starts with an introduction by covering recent growth of global wind industry, reliability challenges, benefits of oil filtration and condition monitoring, and financial incentives to conduct wind operation and maintenance research, which includes gearbox oil filtration and condition monitoring work presented herein. Then, the presentation moves on to oil filtration by stressing the benefits of filtration, discussing typical main- and offline-loop practices, highlighting important factors considered when specifying a filtration system, and illustrating real-world application challenges through a cold-start example. In the next section on oil condition monitoring, a discussion on oil sample analysis, oil debris monitoring, oil cleanliness measurements and filter analysis is given based on testing results mostly obtained by and at NREL, and by pointing out a few challenges with oil sample analysis. The presentation concludes with a brief touch on future research and development (R and D) opportunities. It is hoping that the information presented can inform the STLE community to start or redirect their R and D work to help the wind industry advance.


    Directory of Open Access Journals (Sweden)

    Dyah Choiriyah


    Full Text Available The study of ceramic membrane fabrication from natural zeolite and its utilization for filtration of procion red MX8B and methylene blue has been investigated. The purposes of this study are to determine the effect of pressure on membrane permeability and selectivity and utilize natural zeolite as ceramic membranes procion red MX8B and methylene blue filtration. The membrane was prepared by metide press pellets and then calcined at 850 oC. The membranes were characterized by mechanical test, flux and rejection of dye. The compression test of the membrane found the values of 1369.178 psi in dry conditions to 1388.933 psi in wet conditions. The flux test found that the higher the pressure applied, the flux was increase. However, the high pressure also decreased the selectivity. Rejection test found that the rejection of methylene blue filtration up to 70 %. Meanwhile, procion red MX8B filtration has rejectivity less than 20 %.

  13. Low-cost magnetic adsorbent for As(III) removal from water: adsorption kinetics and isotherms. (United States)

    Kango, Sarita; Kumar, Rajesh


    Magnetite nanoparticles as adsorbent for arsenic (As) were coated on sand particles. The coated sand was used for the removal of highly toxic element 'As(III)' from drinking water. Here, batch experiments were performed with the variation of solution pH, adsorbent dose, contact time and initial arsenic concentration. The adsorbent showed significant removal efficiency around 99.6 % for As(III). Analysis of adsorption kinetics revealed that the adsorbent follows pseudo-second-order kinetics model showing R (2) = 0.999, whereas for pseudo-first-order kinetics model, the value of R (2) was 0.978. In the case of adsorption equilibrium, the data is well fitted with Langmuir adsorption isotherm model (R (2) > 0.99), indicating monolayer adsorption of As(III) on the surface of adsorbent. The existence of commonly present ions in water influences the removal efficiency of As(III) minutely in the following order PO4 (3-) > HCO3 (-) > Cl(-) > SO4 (2-). The obtained adsorbent can be used to overcome the problem of water filtration in rural areas. Moreover, as the nano-magnetite is coated on the sand, it avoids the problem of extraction of nanoparticles from treated water and can easily be removed by a simple filtration process.

  14. Ultrafiltration Enhanced with Activated Carbon Adsorption for Efficient Dye Removal from Aqueous Solution

    Institute of Scientific and Technical Information of China (English)

    董亚楠; 苏延磊; 陈文娟; 彭金明; 张岩; 姜忠义


    In this study, orange G dye was efficiently removed from aqueous solution by ultraflltration (UF) membrane separation enhanced with activated carbon adsorption. The powdered activated carbon (PAC) was deposited onto the UF membrane surface, forming an intact filter cake. The enhanced UF process simultaneously exploited the high water permeation flux of porous membrane and the high adsorption ability of PAC toward dye molecules. The influencing factors on the dye removal were investigated. The results indicated that with sufficient PAC incorporation, the formation of intact PAC filtration cake led to nearly complete rejection for dye solution under opti-mized dye concentration and operation pressure, without large sacnticlng the permeation tlux ot the filtration process. Typically, the dye rejection ratio increased from 43.6% for single UF without adsorption to nearly 100% for the enhanced UF process, achieving long time continuous treatment with water permeation flux of 47 L·m^-2·h^-1. The present study demonstrated that adsorption enhanced UF may be a feasible method for the dye wastewater treatment.

  15. A comparison of facemask and respirator filtration test methods. (United States)

    Rengasamy, Samy; Shaffer, Ronald; Williams, Brandon; Smit, Sarah


    NIOSH published a Federal Register Notice to explore the possibility of incorporating FDA required filtration tests for surgical masks (SMs) in the 42 CFR Part 84 respirator certification process. There have been no published studies comparing the filtration efficiency test methods used for NIOSH certification of N95 filtering facepiece respirators (N95 FFRs) with those used by the FDA for clearance of SMs. To address this issue, filtration efficiencies of "N95 FFRs" including six N95 FFR models and three surgical N95 FFR models, and three SM models were measured using the NIOSH NaCl aerosol test method, and FDA required particulate filtration efficiency (PFE) and bacterial filtration efficiency (BFE) methods, and viral filtration efficiency (VFE) method. Five samples of each model were tested using each method. Both PFE and BFE tests were done using unneutralized particles as per FDA guidance document. PFE was measured using 0.1 µm size polystyrene latex particles and BFE with ∼3.0 µm size particles containing Staphylococcus aureus bacteria. VFE was obtained using ∼3.0 µm size particles containing phiX 174 as the challenge virus and Escherichia coli as the host. Results showed that the efficiencies measured by the NIOSH NaCl method for "N95 FFRs" were from 98.15-99.68% compared to 99.74-99.99% for PFE, 99.62-99.9% for BFE, and 99.8-99.9% for VFE methods. Efficiencies by the NIOSH NaCl method were significantly (p = PFE, BFE, and VFE methods produced no significant difference. The above results show that the NIOSH NaCl method is relatively conservative and is able to identify poorly performing filtration devices. The higher efficiencies obtained using PFE, BFE and VFE methods show that adding these supplemental particle penetration methods will not improve respirator certification.

  16. Expanded-bed adsorption utilizing ion-exchange resin to purify extracellular beta-galactosidase. (United States)

    Pereira, J A; Vieira E Rosa, P De T; Pastore, G M; Santana, C C


    The application of expanded-bed ion-exchange resins allows the elimination of intermediary particulate separation steps like filtration or centrifugation prior to adsorption steps in enzyme-purification processes from crude fermentation broths. This work is concerned with the experimental evaluation data of a process related to the adsorption of an extracellular p-galactosidase from the fungi Scopulariopsis. The protein recovery in the ion-exchange resin Accell Plus QMA was accomplished using a continuous-monitoring method. The direct adsorption step was followed by a elution step with concentrated NaCl solutions aiming to improve the enzyme-specific activity. Experimental data for fixed and expanded bed were compared.

  17. A Continuous Procedure Based on Column Chromatography to Purify Anthocyanins from Schisandra chinensis by a Macroporous Resin plus Gel Filtration Chromatography

    Directory of Open Access Journals (Sweden)

    Daran Yue


    Full Text Available In our previous study, as natural food colorants and antioxidants, the color and content stabilities of Schisandra chinensis (S. chinensis anthocyanins were investigated. In this work, the purification process parameters of S. chinensis anthocyanins using a macroporous resin and gel filtration chromatography were evaluated. The optimized parameters of static adsorption and desorption were as follows. The selected resin is HPD-300 (nonpolar copolymer styrene type resin, and the anthocyanins adsorption saturation capacity of HPD-300 resin was 0.475 mg/g dry resin. Adsorption time was 4 h, and 0.517 mg/mL of S. chinensis anthocyanins was adsorbed on the resin column with a flow rate of 39 mL/h (3 BV/h. After adsorption, the anthocyanins were completely desorpted with 2.5 BV of 90% (v/v ethanol solution, and the desorption flow rate was 13 mL/h (1 BV/h. After purification by dynamic adsorption and desorption, the anthocyanins content in the effluent increased from 47.6 mg/g to 128.4 mg/g, the purity of anthocyanins increased six-fold from 5.08% to 30.43%, and the anthocyanins recovery was 96.5%. The major constituent of S. chinensis anthocyanins was isolated with Bio-Gel P2 gel filtration chromatography, and it was detected by liquid chromatography electrospray ionisation tandem mass spectrometry (LC-ESI-MS as cyanidin-3-O-xylosylrutinoside. Moreover, the antioxidant activities of S. chinensis anthocyanins were investigated. After purification using the HPD-300 resin, the antioxidant activities of anthocyanins were increased 1.2-fold (FRAP and 1.7-fold (ABTS.

  18. A Continuous Procedure Based on Column Chromatography to Purify Anthocyanins from Schisandra chinensis by a Macroporous Resin plus Gel Filtration Chromatography. (United States)

    Yue, Daran; Yang, Lei; Liu, Shouxin; Li, Jian; Li, Wei; Ma, Chunhui


    In our previous study, as natural food colorants and antioxidants, the color and content stabilities of Schisandra chinensis (S. chinensis) anthocyanins were investigated. In this work, the purification process parameters of S. chinensis anthocyanins using a macroporous resin and gel filtration chromatography were evaluated. The optimized parameters of static adsorption and desorption were as follows. The selected resin is HPD-300 (nonpolar copolymer styrene type resin), and the anthocyanins adsorption saturation capacity of HPD-300 resin was 0.475 mg/g dry resin. Adsorption time was 4 h, and 0.517 mg/mL of S. chinensis anthocyanins was adsorbed on the resin column with a flow rate of 39 mL/h (3 BV/h). After adsorption, the anthocyanins were completely desorpted with 2.5 BV of 90% (v/v) ethanol solution, and the desorption flow rate was 13 mL/h (1 BV/h). After purification by dynamic adsorption and desorption, the anthocyanins content in the effluent increased from 47.6 mg/g to 128.4 mg/g, the purity of anthocyanins increased six-fold from 5.08% to 30.43%, and the anthocyanins recovery was 96.5%. The major constituent of S. chinensis anthocyanins was isolated with Bio-Gel P2 gel filtration chromatography, and it was detected by liquid chromatography electrospray ionisation tandem mass spectrometry (LC-ESI-MS) as cyanidin-3-O-xylosylrutinoside. Moreover, the antioxidant activities of S. chinensis anthocyanins were investigated. After purification using the HPD-300 resin, the antioxidant activities of anthocyanins were increased 1.2-fold (FRAP) and 1.7-fold (ABTS).

  19. Adsorption of proteins from plasma at polyester non-wovens. (United States)

    Klomp, A J; Engbers, G H; Mol, J; Terlingen, J G; Feijen, J


    Polyester non-wovens in filters for the removal of leukocytes from platelet concentrates (PCs) must be platelet compatible. In PC filtration, the adsorption of proteins at the plasma-non-woven interface can be of great importance with respect to the yield of platelets. Unmodified and radio frequency glow discharge (RFGD) treated poly(ethylene terephthalate) non-woven (NW-PET) and two commercial surface-modified non-wovens were contacted with human plasma. Protein desorption by sodium dodecyl sulphate (SDS) was evaluated by X-ray photoelectron spectroscopy (XPS). The desorbed proteins were characterized by gel electrophoresis and immunoblotting. Compared to the commercial surface-modified non-wovens, unmodified and RFGD-treated NW-PETs adsorbed a relatively high amount of protein. Significantly more protein was removed from the hydrophobic NW-PET by SDS than from the hydrophilic RFGD-treated non-wovens. RFGD treatment of NW-PET reduces the reversibility of protein adsorption. Less albumin and fibrinogen were removed from the RFGD-treated non-wovens than from NW-PET. In addition, a large amount of histidine-rich glycoprotein was removed from RFGD-treated non-wovens, but not from NW-PET. The different behaviour of RFGFD-treated non-wovens towards protein adsorption is probably caused by differences in the chemical reactivity of the non-woven surfaces.

  20. Effect of Nanofibers on Spore Penetration and Lunar Dust Filtration

    Directory of Open Access Journals (Sweden)

    Phil Gibson, Ph.D.


    Full Text Available The results of two separate studies on biological spore penetration and simulated lunar dust filtration illustrate the use of nanofibers in some nonstandard filtration applications (nanofibers are generally defined as having diameters of less than a micron. In the first study, a variety of microporous liners containing microfibers and nanofibers were combined with cotton-based fabrics in order to filter aerosolized spores. The aerosol penetration resistance of the nanofiber-lined fabrics was measured, and some analysis was conducted of where the particles are captured within the fabric layers. Testing was conducted with aerosolized living spores, in order to evaluate the efficacy of various fabric treatments on spore viability within the fabric layers after exposure. Reported are the results of studies on fabrics with and without a removable electrospun nanofiber liner, and the fate of the spores within the fabric layers. In the second study, non-instrumented filtration testing using simulated lunar dust determined the comparative filtration efficiency of various nonwoven filtration media. Nanofiber witness media, combined with scanning electron microscope images, showed that an electrospun nonwoven filter layer effectively filtered out all the large and fine particles of the simulated lunar dust.

  1. Effect of membrane filtration artifacts on dissolved trace element concentrations (United States)

    Horowitz, Arthur J.; Elrick, Kent A.; Colberg, Mark R.


    Among environment scientists, the current and almost universally accepted definition of dissolved constituents is an operational one; only those materials which pass through a 0.45-??m membrane filter are considered to be dissolved. Detailed laboratory and field studies on Fe and Al indicate that a number of factors associated with filtration, other than just pore size, can substantially alter 'dissolved' trace element concentrations; these include: filter type, filter diameter, filtration method, volume of sample processed, suspended sediment concentration, suspended sediment grain-size distribution, concentration of colloids and colloidally associated trace elements and concentration of organic matter. As such, reported filtered-water concentrations employing the same pore size filter may not be equal. Filtration artifacts may lead to the production of chemical data that indicate seasonal or annual 'dissolved' chemical trends which do not reflect actual environmental conditions. Further, the development of worldwide averages for various dissolved chemical constituents, the quantification of geochemical cycles, and the determination of short- or long-term environmental chemical trends may be subject to substantial errors, due to filtration artifacts, when data from the same or multiple sources are combined. Finally, filtration effects could have a substantial impact on various regulatory requirements.

  2. Technology Review of Modern Gas Turbine Inlet Filtration Systems

    Directory of Open Access Journals (Sweden)

    Melissa Wilcox


    Full Text Available An inlet air filtration system is essential for the successful operation of a gas turbine. The filtration system protects the gas turbine from harmful debris in the ambient air, which can lead to issues such as FOD, erosion, fouling, and corrosion. These issues if not addressed will result in a shorter operational life and reduced performance of the gas turbine. Modern day filtration systems are comprised of multiple filtration stages. Each stage is selected based on the local operating environment and the performance goals for the gas turbine. Selection of these systems can be a challenging task. This paper provides a review of the considerations for selecting an inlet filtration system by covering (1 the characteristics of filters and filter systems, (2 a review of the many types of filters, (3 a detailed look at the different environments where the gas turbine can operate, (4 a process for evaluating the site where the gas turbine will be or is installed, and (5 a method to compare various filter system options with life cycle cost analysis.

  3. Spontaneous water filtration of bio-inspired membrane (United States)

    Kim, Kiwoong; Kim, Hyejeong; Lee, Sang Joon


    Water is one of the most important elements for plants, because it is essential for various metabolic activities. Thus, water management systems of vascular plants, such as water collection and water filtration have been optimized through a long history. In this view point, bio-inspired technologies can be developed by mimicking the nature's strategies for the survival of the fittest. However, most of the underlying biophysical features of the optimized water management systems remain unsolved In this study, the biophysical characteristics of water filtration phenomena in the roots of mangrove are experimentally investigated. To understand water-filtration features of the mangrove, the morphological structures of its roots are analyzed. The electrokinetic properties of the root surface are also examined. Based on the quantitatively analyzed information, filtration of sodium ions in the roots are visualized. Motivated by this mechanism, spontaneous desalination mechanism in the root of mangrove is proposed by combining the electrokinetics and hydrodynamic transportation of ions. This study would be helpful for understanding the water-filtration mechanism of the roots of mangrove and developing a new bio-inspired desalination technology. This research was financially supported by the National Research Foundation (NRF) of Korea (Contract Grant Number: 2008-0061991).

  4. Oviposition Attractancy of Bacterial Culture Filtrates: response of Culex quinquefasciatus

    Directory of Open Access Journals (Sweden)

    S Poonam


    Full Text Available Oviposition attractants could be used for monitoring as well as controlling mosquitoes by attracting them to lay eggs at chosen sites. In the present study, culture filtrates of seven bacterial species were tested for their attractancy against gravid females of Culex quinquefasciatus. When their oviposition active indices (OAI were studied, the culture filtrates of Bacillus cereus and Pseudomonas fluorescens exhibited oviposition attractancy (OAI = >0.3 at 100 ppm and the OAI were respectively 0.70 and 0.47. Culture filtrates of B. thuringiensis var. israelensis (wild type, B. t. var. israelensis (mutant and B. sphaericus showed attractancy at 2000 ppm with OAI of respectively 0.71, 0.59 and 0.68. However, the OAI of B. megaterium as well as Azospirillum brasilense was 0.13 (at 2000 ppm, which was less than 0.3 required to be considered them as attractants. When the oviposition attractancy of the bacterial culture filtrates were compared with that of a known oviposition attractant, p-cresol (at 10 ppm, the culture filtrates of B. t. var. israelensis (wild type and B. cereus were found to be more active than p-cresol, respectively with 64.2 and 54.3% oviposition.

  5. Silver nanoparticle-doped zirconia capillaries for enhanced bacterial filtration. (United States)

    Wehling, Julia; Köser, Jan; Lindner, Patrick; Lüder, Christian; Beutel, Sascha; Kroll, Stephen; Rezwan, Kurosch


    Membrane clogging and biofilm formation are the most serious problems during water filtration. Silver nanoparticle (Agnano) coatings on filtration membranes can prevent bacterial adhesion and the initiation of biofilm formation. In this study, Agnano are immobilized via direct reduction on porous zirconia capillary membranes to generate a nanocomposite material combining the advantages of ceramics being chemically, thermally and mechanically stable with nanosilver, an efficient broadband bactericide for water decontamination. The filtration of bacterial suspensions of the fecal contaminant Escherichia coli reveals highly efficient bacterial retention capacities of the capillaries of 8 log reduction values, fulfilling the requirements on safe drinking water according to the U.S. Environmental Protection Agency. Maximum bacterial loading capacities of the capillary membranes are determined to be 3×10(9)bacterialcells/750mm(2) capillary surface until back flushing is recommendable. The immobilized Agnano remain accessible and exhibit strong bactericidal properties by killing retained bacteria up to maximum bacterial loads of 6×10(8)bacterialcells/750mm(2) capillary surface and the regenerated membranes regain filtration efficiencies of 95-100%. Silver release is moderate as only 0.8% of the initial silver loading is leached during a three-day filtration experiment leading to average silver contaminant levels of 100μg/L.

  6. Impact of Acidification on Pollutants Fate and Soil Filtration Function

    Directory of Open Access Journals (Sweden)

    Jarmila Makovniková


    Full Text Available The objective of this paper was to investigate the effects of simulated acid load on the fate of inorganic pollutants (Cd, Pb, soil sorption potential, soil filtration func-tion. We made use of a short-term acidification pot experiment with grown plant of spring barley cultivated at 4 different soil types (Fluvisol, Cambisol, Stagnosol, Podzol. The potential of soil filtration was evaluated according to the Eq.: [Soil filtration function]=[Potential of soil sorbents]+[Potential of total content of inor-ganic pollutants]. Potential of soil sorbents (PSS is defined by qualitative (pH, or-ganic matter quality - A400/600 and quantitative factors (carbon content-Cox, humus layer thickness-H according to the Eq.:[PSS]=F(pH+F(A465/665+F(Cox*F(H. Acid load significantly influenced soil sorption potential and thus affected increase in Cd and Pb mobility what was reflected in their transfer into the plants. Results of soil filtration function showed significant change of filtration function in Cambisol.

  7. Enhancement of fine particle filtration with efficient humidification☆

    Institute of Scientific and Technical Information of China (English)

    Yumei Zhang; Weidong Zhang; Zhengyu Yang; Junteng Liu; Fushen Yang; Ning Li; Le Du⁎


    Filtration is one of the most effective methods to remove suspended fine particles from air. In filtration processes, pressure drop of compact dust cake causes problems in efficiency and economy, which has received increasing at-tention and stil remains chal enging. In this study, we developed a novel technique to intensify the filtration of fine particles with efficient humidification. Two strategies for humidification, including ultrasonic atomization and steam humidification (control ing of ambient humidity), were employed and proved to be both effective. The re-generation frequency of the filter could be reduced by 55%with ultrasonic atomization, while steam humidification could lead to a 78%reduction in regeneration frequency. The effect of operating conditions on pressure drop and the mass loading during filtration were investigated. The dust cake showed a loose and porous structure with an opti-mized droplet-to-particle ratio. With the ratio of 1.53 and 0.0282, the maximum mass loading was 552 g·m−2 upon the ultrasonic atomization and 720 g·m−2 upon the steam humidification. The results show that humidification could slow down the increase of pressure drop during filtration and improve the efficiency of process.

  8. Pharmacologic Atrial Natriuretic Peptide Reduces Human Leg Capillary Filtration (United States)

    Watenpaugh, Donald E.; Vissing, Susanne F.; Lane, Lynda D.; Buckey, Jay C.; Firth, Brian G.; Erdman, William; Hargens, Alan R.; Blomqvist, C. Gunnar


    Atrial natriuretic peptide (ANP) is produced and secreted by atrial cells. We measured calf capillary filtration rate with prolonged venous-occlusion plethys-mography of supine health male subjects during pharmacologic infusion of ANP (48 pmol/kg/min for 15 min; n equals 6) and during placebo infusion (n equals 7). Results during infusions were compared to prior control measurements. ANP infusion increased plasma (ANP) from 30 plus or minus 4 to 2,568 plus or minus 595 pmol/L. Systemic hemoconcentration occurred during ANP infusion; mean hematocrit and plasma colloid osmotic pressure increased 4.6 and 11.3 percent respectively, relative to pre-infusion baseline values (p is less than 0.05). Mean calf filtration, however was significantly reduced from 0.15 to 0.08 ml/100 ml/min with ANP. Heart rate increased 20 percent with ANP infusion, wheras blood pressure was unchanged. Calf conductance (blood flow/arterial pressure) and venous compliance were unaffected by ANP infusion. Placebo infusion had no effect relative to prior baseline control measurements. Although ANP induced systemic capillary filtration, in the calf, filtration was reduced with ANP. Therefore, phamacologic ANP infusion enhances capillary filtration from the systemic circulation, perhaps at upper body or splanchic sites or both, while having the opposite effect in the leg.

  9. Chromium (VI) adsorption on boehmite

    Energy Technology Data Exchange (ETDEWEB)

    Granados-Correa, F. [Instituto Nacional de Investigaciones Nucleares, Apartado Postal 18-1027 Col., Escandon, Delegacion Miguel Hidalgo, C.P. 11801 Mexico, D.F. (Mexico)], E-mail:; Jimenez-Becerril, J. [Instituto Nacional de Investigaciones Nucleares, Apartado Postal 18-1027 Col., Escandon, Delegacion Miguel Hidalgo, C.P. 11801 Mexico, D.F. (Mexico)


    Boehmite was synthesized and characterized in order to study the adsorption behavior and the removal of Cr(VI) ions from aqueous solutions as a function of contact time, initial pH solution, amount of adsorbent and initial metal ion concentration, using batch technique. Adsorption data of Cr(VI) on the boehmite were analyzed according to Freundlich, Langmuir and Dubinin-Radushkevich (D-R) adsorption models. Thermodynamic parameters for the adsorption system were determinated at 293, 303, 313 and 323 K temperatures. The kinetic values and thermodynamic parameters from the adsorption process show that the Cr(VI) ions adsorption on boehmite is an endothermic and spontaneous process. These results show that the boehmite could be considered as a potential adsorbent for chromium ions in aqueous solutions.

  10. Copper adsorption in tropical oxisols

    Directory of Open Access Journals (Sweden)

    Silveira Maria Lucia Azevedo


    Full Text Available Cu adsorption, at concentrations between 0 to 800 mg L-1, was evaluated in surface and subsurface samples of three Brazilian soils: a heavy clayey-textured Rhodic Hapludalf (RH, a heavy clayey-textured Anionic ''Rhodic'' Acrudox (RA and a medium-textured Anionic ''Xanthic'' Acrudox (XA. After adsorption, two consecutive extractions were performed to the samples which received 100 mg L-1 copper. Surface samples adsorbed higher amounts of Cu than the subsurface, and exhibited lower Cu removed after the extractions, reinforcing the influence of the organic matter in the reactions. Cu adsorption was significant in the subsurface horizons of the Oxisols, despite the positive balance of charge, demonstrating the existence of mechanisms for specific adsorption, mainly related to the predominance of iron and aluminum oxides in the mineral fractions. In these samples, Cu was easily removed from the adsorption sites. RH demonstrated a higher capacity for the Cu adsorption in both horizons.

  11. Removal of chloramphenicol by macroporous adsorption resins in honey: a novel approach on reutilization of antibiotics contaminated honey. (United States)

    Cheng, Ni; Gao, Hui; Deng, Jianjun; Wang, Bini; Xu, Ruihan; Cao, Wei


    The effects of different steps in honey production on chloramphenicol (CAP) levels and CAP removal from honey using macroporous adsorption resins (MARs) were investigated in this study. CAP residues in honey were quantified by enzyme-linked immunosorbent assay after each processing step including preheating, filtration, vacuum concentration and pasteurization. Vacuum concentration contributes the most reduction of CAP level (9.9%). Meanwhile, 5 types of MARs (including LSI-1, LSI-2, LSI-3, LS-803, and LS-903) were used in CAP adsorption. The results showed that LS-803 resin had higher adsorption rate of 86% than other resins in removing CAP from honey, and its optimal adsorption time and temperature were 40 min and 55 °C, respectively. The treated honey could be used as feed additive or biomass energy. Therefore, it would be a novel approach to reutilization of antibiotics contaminated honey.

  12. Removal of bisphenol A by adsorption mechanism using PES-SiO2 composite membranes. (United States)

    Muhamad, Mimi Suliza; Salim, Mohd Razman; Lau, Woei Jye; Hadibarata, Tony; Yusop, Zulkifli


    Polyethersulphone (PES) membranes blended with silicon dioxide (SiO2) nanoparticles were prepared via a dry-jet wet spinning technique for the removal of bisphenol A (BPA) by adsorption mechanism. The morphology of SiO2 nanoparticles was analysed using a transmission electron microscopy and particle size distribution was also analysed. The prepared membranes were characterized by several techniques including field emission scanning electron microscopy, Fourier transform infrared spectroscopy and water contact angle. The adsorption mechanism of membrane towards BPA was evaluated by batch experiments and kinetic model. The influence of natural organic matter (NOM) in feed water on membrane BPA removal was also studied by filtration experiments. Results showed that BPA adsorption capacity as high as 53 µg/g could be achieved by the PES membrane incorporated with 2 wt% SiO2 in which the adsorption mechanism was in accordance with the pseudo-second-order kinetic model. The intraparticles diffusion model suggested that the rate limiting factor of membrane adsorption mechanism is governed by the diffusion of BPA into the membrane pores. The presence of 10 ppm NOM has reported to negatively reduce BPA removal by 24%, as it tended to compete with BPA for membrane adsorption. This work has demonstrated that PES-SiO2 membrane has the potential to eliminate trace amount of BPA from water source containing NOM.

  13. Adsorption design for wastewater treatment

    Energy Technology Data Exchange (ETDEWEB)

    Cooney, D.O.


    Understand the premier method for removing organic contaminants from water. Straight forward explanations and illustrations allow this overview to fill a dual purpose: study manual and design guide. The book discusses basic properties of activated carbons; explains the kinetics of adsorption processes; describes the design of both fixed-bed and batch process adsorption systems; contains useful knowledge that can be extended to other applications of adsorption, including drinking water treatment; and includes many illustrated examples and practice exercises.

  14. Filtration des fluides de forage à travers les parois du puits - Bibliographie Filtration of Drilling Fluids Through Borehole Walls

    Directory of Open Access Journals (Sweden)

    Martin M.


    Full Text Available Ce document résume un certain nombre de données déjà publiées, relatives à la filtration du fluide de forage, de l'annulaire vers les formations traversées, durant l'approfondissement du puits. On considère : - d'une part, les phénomènes de filtration : . le long des parois (filtration dynamique durant les périodes de circulation - filtration statique durant les arrêts, . sous l'outil ; - d'autre part, certaines de leurs conséquences, en particulier leur influence : . sur la vitesse d'avancement, . sur les risques de coincement de la garniture par pression différentielle, . sur l'envahissement des zones poreuses et perméables. Les phénomènes et leurs conséquences dépendent de très nombreux facteurs dont certains jouent des rôles d'importance très voisine. Leurs études nécessitent des moyens expérimentaux bien adaptés, permettant une simulation suffisamment rigoureuse des conditions de forage. Les résultats ne peuvent être généralisés et doivent être exprimés en fonction des paramètres opératoires choisis. This article reviews varions data which have already been published and which concern the filtration of drilling fluid from the annular space into the formations crossed through during the drilling of a borehole. The following aspects are considered: (i filtration phenomena along borehole walls (dynamic filtration during circulation, and static filtration during shutdowns and underneath the bit; (ii some of the consequences of this filtration, and especially its influence on the rate of penetration, on risks of drill string sticking as the result of differential pressure, and on the invasion of porous and permeable zones. Such phenomena and their consequences depend on a great many factor, some which play roles of quite similar importance. Resaerch on such phenomena requires well suited experimental facilities enabling the sufficiently cllose simulation of drilling conditions. the results of such research

  15. The renal handling of hemoglobin. I. Glomerular filtration. (United States)

    Bunn, H F; Esham, W T; Bull, R W


    The glomerular filtration of hemoglobin (alpha(2)beta(2)) was studied under conditions in which its dissociation into alphabeta dimers was experimentally altered. Rats receiving hemoglobin treated with the sulfhydryl reagent bis(N-maleimidomethyl) ether (BME) showed a much lower renal excretion and prolonged plasma survival as compared with animals injected with untreated hemoglobin. Plasma disappearance was also prolonged in dogs receiving BME hemoglobin. Gel filtration data indicated that under physiological conditions, BME hemoglobin had impaired subunit dissociation. In addition, BME hemoglobin showed a very high oxygen affinity and a decreased rate of auto-oxidation. Glomerular filtration was enhanced under conditions which favor the dissociation of hemoglobin into dimers. Cat hemoglobin, which forms subunits much more extensively than canine hemoglobin, was excreted more readily by the rat kidney. The renal uptake of (59)Fe hemoglobin injected intra-arterially into rabbits varied inversely with the concentration of the injected dose.


    Directory of Open Access Journals (Sweden)

    Karolina Jezierska


    Full Text Available The aim of this study was to analyze the effectiveness of household drinking water filtration. This article demonstrates the possibilities of using study on the reaction of ascorbic acid degradation in aqueous solutions to develop a new method for determining the effectiveness of household drinking water filtration. Based on the measurements of absorbance of ascorbic acid a new parameters WCW (Coeffi cient of Water Purity and SF (Filtration Degree were defined. Correlations between the SF and the amount of filtered water (filter usage were investigated. With the filter usage decreasing effectiveness of calcium ions removal and drop of differences in conductivity between the tap and filtered water were observed. SF decreases proportionally to the filter usage and therefore the proposed method can be an effective tool to determine the effectiveness of domestic water filters.

  17. Effects of drinking-water filtration on Cryptosporidium seroepidemiology, Scotland. (United States)

    Ramsay, Colin N; Wagner, Adam P; Robertson, Chris; Smith, Huw V; Pollock, Kevin G J


    Continuous exposure to low levels of Cryptosporidium oocysts is associated with production of protective antibodies. We investigated prevalence of antibodies against the 27-kDa Cryptosporidium oocyst antigen among blood donors in 2 areas of Scotland supplied by drinking water from different sources with different filtration standards: Glasgow (not filtered) and Dundee (filtered). During 2006-2009, seroprevalence and risk factor data were collected; this period includes 2007, when enhanced filtration was introduced to the Glasgow supply. A serologic response to the 27-kDa antigen was found for ≈75% of donors in the 2 cohorts combined. Mixed regression modeling indicated a 32% step-change reduction in seroprevalence of antibodies against Cryptosporidium among persons in the Glasgow area, which was associated with introduction of enhanced filtration treatment. Removal of Cryptosporidium oocysts from water reduces the risk for waterborne exposure, sporadic infections, and outbreaks. Paradoxically, however, oocyst removal might lower immunity and increase the risk for infection from other sources.

  18. Deashing of coal liquids by sonically assisted filtration

    Energy Technology Data Exchange (ETDEWEB)

    Slomka, B.J.


    This project seeks to improve the effectiveness and reduce the cost of coal liquefaction by novel applications of sonic and ultrasonic energy. The specific purpose of this project is to develop and improve means for the economical removal of dispersed solid particles of ash, unreacted coal, and spent catalyst from direct and indirect coal liquefaction resids by using sonic or ultrasonic waves. Product streams containing solids are generated in both direct and indirect coal liquefaction processes. Direct coal liquefaction processes generate liquid products which contain solids including coal-originated mineral matter, unreacted coal, and spent dispersed catalyst. The removal of these solids from a product stream is one of the most difficult problems in direct coal liquefaction processes. On this report, results are discussed for sonically assisted crossflow filtration of V-1067 resid, diluted with No. 2 fuel oil, and sonically assisted batch filtrations of solids concentrates from continuous cross-flow filtration experiments.

  19. The Fundamentals of Waste Water Sludge Characterization and Filtration

    Energy Technology Data Exchange (ETDEWEB)

    Scales, Peter J.; Dixon, David R.; Harbour, Peter J.; Stickland, Anthony D.


    The move to greater emphasis on the disposal of waste water sludges through routes such as incineration and the added cost of landfill emplacement puts high demands on dewatering technology for these sludges. A dear problem in this area is that waste water sludges are slow and difficult to dewater and traditional methods of laboratory measurement for prediction of filtration performance are inadequate. This is highly problematic for the design and operational optimisation of centrifuges, filters and settling devices in the waste water industry. The behaviour is assessed as being due to non-linear behaviour of these sludges which negates the use of classical approaches. These approaches utilise the linear portion of a t versus V{sup 2} plot (where t is the time to filtration and V is the specific filtrate volume) to extract a simple Darcian permeability. Without this parameter, a predictive capacity for dewatering using current theory is negated. (author)

  20. EX-PRESS Glaucoma Filtration Device: efficacy, safety, and predictability. (United States)

    Chan, Jessica E; Netland, Peter A


    Trabeculectomy has been the traditional primary surgical therapy for open-angle glaucoma. While trabeculectomy is effective in lowering intraocular pressure, complications associated with the procedure have motivated the development of alternative techniques and devices, including the EX-PRESS Glaucoma Filtration Device. This review describes the efficacy, safety, complication rates, and potential advantages and disadvantages of the EX-PRESS Glaucoma Filtration Device. EX-PRESS implantation is technically simpler compared with that of trabeculectomy, with fewer surgical steps. Vision recovery has been more rapid after EX-PRESS implantation compared with trabeculectomy. Intraocular pressure variation is lower during the early postoperative period, indicating a more predictable procedure. While efficacy of the EX-PRESS implant has been comparable to trabeculectomy, postoperative complications appear less common after EX-PRESS implantation compared with trabeculectomy. The EX-PRESS Glaucoma Filtration Device appears to be safe and effective in the surgical management of open-angle glaucoma.


    Directory of Open Access Journals (Sweden)

    Helena Frančáková


    Full Text Available Looks of beer is an important factor which is associated with high clarity. Clarity of beer is a basic precondition of its good marketability and consumer satisfaction. Beer filtration is ideal tool to create required optical properties. There is a high accent on this operation in brewery and minibrewery. The process of filtering removes unwanted haze-active substances in order to increase clarity and overall stability of beer. Objective method to expressing clarity of beer is nephelometric determination of turbidity, which is highly sensitive and achieved by reliable results directly in the units used to express the turbidity values in beer. The objective of our study was to measure haze before and after filtration in various types of beer with different length of lagering. Kieselguhr was used as filtration material. Haze of beer was measured by haze meter in determination under 2 angles and values were expressed in European Brewery Convention units directly.

  2. A novel insight into membrane fouling mechanism regarding gel layer filtration: Flory-Huggins based filtration mechanism. (United States)

    Lei, Qian; Zhang, Meijia; Shen, Liguo; Li, Renjie; Liao, Bao-Qiang; Lin, Hongjun


    This study linked the chemical potential change to high specific filtration resistance (SFR) of gel layer, and then proposed a novel membrane fouling mechanism regarding gel layer filtration, namely, Flory-Huggins based filtration mechanism. A mathematical model for this mechanism was theoretically deduced. Agar was used as a model polymer for gel formation. Simulation of the mathematical model for agar gel showed that volume fraction of polymer and Flory-Huggins interaction parameter were the two key factors governing the gel SFR, whereas, pH and ionic strength were not related with the gel SFR. Filtration tests of gel layer showed that the total SFR value, effects of pH and ionic strength on the gel SFR well agreed with the perditions of model's simulation, indicating the real occurrence of this mechanism and the feasibility of the proposed model. This mechanism can satisfactorily explain the extremely high SFR of gel layer, and improve fundamental insights into membrane fouling regarding gel layer filtration.

  3. A novel insight into membrane fouling mechanism regarding gel layer filtration: Flory-Huggins based filtration mechanism (United States)

    Lei, Qian; Zhang, Meijia; Shen, Liguo; Li, Renjie; Liao, Bao-Qiang; Lin, Hongjun


    This study linked the chemical potential change to high specific filtration resistance (SFR) of gel layer, and then proposed a novel membrane fouling mechanism regarding gel layer filtration, namely, Flory-Huggins based filtration mechanism. A mathematical model for this mechanism was theoretically deduced. Agar was used as a model polymer for gel formation. Simulation of the mathematical model for agar gel showed that volume fraction of polymer and Flory-Huggins interaction parameter were the two key factors governing the gel SFR, whereas, pH and ionic strength were not related with the gel SFR. Filtration tests of gel layer showed that the total SFR value, effects of pH and ionic strength on the gel SFR well agreed with the perditions of model’s simulation, indicating the real occurrence of this mechanism and the feasibility of the proposed model. This mechanism can satisfactorily explain the extremely high SFR of gel layer, and improve fundamental insights into membrane fouling regarding gel layer filtration.

  4. Adsorption and collective paramagnetism

    CERN Document Server

    Selwood, Pierce W


    Adsorption and Collective Paramagnetism describes a novel method for studying chemisorption. The method is based on the change in the number of unpaired electrons in the adsorbent as chemisorption occurs. The method is applicable to almost all adsorbates, but it is restricted to ferromagnetic adsorbents such as nickel, which may be obtained in the form of very small particles, that is to say, to ferromagnetic adsorbents with a high specific surface. While almost all the data used illustratively have been published elsewhere this is the first complete review of the subject. The book is addresse


    Energy Technology Data Exchange (ETDEWEB)

    Martino, C.; Herman, D.; Pike, J.; Peters, T.


    Filtration within the Actinide Removal Process (ARP) currently limits the throughput in interim salt processing at the Savannah River Site. In this process, batches of salt solution with Monosodium Titanate (MST) sorbent are concentrated by crossflow filtration. The filtrate is subsequently processed to remove cesium in the Modular Caustic Side Solvent Extraction Unit (MCU) followed by disposal in saltstone grout. The concentrated MST slurry is washed and sent to the Defense Waste Processing Facility (DWPF) for vitrification. During recent ARP processing, there has been a degradation of filter performance manifested as the inability to maintain high filtrate flux throughout a multi-batch cycle. The objectives of this effort were to characterize the feed streams, to determine if solids (in addition to MST) are precipitating and causing the degraded performance of the filters, and to assess the particle size and rheological data to address potential filtration impacts. Equilibrium modelling with OLI Analyzer{sup TM} and OLI ESP{sup TM} was performed to determine chemical components at risk of precipitation and to simulate the ARP process. The performance of ARP filtration was evaluated to review potential causes of the observed filter behavior. Task activities for this study included extensive physical and chemical analysis of samples from the Late Wash Pump Tank (LWPT) and the Late Wash Hold Tank (LWHT) within ARP as well as samples of the tank farm feed from Tank 49H. The samples from the LWPT and LWHT were obtained from several stages of processing of Salt Batch 6D, Cycle 6, Batch 16.

  6. Pathogen filtration to control plant disease outbreak in greenhouse production (United States)

    Jeon, Sangho; Krasnow, Charles; Bhalsod, Gemini; Granke, Leah; Harlan, Blair; Hausbeck, Mary; Zhang, Wei


    Previous research has been extensively focused on understanding the fate and transport of human microbial pathogens in soil and water environments. However, little is known about the transport of plant pathogens, although these pathogens are often found in irrigation waters and could cause severe crop damage and economical loss. Water mold pathogens including Phytophthora spp. and Pythium spp. are infective to a wide range of vegetable and floriculture crops, and they are primarily harbored in soils and disseminated through water flow. It is challenging to control these pathogens because they often quickly develop resistance to many fungicides. Therefore, this multi-scale study aimed to investigate physical removal of plant pathogens from water by filtration, thus reducing the pathogen exposure risks to crops. In column-scale experiments, we studied controlling factors on the transport and retention of Phytophthora capsici zoospores in saturated columns packed with iron oxide coated-sand and uncoated-sand under varying solution chemistry. Biflagellate zoospores were less retained than encysted zoospores, and lower solution pH and greater iron oxide content increased the retention of encysted zoospores. These results provided insights on environmental dispersal of Phytophthora zoospores in natural soils as well as on developing cost-effective engineered filtration systems for pathogen removal. Using small-scale greenhouse filtration systems, we further investigated the performance of varying filter media (i.e., granular sand, iron oxide coated ceramic porous media, and activated carbon) in mitigating disease outbreaks of Phytophthora and Pythium for greenhouse-grown squash and poinsettia, respectively, in comparison with fungicide treatment. For squash, filtration by iron oxide coated media was more effective in reducing the Phytophthora infection, comparing to sand filtration and fungicide application. For poinsettia, sand filtration performed better in controlling

  7. Low-cost multi-stage filtration enhanced by coagulation-flocculation in upflow gravel filtration

    Directory of Open Access Journals (Sweden)

    L. D. Sánchez


    Full Text Available This paper assesses the operational and design aspects of coagulation and flocculation in upflow gravel filters (CF-UGF in a multi-stage filtration (MSF plant. This study shows that CF-UGF units improve the performance of MSF considerably, when the system operates with turbidity above 30 NTU. It strongly reduces the load of particulate material before the water enters in the slow sand filters (SSF and therewith avoids short filter runs and prevents early interruption in SSF operations. The removal efficiency of turbidity in the CF-UGF with coagulant was between 85 and 96%, whereas the average efficiency without coagulant dosing was 46% (range: 21–76%. Operating with coagulant also improves the removal efficiency for total coliforms, E-coli and HPC. No reduction was observed in the microbial activity of the SSF, no obstruction of the SSF bed was demonstrated and SSF runs were maintained between 50 and 70 days for a maximum head loss of 0.70 m. The most important advantage is the flexibility of the system to operate with and without coagulant according to the influent turbidity. It was only necessary for 20% of the time to operate with the coagulant. The CF-UGF unit represented 7% of total construction costs and the O&M cost for the use of coagulant represented only 0.3%.

  8. Low-cost multi-stage filtration enhanced by coagulation-flocculation in upflow gravel filtration

    Directory of Open Access Journals (Sweden)

    L. D. Sánchez


    Full Text Available This paper assesses the operational and design aspects of coagulation and flocculation in upflow gravel filters (CF-UGF in a multi-stage filtration (MSF plant. This study shows that CF-UGF units improve the performance of MSF considerably, when the system operates with turbidity above 30 NTU. It strongly reduces the load of particulate material before the water enters in the slow sand filters (SSF and therewith avoids short filter runs and prevents early interruption in SSF operations. The removal efficiency of turbidity in the CF-UGF with coagulant was between 85 and 96%, whereas the average efficiency without coagulant dosing was 46% (range: 21–76%. Operating with coagulant also improves the removal efficiency for total coliforms, E-coli and HPC. No reduction was observed in the microbial activity of the SSF, no obstruction of the SSF bed was demonstrated and SSF runs were maintained between 50 and 70 days for a maximum head loss of 0.70 m. The most important advantage is the flexibility of the system to operate with and without coagulant according to the influent turbidity. It was only necessary for 20% of the time to operate with the coagulant. The CF-UGF unit represented 7% of total construction costs and the O&M cost for the use of coagulant represented only 0.3%.

  9. Equivalent Cake Filtration Model%等效滤饼过滤模型

    Institute of Scientific and Technical Information of China (English)

    徐坦; 朱企新; 陈旭; 李文苹


    Cake filtration has been widely used in many chemical processes with more non-Newtonian, highly vis- cous and compressible materials involved. Neither traditional nor modern filtration theory can be applied in practice. "Equivalent cake filtration model" is a recently developed mathematical model to describe cake filtration for both Newtonian and non-Newtonian fluids, in either steady or unsteady filtration stages. This model has two strengths: (1) It can be used to determine equivalent capillary radii and predict filtration quality based on the properties of solid/liquid system and operation parameters; and (2) to calculate cake specific resistance and its variations with time at various cake thickness locations.

  10. Upgrade of deep bed filtration with activated carbon dosage for compact micropollutant removal from wastewater in technical scale. (United States)

    Löwenberg, Jonas; Zenker, Armin; Krahnstöver, Thérèse; Boehler, Marc; Baggenstos, Martin; Koch, Gerhard; Wintgens, Thomas


    The removal of micropollutants from drinking and wastewater by powdered activated carbon (PAC) adsorption has received considerable attention in research over the past decade with various separation options having been investigated. With Switzerland as the first country in the world having adopted a new legislation, which forces about 100 wastewater treatment plants to be upgraded for the removal of organic micropollutants from municipal wastewater, the topic has reached practical relevance. In this study, the process combination of powdered activated carbon (PAC) adsorption and deep bed filtration (DBF) for advanced municipal wastewater treatment was investigated over an extended period exceeding one year of operation in technical scale. The study aimed to determine optimum process conditions to achieve sufficient micropollutant removal in agreement with the new Swiss Water Ordinance under most economic process design. It was shown that the addition of PAC and Fe(3+) as combined coagulation and flocculation agent improved effluent water quality with respect to dissolved organic pollutants as well as total suspended solids (TSS), turbidity and PO4-P concentration in comparison to a DBF operated without the addition of PAC and Fe(3+). Sufficient micropollutant (MP) removal of around 80% was achieved at PAC dosages of 10 mg/L revealing that PAC retained in the filter bed maintained considerable adsorption capacity. In the investigated process combination the contact reactor serves for adsorption as well as for flocculation and allowed for small hydraulic retention times of minimum 10 min while maintaining sufficient MP removal. The flocculation of two different PAC types was shown to be fully concluded after 10-15 min, which determined the flocculation reactor size while both PAC types proved suitable for the application in combination with DBF and showed no significant differences in MP removal. Finally, the capping of PAC dosage during rain water periods, which

  11. Membrane filters and membrane-filtration processes for health care. (United States)

    Eudailey, W A


    The development of membrane-filtration processes is reviewed, and current types and uses of membrane filtration in health care is discussed. Development of adequate support structures for filters and of disposable filtration devices has facilitated development of filtration processes for pharmaceutical industry, manufacturing in hospital pharmacies, and direct patient care. Hydrophobic filters have also been developed; aqueous solutions cannot wet the pore structures of these filters and therefore cannot pass. Sterility-testing systems have also been developed. There are two types of filters: depth (constructed of compacted fibers) and membrane (which have a homogeneous internal structure). Depth filters retain only a portion of particles in a particular size range and are generally not acceptable for use in health care. Membrane filters retain all particles of a given size. Types of membrane filters are selected for specific uses based on needed flow rates, particulate load, and retention capability. Membrane filters may be validated using bacterial-passage, bubble-point, and diffusion tests. Most membrane filters used in health care are microporous filters that retain particles in the 0.1-10-micron size range. Applications are currently being developed for ultrafilters, which retain both particles and substances with large molecular structures such as proteins, and reverse-osmosis filter membranes, which allow only water or water-miscible solvents of very low molecular weights to pass. Experience in engineering designs, quality assurance, and test procedures has led to the development of many safe, reliable, and effective membrane products for health care.

  12. Reaching ultra low phosphorus concentrations by filtration techniques

    NARCIS (Netherlands)

    Scherrenberg, S.M.


    This research deals with tertiary treatment techniques used for the removal of phosphorus from wastewater treatment plant (WWTP) effluent. The main objective of this research is to obtain ultra low total phosphorus (<0.15 mg total phosphorus/L) concentrations by coagulation, flocculation and filtrat


    This evaluation addresses the product quality, waste reduction, and economic issues involved in recycling automotive and heavy-duty engine coolants at a New Jersey Department of Transportation garage. The specific recycling units evaluated are based on the technologies of filtrat...

  14. Successful Treatment Of Homozygous Familial Hypercholesterolemia Using Cascade Filtration Plasmapheresis

    Directory of Open Access Journals (Sweden)

    Fatih Kardas


    Full Text Available OBJECTIVE: The aim of our study is to discuss the efficacy of low-density lipoprotein-cholesterol (LDL-C apheresis procedure using the cascade filtration system for pediatric patients with homozygous familial hypercholesterolemia (FH, and to clarify the adverse effects and difficulties. METHODS: LDL apheresis using the cascade filtration system was performed in 3 pediatric patients with homozygous FH. In total, 120 apheresis sessions were performed for all patients. RESULTS: Cascade filtration therapy significantly reduced the mean LDL-C values from 418 ± 62 mg/dl to 145 ± 43 mg/dl (p<0.05. We determined an acute mean reduction in the plasma levels of total cholesterol (57.9%, LDL cholesterol (70.8%, and high-density lipoprotein (HDL cholesterol (40.7%. Treatments were well tolerated. The most frequent clinical adverse effects were hypotension in 3 sessions (2.5%, chills/feeling cold (1.7% in 2 sessions, and nausea and vomiting in 3 sessions (2.5%. CONCLUSION: Our experience with three patients using the cascade filtration system were, good clinical outcomes, laboratory findings, safety of usage, minor adverse effects and technical problems.

  15. A New Solution of the Deep Bed Filtration


    Saatçı, A.M.; Halilsoy, Mustafa


    We present a more general solution of the standard deep bed filtration equations which explains the initial improvement of effluent quality as a suspension passes through a porous medium. Our solution gives a good fit to experimental data and predicts the experimental observations. The file in this item is the publisher version (published version) of the article.

  16. A high-powered view of the filtration barrier. (United States)

    Peti-Peterdi, János; Sipos, Arnold


    Multiphoton excitation fluorescence microscopy is a powerful noninvasive imaging technique for the deep optical sectioning of living tissues. Its application in several intact tissues is a significant advance in our understanding of organ function, including renal pathophysiological mechanisms. The glomerulus, the filtering unit in the kidney, is one good example of a relatively inaccessible and complex structure, with cell types that are otherwise difficult to study at high resolution in their native environment. In this article, we address the application, advantages, and limitations of this imaging technology for the study of the glomerular filtration barrier and the controversy it recently generated regarding the glomerular filtration of macromolecules. More advanced and accurate multiphoton determinations of the glomerular sieving coefficient that are presented here dismiss previous claims on the filtration of nephrotic levels of albumin. The sieving coefficient of 70-kD dextran was found to be around 0.001. Using a model of focal segmental glomerulosclerosis, increased filtration barrier permeability is restricted only to areas of podocyte damage, consistent with the generally accepted role of podocytes and the glomerular origin of albuminuria. Time-lapse imaging provides new details and important in vivo confirmation of the dynamics of podocyte movement, shedding, replacement, and the role of the parietal epithelial cells and Bowman's capsule in the pathology of glomerulosclerosis.

  17. Superamphiphobic nanofibrous membranes for effective filtration of fine particles. (United States)

    Wang, Na; Zhu, Zhigao; Sheng, Junlu; Al-Deyab, Salem S; Yu, Jianyong; Ding, Bin


    The worldwide demands are rising for an energy-efficient and cost-effective approach that can provide advanced nanofibrous membranes with high filtration performance and superior antifouling properties. Here we report a novel synthesized fluorinated polyurethane (FPU) modified nanofibrous membrane optimized to achieve oil and non-oil aerosol particle filtration. By employing the FPU incorporation, the polyacrylonitrile/polyurethane (PAN/PU) composite membranes were endowed with superhydrophobicity with a water contact angle of 154° and superoleophobicity with an oil contact angle of 151°. Morphology, surface wettability, porous structure, and filtration performance could be manipulated by tuning the solution composition as well as the hierarchical structure. Furthermore, the as-prepared membranes can capture, for the first time, a range of different oil aerosol particles in a single-unit operation, with >99.9% filtration efficiency, by using the combined contribution of fiber diameter and surface roughness acting on the objective particles. Exemplified here by the construction of superamphiphobic nanofibrous membrane, numerous applications of this medium includes high efficiency particulate air filters, ultra-low penetration air filters, and respiratory protection equipment.

  18. Membrane device and process for mass exchange, separation, and filtration (United States)

    Liu, Wei; Canfield, Nathan L.


    A membrane device and processes for fabrication and for using are disclosed. The membrane device may include a number of porous metal membranes that provide a high membrane surface area per unit volume. The membrane device provides various operation modes that enhance throughput and selectivity for mass exchange, mass transfer, separation, and/or filtration applications between feed flow streams and permeate flow streams.

  19. A scalable approach for high throughput branch flow filtration. (United States)

    Inglis, David W; Herman, Nick


    Microfluidic continuous flow filtration methods have the potential for very high size resolution using minimum feature sizes that are larger than the separation size, thereby circumventing the problem of clogging. Branch flow filtration is particularly promising because it has an unlimited dynamic range (ratio of largest passable particle to the smallest separated particle) but suffers from very poor volume throughput because when many branches are used, they cannot be identical if each is to have the same size cut-off. We describe a new iterative approach to the design of branch filtration devices able to overcome this limitation without large dead volumes. This is demonstrated by numerical modelling, fabrication and testing of devices with 20 branches, with dynamic ranges up to 6.9, and high filtration ratios (14-29%) on beads and fungal spores. The filters have a sharp size cutoff (10× depletion for 12% size difference), with large particle rejection equivalent to a 20th order Butterworth low pass filter. The devices are fully scalable, enabling higher throughput and smaller cutoff sizes and they are compatible with ultra low cost fabrication.

  20. Culture: A Filtration Process during Communication in Education. (United States)

    de Lange, Rudi

    This paper focuses on the filtration process of culture during communication in education with reference to visual elements. An introduction provides a review of some communication models--graphic representations of theories that attempt to predict and explain the process of communication. These simple models are discussed: Aristotle's model of…

  1. Pressure filtration of ceramic pastes. 4: Treatment of experimental data (United States)

    Torrecillas, A. S.; Polo, J. F.; Perez, A. A.


    The use of data processing method based on the algorithm proposed by Kalman and its application to the filtration process at constant pressure are described, as well as the advantages of this method. This technique is compared to the least squares method. The operation allows the precise parameter adjustment of the equation in direct relationship to the specific resistance of the cake.

  2. Novel filtration mode for fouling limitation in membrane bioreactors. (United States)

    Wu, Jinling; Le-Clech, Pierre; Stuetz, Richard M; Fane, Anthony G; Chen, Vicki


    A novel filtration mode is presented to reduce fouling propensity in membrane bioreactors (MBR). During this mode, an elevated high instantaneous flux (60Lm(-2)h(-1)) is initially applied for a short time (120s), followed by a longer filtration (290s) at lower flux (10.3Lm(-2)h(-1)) and a backwash in each filtration cycle. The mixed mode is expected to limit irreversible fouling as the reversible fouling created during the initial stage appears to protect the membrane. Hydraulic performance and the components of foulants were analyzed and compared with conventional continuous and backwash modes. It was found that the mixed mode featured lower trans-membrane pressure (TMP) after 24h of filtration when compared to other modes. The mixed mode was effective in preventing soluble microbial products (SMP) attaching directly onto the membrane surface, keeping the cake layer weakly compressed, and reducing the mixed liquor suspended solids (MLSS) accumulation on the membrane. This strategy reduced the resistances of both the cake layer and the gel layer. A factorial experimental design was carried out for eight runs with different conditions to identify the major operational parameters affecting the hydraulic performances. The results showed that the value of the flux in the initial high-flux period had the most effect on the performance of the mixed mode: high initial flux (60Lm(-2)h(-1)) led to improved performance.

  3. Removal of Inclusions from Molten Aluminum by Supergravity Filtration (United States)

    Song, Gaoyang; Song, Bo; Yang, Zhanbing; Yang, Yuhou; Zhang, Jing


    A new approach to removing inclusions from aluminum melt by supergravity filtration was investigated. The molten aluminum containing MgAl2O4 spinel and coarse Al3Ti particles was isothermally filtered with different gravity coefficients, different filtering times, and various filtering temperatures under supergravity field. When the gravity coefficient G ≥ 50, the alloy samples were divided automatically into two parts: the upper residue and the lower filtered aluminum. All inclusions (MgAl2O4 and Al3Ti particles) were nearly intercepted in the upper residue by filter felt with average pore size of 44.78 μm. The removal efficiencies of oxide inclusions and Al3Ti particles exceeded 98 and 90 pct, respectively, at G ≥ 50, t = 2 minutes, T = 973 K (700 °C). Besides, the yield of purified aluminum was up to 92.1 pct at G = 600, t = 2 minutes, and T = 973 K (700 °C). The calculations of centrifugal pressure indicated that supergravity filtration could effectively overcome the pressure drop without meeting the rigorous requirement of height of molten metal, especially for using the fine-pore filter medium. Moreover, cake-mode filtration was the major mechanism of supergravity filtration of molten metal in this work.

  4. Separation of nanoparticles: Filtration and scavenging from waste incineration plants. (United States)

    Förster, Henning; Thajudeen, Thaseem; Funk, Christine; Peukert, Wolfgang


    Increased amounts of nanoparticles are applied in products of everyday life and despite material recycling efforts, at the end of their life cycle they are fed into waste incineration plants. This raises the question on the fate of nanoparticles during incineration. In terms of environmental impact the key question is how well airborne nanoparticles are removed by separation processes on their way to the bag house filters and by the existing filtration process based on pulse-jet cleanable fibrous filter media. Therefore, we investigate the scavenging and the filtration of metal nanoparticles under typical conditions in waste incineration plants. The scavenging process is investigated by a population balance model while the nanoparticle filtration experiments are realized in a filter test rig. The results show that depending on the particle sizes, in some cases nearly 80% of the nanoparticles are scavenged by fly ash particles before they reach the bag house filter. For the filtration step dust cakes with a pressure drop of 500Pa or higher are found to be very effective in preventing nanoparticles from penetrating through the filter. Thus, regeneration of the filter must be undertaken with care in order to guarantee highly efficient collection of particles even in the lower nanometre size regime.

  5. Removal of Inclusions from Molten Aluminum by Supergravity Filtration (United States)

    Song, Gaoyang; Song, Bo; Yang, Zhanbing; Yang, Yuhou; Zhang, Jing


    A new approach to removing inclusions from aluminum melt by supergravity filtration was investigated. The molten aluminum containing MgAl2O4 spinel and coarse Al3Ti particles was isothermally filtered with different gravity coefficients, different filtering times, and various filtering temperatures under supergravity field. When the gravity coefficient G ≥ 50, the alloy samples were divided automatically into two parts: the upper residue and the lower filtered aluminum. All inclusions (MgAl2O4 and Al3Ti particles) were nearly intercepted in the upper residue by filter felt with average pore size of 44.78 μm. The removal efficiencies of oxide inclusions and Al3Ti particles exceeded 98 and 90 pct, respectively, at G ≥ 50, t = 2 minutes, T = 973 K (700 °C). Besides, the yield of purified aluminum was up to 92.1 pct at G = 600, t = 2 minutes, and T = 973 K (700 °C). The calculations of centrifugal pressure indicated that supergravity filtration could effectively overcome the pressure drop without meeting the rigorous requirement of height of molten metal, especially for using the fine-pore filter medium. Moreover, cake-mode filtration was the major mechanism of supergravity filtration of molten metal in this work.

  6. DEM Simulation of Particle Clogging in Fiber Filtration (United States)

    Tao, Ran; Yang, Mengmeng; Li, Shuiqing


    The formation of porous particle deposits plays a crucial role in determining the efficiency of filtration process. In this work, an adhesive discrete element method (DEM), in combination with CFD, is developed to dynamically describe these porous deposit structures and the changed flow field between two parallel fibers under the periodic boundary conditions. For the first time, it is clarified that the structures of clogged particles are dependent on both the adhesion parameter (defined as the ratio of interparticle adhesion to particle inertia) and the Stokes number (as an index of impaction efficiency). The relationship between the pressure-drop gradient and the coordination number along the filtration time is explored, which can be used to quantitatively classify the different filtration regimes, i.e., clean filter stage, clogging stage and cake filtration stage. Finally, we investigate the influence of the fiber separation distance on the particle clogging behavior, which affects the collecting efficiency of the fibers significantly. The results suggest that changing the arrangement of fibers can improve the filter performance. This work has been funded by the National Key Basic Research and Development Program (2013CB228506).

  7. Simulation of impaction filtration of aerosol droplets in porous media

    NARCIS (Netherlands)

    Ghazaryan, Lilya; Lopez Penha, David J.; Geurts, Bernard J.; Stolz, Steffen; Winkelmann, Christoph; Pereira, J.C.F.; Sequeira, A.; Pereira, J.M.C.


    We report on the development of a method to simulate from first principles the particle filtration efficiency of filters that are composed of structured porous media. We assume that the ratio of particle density to the fluid density is high. We concentrate on the motion of the particles in a laminar

  8. An improved method to isolate lichen algae by gel filtration. (United States)

    Pérez, M J; Vicente, C; Legaz, M E


    Photobiont cells of the lichen Evernia prunastri have completely been separated from their fungal partner by filtration through a bed of Sepharose 2B. Both mannitol and ribitol have been quantified by gas-liquid chromatography in the different steps of the isolation procedure. Absence of mannitol, which is exclusively produced by the mycobiont, has been used as the best probe to monitor isolation.

  9. Mechanism of reduced glomerular filtration rate in chronic malnutrition. (United States)

    Ichikawa, I; Purkerson, M L; Klahr, S; Troy, J L; Martinez-Maldonado, M; Brenner, B M


    To determine the physiological basis for the low glomerular filtration rate in chronic malnutrition, micropuncture studies were performed in Munich-Wistar rats chronically pair-fed isocaloric diets of either low (group 1, nine rats) or high protein content (group 2, nine rats). Despite the absence of hypoalbuminemia, average values for single nephron and total kidney glomerular filtration rate were nearly 35% lower in group 1 than in group 2. Mean values for glomerular capillary and Bowman's space hydraulic pressures were essentially identical in the two groups, thereby excluding glomerular transcapillary hydraulic pressure difference as the cause for the low filtration rates in group 1 animals. On the other hand, average glomerular capillary plasma flow rate and glomerular capillary ultrafiltration coefficient were significantly lower (by approximately 25 and approximately 50%, respectively) in group 1 than in group 2. The fall in glomerular capillary plasma flow rate was the consequence of increased afferent and efferent arteriolar resistances. Plasma and erythrocyte volumes were found to be equal in five additional pairs of group 1 and group 2 rats. Thus, the substantial alterations in the ultrafiltration coefficient, glomerular capillary plasma flow rate, and renal arteriolar resistances responsible for the low filtration rate in group 1 animals were not merely a consequence of decreased circulating blood or plasma volumes. Mean values for glomerular cross sectional area were significantly lower in group 1 than in group 2 despite similar values for kidney weight in the two groups. This reduction in glomerular cross sectional area in group 1 rats is presumed to reflect a decrease in effective filtration surface area and therefore likely accounts, at least in part, for the decline in ultrafiltration coefficient observed in this group.Finally, since the daily caloric intake of group 2 animals was restricted because of pair feeding requirements tied to the group 1

  10. Impacts of extreme flooding on riverbank filtration water quality. (United States)

    Ascott, M J; Lapworth, D J; Gooddy, D C; Sage, R C; Karapanos, I


    Riverbank filtration schemes form a significant component of public water treatment processes on a global level. Understanding the resilience and water quality recovery of these systems following severe flooding is critical for effective water resources management under potential future climate change. This paper assesses the impact of floodplain inundation on the water quality of a shallow aquifer riverbank filtration system and how water quality recovers following an extreme (1 in 17 year, duration >70 days, 7 day inundation) flood event. During the inundation event, riverbank filtrate water quality is dominated by rapid direct recharge and floodwater infiltration (high fraction of surface water, dissolved organic carbon (DOC) >140% baseline values, >1 log increase in micro-organic contaminants, microbial detects and turbidity, low specific electrical conductivity (SEC) 400% baseline). A rapid recovery is observed in water quality with most floodwater impacts only observed for 2-3 weeks after the flooding event and a return to normal groundwater conditions within 6 weeks (lower fraction of surface water, higher SEC, lower DOC, organic and microbial detects, DO). Recovery rates are constrained by the hydrogeological site setting, the abstraction regime and the water quality trends at site boundary conditions. In this case, increased abstraction rates and a high transmissivity aquifer facilitate rapid water quality recoveries, with longer term trends controlled by background river and groundwater qualities. Temporary reductions in abstraction rates appear to slow water quality recoveries. Flexible operating regimes such as the one implemented at this study site are likely to be required if shallow aquifer riverbank filtration systems are to be resilient to future inundation events. Development of a conceptual understanding of hydrochemical boundaries and site hydrogeology through monitoring is required to assess the suitability of a prospective riverbank filtration

  11. Cake filtration modeling: Analytical cake filtration model and filter medium characterization

    Energy Technology Data Exchange (ETDEWEB)

    Koch, Michael


    Cake filtration is a unit operation to separate solids from fluids in industrial processes. The build up of a filter cake is usually accompanied with a decrease in overall permeability over the filter leading to an increased pressure drop over the filter. For an incompressible filter cake that builds up on a homogeneous filter cloth, a linear pressure drop profile over time is expected for a constant fluid volume flow. However, experiments show curved pressure drop profiles, which are also attributed to inhomogeneities of the filter (filter medium and/or residual filter cake). In this work, a mathematical filter model is developed to describe the relationship between time and overall permeability. The model considers a filter with an inhomogeneous permeability and accounts for fluid mechanics by a one-dimensional formulation of Darcy's law and for the cake build up by solid continuity. The model can be solved analytically in the time domain. The analytic solution allows for the unambiguous inversion of the model to determine the inhomogeneous permeability from the time resolved overall permeability, e.g. pressure drop measurements. An error estimation of the method is provided by rewriting the model as convolution transformation. This method is applied to simulated and experimental pressure drop data of gas filters with textile filter cloths and various situations with non-uniform flow situations in practical problems are explored. A routine is developed to generate characteristic filter cycles from semi-continuous filter plant operation. The model is modified to investigate the impact of non-uniform dust concentrations. (author). 34 refs., 40 figs., 1 tab

  12. Towards sustainable membrane filtration of palm oil mill effluent: analysis of fouling phenomena from a hybrid PAC-UF process (United States)

    Amosa, Mutiu Kolade


    Sustainability of a membrane process depends on many factors of which fouling mitigation is the most central. Because membrane fouling phenomenon is very complex, extent of fouling potential of a feedwater with respect to a membrane has to be identified right from the design stage. This will acquaint engineers with the proper fouling mitigation measures during operation. This study presents a preliminary fouling data from the ultrafiltration of biotreated palm oil mill effluent (POME) after an upstream adsorption process. The flux decline is studied in a typical constant-pressure experiments with a cross-flow ultrafiltration of biotreated POME through Sartocon® polyethersulfone membranes (MWCOs 1, 5 and 10 kDa) at applied pressures of 40, 80 and 120 kPa. Results are examined, within the frame of the common blocking mechanisms and it was found that the blocking index η decreased from 2 to 0. Pore blocking phenomenon was successively observed from complete blocking (η = 2) down to cake filtration (η = 0), and the early blockage of the pores and a formation of a cake resulted in a limiting cake height. Thus, cake filtration could be best used to explain the fouling mechanisms of biotreated POME on the ultrafiltration membranes based on the R 2 values at all applied pressures. This demonstrates that the fouling was as a result of gradual reversible cake deposition which could easily be removed by less onerous cleaning methods. In addition, it could be concluded that the upstream adsorption reduced the particulate deposition on the membrane surface.

  13. A Novel Hierarchical Structured Poly(lactic acid/Titania Fibrous Membrane with Excellent Antibacterial Activity and Air Filtration Performance

    Directory of Open Access Journals (Sweden)

    Zhe Wang


    Full Text Available Hybrid poly(lactic acid/titania (PLA/TiO2 fibrous membranes exhibiting excellent air filtration performance and good antibacterial activity were prepared via the electrospinning technique. By varying the composition of the precursor solutions and the relative humidity, the morphologies of PLA/TiO2 fibers, including the nanopores and nanometer-scale protrusions on the surface of the fibers, could be regulated. The distribution of nanopores and TiO2 nanoparticles on the surface of PLA/TiO2 fibers was investigated. Nitrogen adsorption-desorption analysis revealed that nanopores and nanometer-scale protrusions play an important role in improving the specific surface area and nanopore volume of the relevant PLA/TiO2 fibrous membrane. Filtration performance tests conducted by measuring the penetration of sodium chloride aerosol particles with a 260 nm mass median diameter indicated that fibers with a high surface roughness, large specific surface area, and large nanopore volume greatly improved the particle capture efficiency and facilitated the penetration of airflow. Furthermore, the introduction of TiO2 nanoparticles endows the relevant fibrous membrane with antibacterial properties. The as-prepared PLA/TiO2 fibrous membrane loaded with 1.75 wt% TiO2 nanoparticles formed at a relative humidity of 45% exhibited a high filtration efficiency (99.996% and a relatively low pressure drop (128.7 Pa, as well as a high antibacterial activity of 99.5%.

  14. Experimental study on dynamic gas adsorption

    Institute of Scientific and Technical Information of China (English)

    Qin Yueping; Wang Yaru; Yang Xiaobin; Liu Wei; Luo Wei


    In order to predict the actual adsorption amount as gas adsorption reaches the equilibrium,this research designed a dynamic gas adsorption experiment under constant temperature and pressure,and also studied the isopiestic adsorption characteristics of coal samples with same quality but different sizes.Through the experiment,the study found the adsorption-time changing relationships under different pressures of four different size samples.After regression analysis,we obtained the functional relationship between adsorption and time.According to this,the research resulted in the actual adsorption amount when gas adsorption reaches the equilibrium.In addition,the current study obtained the relationship between adsorption and pressure as well as the effect of the coal size to the adsorption rate.These results have great theoretical and practical significance for the prediction of gas amount in coal seam and gas adsorption process.

  15. Surface modification influencing adsorption of red wine constituents: The role of functional groups (United States)

    Mierczynska-Vasilev, Agnieszka; Smith, Paul A.


    The adsorption of wine constituents at solid surfaces is important in applications such as filtration and membrane fouling, binding to tanks and fittings and interactions with processing aids such as bentonite. The interaction of wine constituents with surfaces is mediated through adsorbed wine components, where the type of constituents, amount, orientation, and conformation are of consequence for the surface response. This study examines the effect of surface chemical functionalities on the adsorption of red wine constituents. Plasma-polymerized films rich in amine, carboxyl, hydroxyl, formyl and methyl functional groups were generated on solid substrates whereas, glycidyltrimethylammonium chloride was covalently attached to allylamine plasma-polymer modified surface and poly(sodium styrenesulfonate) was electrostatically adsorbed to an amine plasma-polymerized surface. The surface chemical functionalities were characterized by X-ray photoelectron spectroscopy. The ability of different substrates to adsorb red wine constituents was evaluated by quartz crystal microbalance and atomic force microscopy. The results showed that substrates modified with -SO3H and -COOH groups can adsorb more of the wine nitrogen-containing compounds whereas -NH2 and -NR3 groups encourage carbon-containing compounds adsorption. Red wine constituents after filtration were adsorbed in higher extend on -NR3 and -CHO surfaces. The -OH modified surfaces had the lowest ability to absorb wine components.

  16. The glomerular filtration rate during pregnancy : Saline infusion enhances the glomerular filtration rate in the pregnant rat

    NARCIS (Netherlands)

    Faas, MM; Schuiling, GA; Klok, PA; Valkhof, N; Bakker, WW


    The glomerular filtration rate (GFR) of pregnant rats is generally believed to exceed non-pregnant values. This notion is primarily based upon standard inulin clearances. However, the inulin clearance requires continuous infusion of inulin usually dissolved in saline. Since saline infusion per se in

  17. Stochastic modeling of filtrate alkalinity in water filtration devices: Transport through micro/nano porous clay based ceramic materials (United States)

    Clay and plant materials such as wood are the raw materials used in manufacture of ceramic water filtration devices around the world. A step by step manufacturing procedure which includes initial mixing, molding and sintering is used. The manufactured ceramic filters have numerous pores which help i...

  18. Adsorption Desalination: A Novel Method

    KAUST Repository

    Ng, Kim Choon


    The search for potable water for quenching global thirst remains a pressing concern throughout many regions of the world. The demand for new and sustainable sources and the associated technologies for producing fresh water are intrinsically linked to the solving of potable water availability and hitherto, innovative and energy efficient desalination methods seems to be the practical solutions. Quenching global thirst by adsorption desalination is a practical and inexpensive method of desalinating the saline and brackish water to produce fresh water for agriculture irrigation, industrial, and building applications. This chapter provides a general overview of the adsorption fundamentals in terms of adsorption isotherms, kinetics, and heat of adsorption. It is then being more focused on the principles of thermally driven adsorption desalination methods. The recent developments of adsorption desalination plants and the effect of operating conditions on the system performance in terms of specific daily water production and performance ratio are presented. Design of a large commercial adsorption desalination plant is also discussed herein.

  19. Adsorption of Atenolol on Kaolinite

    Directory of Open Access Journals (Sweden)

    Yingmo Hu


    Full Text Available In this study the adsorption of atenolol (AT, a β-blocker, on kaolinite, a clay mineral of low surface charge, was investigated under varying initial AT concentration, equilibrium time, solution pH, ionic strength, and temperature conditions. The results showed that the amounts of AT uptake by kaolinite were close to its cation exchange capacity value and the AT adsorption was almost instantaneous, suggesting a surface adsorption. The adsorption was exothermic and the free energy of adsorption was small negative, indicating physical adsorption. The increase in ionic strength of the solution drastically reduced AT uptake on kaolinite. A significant reduction in AT uptake was found at solution pH below 5 or above 10. The FTIR results showed band shifting and disappearance for NH bending vibration and benzene ring skeletal vibration at 3360 and 1515 cm−1 and band splitting at 1412 and 1240 cm−1 attributed to C–N valence vibration coupled with NH bending vibrations and alkyl aryl ether linkage, suggesting the participation of NH, –O–, and benzene ring for AT adsorption on kaolinite.

  20. Uncertainty and Sensitivity Analysis of Filtration Models for Non-Fickian transport and Hyperexponential deposition

    DEFF Research Database (Denmark)

    Yuan, Hao; Sin, Gürkan


    filtration coefficients, while deposition is more sensitive to filtration coefficients. More experimental measurements at these moments are suggested to determine dispersion coefficients more accurately. More measurements of the steady-state effluent concentration or deposition are suggested to determine...

  1. Characterization, Washing, Leaching, and Filtration of C-104 Sludge

    Energy Technology Data Exchange (ETDEWEB)

    KP Brooks; PR Bredt; GR Golcar; SA Hartley; LK Jagoda; KG Rappe; MW Urie


    Approximately 1,400 g of wet Hanford Tank C-104 Sludge was evaluated by Battelle for the high-level waste (HLW) pretreatment processes of ultrafiltration, dilute caustic washing, and elevated-temperature caustic leaching. The filterability of diluted C-104 sludge was measured with a 0.1-{micro}m sintered metal Mott filter using a 24-inch-long, single-element, crossflow filtration system (cells unit filter [CUF]). While the filtrate was being recirculated prior to washing and leaching, a 6.9 wt% solids slurry was evaluated with a matrix of seven 1-hour conditions of varying trans-membrane pressure (30 to 70 psid) and axial velocity (9 to 15 ft/s). The filtrate flux and backpulse efficiency were determined for each condition. The slurry was concentrated to 23 wt% solids, a second matrix of six 1-hour conditions was performed, and data analogous to that recorded in the first matrix were obtained. The low-solids-concentration matrix produced filtrate flux rates that ranged from 0.038 to 0.083 gpm/ft{sup 2}. The high-solids-concentration matrix produced filtrate flux rates that ranged from 0.0095 to 0.0172 gpm/ft{sup 2}. In both cases, the optimum filtrate flux was at the highest axial velocity (15 ft/s) and transmembrane pressure had little effect. Nearly all of the measured filtrate fluxes were more than an order of magnitude greater than the required plant flux for C-104 of 0.00126 gpm/ft{sup 2}. In both matrices, the filtrate flux appeared to be proportional to axial velocity, and the permeability appeared to be inversely proportional to the trans-membrane pressure. The first test condition was repeated as the last test condition for each matrix. In both cases, there was a significant decrease in filtrate flux, indicating some filter fouling during the test matrix that could not be removed by backpulsing alone, although the backpulse number and duration were not optimized. Following testing of these two matrices, the material was washed within the CUF by

  2. Static and dynamic filtrations of different clay, electrolytes, polymer systems; Filtrations statiques et dynamiques de differents systemes argile, electrolytes, polymere

    Energy Technology Data Exchange (ETDEWEB)

    Li, Y.


    Filtration properties of model drilling fluids composed of water, clays, electrolytes and water soluble polymers have been studied in static and dynamic conditions on paper filters and rock slices. Filtration experiments combined with cake observations by cryo-S.E.M. and T.E.M., show the influence of the size shape of clay particles as well as their associating mode in suspension, on the texture of the cake, its permeability, and relaxation properties. These parameters depend on the nature of the electrolyte. The polymer reduces the cake permeability by enhancing the dispersion of the clay within the suspension, but mainly by plugging the porous network due its auto aggregation properties. The cake construction in dynamic conditions, is related to the state of aggregation of the initial suspension, its poly-dispersity, its sensitivity to shear rates, and also, to the permeability of the cake built at the beginning of the filtration. In all cases, the rate of thickening of the cake is slower and larger filtrate volumes are obtained compared to the static conditions. Shear rate has two effects: first, to dissociate the weak aggregates in suspension, second, to impose a size selection of the particles in the case of a poly-dispersed suspension. At high shear rates, a cake of constant thin thickness is quickly obtained. The thickness of this limiting cake depends on the fraction of small particles present in suspension, or that can be formed by dissociation of weak aggregates under shear rate. The permeability of this limiting cake formed in dynamic conditions is, as in static conditions, controlled by the size and the shape of the particles that form the cake or by the presence of a build loss reducer water soluble polymer. Filtrations carried out on Fontainebleau sandstones allow to visualize the internal cake and to precise the risks of formation damage by the drilling fluid. (author) 127 refs.

  3. Carbon nanomaterials for gas adsorption

    CERN Document Server

    Terranova, Maria Letizia


    Research in adsorption of gases by carbon nanomaterials has experienced considerable growth in recent years, with increasing interest for practical applications. Many research groups are now producing or using such materials for gas adsorption, storage, purification, and sensing. This book provides a selected overview of some of the most interesting scientific results regarding the outstanding properties of carbon nanomaterials for gas adsorption and of interest both for basic research and technological applications. Topics receiving special attention in this book include storage of H, purific

  4. Hydrogen purification by periodic adsorption

    Energy Technology Data Exchange (ETDEWEB)

    Barg, Christian; Secchi, Argimiro R.; Trierweiler, Jorge O. [Rio Grande do Sul Univ., Porto Alegre, RS (Brazil). Dept. de Engenharia Quimica]. E-mail:;;


    The periodic adsorption processes have been widely used for industrial applications, mainly because it spends less energy than the usual gas separation processes, like the cryogenic distillation. The largest commercial application of periodic adsorption processes is the pressure swing adsorption (PSA) applied to hydrogen purification. Although its wide use in the chemical and petrochemical industry, there are no reports in the open literature about complete modeling studies of a complex commercial unit, with multiple adsorbents and multiple beds and several feed components. This study has as objective the modeling, optimization and dynamical analysis of an industrial PSA unit for hydrogen purification. (author)

  5. On influence of some ecological factors on intensity of the oyster filtration (Ostrea edulis

    Directory of Open Access Journals (Sweden)

    N. A. Sitnik


    Full Text Available Quantitative regularities of the filtration feeding of the Black Sea oyster depending on some ecological factors were studied. Influence of food concentration on filtration activity of shellfish is described. Dependences of filtration speed are certain on the body mass of oysters under different temperature conditions were found. The seasonal changes of its intensity in the Kerch Strait and the Donuzlav Estuary are illustrated. Influence of water salinity on filtration activity of the oyster is established.

  6. Particulate Matter Filtration Design Considerations for Crewed Spacecraft Life Support Systems (United States)

    Agui, Juan H.; Vijayakumar, R.; Perry, Jay L.


    Particulate matter filtration is a key component of crewed spacecraft cabin ventilation and life support system (LSS) architectures. The basic particulate matter filtration functional requirements as they relate to an exploration vehicle LSS architecture are presented. Particulate matter filtration concepts are reviewed and design considerations are discussed. A concept for a particulate matter filtration architecture suitable for exploration missions is presented. The conceptual architecture considers the results from developmental work and incorporates best practice design considerations.

  7. Study of water quality improvements during riverbank filtration at three midwestern United States drinking water utilities (United States)

    Weiss, W.; Bouwer, E.; Ball, W.; O'Melia, C.; Lechevallier, M.; Arora, H.; Aboytes, R.; Speth, T.


    manner that is not otherwise accomplished through conventional processes of drinking water treatment (e.g. coagulation, flocculation, sedimentation). 3. Evaluate changes in the character of NOM upon ground passage from the river to the wells. The experimental approach entailed monitoring the performance of three different RBF systems along the Ohio, Wabash, and Missouri Rivers in the Midwestern United States and involved a cooperative effort between the American Water Works Company, Inc. and Johns Hopkins University. Samples of the river source waters and the bank-filtered well waters were analyzed for a range of water quality parameters including TOC, DOC, UV-absorbance at 254-nm (UV-254), biodegradable dissolved organic carbon (BDOC), biologically assimilable organic carbon (AOC), inorganic species, DBP formation potential, and microorganisms. In the second year of the project, river waters were subjected to a bench-scale conventional treatment train consisting of coagulation, flocculation, sedimentation, glass-fiber filtration, and ozonation. The treated river waters were compared with the bank-filtered waters in terms of TOC, DOC, UV-254, and DBP formation potential. In the third and fourth years of the project, NOM from the river and well waters was characterized using the XAD-8 resin adsorption fractionation method (Leenheer, 1981; Thurman &Malcolm, 1981). XAD-8 adsorbing (hydrophobic) and non-adsorbing (hydrophilic) fractions of the river and well waters were compared with respect to DOC, UV-254, and DBP formation potential to determine whether RBF alters the character of the source water NOM upon ground passage and if so, which fractions are preferentially removed. The results demonstrate the effectiveness of RBF at removing the organic precursors to potentially carcinogenic DBPs. When compared to a bench-scale conventional treatment train optimized for turbidity removal, RBF performed as well as the treatment at one of the sites and significantly better than the

  8. Facilitating community water supply treatment : from transferring filtration technology to multi-stakeholder learning

    NARCIS (Netherlands)

    Visscher, J.T.


    For more than a quarter of a century, IRC has been supporting the development of Slow Sand Filtration (SSF) and more recently, together with CINARA, the pioneering of Multi-Stage Filtration (MSF) - a combination of Gravel Filtration and SSF that has been shown to have great potential as an effective

  9. 40 CFR 141.717 - Pre-filtration treatment toolbox components. (United States)


    ... 40 Protection of Environment 22 2010-07-01 2010-07-01 false Pre-filtration treatment toolbox... Cryptosporidium Requirements for Microbial Toolbox Components § 141.717 Pre-filtration treatment toolbox... softening stages prior to filtration. Both softening stages must treat the entire plant flow taken from...

  10. 21 CFR 211.46 - Ventilation, air filtration, air heating and cooling. (United States)


    ... 21 Food and Drugs 4 2010-04-01 2010-04-01 false Ventilation, air filtration, air heating and... Buildings and Facilities § 211.46 Ventilation, air filtration, air heating and cooling. (a) Adequate... holding of a drug product. (c) Air filtration systems, including prefilters and particulate matter...

  11. 75 FR 28295 - Cummins Filtration, Including On-Site Leased Workers From Manpower and Spherion Staffing... (United States)


    ... Employment and Training Administration Cummins Filtration, Including On-Site Leased Workers From Manpower and... workers of Cummins Filtration, including on-site leased workers from Manpower, Lake Mills, Iowa. The... Mills, Iowa location of Cummins Filtration to provide procurement and inventory management services...

  12. Description of three-phase filtration with a novel dimensionless number

    NARCIS (Netherlands)

    Huizenga, P.; Kuipers, J.A.M.; Swaaij, van W.P.M.


    Internal filtration in slurry bubble columns offers a possible solution to the filtration problems related to this reactor type. The applicability of the concept has already been demonstrated at full-scale for wastewater treatment, even though a theoretical description of internal filtration is lack

  13. Produced water re-injection in a non-fresh water aquifer with geochemical reaction, hydrodynamic molecular dispersion and adsorption kinetics controlling: model development and numerical simulation (United States)

    Obe, Ibidapo; Fashanu, T. A.; Idialu, Peter O.; Akintola, Tope O.; Abhulimen, Kingsley E.


    An improved produced water reinjection (PWRI) model that incorporates filtration, geochemical reaction, molecular transport, and mass adsorption kinetics was developed to predict cake deposition and injectivity performance in hydrocarbon aquifers in Nigeria oil fields. Thus, the improved PWRI model considered contributions of geochemical reaction, adsorption kinetics, and hydrodynamic molecular dispersion mechanism to alter the injectivity and deposition of suspended solids on aquifer wall resulting in cake formation in pores during PWRI and transport of active constituents in hydrocarbon reservoirs. The injectivity decline and cake deposition for specific case studies of hydrocarbon aquifers in Nigeria oil fields were characterized with respect to its well geometry, lithology, and calibrations data and simulated in COMSOL multiphysics software environment. The PWRI model was validated by comparisons to assessments of previous field studies based on data and results supplied by operator and regulator. The results of simulation showed that PWRI performance was altered because of temporal variations and declinations of permeability, injectivity, and cake precipitation, which were observed to be dependent on active adsorption and geochemical reaction kinetics coupled with filtration scheme and molecular dispersion. From the observed results and findings, transition time t r to cake nucleation and growth were dependent on aquifer constituents, well capacity, filtration coefficients, particle-to-grain size ratio, water quality, and more importantly, particle-to-grain adsorption kinetics. Thus, the results showed that injectivity decline and permeability damage were direct contributions of geochemical reaction, hydrodynamic molecular diffusion, and adsorption kinetics to the internal filtration mechanism, which are largely dependent on the initial conditions of concentration of active constituents of produced water and aquifer capacity.

  14. Prediction of Pure Component Adsorption Equilibria Using an Adsorption Isotherm Equation Based on Vacancy Solution Theory

    DEFF Research Database (Denmark)

    Marcussen, Lis; Aasberg-Petersen, K.; Krøll, Annette Elisabeth


    An adsorption isotherm equation for nonideal pure component adsorption based on vacancy solution theory and the Non-Random-Two-Liquid (NRTL) equation is found to be useful for predicting pure component adsorption equilibria at a variety of conditions. The isotherm equation is evaluated successfully...... adsorption systems, spreading pressure and isosteric heat of adsorption are also calculated....

  15. Potential Theory of Multicomponent Adsorption

    DEFF Research Database (Denmark)

    Shapiro, Alexander; Stenby, Erling Halfdan


    We developed a theory of multicomponent adsorption on the basis of the potential concept originally suggested by Polanyi. The mixture is considered as a heterogeneous substance segregated in the external field emitted by the adsorbent. The same standard equation of state, with no additional fitting...... parameters, is used for the segregated and for the bulk phases. With this approach, few parameters are needed to correlate pure component adsorption isotherms. These parameters may be used to predict adsorption equilibria of multicomponent mixtures without additional adjustment. A connection between...... the potential theory and the spreading pressure concept is established, and problems of the theory consistency are studied. Numerical algorithms are suggested for evaluation of the segregated state of the mixture in the potential field of adsorption forces. Comparison with experimental data shows good agreement...

  16. Multilayer adsorption on fractal surfaces. (United States)

    Vajda, Péter; Felinger, Attila


    Multilayer adsorption is often observed in liquid chromatography. The most frequently employed model for multilayer adsorption is the BET isotherm equation. In this study we introduce an interpretation of multilayer adsorption measured on liquid chromatographic stationary phases based on the fractal theory. The fractal BET isotherm model was successfully used to determine the apparent fractal dimension of the adsorbent surface. The nonlinear fitting of the fractal BET equation gives us the estimation of the adsorption equilibrium constants and the monolayer saturation capacity of the adsorbent as well. In our experiments, aniline and proline were used as test molecules on reversed phase and normal phase columns, respectively. Our results suggest an apparent fractal dimension 2.88-2.99 in the case of reversed phase adsorbents, in the contrast with a bare silica column with a fractal dimension of 2.54.

  17. Flocculation, hydrophobic agglomeration and filtration of ultrafine coal (United States)

    Yu, Zhimin

    In coal preparation plant circuits, fine coal particles are aggregated either by oil agglomeration or by flocculation. In a new hydrophobic agglomeration process, recently developed hydrophobic latices are utilized. While the selectivity of such aggregation processes determines the beneficiation results, the degree of aggregation has a strong effect on fine coal filtration. The aim of this research was to study the fundamentals and analyze the common grounds for these processes, including the potential effect of the coal surface properties. The selective flocculation tests, in which three types of coal, which differed widely in surface wettability, and three additives (hydrophobic latices, a semi-hydrophobic flocculant and a typical hydrophilic polyelectrolyte) were utilized, showed that coal wettability plays a very important role in selective flocculation. The abstraction of a hydrophobic latex on coal and silica revealed that the latex had a much higher affinity towards hydrophobic coal than to hydrophilic mineral matter. As a result, the UBC-1 hydrophobic latex flocculated only hydrophobic coal particles while the polyelectrolyte (PAM) flocculated all the tested coal samples and minerals, showing no selectivity in the fine coal beneficiation. The oil agglomeration was tested using kerosene emulsified with various surfactants (e.g. cationic, anionic and non-ionic). Surfactants enhance not only oil emulsification, hence reducing oil consumption (down to 0.25--0.5%), but also entirely change the electrokinetic properties of the droplets and affect the interaction energy between oil droplets and coal particles. Consequently, the results found in the course of the experimental work strongly indicate that even oxidized coals can be agglomerated if cationic surfactants are used to emulsify the oil. Oil agglomeration of the Ford-4 ultrafine coal showed that even at extremely low oil consumption (0.25 to 0.5%), a clean coal product with an ash content around 5% at over

  18. Particle flocculation and filtration by high-gradient magnetic fields

    Energy Technology Data Exchange (ETDEWEB)

    Tsouris, C. [Oak Ridge National Lab., TN (United States); Yiacoumi, S. [Georgie Inst. of Technology, Atlanta, GA (United States)


    Flocculation and filtration of micrometer-sized particles in a high-gradient magnetic field (HGMF) were investigated. Experiments were conducted using a cryogenic magnet of 6 Tesla maximum strength. Hematite particles were used for flocculation and filtration experiments. A new approach of using magnetic fields to enhance separation of weakly magnetic particles was also investigated. This approach is based on magnetic seeding which involves flocculation of existing non-magnetic particles with injected paramagnetic particles. A particle-flocculation model was developed based on trajectory analysis. External forces due to gravity and magnetism, and interparticle forces such as electrostatic, hydrodynamic, magnetic dipole, and van der Waals forces, were taken into consideration in these models.

  19. High gradient magnetic filtration and separation. Part II

    Energy Technology Data Exchange (ETDEWEB)

    Fletcher, D.

    The paper contains the second part of a two part paper in which the developing role of high grade magnetic filtration and separation (HGMF/S) is reviewed. Part I discussed the increasing potential for the technique and outlined the basic theory behind it. Part II describes the practical application of the technique with particular reference to the beneficiation of fine coal. Aspects considered are: a simple laboratory HGMF/S device; the matrix and its efficency; processing rates in HGMF/S; coal desulphurization and deashing - a potential application of HGMS. The paper concludes that HGMF/S is a process of high potential application as natural particles have a wide variation of magnetic character. Add to this the space saving nature of very powerful superconducting systems and their low energy consumption and it can be safely predicted that HGMF/S will, over time, gain many more applications as whole or part of whole filtration and separation processes. 19 references.

  20. NASA Lunar Dust Filtration and Separations Workshop Report (United States)

    Agui, Juan H.; Stocker, Dennis P.


    NASA Glenn Research Center hosted a 2.5-day workshop, entitled "NASA Lunar Dust Filtration and Separations Workshop" at the Ohio Aerospace Institute in Cleveland, Ohio, on November 18 to 20, 2008. The purpose of the workshop was to address the issues and challenges of particulate matter removal from the cabin atmospheres in the Altair lunar lander, lunar habitats, and in pressurized rovers. The presence of lunar regolith dust inside the pressurized volumes was a theme of particular interest. The workshop provided an opportunity for NASA, industry experts, and academia to identify and discuss the capabilities of current and developing air and gas particulate matter filtration and separations technologies as they may apply to NASA s needs. A goal of the workshop was to provide recommendations for strategic research areas in cabin atmospheric particulate matter removal and disposal technologies that will advance and/or supplement the baseline approach for these future lunar surface exploration missions.

  1. Review series: The cell biology of renal filtration. (United States)

    Scott, Rizaldy P; Quaggin, Susan E


    The function of the kidney, filtering blood and concentrating metabolic waste into urine, takes place in an intricate and functionally elegant structure called the renal glomerulus. Normal glomerular function retains circulating cells and valuable macromolecular components of plasma in blood, resulting in urine with just trace amounts of proteins. Endothelial cells of glomerular capillaries, the podocytes wrapped around them, and the fused extracellular matrix these cells form altogether comprise the glomerular filtration barrier, a dynamic and highly selective filter that sieves on the basis of molecular size and electrical charge. Current understanding of the structural organization and the cellular and molecular basis of renal filtration draws from studies of human glomerular diseases and animal models of glomerular dysfunction.

  2. Short-Cycle Adsorption Refrigerator (United States)

    Chan, C. K.


    Modular adsorption/Joule-Thomson-effect refrigerator offers fast regeneration; adsorption/desorption cycle time expected to be 1 minute. Pressurized hydrogen generated by bank of compressor modules during heating phase passes through system of check valves and expands in Joule-Thomson junction as it enters refrigeration chamber. Hydrogen absorbs heat from load before it is sucked out by another bank of compressor modules in cooling phase.

  3. Adsorption hysteresis in nanopores (United States)

    Neimark; Ravikovitch; Vishnyakov


    Capillary condensation hysteresis in nanopores is studied by Monte Carlo simulations and the nonlocal density functional theory. Comparing the theoretical results with the experimental data on low temperature sorption of nitrogen and argon in cylindrical channels of mesoporous siliceous molecular sieves of MCM-41 type, we have revealed four qualitatively different sorption regimes depending on the temperature and pore size. As the pore size increases at a given temperature, or as the temperature decreases at a given pore size, the following regimes are consequently observed: volume filling without phase separation, reversible stepwise capillary condensation, irreversible capillary condensation with developing hysteresis, and capillary condensation with developed hysteresis. We show that, in the regime of developed hysteresis (pores wider than 5 nm in the case of nitrogen sorption at 77 K), condensation occurs spontaneously at the vaporlike spinodal while desorption takes place at the equilibrium. A quantitative agreement is found between the modeling results and the experimental hysteresis loops formed by the adsorption-desorption isotherms. The results obtained provide a better understanding of the general behavior of confined fluids and the specifics of sorption and phase transitions in nanomaterials.

  4. Rapid detection of simulated bacteremia by centrifugation and filtration.


    Herlich, M B; Schell, R F; Francisco, M.; Le Frock, J L


    A centrifugation-filtration procedure was developed to expedite the recovery of microorganisms from blood. Fresh whole human blood was inoculated with various aerobic and facultatively anaerobic microorganisms (3 to 18 per ml). The seeded blood was carefully overlaid on a Ficoll-Hypaque gradient (density, 1.114 g/ml) and centrifuged (400 x g) for 45 min at ambient temperature. The entire gradient (plasma, leukocytes, and Ficoll-Hypaque) was removed and filtered through a 0.22-micrometer membr...

  5. Benchtop isolation and characterization of functional exosomes by sequential filtration. (United States)

    Heinemann, Mitja L; Ilmer, Matthias; Silva, Leslie P; Hawke, David H; Recio, Alejandro; Vorontsova, Maria A; Alt, Eckhard; Vykoukal, Jody


    Early and minimally invasive detection of malignant events or other pathologies is of utmost importance in the pursuit of improved patient care and outcomes. Recent evidence indicates that exosomes and extracellular vesicles in serum and body fluids can contain nucleic acid, protein, and other biomarkers. Accordingly, there is great interest in applying these clinically as prognostic, predictive, pharmacodynamic, and early detection indicators. Nevertheless, existing exosome isolation methods can be time-consuming, require specialized equipment, and/or present other inefficiencies regarding purity, reproducibility and assay cost. We have developed a straightforward, three-step protocol for exosome isolation of cell culture supernatants or large volumes of biofluid based on sequential steps of dead-end pre-filtration, tangential flow filtration (TFF), and low-pressure track-etched membrane filtration that we introduce here. Our approach yields exosome preparations of high purity and defined size distribution and facilitates depletion of free protein and other low-molecular-weight species, extracellular vesicles larger than 100nm, and cell debris. Samples of exosomes prepared using the approach were verified morphologically by nanoparticle tracking analysis and electron microscopy, and mass spectrometry analyses confirmed the presence of previously reported exosome-associated proteins. In addition to being easy-to-implement, sequential filtration yields exosomes of high purity and, importantly, functional integrity as a result of the relatively low-magnitude manipulation forces employed during isolation. This answers an unmet need for preparation of minimally manipulated exosomes for investigations into exosome function and basic biology. Further, the strategy is amenable to translation for clinical exosome isolations because of its speed, automatability, scalability, and specificity for isolating exosomes from complex biological samples.

  6. The Potentiometric Titration of Filtrates from the Bachmann Process (United States)


    or above, the ferrous sulfato tost was negative anc: tho ph«holdl»ulfoBlc’ IfSt test indicated Less than 100 ppm., of niträte ion in the Ü.5). 5. With the exception of two of the early runs, when the pH of the filtrate waa 2.0 or abovt- the ferrous sulfato test in the distillate



    Helena Frančáková; Štefan Dráb; Miriam Solgajová; Žigmund Tóth; Tatiana Bojňanská


    Looks of beer is an important factor which is associated with high clarity. Clarity of beer is a basic precondition of its good marketability and consumer satisfaction. Beer filtration is ideal tool to create required optical properties. There is a high accent on this operation in brewery and minibrewery. The process of filtering removes unwanted haze-active substances in order to increase clarity and overall stability of beer. Objective method to expressing clarity of beer is nephelometric d...

  8. Intra-aortic filtration is effective in collecting hazardous materials. (United States)

    Mestres, Carlos-A; Bernabeu, Eduardo; Fernández, Claudio; Colli, Andrea; Josa, Miguel


    Neurological complications after cardiac operations are mostly due to particle embolization. This case illustrates the embolic potential of any material. A 77-year-old lady underwent re-operation for homograft aortic regurgitation and mitral valve replacement. Intra-aortic filtration was used. After cardiopulmonary bypass the filter was found to have captured a pledget from a suture used to secure the mitral replacement device.

  9. Fast filtration for metabolome sampling of suspended animal cells


    Volmer, Martin; Northoff, Stefan; Scholz, Sebastian; Thüte, Tobias; Büntemeyer, Heino; Noll, Thomas


    Abstract A new method for sampling suspended animal cells by fast filtration is presented that allows rapid quenching of cellular metabolism and efficient separation of the cells from culture medium. Compared to sampling with a microstructure heat exchanger or centrifugation without prior quenching, the adenylate energy charge and the measured concentrations especially of metabolites with a high turnover rate or of metabolites early in metabolic pathways were substantially higher. ...

  10. Surfactant adsorption kinetics in microfluidics (United States)

    Riechers, Birte; Maes, Florine; Akoury, Elias; Semin, Benoît; Gruner, Philipp; Baret, Jean-Christophe


    Emulsions are metastable dispersions. Their lifetimes are directly related to the dynamics of surfactants. We design a microfluidic method to measure the kinetics of adsorption of surfactants to the droplet interface, a key process involved in foaming, emulsification, and droplet coarsening. The method is based on the pH decay in the droplet as a direct measurement of the adsorption of a carboxylic acid surfactant to the interface. From the kinetic measurement of the bulk equilibration of the pH, we fully determine the adsorption process of the surfactant. The small droplet size and the convection during the droplet flow ensure that the transport of surfactant through the bulk is not limiting the kinetics of adsorption. To validate our measurements, we show that the adsorption process determines the timescale required to stabilize droplets against coalescence, and we show that the interface should be covered at more than 90% to prevent coalescence. We therefore quantitatively link the process of adsorption/desorption, the stabilization of emulsions, and the kinetics of solute partitioning—here through ion exchange—unraveling the timescales governing these processes. Our method can be further generalized to other surfactants, including nonionic surfactants, by making use of fluorophore-surfactant interactions.

  11. Adsorption refrigeration technology theory and application

    CERN Document Server

    Wang, Ruzhu; Wu, Jingyi


    Gives readers a detailed understanding of adsorption refrigeration technology, with a focus on practical applications and environmental concerns Systematically covering the technology of adsorption refrigeration, this book provides readers with a technical understanding of the topic as well as detailed information on the state-of-the-art from leading researchers in the field. Introducing readers to background on the development of adsorption refrigeration, the authors also cover the development of adsorbents, various thermodynamic theories, the design of adsorption systems and adsorption refri

  12. The filtration of colloidal gold nanoparticles with carbon nanotubes (United States)

    de Jong, Frans Jan; Buffet, Adeline


    Understanding the local filtering of nanoparticles (NPs) is essential for the development and optimization of medical and industrial applications. Microfocus small-angle X-ray scattering (μSAXS) was used to determine the local filtration kinetics of 100 nm sized colloidal gold nanoparticles (Au NPs) within a multi-walled carbon nanotube (MWCNT) forest. To get a physical insight into the Au NP filtration process within the MWCNT forest a novel model based on the well-known DLVO theory was developed. The DLVO theory is commonly used to describe the interaction between colloidal particles. In addition to the attractive Van de Waals force and the electrostatic double-layer force, a non-DLVO force is added to account for hydration and hydrophobic effects. The model presented here shows that the Au NPs are mainly unfavorably deposited into the so-called secondary energy minimum. This latter finding is in good agreement with the experimental observations and the literature, in which unfavorable particle deposition is related to deposition into the secondary energy minimum. The use of μSAXS to get a physical insight into the local deposition kinetics of submicrometer particles opens up new pathways to optimize the preparation of MWCNT forests for filtration purposes.

  13. Are vacuum-filtrated reduced graphene oxide membranes symmetric?

    KAUST Repository

    Tang, Bo


    Graphene or reduced graphene oxide (rGO) membrane-based materials are promising for many advanced applications due to their exceptional properties. One of the most widely used synthesis methods for rGO membranes is vacuum filtration of graphene oxide (GO) on a filter membrane, followed by reduction, which shows great advantages such as operational convenience and good controllability. Despite vacuum-filtrated rGO membranes being widely used in many applications, a fundamental question is overlooked: are the top and bottom surfaces of the membranes formed at the interfaces with air and with the filter membrane respectively symmetric or asymmetric? This work, for the first time, reports the asymmetry of the vacuum-filtrated rGO membranes and discloses the filter membranes’ physical imprint on the bottom surface of the rGO membrane, which takes place when the filter membrane surface pores have similar dimension to GO sheets. This result points out that the asymmetric surface properties should be cautiously taken into consideration while designing the surface-related applications for GO and rGO membranes.

  14. GPS Data Filtration Method for Drive Cycle Analysis Applications

    Energy Technology Data Exchange (ETDEWEB)

    Duran, A.; Earleywine, M.


    When employing GPS data acquisition systems to capture vehicle drive-cycle information, a number of errors often appear in the raw data samples, such as sudden signal loss, extraneous or outlying data points, speed drifting, and signal white noise, all of which limit the quality of field data for use in downstream applications. Unaddressed, these errors significantly impact the reliability of source data and limit the effectiveness of traditional drive-cycle analysis approaches and vehicle simulation software. Without reliable speed and time information, the validity of derived metrics for drive cycles, such as acceleration, power, and distance, become questionable. This study explores some of the common sources of error present in raw onboard GPS data and presents a detailed filtering process designed to correct for these issues. Test data from both light and medium/heavy duty applications are examined to illustrate the effectiveness of the proposed filtration process across the range of vehicle vocations. Graphical comparisons of raw and filtered cycles are presented, and statistical analyses are performed to determine the effects of the proposed filtration process on raw data. Finally, an evaluation of the overall benefits of data filtration on raw GPS data and present potential areas for continued research is presented.

  15. Ultra-filtration measurement using CT imaging technology

    Energy Technology Data Exchange (ETDEWEB)

    Lu Junfeng [Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, No.2 Beiyitiao Street, Zhongguancun, Haidian District, Beijing, 100190 (China); Lu Wenqiang, E-mail: [Graduate University of Chinese Academy of Sciences, No.19A Yuquan Road, Shijingshan District, Beijing, 100049 (China)


    As a functional unit in the hemodialysis process, dialyzer captured quite a few medical research interests since 1980s. In the design of dialyzer or in the ongoing hemodialysis process, to estimate the ultra-filtration amount of a dialyzer, the sideway loss of the running blood flow through hollow fibers or filtration channels should be measured. This further leads to the measurement of the blood flow inside the dialyzer. For this measurement, a non-invasive method is highly desired because of the high-dense bundled hollow fibers or packed channels inside the dialyzer. As non-invasive measurement tools, CT (Computed Tomography) technologies were widely used for tissue, bone, and cancerous clinical analyses etc .... Thus, in this paper, a CT system is adopted to predict the blood flow inside a hollow fiber dialyzer. In view of symmetric property of the hollow fiber dialyzer, the largest cutting plane that parallels to the cylindrical dialyzer was analyzed by the CT system dynamically. And then, a noninvasive image analysis method used to predict the ultra-filtration amount is proposed.

  16. Evaluation of hyperbaric filtration for fine coal dewatering. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Parekh, B.K. [Univ. of Kentucky, Lexington, KY (United States); Hogg, R. [Pennsylvania State Univ., University Park, PA (United States); Fonseca, A. [CONSOL Inc. (United States)


    The main objectives of the project were to investigate the fundamental aspects of particle-liquid interaction in fine coal dewatering, to conduct laboratory and pilot plant studies on the applicability of hyperbaric filter systems and to develop process conditions for dewatering of fine clean coal to less than 20% moisture. The program consisted of three phases, namely Phase 1 -- Model Development, Phase 2 -- Laboratory Studies, Phase 3 -- Pilot Plant Testing. The Pennsylvania State University led efforts in Phase 1, the University of Kentucky in Phase 2, and CONSOL Inc. in Phase 3 of the program. All three organizations were involved in all the three phases of the program. The Pennsylvania State University developed a theoretical model for hyperbaric filtration systems, whereas the University of Kentucky conducted experimental studies to investigate fundamental aspects of particle-liquid interaction and application of high pressure filter in fine coal dewatering. The optimum filtration conditions identified in Phase 1 and 2 were tested in two of the CONSOL Inc. coal preparation plants using an Andritz Ruthner portable hyperbaric filtration unit.

  17. Modeling the filtration ability of stockpiled filtering facepiece (United States)

    Rottach, Dana R.


    Filtering facepiece respirators (FFR) are often stockpiled for use during public health emergencies such as an infectious disease outbreak or pandemic. While many stockpile administrators are aware of shelf life limitations, environmental conditions can lead to premature degradation. Filtration performance of a set of FFR retrieved from a storage room with failed environmental controls was measured. Though within the expected shelf life, the filtration ability of several respirators was degraded, allowing twice the penetration of fresh samples. The traditional picture of small particle capture by fibrous filter media qualitatively separates the effect of inertial impaction, interception from the streamline, diffusion, settling, and electrostatic attraction. Most of these mechanisms depend upon stable conformational properties. However, common FFR rely on electrets to achieve their high performance, and over time heat and humidity can cause the electrostatic media to degrade. An extension of the Langevin model with correlations to classical filtration concepts will be presented. The new computational model will be used to predict the change in filter effectiveness as the filter media changes with time.

  18. Analysis on the Bi-directional Filtration Resistances of Porous Ceramic Membrane%多孔陶瓷膜双向过滤阻力试验分析

    Institute of Scientific and Technical Information of China (English)

    吕玉正; 方涛; 师杰; 梁鹏; 梁恒国


    In order to explore the function&type of filtration resistances of porous ceramic membrane,the bi⁃directional filtering way is proposed,the effective filtration area and channel sectional area of 9⁃channel porous ceramic membrane are analyzed for the bi⁃directional filtering way,and the calculation formula for the bi⁃directional filtration resistances is established. The test results show that 1)the concentration polarization resistance Rp is the main filtration resistance under trans⁃membrane pressure 0.05-0.10 MPa and cross⁃flow velocity 1.8 m/s;2)the adsorption and deposit resistance Rd is the main one under trans⁃membrane pressure 0.10-0.25 MPa and cross⁃flow velocity 1.0-2.2 m/s;3)at trans⁃membrane pressure 0.15 MPa and cross⁃flow velocity 2.2-3.0 m/s,Rm of membrane itself is the main one;and 4)the increase of the cross⁃flow velocity can effectively delay the occurrence of concentration polarization and reduce the thickness of the sedimentary adsorption layer,thus easing the membrane pollution and extending the filtration cycle.%  为研究多孔陶瓷膜过滤阻力,提出了多孔陶瓷膜双向过滤方式,分析了9通道多孔陶瓷膜在双向过滤时的有效过滤面积和通道截面积,建立了过滤阻力关系式.试验结果表明,跨膜压差0.05~0.10 MPa、错流速度1.8 m/s时,浓差极化阻力Rp为主要过滤阻力;跨膜压差0.10~0.25 MPa、错流速度1.0~2.2 m/s时,吸附沉积阻力Rd为主要过滤阻力;跨膜压差0.15 MPa、错流速度2.2~3.0 m/s时,膜自身阻力Rm是主要过滤阻力;增大错流速度能够有效延缓浓差极化的发生,减小吸附沉积层的厚度,减轻膜污染,延长过滤周期.

  19. Adsorption and colloidal behaviour of traces of tellurium(IV) and aqueous solutions

    Energy Technology Data Exchange (ETDEWEB)

    Maruyama, Y.; Yamaashi, Y.


    Various NaCl solutions containing traces of tellurium(IV) were prepared. The effects of tellurium(IV) concentration and pH on the adsorption of tellurium(IV) on filter paper were studied by filtration method. The effects of NaCl concentration, tellurium(IV) concentration and pH on the formation of a colloid were also studied by ultracentrifugation and ultrafiltration methods. It was found that tellurium(IV) at concentrations below about 10sup(-10)M in neutral NaCl solutions is adsorbed on filter paper and shows colloidal behaviour. (author). 4 refs.; 7 figs.

  20. Numerical Solutions of Mechanical Turbulent Filtration Equation Used in Mechatronics and Micro Mechanic

    Directory of Open Access Journals (Sweden)

    Hassan Fathabadi


    Full Text Available In this study, several novel numerical solutions are presented to solve the turbulent filtration equation and its special case called “Non-Newtonian mechanical filtration equation”. The turbulent filtration equation in porous media is a very important equation which has many applications to solve the problems appearing especially in mechatronics, micro mechanic and fluid mechanic. Many applied mechanical problems can be solved using this equation. For example, non-Newtonian mechanical filtration equation solves many filtration problems in fluid mechanic. The novel proposed discrete numerical solutions are simulated in MATLAB/simulink environment to validate the theoretically numerical solutions and proofing that the proposed numerical solutions are realizable.

  1. Experimental Study on the Influence of DPF Micropore Structure and Particle Property on Its Filtration Process

    Directory of Open Access Journals (Sweden)

    Zhongwei Meng


    Full Text Available A single layer filtration system was developed to investigate the filtration and regeneration performance of diesel particle filter (DPF. The particle layer thickness was directly measured online to analyze the different filtration stages. The influence of particle property on particle layer stage performance was also investigated. The results indicate that the filtration velocity can greatly affect the deep bed filtration stage, and the deposited particle layer can be compressed even in very low filtration velocity and higher filtration velocity trends to form denser particle layer. Optimizing the pore structure can effectively shorten the deep bed filtration stage and reduce the pressure drop eventually. An empirical function was proposed to relate the pore structure and the initial increment rate of pressure drop, which presented that reducing the pore size distribution range (3σ can result in low DPF filtration pressure drop. The filtration stage could be further divided into four stages, and the value of particle layer thickness ranging within 15~20 μm has been found to be critical number for the shift from the transient stage to the cake filtration stage. Particle with large primary diameter and BET surface was beneficial to form loose particle layer.

  2. A Study on Enhancement of Filtration Process with Filter Aids Diatomaceous Earth and Wood Pulp Cellulose

    Institute of Scientific and Technical Information of China (English)

    都丽红; 陈旭; 李文苹; 朱企新


    In this paper, a study to enhance the filtration for solid/liquid materials difficult to be filtered, such as highly viscous, highly compactible or gel like materials, is presented. Filter aids diatomaceous earth and wood pulp cellulose are used to enhance the filtration by improving filter cake structure and properties in the filtration of a biological health product and a highly viscous chemical fiber polymer melt product. The property of solid/liquidsystems, filtration at different flow rates, specitic cake resistance, cake wetness, filtration rate, filtrate turbidity for filter aid selection and evaluation, and operation optimization are investigated. The results are successfully applied to industrial process, .and can be used as a reference for similar filtration applications.


    Energy Technology Data Exchange (ETDEWEB)

    Duignan, M.; Nash, C.; Poirier, M.


    In the interest of accelerating waste treatment processing, the DOE has funded studies to better understand filtration with the goal of improving filter fluxes in existing crossflow equipment. The Savannah River National Laboratory (SRNL) performed some of those studies, with a focus on start-up techniques, filter cake development, the application of filter aids (cake forming solid precoats), and body feeds (flux enhancing polymers). This paper discusses the progress of those filter studies. Crossflow filtration is a key process step in many operating and planned waste treatment facilities to separate undissolved solids from supernate solutions. This separation technology generally has the advantage of self-cleaning through the action of wall shear stress created by the flow of waste slurry through the filter tubes. However, the ability of filter wall self-cleaning depends on the slurry being filtered. Many of the alkaline radioactive wastes are extremely challenging to filtration, e.g., those containing compounds of aluminum and iron, which have particles whose size and morphology reduce permeability. Unfortunately, low filter flux can be a bottleneck in waste processing facilities such as the Savannah River Integrated Salt Disposition Process and the Hanford Waste Treatment Plant. Any improvement to the filtration rate would lead directly to increased throughput of the entire process. To date increased rates are generally realized by either increasing the crossflow filter feed flow rate, limited by pump capacity, or by increasing filter surface area, limited by space and increasing the required pump load. SRNL set up both dead-end and crossflow filter tests to better understand filter performance based on filter media structure, flow conditions, filter cleaning, and several different types of filter aids and body feeds. Using non-radioactive simulated wastes, both chemically and physically similar to the actual radioactive wastes, the authors performed several

  4. Low-density lipoprotein apheresis by membrane differential filtration (cascade filtration) via arteriovenous fistula performed in children with familial hypercholesterolemia. (United States)

    Gülle, Saniye; Bak, Mustafa; Serdaroglu, Erkin; Can, Demet; Karabay, Ozalp


    Membrane differential filtration (cascade filtration) is an apheresis technique by which atherogenic lipoproteins can be eliminated from plasma on the basis of particle size. In this study, we aim to discuss the efficacy of low-density lipoprotein (LDL) apheresis performed by providing alternative vascular routes in two siblings with familial hypercholesterolemia who did not respond to medical treatment and diet. Of the two siblings, one was nine years old and the other one was three-and-a-half years old. Of the total of 78 apheresis processes performed, 24 were done via a permanent subclavian catheter, 36 were done via a subsequently provided arteriovenous fistula, and 18 were done via an arteriovenous graft. We observed a mean reduction in the plasma levels of total cholesterol (61.6%), LDL cholesterol (65.5%), and high-density lipoprotein cholesterol (38.6%). We noted that cascade filtration apheresis was effective in decreasing the LDL cholesterol in plasma, and no serious complications were noted. The success of the apheresis program depends on well-functioning blood access. An arteriovenous fistula may be the best route for the long-term treatment of familial hypercholesterolemia, which requires complication-free apheresis treatments.

  5. Pancytopenia with severe thrombocytopenia in a patient treated with twice-weekly LDL-apheresis by polyacrylate adsorption from whole blood. (United States)

    Nowack, Rainer; Wiedemann, Günther


    Pancytopenia with severe thrombocytopenia occurred in a patient treated with low-density lipoprotein (LDL)-apheresis by polyacrylate adsorption from whole blood, after treatment frequency had been increased from once to twice a week. Cell counts recovered with discontinuation of LDL-apheresis, but thrombocytopenia recurred after resumption of twice-weekly treatments. Thrombocyte counts remained stable following the replacement of polyacrylate adsorption from whole blood by double-filtration plasmapheresis. The complications' close coincidence with twice-weekly polyacrylate adsorption from whole blood suggests a causal relationship, although by a still unknown mechanism. Monitoring of thrombocytes should be advised in patients treated with LDL-apheresis by polyacrylate adsorption from whole blood.

  6. Fate and transport with material response characterization of green sorption media for copper removal via adsorption process. (United States)

    Chang, Ni-Bin; Houmann, Cameron; Lin, Kuen-Song; Wanielista, Martin


    Green adsorption media with the inclusion of renewable and recycled materials can be applied as a stormwater best management practice for copper removal. A green adsorption media mixture composed of recycled tire chunk, expanded clay aggregate, and coconut coir was physicochemically evaluated for its potential use in an upflow media filter. A suite of tests were conducted on the media mixture and the individual media components including studies of particle size distribution, isotherms, column adsorption and reaction kinetics. Isotherm test results revealed that the coconut coir had the highest affinity for copper (q(max) = 71.1 mg g(-1)), and that adsorption was maximized at a pH of 7.0. The coconut coir also performed the best under dynamic conditions, having an equilibrium uptake of 1.63 mg g(-1). FE-SEM imaging found a strong correlation between the porosity of the micro pore structure and the adsorptive capacity. The use of the green adsorption media mixture in isolation or the coconut coir with an expanded clay filtration chamber could be an effective and reliable stormwater best management practice for copper removal.

  7. Impacts of ozonation on the competition between organic micro-pollutants and effluent organic matter in powdered activated carbon adsorption. (United States)

    Zietzschmann, F; Mitchell, R-L; Jekel, M


    This study investigates if ozonation of wastewater treatment plant (WWTP) effluent can reduce the negative impacts of effluent organic matter (EfOM) on the adsorption of organic micro-pollutants (OMP) onto powdered activated carbon (PAC). Pre-treatment of the water included membrane filtration for the removal of suspended/colloidal organics, ozonation with various specific ozone consumptions, and subsequent OMP spiking to comparable initial concentrations in all of the ozonated waters. This approach allowed for comparative PAC adsorption tests. Adsorption analyses show that the adsorbability of EfOM decreases with increasing specific ozone consumptions. This is also reflected by liquid chromatography with online carbon and UV254 detection (LC-OCD) which shows the ozone-induced disintegration of large EfOM into smaller fragments. Also, small organic neutrals are decreased while the small organic acids peak continuously increases with rising specific ozone consumptions. UV254 demonstrates that the aromaticity of all LC-OCD fractions continuously declines together with increasing specific O3 consumptions. This explains the varying EfOM adsorbabilities that occur due to ozonation. The ozone-induced decrease of EfOM adsorbability directly translates into reduced adsorption competition against the adsorption of OMP. With higher specific ozone consumptions, OMP removal and OMP loadings increase. The reduced adsorption competition is reflected in the outputs from equivalent background compound (EBC) modeling. In each of the ozonated waters, correlations between the OMP removals and the UV254 removal were found.

  8. Electrokinetic investigation of surfactant adsorption. (United States)

    Bellmann, C; Synytska, A; Caspari, A; Drechsler, A; Grundke, K


    Fuerstenau [D.W. Fuerstenau, in: M.L. Hair (Ed.), Dekker, New York, 1971, p. 143] has already discussed the role of hydrocarbon chain of surfactants, the effect of alkyl chain length, chain structure and the pH of the solution on the adsorption process of surfactants. Later Kosmulski [M. Kosmulski, Chemical Properties of Material Surfaces, Surfactant Science Series, vol. 102, Dekker, New York, Basel, 2001] included the effect of surfactant concentration, equilibration time, temperature and electrolyte in his approaches. Certainly, the character of the head groups of the surfactant and the properties of the adsorbent surface are the basis for the adsorption process. Different surfactants and adsorbents cause different adsorption mechanisms described firstly by Rosen [M.J. Rosen, Surfactants and Interfacial Phenomena, second ed., Wiley, New York, 1989]. These adsorption mechanisms and their influencing factors were studied by electrokinetic investigations. Here only changes of the charges at the surfaces could be detected. To control the results of electrokinetic investigations they were compared with results from ellipsometric measurements. In the case of surfactant adsorption the chain length was vitally important. It could be shown by the adsorption of alkyl trimethyl ammonium bromides onto polymer films spin coated at wafer surfaces. The influence of the chain length depending on surface properties of the polymer film was studied. Streaming potential measurements were applied for these investigations. The obtained results enabled us to calculate the molar cohesive free energy per mol of CH2-group in the alkaline chain of the surfactant if all other specific adsorption effects were neglected.

  9. Mineral-Surfactant Interactions for Minimum Reagents Precipitation and Adsorption for Improved Oil Recovery

    Energy Technology Data Exchange (ETDEWEB)

    P. Somasundaran


    /conformation of the adsorbed layers), as well as precipitation/abstraction characteristics. (3) Investigation of the role of dissolved species, especially multivalent ions, on interactions between reservoir minerals and surfactants and/or polymers leading to surfactant precipitation or activated adsorption. (4) Solution behavior tests--surface tension, interaction, ultra filtration, and other tests. (5) Surfactant-mineral interactions relative to adsorption, wettability, and electrophoresis. (6) Work on the effects of multivalent ions, pH, temperature, salinity, and mixing ratio on the adsorption. Developments of adsorption models to explain interactions between surfactants/polymers/minerals. (7) General guidelines for the use of certain surfactants, polymers and their mixtures in micelle flooding processes.

  10. Coupled plasma filtration adsorption reduces serum bilirubine in a case of acute hypoxic hepatitis secondary to cardiogenic shock. (United States)

    Caroleo, Santo; Rubino, Antonino S; Tropea, Francesco; Bruno, Orlando; Vuoto, Domenico; Amantea, Bruno; Renzulli, Attilio


    Hypoxic hepatitis (HH) is a severe complication of postoperative low output syndrome, associated with high mortality rates despite appropriate drug therapy. Recently several extracorporeal supportive techniques have become available. We describe the case of a 70-year-old woman who developed HH secondary to cardiogenic shock after cardiac surgery. CPFA proved to be a valid tool for concomitant hemodynamic support and organ replacement therapy.

  11. Is the use of particle air filtration justified? Costs and benefits of filtration with regard to health effects, building cleaning and occupant productivity

    DEFF Research Database (Denmark)

    Bekö, Gabriel; Clausen, Geo; Weschler, Charles J.


    Estimates of costs and the corresponding benefits of particle filtration have been derived for a standard office building. Reduction in occupants’ exposure to particles during their workday is anticipated to reduce their morbidity and mortality. Filtration may also reduce the costs associated...... is impacted by maintenance of the building and its HVAC system; society is impacted by the employees’ health and welfare. Regardless of perspective, particle filtration is anticipated to lead to annual savings significantly exceeding the running costs for filtration. However, economic losses resulting from...... even a small decrease in productivity caused by sensory pollutants emitted from used ventilation filters have the potential to substantially exceed the annual economic benefits of filtration. Further studies are required to determine if meaningful benefits can be obtained from more frequent filter...

  12. Adsorption equilibria of dimethylnaphthalene isomers

    Energy Technology Data Exchange (ETDEWEB)

    Rota, R.; Morbidelli, M. [Politecnico di Milano (Italy). Dipt. di Chimica Fisica Applicata; Rombi, E.; Monaci, R.; Ferino, I.; Solinas, V. [Univ. di Cagliari (Italy). Dipt. di Scienze Chimiche


    Commercial sources of DMNs are the aromatic petroleum fraction of the appropriate boiling range and the coal liquefaction products. Adsorption processes for separating mixtures of dimethylnaphthalene (DMN) isomers are of potential interest for the production of 2,6-DMN. In this work, the adsorption equilibria of liquid mixtures of DMN isomers on zeolites have been investigated experimentally. The separation factors between the various isomers have been found to depend strongly on the composition of the fluid phase. A suitable equilibrium model, based on the adsorbed solution theory, has been developed to describe the multicomponent adsorption equilibria in the entire range of interest. Its performance has been tested using binary and ternary equilibrium data.

  13. Analysis of dynamic and static filtration and determination of MUD cake parameters

    Energy Technology Data Exchange (ETDEWEB)

    Calcada, L.A.; Scheid, C.M.; Araujo, C.A.O. de [Universidade Federal Rural do Rio de Janeiro (UFRRJ), Seropedica, RJ (Brazil). Dept. de Engenharia Quimica], e-mail:; Waldmann, A.T.A.; Martins, A.L. [Petroleo Brasileiro S.A. (CENPES/PETROBRAS), Rio de Janeiro, RJ (Brazil). Centro de Pesquisas


    Drilling operations around the world employ a concept called overbalance. During this process, it is well known that dynamic and static filtration can occur. Thin filter cakes and low fluid-invasion rates are extremely desirable to promote optimal logging conditions and permeability return. The aim of this work was to compare the different behavior between dynamic and static filtration in drilling wells. To investigate the filtration process of Newtonian suspensions, we built a dynamic and static filtration loop with which we acquired experimental filtration volume data as a function of time. The filtration loop included a tank mixer where a Newtonian aqueous calcium carbonate polydisperse suspension was homogenized. The suspension was pumped through tubes to a dynamic or a static filtration cell. We validated a theoretical model based on Darcy's law and on mass conservation proposed by Ferreira and Massarani (2005). That model predicted mud cake buildup and filtrate flow rate for Newtonian suspensions. Relying on both models and the experimental data, filter cake parameters were calculated. We discuss, based on these parameters, the effects of the filtration configuration in dynamic and static modes. Finally, we generalized Ferreira and Massarani's model (2005) for procedures involving non-Newtonian suspensions. This new model can predict dynamic filtration and fluid invasion for non-Newtonian suspensions as drilling fluids. (author)

  14. Subconjunctival sustained release 5-fluorouracil for glaucoma filtration surgery

    Institute of Scientific and Technical Information of China (English)

    Li-jun CUI; Nai-xue SUN; Xing-hua LI; Jie HUANG; Jian-gang YANG


    Aim:To determine the release characteristics of a 5-fluorouracil-loaded poly (lactic acid) disc (5-FU-PLA-DS) and the effect of sustained drug delivery on the success of glaucoma filtration surgery in rabbit eyes. Methods: A method of microspheres accumulated by excessive carriers was used in the preparation of the 5-FU-PLA-DS. The disc was characterized for drug loading, entrapment efficiency, in vitro release, and external morphology. It was then implanted sub-conjunctivally into rabbit eyes with trabeculectomy. Intraocular pressure, ocular inflammatory reaction, filtration bleb appearance, and persistence were evalu-ated up to postoperative d 90. A quantitative analysis of 5-fluorouracil (5-FU) was performed in the aqueous humor. Ultrasound biomicroscopy was used to assess the appearance of the filtering fistula. Results: The 5-FU-PLA-DS was produced with the drug-loading of 3.07±0.08 mg (mean±SD). 5-FU was released for 91 d with suppressive concentrations. The decrease in intraocular pressure from baseline was significantly more marked in the 5-FU-PLA-DS-implanted eyes during postoperative d 3-90, and the persistence of bleb and filtration fistula was longer than the control eyes (P<0.05). Corneal toxicity and hyperemia triggered by 5-FU was lower in the 5-FU-PLA-DS-implanted eyes than those exposed to 5-FU intraoperatively. The 5-FU concentration in the aqueous humor was insufficient for corneal endothelial damage. No evidence of toxic reaction was found in the conjunctival biopsy. Conclusion: 5-FU-PLA-DS displaying sustained intraocular release of 5-FU, reduced intraocular pres-sure, and prolonged bleb persistence, while significantly reducing 5-FU toxicity.

  15. Removal of geosmin and MIB by biofiltration--an investigation discriminating between adsorption and biodegradation. (United States)

    Persson, F; Heinicke, G; Hedberg, T; Hermansson, M; Uhl, W


    Geosmin and 2-methylisoborneol (MIB) are two substances causing earthy/musty odours that are difficult to remove by conventional chemical drinking water treatment. In this study removal of geosmin and MIB by biofiltration of untreated surface water was investigated using granular activated carbon (GAC) and crushed expanded clay (EC) as filter media. Biofiltration through both GAC and EC removed geosmin and MIB present at low (20 ng l(-1)) concentrations by at least 97% at an empty bed contact time of 30 minutes and a temperature of 15 degrees C. At lower temperature (6-12 degrees C) and simultaneously lower biomass concentrations, removal efficiency was similar in the GAC but considerably lower in the EC biofilter, pointing to a second mechanism different from biodegradation. Consequently, microbial activity was suppressed with azide to enable discrimination between biodegradation and adsorption. During azide dosage, the GAC biofilters still removed geosmin and MIB nearly unaffectedly. In the EC biofilter, however, removal of both odorants ceased completely. Methylene blue adsorption confirmed that the GAC, even after almost four years of operation receiving surface water, had capacity to remove geosmin and MIB by adsorption. Since odour episodes commonly occur during the warm season when microbiological activity is high, EC constitutes a viable option as carrier medium for direct biological filtration of surface water. The additional GAC adsorption capacity however adds robustness to the removal process.

  16. Hydrophilic modification of PVDF microfiltration membranes by adsorption of facial amphiphile cholic acid. (United States)

    Hu, Meng-Xin; Li, Ji-Nian; Zhang, Shi-Lin; Li, Liang; Xu, Zhi-Kang


    Amphiphilic molecules have been widely used in surface modification of polymeric materials. Bile acids are natural biological compounds and possess special facial amphiphilic structure with a unusual distribution of hydrophobic and hydrophilic regions. Based on the facial amphiphilicity, cholic acid (CA), one of the bile acids, was utilized for the hydrophilic modification of poly(vinylidene fluoride) (PVDF) microfiltration membranes via the hydrophobic interactions between the hydrophobic face of CA and the membrane surfaces. Ethanol, methanol, and water were respectively used as solvent during CA adsorption procedure. Their polarity affects the CA adsorption amount, as similar to CA concentration and adsorption time. There are no changes on the membrane surface morphology after CA adsorption. The hydrophilicity of PVDF membranes is greatly enhanced and the water drops permeates into the CA modified membranes quickly after modification. All these factors benefit to the permeation flux of membrane for water. When CA concentration is higher than 0.088 M, the water permeation flux is doubled as compared with the nascent PVDF membrane and shows a good stability during filtration procedure. These results reveal the promising potential of facial amphiphilic bile acids for the surface modification of polymeric materials.

  17. Improved Filtration Technology for Pathogen Reduction in Rural Water Supplies

    Directory of Open Access Journals (Sweden)

    Valentine Tellen


    Full Text Available Intermittent bio-sand filtration (BSF is a low-cost process for improving water quality in rural households. This study addresses its two drawbacks: flow limitations requiring excessive waiting, and inadequate purification when high flows are imposed. Two modifications were examined: increasing the sand’s effective size, and adding zero-valent iron (ZVI into the media as a disinfectant. After 65 days, percent reductions in total coliform, fecal coliform, and fecal streptococci averaged 98.9% for traditional BSF and 99% for the improved BSF. Both modifications showed statistically significant improvements. Increased sand size and ZVI addition can counter the drawbacks of traditional BSF.

  18. Non-steady-state aerosol filtration in nanostructured fibrous media. (United States)

    Przekop, Rafal; Gradoń, Leon


    The filtration of aerosol particles using composites of nano- and microsized fibrous structures is a promising method for the effective separation of nanoparticles from gases. A multi-scale physical system describing the flow pattern and particle deposition at a non-steady-state condition requires an advanced method of modelling. The combination of lattice Boltzmann and Brownian dynamics was used for analysis of the particle deposition pattern in a fibrous system. The dendritic structures of deposits for neutral and charged fibres and particles are present. The efficiency of deposition, deposit morphology, porosity and fractal dimension were calculated for a selected operational condition of the process.

  19. Novel Particulate Air-Filtration Media: Market Survey (United States)


    require a dust cake to form before smaller particles are filtered. Particulate filtration efficiency ( PFE ) is less than HEPA. A third product produced by...veterinary use (product ID 214)2 has PFE > 99.4% at 0.3 µm, but the Medicom website does not list the PFE for the Premier for medical use (product ID 123...intended use. The Premier Plus (product ID 358)4 is marketed for dental use and has a PFE ≥ 98% with a resistance of ɛ.0 mmH2O/cm2. The Premier

  20. Indexing Glomerular Filtration Rate to Body Surface Area

    DEFF Research Database (Denmark)

    Redal-Baigorri, Belén; Rasmussen, Knud; Heaf, James Goya


    BACKGROUND: Kidney function is mostly expressed in terms of glomerular filtration rate (GFR). A common feature is the expression as ml/min per 1.73 m(2) , which represents the adjustment of the individual kidney function to a standard body surface area (BSA) to allow comparison between individuals....... We investigated the impact of indexing GFR to BSA in cancer patients, as this BSA indexation might affect the reported individual kidney function. METHODS: Cross-sectional study of 895 adults who had their kidney function measured with (51) chrome ethylene diamine tetraacetic acid. Mean values of BSA...

  1. High gradient magnetic filtration and separation. Part 1

    Energy Technology Data Exchange (ETDEWEB)

    Fletcher, D.


    This paper reviews the developing role of high gradient magnetic filtration (HGMF), and separation (HGMS). If discusses the relative position of this technique within the context of the general field of magnetic separation. Its future potential and the basic theory behind it is also reviewed. The two processes; HGMF and HGMS are well known and well established fuels used frequently in mineral processing, for example iron ore. Using different techniques and machines a whole host of uses is possible and the paper concludes by outlining the theory behind this whole area. 11 refs.

  2. Filtration in ultrasonic field; Filtracao em campo ultrassonico

    Energy Technology Data Exchange (ETDEWEB)

    Rocha, Inaura Carolina C. da; Cortes, Marcela de Araujo H.; Marques, Jose Jailton [Universidade Federal de Sergipe (UFS), Aracaju, SE (Brazil). Dept. de Engenharia Quimica


    The production of water associated to the petroleum is an issue of big relevance in exploration areas classified as 'exhausted fields'. The current alternative in practice is the re-injection of the wastewater into the geological formation with the dual purpose of increasing oil recovery and pollution minimization. However, produced water presents several components that make impossible its direct re-injection, requiring a previous treatment. In this context, this work presents the state-of-art of filtration in ultrasonic field, in order to contribute to the development of a new treatment technology applicable to the produced water problem. (author)

  3. Possibilities for the filtration of inlet air for gas turbines

    Energy Technology Data Exchange (ETDEWEB)

    Sievert, J.; Reinhardt, H.


    Gas turbines require large quantities of air, which are sucked in from the atmosphere. Depending on the weather conditions and the location of the gas turbine the ambient air contains impurities which may lead to damage to or contamination of the blading of the compressors and turbines. In consequence this causes a reduction in output or efficiency. In principle there are several possibilities for the filtration of air sucked in for gas turbines of which the technically relevant ones at the present time are described.

  4. Theoretical insight of adsorption cooling

    KAUST Repository

    Chakraborty, Anutosh


    This letter proposes and presents a thermodynamic formulation to calculate the energetic performances of an adsorption cooler as a function of pore widths and volumes of solid adsorbents. The simulated results in terms of the coefficient of performance are validated with experimental data. It is found from the present analysis that the performance of an adsorption cooling device is influenced mainly by the physical characteristics of solid adsorbents, and the characteristics energy between the adsorbent-adsorbate systems. The present study confirms that there exists a special type of silicagel having optimal physical characteristics that allows us to obtain the best performance.

  5. Harder–Narasimhan filtration for rank 2 tensors and stable coverings

    Indian Academy of Sciences (India)



    We construct a Harder--Narasimhan filtration for rank 2 tensors, where there does not exist any such notion {/it a priori,} as coming from a GIT notion of maximal unstability. The filtration associated to the 1-parameter subgroup of Kempf giving the maximal way to destabilize, in the GIT sense, a point in the parameter space of the construction of the moduli space of rank 2 tensors over a smooth projective complex variety, does not depend on a certain integer used in the construction of the moduli space, for large values of the integer. Hence, this filtration is unique and we define the Harder--Narasimhan filtration for rank 2 tensors as this unique filtration coming from GIT. Symmetric rank 2 tensors over smooth projective complex curves define curve coverings lying on a ruled surface, hence we can translate the stability condition to define stable coverings and characterize the Harder--Narasimhan filtration in terms of intersection theory.

  6. Effects of different Helicobacter pylori culture filtrates on growth of gastric epithelial cells

    Institute of Scientific and Technical Information of China (English)

    Yan-Guo Yan; Gang Zhao; Jin-Ping Ma; Shi-Rong Cai; Wen-Hua Zhan


    AIM: To study the effects of different Helicobacter pylori (H py/orl) culture filtrates on growth of gastric epithelial cells.METHODS: Broth culture filtrates of H pylori were prepared. Gastric epithelial cells were treated with the filtrates, and cell growth was determined by growth curve and flow cytometry. DNA damage of gastric epithelial cells was measured by single-cell microgel electrophoresis.RESULTS: Gastric epithelial cells proliferated actively when treated by CagA-gene-positive broth culture filtrates, and colony formation reached 40%. The number of cells in S phase increased compared to controls. Comet assay showed 41.2% comet cells in GES-1 cells treated with CagA-positive filtrates (P<0.05).CONCLUSION: CagA-positive filtrates enhance the changes in morphology and growth characteristics of human gastric epithelial tumor cells. DNA damage maybe one of the mechanisms involved in the growth changes.


    Directory of Open Access Journals (Sweden)

    Eko Ariyanto


    Full Text Available A natural zeolite was employed as adsorbent for reducing of malachite green from aqueous solution. A batch system was applied to study the adsorption of malachite green in single system on natural zeolite. The adsorption studies indicate that malachite green in single component system follows the second-order kinetics and the adsorption is diffusion process with two stages for malachite green. Malachite green adsorption isotherm follows the Langmuir model.



    Eko Ariyanto


    A natural zeolite was employed as adsorbent for reducing of malachite green from aqueous solution. A batch system was applied to study the adsorption of malachite green in single system on natural zeolite. The adsorption studies indicate that malachite green in single component system follows the second-order kinetics and the adsorption is diffusion process with two stages for malachite green. Malachite green adsorption isotherm follows the Langmuir model.

  9. Purification of hemoglobin by tangential flow filtration with diafiltration. (United States)

    Elmer, Jacob; Harris, David R; Sun, Guoyong; Palmer, Andre F


    A recent study by Palmer, Sun, and Harris (Biotechnol. Prog., 25:189-199, 2009) demonstrated that tangential flow filtration (TFF) can be used to produce HPLC-grade bovine and human hemoglobin (Hb). In this current study, we assessed the quality of bovine Hb (bHb) purified by introducing a 10 L batch-mode diafiltration step to the previously mentioned TFF Hb purification process. The bHb was purified from bovine red blood cells (RBCs) by filtering clarified RBC lysate through 50 nm (stage I) and 500 kDa (stage II) hollow fiber (HF) membranes. The filtrate was then passed through a 100 kDa (stage III) HF membrane with or without an additional 10 L diafiltration step to potentially remove additional small molecular weight impurities. Protein assays, SDS-PAGE, and LC-MS of the purified bHb (stage III retentate) reveal that addition of a diafiltration step has no effect on bHb purity or yield; however, it does increase the methemoglobin level and oxygen affinity of purified bHb. Therefore, we conclude that no additional benefit is gained from diafiltration at stage III and a three stage TFF process is sufficient to produce HPLC-grade bHb.

  10. Internal filtration in dialyzers with different membrane permeabilities. (United States)

    Sato, Yuichi; Kimura, Kenjiro; Chikaraishi, Tatsuya


    Over the last decade, hemodialysis with enhanced internal filtration (IF) has been investigated as an alternative to conventional dialysis. Several factors affect IF, including the geometry and permeability of hollow-fiber dialyzers. Although various studies have been performed, the association between IF and membrane permeability has not been fully examined because of the difficulty in measuring IF. Therefore, in this study, we set up an experimental circuit and attempted to directly measure IF as well as membrane permeability in five dialyzers. In the circuit, we placed two dialyzers of the same type in series, and a special sampling port between them, thereby making it possible to determine IF by measuring the extent to which blood was concentrated between the two dialyzers. We showed that a significant amount of IF occurred in this tandem-dialyzer circuit, ranging from 23.5 to 100 ml/min, which increased linearly with increasing membrane permeability. We also showed that membrane permeability was reduced in the first dialyzer to a greater extent than in the second one after four hours of circulation, suggesting that filtration caused substantial membrane fouling. In this study we practically demonstrated that membrane permeability is highly relevant to the phenomenon of IF.

  11. Controlled shear filtration: A novel technique for animal cell separation. (United States)

    Vogel, J H; Kroner, K H


    A novel rotary microfiltration technique specifically suited for the separation of animal cells has been developed. The concept allows the independent adjustment of wall shear stress, transmembrane pressure, and residence time, allowing straightforward optimization of the microfiltration process. By using a smooth, conically shaped rotor, it is possible to establish a controlled shear field in which animal cells experience a significant hydrodynamic lift away from the membrane surface. It is shown in preliminary experiments that shear-induced cell-rupture speeds up membrane clogging and that cell debris poses the most significant problem in harvesting of BHK cell cultures by dynamic microfiltration. However, a threshold value of shear stability exists which depends on the frequency of passing the shear field, the residence time in the shear field, as well as on cell status. By operating close to this threshold value, cell viability can be maintained while concentration polarization is efficiently minimized. By applying this concept, it is possible to attain flux rates several times higher compared to conventional crossflow filtration. Controlled shear filtration (CSF) can be used for batch harvesting as well as for cell retention in high cell density systems. In batch harvesting of hIL-2 from rBHK cell culture, a constant flux rate of 290 L h-1 m-2 has been adjusted without indication of membrane clogging or fouling.

  12. Intermittent filtration of bacteria and colloids in porous media (United States)

    Auset, Maria; Keller, Arturo A.; Brissaud, François; Lazarova, Valentina


    Intermittent filtration through porous media used for water and wastewater treatment can achieve high pathogen and colloid removal efficiencies. To predict the removal of bacteria, the effects of cyclic infiltration and draining events (transient unsaturated flow) were investigated. Using physical micromodels, we visualized the intermittent transport of bacteria and other colloids in unsaturated porous media. Column experiments provided quantitative measurements of the phenomena observed at the pore scale. Tagged Escherichia coli and a conservative tracer (NaI) were introduced in an initial pulse into a 1.5 m sand column. Subsequent hydraulic flushes without tagged bacteria or tracer were repeated every 4 hours for the next 4 days, during which outflow concentrations were monitored. Breakthrough behavior between colloids and dissolved tracer differed significantly, reflecting the differences in transport processes. Advancement of the wetting front remobilized bacteria which were held in thin water films, attached to the air-water interface (AWI), or entrapped in stagnant pore water between gas bubbles. In contrast, the tracer was only remobilized by diffusion from immobile to mobile water. Remobilization led to successive concentration peaks of bacteria and tracer in the effluent but with significant temporal differences. Observations at the pore-scale indicated that the colloids were essentially irreversibly attached to the solid-water interface, which explained to some extent the high removal efficiency of microbes in the porous media. Straining, cluster filtration, cell lysis, protozoa grazing, and bacteriophage parasitism could also contribute to the removal efficiency of bacteria.

  13. Asymptotics of the filtration problem for suspension in porous media

    Directory of Open Access Journals (Sweden)

    Kuzmina Ludmila Ivanovna


    Full Text Available The mechanical-geometric model of the suspension filtering in the porous media is considered. Suspended solid particles of the same size move with suspension flow through the porous media - a solid body with pores - channels of constant cross section. It is assumed that the particles pass freely through the pores of large diameter and are stuck at the inlet of pores that are smaller than the particle size. It is considered that one particle can clog only one small pore and vice versa. The particles stuck in the pores remain motionless and form a deposit. The concentrations of suspended and retained particles satisfy a quasilinear hyperbolic system of partial differential equations of the first order, obtained as a result of macro-averaging of micro-stochastic diffusion equations. Initially the porous media contains no particles and both concentrations are equal to zero; the suspension supplied to the porous media inlet has a constant concentration of suspended particles. The flow of particles moves in the porous media with a constant speed, before the wave front the concentrations of suspended and retained particles are zero. Assuming that the filtration coefficient is small we construct an asymptotic solution of the filtration problem over the concentration front. The terms of the asymptotic expansions satisfy linear partial differential equations of the first order and are determined successively in an explicit form. It is shown that in the simplest case the asymptotics found matches the known asymptotic expansion of the solution near the concentration front.

  14. The PBW Filtration, Demazure Modules and Toroidal Current Algebras

    Directory of Open Access Journals (Sweden)

    Evgeny Feigin


    Full Text Available Let L be the basic (level one vacuum representation of the affine Kac-Moody Lie algebra ^g. The m-th space F_m of the PBW filtration on L is a linear span of vectors of the form x_1dots x_lv_0, where l ≤ m, x_i in ^g and v_0 is a highest weight vector of L. In this paper we give two descriptions of the associated graded space L^{gr} with respect to the PBW filtration. The ''top-down'' description deals with a structure of L^{gr} as a representation of the abelianized algebra of generating operators. We prove that the ideal of relations is generated by the coefficients of the squared field e_θ(z2, which corresponds to the longest root θ. The ''bottom-up'' description deals with the structure of L^{gr} as a representation of the current algebra g otimes C[t]. We prove that each quotient F_m/F_{m-1} can be filtered by graded deformations of the tensor products of m copies of g.

  15. Improved techniques for hyperbaric filtration of fine coal slurry

    Energy Technology Data Exchange (ETDEWEB)

    Yang, J.; Wang, X.H.; Parekh, B.K. [University of Kentucky, Lexington, KY (United States). Center for Applied Energy Research


    Dewatering of fine clean coal slurry is one of the most important unit operations of a coal-cleaning circuit. However, an efficient and economic dewatering method is still eluding the coal industry. In this study hyperbaric (high pressure) filtration studies were conducted on a froth flotation product obtained from a coal preparation plant processing Pittsburgh No. 8 seam coal. The fine coal slurry (42 weight percent minus 25 {mu}m) could be dewatered to a low moisture (24%) using 482kPa (70psi) pressure. This article describes two novel approaches for improving dewatering of the fine coal slurry using hyperbaric filtration, such as using a modified filter support and split-size dewatering. The modified filter support system and the split-sizing at 25 {mu}m (500mesh) provided 21.5% and 15.9% moisture filter cake, which was about 10% and 34% improvement in moisture reduction in the filter cake moisture, respectively. Combining both the approaches with the addition of a nonionic flocculant provided a filter cake with 10.5% moisture, which was about a 56% improvement in moisture reduction.

  16. Dedicated breast CT: effect of adaptive filtration on dose distribution

    CERN Document Server

    Shikhaliev, Polad M


    Purpose: The purpose of the work was experimental investigations of the breast dose distributions with adaptive filtration. Adaptive filtration reduces detector dynamic range and improves image quality. The adaptive filter with predetermined shape is placed at the x-ray beam such that the x-ray intensity at the detector surface is flat. However, adaptive filter alters the mean dose to the breast, as well as volume distribution of the dose. Methods: The dose was measured using a 14 cm diameter cylindrical acrylic breast phantom. An acrylic adaptive filter was fabricated to match the 14 cm diameter of the phantom. The dose was measured using ion chamber inserted into holes distributed along the radius of the phantom from the center to the edge. The radial distribution of dose was measured and fitted by an analytical function and the volume distribution and mean value of dose was calculated. The measurements were performed at 40, 60, 90, and 120 kVp tube voltages and 6.6 mGy air kerma. Results: The adaptive filt...

  17. Mechanistic evaluation of virus clearance by depth filtration. (United States)

    Venkiteshwaran, Adith; Fogle, Jace; Patnaik, Purbasa; Kowle, Ron; Chen, Dayue


    Virus clearance by depth filtration has not been well-understood mechanistically due to lack of quantitative data on filter charge characteristics and absence of systematic studies. It is generally believed that both electrostatic interactions and sized based mechanical entrapment contribute to virus clearance by depth filtration. In order to establish whether the effectiveness of virus clearance correlates with the charge characteristics of a given depth filter, a counter-ion displacement technique was employed to determine the ionic capacity for several depth filters. Two depth filters (Millipore B1HC and X0HC) with significant differences in ionic capacities were selected and evaluated for their ability to eliminate viruses. The high ionic capacity X0HC filter showed complete porcine parvovirus (PPV) clearance (eliminating the spiked viruses to below the limit of detection) under low conductivity conditions (≤2.5 mS/cm), achieving a log10 reduction factor (LRF) of > 4.8. On the other hand, the low ionic capacity B1HC filter achieved only ∼2.1-3.0 LRF of PPV clearance under the same conditions. These results indicate that parvovirus clearance by these two depth filters are mainly achieved via electrostatic interactions between the filters and PPV. When much larger xenotropic murine leukemia virus (XMuLV) was used as the model virus, complete retrovirus clearance was obtained under all conditions evaluated for both depth filters, suggesting the involvement of mechanisms other than just electrostatic interactions in XMuLV clearance.

  18. Performance of rapid-grown KDP crystals with continuous filtration

    Institute of Scientific and Technical Information of China (English)

    Guohang Hu; Yueliang Wang; Junxiu Chang; Xiaoyi Xie; Yuanan Zhao; Hongji Qi; Jianda Shao


    Rapid growth processing of KDP crystals was improved by employing continuous filtration to eliminate bulk defects.The performances of the KDP crystals, including scattering defects, laser damage resistance and transmittance, were measured and analyzed. Compared with rapid-grown KDP without continuous filtration, the transmittance in the nearinfrared was increased by at least 2%, almost all of ‘micron size’ defects were eliminated and ‘sub-micron size’ defects were decreased by approximately 90%. Laser damage testing revealed that the laser-induced damage thresholds(LIDTs),as well as the consistency of the LIDTs from sample to sample, were improved greatly. Moreover, it identified that‘micron size’ defects were the precursors which initiated laser damage at relative lower laser fluence(4–6 J cm-2),and there was a lower correlation between smaller size scattering defects and laser damage initiation. The improved consistency in the LIDTs, attributed to elimination of ‘micron size’ defects, and LIDT enhancement originated from the decreased absorption of the KDP crystals.

  19. Controversies on glomerular filtration from Ludwig to the present. (United States)

    Steinhausen, M; Endlich, K


    Since Ludwig's theory of filtration in the glomerulus is generally accepted, current research interest has focussed on the regulation of this process. The main determinants of glomerular filtration rate are glomerular capillary pressure and glomerular blood flow, which are adjusted via resistance changes in the pre- and postglomerular vasculature. Overall pre- and postglomerular resistances were first determined by micropuncture in superficial glomeruli. While the predominant source of postglomerular resistance is the efferent arteriole, several results indicate that preglomerular resistance might be rather uniformly distributed among all preglomerular vessels (interlobar, arcuate and interlobular arteries and afferent arterioles). Over the last decade, several techniques have been used to visualize renal vessels and to study the action of various vasoactive hormones thereon. Results obtained with the split hydronephrotic kidney model, which permits in vivo microscopy of all renal vessels, provide evidence for a differential regulation of the various preglomerular vessels by vasoactive hormones. In particular, mediators of inflammation almost selectively constrict interlobar and arcuate arteries. We conclude that, given the renal vascular architecture, differential regulation of preglomerular vessels can alter haemodynamic parameters specifically for different nephron populations.

  20. Screening on Medium of Subsurface Filtration System%地下渗滤系统基质的筛选

    Institute of Scientific and Technical Information of China (English)

    戴强; 张卫民; 艾林芳


    [ Objective ] The study aime to screen the medium of the subsurface filtration system. [ Method ] With the river sand, steel slag, fly coal ash and and coal cinder as the research object, their adsorption properties to the phosphorus were investigated when they were taken as the matrix of the infiltration filter system. [Result] Among the 4 kinds of matrix, as for the matrix to the theoretical saturated adsorption capacity of phosphorus, the steel slag had biggest theoretical saturated adsorption quantity of phosphorus, followed by fly coal ash, coal cinder and river sand; it was kown from the desorption test that the desorption rate of the steel slag was very samll, that of the fly coal ash was slightly great, followed by the coal cinders and river sand; the largest phosphorus removal rate counted by the pseudosecond order kinetic equation were in order of steel slag > coal cinder > river sand > fly coal ash; as for the price and material-taking of the matrix, the river sand, fly coal ash, steel slag and coal cinder all belonged to the cheap materials, compared with them, the river sand could be eazy to get a lot and its phosphorus removal rate was also aobut 60% , so it could be taken as the main matrix of the subsurface filtration system. [ Conclusion ] The study provided the theoretical basis for screening the suatable matixex for the subsurface filtration system.%[目的]筛选地下渗滤系统的基质材料.[方法]以河砂、钢渣、粉煤灰、煤渣为研究对象,考察其作为地下渗滤系统基质对磷的吸附特性.[结果]这4种基质中,从基质对磷的理论饱和吸附量看,钢渣对磷的理论饱和吸附量最大,其次是粉煤灰、煤渣和河砂;从基质的解吸试验可知,钢渣的解析率非常小,粉煤灰的解析率稍大,其次是煤渣和河砂;由准二级动力学方程计算出最大除磷速率Vmax依次为:钢渣>煤渣>河砂>粉煤灰;从基质的价格和取材情况看,河砂、粉煤灰、钢渣

  1. Adsorption theory for polydisperse polymers.

    NARCIS (Netherlands)

    Roefs, S.P.F.M.; Scheutjens, J.M.H.M.; Leermakers, F.A.M.


    Most polymers are polydisperse. We extend the self-consistent field polymer adsorption theory due to Scheutjens and Fleer to account for an arbitrary polymer molecular weight distribution with a cutoff chain length Nmax. In this paper, the treatment is restricted to homopolymers. For this case a ver


    Surfactants used to enhance remediation of soils by soil washing are often lost in the process. Neither the amount nor the cause of this loss is known. It is assumed that clays present in the soil are responsible for the loss of the surfactant. In this papere, adsorption prope...

  3. Micellization and adsorption characteristics of CHAPS

    NARCIS (Netherlands)

    Giacomelli, CE; Vermeer, AWP; Norde, W


    The adsorption of CHAPS on hydrophobic latex particles was studied at 22 and 36 degrees C by determining the adsorbed amount and the enthalpy of adsorption. The adsorption process was compared to the micellization of the surfactant. Therefore, the critical micelle concentration (cmc) and the heat of

  4. Micellization and adsorption characteristics of CHAPS

    NARCIS (Netherlands)

    Giacomelli, C.E.; Norde, W.


    The adsorption of CHAPS on hydrophobic latex particles was studied at 22 and 36 C by determining the adsorbed amount and the enthalpy of adsorption. The adsorption process was compared to the micellization of the surfactant. Therefore, the critical micelle concentration (cmc) and the heat of micelli

  5. Impact of 50% Synthesized Iso-Paraffins (SIP) on Middle Distillate Fuel Filtration and Coalescence (United States)


    Impact of 50% Synthesized Iso-Paraffins (SIP) on Middle Distillate Fuel Filtration and Coalescence NF&LCFT REPORT 441/15-003 30 October 2014...October 2014 Page 1 Impact of 50% Synthesized Iso-Paraffins (SIP) on Middle Distillate Fuel Filtration and Coalescence 1.0 BACKGROUND In...Paraffins (SIP) on Middle 5a. CONTRACT NUMBER N/A Distillate Fuel F-76 Filtration and Coalescence 5b. GRANT NUMBER N/A 5c. PROGRAM





    Sodium and potassium combinations existing in phosphogypsum are highly soluble and remain in the filtrate, their amount increasing with each recycle. It has been determined that the amount of alkalis in the recycling filtrate depends on an amount of alkalis in uncleaned phosphogypsum, a number of recycles in the filtrate, the technology of the phosphogypsum pulp preparation and an amount of soluble phosphates. New phosphate formations composed in an acid medium (pH = 4.5-5) are well crystaliz...

  7. Presence of an adsorbent cake layer improves the performance of gravity-driven membrane (GDM) filtration system. (United States)

    Shao, Senlin; Feng, Yijing; Yu, Huarong; Li, Jiangyun; Li, Guibai; Liang, Heng


    Gravity-driven membrane (GDM) filtration is a promising decentralized drinking water treatment process. To improve the performance of GDM system, a thin layer of adsorbent was pre-deposited on the membrane surface prior to filtration (adsorbent-laden GDM system). The tested adsorbents include powdered activated carbon (PAC) and anion exchange resin (AER), and an unmodified GDM system and a SiO2-laden GDM system were used as controls. In the adsorbent-laden GDM systems, the adsorption of the PAC and AER increased the removal efficiency of natural organic matter by 7.2-43.5% and microcystin-LR, atrazine, and bisphenol A by 7.9-81.2%. The presence of adsorbent particles increased the amount of microorganisms in the cake layer and therefore increased the removal efficiency of assimilable organic matter (AOC) by 20.1-34.4%. In the adsorbent-laden GDM systems, the physically irrecoverable fouling decreased because of the reduction in membrane foulants by the adsorbent layer. However, the presence of adsorbent particles in the cake layer counteracted this effect and increased the physically recoverable fouling. Consequently, the pre-deposited adsorbent layers had only a limited effect on the stabilized flux (2.26-2.65 L/m(2) h). A bilayer structure was found in the cake layer of the adsorbent-laden GDM systems via scanning electron microscopy (SEM), and the cake layer was looser in the presence of adsorbent particles. These results demonstrate that pre-depositing a thin layer of adsorbents on the membrane surface of the GDM system can significantly improve the quality of the permeate without decreasing the stabilized flux.

  8. Synthesis of soft shell poly(styrene) colloids for filtration experiments

    DEFF Research Database (Denmark)

    Hinge, Mogens

    Separating a solid from a liquid is an important unit operation in many different industries e.g. mining, chemical, pharmaceutical and food industries. Solid liquid separation can roughly be divided into three groups. 1) Separation by gravity forces e.g. sedimentation, centrifugation, 2) Separation...... by evaporation of the liquid e.g. drying and 3) separation by pressure forces e.g. vacuum filtration, belt presses, pressure filtration. In this Ph.D. thesis only dead-end pressure filtration dewatering is considered. In pressure filtration dewatering the pressure is forcing the liquid through a filter medium...

  9. Sterile Filtration of Highly Concentrated Protein Formulations: Impact of Protein Concentration, Formulation Composition, and Filter Material. (United States)

    Allmendinger, Andrea; Mueller, Robert; Huwyler, Joerg; Mahler, Hanns-Christian; Fischer, Stefan


    Differences in filtration behavior of concentrated protein formulations were observed during aseptic drug product manufacturing of biologics dependent on formulation composition. The present study investigates filtration forces of monoclonal antibody formulations in a small-scale set-up using polyvinylidene difluoride (PVDF) or polyethersulfone (PES) filters. Different factors like formulation composition and protein concentration related to differences in viscosity, as well as different filtration rates were evaluated. The present study showed that filtration behavior was influenced by the presence or absence of a surfactant in the formulation, which defines the interaction between filter membrane and surface active formulation components. This can lead to a change in filter resistance (PES filter) independent on the buffer system used. Filtration behavior was additionally defined by rheological non-Newtonian flow behavior. The data showed that high shear rates resulting from small pore sizes and filtration pressure up to 1.0 bar led to shear-thinning behavior for highly concentrated protein formulations. Differences in non-Newtonian behavior were attributed to ionic strength related to differences in repulsive and attractive interactions. The present study showed that the interplay of formulation composition, filter material, and filtration rate can explain differences in filtration behavior/filtration flux observed for highly concentrated protein formulations thus guiding filter selection.



    Paterniani, JES; da Silva, MJM; Ribeiro, TAP; Barbosa, M.


    The objective of this study was the comparison between two filtration systems, being one composed of a boulder pre-filter followed by a slow filter with sand as filtration media and a non-woven synthetic fabric in the upper part, and the other one composed of a boulder pre-filter followed by a slow filter with sand as filtration media and granular activated charcoal and a non-woven synthetic fabric in the upper part, for the purification of household effluents treated in cultivated beds, to b...

  11. Reverse osmosis followed by activated carbon filtration for efficient removal of organic micropollutants from river bank filtrate. (United States)

    Kegel, F Schoonenberg; Rietman, B M; Verliefde, A R D


    Drinking water utilities in Europe are faced with a growing presence of organic micropollutants in their water sources. The aim of this research was to assess the robustness of a drinking water treatment plant equipped with reverse osmosis and subsequent activated carbon filtration for the removal of these pollutants. The total removal efficiency of 47 organic micropollutants was investigated. Results indicated that removal of most organic micropollutants was high for all membranes tested. Some selected micropollutants were less efficiently removed (e.g. the small and polar NDMA and glyphosate, and the more hydrophobic ethylbenzene and napthalene). Very high removal efficiencies for almost all organic micropollutants by the subsequent activated carbon, fed with the permeate stream of the RO element were observed except for the very small and polar NDMA and 1,4-dioxane. RO and subsequent activated carbon filtration are complementary and their combined application results in the removal of a large part of these emerging organic micropollutants. Based on these experiments it can be concluded that the robustness of a proposed treatment scheme for the drinking water treatment plant Engelse Werk is sufficiently guaranteed.

  12. Antimicrobial filtration with electrospun poly(vinyl alcohol) nanofibers containing benzyl triethylammonium chloride: Immersion, leaching, toxicity, and filtration tests. (United States)

    Park, Jeong-Ann; Kim, Song-Bae


    Antimicrobial electrospun poly(vinyl alcohol) (PVA) nanofibers were synthesized by impregnating benzyl triethylammonium chloride (BTEAC) as an antimicrobial agent into PVA nanofibers. The BTEAC-PVA nanofibers were heat-methanol treated during the preparation for various tests. The BTEAC-PVA nanofibers became more hydrophilic than the PVA nanofibers due to incorporation of BTEAC. Through heat-methanol treatment, thermal property, crystallinity, and water stability of BTEAC-PVA nanofibers were improved considerably. The immersion test shows that heat-methanol treatment has an advantage over heat treatment to maintain BTEAC content in BTEAC-PVA nanofibers. The acute toxicity test demonstrates that the 24-h EC50 and 48-h EC50 values (EC50 = median effective concentration) of BTEAC to Daphnia magna were 113 and 90 mg/L, respectively. The leaching test indicates that the BTEAC concentration leached from BTEAC-PVA nanofibers was far below the concentration affecting the immobilization of D. magna. For antimicrobial filtration tests, the BTEAC-PVA nanofibers were deposited onto glass fiber filter. The antimicrobial filtration test was conducted against bacteria (Escherichia coli, Staphylococcus aureus) and bacteriophages (MS2, PhiX174), demonstrating that the BTEAC-PVA nanofibers could enhance the removal of E. coli and S. aureus considerably but not the removal of MS2 and PhiX174 under dynamic flow conditions.

  13. Preparation and Characterization of Palmitoyl Grafted Cellulose Nano Absorbent for the Efficient Adsorption of Pyrene from Aqueous Solution. (United States)

    Jadhav, Arvind H; Mai, Xuan Thang; Appiah-Ntiamoah, Richard; Lee, Hanyeong; Momade, Francis W Y; Seo, Jeong Gil; Kim, Hern


    Palmitoyl grafted modified cellulose were prepared by simple chemical grafting method and applied as nano adsorbent for removal of pyrene from aqueous solution. The chemical properties and morphology of prepared nano-adsorbent were characterized by FT-IR, XRD, SEM, EDX, TGA, and contact angle. Results showed that palmitoyl successfully grafted on the surface of cellulose and possess effective organic functional groups for the adsorption of pyrene from aqueous solution. The adsorption performance of modified cellulose was significantly improved toward pyrene in aqueous solution. It is worthy to note that 0.25 g of palmitoyl grafted cellulose (PMC) removed 92% pyrene compared to unmodified cellulose which adsorbed 36% pyrene from 1.65 ppm aqueous solution of pyrene in very short contact time at room temperature. Results showed that, presence of various organic functional groups from palmitoyl chains grafted on cellulose backbone affected to pyrene removal. After completion of adsorption phenomenon nano-adsorbent can be removed by simply filtration process and reused several times. The adsorption capacity was studied under different experimental conditions and their effects on adsorption such as temperature, pH, and contact time were also studied. The kinetics and isotherms of material were also determined.

  14. Chemisorption of estrone in nylon microfiltration membranes: Adsorption mechanism and potential use for estrone removal from water. (United States)

    Han, Jie; Qiu, Wei; Hu, Jiangyong; Gao, Wei


    Estrone is a representative steroid estrogen contaminant that has been detected in effluents from sewage treatment facilities, as well as in surface and ground waters. Our study shows that estrone can be readily removed from water via a unique chemisorption mechanism using nylon microfiltration membranes. Experiments on a laboratory in-line filtration system showed instant removal of estrone from 200 μg/l aqueous solutions by 0.45-μm nylon membranes (ca. 35 L per m(2) membrane). Comparisons with 0.45-μm PVDF, PTFE and glass microfiber membranes suggested that the significant estrone adsorption in nylon membrane should be predominately driven by a different mechanism rather than common physical adsorption. Fourier transform infrared spectroscopy study on nylon membranes and a model compound, N-methylacetamide, showed that the significant adsorption originated from the hydrogen bonding between terminal -OH groups on estrone molecules and nucleophile -C=O groups in amide groups of nylon 6,6. The saturated nylon membrane showed very low leachability in ambient water, while it could be effectively regenerated in alkaline or ethanol solutions. Preliminary reusability study showed that the membrane maintained a consistent adsorption capacity for estrone during ten cycles of reuse. The chemisorption-based polymeric adsorption may provide a new alternative approach for removing estrone and potentially other trace organic contaminants from water.

  15. Enhanced adsorption of acidic gases (CO2, NO2 and SO2) on light metal decorated graphene oxide. (United States)

    Chen, Chi; Xu, Kui; Ji, Xiao; Miao, Ling; Jiang, Jianjun


    The adsorption of several acidic gases (CO2, NO2 and SO2) on light metal (Li, Al) decorated graphene oxide (GO) is theoretically studied, based on the first-principles calculations. Configuration relaxation, binding energy and charge transfer are carried out to discuss the acidic gas adsorption ability of light metal decorated GO. It is found out that Li, Al could be anchored stably by hydroxyl and epoxy groups on GO, and then a strong adsorption of CO2, NO2 and SO2 will occur above these light metals. In contrast to Ti, Li decorated GO exhibits a comparable adsorption ability of acidic gases, but a much smaller interaction with O2 about 2.85-3.98 eV lower in binding energy; and Al decorated GO displays much higher binding energy of all acidic gases with an enhancement of about 0.59-2.29 eV. The results of enhanced acidic gas adsorption ability and a reduced interference by O2 imply that Li, Al decorated GO may be useful and promising for collection and filtration of exhaust gases.

  16. Heats of adsorption for charcoal nitrogen systems

    Energy Technology Data Exchange (ETDEWEB)

    Prasad, M.; Akkimaradi, B.S.; Rastogi, S.C. [ISRO Satellite Centre, Bangalore (India). Thermal Systems Group; Rao, R.R. [Government College for Boys, Kolar, Karnataka (India); Srinivasan, K. [Indian Institute of Science, Bangalore (India). Dept. of Mechanical Engineering


    This paper develops an empirical equation for correlation of the loading dependence of the heat of adsorption for two samples of activated charcoal-nitrogen systems. Details are given of the use of isotherm data, the evaluation of the heat of adsorption using the Clausius-Clapeyron equation, the plotting of primary adsorption data, and the plotting of the heat of adsorption as a function of the loading of the two samples. The need to consider the heat of adsorption property when designing a system in which a gaseous medium is adsorbed by a solid sorbent is discussed. (UK)

  17. Adsorption from solutions of non-electrolytes

    CERN Document Server

    Kipling, J J


    Adsorption from Solutions of Non-Electrolytes provides a general discussion of the subject, which has so far been given little or no attention in current textbooks of physical chemistry. A general view of the subject is particularly needed at a time when we wish to see how far it will be possible to use theories of solutions to explain the phenomena of adsorption. The book opens with an introductory chapter on the types of interface, aspects of adsorption from solution, types of adsorption, and classification of systems. This is followed by separate chapters on experimental methods, adsorption

  18. Phosphate adsorption on lanthanum loaded biochar. (United States)

    Wang, Zhanghong; Shen, Dekui; Shen, Fei; Li, Tianyu


    To attain a low-cost and high-efficient phosphate adsorbent, lanthanum (La) loaded biochar (La-BC) prepared by a chemical precipitation method was developed. La-BC and its pristine biochar (CK-BC) were comparatively characterized using zeta potential, BET surface area, scanning electron microscopy/energy dispersive spectrometer (SEM-EDS), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and Fourier transform infrared spectroscopy (FT-IR). The adsorption ability and the mechanisms during adsorption process for the La-BC samples were also investigated. La loaded on the surface of biochar can be termed as La-composites (such as LaOOH, LaONO3 and La(OH)3), leading to the decrease of negative charge and surface area of biochar. La-BC exhibited the high adsorption capacity to phosphate compared to CK-BC. Adsorption isotherm and adsorption kinetic studies showed that the Langmuir isotherm and second order model could well describe the adsorption process of La-BC, indicating that the adsorption was dominated by a homogeneous and chemical process. The calculated maximum adsorption capacity was as high as 46.37 mg g(-1) (computed in P). Thermodynamic analysis revealed that the adsorption was spontaneous and endothermic. SEM, XRD, XPS and FT-IR analysis suggested that the multi-adsorption mechanisms including precipitation, ligand exchange and complexation interactions can be evidenced during the phosphate adsorption process by La-composites in La-BC.

  19. Adsorption of Phosphate on Variable Charge Soils

    Institute of Scientific and Technical Information of China (English)



    The study about the adsorption of phosphate on four variable charge soils and some minerals revealed that two stage adsorption appeared in the adsorption isothems of phosphate on 4 soils and there was a maximum adsorption on Al-oxide-typed surfaces between pH 3.5 to pH 5.5 as suspension pH changed from 2 to 9,but the adsorption amount of phosphate decreased continually as pH rose on Fe-oxide typed surfaces.The adsorption amount of phosphate and the maximum phosphate adsorption pH decreased in the order of yellow-red soil> lateritic red soil> red soil> paddy soil,which was coincided with the content order of amorphous Al oxide.The removement of organic matter and Fe oxide made the maximum phosphate adsorption pH rise from 4.0 to 5.0 and 4.5,respectively.The desorption curves with pH of four soils showed that phosphate desorbed least at pH 5.Generally the desorption was contrary to the adsorption with pH changing.There was a good accordance between adsorption or desorption and the concentration of Al in the suspension.The possible mechanisms of phosphate adsorption are discussed.

  20. Fibrinogen adsorption on blocked surface of albumin

    DEFF Research Database (Denmark)

    Holmberg, Maria; Hou, Xiaolin


    We have investigated the adsorption of albumin and fibrinogen onto PET (polyethylene terephthalate) and glass surfaces and how pre-adsorption of albumin onto these surfaces can affect the adsorption of later added fibrinogen. For materials and devices being exposed to blood, adsorption...... of fibrinogen is often a non-wanted event, since fibrinogen is part of the clotting cascade and unspecific adsorption of fibrinogen can have an influence on the activation of platelets. Albumin is often used as blocking agent for avoiding unspecific protein adsorption onto surfaces in devices designed to handle...... energies, the adsorption of both albumin and fibrinogen has been monitored simultaneously on the same sample. Information about topography and coverage of adsorbed protein layers has been obtained using AFM (Atomic Force Microscopy) analysis in liquid. Our studies show that albumin adsorbs in a multilayer...

  1. Adsorption modeling for macroscopic contaminant dispersal analysis

    Energy Technology Data Exchange (ETDEWEB)

    Axley, J.W.


    Two families of macroscopic adsorption models are formulated, based on fundamental principles of adsorption science and technology, that may be used for macroscopic (such as whole-building) contaminant dispersal analysis. The first family of adsorption models - the Equilibrium Adsorption (EA) Models - are based upon the simple requirement of equilibrium between adsorbent and room air. The second family - the Boundary Layer Diffusion Controlled Adsorption (BLDC) Models - add to the equilibrium requirement a boundary layer model for diffusion of the adsorbate from the room air to the adsorbent surface. Two members of each of these families are explicitly discussed, one based on the linear adsorption isotherm model and the other on the Langmuir model. The linear variants of each family are applied to model the adsorption dynamics of formaldehyde in gypsum wall board and compared to measured data.

  2. Water Purification by Shock Electrodialysis: Deionization, Filtration, Separation, and Disinfection

    CERN Document Server

    Deng, Daosheng; Braff, William A; Schlumpberger, Sven; Suss, Matthew E; Bazant, Martin Z


    The development of energy and infrastructure efficient water purification systems are among the most critical engineering challenges facing our society. Water purification is often a multi-step process involving filtration, desalination, and disinfection of a feedstream. Shock electrodialysis (shock ED) is a newly developed technique for water desalination, leveraging the formation of ion concentration polarization (ICP) zones and deionization shock waves in microscale pores near to an ion selective element. While shock ED has been demonstrated as an effective water desalination tool, we here present evidence of other simultaneous functionalities. We show that, unlike electrodialysis, shock ED can thoroughly filter micron-scale particles and aggregates of nanoparticles present in the feedwater. We also demonstrate that shock ED can enable disinfection of feedwaters, as approximately $99\\%$ of viable bacteria (here \\textit{E. coli}) in the inflow were killed or removed by our prototype. Shock ED also separates...

  3. Flocculation, hydrophobic agglomeration and filtration of ultrafine coal

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Z. [University of British Columbia, Vancouver, BC (Canada). Department of Mineral and Mineral Process Engineering


    Selective flocculation tests were run on three types of coal and three additives in tests on a new hydrophobic agglomeration process using hydrophobic latices. The coals differed widely in surface wettability. The additives were hydrophobic latexes, a semi-hydrophobic flocculant, and a typical hydrophilic polyelectrolyte. The results show that coal wettability is very important in selective flocculation. UBC-1 hydrophobic latex flocculated hydrophobic coal particles only, while the polyelectrolyte flocculated all the coal samples and minerals that were tested. Tests of oil agglomeration using kerosene emulsified with surfactants of various ionic properties show that even oxidized coals can be agglomerated, if cationic surfactants are used to emulsify the oil. The hydrophobic latex and emulsified oils also significantly increase filtration rate and reduce filter cake moisture content.

  4. Liquid filtration properties in gravel foundation of railroad tracks (United States)

    Strelkov, A.; Teplykh, S.; Bukhman, N.


    Railway bed gravel foundation has a constant permanent impact on urban ecology and ground surface. It is only natural that larger objects, such as railway stations, make broader impact. Surface run-off waters polluted by harmful substances existing in railroad track body (ballast section) flow along railroad tracks and within macadam, go down into subterranean ground flow and then enter neighbouring rivers and water basins. This paper presents analytic calculations and characteristics of surface run-off liquid filtration which flows through gravel multiple layers (railroad track ballast section). The authors analyse liquids with various density and viscosity flowing in multi-layer porous medium. The paper also describes liquid stationary and non-stationary weepage into gravel foundation of railroad tracks.

  5. Glomerular filtration rate in cows estimated by a prediction formula. (United States)

    Murayama, Isao; Miyano, Anna; Sato, Tsubasa; Iwama, Ryosuke; Satoh, Hiroshi; Ichijyo, Toshihiro; Sato, Shigeru; Furuhama, Kazuhisa


    To testify the relevance of Jacobsson's equation for estimating bovine glomerular filtration rate (GFR), we prepared an integrated formula based on its equation using clinically healthy dairy (n=99) and beef (n=63) cows, and cows with reduced renal function (n=15). The isotonic, nonionic, contrast medium iodixanol was utilized as a test tracer. The GFR values estimated from the integrated formula were well consistent with those from the standard multisample method in each cow strain, and the Holstein equation prepared by a single blood sample in Holstein dairy cows. The basal reference GFR value in healthy dairy cows was significantly higher than that in healthy beef cows, presumably due to a breed difference or physiological state difference. It is concluded that the validity for the application of Jacobsson's equation to estimate bovine GFR is proven and it can be used in bovine practices.

  6. Ceramic Ultra Filtration Membrane Bioreactor for Domestic Wastewater Treatment

    Institute of Scientific and Technical Information of China (English)


    A long term domestic wastewater treatment experiment was conducted using a recirculating ceramic ultra filtration membrane bioreactor (CUFMB) system. Three experiments were run with a hydraulic retention time of 5h, sludge retention times of 5d, 15d, and 30d and a membrane surface flow rate of 4m/s. The experiment studied the membrane fouling mechanism and cleaning techniques. The results show that a CUFMB system can provide continuous good quality effluent which is completely acceptable for reuse. The system is also not affected by fluctuations of the inlet flow. The CUFMB sludge loading rate is similar to that of conventional biological treatment units. However, the volumetric loading rate of the CUFMB is 24 times that of conventional biological treatment units. Membrane fouling occurs due to channel clogging, which could be easily removed, and surface fouling, which can be effectively removed using the method described in this work which includes water rinsing, base cleaning, and acid washing.

  7. Home water treatment by direct filtration with natural coagulant. (United States)

    Babu, Raveendra; Chaudhuri, Malay


    Seeds of the plant species Strychnos potatorum and Moringa oleifera contain natural polyelectrolytes which can be used as coagulants to clarify turbid waters. In laboratory tests, direct filtration of a turbid surface water (turbidity 15-25 NTU, heterotrophic bacteria 280-500 cfu ml(-1), and fecal coliforms 280-500 MPN 100 ml(-1)), with seeds of S. potatorum or M. oleifera as coagulant, produced a substantial improvement in its aesthetic and microbiological quality (turbidity 0.3-1.5 NTU, heterotrophic bacteria 5-20 cfu ml(-1) and fecal coliforms 5-10 MPN 100 ml(-1)). The method appears suitable for home water treatment in rural areas of developing countries. These natural coagulants produce a 'low risk' water; however, additional disinfection or boiling should be practised during localised outbreaks/epidemics of enteric infections.

  8. Organic-inorganic membranes for filtration of corn distillery

    Directory of Open Access Journals (Sweden)

    Myronchuk Valeriy G.


    Full Text Available Organic-inorganic membranes were obtained by modification of polymer microfiltration membrane with inorganic ion-exchangers, which form secondary porosity inside macroporous substrate (zirconium hydrophosphate or simultaneously in the macroporous substrate and active layer, depending of the particle size (from ≈50 nm up to several microns. Precipitation of the inorganic constituent is considered from the point of view of Ostwald-Freundlich equation. Such processes as pressing test in deionized water and filtration of corn distillery at 1-6 bar were investigated. Theoretical model allowing to establish fouling mechanism, was applied. It was found that the particles both in the substrate and active layer prevent fouling of the membrane with organics and provide rejection of colloidal particles.

  9. Simulation of C-CP Fiber-Based Air Filtration

    Directory of Open Access Journals (Sweden)

    Christopher L. Cox, Ph.D.


    Full Text Available The overall goal of this project is to develop High Efficiency Particulate Air (HEPA filter media, using conventional fiber spinning techniques, with lower pressure drop than current media through the use of shaped fibers. Capillary-channeled polymer (C-CP fibers are gaining interest for use in a range of separations applications. This paper focuses on modeling air filtration where the filter consists of C-CP fibers. A variety of numerical tools are being used in this effort, including a finite element flow solver and Brownian dynamics simulation. Aspects of these techniques in relation to the problem at hand will be described, and simulation results including comparisons to round-fiber filters will be presented. The primary result presented here is the significant difference in predicted pressure drop between a prototype C-CP filter and a round-fiber filter with equal total cross-sectional area.

  10. Allelopathic Effects of Cyanobacterial Filtrates on Baltic Diatom (United States)

    Śliwińska, Sylwia; Latała, Adam


    Allelopathy may be one of the factors affecting the formation of massive and harmful algal blooms in aquatic environments. Recent studies indicate that blooms of cyanobacteria in the Baltic Sea has grown significantly in last decades, so it is important to determine the allelopathic interactions between the dominant species of cyanobacteria and microalgae. In this work we investigated the influence of allelopathic compounds on the growth of Skeletonema marinoi by addition of cell-free filtrate of the Baltic cyanobacterium Nodularia spumigena cultures grown under different temperature (15-25°C). Additionally the effects of filtrates of both an exponential and a stationary growing culture of N. spumigena were tested on diatom. These studies indicate that high temperature affected the donor species by increasing its production of allelochemicals. The highest drop of growth of analyzed diatom were observed after the addition of cell-free filtrate obtained from N. spumigena grown at 25°C and constituted 70% of their control. N. spumigena was only allelopathic in exponential growth phase, whereas the cyanobacteria filtrate from stationary phase have any effect on S. marinoi. These findings suggest that N. spumigena may reveal allelopathic activity and that the production of allelopathic substances is influenced by the temperature and growth phase of cyanobacteria. Allelopatia może być kluczowym czynnikiem wpływającym na tworzenie się masowych zakwitów sinic w wielu wodnych ekosystemach. Badania pokazują, że zakwity sinic w Morzu Bałtyckim w ostatnich dekadach znacznie się nasiliły, dlatego tak ważne jest określenie stopnia oddziaływania allelopatycznego dominujących w tym akwenie gatunków fitoplanktonu. W przeprowadzonych badaniach określono wpływ związków allelopatycznych produkowanych przez bałtycką sinicę Nodularia spumigena hodowaną w różnych temperaturach (15-25°C) na wzrost okrzemki Skeletonema marinoi. Dodatkowo w niniejszej pracy por

  11. Hot-gas filtration for pressurized fluidized-bed combustion

    Energy Technology Data Exchange (ETDEWEB)

    Chang, R.; Kuby, W.


    This topical report discusses the status of the work, conducted under EPRI contract 1336-4, on the evaluation and development of ceramic filter hot gas cleanup technology for pressurized fluidized bed combustion. This topical report represents the status of the work through September 1983. The goal of the effort is to achieve 6000 h of operation on a 13-filter durability test rig. The work includes two parallel tasks. The first is construction of a durability test facility, operation of the facility with an initial candidate filter media installed, and assessment of results. The second task includes a literature survey to identify state-of-the-art ceramic fibers suitable for high-temperature gas filtration applications and filter testing in a single-filter test facility to assess the performance of promising new filter media. The best candidate will be chosen for further evaluation in the durability facility.

  12. Microfluidic filtration system to isolate extracellular vesicles from blood. (United States)

    Davies, Ryan T; Kim, Junho; Jang, Su Chul; Choi, Eun-Jeong; Gho, Yong Song; Park, Jaesung


    Extracellular vesicles are released by various cell types, particularly tumor cells, and may be potential targets for blood-based cancer diagnosis. However, studies performed on blood-borne vesicles to date have been limited by lack of effective, standardized purification strategies. Using in situ prepared nanoporous membranes, we present a simple strategy employing a microfluidic filtration system to isolate vesicles from whole blood samples. This method can be applied to purify nano-sized particles from blood allowing isolation of intact extracellular vesicles, avoiding the need for laborious and potentially damaging centrifugation steps or overly specific antibody-based affinity purification. Porous polymer monoliths were integrated as membranes into poly(methyl methacrylate) microfluidic chips by benchtop UV photopolymerization through a mask, allowing precise positioning of membrane elements while preserving simplicity of device preparation. Pore size could be manipulated by changing the ratio of porogenic solvent to prepolymer solution, and was tuned to a size proper for extraction of vesicles. Using the membrane as a size exclusion filter, we separated vesicles from cells and large debris by injecting whole blood under pressure through the microfluidic device. To enhance isolation purity, DC electrophoresis was employed as an alternative driving force to propel particles across the filter and increase the separation efficiency of vesicles from proteins. From the whole blood of melanoma-grown mice, we isolated extracellular vesicles and performed RT-PCR to verify their contents of RNA. Melan A mRNA derived from melanoma tumor cells were found enriched in filtered samples, confirming the recovery of vesicles via their cargo. This filtration system can be incorporated into other on-chip processes enabling integrated sample preparation for the downstream analysis of blood-based extracellular vesicles.

  13. Biotrickling filtration of isopropanol under intermittent loading conditions. (United States)

    San-Valero, Pau; Penya-Roja, Josep M; Sempere, Feliu; Gabaldón, Carmen


    This paper investigates the removal of isopropanol by gas-phase biotrickling filtration. Two plastic packing materials, one structured and one random, have been evaluated in terms of oxygen mass transfer and isopropanol removal efficiency. Oxygen mass transfer experiments were performed at gas velocities of 104 and 312 m h⁻¹ and liquid velocities between 3 and 33 m h⁻¹. Both materials showed similar mass transfer coefficients up to liquid velocities of 15 m h⁻¹. At greater liquid velocities, the structured packing exhibited greater oxygen mass transfer coefficients. Biotrickling filtration experiments were carried out at inlet loads (IL) from 20 to 65 g C m⁻³ h⁻¹ and empty bed residence times (EBRT) from 14 to 160 s. To simulate typical industrial emissions, intermittent isopropanol loading (16 h/day, 5 day/week) and intermittent spraying frequency (15 min/1.5 h) were applied. Maximum elimination capacity of 51 g C m⁻³ h⁻¹ has been obtained for the random packing (IL of 65 g C m⁻³ h⁻¹, EBRT of 50 s). The decrease in irrigation frequency to 15 min every 3 h caused a decrease in the outlet emissions from 86 to 59 mg C Nm⁻³ (inlet of 500 mg C Nm⁻³). The expansion of spraying to night and weekend periods promoted the degradation of the isopropanol accumulated in the water tank during the day, reaching effluent concentrations as low as 44 mg C Nm⁻³. After a 7-week starvation period, the performance was recovered in less than 10 days, proving the robustness of the process.

  14. Removal of geosmin and 2-methylisoborneol by biological filtration. (United States)

    Elhadi, S L N; Huck, P M; Slawson, R M


    The quality of drinking water is sometimes diminished by the presence of certain compounds that can impart particular tastes or odours. One of the most common and problematic types of taste and odour is the earthy/musty odour produced by geosmin (trans-1, 10-dimethyl-trans-9-decalol) and MIB (2-methylisoborneol). Taste and odour treatment processes including powdered activated carbon, and oxidation using chlorine, chloramines, potassium permanganate, and sometimes even ozone are largely ineffective for reducing these compounds to below their odour threshold concentration levels. Ozonation followed by biological filtration, however, has the potential to provide effective treatment. Ozone provides partial removal of geosmin and MIB but also creates other compounds more amenable to biodegradation and potentially undesirable biological instability. Subsequent biofiltration can remove residual geosmin and MIB in addition to removing these other biodegradable compounds. Bench scale experiments were conducted using two parallel filter columns containing fresh and exhausted granular activated carbon (GAC) media and sand. Source water consisted of dechlorinated tap water to which geosmin and MIB were added, as well as, a cocktail of easily biodegradable organic matter (i.e. typical ozonation by-products) in order to simulate water that had been subjected to ozonation prior to filtration. Using fresh GAC, total removals of geosmin ranged from 76 to 100% and total MIB removals ranged from 47% to 100%. The exhausted GAC initially removed less geosmin and MIB but removals increased over time. Overall the results of these experiments are encouraging for the use of biofiltration following ozonation as a means of geosmin and MIB removal. These results provide important information with respect to the role biofilters play during their startup phase in the reduction of these particular compounds. In addition, the results demonstrate the potential biofilters have in responding to

  15. Enhanced filtration program at LLL. A progress report

    Energy Technology Data Exchange (ETDEWEB)

    Bergman, W.; Taylor, R.D.; Miller, H.H.; Bierman, A.H.; Hebard, H.D.; daRoza, R.A.; Lum, B.Y.


    As part of Lawrence Livermore Laboratory's Enhanced Filtration Program, we are investigating the use of an externally applied electric field to improve the performance of fibrous filters. Our objective in this program is to develop filtration systems for the nuclear industry that will reduce the cost and volume of nuclear waste associated with present systems. We have developed a new theory of the electrostatic filter that is consistent with experimental tests made during transient and steady-state conditions. For these tests, we used ac and dc electric fields, insulated and noninsulated electrodes, and conducting and nonconducting filter media; all tests were conducted in our small-scale 25 l/s test system, using sodium chloride aerosols. Our theory employs a new mechanism based on the attraction between charged particles and charged fibers in addition to the previously proposed mechanism based on the attraction between charged particles and polarized fibers. In this theory, fibers are charged when charged particles deposit on them. We have also developed a theoretical model that explains the increase in filter efficiency and pressure drop when particles load on the filter. The filter loading tests we conducted to evaluate this model verify its accuracy to a remarkable degree. By using the model equations, we are thus able to explain the observed increase in filter efficiency as a function of particle mass loading, particle size, and particle-particle collection efficiency. Two systems we developed for use in the nuclear industry use electric fields to increase the performance of fibrous filters. One is designed for use inside glove boxes to control radioactive particles at their source; the other is designed for use in ventilation systems. Here we report the results of laboratory and field evaluations for the glove box system.

  16. Modeling of hyperbaric filtration and dewatering of coal (United States)

    Ranjan, Sushil

    Generalized models have been developed for continuous hyperbaric filtration to evaluate cake formation, filter capacity/filter area, cake dewatering, air consumption and residual cake saturation/residual cake moisture. Emphasis has been placed on cake structure as being a major controlling factor in fine coal dewatering by filtration. The effects of cake structure, as defined by the distributions of pore size and shape, have been reviewed. A simple model relating cake structure to feed particle characteristics is presented and applied to a practical case of fine coal dewatering. A binary packing model has been proposed to explain the existence of compressibility in non-compressible cakes. This model proposes an inner open-structure in the main cake, with the inner layer being compressible. The variation in the inner cake porosity with applied pressure has been used to explain the change in specific cake resistance and filter capacity (solids cake throughput). Process simulations have been conducted for a single stage and a two stage process, wherein the original feed has been split into a coarse fraction and a fine fraction (and then each fraction processed separately). The process simulations for a two stage process show a lot of promise as this leads to a lowering of the required filter area and the residual cake moisture. The required filter area increases, while the residual cake moisture decreases as the cut size for the two stage process is increased. However, the advantages of a two stage process are adversely affected by an inefficient separation process, which leads to an increased filter area and a higher residual cake moisture and the two stage process approaches a single stage process.

  17. Filtration-guided assembly for patterning one-dimensional nanostructures (United States)

    Zhang, Yaozhong; Wang, Chuan; Yeom, Junghoon


    Tremendous progress has been made in synthesizing various types of one-dimensional (1D) nanostructures (NSs), such as nanotubes and nanowires, but some technical challenges still remain in the deterministic assembly of the solution-processed 1D NSs for device integration. In this work we investigate a scalable yet inexpensive nanomaterial assembly method, namely filtration-guided assembly (FGA), to place nanomaterials into desired locations as either an individual entity or ensembles, and form functional devices. FGA not only addresses the assembly challenges but also encompasses the notion of green nanomanufacturing, maximally utilizing nanomaterials and eliminating a waste stream of nanomaterials into the environment. FGA utilizes selective filtration of 1D NSs through the open windows on the nanoporous filter membrane whose surface is patterned by a polymer mask for guiding the 1D NS deposition. The modified soft-lithographic technique called blanket transfer (BT) is employed to create the various photoresist patterns of sub-10-micron resolution on the nanoporous filter membrane like mixed cellulose acetate. We use single-walled carbon nanotubes (SWCNTs) as a model 1D NS and demonstrate the fabrication of an array pattern of homogeneous 1D NS network films over an area of 20 cm2 within 10 min. The FGA-patterned SWCNT network films are transferred onto the substrate using the adhesive-based transfer technique, and show the highly uniform film thickness and resistance measurements across the entire substrate. Finally, the electrical performance of the back-gated transistors made from the FGA and transfer method of 95% pure SWCNTs is demonstrated.

  18. Ultrastructural model for size selectivity in glomerular filtration. (United States)

    Edwards, A; Daniels, B S; Deen, W M


    A theoretical model was developed to relate the size selectivity of the glomerular barrier to the structural characteristics of the individual layers of the capillary wall. Thicknesses and other linear dimensions were evaluated, where possible, from previous electron microscopic studies. The glomerular basement membrane (GBM) was represented as a homogeneous material characterized by a Darcy permeability and by size-dependent hindrance coefficients for diffusion and convection, respectively; those coefficients were estimated from recent data obtained with isolated rat GBM. The filtration slit diaphragm was modeled as a single row of cylindrical fibers of equal radius but nonuniform spacing. The resistances of the remainder of the slit channel, and of the endothelial fenestrae, to macromolecule movement were calculated to be negligible. The slit diaphragm was found to be the most restrictive part of the barrier. Because of that, macromolecule concentrations in the GBM increased, rather than decreased, in the direction of flow. Thus the overall sieving coefficient (ratio of Bowman's space concentration to that in plasma) was predicted to be larger for the intact capillary wall than for a hypothetical structure with no GBM. In other words, because the slit diaphragm and GBM do not act independently, the overall sieving coefficient is not simply the product of those for GBM alone and the slit diaphragm alone. Whereas the calculated sieving coefficients were sensitive to the structural features of the slit diaphragm and to the GBM hindrance coefficients, variations in GBM thickness or filtration slit frequency were predicted to have little effect. The ability of the ultrastructural model to represent fractional clearance data in vivo was at least equal to that of conventional pore models with the same number of adjustable parameters. The main strength of the present approach, however, is that it provides a framework for relating structural findings to the size

  19. Enhanced mercuric chloride adsorption onto sulfur-modified activated carbons derived from waste tires. (United States)

    Yuan, Chung-Shin; Wang, Guangzhi; Xue, Sheng-Han; Ie, Iau-Ren; Jen, Yi-Hsiu; Tsai, Hsieh-Hung; Chen, Wei-Jin


    A number of activated carbons derived from waste tires were further impregnated by gaseous elemental sulfur at temperatures of 400 and 650 degrees C, with a carbon and sulfur mass ratio of 1:3. The capabilities of sulfur diffusing into the micropores of the activated carbons were significantly different between 400 and 650 degrees C, resulting in obvious dissimilarities in the sulfur content of the activated carbons. The sulfur-impregnated activated carbons were examined for the adsorptive capacity of gas-phase mercuric chloride (HgC1) by thermogravimetric analysis (TGA). The analytical precision of TGA was up to 10(-6) g at the inlet HgCl2 concentrations of 100, 300, and 500 microg/m3, for an adsorption time of 3 hr and an adsorption temperature of 150 degrees C, simulating the flue gas emitted from municipal solid waste (MSW) incinerators. Experimental results showed that sulfur modification can slightly reduce the specific surface area of activated carbons. High-surface-area activated carbons after sulfur modification had abundant mesopores and micropores, whereas low-surface-area activated carbons had abundant macropores and mesopores. Sulfur molecules were evenly distributed on the surface of the inner pores after sulfur modification, and the sulfur content of the activated carbons increased from 2-2.5% to 5-11%. After sulfur modification, the adsorptive capacity of HgCl2 for high-surface-area sulfurized activated carbons reached 1.557 mg/g (22 times higher than the virgin activated carbons). The injection of activated carbons was followed by fabric filtration, which is commonly used to remove HgCl2 from MSW incinerators. The residence time of activated carbons collected in the fabric filter is commonly about 1 hr, but the time required to achieve equilibrium is less than 10 min. Consequently, it is worthwhile to compare the adsorption rates of HgCl2 in the time intervals of < 10 and 10-60 min.

  20. Theoretical comparison of filtration by the renal glomerulus and artificial membranes. (United States)

    Tsuji, M; Sakai, K


    Improvement in filtration performance of artificial membranes will be possible if their structure mimics the renal glomerulus. Blood filtration with glomerular capillary and artificial membranes was, therefore, modeled to clarify the effects of their structure on filtration rates. Filtration rates were obtained by dividing membrane modules axially into a number of sections and using a calculus of finite differences. The modules were assumed to be composed of straight hollow fibers arranged in parallel, with a membrane surface area of 1.5 m2. The mean transmembrane pressure (TMP) was assumed to be too low for a protein gel layer to form on the membrane surface. A decrease in the inner diameter of membrane hollow fibers led to an increase in filtration rate because of an increased film mass transfer coefficient. A decrease in hollow fiber length also produced an increase in filtration rate because of decreased axial TMP drop. The glomerular capillary has a higher filtration rate than artificial membranes because of the low TMP drop and the low osmotic pressure at the membrane surface. Decreasing both the inner diameter and the length of the hollow fibers is effective in increasing the filtration rate at constant TMP.

  1. The Application of Homogenate and Filtrate from Baltic Seaweeds in Seedling Growth Tests

    Directory of Open Access Journals (Sweden)

    Izabela Michalak


    Full Text Available Algal filtrate and homogenate, obtained from Baltic seaweeds, were applied in seedling growth tests. Radish seeds were used in order to assess algal products phytotoxicity and their biostimulant effect on growth and nutrient uptake. Algal filtrate, at concentrations ranging from 5.0% to 100% was used for seed soaking and as a liquid biostimulant (soil and foliar application. Algal homogenate was developed for seed coating. Algal filtrate and homogenate were also enriched with Zn(II ions in order to examine the influence on metal ion complexation. The optimal doses of algal filtrate and homogenate, as well as soaking time were established. Multi-elemental analyses of the raw biomass, filtrate, homogenate, and radish were also performed using ICP-OES (Inductively Coupled Plasma—Optical Emission Spectrometry. The best results in terms of seedlings’ length and weight were obtained using clear filtrate at a concentration of 50% applied to the soil and for homogenate applied at a dose of 50 mg/g of seeds. Clear filtrate at a concentration of 50% used for seed soaking for one hour showed the best results. The applied algal products increased the content of elements in seedlings. Among the tested products, a concentration of 50% algal filtrate is recommended for future pot and field experiments.

  2. Treatment of plasmapheresis refractory thrombotic thrombocytopenic purpura with double-filtration membrane plasmapheresis. (United States)

    Karakus, Volkan; Deveci, Burak; Kurtoğlu, Erdal


    Thrombotic thrombocytic purpura (TTP) is a life-threatening disorder. Without plasma exchange treatment (PET) the mortality rate is quite high. Double-filtration plasmapheresis is an alternative opportunity for TTP patients refractory to PET. Here we report our experience in a refractory TTP patient who was successfully treated by means of double-filtration plasmapheresis therapy.

  3. Measurement of glomerular filtration rate in adults: accuracy of five single-sample plasma clearance methods

    DEFF Research Database (Denmark)

    Rehling, M; Rabøl, A


    After an intravenous injection of a tracer that is removed from the body solely by filtration in the kidneys, the glomerular filtration rate (GFR) can be determined from its plasma clearance. The method requires a great number of blood samples but collection of urine is not needed. In the present...

  4. Clinical use of estimated glomerular filtration rate for evaluation of kidney function

    DEFF Research Database (Denmark)

    Broberg, Bo; Lindhardt, Morten; Rossing, Peter;


    Estimating glomerular filtration rate by the Modification of Diet in Renal Disease or Chronic Kidney Disease Epidemiology Collaboration formulas gives a reasonable estimate of kidney function for e.g. classification of chronic kidney disease. Additionally the estimated glomerular filtration rate...

  5. Filtration track membranes and their biomedical applications; Trekowe membrany filtracyjne oraz ich zastosowania biomedyczne

    Energy Technology Data Exchange (ETDEWEB)

    Buczkowski, M.; Wawszczak, D.; Starosta, W. [Institute of Nuclear Chemistry and Technology, Warsaw (Poland)


    The characteristics of track filtration membranes has been performed. The investigation of radiation resistance has been carried out for different types of polymer foil used as a membrane material. Biomedical applications of track filtration membranes have been presented and discussed. 10 refs, 10 figs.

  6. Effect of leukocyte filtration on the P-selectin expression of apheresis platelets. (United States)

    Xie, Z T; Chen, C; Zhang, S H; Yang, H M; Tao, Z H


    The aim of this study was to investigate the effect of leukocyte filtration on the P-selectin (CD62P) surface expression of apheresis platelets during the retention period. Ten bags of apheresis platelets stored for 1 day (0-24 h) and 10 bags of apheresis platelets stored for 2 days (24-48 h) were used for leukocyte filtration (experimental group). Ten bags of apheresis platelets with the corresponding retention periods but without filtration were used as a negative control (control group). Thereafter, 100 μL of platelet suspensions from apheresis platelets with or without leukocyte filtration were sampled before and after leukocyte filtration for the detection of CD62P surface expression by flow cytometry. No statistical difference in the CD62P surface expression of apheresis platelets was observed before and after leukocyte filtration (P > 0.05), neither did the CD62P surface expression exhibit any change among the different retention periods. Leukocyte filtration does not affect the CD62P surface expression of apheresis platelets stored for up to 2 days, which indicates that leukocyte filtration does not damage the activation of apheresis platelets within the retention period.

  7. Self-assembled nanowire arrays as three-dimensional nanopores for filtration of DNA molecules. (United States)

    Rahong, Sakon; Yasui, Takao; Yanagida, Takeshi; Nagashima, Kazuki; Kanai, Masaki; Meng, Gang; He, Yong; Zhuge, Fuwei; Kaji, Noritada; Kawai, Tomoji; Baba, Yoshinobu


    Molecular filtration and purification play important roles for biomolecule analysis. However, it is still necessary to improve efficiency and reduce the filtration time. Here, we show self-assembled nanowire arrays as three-dimensional (3D) nanopores embedded in a microfluidic channel for ultrafast DNA filtration. The 3D nanopore structure was formed by a vapor-liquid-solid (VLS) nanowire growth technique, which allowed us to control pore size of the filtration material by varying the number of growth cycles. λ DNA molecules (48.5 kbp) were filtrated from a mixture of T4 DNA (166 kbp) at the entrance of the 3D nanopore structure within 1 s under an applied electric field. Moreover, we observed single DNA molecule migration of T4 and λ DNA molecules to clarify the filtration mechanism. The 3D nanopore structure has simplicity of fabrication, flexibility of pore size control and reusability for biomolecule filtration. Consequently it is an excellent material for biomolecular filtration.


    Institute of Scientific and Technical Information of China (English)

    Deying Wang; Ziqiu Shen


    Scanning electronic microscope was adopted to investigate the pore structure of deposits formed during polypropylene fiber bundle filtration. The effects of flocculants, cationic polyacrylamide and polyaluminumchloride, on the pore structure and filtration process were examined. It is found from experimental results that the filter deposit has a self-similarity pore structure, which can be described in fractal dimensions.

  9. Tools for Schools: Filtration for Improved Air Quality. Technical Services Bulletin. (United States)


    This product bulletin addresses air pollution control in educational facilities to enhance educational performance, provides air quality recommendations for schools, and examines the filtration needs of various school areas. The types of air particles typically present are highlighted, and the use of proper filtration to control gases and vapors…

  10. Biological Control of Aphid Using Fungal Culture and Culture Filtrates of Beauveria bassiana. (United States)

    Kim, Jeong Jun; Jeong, Gayoung; Han, Ji Hee; Lee, Sangyeob


    Aphids are one of the most destructive pests in crop production such as pepper, cucumber, and eggplants. The importance of entomopathogenic fungi as alternative pest control agents is increasing. Conidia of entomopathogenic fungi are influenced by environmental conditions, such as temperature and relative humidity, and cause slow and fluctuating mortality. These factors have prevented wider application and use of biocontrol agents. For investigation of means of mitigation of such problems, we conducted bioassays with 47 fungal culture filtrates in order to evaluate the potential of secondary metabolites produced by entomopathogenic fungi for use in aphid control. Among 47 culture filtrates cultured potato dextrose broth, filtrate of Beauveria bassiana Bb08 showed the highest mortality (78%) against green peach aphid three days after treatments. Filtrate of Bb08 cultured in Adamek's medium showed higher toxicity as 100% to third instar nymphs of the aphid compared with seven other filtrates cultured in different broths amended with colloidal chitin or oil. The culture filtrates and fungal cultures from media amended with colloidal chitin or oil had lower control efficacies than filtrates without these additives in three different media. These results indicate that the fungal culture fluid or culture filtrate of B. bassiana Bb08 cultured in Adamek's medium has potential for development as a mycopesticide for aphid control.


    Directory of Open Access Journals (Sweden)



    Full Text Available Sodium and potassium combinations existing in phosphogypsum are highly soluble and remain in the filtrate, their amount increasing with each recycle. It has been determined that the amount of alkalis in the recycling filtrate depends on an amount of alkalis in uncleaned phosphogypsum, a number of recycles in the filtrate, the technology of the phosphogypsum pulp preparation and an amount of soluble phosphates. New phosphate formations composed in an acid medium (pH = 4.5-5 are well crystalized crystals. They do not alter the filtrability of the phosphogypsum pulp. The new combinations formed in an alkaline medium (pH = 7-11 are colloidal. They settle down on the surface of the hard particles and make the filtration of the phosphogypsum pulp complicated. The filtrated phosphogypsum is more humid which causes the growth of the amount of alkalis carried out together with moisture and thus the lower alkali concentration is observed in the recycling filtrate. In the discussed case, the larger amount of soluble phosphates of uncleaned phosphogypsum is formed the larger amount of the colloidal particles in the neutralized phosphogypsum pulp which results in complicated filtration. In all the cases, the alkali concentration in the recycling filtrate approaches the maximum degree which would take place if alkalis existing in uncleaned phosphogypsum were thawed in humidity of cleaned phosphogypsum.

  12. Adsorption in air treatment; Adsorption en traitement de l'air

    Energy Technology Data Exchange (ETDEWEB)

    Le Cloirec, P. [Ecole des Mines de Nantes, Dept. Systemes Energetiques et Environnement, 44 - Nantes (France)


    The aim of this article is to present the concepts and technologies of adsorption in air treatment. The following points are more particularly developed: 1 - approach of mechanisms: gas-solid transfer, equilibrium equations, multi-composed adsorption, adsorption influencing parameters, adsorption-desorption capacities and energies, specific case of hydrogen sulfide, the case of ketones; 2 - adsorbents implemented; 3 - adsorption and dynamical adsorber: flow and pressure drop in a porous medium, breakthrough curves, adsorption capacities, modeling of breakthrough curves; 4 - implementation of adsorber: models, dimensioning and practical operating data, process safety; 5 - regeneration of activated charcoals: reactivation, in-situ thermal regeneration. (J.S.)

  13. Comparative toxicities of oxygen, ozone, chlorine dioxide, and chlorine bleaching filtrates - microtox toxicities of raw and processed filtrates

    Energy Technology Data Exchange (ETDEWEB)

    Ard, T.A.; McDonough, T.J.


    It has claimed that effluents from the bleaching of kraft pulp with chlorine and its compounds have deleterious effects on the aquatic environment. It has been further suggested that bleaching without the use of chlorine or its compounds will produce innocuous effluents. To obtain information on the validity of these claims, we have conducted a laboratory study of the toxicity of filtrates from chlorine-based and nonchlorine bleaching processes. We have also examined two related issues. The first is whether any toxicants generated during bleaching are rendered harmless (by neutralization, storage, and biological treatment) before being discharged to the environment. The second related issue is whether any toxicity observed in mill effluents actually originates in the bleaching process, as opposed to being due to raw material components or compounds formed during the pulping step that precedes bleaching. Several conclusions were drawn from this study. (1) There is a background level of toxicity which originates in the oxygen stage, process steps prior to bleaching, or in the wood raw material. It is decreased by neutralization and storage, but residual toxicity may still be detected after two weeks. (2) If the sum of the first and second stage toxicities is taken as an indicator of overall toxicity, the untreated filtrates may be ranked as follows: Control (Background) > D(EO) > Z(EO) > C(EO). However, these toxicities are of no importance in regard to environmental effects because of their ephemeral nature and the likelihood of their being reduced or eliminated prior to effluent discharge. Evidence for this statement is the ease with which all except the C(EO) were detoxified by neutralization and storage. (3) After neutralization and storage for two weeks at room temperature the ranking of toxicities becomes: C(EO) > D(EO) > Z(EO) > Background. The last three are similar in magnitude.

  14. Impaired autoregulation of glomerular filtration rate in type 1 (insulin-dependent) diabetic patients with nephropathy

    DEFF Research Database (Denmark)

    Parving, H H; Kastrup, Helge; Smidt, U M;


    served as controls. Renal function was assessed by glomerular filtration rate (single bolus 51Cr-EDTA technique) and urinary albumin excretion rate (radial immunodiffusion). The study was performed twice within 2 weeks, with the subjects receiving an intravenous injection of either clonidine (225...... arterial blood pressure in all three groups (16-18 mmHg). While glomerular filtration rate and urinary albumin excretion rate remained unchanged in both control groups after clonidine injection, glomerular filtration rate diminished from 78 to 71 ml/min per 1.73 m2 (p les than 0.01), and urinary albumin...... excretion declined from 1707 to 938 micrograms/min (p less than 0.01) in the patients with diabetic nephropathy. Our results suggest that an intrinsic vascular (arteriolar) mechanism underlying the normal autoregulation of glomerular filtration rate, i.e. the relative constancy of glomerular filtration rate...

  15. Pretreatment of highly turbid coal mine drainage by a chemical agent free filtration system

    Institute of Scientific and Technical Information of China (English)

    Zhang Chunhui; He Xiong; Li Kaihe; Wu Dongsheng; Guo Yanrong; Wang Can


    A filtration system used without chemical agents for the pretreatment of turbid coal mine drainage is described in this paper.The influence of different aperture sizes and different motor speeds was investigated during the study.The experimental results show that for aperture diameters of 0.4,0.6,or 0.8 mm smaller apertures provide more complete filtration.Rotations of 12,20,28,or 40 r/min show that higher speeds give more efficient filtration.Suspended solids decreased in both particle size and concentration after the filtration.The separated slime can be directly reused as a fuel.Efficient filtration pretreatment systems for coal mine drainage were investigated and the economic feasibility is analyzed in this article.

  16. Measurement of water filtration in skeletal muscle in man by an osmotic transient method

    DEFF Research Database (Denmark)

    Palm, T; Nielsen, S L; Lassen, N A


    Water filtration in the human forearm was determined with a new method using a hyperoncotic transient of albumin solution infused into the brachial artery. Baseline dilution of labelled albumin in deep forearm vein plasma in excess of the contribution from arterial blood and from infusate...... was assumed to originate from extravascular water filtered into the blood by the transient. The filtration coefficient (Fc) was determined as the ratio between filtered water and increase in colloid osmotic pressure in the blood samples, and gives the filtrative water permeability in the exchange areas...... of the microcirculation. In 10 normal volunteers, Fc was 0.00082 ml (ml mmHg)-1 (SD=0.00007). Multiplication of Fc by plasma flow in the forearm gave a filtration capacity (Kf) of 0.0036 ml (100 ml tissue min mmHg)-1 (SD=0.00137). This filtration capacity (Kf) represents that of fast flowing regions in the forearm...

  17. Continuous Processing of Active Pharmaceutical Ingredients Suspensions via Dynamic Cross-Flow Filtration. (United States)

    Gursch, Johannes; Hohl, Roland; Toschkoff, Gregor; Dujmovic, Diana; Brozio, Jörg; Krumme, Markus; Rasenack, Norbert; Khinast, Johannes


    Over the last years, continuous manufacturing has created significant interest in the pharmaceutical industry. Continuous filtration at low flow rates and high solid loadings poses, however, a significant challenge. A commercially available, continuously operating, dynamic cross-flow filtration device (CFF) is tested and characterized. It is shown that the CFF is a highly suitable technology for continuous filtration. For all tested model active pharmaceutical ingredients, a material-specific strictly linear relationship between feed and permeate rate is identified. Moreover, for each tested substance, a constant concentration factor is reached. A one-parameter model based on a linear equation is suitable to fully describe the CFF filtration performance. This rather unexpected finding and the concentration polarization layer buildup is analyzed and a basic model to describe the observed filtration behavior is developed.

  18. Adsorption of Carbon Dioxide on Activated Carbon

    Institute of Scientific and Technical Information of China (English)

    Bo Guo; Liping Chang; Kechang Xie


    The adsorption of CO2 on a raw activated carbon A and three modified activated carbon samples B, C, and D at temperatures ranging from 303 to 333 K and the thermodynamics of adsorption have been investigated using a vacuum adsorption apparatus in order to obtain more information about the effect of CO2 on removal of organic sulfur-containing compounds in industrial gases. The active ingredients impregnated in the carbon samples show significant influence on the adsorption for CO2 and its volumes adsorbed on modified carbon samples B, C, and D are all larger than that on the raw carbon sample A. On the other hand, the physical parameters such as surface area, pore volume, and micropore volume of carbon samples show no influence on the adsorbed amount of CO2. The Dubinin-Radushkevich (D-R) equation was the best model for fitting the adsorption data on carbon samples A and B, while the Freundlich equation was the best fit for the adsorption on carbon samples C and D. The isosteric heats of adsorption on carbon samples A, B, C, and D derived from the adsorption isotherms using the Clapeyron equation decreased slightly increasing surface loading. The heat of adsorption lay between 10.5 and 28.4 kJ/mol, with the carbon sample D having the highest value at all surface coverages that were studied. The observed entropy change associated with the adsorption for the carbon samples A, B, and C (above the surface coverage of 7 ml/g) was lower than the theoretical value for mobile adsorption. However, it was higher than the theoretical value for mobile adsorption but lower than the theoretical value for localized adsorption for carbon sample D.

  19. Derivation of total filtration thickness for diagnostic x-ray source assembly (United States)

    Sekimoto, Michiharu; Katoh, Yoh


    The method defined by the IEC 60522 for determining the inherent filtration of an x-ray source device is applicable only for a limited range of tube voltage. Because the users cannot legally remove the x-ray movable diaphragm of the x-ray source device, total filtration, which is the sum of the additional filtration diaphragm movable for specific filtration and x-ray, cannot be measured. We develop a method for simply obtaining the total filtration for different tube voltage values. Total filtration can be estimated from a ratio R‧ of the air kerma Kx+T\\prime , which is measured with an Al plate with thickness T, and Kx\\prime measured without an Al plate. The conditions of the target material of the x-ray source device are then entered into the Report 78 Spectrum Processor to calculate the air kerma K x and K x+T for Al thicknesses x and (x  +  T), respectively, to obtain R. The minimum value of x, which is the difference between the R and R‧, is the total filtration of the x-ray source device. The total filtration calculated using the industrial x-ray source device was within  ±1% in the 40-120 kV range. This method can calculate the total filtration using air kerma measurements with and without the Al plate. Therefore, the load on the x-ray tube can be reduced, and preparation of multiple Al plates is not necessary. Furthermore, for the 40-120 kV tube voltage range, the user can easily measure the total filtration.

  20. Understanding Deep Bed Filtration by Direct Micro-scale Particulate Flow Modelling (United States)

    Mirabolghasemi, M.; Prodanovic, M.


    Filtration of suspensions through porous beds occurs in a variety of applications such as drilling mud infiltration into rock formations and waste water treatment. Accurate modelling of filtration through porous media on macroscopic scale often requires a precise estimate of the filtration coefficient, which reflects the fraction of particles that get retained in the filter medium. A large number of deep bed filtration models assume a constant entrapment rate without taking into account the rate of particle release back into the flow. In addition, the available models often assume instantaneous entrapment, which ignores particle rolling. These assumptions lead to an almost static description of filtration phenomenon, which is in fact highly dynamic in nature. In this study we used a micro-scale simulation approach to understand the filtration of suspensions through a sphere pack. We applied a semi-coupled CFD-DEM method to directly model the fluid and particulate flow through the extracted pore space. The accuracy of the geometrical description of the flow domain was tested by calculating its porosity and permeability and comparing those to measured values. The results of the simulation provide the distribution of particle and fluid velocities throughout the filtration process. These velocity distributions show that under our simulation conditions, a significant portion of particles travel with a velocity 4 to 5 orders of magnitude slower than the average fluid velocity, which indicates that particle rolling is not negligible. Based on these results we propose a modified definition of filtration coefficient and estimate its values. Overall, this study provides an improved insight into deep bed filtration and reveals the absence of a granular phase flow equation in the existing deep bed filtration formulation. Finally, while we worked with sphere packing for this initial study, the simulation can take any pore space described by a binary (segmented) image and is

  1. A hybrid poly(dimethylsiloxane) microsystem for on-chip whole blood filtration optimized for steroid screening. (United States)

    Thorslund, Sara; Klett, Oliver; Nikolajeff, Fredrik; Markides, Karin; Bergquist, Jonas


    Miniaturized biochemical devices in glass, silicon and polymer materials are starting to find their way from the academic laboratories to real-life applications. However, most attention has been given to miniaturize the downstream functions of various microfluidic systems, leaving the sample introduction and preparation steps to more conventional, bulkier solutions. For point-of-care diagnostics in particular, it becomes crucial to be able to handle complex human samples in a miniaturized format.In this work, we report on a microsystem for on-chip sample preparation that is able to remove blood cells from whole blood. The hybrid system consists of a commercially available membrane filter incorporated into a poly(dimethylsiloxane) (PDMS) casted device. Membrane materials were evaluated on the bases of low nonspecific adsorption of free and protein-bound testosterone as analyte substance. The hybrid system including a hydrophilic polypropylene filter successfully removed blood cells from diluted human whole blood. Surface oxidation was sufficient to make the plasma filtrate flow through the membrane filter and the channel system by capillary force alone and thus no external pumping source was needed.

  2. Adsorption and adhesiveness of kapok fiber to different oils. (United States)

    Dong, Ting; Xu, Guangbiao; Wang, Fumei


    Adsorption and adhesiveness of single kapok to various oils, such as diesel, vegetable oil, used motor oil and motor oil were quantitatively evaluated by size and adhesive energy distribution of adsorbed oil droplets on fiber via drop-on-fiber micro-sorption experiments based on Carroll's theory of droplet morphology. Meanwhile, another micro polyester fiber was investigated as comparison. It was found that kapok fibers exihibited low surface energy of 40.64 mN/m with highly hydrophobicity and oil wettability. It had high water contact angle up to 151°, adsorbing four oils with average droplet size varying from emulsified state(0.1-25 μm) to dispersed state (25-100 μm). The average adhesive energies of kapok to four oils were 3.78×10(-11)-9.40×10(-11) J, with the highest for vegetable oil. Compared with kapok, polyester fiber adsorbed a large number of smaller oil droplets with their average size within emulsified state for its large specific surface area contributed by micro-fine of the fiber, but showed bad adhesiveness to retain the adsorbed oils with average droplet adhesive energy among 1.49×10(-11)-2.27×10(-11)J due to its relative higher surface energy of 59.15 mN/m. It is more suitable to be used as filter for secondary fine filtration under low inflow rate.

  3. A Combined Approach to Measure Micropollutant Behaviour during Riverbank Filtration (United States)

    van Driezum, Inge; Saracevic, Ernis; Derx, Julia; Kirschner, Alexander; Sommer, Regina; Farnleitner, Andreas; Blaschke, Alfred Paul


    Riverbank filtration (RBF) systems are widely used as natural treatment process. The advantages of RBF over surface water abstraction are the elimination of for example suspended solids, biodegradable compounds (like specific micropollutants), bacteria and viruses (Hiscock and Grischek, 2002). However, in contrast to its importance, remarkably less is known on the respective external (e.g. industrial or municipal sewage) and the internal (e.g. wildlife and agricultural influence) sources of contaminants, the environmental availability and fate of the various hazardous substances, and its potential transport during soil and aquifer passage. The goal of this study is to get an insight in the behaviour of various micropollutants and microbial indicators during riverbank filtration. Field measurements were combined with numerical modelling approaches. The study area comprises an alluvial backwater and floodplain area downstream of Vienna. The river is highly dynamic, with discharges ranging from 900 m3/s during low flow to 11000 m3/s during flood events. Samples were taken in several monitoring wells along a transect extending from the river towards a backwater river in the floodplain. Three of the piezometers were situated in the first 20 meters away from the river in order to obtain information about micropollutant behaviour close to the river. A total of 9 different micropollutants were analysed in grab samples taken under different river flow conditions (n=33). Following enrichment using SPE, analysis was performed using high performance liquid chromatography-tandem mass spectrometry. Faecal indicators (E. coli and enterococci) and bacterial spores were enumerated in sample volumes of 1 L each using cultivation based methods (ISO 16649-1, ISO 7899-2:2000 and ISO 6222). The analysis showed that some compounds, e.g. ibuprofen and diclofenac, were only found in the river. These compounds were already degraded in the first ten meters away from the river. Analysis of

  4. The Role of Filtration in Maintaining Clean Heat Exchanger Coils

    Energy Technology Data Exchange (ETDEWEB)

    Li Yang; James E. Braun; Eckhard A. Groll


    The main purpose of the study was to investigate the role of filtration in maintaining clean heat exchanger coils and overall performance. Combinations of 6 different levels of filtration (MERV 14, 11, 8, 6, 4, and no filter) and 4 different coils (an eight-row lanced-fin coil, HX8L), (an eight-row wavy-fin coil, HX8W), (a four-row lanced-fin coil, HX4L) and (a two-row lanced-fin coil, HX2L) were tested at 4 different air velocities (1.52, 2.03, 2.54,3.05 m/s (300, 400, 500, 600 ft/min)). The fouled conditions were obtained after injection of 600 grams of ASHRAE standard dust upstream of the filter/coil combination. This magnitude of dust is representative of a year of normal operation for an air conditioning system. The air-side pressure drops of the coils and filters and air-side heat transfer coefficients of the coils were determined from the measurements under the clean and fouled conditions. Depending upon the filter and coil test, the coil pressure drops increased in the range of 6%-30% for an air velocity at 2.54 m/s (500 ft/min). The impact was significantly greater for tests performed without a filter. The largest relative effect of fouling on pressure drop occurs for coils with fewer rows and having lanced fins. Coils with a greater number of rows can hold more dust so that a fixed amount of dust has a relatively smaller impact. The impact of fouling on air-side heat transfer coefficients was found to be relatively small. In some cases, heat transfer was actually enhanced due to additional turbulence caused by the presence of dust. The experimental results for pressure drops and heat transfer coefficients were correlated and the correlations were implemented within computer models of prototypical rooftop air conditioners and used to evaluate the impact of fouling on cooling capacity and EER. The equipment cooling capacity is reduced with fouling primarily because of a decrease in air flow due to the increase pressure drop rather than due to changes in h

  5. Effect of piezoelectric material on hydrogen adsorption

    Energy Technology Data Exchange (ETDEWEB)

    Li, Xuan [Department of Materials Science and Engineering, Michigan Technological University, 1400 Townsend Drive, Houghton, MI, 49931 (United States); Civil and Environmental Engineering School, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing, 100083 (China); Hwang, Jiann-Yang; Shi, Shangzhao; Sun, Xiang; Zhang, Zheng [Department of Materials Science and Engineering, Michigan Technological University, 1400 Townsend Drive, Houghton, MI, 49931 (United States)


    In hydrogen storage applications, the primary issue for physisorption of hydrogen onto solid-state materials is the weak interaction force between hydrogen molecules and the adsorbents. It is found that enhanced adsorption can be obtained under an external electric field, because it appears the electric field increases the hydrogen adsorption energy. Experiments were carried out to determine hydrogen adsorption on activated carbon using the piezoelectric material PMN-PT as the charge supplier under hydrogen pressure. Results indicate that more than 20% hydrogen adsorption enhancement was obtained. Parameters related to hydrogen adsorption enhancement include the amount of the charge and temperature. Higher voltage and lower temperature promote the increase of adsorption capacity but room temperature results are very encouraging. (author)


    Institute of Scientific and Technical Information of China (English)

    A. Morales; E. Bordallo; V. Leon; J. Rieumont


    The adsorption of some dyes on samples of bead cellulose obtained in the Unit of Research-Production "Cuba 9"was studied. Methylene blue, alizarin red and congo red fitted the adsorption isotherm of Langmuir. Adsorption kinetics at pH = 6 was linear with the square root of time indicating the diffusion is the controlling step. At pH = 12 a non-Fickian trend was observed and adsorption was higher for the first two dyes. Experiments carried out to release the methylene blue occluded in the cellulose beads gave a kinetic behavior of zero order. The study of cytochrome C adsorption was included to test a proteinic material. Crosslinking of bead cellulose was performed with epichlorohydrin decreasing its adsorption capacity in acidic or alkaline solution.

  7. Adsorption and Desorption of Methiopyrsulfuron in Soils

    Institute of Scientific and Technical Information of China (English)

    WU Chun-Xian; WANG Jin-Jun; ZHANG Su-Zhi; ZHANG Zhong-Ming


    Methiopyrsulfuron is a new low-rate sulfonylurea herbicide for weed control in wheat; however, there is a lack of published information on its behavior in soils. In this study, methiopyrsulfuron adsorption and desorption were measured in seven soils sampled from Heilongjiang, Shandong, Jiangxi, Sichuan, Anhui, and Chongqing provinces of China using a batch equilibrium method. The Freundlich equation was used to described its adsorption and desorption. Adsorption isotherms were nonlinear with the values of Kf-ads, the Freundlich empirical constant indicative of the adsorption capacity,ranging from 0.75 to 2.46, suggesting that little of this herbicide was adsorbed by any of the seven soils. Soil pH and organic matter content (OM) were the main factors influencing adsorption; adsorption was negatively correlated with pH and positively correlated with OM. Methiopyrsulfuron desorption was hysteretic on the soils with high OM content and low pH.


    Directory of Open Access Journals (Sweden)

    Fedotov O. V.


    Full Text Available The article deals with the efficiency of pollutants biodegradation by xylotrophic basidiomycetes submerged cultures grown on standard glucose-peptone medium (GPM. The efficiency of pollutants biodegradation was determined by the model compound – dye Methyl Orange. The purpose of the work is screening of 19 species 81 strains xylotrophic basidiomycetes cultures on the indicator of the dye oxidative degradation efficiency and exploring the possibility of induction of this indicator by modifying the culture medium. The biodegradation efficiency was determined by following method. Assigned amount of culture filtrate (experiment or medium (control was added to the 0.001% solution of Methyl Orange in sodium acetate buffer. pH of the reaction mixture was 4.4 units. Samples were incubated at +40°C for 48 hours. Then pH of the reaction mixture was set up at 3.1 units using sodium acetate buffer and the optical density of solutions at a wavelength of 506 nm was measured. The efficiency of biodegradation was calculated by the difference of the optical density of control and experiment as a percentage. The most promising strains – F. velutipes F-1105, P. eryngii P-er, T. hirsuta Th-11 and D. quercina Dq-08 were selected. The composition of the glucose-peptone medium was modified for these strains by the introduction in the medium lignosulfonate, Tween 80, Kirk’s minerals solution and selecting the concentration of these components. According to the study for the purpose of pollutants degradation it is advisable to cultivate F. velutipes F-1105 strain on modified GPM, which further comprises at 1 l: lignosulfonate – 3.5 g; Tween 80 – 1.0 g, Kirk’s minerals solution – 70 ml; P. eryngii P-er strain – 5.0 g, 1.0 g, 70 ml; T. hirsuta Th-11 strain – 5.0 g, 1.0 g, 105 ml; and D. quercina Dq-08 strain – 6.5 g, 1.0 g, 105 ml, respectively. This allowed to increase the model compound degradation efficiency by the culture filtrate of strain F

  9. High Pressure Multicomponent Adsorption in Porous Media

    DEFF Research Database (Denmark)

    Shapiro, Alexander; Stenby, Erling Halfdan


    We analyse adsorption of a multicomponent mixture at high pressure on the basis of the potential theory of adsorption. The adsorbate is considered as a segregated mixture in the external field produced by a solid adsorbent. we derive an analytical equation for the thickness of a multicomponent film...... close to a dew point. This equation (asymptotic adsorption equation, AAE) is a first order approximation with regard to the distance from a phase envelope....

  10. Solar heat utilization for adsorption cooling device

    Directory of Open Access Journals (Sweden)

    Malcho Milan


    Full Text Available This article deals with possibility of solar system connection with adsorption cooling system. Waste heat from solar collectors in summer is possible to utilize in adsorption cooling systems, which desorption temperatures have to be lower than temperature of heat transport medium operation temperature. For verification of work of this system was constructed on the Department of power engineering on University of Zilina solar adsorption cooling device.

  11. Temperature Dependence of Hydrogen Adsorption Isotherms


    Tibus, Stefan; Klier, Jürgen; Leiderer, Paul


    In the past it has already been shown that adsorption isotherms of liquid or solid films are not described completely by the Frenkel-Halsey-Hill theory. Substrate roughness as well as thermal fluctuations have to be taken into account in understanding the adsorption behavior. The inclusion of thermal fluctuations into the adsorption theory has already been addressed and proven to provide an explanation for the deviations found in many experiments. However, a resulting temperature dependence ...

  12. Aspects of vapor adsorption on solids (United States)

    Beaglehole, David


    The paper describes three unexpected phenomena which were observed during studies of the vapour adsorption onto solids. A quadratic variation of the adsorption of water onto borosilicate glass is found at low pressures. Water films condensed onto mica start to conduct electricity at a thickness of almost exactly one monolayer, with fluctuations in the conductivity in the region of onset. Diffusion through a background atmosphere slows the adsorption process and asymetrical fluctuations in thickness are observed.

  13. Modeling the fate of organic micropollutants during river bank filtration (Berlin, Germany). (United States)

    Henzler, Aline F; Greskowiak, Janek; Massmann, Gudrun


    Emerging organic contaminants (EOCs) are frequently detected in urban surface water and the adjacent groundwater and are therefore an increasing problem for potable water quality. River bank filtration (RBF) is a beneficial pretreatment step to improve surface water quality for potable use. Removal is mainly caused by microbial degradation of micropollutants, while sorption retards the transport. The quantification of biodegradation and adsorption parameters for EOCs at field scale is still scarce. In this study, the fate and behavior of a range of organic compounds during RBF were investigated using a two dimensional numerical flow- and transport model. The data base used emanated from a project conducted in Berlin, Germany (NASRI: Natural and Artificial Systems for Recharge and Infiltration). Oxygen isotope signatures and hydraulic head data were used for model calibration. Afterwards, twelve organic micropollutants were simulated with a reactive transport model. Three compounds (primidone, EDTA, and AMDOPH) showed conservative behavior (no biodegradation or sorption). For the nine remaining compounds (1.5 NDSA, AOX, AOI, MTBE, carbamazepine, clindamycin, phenazone, diclofenac and sulfamethoxazole), degradation and/or sorption was observed. 1.5 NDSA and AOX were not sorbed, but slightly degraded with model results for λ=2.25e(-3) 1/d and 2.4e(-3) 1/d. For AOI a λ=0.0106 1/d and R=1 were identified. MTBE could be characterized well assuming R=1 and a low 1st order degradation rate constant (λ=0.0085 1/d). Carbamazepine degraded with a half life time of about 66 days after a threshold value of 0.2-0.3 μg/L was exceeded and retarded slightly (R=1.7). Breakthrough curves of clindamycin, phenazone, diclofenac and sulfamethoxazole could be fitted less well, probably due to the dependency of degradation on temperature and redox conditions, which are highly transient at the RBF site. Conditions range from oxic to anoxic (up to iron-reducing), with the oxic and

  14. Adsorption from Experimental Isotherms of Supercritical Gases

    Institute of Scientific and Technical Information of China (English)


    A mathematical method was proposed for the determination of absolute adsorption from experimental isotherms. The method is based on the numerical equality of the absolute and the excess adsorption when either the gas phase density or the amount adsorbed is not quite considerable. The initial part of the experimental isotherms, which represents the absolute adsorption, became linear with some mathematical manipulations. The linear isotherms were reliably formulated. As consequence, either the volume or the density of the supercritical adsorbate could be determined by a non-empirical way. This method was illustrated by the adsorption data of supercritical hydrogen and methane on a superactivated carbon in large ranges of temperature and pressure.

  15. Ozone adsorption on carbon nanoparticles (United States)

    Chassard, Guillaume; Gosselin, Sylvie; Visez, Nicolas; Petitprez, Denis


    Carbonaceous particles produced by incomplete combustion or thermal decomposition of hydrocarbons are ubiquitous in the atmosphere. On these particles are adsorbed hundreds of chemical species. Those of great concern to health are polycyclic aromatic hydrocarbons (PAHs). During atmospheric transport, particulate PAHs react with gaseous oxidants. The induced chemical transformations may change toxicity and hygroscopicity of these potentially inhalable particles. The interaction between ozone and carbon particles has been extensively investigated in literature. However ozone adsorption and surface reaction mechanisms are still ambiguous. Some studies described a fast catalytic decomposition of ozone initiated by an atomic oxygen chemisorption followed by a molecular oxygen release [1-3]. Others suggested a reversible ozone adsorption according to Langmuir-type behaviour [4,5]. The aim of this present study is a better understanding of ozone interaction with carbon surfaces. An aerosol of carbon nanoparticles was generated by flowing synthetic air in a glass tube containing pure carbon (primary particles p. 967-973. [2] Smith, D. and A. Chughtai, Reaction kinetics of ozone at low concentrations with n-hexane soot. Journal of geophysical research, 1996. 101(D14): p. 19607-19,620. [3] Kamm, S., et al., The heterogeneous reaction of ozone with soot aerosol. Atmospheric Environment, 1999. 33(28): p. 4651-4661. [4] Stephens, S., M.J. Rossi, and D.M. Golden, The heterogeneous reaction of ozone on carbonaceous surfaces. International journal of chemical kinetics, 1986. 18(10): p. 1133-1149. [5] Pöschl, U., et al., Interaction of ozone and water vapor with spark discharge soot aerosol particles coated with benzo [a] pyrene: O3 and H2O adsorption, benzo [a] pyrene degradation, and atmospheric implications. The Journal of Physical Chemistry A, 2001. 105(16): p. 4029-4041.

  16. Modeling of particle removal in the first coarse media of direct horizontal-flow roughing filtration. (United States)

    Ahn, H W; Park, N S; Kim, S; Park, S Y; Wang, C K


    Horizontal-Flow Roughing Filtration (HRF) is an alternative pretreatment method e.g. prior to Slow Sand Filtration (SSF). However, some of its limitations are that the effluent quality drops drastically at higher turbidity (>200NTU) and at higher filtration rate (>1 m h(-1)). To overcome these drawbacks, we suggested Direct Horizontal-Flow Roughing Filtration (DHRF), which is a modified system of Horizontal-Flow Roughing Filtration (HRF) by addition of a low dose of coagulant prior to filtration. To optimize the DHRF configuration, a conceptual and mathematical model for the coarse compartment has been developed in analogy with multi-plate settler. Data from simple column settling test can be used in the model to predict the filter performance. Furthermore, the model developed herein has been validated by successive experiments. The conventional column settling test has been found to be handy and useful to predict the performance of DHRF for different raw water characteristics (e.g. coagulated or uncoagulated water, different amounts of organic matter, etc.) and different initial process conditions (e.g. coagulant dose, mixing time and intensity, etc.). An optimum filter design for the coarse compartment (grain size 20 mm) has been found to be of 3m h(-1) filtration rate with filter length of 4-4.5 m.

  17. Magnetic filtration with magnetized granular beds: Basic principles and filter performance

    Institute of Scientific and Technical Information of China (English)

    Teymuraz; Abbasov


    This study is devoted to the explanation of different characteristics of magnetic filtration and the way these characteristics affect the important filtration parameters. Magnetic fields in pores and the force effect of these fields on magnetic particles and the magnetization properties of packed beds composed of ferromagnetic spheres and metal chips are evaluated. The profile of accumulation and capture regions of the particles, the variation of the fluid velocity in these regions and analytic expressions of particle capture radius are presented. The effects of filtration regime parameters on magnetic filter performance were investigated. An analytical expression has been obtained for the dependence of the logarithmic efficiency coefficient on filtration velocity, the geometry of filter elements, the particle size and other parameters of filtration. The stationary and non-stationary equations of the magnetic filtration processes are given. An expression of magnetic filter performance is shown with dimensionless parameters obtained from the filtration system. These relations are useful for calculations in engineering practice, including the design of magnetic filters, provision of suggestions on construction, and optimization and control of filter operation.

  18. Membrane fouling in a membrane bioreactor: High filtration resistance of gel layer and its underlying mechanism. (United States)

    Chen, Jianrong; Zhang, Meijia; Li, Fengquan; Qian, Lei; Lin, Hongjun; Yang, Lining; Wu, Xilin; Zhou, Xiaoling; He, Yiming; Liao, Bao-Qiang


    A membrane bioreactor (MBR) was continuously operated to investigate mechanisms of fouling caused by the gel layer in this study. Agar was used as a model foulant for gel layer formation, and filtration resistance of gel layers was systematically assessed. The results showed that gel layer possessed unusually high specific filtration resistance (SFR) and high measured porosity as compared with cake layer. Current knowledge cannot explain the contradiction between high filtration resistance and high porosity of gel layer. A new fouling mechanism based on Flory-Huggins theory was then proposed. Filtration resistance of agar gel layer was found to be independent of pH and ionic strength, but linearly increase with gel thickness. The results are accordant with the mechanism deductions. Simulation of the mechanism model showed that the filtration resistance induced by mixing chemical potential variation was comparable to the experimental data of filtration resistance of agar gel layer, indicating that the proposed mechanism is the predominant mechanism responsible for the high filtration resistance of gel layer. The proposed mechanism was further verified from the bound water viewpoint.

  19. Comparison of parabolic filtration methods for 3D filtered back projection in pulsed EPR imaging. (United States)

    Qiao, Zhiwei; Redler, Gage; Epel, Boris; Halpern, Howard J


    Pulse electron paramagnetic resonance imaging (Pulse EPRI) is a robust method for noninvasively measuring local oxygen concentrations in vivo. For 3D tomographic EPRI, the most commonly used reconstruction algorithm is filtered back projection (FBP), in which the parabolic filtration process strongly influences image quality. In this work, we designed and compared 7 parabolic filtration methods to reconstruct both simulated and real phantoms. To evaluate these methods, we designed 3 error criteria and 1 spatial resolution criterion. It was determined that the 2 point derivative filtration method and the two-ramp-filter method have unavoidable negative effects resulting in diminished spatial resolution and increased artifacts respectively. For the noiseless phantom the rectangular-window parabolic filtration method and sinc-window parabolic filtration method were found to be optimal, providing high spatial resolution and small errors. In the presence of noise, the 3 point derivative method and Hamming-window parabolic filtration method resulted in the best compromise between low image noise and high spatial resolution. The 3 point derivative method is faster than Hamming-window parabolic filtration method, so we conclude that the 3 point derivative method is optimal for 3D FBP.

  20. Experimental investigation of air pressure affecting filtration performance of fibrous filter sheet. (United States)

    Xu, Bin; Yu, Xiao; Wu, Ya; Lin, Zhongping


    Understanding the effect of air pressure on their filtration performance is important for assessing the effectiveness of fibrous filters under different practical circumstances. The effectiveness of three classes of air filter sheets were investigated in laboratory-based measurements at a wide range of air pressures (60-130 KPa). The filtration efficiency was found most sensitive to the air pressure change at smaller particle sizes. As the air pressure increased from 60 to 130 KPa, significant decrease in filtration efficiency (up to 15%) and increase in pressure drop (up to 90 Pa) were observed. The filtration efficiency of the filter sheet with largest fiber diameter and smallest solid volume fraction was affected most, while the pressure drop of the filter sheet with smallest fiber diameter and largest solid volume fraction was affected most. The effect of air pressure on the filtration efficiency was slightly larger at greater filter face air velocity. However, the effect of air pressure on the pressure drop was negligible. The filtration efficiency and pressure drop were explicitly expressed as functions of the air pressure. Two coefficients were empirically derived and successfully accounted for the effects of air pressure on filtration efficiency and pressure drop.

  1. Influence of filtration velocity on DON variation in BAF for micropolluted surface water treatment. (United States)

    Ma, Teng-Fei; Chen, You-Peng; Kang, Jia; Gao, Xu; Guo, Jin-Song; Fang, Fang; Zhang, Xiao-Tian


    Biological aerated filters (BAFs) are widely used for the treatment of micropolluted surface water. However, the biological process produces dissolved organic nitrogen (DON), which, as precursors of nitrogenous disinfection by-products, pose potential threats to drinking water safety. Therefore, to control DON in BAF effluent, it is necessary to study the influence of BAF operation parameters on DON production. In this study, the influence of filtration velocity in a BAF on DON production was investigated. Under different filtration velocity (0.5, 2, and 4 m/h) conditions, profiles of DON concentrations along the media layer were measured. The profile at a filtration velocity of 0.5 m/h showed a decreasing trend, and the ones under filtration velocities of 2 and 4 m/h fluctuated in a small range (from 0.1 to 0.4 mg/L). Moreover, the relatively high filtration velocities of 2 and 4 m/h resulted in a lower level of DON concentration. Additionally, 3D excitation-emission matrix fluorescence spectroscopy was used to characterize DON. It is found that the patterns of DON at a relatively high filtration velocity condition (4 m/h) were obviously different from the ones under low filtration velocity conditions (0.5 and 2 m/h).

  2. Evaluation of emerging factors blocking filtration of high-adjunct-ratio wort. (United States)

    Ma, Ting; Zhu, Linjiang; Zheng, Feiyun; Li, Yongxian; Li, Qi


    Corn starch has become a common adjunct for beer brewing in Chinese breweries. However, with increasing ratio of corn starch, problems like poor wort filtration performance arise, which will decrease production capacity of breweries. To solve this problem, factors affecting wort filtration were evaluated, such as the size of corn starch particle, special yellow floats formed during liquefaction of corn starch, and residual substance after liquefaction. The effects of different enzyme preparations including β-amylase and β-glucanase on filtration rate were also evaluated. The results indicate that the emerging yellow floats do not severely block filtration, while the fine and uniform-shape corn starch particle and its incompletely hydrolyzed residue after liquefaction are responsible for filtration blocking. Application of β-amylase preparation increased the filtration rate of liquefied corn starch. This study is useful for our insight into the filtration blocking problem arising in the process of high-adjunct-ratio beer brewing and also provides a feasible solution using enzyme preparations.

  3. Detection of damage of a filter by visualization of filtration process

    Directory of Open Access Journals (Sweden)

    Bílek P.


    Full Text Available This paper deals with testing of filters on the basis of visualization of filtration process. A filtration material can be damaged by flow of the filtered medium, high pressure drop and long-term adverse conditions. These negative effects can cause extensive damage of the filtration textile and filtration efficiency decreases. The filter can be also fractured during manufacturing, processing or by improper manipulation. A testing of a purposely damaged filtration textile is described in the article. Experiments were performed on the filtration setup which permits an optical entrance to the position where a sample of filter is placed. A laser sheet is directed into this place. Scattered light from seeding particles in front of and behind the filter is captured by a digital camera. Images from the camera are analyzed and the filtration efficiency versus time and also versus position can be obtained. Measuring chain including light scattering theory and measuring of light intensity by a digital camera are also discussed in the article.

  4. Detection of damage of a filter by visualization of filtration process (United States)

    Bílek, P.; Šidlof, P.


    This paper deals with testing of filters on the basis of visualization of filtration process. A filtration material can be damaged by flow of the filtered medium, high pressure drop and long-term adverse conditions. These negative effects can cause extensive damage of the filtration textile and filtration efficiency decreases. The filter can be also fractured during manufacturing, processing or by improper manipulation. A testing of a purposely damaged filtration textile is described in the article. Experiments were performed on the filtration setup which permits an optical entrance to the position where a sample of filter is placed. A laser sheet is directed into this place. Scattered light from seeding particles in front of and behind the filter is captured by a digital camera. Images from the camera are analyzed and the filtration efficiency versus time and also versus position can be obtained. Measuring chain including light scattering theory and measuring of light intensity by a digital camera are also discussed in the article.

  5. Establishment and application of milk fingerprint by gel filtration chromatography. (United States)

    Gao, P; Li, J; Li, Z; Hao, J; Zan, L


    Raw milk adulteration frequently occurs in undeveloped countries. It not only reduces the nutritional value of milk, but it is also harmful to consumers. In this paper, we focused on investigating an efficient method for the quality control of raw milk protein. A gel filtration chromatography (GFC) fingerprint method combined with chemometrics was developed for fingerprint analysis of raw milk. To optimize the GFC conditions, milk fat was removed by centrifugation, and GFC analysis was performed on a Superdex 75 10/300GL column (Just Scientific, Shanghai, China) with 0.2 M NaH2PO4-Na2HPO4 buffer (pH 7.0) as the mobile phase. The flow rate was 0.5mL/min, and the detection wavelength was set at 280 nm. Ten batches of 120 raw milk samples were analyzed to establish the GFC fingerprint under optimal conditions. Six major peaks common to the chromatogram of each raw milk sample were selected for fingerprint analysis, and the characteristic peaks were used to establish a standard chromatographic fingerprint. Principal component analysis was then applied to classify GFC information of adulterated milk and raw milk, allowing adulterated samples to be effectively screened out from the raw milk in principal component analysis scores plot. The fingerprint method demonstrates promising features in detecting milk protein adulteration.

  6. Standard filtration practices may significantly distort planktonic microbial diversity estimates

    Directory of Open Access Journals (Sweden)

    Cory Cruz Padilla


    Full Text Available Fractionation of biomass by filtration is a standard method for sampling planktonic microbes. It is unclear how the taxonomic composition of filtered biomass changes depending on sample volume. Using seawater from a marine oxygen minimum zone, we quantified the 16S rRNA gene composition of biomass on a prefilter (1.6 μm pore-size and a downstream 0.2 μm filter over sample volumes from 0.05 to 5 L. Significant community shifts occurred in both filter fractions, and were most dramatic in the prefilter community. Sequences matching Vibrionales decreased from ~40-60% of prefilter datasets at low volumes (0.05-0.5 L to less than 5% at higher volumes, while groups such at the Chromatiales and Thiohalorhabdales followed opposite trends, increasing from minor representation to become the dominant taxa at higher volumes. Groups often associated with marine particles, including members of the Deltaproteobacteria, Planctomycetes and Bacteroidetes, were among those showing the greatest increase with volume (4 to 27-fold. Taxon richness (97% similarity clusters also varied significantly with volume, and in opposing directions depending on filter fraction, highlighting potential biases in community complexity estimates. These data raise concerns for studies using filter fractionation for quantitative comparisons of aquatic microbial diversity, for example between free-living and particle-associated communities.


    Energy Technology Data Exchange (ETDEWEB)

    Bruce Bishop; Robert Goldsmith; Karsten Nielsen; Phillip Paquette


    In Phase IIA of this project, CeraMem has further developed and scaled up ceramic HEPA filters that are appropriate for use on filtration of vent gas from HLW tanks at DOE sites around the country. This work included procuring recrystallized SiC monoliths, developing membrane and cement materials, and defining a manufacturing process for the production of prototype full sizes HEPA filters. CeraMem has demonstrated that prototype full size filters can be manufactured by producing 9 full size filters that passed DOP aerosol testing at the Oak Ridge Filter Test Facility. One of these filters was supplied to the Savannah River Technical Center (SRTC) for process tests using simulated HLW tank waste. SRTC has reported that the filter was regenerable (with some increase in pressure drop) and that the filter retained its HEPA retention capability. CeraMem has also developed a Regenerable HEPA Filter System (RHFS) design and acceptance test plan that was reviewed by DOE personnel. The design and acceptance test plan form the basis of the system proposal for follow-on work in Phase IIB of this project.

  8. Riverbank filtration in China: A review and perspective (United States)

    Hu, Bin; Teng, Yanguo; Zhai, Yuanzheng; Zuo, Rui; Li, Jiao; Chen, Haiyang


    Riverbank filtration (RBF) for water supplies is used widely throughout the world because it guarantees a sustainable quantity and improves water quality. In this study, the development history and the technical overview of RBF in China are reviewed and summarized. Most RBF systems in China were constructed using vertical wells, horizontal wells, and infiltration galleries in flood plains, alluvial fans, and intermountain basins. Typical pollutants such as NH4+, pathogens, metals, and organic materials were removed or diluted by most RBF investigated. There have recently been many investigations of the interaction between groundwater and surface water and biogeochemical processes in RBF. Comprehensive RBF applications should include not only the positive but also negative effects. Based on a discussion of the advantages and disadvantages, the perspectives of China's RBF technology development were proposed. To protect the security of water supply, China's RBF systems should establish a management system, monitoring system and forecasting system of risk. Guidelines of RBF construction and management should also be issued on the basic of relevant fundamental investigations such as climate influence, clogging, and purification mechanism of water-quality improvement.

  9. Evaluation of gravimetric techniques to estimate the microvascular filtration coefficient. (United States)

    Dongaonkar, R M; Laine, G A; Stewart, R H; Quick, C M


    Microvascular permeability to water is characterized by the microvascular filtration coefficient (K(f)). Conventional gravimetric techniques to estimate K(f) rely on data obtained from either transient or steady-state increases in organ weight in response to increases in microvascular pressure. Both techniques result in considerably different estimates and neither account for interstitial fluid storage and lymphatic return. We therefore developed a theoretical framework to evaluate K(f) estimation techniques by 1) comparing conventional techniques to a novel technique that includes effects of interstitial fluid storage and lymphatic return, 2) evaluating the ability of conventional techniques to reproduce K(f) from simulated gravimetric data generated by a realistic interstitial fluid balance model, 3) analyzing new data collected from rat intestine, and 4) analyzing previously reported data. These approaches revealed that the steady-state gravimetric technique yields estimates that are not directly related to K(f) and are in some cases directly proportional to interstitial compliance. However, the transient gravimetric technique yields accurate estimates in some organs, because the typical experimental duration minimizes the effects of interstitial fluid storage and lymphatic return. Furthermore, our analytical framework reveals that the supposed requirement of tying off all draining lymphatic vessels for the transient technique is unnecessary. Finally, our numerical simulations indicate that our comprehensive technique accurately reproduces the value of K(f) in all organs, is not confounded by interstitial storage and lymphatic return, and provides corroboration of the estimate from the transient technique.

  10. Characterization and modification of particulate properties to enhance filtration performance

    Energy Technology Data Exchange (ETDEWEB)

    Snyder, T.R.; Robinson, M.S.; Vann Bush, P.


    This report describes the results of project activities that occurred during the period from March 1 through May 31, 1989. The organization of this report generally follows the outline of work presented in the Project Work Plan. Work performed during this period included tests under Task 2 -- Parametric Tests of Ashes and Fabrics, and Task 3 -- Survey of Methods to Modify Particle Filtration Properties. Discussion of the Task 2 work has been organized topically, rather than adhering to the activities specified in the Work Plan. Cohesive ash from the Tennessee Valley Authority's 160 MW Atmospheric Fluidized-Bed Combustor at the Shawnee Plant in Paducah, Kentucky was obtained during this quarter and has been analyzed in the laboratory. The second phase of the abstract search and review of pertinent articles included in activity 3.1 is nearly complete. A summary of this phase of the literature search is included in this report. A variety of potential conditioning agents have been evaluated during this reporting period. These agents include sodium bicarbonate, hydrated lime, various grades of fine silica powder, gasifier char, glass beads and glass fibers. The three source ashes have been mixed with these agents in different concentrations and using various mixing techniques. These tests are continuing, and this report contains a summary of the combinations evaluated during this past quarter. 17 figs., 7 tabs.

  11. Filtration of Carbon Particulate Emissions from a Plasma Pyrolysis Assembly (United States)

    Agui, Juan H.; Green, Robert; Vijayakumar, R.; Berger, Gordon; Greenwood, Zach; Abney, Morgan; Peterson, Elspeth


    NASA is investigating plasma pyrolysis as a candidate technology that will enable the recovery of hydrogen from the methane produced by the ISS Sabatier Reactor. The Plasma Pyrolysis Assembly (PPA) is the current prototype of this technology which converts the methane product from the Carbon Dioxide Reduction Assembly (CRA) to acetylene and hydrogen with 90% or greater conversion efficiency. A small amount of solid carbon particulates are generated as a side product and must be filtered before the acetylene is removed and the hydrogen-rich gas stream is recycled back to the CRA. We discuss developmental work on several options for filtering out the carbon particulate emissions from the PPA exit gas stream. The filtration technologies and concepts investigated range from fibrous media to monolithic ceramic and sintered metal media. This paper describes the different developed filter prototypes and characterizes their performance from integrated testing at the Environmental Chamber (E-Chamber) at MSFC. In addition, characterization data on the generated carbon particulates, that help to define filter requirements, are also presented.

  12. Adsorption analysis equilibria and kinetics

    CERN Document Server

    Do, Duong D


    This book covers topics of equilibria and kinetics of adsorption in porous media. Fundamental equilibria and kinetics are dealt with for homogeneous as well as heterogeneous particles. Five chapters of the book deal with equilibria and eight chapters deal with kinetics. Single component as well as multicomponent systems are discussed. In kinetics analysis, we deal with the various mass transport processes and their interactions inside a porous particle. Conventional approaches as well as the new approach using Maxwell-Stefan equations are presented. Various methods to measure diffusivity, such

  13. Adsorption-induced step formation

    DEFF Research Database (Denmark)

    Thostrup, P.; Christoffersen, Ebbe; Lorensen, Henrik Qvist


    Through an interplay between density functional calculations, Monte Carlo simulations and scanning tunneling microscopy experiments, we show that an intermediate coverage of CO on the Pt(110) surface gives rise to a new rough equilibrium structure with more than 50% step atoms. CO is shown to bin...... so strongly to low-coordinated Pt atoms that it can break Pt-Pt bonds and spontaneously form steps on the surface. It is argued that adsorption-induced step formation may be a general effect, in particular at high gas pressures and temperatures....

  14. A combined process of activated carbon adsorption, ion exchange resin treatment and membrane concentration for recovery of dissolved organics in pre-hydrolysis liquor of the kraft-based dissolving pulp production process. (United States)

    Shen, Jing; Kaur, Ishneet; Baktash, Mir Mojtaba; He, Zhibin; Ni, Yonghao


    To recover dissolved organics in pre-hydrolysis liquor (PHL) of the kraft-based dissolving pulp production process, a new combined process concept of sequential steps of activated carbon adsorption, ion exchange resin treatment, and membrane concentration, was proposed. The removal of lignin in the PHL was achieved in the activated carbon adsorption step, which also facilitates the subsequent operations, such as the membrane filtration and ion exchange resin treatment. The ion exchange resin treatment resulted in the removal/concentration of acetic acid, which opens the door for acetic acid recovery. The membrane filtration is to recover/concentrate the dissolved sugars. The combined process resulted in the production of PHL-based concentrate with relatively high concentration of hemicellulosic sugars, i.e., 22.13%.

  15. Evaluation of Side Stream Filtration Technology at Oak Ridge National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Boyd, Brian K.


    This technology evaluation was performed by Pacific Northwest National Laboratory and Oak Ridge National Laboratory on behalf of the Federal Energy Management Program. The objective was to quantify the benefits side stream filtration provides to a cooling tower system. The evaluation assessed the performance of an existing side stream filtration system at a cooling tower system at Oak Ridge National Laboratory’s Spallation Neutron Source research facility. This location was selected because it offered the opportunity for a side-by-side comparison of a system featuring side stream filtration and an unfiltered system.

  16. Impact of 50% Alcohol to Jet Blends on Aviation Turbine Fuel Filtration and Coalescence (United States)


    50% Alcohol to Jet Blends on Aviation Turbine Fuel Filtration and Coalescence NF&LCFT REPORT 441/14-015 20 June 2014 Prepared By...Aviation Turbine Fuel Filtration and Coalescence 1.0 BACKGROUND In October 2009, Secretary of the Navy Ray Mabus directed the Navy to decrease its...0 ɛ 1 Existent Gum (mg/100 mL) D381 7.0 5.0 Particulate Matter (mg/L) D5452 1.0 0.2 Filtration Time (minutes) MIL-DTL- 5624V 15 6 Micro

  17. Removal of Cryptosporidium sized particle under different filtration temperature, flow rate and alum dosing

    Institute of Scientific and Technical Information of China (English)

    XU Guo-ren; Fitzpatrick S. B. Caroline; Gregory John; DENG Lin-yu


    Recent Cryptosporidium outbreaks have highlighted concerns about filter efficiency and in particular particle breakthrough. It is essential to ascertain the causes of Cryptosporidium sized particle breakthrough for Cryptosporidium cannot be destroyed by conventional chlorine disinfection. This research tried to investigate the influence of temperature, flow rate and chemical dosing on particle breakthrough during filtration. The results showed that higher temperatures and coagulant doses could reduce particle breakthrough. The increase of filtration rate made the residual particle counts become larger. There was an optimal dose in filtration and was well correlated to ζ potential.

  18. Synthesis of poly(N-isopropylacrylamide-co-acrylic acid) model compounds for filtration experiments

    DEFF Research Database (Denmark)

    Hinge, Mogens; Christensen, Morten Lykkegaard; Scales, Peter


    these biosolid/organic systems and thereby make a basis for further theoretical development with respect to filtration.   Poly(N-isopropylacrylamide-co-acrylic acid) microgels are synthesized by free-radical surfactant free emulsion polymerization as an organic model system for biosolids. The model system...... concentrations of acrylic acid as co-monomer. The microgels have a charge density between 0.2 and 0.9 mmol/g.   Preliminary filtration experiments show that filtration properties of the microgel model system significantly differs from the properties for inorganic colloidals such as titaniumdioxid....

  19. Morphology and fractal characteristic of deposits formed during fiber bundle media filtration

    Institute of Scientific and Technical Information of China (English)

    WANG De-ying; SHEN Zi-qiu


    The scanning electronic microscope and automated image analyzer are adopted to investigate the morphology of deposits formed during fiber bundle media filtration, which results in the discovery of the self-similarity of the deposits. Then in this paper it is proposed that the deposits are a fractal structure. Moreover, the fractal dimension value is related to the filter performance. The.higher the fractal dimension value, the higher the filtration efficiency, and the longer filtration cycle, but the development of the head loss is also faster.

  20. Improvement of the antifouling characteristics in a bioreactor of polypropylene microporous membrane by the adsorption of Tween 20

    Institute of Scientific and Technical Information of China (English)


    Surface modification by physical adsorption of Tween 20 was accomplished on polypropylene microporous membranes (PPMMs). Attenuated total reflection-Fourier transform infrared spectroscopy (ATR/FT-IR) and scanning electron microscope (SEM) were used to characterize the chemical and morphological changes on the membrane surfaces. Water contact angles and relative pure water fluxes were measured. The data showed that the hydrophilic performance for the modified membranes increased with the increase in the adsorption amount of Tween 20 onto the surface or into the pores of polypropylene microporous membranes. To test the antifouling property of the membranes by the adsorption of Tween 20 in a membrane bioreactor (MBR), filtration for active sludge was performed using synthetic wastewater. With the help of the data of water fluxes and the FE-SEM photos of the modified PPMMs before or after operating in a MBR for about 12 d, the PPMMs with monolayer adsorption of Tween 20 showed higher remained flux and stronger antifouling ability than unmodified membrane and other modification membranes studied.

  1. Surface adsorption and self-assembly of Cu(II) ions on TEMPO-oxidized cellulose nanofibers in aqueous media. (United States)

    Liu, Peng; Oksman, Kristiina; Mathew, Aji P


    TEMPO-mediated oxidized cellulose nanofibers (TOCNFs) have shown potential in the bioremediation of metal ions from contaminated water due to their interaction with positively charged metal ions via electrostatic interactions involving surface carboxyl groups. Copper is one of the most common pollutants in industrial effluents and is thus the target metal in the current study. The specific surface adsorption of Cu(II) was similar for TOCNFs with different degrees of functionalization and directly impacted the zeta potential. SEM imaging of the TOCNF after Cu(II) adsorption revealed interesting nanostructured clusters that were attributable to Cu(II) ions first being adsorbed by carboxylate groups on the TOCNF and subsequently being reduced and self-assembled to Cu(0) nanoparticles (NPs) or copper oxide NPs by microprecipitation. TOCNF turned superhydrophilic and resulted in faster water filtration after copper adsorption due to the stronger polarity of the copper ions or the self-assembled Cu(0) NPs creating voids or highly water-permeable channels at the interface between the interconnected TEMPO-oxidized nanofibers. Thus, the adsorption of Cu(II) ions and self-assembly into the Cu NPs on TOCNF favors a faster water purification process and provides a viable route to reuse/recycle TOCNFs studded with Cu nanoparticles as biocidal materials.

  2. Investigation on Adsorption State of Surface Adsorbate on Silicon Wafer

    Institute of Scientific and Technical Information of China (English)


    An adsorption kinetics model for adsorbate on the specularly polished silicon wafer was suggested. The mathematical model of preferential adsorption and the mechanism controlling the adsorption state of adsorbate were discussed.

  3. Phosphoryl functionalized mesoporous silica for uranium adsorption (United States)

    Xue, Guo; Yurun, Feng; Li, Ma; Dezhi, Gao; Jie, Jing; Jincheng, Yu; Haibin, Sun; Hongyu, Gong; Yujun, Zhang


    Phosphoryl functionalized mesoporous silica (TBP-SBA-15) was synthesized by modified mesoporous silica with γ-amino propyl triethoxy silane and tributyl phosphate. The obtained samples were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), small angle X-ray diffraction (SAXRD), thermo-gravimetric/differential thermalanalyzer (TG/DTA), N2 adsorption-desorption (BET) and Fourier transform infrared spectroscopy (FT-IR) techniques. Results showed that TBP-SBA-15 had large surface areas with ordered channel structure. Moreover, the effects of adsorption time, sorbent dose, solution pH, initial uranium concentration and temperature on the uranium adsorption behaviors were investigated. TBP-SBA-15 showed a high uranium adsorption capacity in a broad range of pH values. The U(VI) adsorption rate of TBP-SBA-15 was fast and nearly achieved completion in 10 min with the sorbent dose of 1 g/L. The U(VI) adsorption of TBP-SBA-15 followed the pseudo-second-order kinetic model and Freundlich isotherm model, indicating that the process was belonged to chemical adsorption. Furthermore, the thermodynamic parameters (ΔG0, ΔH0 and ΔS0) confirmed that the adsorption process was endothermic and spontaneous.

  4. Polychelated cryogels: hemoglobin adsorption from human blood. (United States)

    Erol, Kadir


    The separation and purification methods are extremely important for the hemoglobin (Hb) which is a crucial biomolecule. The adsorption technique is popular among these methods and the cryogels have been used quite much due to their macropores and interconnected flow channels. In this study, the Hb adsorption onto the Cu(II) immobilized poly(2-hydroxyethyl methacrylate-glycidyl methacrylate), poly(HEMA-GMA)-Cu(II), cryogels was investigated under different conditions (pH, interaction time, initial Hb concentration, temperature and ionic strength) to optimize adsorption conditions. The swelling test, Fourier transform infrared (FT-IR) spectroscopy, scanning electron microscope (SEM), surface area (BET), elemental and ICP-OES analysis were performed for the characterization of cryogels. Polyethyleneimine (PEI) molecule was used as a Cu(II)-chelating ligand. The Hb adsorption capacity of cryogels was determined as 193.8 mg Hb/g cryogel. The isolation of Hb from human blood was also studied under optimum adsorption conditions determined and the Hb (124.5 mg/g cryogel) was isolated. The adsorption model was investigated in the light of Langmuir and Freundlich adsorption isotherm models and it was determined to be more appropriate to the Langmuir adsorption isotherm model.

  5. Adsorption Properties of the Cu(115) Surface

    DEFF Research Database (Denmark)

    Godowski, P. J.; Groso, A.; Hoffmann, S. V.


    in context of substrate geometry and compared with the ones of other copper planes. There are no indications of dissociative adsorption of CO, only residual carbon and oxygen were found after adsorbate desorption around 220 K. CO molecules show a strong tendency to "on top" adsorption in sites far from...

  6. Adsorption of Chlortetracycline from Water by Rectories

    Institute of Scientific and Technical Information of China (English)

    吕国诚; 吴丽梅; 王晓龙; 廖立兵; 王小雨


    The removal of antibiotics from water by clay minerals has become the focus of research due to their strong adsorptive ability. In this study, adsorption of chlortetracycline (CTC) onto rectories was conducted and the effects of time, concentration, temperature and pH were investigated. Experimental results showed that adsorption equilibrium was reached in 8 h. Based on the Langmuir model, the maximum adsorption capacity of CTC on rectories was 177.7 mg·g 1 at room temperature. By the study on adsorption dynamics, it is found that the kinetic date fit the pseudo-second-order model well. The adsorption of CTC by rectories is endothermic and the free energy is in the range of 10 to 30 kJ·mol 1 . The pH value of solution has significant effects on adsorption and the optimal pH is at acidity (pH 2-6). At concentration of 2500 mg·L 1 , the intercalated CTC produces an interlayer space with a height of 1.38 nm, which is 1.12 nm in raw rectories, suggesting that the adsorption occurs between layers of rectories.

  7. Kinetics of polymer adsorption, desorption and exchange.

    NARCIS (Netherlands)

    Dijt, J.C.


    The aim of the study in this thesis was to gain more insight in the kinetics of polymer adsorption. To this end some well-characterised polymers have been systematically investigated.In the process of polymer adsorption one may distinguish three kinetic contributions: transport to the surface, attac


    Institute of Scientific and Technical Information of China (English)

    ChenShuixia; WuChangqing; 等


    The adsorption behavior of dyes on a variety of sisal based activated carbon fibers (SACF) has been studied in this paper. The results show that this kind of ACF has excellent adsorption capacities for some organic (dye) molecules.SACF can remove nearly all methylene blue,crystal violet,bromophenol blue and Eriochrome blue black R from water after static adsorption for 24h. at 30℃. The adsorption amounts can reach more than 400mg/g when adding 50 mg SACF into 50 ml dye solution.Under the same conditions,the adsorption amounts of xylenol orange fluorescein and Eriochrome black T wree lower.On the other hand,the adsorption amounts change along with the characteristics of adsorbents.The SACFs activated above 840℃,which have higher specific surface areas and wider pore radii,have higher adsorption amounts for the dyes.The researching results also show that the adsorption rates of dyes onto SACFs decrease by the order of methylene blue,Eriochrome blue black R and crystal violet.

  9. Study on copper adsorption on olivine

    Institute of Scientific and Technical Information of China (English)


    The copper adsorption on olivine supplied by A/S Olivine production plant at Aheim in western Norway has been studied. The factors which affect the uptake of copper have been evaluated. The results reveal that the equilibrium pH in aqueous solution has the greatest influence on the copper adsorption thanks to the competitive adsorption between proton and copper ions, and the adsorption of copper to olivine increases rapidly with the pH increasing from 4 to 6. The initial copper concentration and olivine dose also possess significant effect on copper adsorption. The adsorption efficieny of copper increases with the increase of olivine dose or the decrease of initial copper concentration at the same pH. The ionic strength effect on the adsorption has also been investigated, but it owns little effect on the adsorption process of copper due to the formation of inner sphere surface complexation of copper on olivine. The experimental data show that olivine has a high acid buffer capacity and is an effective adsorbent for copper.

  10. Adsorption and desorption of reversible supramolecular polymers

    NARCIS (Netherlands)

    Zweistra, H.J.A.; Besseling, N.A.M.


    We report numerical mean-field results on the quasichemical level of approximation that describe adsorption of reversible supramolecular polymers at a flat interface. Emphasis is laid on the regime of strong adsorption from a dilute solution. There are two differences with respect to macromolecular

  11. Adsorption of ferrous ions onto montmorillonites

    Energy Technology Data Exchange (ETDEWEB)

    Qin, Dawei, E-mail: [Qilu University of Technology, Jinan, 250353, Shandong (China); Niu, Xia [Qilu University of Technology, Jinan, 250353, Shandong (China); Qiao, Min; Liu, Gang; Li, Hongxin; Meng, Zhenxiao [Shandong SiBang pharmaceutical co., LTD, Jinan, Shandong, 250200 (China)


    Highlights: • Adsorption study of ferrous ions on montmorillonites. • Using ascorbic acid as antioxidants in adsorption process. • Fe (II)-MMT had good affinity for phosphate. - Abstract: The adsorption of Fe (II) onto montmorillonites was investigated through initial concentration, contact time, pH and temperature. During the whole adsorption process, the ascorbic acid (Vitamin C) was added as a kind of antioxidant, at the same time, deionized water (after boiling) and nitrogen protection were also used to avoid oxidation. The Fe{sup 2+}/Fe{sub total} ratio of the iron exists in the Fe-montmorillonites was found more than 95%. Two kinetic models, including pseudo-first-order and pseudo-second-order model, were used to analyze the adsorption process of Fe (II) on montmorillonites. The results of our study showed that adsorption process fitted with pseudo-second-order well. Adsorption isotherms showed that Langmuir model was better than Freundlich model. The thermodynamic parameters ΔG{sup 0} and ΔH{sup 0} were 3.696 kJ/mol and 6.689 kJ/mol (we just gave the values at 298 K), respectively. The positive values at different temperatures showed that the adsorption process was non-spontaneous and endothermic. The characteristics of materials were determined by X-ray diffraction (XRD), Fourier transform infrared (FT-IR), Surface area and porosity analyzer, Thermogravimetric analysis (TGA), Differential scanning calorimeter (DSC) and Zeta potential distribution.

  12. Surfactant adsorption to soil components and soils

    NARCIS (Netherlands)

    Ishiguro, Munehide; Koopal, Luuk K.


    Soils are complex and widely varying mixtures of organic matter and inorganic materials; adsorption of surfactants to soils is therefore related to the soil composition. We first discuss the properties of surfactants, including the critical micelle concentration (CMC) and surfactant adsorption on

  13. Maternal glomerular filtration rate in pregnancy and fetal size.

    Directory of Open Access Journals (Sweden)

    Nils-Halvdan Morken

    Full Text Available BACKGROUND: The relationship of maternal glomerular filtration rate (GFR in pregnancy to fetal size needs to be better characterized as it impacts an ongoing debate about confounding effect of maternal GFR in investigations of important environmental contaminants. We aimed to characterize the size of the association between maternal GFR and infant birth weight. MATERIALS AND METHODS: A sub-cohort of 953 selected women (470 women with and 483 women without preeclampsia in the Norwegian Mother and Child Cohort (MoBa, recruited during 2003-2007 were analyzed. GFR in the second trimester was estimated based on plasma creatinine. Birth weight was ascertained from the Medical Birth Registry of Norway. Multivariate linear regression was used to evaluate the association between maternal GFR in second trimester (estimated by the Cockroft-Gault [GFR-CG] and the modification of diet in renal disease [GFR-MDRD] formulas and infant birth weight. Partial correlation coefficients were also calculated. RESULTS: Maternal GFR-CG (β: 0.73 g/ml/min, p = 0.04 and GFR-MDRD (β: 0.83 g/ml/min, p = 0.04 were associated with infant birth weight in models adjusted for maternal weight in kilograms, preeclampsia, and gestational age at delivery (days. Partial correlation coefficients for the association between infant birth weight and GFR were 0.07 for both formulas. Although the birth weight-GFR association was stronger among the women with preeclampsia, the difference from women without preeclampsia was not statistically significant. CONCLUSION: These data support an association between GFR during pregnancy and infant birth weight, and indicate that GFR may confound selected epidemiologic associations.


    Directory of Open Access Journals (Sweden)

    I. M. Gulis


    Full Text Available Instruments for spectral filtration of images are an important element of the systems used in remote sensing, medical diagnostics, in-process measurements. The aim of this study is analysis of the functional features and characteristics of the proposed two image monochromator versions which are based on dispersive spectral filtering. The first is based on the use of a dispersive monochromator, where collimating and camera lenses form a telescopic system, the dispersive element of which is within the intermediate image plane. The second version is based on an imaging double monochromator with dispersion subtraction by back propagation. For the telescopic system version, the spectral and spatial resolutions are estimated, the latter being limited by aberrations and diffraction from the entrance slit. The device has been numerically simulated and prototyped. It is shown that for the spectral bandwidth 10 nm (visible spectral range, the aberration-limited spot size is from 10–20 μm at the image center to about 30 μm at the image periphery for the image size 23–27 mm. The monochromator with dispersion subtraction enables one to vary the spectral resolution (up to 1 nm and higher by changing the intermediate slit width. But the distinctive feature is a significant change in the selected central wavelength over the image field. The considered designs of dispersive image monochromators look very promising due to the particular advantages over the systems based on tunable filters as regards the spectral resolution, fast tuning, and the spectral contrast. The monochromator based on a telescopic system has a simple design and a rather large image field but it also has a limited light throughput due to small aperture size. The monochromator with dispersion subtraction has higher light throughput, can provide high spectral resolution when recording a full data cube in a series of measuring acts for different dispersive element positions. 

  15. /sup 125/I iothalamate an ideal marker for glomerular filtration

    Energy Technology Data Exchange (ETDEWEB)

    Odlind, B.; Haellgren, R.S.; Sohtell, M.; Lindstroem, B.


    The triiodinated angiographic contrast medium, iothalamate (usually labelled /sup 125/I), has been used extensively as a marker for glomerular filtration. The authors have studied the renal handling of /sup 125/I iothalamate (IOT) in vivo and in vitro in several species. In renal cortical slices from chicken, rabbit, rat, and monkey, the tissue-to-medium ratio of IOT was twice that of /sup 51/Cr-EDTA (EDTA) at 37 degrees C; a difference that was abolished at 0 degree C and markedly reduced by added o-iodohippurate or iodipamide. In five chickens the steady-state renal clearance of IOT (CIOT) was twice that of EDTA (CEDTA) or /sup 3/H inulin (C1); a difference that was abolished by administration of 100 mg/kg/hr of novobiocin, an organic anion transport inhibitor. CEDTA was similar to C1 before as well as after transport inhibition. Utilizing the Sperber technique the mean apparent tubular excretion fraction (ATEF) of IOT was 8%, while that of EDTA was 1%. After novobiocin coinfusion (new steady-state) ATEFIOT was significantly reduced and not different from that of EDTA (-1%). In the same animals the total urinary recovery of IOT was 84 and 57% before and after novobiocin, respectively, while corresponding values for EDTA was unchanged by the inhibitor. In seven rats the renal extraction of IOT was reduced from 29 to 17% by coinfusion of probenecid (5 mg/kg/hr). Corresponding extractions were 82 to 34% and 22% (unchanged) for PAH and EDTA, respectively.

  16. Energy Implications of In-Line Filtration in California

    Energy Technology Data Exchange (ETDEWEB)

    Walker, Iain S. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Dickerhoff, Darryl [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Faulkner, David [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Turner, William J.N. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)


    Occupant concern about indoor air quality (IAQ) issues has led to the increased use of more effective air filters in residential heating and cooling systems. This study performed measurements in ten California houses to determine the effects of changing filter performance and related characteristics on the energy use of the heating and cooling systems. Multiple filters were evaluated covering a wide range of filter effectiveness from simple low filtration fiberglass filters up to high efficiency filters that might be used by occupants concerned about IAQ. Sophisticated analysis and simulation tools used the field-testing results to determine filter impacts for a wide range of parameters and California climates. The results indicate that for MERV 10/11/13 filters the effects on energy use are moderate (<5%) over a wide range of performance conditions and climates. Using higher MERV 16 filters can lead to significantly increased energy use (>5%). The high airflow resistance of MERV 16 filters led to excess noise in some test houses from air bypassing the filter and the blower motor. Filter loading rates varied more from house to house than by MERV rating and overall were quite low in many of the homes. Filter related energy use does not need to be addressed for filters of MERV 10/11/13 and MERV 16 filters should only be used with low leakage tested ducts unless the filter is mounted at the blower compartment. MERV 16 filters should only be used if the filter area is sufficient to prevent noise issues and if the duct system has low air flow resistance and low leakage. Filters should be labeled for their air flow resistance, or static pressure at a particular flow rate, that would allow codes and standards to reference a particular performance specification and allow contractors and homeowners to make informed purchases.

  17. Estimating glomerular filtration rate preoperatively for patients undergoing hepatectomy

    Institute of Scientific and Technical Information of China (English)

    Yoshimi Iwasaki; Tokihiko Sawada; Shozo Mori; Yukihiro Iso; Masato Katoh; Kyu Rokkaku; Junji Kita; Mitsugi Shimoda; Keiichi Kubota


    AIM: To compare creatinine clearance (Ccr) with estimated glomerular filtration rate (eGFR) in preoperative renal function tests in patients undergoing hepatectomy. METHODS: The records of 197 patients undergoing hepatectomy between August 2006 and August 2008 were studied, and preoperative Ccr, a three-variable equation for eGFR (eGFR3) and a five-variable equation for eGFR (eGFR5) were calculated. Abnormal values were defined as Ccr < 50 mL/min, eGFR3 and eGFR5 < 60 mL/min per 1.73 m2. The maximum increases in the postoperative serum creatinine (post Cr) level and postoperative rate of increase in the serum Cr level (post Cr rate) were compared. RESULTS: There were 37 patients (18.8%) withabnormal Ccr, 31 (15.7%) with abnormal eGFR3, and 40 (20.3%) with abnormal eGFR5. Although there were no significant differences in the post Cr rate between patients with normal and abnormal Ccr, eGFR3 and eGFR5 values, the post Cr level was significantly higher in patients with eGFR3 and eGFR5 abnormality than in normal patients ( P < 0.0001). Post Cr level tended to be higher in patients with Ccr abnormality ( P = 0.0936 and P = 0.0875, respectively). CONCLUSION: eGFR5 and the simpler eGFR3, rather than Ccr, are recommended as a preoperative renal function test in patients undergoing hepatectomy.

  18. Harvesting of Dunaliella tertiolecta cells by magnetic filtration (United States)

    Manousakis, Emmanouil; Manariotis, Ioannis D.


    The rising cost and reduced reserves of fossil fuels have enhanced the interest for finding alterative energy sources. Microalgae are considered to be the only sustainable option in biodiesel production for two key points. The energy yield from microalgae is much higher than that of oil producing crops, and the cultivation of algae it is not antagonistic with food supply chain. Because of the small size of microalgae and the dilute nature of algal cultures, the harvesting cost of microalgae is so far a limiting step for the scale up of microalgal biofuel production. It is estimated that the algal harvesting cost is at least 20-30% of the total biomass production cost. Traditional methods, which have been employed for the recovery of microalgal biomass, include centrifugation, gravity separation, filtration, flocculation, and flotation. Alternative approaches, other than conventional methods, capable of processing large cultures volume at a low cost, and reducing effluent toxicity are essential for microalgal biomass production. Magnetic separation is a promising technology and has been applied for algal removal in the mid of 1970s. The aim of this study was to investigate the harvesting of microalgae cells using magnetic microparticles (MPs). Dunaliella tertiolecta was selected as a representative for marine microalgae. The cultivation of microalgae was conducted under continuous artificial light, in 20 L flasks. Iron oxide microparticles were prepared by microwave irradiation of FeSO4 7H2O in an alkaline solution. Samples were taken at different operation intervals to conduct harvesting studies. Batch and flow-through experiments were conducted in order to investigate the effect of the magnetic material on microalgae removal. Algal removal in flow through experiments ranged from 70 to 85% depending on the initial MPs concentration even at very short hydraulic retention times (i.e. 2 min). In batch tests, algal removal was up to 97% at MPs concentration of 490 mg/L.

  19. Factors affecting drug adsorption on beta zeolites. (United States)

    Pasti, Luisa; Sarti, Elena; Cavazzini, Alberto; Marchetti, Nicola; Dondi, Francesco; Martucci, Annalisa


    The adsorption behaviour of three commonly used drugs, namely ketoprofen, hydrochlorothiazide and atenolol, from diluted aqueous solutions on beta zeolites with different SiO2/Al2O3 ratio (i.e. 25, 38 and 360) was investigated by changing the ionic strength and the pH, before and after thermal treatment of the adsorbents. The selective adsorption of drugs was confirmed by thermogravimetry and X-ray diffraction. The adsorption capacity of beta zeolites was strongly dependent on both the solution pH and the alumina content of the adsorbent. Such a remarkable difference was interpreted as a function of the interactions between drug molecules and zeolite surface functional groups. Atenolol was readily adsorbed on the less hydrophobic zeolite, under pH conditions in which electrostatic interactions were predominant. On the other hand, ketoprofen adsorption was mainly driven by hydrophobic interactions. For undissociated molecules the adsorption capability increased with the increase of hydrophobicity.

  20. Adsorption kinetics of methyl violet onto perlite. (United States)

    Doğan, Mehmet; Alkan, Mahir


    This study examines adsorption kinetics and activation parameters of methyl violet on perlite. The effect of process parameters like contact time, concentration of dye, temperature and pH on the extent of methyl violet adsorption from solution has been investigated. Results of the kinetic studies show that the adsorption reaction is first order with respect to dye solution concentration with activation energy of 13.2 kJ mol(-1). This low activation energy value indicates that the adsorption reaction is diffusion controlled. The activation parameters using Arrhenius and Eyring equations have been calculated. Adsorption increases with increase of variables such as contact time, initial dye concentration, temperature and pH.