WorldWideScience

Sample records for adsorption filtration photo-catalysis

  1. Investigation of Microgranular Adsorptive Filtration System

    Science.gov (United States)

    Cai, Zhenxiao

    Over the past few decades, enormous advances have been made in the application of low-pressure membrane filtration to both drinking water and wastewater treatment. Nevertheless, the full potential of this technology has not been reached, due primarily to limitations imposed by membrane fouling. In drinking water treatment, much of the fouling is caused by soluble and particulate natural organic matter (NOM). Efforts to overcome the problem have focused on removal of NOM from the feed solution, usually by addition of conventional coagulants like alum and ferric chloride (FeCl3) or adsorbents like powdered activated carbon (PAC). While coagulants and adsorbents can remove a portion of the NOM, their performance with respect to fouling control has been inconsistent, often reducing fouling but sometimes having no effect or even exacerbating fouling. This research investigated microgranular adsorptive filtration (muGAF), a process that combines three existing technologies---granular media filtration, packed bed adsorption, and membrane filtration---in a novel way to reduce membrane fouling while simultaneously removing NOM from water. In this technology, a thin layer of micron-sized adsorbent particles is deposited on the membrane prior to delivering the feed to the system. The research reported here represents the first systematic study of muGAF, and the results demonstrate the promising potential of this process. A new, aluminum-oxide-based adsorbent---heated aluminum oxide particles (HAOPs)---was synthesized and shown to be very effective for NOM removal as well as fouling reduction in muGAF systems. muGAF has also been demonstrated to work well with powdered activated carbon (PAC) as the adsorbent, but not as well as when HAOPs are used; the process has also been successful when used with several different membrane types and configurations. Experiments using a wide range of operational parameters and several analytical tools lead to the conclusion that the fouling

  2. Degradation of Residual Formaldehyde in Fabric by Photo-catalysis

    Institute of Scientific and Technical Information of China (English)

    YAO Yadong; GUO Xiangli; KANG Yunqing; LI Xieji; CHEN Aizheng; YANG Weizhong; YIN Guangfu

    2008-01-01

    The residual formaldehyde (HCHO) in fabric was degraded using photo-catalysis assisted by the compound catalyst of nano-TiO2 and nano-ZnO. The effects of several factors on the degradation,such as the composing of catalyst, irradiation time, pH value and the H2CHO concentration of the immersed solution were investigated. Results showed that H2CHO of the immersed solution had degraded 93% after 5 h irradiation, and the degradation ratio of formaldehyde could be improved and the aging of the fabric can be avoided with the addition of ZnO nanoparticles and pH value of the immersed-fibric solution. The fabric with residual formaldehyde about 1 800 μg/g can be efficiently treated to satisfy the China National Standard(GB/2912.1-1998) with the photo-catalytic degradation.

  3. 76 FR 82323 - Design, Inspection, and Testing Criteria for Air Filtration and Adsorption Units

    Science.gov (United States)

    2011-12-30

    ... COMMISSION Design, Inspection, and Testing Criteria for Air Filtration and Adsorption Units AGENCY: Nuclear...-1274, ``Design, Inspection, and Testing Criteria for Air Filtration and Adsorption Units of....'' This guide applies to the design, inspection, and testing of air filtration and iodine adsorption...

  4. Solar photo-catalysis to remove paper mill wastewater pollutants

    Energy Technology Data Exchange (ETDEWEB)

    Amat, A.M.; Arques, A. [Departamento de Ingenieria Textil y Papelera, Universidad Politecnica de Valencia, EPSA-UPV, Paseo del Viaducto 1, E-03801 Alcoy (Spain); Lopez, F. [Departamento de Ingenieria Quimica y Nuclear, Universidad Politecnica de Valencia, EPSA-UPV, Paseo del Viaducto 1, E-03801 Alcoy (Spain); Miranda, M.A. [Departamento de Quimica, Instituto de Tecnologia Quimica, Universidad Politecnica de Valencia, UPV-CSIC, 46071 Valencia (Spain)

    2005-10-01

    Solar degradation of effluents in board paper industries has been studied using different photo-catalysts: Fenton reagent and TiO{sub 2}. p-Toluenesulfonic acid was chosen as a model compound for sulfonated pollutants already present in the incoming waters. The abatement of a 0.005M solution of this pollutant after 6h was found to be 47% for photo-Fenton and 27% for TiO{sub 2} (pseudo-first-order rate constants 0.002 and 0.001min{sup -1}, respectively). Eugenol and guaiacol were chosen as models for lignin degradation products. They were efficiently degraded by both photo-catalysts, and reaction rates were higher for eugenol (0.0024min{sup -1}) than for guaiacol (0.0018min{sup -1}). A solution of sodium acetate, sodium butyrate and d-glucose was chosen to study the effect of photo-catalysis towards volatile fatty acids and saccharides arising from starch degradation. In this case a clearly worse performance was observed: only 20% degradation was observed after 7h of treatment. When the real wastewater was treated with photo-catalytic methods, the best performance was obtained in closed circuits, when the COD values were higher. This fact can be explained by taking into account that closure of the circuits results in an accumulation of reluctant phenolic pollutants, while starch derivatives are continuously degraded by microorganisms in the circuits; as phenolic compounds are more easily degraded by photo-catalytic means, these methods are suitable for closed circuits. Finally, changes in the BOD{sub st} were determined by means of active sludges respirometry. A noticeable BOD{sub st} increase (30-50%) was observed in all cases, attributable to chemical oxidation of biodegradable species. (author)

  5. Simulations of Microbial-Enhanced Oil Recovery: Adsorption and Filtration

    DEFF Research Database (Denmark)

    Nielsen, Sidsel Marie; Nesterov, Igor; Shapiro, Alexander

    2014-01-01

    In the context of microbial-enhanced oil recovery (MEOR) with injection of surfactant-producing bacteria into the reservoir, different types of bacteria attachment and growth scenarios are studied using a 1D simulator. The irreversible bacteria attachment due to filtration similar to the deep bed...... filtration (DBF) is examined along with the commonly used reversible equilibrium adsorption (REA). The characteristics of the two models are highlighted. The options for bacteria growth are the uniform growth in both phases and growth of attached bacteria only. It is found that uniform growth scenario...... coefficients, and substrate injection concentrations. For both growth scenarios, there is a zone of optimal activity at which the CRP is minimal. Dependence of the CRP on substrate concentration for uniform growth scenario has also an optimal zone. Therefore, growth rate and the substrate concentration should...

  6. 77 FR 60481 - Design, Inspection, and Testing Criteria for Air Filtration and Adsorption Units of Post-Accident...

    Science.gov (United States)

    2012-10-03

    ... Information DG-1274 was published in the Federal Register on December 30, 2011 (76 FR 82323), for a 60-day... COMMISSION Design, Inspection, and Testing Criteria for Air Filtration and Adsorption Units of Post-Accident..., and Testing Criteria for Air Filtration and Adsorption Units of Post-accident...

  7. Groundwater Arsenic Adsorption on Granular TiO2: Integrating Atomic Structure, Filtration, and Health Impact.

    Science.gov (United States)

    Hu, Shan; Shi, Qiantao; Jing, Chuanyong

    2015-08-18

    A pressing challenge in arsenic (As) adsorptive filtration is to decipher how the As atomic surface structure obtained in the laboratory can be used to accurately predict the field filtration cycle. The motivation of this study was therefore to integrate molecular level As adsorption mechanisms and capacities to predict effluent As from granular TiO2 columns in the field as well as its health impacts. Approximately 2,955 bed volumes of groundwater with an average of 542 μg/L As were filtered before the effluent As concentration exceeded 10 μg/L, corresponding to an adsorption capacity of 1.53 mg As/g TiO2. After regeneration, the TiO2 column could treat 2,563 bed volumes of groundwater, resulting in an As load of 1.36 mg/g TiO2. Column filtration and EXAFS results showed that among coexisting ions present in groundwater, only Ca(2+), Si(OH)4, and HCO3(-) would interfere with As adsorption. The compound effects of coexisting ions and molecular level structural information were incorporated in the PHREEQC program to satisfactorily predict the As breakthrough curves. The total urinary As concentration from four volunteers of local residences, ranging from 972 to 2,080 μg/L before groundwater treatment, decreased to the range 31.7-73.3 μg/L at the end of the experimental cycle (15-33 days). PMID:26198737

  8. Phosphate adsorption from wastewater using zirconium (IV) hydroxide: Kinetics, thermodynamics and membrane filtration adsorption hybrid system studies.

    Science.gov (United States)

    Johir, M A H; Pradhan, M; Loganathan, P; Kandasamy, J; Vigneswaran, S

    2016-02-01

    Excessive phosphate in wastewater should be removed to control eutrophication of water bodies. The potential of employing amorphous zirconium (Zr) hydroxide to remove phosphate from synthetic wastewater was studied in batch adsorption experiments and in a submerged membrane filtration adsorption hybrid (MFAH) reactor. The adsorption data satisfactorily fitted to Langmuir, pseudo-first order and pseudo-second order models. Langmuir adsorption maxima at 22 °C and pHs of 4.0, 7.1, and 10.0 were 30.40, 18.50, and 19.60 mg P/g, respectively. At pH 7.1 and temperatures of 40 °C and 60 °C, they were 43.80 and 54.60 mg P/g, respectively. The thermodynamic parameters, ΔG° and ΔS° were negative and ΔH° was positive. FTIR, zeta potential and competitive phosphate, sulphate and nitrate adsorption data showed that the mechanism of phosphate adsorption was inner-sphere complexation. In the submerged MFAH reactor experiment, when Zr hydroxide was added at doses of 1-5 g/L once only at the start of the experiment, the removal of phosphate from 3 L of wastewater containing 10 mg P/L declined after 5 h of operation. However, when Zr hydroxide was repeatedly added at 5 g/L dose every 24 h, satisfactory removal of phosphate was maintained for 3 days.

  9. Coupled plasma filtration adsorption in experimental peritonitis-induced septic shock.

    Science.gov (United States)

    Sykora, Roman; Chvojka, Jiri; Krouzecky, Ales; Radej, Jaroslav; Kuncova, Jitka; Varnerova, Veronika; Karvunidis, Thomas; Novak, Ivan; Matejovic, Martin

    2009-05-01

    The coupled plasma filtration adsorption (CPFA) was developed as an adsorptive hemopurification method aimed at nonselective removal of circulating soluble mediators potentially involved in the pathogenesis of sepsis. We hypothesized that this nonselective hemopurification could protect from detrimental consequences of long-term, volume-resuscitated porcine septic shock. In 16 anesthetized, mechanically ventilated, and instrumented pigs, the hyperdynamic septic shock secondary to peritonitis was induced by intraperitoneally inoculating feces and maintained for 22 h with fluid resuscitation and norepinephrine infusion as needed to maintain MAP above 65 mmHg. After 12 h of peritonitis, animals were randomized to receive either supportive treatment (control, n = 8) or CPFA treatment (CPFA, n = 8). Systemic, hepatosplanchnic, and renal hemodynamics; oxygen exchange; energy metabolism (lactate/pyruvate and ketone body ratios); ileal mucosal and renal cortex microcirculation; systemic inflammation (TNF-alpha, IL-6); nitrosative/oxidative stress (thiobarbituric acid reactive species, nitrates + nitrites); and endothelial/coagulation dysfunction (asymmetric dimethylarginine, von Willebrand factor, thrombin-antithrombin complexes, platelet count) were assessed before and 12, 18, and 22 h of peritonitis. Coupled plasma filtration adsorption neither delayed the development of hypotension nor reduced the dose of norepinephrine. The treatment failed to attenuate sepsis-induced alterations in microcirculation, surrogate markers of cellular energetics, endothelial injury, and systemic inflammation. Similarly, CPFA did not protect from lung and liver dysfunction and even aggravated sepsis-induced disturbances in coagulation and oxidative/nitrosative stress. In this porcine model of septic shock, the early treatment with CPFA was not capable of reversing the sepsis-induced disturbances in various biological pathways and organ systems. Both the efficacy and safety of this method

  10. Study the Effect of Mg O on the Photo catalysis of Zn O Thin Layers

    International Nuclear Information System (INIS)

    The removal of the non-biodegradable organic chemicals is a crucial ecological problem. Dyes are an important class of synthetic organic compounds used in the textile industry and are therefore common industrial pollutants. Due to the stability of modern dyes, conventional biological treatment methods for industrial wastewater are ineffective resulting often in an intensively colored discharge from the treatment facilities. Heterogeneous photo catalysis by semiconductor films is a promising technology for the reduction of global environmental pollutants. Zn O has received much attention in the degradation and complete mineralization of environmental pollutants. In order to improve the properties of the films, several techniques such as sputtering, thermal evaporation and spray pyrolysis have been applied for the production of Zn O. Spray pyrolysis technique is preferred among these techniques. It is less expensive, simpler and more versatile than all the other techniques, which allows the possibility of obtaining large area films with the required properties for different applications. In order to improve the photo catalytic efficiency of Zn O films, the particle sizes, morphologies, surface properties, and electronic structure have to be changed. This can be done by doping with some metals. In this work, Mg was doped into Zn O thin films. Zn1xMgxO thin films are prepared by spray pyrolysis method on glass substrates. The deposition temperature was 500 °C. Mg concentration was varied in the range of 0.0 to 0.3 in intervals of 0.05. The pure Zn O films were polycrystalline with preferred orientation (100). Zn1xMgxO films become amorphous with increasing Mg concentration. The grain size decreased with increasing Mg content. Also, doping with Mg has increased the surface roughness of the films. The optical band gap of Zn1xMgxO changes from 3.26 to 3.48 eV with increasing Mg content. The refractive index has been decreased but the extinction coefficient has been

  11. Study of the combining adsorption-micro filtration process for the treatment of coloured waters

    Energy Technology Data Exchange (ETDEWEB)

    Addaou, A.; Laajeb, A.; Lahsini, A.; Bentama, J.; Rodriguez, M. A.

    2012-11-01

    Generally textile effluents are highly coloured, contain non-biodegradable compounds and they have high content of solid wastes, comprising fibres and paper wastes. The discharge of such effluents in the environment is worrying for both toxicological and esthetical reasons. The aim of the present work is to study the performances of the combining micro filtration-adsorption process for the treatment of coloured waters. Methylene Blue (MB) was used as model compound. The effects of significant operating parameters such as transmembrane pressure (TMP) and bentonite concentration on the process performance characterized by flux and rejection factor were investigated. Experiments carried out with Methylene Blue solutions confirmed the potential of this combined process for the treatment of dyed waters. (Author) 13 refs.

  12. Study about the application possibilities from the heterogeneous photo-catalysis to the phenols removal processes in watery medium

    International Nuclear Information System (INIS)

    Phenols are recalcitrant and quite-toxic organic compounds, which are generally in wastewaters from some industries, such as petrochemical, paper mills, chemical industries of production of pesticides and herbicides, among others. Conventionally these compounds are treated with some treatment, such as electrochemistry, biodegradation or incineration, in which ones it is not achieved an optimal removal of phenols. Due to this becomes necessary the study of more efficient techniques. Heterogeneous photo-catalysis belongs one to them, which one is based on a catalytic reaction that involves the absorption of light on a semiconductor, with the purpose of degrading the organic pollutants to dioxide of carbon, water an mineral acids these ones innocuous or e environment. At the moment, studies look for to optimize the values for the different parameters that affect the photo-catalytic process. These are: pH, temperature, radiation intensity, reactor design, nature and concentration of the pollutant, preservatives, and kinetics of the reaction. This last one plays a very important role in the real application of the process. The tendency of the photo-catalysis is focused to the development of useful prototypes in the industry, mainly in decontamination treatments of air, water, or soils, and in self-cleaning surface application

  13. Increasing parvovirus filter throughput of monoclonal antibodies using ion exchange membrane adsorptive pre-filtration.

    Science.gov (United States)

    Brown, Arick; Bechtel, Charity; Bill, Jerome; Liu, Hui; Liu, Jun; McDonald, Dan; Pai, Satyan; Radhamohan, Asha; Renslow, Ryan; Thayer, Brooke; Yohe, Stefan; Dowd, Chris

    2010-07-01

    Pre-filtration using ion exchange membrane adsorbers can improve parvovirus filter throughput of monoclonal antibodies (mAbs). The membranes work by binding trace foulants, and although some antibody product also binds, yields > or =99% are easily achieved by overloading. Results show that foulant adsorption is dependent on pH and conductivity, but independent of scale and adsorber brand. The ability to use ion exchange membranes as pre-filters is significant because it provides a clean, well defined, chemically stable option for enhancing throughput. Additionally, ion exchange membranes facilitate characterization of parvovirus filter foulants. Examination of adsorber elution samples using sedimentation velocity analysis and SEC-MALS/QELS revealed the presence of high molecular weight species ranging from 8 to 13 nm in hydrodynamic radius, which are similar in size to parvoviruses and thus would be expected to plug the pores of a parvovirus filter. A study of two identical membranes in-series supports the hypothesis that the foulants are soluble, trace level aggregates in the feed. This study's significance lies in a previously undiscovered application of membrane chromatography, leading to a more cost effective and robust approach to parvovirus filtration for the production of monoclonal antibodies.

  14. NOM fractionation and fouling of low-pressure membranes in microgranular adsorptive filtration.

    Science.gov (United States)

    Cai, Zhenxiao; Benjamin, Mark M

    2011-10-15

    Membrane fouling by natural organic matter (NOM) was investigated in microgranular adsorptive filtration (μGAF) systems, in which a thin layer of adsorbent is predeposited on low-pressure membranes. The adsorbents tested included heated aluminum oxide particles (HAOPs), ion exchange (IX) resin, and powdered activated carbon (PAC). Size exclusion chromatography (SEC) separated the NOM into four apparent MW fractions with significant UV₂₅₄. HAOPs and the IX resin performed almost identically with respect to removal of these fractions, and differently from PAC. However, while HAOPs and PAC reduced fouling substantially, IX resin did not, indicating that fouling could not be attributed to the NOM fractions detected by SEC. Rather, the key foulants appear to comprise a very small fraction of the NOM with almost no UV₂₅₄ absorbance. Alginate, a strongly fouling surrogate for natural polysaccharides, is adsorbed effectively by HAOPs, but not by IX resin or PAC, suggesting that polysaccharides sometimes play a key role in membrane fouling by NOM. PMID:21905711

  15. Purification of olive mill wastewater phenols through membrane filtration and resin adsorption/desorption.

    Science.gov (United States)

    Zagklis, Dimitris P; Vavouraki, Aikaterini I; Kornaros, Michael E; Paraskeva, Christakis A

    2015-03-21

    Olive tree cultivation has a long history in the Mediterranean countries, and even today consists an important cultural, economic, and environmental aspect of the area. The production of olive oil through 3-phase extraction systems, leads to the co-production of large quantities of olive mill wastewater (OMW), with toxic compounds that inhibit its biodegradation. Membrane filtration has been used for the exploitation of this byproduct, through the isolation of valuable phenolic compounds. In the current work, a fraction of the waste occurring from a membrane process was used. More specifically the reverse osmosis concentrate, after a nanofiltration, containing the low-molecular-weight compounds, was further treated with resin adsorption/desorption. The non ionic XAD4, XAD16, and XAD7HP resins were implemented, for the recovery of phenols and their separation from carbohydrates. The recovered phenolic compounds were concentrated through vacuum evaporation reaching a final concentration of 378 g/L in gallic acid equivalents containing 84.8 g/L hydroxytyrosol.

  16. Methylene blue and 4-chloro phenol degradation by photo catalysis with ultraviolet light, using TiO2 as catalyst

    International Nuclear Information System (INIS)

    Within the decontamination and remediation processes of the contaminated waters, as the refining or tertiary processes are the Advanced Oxidation Technologies. Among this technology is the heterogeneous photo catalysis, which is the object of this work to de grate 4-chloro phenol and methylene blue, using as semiconductor commercial titanium dioxide (TiO2). On the degradation the combination is exposed in the use of TiO2 under gamma irradiation of 60Co at different doses 400, 500, 800, 1000 and 1500 kGy. The organic compounds degradation was determined and the results show that to more radiation dose, the material is modified in such way that shows a major absorption of the organic compound, in the same way it is determined that to more dose which undergoes the TiO2 generally a major degradation is observed, but also it is has to give a more time of previous stabilization, for that the degradation is observed of better way. (Author)

  17. Treatment of decontamination liquid waste of nuclear power plant components by heterogeneous photo catalysis with a continuous recirculation equipment

    International Nuclear Information System (INIS)

    It has been designed a bench scale, recirculation device, for testing the degradation of solutions of ethylendiamine tetraacetic acid (EDTA) by heterogeneous photo catalysis under irradiation with UV and titanium dioxide (TiO2). Solutions of EDTA have been employed at concentrations and pH values similar to those used when a decontamination of nuclear power plant equipment is carried out. The circuit is composed of a photo reactor, a heat exchanger, a reservoir tank and a peristaltic pump. In the present paper, the results of the experiments of photo catalytic degradation of aqueous suspensions of TiO2 (Degussa P-25) 1 g/L with EDTA (10 g/L) at pH 3.7 and 25 degree C and two irradiation wavelengths (366 and 254 nm) have been presented. At 366 nm the full degradation of EDTA has occurred in 10 hours. The 95% degradation of total organic carbon (TOC) has been achieved after 39 hours of irradiation. The irradiation at 254 nm in the same conditions has been much less effective (EDTA and TOC reduction of approximately 1%), due to a screening effect produced by the semiconductor. (author)

  18. Continuous plasma filtration adsorption in treatment of severe infection-induced multiple organ dysfunction syndrome.

    Science.gov (United States)

    Yin, S L; Lan, C; Pei, H; Zu, Z Q

    2016-01-01

    Multiple organ dysfunction syndrome (MODS), a high-risk disease, has a fatality rate of 70%. To improve treatment of this disease, in recent years many scholars have explored the pathological and physiological changes of MODS. To observe the curative effect of continuous plasma filtration adsorption (CPFA) in the treatment of MODS, we selected 96 patients who were diagnosed with severe infection-induced MODS and were treated in the First Affiliated Hospital of Zhengzhou University between February 2012 and October 2014 and divided them into an observation group and a control group. Besides conventional treatment, the observation group was also given CFPA in combination with high volume hemofiltration (HVHF), while the control group only received HVHF. Changes of blood routine index, balance of electrolyte and acid-base as well as vital signs were observed before and after treatment. Also, blood, kidney and blood gas were examined. For all patients, tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6) and C-reactive protein (CRP) were recorded at the start of treatment (0 h), and 5 h and 10 h after treatment. It was found that both therapies could lower blood urea nitrogen (BUN) and creatinine levels and maintain balance of electrolyte and acid-base, but had no obvious influence on leukocyte, blood platelet and hematocrit. In the observation group, PaO(2)/FiO(2) and mean arterial pressure (MAP) were significantly improved after surgery (P less than 0.05), while Acute Physiology and Chronic Health Evaluation (APACHE) II score had an obvious decrease (P less than 0.05). In contrast, the control group was observed with insignificantly changed PaO(2)/FiO(2), MAP and APACHE II score (P>0.05). TNF-α, IL-6 and CRP levels of the two groups had no statistically significant difference at the start of treatment (P>0.05), but TNF-α, IL-6 and CRP levels of the observation group became remarkably lower than those of the control group 5 h and 10 h after treatment (P less than

  19. Continuous plasma filtration adsorption in treatment of severe infection-induced multiple organ dysfunction syndrome.

    Science.gov (United States)

    Yin, S L; Lan, C; Pei, H; Zu, Z Q

    2016-01-01

    Multiple organ dysfunction syndrome (MODS), a high-risk disease, has a fatality rate of 70%. To improve treatment of this disease, in recent years many scholars have explored the pathological and physiological changes of MODS. To observe the curative effect of continuous plasma filtration adsorption (CPFA) in the treatment of MODS, we selected 96 patients who were diagnosed with severe infection-induced MODS and were treated in the First Affiliated Hospital of Zhengzhou University between February 2012 and October 2014 and divided them into an observation group and a control group. Besides conventional treatment, the observation group was also given CFPA in combination with high volume hemofiltration (HVHF), while the control group only received HVHF. Changes of blood routine index, balance of electrolyte and acid-base as well as vital signs were observed before and after treatment. Also, blood, kidney and blood gas were examined. For all patients, tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6) and C-reactive protein (CRP) were recorded at the start of treatment (0 h), and 5 h and 10 h after treatment. It was found that both therapies could lower blood urea nitrogen (BUN) and creatinine levels and maintain balance of electrolyte and acid-base, but had no obvious influence on leukocyte, blood platelet and hematocrit. In the observation group, PaO(2)/FiO(2) and mean arterial pressure (MAP) were significantly improved after surgery (P less than 0.05), while Acute Physiology and Chronic Health Evaluation (APACHE) II score had an obvious decrease (P less than 0.05). In contrast, the control group was observed with insignificantly changed PaO(2)/FiO(2), MAP and APACHE II score (P>0.05). TNF-α, IL-6 and CRP levels of the two groups had no statistically significant difference at the start of treatment (P>0.05), but TNF-α, IL-6 and CRP levels of the observation group became remarkably lower than those of the control group 5 h and 10 h after treatment (P less than

  20. Sonochemical synthesis of porous Cu2O–Cu hollow spheres and their photo-catalysis

    International Nuclear Information System (INIS)

    Porous Cu2O–Cu hollow spheres were successfully synthesized by a facile, one-pot and green method with assistance of ultrasonic technique. By prolonging ultrasonic irradiation time, the solid spheres of Cu2O transformed into core–shell structure, then into hollow spheres, which accompanied with composition shift. XRD, FE-SEM, TEM, EDX and XPS were used to investigate the structural and composition transformation of the products. Finds indicated that the formation of Cu2O–Cu hollow spheres was caused by the sacrificial template-directed chemical transformation from Cu2O to Cu and the re-crystallization of Cu2O on the shell based on Ostwald ripening effect together. Furthermore, Cu2O–Cu hollow spheres with rough surface and available pores exhibited excellent adsorption ability and better photo-catalytic activity for the degradation of methyl orange compared to other structures. - Highlights: • A facile, one-pot route was developed to fabricate Cu2O–Cu hollow spheres. • The structural and composition evolutions of spheres were observed. • Cu2O–Cu hollow spheres exhibited excellent adorability and photocatalytic activity

  1. Conductive electrospun PANi-PEO/TiO{sub 2} fibrous membrane for photo catalysis

    Energy Technology Data Exchange (ETDEWEB)

    Neubert, Sebastian [National University of Singapore, 21 Lower Kent Ridge Road, Singapore 119077 (Singapore); Pliszka, Damian, E-mail: nnidp@nus.edu.sg [National University of Singapore, 21 Lower Kent Ridge Road, Singapore 119077 (Singapore); Thavasi, Velmurugan [National University of Singapore, 21 Lower Kent Ridge Road, Singapore 119077 (Singapore); Wintermantel, Erich [Technical University of Munich, Bolzmannstr. 15, 85748 Garching (Germany); Ramakrishna, Seeram [National University of Singapore, 21 Lower Kent Ridge Road, Singapore 119077 (Singapore); King Saud University, Riyadh 11451 (Saudi Arabia)

    2011-05-15

    Graphical abstract: - Abstract: The integration of electrospinning and electrospraying to prepare the fibrous catalytic filter membrane is demonstrated. The non-conductive polyethylene oxide (PEO) is blended with ({+-})-camphor-10-sulfonic acid (CSA) doped conductive polyaniline (PANi) for electrospinning. The conductive CSA/PANi-PEO composite fibers are produced upon electrospinning, which are used as the conductive collector for electrospraying process by which titanium dioxide (TiO{sub 2}) nanoparticles (NPs) are sprayed and allowed to adsorb on the fibers. The degree of adsorption and dispersion of nano TiO{sub 2} catalysts on the surface of the CSA/PANi-PEO fibers exhibit a stronger dependence on weight percentage (wt%) of PANi in PEO solution and the strength of electrical conductivity of the fibers used during electrospraying. CSA/PANi-PEO fibers as collector reduce the wastage of TiO{sub 2} NPs during electrospraying to lesser than 5%. Among the three different composition of PANi studied, PEO with 12 wt% PANi yields very uniform diameter and beads-free fibrous structure with higher electrical conductivity. 12 wt% CSA/PANi-PEO fibrous membrane is found to support for greater dispersion of TiO{sub 2} NPs. The photocatalytic activity of the as-prepared TiO{sub 2}-PANi-PEO catalytic membrane is tested against the toxicant simulant 2-chloroethyl phenyl sulfide (CEPS) under the ultraviolet light irradiation. It is observed that the TiO{sub 2} nanoparticles catalysts embedded PANi-PEO fibrous membrane decontaminated the toxicant CEPS significantly, which is due to uniform dispersion of the catalysts produced by the methodology.

  2. Ultrasound efficiency in relation to sodium hypochlorite and filtration adsorption in microbial elimination in a water treatment plant

    Directory of Open Access Journals (Sweden)

    Antonio Roberto Crystal Bello

    2005-09-01

    Full Text Available Processes like ultrasound, chlorination and filtration-adsorption were compared to eliminate microorganisms and to adjust established parameters of public drinking water. A mini water treatment plant (WTP-CB, in pilot scale, was projected and built to evaluate each process influence as: decontamination, coagulation-flocculation, sedimentation and filtration. Total and fecal coliforms, Escherichia coli and heterotrophic bacteria and physic/chemical parameters were quantified from water. Ultrasound, chlorination and filtration-adsorption were efficient to inactivate and/or eliminate bacteria. Ultrasound decontamination in addition to coagulation-flocculation, sedimentation and filtration, could be considered as an alternative treatment water solution where prechlorination, coagulation-flocculation, sedimentation and filtration were used. The chlorination itself was efficient in inactivating bacteria despite of the coagulation-flocculation process; however, in the absence of the coagulation process, the resultant water did not achieve the established parameters. The filtration-adsorption was an important process to eliminate bacteria, showing that the filter retained particles, suspended solids, besides chemical substances and microorganisms.Comparou-se diferentes processos: ultra-som, cloração e filtração/adsorção para eliminação de microrganismos e adequação de outros parâmetros exigidos para água de abastecimento público. Para avaliar a influência de cada processo: desinfecção, coagulação/floculação, decantação e filtração foi projetada e construída uma Estação de Tratamento de Água (ETA-CB em escala piloto. Foram avaliados coliformes, bactérias heterotróficas e parâmetros físico/químicos. Ondas ultra-sônicas, cloração e filtração/adsorção mostraram-se eficientes na inativação e/ou eliminação de bactérias. O processo de desinfecção com ultra-som juntamente com a coagulação/floculação, decanta

  3. Adsorptive removal of geosmin by ceramic membrane filtration with super-powdered activated carbon

    OpenAIRE

    Matsui, Yoshihiko; Aizawa, Takako; Kanda, Fumiaki; Nigorikawa, Naoko; Mima, Satoru; Kawase, Yuji

    2007-01-01

    Tap water free from unpleasant taste and odour is important for consumer satisfaction. We applied a super-powdered activated carbon (S-PAC) and microfiltration (MF) system to the removal of geosmin, a taste- and odour-causing compound. We used a specially pulverised PAC with a submicron particle size, much smaller than the normal PAC (N-PAC) particle size, as an adsorption pretreatment agent. MF and adsorption pretreatment with S-PAC removed geosmin with considerably greater efficiency and at...

  4. Combination of granular activated carbon adsorption and deep-bed filtration as a single advanced wastewater treatment step for organic micropollutant and phosphorus removal.

    Science.gov (United States)

    Altmann, Johannes; Rehfeld, Daniel; Träder, Kai; Sperlich, Alexander; Jekel, Martin

    2016-04-01

    Adsorption onto granular activated carbon (GAC) is an established technology in water and advanced wastewater treatment for the removal of organic substances from the liquid phase. Besides adsorption, the removal of particulate matter by filtration and biodegradation of organic substances in GAC contactors has frequently been reported. The application of GAC as both adsorbent for organic micropollutant (OMP) removal and filter medium for solids retention in tertiary wastewater filtration represents an energy- and space saving option, but has rarely been considered because high dissolved organic carbon (DOC) and suspended solids concentrations in the influent of the GAC adsorber put a significant burden on this integrated treatment step and might result in frequent backwashing and unsatisfactory filtration efficiency. This pilot-scale study investigates the combination of GAC adsorption and deep-bed filtration with coagulation as a single advanced treatment step for simultaneous removal of OMPs and phosphorus from secondary effluent. GAC was assessed as upper filter layer in dual-media downflow filtration and as mono-media upflow filter with regard to filtration performance and OMP removal. Both filtration concepts effectively removed suspended solids and phosphorus, achieving effluent concentrations of 0.1 mg/L TP and 1 mg/L TSS, respectively. Analysis of grain size distribution and head loss within the filter bed showed that considerable head loss occurred in the topmost filter layer in downflow filtration, indicating that most particles do not penetrate deeply into the filter bed. Upflow filtration exhibited substantially lower head loss and effective utilization of the whole filter bed. Well-adsorbing OMPs (e.g. benzotriazole, carbamazepine) were removed by >80% up to throughputs of 8000-10,000 bed volumes (BV), whereas weakly to medium adsorbing OMPs (e.g. primidone, sulfamethoxazole) showed removals <80% at <5,000 BV. In addition, breakthrough behavior was

  5. Combination of granular activated carbon adsorption and deep-bed filtration as a single advanced wastewater treatment step for organic micropollutant and phosphorus removal.

    Science.gov (United States)

    Altmann, Johannes; Rehfeld, Daniel; Träder, Kai; Sperlich, Alexander; Jekel, Martin

    2016-04-01

    Adsorption onto granular activated carbon (GAC) is an established technology in water and advanced wastewater treatment for the removal of organic substances from the liquid phase. Besides adsorption, the removal of particulate matter by filtration and biodegradation of organic substances in GAC contactors has frequently been reported. The application of GAC as both adsorbent for organic micropollutant (OMP) removal and filter medium for solids retention in tertiary wastewater filtration represents an energy- and space saving option, but has rarely been considered because high dissolved organic carbon (DOC) and suspended solids concentrations in the influent of the GAC adsorber put a significant burden on this integrated treatment step and might result in frequent backwashing and unsatisfactory filtration efficiency. This pilot-scale study investigates the combination of GAC adsorption and deep-bed filtration with coagulation as a single advanced treatment step for simultaneous removal of OMPs and phosphorus from secondary effluent. GAC was assessed as upper filter layer in dual-media downflow filtration and as mono-media upflow filter with regard to filtration performance and OMP removal. Both filtration concepts effectively removed suspended solids and phosphorus, achieving effluent concentrations of 0.1 mg/L TP and 1 mg/L TSS, respectively. Analysis of grain size distribution and head loss within the filter bed showed that considerable head loss occurred in the topmost filter layer in downflow filtration, indicating that most particles do not penetrate deeply into the filter bed. Upflow filtration exhibited substantially lower head loss and effective utilization of the whole filter bed. Well-adsorbing OMPs (e.g. benzotriazole, carbamazepine) were removed by >80% up to throughputs of 8000-10,000 bed volumes (BV), whereas weakly to medium adsorbing OMPs (e.g. primidone, sulfamethoxazole) showed removals <80% at <5,000 BV. In addition, breakthrough behavior was

  6. Integrating organic micropollutant removal into tertiary filtration: Combining PAC adsorption with advanced phosphorus removal.

    Science.gov (United States)

    Altmann, Johannes; Sperlich, Alexander; Jekel, Martin

    2015-11-01

    Direct addition of powdered activated carbon (PAC) to a deep-bed filter was investigated at pilot-scale as a single advanced treatment stage for simultaneous removal of organic micropollutants (OMPs) and phosphorus from secondary effluent. PAC doses of 10-50 mg/L were assessed with regard to their impacts on filter performance and removal of 15 selected OMPs over a period of 18 months. The PAC was effectively retained by the filter and had no negative effect on filter head loss. Filter runtime until particle breakthrough depended mainly on coagulant dose and did not decrease significantly due to the additional PAC load. Removal of suspended solids and phosphorus by coagulation was effective independent of the PAC dose. A PAC dose of 35 mg/L PAC was suitable to remove well-adsorbing OMPs (e.g. carbamazepine, diclofenac) by >80% and medium adsorbing OMPs (e.g. primidone, sulfamethoxazole) by 50-80%. Median removals were 50-80% for well-adsorbing and 30-50% for medium adsorbing OMPs with 20 mg/L PAC. Abatement of all OMPs was low (carbon (DOC) concentrations of 11.2 mg/L). In addition to adsorptive removal, relevant concentration decreases of certain OMPs (e.g. 4-formylaminoantipyrine) were attributed to biological transformation in the filter. Adsorption onto accumulating PAC in the top layer of the filter bed led to improved OMP adsorption with increasing filter runtime. The comparison of OMP removal in the pilot filter with laboratory adsorption tests demonstrates that batch test results can be applied to estimate adsorptive OMP removal in real applications. PMID:26210030

  7. Boron nitride ultrathin fibrous nanonets: one-step synthesis and applications for ultrafast adsorption for water treatment and selective filtration of nanoparticles.

    Science.gov (United States)

    Lian, Gang; Zhang, Xiao; Si, Haibin; Wang, Jun; Cui, Deliang; Wang, Qilong

    2013-12-26

    Novel boron nitride (BN) ultrathin fibrous networks are firstly synthesized via an one-step solvothermal process. The average diameter of BN nanofibers is only ~8 nm. This nanonets exhibit excellent performance for water treatment. The maximum adsorption capacity for methyl blue is 327.8 mg g(-1). Especially, they present the property of ultrafast adsorption for dye removal. Only ~1 min is enough to almost achieve the adsorption equilibrium. In addition, the BN fibrous nanonets could be applied for the size-selective separation of nanoparticles via a filtration process.

  8. HEMOFILTRATION AND COUPLED PLASMA FILTRATION ADSORPTION IMPACT ON TACROLIMUS BLOOD CONCENTRATION IN RENAL TRANSPLANT RECIPIENTS

    Directory of Open Access Journals (Sweden)

    A.V. Vatazin

    2014-01-01

    Full Text Available Aim. To study the effect of hemofi ltration and coupled plasma fi ltration adsorption on tacrolimus blood concentration in renal transplant recipients.Methods and results. The study included 8 renal transplant recipients. In these patients immediately after the operation was performed the coupled plasma fi ltration adsorption with hemofiltration using a cartridge Mediasorb to reduce the severity of reperfusion injury. We have found that during this extracorporeal blood correction procedure there was statistically not signifi cant decrease of tacrolimus blood concentration. However, concentration of tacrolimus remained in the therapeutic range even after the procedure and it was not signifi cantly different from the control point С0.Conclusion. Coupled plasma fi ltration adsorption is safe in renal transplant recipients and has no signifi cant impact on tacrolimus blood concentration. However, the downward trend in the concentration of tacrolimus in the course of these procedures, especially in continuous or semicontinuous mode, as well as in patients with low hematocrit and hypoalbuminemia, requires individual monitoring.

  9. Study of the adsorption/oxidation coupling for the processing of industrial gaseous effluents; Etude du couplage adsorption / oxydation pour le traitement des effluents gazeux industriels

    Energy Technology Data Exchange (ETDEWEB)

    Monneyron, P.; Manero, M.H.; Foussard, J.N. [Institut National des Sciences Appliquees (INSA), Genie des Procedes Industriels, Lab. d' Ingenierie des Procedes de l' Environnement, 31 - Toulouse (France); Benoit-Marquie, F; Maurette, M.T. [Universite Paul Sabatier, Lab. des Interactions Moleculaires et Reactivite Chimique et Photochimique, 31 - Toulouse (France)

    2001-07-01

    This study presents a process for the abatement of the volatile organic compounds of industrial gaseous effluents. This process uses hydrophobous zeolites as adsorbent in order to avoid any risk of ignition during the adsorption of ketones. Adsorption is coupled with oxidation in the same reactor for the regeneration of the adsorbent. Two oxidation processes are evaluated: the regeneration by ozonized air and the UV photo-catalysis. (J.S.)

  10. Coupled plasma filtration adsorption for the treatment of a patient with acute respiratory distress syndrome and acute kidney injury: a case report.

    Science.gov (United States)

    Lucisano, Gaetano; Capria, Maria; Matera, Giovanni; Presta, Pierangela; Comi, Nicolino; Talarico, Roberta; Rametti, Linda; Quirino, Angela; Giancotti, Aida; Fuiano, Giorgio

    2011-10-01

    Coupled plasma filtration adsorption (CPFA) is an extracorporeal blood purification therapy based on non-specific pro- and anti-inflammatory mediator adsorption on a special resin cartridge coupled with continuous veno-venous haemofiltration or continuous veno-venous haemodiafiltration and is one of the emerging treatments for septic patients. However, in the literature, there are limited data about its efficacy in treating patients with acute diseases but without the traditional criteria for sepsis. We describe the case of a 43-year-old male who developed acute respiratory distress syndrome secondary to pneumonia and acute kidney injury, whose clinical conditions rapidly improved after early CPFA therapy.

  11. Sonochemical synthesis of porous Cu{sub 2}O–Cu hollow spheres and their photo-catalysis

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Xiaolin [Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi' an 710062 (China); Shaanxi Key Laboratory for Phytochemistry, Chemistry and Chemistry Engineering Department, Baoji University of Arts and Sciences, Baoji 721013 (China); Li, Chunyan [Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi' an 710062 (China); Yang, Desuo [Shaanxi Key Laboratory for Phytochemistry, Chemistry and Chemistry Engineering Department, Baoji University of Arts and Sciences, Baoji 721013 (China); Liu, Fuliang [Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi' an 710062 (China); Chen, Yashao, E-mail: yschen@snnu.edu.cn [Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi' an 710062 (China)

    2015-02-01

    Porous Cu{sub 2}O–Cu hollow spheres were successfully synthesized by a facile, one-pot and green method with assistance of ultrasonic technique. By prolonging ultrasonic irradiation time, the solid spheres of Cu{sub 2}O transformed into core–shell structure, then into hollow spheres, which accompanied with composition shift. XRD, FE-SEM, TEM, EDX and XPS were used to investigate the structural and composition transformation of the products. Finds indicated that the formation of Cu{sub 2}O–Cu hollow spheres was caused by the sacrificial template-directed chemical transformation from Cu{sub 2}O to Cu and the re-crystallization of Cu{sub 2}O on the shell based on Ostwald ripening effect together. Furthermore, Cu{sub 2}O–Cu hollow spheres with rough surface and available pores exhibited excellent adsorption ability and better photo-catalytic activity for the degradation of methyl orange compared to other structures. - Highlights: • A facile, one-pot route was developed to fabricate Cu{sub 2}O–Cu hollow spheres. • The structural and composition evolutions of spheres were observed. • Cu{sub 2}O–Cu hollow spheres exhibited excellent adorability and photocatalytic activity.

  12. Separation of galactoglucomannans, lignin, and lignin-carbohydrate complexes from hot-water-extracted Norway spruce by cross-flow filtration and adsorption chromatography

    Directory of Open Access Journals (Sweden)

    Niklas Westerberg

    2012-11-01

    Full Text Available A simple method to simultaneously recover polymeric carbohydrates, mainly galactoglucomannans (GGM, lignin, and lignin-carbohydrate complex (LCC from hot-water-extracted Norway spruce wood is presented. The isolation method consists of cross-flow filtration, where high and low molecular mass species are removed, followed by fixed-bed adsorption on a hydrophobic polymeric resin (XAD-16 to remove lignins and lignans. In the second step of fixed-bed adsorption, a phenylic reversed-phase analytical chromatography column, where mass transport resistance is minimized and a very high selectivity towards aromatic compounds have been observed, was used to separate LCC from GGM. The isolated LCC fraction contained about 10% aromatics, whereas the upgraded GGM fraction contained about 1.5% aromatics and the lignin fraction contained about 56% aromatics. Polymeric xylan was accumulated in the GGM fraction, while mannose was the dominant sugar found in the LCC fraction. As products, approximately 7% was recovered in the lignin fraction in the first adsorptive step, 5% was recovered as LCC, and 88% as upgraded hemicelluloses.

  13. 配对血浆滤过吸附的技术原理与研究现状%Principle and research status about coupled plasma filtration adsorption

    Institute of Scientific and Technical Information of China (English)

    叶卫江

    2009-01-01

    Serious and critical diseases are often accompanied with systemic inflammatory response syndrome, water-electrolyte and acid-base imbalance, hemodynamic instability, and so on. The goal of blood purification treatment on these patients is to correct the complex internal environment disorder, and the combination of different models can benefit on the achievement of that goal. Coupled plasma filtration adsorption (CPFA), combined plasma adsorption and blood filtration together, is a novel continuous blood purification technology in recent years. In this article, the concept and principle of CPFA are introduced, preliminary results of CPFA in vitro and animal experiments as well as clinical researches are summarized, prospects for clinical application of CPFA are explored.%危重病患者往往伴随全身炎症反应综合征、水电解质酸碱失衡及血流动力学不稳定等情况.血液净化技术治疗危重病患者的目标在于纠正这种复杂的内环境紊乱,而联合应用多种血液净化技术更利于这一目标的实现.配对血浆滤过吸附(CPFA)是近年来出现的一种连续性的、且联合应用血浆吸附与血液滤过的新技术.此文综述了CPFA的概念及技术原理,CPFA的体外、动物实验和初步的临床研究结果 ,并探讨其临床应用前景.

  14. Slope filtrations

    OpenAIRE

    André, Yves

    2008-01-01

    Many slope filtrations occur in algebraic geometry, asymptotic analysis, ramification theory, p-adic theories, geometry of numbers... These functorial filtrations, which are indexed by rational (or sometimes real) numbers, have a lot of common properties. We propose a unified abstract treatment of slope filtrations, and survey how new ties between different domains have been woven by dint of deep correspondences between different concrete slope filtrations.

  15. 河流渗滤系统中BTEX的吸附行为实验模拟研究%Experimental Simulation Study of Adsorption of BTEX in the River Filtration System

    Institute of Scientific and Technical Information of China (English)

    马燕; 李志萍; 粱珂; 刘明珠

    2012-01-01

    河流渗滤是一种自然净化过程,污染河水通过该过程在河流沉积层中发生物理、化学和生物作用,使得污染物浓度降低,入渗河水水质得到净化.为了研究BTEX污染河水通过河流渗滤系统时的吸附行为,进行了静态吸附模拟实验.结果表明BTEX 4种组分在3种河流沉积物样品中的吸附平衡均可以在48 h内完成.通过比较BTEX在3种不同河流沉积物样品中的吸附动力学曲线,可以发现BTEX在粉土中吸附速率最大,细砂中次之,粗砂中最小.BTEX在粉土和细砂中的吸附等温线符合Henry等温吸附方程,而在粗砂中符合Langmuir等温吸附方程.3种土壤中粉土和细砂具有较大的吸附容量,而粗砂吸附容量相对较小;粉土和细砂对苯的吸附能力最强,甲苯次之,乙苯和间二甲苯相对较小.从阻滞因子的计算结果来看,黄河花园口区采集的河流沉积物样品对BTEX各组分的迁移均具有较强的阻滞作用,在较高浓度范围内,河流渗滤系统能够通过吸附作用有效阻滞BTEX污染物,降低其对地下水的危害.%River filtration system is a natural purification, which means while the river water passing through the soil and the aquifer material, potential contaminants in the river water are filtered and removed by a series of physical, chemical and biological actions. Based on static adsorption experiments, adsorption kinetic curve and adsorption isotherm of each component of BTEX in three different soil samples were plotted, and some conclusions were obtained as follow. (1 }The results of experiments of adsorption dynamics showed that the adsorption reaction balance could be achieved within 48 hours. (2) Adsorption processes in the silt soil and the fine sand were corresponding with Henry model, namely the adsorption capacity was directly proportional to equilibrium concentration of the solution. While adsorption process in the coarse sand accorded with Langmuir model. (3 )By

  16. Synthesis and characterization of thin films of Pd/TiO{sub 2} with possible applications in photo catalysis; Sintesis y caracterizacion de peliculas delgadas de Pd/TiO{sub 2} con posibles aplicaciones en fotocatalisis

    Energy Technology Data Exchange (ETDEWEB)

    Tirado G, S. [IPN, Escuela Superior de Fisica y Matematicas, U. P. Adolfo Lopez Mateos Edif. 9, San Pedro Zacatenco, 07738 Mexico D. F. (Mexico); Valenzuela Z, M. A., E-mail: tirado@esfm.ipn.mx [IPN, Escuela Superior de Ingenieria Quimica e Industrias Extractivas, Laboratorio de Catalisis y Materiales, U. P. Adolfo Lopez Mateos Edif. 8, San Pedro Zacatenco, 07738 Mexico D. F. (Mexico)

    2015-10-15

    In this paper the synthesis and study of thin films of titanium oxide is reported, as well as those that were surface modified with palladium nanoparticles Pd/TiO{sub 2}. First, the TiO{sub 2} films are grown on substrates of soda-lime glass using chemical sol-gel route and the repeated immersion procedure. The salt precursor titanium oxy-acetylacetonate to 0.2 M, in the solvent 2-methoxyethanol and monoethanolamine was used as stabilizer. The number of used immersions gave an average thickness estimate for these films of 172.8 nm. Second, the series of Pd/TiO{sub 2} films surface modified were obtained from a solution of palladium nitrate dehydrate at low concentration, with the same procedure. The films grown TiO{sub 2} and those surface-modified films were characterized in its structure by X-ray diffraction, morphology by scanning electron microscopy, the topography with atomic force microscopy, optical properties by UV-Vis, among others. Photoluminescence properties and/or possible applications in photo catalysis are reported in this paper. (Author)

  17. Aerosol filtration

    International Nuclear Information System (INIS)

    Significant developments in high efficiency filtration for nuclear applications are reviewed for the period 1968 to 1980. Topics of special interest include factory (bench) and in-place test methods, new developments in paper and filter unit construction methods, vented containment air cleaning systems for LMFBR and light water moderated reactors, and decontamination of offgases from nuclear waste volume reduction processes. It is noted that standards development has been vigorously pursued during this period but that advances in filtration theory have been few. One of the significant changes likely to occur in the immediate future is adoption of the European style of HEPA filters for those that have been in service for the past three decades to obtain the benefits of having almost twice as much filter paper in the same filter cartridge. 71 references

  18. Surface decontamination by photo-catalysis - 16068

    International Nuclear Information System (INIS)

    Currently in the nuclear industry, surface contamination in the form of radioactive metal or metal oxide deposits is most commonly removed by chemical decontamination, electrochemical decontamination or physical attrition. Physical attrition techniques are generally used on structural materials (concrete, plaster), with (electro)chemical methods being used to decontaminate metallic or painted surfaces. The most common types of (electro)chemical decontamination are the use of simple mineral acids such as nitric acid or cerium (IV) oxidation (MEDOC). Use of both of these reagents frequently results in the dissolution of a layer of the substrate surface increasing the percentage of secondary waste which leads to burdens on downstream effluent treatment and waste management plants. In this context, both mineral acids and MEDOC can be indiscriminate in the surfaces attacked during deployment, e.g. attacking in transit through a pipe system to the site of contamination resulting in both diminished effect of the decontaminating reagent upon arrival at its target site and an increased secondary waste management requirement. This provides two main requirements for a more ideal decontamination reagent: Improved area specificity and a dissolution power equal to or greater than the previously mentioned current decontaminants. Photochemically promoted processes may provide such a decontamination technique. Photochemical reduction of metal ion valence states to aid in heavy metal deposition has already been extensively studied [1], with reductive manipulation also being achieved with uranium and plutonium simulants (Ce) [2]. Importantly photooxidation of a variety of metals, including neptunium [3], has also been achieved. Here we report on the potential application of this technology to metal dissolution. (authors)

  19. Aerosol filtration

    International Nuclear Information System (INIS)

    This report summarizes the work on the development of fibre metallic prefilters to be placed upstream of HEPA filters for the exhaust gases of nuclear process plants. Investigations at ambient and high temperature were carried out. Measurements of the filtration performance of Bekipor porous webs and sintered mats were performed in the AFLT (aerosol filtration at low temperature) unit with a throughput of 15 m3/h. A parametric study on the influence of particle size, fibre diameter, number of layers and superficial velocity led to the optimum choice of the working parameters. Three selected filter types were then tested with polydisperse aerosols using a candle-type filter configuration or a flat-type filter configuration. The small-diameter candle type is not well suited for a spraying nozzles regeneration system so that only the flat-type filter was retained for high-temperature tests. A high-temperature test unit (AFHT) with a throughput of 8 to 10 m3/h at 4000C was used to test the three filter types with an aerosol generated by high-temperature calcination of a simulated nitric acid waste solution traced with 134Cs. The regeneration of the filter by spray washing and the effect of the regeneration on the filter performance was studied for the three filter types. The porous mats have a higher dust loading capacity than the sintered web which means that their regeneration frequency can be kept lower

  20. Organic micropollutant removal during river bank filtration

    NARCIS (Netherlands)

    Bertelkamp, C.

    2015-01-01

    This study investigated the factors influencing the main removal mechanisms (adsorption and biodegradation) for organic micropollutant (OMP) removal during river bank filtration (RBF) and the possibility of developing a predictive model of this process for OMP removal during RBF. Chapter 2 analysed

  1. Methylene blue and 4-chloro phenol degradation by photo catalysis with ultraviolet light, using TiO{sub 2} as catalyst; Degradacion de azul de metileno y 4-clorofenol por fotocatalisis con luz ultravioleta, utilizando TiO{sub 2} como catalizador

    Energy Technology Data Exchange (ETDEWEB)

    Martinez H, A.

    2010-07-01

    Within the decontamination and remediation processes of the contaminated waters, as the refining or tertiary processes are the Advanced Oxidation Technologies. Among this technology is the heterogeneous photo catalysis, which is the object of this work to de grate 4-chloro phenol and methylene blue, using as semiconductor commercial titanium dioxide (TiO{sub 2}). On the degradation the combination is exposed in the use of TiO{sub 2} under gamma irradiation of {sup 60}Co at different doses 400, 500, 800, 1000 and 1500 kGy. The organic compounds degradation was determined and the results show that to more radiation dose, the material is modified in such way that shows a major absorption of the organic compound, in the same way it is determined that to more dose which undergoes the TiO{sub 2} generally a major degradation is observed, but also it is has to give a more time of previous stabilization, for that the degradation is observed of better way. (Author)

  2. Evaluation of Wastewater Filtration

    OpenAIRE

    Benth, Bryant L.; Middlebrooks, E. Joe; George, Dennis B.; Reynolds, James H.

    1981-01-01

    Tertiary filtration of secondary wastewater is frequently used to improve wastewater treatment plant effluent quality. Four experimental filter columns were operated at the Preston, Idaho, Wastewater Treatment Plant to evaluate the effectiveness of granular media, gravity filtration. The Preston plant is a trickling filter secondary treatment plant and services a population of approximately 3600 people. Four filt...

  3. On superpositional filtrations

    OpenAIRE

    Strati, Francesco

    2012-01-01

    In this present work I shall define the basic notions of superpositional filtrations. Given a superposition integral I shall find a general measure theory by means of cylinder sets and then I shall define the properties of the s-filtration for a general process X.

  4. Magnetic-seeding filtration

    International Nuclear Information System (INIS)

    Magnetic-seeding filtration consists of two steps: heterogeneous particle flocculation of magnetic and nonmagnetic particles in a stirred tank and high-gradient magnetic filtration (HGMF). The effects of various parameters affecting magnetic-seeding filtration (HGMF). The effects of various parameters affecting magnetic seeding filtration are theoretically and experimentally investigated. A trajectory model that includes hydrodynamic resistance, van der Waals, and electrostatic forces is developed to calculate the flocculation frequency in a turbulent-shear regime. Fractal dimension is introduced to simulate the open structure of aggregates. A magnetic-filtration model that consists of trajectory analysis, a particle build-up model, a breakthrough model, and a bivariate population-balance model is developed to predict the breakthrough curve of magnetic-seeding filtration. A good agreement between modeling results and experimental data is obtained. The results show that the model developed in this study can be used to predict the performance of magnetic-seeding filtration without using empirical coefficients or fitting parameters. 35 refs., 7 figs., 1 tab

  5. Zirconium/PVA modified flat-sheet PVDF membrane as a cost-effective adsorptive and filtration material: A case study on decontamination of organic arsenic in aqueous solutions.

    Science.gov (United States)

    Zhao, Dandan; Yu, Yang; Wang, Chenghong; Chen, J Paul

    2016-09-01

    Organic arsenic in waters has been a global concern in drinking water due to its higher toxicity to humans. In this study, a novel zirconium/polyvinyl alcohol (PVA) modified polyvinylidene fluoride (PVDF) membrane was applied to remove organic arsenic from water. The impregnation of zirconium ions within the modified membrane was attributed to the coordination reactions among the zirconium ions, ether and hydroxyl groups. The synthesized membrane worked better at the acidic conditions and achieved the optimal uptake for both monomethylarsonic (MMA) and dimethylarsinic (DMA) at pH 2.0. The adsorption isotherm study demonstrated that the adsorption of both organic arsenic species was controlled by the mono-layer adsorption process; the maximum adsorption capacities for MMA and DMA were 73.04 and 37.53mg/g at pH 2, and 29.78 and 19.03mg/g at pH 7.0, respectively. The presence of humic acid had a negligible impact on the uptake of organic arsenic, whereas varying impacts on the arsenic adsorption were observed due to the presence of coexisting anions such as fluoride, phosphate, carbonate and silicate. A single piece of membrane with a surface area of only 12.56cm(2) could treat 7.5-L MMA and 4.1-L DMA solution with an influent concentration of about 100μg/L to meet the WHO and USEPA standard of 10μg/L. Based on the XPS analyses, the ion exchange reaction between chloride ions on the membrane surface and organic arsenic species was responsible for the removal of both MMA and DMA. PMID:27267042

  6. Visualization of water flow during filtration using flat filtration materials

    Directory of Open Access Journals (Sweden)

    Hrůza Jakub

    2012-04-01

    Full Text Available Filtration materials are very important elements of some industrial appliances. Water filtration is a separation of solid materials from fluid. Solid particles are captured on the frontal area of the filtration textile and only liquid passes through it. It is important to know the filtration process in a detailed way to be able to develop filtration materials. Visualization of filtration process enables a better view of the filtration. This method also enables to determine efficiency and homogeneity of filtration using image analysis. For this purpose, a new waterfiltration measuring setup was proposed and constructed. Filtration material is mounted into the optically transparent place in the setup. Laser sheet is directed into this place as in the case of Particle Image Velocimetry measuring method. Monochrome and sensitive camera records the light scattered by seeding particles in water. The seeding particles passing through the filter serve for measuring filtration efficiency, and also for visualization of filtration process. Filtration setup enables to measure also the pressure drop and a flow. The signals are processed by National Instruments compactDAQ system and UMA software. Microfibrous and nanofibrous filtration materials are tested by this measuring method. In the case of nanofibrous filtration, appropriate size of seeding particles is needed to be used to perform a process of filtration.

  7. Microfluidic colloid filtration

    Science.gov (United States)

    Linkhorst, John; Beckmann, Torsten; Go, Dennis; Kuehne, Alexander J. C.; Wessling, Matthias

    2016-03-01

    Filtration of natural and colloidal matter is an essential process in today’s water treatment processes. The colloidal matter is retained with the help of micro- and nanoporous synthetic membranes. Colloids are retained in a “cake layer” - often coined fouling layer. Membrane fouling is the most substantial problem in membrane filtration: colloidal and natural matter build-up leads to an increasing resistance and thus decreasing water transport rate through the membrane. Theoretical models exist to describe macroscopically the hydrodynamic resistance of such transport and rejection phenomena; however, visualization of the various phenomena occurring during colloid retention is extremely demanding. Here we present a microfluidics based methodology to follow filter cake build up as well as transport phenomena occuring inside of the fouling layer. The microfluidic colloidal filtration methodology enables the study of complex colloidal jamming, crystallization and melting processes as well as translocation at the single particle level.

  8. Magnetic-seeding filtration

    International Nuclear Information System (INIS)

    This task will investigate the capabilities of magnetic-seeding filtration for the enhanced removal of magnetic and nonmagnetic particulates from liquids. This technology appies to a wide range of liquid wastes, including groundwater, process waters, and tank supernatant. Magnetic-seeding filtration can be used in several aspects of treatment, such as (1) removal of solids, particularly those in the colloidal-size range that are difficult to remove by conventional means; (2) removal of contaminants by precipitation processes; and (3) removal of contaminants by sorption processes

  9. Magnetic-seeding filtration

    Energy Technology Data Exchange (ETDEWEB)

    Depaoli, D. [Oak Ridge National Lab., TN (United States)

    1996-10-01

    This task will investigate the capabilities of magnetic-seeding filtration for the enhanced removal of magnetic and nonmagnetic particulates from liquids. This technology appies to a wide range of liquid wastes, including groundwater, process waters, and tank supernatant. Magnetic-seeding filtration can be used in several aspects of treatment, such as (1) removal of solids, particularly those in the colloidal-size range that are difficult to remove by conventional means; (2) removal of contaminants by precipitation processes; and (3) removal of contaminants by sorption processes.

  10. Filtration by eyelashes

    Science.gov (United States)

    Vistarakula, Krishna; Bergin, Mike; Hu, David

    2010-11-01

    Nearly every mammalian and avian eye is rimmed with lashes. We investigate experimentally the ability of lashes to reduce airborne particle deposition in the eye. We hypothesize that there is an optimum eyelash length that maximizes both filtration ability and extent of peripheral vision. This hypothesis is tested using a dual approach. Using preserved heads from 36 species of animals at the American Museum of Natural History, we determine the relationship between eye size and eyelash geometry (length and spacing). We test the filtration efficacy of these geometries by deploying outdoor manikins and measuring particle deposition rate as a function of eyelash length.

  11. Enlargements of filtrations and applications

    CERN Document Server

    Corcuera, J M

    2012-01-01

    In this paper we review some old and new results about the enlargement of filtrations problem, as well as their applications to credit risk and insider trading problems. The enlargement of filtrations problem consists in the study of conditions under which a semimartingale remains a semimartingale when the filtration is enlarged, and, in such a case, how to find the Doob-Meyer decomposition. Filtrations may be enlarged in different ways. In this paper we consider initial and progressive filtration enlargements made by random variables and processes. Keywords: Credit Risk, Insider Trading, Enlargement of Filtrations

  12. Filtration in Porous Media

    DEFF Research Database (Denmark)

    Yuan, Hao; Shapiro, Alexander

    There is a considerable and ongoing effort aimed at understanding the transport and the deposition of suspended particles in porous media, especially non-Fickian transport and non-exponential deposition of particles. In this work, the influential parameters in filtration models are studied...

  13. Water Treatment Technology - Filtration.

    Science.gov (United States)

    Ross-Harrington, Melinda; Kincaid, G. David

    One of twelve water treatment technology units, this student manual on filtration provides instructional materials for six competencies. (The twelve units are designed for a continuing education training course for public water supply operators.) The competencies focus on the following areas: purposes of sedimentation basins and flocculation…

  14. TiO 2光催化处理炼化污水回用反渗透浓水的研究%Study on Treatment in the Concentrated Water from Wastewater Recycling RO Unite by TiO2 Photo-catalysis*TiO2 photocatalysis treatment of petrochemical wastewater reuse reverse osmosis concentrated water

    Institute of Scientific and Technical Information of China (English)

    赵朝成; 焦叙来; 崔爱玲; 刘春爽

    2014-01-01

    Using suspended TiO 2 , photo-catalysis of concentrated water from wastewater recycling reverse osmosis units was studied under ultraviolet.The different variables affecting the removal efficiency such as reaction time , TiO2 quantity, pH value, UV irradiation intensity, H2O2 quantity and aeration quantity were investigated.The result showed that the removal rates of COD and chromaticity were 93.63% and 98.15%, respectively , under the following optimum conditions of reaction time of 2 h, TiO2 quantity of 0.6 g/L, pH value of 4, irradiation of high-pressure mercury-lamp of 500 W, H2 O2 quantity of 0.8 ml/L and aeration quantity of 0.75 L/min.%以悬浮态TiO2为催化剂,在紫外光下对炼化污水回用装置反渗透浓水进行光催化处理,采用单因素实验,考察了反应时间、 pH值、光照强度、 TiO2投加量、 H2 O2投加量、曝气量对处理效果的影响。结果表明:在反应时间为2 h, pH为4,500 W高压汞灯, TiO2投加量为0.6 g/L, H2 O2投加量为0.8 ml/L,曝气量为0.75 L/min的条件下,反渗透浓水COD的去除率可达93.63%,脱色率可达98.15%。

  15. Redox reactions of SO{sub x} and NO{sub y} species in aqueous solution: metal ion and photo catalysis (HALIPP). Final report; Redoxreaktionen von SO{sub x}- und NO{sub y}-Spezies in waessrigem Medium: Metallion- und Photo-Katalyse (HALIPP). Schlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Eldik, R. van

    1994-04-20

    A number of instrumental developments were undertaken within this project: 3 component stopped-flow maschine, flow-through reactor, ATR-FT-IR coupling, oxygen detection system, ionchromatographic method. These techniques were used to study the autoxidation of S(IV)-oxides, the interaction of metal complexes with NO{sub y} species, the redox reactions of SO{sub x} and NO{sub y} species, and the metal ion catalysis of the SO{sub x}/NO{sub y} interaction, in much detail. The main emphasis fell on the mechanistic elucidation of the metal ion catalysis. The sulfite-induced autoxidation of metal ions could be identified as an important step in the overall catalytic cycle. The formation and decomposition of mixed N-S-oxides in the presence of metal ions and complexes could be clarified. A systematic control over the reactivity of the metal center was achieved by using different polyaminocarboxylate chelates. The participation of redox cycles on the catalytic center are throughout very important and could, with excemption of the photo-catalysis, reach its goals and the overall scientific progress was very successful. (orig.) [Deutsch] Im Rahmen dieses Vorhabens wurden einige instrumentelle Entwicklungen vorgenommen: Drei-komponente Stopped-Flow-Anlage, Durchflussreaktor, ATR-FT-IR Kopplung, Sauerstoffmessgeraet, Ionenchromatographische Methode. Diese Methode wurde dafuer benutzt, die metallkatalysierte Autoxidation von S(IV)-Oxiden, die Interaktion von Metallkomplexen mit NO{sub y}-Spezies, die Redoxreaktionen von SO{sub x}- und NO{sub y}-Spezies und die Metallionkatalyse der SO{sub x}/NO{sub y}-Interaktion detailliert zu untersuchen. Im Vordergrund stand die mechanistische Aufklaerung der Metallionkatalyse. Dabei konnte die sulfitinduzierte Autoxidation von Metallionen als wichtige Teilreaktion des gesamten katalytischen Zyklus nachgewiesen und modelliert werden. Die Bildung- und Zerfallsreaktion von gemischten N-S-Oxiden in Gegenwart von Metallionen und Metallkomplexen

  16. Graphitic carbon nitride "reloaded": emerging applications beyond (photo)catalysis.

    Science.gov (United States)

    Liu, Jian; Wang, Hongqiang; Antonietti, Markus

    2016-04-21

    Despite being one of the oldest materials described in the chemical literature, graphitic carbon nitride (g-C3N4) has just recently experienced a renaissance as a highly active photocatalyst, and the metal-free polymer was shown to be able to generate hydrogen under visible light. The semiconductor nature of g-C3N4 has triggered tremendous endeavors on its structural manipulation for enhanced photo(electro)chemical performance, aiming at an affordable clean energy future. While pursuing the stem of g-C3N4 related catalysis (photocatalysis, electrocatalysis and photoelectrocatalysis), a number of emerging intrinsic properties of g-C3N4 are certainly interesting, but less well covered, and we believe that these novel applications outside of conventional catalysis can be favorably exploited as well. Thanks to the general efforts devoted to the exploration and enrichment of g-C3N4 based chemistry, the boundaries of this area have been possibly pushed far beyond what people could imagine in the beginning. This review strives to cover the achievements of g-C3N4 related materials in these unconventional application fields for depicting the broader future of these metal-free and fully stable semiconductors. This review starts with the general protocols to engineer g-C3N4 micro/nanostructures for practical use, and then discusses the newly disclosed applications in sensing, bioimaging, novel solar energy exploitation including photocatalytic coenzyme regeneration, templating, and carbon nitride based devices. Finally, we attempt an outlook on possible further developments in g-C3N4 based research.

  17. A Possible Macroscopic-Photo-Catalysis Mechanism in Solar Furnace

    Institute of Scientific and Technical Information of China (English)

    HO Tsohsiu; QING Cheng-Rui; CHEN Ying-Tian

    2011-01-01

    Based on the experimental results of Chen et al.to use the solar furnace and medium frequency induction furnace to extract boron impurity from metallurgical silicon, we propose a strong radiation catalysis mechanism to explain the difference of reaction rates in these two furnaces.The postulate assuming the photons striking on the material not only increase the thermal energy of the molecules of reactants but also lower down the energy barrier of the reaction to speed up the chemical reaction.It is believed the photon catalysis mechanism is universall in most of high temperature chemical reactions and looking forward to more evidences for the postulate proposed in this article.

  18. 基于可调控多肽纳米管和石墨烯复合纳米结构的光吸收催化平台∗%A photo catalysis system based on comp osite nanostructures of controlable p eptide nanotub es and graphene

    Institute of Scientific and Technical Information of China (English)

    薛斌; 王洪阳; 秦猛; 曹毅; 王炜

    2015-01-01

    Self-assembly is the way that is used by Mother Nature to create complex materials of hierarchical shapes and diverse functionalities. The photosynthesis apparatus of plant is an example of such complex materials that can direct convert the sunlight energy into chemical energy. Inspired by this, many artificial photosynthesis systems have been successfully engineered. However, most of these systems were based on only one type of simple nanostructure, such as nanosphere or nanotube. The charge separation and exciton transfer in such systems may be further improved by combining multiple nano-structures. Here, we report a novel photo catalysis system based on composite nanostructures of controllable peptide nanotubes and graphene. We use the mixture of diphenylalanine (FF) and carboxyl graphene for the photo catalysis because they are stable under different solvent conditions and highly conductive, which can provide more paths for exciton transfer. Moreover, the diameters of the peptide nanotubes become thinner in the presence of carboxyl graphene, leading to a more uniformly distributed system than simply using the peptide nanotubes alone. The FF peptide nanotubes can connect with the carbonyl graphene (CG) to form the composite nanostructures because of the π-π stacking interaction between benzene rings of FF and conjugated π bond of CG. The composite nanostructures of controllable peptide nanotubes and graphene provide more transmission channels for the excitions since they can travel on the nanotubes, CG or the compound of the both. We also demonstrate that when the photo-harvesting ruthenium complex and catalytic platinum nanoparticles are deposited on the system, the nicotinamide adenine dinucleotide (NADP+) can reduce to NADPH. The catalytic efficiency and rate are much higher than thaose of other artificial photosynthesis systems reported in the literature. Surprisingly, we find that the catalytic efficiency of the combined system is better than the sum of

  19. Capture filtration for concentration and detection of selected microorganisms in milk

    OpenAIRE

    Byrne, Robert Duane

    1994-01-01

    The effectiveness of an adsorption filter in retaining bacteria present in milk was examined. Skim milk and whole milk (100ml) were separately filtered through a 47mm adsorption filter. No significant change in total solids, total fat, and solids-not-fat percentages of skim and whole milk permeates was observed after filtration. Adsorption of Pseudomonas fluorescens at target concentrations of 103 , 102 , and 101 cells/ml was determined in 100ml of dairy standard methods buffer, nutrient b...

  20. Treatment of arsenic-contaminated water using akaganeite adsorption

    Energy Technology Data Exchange (ETDEWEB)

    Cadena C., Fernando (Las Cruces, NM); Johnson, Michael D. (Las Cruces, NM)

    2008-01-01

    The present invention comprises a method and composition using akaganeite, an iron oxide, as an ion adsorption medium for the removal of arsenic from water and affixing it onto carrier media so that it can be used in filtration systems.

  1. Magnetic flocculation and filtration

    Energy Technology Data Exchange (ETDEWEB)

    Yiacoumi, Sotira; Chin, Ching-Ju; Yin, Tung-Yu [Georgia Inst. of Tech., Atlanta, GA (United States). School of Civil and Environmental Engineering; Tsouris, C., DePaoli, D.W.; Chattin, M.R.; Spurrier, M. [Oak Ridge National Lab., TN (United States)

    1996-10-01

    A model is available in predicting flocculation frequencies between particles of various properties under the influence of a magnetic field. This model provides a basic understanding of fundamental phenomena, such as particle-particle and particle-collector interactions, occurring in HGMF (high gradient magnetic field), and will be extended to describe experimental data of particle flocculation and filtration and predict the performance of high- gradient magnetic filters. It is also expected that this model will eventually lead to a tool for design and optimization of magnetic filters for environmental, metallurgical, biochemical, and other applications.

  2. Magnetic-seeding filtration

    Energy Technology Data Exchange (ETDEWEB)

    DePaoli, D.W.; Tsouris, C. [Oak Ridge National Lab., TN (United States); Yiacoumi, Sotira

    1997-10-01

    Magnetic-seeding filtration is a technology under development for the enhanced removal of magnetic and non-magnetic particulates from liquids. This process involves the addition of a small amount of magnetic seed particles (such as naturally occurring iron oxide) to a waste suspension, followed by treatment with a magnetic filter. Non-magnetic and weakly magnetic particles are made to undergo nonhomogeneous flocculation with the seed particles, forming flocs of high magnetic susceptibility that are readily removed by a conventional high-gradient magnetic filter. This technology is applicable to a wide range of liquid wastes, including groundwater, process waters, and tank supernatants. Magnetic-seeding filtration may be used in several aspects of treatment, such as (1) removal of solids, particularly those in the colloidal size range that are difficult to remove by conventional means; (2) removal of contaminants by precipitation processes; and (3) removal of contaminants by sorption processes. Waste stream characteristics for which the technology may be applicable include (1) particle sizes ranging from relatively coarse (several microns) to colloidal particles, (2) high or low radiation levels, (3) broad-ranging flow rates, (4) low to moderate solids concentration, (5) cases requiring high decontamination factors, and (6) aqueous or non-aqueous liquids. At this point, the technology is at the bench-scale stage of development; laboratory studies and fundamental modeling are currently being employed to determine the capabilities of the process.

  3. Perlite filtration of phenolic compounds from cigarette smoke.

    Science.gov (United States)

    Rostami-Charati, Faramarz; Robati, Gholamreza Moradi; Naghizadeh, Farhad; Hosseini, Shahnaz; Chaichi, Mohammad Javad

    2013-01-01

    Adsorption of phenolic compounds and chemical analysis of them from a local production cigarette (named by Farvardin cigarette) smoke have been investigated by using perlite filtration. In this research, the mainstream smoke was tested by three filtration methods: Perlite filter, Cambridge filter and general cigarette filter. Then the used filter was extracted by pure methanol as solvent. After that, the extracted solution was analysed by GC-MS. By this consideration, the phenolic derivatives such as phenol, hydroquinone, resorcinol, pyrocatechol, m-cresol, p-cresol and o-cresol were detected. The structure of the perlite filtration after absorption was studied by SEM. In addition, its chemical structure was investigated by XRD and XRF.

  4. A biological oil adsorption filter

    Energy Technology Data Exchange (ETDEWEB)

    Pasila, A. [University of Helsinki (Finland). Dept. of Agricultural Engineering and Household Technology

    2005-12-01

    A new oil adsorption method called adsorption filtration (AF) has been developed. It is a technology where by oil residues can be cleaned from water by running it through a simple filter made from freeze treated, dried, milled and then fragmented plant material. By choosing suitable plants and fragmentation sizes it is possible to produce filters, which pass water but adsorb oil. The aim of this study was to investigate the possibilities of manufacturing oil adsorbing filter materials from reed canary grass (Phalaris arundinacea), flax (Linum usitatissimum L.) or hemp fibre (Cannabis sativa L.). The oil (80 ml) was mixed with de-ionised water (200 ml) and this mixture was filtered through 10 or 20 g adsorption filters. Fine spring harvested hemp fibre (diameter less than 1 mm) and reed canary grass fragments adsorb 2-4 g of oil per gram of adsorption material compared to 1-3 g of water. Adsorption filtration is thus a novel way of gathering spilled oil in shallow coastal waters before the oil reaches the shore. (author)

  5. Laundry wastewater treatment using coagulation and membrane filtration

    OpenAIRE

    Šostar-Turk, Sonja; Petrinić, Irena; Simonič, Marjana

    2012-01-01

    This paper presents the results obtained from laundry wastewater treatment using conventional methods namely precipitation/coagulation and the flocculation process with adsorption on granular-activated carbon (GAC) and an alternative method, membrane filtrations, namely ultrafiltration (UF) and reverse osmosis (RO). Chemical analyses showed that parameter values of untreated wastewater like temperature, pH, sediment substances, total nitrogen and phosphorous, COD, BOD5, and the amount of anio...

  6. Hydrous iron oxide modified diatomite as an active filtration medium for phosphate capture.

    Science.gov (United States)

    Wang, Zhe; Lin, Yan; Wu, Deyi; Kong, Hainan

    2016-02-01

    A simple method to functionalize diatomite with hydrous iron oxide was attempted and its performance as a new active filtration material to remove and recover phosphate from water was investigated under varying solution conditions. The Langmuir phosphate adsorption capacity increased from 0.6 mgP/g for raw diatomite to 4.89, 14.71, 25.02 mgP/g for hydrous iron oxide modified diatomite (HIOMD), depending on the amount of iron loaded. Loading of hydrous iron oxide caused the increase in true and bulk density and a decline in filtration rate, but to a lesser extent. It was shown that the HIOMD product with suitable iron content could retain a good filtration performance with a greatly increased adsorption capacity for phosphate. The phosphate adsorption increased by decreasing pH and by increasing ionic strength at high pH levels. The adsorption process was interpreted by ligand exchange. Coexisting oxyanions of sulfate, nitrate, citrate, carbonate, silicate and humic acid showed different effects on phosphate fixation but it was presumed that their influence at their concentrations and pH levels commonly encountered in effluent or natural waters was limited, i.e., HIOMD had a reasonably good selectivity. Results in repeated adsorption, desorption and regeneration experiment showed that the adsorbed phosphate could be recovered and the material could be reused after regeneration. The column test showed that HIOMD could be potentially utilized as an adsorption filtration medium for phosphate removal and recovery from water.

  7. Air filtration in HVAC systems

    CERN Document Server

    Ginestet, Alain; Tronville, Paolo; Hyttinen, Marko

    2010-01-01

    Air filtration Guidebook will help the designer and user to understand the background and criteria for air filtration, how to select air filters and avoid problems associated with hygienic and other conditions at operation of air filters. The selection of air filters is based on external conditions such as levels of existing pollutants, indoor air quality and energy efficiency requirements.

  8. Emulsions for interfacial filtration.

    Energy Technology Data Exchange (ETDEWEB)

    Grillet, Anne Mary; Bourdon, Christopher Jay; Souza, Caroline Ann; Welk, Margaret Ellen; Hartenberger, Joel David; Brooks, Carlton, F.

    2006-11-01

    We have investigated a novel emulsion interfacial filter that is applicable for a wide range of materials, from nano-particles to cells and bacteria. This technology uses the interface between the two immiscible phases as the active surface area for adsorption of targeted materials. We showed that emulsion interfaces can effectively collect and trap materials from aqueous solution. We tested two aqueous systems, a bovine serum albumin (BSA) solution and coal bed methane produced water (CBMPW). Using a pendant drop technique to monitor the interfacial tension, we demonstrated that materials in both samples were adsorbed to the liquid-liquid interface, and did not readily desorb. A prototype system was built to test the emulsion interfacial filter concept. For the BSA system, a protein assay showed a progressive decrease in the residual BSA concentration as the sample was processed. Based on the initial prototype operation, we propose an improved system design.

  9. Problems of multiphase fluid filtration

    CERN Document Server

    Konovalov, AN

    1994-01-01

    This book deals with a spectrum of problems related to the mathematical modeling of multiphase filtration. Emphasis is placed on an inseparable triad: model - algorithm - computer code. An analysis of new and traditional filtration problems from the point of view of both their numerical implementation and the reproduction of one or another technological characteristics of the processes under consideration is given. The basic principles which underlie the construction of efficient numerical methods taking into account the filtration problems are discussed: non-evolutionary nature, degeneration,

  10. Binding of Estrone to Microfiltration Hollow Fibre Membranes in Filtration of Solutions Containing Trace Estrone

    OpenAIRE

    Chang, Sheng; Waite, T. D.; Schäfer, Andrea; Fane, Anthony G.

    2002-01-01

    Increased concern is being paid to the health and environmental risk caused by trace natural and synthetic hormones discharged from sewage treatment plant (STPs). This study, which is part of a larger project on investigation of hybrid membrane processes for trace hormones removal, focuses on binding of hormones to microfiltration hollow fibre membranes in filtration of solutions containing trace hormones. The adsorption capacity of the membrane, kinetics of adsorption and deso...

  11. Health Benefits of Particle Filtration

    Energy Technology Data Exchange (ETDEWEB)

    Fisk, William J.

    2013-10-01

    The evidence of health benefits of particle filtration in homes and commercial buildings is reviewed. Prior reviews of papers published before 2000 are summarized. The results of 16 more recent intervention studies are compiled and analyzed. Also reviewed are four studies that modeled health benefits of using filtration to reduce indoor exposures to particles from outdoors. Prior reviews generally concluded that particle filtration is, at best, a source of small improvements in allergy and asthma health effects; however, many early studies had weak designs. A majority of recent intervention studies employed strong designs and more of these studies report statistically significant improvements in health symptoms or objective health outcomes, particularly for subjects with allergies or asthma. The percentage improvement in health outcomes is typically modest, e.g., 7percent to 25percent. Delivery of filtered air to the breathing zone of sleeping allergic or asthmatic persons may be more consistently effective in improving health than room air filtration. Notable are two studies that report statistically significant improvements, with filtration, in markers that predict future adverse coronary events. From modeling, the largest potential benefits of indoor particle filtration may be reductions in morbidity and mortality from reducing indoor exposures to particles from outdoor air.

  12. Health Benefits of Particle Filtration

    Energy Technology Data Exchange (ETDEWEB)

    Fisk, William J.

    2013-10-01

    The evidence of health benefits of particle filtration in homes and commercial buildings is reviewed. Prior reviews of papers published before 2000 are summarized. The results of 16 more recent intervention studies are compiled and analyzed. Also, reviewed are four studies that modeled health benefits of using filtration to reduce indoor exposures to particles from outdoors. Prior reviews generally concluded that particle filtration is, at best, a source of small improvements in allergy and asthma health effects; however, many early studies had weak designs. A majority of recent intervention studies employed strong designs and more of these studies report statistically significant improvements in health symptoms or objective health outcomes, particularly for subjects with allergies or asthma. The percent age improvement in health outcomes is typically modest, for example, 7percent to 25percent. Delivery of filtered air to the breathing zone of sleeping allergic or asthmatic persons may be more consistently effective in improving health than room air filtration. Notable are two studies that report statistically significant improvements, with filtration, in markers that predict future adverse coronary events. From modeling, the largest potential benefits of indoor particle filtration may be reductions in morbidity and mortality from reducing indoor exposures to particles from outdoor air.

  13. RADIUM REMOVAL FROM WATER MANGANESE DIOXIDE ADSORP- TION AND DIATOMACEOUS EARTH FILTRATION

    Science.gov (United States)

    The study reveals that radium adsorption onto precipitated MnO2 followed by diatomaceous earth (DE) filtration is a very effective treatment process for radium-contaminated water. Radium removals in the range of 80% to 97% were observed for performed MnO2 feed concentrations of 0...

  14. Integrated pore blockage-cake filtration model for crossflow filtration

    Energy Technology Data Exchange (ETDEWEB)

    Daniel, Richard C.; Billing, Justin M.; Russell, Renee L.; Shimskey, Rick W.; Smith, Harry D.; Peterson, Reid A.

    2011-07-01

    Crossflow filtration is to be a key process in the treatment and disposal of approximately 60,000 metric tons of high-level radioactive waste stored at the Hanford Site in Richland, Washington. Pacific Northwest National Laboratory is assessing filter performance with waste simulant materials that mimic the chemical and physical properties of Hanford tank waste. Prior simulant studies indicated that waste filtration performance may be limited by pore and cake fouling. To limit the shutdown of waste treatment operations, the pre-treatment facility plans to recover filter flux losses from cake formation and filter fouling by frequently backpulsing the filter elements. The objective of the current paper is to develop a simple model of flux decline resulting from cake and pore fouling and potential flux recovery through backpulsing of the filters for Hanford waste filtration operations. To this end, a model capable of characterizing the decline in waste-simulant filter flux as a function of both irreversible pore blockage and reversible cake formation is proposed. This model is used to characterize the filtration behavior of Hanford waste simulants in both continuous and backpulsed operations. The model is then used to infer the optimal backpulse frequency under specific operating conditions.

  15. Integrated pore blockage-cake filtration model for crossflow filtration

    International Nuclear Information System (INIS)

    Crossflow filtration is to be a key process in the treatment and disposal of approximately 60,000 metric tons of high-level radioactive waste stored at the Hanford Site in Richland, Washington. Pacific Northwest National Laboratory is assessing filter performance with waste simulant materials that mimic the chemical and physical properties of Hanford tank waste. Prior simulant studies indicated that waste filtration performance may be limited by pore and cake fouling. To limit the shutdown of waste treatment operations, the pre-treatment facility plans to recover filter flux losses from cake formation and filter fouling by frequently backpulsing the filter elements. The objective of the current paper is to develop a simple model of flux decline resulting from cake and pore fouling and potential flux recovery through backpulsing of the filters for Hanford waste filtration operations. To this end, a model capable of characterizing the decline in waste-simulant filter flux as a function of both irreversible pore blockage and reversible cake formation is proposed. This model is used to characterize the filtration behavior of Hanford waste simulants in both continuous and backpulsed operations. The model is then used to infer the optimal backpulse frequency under specific operating conditions.

  16. How to dose powdered activated carbon in deep bed filtration for efficient micropollutant removal.

    Science.gov (United States)

    Altmann, Johannes; Ruhl, Aki S; Sauter, Daniel; Pohl, Julia; Jekel, Martin

    2015-07-01

    Direct addition of powdered activated carbon (PAC) to the inlet of a deep bed filter represents an energy- and space-saving option to remove organic micropollutants (OMPs) during advanced wastewater treatment or drinking water purification. In this lab-scale study, continuous dosing, preconditioning a filter with PAC and combinations thereof were investigated as possible dosing modes with respect to OMP adsorption efficiency. Continuous dosing resulted in decreasing effluent concentrations with increasing filter runtime due to adsorption onto accumulating PAC in the filter bed. Approximately constant removal levels were achieved at longer filter runtimes, which were mainly determined by the dose of fresh PAC, rather than the total PAC amount embedded. The highest effluent concentrations were observed during the initial filtration stage. Meanwhile, preconditioning led to complete OMP adsorption at the beginning of filtration and subsequent gradual OMP breakthrough. PAC distribution in the pumice filter was determined by the loss on ignition of PAC and pumice and was shown to be relevant for adsorption efficiency. Preconditioning with turbulent upflow led to a homogenous PAC distribution and improved OMP adsorption significantly. Combining partial preconditioning and continuous dosing led to low initial effluent concentrations, but ultimately achieved concentrations similar to filter runs without preconditioning. Furthermore, a dosing stop prior to the end of filtration was suitable to increase PAC efficiency without affecting overall OMP removals. PMID:25898248

  17. Filtration characteristics in membrane bioreactors

    NARCIS (Netherlands)

    Evenblij, H.

    2006-01-01

    Causes of and remedies for membrane fouling in Membrane Bioreactors for wastewater treatment are only poorly understood and described in scientific literature. A Filtration Characterisation Installation and a measurement protocol were developed with the aim of a) unequivocally determination and quan

  18. Filtration Understanding: FY10 Testing Results and Filtration Model Update

    Energy Technology Data Exchange (ETDEWEB)

    Daniel, Richard C.; Billing, Justin M.; Burns, Carolyn A.; Peterson, Reid A.; Russell, Renee L.; Schonewill, Philip P.; Shimskey, Rick W.

    2011-04-04

    This document completes the requirements of Milestone 2-4, Final Report of FY10 Testing, discussed in the scope of work outlined in the EM31 task plan WP-2.3.6-2010-1. The focus of task WP 2.3.6 is to improve the U.S. Department of Energy’s (DOE’s) understanding of filtration operations for high-level waste (HLW) to improve filtration and cleaning efficiencies, thereby increasing process throughput and reducing the Na demand (through acid neutralization). Developing the cleaning/backpulsing requirements will produce much more efficient operations for both the Hanford Tank Waste Treatment and Immobilization Plant (WTP) and the Savannah River Site (SRS), thereby significantly increasing throughput by limiting cleaning cycles. The scope of this work is to develop the understanding of filter fouling to allow developing this cleaning/backpulsing strategy.

  19. Seed-mediated synthesis and the photo-degradation activity of ZnO–graphene hybrids excluding the influence of dye adsorption

    Energy Technology Data Exchange (ETDEWEB)

    Fu, Dongying; Han, Gaoyi, E-mail: han_gaoyis@sxu.edu.cn; Yang, Feifei; Zhang, Tianwen; Chang, Yunzhen; Liu, Feifei

    2013-10-15

    The nano-sized ZnO–graphene hybrid has been prepared through combining the facile sol–gel process and hydrothermal method by using Zn(NO{sub 3}){sub 2}·6H{sub 2}O and hexamethylenetetramine (HMT) as growing reactants in the presence of ZnO–graphene oxide (ZnO–GO) seeds. The obtained products have been characterized by X-ray diffraction, scanning electron microscopy, transmission electron microscopy, X-ray photoelectron spectroscopy, Raman spectroscopy and UV–vis absorption spectroscopy. The results show that the GO has been converted to reduced-graphene oxide during the hydrothermal process due to the released reductant from HMT. The photo-degradation of methylene blue in the presence of ZnO–graphene (excluding the influence of the dye adsorption on the catalyst) has also been investigated in detail. It is found that the preparation conditions have significant effects on photo-catalytic properties of the composites, and that ZnO–graphene prepared in the optimal conditions exhibits the optimum activity. This facile and low-cost method will make the composite a perfect candidate in applications of photo-catalysis and other areas.

  20. Seed-mediated synthesis and the photo-degradation activity of ZnO-graphene hybrids excluding the influence of dye adsorption

    Science.gov (United States)

    Fu, Dongying; Han, Gaoyi; Yang, Feifei; Zhang, Tianwen; Chang, Yunzhen; Liu, Feifei

    2013-10-01

    The nano-sized ZnO-graphene hybrid has been prepared through combining the facile sol-gel process and hydrothermal method by using Zn(NO3)2·6H2O and hexamethylenetetramine (HMT) as growing reactants in the presence of ZnO-graphene oxide (ZnO-GO) seeds. The obtained products have been characterized by X-ray diffraction, scanning electron microscopy, transmission electron microscopy, X-ray photoelectron spectroscopy, Raman spectroscopy and UV-vis absorption spectroscopy. The results show that the GO has been converted to reduced-graphene oxide during the hydrothermal process due to the released reductant from HMT. The photo-degradation of methylene blue in the presence of ZnO-graphene (excluding the influence of the dye adsorption on the catalyst) has also been investigated in detail. It is found that the preparation conditions have significant effects on photo-catalytic properties of the composites, and that ZnO-graphene prepared in the optimal conditions exhibits the optimum activity. This facile and low-cost method will make the composite a perfect candidate in applications of photo-catalysis and other areas.

  1. Chemical filtration of Cr (VI) with electrospun chitosan nanofiber membranes.

    Science.gov (United States)

    Li, Lei; Li, Yanxiang; Yang, Chuanfang

    2016-04-20

    Chitosan nanofibers (average diameter of 75nm) were electrospun on polyester (PET) scrim to form composite nanofiber membranes with controlled pore size. The membranes were then stacked as a membrane bed for chemical filtration of Cr (VI) of 1-5mg/L. The performance of the bed with respect to loading capacity at breakthrough, bed saturation and utilization efficiency were carefully investigated. The results showed that while these three parameters were dependent on pH, flow rate, flow distribution and packed pattern of the membrane, the latter two were less affected by feed Cr (VI) concentration and bed length. The maximum bed loading capacity for 1mg/L Cr (VI) filtration at breakthrough was found to be 16.5mg-chromium/g-chitosan, higher than the static adsorption capacity of 11.0mg-chromium/g-chitosan using nanofiber mats, indicating the membranes' better potential for dynamic adsorption. The minimum bed length required to avoid breakthrough was determined to be three layers of stacked membranes with nanofiber deposition density of 1g/m(2) by applying bed depth service time (BDST) model. PMID:26876857

  2. Mobile surface water filtration system

    Directory of Open Access Journals (Sweden)

    Aashish Vatsyayan

    2012-09-01

    Full Text Available To design a mobile system for surface water filtrationMethodology: the filtration of surface impurities begins with their retraction to concentrated thickness using non ionising surfactants, then isolation using surface tension property and sedimentation of impurities in process chamber using electrocoagulation. Result:following studies done to determine the rate of spreading of crude oil on water a method for retraction of spread crude oil to concentrated volumes is developed involving addition of non -ionising surfactants in contrast to use of dispersants. Electrocoagulation process involves multiple processes taking place to lead to depositionof impurities such as oil, grease, metals. Studies of experiments conducted reveals parameters necessary for design of electrocoagulation process chamber though a holistic approach towards system designing is still required. Propeller theory is used in determining the required design of propeller and the desired thrust, the overall structure will finally contribute in deciding the choice of propeller.

  3. Demonstration of creep during filtration

    DEFF Research Database (Denmark)

    Christensen, Morten Lykkegaard; Bugge, Thomas Vistisen; Kirchheiner, Anders Løvenbalk;

    The classical filtration theory assumes a unique relationship between the local filter cake porosity and the local effective pressure. For a number of compressible materials, it has however been observed that during the consolidation stage this may not be the case. It has been found...... that the production of filtrate also depends on the characteristic time for the filter cake solids to deform. This is formulated in the Terzaghi-Voigt model in which a secondary consolidation is introduced. The secondary consolidation may be visualized by plots of the relative cake deformation (U) v.s. the square...... root of time. Even more clearly it is demonstrated by plotting the liquid pressure at the cake piston interface v.s. the relative deformation (to be shown). The phenomenon of a secondary consolidation processes is in short called creep. Provided that the secondary consolidation rate is of the same...

  4. Centrifugal membrane filtration - Task 9

    International Nuclear Information System (INIS)

    The Energy and Environmental Research Center (EERC) has teamed with SpinTek Membrane Systems, Inc., the developer of a centrifugal membrane filtration technology, to demonstrate applications for the SpinTek technology within the US Department of Energy (DOE) Environmental management (EM) Program. The technology uses supported microporous membranes rotating at high rpm, under pressure, to separate suspended and colloidal solids from liquid streams, yielding a solids-free permeate stream and a highly concentrated solids stream. This is a crosscutting technology that falls under the Efficient Separations and Processing Crosscutting Program, with potential application to tank wastes, contaminated groundwater, landfill leachate, and secondary liquid waste streams from other remediation processes, including decontamination and decommissioning systems. Membrane-screening tests were performed with the SpinTek STC-X4 static test cell filtration unit, using five ceramic membranes with different pore size and composition. Based on permeate flux, a 0.25-microm TiO2/Al2O3 membrane was selected for detailed performance evaluation using the SpinTek ST-IIL centrifugal membrane filtration unit with a surrogate tank waste solution. An extended test run of 100 hr performed on a surrogate tank waste solution showed some deterioration in filtration performance, based on flux, apparently due to the buildup of solids near the inner portion of the membrane where relative membrane velocities were low. Continued testing of the system will focus on modifications to the shear pattern across the entire membrane surface to affect improved long-term performance

  5. Centrifugal membrane filtration -- Task 9

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-08-01

    The Energy and Environmental Research Center (EERC) has teamed with SpinTek Membrane Systems, Inc., the developer of a centrifugal membrane filtration technology, to demonstrate applications for the SpinTek technology within the US Department of Energy (DOE) Environmental management (EM) Program. The technology uses supported microporous membranes rotating at high rpm, under pressure, to separate suspended and colloidal solids from liquid streams, yielding a solids-free permeate stream and a highly concentrated solids stream. This is a crosscutting technology that falls under the Efficient Separations and Processing Crosscutting Program, with potential application to tank wastes, contaminated groundwater, landfill leachate, and secondary liquid waste streams from other remediation processes, including decontamination and decommissioning systems. Membrane-screening tests were performed with the SpinTek STC-X4 static test cell filtration unit, using five ceramic membranes with different pore size and composition. Based on permeate flux, a 0.25-{micro}m TiO{sub 2}/Al{sub 2}O{sub 3} membrane was selected for detailed performance evaluation using the SpinTek ST-IIL centrifugal membrane filtration unit with a surrogate tank waste solution. An extended test run of 100 hr performed on a surrogate tank waste solution showed some deterioration in filtration performance, based on flux, apparently due to the buildup of solids near the inner portion of the membrane where relative membrane velocities were low. Continued testing of the system will focus on modifications to the shear pattern across the entire membrane surface to affect improved long-term performance.

  6. Foam coating of filtration media

    OpenAIRE

    Johansson, Mirva

    2015-01-01

    The objective of this thesis was to find out if foam coating could be applied to non-woven filtration media. The goal was to increase collection efficiency without significantly decreasing air permeability. In the theoretical part, foams and their characteristics were the centre of attention. Coating in general and, of course, foam coating were also studied. The empirical part consisted of series of foaming experiments and pilot scale coating experiments. In the foaming experiments differ...

  7. Cake Filtration in Viscoelastic Polymer Solutions

    Science.gov (United States)

    Surý, Alexander; Machač, Ivan

    2009-07-01

    In this contribution, the filtration equations for a cake filtration in viscoelastic fluids are presented. They are based on a capillary hybrid model for the flow of a power law fluid. In order to express the elastic pressure drop excess in the flow of viscoelastic filtrate through the filter cake and filter screen, modified Deborah number correction functions are included into these equations. Their validity was examined experimentally. Filtration experiments with suspensions of hardened polystyrene particles (Krasten) in viscoelastic aqueous solutions of polyacryl amides (0.4% and 0.6%wt. Kerafloc) were carried out at a constant pressure on a cylindrical filtration unit using filter screens of different resistance.

  8. Density functional theory study of oxygen and water adsorption on SrTiO3(001)

    International Nuclear Information System (INIS)

    Strontium titanate is an extensively studied material with a wide range of application, for instance in photo-catalysis and most importantly, it is used as a substrate in growth of functional oxides. The surface chemistry is crucial and hence understanding the surface structure on atomic scale is essential for gaining insight into the fundamental processes in the aforementioned applications. Moreover, there exist a lot of evidence that this surface chemistry might be controlled to considerably by extrinsic species, such as residual hydrogen and water. Investigating the properties of water and oxygen on the strontium titanate surface is certainly a natural starting point for a theoretical study based on density functional theory, because these species are practically present on the surface on a wide range of experimental conditions and they are computationally feasible. For the oxygen and water adsorption the binding energy is controlled by long-range surface relaxations leading to an effective repulsion of the adsorbed specimen. The isolated oxygen ad-atom forms a covalently bonded ''quasi-peroxide anion'' in combination with a lattice oxygen atom. Contrariwise, in all investigated configurations containing water molecules and hydroxyl groups, the respective oxygen atoms assumed positions close to the oxygen sites of the continued perovskite lattice of the substrate. Most remarkably, on the strontium oxide termination, the water molecules adsorbs and dissociates effortlessly leading to the formation of a pair of hydroxyl groups. For the titanium dioxide termination, a coverage dependent adsorption mode is observed. Densely packings stabilize water molecules, whereas at lower coverage and finite temperatures the formation of hydroxyl groups is found. The energetics responsible for this behavior is consistent with recent experiments by Iwahori and coworkers. (orig.)

  9. Density functional theory study of oxygen and water adsorption on SrTiO{sub 3}(001)

    Energy Technology Data Exchange (ETDEWEB)

    Guhl, Hannes

    2010-12-03

    Strontium titanate is an extensively studied material with a wide range of application, for instance in photo-catalysis and most importantly, it is used as a substrate in growth of functional oxides. The surface chemistry is crucial and hence understanding the surface structure on atomic scale is essential for gaining insight into the fundamental processes in the aforementioned applications. Moreover, there exist a lot of evidence that this surface chemistry might be controlled to considerably by extrinsic species, such as residual hydrogen and water. Investigating the properties of water and oxygen on the strontium titanate surface is certainly a natural starting point for a theoretical study based on density functional theory, because these species are practically present on the surface on a wide range of experimental conditions and they are computationally feasible. For the oxygen and water adsorption the binding energy is controlled by long-range surface relaxations leading to an effective repulsion of the adsorbed specimen. The isolated oxygen ad-atom forms a covalently bonded ''quasi-peroxide anion'' in combination with a lattice oxygen atom. Contrariwise, in all investigated configurations containing water molecules and hydroxyl groups, the respective oxygen atoms assumed positions close to the oxygen sites of the continued perovskite lattice of the substrate. Most remarkably, on the strontium oxide termination, the water molecules adsorbs and dissociates effortlessly leading to the formation of a pair of hydroxyl groups. For the titanium dioxide termination, a coverage dependent adsorption mode is observed. Densely packings stabilize water molecules, whereas at lower coverage and finite temperatures the formation of hydroxyl groups is found. The energetics responsible for this behavior is consistent with recent experiments by Iwahori and coworkers. (orig.)

  10. Relation Between Filtration and Soil Consolidation Theories

    Science.gov (United States)

    Strzelecki, Tomasz; Strzelecki, Michał

    2015-03-01

    This paper presents a different, than commonly used, form of equations describing the filtration of a viscous compressible fluid through a porous medium in isothermal conditions. This mathematical model is compared with the liquid flow equations used in the theory of consolidation. It is shown that the current commonly used filtration model representation significantly differs from the filtration process representation in Biot's and Terzaghi's soil consolidation models, which has a bearing on the use of the methods of determining the filtration coefficient on the basis of oedometer test results. The present analysis of the filtration theory equations should help interpret effective parameters of the non-steady filtration model. Moreover, equations for the flow of a gas through a porous medium and an interpretation of the filtration model effective parameters in this case are presented.

  11. Novel sandwich structure adsorptive membranes for removal of 4-nitrotoluene from water.

    Science.gov (United States)

    Guo, Yuexin; Jia, Zhiqian

    2016-11-01

    Novel sandwich PES-SPES/PS-PDVB/PTFE adsorptive membranes were prepared by a filtration/immersion precipitation method and employed for the removal of 4-nitrotoluene from water. The static adsorption thermodynamics, kinetics, dynamic adsorption/desorption and membrane reusability were investigated. The results showed that the Freundlich model describes the adsorption isotherm satisfactorily. With increased PS-PDVB content, the maximum static adsorption capacity, partition coefficient, apparent adsorption rate constant, and dynamic adsorption capacity all significantly increased. The sandwich membranes showed much higher removal efficiency and adsorption capacity than those of mixed matrix membranes. With respect to dynamics adsorption/desorption, the sandwich membranes exhibited excellent reusability, with a removal efficiency greater than 95% even after five recycles. PMID:27322899

  12. Water Filtration Using Plant Xylem

    CERN Document Server

    Lee, Jongho; Chambers, Valerie; Venkatesh, Varsha; Karnik, Rohit

    2013-01-01

    Effective point-of-use devices for providing safe drinking water are urgently needed to reduce the global burden of waterborne disease. Here we show that plant xylem from the sapwood of coniferous trees - a readily available, inexpensive, biodegradable, and disposable material - can remove bacteria from water by simple pressure-driven filtration. Approximately 3 cm3 of sapwood can filter water at the rate of several liters per day, sufficient to meet the clean drinking water needs of one person. The results demonstrate the potential of plant xylem to address the need for pathogen-free drinking water in developing countries and resource-limited settings.

  13. Pig manure treatment and purification by filtration.

    Science.gov (United States)

    Makara, A; Kowalski, Z

    2015-09-15

    This study aimed to develop a new, complex pig manure treatment and filtration process. The final scheme, called the AMAK process, comprised the following successive steps: mineralization with mineral acids, alkalization with lime milk, superphosphate addition, a second alkalization, thermal treatment, and pressure filtration. The proposed method produced a filtrate with 95%, 80%, and 96% reductions in chemical oxygen demand, nitrogen content, and phosphorus content, respectively. An advantage of the proposed method was that it incorporated a crystalline phase into the solid organic part of the manure, which enabled high filtration rates (>1000 kg m(-2) h(-1)) and efficient separation. The process also eliminated odor emissions from the filtrate and sediment. The treated filtrate could be used to irrigate crops or it could be further treated in conventional biological wastewater treatment plants. The sediment could be used for producing mineral-organic fertilizer. The AMAK process is inexpensive, and it requires low investment costs. PMID:26197426

  14. Cake creep during filtration of flocculated manure

    DEFF Research Database (Denmark)

    Christensen, Morten Lykkegaard; Keiding, Kristian

    the distribution of N and P on the fields. Filtration is a useful method for such a separation. Furthermore, chemicals can be added to flocculate the solids and thereby increase the filterability i.e. the specific filter-cake resistance can be reduced from 1015 m/kg to 1011 m/kg. Both the amount of added chemicals...... that the discrepancy between the filtration theory and the observed filtration behaviour is due to a time-dependent collapse of the formed cake (creep). This can also explain the observed behaviour when flocculated manure is filtered. The filtration data can be simulated if cake creep is adopted in the filtration...... model. The calculation shows that the specific filter-cake resistance increases by a factor of 3 during the filtration. Thus, the impact of cake creep is significant when organic materials such as manure are filtered....

  15. Side Stream Filtration for Cooling Towers

    Energy Technology Data Exchange (ETDEWEB)

    None

    2012-10-20

    This technology evaluation assesses side stream filtration options for cooling towers, with an objective to assess key attributes that optimize energy and water savings along with providing information on specific technology and implementation options. This information can be used to assist Federal sites to determine which options may be most appropriate for their applications. This evaluation provides an overview of the characterization of side stream filtration technology, describes typical applications, and details specific types of filtration technology.

  16. Adsorption Rate Models for Multicomponent Adsorption Systems

    Institute of Scientific and Technical Information of China (English)

    姚春才

    2004-01-01

    Three adsorption rate models are derived for multicomponent adsorption systems under either pore diffusion or surface diffusion control. The linear driving force (LDF) model is obtained by assuming a parabolic intraparticle concentration profile. Models I and Ⅱ are obtained from the parabolic concentration layer approximation. Examples are presented to demonstrate the usage and accuracy of these models. It is shown that Model I is suitable for batch adsorption calculations and Model Ⅱ provides a good approximation in fixed-bed adsorption processes while the LDF model should not be used in batch adsorption and may be considered acceptable in fixed-bed adsorption where the parameter Ti is relatively large.

  17. Adsorption and wetting.

    NARCIS (Netherlands)

    Schlangen, L.J.M.

    1995-01-01

    Adsorption and wetting are related phenomena. In order to improve knowledge of both and their relations, experiments, thermodynamics and a theoretical interpretation have been connected, starring n-alkanes.Starting from the Gibbs adsorption equation thermodynamic relations between vapour adsorption

  18. Particle filtration in consolidated granular systems

    International Nuclear Information System (INIS)

    Grain-packing algorithms are used to model the mechanical trapping of dilute suspensions of particles by consolidated granular media. We study the distribution of filtrate particles, the formation of a damage zone (internal filter cake), and the transport properties of the host--filter-cake composite. At the early stages of filtration, our simulations suggest simple relationships between the structure of the internal filter cake and the characteristics of the underlying host matrix. These relationships are then used to describe the dynamics of the filtration process. Depending on the grain size and porosity of the host matrix, calculated filtration rates may either be greater than (spurt loss) or less than (due to internal clogging) those predicted by standard surface-filtration models

  19. Particle contamination of parenteralia and in-line filtration of proteinaceous drugs.

    Science.gov (United States)

    Werner, Benjamin Patrick; Winter, Gerhard

    2015-12-30

    Protein drug products play an important role in the treatment of severe diseases. However, due to the instability of these complex molecules, protein aggregates can form which can compromise drug safety and efficacy including immunogenic reactions. In-line filtration during the administration of these drugs can serve as a final safeguarding step to protect patients from risks associated with proteinaceous particles. A unique analysis of more than 300 marketed protein drug products revealed that already around 16% of all these products are filtered during preparation or administration. Further, the research revealed that no standardized filtration practice exists. Broad variances regarding filter membrane or pore size are found and sometimes no specifications are mentioned at all. The benefits as well as possible negative impacts of filtration like filter shedding, extractables or drug adsorption are critically assessed. Several proposals to improve the current filtration practice and to expand the number of in-line filtered protein drug products are made. The suggestions include the demand for the specific usage of one filter membrane type, the establishment of a filtration routine for unfiltered protein drugs and a statistical analysis between filtered and non-filtered products with similar formulations to identify possible differences in the immunogenicity rate.

  20. Turbidity removal: Gravel and charcoal as roughing filtration media

    Directory of Open Access Journals (Sweden)

    Josiah A. Adeyemo

    2010-10-01

    Full Text Available Roughing filtration is an important pre-treatment process for wastewater, because it efficiently separates fine solid particles over prolonged periods, without the addition of chemicals. For this study, a pilot plant was designed at Delmas Coal Mine in the Mpumalanga province of South Africa. The design and sizing of the pilot plant was guided by Wegelin’s design criteria. Gravel was used as a control medium because it is one of the most commonly used roughing filter media and because it was used in developing the criteria. We compared the performance of gravel as a filter medium to that of another locally available material, charcoal, for the removal of turbidity in wastewater. The pilot plant was monitored continuously for 90 days from commissioning until the end of the project. The overall performance of the roughing filter in turbidity removal, using gravel or charcoal, was considered efficient for the pre-treatment of waste water. Charcoal performed slightly better than gravel as a filter medium for the removal of turbidity, possibly because charcoal has a slightly higher specific surface area and porosity than gravel, which could enhance sedimentation and other filtration processes, such as adsorption, respectively.

  1. 丙烯酸接枝改性聚丙烯非织造布及其对染料过滤吸附与解吸作用的研究%Photo-grafting modification of polypropylene nonwovens with acrylic acid and its filtration adsorption and desorption toward cationic dye

    Institute of Scientific and Technical Information of China (English)

    艾丽; 刘颖; 王宇阳; 石小丽; 朱新生

    2014-01-01

    采用紫外照射方法对聚丙烯( PP)非织造布进行改性。将丙烯酸( AA)接枝聚合到PP非织造布表面,制得PP-g-AA改性非织造布。研究了交联剂浓度对接枝率的影响,并研究了接枝前后非织造布的形态和微观结构的变化,以及接枝非织造布对染液的吸附与解吸行为及其透水性。结果表明:AA可有效接枝到PP非织造布上;接枝非织造布对阳离子红X-GRL的最大吸附量为146.4 mg/g,显示出优异的吸附性能;等温吸附符合Freundlich模型,吸附动力学模型符合Lagegren准二级动力学方程;接枝非织造布的水通量表现出强烈的酸碱性和电解质依赖性;接枝PP非织造布对阳离子染料的吸附能再生循环利用。采用吸附过滤方式使用PP-g-AA非织造布可对印染废水进行深度处理。%Poly( acrylic acid) was grafted onto the polypropylene nonwovens surfaces under ultraviolet irradiation . PP-g-AA nonwovens was made by grafting poly (acrylic acid) (PAA) on the surface of PP.The effect of crosslinking agent on the grafting degree , as well as the microstructure of the grafted nonwovens and ungrafted nonwovens , the adsorption , desorption and water permeability of the grafted nonwovens were carefully investigated .The results indicated that , poly ( acrylic acid ) was enwrapped evenly on the fiber surfaces.The maximum equilibrium adsorption capacity of the cationic dye was up to 146.4 mg/g in this experimental setup , indicating the excellent adsorption performance .The absorption isotherm of the grafted nonwovens follows Freundlich model .The dynamic adsorption process is in accordance with the Lagergren’s pseudo-second order model .The water permeability strongly was depended on acidity and the ionic strength of electrolyte solution .The results of the repeating adsorption and desorption recycles implies reusability , and applicability for deeply treating the dyeing and printing wastewaters .

  2. 40 CFR 141.73 - Filtration.

    Science.gov (United States)

    2010-07-01

    ... pilot plant studies or other means, that the alternative filtration technology, in combination with disinfection treatment that meets the requirements of § 141.72(b), consistently achieves 99.9 percent...

  3. Adsorption and wetting.

    OpenAIRE

    Schlangen, L.J.M.

    1995-01-01

    Adsorption and wetting are related phenomena. In order to improve knowledge of both and their relations, experiments, thermodynamics and a theoretical interpretation have been connected, starring n-alkanes.Starting from the Gibbs adsorption equation thermodynamic relations between vapour adsorption and wetting are derived. The surface pressure of a film, formed by vapour adsorption on a solid surface, is calculated by integrating the vapour adsorption isotherm. The surface pressure at the sat...

  4. Complications and Management of the Filtration Bleb

    Institute of Scientific and Technical Information of China (English)

    Clement; W; N; Chan

    1992-01-01

    Filtration surgery is the commonest operation performed for closed angle or open angle glaucoma when medical treatment or laser trabeculoplasty has failed to control the intraocular pressure. It is characterized by the formation of an artificial drainage fistula between the anterior chamber and subconjunctival space. The successful operation is evidenced by the appearance of a subconjunctival filtration bleb which in turn depends on the patency of this pathway. Despite numerous modification, the procedu...

  5. Recent Trends in Nanofibrous Membranes and Their Suitability for Air and Water Filtrations

    Directory of Open Access Journals (Sweden)

    Seeram Ramakrishna

    2011-08-01

    Full Text Available In recent decades, engineered membranes have become a viable separation technology for a wide range of applications in environmental, food and biomedical fields. Membranes are now competitive compared to conventional techniques such as adsorption, ion exchangers and sand filters. The main advantage of membrane technology is the fact that it works without the addition of any chemicals, with relatively high efficiency and low energy consumption with well arranged process conductions. Hence they are widely utilized in biotechnology, food and drink manufacturing, air filtration and medical uses such as dialysis for kidney failure patients. Membranes from nanofibrous materials possess high surface area to volume ratio, fine tunable pore sizes and their ease of preparation prompted both industry and academic researchers to study their use in many applications. In this paper, modern concepts and current research progress on various nanofibrous membranes, such as water and air filtration media, are presented.

  6. Cake formation and growth in cake filtration

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Y.S.; Hsiau, S.S. [National Central University, Chungli (Taiwan)

    2009-06-15

    In this study we develop an experimental method to help understand the formation and growth of dust cakes. An on-line pressure-displacement measurement system is developed to measure the thickness of the dust cakes. A higher filtration superficial velocity resulted in a higher degree of compaction in the dust cakes and thus a higher specific cake resistance, hence a better collection efficiency could be achieved. The empirical equations for cake solidosity, and specific cake resistance as a function of the filtration superficial velocity are derived. We find that the cake filter is influenced by the cake thickness and the filtration superficial velocity. The results of this study can be applied to granular bed filters for the removal of dust particulates in advanced coal-fired power systems.

  7. Quenching of TiO2 photo catalysis by silver nanoparticles

    NARCIS (Netherlands)

    Di Vece, M.; Laursen, A.B.; Bech, L.; Maden, C.N.; Duchamp, M.; Mateiu, R.V.; Dahl, S.; Chorkendorff, I.

    2013-01-01

    The plasmon resonance of metal nanostructures affects neighboring semiconductors, quenching or enhancing optical transitions depending on various parameters. These plasmonic properties are currently investigated with respect to topics such as photovoltaics and optical detection and could also have i

  8. Quenching of TiO2 photo catalysis by silver nanoparticles

    DEFF Research Database (Denmark)

    Di Vece, Marcel; Laursen, Anders Bo; Bech, Lone;

    2012-01-01

    The plasmon resonance of metal nanostructures affects neighboring semiconductors, quenching or enhancing optical transitions depending on various parameters. These plasmonic properties are currently investigated with respect to topics such as photovoltaics and optical detection and could also hav...

  9. Preparation of photo-catalysis TiO2 films by combined plasma surface treatment

    International Nuclear Information System (INIS)

    TiO2 films with excellent bonding strength were fabricated on stainless steel substrate by plasma surface alloying and thermal oxidation duplex processing. Controllable elemental distribution and structure of the films could be achieved at 400-600 degree C. The films were characterized by metallography, glow discharge spectrometer (GDOES) and X-ray diffraction. The results show that the TiO2 films are of dense and uniform anatase. The Ti and O contents of the films are in gradient distribution. Phenol-containing wastewater was used to test photo-catalytic performance of the films. The TiO2 films have a degradation rate of phenol of about 73.5% in 3 h, much higher than commercial products of TiO2 powders. (authors)

  10. Iron Arene Salts as Initiators for Thermal Curing of Epoxides by Photo-catalysis

    Institute of Scientific and Technical Information of China (English)

    王涛; 李保山; 于萌; 万平玉

    2005-01-01

    [Cyclopentadien-Fe-naphthalene]BF4(CFN) and [cyclopentadien-Fe-anisole]BF4(CFA) thermal cationic initiators for the curing of epoxide E44 and GGE were investigated. CFN brought out the curing of E44 at 89.1℃ and that of GGE at 148.7℃. However, CFA had much less thermal initiating activity under 300℃.Under UV radiation for short time, the thermal initiating activities of CFN and CFA were enhanced obviously. It was observed that the initiating onset temperature decreased and the evolved heat of the curing increased. Both CFN and CFA can carrv out the polvmerization of E44 and GGE near 85℃ and 112℃ by UV radiation.

  11. EM Task 9 - Centrifugal membrane filtration

    International Nuclear Information System (INIS)

    The overall project consists of several integrated research phases related to the applicability, continued development, demonstration, and commercialization of the SpinTek centrifugal membrane filtration process. Work performed during this reporting period consisted of Phase 2 evaluation of the SpinTek centrifugal membrane filtration technology and Phase 3, Technology Partnering. During Phase 1 testing conducted at the EERC using the SpinTek ST-IIL unit operating on a surrogate tank waste, a solids cake developed on the membrane surface. The solids cake was observed where linear membrane velocities were less than 17.5 ft/s and reduced the unobstructed membrane surface area up to 25%, reducing overall filtration performance. The primary goal of the Phase 2 research effort was to enhance filtration performance through the development and testing of alternative turbulence promoter designs. The turbulence promoters were designed to generate a shear force across the entire membrane surface sufficient to maintain a self-cleaning membrane capability and improve filtration efficiency and long-term performance. Specific Phase 2 research activities included the following: System modifications to accommodate an 11-in.-diameter, two-disk rotating membrane assembly; Development and fabrication of alternative turbulence promoter designs; Testing and evaluation of the existing and alternative turbulence promoters under selected operating conditions using a statistically designed test matrix; and Data reduction and analysis; The objective of Phase 3 research was to demonstrate the effectiveness of SpinTek's centrifugal membrane filtration as a pretreatment to remove suspended solids from a liquid waste upstream of 3M's WWL cartridge technology for the selective removal of technetium (Tc)

  12. Vacuum distillation/vapor filtration water recovery

    Science.gov (United States)

    Honegger, R. J.; Neveril, R. B.; Remus, G. A.

    1974-01-01

    The development and evaluation of a vacuum distillation/vapor filtration (VD/VF) water recovery system are considered. As a functional model, the system converts urine and condensates waste water from six men to potable water on a steady-state basis. The system is designed for 180-day operating durations and for function on the ground, on zero-g aircraft, and in orbit. Preparatory tasks are summarized for conducting low gravity tests of a vacuum distillation/vapor filtration system for recovering water from urine.

  13. Projective Dimension in Filtrated K-Theory

    DEFF Research Database (Denmark)

    Bentmann, Rasmus Moritz

    2013-01-01

    any topological space with at most four points has projective dimension 2 or less. We observe that this implies a universal coefficient theorem for rational equivariant KK-theory over these spaces. As a contrasting example, we find a separable C∗dash-algebra in the bootstrap class over a certain five......-point space, the filtrated K-theory of which has projective dimension 3. Finally, as an application of our investigations, we exhibit Cuntz-Krieger algebras which have projective dimension 2 in filtrated K-theory over their respective primitive spectrum....

  14. Magnetic filtration of heavy metals containing waters

    International Nuclear Information System (INIS)

    The high-intensity magnetic separation is applied above all in the beneficiation of fine-grained weakly magnetic ores, but also in the treatment of industrial, especially metallurgical and mining waters as well as of wastewaters from nuclear power stations. Similarly, it can be used in the field of geothermal energy supply and gases filtration. The magnetic separation or filtration respectively, directly enables the treatment of waters contaminated by solid ferromagnetic and paramagnetic particles. The magnetic filtration can remove heavy metals ions and even the oil substances by means of magnetic sorbents or special additives. The filtration of solid magnetic particles can be carried out in matrix-less and matrix separators. On the basis of mathematical description of particles dynamics and hydrodynamic conditions of suspension flow which resulted in the determination of geometrical parameters of separating zone the design of matrix-less magnetic separator was carried out. A strong, high-intensity magnetic field was created by means of a superconductive magnetic circuit. It was found out that for the achievement of optimal technological parameters during the magnetic separation of solid particles with grain size under 40 mm, the maximal solids concentration is to be 200 g/L. The design of matrix parameters and selection of inductive filling resides in theoretical considerations as well as in experimental works. Under laboratory condition the influence of following parameters on magnetic filtration process have been observed: the diameter of inductive ferromagnetic balls, the thickness of filtration layer, the intensity of magnetic field, the flow velocity of suspension, the density of suspension, the grain size of solids and the temperature of suspension. It was found that a spatial arrangement of inductive bodies in filtration layer influences not only the velocity of suspension flow but also a room size for catching of magnetic particles. The acting of magnetic

  15. Characteristics of synthesis and morphology of globular filtration-chemisorption membranes

    International Nuclear Information System (INIS)

    Conditions of synthesis, morphology and sorption properties towards iodine of globular filtration-chemisorption membranes produced by means of fast photo-induced copolymerization of compositions containing bifunctional cross-linker, vinylamide monomer and organic solvent are studied. Kinetic studied on iodine sorption, when aqueous solution containing 0.2 g of I2 and 8 g of KI in 200 ml of water is passed through the membrane permitted ascertaining that the adsorption complex consisted of two statistic segments of polyvinylamide and I3- ion

  16. Prevention of febrile nonhemolytic transfusion reaction with leucocyte filtrated concentrates

    Institute of Scientific and Technical Information of China (English)

    ZHAO Shu-ming; XIANG Guo-chun; ZHANG Jia-si; CHENG Xiao-ling; LI Ru-qing

    2002-01-01

    Objective: To assess the clinical efficiency of the transfusion of leucocyte filtrated RBC concentrates to prevent febrile nonhemolytic transfusion reactions (FNHTRs). Methods: One hundred patients with liver cirrhosis, gastric ulcer or cancer were subjected to receive RBC concentrates after leucocyte filtration.Another 50 patients with similar diseases were selected to receive non-filtrated RBC concentrates. The incidence of FNHTRs in all patients was investigated. Results: There was no FNHTR in 100 transfusions with leucocyte filtrated RBC concentrates, while FNHTRs occurred in 8 of 50 patients with non-filtrated RBC concentrates, with the incidence of 160%. Conclusion: FNHTRs to RBC transfusion can be prevented with leucocyte filtration.

  17. Aerosol filtration - performance of filter media; Filtration des aerosols - performances des medias filtrants

    Energy Technology Data Exchange (ETDEWEB)

    Bemer, D.; Regnier, R. [Institut National de Recherche et de Securite (INRS), Dept. Ingenierie des Procedes, 75 - Paris (France); Calle, S.; Thomas, D.; Simon, X.; Appert-Collin, J.Ch. [Centre National de la Recherche Scientifique (CNRS), Lab. des Sciences du Genie Chimique de Nancy, 54 - Vandoeuvre-les-Nancy (France)

    2006-03-15

    Set up in 2000, the Laboratoire de Filtration des Aerosols in Nancy (LFA), associating research teams from INRS (Institut National de Recherche et de Securite and LSGC (Laboratoire des Sciences du Genie Chimique - CNRS), has been commissioned to provide expertise in the aerosol filtration field to both CRAM (Caisse Regionale de l'Assurance Maladie) prevention specialists and industrialists. Following a theoretical review of fibre medium filtration, this paper summarises the different actions undertaken by the LFA: filter performance during clogging with liquid and solid aerosols, modelling, pneumatic unclogging of baghouse dust collectors, influence of micro-leaks, etc. (authors)

  18. ELECTROSTATIC STIMULATION OF FABRIC FILTRATION - AN UPDATE

    Science.gov (United States)

    The paper gives results of an investigation of the concept of electrostatic stimulation of fabric filtration (ESFF) on a slipstream of a pulverized-coal-fired boiler using reverse-air-cleaned woven fiberglass filter bags. Operation was demonstrated using ESFF at a glass-to-cloth ...

  19. Filtration engineering study to upgrade the ETF

    International Nuclear Information System (INIS)

    Filtration technologies are evaluated which have potential to augment or upgrade the 200 Area Effluent Treatment Facility. The study was written in anticipation of treating future waste waters that have high fouling potentials. The Three ultrafilters judged to be capable of treating future waste waters are: hollow fiber, tubular, and centrifugal

  20. Water filtration at exploitation of hydrocutting equipment and improvement of filtration quality through new methods

    OpenAIRE

    Саленко, Олександр Федорович; Орел, Вадим Миколайович; Мана, Олександр Миколайович; Корцов, Максим Ігорович

    2016-01-01

    Abstract investigates the harm of jet laser cutting on the human body and the environment. The results of pollution of the working fluid jet laser system LCS-5-400 are presented. Modern filtration methods of the working fluid and the efficiency of their use are studied. The values of stresses in the contact zone of the jet with the surface of the treated material with waterjet are stated. The evaluation of the possibility of using mechanical, chemical, physical and biological water filtration...

  1. Interfacial adsorption of insulin - Conformational changes and reversibility of adsorption

    NARCIS (Netherlands)

    Mollmann, SH; Jorgensen, L; Bukrinsky, JT; Elofsson, U; Norde, W; Frokjaer, S

    2006-01-01

    The adsorption of human insulin to Teflon particles was studied with respect to conformational changes and the reversibility of adsorption was examined by total internal reflection fluorescence (TIRF). Adsorption isotherms for the adsorption of human insulin indicated high affinity adsorption, even

  2. Interfacial adsorption of insulin. Conformational changes and reversibility of adsorption

    NARCIS (Netherlands)

    Mollmann, S.H.; Bukrinsky, J.T.; Elofsson, U.; Norde, W.; Frokjaer, S.

    2006-01-01

    The adsorption of human insulin to Teflon particles was studied with respect to conformational changes and the reversibility of adsorption was examined by total internal reflection fluorescence (TIRF). Adsorption isotherms for the adsorption of human insulin indicated high affinity adsorption, even

  3. A GIT interpretration of the Harder-Narasimhan filtration

    OpenAIRE

    Gómez, Tomás L.; Sols, Ignacio; Alfonso, Zamora

    2011-01-01

    An unstable torsion free sheaf on a smooth projective variety gives a GIT unstable point in certain Quot scheme. To a GIT unstable point, Kempf associates a "maximally destabilizing" 1-parameter subgroup, and this induces a filtration of the torsion free sheaf. We show that this filtration coincides with the Harder-Narasimhan filtration.

  4. Origins of the poor filtration characteristics of wheat starch hydrolysates

    NARCIS (Netherlands)

    Matser, A.M.; Steeneken, P.A.M.

    1998-01-01

    The effects of wheat starch components on the filtration characteristics of wheat starch hydrolysates were investigated with a model-based approach. The filtration rate was not affected by the removal of the pentosans or by altering the conformation of the protein. On the other hand, the filtration

  5. Nanoparticles filtration by leaked fibrous filters

    Energy Technology Data Exchange (ETDEWEB)

    Mouret, Guillaume; Calle-Chazelet, Sandrine; Thomas, Dominique; Appert-Collin, Jean-Christophe [Nancy-Universite/LSGC/CNRS - 1 rue Grandville - BP 20451 - F-54001 Nancy Cedex (France)], E-mail: sandrine.calle@ensic.inpl-nancy.fr; Bemer, Denis [INRS - Avenue de Bourgogne - F-54501 Vandoeuvre les Nancy Cedex (France)

    2009-05-01

    The aim of this work is first to measured nanoparticles penetration through three different fiberglass filters intentionally-pierced with calibrated needles at different filtration velocity. Then a semi-empirical model based on the air flow resistances of the new and perforated filter media and on the mechanism of Brownian diffusion for the collection of ultrafine particles by the media enables to well predict the efficiency observed for all tested operating conditions. Results show that the increase of particles penetration is all the more important that the pinhole is large and that the particle diameter is low. Another result is that the filtration efficiency of the new filter media controlled the penetration. A high efficiency filter with a high resistance to air flow will be more damaged than a low efficiency filter when being perforated.

  6. Breakthrough of cyanobacteria in bank filtration.

    Science.gov (United States)

    Pazouki, Pirooz; Prévost, Michèle; McQuaid, Natasha; Barbeau, Benoit; de Boutray, Marie-Laure; Zamyadi, Arash; Dorner, Sarah

    2016-10-01

    The removal of cyanobacteria cells in well water following bank filtration was investigated from a source water consisting of two artificial lakes (A and B). Phycocyanin probes used to monitor cyanobacteria in the source and in filtered well water showed an increase of fluorescence values demonstrating a progressive seasonal growth of cyanobacteria in the source water that were correlated with cyanobacterial biovolumes from taxonomic counts (r = 0.59, p cyanobacteria. Of cyanobacteria that passed through bank filtration, smaller cells were significantly more frequent in well water samples (p cyanobacteria to wells. Winter samples demonstrated that cyanobacteria accumulate within bank filters, leading to continued passage of cells beyond the bloom season. Although no concentrations of total microcystin-LR were above detection limits in filtered well water, there is concern that cyanobacterial cells that reach the wells have the potential to contain intracellular toxins.

  7. Air filtration and indoor air quality

    DEFF Research Database (Denmark)

    Bekö, Gabriel

    2006-01-01

    Demands for better indoor air quality are increasing, since we spend most of our time indoors and we are more and more aware of indoor air pollution. Field studies in different parts of the world have documented that high percentage of occupants in many offices and buildings find the indoor air...... decent ventilation and air cleaning/air filtration, high indoor air quality cannot be accomplished. The need for effective air filtration has increased with increasing evidence on the hazardous effects of fine particles. Moreover, the air contains gaseous pollutants, removal of which requires various air...... cleaning techniques. Supply air filter is one of the key components in the ventilation system. Studies have shown that used ventilation filters themselves can be a significant source of indoor air pollution with consequent impact on perceived air quality, sick building syndrome symptoms and performance...

  8. Integrative filtration research and sustainable nanotechnology

    Institute of Scientific and Technical Information of China (English)

    Jing Wang; Drew Thompson; David Y.H.Pui

    2013-01-01

    With the wide applications of nanomaterials in an array of industries,more concerns are being raised about the occupational health and safety of nanoparticles in the workplace,and implications of nanotechnology on the environment and living systems.Studies on environmental,health and safety (EHS) issues of nanomaterials play a significant role in public acceptance,and eventual sustainability,of nanotechnology.We present research results on three aspects of the EHS studies:characterization and measurement of nanoparticles,nanoparticle emission and exposure at workplaces,and control and abatement of nanoparticle release using filtration technology.Measurement of nanoparticle agglomerates using a newly developed instrument,the Universal Nanoparticle Analyzer,is discussed.Nanoparticle emission and exposure measurement results for carbon nanotubes in the manufacture of nanocomposites and for silicon nanoparticles in their production at a pilot scale facility are presented.Filtration of nanoparticles and nanoparticle agglomerates are also studied.

  9. COMBINED CLASSIFIER FOR WEBSITE MESSAGES FILTRATION

    OpenAIRE

    TARASOV VENIAMIN; MEZENCEVA EKATERINA; KARBAEV DANILA

    2015-01-01

    The paper describes a new approach to website messages filtration using combined classifier. Information security standards for the internet resources require user data protection however the increasing volume of spam messages in interactive sections of websites poses a special problem. Unlike many email filtering solutions the proposed approach is based on the effective combination of Bayes and Fisher methods, which allows us to build accurate and stable spam filter. In this paper we conside...

  10. Aerosol filtration with metallic fibrous filters

    International Nuclear Information System (INIS)

    The filtration efficiency of stainless steel fibrous filters (BEKIPOR porous mats and sintered webs) is determined using submicronic monodisperse polystyrene aerosols. Lasers spectrometers are used for the aerosol measurements. The parameters varied are the fiber diameter, the number of layers, the aerosol diameter and the superficial velocity. Two selected types of filters are tested with polydisperse methylene blue aerosols to determine the effect of bed loading on the filter performance and to test washing techniques for the regeneration of the filter

  11. Portable Hybrid Powered Water Filtration Device

    Directory of Open Access Journals (Sweden)

    Maria Lourdes V. Balansay

    2015-08-01

    Full Text Available The existing water filtration device has features that can be developed to be more useful and functional during emergency situations. The project’s development has been aided by following provisions in PEC, NEC, NEMA and Philippine National Standard for Safe Drinking Water provide standards for the construction of the project. These standards protect both the prototype and the user. These also served as guide for the maintenance of every component. The design of the portable hybrid powered water filtration device shows that the project has more advanced features such as portability and the power supply used such as photovoltaic module solar cells and manually operated generator. This also shows its effectiveness and reliability based on the results of discharging test, water quality test and water production test. Based on analysis of the overall financial aspects, the machine can be profitable and the amount of revenue and operating cost will increase as years pass. Using the proper machine/ tools and methods of fabrication helps in easy assembly of the project. The materials and components used are cost effective and efficient. The best time for charging the battery using solar panel is 9:00 am onwards while the hand crank generator is too slow because the generated current is little. The water filtration device is very efficient regarding the operating hours and water production. The machine may have a great effect to society and economy in generation of clean available water at less cost.

  12. Breakthrough of cyanobacteria in bank filtration.

    Science.gov (United States)

    Pazouki, Pirooz; Prévost, Michèle; McQuaid, Natasha; Barbeau, Benoit; de Boutray, Marie-Laure; Zamyadi, Arash; Dorner, Sarah

    2016-10-01

    The removal of cyanobacteria cells in well water following bank filtration was investigated from a source water consisting of two artificial lakes (A and B). Phycocyanin probes used to monitor cyanobacteria in the source and in filtered well water showed an increase of fluorescence values demonstrating a progressive seasonal growth of cyanobacteria in the source water that were correlated with cyanobacterial biovolumes from taxonomic counts (r = 0.59, p bank filtration estimated from taxonomic counts ranged from 0.96 ± (0.5) and varied according to the species of cyanobacteria. Of cyanobacteria that passed through bank filtration, smaller cells were significantly more frequent in well water samples (p bank filters, leading to continued passage of cells beyond the bloom season. Although no concentrations of total microcystin-LR were above detection limits in filtered well water, there is concern that cyanobacterial cells that reach the wells have the potential to contain intracellular toxins. PMID:27343842

  13. Aerosol Filtration Application Using Fibrous Media An Industrial Perspective

    Institute of Scientific and Technical Information of China (English)

    杨传芳

    2012-01-01

    Filtration of aerosol particles using non-woven fibrous media is a common practice for air cleaning. It has found wide applications in industries and our daily lives. This paper overviews some of these applications and provides an industrial perspective. It starts from discussing aerosol filtration theory, followed by a brief review on the advancement of filtration media. After that, filtration applications in respiratory protection, dust collection, and engine in-take air cleaning are elaborated. These are the areas that the author sees as the typical needed ones in China's fast pace economical development endeavor, where air filtration enables the protection of human health, environment and equipment for sustainability.

  14. Filtration Combustion in Smoldering and SHS

    Science.gov (United States)

    Matkowsky, Bernard J.

    2001-01-01

    Smolder waves and SHS (self-propagating high-temperature synthesis) waves are both examples of filtration combustion waves propagating in porous media. Smoldering combustion is important for the study of fire safety. Smoldering itself can cause damage, its products are toxic and it can also lead to the more dangerous gas phase combustion which corresponds to faster propagation at higher temperatures. In SHS , a porous solid sample, consisting of a finely ground powder mixture of reactants, is ignited at one end. A high temperature thermal wave, having a frontal structure, then propagates through the sample converting reactants to products. The SHS technology appears to enjoy a number of advantages over the conventional technology, in which the sample is placed in a furnace and "baked" until it is "well done". The advantages include shorter synthesis times, greater economy, in that the internal energy of the reactions is employed rather than the costly external energy of the furnace, purer products, simpler equipment and no intrinsic limitation on the size of the sample to be synthesized as exists in the conventional technology. When delivery of reactants through the pores to the reaction site is an important aspect of the combustion process, it is referred to as filtration combustion. The two types of filtration combustion have a similar mathematical formulation, describing the ignition, propagation and extinction of combustion waves in porous media. The goal in each case, however, is different. In smoldering the desired goal is to prevent propagation, whereas in SHS the goal is to ensure propagation of the combustion wave, leading to the synthesis of desired products. In addition, the scales in the two areas of application differ. Smoldering generally occurs at lower temperatures and propagation velocities than in SHS nevertheless, the two applications have much in common so that what is learned fit make application can be used to advantage in the other. In porous

  15. Characterization of Filtration Scale-Up Performance

    Energy Technology Data Exchange (ETDEWEB)

    Daniel, Richard C.; Billing, Justin M.; Luna, Maria L.; Cantrell, Kirk J.; Peterson, Reid A.; Bonebrake, Michael L.; Shimskey, Rick W.; Jagoda, Lynette K.

    2009-03-09

    The scale-up performance of sintered stainless steel crossflow filter elements planned for use at the Pretreatment Engineering Platform (PEP) and at the Waste Treatment and Immobilization Plant (WTP) were characterized in partial fulfillment (see Table S.1) of the requirements of Test Plan TP RPP WTP 509. This test report details the results of experimental activities related only to filter scale-up characterization. These tests were performed under the Simulant Testing Program supporting Phase 1 of the demonstration of the pretreatment leaching processes at PEP. Pacific Northwest National Laboratory (PNNL) conducted the tests discussed herein for Bechtel National, Inc. (BNI) to address the data needs of Test Specification 24590-WTP-TSP-RT-07-004. Scale-up characterization tests employ high-level waste (HLW) simulants developed under the Test Plan TP-RPP-WTP-469. The experimental activities outlined in TP-RPP-WTP-509 examined specific processes from two broad areas of simulant behavior: 1) leaching performance of the boehmite simulant as a function of suspending phase chemistry and 2) filtration performance of the blended simulant with respect to filter scale-up and fouling. With regard to leaching behavior, the effect of anions on the kinetics of boehmite leaching was examined. Two experiments were conducted: 1) one examined the effect of the aluminate anion on the rate of boehmite dissolution and 2) another determined the effect of secondary anions typical of Hanford tank wastes on the rate of boehmite dissolution. Both experiments provide insight into how compositional variations in the suspending phase impact the effectiveness of the leaching processes. In addition, the aluminate anion studies provide information on the consequences of gibbsite in waste. The latter derives from the expected fast dissolution of gibbsite relative to boehmite. This test report concerns only results of the filtration performance with respect to scale-up. Test results for boehmite

  16. Removal of pathogens using riverbank filtration

    Science.gov (United States)

    Cote, M. M.; Emelko, M. B.; Thomson, N. R.

    2003-04-01

    Although more than hundred years old, in situ or Riverbank Filtration (RBF) has undergone a renewed interest in North America because of its potential as a surface water pre-treatment tool for removal of pathogenic microorganisms. A new RBF research field site has been constructed along the banks of the Grand River in Kitchener, Ontario, Canada to assess factors influencing pathogen removal in the subsurface. Implementation of RBF and appropriate design of subsequent treatment (UV, chlorination, etc.) processes requires successful quantification of in situ removals of Cryptosporidium parvum or a reliable surrogate parameter. C.~parvum is often present in surface water at low indigenous concentrations and can be difficult to detect in well effluents. Since releases of inactivated C.~parvum at concentrations high enough for detection in well effluents are cost prohibitive, other approaches for demonstrating effective in situ filtration of C.~parvum must be considered; these include the use of other microbial species or microspheres as indicators of C.~parvum transport in the environment. Spores of Bacillus subtilis may be considered reasonable indicators of C.~parvum removal by in situ filtration because of their size (˜1 μm in diameter), spherical shape, relatively high indigenous concentration is many surface waters, and relative ease of enumeration. Based on conventional particle filtration theory and assuming equivalent chemical interactions for all particle sizes, a 1 μm B.~subtilis spore will be removed less readily than a larger C. parvum oocyst (4-6 μm) in an ideal granular filter. Preliminary full-scale data obtained from a high rate RBF production well near the new RBF test site demonstrated greater than 1 log removal of B.~subtilis spores. This observed spore removal is higher than that prescribed by the proposed U.S. Long Term 2 Enhanced Surface Water Treatment Rule for C.~parvum. To further investigate the removal relationship between C

  17. Structure sensitivity in adsorption

    DEFF Research Database (Denmark)

    Hammer, Bjørk; Nielsen, Ole Holm; Nørskov, Jens Kehlet

    1997-01-01

    The structure sensitivity of CO adsorption on different flat, stepped, kinked and reconstructed Pt surfaces is studied using large-scale density-functional calculations. We find an extremely strong structure sensitivity in the adsorption energy with variations up to 1 eV (or 100%) from one...

  18. A Simple Adsorption Experiment

    Science.gov (United States)

    Guirado, Gonzalo; Ayllon, Jose A.

    2011-01-01

    The study of adsorption phenomenon is one of the most relevant and traditional physical chemistry experiments performed by chemistry undergraduate students in laboratory courses. In this article, we describe an easy, inexpensive, and straightforward way to experimentally determine adsorption isotherms using pieces of filter paper as the adsorbent…

  19. Removal of aqueous nC60 fullerene from water by low pressure membrane filtration.

    Science.gov (United States)

    Floris, R; Nijmeijer, K; Cornelissen, E R

    2016-03-15

    The potential environmental and health risks of engineered nanoparticles such as buckminsterfullerene C60 in water require their removal during the production of drinking water. We present a study focusing on (i) the removal mechanism and (ii) the elucidation of the role of the membrane pore size during removal of nC60 fullerene nanoparticle suspensions in dead-end microfiltration and ultrafiltration mimicking separation in real industrial water treatment plants. Membranes were selected with pore sizes ranging from 18 nm to 500 nm to determine the significance of the nC60 to membrane pore size ratio and the adsorption affinity between nC60 and membrane material during filtration. Experiments were carried out with a dead-end bench-scale system operated at constant flux conditions including a hydraulic backwash cleaning procedure. nC60 nanoparticles can be efficiently removed by low pressure membrane technology with smaller and, unexpectedly, also by mostly similar or larger pores than the particle size, although the nC60 filtration behaviour appeared to be different. The nC60 size to membrane pore size ratio and the ratio of the cake-layer deposition resistance to the clean membrane resistance, both play an important role on the nC60 filtration behaviour and on the efficiency of the backwash procedure recovering the initial membrane filtration conditions. These results become specifically significant in the context of drinking water production, for which they provide relevant information for an accurate selection between membrane processes and operational parameters for the removal of nC60 in the drinking water treatment.

  20. Efficient Filtration of Effluent Organic Matter by Polycation-Clay Composite Sorbents: Effect of Polycation Configuration on Pharmaceutical Removal.

    Science.gov (United States)

    Shabtai, Itamar A; Mishael, Yael G

    2016-08-01

    Hybrid polycation-clay composites, based on methylated poly vinylpyridinium, were optimized as sorbents for secondary effluent organic matter (EfOM) including emerging micropollutants. Composite structure was tuned by solution ionic strength and characterized by zeta potential, FTIR, X-ray diffraction, and thermal gravimetric analyses. An increase in ionic strength induced a transition from a train to a loops and tails configuration, accompanied by greater polycation adsorption. Composite charge reversal (zeta potential -18 to 45 mV) increased the adsorption of EfOM and humic acid (HA), moderately and sharply, respectively, suggesting electrostatic and also nonspecific interactions with EfOM. Filtration of EfOM by columns of positively charged composites was superior to that of granular activated carbon (GAC). The overall removal of EfOM was most efficient by the composite with a train configuration. Whereas a composite with a loops and tails configuration was beneficial for the removal of the anionic micropollutants diclofenac, gemfibrozil and ibuprofen from EfOM. These new findings suggest that the loops and tails may offer unique binding sites for small micropollutants which are overseen by the bulk EfOM. Furthermore, they may explain our previous observations that in the presence of dissolved organic matter, micropollutant filtration by GAC columns was reduced, while their filtration by composite columns remained high. PMID:27397603

  1. Transfer and transport of aluminum in filtration unit

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Aluminum salt coagulants were used prevalently in various water works. In this article, the effects of filtration on residual aluminum concentration and species distribution were researched by determining the concentration of different Aluminum species before and after single layer filter, double layer filter, and membrane filtration units. In the research, size exclusion chromatography (SEC) was used to separate colloidal and soluble aluminum, ion exchange chromatography (IEC) was used to separate organic and inorganic aluminum, and inductivity coupled plasma-atomic emission spectrometry (ICP-AES) was used to determine the aluminum concentration. The results showed that the rapid filtration process had the ability of removing residual aluminum from coagulant effluent water, and that double layer filtration was more effective in residual aluminum removal than single layer filtration, while Nano filtration was more effective than micro filtration. It was found that when the residual aluminum concentration was below 1mg/L in sediment effluent, the residual aluminum concentration in treated water was above 0.2 mg/L. The direct rapid filtration process mainly removed the suspended aluminum. The removal of soluble and colloidal aluminum was always less than 10% and the natural small particles that adsorbed the amount of soluble or small particles aluminum on their surface were difficult to be removed in this process. Micro filtration and nano filtration were good technologies for removing aluminum; the residual aluminum concentration in the effluent was less than 0.05 mg/L.

  2. Adsorption combined with ultrafiltration to remove organic matter from seawater.

    Science.gov (United States)

    Tansakul, Chatkaew; Laborie, Stéphanie; Cabassud, Corinne

    2011-12-01

    Organic fouling and biofouling are the major severe types of fouling of reverse osmosis (RO) membranes in seawater (SW) desalination. Low pressure membrane filtration such as ultrafiltration (UF) has been developed as a pre-treatment before reverse osmosis. However, UF alone may not be an effective enough pre-treatment because of the existence of low-molecular weight dissolved organic matter in seawater. Therefore, the objective of the present work is to study a hybrid process, powdered activated carbon (PAC) adsorption/UF, with real seawater and to evaluate its performance in terms of organic matter removal and membrane fouling. The effect of different PAC types and concentrations is evaluated. Stream-activated wood-based PAC addition increased marine organic matter removal by up to 70% in some conditions. Moreover, coupling PAC adsorption with UF decreased UF membrane fouling and the fouling occurring during short-term UF was totally reversible. It can be concluded that the hybrid PAC adsorption/UF process performed in crossflow filtration mode is a relevant pre-treatment process before RO desalination, allowing organic matter removal of 75% and showing no flux decline for short-term experiments. PMID:21996607

  3. Reverse osmosis concentrate treatment via a PAC-MF accumulative countercurrent adsorption process.

    Science.gov (United States)

    Zhao, Chunxia; Gu, Ping; Cui, Hangyu; Zhang, Guanghui

    2012-01-01

    Organic pollutants in reverse osmosis (RO) concentrates from wastewater reclamation are mainly comprised of low molecular weight biorefractory compounds. Generally, advanced oxidation methods for oxidizing these organics require a relatively high level of energy consumption. In addition, conventional adsorption removal methods require a large dose of activated carbon. However, the dose can be reduced if its full adsorption capacity can be used. Therefore, the combined technology of powdered activated carbon (PAC) adsorption and microfiltration (MF) membrane filtration was studied to develop a countercurrent two-stage adsorption process. A PAC accumulative adsorption prediction method was proposed based on the verification of a PAC multi-stage adsorption capacity equation. Moreover, the prediction method was amended for a more accurate prediction of the effluent quality because adsorption isotherm constants were affected by the initial adsorbate concentration. The required PAC dose for the accumulative countercurrent two-stage adsorption system was 0.6 g/L, whereas that of the conventional adsorption process was 1.05 g/L when the dilution factor(F) was 0.1 and the COD and DOC removal rates were set to 70% and 68.1%, respectively. Organic pollutants were satisfactorily removed with less consumption of PAC. Effluent from this combined technology can be further reclaimed by an RO process to improve the overall recovery rate to between 91.0% and 93.8% with both economic and environmental benefits.

  4. Reverse osmosis concentrate treatment via a PAC-MF accumulative countercurrent adsorption process.

    Science.gov (United States)

    Zhao, Chunxia; Gu, Ping; Cui, Hangyu; Zhang, Guanghui

    2012-01-01

    Organic pollutants in reverse osmosis (RO) concentrates from wastewater reclamation are mainly comprised of low molecular weight biorefractory compounds. Generally, advanced oxidation methods for oxidizing these organics require a relatively high level of energy consumption. In addition, conventional adsorption removal methods require a large dose of activated carbon. However, the dose can be reduced if its full adsorption capacity can be used. Therefore, the combined technology of powdered activated carbon (PAC) adsorption and microfiltration (MF) membrane filtration was studied to develop a countercurrent two-stage adsorption process. A PAC accumulative adsorption prediction method was proposed based on the verification of a PAC multi-stage adsorption capacity equation. Moreover, the prediction method was amended for a more accurate prediction of the effluent quality because adsorption isotherm constants were affected by the initial adsorbate concentration. The required PAC dose for the accumulative countercurrent two-stage adsorption system was 0.6 g/L, whereas that of the conventional adsorption process was 1.05 g/L when the dilution factor(F) was 0.1 and the COD and DOC removal rates were set to 70% and 68.1%, respectively. Organic pollutants were satisfactorily removed with less consumption of PAC. Effluent from this combined technology can be further reclaimed by an RO process to improve the overall recovery rate to between 91.0% and 93.8% with both economic and environmental benefits. PMID:22082527

  5. Martingale representation property in progressively enlarged filtrations

    CERN Document Server

    Jeanblanc, M

    2012-01-01

    Consider $\\mathbb{G}$ the progressive enlargement of a filtration $\\mathbb{F}$ with a random time $\\tau$. Assuming that, in $\\mathbb{F}$, the martingale representation property holds, we examine conditions under which the martingale representation property holds also in $\\mathbb{G}$. It is noted that the classical results on this subject are no more sufficient to deal with all examples coming from credit risk modeling. In this paper, we introduce a new methodology which extends the various classical results and applies on recent examples.

  6. The Effect of Cyanobacterial Biomass Enrichment by Centrifugation and GF/C Filtration on Subsequent Microcystin Measurement

    Directory of Open Access Journals (Sweden)

    Shelley Rogers

    2015-03-01

    Full Text Available Microcystins are cyclic peptides produced by multiple cyanobacterial genera. After accumulation in the liver of animals they inhibit eukaryotic serine/threonine protein phosphatases, causing liver disease or death. Accurate detection/quantification of microcystins is essential to ensure safe water resources and to enable research on this toxin. Previous methodological comparisons have focused on detection and extraction techniques, but have not investigated the commonly used biomass enrichment steps. These enrichment steps could modulate toxin production as recent studies have demonstrated that high cyanobacterial cell densities cause increased microcystin levels. In this study, three microcystin-producing strains were processed using no cell enrichment steps (by direct freezing at three temperatures and with biomass enrichment (by centrifugation or GF/C filtration. After extraction, microcystins were analyzed using liquid chromatography-tandem mass spectrometry. All processing methods tested, except GF/C filtration, resulted in comparable microcystin quotas for all strains. The low yields observed for the filtration samples were caused by adsorption of arginine-containing microcystins to the GF/C filters. Whilst biomass enrichment did not affect microcystin metabolism over the time-frame of normal sample processing, problems associated with GF/C filtration were identified. The most widely applicable processing method was direct freezing of samples as it could be utilized in both field and laboratory environments.

  7. New magnetic-enhanced adsorption process for wastewater treatment

    Energy Technology Data Exchange (ETDEWEB)

    Cotten, G.B.; Navratil, J.D. [Idaho National Engineering and Environmental Lab., Idaho Falls, ID (United States); Sebesta, F. [Czech Tech Univ. (Czech Republic)

    1999-09-01

    Radioactive and nonradioactive metal ion and particulate species in aqueous solutions present a formidable treatment problem for the nuclear and commercial industries. An economical and highly effective system for the treatment of wastewater containing these metal species is presented that uses a new magnetic enhanced adsorption technique. The process employs low-cost magnetite (FeO{center_dot}Fe{sub 2}O{sub 3}) supported on various organic and inorganic support media, and an external magnetic field to couple the inherent sorption properties of the magnetite with a high gradient magnetic separation technique. This combination of sorption techniques offers several advantages over current filtration and ion exchange systems and removes a variety of heavy metals and radioactive species. Filtration systems do not remove ionic species, and ion exchange systems can be plugged by particulate matter, which may limit the amount of exchange sites able to be accessed.

  8. Competitive Protein Adsorption - Multilayer Adsorption and Surface Induced Protein Aggregation

    DEFF Research Database (Denmark)

    Holmberg, Maria; Hou, Xiaolin

    2009-01-01

    In this study, competitive adsorption of albumin and IgG (immunoglobulin G) from human serum solutions and protein mixtures onto polymer surfaces is studied by means of radioactive labeling. By using two different radiolabels (125I and 131I), albumin and IgG adsorption to polymer surfaces...... is monitored simultaneously and the influence from the presence of other human serum proteins on albumin and IgG adsorption, as well as their mutual influence during adsorption processes, is investigated. Exploring protein adsorption by combining analysis of competitive adsorption from complex solutions...... of high concentration with investigation of single protein adsorption and interdependent adsorption between two specific proteins enables us to map protein adsorption sequences during competitive protein adsorption. Our study shows that proteins can adsorb in a multilayer fashion onto the polymer surfaces...

  9. Dynamic optimization of a dead-end filtration trajectory : Non-ideal cake filtration

    NARCIS (Netherlands)

    Blankert, Bastiaan; Kattenbelt, Carolien; Betlem, Ben H.L.; Roffel, Brian

    2007-01-01

    A control strategy aimed at minimizing energy consumption is formulated for non-ideal dead-end cake filtration with an inside-out hollow fiber ultrafiltration membrane system. The non-ideal behavior was assumed to originate from cake compression, non-linear cake resistance and a variable pump effici

  10. A study of dynamic filtration; Um estudo sobre filtracao dinamica

    Energy Technology Data Exchange (ETDEWEB)

    Girao, Joaquim Helder S. [PETROBRAS, Natal, RN (Brazil). Distrito de Perfuracao da Bacia Potiguar. Div. de Tecnicas de Perfuracao

    1989-12-31

    The problems that cause cost increase such as: formation damage and borehole swelling or caving lead us to study the filtration of the liquid part of formation drilling fluid. With the aim of comparing static and dynamic filtration rates, we developed a modest dynamic filtration equipment, consisting of a modified API filter, connected to reservoir by means of a positive injection pump. We carried out various tests, and the results were set in charts and tables. Through these, it is possible to notice how the static and dynamic filtration curves come apart for a same pressure value. We also evaluated the effects of circulation speed, starch concentration and counter pressure. This paper does not include calculations or mathematical models accounting for filtrate invasion radii, but it demonstrates, for example, that cleaning circulation will cause lower filtration rates at lower flows. (author) 5 refs., 11 figs., 14 tabs.

  11. Renal filtration function in patients with gout

    Directory of Open Access Journals (Sweden)

    N. N. Kushnarenko

    2016-01-01

    Full Text Available Aim. To study circadian blood pressure (BP profile in patients with gout depending on the presence of arterial hypertension (HT and their relationship to the renal filtration function.Material and methods. Patients with gout (n=87 were included into the study. All the patients underwent ambulatory BP monitoring (ABPM with the assessment of circadian BP profile, determination of uric acid serum levels, glomerular filtration rate (GFR was evaluated by CKD-EPI method. Depending on GFR level, all the patients were divided into 2 groups - with renal dysfunction or without one.Results. ABPM revealed circadian BP dysregulation in 55% of gout patients both with HT and without HT. Chronic kidney disease (CKD was revealed in 72.4% of male patients, with the prevalence in patients with HT (76.6 vs 61%; p<0.001. Correlations between uric acid levels and some ABPM indicators and GFR were determined.Conclusion. Obtained data suggest the contribution of hyperuricemia in disorders of systemic and renal hemodynamics, leading to the early development of CKD.

  12. Electrospinning of nanofibers for filtration media

    Science.gov (United States)

    Park, Hyoungjun

    Since particulate impurity is regarded as the primary cause of lung diseases, purification of air has been a crucial issue. Filtration is the most conventional method to obtain clean air, whereby particulate matter is collected on a fibrous media. The use of fibrous filters is prevalent because of their high filtration efficiency and low pressure drop. Fibrous filters were fabricated via the electrospinning process which can be used to produce continuous submicron-diameter sized fibers. Polyacrylonitrile (PAN) nanofibers with a mean fiber diameter of 224 nm were electrospun to form fibermats. Filtration tests on fibermats of PAN were conducted to confirm that filters of thinner fibers result in higher collection efficiencies and lower pressure drops than that of thicker fibers as predicted by the theoretical filtration mechanism. Results showed that electrospun PAN nanofibermats had a superior quality factor of 0.067+/-0 compared to 0.031+/-0.001 by the current state-of-the-art microfiber-based high particulate air (HEPA) filtration media. The verified theory implies that nanofibermats of other types of materials could also be considered as promising filtration media since filtration performance is independent of the material used. As materials for advanced next-generation filtration media, ceramics are favored over polymeric materials due to their robustness against environmental factors such as ultraviolet rays, abrasive particles, and high temperature all of which degrade and damage the fibrous structure. Amidst various ceramic materials, the anatase phase of TiO2 was selected due to its mechanical property and versatility as a photocatalyst and microwave-absorbing material. Anatase TiO2 fibers were fabricated by electrospinning followed by heat treatment at 500°C for 3 hours. However, early precipitation or gelation of the organic solvent-based TiO2 sol posed a practical challenge in the sample preparation. In order to enhance stability of the precursor sol, a

  13. Tailoring Supramolecular Nanofibers for Air Filtration Applications.

    Science.gov (United States)

    Weiss, Daniel; Skrybeck, Dominik; Misslitz, Holger; Nardini, David; Kern, Alexander; Kreger, Klaus; Schmidt, Hans-Werner

    2016-06-15

    The demand of new materials and processes for nanofiber fabrication to enhance the performance of air filters is steadily increasing. Typical approaches to obtain nanofibers are based on top-down processes such as melt blowing, centrifugal spinning, and electrospinning of polymer materials. However, fabrication of polymer nanofibers is limited with respect to either a sufficiently high throughput or the smallest achievable fiber diameter. This study reports comprehensively on a fast and simple bottom-up process to prepare supramolecular nanofibers in situ inside viscose/polyester microfiber nonwovens. Here, selected small molecules of the materials class of 1,3,5-benzenetrisamides are employed. The microfiber-nanofiber composites exhibit a homogeneous nanofiber distribution and morphology throughout the entire nonwoven scaffold. Small changes in molecular structure and processing solvent have a strong influence on the final nanofiber diameter and diameter distribution and, consequently, on the filtration performance. Choosing proper processing conditions, microfiber-nanofiber composites with surprisingly high filtration efficiencies of particulate matter are obtained. In addition, the microfiber-nanofiber composite integrity at elevated temperatures was determined and revealed that the morphology of supramolecular nanofibers is maintained compared to that of the utilized polymer nonwoven. PMID:27183242

  14. EM Task 9 - Centrifugal Membrane Filtration

    International Nuclear Information System (INIS)

    This project is designed to establish the utility of a novel centrifugal membrane filtration technology for the remediation of liquid mixed waste streams at US Department of Energy (DOE) facilities in support of the DOE Environmental Management (EM) program. The Energy and Environmental Research Center (EERC) has teamed with SpinTek Membrane Systems, Inc., a small business and owner of the novel centrifugal membrane filtration technology, to establish the applicability of the technology to DOE site remediation and the commercial viability of the technology for liquid mixed waste stream remediation. The technology is a uniquely configured process that makes use of ultrafiltration and centrifugal force to separate suspended and dissolved solids from liquid waste streams, producing a filtered water stream and a low-volume contaminated concentrate stream. This technology has the potential for effective and efficient waste volume minimization, the treatment of liquid tank wastes, the remediation of contaminated groundwater plumes, and the treatment of secondary liquid waste streams from other remediation processes, as well as the liquid waste stream generated during decontamination and decommissioning activities

  15. METC CFD simulations of hot gas filtration

    Energy Technology Data Exchange (ETDEWEB)

    O`Brien, T.J.

    1995-06-01

    Computational Fluid Dynamic (CFD) simulations of the fluid/particle flow in several hot gas filtration vessels will be presented. These simulations have been useful in designing filtration vessels and in diagnosing problems with filter operation. The simulations were performed using the commercial code FLUENT and the METC-developed code MFIX. Simulations of the initial configuration of the Karhula facility indicated that the dirty gas flow over the filter assemblage was very non-uniform. The force of the dirty gas inlet flow was inducing a large circulation pattern that caused flow around the candles to be in opposite directions on opposite sides of the vessel. By introducing a system of baffles, a more uniform flow pattern was developed. This modification may have contributed to the success of the project. Several simulations of configurations proposed by Industrial Filter and Pump were performed, varying the position of the inlet. A detailed resolution of the geometry of the candles allowed determination of the flow between the individual candles. Recent simulations in support of the METC/CeraMem Cooperative Research and Development Agreement have analyzed the flow in the vessel during the cleaning back-pulse. Visualization of experiments at the CeraMem cold-flow facility provided confidence in the use of CFD. Extensive simulations were then performed to assist in the design of the hot test facility being built by Ahlstrom/Pyropower. These tests are intended to demonstrate the CeraMem technology.

  16. In-Water Hull Cleaning & Filtration System

    Science.gov (United States)

    George, Dan

    2015-04-01

    Dan George R & D Mining Technology LinkedIn GRD Franmarine have received the following prestigious awards in 2014 for their research & development of an in-water hull cleaning and filtration system "The Envirocart: Golden Gecko Award for Environmental Excellence; WA Innovator of the Year - Growth Sector; Department of Fisheries - Excellence in Marine Biosecurity Award - Innovation Category; Lloyd's List Asia Awards - Environmental Award; The Australian Innovation Challenge - Environment, Agriculture and Food Category; and Australian Shipping and Maritime Industry Award - Environmental Transport Award. The Envirocart developed and patented by GRD Franmarine is a revolutionary new fully enclosed capture and containment in-water hull cleaning technology. The Envirocart enables soft Silicon based antifouling paints and coatings containing pesticides such as Copper Oxide to be cleaned in situ using a contactless cleaning method. This fully containerised system is now capable of being deployed to remote locations or directly onto a Dive Support Vessel and is rated to offshore specifications. This is the only known method of in-water hull cleaning that complies with the Department of Agriculture Fisheries and Forestry (DAFF) and Department of Fisheries WA (DoF) Guidelines. The primary underwater cleaning tool is a hydraulically powered hull cleaning unit fitted with rotating discs. The discs can be fitted with conventional brushes for glass or epoxy based coatings or a revolutionary new patented blade system which can remove marine biofouling without damaging the antifouling paint (silicone and copper oxide). Additionally there are a patented range of fully enclosed hand cleaning tools for difficult to access niche areas such as anodes and sea chests, providing an innovative total solution that enables in-water cleaning to be conducted in a manner that causes no biological risk to the environment. In full containment mode or when AIS are present, material is pumped

  17. Hybrid adsorptive membrane reactor

    Science.gov (United States)

    Tsotsis, Theodore T.; Sahimi, Muhammad; Fayyaz-Najafi, Babak; Harale, Aadesh; Park, Byoung-Gi; Liu, Paul K. T.

    2011-03-01

    A hybrid adsorbent-membrane reactor in which the chemical reaction, membrane separation, and product adsorption are coupled. Also disclosed are a dual-reactor apparatus and a process using the reactor or the apparatus.

  18. Hybrid adsorptive membrane reactor

    Science.gov (United States)

    Tsotsis, Theodore T. (Inventor); Sahimi, Muhammad (Inventor); Fayyaz-Najafi, Babak (Inventor); Harale, Aadesh (Inventor); Park, Byoung-Gi (Inventor); Liu, Paul K. T. (Inventor)

    2011-01-01

    A hybrid adsorbent-membrane reactor in which the chemical reaction, membrane separation, and product adsorption are coupled. Also disclosed are a dual-reactor apparatus and a process using the reactor or the apparatus.

  19. Adsorption behaviour of bulgur.

    Science.gov (United States)

    Erbaş, Mustafa; Aykın, Elif; Arslan, Sultan; Durak, Atike N

    2016-03-15

    The aim of this research was to determine the adsorption behaviour of bulgur. Three different particle sizes (2dry matter and 4.96-16.57, respectively. Constant k was between 0.85 and 0.93, and GAB equation was determined to fit very well for bulgur adsorption, because of %E values lower than 10%. Bulgur must be stored below 70% relative humidity and with less than 10 g water per 100 g of dry mater. PMID:26575716

  20. Removal of Cryptosporidium parvum in bank filtration systems

    Science.gov (United States)

    Harter, T.; Atwill, E. R.; Hou, L. L.

    2003-04-01

    The protozoan pathogen Cryptosporidium parvum is a leading cause of waterborne disease. Many surface water systems therefore depend on filtration systems, including bank filtration systems, for the removal of the pathogenic oocysts. To better understand the effectiveness, e.g., of bank filtration systems, we have implemented a series of columns studies under various environmental conditions (column length: 10 cm - 60 cm, flow rates: 0.7 m/d - 30 m/d, ionic strength: 0.01 - 100 mM, filter grain size: 0.2 - 2 mm, various solution chemistry). We show that classic colloid filtration theory is a reasonable tool for predicting the initial breakthrough of C. parvum in pulsed injections of the oocyst through sand columns, although the model does not account for the significant tailing that occurs in C. parvum transport. Application of colloid filtration theory to bank filtration system is further limited by the intrinsic heterogeneity of the geologic systems used for bank filtration. We couple filtration theory with a stochastic subsurface transport approach and with percolation theory to account for the effects of intrinsic heterogeneity. We find that a 1-log removal can be achieved even under relatively adverse conditions (low collision efficiency, high velocity) if 85% - 90% of the sedimentary hydrofacies located within the bank filtration system or of the coarsest known hydrofacies connecting the riverbed with the extraction system has a grain-size distribution with a 10% passing diameter equal to 1 mm. One millimeter is a standard sieve size in sediment analysis.

  1. Filtration of triazine herbicides by polymer-clay sorbents: coupling an experimental mechanistic approach with empirical modeling.

    Science.gov (United States)

    Gardi, Ido; Nir, Shlomo; Mishael, Yael G

    2015-03-01

    Triazine herbicides detected in surface and groundwater pose environmental and health risks. Removal of triazine herbicides (simazine, atrazine and terbuthylazine) by polymer-clay composites was studied and modeled. Their binding by a poly 4-vinyl pyridine co styrene-montmorillonite (HPVP-CoS-MMT) composite was especially high due to specific interactions between the herbicides and polymer, mainly hydrogen bonds and π-π stacking. The binding kinetics to the composite was in the order of simazine > atrazine > terbuthylazine, which was in accord with their equilibrium Langmuir binding coefficients; 44,000, 17,500 and 16,500 M(-1), respectively, which correlated with herbicide accessibility to form specific interaction with the polymer. Simazine binding kinetics to the composite was significantly faster than to granulated activated carbon (GAC), reaching 93% vs 38% of the maximal adsorption within 10 min, respectively. Herbicide filtration by composite columns was adequately fitted by a model which considers convection and employs Langmuir formalism for kinetics of adsorption/desorption. Filtration of simazine (10 μg L(-1)) by composite columns (40 cm long, which included 26 g composite mixed with sand 1:40 (weight ratio)), was well predicted by the model with nearly 120 L purified, i.e., effluent concentrations were below regulation limit (3 μg L(-1)). Effluent concentrations from GAC columns exceeded the limit after filtering 5 L. Experimental results and model predictions suggest that while GAC has a high capacity for simazine binding, the composite has higher affinity towards the herbicide and its adsorption is faster, which yields more efficient filtration by composite columns. PMID:25506764

  2. Phosphate adsorption performance of a novel filter substrate made from drinking water treatment residuals.

    Science.gov (United States)

    Wang, Wendong; Ma, Cui; Zhang, Yinting; Yang, Shengjiong; Shao, Yue; Wang, Xiaochang

    2016-07-01

    Phosphate is one of the most predominant pollutants in natural waters. Laboratory experiments were conducted to investigate the phosphate adsorption performance of a (NFS) made from drinking water treatment residuals. The adsorption of phosphate on the NFS fitted well with the Freundlich isotherm and pseudo second-order kinetic models. At pH7.0, the maximum adsorption capacity of 1.03mg/g was achieved at 15°C corresponding to the wastewater temperature in cold months, and increased notably to 1.31mg/g at 35°C. Under both acidic conditions (part of the adsorption sites was consumed) and basic conditions (negative charges formed on the surface of NFS, which led to a static repulsion of PO4(3-) and HPO4(2-)), the adsorption of phosphate was slightly inhibited. Further study showed that part of the adsorption sites could be recovered by 0.25mol/L NaOH. The activation energy was calculated to be above 8.0kJ/mol, indicating that the adsorption of phosphate on NFS was probably a chemical process. Considering the strong phosphate adsorption capacity and recoverability, NFS showed great promise on enhancing phosphate removal from the secondary treated wastewater in the filtration process.

  3. Random sequential adsorption of human adenovirus 2 onto polyvinylidene fluoride surface influenced by extracellular polymeric substances.

    Science.gov (United States)

    Lu, Ruiqing; Li, Qi; Nguyen, Thanh H

    2016-03-15

    Virus removal by membrane bioreactors depends on virus-membrane and virus-foulant interactions. The adsorption of human adenovirus 2 (HAdV-2) on polyvinylidene fluoride (PVDF) membrane and a major membrane foulant, extracellular polymeric substances (EPS), were measured in a quartz crystal microbalance. In 3-100mM CaCl2 solutions, irreversible adsorption of HAdV-2 was observed on both pristine and EPS-fouled PVDF surfaces. The HAdV-2 adsorption kinetics was successfully fitted with the random sequential adsorption (RSA) model. The applicability of the RSA model for HAdV-2 adsorption is confirmed by comparing the two fitting parameters, adsorption rate constant k(a) and area occupied by each adsorbed HAdV-2 particle a, with experimentally measured parameters. A linear correlation between the fitting parameter k(a) and the measured attachment efficiency was found, suggesting that the RSA model correctly describes the interaction forces dominating the HAdV-2 adsorption. By comparing the fitting parameter d(ads) with the hydrodynamic diameter of HAdV-2, we conclude that virus-virus and virus-surface interactions determine the area occupied by each adsorbed HAdV-2 particle, and thus influence the adsorption capacity. These results provide insights into virus retention and will benefit improving virus removal in membrane filtration.

  4. Simulation of impaction filtration by a porous filter

    NARCIS (Netherlands)

    Ghazaryan, L.; Lopez Penha, D.J.; Geurts, B.J.; Stolz, S.; Winkelmann, C.; Vafai, K.

    2010-01-01

    We present a new numerical approach for estimating filtration through porous media from first principles. We numerically simulate particle motion as arises in a carrier gas flow. The filtration we look at occurs due to impaction of particles with obstructing surfaces that are contained in the solid

  5. Scaling and particulate fouling in membrane filtration systems

    NARCIS (Netherlands)

    Boerlage, S.F.E.

    2001-01-01

    In the last decade, pressure driven membrane filtration processes; reverse osmosis, nano, ultra and micro-filtration have undergone steady growth. Drivers for this growth include desalination to combat water scarcity and the removal of various material from water to comply with increasingly stringen

  6. On the Newton filtration for functions on complete intersections

    CERN Document Server

    Hamm, Helmut A

    2011-01-01

    W.Ebeling and S.M.Gusein-Zade have started to look at multi-index Newton filtrations for hypersurface singularities. In this paper we pass to complete intersections. One motivation is the possibility to compare with the "classical" Newton filtration introduced by A.G.Kushnirenko in connection with the Milnor number.

  7. Model and optimization of electromagnetic filtration of metals

    Directory of Open Access Journals (Sweden)

    S. Golak

    2013-04-01

    Full Text Available Electromagnetic buoyancy force causes the movement of non-conducive particles in a conducting liquid under electromagnetic field. The phenomenon allows filtration of small inclusions from molten metals. This paper presents a mathematical model of the filtration process under alternating electromagnetic field and the methodology for maximizing its efficiency.

  8. Novel nanofibrous scaffolds for water filtration with bacteria and virus removal capability.

    Science.gov (United States)

    Sato, Anna; Wang, Ran; Ma, Hongyang; Hsiao, Benjamin S; Chu, Benjamin

    2011-01-01

    We demonstrate a new class of composite fibrous membranes, consisting of an ultra-fine cellulose nanofibrous network infused into an electrospun polyacrylonitrile (PAN) nanofibrous scaffold on a melt-blown polyethylene terephthalate (PET) non-woven substrate for water purification. Depending on the infusion process and the ultra-fine cellulose nanofibers (UFCNs) used [e.g. modified ultra-fine cellulose nanofibers (m-UFCNs) or microcrystalline cellulose nanofibers (MCCNs)], different nanostructured scaffolds were formed as seen by electron microscopy. Membranes with UFCNs consist of an interwoven two-dimensional ultra-fine nanofibrous network that is deeply entangled with the electrospun scaffold and organized in a quasi-three-dimensional fashion, while those with MCCNs tend to locally wrap around the electrospun scaffolding nanofibers without forming a major network. Filtration tests illustrated that both membranes, while maintaining high permeation flux, exhibited excellent retention capabilities for simultaneous sieving for bacteria and adsorption for viruses. PMID:21562026

  9. Modeling Adsorption Kinetics (Bio-remediation of Heavy Metal Contaminated Water)

    Science.gov (United States)

    McCarthy, Chris

    My talk will focus on modeling the kinetics of the adsorption and filtering process using differential equations, stochastic methods, and recursive functions. The models have been developed in support of our interdisciplinary lab group which is conducting research into bio-remediation of heavy metal contaminated water via filtration through biomass such as spent tea leaves. The spent tea leaves are available in large quantities as a result of the industrial production of tea beverages. The heavy metals bond with the surfaces of the tea leaves (adsorption). Funding: CUNY Collaborative Incentive Research Grant.

  10. Filtration Process of the Spiramycin Fermentation Broth

    Institute of Scientific and Technical Information of China (English)

    1999-01-01

    This paper presents the effects of acidity and additive pretreatment on the filtering rate and Spiramycin (SPM) concentration in the filter liquor of SPM fermentation broth. The experimental results show that the SPM peak value in filter liquor is obtained at pH 5.5 with either 0.1% methanal or 0.1% BAPE. It is also indicated that there exists a dissolution equilibrium of proteins from the experiment results. The soluble proteins are denatured due to the too high/low acidity and then precipitate. Usually, the amount of soluble proteins reaches its lowest level in pH range of 6.0-6.5. The protein precipitation will, together with other suspended solids particles, contribute to the final SPM concentration in the filter liquor. This paper assumes that the contribution is the result of the adsorption equilibrium of SPM on the surfaces of suspended solids. For a satisfactory explanation, the revised Langmuir adsorption theory was employed and a model was developed.

  11. Regenerative adsorption distillation system

    KAUST Repository

    Ng, Kim Choon

    2013-12-26

    There is provided a regenerative adsorption distillation system comprising a train of distillation effects in fluid communication with each other. The train of distillation effects comprises at least one intermediate effect between the first and last distillation effects of the train, each effect comprising a vessel and a condensing tube for flow of a fluid therein. The system further comprises a pair of adsorption-desorption beds in vapour communication with the last effect and at least one intermediate effect, wherein the beds contain an adsorbent that adsorbs vapour from the last effect and transmits desorbed vapour into at least one of the intermediate effect.

  12. Removal of Arsenic from Drinking Water by Adsorption and Coagulation

    Science.gov (United States)

    Zhang, M.; Sugita, H.; Hara, J.; Takahashi, S.

    2013-12-01

    Removal of arsenic from drinking water has been an important issue worldwide, which has attracted greater attentions in recent years especially for supplying safe drinking water in developing countries. Although many kinds of treatment approaches that are available or applicable both in principle and practice, such as adsorption, coagulation, membrane filtration, ion exchange, biological process, electrocoagulation and so on, the first 2 approaches (i.e., adsorption and coagulation) are most promising due to the low-cost, high-efficiency, simplicity of treating systems, and thus can be practically used in developing countries. In this study, a literature survey on water quality in Bangladesh was performed to understand the ranges of arsenic concentration and pH of groundwater in Bangladesh. A series of tests were then organized and performed to investigate the effects of arsenic concentration, arsenic forms, pH, chemical compositions of the materials used for adsorption and coagulation, particle size distribution and treatment time on quality of treated water. The experimental results obtained in the study illustrated that both adsorption and coagulation can be used to effectively reduce the concentrations of either arsenic (V) or arsenic (III) from the contaminated water. Coagulation of arsenic with a magnesium-based material developed in this study can be very effective to remove arsenic, especially arsenic (V), from contaminated water with a concentration of 10 ppm to an undetectable level of 0.002 ppm by ICP analyses. Compared to arsenic (III), arsenic (V) is easier to be removed. The materials used for adsorption and coagulation in this study can remove arsenic (V) up to 9 mg/g and 6 mg/g, and arsenic (III) up to 4 mg/g and 3 mg/g, respectively, depending on test conditions and compositions of the materials being used. The control of pH during treatment can be a challenging technical issue for developing both adsorbent and coagulant. Keywords: Water Treatment

  13. Efficient filtration system for paraffin-catalyst slurry separation

    Directory of Open Access Journals (Sweden)

    Khodagholi Mohammad Ali

    2013-01-01

    Full Text Available The filtration efficiency for separating liquid paraffin (or water from a slurry consisting of 25 weight% spherical alumina in a Slurry Bubble Column Reactor (SBCR comprised of a cylindrical tube of 10 cm diameter and 150 cm length was studied. Various differential pressures (ΔP were applied to two separate tubular sintered metal stainless steel filter elements with nominal pore size of 4 and 16μm. The experimental results disclosed that the rate of filtrations increased on applying higher differential pressure to the filter element. Albeit this phenomenon is limited to moderate ΔPs and for ΔP more than 1 bar is neither harmful nor helpful. The highest filtration rates at ΔPs higher than 1 bar were 170 and 248 ml/minute for 4 and 16μm respectively. Using water as the liquid in slurry the rate of filtration enhanced to 4 folds, and this issue reveals impact of viscosity on filtration efficiency clearly. In all situations, the total amount of particles present in the filtrate part never exceeded a few parts per million (ppm. The statistical analysis of the SEM image of the filtrate indicated that by applying higher pressure difference to the filter element the frequency percent of larger particle size increases. The operation of filter cake removing was performed with back flashing of 300 ml of clean liquid with pressures of 3-5 bar of N2 gas.

  14. Aerosol penetration inside HEPA filtration media

    International Nuclear Information System (INIS)

    Attempts made to modelize changes in high-efficiency particulate air (HEPA) filter pressure drop as a function of such parameters as the amount of aerosol collected, which also take account of filtering medium characteristics, those of the filtered aerosol and the filtration velocity, have always been limited by a lack of knowledge of the distribution of particles within the medium. For the last few years, a method, developed over 25 years ago to study the distribution of Radon daughters within filter media made of cellulose fibers, has been reused and applied to radioactive and fluorescent aerosols penetration studies. This method enables determination of aerosol distribution on the surface and inside the filter medium by peeling away successive layers using an adhesive tape and measuring the specific amounts removed each time. Knowledge of aerosol penetration within the filter has revealed that, for a give aerosol, particle distribution inside the filter rapidly decreased exponentially and that fixation on the filter's front surface rapidly superseded penetration inside the medium. The deposit profiles thus measured have made it possible to propose a model for determining the rate of filter pressure drop increase that closely agrees with experimental results

  15. Gravity filtration of suspensions: permeability effects

    Science.gov (United States)

    Soori, Tejaswi; Wang, Mengyu; Ward, Thomas

    2015-11-01

    This paper examines the filtration rates of mono-modal suspensions as a function of time and a cake layer builds up through theory and experimentation. Darcy's Law, which describes fluid flow through porous media, was applied along with the Kynch theory of sedimentation, which provides the basis for analyzing low concentration (ϕ cake formation. Experiments were performed to study the effects of varying particle sizes (45 μm cake layer and its flow permeability (k) in conjunction with the filter media. A CCD camera was used to capture images of the cake formation and fluid drainage processes, and subsequent image and theoretical analysis found the fluid flow experienced a constant pressure loss due to the permeability of the filter media, whereas the experienced pressure loss due to the cake formation varies as a function of time, ϕ and d. The rate of cake formation was also found to be independent of ϕ but dependent on d which can be attributed to a change in porosity affecting permeability. Studies on similar systems with multi-modal suspensions are in-progress.

  16. Pulmonary interstitial compliance and microvascular filtration coefficient.

    Science.gov (United States)

    Goldberg, H S

    1980-08-01

    Static and dynamic properties governing the fluid movement into the pulmonary interstitium were examined in isolated canine lobes. The system was driven by altering intravascular presure (Piv) when the lobe was isogravimetric (change in weight (W) = 0) and allowing the lobe to become isogravimetric again. By making use of an analogy to charging a capacitor across a resistor, calculation of the filtration coefficient for transvascular fluid movement (KF) and determination of the pressure-volume relationship of the pulmonary interstitial space (Pis-Vis), with a minimum of untested assumptions, was possible. KF was found to be the same for fluid moving out of or into the intravascular space, and when the relationship between Piv and alveolar pressure (PAlv) was constant, KF was independent of transpulmonary pressure (PL). When PAlv exceeded Piv, changes in Piv did not influence KF, suggesting no significant change in either surface area available for fluid transudation or vascular permeability. The Pis-Vis curve for increasing values of Vis and Pis is best described by an exponential relationhip and is independent of PL. However, the Pis-Vis curve with decreasing values of Vis and Pis is dependent on PL.

  17. Sorghum genome sequencing by methylation filtration.

    Science.gov (United States)

    Bedell, Joseph A; Budiman, Muhammad A; Nunberg, Andrew; Citek, Robert W; Robbins, Dan; Jones, Joshua; Flick, Elizabeth; Rholfing, Theresa; Fries, Jason; Bradford, Kourtney; McMenamy, Jennifer; Smith, Michael; Holeman, Heather; Roe, Bruce A; Wiley, Graham; Korf, Ian F; Rabinowicz, Pablo D; Lakey, Nathan; McCombie, W Richard; Jeddeloh, Jeffrey A; Martienssen, Robert A

    2005-01-01

    Sorghum bicolor is a close relative of maize and is a staple crop in Africa and much of the developing world because of its superior tolerance of arid growth conditions. We have generated sequence from the hypomethylated portion of the sorghum genome by applying methylation filtration (MF) technology. The evidence suggests that 96% of the genes have been sequence tagged, with an average coverage of 65% across their length. Remarkably, this level of gene discovery was accomplished after generating a raw coverage of less than 300 megabases of the 735-megabase genome. MF preferentially captures exons and introns, promoters, microRNAs, and simple sequence repeats, and minimizes interspersed repeats, thus providing a robust view of the functional parts of the genome. The sorghum MF sequence set is beneficial to research on sorghum and is also a powerful resource for comparative genomics among the grasses and across the entire plant kingdom. Thousands of hypothetical gene predictions in rice and Arabidopsis are supported by the sorghum dataset, and genomic similarities highlight evolutionarily conserved regions that will lead to a better understanding of rice and Arabidopsis. PMID:15660154

  18. Estimating Glomerular Filtration Rate in Older People

    Directory of Open Access Journals (Sweden)

    Sabrina Garasto

    2014-01-01

    Full Text Available We aimed at reviewing age-related changes in kidney structure and function, methods for estimating kidney function, and impact of reduced kidney function on geriatric outcomes, as well as the reliability and applicability of equations for estimating glomerular filtration rate (eGFR in older patients. CKD is associated with different comorbidities and adverse outcomes such as disability and premature death in older populations. Creatinine clearance and other methods for estimating kidney function are not easy to apply in older subjects. Thus, an accurate and reliable method for calculating eGFR would be highly desirable for early detection and management of CKD in this vulnerable population. Equations based on serum creatinine, age, race, and gender have been widely used. However, these equations have their own limitations, and no equation seems better than the other ones in older people. New equations specifically developed for use in older populations, especially those based on serum cystatin C, hold promises. However, further studies are needed to definitely accept them as the reference method to estimate kidney function in older patients in the clinical setting.

  19. Capturing phosphates with iron enhanced sand filtration.

    Science.gov (United States)

    Erickson, Andrew J; Gulliver, John S; Weiss, Peter T

    2012-06-01

    Most treatment practices for urban runoff capture pollutants such as phosphorus by either settling or filtration while dissolved phosphorus, typically as phosphates, is untreated. Dissolved phosphorus, however, represents an average 45% of total phosphorus in stormwater runoff and can be more than 95%. In this study, a new stormwater treatment technology to capture phosphate, called the Minnesota Filter, is introduced. The filter comprises iron filings mixed with sand and is tested for phosphate removal from synthetic stormwater. Results indicate that sand mixed with 5% iron filings captures an average of 88% phosphate for at least 200 m of treated depth, which is significantly greater than a sand filter without iron filings. Neither incorporation of iron filings into a sand filter nor capture of phosphates onto iron filings in column experiments had a significant effect on the hydraulic conductivity of the filter at mixtures of 5% or less iron by weight. Field applications with up to 10.7% iron were operated over 1 year without detrimental effects upon hydraulic conductivity. A model is applied and fit to column studies to predict the field performance of iron-enhanced sand filters. The model predictions are verified through the predicted performance of the filters in removing phosphates in field applications. Practical applications of the technology, both existing and proposed, are presented so stormwater managers can begin implementation.

  20. Sorghum genome sequencing by methylation filtration.

    Science.gov (United States)

    Bedell, Joseph A; Budiman, Muhammad A; Nunberg, Andrew; Citek, Robert W; Robbins, Dan; Jones, Joshua; Flick, Elizabeth; Rholfing, Theresa; Fries, Jason; Bradford, Kourtney; McMenamy, Jennifer; Smith, Michael; Holeman, Heather; Roe, Bruce A; Wiley, Graham; Korf, Ian F; Rabinowicz, Pablo D; Lakey, Nathan; McCombie, W Richard; Jeddeloh, Jeffrey A; Martienssen, Robert A

    2005-01-01

    Sorghum bicolor is a close relative of maize and is a staple crop in Africa and much of the developing world because of its superior tolerance of arid growth conditions. We have generated sequence from the hypomethylated portion of the sorghum genome by applying methylation filtration (MF) technology. The evidence suggests that 96% of the genes have been sequence tagged, with an average coverage of 65% across their length. Remarkably, this level of gene discovery was accomplished after generating a raw coverage of less than 300 megabases of the 735-megabase genome. MF preferentially captures exons and introns, promoters, microRNAs, and simple sequence repeats, and minimizes interspersed repeats, thus providing a robust view of the functional parts of the genome. The sorghum MF sequence set is beneficial to research on sorghum and is also a powerful resource for comparative genomics among the grasses and across the entire plant kingdom. Thousands of hypothetical gene predictions in rice and Arabidopsis are supported by the sorghum dataset, and genomic similarities highlight evolutionarily conserved regions that will lead to a better understanding of rice and Arabidopsis.

  1. Sorghum genome sequencing by methylation filtration.

    Directory of Open Access Journals (Sweden)

    Joseph A Bedell

    2005-01-01

    Full Text Available Sorghum bicolor is a close relative of maize and is a staple crop in Africa and much of the developing world because of its superior tolerance of arid growth conditions. We have generated sequence from the hypomethylated portion of the sorghum genome by applying methylation filtration (MF technology. The evidence suggests that 96% of the genes have been sequence tagged, with an average coverage of 65% across their length. Remarkably, this level of gene discovery was accomplished after generating a raw coverage of less than 300 megabases of the 735-megabase genome. MF preferentially captures exons and introns, promoters, microRNAs, and simple sequence repeats, and minimizes interspersed repeats, thus providing a robust view of the functional parts of the genome. The sorghum MF sequence set is beneficial to research on sorghum and is also a powerful resource for comparative genomics among the grasses and across the entire plant kingdom. Thousands of hypothetical gene predictions in rice and Arabidopsis are supported by the sorghum dataset, and genomic similarities highlight evolutionarily conserved regions that will lead to a better understanding of rice and Arabidopsis.

  2. Effect of filtration on reoxidation proceses in aluminium alloys

    Directory of Open Access Journals (Sweden)

    D. Bolibruchova

    2010-01-01

    Full Text Available This article is focused on reoxidation processes during filtration of aluminium alloys. Many of our experimental works pointed out, that using filtration media placed in gating system causes reoxidation of poured aluminium alloy. Main aim of our latest work was to validate our arguments, that filter in gating system can be considered as obstacle for continuous pouring, with help of computer simulations. This article is only a small part of our researches focused on reoxidation processes during filtration of aluminium alloys.

  3. THE STUDY OF THE FILTRATION EFFICIENCY OF FILTER MATERIAL

    Institute of Scientific and Technical Information of China (English)

    Jia Ruiqing; Wang Luping; Wu Xueping

    2000-01-01

    In this paper, the course of the filtration is analyzed.In order to study the filtration efficiency of the filter material, the computer program was edited.According to the results of the computer program, some important parameters of the filter material are discussed.It shows that the filtration efficiency is closely related to the diameter (d) and the size (b).In addition, by using these results and the computer program, we can analysis the relationship between the fiber structure and filter properties quantitatively.

  4. Developing Polycation-Clay Sorbents for Efficient Filtration of Diclofenac: Effect of Dissolved Organic Matter and Comparison to Activated Carbon.

    Science.gov (United States)

    Kohay, Hagay; Izbitski, Avital; Mishael, Yael G

    2015-08-01

    The presence of nanoconcentrations of persistent pharmaceuticals in treated wastewater effluent and in surface water has been frequently reported. A novel organic-inorganic hybrid sorbent based on adsorbing quarternized poly vinylpyridinium-co-styrene (QPVPcS) to montmorillonite (MMT) was designed for the removal of the anionic micropollutants. QPVPcS-clay composites were characterized by X-ray diffraction, FTIR, thermal gravimetric analysis, Zeta potential and element analysis. Based on these measurements polymer-clay micro- and nanostructures, as a function of polymer loading, were suggested. The affinity of the anionic pharmaceutical, diclofenac (DCF), to the composite was high and did not decrease dramatically with an increase of ionic strength, indicating that the interactions are not only electrostatic. The presence of humic acid (HA) did not hinder DCF removal by the composite; whereas, its filtration by granulated activated carbon (GAC) was compromised in the presence of HA. The kinetics and adsorption at equilibrium of DCF to the composite and to GAC were measured and modeled by the time dependent Langmuir equation. The adsorption of DCF to the composite was significantly faster than to GAC. Accordingly, the filtration of micro- and nanoconcentrations of DCF by composite columns, in the presence of HA, was more efficient than by GAC columns. PMID:26126078

  5. Influence of organic waste type and soil structure on the bacterial filtration rates in unsaturated intact soil columns.

    Science.gov (United States)

    Mosaddeghi, M R; Mahboubi, A A; Zandsalimi, S; Unc, A

    2009-02-01

    Organic wastes are considered to be a source for the potentially pathogenic microorganisms found in surface and sub-surface water resources. Following their release from the organic waste matrix, bacteria often infiltrate into soil and may be transported to significant depths contaminating aquifers. We investigated the influence of soil texture and structure and most importantly the organic waste properties on the transport and filtration coefficients of Escherichia coli and total bacteria in undisturbed soil columns. Intact soil columns (diameter 16 cm and height 25 cm) were collected from two soils: sandy clay loam (SCL) and loamy sand (LS) in Hamadan, western Iran. The cores were amended with cow manure, poultry manure and sewage sludge at a rate of 10 Mg ha(-1) (dry basis). The amended soil cores were leached at a steady-state flux of 4.8 cm h(-1) (i.e. 0.12 of saturated hydraulic conductivity of the SCL) to a total volume of up to 4 times the pore volume of the columns. The influent (C(0)) and effluent (C) were sampled at similar time intervals during the experiments and bacterial concentrations were measured by the plate count method. Cumulative numbers of the leached bacteria, filtration coefficient (lambda(f)), and relative adsorption index (S(R)) were calculated. The preferential pathways and stable structure of the SCL facilitated the rapid transport and early appearance of the bacteria in the effluent. The LS filtered more bacteria when compared with the SCL. The effluent contamination of poultry manure-treated columns was greater than the cow manure- and sewage sludge-treated ones. The difference between cow manure and sewage sludge was negligible. The lambda(f) and S(R) values for E. coli and total bacteria were greater in the LS than in the SCL. This indicates a predominant role for the physical pore-obstruction filtration mechanisms as present in the poorly structured LS vs. the retention at adsorptive sites (chemical filtration) more likely in the

  6. Assessing the fate of organic micropollutants during riverbank filtration utilizing field studies and laboratory test systems

    Science.gov (United States)

    Schmidt, C. K.; Lange, F. T.; Sacher, F.; Baus, C.; Brauch, H.-J.

    2003-04-01

    In Germany and other highly populated countries, several waterworks use riverbank filtration as a first step in the treatment of river water for water supplies. Unfortunately, industrial and municipal discharges and the influence of agriculture lead to the pollution of rivers and lakes by a number of organic chemicals. In order to assess the impact of those organic micropollutants on the quality of drinking water, it is necessary to clarify their fate during infiltration and underground passage. The fate of organic micropollutants in a river water-groundwater infiltration system is mainly determined by adsorption mechanisms and biological transformations. One possibility to simulate the microbial degradation of single compounds during riverbank filtration is the use of laboratory test filter systems, that are operated as biological fixed-bed reactors under aerobic conditions. The benefit and meaningfulness of those test filters was evaluated on the basis of selected target compounds by comparing the results derived from test filter experiments with field studies under environmental conditions at the River Rhine. Samples from the river and from groundwater of a well characterized aerobic infiltration pathway were analyzed over a time period of several years for a spectrum of organic micropollutants. Target compounds comprised several contaminants relevant for the aquatic environment, such as complexing agents, aromatic sulfonates, pharmaceuticals (including iodinated X ray contrast media), and MTBE. Furthermore, the behaviour of some target compounds during aerobic riverbank filtration was compared to their fate along a section of an anaerobic (oxygen-depleted) aquifer at the River Ruhr that is characterized by a transition state between sulfate reduction and methane production. While some organic micropollutants showed no major differences, the elimination of others turned out to be clearly dependent on the underlying redox processes in the groundwater. The

  7. Carbonaceous materials for adsorptive refrigerators

    Science.gov (United States)

    Buczek, B.; Wolak, E.

    2012-06-01

    Carbon monoliths prepared from hard coal precursors were obtained. The porous structure of the monoliths was evaluated on the basis of nitrogen adsorption — desorption equilibrium data. The investigated monoliths have a well-developed microporous structure with significant specific surface area (S BET ). Equilibrium studies of methanol vapour adsorption were used to characterize the methanol adsorptive capacity that was determined using a volumetric method. The heat of wetting by methanol was determined in order to estimate the energetic effects of the adsorption process. The results of the investigations show that all monoliths exhibit high adsorption capacity and high heat of wetting with methanol.

  8. Robust Filtration Techniques in Geometrical Metrology and Their Comparison

    Institute of Scientific and Technical Information of China (English)

    Shan Lou; Wen-Han Zeng; Xiang-Qian Jiang; Paul J.Scott

    2013-01-01

    Filtration is one of the core elements of analysis tools in geometrical metrology.Filtration techniques are progressing along with the advancement of manufacturing technology.Modern filtration techniques are required to be robust against outliers,applicable to surfaces with complex geometry and reliable in whole range of measurement data.A comparison study is conducted to evaluate commonly used robust filtration techniques in the field of geometrical metrology,including the two-stage Gaussian filter,the robust Gaussian regression filter,the robust spline filter and morphological filters.They are compared in terms of four aspects:functionality,mathematical computation,capability and characterization parameters.As a result,this study offers metrologists a guideline to choose the appropriate filter for various applications.

  9. Scaling and particulate fouling in membrane filtration systems

    NARCIS (Netherlands)

    Boerlage, S.F.E.

    2001-01-01

    Membrane filtration technologies have emerged as cost competitive and viable techniques in drinking and industrial water production. Despite advancements in membrane manufacturing and technology, membrane scaling and fouling remain major problems and may limit future growth in the industry. Scaling

  10. Scaling and particulate fouling in membrane filtration systems

    OpenAIRE

    Boerlage, S.F.E.

    2001-01-01

    In the last decade, pressure driven membrane filtration processes; reverse osmosis, nano, ultra and micro-filtration have undergone steady growth. Drivers for this growth include desalination to combat water scarcity and the removal of various material from water to comply with increasingly stringent environmental legislation e.g. Giardia and Cryptosporidum removal guidelines of the Surface Water Treatment Rule (USA). Innovations in membrane manufacturing and process conditions have led to a ...

  11. What risk measures are time consistent for all filtrations?

    OpenAIRE

    Cohen, Samuel N.

    2010-01-01

    We study coherent risk measures which are time-consistent for multiple filtrations. We show that a coherent risk measure is time-consistent for every filtration if and only if it is one of four main types. Furthermore, if the risk measure is strictly monotone it is linear, and if the reference probability space is not atomic then it is either linear or an essential supremum.

  12. Wind Turbine Gearbox Oil Filtration and Condition Monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Sheng, Shuangwen

    2015-10-25

    This is an invited presentation for a pre-conference workshop, titled advances and opportunities in lubrication: wind turbine, at the 2015 Society of Tribologists and Lubrication Engineers (STLE) Tribology Frontiers Conference held in Denver, CO. It gives a brief overview of wind turbine gearbox oil filtration and condition monitoring by highlighting typical industry practices and challenges. The presentation starts with an introduction by covering recent growth of global wind industry, reliability challenges, benefits of oil filtration and condition monitoring, and financial incentives to conduct wind operation and maintenance research, which includes gearbox oil filtration and condition monitoring work presented herein. Then, the presentation moves on to oil filtration by stressing the benefits of filtration, discussing typical main- and offline-loop practices, highlighting important factors considered when specifying a filtration system, and illustrating real-world application challenges through a cold-start example. In the next section on oil condition monitoring, a discussion on oil sample analysis, oil debris monitoring, oil cleanliness measurements and filter analysis is given based on testing results mostly obtained by and at NREL, and by pointing out a few challenges with oil sample analysis. The presentation concludes with a brief touch on future research and development (R and D) opportunities. It is hoping that the information presented can inform the STLE community to start or redirect their R and D work to help the wind industry advance.

  13. Models for filtration during drilling, completion and stimulation operations

    Science.gov (United States)

    Xie, Jing

    Filtration of solid suspensions is encountered in many operations during drilling, completing and stimulating oil and gas wells. Filtration of drilling muds, completion and fracturing fluids, gravel packing slurries are a few examples. Most of these applications involve the filtration of non-Newtonian fluids into a porous medium containing compressible fluids. Internal and external compressible filter cakes can form under static or dynamic filtration conditions. Models for static filtration of solid-laden polymer fluids have been developed. These models solve the basic filtration equations to obtain the depth of invasion of solids and polymer into the formation. The buildup of an external filter cake is modeled after a transition time is reached when no more additional particles invade the formation. It is shown that a square root of time dependence is obtained during external filtration of polymer fluids. During the spurt loss period (internal filtration) the model allows us to calculate the extent of solids and filtrate invasion and the duration of spurt loss. The model for the first time presents a formulation where the spurt loss can be obtained from the model directly. Fluid compressibility effects as well as cake compressibility can be accounted for in the model. The results of the model allow us to better interpret leak-off data during the period in which the polymer is being squeezed into the formation. Comparisons with experiments show that fluid leak-off during the spurt loss period can be accurately estimated with the equations presented. During drilling or when a fracture is created in a frac-and-pack operation, fluid leak-off occurs by a dynamic filtration process. In this process, particles are constantly sheared away by the flow of the polymer slurry parallel to the face of the fracture with fluid leak-off occurring into the rock. A new model for dynamic filtration has been developed which takes into account the particle size distribution of the wall

  14. PREPARATION MICRO-FILTRATION CERAMIC MEMBRANE FROM NATURAL ZEOLITE FOR PROCION RED MX8B AND METHYLENE BLUE FILTRATION

    Directory of Open Access Journals (Sweden)

    Dyah Choiriyah

    2015-12-01

    Full Text Available The study of ceramic membrane fabrication from natural zeolite and its utilization for filtration of procion red MX8B and methylene blue has been investigated. The purposes of this study are to determine the effect of pressure on membrane permeability and selectivity and utilize natural zeolite as ceramic membranes procion red MX8B and methylene blue filtration. The membrane was prepared by metide press pellets and then calcined at 850 oC. The membranes were characterized by mechanical test, flux and rejection of dye. The compression test of the membrane found the values of 1369.178 psi in dry conditions to 1388.933 psi in wet conditions. The flux test found that the higher the pressure applied, the flux was increase. However, the high pressure also decreased the selectivity. Rejection test found that the rejection of methylene blue filtration up to 70 %. Meanwhile, procion red MX8B filtration has rejectivity less than 20 %.

  15. Ultrafiltration Enhanced with Activated Carbon Adsorption for Efficient Dye Removal from Aqueous Solution

    Institute of Scientific and Technical Information of China (English)

    董亚楠; 苏延磊; 陈文娟; 彭金明; 张岩; 姜忠义

    2011-01-01

    In this study, orange G dye was efficiently removed from aqueous solution by ultraflltration (UF) membrane separation enhanced with activated carbon adsorption. The powdered activated carbon (PAC) was deposited onto the UF membrane surface, forming an intact filter cake. The enhanced UF process simultaneously exploited the high water permeation flux of porous membrane and the high adsorption ability of PAC toward dye molecules. The influencing factors on the dye removal were investigated. The results indicated that with sufficient PAC incorporation, the formation of intact PAC filtration cake led to nearly complete rejection for dye solution under opti-mized dye concentration and operation pressure, without large sacnticlng the permeation tlux ot the filtration process. Typically, the dye rejection ratio increased from 43.6% for single UF without adsorption to nearly 100% for the enhanced UF process, achieving long time continuous treatment with water permeation flux of 47 L·m^-2·h^-1. The present study demonstrated that adsorption enhanced UF may be a feasible method for the dye wastewater treatment.

  16. Low-cost magnetic adsorbent for As(III) removal from water: adsorption kinetics and isotherms.

    Science.gov (United States)

    Kango, Sarita; Kumar, Rajesh

    2016-01-01

    Magnetite nanoparticles as adsorbent for arsenic (As) were coated on sand particles. The coated sand was used for the removal of highly toxic element 'As(III)' from drinking water. Here, batch experiments were performed with the variation of solution pH, adsorbent dose, contact time and initial arsenic concentration. The adsorbent showed significant removal efficiency around 99.6 % for As(III). Analysis of adsorption kinetics revealed that the adsorbent follows pseudo-second-order kinetics model showing R (2) = 0.999, whereas for pseudo-first-order kinetics model, the value of R (2) was 0.978. In the case of adsorption equilibrium, the data is well fitted with Langmuir adsorption isotherm model (R (2) > 0.99), indicating monolayer adsorption of As(III) on the surface of adsorbent. The existence of commonly present ions in water influences the removal efficiency of As(III) minutely in the following order PO4 (3-) > HCO3 (-) > Cl(-) > SO4 (2-). The obtained adsorbent can be used to overcome the problem of water filtration in rural areas. Moreover, as the nano-magnetite is coated on the sand, it avoids the problem of extraction of nanoparticles from treated water and can easily be removed by a simple filtration process. PMID:26711813

  17. Low-cost magnetic adsorbent for As(III) removal from water: adsorption kinetics and isotherms.

    Science.gov (United States)

    Kango, Sarita; Kumar, Rajesh

    2016-01-01

    Magnetite nanoparticles as adsorbent for arsenic (As) were coated on sand particles. The coated sand was used for the removal of highly toxic element 'As(III)' from drinking water. Here, batch experiments were performed with the variation of solution pH, adsorbent dose, contact time and initial arsenic concentration. The adsorbent showed significant removal efficiency around 99.6 % for As(III). Analysis of adsorption kinetics revealed that the adsorbent follows pseudo-second-order kinetics model showing R (2) = 0.999, whereas for pseudo-first-order kinetics model, the value of R (2) was 0.978. In the case of adsorption equilibrium, the data is well fitted with Langmuir adsorption isotherm model (R (2) > 0.99), indicating monolayer adsorption of As(III) on the surface of adsorbent. The existence of commonly present ions in water influences the removal efficiency of As(III) minutely in the following order PO4 (3-) > HCO3 (-) > Cl(-) > SO4 (2-). The obtained adsorbent can be used to overcome the problem of water filtration in rural areas. Moreover, as the nano-magnetite is coated on the sand, it avoids the problem of extraction of nanoparticles from treated water and can easily be removed by a simple filtration process.

  18. Carbon nanotube membranes with ultrahigh specific adsorption capacity for water desalination and purification.

    Science.gov (United States)

    Yang, Hui Ying; Han, Zhao Jun; Yu, Siu Fung; Pey, Kin Leong; Ostrikov, Kostya; Karnik, Rohit

    2013-01-01

    Development of technologies for water desalination and purification is critical to meet the global challenges of insufficient water supply and inadequate sanitation, especially for point-of-use applications. Conventional desalination methods are energy and operationally intensive, whereas adsorption-based techniques are simple and easy to use for point-of-use water purification, yet their capacity to remove salts is limited. Here we report that plasma-modified ultralong carbon nanotubes exhibit ultrahigh specific adsorption capacity for salt (exceeding 400% by weight) that is two orders of magnitude higher than that found in the current state-of-the-art activated carbon-based water treatment systems. We exploit this adsorption capacity in ultralong carbon nanotube-based membranes that can remove salt, as well as organic and metal contaminants. These ultralong carbon nanotube-based membranes may lead to next-generation rechargeable, point-of-use potable water purification appliances with superior desalination, disinfection and filtration properties. PMID:23941894

  19. Expanded-bed adsorption utilizing ion-exchange resin to purify extracellular beta-galactosidase.

    Science.gov (United States)

    Pereira, J A; Vieira E Rosa, P De T; Pastore, G M; Santana, C C

    1998-01-01

    The application of expanded-bed ion-exchange resins allows the elimination of intermediary particulate separation steps like filtration or centrifugation prior to adsorption steps in enzyme-purification processes from crude fermentation broths. This work is concerned with the experimental evaluation data of a process related to the adsorption of an extracellular p-galactosidase from the fungi Scopulariopsis. The protein recovery in the ion-exchange resin Accell Plus QMA was accomplished using a continuous-monitoring method. The direct adsorption step was followed by a elution step with concentrated NaCl solutions aiming to improve the enzyme-specific activity. Experimental data for fixed and expanded bed were compared.

  20. Acoustically driven filtration of particulate suspensions in porous media

    Science.gov (United States)

    Gupta, Sanjay

    1997-12-01

    A novel method of filtration of liquid suspensions containing micron to millimeter size particles has been developed. A resonant ultrasonic field, applied across a highly porous medium, has been used to trap fine particles inside the large pores (relative to the particle size) of the medium. Three types of porous media, unconsolidated bed of 3 mm glass beads, consolidated open pore aluminum mesh, and reticulated polyester polyurethane foam were investigated as the test media. Reasonable filtration efficiencies were achieved for model aqueous suspensions of 325 mesh polystyrene particles in all three porous media. The expected trends of filtration performance with respect to suspension flow rate, its concentration, and the acoustic field intensity were confirmed. The Filtration phenomena was found to be limited by non-physical saturation of porous media. At saturation, the particles collected inside the media were found to exhibit macroscopic vibrations which allows them to escape with the carrier fluid. The highly porous POLY foam (95% porosity) was found to be the best media for suspension studied in terms of the duration of particle retention and percentage filtration efficiencies. The aluminum mesh performed slightly poorer. The unconsolidated porous media collected the least amount of solids. A simple theoretical development based on particle trajectory around an infinitely long cylindrical fiber, in the presence of acoustic field, has been initiated. In principle, the new filtration method is similar to high gravity magnetic separation but the acoustic method has a wider scope due to inherent acoustic contrast present in most suspensions. The low pressure drop, ease of operation, amenability to large scale operation and reasonable filtration efficiency make the new method highly attractive and suitable for practical applications.

  1. Dewatering of coal plant tailings: Flocculation followed by filtration

    Energy Technology Data Exchange (ETDEWEB)

    Naureen Alam; Orhan Ozdemir; Marc A. Hampton; Anh V. Nguyen [University of Queensland, Brisbane, Qld. (Australia). School of Chemical Engineering

    2011-01-15

    A sustainable alternative to tailings dam disposal of coal refuse is mechanical dewatering of tailings, which provides fast production of dry solids and water reuse. In this study, flocculation followed by filtration of coal plant tailings, a new concept in tailings dewatering is investigated in detail. This paper focuses on the effect of preconditioning tailings with varying flocculants and dosages on filtration kinetics and the resultant moisture content of the filter cake. The results show that the cationic flocculant, MAGNAFLOC LT 425, requires a high dosage to produce a low moisture content filter cake and clear filtrate. Optimal sized flocs were produced with the anionic flocculant, MAGNAFLOC 5250, even though the particles are negatively charged. The kinetics of the filtration was dependent on the composition of process water as indicated by supporting sedimentation tests. The concentration of divalent alkali earth metals such as Ca{sup 2+} and Mg{sup 2+} allow for large floc growth by a bridging mechanism, which involves binding of the polymer and the negativity charged particle. Filtration and settling curves at this dosage were also supported by filter cake analysis using Darcy plots. It was found that the large floc size significantly increases the permeability of the filter cake. Floc size measurements and fractal dimension showed that while the large flocs were produced with anionic flocculant, the flocs produced with the cationic flocculant were small and weak. The results indicate that the optimum dosage and flocculant type for effective and efficient filtration of coal plant tailings is approximately 350 g/t of anionic flocculant at a 35% solids content and 40 kPa filtration pressure. 27 refs., 9 figs., 5 tabs.

  2. Grey water treatment in urban slums by a filtration system: optimisation of the filtration medium.

    Science.gov (United States)

    Katukiza, A Y; Ronteltap, M; Niwagaba, C B; Kansiime, F; Lens, P N L

    2014-12-15

    Two uPVC columns (outer diameter 160 cm, internal diameter 14.6 cm and length 100 cm) were operated in parallel and in series to simulate grey water treatment by media based filtration at unsaturated conditions and constant hydraulic loading rates (HLR). Grey water from bathroom, laundry and kitchen activities was collected from 10 households in the Bwaise III slum in Kampala (Uganda) in separate containers, mixed in equal proportions followed by settling, prior to transferring the influent to the tanks. Column 1 was packed with lava rock to a depth of 60 cm, while column 2 was packed with lava rock (bottom 30 cm) and silica sand, which was later replaced by granular activated carbon (top 30 cm) to further investigate nutrient removal from grey water. Operating the two filter columns in series at a HLR of 20 cm/day resulted in a better effluent quality than at a higher (40 cm/day) HLR. The COD removal efficiencies by filter columns 1 and 2 in series amounted to 90% and 84% at HLR of 20 cm/day and 40 cm/day, respectively. TOC and DOC removal efficiency amounted to 77% and 71% at a HLR of 20 cm/day, but decreased to 72% and 67% at a HLR of 40 cm/day, respectively. The highest log removal of Escherichia coli, Salmonella sp. and total coliforms amounted to 3.68, 3.50 and 3.95 at a HLR of 20 cm/day respectively. The overall removal of pollutants increased with infiltration depth, with the highest pollutant removal efficiency occurring in the top 15 cm layer. Grey water pre-treatment followed by double filtration using coarse and fine media has the potential to reduce the grey water pollution load in slum areas by more than 60%. PMID:25169645

  3. Copper adsorption in tropical oxisols

    Directory of Open Access Journals (Sweden)

    Silveira Maria Lucia Azevedo

    2003-01-01

    Full Text Available Cu adsorption, at concentrations between 0 to 800 mg L-1, was evaluated in surface and subsurface samples of three Brazilian soils: a heavy clayey-textured Rhodic Hapludalf (RH, a heavy clayey-textured Anionic ''Rhodic'' Acrudox (RA and a medium-textured Anionic ''Xanthic'' Acrudox (XA. After adsorption, two consecutive extractions were performed to the samples which received 100 mg L-1 copper. Surface samples adsorbed higher amounts of Cu than the subsurface, and exhibited lower Cu removed after the extractions, reinforcing the influence of the organic matter in the reactions. Cu adsorption was significant in the subsurface horizons of the Oxisols, despite the positive balance of charge, demonstrating the existence of mechanisms for specific adsorption, mainly related to the predominance of iron and aluminum oxides in the mineral fractions. In these samples, Cu was easily removed from the adsorption sites. RH demonstrated a higher capacity for the Cu adsorption in both horizons.

  4. Adsorption design for wastewater treatment

    Energy Technology Data Exchange (ETDEWEB)

    Cooney, D.O.

    1998-12-31

    Understand the premier method for removing organic contaminants from water. Straight forward explanations and illustrations allow this overview to fill a dual purpose: study manual and design guide. The book discusses basic properties of activated carbons; explains the kinetics of adsorption processes; describes the design of both fixed-bed and batch process adsorption systems; contains useful knowledge that can be extended to other applications of adsorption, including drinking water treatment; and includes many illustrated examples and practice exercises.

  5. Adsorption of polyhydroxyl based surfactants

    OpenAIRE

    Matsson, Maria

    2005-01-01

    Adsorption on solid surfaces from solution is a fundamental property of a surfactant. It might even be the most important aspect of surfactant behavior, since it influences many applications, such as cleaning, detergency, dispersion, separation, flotation, and lubrication. Consequently, fundamental investigations of surfactant adsorption are relevant to many areas. The main aim of this thesis has been to elucidate the adsorption properties, primarily on the solid/water interface, of a particu...

  6. Removal of bisphenol A by adsorption mechanism using PES-SiO2 composite membranes.

    Science.gov (United States)

    Muhamad, Mimi Suliza; Salim, Mohd Razman; Lau, Woei Jye; Hadibarata, Tony; Yusop, Zulkifli

    2016-08-01

    Polyethersulphone (PES) membranes blended with silicon dioxide (SiO2) nanoparticles were prepared via a dry-jet wet spinning technique for the removal of bisphenol A (BPA) by adsorption mechanism. The morphology of SiO2 nanoparticles was analysed using a transmission electron microscopy and particle size distribution was also analysed. The prepared membranes were characterized by several techniques including field emission scanning electron microscopy, Fourier transform infrared spectroscopy and water contact angle. The adsorption mechanism of membrane towards BPA was evaluated by batch experiments and kinetic model. The influence of natural organic matter (NOM) in feed water on membrane BPA removal was also studied by filtration experiments. Results showed that BPA adsorption capacity as high as 53 µg/g could be achieved by the PES membrane incorporated with 2 wt% SiO2 in which the adsorption mechanism was in accordance with the pseudo-second-order kinetic model. The intraparticles diffusion model suggested that the rate limiting factor of membrane adsorption mechanism is governed by the diffusion of BPA into the membrane pores. The presence of 10 ppm NOM has reported to negatively reduce BPA removal by 24%, as it tended to compete with BPA for membrane adsorption. This work has demonstrated that PES-SiO2 membrane has the potential to eliminate trace amount of BPA from water source containing NOM. PMID:26729509

  7. A Continuous Procedure Based on Column Chromatography to Purify Anthocyanins from Schisandra chinensis by a Macroporous Resin plus Gel Filtration Chromatography

    Directory of Open Access Journals (Sweden)

    Daran Yue

    2016-02-01

    Full Text Available In our previous study, as natural food colorants and antioxidants, the color and content stabilities of Schisandra chinensis (S. chinensis anthocyanins were investigated. In this work, the purification process parameters of S. chinensis anthocyanins using a macroporous resin and gel filtration chromatography were evaluated. The optimized parameters of static adsorption and desorption were as follows. The selected resin is HPD-300 (nonpolar copolymer styrene type resin, and the anthocyanins adsorption saturation capacity of HPD-300 resin was 0.475 mg/g dry resin. Adsorption time was 4 h, and 0.517 mg/mL of S. chinensis anthocyanins was adsorbed on the resin column with a flow rate of 39 mL/h (3 BV/h. After adsorption, the anthocyanins were completely desorpted with 2.5 BV of 90% (v/v ethanol solution, and the desorption flow rate was 13 mL/h (1 BV/h. After purification by dynamic adsorption and desorption, the anthocyanins content in the effluent increased from 47.6 mg/g to 128.4 mg/g, the purity of anthocyanins increased six-fold from 5.08% to 30.43%, and the anthocyanins recovery was 96.5%. The major constituent of S. chinensis anthocyanins was isolated with Bio-Gel P2 gel filtration chromatography, and it was detected by liquid chromatography electrospray ionisation tandem mass spectrometry (LC-ESI-MS as cyanidin-3-O-xylosylrutinoside. Moreover, the antioxidant activities of S. chinensis anthocyanins were investigated. After purification using the HPD-300 resin, the antioxidant activities of anthocyanins were increased 1.2-fold (FRAP and 1.7-fold (ABTS.

  8. A Continuous Procedure Based on Column Chromatography to Purify Anthocyanins from Schisandra chinensis by a Macroporous Resin plus Gel Filtration Chromatography.

    Science.gov (United States)

    Yue, Daran; Yang, Lei; Liu, Shouxin; Li, Jian; Li, Wei; Ma, Chunhui

    2016-02-06

    In our previous study, as natural food colorants and antioxidants, the color and content stabilities of Schisandra chinensis (S. chinensis) anthocyanins were investigated. In this work, the purification process parameters of S. chinensis anthocyanins using a macroporous resin and gel filtration chromatography were evaluated. The optimized parameters of static adsorption and desorption were as follows. The selected resin is HPD-300 (nonpolar copolymer styrene type resin), and the anthocyanins adsorption saturation capacity of HPD-300 resin was 0.475 mg/g dry resin. Adsorption time was 4 h, and 0.517 mg/mL of S. chinensis anthocyanins was adsorbed on the resin column with a flow rate of 39 mL/h (3 BV/h). After adsorption, the anthocyanins were completely desorpted with 2.5 BV of 90% (v/v) ethanol solution, and the desorption flow rate was 13 mL/h (1 BV/h). After purification by dynamic adsorption and desorption, the anthocyanins content in the effluent increased from 47.6 mg/g to 128.4 mg/g, the purity of anthocyanins increased six-fold from 5.08% to 30.43%, and the anthocyanins recovery was 96.5%. The major constituent of S. chinensis anthocyanins was isolated with Bio-Gel P2 gel filtration chromatography, and it was detected by liquid chromatography electrospray ionisation tandem mass spectrometry (LC-ESI-MS) as cyanidin-3-O-xylosylrutinoside. Moreover, the antioxidant activities of S. chinensis anthocyanins were investigated. After purification using the HPD-300 resin, the antioxidant activities of anthocyanins were increased 1.2-fold (FRAP) and 1.7-fold (ABTS).

  9. Adsorption and collective paramagnetism

    CERN Document Server

    Selwood, Pierce W

    1962-01-01

    Adsorption and Collective Paramagnetism describes a novel method for studying chemisorption. The method is based on the change in the number of unpaired electrons in the adsorbent as chemisorption occurs. The method is applicable to almost all adsorbates, but it is restricted to ferromagnetic adsorbents such as nickel, which may be obtained in the form of very small particles, that is to say, to ferromagnetic adsorbents with a high specific surface. While almost all the data used illustratively have been published elsewhere this is the first complete review of the subject. The book is addresse

  10. Oviposition Attractancy of Bacterial Culture Filtrates: response of Culex quinquefasciatus

    Directory of Open Access Journals (Sweden)

    S Poonam

    2002-04-01

    Full Text Available Oviposition attractants could be used for monitoring as well as controlling mosquitoes by attracting them to lay eggs at chosen sites. In the present study, culture filtrates of seven bacterial species were tested for their attractancy against gravid females of Culex quinquefasciatus. When their oviposition active indices (OAI were studied, the culture filtrates of Bacillus cereus and Pseudomonas fluorescens exhibited oviposition attractancy (OAI = >0.3 at 100 ppm and the OAI were respectively 0.70 and 0.47. Culture filtrates of B. thuringiensis var. israelensis (wild type, B. t. var. israelensis (mutant and B. sphaericus showed attractancy at 2000 ppm with OAI of respectively 0.71, 0.59 and 0.68. However, the OAI of B. megaterium as well as Azospirillum brasilense was 0.13 (at 2000 ppm, which was less than 0.3 required to be considered them as attractants. When the oviposition attractancy of the bacterial culture filtrates were compared with that of a known oviposition attractant, p-cresol (at 10 ppm, the culture filtrates of B. t. var. israelensis (wild type and B. cereus were found to be more active than p-cresol, respectively with 64.2 and 54.3% oviposition.

  11. Effect of Nanofibers on Spore Penetration and Lunar Dust Filtration

    Directory of Open Access Journals (Sweden)

    Phil Gibson, Ph.D.

    2008-06-01

    Full Text Available The results of two separate studies on biological spore penetration and simulated lunar dust filtration illustrate the use of nanofibers in some nonstandard filtration applications (nanofibers are generally defined as having diameters of less than a micron. In the first study, a variety of microporous liners containing microfibers and nanofibers were combined with cotton-based fabrics in order to filter aerosolized spores. The aerosol penetration resistance of the nanofiber-lined fabrics was measured, and some analysis was conducted of where the particles are captured within the fabric layers. Testing was conducted with aerosolized living spores, in order to evaluate the efficacy of various fabric treatments on spore viability within the fabric layers after exposure. Reported are the results of studies on fabrics with and without a removable electrospun nanofiber liner, and the fate of the spores within the fabric layers. In the second study, non-instrumented filtration testing using simulated lunar dust determined the comparative filtration efficiency of various nonwoven filtration media. Nanofiber witness media, combined with scanning electron microscope images, showed that an electrospun nonwoven filter layer effectively filtered out all the large and fine particles of the simulated lunar dust.

  12. Effect of membrane filtration artifacts on dissolved trace element concentrations

    Science.gov (United States)

    Horowitz, Arthur J.; Elrick, Kent A.; Colberg, Mark R.

    1992-01-01

    Among environment scientists, the current and almost universally accepted definition of dissolved constituents is an operational one; only those materials which pass through a 0.45-??m membrane filter are considered to be dissolved. Detailed laboratory and field studies on Fe and Al indicate that a number of factors associated with filtration, other than just pore size, can substantially alter 'dissolved' trace element concentrations; these include: filter type, filter diameter, filtration method, volume of sample processed, suspended sediment concentration, suspended sediment grain-size distribution, concentration of colloids and colloidally associated trace elements and concentration of organic matter. As such, reported filtered-water concentrations employing the same pore size filter may not be equal. Filtration artifacts may lead to the production of chemical data that indicate seasonal or annual 'dissolved' chemical trends which do not reflect actual environmental conditions. Further, the development of worldwide averages for various dissolved chemical constituents, the quantification of geochemical cycles, and the determination of short- or long-term environmental chemical trends may be subject to substantial errors, due to filtration artifacts, when data from the same or multiple sources are combined. Finally, filtration effects could have a substantial impact on various regulatory requirements.

  13. Water quality and treatment of river bank filtrate

    Directory of Open Access Journals (Sweden)

    W. W. J. M. de Vet

    2009-10-01

    Full Text Available In drinking water production, river bank filtration has the advantages of dampening peak concentrations of many dissolved components, substantially removing many micropollutants and removing, virtually completely, the pathogens and suspended solids. The production aquifer is not only fed by the river bank infiltrate but also by water percolating through covering layers. In the polder areas, these top layers consist of peat and deposits from river sediments and sea intrusions.

    This paper discusses the origin and fate of macro pollutants in river bank filtrate, based on extensive full-scale measurements in well fields and treatment systems of the Drinking Water Company Oasen in the Netherlands. First, it clarifies and illustrates redox reactions and the mixing of river bank filtrate and polder water as the dominant processes determining the raw water quality for drinking water production. Next, full-scale results are elaborated on to evaluate trickling filtration as an efficient and proven one-step process to remove methane, iron, ammonium and manganese. The interaction of methane and manganese removal with nitrification in these systems is further analyzed. Methane is mostly stripped during trickling filtration and its removal hardly interferes with nitrification. Under specific conditions, microbial manganese removal may play a dominant role.

  14. Water quality and treatment of river bank filtrate

    Directory of Open Access Journals (Sweden)

    W. W. J. M. de Vet

    2010-06-01

    Full Text Available In drinking water production, river bank filtration has the advantages of dampening peak concentrations of many dissolved components, substantially removing many micropollutants and removing, virtually completely, the pathogens and suspended solids. The production aquifer is not only fed by the river bank infiltrate but also by water percolating through covering layers. In the polder areas, these top layers consist of peat and deposits from river sediments and sea intrusions.

    This paper discusses the origin and fate of macro components in river bank filtrate, based on extensive full-scale measurements in well fields and treatment systems of the Drinking Water Company Oasen in the Netherlands. First, it clarifies and illustrates redox reactions and the mixing of river bank filtrate and PW as the dominant processes determining the raw water quality for drinking water production. Next, full-scale results are elaborated on to evaluate trickling filtration as an efficient and proven one-step process to remove methane, iron, ammonium and manganese. The interaction of methane and manganese removal with nitrification in these systems is further analyzed. Methane is mostly stripped during trickling filtration and its removal hardly interferes with nitrification. Under specific conditions, microbial manganese removal may play a dominant role.

  15. Impact of Acidification on Pollutants Fate and Soil Filtration Function

    Directory of Open Access Journals (Sweden)

    Jarmila Makovniková

    2014-12-01

    Full Text Available The objective of this paper was to investigate the effects of simulated acid load on the fate of inorganic pollutants (Cd, Pb, soil sorption potential, soil filtration func-tion. We made use of a short-term acidification pot experiment with grown plant of spring barley cultivated at 4 different soil types (Fluvisol, Cambisol, Stagnosol, Podzol. The potential of soil filtration was evaluated according to the Eq.: [Soil filtration function]=[Potential of soil sorbents]+[Potential of total content of inor-ganic pollutants]. Potential of soil sorbents (PSS is defined by qualitative (pH, or-ganic matter quality - A400/600 and quantitative factors (carbon content-Cox, humus layer thickness-H according to the Eq.:[PSS]=F(pH+F(A465/665+F(Cox*F(H. Acid load significantly influenced soil sorption potential and thus affected increase in Cd and Pb mobility what was reflected in their transfer into the plants. Results of soil filtration function showed significant change of filtration function in Cambisol.

  16. Pharmacologic Atrial Natriuretic Peptide Reduces Human Leg Capillary Filtration

    Science.gov (United States)

    Watenpaugh, Donald E.; Vissing, Susanne F.; Lane, Lynda D.; Buckey, Jay C.; Firth, Brian G.; Erdman, William; Hargens, Alan R.; Blomqvist, C. Gunnar

    1995-01-01

    Atrial natriuretic peptide (ANP) is produced and secreted by atrial cells. We measured calf capillary filtration rate with prolonged venous-occlusion plethys-mography of supine health male subjects during pharmacologic infusion of ANP (48 pmol/kg/min for 15 min; n equals 6) and during placebo infusion (n equals 7). Results during infusions were compared to prior control measurements. ANP infusion increased plasma (ANP) from 30 plus or minus 4 to 2,568 plus or minus 595 pmol/L. Systemic hemoconcentration occurred during ANP infusion; mean hematocrit and plasma colloid osmotic pressure increased 4.6 and 11.3 percent respectively, relative to pre-infusion baseline values (p is less than 0.05). Mean calf filtration, however was significantly reduced from 0.15 to 0.08 ml/100 ml/min with ANP. Heart rate increased 20 percent with ANP infusion, wheras blood pressure was unchanged. Calf conductance (blood flow/arterial pressure) and venous compliance were unaffected by ANP infusion. Placebo infusion had no effect relative to prior baseline control measurements. Although ANP induced systemic capillary filtration, in the calf, filtration was reduced with ANP. Therefore, phamacologic ANP infusion enhances capillary filtration from the systemic circulation, perhaps at upper body or splanchic sites or both, while having the opposite effect in the leg.

  17. Filtration des fluides de forage à travers les parois du puits - Bibliographie Filtration of Drilling Fluids Through Borehole Walls

    Directory of Open Access Journals (Sweden)

    Martin M.

    2006-11-01

    Full Text Available Ce document résume un certain nombre de données déjà publiées, relatives à la filtration du fluide de forage, de l'annulaire vers les formations traversées, durant l'approfondissement du puits. On considère : - d'une part, les phénomènes de filtration : . le long des parois (filtration dynamique durant les périodes de circulation - filtration statique durant les arrêts, . sous l'outil ; - d'autre part, certaines de leurs conséquences, en particulier leur influence : . sur la vitesse d'avancement, . sur les risques de coincement de la garniture par pression différentielle, . sur l'envahissement des zones poreuses et perméables. Les phénomènes et leurs conséquences dépendent de très nombreux facteurs dont certains jouent des rôles d'importance très voisine. Leurs études nécessitent des moyens expérimentaux bien adaptés, permettant une simulation suffisamment rigoureuse des conditions de forage. Les résultats ne peuvent être généralisés et doivent être exprimés en fonction des paramètres opératoires choisis. This article reviews varions data which have already been published and which concern the filtration of drilling fluid from the annular space into the formations crossed through during the drilling of a borehole. The following aspects are considered: (i filtration phenomena along borehole walls (dynamic filtration during circulation, and static filtration during shutdowns and underneath the bit; (ii some of the consequences of this filtration, and especially its influence on the rate of penetration, on risks of drill string sticking as the result of differential pressure, and on the invasion of porous and permeable zones. Such phenomena and their consequences depend on a great many factor, some which play roles of quite similar importance. Resaerch on such phenomena requires well suited experimental facilities enabling the sufficiently cllose simulation of drilling conditions. the results of such research

  18. Effects of drinking-water filtration on Cryptosporidium seroepidemiology, Scotland.

    Science.gov (United States)

    Ramsay, Colin N; Wagner, Adam P; Robertson, Chris; Smith, Huw V; Pollock, Kevin G J

    2014-01-01

    Continuous exposure to low levels of Cryptosporidium oocysts is associated with production of protective antibodies. We investigated prevalence of antibodies against the 27-kDa Cryptosporidium oocyst antigen among blood donors in 2 areas of Scotland supplied by drinking water from different sources with different filtration standards: Glasgow (not filtered) and Dundee (filtered). During 2006-2009, seroprevalence and risk factor data were collected; this period includes 2007, when enhanced filtration was introduced to the Glasgow supply. A serologic response to the 27-kDa antigen was found for ≈75% of donors in the 2 cohorts combined. Mixed regression modeling indicated a 32% step-change reduction in seroprevalence of antibodies against Cryptosporidium among persons in the Glasgow area, which was associated with introduction of enhanced filtration treatment. Removal of Cryptosporidium oocysts from water reduces the risk for waterborne exposure, sporadic infections, and outbreaks. Paradoxically, however, oocyst removal might lower immunity and increase the risk for infection from other sources.

  19. C-018H LERF filtration test plan. Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    Moberg, T.P.; King, C.V.

    1994-08-26

    The following outlines the plan to test the polymeric backwash filtration system at the LERF. These tests will determine if the ETF filter design is adequate. If the tests show that the design is adequate, the task will be complete. If the tests show that the technology is inadequate, it may be necessary to perform further tests to qualify other candidate filtration technologies (e.g., polymeric tubular ultrafiltration, centrifugal ultrafiltration). The criteria to determine the success or failure of the backwash filter will be based on the system`s ability to remove the bacteria and inorganic contaminants from the evaporator process condensate. The tests are designed to qualify the design basis of the filtration technology that will be used in the ETF.

  20. C-018H LERF filtration test plan. Revision 1

    International Nuclear Information System (INIS)

    The following outlines the plan to test the polymeric backwash filtration system at the LERF. These tests will determine if the ETF filter design is adequate. If the tests show that the design is adequate, the task will be complete. If the tests show that the technology is inadequate, it may be necessary to perform further tests to qualify other candidate filtration technologies (e.g., polymeric tubular ultrafiltration, centrifugal ultrafiltration). The criteria to determine the success or failure of the backwash filter will be based on the system's ability to remove the bacteria and inorganic contaminants from the evaporator process condensate. The tests are designed to qualify the design basis of the filtration technology that will be used in the ETF

  1. The Fundamentals of Waste Water Sludge Characterization and Filtration

    Energy Technology Data Exchange (ETDEWEB)

    Scales, Peter J.; Dixon, David R.; Harbour, Peter J.; Stickland, Anthony D.

    2003-07-01

    The move to greater emphasis on the disposal of waste water sludges through routes such as incineration and the added cost of landfill emplacement puts high demands on dewatering technology for these sludges. A dear problem in this area is that waste water sludges are slow and difficult to dewater and traditional methods of laboratory measurement for prediction of filtration performance are inadequate. This is highly problematic for the design and operational optimisation of centrifuges, filters and settling devices in the waste water industry. The behaviour is assessed as being due to non-linear behaviour of these sludges which negates the use of classical approaches. These approaches utilise the linear portion of a t versus V{sup 2} plot (where t is the time to filtration and V is the specific filtrate volume) to extract a simple Darcian permeability. Without this parameter, a predictive capacity for dewatering using current theory is negated. (author)

  2. EFFECT OF KIESELGUHR FILTRATION ON OPTICAL PROPERTIES OF BEER

    Directory of Open Access Journals (Sweden)

    Helena Frančáková

    2013-02-01

    Full Text Available Looks of beer is an important factor which is associated with high clarity. Clarity of beer is a basic precondition of its good marketability and consumer satisfaction. Beer filtration is ideal tool to create required optical properties. There is a high accent on this operation in brewery and minibrewery. The process of filtering removes unwanted haze-active substances in order to increase clarity and overall stability of beer. Objective method to expressing clarity of beer is nephelometric determination of turbidity, which is highly sensitive and achieved by reliable results directly in the units used to express the turbidity values in beer. The objective of our study was to measure haze before and after filtration in various types of beer with different length of lagering. Kieselguhr was used as filtration material. Haze of beer was measured by haze meter in determination under 2 angles and values were expressed in European Brewery Convention units directly.

  3. The renal handling of hemoglobin. I. Glomerular filtration.

    Science.gov (United States)

    Bunn, H F; Esham, W T; Bull, R W

    1969-05-01

    The glomerular filtration of hemoglobin (alpha(2)beta(2)) was studied under conditions in which its dissociation into alphabeta dimers was experimentally altered. Rats receiving hemoglobin treated with the sulfhydryl reagent bis(N-maleimidomethyl) ether (BME) showed a much lower renal excretion and prolonged plasma survival as compared with animals injected with untreated hemoglobin. Plasma disappearance was also prolonged in dogs receiving BME hemoglobin. Gel filtration data indicated that under physiological conditions, BME hemoglobin had impaired subunit dissociation. In addition, BME hemoglobin showed a very high oxygen affinity and a decreased rate of auto-oxidation. Glomerular filtration was enhanced under conditions which favor the dissociation of hemoglobin into dimers. Cat hemoglobin, which forms subunits much more extensively than canine hemoglobin, was excreted more readily by the rat kidney. The renal uptake of (59)Fe hemoglobin injected intra-arterially into rabbits varied inversely with the concentration of the injected dose.

  4. EVALUATION OF EFFECTIVENESS OF HOUSEHOLD DRINKING WATER FILTRATION

    Directory of Open Access Journals (Sweden)

    Karolina Jezierska

    2014-10-01

    Full Text Available The aim of this study was to analyze the effectiveness of household drinking water filtration. This article demonstrates the possibilities of using study on the reaction of ascorbic acid degradation in aqueous solutions to develop a new method for determining the effectiveness of household drinking water filtration. Based on the measurements of absorbance of ascorbic acid a new parameters WCW (Coeffi cient of Water Purity and SF (Filtration Degree were defined. Correlations between the SF and the amount of filtered water (filter usage were investigated. With the filter usage decreasing effectiveness of calcium ions removal and drop of differences in conductivity between the tap and filtered water were observed. SF decreases proportionally to the filter usage and therefore the proposed method can be an effective tool to determine the effectiveness of domestic water filters.

  5. Effect of flood-induced chemical load on filtrate quality at bank filtration sites

    Science.gov (United States)

    Ray, C.; Soong, T.W.; Lian, Y.Q.; Roadcap, G.S.

    2002-01-01

    Riparian municipal wells, that are located on riverbanks, are specifically designed to capture a portion of the river water through induced infiltration. Runoff from agricultural watersheds is found to carry enormous amounts of pesticides and nitrate. While the risk of contamination for a vast majority of sites with small-capacity vertical wells is low, potential exists for medium to large capacity collector wells to capture a fraction of the surface water contaminants during flood. Prior monitoring and current modeling results indicate that a small-capacity (peak pumpage 0.0315 m3/s) vertical bank filtration well may not be affected by river water nitrate and atrazine even during flood periods. For a medium capacity (0.0875-0.175 m3/s) hypothetical collector well at the same site, potential exists for a portion of the river water nitrate and atrazine to enter the well during flood periods. Various combinations of hydraulic conductivity of the riverbed or bank material were used. For nitrate, it was assumed either no denitrification occurred during the period of simulation or a half-life of 2 years. Equilibrium controlled sorption (organic carbon partition coefficient of 52 ml/g) and a half-life of between 7.5 and 15 weeks were considered for atrazine. Combinations of these parameters were used in various simulations. Peak concentrations of atrazine or nitrate in pumped water could vary from less than 1% to as high as 90% of that in the river. It was found that a combination of river stage, pumping rates, hydraulic properties of the riverbed and bank, and soil/pesticide properties could affect contaminant entry from river water to any of these wells. If the hydraulic conductivity of the bed and bank material were low, atrazine would not reach the pumping well with or without sorption and degradation. However, for moderately low permeable bank and bed materials, some atrazine from river water could enter a hypothetical collector well while pumping at 0.0875 m3/s. It

  6. A new method to evaluate polydisperse kaolinite clay particle removal in roughing filtration using colloid filtration theory.

    Science.gov (United States)

    Lin, Edwin; Page, Declan; Pavelic, Paul

    2008-02-01

    Previous application of colloid filtration theory to roughing filtration has not considered a reliable method for determining a representative attachment factor for a polydisperse suspension (of constant particle density). Establishment of such a method would broaden the application of trajectory modelling in roughing filtration, and progress the development of a comprehensive database of attachment factors and surface charge potentials for various particle and fluid types. This study establishes a methodology for the application of colloid filtration theory to roughing filtration and incorporates recent advancements in theoretical single-collector efficiency. A polydisperse kaolinite clay suspension was passed through a series of four gravel upflow roughing filters and removal efficiencies were calculated. Both the classical and Tufenkji and Elimelech's more recent correlation equations were used to calculate theoretical single-collector efficiencies and associated attachment factors for three different filter media sizes, flow rates, and suspended solids concentrations (0.137+/-0.023). The use of Tufenkji and Elimelech's modified correlation equation resulted in reduced variability in the estimation of theoretical single-collector efficiencies. PMID:17884131

  7. A novel insight into membrane fouling mechanism regarding gel layer filtration: Flory-Huggins based filtration mechanism.

    Science.gov (United States)

    Lei, Qian; Zhang, Meijia; Shen, Liguo; Li, Renjie; Liao, Bao-Qiang; Lin, Hongjun

    2016-01-01

    This study linked the chemical potential change to high specific filtration resistance (SFR) of gel layer, and then proposed a novel membrane fouling mechanism regarding gel layer filtration, namely, Flory-Huggins based filtration mechanism. A mathematical model for this mechanism was theoretically deduced. Agar was used as a model polymer for gel formation. Simulation of the mathematical model for agar gel showed that volume fraction of polymer and Flory-Huggins interaction parameter were the two key factors governing the gel SFR, whereas, pH and ionic strength were not related with the gel SFR. Filtration tests of gel layer showed that the total SFR value, effects of pH and ionic strength on the gel SFR well agreed with the perditions of model's simulation, indicating the real occurrence of this mechanism and the feasibility of the proposed model. This mechanism can satisfactorily explain the extremely high SFR of gel layer, and improve fundamental insights into membrane fouling regarding gel layer filtration. PMID:27627851

  8. ACTINIDE REMOVAL PROCESS SAMPLE ANALYSIS, CHEMICAL MODELING, AND FILTRATION EVALUATION

    Energy Technology Data Exchange (ETDEWEB)

    Martino, C.; Herman, D.; Pike, J.; Peters, T.

    2014-06-05

    Filtration within the Actinide Removal Process (ARP) currently limits the throughput in interim salt processing at the Savannah River Site. In this process, batches of salt solution with Monosodium Titanate (MST) sorbent are concentrated by crossflow filtration. The filtrate is subsequently processed to remove cesium in the Modular Caustic Side Solvent Extraction Unit (MCU) followed by disposal in saltstone grout. The concentrated MST slurry is washed and sent to the Defense Waste Processing Facility (DWPF) for vitrification. During recent ARP processing, there has been a degradation of filter performance manifested as the inability to maintain high filtrate flux throughout a multi-batch cycle. The objectives of this effort were to characterize the feed streams, to determine if solids (in addition to MST) are precipitating and causing the degraded performance of the filters, and to assess the particle size and rheological data to address potential filtration impacts. Equilibrium modelling with OLI Analyzer{sup TM} and OLI ESP{sup TM} was performed to determine chemical components at risk of precipitation and to simulate the ARP process. The performance of ARP filtration was evaluated to review potential causes of the observed filter behavior. Task activities for this study included extensive physical and chemical analysis of samples from the Late Wash Pump Tank (LWPT) and the Late Wash Hold Tank (LWHT) within ARP as well as samples of the tank farm feed from Tank 49H. The samples from the LWPT and LWHT were obtained from several stages of processing of Salt Batch 6D, Cycle 6, Batch 16.

  9. Liquid-Phase Adsorption Fundamentals.

    Science.gov (United States)

    Cooney, David O.

    1987-01-01

    Describes an experiment developed and used in the unit operations laboratory course at the University of Wyoming. Involves the liquid-phase adsorption of an organic compound from aqueous solution on activated carbon, and is relevant to adsorption processes in general. (TW)

  10. Simulation of impaction filtration of aerosol droplets in porous media

    OpenAIRE

    Ghazaryan, Lilya; Lopez Penha, David J.; Geurts, Bernard J.; Stolz, Steffen; Winkelmann, Christoph; Pereira, J.C.F.; Sequeira, A.; Pereira, J. M. C.

    2010-01-01

    We report on the development of a method to simulate from first principles the particle filtration efficiency of filters that are composed of structured porous media. We assume that the ratio of particle density to the fluid density is high. We concentrate on the motion of the particles in a laminar flow and quantify the role of inertial effects on the filtration of an ensemble of particles. We adopt the Euler-Lagrange approach, distinguishing a flow field in which the motion of a large numbe...

  11. Horizontal-belt filtration at Randfontein Estates Mine

    International Nuclear Information System (INIS)

    The paper describes tests on horizontal-belt filters for the filtration of gold and uranium. The promising results led to the installation of 17 such filters (ten of them 120 m2 in size) in the mine's metallurgical plants, and their operation is discussed. Although several problems were encountered both in operation and maintenance, it is concluded that, with correct operation and suitable filter cloths, exceptionally good metallurgical recoveries can be achieved at filtration rates twice to three times higher than those on rotary filters

  12. Pathogen filtration to control plant disease outbreak in greenhouse production

    Science.gov (United States)

    Jeon, Sangho; Krasnow, Charles; Bhalsod, Gemini; Granke, Leah; Harlan, Blair; Hausbeck, Mary; Zhang, Wei

    2016-04-01

    Previous research has been extensively focused on understanding the fate and transport of human microbial pathogens in soil and water environments. However, little is known about the transport of plant pathogens, although these pathogens are often found in irrigation waters and could cause severe crop damage and economical loss. Water mold pathogens including Phytophthora spp. and Pythium spp. are infective to a wide range of vegetable and floriculture crops, and they are primarily harbored in soils and disseminated through water flow. It is challenging to control these pathogens because they often quickly develop resistance to many fungicides. Therefore, this multi-scale study aimed to investigate physical removal of plant pathogens from water by filtration, thus reducing the pathogen exposure risks to crops. In column-scale experiments, we studied controlling factors on the transport and retention of Phytophthora capsici zoospores in saturated columns packed with iron oxide coated-sand and uncoated-sand under varying solution chemistry. Biflagellate zoospores were less retained than encysted zoospores, and lower solution pH and greater iron oxide content increased the retention of encysted zoospores. These results provided insights on environmental dispersal of Phytophthora zoospores in natural soils as well as on developing cost-effective engineered filtration systems for pathogen removal. Using small-scale greenhouse filtration systems, we further investigated the performance of varying filter media (i.e., granular sand, iron oxide coated ceramic porous media, and activated carbon) in mitigating disease outbreaks of Phytophthora and Pythium for greenhouse-grown squash and poinsettia, respectively, in comparison with fungicide treatment. For squash, filtration by iron oxide coated media was more effective in reducing the Phytophthora infection, comparing to sand filtration and fungicide application. For poinsettia, sand filtration performed better in controlling

  13. Mathematical Model of Suspension Filtration and Its Analytical Solution

    Directory of Open Access Journals (Sweden)

    Normahmad Ravshanov

    2013-01-01

    Full Text Available The work develops advanced mathematical model and computing algorithm to analyze, predict and identify the basic parameters of filter units and their variation ranges. Numerical analytic solution of liquid ionized mixtures filtration was got on their basis. Computing experiments results are presented in graphics form. Calculation results analysis enables to determine the optimum performance of filter units, used for liquid ionized mixtures filtration, food preparation, drug production and water purification. Selection of the most suitable parameters contributes to the improvement of economic and technological efficiency of production and filter units working efficiency.

  14. Low-cost multi-stage filtration enhanced by coagulation-flocculation in upflow gravel filtration

    Directory of Open Access Journals (Sweden)

    L. D. Sánchez

    2012-06-01

    Full Text Available This paper assesses the operational and design aspects of coagulation and flocculation in upflow gravel filters (CF-UGF in a multi-stage filtration (MSF plant. This study shows that CF-UGF units improve the performance of MSF considerably, when the system operates with turbidity above 30 NTU. It strongly reduces the load of particulate material before the water enters in the slow sand filters (SSF and therewith avoids short filter runs and prevents early interruption in SSF operations. The removal efficiency of turbidity in the CF-UGF with coagulant was between 85 and 96%, whereas the average efficiency without coagulant dosing was 46% (range: 21–76%. Operating with coagulant also improves the removal efficiency for total coliforms, E-coli and HPC. No reduction was observed in the microbial activity of the SSF, no obstruction of the SSF bed was demonstrated and SSF runs were maintained between 50 and 70 days for a maximum head loss of 0.70 m. The most important advantage is the flexibility of the system to operate with and without coagulant according to the influent turbidity. It was only necessary for 20% of the time to operate with the coagulant. The CF-UGF unit represented 7% of total construction costs and the O&M cost for the use of coagulant represented only 0.3%.

  15. Low-cost multi-stage filtration enhanced by coagulation-flocculation in upflow gravel filtration

    Directory of Open Access Journals (Sweden)

    L. D. Sánchez

    2012-12-01

    Full Text Available This paper assesses the operational and design aspects of coagulation and flocculation in upflow gravel filters (CF-UGF in a multi-stage filtration (MSF plant. This study shows that CF-UGF units improve the performance of MSF considerably, when the system operates with turbidity above 30 NTU. It strongly reduces the load of particulate material before the water enters in the slow sand filters (SSF and therewith avoids short filter runs and prevents early interruption in SSF operations. The removal efficiency of turbidity in the CF-UGF with coagulant was between 85 and 96%, whereas the average efficiency without coagulant dosing was 46% (range: 21–76%. Operating with coagulant also improves the removal efficiency for total coliforms, E-coli and HPC. No reduction was observed in the microbial activity of the SSF, no obstruction of the SSF bed was demonstrated and SSF runs were maintained between 50 and 70 days for a maximum head loss of 0.70 m. The most important advantage is the flexibility of the system to operate with and without coagulant according to the influent turbidity. It was only necessary for 20% of the time to operate with the coagulant. The CF-UGF unit represented 7% of total construction costs and the O&M cost for the use of coagulant represented only 0.3%.

  16. Equivalent Cake Filtration Model%等效滤饼过滤模型

    Institute of Scientific and Technical Information of China (English)

    徐坦; 朱企新; 陈旭; 李文苹

    2008-01-01

    Cake filtration has been widely used in many chemical processes with more non-Newtonian, highly vis- cous and compressible materials involved. Neither traditional nor modern filtration theory can be applied in practice. "Equivalent cake filtration model" is a recently developed mathematical model to describe cake filtration for both Newtonian and non-Newtonian fluids, in either steady or unsteady filtration stages. This model has two strengths: (1) It can be used to determine equivalent capillary radii and predict filtration quality based on the properties of solid/liquid system and operation parameters; and (2) to calculate cake specific resistance and its variations with time at various cake thickness locations.

  17. Reduction of DOM fractions and their trihalomethane formation potential in surface river water by in-line coagulation with ceramic membrane filtration.

    Science.gov (United States)

    Rakruam, Pharkphum; Wattanachira, Suraphong

    2014-03-01

    This research was aimed at investigating the reduction of DOM fractions and their trihalomethane formation potential (THMFP) by in-line coagulation with 0.1 μm ceramic membrane filtration. The combination of ceramic membrane filtration with a coagulation process is an alternative technology which can be applied to enhance conventional coagulation processes in the field of water treatment and drinking water production. The Ping River water (high turbidity water) was selected as the raw surface water because it is currently the main raw water source for water supply production in the urban and rural areas of Chiang Mai Province. From the investigation, the results showed that the highest percent reductions of DOC, UV-254, and THMFP (47.6%, 71.0%, and 67.4%, respectively) were achieved from in-line coagulation with ceramic membrane filtration at polyaluminum chloride dosage 40 mg/L. Resin adsorption techniques were employed to characterize the DOM in raw surface water and filtered water. The results showed that the use of a ceramic membrane with in-line coagulation was able to most efficiently reduce the hydrophobic fraction (HPOA) (68.5%), which was then followed by the hydrophilic fraction (HPIA) (49.3%). The greater mass DOC reduction of these two fractions provided the highest THMFP reductions (55.1% and 37.2%, respectively). Furthermore, the in-line coagulation with ceramic membrane filtration was able to reduce the hydrophobic (HPOB) fraction which is characterized by high reactivity toward THM formation. The percent reduction of mass DOC and THMFP of HPOB by in-line coagulation with ceramic membrane filtration was 45.9% and 48.0%, respectively.

  18. Experimental study on dynamic gas adsorption

    Institute of Scientific and Technical Information of China (English)

    Qin Yueping; Wang Yaru; Yang Xiaobin; Liu Wei; Luo Wei

    2012-01-01

    In order to predict the actual adsorption amount as gas adsorption reaches the equilibrium,this research designed a dynamic gas adsorption experiment under constant temperature and pressure,and also studied the isopiestic adsorption characteristics of coal samples with same quality but different sizes.Through the experiment,the study found the adsorption-time changing relationships under different pressures of four different size samples.After regression analysis,we obtained the functional relationship between adsorption and time.According to this,the research resulted in the actual adsorption amount when gas adsorption reaches the equilibrium.In addition,the current study obtained the relationship between adsorption and pressure as well as the effect of the coal size to the adsorption rate.These results have great theoretical and practical significance for the prediction of gas amount in coal seam and gas adsorption process.

  19. QUENCHING ON BOUNDARY TO THE NEWTON FILTRATION EQUATION (Ⅰ)

    Institute of Scientific and Technical Information of China (English)

    段志文; 谢春红; 卢伟明

    2003-01-01

    This paper discusses the global existence and quenching of the solution to the Newton filtration equation with the nonlinear boundary condition.The authors also discuss the profile of the quenching solution in the quenching time and obtain the quenching rate of the quenching solution.

  20. 40 CFR 141.719 - Additional filtration toolbox components.

    Science.gov (United States)

    2010-07-01

    ... specific microorganism or surrogate used in the test; gross measurements such as turbidity may not be used... test; gross measurements such as turbidity may not be used. (iii) The maximum feed water concentration... include continuous filtrate turbidity monitoring. (ii) Continuous monitoring must be conducted at...

  1. EVALUATION OF FILTRATION AND DISTILLATION METHODS FOR RECYCLING AUTOMOTIVE COOLANT.

    Science.gov (United States)

    This evaluation addresses the product quality, waste reduction, and economic issues involved in recycling automotive and heavy-duty engine coolants at a New Jersey Department of Transportation garage. The specific recycling units evaluated are based on the technologies of filtrat...

  2. Separation of nanoparticles: Filtration and scavenging from waste incineration plants.

    Science.gov (United States)

    Förster, Henning; Thajudeen, Thaseem; Funk, Christine; Peukert, Wolfgang

    2016-06-01

    Increased amounts of nanoparticles are applied in products of everyday life and despite material recycling efforts, at the end of their life cycle they are fed into waste incineration plants. This raises the question on the fate of nanoparticles during incineration. In terms of environmental impact the key question is how well airborne nanoparticles are removed by separation processes on their way to the bag house filters and by the existing filtration process based on pulse-jet cleanable fibrous filter media. Therefore, we investigate the scavenging and the filtration of metal nanoparticles under typical conditions in waste incineration plants. The scavenging process is investigated by a population balance model while the nanoparticle filtration experiments are realized in a filter test rig. The results show that depending on the particle sizes, in some cases nearly 80% of the nanoparticles are scavenged by fly ash particles before they reach the bag house filter. For the filtration step dust cakes with a pressure drop of 500Pa or higher are found to be very effective in preventing nanoparticles from penetrating through the filter. Thus, regeneration of the filter must be undertaken with care in order to guarantee highly efficient collection of particles even in the lower nanometre size regime. PMID:27067426

  3. Alternative filtration testing program: Pre-evaluation of test results

    Energy Technology Data Exchange (ETDEWEB)

    Georgeton, G.K.; Poirier, M.R.

    1990-09-28

    Based on results of testing eight solids removal technologies and one pretreatment option, it is recommended that a centrifugal ultrafilter and polymeric ultrafilter undergo further testing as possible alternatives to the Norton Ceramic filters. Deep bed filtration should be considered as a third alternative, if a backwashable cartridge filter is shown to be inefficient in separate testing.

  4. Alternative filtration testing program: Pre-evaluation of test results

    International Nuclear Information System (INIS)

    Based on results of testing eight solids removal technologies and one pretreatment option, it is recommended that a centrifugal ultrafilter and polymeric ultrafilter undergo further testing as possible alternatives to the Norton Ceramic filters. Deep bed filtration should be considered as a third alternative, if a backwashable cartridge filter is shown to be inefficient in separate testing

  5. Simulation of impaction filtration of aerosol droplets in porous media

    NARCIS (Netherlands)

    Ghazaryan, Lilya; Lopez Penha, David J.; Geurts, Bernard J.; Stolz, Steffen; Winkelmann, Christoph; Pereira, J.C.F.; Sequeira, A.; Pereira, J.M.C.

    2010-01-01

    We report on the development of a method to simulate from first principles the particle filtration efficiency of filters that are composed of structured porous media. We assume that the ratio of particle density to the fluid density is high. We concentrate on the motion of the particles in a laminar

  6. The effect of filter cake viscoelasticity on filtration

    DEFF Research Database (Denmark)

    Christensen, Morten Lykkegaard

    Wastewater is usually treated biologically, and a by-product from this treatment is waste-activated sludge with high water content. Sludge is therefore often filtrated to reduce the volume for handling and disposal, and to minimise the water content before incineration of the sludge. However, it ...

  7. Optimal adaptive scheduling and control of beer membrane filtration

    NARCIS (Netherlands)

    Willigenburg, van L.G.; Vollebregt, H.M.; Sman, van der R.G.M.

    2015-01-01

    An adaptive optimal scheduling and controller design is presented that attempts to improve the performance of beer membrane filtration over the ones currently obtained by operators. The research was performed as part of a large European research project called EU Cafe with the aim to investigate the

  8. Successful Treatment Of Homozygous Familial Hypercholesterolemia Using Cascade Filtration Plasmapheresis

    Directory of Open Access Journals (Sweden)

    Fatih Kardas

    2012-12-01

    Full Text Available OBJECTIVE: The aim of our study is to discuss the efficacy of low-density lipoprotein-cholesterol (LDL-C apheresis procedure using the cascade filtration system for pediatric patients with homozygous familial hypercholesterolemia (FH, and to clarify the adverse effects and difficulties. METHODS: LDL apheresis using the cascade filtration system was performed in 3 pediatric patients with homozygous FH. In total, 120 apheresis sessions were performed for all patients. RESULTS: Cascade filtration therapy significantly reduced the mean LDL-C values from 418 ± 62 mg/dl to 145 ± 43 mg/dl (p<0.05. We determined an acute mean reduction in the plasma levels of total cholesterol (57.9%, LDL cholesterol (70.8%, and high-density lipoprotein (HDL cholesterol (40.7%. Treatments were well tolerated. The most frequent clinical adverse effects were hypotension in 3 sessions (2.5%, chills/feeling cold (1.7% in 2 sessions, and nausea and vomiting in 3 sessions (2.5%. CONCLUSION: Our experience with three patients using the cascade filtration system were, good clinical outcomes, laboratory findings, safety of usage, minor adverse effects and technical problems.

  9. Removal of Inclusions from Molten Aluminum by Supergravity Filtration

    Science.gov (United States)

    Song, Gaoyang; Song, Bo; Yang, Zhanbing; Yang, Yuhou; Zhang, Jing

    2016-09-01

    A new approach to removing inclusions from aluminum melt by supergravity filtration was investigated. The molten aluminum containing MgAl2O4 spinel and coarse Al3Ti particles was isothermally filtered with different gravity coefficients, different filtering times, and various filtering temperatures under supergravity field. When the gravity coefficient G ≥ 50, the alloy samples were divided automatically into two parts: the upper residue and the lower filtered aluminum. All inclusions (MgAl2O4 and Al3Ti particles) were nearly intercepted in the upper residue by filter felt with average pore size of 44.78 μm. The removal efficiencies of oxide inclusions and Al3Ti particles exceeded 98 and 90 pct, respectively, at G ≥ 50, t = 2 minutes, T = 973 K (700 °C). Besides, the yield of purified aluminum was up to 92.1 pct at G = 600, t = 2 minutes, and T = 973 K (700 °C). The calculations of centrifugal pressure indicated that supergravity filtration could effectively overcome the pressure drop without meeting the rigorous requirement of height of molten metal, especially for using the fine-pore filter medium. Moreover, cake-mode filtration was the major mechanism of supergravity filtration of molten metal in this work.

  10. DEM Simulation of Particle Clogging in Fiber Filtration

    Science.gov (United States)

    Tao, Ran; Yang, Mengmeng; Li, Shuiqing

    2015-11-01

    The formation of porous particle deposits plays a crucial role in determining the efficiency of filtration process. In this work, an adhesive discrete element method (DEM), in combination with CFD, is developed to dynamically describe these porous deposit structures and the changed flow field between two parallel fibers under the periodic boundary conditions. For the first time, it is clarified that the structures of clogged particles are dependent on both the adhesion parameter (defined as the ratio of interparticle adhesion to particle inertia) and the Stokes number (as an index of impaction efficiency). The relationship between the pressure-drop gradient and the coordination number along the filtration time is explored, which can be used to quantitatively classify the different filtration regimes, i.e., clean filter stage, clogging stage and cake filtration stage. Finally, we investigate the influence of the fiber separation distance on the particle clogging behavior, which affects the collecting efficiency of the fibers significantly. The results suggest that changing the arrangement of fibers can improve the filter performance. This work has been funded by the National Key Basic Research and Development Program (2013CB228506).

  11. AUTOMOTIVE AND HEAVY-DUTY ENGINE COOLANT RECYCLING BY FILTRATION

    Science.gov (United States)

    This evaluation addresses the product quality, waste reduction and economic issues involved in recycling automotive and heavy-duty engine coolants. he specific recycling units evaluated are a fleet-size unit and a portable unit, both based on the technology of chemical filtration...

  12. Reaching ultra low phosphorus concentrations by filtration techniques

    NARCIS (Netherlands)

    Scherrenberg, S.M.

    2011-01-01

    This research deals with tertiary treatment techniques used for the removal of phosphorus from wastewater treatment plant (WWTP) effluent. The main objective of this research is to obtain ultra low total phosphorus (<0.15 mg total phosphorus/L) concentrations by coagulation, flocculation and filtrat

  13. RIVERBANK FILTRATION AS A PRETREATMENT FOR NANOFILTRATION MEMBRANES

    Science.gov (United States)

    The loss of membrane efficiency due to fouling is one of the main impediments to the development of membrane processes for use in drinking water treatment. Surface waters, in general, have a greater proclivity towards fouling as compared to groundwaters. Riverbank filtration ch...

  14. Numerical methods for determining filtration parameters for inhomogeneous oil strata

    Energy Technology Data Exchange (ETDEWEB)

    Golubev, G.V.; Danilaev, P.G.

    1994-06-01

    We describe a number of nonlocal hydrodrodynamic methods for determining filtration parameters for inhomogeneous oil strata and flow models. Numerical algorithms based on projection-difference, integral, finite-difference, and regularization methods are used to solve these problems. Numerical computations based on the algorithms are presented.

  15. Control of the accumulation of non-process elements and organic compounds in pulp mills with bleach filtrate reuse. Quarterly report, October--December 1996

    Energy Technology Data Exchange (ETDEWEB)

    Frederick, W.J.; Laver, M.L.; Rorrer, G.L.

    1996-12-31

    A portion of each filtrate sample was freeze-dried and the resulting solids were analyzed for ash content. Adsorption experiments with calcium and barium were carried at 70{degrees}C in a temperature controlled incubator under continuous mixing in order to simulate the environment experienced by brownstock as it moves through the Q stage. In the calcium experiments, it was difficult to accurately determine the calcium adsorbed on the pulp by measuring the depletion of calcium in the aqueous phase. Consequently, the technique was modified. In the modified technique, the calcium-adsorbed pulp is acid washed again to release the calcium. The calcium concentration in the washings is measured, and the calcium adsorbed on the pulp is estimated by material balance. Measurement of calcium adsorption on the brownstock pulp fibers from the L-P/Samoa mill have been obtained.

  16. Adsorption of Atenolol on Kaolinite

    Directory of Open Access Journals (Sweden)

    Yingmo Hu

    2015-01-01

    Full Text Available In this study the adsorption of atenolol (AT, a β-blocker, on kaolinite, a clay mineral of low surface charge, was investigated under varying initial AT concentration, equilibrium time, solution pH, ionic strength, and temperature conditions. The results showed that the amounts of AT uptake by kaolinite were close to its cation exchange capacity value and the AT adsorption was almost instantaneous, suggesting a surface adsorption. The adsorption was exothermic and the free energy of adsorption was small negative, indicating physical adsorption. The increase in ionic strength of the solution drastically reduced AT uptake on kaolinite. A significant reduction in AT uptake was found at solution pH below 5 or above 10. The FTIR results showed band shifting and disappearance for NH bending vibration and benzene ring skeletal vibration at 3360 and 1515 cm−1 and band splitting at 1412 and 1240 cm−1 attributed to C–N valence vibration coupled with NH bending vibrations and alkyl aryl ether linkage, suggesting the participation of NH, –O–, and benzene ring for AT adsorption on kaolinite.

  17. Adsorption Desalination: A Novel Method

    KAUST Repository

    Ng, Kim Choon

    2010-11-15

    The search for potable water for quenching global thirst remains a pressing concern throughout many regions of the world. The demand for new and sustainable sources and the associated technologies for producing fresh water are intrinsically linked to the solving of potable water availability and hitherto, innovative and energy efficient desalination methods seems to be the practical solutions. Quenching global thirst by adsorption desalination is a practical and inexpensive method of desalinating the saline and brackish water to produce fresh water for agriculture irrigation, industrial, and building applications. This chapter provides a general overview of the adsorption fundamentals in terms of adsorption isotherms, kinetics, and heat of adsorption. It is then being more focused on the principles of thermally driven adsorption desalination methods. The recent developments of adsorption desalination plants and the effect of operating conditions on the system performance in terms of specific daily water production and performance ratio are presented. Design of a large commercial adsorption desalination plant is also discussed herein.

  18. Impacts of extreme flooding on riverbank filtration water quality.

    Science.gov (United States)

    Ascott, M J; Lapworth, D J; Gooddy, D C; Sage, R C; Karapanos, I

    2016-06-01

    Riverbank filtration schemes form a significant component of public water treatment processes on a global level. Understanding the resilience and water quality recovery of these systems following severe flooding is critical for effective water resources management under potential future climate change. This paper assesses the impact of floodplain inundation on the water quality of a shallow aquifer riverbank filtration system and how water quality recovers following an extreme (1 in 17 year, duration >70 days, 7 day inundation) flood event. During the inundation event, riverbank filtrate water quality is dominated by rapid direct recharge and floodwater infiltration (high fraction of surface water, dissolved organic carbon (DOC) >140% baseline values, >1 log increase in micro-organic contaminants, microbial detects and turbidity, low specific electrical conductivity (SEC) 400% baseline). A rapid recovery is observed in water quality with most floodwater impacts only observed for 2-3 weeks after the flooding event and a return to normal groundwater conditions within 6 weeks (lower fraction of surface water, higher SEC, lower DOC, organic and microbial detects, DO). Recovery rates are constrained by the hydrogeological site setting, the abstraction regime and the water quality trends at site boundary conditions. In this case, increased abstraction rates and a high transmissivity aquifer facilitate rapid water quality recoveries, with longer term trends controlled by background river and groundwater qualities. Temporary reductions in abstraction rates appear to slow water quality recoveries. Flexible operating regimes such as the one implemented at this study site are likely to be required if shallow aquifer riverbank filtration systems are to be resilient to future inundation events. Development of a conceptual understanding of hydrochemical boundaries and site hydrogeology through monitoring is required to assess the suitability of a prospective riverbank filtration

  19. A Novel Hierarchical Structured Poly(lactic acid/Titania Fibrous Membrane with Excellent Antibacterial Activity and Air Filtration Performance

    Directory of Open Access Journals (Sweden)

    Zhe Wang

    2016-01-01

    Full Text Available Hybrid poly(lactic acid/titania (PLA/TiO2 fibrous membranes exhibiting excellent air filtration performance and good antibacterial activity were prepared via the electrospinning technique. By varying the composition of the precursor solutions and the relative humidity, the morphologies of PLA/TiO2 fibers, including the nanopores and nanometer-scale protrusions on the surface of the fibers, could be regulated. The distribution of nanopores and TiO2 nanoparticles on the surface of PLA/TiO2 fibers was investigated. Nitrogen adsorption-desorption analysis revealed that nanopores and nanometer-scale protrusions play an important role in improving the specific surface area and nanopore volume of the relevant PLA/TiO2 fibrous membrane. Filtration performance tests conducted by measuring the penetration of sodium chloride aerosol particles with a 260 nm mass median diameter indicated that fibers with a high surface roughness, large specific surface area, and large nanopore volume greatly improved the particle capture efficiency and facilitated the penetration of airflow. Furthermore, the introduction of TiO2 nanoparticles endows the relevant fibrous membrane with antibacterial properties. The as-prepared PLA/TiO2 fibrous membrane loaded with 1.75 wt% TiO2 nanoparticles formed at a relative humidity of 45% exhibited a high filtration efficiency (99.996% and a relatively low pressure drop (128.7 Pa, as well as a high antibacterial activity of 99.5%.

  20. Cake filtration modeling: Analytical cake filtration model and filter medium characterization

    Energy Technology Data Exchange (ETDEWEB)

    Koch, Michael

    2008-05-15

    Cake filtration is a unit operation to separate solids from fluids in industrial processes. The build up of a filter cake is usually accompanied with a decrease in overall permeability over the filter leading to an increased pressure drop over the filter. For an incompressible filter cake that builds up on a homogeneous filter cloth, a linear pressure drop profile over time is expected for a constant fluid volume flow. However, experiments show curved pressure drop profiles, which are also attributed to inhomogeneities of the filter (filter medium and/or residual filter cake). In this work, a mathematical filter model is developed to describe the relationship between time and overall permeability. The model considers a filter with an inhomogeneous permeability and accounts for fluid mechanics by a one-dimensional formulation of Darcy's law and for the cake build up by solid continuity. The model can be solved analytically in the time domain. The analytic solution allows for the unambiguous inversion of the model to determine the inhomogeneous permeability from the time resolved overall permeability, e.g. pressure drop measurements. An error estimation of the method is provided by rewriting the model as convolution transformation. This method is applied to simulated and experimental pressure drop data of gas filters with textile filter cloths and various situations with non-uniform flow situations in practical problems are explored. A routine is developed to generate characteristic filter cycles from semi-continuous filter plant operation. The model is modified to investigate the impact of non-uniform dust concentrations. (author). 34 refs., 40 figs., 1 tab

  1. Carbon nanomaterials for gas adsorption

    CERN Document Server

    Terranova, Maria Letizia

    2012-01-01

    Research in adsorption of gases by carbon nanomaterials has experienced considerable growth in recent years, with increasing interest for practical applications. Many research groups are now producing or using such materials for gas adsorption, storage, purification, and sensing. This book provides a selected overview of some of the most interesting scientific results regarding the outstanding properties of carbon nanomaterials for gas adsorption and of interest both for basic research and technological applications. Topics receiving special attention in this book include storage of H, purific

  2. The glomerular filtration rate during pregnancy : Saline infusion enhances the glomerular filtration rate in the pregnant rat

    NARCIS (Netherlands)

    Faas, MM; Schuiling, GA; Klok, PA; Valkhof, N; Bakker, WW

    1996-01-01

    The glomerular filtration rate (GFR) of pregnant rats is generally believed to exceed non-pregnant values. This notion is primarily based upon standard inulin clearances. However, the inulin clearance requires continuous infusion of inulin usually dissolved in saline. Since saline infusion per se in

  3. Characterization, Washing, Leaching, and Filtration of C-104 Sludge

    Energy Technology Data Exchange (ETDEWEB)

    KP Brooks; PR Bredt; GR Golcar; SA Hartley; LK Jagoda; KG Rappe; MW Urie

    2000-06-09

    Approximately 1,400 g of wet Hanford Tank C-104 Sludge was evaluated by Battelle for the high-level waste (HLW) pretreatment processes of ultrafiltration, dilute caustic washing, and elevated-temperature caustic leaching. The filterability of diluted C-104 sludge was measured with a 0.1-{micro}m sintered metal Mott filter using a 24-inch-long, single-element, crossflow filtration system (cells unit filter [CUF]). While the filtrate was being recirculated prior to washing and leaching, a 6.9 wt% solids slurry was evaluated with a matrix of seven 1-hour conditions of varying trans-membrane pressure (30 to 70 psid) and axial velocity (9 to 15 ft/s). The filtrate flux and backpulse efficiency were determined for each condition. The slurry was concentrated to 23 wt% solids, a second matrix of six 1-hour conditions was performed, and data analogous to that recorded in the first matrix were obtained. The low-solids-concentration matrix produced filtrate flux rates that ranged from 0.038 to 0.083 gpm/ft{sup 2}. The high-solids-concentration matrix produced filtrate flux rates that ranged from 0.0095 to 0.0172 gpm/ft{sup 2}. In both cases, the optimum filtrate flux was at the highest axial velocity (15 ft/s) and transmembrane pressure had little effect. Nearly all of the measured filtrate fluxes were more than an order of magnitude greater than the required plant flux for C-104 of 0.00126 gpm/ft{sup 2}. In both matrices, the filtrate flux appeared to be proportional to axial velocity, and the permeability appeared to be inversely proportional to the trans-membrane pressure. The first test condition was repeated as the last test condition for each matrix. In both cases, there was a significant decrease in filtrate flux, indicating some filter fouling during the test matrix that could not be removed by backpulsing alone, although the backpulse number and duration were not optimized. Following testing of these two matrices, the material was washed within the CUF by

  4. Characterization, Washing, Leaching, and Filtration of C-104 Sludge

    International Nuclear Information System (INIS)

    Approximately 1,400 g of wet Hanford Tank C-104 Sludge was evaluated by Battelle for the high-level waste (HLW) pretreatment processes of ultrafiltration, dilute caustic washing, and elevated-temperature caustic leaching. The filterability of diluted C-104 sludge was measured with a 0.1-microm sintered metal Mott filter using a 24-inch-long, single-element, crossflow filtration system (cells unit filter [CUF]). While the filtrate was being recirculated prior to washing and leaching, a 6.9 wt% solids slurry was evaluated with a matrix of seven 1-hour conditions of varying trans-membrane pressure (30 to 70 psid) and axial velocity (9 to 15 ft/s). The filtrate flux and backpulse efficiency were determined for each condition. The slurry was concentrated to 23 wt% solids, a second matrix of six 1-hour conditions was performed, and data analogous to that recorded in the first matrix were obtained. The low-solids-concentration matrix produced filtrate flux rates that ranged from 0.038 to 0.083 gpm/ft2. The high-solids-concentration matrix produced filtrate flux rates that ranged from 0.0095 to 0.0172 gpm/ft2. In both cases, the optimum filtrate flux was at the highest axial velocity (15 ft/s) and transmembrane pressure had little effect. Nearly all of the measured filtrate fluxes were more than an order of magnitude greater than the required plant flux for C-104 of 0.00126 gpm/ft2. In both matrices, the filtrate flux appeared to be proportional to axial velocity, and the permeability appeared to be inversely proportional to the trans-membrane pressure. The first test condition was repeated as the last test condition for each matrix. In both cases, there was a significant decrease in filtrate flux, indicating some filter fouling during the test matrix that could not be removed by backpulsing alone, although the backpulse number and duration were not optimized. Following testing of these two matrices, the material was washed within the CUF by continuously adding

  5. Static and dynamic filtrations of different clay, electrolytes, polymer systems; Filtrations statiques et dynamiques de differents systemes argile, electrolytes, polymere

    Energy Technology Data Exchange (ETDEWEB)

    Li, Y.

    1996-04-16

    Filtration properties of model drilling fluids composed of water, clays, electrolytes and water soluble polymers have been studied in static and dynamic conditions on paper filters and rock slices. Filtration experiments combined with cake observations by cryo-S.E.M. and T.E.M., show the influence of the size shape of clay particles as well as their associating mode in suspension, on the texture of the cake, its permeability, and relaxation properties. These parameters depend on the nature of the electrolyte. The polymer reduces the cake permeability by enhancing the dispersion of the clay within the suspension, but mainly by plugging the porous network due its auto aggregation properties. The cake construction in dynamic conditions, is related to the state of aggregation of the initial suspension, its poly-dispersity, its sensitivity to shear rates, and also, to the permeability of the cake built at the beginning of the filtration. In all cases, the rate of thickening of the cake is slower and larger filtrate volumes are obtained compared to the static conditions. Shear rate has two effects: first, to dissociate the weak aggregates in suspension, second, to impose a size selection of the particles in the case of a poly-dispersed suspension. At high shear rates, a cake of constant thin thickness is quickly obtained. The thickness of this limiting cake depends on the fraction of small particles present in suspension, or that can be formed by dissociation of weak aggregates under shear rate. The permeability of this limiting cake formed in dynamic conditions is, as in static conditions, controlled by the size and the shape of the particles that form the cake or by the presence of a build loss reducer water soluble polymer. Filtrations carried out on Fontainebleau sandstones allow to visualize the internal cake and to precise the risks of formation damage by the drilling fluid. (author) 127 refs.

  6. Potential Theory of Multicomponent Adsorption

    DEFF Research Database (Denmark)

    Shapiro, Alexander; Stenby, Erling Halfdan

    1998-01-01

    We developed a theory of multicomponent adsorption on the basis of the potential concept originally suggested by Polanyi. The mixture is considered as a heterogeneous substance segregated in the external field emitted by the adsorbent. The same standard equation of state, with no additional fitting...... parameters, is used for the segregated and for the bulk phases. With this approach, few parameters are needed to correlate pure component adsorption isotherms. These parameters may be used to predict adsorption equilibria of multicomponent mixtures without additional adjustment. A connection between...... the potential theory and the spreading pressure concept is established, and problems of the theory consistency are studied. Numerical algorithms are suggested for evaluation of the segregated state of the mixture in the potential field of adsorption forces. Comparison with experimental data shows good agreement...

  7. Particulate Matter Filtration Design Considerations for Crewed Spacecraft Life Support Systems

    Science.gov (United States)

    Agui, Juan H.; Vijayakumar, R.; Perry, Jay L.

    2016-01-01

    Particulate matter filtration is a key component of crewed spacecraft cabin ventilation and life support system (LSS) architectures. The basic particulate matter filtration functional requirements as they relate to an exploration vehicle LSS architecture are presented. Particulate matter filtration concepts are reviewed and design considerations are discussed. A concept for a particulate matter filtration architecture suitable for exploration missions is presented. The conceptual architecture considers the results from developmental work and incorporates best practice design considerations.

  8. Prediction of Pure Component Adsorption Equilibria Using an Adsorption Isotherm Equation Based on Vacancy Solution Theory

    DEFF Research Database (Denmark)

    Marcussen, Lis; Aasberg-Petersen, K.; Krøll, Annette Elisabeth

    2000-01-01

    An adsorption isotherm equation for nonideal pure component adsorption based on vacancy solution theory and the Non-Random-Two-Liquid (NRTL) equation is found to be useful for predicting pure component adsorption equilibria at a variety of conditions. The isotherm equation is evaluated successfully...... adsorption systems, spreading pressure and isosteric heat of adsorption are also calculated....

  9. Study of water quality improvements during riverbank filtration at three midwestern United States drinking water utilities

    Science.gov (United States)

    Weiss, W.; Bouwer, E.; Ball, W.; O'Melia, C.; Lechevallier, M.; Arora, H.; Aboytes, R.; Speth, T.

    2003-04-01

    manner that is not otherwise accomplished through conventional processes of drinking water treatment (e.g. coagulation, flocculation, sedimentation). 3. Evaluate changes in the character of NOM upon ground passage from the river to the wells. The experimental approach entailed monitoring the performance of three different RBF systems along the Ohio, Wabash, and Missouri Rivers in the Midwestern United States and involved a cooperative effort between the American Water Works Company, Inc. and Johns Hopkins University. Samples of the river source waters and the bank-filtered well waters were analyzed for a range of water quality parameters including TOC, DOC, UV-absorbance at 254-nm (UV-254), biodegradable dissolved organic carbon (BDOC), biologically assimilable organic carbon (AOC), inorganic species, DBP formation potential, and microorganisms. In the second year of the project, river waters were subjected to a bench-scale conventional treatment train consisting of coagulation, flocculation, sedimentation, glass-fiber filtration, and ozonation. The treated river waters were compared with the bank-filtered waters in terms of TOC, DOC, UV-254, and DBP formation potential. In the third and fourth years of the project, NOM from the river and well waters was characterized using the XAD-8 resin adsorption fractionation method (Leenheer, 1981; Thurman &Malcolm, 1981). XAD-8 adsorbing (hydrophobic) and non-adsorbing (hydrophilic) fractions of the river and well waters were compared with respect to DOC, UV-254, and DBP formation potential to determine whether RBF alters the character of the source water NOM upon ground passage and if so, which fractions are preferentially removed. The results demonstrate the effectiveness of RBF at removing the organic precursors to potentially carcinogenic DBPs. When compared to a bench-scale conventional treatment train optimized for turbidity removal, RBF performed as well as the treatment at one of the sites and significantly better than the

  10. Molecular adsorption on graphene

    Science.gov (United States)

    Kong, Lingmei; Enders, Axel; Rahman, Talat S.; Dowben, Peter A.

    2014-11-01

    Current studies addressing the engineering of charge carrier concentration and the electronic band gap in epitaxial graphene using molecular adsorbates are reviewed. The focus here is on interactions between the graphene surface and the adsorbed molecules, including small gas molecules (H2O, H2, O2, CO, NO2, NO, and NH3), aromatic, and non-aromatic molecules (F4-TCNQ, PTCDA, TPA, Na-NH2, An-CH3, An-Br, Poly (ethylene imine) (PEI), and diazonium salts), and various biomolecules such as peptides, DNA fragments, and other derivatives. This is followed by a discussion on graphene-based gas sensor concepts. In reviewing the studies of the effects of molecular adsorption on graphene, it is evident that the strong manipulation of graphene’s electronic structure, including p- and n-doping, is not only possible with molecular adsorbates, but that this approach appears to be superior compared to these exploiting edge effects, local defects, or strain. However, graphene-based gas sensors, albeit feasible because huge adsorbate-induced variations in the relative conductivity are possible, generally suffer from the lack of chemical selectivity.

  11. Protein Adsorption in Three Dimensions

    OpenAIRE

    Vogler, Erwin A.

    2011-01-01

    Recent experimental and theoretical work clarifying the physical chemistry of blood-protein adsorption from aqueous-buffer solution to various kinds of surfaces is reviewed and interpreted within the context of biomaterial applications, especially toward development of cardiovascular biomaterials. The importance of this subject in biomaterials surface science is emphasized by reducing the “protein-adsorption problem” to three core questions that require quantitative answer. An overview of the...

  12. Amphiphile Adsorption on Rigid Polyelectrolytes

    OpenAIRE

    Kuhn, Paulo S.; Levin, Yan; Barbosa, Marcia C.; Ravazzolo, Ana Paula

    2007-01-01

    A theory is presented which quantitatively accounts for the cooperative adsorption of cationic surfactants to anionic polyelectrolytes. For high salt concentration we find that the critical adsorption concentration (CAC) is a bilinear function of the polyion monomer and salt concentrations, with the coefficients dependent only on the type of surfactant used. The results presented in the paper might be useful for designing more efficient gene delivery systems.

  13. Influence of the cement production aerotechnogenic emissions on the filtration properties of the soil

    OpenAIRE

    O. Iziumova

    2015-01-01

    The results of investigations over the filtration properties of ash-laden black soil under the cement production pollution emissions have been given. The general tendencies in formation of the quantitative characteristics of the soil filtration properties estimated by filtration coefficient under cement dust pollution have been clarified.

  14. Facilitating community water supply treatment : from transferring filtration technology to multi-stakeholder learning

    NARCIS (Netherlands)

    Visscher, J.T.

    2006-01-01

    For more than a quarter of a century, IRC has been supporting the development of Slow Sand Filtration (SSF) and more recently, together with CINARA, the pioneering of Multi-Stage Filtration (MSF) - a combination of Gravel Filtration and SSF that has been shown to have great potential as an effective

  15. Description of three-phase filtration with a novel dimensionless number

    NARCIS (Netherlands)

    Huizenga, P.; Kuipers, J.A.M.; Swaaij, van W.P.M.

    1998-01-01

    Internal filtration in slurry bubble columns offers a possible solution to the filtration problems related to this reactor type. The applicability of the concept has already been demonstrated at full-scale for wastewater treatment, even though a theoretical description of internal filtration is lack

  16. ADSORPTION OF POLYCHLORINATED BIPHENYLS BY SOILS

    OpenAIRE

    Mihaela Preda; Radu Lăcătuşu; Dumitru Marian Motelică; Nicoleta Vrînceanu; Veronica Tănase

    2010-01-01

    The behavior of polychlorinated biphenyls (PCBs) in soil is determined by several factors including adsorption, mobility and degradation. Adsorption, directly or indirectly, influences the other factors. Adsorption process is generally evaluated by using adsorption isotherms representing the relationship between the quantity of substance adsorbed per unit weight and concentration of the substance in solution at equilibrium. They allow determination of the adsorption constant, which is directl...

  17. Adsorption refrigeration technology theory and application

    CERN Document Server

    Wang, Ruzhu; Wu, Jingyi

    2014-01-01

    Gives readers a detailed understanding of adsorption refrigeration technology, with a focus on practical applications and environmental concerns Systematically covering the technology of adsorption refrigeration, this book provides readers with a technical understanding of the topic as well as detailed information on the state-of-the-art from leading researchers in the field. Introducing readers to background on the development of adsorption refrigeration, the authors also cover the development of adsorbents, various thermodynamic theories, the design of adsorption systems and adsorption refri

  18. Modeling of Experimental Adsorption Isotherm Data

    OpenAIRE

    Xunjun Chen

    2015-01-01

    Adsorption is considered to be one of the most effective technologies widely used in global environmental protection areas. Modeling of experimental adsorption isotherm data is an essential way for predicting the mechanisms of adsorption, which will lead to an improvement in the area of adsorption science. In this paper, we employed three isotherm models, namely: Langmuir, Freundlich, and Dubinin-Radushkevich to correlate four sets of experimental adsorption isotherm data, which were obtained...

  19. Adsorption and colloidal behaviour of traces of tellurium(IV) and aqueous solutions

    Energy Technology Data Exchange (ETDEWEB)

    Maruyama, Y.; Yamaashi, Y.

    1985-08-01

    Various NaCl solutions containing traces of tellurium(IV) were prepared. The effects of tellurium(IV) concentration and pH on the adsorption of tellurium(IV) on filter paper were studied by filtration method. The effects of NaCl concentration, tellurium(IV) concentration and pH on the formation of a colloid were also studied by ultracentrifugation and ultrafiltration methods. It was found that tellurium(IV) at concentrations below about 10sup(-10)M in neutral NaCl solutions is adsorbed on filter paper and shows colloidal behaviour. (author). 4 refs.; 7 figs.

  20. Tangential filtration technologies membrane and applications for the industry agribusiness

    International Nuclear Information System (INIS)

    The membrane tangential filtration technologies are separation techniques based on the use of semipermeable filters through which, under a pushing force, it is possible to achieve separation of components or suspended in solution as a function of their dimensional characteristics and / or chemical-physical. At the laboratories of the ENEA Research Center Casaccia, as part of the program activities of the Biotechnology and agro-industry division, were studied and developed various filtration processes to membrane in the food industry. The problems have been studied by following a vision sustainable overall, always trying to pair the purification treatment to that of recovery and reuse of water and high value-added components. Ultimate goal of the research conducted is to close the production circuit, ensuring a discharge cycle zero and turning in fact a so-called spread in first, from which to obtain new products.

  1. Roundness filtration by using a robust regression filter

    International Nuclear Information System (INIS)

    In roundness measurement, filtration is a basic step before the evaluation of the roundness deviation parameters. Currently the widely used phase-correct 2RC and Gaussian filters are not robust against measurement outliers. This paper introduces a robust roundness filtration technology which is based on the robust Gaussian regression filter. Mathematical solution and its algorithms calculated in time and frequency domains are both presented. Both simulated and practical roundness profile data have been used to test the speed and accuracy of the algorithm. Results show that with the proposed robust algorithm, the outlier's influence on the roundness deviation parameters can be reduced significantly, while still keeping the similar transmission characteristics with the standard Gaussian filter very well. Also, the difference between the results of the two presented algorithms is very tiny and negligible

  2. Flocculation, hydrophobic agglomeration and filtration of ultrafine coal

    Science.gov (United States)

    Yu, Zhimin

    In coal preparation plant circuits, fine coal particles are aggregated either by oil agglomeration or by flocculation. In a new hydrophobic agglomeration process, recently developed hydrophobic latices are utilized. While the selectivity of such aggregation processes determines the beneficiation results, the degree of aggregation has a strong effect on fine coal filtration. The aim of this research was to study the fundamentals and analyze the common grounds for these processes, including the potential effect of the coal surface properties. The selective flocculation tests, in which three types of coal, which differed widely in surface wettability, and three additives (hydrophobic latices, a semi-hydrophobic flocculant and a typical hydrophilic polyelectrolyte) were utilized, showed that coal wettability plays a very important role in selective flocculation. The abstraction of a hydrophobic latex on coal and silica revealed that the latex had a much higher affinity towards hydrophobic coal than to hydrophilic mineral matter. As a result, the UBC-1 hydrophobic latex flocculated only hydrophobic coal particles while the polyelectrolyte (PAM) flocculated all the tested coal samples and minerals, showing no selectivity in the fine coal beneficiation. The oil agglomeration was tested using kerosene emulsified with various surfactants (e.g. cationic, anionic and non-ionic). Surfactants enhance not only oil emulsification, hence reducing oil consumption (down to 0.25--0.5%), but also entirely change the electrokinetic properties of the droplets and affect the interaction energy between oil droplets and coal particles. Consequently, the results found in the course of the experimental work strongly indicate that even oxidized coals can be agglomerated if cationic surfactants are used to emulsify the oil. Oil agglomeration of the Ford-4 ultrafine coal showed that even at extremely low oil consumption (0.25 to 0.5%), a clean coal product with an ash content around 5% at over

  3. Review series: The cell biology of renal filtration.

    Science.gov (United States)

    Scott, Rizaldy P; Quaggin, Susan E

    2015-04-27

    The function of the kidney, filtering blood and concentrating metabolic waste into urine, takes place in an intricate and functionally elegant structure called the renal glomerulus. Normal glomerular function retains circulating cells and valuable macromolecular components of plasma in blood, resulting in urine with just trace amounts of proteins. Endothelial cells of glomerular capillaries, the podocytes wrapped around them, and the fused extracellular matrix these cells form altogether comprise the glomerular filtration barrier, a dynamic and highly selective filter that sieves on the basis of molecular size and electrical charge. Current understanding of the structural organization and the cellular and molecular basis of renal filtration draws from studies of human glomerular diseases and animal models of glomerular dysfunction.

  4. Mathematical models of a liquid filtration from reservoirs

    OpenAIRE

    Anvarbek Meirmanov; Nelly Erygina; Saltanbek Mukhambetzhanov

    2014-01-01

    This article studies the filtration from reservoirs into porous media under gravity. We start with the exact mathematical model at the microscopic level, describing the joint motion of a liquid in reservoir and the same liquid and the elastic solid skeleton in the porous medium. Then using a homogenization procedure we derive the chain of macroscopic models from the poroelasticity equations up to the simplest Darcy's law in the porous medium and hydraulics in the reser...

  5. Particle clogging in porous media. Filtration of a smectite solution

    International Nuclear Information System (INIS)

    The goal of this project is to find out if it is possible for bentonite clay to self heal during leaching with deionized water. The investigation has focused on the formation of a filter cake made of accessory material from MX 80 and the separation of solid material when a smectite solution (1%) is pushed through the cake using a pressure difference of 5 bar. It was also in the scope of this project to design and build the necessary equipment for these experiments. In the literature review it was not found any example that the phenomenon of clogging has been used as a self-healing method previously. It was rather separated also between the clogging of a filter cake (deep bed filtration or cake filtration) and the filtration of colloidal particles. Probably because the latter are in such low concentrations in natural systems and the focus have mainly been in the transport properties of colloids within a filter cake or deep bed filter. An experimental equipment was designed and built. It consists of seven filtration cells that could operate in parallel. All of them are connected to the same source of pressure to ensure equal conditions. A system was also prepared to prevent air from dissolving in the solution because it could create an unwanted expansion in the filter cake due to lower solubility at lower pressure. The experiment showed good separation of smectite particles from the solution when it passed through the filter cake. In all tested cases, the separation was almost complete after long enough time, indicating that the cake has small enough pores to act as a geometrical hinder for the small particles. Comparison between the materials prepared at Chalmers University of Technology and at Clay Technology showed a very good agreement indicating similar properties of the produced smectite

  6. Geosynthetics for separation and filtration in civil engineering

    OpenAIRE

    Vertot, Matevž

    2015-01-01

    This graduation thesis covers specifications, properties and functions of geosynthetic materials used for filtration and separation purposes. It also describes different requirements covered in standards and presents possible design solutions for different types of use. The work discusses in detail the importance on knowledge of materials when designing with geotextiles and presents basic information for the reader to understand how material properties and soil properties influ...

  7. Jensen's inequality for filtration consistent nonlinear expectation without domination condition

    Science.gov (United States)

    Fan, Sheng-Jun

    2008-09-01

    In this paper, the general filtration consistent nonlinear expectation defined on the integrable variable space is considered, based on the results in [F. Coquet, Y. Hu, J. Memin, S. Peng, Filtration consistent nonlinear expectations and related g-expectation, Probab. Theory Related Fields 123 (2002) 1-27]. Under a natural continuous assumption for the nonlinear expectation, which weakens the domination assumption in [F. Coquet, Y. Hu, J. Memin, S. Peng, Filtration consistent nonlinear expectations and related g-expectation, Probab. Theory Related Fields 123 (2002) 1-27], the author obtains the necessary and sufficient conditions under which Jensen's inequality for filtration consistent nonlinear expectation holds in general, respectively on scalar function and bivariate function. These two results generalize the known results on Jensen's inequality for g-expectation in [Z. Chen, R. Kulperger, L. Jiang, Jensen's inequality for g-expectation: Part 1, C. R. Acad. Sci. Paris Ser. I 337 (11) (2003) 725-730; Z. Chen, R. Kulperger, L. Jiang, Jensen's inequality for g-expectation: Part 2, C. R. Acad. Sci. Paris Ser. I 337 (12) (2003) 797-800; L. Jiang, On Jensen's inequality of bivariate function for g-expectation, J. Shandong Univ. 38 (5) (2003) 13-22 (in Chinese); L. Jiang, Z. Chen, On Jensen's inequality for g-expectation, Chinese Ann. Math. Ser. B 25 (3) (2004) 401-412; L. Jiang, Jensen's inequality for backward stochastic differential equation, Chinese Ann. Math. Ser. B 27 (5) (2006) 553-564; S. Fan, Jensen's inequality for g-expectation on convex (concave) function, Chinese Ann. Math. Ser. A 27 (5) (2006) 635-644 (in Chinese)].

  8. Intra-aortic filtration is effective in collecting hazardous materials.

    Science.gov (United States)

    Mestres, Carlos-A; Bernabeu, Eduardo; Fernández, Claudio; Colli, Andrea; Josa, Miguel

    2007-04-01

    Neurological complications after cardiac operations are mostly due to particle embolization. This case illustrates the embolic potential of any material. A 77-year-old lady underwent re-operation for homograft aortic regurgitation and mitral valve replacement. Intra-aortic filtration was used. After cardiopulmonary bypass the filter was found to have captured a pledget from a suture used to secure the mitral replacement device.

  9. Mathematical models of a liquid filtration from reservoirs

    Directory of Open Access Journals (Sweden)

    Anvarbek Meirmanov

    2014-02-01

    Full Text Available This article studies the filtration from reservoirs into porous media under gravity. We start with the exact mathematical model at the microscopic level, describing the joint motion of a liquid in reservoir and the same liquid and the elastic solid skeleton in the porous medium. Then using a homogenization procedure we derive the chain of macroscopic models from the poroelasticity equations up to the simplest Darcy's law in the porous medium and hydraulics in the reservoir.

  10. PLANIRANJE ZAPOSLENIH V PODJETJU SOGEFI FILTRATION D. O. O.

    OpenAIRE

    Šoštar, Ankica

    2015-01-01

    V diplomski nalogi smo predstavili proces planiranja zaposlenih v podjetju SOGEFI Filtration d. o. o., katerega dejavnost je proizvodnja avtomobilskih filtrov. V teoretičnem delu naloge je predstavljen proces planiranja zaposlenih v podjetju, ki predstavlja enega izmed kadrovskih procesov. Ker je planiranje kadrov konstanten proces, je potrebno temu primerno izbrati ustrezno metodo za izračun potrebnega števila zaposlenih. V nadaljevanju so zato predstavljene posamezne metode, ki se jih podje...

  11. Modeling the filtration ability of stockpiled filtering facepiece

    Science.gov (United States)

    Rottach, Dana R.

    2016-03-01

    Filtering facepiece respirators (FFR) are often stockpiled for use during public health emergencies such as an infectious disease outbreak or pandemic. While many stockpile administrators are aware of shelf life limitations, environmental conditions can lead to premature degradation. Filtration performance of a set of FFR retrieved from a storage room with failed environmental controls was measured. Though within the expected shelf life, the filtration ability of several respirators was degraded, allowing twice the penetration of fresh samples. The traditional picture of small particle capture by fibrous filter media qualitatively separates the effect of inertial impaction, interception from the streamline, diffusion, settling, and electrostatic attraction. Most of these mechanisms depend upon stable conformational properties. However, common FFR rely on electrets to achieve their high performance, and over time heat and humidity can cause the electrostatic media to degrade. An extension of the Langevin model with correlations to classical filtration concepts will be presented. The new computational model will be used to predict the change in filter effectiveness as the filter media changes with time.

  12. EX-PRESS Glaucoma Filtration Device: efficacy, safety, and predictability

    Directory of Open Access Journals (Sweden)

    Chan JE

    2015-09-01

    Full Text Available Jessica E Chan, Peter A Netland Department of Ophthalmology, University of Virginia School of Medicine, Charlottesville, VA, USA Abstract: Trabeculectomy has been the traditional primary surgical therapy for open-angle glaucoma. While trabeculectomy is effective in lowering intraocular pressure, complications associated with the procedure have motivated the development of alternative techniques and devices, including the EX-PRESS Glaucoma Filtration Device. This review describes the efficacy, safety, complication rates, and potential advantages and disadvantages of the EX-PRESS Glaucoma Filtration Device. EX-PRESS implantation is technically simpler compared with that of trabeculectomy, with fewer surgical steps. Vision recovery has been more rapid after EX-PRESS implantation compared with trabeculectomy. Intraocular pressure variation is lower during the early postoperative period, indicating a more predictable procedure. While efficacy of the EX-PRESS implant has been comparable to trabeculectomy, postoperative complications appear less common after EX-PRESS implantation compared with trabeculectomy. The EX-PRESS Glaucoma Filtration Device appears to be safe and effective in the surgical management of open-angle glaucoma. Keywords: surgery, trabeculectomy, mitomycin C, glaucoma drainage implant

  13. Active osmotic exchanger for advanced filtration at the nano scale

    Science.gov (United States)

    Marbach, Sophie; Bocquet, Lyderic

    2015-11-01

    One of the main functions of the kidney is to remove the waste products of an organism, mostly by excreting concentrated urea while reabsorbing water and other molecules. The human kidney is capable of recycling about 200 liters of water per day, at the relatively low cost of 0.5 kJ/L (standard dialysis requiring at least 150 kJ/L). Kidneys are constituted of millions of parallel filtration networks called nephrons. The nephrons of all mammalian kidneys present a specific loop geometry, the Loop of Henle, that is believed to play a key role in the urinary concentrating mechanism. One limb of the loop is permeable to water and the other contains sodium pumps that exchange with a common interstitium. In this work, we take inspiration from this osmotic exchanger design to propose new nanofiltration principles. We first establish simple analytical results to derive general operating principles, based on coupled water permeable pores and osmotic pumps. The best filtration geometry, in terms of power required for a given water recycling ratio, is comparable in many ways to the mammalian nephron. It is not only more efficient than traditional reverse osmosis systems, but can also work at much smaller pressures (of the order of the blood pressure, 0.13 bar, as compared to more than 30 bars for pressure-retarded osmosis systems). We anticipate that our proof of principle will be a starting point for the development of new filtration systems relying on the active osmotic exchanger principle.

  14. Electrospun Carbon Nanofiber Membranes for Filtration of Nanoparticles from Water

    Directory of Open Access Journals (Sweden)

    Mirko Faccini

    2015-01-01

    Full Text Available Nowadays, hundreds of consumer products contain metal and metal oxide nanoparticles (NP; this increases the probability of such particles to be released to natural waters generating a potential risk to human health and the environment. This paper presents the development of efficient carboneous nanofibrous membranes for NP filtration from aqueous solutions. Free-standing carbon nanofiber (CNF mats with different fiber size distribution ranging from 126 to 554 nm in diameter were produced by electrospinning of polyacrylonitrile (PAN precursor solution followed by thermal treatment. Moreover, tetraethoxyorthosilicate was added to provide flexibility and increase the specific surface area of the CNF. The resulting membranes are bendable and mechanically strong enough to withstand filtration under pressure or vacuum. The experimental results of filtration revealed that the fabricated membranes could efficiently reject nanoparticles of different types (Au, Ag, and TiO2 and size (from 10 to 100 nm in diameter from aqueous solutions. It is worth mentioning that the removal of Ag NP with diameters as small as 10 nm was close to 100% with an extremely high flux of 47620 L m−2 h−1 bar−1.

  15. [Characteristics of municipal sludge and vacuum filtration thickening process].

    Science.gov (United States)

    Qiao, Wei; Wang, Wei; Yin, Ke-qing

    2008-04-01

    It was found that sludge total solid (TS) concentration was equal to chemical oxygen demand (COD), while volatile solid (VS) was 1.5 times of COD concentration. R2 of linear regression of TS and VS with COD was 0.9314 and 0.9228 respectively. Total COD in sludge was approximately 60% of that removed in water treatment process. Sludge contained high level protein and low fat. The TS of present gravity thickening sludge was universally lower than 3.3%. Efficiency of vacuum filtration process was determined by sludge type, sludge solid concentration, PAM molecular weight and PAM addition dose. Under - 34.7 kPa pressure, sludge dry solid filtration thickening rate of primary sludge was up to 31 kg/(m2 x h). While, for wasted actived sludge the rate was lower than 15 kg/(m2 x h). Rate of gravity thickening sludge was up to 43 kg/(m2 x h). TS of vacuum filtrate were lower than 1.5 g/L. PMID:18637370

  16. Treatment of oil spill water by ozonation and sand filtration.

    Science.gov (United States)

    Hong, P K Andy; Xiao, Ting

    2013-04-01

    Increasing volumes of crude oil being produced and transported throughout the world in recent decades have resulted in increased risks of spill and high-profile spill incidents of significant environmental and ecological impacts over extended periods of time. While immediate in situ and ex situ responses have been implemented, none are available for onsite treatment of contaminated water for immediate release of the treated water. We demonstrate here a potential treatment scheme involving ozonation and sand filtration intended for immediate treatment and discharge of the impacted water. Waters of tap, Utah Lake, and Great Salt Lake sources were spiked with crude oil of the Great Natural Butte of Utah at 2.5% and 0.025% oil (v/v) and tested for treatment. The results showed near complete removal (100%) of both Chemical Oxygen Demand (COD) and oil and grease (O&G) from initially 20000 and 11000 mg L(-1), respectively, via flotation pretreatment, ozonation in pressure cycles, and sand filtration. At lower oil level of 0.025%, complete removal of COD and O&G from waters were achieved without floatation. The treated waters showed reduction of turbidity to oil removal when two well practiced methods, namely ozonation and sand filtration that either alone seems ineffective, are combined sequentially. It indicates a potential on-site treatment response for oil spill incidents where the collection and transport of a large amount of contaminated water may be avoided.

  17. Stochastic Schrödinger evolution over piecewise enlarged filtrations

    Science.gov (United States)

    Mengütürk, Levent Ali

    2016-03-01

    This paper constructs a nonlinear filtering framework that admits appearances of new information processes at random times by introducing piecewise enlargements of filtrations and proposes a new energy-based Schrodinger evolution expressed as a stochastic differential equation on a complex Hilbert space. Each information process is modeled as the sum of a random variable taking the eigenvalues of a Hamiltonian and an independent Brownian bridge noise. It is shown that under a piecewise enlarged filtration, the wave function is a jump-diffusion process until it collapses at some terminal time. In between discontinuities, the dynamics of the state vector are governed by different Wiener processes and diffusion coefficients. This motivates the introduction of an inclusive chain of Kolmogorov probability spaces or a *-isomorphic chain of commutative von Neumann probability spaces, on which the quantum system evolves differently based on the number of active information processes. The expectation of the Hamiltonian at a given state is the solution of a second-order nonlinear differential equation determined by one of the possible regimes that the quantum system belongs to. It is shown that the collapse rate is a submartingale with positive jumps and the Shannon entropy process is a supermartingale with expected negative jumps when passing to higher-order probability spaces. The framework is extended to the case when the Hamiltonian is modeled as a function of a set of commutative operators, where each operator is associated with a different piecewise enlarged filtration.

  18. Are vacuum-filtrated reduced graphene oxide membranes symmetric?

    KAUST Repository

    Tang, Bo

    2015-12-02

    Graphene or reduced graphene oxide (rGO) membrane-based materials are promising for many advanced applications due to their exceptional properties. One of the most widely used synthesis methods for rGO membranes is vacuum filtration of graphene oxide (GO) on a filter membrane, followed by reduction, which shows great advantages such as operational convenience and good controllability. Despite vacuum-filtrated rGO membranes being widely used in many applications, a fundamental question is overlooked: are the top and bottom surfaces of the membranes formed at the interfaces with air and with the filter membrane respectively symmetric or asymmetric? This work, for the first time, reports the asymmetry of the vacuum-filtrated rGO membranes and discloses the filter membranes’ physical imprint on the bottom surface of the rGO membrane, which takes place when the filter membrane surface pores have similar dimension to GO sheets. This result points out that the asymmetric surface properties should be cautiously taken into consideration while designing the surface-related applications for GO and rGO membranes.

  19. GPS Data Filtration Method for Drive Cycle Analysis Applications

    Energy Technology Data Exchange (ETDEWEB)

    Duran, A.; Earleywine, M.

    2013-02-01

    When employing GPS data acquisition systems to capture vehicle drive-cycle information, a number of errors often appear in the raw data samples, such as sudden signal loss, extraneous or outlying data points, speed drifting, and signal white noise, all of which limit the quality of field data for use in downstream applications. Unaddressed, these errors significantly impact the reliability of source data and limit the effectiveness of traditional drive-cycle analysis approaches and vehicle simulation software. Without reliable speed and time information, the validity of derived metrics for drive cycles, such as acceleration, power, and distance, become questionable. This study explores some of the common sources of error present in raw onboard GPS data and presents a detailed filtering process designed to correct for these issues. Test data from both light and medium/heavy duty applications are examined to illustrate the effectiveness of the proposed filtration process across the range of vehicle vocations. Graphical comparisons of raw and filtered cycles are presented, and statistical analyses are performed to determine the effects of the proposed filtration process on raw data. Finally, an evaluation of the overall benefits of data filtration on raw GPS data and present potential areas for continued research is presented.

  20. Ultra-filtration measurement using CT imaging technology

    Energy Technology Data Exchange (ETDEWEB)

    Lu Junfeng [Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, No.2 Beiyitiao Street, Zhongguancun, Haidian District, Beijing, 100190 (China); Lu Wenqiang, E-mail: junfenglu@mail.ipc.ac.c [Graduate University of Chinese Academy of Sciences, No.19A Yuquan Road, Shijingshan District, Beijing, 100049 (China)

    2009-02-01

    As a functional unit in the hemodialysis process, dialyzer captured quite a few medical research interests since 1980s. In the design of dialyzer or in the ongoing hemodialysis process, to estimate the ultra-filtration amount of a dialyzer, the sideway loss of the running blood flow through hollow fibers or filtration channels should be measured. This further leads to the measurement of the blood flow inside the dialyzer. For this measurement, a non-invasive method is highly desired because of the high-dense bundled hollow fibers or packed channels inside the dialyzer. As non-invasive measurement tools, CT (Computed Tomography) technologies were widely used for tissue, bone, and cancerous clinical analyses etc .... Thus, in this paper, a CT system is adopted to predict the blood flow inside a hollow fiber dialyzer. In view of symmetric property of the hollow fiber dialyzer, the largest cutting plane that parallels to the cylindrical dialyzer was analyzed by the CT system dynamically. And then, a noninvasive image analysis method used to predict the ultra-filtration amount is proposed.

  1. Filtration parameters influencing circulating tumor cell enrichment from whole blood.

    Directory of Open Access Journals (Sweden)

    Frank A W Coumans

    Full Text Available Filtration can achieve circulating tumor cell (CTC enrichment from blood. Key parameters such as flow-rate, applied pressure, and fixation, vary largely between assays and their influence is not well understood. Here, we used a filtration system, to monitor these parameters and determine their relationships. Whole blood, or its components, with and without spiked tumor cells were filtered through track-etched filters. We characterize cells passing through filter pores by their apparent viscosity; the viscosity of a fluid that would pass with the same flow. We measured a ratio of 5·10(4∶10(2∶1 for the apparent viscosities of 15 µm diameter MDA-231 cells, 10 µm white cells and 90 fl red cells passing through a 5 µm pore. Fixation increases the pressure needed to pass cells through 8 µm pores 25-fold and halves the recovery of spiked tumor cells. Filtration should be performed on unfixed samples at a pressure of ∼10 mbar for a 1 cm(2 track-etched filter with 5 µm pores. At this pressure MDA-231 cells move through the filter in 1 hour. If fixation is needed for sample preservation, a gentle fixative should be selected. The difference in apparent viscosity between CTC and blood cells is key in optimizing recovery of CTC.

  2. Vulnerability of bank filtration systems to climate change.

    Science.gov (United States)

    Sprenger, C; Lorenzen, G; Hülshoff, I; Grützmacher, G; Ronghang, M; Pekdeger, A

    2011-01-15

    Bank filtration (BF) is a well established and proven natural water treatment technology, where surface water is infiltrated to an aquifer through river or lake banks. Improvement of water quality is achieved by a series of chemical, biological and physical processes during subsurface passage. This paper aims at identifying climate sensitive factors affecting bank filtration performance and assesses their relevance based on hypothetical 'drought' and 'flood' climate scenarios. The climate sensitive factors influencing water quantity and quality also have influence on substance removal parameters such as redox conditions and travel time. Droughts are found to promote anaerobic conditions during bank filtration passage, while flood events can drastically shorten travel time and cause breakthrough of pathogens, metals, suspended solids, DOC and organic micropollutants. The study revealed that only BF systems comprising an oxic to anoxic redox sequence ensure maximum removal efficiency. The storage capacity of the banks and availability of two source waters renders BF for drinking water supply less vulnerable than surface water or groundwater abstraction alone. Overall, BF is vulnerable to climate change although anthropogenic impacts are at least as important.

  3. Quality improvement of fishery water using natural zeolite and dynamics of adsorption of hydrological toxicants

    Directory of Open Access Journals (Sweden)

    Obradović Saša

    2006-01-01

    Full Text Available The adsorption capability of the natural mineral zeolite of domestic origin, on chemical parameters in water used for the intensive breeding of the Rainbow Trout was investigated in practical and laboratory conditions. It was established on the grounds of an analysis of the obtained results that there is a statistically significant adsorptive power and selectivity of zeolite towards: ammoniac (p<0.01, nitrates (p<0.01, nitrites (p<0.05, and total hardness of water (p<0.05. The applied zeolite contributed to the improvement of the ambient conditions in the trout pond, and it also had a positive ecological effect on the filtration of hydrological toxicants of the pond water output.

  4. Fate and transport with material response characterization of green sorption media for copper removal via adsorption process.

    Science.gov (United States)

    Chang, Ni-Bin; Houmann, Cameron; Lin, Kuen-Song; Wanielista, Martin

    2016-02-01

    Green adsorption media with the inclusion of renewable and recycled materials can be applied as a stormwater best management practice for copper removal. A green adsorption media mixture composed of recycled tire chunk, expanded clay aggregate, and coconut coir was physicochemically evaluated for its potential use in an upflow media filter. A suite of tests were conducted on the media mixture and the individual media components including studies of particle size distribution, isotherms, column adsorption and reaction kinetics. Isotherm test results revealed that the coconut coir had the highest affinity for copper (q(max) = 71.1 mg g(-1)), and that adsorption was maximized at a pH of 7.0. The coconut coir also performed the best under dynamic conditions, having an equilibrium uptake of 1.63 mg g(-1). FE-SEM imaging found a strong correlation between the porosity of the micro pore structure and the adsorptive capacity. The use of the green adsorption media mixture in isolation or the coconut coir with an expanded clay filtration chamber could be an effective and reliable stormwater best management practice for copper removal. PMID:26476049

  5. Impacts of ozonation on the competition between organic micro-pollutants and effluent organic matter in powdered activated carbon adsorption.

    Science.gov (United States)

    Zietzschmann, F; Mitchell, R-L; Jekel, M

    2015-11-01

    This study investigates if ozonation of wastewater treatment plant (WWTP) effluent can reduce the negative impacts of effluent organic matter (EfOM) on the adsorption of organic micro-pollutants (OMP) onto powdered activated carbon (PAC). Pre-treatment of the water included membrane filtration for the removal of suspended/colloidal organics, ozonation with various specific ozone consumptions, and subsequent OMP spiking to comparable initial concentrations in all of the ozonated waters. This approach allowed for comparative PAC adsorption tests. Adsorption analyses show that the adsorbability of EfOM decreases with increasing specific ozone consumptions. This is also reflected by liquid chromatography with online carbon and UV254 detection (LC-OCD) which shows the ozone-induced disintegration of large EfOM into smaller fragments. Also, small organic neutrals are decreased while the small organic acids peak continuously increases with rising specific ozone consumptions. UV254 demonstrates that the aromaticity of all LC-OCD fractions continuously declines together with increasing specific O3 consumptions. This explains the varying EfOM adsorbabilities that occur due to ozonation. The ozone-induced decrease of EfOM adsorbability directly translates into reduced adsorption competition against the adsorption of OMP. With higher specific ozone consumptions, OMP removal and OMP loadings increase. The reduced adsorption competition is reflected in the outputs from equivalent background compound (EBC) modeling. In each of the ozonated waters, correlations between the OMP removals and the UV254 removal were found. PMID:26231581

  6. Impacts of ozonation on the competition between organic micro-pollutants and effluent organic matter in powdered activated carbon adsorption.

    Science.gov (United States)

    Zietzschmann, F; Mitchell, R-L; Jekel, M

    2015-11-01

    This study investigates if ozonation of wastewater treatment plant (WWTP) effluent can reduce the negative impacts of effluent organic matter (EfOM) on the adsorption of organic micro-pollutants (OMP) onto powdered activated carbon (PAC). Pre-treatment of the water included membrane filtration for the removal of suspended/colloidal organics, ozonation with various specific ozone consumptions, and subsequent OMP spiking to comparable initial concentrations in all of the ozonated waters. This approach allowed for comparative PAC adsorption tests. Adsorption analyses show that the adsorbability of EfOM decreases with increasing specific ozone consumptions. This is also reflected by liquid chromatography with online carbon and UV254 detection (LC-OCD) which shows the ozone-induced disintegration of large EfOM into smaller fragments. Also, small organic neutrals are decreased while the small organic acids peak continuously increases with rising specific ozone consumptions. UV254 demonstrates that the aromaticity of all LC-OCD fractions continuously declines together with increasing specific O3 consumptions. This explains the varying EfOM adsorbabilities that occur due to ozonation. The ozone-induced decrease of EfOM adsorbability directly translates into reduced adsorption competition against the adsorption of OMP. With higher specific ozone consumptions, OMP removal and OMP loadings increase. The reduced adsorption competition is reflected in the outputs from equivalent background compound (EBC) modeling. In each of the ozonated waters, correlations between the OMP removals and the UV254 removal were found.

  7. Fate and transport with material response characterization of green sorption media for copper removal via adsorption process.

    Science.gov (United States)

    Chang, Ni-Bin; Houmann, Cameron; Lin, Kuen-Song; Wanielista, Martin

    2016-02-01

    Green adsorption media with the inclusion of renewable and recycled materials can be applied as a stormwater best management practice for copper removal. A green adsorption media mixture composed of recycled tire chunk, expanded clay aggregate, and coconut coir was physicochemically evaluated for its potential use in an upflow media filter. A suite of tests were conducted on the media mixture and the individual media components including studies of particle size distribution, isotherms, column adsorption and reaction kinetics. Isotherm test results revealed that the coconut coir had the highest affinity for copper (q(max) = 71.1 mg g(-1)), and that adsorption was maximized at a pH of 7.0. The coconut coir also performed the best under dynamic conditions, having an equilibrium uptake of 1.63 mg g(-1). FE-SEM imaging found a strong correlation between the porosity of the micro pore structure and the adsorptive capacity. The use of the green adsorption media mixture in isolation or the coconut coir with an expanded clay filtration chamber could be an effective and reliable stormwater best management practice for copper removal.

  8. Development of the photo catalytic materials for the purification and deodorization of hazardous wastes

    International Nuclear Information System (INIS)

    A hazardous material treatment system utilizing photochemical reaction is a new technology which does not produce any secondary pollutants after dissolving treatment because it is activated by solar photo energy. Photo catalysis reaction apparatus using photo catalytic reaction of TiO2 was fabricated and installed to food waste treatment system for removing bad smell during treatment of food waste. Evolved gas was analysed by gas chromatograph and active carbon fiber sheet and yarn were used as adsorption media for photo catalysis in order to increase the effectiveness of filter system. (author)

  9. Preliminary evaluation of fungicidal and termiticidal activities of filtrates from biomass slurry fuel production

    Energy Technology Data Exchange (ETDEWEB)

    Kartal, S.N. [Istanbul University (Turkey). Forestry Faculty; Imamura, Y. [Kyoto University (Japan). Wood Research Institute; Tsuchiya, F.; Ohsato, K. [JGC Corporation, Yokohama (Japan)

    2004-10-01

    Biomass slurry fuel (BSF) production has recently been developed as a natural energy for the conversion of solid biomass into fuel. In addition to using fuel, filtrates from BSF production may also serve a chemical source with several organic compounds. There is an increasing interest in the research and application of biomass-based filtrates. In this study, fungicidal and termiticidal properties of filtrates from BSF production using sugi (Cryptomeria japonica) and acacia (Acacia mangium) wood were evaluated in laboratory decay and termite resistance tests. Wood blocks treated with the filtrates showed increased resistance against brown-rot fungus, Formitopsis palustris. However the filtrates from sugi wood processed at 270{sup o}C which contained less phenolic compounds than the other filtrates were effective against white-rot fungus, Trametes versicolor. Phenolic compounds of filtrates seemed to play a role in the decay resistance tests however the filtrates did not increase the durability of the wood blocks against subterranean termites Coptotermes formosanus. Despite high acetic and lactic acid content of the filtrates, vanillin content of the filtrates may have served as an additional food source and promoted termite attack. It can be concluded that filtrates with phenolic compounds from lignin degradation during BSF production can be considered for targeted inhibition of brown-rot. (author)

  10. A Study on Enhancement of Filtration Process with Filter Aids Diatomaceous Earth and Wood Pulp Cellulose

    Institute of Scientific and Technical Information of China (English)

    都丽红; 陈旭; 李文苹; 朱企新

    2011-01-01

    In this paper, a study to enhance the filtration for solid/liquid materials difficult to be filtered, such as highly viscous, highly compactible or gel like materials, is presented. Filter aids diatomaceous earth and wood pulp cellulose are used to enhance the filtration by improving filter cake structure and properties in the filtration of a biological health product and a highly viscous chemical fiber polymer melt product. The property of solid/liquidsystems, filtration at different flow rates, specitic cake resistance, cake wetness, filtration rate, filtrate turbidity for filter aid selection and evaluation, and operation optimization are investigated. The results are successfully applied to industrial process, .and can be used as a reference for similar filtration applications.

  11. Mineral-Surfactant Interactions for Minimum Reagents Precipitation and Adsorption for Improved Oil Recovery

    Energy Technology Data Exchange (ETDEWEB)

    P. Somasundaran

    2008-09-20

    /conformation of the adsorbed layers), as well as precipitation/abstraction characteristics. (3) Investigation of the role of dissolved species, especially multivalent ions, on interactions between reservoir minerals and surfactants and/or polymers leading to surfactant precipitation or activated adsorption. (4) Solution behavior tests--surface tension, interaction, ultra filtration, and other tests. (5) Surfactant-mineral interactions relative to adsorption, wettability, and electrophoresis. (6) Work on the effects of multivalent ions, pH, temperature, salinity, and mixing ratio on the adsorption. Developments of adsorption models to explain interactions between surfactants/polymers/minerals. (7) General guidelines for the use of certain surfactants, polymers and their mixtures in micelle flooding processes.

  12. CROSSFLOW FILTRATION: EM-31, WP-2.3.6

    Energy Technology Data Exchange (ETDEWEB)

    Duignan, M.; Nash, C.; Poirier, M.

    2011-02-01

    In the interest of accelerating waste treatment processing, the DOE has funded studies to better understand filtration with the goal of improving filter fluxes in existing crossflow equipment. The Savannah River National Laboratory (SRNL) performed some of those studies, with a focus on start-up techniques, filter cake development, the application of filter aids (cake forming solid precoats), and body feeds (flux enhancing polymers). This paper discusses the progress of those filter studies. Crossflow filtration is a key process step in many operating and planned waste treatment facilities to separate undissolved solids from supernate solutions. This separation technology generally has the advantage of self-cleaning through the action of wall shear stress created by the flow of waste slurry through the filter tubes. However, the ability of filter wall self-cleaning depends on the slurry being filtered. Many of the alkaline radioactive wastes are extremely challenging to filtration, e.g., those containing compounds of aluminum and iron, which have particles whose size and morphology reduce permeability. Unfortunately, low filter flux can be a bottleneck in waste processing facilities such as the Savannah River Integrated Salt Disposition Process and the Hanford Waste Treatment Plant. Any improvement to the filtration rate would lead directly to increased throughput of the entire process. To date increased rates are generally realized by either increasing the crossflow filter feed flow rate, limited by pump capacity, or by increasing filter surface area, limited by space and increasing the required pump load. SRNL set up both dead-end and crossflow filter tests to better understand filter performance based on filter media structure, flow conditions, filter cleaning, and several different types of filter aids and body feeds. Using non-radioactive simulated wastes, both chemically and physically similar to the actual radioactive wastes, the authors performed several

  13. Crossflow Filtration: EM-31, WP-2.3.6

    International Nuclear Information System (INIS)

    In the interest of accelerating waste treatment processing, the DOE has funded studies to better understand filtration with the goal of improving filter fluxes in existing crossflow equipment. The Savannah River National Laboratory (SRNL) performed some of those studies, with a focus on start-up techniques, filter cake development, the application of filter aids (cake forming solid precoats), and body feeds (flux enhancing polymers). This paper discusses the progress of those filter studies. Crossflow filtration is a key process step in many operating and planned waste treatment facilities to separate undissolved solids from supernate solutions. This separation technology generally has the advantage of self-cleaning through the action of wall shear stress created by the flow of waste slurry through the filter tubes. However, the ability of filter wall self-cleaning depends on the slurry being filtered. Many of the alkaline radioactive wastes are extremely challenging to filtration, e.g., those containing compounds of aluminum and iron, which have particles whose size and morphology reduce permeability. Unfortunately, low filter flux can be a bottleneck in waste processing facilities such as the Savannah River Integrated Salt Disposition Process and the Hanford Waste Treatment Plant. Any improvement to the filtration rate would lead directly to increased throughput of the entire process. To date increased rates are generally realized by either increasing the crossflow filter feed flow rate, limited by pump capacity, or by increasing filter surface area, limited by space and increasing the required pump load. SRNL set up both dead-end and crossflow filter tests to better understand filter performance based on filter media structure, flow conditions, filter cleaning, and several different types of filter aids and body feeds. Using non-radioactive simulated wastes, both chemically and physically similar to the actual radioactive wastes, the authors performed several

  14. Host receptors for bacteriophage adsorption.

    Science.gov (United States)

    Bertozzi Silva, Juliano; Storms, Zachary; Sauvageau, Dominic

    2016-02-01

    The adsorption of bacteriophages (phages) onto host cells is, in all but a few rare cases, a sine qua non condition for the onset of the infection process. Understanding the mechanisms involved and the factors affecting it is, thus, crucial for the investigation of host-phage interactions. This review provides a survey of the phage host receptors involved in recognition and adsorption and their interactions during attachment. Comprehension of the whole infection process, starting with the adsorption step, can enable and accelerate our understanding of phage ecology and the development of phage-based technologies. To assist in this effort, we have established an open-access resource--the Phage Receptor Database (PhReD)--to serve as a repository for information on known and newly identified phage receptors. PMID:26755501

  15. Coupled plasma filtration adsorption reduces serum bilirubine in a case of acute hypoxic hepatitis secondary to cardiogenic shock.

    Science.gov (United States)

    Caroleo, Santo; Rubino, Antonino S; Tropea, Francesco; Bruno, Orlando; Vuoto, Domenico; Amantea, Bruno; Renzulli, Attilio

    2010-10-01

    Hypoxic hepatitis (HH) is a severe complication of postoperative low output syndrome, associated with high mortality rates despite appropriate drug therapy. Recently several extracorporeal supportive techniques have become available. We describe the case of a 70-year-old woman who developed HH secondary to cardiogenic shock after cardiac surgery. CPFA proved to be a valid tool for concomitant hemodynamic support and organ replacement therapy.

  16. Removal of geosmin and MIB by biofiltration--an investigation discriminating between adsorption and biodegradation.

    Science.gov (United States)

    Persson, F; Heinicke, G; Hedberg, T; Hermansson, M; Uhl, W

    2007-01-01

    Geosmin and 2-methylisoborneol (MIB) are two substances causing earthy/musty odours that are difficult to remove by conventional chemical drinking water treatment. In this study removal of geosmin and MIB by biofiltration of untreated surface water was investigated using granular activated carbon (GAC) and crushed expanded clay (EC) as filter media. Biofiltration through both GAC and EC removed geosmin and MIB present at low (20 ng l(-1)) concentrations by at least 97% at an empty bed contact time of 30 minutes and a temperature of 15 degrees C. At lower temperature (6-12 degrees C) and simultaneously lower biomass concentrations, removal efficiency was similar in the GAC but considerably lower in the EC biofilter, pointing to a second mechanism different from biodegradation. Consequently, microbial activity was suppressed with azide to enable discrimination between biodegradation and adsorption. During azide dosage, the GAC biofilters still removed geosmin and MIB nearly unaffectedly. In the EC biofilter, however, removal of both odorants ceased completely. Methylene blue adsorption confirmed that the GAC, even after almost four years of operation receiving surface water, had capacity to remove geosmin and MIB by adsorption. Since odour episodes commonly occur during the warm season when microbiological activity is high, EC constitutes a viable option as carrier medium for direct biological filtration of surface water. The additional GAC adsorption capacity however adds robustness to the removal process.

  17. utilization of adsorption and/or liquid membranes techniques in treatment of some hazardous substances

    International Nuclear Information System (INIS)

    environmental pollution, as a consequence of the industrialization process, is one of the major problems that has to be solved and controlled. The most important treatment processes for metals and dyes contaminated waste streams include chemical precipitation, membrane, filtration, ion exchange, carbon adsorption and coprecipitation/adsorption. However, all these techniques have their inherent advantages and limitations in applications. These processes usually need expensive facility and high maintenance cost. Therefore, there is a need for more economical alternative technologies for the treatment of metals and dyes contaminated waste streams. The aim of present work is to study the treatment of some hazardous substances such as heavy metals e.g. ( lead, cobalt and strontium) and dyes e.g. ( acid red 73, and acid blue 74 ) using either adsorption or liquid emulsion membrane techniques. The experimental part deals with the application of adsorption and liquid emulsion membrane techniques for removal of some hazardous substances such as metal ions ( lead, cobalt and strontium) and dyes (acid red 73 and acid blue 74). All the apparatus and techniques employed were described.

  18. Monomer Adsorption-Desorption Processes

    Institute of Scientific and Technical Information of China (English)

    KE Jian-Hong; LIN Zhen-Quan; CHEN Xiao-Shuang

    2009-01-01

    We propose an adsorption-desorption model for a deposit growth system, in which the adsorption and desorption of particles coexist. By means of the generalized rate equation we investigate the cluster (island) size distribution in the dynamic equilibrium state. The results show that the evolution behaviour of the system depends crucially on the details of the rate kernels. The cluster size distribution can take the ecale-frse power-law form in some cases, while it grows exponentially with size in other cases.

  19. Theoretical insight of adsorption cooling

    KAUST Repository

    Chakraborty, Anutosh

    2011-06-03

    This letter proposes and presents a thermodynamic formulation to calculate the energetic performances of an adsorption cooler as a function of pore widths and volumes of solid adsorbents. The simulated results in terms of the coefficient of performance are validated with experimental data. It is found from the present analysis that the performance of an adsorption cooling device is influenced mainly by the physical characteristics of solid adsorbents, and the characteristics energy between the adsorbent-adsorbate systems. The present study confirms that there exists a special type of silicagel having optimal physical characteristics that allows us to obtain the best performance.

  20. Analysis of dynamic and static filtration and determination of MUD cake parameters

    Energy Technology Data Exchange (ETDEWEB)

    Calcada, L.A.; Scheid, C.M.; Araujo, C.A.O. de [Universidade Federal Rural do Rio de Janeiro (UFRRJ), Seropedica, RJ (Brazil). Dept. de Engenharia Quimica], e-mail: calcada@ufrrj.br; Waldmann, A.T.A.; Martins, A.L. [Petroleo Brasileiro S.A. (CENPES/PETROBRAS), Rio de Janeiro, RJ (Brazil). Centro de Pesquisas

    2011-07-15

    Drilling operations around the world employ a concept called overbalance. During this process, it is well known that dynamic and static filtration can occur. Thin filter cakes and low fluid-invasion rates are extremely desirable to promote optimal logging conditions and permeability return. The aim of this work was to compare the different behavior between dynamic and static filtration in drilling wells. To investigate the filtration process of Newtonian suspensions, we built a dynamic and static filtration loop with which we acquired experimental filtration volume data as a function of time. The filtration loop included a tank mixer where a Newtonian aqueous calcium carbonate polydisperse suspension was homogenized. The suspension was pumped through tubes to a dynamic or a static filtration cell. We validated a theoretical model based on Darcy's law and on mass conservation proposed by Ferreira and Massarani (2005). That model predicted mud cake buildup and filtrate flow rate for Newtonian suspensions. Relying on both models and the experimental data, filter cake parameters were calculated. We discuss, based on these parameters, the effects of the filtration configuration in dynamic and static modes. Finally, we generalized Ferreira and Massarani's model (2005) for procedures involving non-Newtonian suspensions. This new model can predict dynamic filtration and fluid invasion for non-Newtonian suspensions as drilling fluids. (author)

  1. Adsorption of Organics from Domestic Water Supplies.

    Science.gov (United States)

    McGuire, Michael J.; Suffet, Irwin H.

    1978-01-01

    This article discusses the current state of the art of organics removal by adsorption. Various theoretical explanations of the adsorption process are given, along with practical results from laboratory, pilot-scale, and full-scale applications. (CS)

  2. Subconjunctival sustained release 5-fluorouracil for glaucoma filtration surgery

    Institute of Scientific and Technical Information of China (English)

    Li-jun CUI; Nai-xue SUN; Xing-hua LI; Jie HUANG; Jian-gang YANG

    2008-01-01

    Aim:To determine the release characteristics of a 5-fluorouracil-loaded poly (lactic acid) disc (5-FU-PLA-DS) and the effect of sustained drug delivery on the success of glaucoma filtration surgery in rabbit eyes. Methods: A method of microspheres accumulated by excessive carriers was used in the preparation of the 5-FU-PLA-DS. The disc was characterized for drug loading, entrapment efficiency, in vitro release, and external morphology. It was then implanted sub-conjunctivally into rabbit eyes with trabeculectomy. Intraocular pressure, ocular inflammatory reaction, filtration bleb appearance, and persistence were evalu-ated up to postoperative d 90. A quantitative analysis of 5-fluorouracil (5-FU) was performed in the aqueous humor. Ultrasound biomicroscopy was used to assess the appearance of the filtering fistula. Results: The 5-FU-PLA-DS was produced with the drug-loading of 3.07±0.08 mg (mean±SD). 5-FU was released for 91 d with suppressive concentrations. The decrease in intraocular pressure from baseline was significantly more marked in the 5-FU-PLA-DS-implanted eyes during postoperative d 3-90, and the persistence of bleb and filtration fistula was longer than the control eyes (P<0.05). Corneal toxicity and hyperemia triggered by 5-FU was lower in the 5-FU-PLA-DS-implanted eyes than those exposed to 5-FU intraoperatively. The 5-FU concentration in the aqueous humor was insufficient for corneal endothelial damage. No evidence of toxic reaction was found in the conjunctival biopsy. Conclusion: 5-FU-PLA-DS displaying sustained intraocular release of 5-FU, reduced intraocular pres-sure, and prolonged bleb persistence, while significantly reducing 5-FU toxicity.

  3. A new integrated membrane filtration and chromatographic device.

    Science.gov (United States)

    Xu, Yanke; Sirkar, Kamalesh K; Dai, Xiao-Ping; Luo, Robert G

    2005-01-01

    To improve protein separation, a novel integrated device combining membrane filtration and chromatography has been developed. The device basically consists of a hollow fiber filtration module whose shell side is filled with chromatographic resin beads. However, there is an essentially impermeable coated zone near the hollow fiber module outlet. The integrated device enjoys the advantages of both membrane filtration and chromatography; it also allows one to load the chromatographic media directly from the fermentation broth or lysate and separate the adsorbed proteins through the subsequent elution step in a cyclic process. Interfacial polymerization was carried out to coat the bottom section of the hollow fiber membrane; the rest of the hollow fiber membrane remained unaffected. Myoglobin (Mb) and alpha-lactalbumin (alpha-LA) were primarily used as model proteins in a binary mixture; binary mixtures of Mb and bovine serum albumin (BSA) were also investigated. Separation behaviors of binary protein mixtures were studied in devices having either an ultrafiltration (UF) or a microfiltration (MF) membrane. Experimental results show that the breakthrough time and the protein loading capacities were dramatically improved after introducing the impermeable coating in both UF and MF modules. For a synthetic yeast fermentation broth feed, four loading-washing-elution-reequilibration-based cyclic runs for separation of Mb and alpha-LA were performed in the device using a MF membrane with a coated zone without cleaning in between. The Mb and alpha-LA elution profiles for the four consecutive runs were almost superimposable. Due to lower transmembrane flux in this device plus the periodical washing-elution during the chromatographic separation, fouling was not a problem, unlike in conventional microfiltration. PMID:15801803

  4. Study of water quality improvements during riverbank filtration at three midwestern United States drinking water utilities

    Science.gov (United States)

    Weiss, W.; Bouwer, E.; Ball, W.; O'Melia, C.; Lechevallier, M.; Arora, H.; Aboytes, R.; Speth, T.

    2003-04-01

    manner that is not otherwise accomplished through conventional processes of drinking water treatment (e.g. coagulation, flocculation, sedimentation). 3. Evaluate changes in the character of NOM upon ground passage from the river to the wells. The experimental approach entailed monitoring the performance of three different RBF systems along the Ohio, Wabash, and Missouri Rivers in the Midwestern United States and involved a cooperative effort between the American Water Works Company, Inc. and Johns Hopkins University. Samples of the river source waters and the bank-filtered well waters were analyzed for a range of water quality parameters including TOC, DOC, UV-absorbance at 254-nm (UV-254), biodegradable dissolved organic carbon (BDOC), biologically assimilable organic carbon (AOC), inorganic species, DBP formation potential, and microorganisms. In the second year of the project, river waters were subjected to a bench-scale conventional treatment train consisting of coagulation, flocculation, sedimentation, glass-fiber filtration, and ozonation. The treated river waters were compared with the bank-filtered waters in terms of TOC, DOC, UV-254, and DBP formation potential. In the third and fourth years of the project, NOM from the river and well waters was characterized using the XAD-8 resin adsorption fractionation method (Leenheer, 1981; Thurman &Malcolm, 1981). XAD-8 adsorbing (hydrophobic) and non-adsorbing (hydrophilic) fractions of the river and well waters were compared with respect to DOC, UV-254, and DBP formation potential to determine whether RBF alters the character of the source water NOM upon ground passage and if so, which fractions are preferentially removed. The results demonstrate the effectiveness of RBF at removing the organic precursors to potentially carcinogenic DBPs. When compared to a bench-scale conventional treatment train optimized for turbidity removal, RBF performed as well as the treatment at one of the sites and significantly better than the

  5. Filtration in ultrasonic field; Filtracao em campo ultrassonico

    Energy Technology Data Exchange (ETDEWEB)

    Rocha, Inaura Carolina C. da; Cortes, Marcela de Araujo H.; Marques, Jose Jailton [Universidade Federal de Sergipe (UFS), Aracaju, SE (Brazil). Dept. de Engenharia Quimica

    2008-07-01

    The production of water associated to the petroleum is an issue of big relevance in exploration areas classified as 'exhausted fields'. The current alternative in practice is the re-injection of the wastewater into the geological formation with the dual purpose of increasing oil recovery and pollution minimization. However, produced water presents several components that make impossible its direct re-injection, requiring a previous treatment. In this context, this work presents the state-of-art of filtration in ultrasonic field, in order to contribute to the development of a new treatment technology applicable to the produced water problem. (author)

  6. Transport of micropollutants in a riverbank filtration system

    Science.gov (United States)

    van Driezum, Inge; Oudega, Thomas; Reiner, Philipp; Zessner, Matthias; Farnleitner, Andreas; Blaschke, Paul

    2014-05-01

    Groundwater locations at alluvial backwaters are essential for public water supply. Riverbank filtration (RBF) systems are widely used as a means of obtaining public water supplies. Riverbank filtration is an effective way to remove micropollutants from the receiving surface water. The efficiency of the RBF system strongly depends on the residence time of the water in the aquifer and on the soil properties (Ray, 2011). In order to understand all bio- and geochemical processes within the hyporheic zone (e.g. the region were mixing of surface water and groundwater occurs), exchange rates and flow patterns need to be quantified. The main study area covers the porous groundwater aquifer study site (PGWA) - an urban floodplain extending on the left bank of the River Danube downstream of the City of Vienna. It is one of the main groundwater bodies in Austria. Groundwater quality in the PGWA is influenced by a combination of anthropogenic activities, industry, wastewater treatment plants, heavy precipitation events and floodings. The upper layer of the DPA is impermeable, preventing pollution originating from the surface. The upper layer consists of silt. The underlying confined aquifer consists of sand and gravel layers. Hydraulic conductivities range from 5 x 10-2 m/s up to 5 x 10-5 m/s. Underneath the aquifer are alternating sand an clay/silt layers. Samples are taken from two transects in the DPA. These transects consist of four piezometers in the first few meters of the groundwater aquifer. Several other piezometers are placed downstream from the river-groundwater interface. The behaviour of the micropollutants in the hyporheic zone can therefore be studied intensively. The transport behaviour of several micropollutants is modeled using carbamazepine (CBZ) and acesulfame (ACE) as natural tracers. Furthermore, temperature and electrical conductivity data was used for modeling. The micropollutants are measured using an in house developed online SPE-HPLC-MS/MS method

  7. Improved Filtration Technology for Pathogen Reduction in Rural Water Supplies

    Directory of Open Access Journals (Sweden)

    Valentine Tellen

    2010-06-01

    Full Text Available Intermittent bio-sand filtration (BSF is a low-cost process for improving water quality in rural households. This study addresses its two drawbacks: flow limitations requiring excessive waiting, and inadequate purification when high flows are imposed. Two modifications were examined: increasing the sand’s effective size, and adding zero-valent iron (ZVI into the media as a disinfectant. After 65 days, percent reductions in total coliform, fecal coliform, and fecal streptococci averaged 98.9% for traditional BSF and 99% for the improved BSF. Both modifications showed statistically significant improvements. Increased sand size and ZVI addition can counter the drawbacks of traditional BSF.

  8. Batch cooling crystallization and pressure filtration of sulphathiazole

    DEFF Research Database (Denmark)

    Häkkinen, Antti; Pöllänen, Kati; Karjalainen, Milja;

    2005-01-01

    crystal suspensions obtained through an unseeded batch-cooling-crystallization process was studied. Sulphathiazole, which is an antibiotic agent with multiple polymorphic forms, was produced by performing laboratory-scale cooling crystallization experiments from five different mixtures of water and propan...... the samples obtained from different solvents. The crystals produced in the batch-cooling-crystallization experiments were separated from the crystallizing solvents using a batch-type pressure Nutsche filter, and the filtration characteristics of the suspensions were evaluated on the basis of average filter...

  9. Filtrations, factorizations and explicit formulae for harmonic maps

    CERN Document Server

    Svensson, Martin

    2009-01-01

    We use filtrations of the Grassmannian model to produce explicit algebraic formulae for harmonic maps of finite uniton number from a Riemann surface to the unitary group for a general class of factorizations by unitons. We show how these specialize to give explicit formulae for harmonic maps into the special orthogonal and symplectic groups, real, complex and quaternionic Grassmannians, and the spaces SO(2m)/U(m) and Sp(n)/U(n), i.e., all the classical compact Lie groups and their inner symmetric spaces. Our methods also give explicit J_2-holomorphic lifts for harmonic maps into Grassmannians and an explicit Iwasawa decomposition.

  10. The Relationship between Estimated Glomerular Filtration Rate and Diabetic Retinopathy

    OpenAIRE

    Jingyang Wu; Jin Geng; Limin Liu; Weiping Teng; Lei Liu; Lei Chen

    2015-01-01

    Diabetic retinopathy (DR) is the leading cause of visual impairment and blindness in working-aged people. Several studies have suggested that glomerular filtration rate (GFR) was correlated with DR. This is a hospital-based study and the aim of it was to examine the relationship between the GFR and DR in patients with type 2 diabetes mellitus (T2DM). We used CKD-EPI equation to estimate GFR and SPSS 19.0 and EmpowerStats software to assess their relationship. Among the 1613 participants (aged...

  11. Turbidity removal: Gravel and charcoal as roughing filtration media

    OpenAIRE

    Josiah A. Adeyemo; Fred A.O. Otieno; George M. Ochieng; Olufisayo A. Olufayo; Onyeka I. Nkwonta

    2010-01-01

    Roughing filtration is an important pre-treatment process for wastewater, because it efficiently separates fine solid particles over prolonged periods, without the addition of chemicals. For this study, a pilot plant was designed at Delmas Coal Mine in the Mpumalanga province of South Africa. The design and sizing of the pilot plant was guided by Wegelin’s design criteria. Gravel was used as a control medium because it is one of the most commonly used roughing filter media and because it was ...

  12. ADSORPTION MALACHITE GREEN ON NATURAL ZEOLITE

    Directory of Open Access Journals (Sweden)

    Eko Ariyanto

    2012-02-01

    Full Text Available A natural zeolite was employed as adsorbent for reducing of malachite green from aqueous solution. A batch system was applied to study the adsorption of malachite green in single system on natural zeolite. The adsorption studies indicate that malachite green in single component system follows the second-order kinetics and the adsorption is diffusion process with two stages for malachite green. Malachite green adsorption isotherm follows the Langmuir model.

  13. Adsorption theory for polydisperse polymers.

    NARCIS (Netherlands)

    Roefs, S.P.F.M.; Scheutjens, J.M.H.M.; Leermakers, F.A.M.

    1994-01-01

    Most polymers are polydisperse. We extend the self-consistent field polymer adsorption theory due to Scheutjens and Fleer to account for an arbitrary polymer molecular weight distribution with a cutoff chain length Nmax. In this paper, the treatment is restricted to homopolymers. For this case a ver

  14. Adsorption of Levofloxacin to Goethite

    NARCIS (Netherlands)

    Qin, Xiaopeng; Liu, Fei; Zhao, Long; Hou, Hong; Wang, Guangcai; Li, Fasheng; Weng, Liping

    2016-01-01

    Batch experiments were conducted to investigate the adsorption of a widely used fluoroquinolone antibiotic levofloxacin (LEV) to goethite and effects of nitrate, sulfate, small organic acids, and humic acid (HA). The concentrations of LEV and small organic acids in single systems or mixtures were

  15. Scaling Laws of Polyelectrolyte Adsorption

    OpenAIRE

    Borukhov, I.; Andelman, D.; Orland, H.

    1997-01-01

    Adsorption of charged polymers (polyelectrolytes) from a semi-dilute solution to a charged surface is investigated theoretically. We obtain simple scaling laws for (i) the amount of polymer adsorbed to the surface, Gamma, and (ii) the width of the adsorbed layer D, as function of the fractional charge per monomer p and the salt concentration c_b. For strongly charged polyelectrolytes (p

  16. Effects of different Helicobacter pylori culture filtrates on growth of gastric epithelial cells

    Institute of Scientific and Technical Information of China (English)

    Yan-Guo Yan; Gang Zhao; Jin-Ping Ma; Shi-Rong Cai; Wen-Hua Zhan

    2008-01-01

    AIM: To study the effects of different Helicobacter pylori (H py/orl) culture filtrates on growth of gastric epithelial cells.METHODS: Broth culture filtrates of H pylori were prepared. Gastric epithelial cells were treated with the filtrates, and cell growth was determined by growth curve and flow cytometry. DNA damage of gastric epithelial cells was measured by single-cell microgel electrophoresis.RESULTS: Gastric epithelial cells proliferated actively when treated by CagA-gene-positive broth culture filtrates, and colony formation reached 40%. The number of cells in S phase increased compared to controls. Comet assay showed 41.2% comet cells in GES-1 cells treated with CagA-positive filtrates (P<0.05).CONCLUSION: CagA-positive filtrates enhance the changes in morphology and growth characteristics of human gastric epithelial tumor cells. DNA damage maybe one of the mechanisms involved in the growth changes.

  17. Harder–Narasimhan filtration for rank 2 tensors and stable coverings

    Indian Academy of Sciences (India)

    ALFONSO ZAMORA

    2016-08-01

    We construct a Harder--Narasimhan filtration for rank 2 tensors, where there does not exist any such notion {/it a priori,} as coming from a GIT notion of maximal unstability. The filtration associated to the 1-parameter subgroup of Kempf giving the maximal way to destabilize, in the GIT sense, a point in the parameter space of the construction of the moduli space of rank 2 tensors over a smooth projective complex variety, does not depend on a certain integer used in the construction of the moduli space, for large values of the integer. Hence, this filtration is unique and we define the Harder--Narasimhan filtration for rank 2 tensors as this unique filtration coming from GIT. Symmetric rank 2 tensors over smooth projective complex curves define curve coverings lying on a ruled surface, hence we can translate the stability condition to define stable coverings and characterize the Harder--Narasimhan filtration in terms of intersection theory.

  18. Adsorption behavior of bisphenol-A and diethyl phthalate onto bubble surface in nonfoaming adsorptive bubble separation

    OpenAIRE

    Maruyama, Hideo; Seki, Hideshi; Matsukawa, Yasuhiro; Suzuki, Akira; INOUE, Norio

    2008-01-01

    To clarify adsorption equilibrium relationship at liquid-atmosphere interface, adsorption behavior of bisphenol-A (BPA) and diethyl phthalate (DEP) onto bubble surface was studied by using nonfoaming adsorptive bubble separation (NFBS) technique. The adsorption isotherm of BPA and DEP were obtained experimentally. The experimental results showed that adsorption equilibrium of BPA and DEP on bubble surface followed Langmuir's adsorption isotherm. Two adsorption parameters, the adsorption equil...

  19. Removal of actinides from dilute waste waters using polymer filtration

    International Nuclear Information System (INIS)

    More stringent US Department of Energy discharge regulations for waste waters containing radionuclides (30 pCi/L total alpha) require the development of new processes to meet the new discharge limits for actinide metal ions, particularly americium and plutonium, while minimizing waste. We have been investigating a new technology, polymer filtration, that has the potential for effectively meeting these new limits. Traditional technology uses basic iron precipitation which produces large amounts of waste sludge. The new technology is based on using water-soluble chelating polymers with ultrafiltration for physical separation. The actinide metal ions are selectively bound to the polymer and can not pass through the membrane. Small molecules and nonbinding metals pass through the membrane. Advantages of polymer filtration technology compared to ion, exchange include rapid kinetics because the binding is occurring in a homogenous solution and no mechanical strength requirement on the polymer. We will present our results on the systematic development of a new class of water-soluble chelating polymers and their binding ability from dilute acid to near neutral waters

  20. Towards a Modern Theory of Multiphase Filtration Flow

    Science.gov (United States)

    Buyevich, Yu A.; Webbon, Bruce W. (Technical Monitor)

    1994-01-01

    An alternative theoretical model of joint filtration flow of immiscible incompressible fluids is presented. The model takes into account relaxation processes due to the interchange of the fluids between pores of difference sizes which is driven by capillary forces. The fluids occupy connected regions in a four-dimensional space formed by three coordinates and the pore length scale. When the fluid exchange between pores of given sizes is effected by way of successive flow through pores of all the intermediate sizes, the pressure within each region is governed by a hyperbolic equation, the role of time being played by the pore linear scale. Pressure jumps across hypersurfaces separating the regions equal corresponding values of the capillary pressure. A supplementary condition at any such hypersurface requires the speed of its displacement in the four-dimensional space to coincide with the normal velocity components of both the adjoining fluids. As a result, a principally new statement of multiphase filtration flow problems is gained with allowance for capillary relaxation in the porous space.

  1. Membrane filtration and sonication for industrial wastewater reuse.

    Science.gov (United States)

    Caretti, C; Coppini, E; Fatarella, E; Lubello, C

    2011-01-01

    This paper presents an experimental study aimed at estimating the efficiency of the innovative process of ultrafiltration (UF) combined with sonication (Son.) for the refinement of treated effluent to be reused in wet textile processes. Such a novel approach, which has not yet been employed on a full industrial scale, has been experienced at pilot scale on the secondary effluent of the Baciacavallo wastewater treatment plant (WWTP), which treats part of the effluent from one of the largest textile industry districts in Italy. The combined treatment efficiency was assessed both on ozonated and non-ozonated Baciacavallo secondary effluent. The membrane filtration process was optimized in terms of running time, backwash, chemical addition and cleaning procedures. The sonication treatment was optimized on laboratory-scale with synthetic solutions (demineralized water added with dyestuffs) in terms of hydroxyl radicals formation rate, frequency, acoustic power, hydrogen peroxide addition, contact time and pH. The optimal conditions have been applied on the pilot-scale sonicator which was used in combination with the UF treatment. According to the experimental results, the best configuration within the Baciacavallo WWTP was the sonication of non-ozonated wastewater followed by the UF. The combined treatment guaranteed the compliance with the target values for wastewater reuse in wet textile industries. This study is part of the Research Project PURIFAST (Purification of industrial and mixed wastewater by combined membrane filtration and sonochemical technologies) LIFE + ENV/IT/000439. PMID:22170847

  2. Dedicated breast CT: effect of adaptive filtration on dose distribution

    CERN Document Server

    Shikhaliev, Polad M

    2016-01-01

    Purpose: The purpose of the work was experimental investigations of the breast dose distributions with adaptive filtration. Adaptive filtration reduces detector dynamic range and improves image quality. The adaptive filter with predetermined shape is placed at the x-ray beam such that the x-ray intensity at the detector surface is flat. However, adaptive filter alters the mean dose to the breast, as well as volume distribution of the dose. Methods: The dose was measured using a 14 cm diameter cylindrical acrylic breast phantom. An acrylic adaptive filter was fabricated to match the 14 cm diameter of the phantom. The dose was measured using ion chamber inserted into holes distributed along the radius of the phantom from the center to the edge. The radial distribution of dose was measured and fitted by an analytical function and the volume distribution and mean value of dose was calculated. The measurements were performed at 40, 60, 90, and 120 kVp tube voltages and 6.6 mGy air kerma. Results: The adaptive filt...

  3. Asymptotics of the filtration problem for suspension in porous media

    Directory of Open Access Journals (Sweden)

    Kuzmina Ludmila Ivanovna

    2015-01-01

    Full Text Available The mechanical-geometric model of the suspension filtering in the porous media is considered. Suspended solid particles of the same size move with suspension flow through the porous media - a solid body with pores - channels of constant cross section. It is assumed that the particles pass freely through the pores of large diameter and are stuck at the inlet of pores that are smaller than the particle size. It is considered that one particle can clog only one small pore and vice versa. The particles stuck in the pores remain motionless and form a deposit. The concentrations of suspended and retained particles satisfy a quasilinear hyperbolic system of partial differential equations of the first order, obtained as a result of macro-averaging of micro-stochastic diffusion equations. Initially the porous media contains no particles and both concentrations are equal to zero; the suspension supplied to the porous media inlet has a constant concentration of suspended particles. The flow of particles moves in the porous media with a constant speed, before the wave front the concentrations of suspended and retained particles are zero. Assuming that the filtration coefficient is small we construct an asymptotic solution of the filtration problem over the concentration front. The terms of the asymptotic expansions satisfy linear partial differential equations of the first order and are determined successively in an explicit form. It is shown that in the simplest case the asymptotics found matches the known asymptotic expansion of the solution near the concentration front.

  4. The PBW Filtration, Demazure Modules and Toroidal Current Algebras

    Directory of Open Access Journals (Sweden)

    Evgeny Feigin

    2008-10-01

    Full Text Available Let L be the basic (level one vacuum representation of the affine Kac-Moody Lie algebra ^g. The m-th space F_m of the PBW filtration on L is a linear span of vectors of the form x_1dots x_lv_0, where l ≤ m, x_i in ^g and v_0 is a highest weight vector of L. In this paper we give two descriptions of the associated graded space L^{gr} with respect to the PBW filtration. The ''top-down'' description deals with a structure of L^{gr} as a representation of the abelianized algebra of generating operators. We prove that the ideal of relations is generated by the coefficients of the squared field e_θ(z2, which corresponds to the longest root θ. The ''bottom-up'' description deals with the structure of L^{gr} as a representation of the current algebra g otimes C[t]. We prove that each quotient F_m/F_{m-1} can be filtered by graded deformations of the tensor products of m copies of g.

  5. Screening on Medium of Subsurface Filtration System%地下渗滤系统基质的筛选

    Institute of Scientific and Technical Information of China (English)

    戴强; 张卫民; 艾林芳

    2012-01-01

    [ Objective ] The study aime to screen the medium of the subsurface filtration system. [ Method ] With the river sand, steel slag, fly coal ash and and coal cinder as the research object, their adsorption properties to the phosphorus were investigated when they were taken as the matrix of the infiltration filter system. [Result] Among the 4 kinds of matrix, as for the matrix to the theoretical saturated adsorption capacity of phosphorus, the steel slag had biggest theoretical saturated adsorption quantity of phosphorus, followed by fly coal ash, coal cinder and river sand; it was kown from the desorption test that the desorption rate of the steel slag was very samll, that of the fly coal ash was slightly great, followed by the coal cinders and river sand; the largest phosphorus removal rate counted by the pseudosecond order kinetic equation were in order of steel slag > coal cinder > river sand > fly coal ash; as for the price and material-taking of the matrix, the river sand, fly coal ash, steel slag and coal cinder all belonged to the cheap materials, compared with them, the river sand could be eazy to get a lot and its phosphorus removal rate was also aobut 60% , so it could be taken as the main matrix of the subsurface filtration system. [ Conclusion ] The study provided the theoretical basis for screening the suatable matixex for the subsurface filtration system.%[目的]筛选地下渗滤系统的基质材料.[方法]以河砂、钢渣、粉煤灰、煤渣为研究对象,考察其作为地下渗滤系统基质对磷的吸附特性.[结果]这4种基质中,从基质对磷的理论饱和吸附量看,钢渣对磷的理论饱和吸附量最大,其次是粉煤灰、煤渣和河砂;从基质的解吸试验可知,钢渣的解析率非常小,粉煤灰的解析率稍大,其次是煤渣和河砂;由准二级动力学方程计算出最大除磷速率Vmax依次为:钢渣>煤渣>河砂>粉煤灰;从基质的价格和取材情况看,河砂、粉煤灰、钢渣

  6. Effect of membrane filtration of antimalarial drug solutions on in vitro activity against Plasmodium falciparum*

    OpenAIRE

    Baird, J K; Lambros, C.

    1984-01-01

    Antimalarial activities of chloroquine, mefloquine, amodiaquine, and quinine in vitro against Plasmodium falciparum were diminished as a consequence of membrane filtration. Filtered drug solutions gave ID50 values up to 25-fold greater than those of non-filtered (ethanol-sterilized) drug solutions. Loss of activity by filtration was overcome by increasing the drug concentration prior to filtration. Water solutions filtered through Millex-GS filter units consistently showed an absorbance maxim...

  7. Upgrade of deep bed filtration with activated carbon dosage for compact micropollutant removal from wastewater in technical scale.

    Science.gov (United States)

    Löwenberg, Jonas; Zenker, Armin; Krahnstöver, Thérèse; Boehler, Marc; Baggenstos, Martin; Koch, Gerhard; Wintgens, Thomas

    2016-05-01

    The removal of micropollutants from drinking and wastewater by powdered activated carbon (PAC) adsorption has received considerable attention in research over the past decade with various separation options having been investigated. With Switzerland as the first country in the world having adopted a new legislation, which forces about 100 wastewater treatment plants to be upgraded for the removal of organic micropollutants from municipal wastewater, the topic has reached practical relevance. In this study, the process combination of powdered activated carbon (PAC) adsorption and deep bed filtration (DBF) for advanced municipal wastewater treatment was investigated over an extended period exceeding one year of operation in technical scale. The study aimed to determine optimum process conditions to achieve sufficient micropollutant removal in agreement with the new Swiss Water Ordinance under most economic process design. It was shown that the addition of PAC and Fe(3+) as combined coagulation and flocculation agent improved effluent water quality with respect to dissolved organic pollutants as well as total suspended solids (TSS), turbidity and PO4-P concentration in comparison to a DBF operated without the addition of PAC and Fe(3+). Sufficient micropollutant (MP) removal of around 80% was achieved at PAC dosages of 10 mg/L revealing that PAC retained in the filter bed maintained considerable adsorption capacity. In the investigated process combination the contact reactor serves for adsorption as well as for flocculation and allowed for small hydraulic retention times of minimum 10 min while maintaining sufficient MP removal. The flocculation of two different PAC types was shown to be fully concluded after 10-15 min, which determined the flocculation reactor size while both PAC types proved suitable for the application in combination with DBF and showed no significant differences in MP removal. Finally, the capping of PAC dosage during rain water periods, which

  8. Zinc isotope fractionation during adsorption on calcite

    Science.gov (United States)

    Dong, S.; Wasylenki, L. E.

    2013-12-01

    Zinc is an important element as a nutrient in the marine biosphere. However, our understanding of its biogeochemical cycling in the oceans is relatively limited. The Zn stable isotope system holds the promise of providing novel insights, since published Zn isotopic values for various natural samples reveal significant fractionations in the marine environment. Surface seawater, basalts, shales, deep-sea clay sediments, sediment trap material, bulk plankton and zooplankton samples, and eolian dust fall within a tight range (δ66/64Zn from -0.1 to 0.5‰), but modern ferromanganese crusts (δ66/64Zn from 0.5 to 1.2‰), as well as carbonates (δ66/64Zn from 0.3 to 1.4‰), are notably enriched in heavy Zn isotopes [1-4]. In this study we seek to constrain the mechanism by which carbonates are enriched in heavier isotopes. In particular, we have conducted experiments to quantify isotope fractionation during adsorption of Zn onto the surfaces of calcite crystals that are in equilibrium with solution. The adsorption experiments were carried out in a series of small-volume batch reactions in a clean laboratory environment, using high-purity reagents and calcite seed crystals. The calcite was equilibrated with the solution prior to addition of Zn at atmospheric CO2 pressure (i.e., in air) for 5 days until a stable pH of 8.3 was reached. Later, a small aliquot of dissolved ZnCl2 was added such that the solution remained undersaturated with respect to hydrozincite. Experimental duration varied among the replicates from 6 to 144 hours, and then all solids and solutions were separated by filtration, purified by ion exchange chromatography, and analyzed by MC-ICP-MS. Zn adsorbed on calcite is isotopically heavier than in the co-existing solutions, with Δ68/66Zncalcite-solution of approximately 0.3‰. The variation of Δ68/66Zncalcite-solution beyond 24 hours is insignificant, so we infer that isotopic equilibrium is reached by this time. Previous work strongly suggests that a

  9. 有机物极性对超滤膜过滤性能的影响%Effect of Organic Polarity on Ultrafiltration Membrane Filtration Performance

    Institute of Scientific and Technical Information of China (English)

    许航; 陈卫; 孙敏; 王维红; 许旻

    2011-01-01

    为研究有机物极性对超滤膜过滤性能的影响,用超滤膜过滤有机物含量相当,有机物极性成分不同的5种水样,基于滤饼堵塞过滤模型和中间堵塞过滤模型对试验结果拟合。研究表明,超滤膜对不同极性有机物去除率由高到低为:VHA〉SHA〉NEU〉CHA,在膜的浓水、正冲水、反洗水及化学清洗废液中,疏水性有机物的比例也相对较高。疏水性有机物浓度由高到低的水样1、水样2、水样3、水样4和水样5,过滤结束时通量分别为起始通量的91%,80%,69%,56%和45%,滤饼层过滤阻力系数kp和膜孔吸附系数kc均随水样中疏水性有机物含量%Deionized water was applied to prepare five kinds of water samples,in which the organics were equivalent in contents,but different in polar components.Ultrafiltration membrane was used to filter the samples.Based on the filter cake and intermediate blocking filtration models,the effect of organic polarity on the membrane filtration performance was analyzed.The results showed that the removal rate of organic matters with different polarities was VHASHANEUCHA.At the end of filtration,compared with initial fluxes,the fluxes of sample 1,sample 2,sample 3,sample 4 and sample 5 were 91%,80%,69%,56% and 45%,respectively.The cake layer filtration resistance coefficient denoted by kp and membrane pore adsorption coefficient denoted by kc were increased with the elevation of hydrophobic organic contents,indicating that both the deposition of hydrophobic organics on membrane surface and the membrane pore adsorption performance were stronger than hydrophilic organics.Hydrophobic organic matters were the major factors causing the organic pollution of ultrafiltration membrane.

  10. Heats of adsorption for charcoal nitrogen systems

    Energy Technology Data Exchange (ETDEWEB)

    Prasad, M.; Akkimaradi, B.S.; Rastogi, S.C. [ISRO Satellite Centre, Bangalore (India). Thermal Systems Group; Rao, R.R. [Government College for Boys, Kolar, Karnataka (India); Srinivasan, K. [Indian Institute of Science, Bangalore (India). Dept. of Mechanical Engineering

    1999-07-01

    This paper develops an empirical equation for correlation of the loading dependence of the heat of adsorption for two samples of activated charcoal-nitrogen systems. Details are given of the use of isotherm data, the evaluation of the heat of adsorption using the Clausius-Clapeyron equation, the plotting of primary adsorption data, and the plotting of the heat of adsorption as a function of the loading of the two samples. The need to consider the heat of adsorption property when designing a system in which a gaseous medium is adsorbed by a solid sorbent is discussed. (UK)

  11. Adsorption from solutions of non-electrolytes

    CERN Document Server

    Kipling, J J

    1965-01-01

    Adsorption from Solutions of Non-Electrolytes provides a general discussion of the subject, which has so far been given little or no attention in current textbooks of physical chemistry. A general view of the subject is particularly needed at a time when we wish to see how far it will be possible to use theories of solutions to explain the phenomena of adsorption. The book opens with an introductory chapter on the types of interface, aspects of adsorption from solution, types of adsorption, and classification of systems. This is followed by separate chapters on experimental methods, adsorption

  12. Enhanced adsorption of acidic gases (CO2, NO2 and SO2) on light metal decorated graphene oxide.

    Science.gov (United States)

    Chen, Chi; Xu, Kui; Ji, Xiao; Miao, Ling; Jiang, Jianjun

    2014-06-14

    The adsorption of several acidic gases (CO2, NO2 and SO2) on light metal (Li, Al) decorated graphene oxide (GO) is theoretically studied, based on the first-principles calculations. Configuration relaxation, binding energy and charge transfer are carried out to discuss the acidic gas adsorption ability of light metal decorated GO. It is found out that Li, Al could be anchored stably by hydroxyl and epoxy groups on GO, and then a strong adsorption of CO2, NO2 and SO2 will occur above these light metals. In contrast to Ti, Li decorated GO exhibits a comparable adsorption ability of acidic gases, but a much smaller interaction with O2 about 2.85-3.98 eV lower in binding energy; and Al decorated GO displays much higher binding energy of all acidic gases with an enhancement of about 0.59-2.29 eV. The results of enhanced acidic gas adsorption ability and a reduced interference by O2 imply that Li, Al decorated GO may be useful and promising for collection and filtration of exhaust gases.

  13. Adsorption of Phosphate on Variable Charge Soils

    Institute of Scientific and Technical Information of China (English)

    HUGUO-SONG; ZHUZU-XIANG; 等

    1992-01-01

    The study about the adsorption of phosphate on four variable charge soils and some minerals revealed that two stage adsorption appeared in the adsorption isothems of phosphate on 4 soils and there was a maximum adsorption on Al-oxide-typed surfaces between pH 3.5 to pH 5.5 as suspension pH changed from 2 to 9,but the adsorption amount of phosphate decreased continually as pH rose on Fe-oxide typed surfaces.The adsorption amount of phosphate and the maximum phosphate adsorption pH decreased in the order of yellow-red soil> lateritic red soil> red soil> paddy soil,which was coincided with the content order of amorphous Al oxide.The removement of organic matter and Fe oxide made the maximum phosphate adsorption pH rise from 4.0 to 5.0 and 4.5,respectively.The desorption curves with pH of four soils showed that phosphate desorbed least at pH 5.Generally the desorption was contrary to the adsorption with pH changing.There was a good accordance between adsorption or desorption and the concentration of Al in the suspension.The possible mechanisms of phosphate adsorption are discussed.

  14. Phosphate adsorption on lanthanum loaded biochar.

    Science.gov (United States)

    Wang, Zhanghong; Shen, Dekui; Shen, Fei; Li, Tianyu

    2016-05-01

    To attain a low-cost and high-efficient phosphate adsorbent, lanthanum (La) loaded biochar (La-BC) prepared by a chemical precipitation method was developed. La-BC and its pristine biochar (CK-BC) were comparatively characterized using zeta potential, BET surface area, scanning electron microscopy/energy dispersive spectrometer (SEM-EDS), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and Fourier transform infrared spectroscopy (FT-IR). The adsorption ability and the mechanisms during adsorption process for the La-BC samples were also investigated. La loaded on the surface of biochar can be termed as La-composites (such as LaOOH, LaONO3 and La(OH)3), leading to the decrease of negative charge and surface area of biochar. La-BC exhibited the high adsorption capacity to phosphate compared to CK-BC. Adsorption isotherm and adsorption kinetic studies showed that the Langmuir isotherm and second order model could well describe the adsorption process of La-BC, indicating that the adsorption was dominated by a homogeneous and chemical process. The calculated maximum adsorption capacity was as high as 46.37 mg g(-1) (computed in P). Thermodynamic analysis revealed that the adsorption was spontaneous and endothermic. SEM, XRD, XPS and FT-IR analysis suggested that the multi-adsorption mechanisms including precipitation, ligand exchange and complexation interactions can be evidenced during the phosphate adsorption process by La-composites in La-BC. PMID:26871732

  15. Adsorption of amitraz on the clay

    Directory of Open Access Journals (Sweden)

    Jale Gülen

    2013-01-01

    Full Text Available Amitraz (AZ that is used as acaridies was tried to extract with a clay. The experimental data were modelled as using Langmuir and Freundlich isotherms. The adsorption data fit well with Langmuir isotherm that indicated the AZ adsorption is homogeneous and monolayer. The monolayer adsorption capacity was found to be 35.02 mg/g at 20 ºC temperature. Effect of the phases contact time, the initial solution pH and the initial pesticide concentration were investigated from the point of adsorption equilibrium and yield. The adsorption kinetics were investigated by applying pseudo first order, pseudo second order and intra particle diffusion laws. Adsorption of AZ was found to be best fitted by the pseudo second order model. The intra particle diffusion also plays an important role in adsorption phenomenon.

  16. Adsorption modeling for macroscopic contaminant dispersal analysis

    Energy Technology Data Exchange (ETDEWEB)

    Axley, J.W.

    1990-05-01

    Two families of macroscopic adsorption models are formulated, based on fundamental principles of adsorption science and technology, that may be used for macroscopic (such as whole-building) contaminant dispersal analysis. The first family of adsorption models - the Equilibrium Adsorption (EA) Models - are based upon the simple requirement of equilibrium between adsorbent and room air. The second family - the Boundary Layer Diffusion Controlled Adsorption (BLDC) Models - add to the equilibrium requirement a boundary layer model for diffusion of the adsorbate from the room air to the adsorbent surface. Two members of each of these families are explicitly discussed, one based on the linear adsorption isotherm model and the other on the Langmuir model. The linear variants of each family are applied to model the adsorption dynamics of formaldehyde in gypsum wall board and compared to measured data.

  17. Fibrinogen adsorption on blocked surface of albumin

    DEFF Research Database (Denmark)

    Holmberg, Maria; Hou, Xiaolin

    2011-01-01

    We have investigated the adsorption of albumin and fibrinogen onto PET (polyethylene terephthalate) and glass surfaces and how pre-adsorption of albumin onto these surfaces can affect the adsorption of later added fibrinogen. For materials and devices being exposed to blood, adsorption...... of fibrinogen is often a non-wanted event, since fibrinogen is part of the clotting cascade and unspecific adsorption of fibrinogen can have an influence on the activation of platelets. Albumin is often used as blocking agent for avoiding unspecific protein adsorption onto surfaces in devices designed to handle...... energies, the adsorption of both albumin and fibrinogen has been monitored simultaneously on the same sample. Information about topography and coverage of adsorbed protein layers has been obtained using AFM (Atomic Force Microscopy) analysis in liquid. Our studies show that albumin adsorbs in a multilayer...

  18. Allelopathic Effects of Cyanobacterial Filtrates on Baltic Diatom

    Science.gov (United States)

    Śliwińska, Sylwia; Latała, Adam

    2012-01-01

    Allelopathy may be one of the factors affecting the formation of massive and harmful algal blooms in aquatic environments. Recent studies indicate that blooms of cyanobacteria in the Baltic Sea has grown significantly in last decades, so it is important to determine the allelopathic interactions between the dominant species of cyanobacteria and microalgae. In this work we investigated the influence of allelopathic compounds on the growth of Skeletonema marinoi by addition of cell-free filtrate of the Baltic cyanobacterium Nodularia spumigena cultures grown under different temperature (15-25°C). Additionally the effects of filtrates of both an exponential and a stationary growing culture of N. spumigena were tested on diatom. These studies indicate that high temperature affected the donor species by increasing its production of allelochemicals. The highest drop of growth of analyzed diatom were observed after the addition of cell-free filtrate obtained from N. spumigena grown at 25°C and constituted 70% of their control. N. spumigena was only allelopathic in exponential growth phase, whereas the cyanobacteria filtrate from stationary phase have any effect on S. marinoi. These findings suggest that N. spumigena may reveal allelopathic activity and that the production of allelopathic substances is influenced by the temperature and growth phase of cyanobacteria. Allelopatia może być kluczowym czynnikiem wpływającym na tworzenie się masowych zakwitów sinic w wielu wodnych ekosystemach. Badania pokazują, że zakwity sinic w Morzu Bałtyckim w ostatnich dekadach znacznie się nasiliły, dlatego tak ważne jest określenie stopnia oddziaływania allelopatycznego dominujących w tym akwenie gatunków fitoplanktonu. W przeprowadzonych badaniach określono wpływ związków allelopatycznych produkowanych przez bałtycką sinicę Nodularia spumigena hodowaną w różnych temperaturach (15-25°C) na wzrost okrzemki Skeletonema marinoi. Dodatkowo w niniejszej pracy por

  19. Water Purification by Shock Electrodialysis: Deionization, Filtration, Separation, and Disinfection

    CERN Document Server

    Deng, Daosheng; Braff, William A; Schlumpberger, Sven; Suss, Matthew E; Bazant, Martin Z

    2014-01-01

    The development of energy and infrastructure efficient water purification systems are among the most critical engineering challenges facing our society. Water purification is often a multi-step process involving filtration, desalination, and disinfection of a feedstream. Shock electrodialysis (shock ED) is a newly developed technique for water desalination, leveraging the formation of ion concentration polarization (ICP) zones and deionization shock waves in microscale pores near to an ion selective element. While shock ED has been demonstrated as an effective water desalination tool, we here present evidence of other simultaneous functionalities. We show that, unlike electrodialysis, shock ED can thoroughly filter micron-scale particles and aggregates of nanoparticles present in the feedwater. We also demonstrate that shock ED can enable disinfection of feedwaters, as approximately $99\\%$ of viable bacteria (here \\textit{E. coli}) in the inflow were killed or removed by our prototype. Shock ED also separates...

  20. Indexing Glomerular Filtration Rate to Body Surface Area

    DEFF Research Database (Denmark)

    Redal-Baigorri, Belén; Rasmussen, Knud; Heaf, James Goya

    2014-01-01

    BACKGROUND: Kidney function is mostly expressed in terms of glomerular filtration rate (GFR). A common feature is the expression as ml/min per 1.73 m(2) , which represents the adjustment of the individual kidney function to a standard body surface area (BSA) to allow comparison between individuals....... We investigated the impact of indexing GFR to BSA in cancer patients, as this BSA indexation might affect the reported individual kidney function. METHODS: Cross-sectional study of 895 adults who had their kidney function measured with (51) chrome ethylene diamine tetraacetic acid. Mean values of BSA......-indexed GFR vs. mean absolute GFR were analyzed with a t-test for paired data. Bland-Altman plot was used to analyze agreement between the indexed and absolute GFR values. RESULTS AND CONCLUSION: BSA-GFR in patients with a BSA

  1. Home water treatment by direct filtration with natural coagulant.

    Science.gov (United States)

    Babu, Raveendra; Chaudhuri, Malay

    2005-03-01

    Seeds of the plant species Strychnos potatorum and Moringa oleifera contain natural polyelectrolytes which can be used as coagulants to clarify turbid waters. In laboratory tests, direct filtration of a turbid surface water (turbidity 15-25 NTU, heterotrophic bacteria 280-500 cfu ml(-1), and fecal coliforms 280-500 MPN 100 ml(-1)), with seeds of S. potatorum or M. oleifera as coagulant, produced a substantial improvement in its aesthetic and microbiological quality (turbidity 0.3-1.5 NTU, heterotrophic bacteria 5-20 cfu ml(-1) and fecal coliforms 5-10 MPN 100 ml(-1)). The method appears suitable for home water treatment in rural areas of developing countries. These natural coagulants produce a 'low risk' water; however, additional disinfection or boiling should be practised during localised outbreaks/epidemics of enteric infections.

  2. Ceramic Ultra Filtration Membrane Bioreactor for Domestic Wastewater Treatment

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    A long term domestic wastewater treatment experiment was conducted using a recirculating ceramic ultra filtration membrane bioreactor (CUFMB) system. Three experiments were run with a hydraulic retention time of 5h, sludge retention times of 5d, 15d, and 30d and a membrane surface flow rate of 4m/s. The experiment studied the membrane fouling mechanism and cleaning techniques. The results show that a CUFMB system can provide continuous good quality effluent which is completely acceptable for reuse. The system is also not affected by fluctuations of the inlet flow. The CUFMB sludge loading rate is similar to that of conventional biological treatment units. However, the volumetric loading rate of the CUFMB is 24 times that of conventional biological treatment units. Membrane fouling occurs due to channel clogging, which could be easily removed, and surface fouling, which can be effectively removed using the method described in this work which includes water rinsing, base cleaning, and acid washing.

  3. Glomerular filtration rate in cows estimated by a prediction formula.

    Science.gov (United States)

    Murayama, Isao; Miyano, Anna; Sato, Tsubasa; Iwama, Ryosuke; Satoh, Hiroshi; Ichijyo, Toshihiro; Sato, Shigeru; Furuhama, Kazuhisa

    2014-12-01

    To testify the relevance of Jacobsson's equation for estimating bovine glomerular filtration rate (GFR), we prepared an integrated formula based on its equation using clinically healthy dairy (n=99) and beef (n=63) cows, and cows with reduced renal function (n=15). The isotonic, nonionic, contrast medium iodixanol was utilized as a test tracer. The GFR values estimated from the integrated formula were well consistent with those from the standard multisample method in each cow strain, and the Holstein equation prepared by a single blood sample in Holstein dairy cows. The basal reference GFR value in healthy dairy cows was significantly higher than that in healthy beef cows, presumably due to a breed difference or physiological state difference. It is concluded that the validity for the application of Jacobsson's equation to estimate bovine GFR is proven and it can be used in bovine practices.

  4. Liquid filtration properties in gravel foundation of railroad tracks

    Science.gov (United States)

    Strelkov, A.; Teplykh, S.; Bukhman, N.

    2016-08-01

    Railway bed gravel foundation has a constant permanent impact on urban ecology and ground surface. It is only natural that larger objects, such as railway stations, make broader impact. Surface run-off waters polluted by harmful substances existing in railroad track body (ballast section) flow along railroad tracks and within macadam, go down into subterranean ground flow and then enter neighbouring rivers and water basins. This paper presents analytic calculations and characteristics of surface run-off liquid filtration which flows through gravel multiple layers (railroad track ballast section). The authors analyse liquids with various density and viscosity flowing in multi-layer porous medium. The paper also describes liquid stationary and non-stationary weepage into gravel foundation of railroad tracks.

  5. Hot-gas filtration for pressurized fluidized-bed combustion

    Energy Technology Data Exchange (ETDEWEB)

    Chang, R.; Kuby, W.

    1984-03-01

    This topical report discusses the status of the work, conducted under EPRI contract 1336-4, on the evaluation and development of ceramic filter hot gas cleanup technology for pressurized fluidized bed combustion. This topical report represents the status of the work through September 1983. The goal of the effort is to achieve 6000 h of operation on a 13-filter durability test rig. The work includes two parallel tasks. The first is construction of a durability test facility, operation of the facility with an initial candidate filter media installed, and assessment of results. The second task includes a literature survey to identify state-of-the-art ceramic fibers suitable for high-temperature gas filtration applications and filter testing in a single-filter test facility to assess the performance of promising new filter media. The best candidate will be chosen for further evaluation in the durability facility.

  6. Removal of geosmin and 2-methylisoborneol by biological filtration.

    Science.gov (United States)

    Elhadi, S L N; Huck, P M; Slawson, R M

    2004-01-01

    The quality of drinking water is sometimes diminished by the presence of certain compounds that can impart particular tastes or odours. One of the most common and problematic types of taste and odour is the earthy/musty odour produced by geosmin (trans-1, 10-dimethyl-trans-9-decalol) and MIB (2-methylisoborneol). Taste and odour treatment processes including powdered activated carbon, and oxidation using chlorine, chloramines, potassium permanganate, and sometimes even ozone are largely ineffective for reducing these compounds to below their odour threshold concentration levels. Ozonation followed by biological filtration, however, has the potential to provide effective treatment. Ozone provides partial removal of geosmin and MIB but also creates other compounds more amenable to biodegradation and potentially undesirable biological instability. Subsequent biofiltration can remove residual geosmin and MIB in addition to removing these other biodegradable compounds. Bench scale experiments were conducted using two parallel filter columns containing fresh and exhausted granular activated carbon (GAC) media and sand. Source water consisted of dechlorinated tap water to which geosmin and MIB were added, as well as, a cocktail of easily biodegradable organic matter (i.e. typical ozonation by-products) in order to simulate water that had been subjected to ozonation prior to filtration. Using fresh GAC, total removals of geosmin ranged from 76 to 100% and total MIB removals ranged from 47% to 100%. The exhausted GAC initially removed less geosmin and MIB but removals increased over time. Overall the results of these experiments are encouraging for the use of biofiltration following ozonation as a means of geosmin and MIB removal. These results provide important information with respect to the role biofilters play during their startup phase in the reduction of these particular compounds. In addition, the results demonstrate the potential biofilters have in responding to

  7. Experimental study of head loss and filtration for LOCA debris

    International Nuclear Information System (INIS)

    A series of controlled experiments were conducted to obtain head loss and filtration characteristics of debris beds formed of NUKON trademark fibrous fragments, and obtain data to validate the semi-theoretical head loss model developed in NUREG/CR-6224. A thermally insulated closed-loop test set-up was used to conduct experiments using beds formed of fibers only and fibers intermixed with particulate debris. A total of three particulate mixes were used to simulate the particulate debris. The head loss data were obtained for theoretical fiber bed thicknesses of 0.125 inches to 4.0 inches; approach velocities of 0.15 to 1.5 ft/s; temperatures of 75 F and 125 F; and sludge-to-fiber nominal concentration ratios of 0 to 60. Concentration measurements obtained during the first flushing cycle were used to estimate the filtration efficiencies of the debris beds. For test conditions where the beds are fairly uniform, the head loss data were predictable within an acceptable accuracy range by the semi-theoretical model. The model was equally applicable for both pure fiber beds and the mixed beds. Typically the model over-predicted the head losses for very thin beds and for thin beds at high sludge-to-fiber mass ratios. This is attributable to the non-uniformity of such debris beds. In this range the correlation can be interpreted to provide upper bound estimates of head loss. This is pertinent for loss of coolant accidents in boiling water reactors

  8. Adsorption in air treatment; Adsorption en traitement de l'air

    Energy Technology Data Exchange (ETDEWEB)

    Le Cloirec, P. [Ecole des Mines de Nantes, Dept. Systemes Energetiques et Environnement, 44 - Nantes (France)

    2003-01-01

    The aim of this article is to present the concepts and technologies of adsorption in air treatment. The following points are more particularly developed: 1 - approach of mechanisms: gas-solid transfer, equilibrium equations, multi-composed adsorption, adsorption influencing parameters, adsorption-desorption capacities and energies, specific case of hydrogen sulfide, the case of ketones; 2 - adsorbents implemented; 3 - adsorption and dynamical adsorber: flow and pressure drop in a porous medium, breakthrough curves, adsorption capacities, modeling of breakthrough curves; 4 - implementation of adsorber: models, dimensioning and practical operating data, process safety; 5 - regeneration of activated charcoals: reactivation, in-situ thermal regeneration. (J.S.)

  9. Adsorption of Carbon Dioxide on Activated Carbon

    Institute of Scientific and Technical Information of China (English)

    Bo Guo; Liping Chang; Kechang Xie

    2006-01-01

    The adsorption of CO2 on a raw activated carbon A and three modified activated carbon samples B, C, and D at temperatures ranging from 303 to 333 K and the thermodynamics of adsorption have been investigated using a vacuum adsorption apparatus in order to obtain more information about the effect of CO2 on removal of organic sulfur-containing compounds in industrial gases. The active ingredients impregnated in the carbon samples show significant influence on the adsorption for CO2 and its volumes adsorbed on modified carbon samples B, C, and D are all larger than that on the raw carbon sample A. On the other hand, the physical parameters such as surface area, pore volume, and micropore volume of carbon samples show no influence on the adsorbed amount of CO2. The Dubinin-Radushkevich (D-R) equation was the best model for fitting the adsorption data on carbon samples A and B, while the Freundlich equation was the best fit for the adsorption on carbon samples C and D. The isosteric heats of adsorption on carbon samples A, B, C, and D derived from the adsorption isotherms using the Clapeyron equation decreased slightly increasing surface loading. The heat of adsorption lay between 10.5 and 28.4 kJ/mol, with the carbon sample D having the highest value at all surface coverages that were studied. The observed entropy change associated with the adsorption for the carbon samples A, B, and C (above the surface coverage of 7 ml/g) was lower than the theoretical value for mobile adsorption. However, it was higher than the theoretical value for mobile adsorption but lower than the theoretical value for localized adsorption for carbon sample D.

  10. Filtration of Nanoparticles: Evolution of Cake Structure and Pressure-Drop

    DEFF Research Database (Denmark)

    Elmøe, Tobias Dokkedal; Tricoli, Antonio; Grunwaldt, Jan-Dierk;

    2009-01-01

    with constant solid volume fraction began to form, accompanied with build-up of pressuredrop which was in excellent agreement with classic cake filtration theory. An expression for the solid volume fraction of the cake (fsd,c) was obtained as a sole function of Pe. In addition, the filtration efficiency became...

  11. Measurement of glomerular filtration rate in adults: accuracy of five single-sample plasma clearance methods

    DEFF Research Database (Denmark)

    Rehling, M; Rabøl, A

    1989-01-01

    After an intravenous injection of a tracer that is removed from the body solely by filtration in the kidneys, the glomerular filtration rate (GFR) can be determined from its plasma clearance. The method requires a great number of blood samples but collection of urine is not needed. In the present...

  12. Clinical use of estimated glomerular filtration rate for evaluation of kidney function

    DEFF Research Database (Denmark)

    Broberg, Bo; Lindhardt, Morten; Rossing, Peter;

    2013-01-01

    Estimating glomerular filtration rate by the Modification of Diet in Renal Disease or Chronic Kidney Disease Epidemiology Collaboration formulas gives a reasonable estimate of kidney function for e.g. classification of chronic kidney disease. Additionally the estimated glomerular filtration rate...

  13. ACCUMULATION OF ALKALIS IN THE RECYCLING FILTRATE OF THE PHOSPHOGYPSUM PULPS

    Directory of Open Access Journals (Sweden)

    ANTANAS KAZILIUNAS

    2011-12-01

    Full Text Available Sodium and potassium combinations existing in phosphogypsum are highly soluble and remain in the filtrate, their amount increasing with each recycle. It has been determined that the amount of alkalis in the recycling filtrate depends on an amount of alkalis in uncleaned phosphogypsum, a number of recycles in the filtrate, the technology of the phosphogypsum pulp preparation and an amount of soluble phosphates. New phosphate formations composed in an acid medium (pH = 4.5-5 are well crystalized crystals. They do not alter the filtrability of the phosphogypsum pulp. The new combinations formed in an alkaline medium (pH = 7-11 are colloidal. They settle down on the surface of the hard particles and make the filtration of the phosphogypsum pulp complicated. The filtrated phosphogypsum is more humid which causes the growth of the amount of alkalis carried out together with moisture and thus the lower alkali concentration is observed in the recycling filtrate. In the discussed case, the larger amount of soluble phosphates of uncleaned phosphogypsum is formed the larger amount of the colloidal particles in the neutralized phosphogypsum pulp which results in complicated filtration. In all the cases, the alkali concentration in the recycling filtrate approaches the maximum degree which would take place if alkalis existing in uncleaned phosphogypsum were thawed in humidity of cleaned phosphogypsum.

  14. Filtration track membranes and their biomedical applications; Trekowe membrany filtracyjne oraz ich zastosowania biomedyczne

    Energy Technology Data Exchange (ETDEWEB)

    Buczkowski, M.; Wawszczak, D.; Starosta, W. [Institute of Nuclear Chemistry and Technology, Warsaw (Poland)

    1997-10-01

    The characteristics of track filtration membranes has been performed. The investigation of radiation resistance has been carried out for different types of polymer foil used as a membrane material. Biomedical applications of track filtration membranes have been presented and discussed. 10 refs, 10 figs.

  15. Effect of leukocyte filtration on the P-selectin expression of apheresis platelets.

    Science.gov (United States)

    Xie, Z T; Chen, C; Zhang, S H; Yang, H M; Tao, Z H

    2015-01-01

    The aim of this study was to investigate the effect of leukocyte filtration on the P-selectin (CD62P) surface expression of apheresis platelets during the retention period. Ten bags of apheresis platelets stored for 1 day (0-24 h) and 10 bags of apheresis platelets stored for 2 days (24-48 h) were used for leukocyte filtration (experimental group). Ten bags of apheresis platelets with the corresponding retention periods but without filtration were used as a negative control (control group). Thereafter, 100 μL of platelet suspensions from apheresis platelets with or without leukocyte filtration were sampled before and after leukocyte filtration for the detection of CD62P surface expression by flow cytometry. No statistical difference in the CD62P surface expression of apheresis platelets was observed before and after leukocyte filtration (P > 0.05), neither did the CD62P surface expression exhibit any change among the different retention periods. Leukocyte filtration does not affect the CD62P surface expression of apheresis platelets stored for up to 2 days, which indicates that leukocyte filtration does not damage the activation of apheresis platelets within the retention period.

  16. IMPACT OF WATER CHEMISTRY ON MANGANESE REMOVAL DURING OXIDATION/FILTRATION TREATMENT

    Science.gov (United States)

    This is a poster showing the purpose and setup of our pilot plant experiments with manganese filtration. The focus is on the differences, effectiveness, and problems with using chlorine and potassium permanganate in oxidation/filtration. The poster will show the results and findi...

  17. Electrostatic enhancement of fabric filtration of fly ash and spray-dryer by-product

    Energy Technology Data Exchange (ETDEWEB)

    Hovis, L.S.; Daniel, B.E.; Donovan, R.P.

    1985-11-01

    The paper describes small pilot-scale experiments, showing that the pressure-drop increase during the fabric filtration of redispersed spray-dryer by-product (chiefly calcium salts and fly ash) is significantly reduced by electrostatic enhancement of the filtration. The pressure drop rise for a typical electrostatically augmented fabric filtration (ESFF) is only 25% or less of that of the rise for a conventional filtration cycle. The ESFF takes advantage of the electrical characteristics of the spray-dryer by-product, specifically the higher natural electrical charge, as compared to fly ash, and the relatively lower electrical resistivity of the spray dryer by-product at the high moisture and the low-temperature conditions of filtration of spray dryer by-product. The low resistivity of the spray-dryer by-product and certain fly ashes allows application of high corona voltages in the new center-wire ESFF to produce an even slower pressure-drop increase over the filtration cycle. Center-wire ESFF proved to be operable under conditions of high gas velocities and grain loadings that were beyond the range for successful conventional reverse-air fabric filtration. Results of tests on the center-wire ESFF are presented and compared with conventional fabric filtration.

  18. A process using gellane as a filtrate reducer for water-based drilling fluids

    Energy Technology Data Exchange (ETDEWEB)

    Dreveton, E.; Lecourtier, J.; Ballerini, D.; Choplin, L.

    1995-06-30

    In order to reduce the filtrate quantity (i.e. drilling fluid filtration losses in porous or cleaved rocks), a certain quantity of gellane is added to the fluid (preferentially native gellane) to control the permeability of the well walls. Viscosity of the fluid is controlled mainly by the addition of polymers such as xanthane, scleroglucane or wellane.

  19. Adsorption and adhesiveness of kapok fiber to different oils.

    Science.gov (United States)

    Dong, Ting; Xu, Guangbiao; Wang, Fumei

    2015-10-15

    Adsorption and adhesiveness of single kapok to various oils, such as diesel, vegetable oil, used motor oil and motor oil were quantitatively evaluated by size and adhesive energy distribution of adsorbed oil droplets on fiber via drop-on-fiber micro-sorption experiments based on Carroll's theory of droplet morphology. Meanwhile, another micro polyester fiber was investigated as comparison. It was found that kapok fibers exihibited low surface energy of 40.64 mN/m with highly hydrophobicity and oil wettability. It had high water contact angle up to 151°, adsorbing four oils with average droplet size varying from emulsified state(0.1-25 μm) to dispersed state (25-100 μm). The average adhesive energies of kapok to four oils were 3.78×10(-11)-9.40×10(-11) J, with the highest for vegetable oil. Compared with kapok, polyester fiber adsorbed a large number of smaller oil droplets with their average size within emulsified state for its large specific surface area contributed by micro-fine of the fiber, but showed bad adhesiveness to retain the adsorbed oils with average droplet adhesive energy among 1.49×10(-11)-2.27×10(-11)J due to its relative higher surface energy of 59.15 mN/m. It is more suitable to be used as filter for secondary fine filtration under low inflow rate.

  20. Virus adsorption of water-stable quaternized chitosan nanofibers.

    Science.gov (United States)

    Mi, Xue; Vijayaragavan, K Saagar; Heldt, Caryn L

    2014-03-31

    The burden of unsafe drinking water is responsible for millions of deaths each year. To relieve this burden, we are in search of an inexpensive material that can adsorb pathogens from drinking water. In this pursuit, we have studied the natural carbohydrate, chitosan. To impart virus removal features, chitosan has been functionalized with a quaternary amine to form quaternized chitosan N-[(2-hydroxyl-3-trimethylammonium) propyl] chitosan (HTCC). HTCC can be electrospun into nanofibers with the non-ionogenic polyvinyl alcohol (PVA), creating a high surface area mat. High surface area is a major requirement for effective adsorption processes. HTCC is antiviral and antimicrobial, making it a good material for water purification. However, HTCC dissolves in water. We have explored the parameters to crosslink the nanofibers with glutaraldehyde. We have imparted water stability so there is a maximum of 30% swelling of the fibers after 6h in water. The water stable fibers retain their ability to adsorb virus, as shown for an enveloped and nonenveloped virus. HTCC now has the potential to be incorporated into a microfiltration membrane that can remove viruses. This could create an inexpensive, low pressure filtration membrane for drinking water purification. PMID:24561959

  1. Adsorption and adhesiveness of kapok fiber to different oils.

    Science.gov (United States)

    Dong, Ting; Xu, Guangbiao; Wang, Fumei

    2015-10-15

    Adsorption and adhesiveness of single kapok to various oils, such as diesel, vegetable oil, used motor oil and motor oil were quantitatively evaluated by size and adhesive energy distribution of adsorbed oil droplets on fiber via drop-on-fiber micro-sorption experiments based on Carroll's theory of droplet morphology. Meanwhile, another micro polyester fiber was investigated as comparison. It was found that kapok fibers exihibited low surface energy of 40.64 mN/m with highly hydrophobicity and oil wettability. It had high water contact angle up to 151°, adsorbing four oils with average droplet size varying from emulsified state(0.1-25 μm) to dispersed state (25-100 μm). The average adhesive energies of kapok to four oils were 3.78×10(-11)-9.40×10(-11) J, with the highest for vegetable oil. Compared with kapok, polyester fiber adsorbed a large number of smaller oil droplets with their average size within emulsified state for its large specific surface area contributed by micro-fine of the fiber, but showed bad adhesiveness to retain the adsorbed oils with average droplet adhesive energy among 1.49×10(-11)-2.27×10(-11)J due to its relative higher surface energy of 59.15 mN/m. It is more suitable to be used as filter for secondary fine filtration under low inflow rate. PMID:25913676

  2. Virus adsorption of water-stable quaternized chitosan nanofibers.

    Science.gov (United States)

    Mi, Xue; Vijayaragavan, K Saagar; Heldt, Caryn L

    2014-03-31

    The burden of unsafe drinking water is responsible for millions of deaths each year. To relieve this burden, we are in search of an inexpensive material that can adsorb pathogens from drinking water. In this pursuit, we have studied the natural carbohydrate, chitosan. To impart virus removal features, chitosan has been functionalized with a quaternary amine to form quaternized chitosan N-[(2-hydroxyl-3-trimethylammonium) propyl] chitosan (HTCC). HTCC can be electrospun into nanofibers with the non-ionogenic polyvinyl alcohol (PVA), creating a high surface area mat. High surface area is a major requirement for effective adsorption processes. HTCC is antiviral and antimicrobial, making it a good material for water purification. However, HTCC dissolves in water. We have explored the parameters to crosslink the nanofibers with glutaraldehyde. We have imparted water stability so there is a maximum of 30% swelling of the fibers after 6h in water. The water stable fibers retain their ability to adsorb virus, as shown for an enveloped and nonenveloped virus. HTCC now has the potential to be incorporated into a microfiltration membrane that can remove viruses. This could create an inexpensive, low pressure filtration membrane for drinking water purification.

  3. Synthesis of soft shell poly(styrene) colloids for filtration experiments

    DEFF Research Database (Denmark)

    Hinge, Mogens

    Separating a solid from a liquid is an important unit operation in many different industries e.g. mining, chemical, pharmaceutical and food industries. Solid liquid separation can roughly be divided into three groups. 1) Separation by gravity forces e.g. sedimentation, centrifugation, 2) Separation...... by evaporation of the liquid e.g. drying and 3) separation by pressure forces e.g. vacuum filtration, belt presses, pressure filtration. In this Ph.D. thesis only dead-end pressure filtration dewatering is considered. In pressure filtration dewatering the pressure is forcing the liquid through a filter medium...... whereupon the solid is deposited and whereby the liquid is separated from the solids. Mathematical models have been developed to describe and predict the solid liquid separation process during pressure filtration. These mathematical models are mainly developed from experiments performed on inorganic solids...

  4. Impaired autoregulation of glomerular filtration rate in type 1 (insulin-dependent) diabetic patients with nephropathy

    DEFF Research Database (Denmark)

    Parving, H H; Kastrup, Helge; Smidt, U M;

    1984-01-01

    served as controls. Renal function was assessed by glomerular filtration rate (single bolus 51Cr-EDTA technique) and urinary albumin excretion rate (radial immunodiffusion). The study was performed twice within 2 weeks, with the subjects receiving an intravenous injection of either clonidine (225...... arterial blood pressure in all three groups (16-18 mmHg). While glomerular filtration rate and urinary albumin excretion rate remained unchanged in both control groups after clonidine injection, glomerular filtration rate diminished from 78 to 71 ml/min per 1.73 m2 (p les than 0.01), and urinary albumin...... excretion declined from 1707 to 938 micrograms/min (p less than 0.01) in the patients with diabetic nephropathy. Our results suggest that an intrinsic vascular (arteriolar) mechanism underlying the normal autoregulation of glomerular filtration rate, i.e. the relative constancy of glomerular filtration rate...

  5. Pretreatment of highly turbid coal mine drainage by a chemical agent free filtration system

    Institute of Scientific and Technical Information of China (English)

    Zhang Chunhui; He Xiong; Li Kaihe; Wu Dongsheng; Guo Yanrong; Wang Can

    2012-01-01

    A filtration system used without chemical agents for the pretreatment of turbid coal mine drainage is described in this paper.The influence of different aperture sizes and different motor speeds was investigated during the study.The experimental results show that for aperture diameters of 0.4,0.6,or 0.8 mm smaller apertures provide more complete filtration.Rotations of 12,20,28,or 40 r/min show that higher speeds give more efficient filtration.Suspended solids decreased in both particle size and concentration after the filtration.The separated slime can be directly reused as a fuel.Efficient filtration pretreatment systems for coal mine drainage were investigated and the economic feasibility is analyzed in this article.

  6. Entrained phase adsorption of PCDD/F from incinerator flue gases.

    Science.gov (United States)

    Everaert, K; Baeyens, J; Degrève, J

    2003-03-15

    The emission abatement of polychlorinated dioxins and furans (PCDD/F) issued from municipal solid waste incineration (MSWI) is growing in importance because of more stringent emission standards and general health concern. These substances cannot be separated by conventional gas cleanup processes. They are successfully removed through adsorption onto carbonaceous materials, and the entrained-phase injection of pulverized adsorbents in the flue gas, followed by high-efficiency separation, is widely applied. Operating conditions and results obtained in Flemish MSWIs are given. The results illustrate the excellent overall removal efficiency: the regulation limit of 0.1 ng TEO/Nm3 dry gas at 11% O2 can be achieved. Furans are adsorbed to a slightly higher extent than the dioxins. The PCDD/F removal by carbonaceous adsorbents is thereafter modeled from first principles for the contribution of both entrained-phase (eta1) and cake filtration (eta2) to the overall efficiency (etaT), with dominant parameters being the operating temperature, the dosage and activity of adsorbent, and the fraction of adsorbent in the filter cake. Application of the model equations and comparison of measured and predicted overall efficiencies for the Flemish MSWIs demonstrate the validity of the model, which enables the MSWI operators both to predict the adsorption efficiencies for combinations of major operating parameters and to assess the sensitivity of the process to varying operating conditions. Finally, some practical difficulties encountered with the entrained-phase adsorption are discussed. PMID:12680678

  7. Adsorption and Desorption of Methiopyrsulfuron in Soils

    Institute of Scientific and Technical Information of China (English)

    WU Chun-Xian; WANG Jin-Jun; ZHANG Su-Zhi; ZHANG Zhong-Ming

    2011-01-01

    Methiopyrsulfuron is a new low-rate sulfonylurea herbicide for weed control in wheat; however, there is a lack of published information on its behavior in soils. In this study, methiopyrsulfuron adsorption and desorption were measured in seven soils sampled from Heilongjiang, Shandong, Jiangxi, Sichuan, Anhui, and Chongqing provinces of China using a batch equilibrium method. The Freundlich equation was used to described its adsorption and desorption. Adsorption isotherms were nonlinear with the values of Kf-ads, the Freundlich empirical constant indicative of the adsorption capacity,ranging from 0.75 to 2.46, suggesting that little of this herbicide was adsorbed by any of the seven soils. Soil pH and organic matter content (OM) were the main factors influencing adsorption; adsorption was negatively correlated with pH and positively correlated with OM. Methiopyrsulfuron desorption was hysteretic on the soils with high OM content and low pH.

  8. Gibbs adsorption and the compressibility equation

    International Nuclear Information System (INIS)

    A new approach for deriving the equation of state is developed. It is shown that the integral in the compressibility equation is identical to the isotherm for Gibbs adsorption in radial coordinates. The Henry, Langmuir, and Frumkin adsorption isotherms are converted into equations of state. It is shown that using Henry's law gives an expression for the second virial coefficient that is identical to the result from statistical mechanics. Using the Langmuir isotherm leads to a new analytic expression for the hard-sphere equation of state which can be explicit in either pressure or density. The Frumkin isotherm results in a new equation of state for the square-well potential fluid. Conversely, new adsorption isotherms can be derived from equations of state using the compressibility equation. It is shown that the van der Waals equation gives an adsorption isotherm equation that describes both polymolecular adsorption and the unusual adsorption behavior observed for supercritical fluids. copyright 1995 American Institute of Physics

  9. ADSORPTION AND RELEASING PROPERTIES OF BEAD CELLULOSE

    Institute of Scientific and Technical Information of China (English)

    A. Morales; E. Bordallo; V. Leon; J. Rieumont

    2004-01-01

    The adsorption of some dyes on samples of bead cellulose obtained in the Unit of Research-Production "Cuba 9"was studied. Methylene blue, alizarin red and congo red fitted the adsorption isotherm of Langmuir. Adsorption kinetics at pH = 6 was linear with the square root of time indicating the diffusion is the controlling step. At pH = 12 a non-Fickian trend was observed and adsorption was higher for the first two dyes. Experiments carried out to release the methylene blue occluded in the cellulose beads gave a kinetic behavior of zero order. The study of cytochrome C adsorption was included to test a proteinic material. Crosslinking of bead cellulose was performed with epichlorohydrin decreasing its adsorption capacity in acidic or alkaline solution.

  10. Effect of piezoelectric material on hydrogen adsorption

    Energy Technology Data Exchange (ETDEWEB)

    Li, Xuan [Department of Materials Science and Engineering, Michigan Technological University, 1400 Townsend Drive, Houghton, MI, 49931 (United States); Civil and Environmental Engineering School, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing, 100083 (China); Hwang, Jiann-Yang; Shi, Shangzhao; Sun, Xiang; Zhang, Zheng [Department of Materials Science and Engineering, Michigan Technological University, 1400 Townsend Drive, Houghton, MI, 49931 (United States)

    2010-09-15

    In hydrogen storage applications, the primary issue for physisorption of hydrogen onto solid-state materials is the weak interaction force between hydrogen molecules and the adsorbents. It is found that enhanced adsorption can be obtained under an external electric field, because it appears the electric field increases the hydrogen adsorption energy. Experiments were carried out to determine hydrogen adsorption on activated carbon using the piezoelectric material PMN-PT as the charge supplier under hydrogen pressure. Results indicate that more than 20% hydrogen adsorption enhancement was obtained. Parameters related to hydrogen adsorption enhancement include the amount of the charge and temperature. Higher voltage and lower temperature promote the increase of adsorption capacity but room temperature results are very encouraging. (author)

  11. Adsorption of goethite onto quartz and kaolinite

    Science.gov (United States)

    Goldberg, M.C.; Weiner, Eugene R.; Boymel, P.M.

    1984-01-01

    The adsorption of colloidal goethite onto quartz and kaolinite substrates has been studied as a function of pH and NaCl concentration. Goethite adsorption was measured quantitatively by Fourier-transform infrared spectroscopy. The results indicate that adsorption onto both substrates is due primarily to coulombic forces; however, the pH dependence of adsorption is very different for the two substrates. This is explained by the fact that the surface charge on quartz is entirely pH-dependent, while kaolinite has surface faces which carry a permanent negative charge. Adsorption of goethite on to kaolinite increases markedly with increasing NaCl concentration, while adsorption onto quartz is relatively independent of NaCl concentration. This can be explained by the influence of NaCl concentration upon the development of surface charge on the substrates. A method is described for separating surface-bound goethite from free goethite.

  12. Adsorption of octylamine on titanium dioxide

    International Nuclear Information System (INIS)

    Processes of adsorption and desorption of a model active substance (octylamine) on the surface of unmodified titanium dioxide (E 171) have been performed. The effects of concentration of octylamine and time of the process on the character of adsorption have been studied and the efficiency of the adsorption/desorption has been determined. The samples obtained have been studied by X-ray diffraction. The nitrogen adsorption/desorption isotherms, particle size distribution and absorption capacities of water, dibutyl phthalate and paraffin oil have been determined. The efficiency of octylamine adsorption on the surface of the titanium dioxide has been found positively correlated with the concentration of octylamine in the initial solution. The desorption of octylamine has decreased with increasing concentration of this compound adsorbed. For octylamine in low concentrations the physical adsorption has been found to dominate, which is desirable when using TiO2 in the production of pharmaceuticals.

  13. Derivation of total filtration thickness for diagnostic x-ray source assembly

    Science.gov (United States)

    Sekimoto, Michiharu; Katoh, Yoh

    2016-08-01

    The method defined by the IEC 60522 for determining the inherent filtration of an x-ray source device is applicable only for a limited range of tube voltage. Because the users cannot legally remove the x-ray movable diaphragm of the x-ray source device, total filtration, which is the sum of the additional filtration diaphragm movable for specific filtration and x-ray, cannot be measured. We develop a method for simply obtaining the total filtration for different tube voltage values. Total filtration can be estimated from a ratio R‧ of the air kerma Kx+T\\prime , which is measured with an Al plate with thickness T, and Kx\\prime measured without an Al plate. The conditions of the target material of the x-ray source device are then entered into the Report 78 Spectrum Processor to calculate the air kerma K x and K x+T for Al thicknesses x and (x  +  T), respectively, to obtain R. The minimum value of x, which is the difference between the R and R‧, is the total filtration of the x-ray source device. The total filtration calculated using the industrial x-ray source device was within  ±1% in the 40–120 kV range. This method can calculate the total filtration using air kerma measurements with and without the Al plate. Therefore, the load on the x-ray tube can be reduced, and preparation of multiple Al plates is not necessary. Furthermore, for the 40–120 kV tube voltage range, the user can easily measure the total filtration.

  14. Solar heat utilization for adsorption cooling device

    OpenAIRE

    Malcho Milan; Patsch Marek; Pilát Peter

    2012-01-01

    This article deals with possibility of solar system connection with adsorption cooling system. Waste heat from solar collectors in summer is possible to utilize in adsorption cooling systems, which desorption temperatures have to be lower than temperature of heat transport medium operation temperature. For verification of work of this system was constructed on the Department of power engineering on University of Zilina solar adsorption cooling device.

  15. Solar heat utilization for adsorption cooling device

    Directory of Open Access Journals (Sweden)

    Malcho Milan

    2012-04-01

    Full Text Available This article deals with possibility of solar system connection with adsorption cooling system. Waste heat from solar collectors in summer is possible to utilize in adsorption cooling systems, which desorption temperatures have to be lower than temperature of heat transport medium operation temperature. For verification of work of this system was constructed on the Department of power engineering on University of Zilina solar adsorption cooling device.

  16. Bentazone adsorption and desorption on agricultural soils

    OpenAIRE

    Boivin, A.; Cherrier, R.; Schiavon, M

    2005-01-01

    Herbicide fate and transport in soils greatly depend upon adsorption-desorption processes. Batch adsorption and desorption experiments were performed with the herbicide bentazone using 13 contrasted agricultural soil samples. Bentazone was found to be weakly sorbed by the different soils, showing average Freundlich adsorption coefficients (Kf) value of 1.4 ± 2.3 mg1 - nf Lnf kg-1. Soil organic matter content did not have a significant effect on bentazone sorption (r2 = 0.12), whereas natural ...

  17. High Pressure Multicomponent Adsorption in Porous Media

    DEFF Research Database (Denmark)

    Shapiro, Alexander; Stenby, Erling Halfdan

    1999-01-01

    We analyse adsorption of a multicomponent mixture at high pressure on the basis of the potential theory of adsorption. The adsorbate is considered as a segregated mixture in the external field produced by a solid adsorbent. we derive an analytical equation for the thickness of a multicomponent film...... close to a dew point. This equation (asymptotic adsorption equation, AAE) is a first order approximation with regard to the distance from a phase envelope....

  18. Adsorption of radioactive iodide by natural zeolites

    International Nuclear Information System (INIS)

    Two natural zeolites from Iranian deposits (clinoptilolite and natrolite) were characterized and their ability for adsorption of iodide from nuclear wastewaters was evaluated. The adsorption behavior was studied on natural and modified zeolites by γ-spectrometry using 131I as radiotracer. Adsorption isotherms and distribution coefficient (Kd) were measured. The results showed that clinoptilolite is a more promising zeolite for removal of iodide compared to natrolite. Furthermore, the adsorption was higher in silver, lead and thallium forms, whereas the lowest desorption was observed in lead modified zeolite. (author)

  19. Adsorption from Experimental Isotherms of Supercritical Gases

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    A mathematical method was proposed for the determination of absolute adsorption from experimental isotherms. The method is based on the numerical equality of the absolute and the excess adsorption when either the gas phase density or the amount adsorbed is not quite considerable. The initial part of the experimental isotherms, which represents the absolute adsorption, became linear with some mathematical manipulations. The linear isotherms were reliably formulated. As consequence, either the volume or the density of the supercritical adsorbate could be determined by a non-empirical way. This method was illustrated by the adsorption data of supercritical hydrogen and methane on a superactivated carbon in large ranges of temperature and pressure.

  20. ADSORPTION OF POLYCHLORINATED BIPHENYLS BY SOILS

    Directory of Open Access Journals (Sweden)

    Mihaela Preda

    2010-01-01

    Full Text Available The behavior of polychlorinated biphenyls (PCBs in soil is determined by several factors including adsorption, mobility and degradation. Adsorption, directly or indirectly, influences the other factors. Adsorption process is generally evaluated by using adsorption isotherms representing the relationship between the quantity of substance adsorbed per unit weight and concentration of the substance in solution at equilibrium. They allow determination of the adsorption constant, which is directly proportional to the adsorption of PCBs in soil. PCBs are very insoluble in water, so they tend to accumulate in the lipids. This is the reason why polychlorinated biphenyls are more strongly adsorbed in soils with higher organic matter content. To obtain the adsorption isotherm were used standard solutions of PCB 101with initial concentrations: 0.05, 0.1, 0.5, 1 and 2 g/ml. The adsorption constants were in order: 3072 ml/g for chernozem, 2943 mg/l for chromic luvisol, 998 mg/l for aluviosol and 1443 mg/l for anthrosol. The values of adsorption constants depend on the organic matter and clay content.

  1. Adsorption-induced step formation

    DEFF Research Database (Denmark)

    Thostrup, P.; Christoffersen, Ebbe; Lorensen, Henrik Qvist;

    2001-01-01

    Through an interplay between density functional calculations, Monte Carlo simulations and scanning tunneling microscopy experiments, we show that an intermediate coverage of CO on the Pt(110) surface gives rise to a new rough equilibrium structure with more than 50% step atoms. CO is shown to bind...... so strongly to low-coordinated Pt atoms that it can break Pt-Pt bonds and spontaneously form steps on the surface. It is argued that adsorption-induced step formation may be a general effect, in particular at high gas pressures and temperatures....

  2. Adsorption analysis equilibria and kinetics

    CERN Document Server

    Do, Duong D

    1998-01-01

    This book covers topics of equilibria and kinetics of adsorption in porous media. Fundamental equilibria and kinetics are dealt with for homogeneous as well as heterogeneous particles. Five chapters of the book deal with equilibria and eight chapters deal with kinetics. Single component as well as multicomponent systems are discussed. In kinetics analysis, we deal with the various mass transport processes and their interactions inside a porous particle. Conventional approaches as well as the new approach using Maxwell-Stefan equations are presented. Various methods to measure diffusivity, such

  3. A Combined Approach to Measure Micropollutant Behaviour during Riverbank Filtration

    Science.gov (United States)

    van Driezum, Inge; Saracevic, Ernis; Derx, Julia; Kirschner, Alexander; Sommer, Regina; Farnleitner, Andreas; Blaschke, Alfred Paul

    2016-04-01

    Riverbank filtration (RBF) systems are widely used as natural treatment process. The advantages of RBF over surface water abstraction are the elimination of for example suspended solids, biodegradable compounds (like specific micropollutants), bacteria and viruses (Hiscock and Grischek, 2002). However, in contrast to its importance, remarkably less is known on the respective external (e.g. industrial or municipal sewage) and the internal (e.g. wildlife and agricultural influence) sources of contaminants, the environmental availability and fate of the various hazardous substances, and its potential transport during soil and aquifer passage. The goal of this study is to get an insight in the behaviour of various micropollutants and microbial indicators during riverbank filtration. Field measurements were combined with numerical modelling approaches. The study area comprises an alluvial backwater and floodplain area downstream of Vienna. The river is highly dynamic, with discharges ranging from 900 m3/s during low flow to 11000 m3/s during flood events. Samples were taken in several monitoring wells along a transect extending from the river towards a backwater river in the floodplain. Three of the piezometers were situated in the first 20 meters away from the river in order to obtain information about micropollutant behaviour close to the river. A total of 9 different micropollutants were analysed in grab samples taken under different river flow conditions (n=33). Following enrichment using SPE, analysis was performed using high performance liquid chromatography-tandem mass spectrometry. Faecal indicators (E. coli and enterococci) and bacterial spores were enumerated in sample volumes of 1 L each using cultivation based methods (ISO 16649-1, ISO 7899-2:2000 and ISO 6222). The analysis showed that some compounds, e.g. ibuprofen and diclofenac, were only found in the river. These compounds were already degraded in the first ten meters away from the river. Analysis of

  4. The Role of Filtration in Maintaining Clean Heat Exchanger Coils

    Energy Technology Data Exchange (ETDEWEB)

    Li Yang; James E. Braun; Eckhard A. Groll

    2004-06-30

    The main purpose of the study was to investigate the role of filtration in maintaining clean heat exchanger coils and overall performance. Combinations of 6 different levels of filtration (MERV 14, 11, 8, 6, 4, and no filter) and 4 different coils (an eight-row lanced-fin coil, HX8L), (an eight-row wavy-fin coil, HX8W), (a four-row lanced-fin coil, HX4L) and (a two-row lanced-fin coil, HX2L) were tested at 4 different air velocities (1.52, 2.03, 2.54,3.05 m/s (300, 400, 500, 600 ft/min)). The fouled conditions were obtained after injection of 600 grams of ASHRAE standard dust upstream of the filter/coil combination. This magnitude of dust is representative of a year of normal operation for an air conditioning system. The air-side pressure drops of the coils and filters and air-side heat transfer coefficients of the coils were determined from the measurements under the clean and fouled conditions. Depending upon the filter and coil test, the coil pressure drops increased in the range of 6%-30% for an air velocity at 2.54 m/s (500 ft/min). The impact was significantly greater for tests performed without a filter. The largest relative effect of fouling on pressure drop occurs for coils with fewer rows and having lanced fins. Coils with a greater number of rows can hold more dust so that a fixed amount of dust has a relatively smaller impact. The impact of fouling on air-side heat transfer coefficients was found to be relatively small. In some cases, heat transfer was actually enhanced due to additional turbulence caused by the presence of dust. The experimental results for pressure drops and heat transfer coefficients were correlated and the correlations were implemented within computer models of prototypical rooftop air conditioners and used to evaluate the impact of fouling on cooling capacity and EER. The equipment cooling capacity is reduced with fouling primarily because of a decrease in air flow due to the increase pressure drop rather than due to changes in h

  5. DESTRUCTION OF XENOBIOTICS BY CULTURE FILTRATE FROM XYLOTROPHIC BASIDIOMYCETES

    Directory of Open Access Journals (Sweden)

    Fedotov O. V.

    2015-12-01

    Full Text Available The article deals with the efficiency of pollutants biodegradation by xylotrophic basidiomycetes submerged cultures grown on standard glucose-peptone medium (GPM. The efficiency of pollutants biodegradation was determined by the model compound – dye Methyl Orange. The purpose of the work is screening of 19 species 81 strains xylotrophic basidiomycetes cultures on the indicator of the dye oxidative degradation efficiency and exploring the possibility of induction of this indicator by modifying the culture medium. The biodegradation efficiency was determined by following method. Assigned amount of culture filtrate (experiment or medium (control was added to the 0.001% solution of Methyl Orange in sodium acetate buffer. pH of the reaction mixture was 4.4 units. Samples were incubated at +40°C for 48 hours. Then pH of the reaction mixture was set up at 3.1 units using sodium acetate buffer and the optical density of solutions at a wavelength of 506 nm was measured. The efficiency of biodegradation was calculated by the difference of the optical density of control and experiment as a percentage. The most promising strains – F. velutipes F-1105, P. eryngii P-er, T. hirsuta Th-11 and D. quercina Dq-08 were selected. The composition of the glucose-peptone medium was modified for these strains by the introduction in the medium lignosulfonate, Tween 80, Kirk’s minerals solution and selecting the concentration of these components. According to the study for the purpose of pollutants degradation it is advisable to cultivate F. velutipes F-1105 strain on modified GPM, which further comprises at 1 l: lignosulfonate – 3.5 g; Tween 80 – 1.0 g, Kirk’s minerals solution – 70 ml; P. eryngii P-er strain – 5.0 g, 1.0 g, 70 ml; T. hirsuta Th-11 strain – 5.0 g, 1.0 g, 105 ml; and D. quercina Dq-08 strain – 6.5 g, 1.0 g, 105 ml, respectively. This allowed to increase the model compound degradation efficiency by the culture filtrate of strain F

  6. Modeling the fate of organic micropollutants during river bank filtration (Berlin, Germany)

    Science.gov (United States)

    Henzler, Aline F.; Greskowiak, Janek; Massmann, Gudrun

    2014-01-01

    Emerging organic contaminants (EOCs) are frequently detected in urban surface water and the adjacent groundwater and are therefore an increasing problem for potable water quality. River bank filtration (RBF) is a beneficial pretreatment step to improve surface water quality for potable use. Removal is mainly caused by microbial degradation of micropollutants, while sorption retards the transport. The quantification of biodegradation and adsorption parameters for EOCs at field scale is still scarce. In this study, the fate and behavior of a range of organic compounds during RBF were investigated using a two dimensional numerical flow- and transport model. The data base used emanated from a project conducted in Berlin, Germany (NASRI: Natural and Artificial Systems for Recharge and Infiltration). Oxygen isotope signatures and hydraulic head data were used for model calibration. Afterwards, twelve organic micropollutants were simulated with a reactive transport model. Three compounds (primidone, EDTA, and AMDOPH) showed conservative behavior (no biodegradation or sorption). For the nine remaining compounds (1.5 NDSA, AOX, AOI, MTBE, carbamazepine, clindamycin, phenazone, diclofenac and sulfamethoxazole), degradation and/or sorption was observed. 1.5 NDSA and AOX were not sorbed, but slightly degraded with model results for λ = 2.25e- 3 1/d and 2.4e- 3 1/d. For AOI a λ = 0.0106 1/d and R = 1 were identified. MTBE could be characterized well assuming R = 1 and a low 1st order degradation rate constant (λ = 0.0085 1/d). Carbamazepine degraded with a half life time of about 66 days after a threshold value of 0.2-0.3 μg/L was exceeded and retarded slightly (R = 1.7). Breakthrough curves of clindamycin, phenazone, diclofenac and sulfamethoxazole could be fitted less well, probably due to the dependency of degradation on temperature and redox conditions, which are highly transient at the RBF site. Conditions range from oxic to anoxic (up to iron-reducing), with the oxic

  7. Surfactant adsorption to soil components and soils.

    Science.gov (United States)

    Ishiguro, Munehide; Koopal, Luuk K

    2016-05-01

    Soils are complex and widely varying mixtures of organic matter and inorganic materials; adsorption of surfactants to soils is therefore related to the soil composition. We first discuss the properties of surfactants, including the critical micelle concentration (CMC) and surfactant adsorption on water/air interfaces, the latter gives an impression of surfactant adsorption to a hydrophobic surface and illustrates the importance of the CMC for the adsorption process. Then attention is paid to the most important types of soil particles: humic and fulvic acids, silica, metal oxides and layered aluminosilicates. Information is provided on their structure, surface properties and primary (proton) charge characteristics, which are all important for surfactant binding. Subsequently, the adsorption of different types of surfactants on these individual soil components is discussed in detail, based on mainly experimental results and considering the specific (chemical) and electrostatic interactions, with hydrophobic attraction as an important component of the specific interactions. Adsorption models that can describe the features semi-quantitatively are briefly discussed. In the last part of the paper some trends of surfactant adsorption on soils are briefly discussed together with some complications that may occur and finally the consequences of surfactant adsorption for soil colloidal stability and permeability are considered. When we seek to understand the fate of surfactants in soil and aqueous environments, the hydrophobicity and charge density of the soil or soil particles, must be considered together with the structure, hydrophobicity and charge of the surfactants, because these factors affect the adsorption. The pH and ionic strength are important parameters with respect to the charge density of the particles. As surfactant adsorption influences soil structure and permeability, insight in surfactant adsorption to soil particles is useful for good soil management. PMID

  8. A combined process of activated carbon adsorption, ion exchange resin treatment and membrane concentration for recovery of dissolved organics in pre-hydrolysis liquor of the kraft-based dissolving pulp production process.

    Science.gov (United States)

    Shen, Jing; Kaur, Ishneet; Baktash, Mir Mojtaba; He, Zhibin; Ni, Yonghao

    2013-01-01

    To recover dissolved organics in pre-hydrolysis liquor (PHL) of the kraft-based dissolving pulp production process, a new combined process concept of sequential steps of activated carbon adsorption, ion exchange resin treatment, and membrane concentration, was proposed. The removal of lignin in the PHL was achieved in the activated carbon adsorption step, which also facilitates the subsequent operations, such as the membrane filtration and ion exchange resin treatment. The ion exchange resin treatment resulted in the removal/concentration of acetic acid, which opens the door for acetic acid recovery. The membrane filtration is to recover/concentrate the dissolved sugars. The combined process resulted in the production of PHL-based concentrate with relatively high concentration of hemicellulosic sugars, i.e., 22.13%.

  9. Evaluation of emerging factors blocking filtration of high-adjunct-ratio wort.

    Science.gov (United States)

    Ma, Ting; Zhu, Linjiang; Zheng, Feiyun; Li, Yongxian; Li, Qi

    2014-08-20

    Corn starch has become a common adjunct for beer brewing in Chinese breweries. However, with increasing ratio of corn starch, problems like poor wort filtration performance arise, which will decrease production capacity of breweries. To solve this problem, factors affecting wort filtration were evaluated, such as the size of corn starch particle, special yellow floats formed during liquefaction of corn starch, and residual substance after liquefaction. The effects of different enzyme preparations including β-amylase and β-glucanase on filtration rate were also evaluated. The results indicate that the emerging yellow floats do not severely block filtration, while the fine and uniform-shape corn starch particle and its incompletely hydrolyzed residue after liquefaction are responsible for filtration blocking. Application of β-amylase preparation increased the filtration rate of liquefied corn starch. This study is useful for our insight into the filtration blocking problem arising in the process of high-adjunct-ratio beer brewing and also provides a feasible solution using enzyme preparations.

  10. Comparison of parabolic filtration methods for 3D filtered back projection in pulsed EPR imaging.

    Science.gov (United States)

    Qiao, Zhiwei; Redler, Gage; Epel, Boris; Halpern, Howard J

    2014-11-01

    Pulse electron paramagnetic resonance imaging (Pulse EPRI) is a robust method for noninvasively measuring local oxygen concentrations in vivo. For 3D tomographic EPRI, the most commonly used reconstruction algorithm is filtered back projection (FBP), in which the parabolic filtration process strongly influences image quality. In this work, we designed and compared 7 parabolic filtration methods to reconstruct both simulated and real phantoms. To evaluate these methods, we designed 3 error criteria and 1 spatial resolution criterion. It was determined that the 2 point derivative filtration method and the two-ramp-filter method have unavoidable negative effects resulting in diminished spatial resolution and increased artifacts respectively. For the noiseless phantom the rectangular-window parabolic filtration method and sinc-window parabolic filtration method were found to be optimal, providing high spatial resolution and small errors. In the presence of noise, the 3 point derivative method and Hamming-window parabolic filtration method resulted in the best compromise between low image noise and high spatial resolution. The 3 point derivative method is faster than Hamming-window parabolic filtration method, so we conclude that the 3 point derivative method is optimal for 3D FBP.

  11. Magnetic filtration with magnetized granular beds: Basic principles and filter performance

    Institute of Scientific and Technical Information of China (English)

    Teymuraz; Abbasov

    2007-01-01

    This study is devoted to the explanation of different characteristics of magnetic filtration and the way these characteristics affect the important filtration parameters. Magnetic fields in pores and the force effect of these fields on magnetic particles and the magnetization properties of packed beds composed of ferromagnetic spheres and metal chips are evaluated. The profile of accumulation and capture regions of the particles, the variation of the fluid velocity in these regions and analytic expressions of particle capture radius are presented. The effects of filtration regime parameters on magnetic filter performance were investigated. An analytical expression has been obtained for the dependence of the logarithmic efficiency coefficient on filtration velocity, the geometry of filter elements, the particle size and other parameters of filtration. The stationary and non-stationary equations of the magnetic filtration processes are given. An expression of magnetic filter performance is shown with dimensionless parameters obtained from the filtration system. These relations are useful for calculations in engineering practice, including the design of magnetic filters, provision of suggestions on construction, and optimization and control of filter operation.

  12. Detection of damage of a filter by visualization of filtration process

    Directory of Open Access Journals (Sweden)

    Bílek P.

    2014-03-01

    Full Text Available This paper deals with testing of filters on the basis of visualization of filtration process. A filtration material can be damaged by flow of the filtered medium, high pressure drop and long-term adverse conditions. These negative effects can cause extensive damage of the filtration textile and filtration efficiency decreases. The filter can be also fractured during manufacturing, processing or by improper manipulation. A testing of a purposely damaged filtration textile is described in the article. Experiments were performed on the filtration setup which permits an optical entrance to the position where a sample of filter is placed. A laser sheet is directed into this place. Scattered light from seeding particles in front of and behind the filter is captured by a digital camera. Images from the camera are analyzed and the filtration efficiency versus time and also versus position can be obtained. Measuring chain including light scattering theory and measuring of light intensity by a digital camera are also discussed in the article.

  13. Improvement of the antifouling characteristics in a bioreactor of polypropylene microporous membrane by the adsorption of Tween 20

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Surface modification by physical adsorption of Tween 20 was accomplished on polypropylene microporous membranes (PPMMs). Attenuated total reflection-Fourier transform infrared spectroscopy (ATR/FT-IR) and scanning electron microscope (SEM) were used to characterize the chemical and morphological changes on the membrane surfaces. Water contact angles and relative pure water fluxes were measured. The data showed that the hydrophilic performance for the modified membranes increased with the increase in the adsorption amount of Tween 20 onto the surface or into the pores of polypropylene microporous membranes. To test the antifouling property of the membranes by the adsorption of Tween 20 in a membrane bioreactor (MBR), filtration for active sludge was performed using synthetic wastewater. With the help of the data of water fluxes and the FE-SEM photos of the modified PPMMs before or after operating in a MBR for about 12 d, the PPMMs with monolayer adsorption of Tween 20 showed higher remained flux and stronger antifouling ability than unmodified membrane and other modification membranes studied.

  14. Surface adsorption and self-assembly of Cu(II) ions on TEMPO-oxidized cellulose nanofibers in aqueous media.

    Science.gov (United States)

    Liu, Peng; Oksman, Kristiina; Mathew, Aji P

    2016-02-15

    TEMPO-mediated oxidized cellulose nanofibers (TOCNFs) have shown potential in the bioremediation of metal ions from contaminated water due to their interaction with positively charged metal ions via electrostatic interactions involving surface carboxyl groups. Copper is one of the most common pollutants in industrial effluents and is thus the target metal in the current study. The specific surface adsorption of Cu(II) was similar for TOCNFs with different degrees of functionalization and directly impacted the zeta potential. SEM imaging of the TOCNF after Cu(II) adsorption revealed interesting nanostructured clusters that were attributable to Cu(II) ions first being adsorbed by carboxylate groups on the TOCNF and subsequently being reduced and self-assembled to Cu(0) nanoparticles (NPs) or copper oxide NPs by microprecipitation. TOCNF turned superhydrophilic and resulted in faster water filtration after copper adsorption due to the stronger polarity of the copper ions or the self-assembled Cu(0) NPs creating voids or highly water-permeable channels at the interface between the interconnected TEMPO-oxidized nanofibers. Thus, the adsorption of Cu(II) ions and self-assembly into the Cu NPs on TOCNF favors a faster water purification process and provides a viable route to reuse/recycle TOCNFs studded with Cu nanoparticles as biocidal materials. PMID:26619127

  15. Surface adsorption and self-assembly of Cu(II) ions on TEMPO-oxidized cellulose nanofibers in aqueous media.

    Science.gov (United States)

    Liu, Peng; Oksman, Kristiina; Mathew, Aji P

    2016-02-15

    TEMPO-mediated oxidized cellulose nanofibers (TOCNFs) have shown potential in the bioremediation of metal ions from contaminated water due to their interaction with positively charged metal ions via electrostatic interactions involving surface carboxyl groups. Copper is one of the most common pollutants in industrial effluents and is thus the target metal in the current study. The specific surface adsorption of Cu(II) was similar for TOCNFs with different degrees of functionalization and directly impacted the zeta potential. SEM imaging of the TOCNF after Cu(II) adsorption revealed interesting nanostructured clusters that were attributable to Cu(II) ions first being adsorbed by carboxylate groups on the TOCNF and subsequently being reduced and self-assembled to Cu(0) nanoparticles (NPs) or copper oxide NPs by microprecipitation. TOCNF turned superhydrophilic and resulted in faster water filtration after copper adsorption due to the stronger polarity of the copper ions or the self-assembled Cu(0) NPs creating voids or highly water-permeable channels at the interface between the interconnected TEMPO-oxidized nanofibers. Thus, the adsorption of Cu(II) ions and self-assembly into the Cu NPs on TOCNF favors a faster water purification process and provides a viable route to reuse/recycle TOCNFs studded with Cu nanoparticles as biocidal materials.

  16. Filtration of nanoparticles - Application to respiratory protecting devices

    International Nuclear Information System (INIS)

    This study aims to determine how the respiratory protective devices (RPD), whose performances are qualified for particles above 100 nm, are effective for nanoparticles. Indeed, if the use of a collective filtration is inadequate, wearing a RPD is the last protection recommended. A literature review showed that no research concerned the effectiveness of half-masks for nanoparticles. The test bench ETNA has been sized and built to overcome these lacks. Two half masks were tested according to different configurations: constant flow rate and cyclic flow rate (average flow of 84 L /min), particle size (from 5 to 100 nm), positions of the mask (sealed, usual, or with calibrated leaks). The results show that, since the RPD contain high efficiency filter media (without charged fibers) for the most penetrating particle size (100 nm - 300 nm), the RPD is more efficient for nanoparticles. Furthermore, the results obtained in the presence of actual and calibrated leaks, highlighted the importance of face seal leakages in determining the performance of RPD. A model for calculating the protection factor was established based on the balance between the airflow through the filter and the leak. This model was validated using measurements obtained in the presence of calibrated leaks, and applied for the analysis of our results in usual position. (author)

  17. Effect of angiotensin on glomerular filtration of albumin.

    Science.gov (United States)

    Eisenbach, G M; Van Liew, J B

    1975-01-01

    Angiotensin-induced proteinuria was examined at the glomerular-tubular level in rats. Ultra-micro-disc electrophoresis was employed to determine albumin concentration of rat proximal tubular fluid samples under control conditions and during the infusion of 0.15 mug/min X 100 g body weight angiotensin II using micropuncture techniques. Under control conditions proximal tubular albumin concentration was 1.32 +/- 0.79 (SD) mg/100 ml (n = 71). There was no correlation between albumin concentration and (TF/P)-inulin ratio indicating an albumin reabsorption in the proximal tubule parallel to fluid reabsorption under control conditions. During angiotensin infusion using re-collection techniques, there is an average increase of 26 times in tubular albumin concentration, indicating an increase in albumin filtered. There was no change in GFR, SNGFR, transit time, (TF/P)-inulin ratio, an increase in urine flow rate, sodium excretion, protein excretion, mean arterial blood pressure during angiotensin infusion. Since effective glomerular filtration pressure was not increased during angiotensin it is concluded that angiotensin-induced proteinuria is due to an increase in filtered protien mediated by a change in glomerular permeability to proteins.

  18. ALTERNATE HIGH EFFICIENCY PARTICULATE AIR (HEPA) FILTRATION SYSTEM

    Energy Technology Data Exchange (ETDEWEB)

    Bruce Bishop; Robert Goldsmith; Karsten Nielsen; Phillip Paquette

    2002-08-16

    In Phase IIA of this project, CeraMem has further developed and scaled up ceramic HEPA filters that are appropriate for use on filtration of vent gas from HLW tanks at DOE sites around the country. This work included procuring recrystallized SiC monoliths, developing membrane and cement materials, and defining a manufacturing process for the production of prototype full sizes HEPA filters. CeraMem has demonstrated that prototype full size filters can be manufactured by producing 9 full size filters that passed DOP aerosol testing at the Oak Ridge Filter Test Facility. One of these filters was supplied to the Savannah River Technical Center (SRTC) for process tests using simulated HLW tank waste. SRTC has reported that the filter was regenerable (with some increase in pressure drop) and that the filter retained its HEPA retention capability. CeraMem has also developed a Regenerable HEPA Filter System (RHFS) design and acceptance test plan that was reviewed by DOE personnel. The design and acceptance test plan form the basis of the system proposal for follow-on work in Phase IIB of this project.

  19. Filtration of Carbon Particulate Emissions from a Plasma Pyrolysis Assembly

    Science.gov (United States)

    Agui, Juan H.; Green, Robert; Vijayakumar, R.; Berger, Gordon; Greenwood, Zach; Abney, Morgan; Peterson, Elspeth

    2016-01-01

    NASA is investigating plasma pyrolysis as a candidate technology that will enable the recovery of hydrogen from the methane produced by the ISS Sabatier Reactor. The Plasma Pyrolysis Assembly (PPA) is the current prototype of this technology which converts the methane product from the Carbon Dioxide Reduction Assembly (CRA) to acetylene and hydrogen with 90% or greater conversion efficiency. A small amount of solid carbon particulates are generated as a side product and must be filtered before the acetylene is removed and the hydrogen-rich gas stream is recycled back to the CRA. We discuss developmental work on several options for filtering out the carbon particulate emissions from the PPA exit gas stream. The filtration technologies and concepts investigated range from fibrous media to monolithic ceramic and sintered metal media. This paper describes the different developed filter prototypes and characterizes their performance from integrated testing at the Environmental Chamber (E-Chamber) at MSFC. In addition, characterization data on the generated carbon particulates, that help to define filter requirements, are also presented.

  20. Standard filtration practices may significantly distort planktonic microbial diversity estimates

    Directory of Open Access Journals (Sweden)

    Cory Cruz Padilla

    2015-06-01

    Full Text Available Fractionation of biomass by filtration is a standard method for sampling planktonic microbes. It is unclear how the taxonomic composition of filtered biomass changes depending on sample volume. Using seawater from a marine oxygen minimum zone, we quantified the 16S rRNA gene composition of biomass on a prefilter (1.6 μm pore-size and a downstream 0.2 μm filter over sample volumes from 0.05 to 5 L. Significant community shifts occurred in both filter fractions, and were most dramatic in the prefilter community. Sequences matching Vibrionales decreased from ~40-60% of prefilter datasets at low volumes (0.05-0.5 L to less than 5% at higher volumes, while groups such at the Chromatiales and Thiohalorhabdales followed opposite trends, increasing from minor representation to become the dominant taxa at higher volumes. Groups often associated with marine particles, including members of the Deltaproteobacteria, Planctomycetes and Bacteroidetes, were among those showing the greatest increase with volume (4 to 27-fold. Taxon richness (97% similarity clusters also varied significantly with volume, and in opposing directions depending on filter fraction, highlighting potential biases in community complexity estimates. These data raise concerns for studies using filter fractionation for quantitative comparisons of aquatic microbial diversity, for example between free-living and particle-associated communities.

  1. Influence of biofouling on pharmaceuticals rejection in NF membrane filtration.

    Science.gov (United States)

    Botton, Sabrina; Verliefde, Arne R D; Quach, Nhut T; Cornelissen, Emile R

    2012-11-15

    The effects of biomass attachment and growth on the surface characteristics and organic micropollutants rejection performance of nanofiltration membranes were investigated in a pilot installation. Biomass growth was induced by dosing of a readily biodegradable carbon source resulting in the formation of a biofouling in the investigated membrane elements. Surface properties and rejection behaviour of a biofouled and virgin membrane were investigated and compared in terms of surface charge, surface energy and hydrophobicity. The last two were accomplished by performing contact angle measurements on fully hydrated membrane surfaces, in order to mimic the operating conditions of a membrane in contact with water. Compared to a virgin membrane, deposition and growth of biofilm did slightly alter the surface charge, which became more negative, and resulted in a higher hydrophilicity of the membrane surface. In addition, the presence of the negatively charged biofilm induced accumulation of positively charged pharmaceuticals within the biomass layer, which probably also hindered back diffusion. This caused a reduction in rejection efficiency of positively charged solutes but did not alter rejection of neutral and negatively charged pharmaceuticals. Pharmaceuticals rejection was found to positively correlate with the specific free energy of interaction between virgin or biofouled membranes and pharmaceuticals dissolved in the water phase. The rejection values obtained with both virgin and biofouled membranes were compared and found in good agreement with the predictions calculated with a solute transport model earlier developed for high pressure filtration processes. PMID:22960036

  2. Portable water filtration system for oil well fractionation

    Energy Technology Data Exchange (ETDEWEB)

    Seibert, D. L.

    1985-08-13

    The invention comprises a portable, multi-stage filtration system utilized in filtering water for an oil and gas stimulation process commonly known as fracking. Three stages are used, the first being a straining operation reducing the size of particulate matter in the water to about three-eighths of an inch. The second stage is a centrifugal separator, reducing the particle size to about 50 microns. The final stage utilizes a cartridge-type filter giving a final particle size in the water of about 5 microns. In this manner, water which is injected into the well head during the fracking process and which is obtained from readily available sources such as ponds, streams and the like is relatively free of particulate matter which can foul the fracking process. The invention, by virtue of being mounted on a trailer, is portable and thus can be easily moved from site to site. Water flow rates obtained using the invention are between 250 and 300 gallons per minute, sufficient for processing a small to medium sized well.

  3. 125I iothalamate an ideal marker for glomerular filtration

    International Nuclear Information System (INIS)

    The triiodinated angiographic contrast medium, iothalamate (usually labelled 125I), has been used extensively as a marker for glomerular filtration. The authors have studied the renal handling of 125I iothalamate (IOT) in vivo and in vitro in several species. In renal cortical slices from chicken, rabbit, rat, and monkey, the tissue-to-medium ratio of IOT was twice that of 51Cr-EDTA (EDTA) at 37 degrees C; a difference that was abolished at 0 degree C and markedly reduced by added o-iodohippurate or iodipamide. In five chickens the steady-state renal clearance of IOT (CIOT) was twice that of EDTA (CEDTA) or 3H inulin (C1); a difference that was abolished by administration of 100 mg/kg/hr of novobiocin, an organic anion transport inhibitor. CEDTA was similar to C1 before as well as after transport inhibition. Utilizing the Sperber technique the mean apparent tubular excretion fraction (ATEF) of IOT was 8%, while that of EDTA was 1%. After novobiocin coinfusion (new steady-state) ATEFIOT was significantly reduced and not different from that of EDTA (-1%). In the same animals the total urinary recovery of IOT was 84 and 57% before and after novobiocin, respectively, while corresponding values for EDTA was unchanged by the inhibitor. In seven rats the renal extraction of IOT was reduced from 29 to 17% by coinfusion of probenecid (5 mg/kg/hr). Corresponding extractions were 82 to 34% and 22% (unchanged) for PAH and EDTA, respectively

  4. The Relationship between Estimated Glomerular Filtration Rate and Diabetic Retinopathy

    Directory of Open Access Journals (Sweden)

    Jingyang Wu

    2015-01-01

    Full Text Available Diabetic retinopathy (DR is the leading cause of visual impairment and blindness in working-aged people. Several studies have suggested that glomerular filtration rate (GFR was correlated with DR. This is a hospital-based study and the aim of it was to examine the relationship between the GFR and DR in patients with type 2 diabetes mellitus (T2DM. We used CKD-EPI equation to estimate GFR and SPSS 19.0 and EmpowerStats software to assess their relationship. Among the 1613 participants (aged 54.75 ± 12.19 years, 550 (34.1% patients suffered from DR. The multivariate analysis revealed that the risk factors for DR include age (P<0.001, OR = 0.940, duration of diabetes (P<0.001, OR = 1.163, hemoglobin A1c (P=0.007, OR = 1.224, systolic blood pressure (P<0.001, OR = 1.032, diastolic blood pressure (P=0.007, OR = 0.953, high density lipoprotein cholesterol (P=0.024, OR = 3.884, and eGFR (P=0.010, OR = 0.973. Through stratified analysis and saturation effect analysis, our data suggests that eGFR of 99.4 mL/min or lower might imply the early stage of DR in diabetic patients. Thus, the evaluation of eGFR has clinical significance for the early diagnosis of DR.

  5. ALTERNATE HIGH EFFICIENCY PARTICULATE AIR (HEPA) FILTRATION SYSTEM

    International Nuclear Information System (INIS)

    In Phase IIA of this project, CeraMem has further developed and scaled up ceramic HEPA filters that are appropriate for use on filtration of vent gas from HLW tanks at DOE sites around the country. This work included procuring recrystallized SiC monoliths, developing membrane and cement materials, and defining a manufacturing process for the production of prototype full sizes HEPA filters. CeraMem has demonstrated that prototype full size filters can be manufactured by producing 9 full size filters that passed DOP aerosol testing at the Oak Ridge Filter Test Facility. One of these filters was supplied to the Savannah River Technical Center (SRTC) for process tests using simulated HLW tank waste. SRTC has reported that the filter was regenerable (with some increase in pressure drop) and that the filter retained its HEPA retention capability. CeraMem has also developed a Regenerable HEPA Filter System (RHFS) design and acceptance test plan that was reviewed by DOE personnel. The design and acceptance test plan form the basis of the system proposal for follow-on work in Phase IIB of this project

  6. Physiology Lab Demonstration: Glomerular Filtration Rate in a Rat.

    Science.gov (United States)

    Hinojosa-Laborde, Carmen; Jespersen, Brian; Shade, Robert

    2015-01-01

    Measurements of glomerular filtration rate (GFR), and the fractional excretion of sodium (Na) and potassium (K) are critical in assessing renal function in health and disease. GFR is measured as the steady state renal clearance of inulin which is filtered at the glomerulus, but not secreted or reabsorbed along the nephron. The fractional excretion of Na and K can be determined from the concentration of Na and K in plasma and urine. The renal clearance of inulin can be demonstrated in an anesthetized animal which has catheters in the femoral artery, femoral vein and bladder. The equipment and supplies used for this procedure are those commonly available in a research core facility, and thus makes this procedure a practical means for measuring renal function. The purpose of this video is to demonstrate the procedures required to perform a lab demonstration in which renal function is assessed before and after a diuretic drug. The presented technique can be utilized to assess renal function in rat models of renal disease. PMID:26274567

  7. Investigation on Adsorption State of Surface Adsorbate on Silicon Wafer

    Institute of Scientific and Technical Information of China (English)

    1999-01-01

    An adsorption kinetics model for adsorbate on the specularly polished silicon wafer was suggested. The mathematical model of preferential adsorption and the mechanism controlling the adsorption state of adsorbate were discussed.

  8. Graphene oxides prepared by Hummers', Hofmann's, and Staudenmaier's methods: dramatic influences on heavy-metal-ion adsorption.

    Science.gov (United States)

    Moo, James Guo Sheng; Khezri, Bahareh; Webster, Richard D; Pumera, Martin

    2014-10-01

    Graphene oxide (GO), an up-and-coming material rich in oxygenated groups, shows much promise in pollution management. GO is synthesised using several synthetic routes, and the adsorption behaviour of GO is investigated to establish its ability to remove the heavy-metal pollutants of lead and cadmium ions. The GO is synthesised by Hummers' (HU), Hofmann's (HO) and Staudenmaier's (ST) methodologies. Characterisation of GO is performed before and after adsorption experiments to investigate the structure-function relationship by using Fourier-transform infrared spectroscopy and X-ray photoelectron spectroscopy. Scanning electron microscopy coupled with elemental detection spectroscopy is used to investigate morphological changes and heavy-metal content in the adsorbed GO. The filtrate, collected after adsorption, is analysed by inductively coupled plasma mass spectrometry, through which the efficiency and adsorption capacity of each GO for heavy-metal-ion removal is obtained. Spectroscopic analysis and characterisation reveal that the three types of GO have different compositions of oxygenated carbon functionalities. The trend in the affinity towards both Pb(II) and Cd(II) is HU GO>HO GO>ST GO. A direct correlation between the number of carboxyl groups present and the amount of heavy-metal ions adsorbed is established. The highest efficiency and highest adsorption capacity of heavy-metal ions is achieved with HU, in which the relative abundance of carboxyl groups is highest. The embedded systematic study reveals that carboxyl groups are the principal functionality responsible for heavy-metal-ion removal in GO. The choice of synthesis methodology for GO has a profound influence on heavy-metal-ion adsorption. A further enrichment of the carboxyl groups in GO will serve to enhance the role of GO as an adsorbent for environmental clean-up. PMID:25044516

  9. Adsorption of ferrous ions onto montmorillonites

    Energy Technology Data Exchange (ETDEWEB)

    Qin, Dawei, E-mail: qdw109@163.com [Qilu University of Technology, Jinan, 250353, Shandong (China); Niu, Xia [Qilu University of Technology, Jinan, 250353, Shandong (China); Qiao, Min; Liu, Gang; Li, Hongxin; Meng, Zhenxiao [Shandong SiBang pharmaceutical co., LTD, Jinan, Shandong, 250200 (China)

    2015-04-01

    Highlights: • Adsorption study of ferrous ions on montmorillonites. • Using ascorbic acid as antioxidants in adsorption process. • Fe (II)-MMT had good affinity for phosphate. - Abstract: The adsorption of Fe (II) onto montmorillonites was investigated through initial concentration, contact time, pH and temperature. During the whole adsorption process, the ascorbic acid (Vitamin C) was added as a kind of antioxidant, at the same time, deionized water (after boiling) and nitrogen protection were also used to avoid oxidation. The Fe{sup 2+}/Fe{sub total} ratio of the iron exists in the Fe-montmorillonites was found more than 95%. Two kinetic models, including pseudo-first-order and pseudo-second-order model, were used to analyze the adsorption process of Fe (II) on montmorillonites. The results of our study showed that adsorption process fitted with pseudo-second-order well. Adsorption isotherms showed that Langmuir model was better than Freundlich model. The thermodynamic parameters ΔG{sup 0} and ΔH{sup 0} were 3.696 kJ/mol and 6.689 kJ/mol (we just gave the values at 298 K), respectively. The positive values at different temperatures showed that the adsorption process was non-spontaneous and endothermic. The characteristics of materials were determined by X-ray diffraction (XRD), Fourier transform infrared (FT-IR), Surface area and porosity analyzer, Thermogravimetric analysis (TGA), Differential scanning calorimeter (DSC) and Zeta potential distribution.

  10. Adsorption of Chlortetracycline from Water by Rectories

    Institute of Scientific and Technical Information of China (English)

    吕国诚; 吴丽梅; 王晓龙; 廖立兵; 王小雨

    2012-01-01

    The removal of antibiotics from water by clay minerals has become the focus of research due to their strong adsorptive ability. In this study, adsorption of chlortetracycline (CTC) onto rectories was conducted and the effects of time, concentration, temperature and pH were investigated. Experimental results showed that adsorption equilibrium was reached in 8 h. Based on the Langmuir model, the maximum adsorption capacity of CTC on rectories was 177.7 mg·g 1 at room temperature. By the study on adsorption dynamics, it is found that the kinetic date fit the pseudo-second-order model well. The adsorption of CTC by rectories is endothermic and the free energy is in the range of 10 to 30 kJ·mol 1 . The pH value of solution has significant effects on adsorption and the optimal pH is at acidity (pH 2-6). At concentration of 2500 mg·L 1 , the intercalated CTC produces an interlayer space with a height of 1.38 nm, which is 1.12 nm in raw rectories, suggesting that the adsorption occurs between layers of rectories.

  11. Kinetics of polymer adsorption, desorption and exchange.

    NARCIS (Netherlands)

    Dijt, J.C.

    1993-01-01

    The aim of the study in this thesis was to gain more insight in the kinetics of polymer adsorption. To this end some well-characterised polymers have been systematically investigated.In the process of polymer adsorption one may distinguish three kinetic contributions: transport to the surface, attac

  12. Adsorption of arsenic and boron by soil

    Energy Technology Data Exchange (ETDEWEB)

    Sakata, M.

    1986-01-01

    The author reports a study of the soil adsorption of As (trivalent) and B leached from coal ash. It has been found that the amount of adsorption is greatly affected by the pH of the solution. Maximum adsorption of As occurred from solutions with pH of about 8, while pH 8-9 resulted in maximum B adsorption. Furthermore, the As adsorption is related to the quantity of iron oxides and hydrated iron oxides in the soil, while the adsorption of B is related to the quantity of hydrated aluminium oxides and allophanes. Within the range of concentrations studied, the adsorption isotherm for As obeyed the Langmuir equation, and the B isotherm, that of Freundlich. At low concentrations, both elements conform to the Henry adsorption isotherm. The author also reports that the impact on ground water of elements such as As and B leached from coal ash can be conveniently predicted or evaluated by means of a diffusive flow model. 30 references, 14 figures, 3 tables.

  13. Adsorption Kinetic of 8-Hydroxyquinoline on Malachite

    OpenAIRE

    Oprea, Gabriela; Angela MICHNEA; Mihali, Cristina

    2007-01-01

    Influence of temperature and collector concentration on its adsorption rate on mineral surface was studied as regarding to the 8-hydroxyquinoline/malachite system. Theoretical equations as well as experimental data may be useful to estimate the adsorption rate and kinetics connected to the conditioning stage in mineral flotation in order to optimise the selectivity and the recovery of the desired mineral.

  14. Molecular Simulation of Adsorption in Microporous Materials

    OpenAIRE

    Yiannourakou M.; Ungerer P.; Leblanc B.; Rozanska X.; Saxe P.; Vidal-Gilbert S.; Gouth F.; Montel F.

    2013-01-01

    The development of industrial software, the decreasing cost of computing time, and the availability of well-tested forcefields make molecular simulation increasingly attractive for chemical engineers. We present here several applications of Monte-Carlo simulation techniques, applied to the adsorption of fluids in microporous solids such as zeolites and model carbons (pores < 2 nm). Adsorption was computed in the Grand Canonical ensemble ...

  15. Study on copper adsorption on olivine

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The copper adsorption on olivine supplied by A/S Olivine production plant at Aheim in western Norway has been studied. The factors which affect the uptake of copper have been evaluated. The results reveal that the equilibrium pH in aqueous solution has the greatest influence on the copper adsorption thanks to the competitive adsorption between proton and copper ions, and the adsorption of copper to olivine increases rapidly with the pH increasing from 4 to 6. The initial copper concentration and olivine dose also possess significant effect on copper adsorption. The adsorption efficieny of copper increases with the increase of olivine dose or the decrease of initial copper concentration at the same pH. The ionic strength effect on the adsorption has also been investigated, but it owns little effect on the adsorption process of copper due to the formation of inner sphere surface complexation of copper on olivine. The experimental data show that olivine has a high acid buffer capacity and is an effective adsorbent for copper.

  16. Adsorption Properties of the Cu(115) Surface

    DEFF Research Database (Denmark)

    Godowski, P. J.; Groso, A.; Hoffmann, S. V.;

    2010-01-01

    in context of substrate geometry and compared with the ones of other copper planes. There are no indications of dissociative adsorption of CO, only residual carbon and oxygen were found after adsorbate desorption around 220 K. CO molecules show a strong tendency to "on top" adsorption in sites far from...

  17. Surfactant adsorption to soil components and soils

    NARCIS (Netherlands)

    Ishiguro, Munehide; Koopal, Luuk K.

    2016-01-01

    Soils are complex and widely varying mixtures of organic matter and inorganic materials; adsorption of surfactants to soils is therefore related to the soil composition. We first discuss the properties of surfactants, including the critical micelle concentration (CMC) and surfactant adsorption on

  18. Removal of Cryptosporidium sized particle under different filtration temperature, flow rate and alum dosing

    Institute of Scientific and Technical Information of China (English)

    XU Guo-ren; Fitzpatrick S. B. Caroline; Gregory John; DENG Lin-yu

    2007-01-01

    Recent Cryptosporidium outbreaks have highlighted concerns about filter efficiency and in particular particle breakthrough. It is essential to ascertain the causes of Cryptosporidium sized particle breakthrough for Cryptosporidium cannot be destroyed by conventional chlorine disinfection. This research tried to investigate the influence of temperature, flow rate and chemical dosing on particle breakthrough during filtration. The results showed that higher temperatures and coagulant doses could reduce particle breakthrough. The increase of filtration rate made the residual particle counts become larger. There was an optimal dose in filtration and was well correlated to ζ potential.

  19. Evaluation of Side Stream Filtration Technology at Oak Ridge National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Boyd, Brian K.

    2014-08-01

    This technology evaluation was performed by Pacific Northwest National Laboratory and Oak Ridge National Laboratory on behalf of the Federal Energy Management Program. The objective was to quantify the benefits side stream filtration provides to a cooling tower system. The evaluation assessed the performance of an existing side stream filtration system at a cooling tower system at Oak Ridge National Laboratory’s Spallation Neutron Source research facility. This location was selected because it offered the opportunity for a side-by-side comparison of a system featuring side stream filtration and an unfiltered system.

  20. Assessment of glomerular filtration rate and effective renal plasma flow in cystic fibrosis

    International Nuclear Information System (INIS)

    A study was conducted to examine renal function in 10 healthy control subjects and eight patients with cystic fibrosis in stable condition. Sequential bolus injections of /sup 99m/Tc-DTPA and 125I-OIH were administered to assess glomerular filtration rate and effective renal plasma flow, respectively. Blood was subsequently collected for 3 hours, and urine for 24 hours. Renal clearances of both radioisotope markers were virtually identical in patients and controls. Inasmuch as neither glomerular filtration rate nor effective renal plasma flow was enhanced in patients with cystic fibrosis, increased clearance of drugs in these patients is unlikely to be the result of enhanced glomerular filtration or tubular secretion

  1. Morphology and fractal characteristic of deposits formed during fiber bundle media filtration

    Institute of Scientific and Technical Information of China (English)

    WANG De-ying; SHEN Zi-qiu

    2005-01-01

    The scanning electronic microscope and automated image analyzer are adopted to investigate the morphology of deposits formed during fiber bundle media filtration, which results in the discovery of the self-similarity of the deposits. Then in this paper it is proposed that the deposits are a fractal structure. Moreover, the fractal dimension value is related to the filter performance. The.higher the fractal dimension value, the higher the filtration efficiency, and the longer filtration cycle, but the development of the head loss is also faster.

  2. Direct Filtration of Secondary Waste Water Effluent by a Dual Media Filter

    OpenAIRE

    TOZAN, MICHEL, N'guessan Bi; HOZUMI, Hitoshi; Yoshida, Hideki; Ueda, H

    1993-01-01

    lower part has been proposed for the direct filtration of secondary waste water effluent from an activated sludge treatment plant. Filtration without coagulation gave, for the model proposed, a filter run length five times that of the single sand bed filter at the rate of 120 m/day. Laboratory experiments were carried out to evaluate the optimum values of pH and aluminum dosage that gave a color removal of up to 70%. Coagulant-assisted filtration without pH control gave a color removal of up ...

  3. Development of facile property calculation model for adsorption chillers based on equilibrium adsorption cycle

    Science.gov (United States)

    Yano, Masato; Hirose, Kenji; Yoshikawa, Minoru; Thermal management technology Team

    Facile property calculation model for adsorption chillers was developed based on equilibrium adsorption cycles. Adsorption chillers are one of promising systems that can use heat energy efficiently because adsorption chillers can generate cooling energy using relatively low temperature heat energy. Properties of adsorption chillers are determined by heat source temperatures, adsorption/desorption properties of adsorbent, and kinetics such as heat transfer rate and adsorption/desorption rate etc. In our model, dependence of adsorption chiller properties on heat source temperatures was represented using approximated equilibrium adsorption cycles instead of solving conventional time-dependent differential equations for temperature changes. In addition to equilibrium cycle calculations, we calculated time constants for temperature changes as functions of heat source temperatures, which represent differences between equilibrium cycles and real cycles that stemmed from kinetic adsorption processes. We found that the present approximated equilibrium model could calculate properties of adsorption chillers (driving energies, cooling energies, and COP etc.) under various driving conditions quickly and accurately within average errors of 6% compared to experimental data.

  4. Adsorption kinetics of methyl violet onto perlite.

    Science.gov (United States)

    Doğan, Mehmet; Alkan, Mahir

    2003-01-01

    This study examines adsorption kinetics and activation parameters of methyl violet on perlite. The effect of process parameters like contact time, concentration of dye, temperature and pH on the extent of methyl violet adsorption from solution has been investigated. Results of the kinetic studies show that the adsorption reaction is first order with respect to dye solution concentration with activation energy of 13.2 kJ mol(-1). This low activation energy value indicates that the adsorption reaction is diffusion controlled. The activation parameters using Arrhenius and Eyring equations have been calculated. Adsorption increases with increase of variables such as contact time, initial dye concentration, temperature and pH.

  5. Is the use of particle air filtration justified? Costs and benefits of filtration with regard to health effects, building cleaning and occupant productivity

    DEFF Research Database (Denmark)

    Bekö, Gabriel; Clausen, Geo; Weschler, Charles J.

    2008-01-01

    with building and HVAC cleaning. Conversely, losses of occupant productivity due to sensory offending pollutants emitted from used ventilation filters can lead to significant economic losses. The results of the present analysis are strongly dependent on several key input parameters; consequently...... even a small decrease in productivity caused by sensory pollutants emitted from used ventilation filters have the potential to substantially exceed the annual economic benefits of filtration. Further studies are required to determine if meaningful benefits can be obtained from more frequent filter...... is impacted by maintenance of the building and its HVAC system; society is impacted by the employees’ health and welfare. Regardless of perspective, particle filtration is anticipated to lead to annual savings significantly exceeding the running costs for filtration. However, economic losses resulting from...

  6. Tissue Plasminogen Activator Binding to Superparamagnetic Iron Oxide Nanoparticle-Covalent Versus Adsorptive Approach.

    Science.gov (United States)

    Friedrich, Ralf P; Zaloga, Jan; Schreiber, Eveline; Tóth, Ildikó Y; Tombácz, Etelka; Lyer, Stefan; Alexiou, Christoph

    2016-12-01

    Functionalized superparamagnetic iron oxide nanoparticles are frequently used to develop vehicles for drug delivery, hyperthermia, and photodynamic therapy and as tools used for magnetic separation and purification of proteins or for biomolecular imaging. Depending on the application, there are various possible covalent and non-covalent approaches for the functionalization of particles, each of them shows different advantages and disadvantages for drug release and activity at the desired location.Particularly important for the production of adsorptive and covalent bound drugs to nanoparticles is the pureness of the involved formulation. Especially the covalent binding strategy demands defined chemistry of the drug, which is stabilized by excess free amino acids which could reduce reaction efficiency. In this study, we therefore used tangential flow filtration (TFF) method to purify the drugs before the reaction and used the frequently applied and clinically available recombinant tissue plasminogen activator (tPA; Actilyse(®)) as a proof of concept. We then coupled the tPA preparation to polyacrylic acid-co-maleic acid (PAM)-coated superparamagnetic iron oxide nanoparticles (SPIONs) using an amino-reactive activated ester reaction and compared these particles to PAM-coated SPIONs with electrostatically adsorbed tPA.Using dynamic light scattering (DLS) and pH-dependent electrokinetic mobility measurements, we showed that surface properties of the SPIONs were significantly greater affected after activation of the particles compared to the adsorption controls. Different in vitro assays were used to investigate the activity of tPA after coupling to the particles and purification of the ferrofluid. Covalent linkage significantly improves the reactivity and long-term stability of the conjugated SPION-tPA system compared to simple adsorption. In conclusion, we have shown an effective way to produce SPIONs with covalent and non-covalent ultra-filtrated drugs. We showed

  7. Influence of Surface Charge/Potential of a Gold Electrode on the Adsorptive/Desorptive Behaviour of Fibrinogen

    International Nuclear Information System (INIS)

    . It was suggested that the driving force for the adsorption of FG on a negatively charged surface represents a positive gain in the entropy of the system, whereas the adsorption on a positively charged gold surface was found to be controlled by electrostatic forces. FG desorption measurements revealed that when the gold surface is polarized within the electrochemical double-layer region during the desorption process, the protein desorption kinetics is rather slow. However, within the regions of hydrogen and oxygen evolution, the FG desorption kinetics accelerates significantly, due to the physical removal of the adsorbed protein layer by gas bubbles evolving from the substrate surface, which enables a complete removal of the pre-adsorbed FG layer. The latter could potentially be employed for electrochemical cleaning of electrically-conducting surfaces fouled by adsorbed protein layers (heat exchangers, filtration membranes, etc.)

  8. Isolation of organic acids from large volumes of water by adsorption on macroporous resins

    Science.gov (United States)

    Aiken, George R.; Suffet, I.H.; Malaiyandi, Murugan

    1987-01-01

    Adsorption on synthetic macroporous resins, such as the Amberlite XAD series and Duolite A-7, is routinely used to isolate and concentrate organic acids from forge volumes of water. Samples as large as 24,500 L have been processed on site by using these resins. Two established extraction schemes using XAD-8 and Duolite A-7 resins are described. The choice of the appropriate resin and extraction scheme is dependent on the organic solutes of interest. The factors that affect resin performance, selectivity, and capacity for a particular solute are solution pH, resin surface area and pore size, and resin composition. The logistical problems of sample handling, filtration, and preservation are also discussed.

  9. Removal of Cr(VI from Aqueous Environments Using Micelle-Clay Adsorption

    Directory of Open Access Journals (Sweden)

    Mohannad Qurie

    2013-01-01

    Full Text Available Removal of Cr(VI from aqueous solutions under different conditions was investigated using either clay (montmorillonite or micelle-clay complex, the last obtained by adsorbing critical micelle concentration of octadecyltrimethylammonium ions onto montmorillonite. Batch experiments showed the effects of contact time, adsorbent dosage, and pH on the removal efficiency of Cr(VI from aqueous solutions. Langmuir adsorption isotherm fitted the experimental data giving significant results. Filtration experiments using columns filled with micelle-clay complex mixed with sand were performed to assess Cr(VI removal efficiency under continuous flow at different pH values. The micelle-clay complex used in this study was capable of removing Cr(VI from aqueous solutions without any prior acidification of the sample. Results demonstrated that the removal effectiveness reached nearly 100% when using optimal conditions for both batch and continuous flow techniques.

  10. ADSORPTION OF PROTEIN ON NANOPARTICLES

    Institute of Scientific and Technical Information of China (English)

    WU Qi

    1994-01-01

    The adsorption of protein on nanoparticles was studied by using dynamic light scattering to measure the hydrodynamic size of both pure protein and nanoparticles adsorbed with different amounts of protein. The thickness of the adsorbed protein layer increases as protein concentration, but decreases as the initial size of nanoparticles. After properly scaling the thickness with the initial diameter, we are able to fit all experimental data with a single master curve. Our experimental results suggest that the adsorbed proteins form a monolayeron the nanoparticle surface and the adsorbed protein molecules are attached to the particle surface at many points through a possible hydrogen-bonding. Our results also indicate that as protein concentration increases, the overall shape of the adsorbed protein molecule continuously changes from a flat layer on the particle surface to a stretched coil extended into water. During the change, the hydrodynamic volume of the adsorbed protein increases linearly with protein concentration.

  11. Adsorption on the carbon nanotubes

    Institute of Scientific and Technical Information of China (English)

    DING Yi; YANG Xiao-bao; NI Jun

    2006-01-01

    Adsorption on single walled carbon nanotubes (SWCNTs) is a subject of growing experimental and theoretical interest.The possible adsorbed patterns of atoms and molecules on the single-walled carbon nanotubes vary with the diameters and chirality of the tubes due to the confinement.The curvature of the carbon nanotube surface enlarges the distance of the adsorbate atoms and thus enhances the stability of high coverage structures of adsorbate.There exist two novel high-coverage stable structures of potassium adsorbed on SWCNTs,which are not stable on graphite.The electronic properties of SWCNTs can be modified by adsorbate atoms and metal-semiconductor and semiconductor-semi-conductor transitions can be achieved by the doping of alkali atoms.

  12. Using mathematical algorithms to modify glomerular filtration rate estimation equations.

    Directory of Open Access Journals (Sweden)

    Xiaohua Pei

    Full Text Available BACKGROUND: The equations provide a rapid and low-cost method of evaluating glomerular filtration rate (GFR. Previous studies indicated that the Modification of Diet in Renal Disease (MDRD, Chronic Kidney Disease-Epidemiology (CKD-EPI and MacIsaac equations need further modification for application in Chinese population. Thus, this study was designed to modify the three equations, and compare the diagnostic accuracy of the equations modified before and after. METHODOLOGY: With the use of (99 mTc-DTPA renal dynamic imaging as the reference GFR (rGFR, the MDRD, CKD-EPI and MacIsaac equations were modified by two mathematical algorithms: the hill-climbing and the simulated-annealing algorithms. RESULTS: A total of 703 Chinese subjects were recruited, with the average rGFR 77.14±25.93 ml/min. The entire modification process was based on a random sample of 80% of subjects in each GFR level as a training sample set, the rest of 20% of subjects as a validation sample set. After modification, the three equations performed significant improvement in slop, intercept, correlated coefficient, root mean square error (RMSE, total deviation index (TDI, and the proportion of estimated GFR (eGFR within 10% and 30% deviation of rGFR (P10 and P30. Of the three modified equations, the modified CKD-EPI equation showed the best accuracy. CONCLUSIONS: Mathematical algorithms could be a considerable tool to modify the GFR equations. Accuracy of all the three modified equations was significantly improved in which the modified CKD-EPI equation could be the optimal one.

  13. Estimating glomerular filtration rate preoperatively for patients undergoing hepatectomy

    Institute of Scientific and Technical Information of China (English)

    Yoshimi Iwasaki; Tokihiko Sawada; Shozo Mori; Yukihiro Iso; Masato Katoh; Kyu Rokkaku; Junji Kita; Mitsugi Shimoda; Keiichi Kubota

    2009-01-01

    AIM: To compare creatinine clearance (Ccr) with estimated glomerular filtration rate (eGFR) in preoperative renal function tests in patients undergoing hepatectomy. METHODS: The records of 197 patients undergoing hepatectomy between August 2006 and August 2008 were studied, and preoperative Ccr, a three-variable equation for eGFR (eGFR3) and a five-variable equation for eGFR (eGFR5) were calculated. Abnormal values were defined as Ccr < 50 mL/min, eGFR3 and eGFR5 < 60 mL/min per 1.73 m2. The maximum increases in the postoperative serum creatinine (post Cr) level and postoperative rate of increase in the serum Cr level (post Cr rate) were compared. RESULTS: There were 37 patients (18.8%) withabnormal Ccr, 31 (15.7%) with abnormal eGFR3, and 40 (20.3%) with abnormal eGFR5. Although there were no significant differences in the post Cr rate between patients with normal and abnormal Ccr, eGFR3 and eGFR5 values, the post Cr level was significantly higher in patients with eGFR3 and eGFR5 abnormality than in normal patients ( P < 0.0001). Post Cr level tended to be higher in patients with Ccr abnormality ( P = 0.0936 and P = 0.0875, respectively). CONCLUSION: eGFR5 and the simpler eGFR3, rather than Ccr, are recommended as a preoperative renal function test in patients undergoing hepatectomy.

  14. Harvesting of Dunaliella tertiolecta cells by magnetic filtration

    Science.gov (United States)

    Manousakis, Emmanouil; Manariotis, Ioannis D.

    2015-04-01

    The rising cost and reduced reserves of fossil fuels have enhanced the interest for finding alterative energy sources. Microalgae are considered to be the only sustainable option in biodiesel production for two key points. The energy yield from microalgae is much higher than that of oil producing crops, and the cultivation of algae it is not antagonistic with food supply chain. Because of the small size of microalgae and the dilute nature of algal cultures, the harvesting cost of microalgae is so far a limiting step for the scale up of microalgal biofuel production. It is estimated that the algal harvesting cost is at least 20-30% of the total biomass production cost. Traditional methods, which have been employed for the recovery of microalgal biomass, include centrifugation, gravity separation, filtration, flocculation, and flotation. Alternative approaches, other than conventional methods, capable of processing large cultures volume at a low cost, and reducing effluent toxicity are essential for microalgal biomass production. Magnetic separation is a promising technology and has been applied for algal removal in the mid of 1970s. The aim of this study was to investigate the harvesting of microalgae cells using magnetic microparticles (MPs). Dunaliella tertiolecta was selected as a representative for marine microalgae. The cultivation of microalgae was conducted under continuous artificial light, in 20 L flasks. Iron oxide microparticles were prepared by microwave irradiation of FeSO4 7H2O in an alkaline solution. Samples were taken at different operation intervals to conduct harvesting studies. Batch and flow-through experiments were conducted in order to investigate the effect of the magnetic material on microalgae removal. Algal removal in flow through experiments ranged from 70 to 85% depending on the initial MPs concentration even at very short hydraulic retention times (i.e. 2 min). In batch tests, algal removal was up to 97% at MPs concentration of 490 mg/L.

  15. TECHNICAL BASIS DOCUMENT FOR VENTILATION SYSTEM FILTRATION FAILURE LEADING TO AN UNFILTERED RELEASE

    International Nuclear Information System (INIS)

    This document analyzed three scenarios involving failures of HEPA filtration systems leading to releases from liquid waste tanks. The scenarios are failure due to high temperature (fire), overpressure (filter blowout), and unfiltered release due to filter failure, improper installation. etc

  16. Gauze Filtration and Enrichment Procedures for Recovery of Vibrio cholerae from Contaminated Waters

    OpenAIRE

    Spira, W M; Ahmed, Q S

    1981-01-01

    Gauze filtration followed by 18-h enrichment in alkaline bile-peptone water is a simple, inexpensive, and efficient method for isolation Vibrio cholerae biotype eltor from contaminated surface waters.

  17. Filtration on block copolymer solution used in directed self assembly lithography

    Science.gov (United States)

    Umeda, Toru; Takakura, Tomoyuki; Tsuzuki, Shuichi

    2016-03-01

    In this paper, we presented the filtration effects on block copolymers (BCP) that are commonly used in directed self-assembly lithographic (DSAL) imaging schemes. Specifically we focused on filtration effects on micro-contaminants such as metal ions and metal induced gels. Gel removal efficiency studies carried out with HDPE, Nylon and PTFE filters pointed out that Nylon 6,6 membrane is the most effective in removing gels in block copolymer (BCP) solutions. Metal removal efficiency studies were conducted using multistep filtrations such as repetitive filtration of single membrane material and combination of different type of membranes. Results showed that a combination of Nylon-6,6 and ion-exchange filters is highly effective in reducing metals such as Li, Mg and Al to > 99.99% efficiency. The mechanism of metal removal efficiency is discussed in detail.

  18. Estimating filtration coefficients for straining from percolation and random walk theories

    DEFF Research Database (Denmark)

    Yuan, Hao; Shapiro, Alexander; You, Zhenjiang;

    2012-01-01

    formed by pores of the sizes exceeding the particle size are analyzed with regard to the possibility for particle capture. Two power laws are proposed to describe the filtration coefficients close and far away from the percolation threshold of the lattice. They can be applied to match the filtration......In this paper, laboratory challenge tests are carried out under unfavorable attachment conditions, so that size exclusion or straining is the only particle capture mechanism. The experimental results show that far above the percolation threshold the filtration coefficients are not proportional...... size exclusion theory or the model of parallel tubes with mixing chambers, where the filtration coefficients are proportional to the flux through smaller pores, and the predicted penetration depths are much lower. A special capture mechanism is proposed, which makes it possible to explain...

  19. Studies on filtration rate in four species of suspension feeding bivalves

    Institute of Scientific and Technical Information of China (English)

    林元烧; 罗文新; 曹文清; 郭东晖; 郑爱榕; 黄长江

    2002-01-01

    The filtration rates of four kinds of bivalves that were cultivated dominantly around Xiamen sea area were measured by using a laboratory flowing system. The experimental results were shown below: (1) Filtration rates were measured in the range of 54~74.8 ml/ (g@min) among the four bivalves, sequencing descently Saccostrea cucullata > Sinonovacula constricta > Mytilus viridis > Ruditapes philippinarum. (2) The relationship between filtration rates on individual size showed a negative exponential function (FR = aWb, FR' = aWb-1), with b - 1 = - 0.435 6 and - 0.392. (3) Filtration rates on Skeletonema costatum were much higher than on Alexandrium tamarensis and Scrippsilla trochoidea inS. Cucullata and R. Philippinarum. (4) FR'on algal densities was also shown a negative function(FR' = aDb-1), with b-1 =-0.143 and-0.215 2 in S.cucullata and R.philippinarum, respectively.

  20. Stochastic control under progressive enlargement of filtrations and applications to multiple defaults risk management

    CERN Document Server

    Pham, Huyen

    2010-01-01

    We formulate and investigate a general stochastic control problem under a progressive enlargement of filtration. The global information is enlarged from a reference filtration and the knowledge of multiple random times together with associated marks when they occur. By working under a density hypothesis on the conditional joint distribution of the random times and marks, we prove a decomposition of the original stochastic control problem under the global filtration into classical stochastic control problems under the reference filtration, which are determined in a finite backward induction. Our method revisits and extends in particular stochastic control of diffusion processes with finite number of jumps. This study is motivated by optimization problems arising in default risk management, and we provide applications of our decomposition result for the indifference pricing of defaultable claims, and the optimal investment under bilateral counterparty risk. The solutions are expressed in terms of BSDEs involvin...

  1. CT texture analysis using the filtration-histogram method: what do the measurements mean?

    OpenAIRE

    Miles, Kenneth A.; Ganeshan, Balaji; Hayball, Michael P.

    2013-01-01

    Abstract Analysis of texture within tumours on computed tomography (CT) is emerging as a potentially useful tool in assessing prognosis and treatment response for patients with cancer. This article illustrates the image and histological features that correlate with CT texture parameters obtained from tumours using the filtration-histogram approach, which comprises image filtration to highlight image features of a specified size followed by histogram analysis for quantification. Computer model...

  2. EFFICACY OF FILTRATION PROCESSES TO OBTAIN WATER CLARITY AT K EAST SPENT NUCLEAR FUEL (SNF) BASIN

    Energy Technology Data Exchange (ETDEWEB)

    DUNCAN JB

    2006-09-28

    The objective is to provide water clarity to the K East Basin via filtration processes. Several activities are planned that will challenge not only the capacity of the existing ion exchange modules to perform as needed but also the current filtration system to maintain water clarity. Among the planned activities are containerization of sludge, removal of debris, and hydrolasing the basin walls to remove contamination.

  3. Factors influencing the precoat filtration of boiling water reactor water streams

    International Nuclear Information System (INIS)

    A series of studies on precoat filtration were carried out on condensate and preheater drains in the Swedish and Finnish boiling water reactors (BWRs). The goal was to increase knowledge about the precoat filtration process and to find physical and chemical means to improve the performance of the precoat filters in the condensate polishing plants. To achieve this goal a number of parameters, such as type of resin, bed depth, pH, oxygen and organic contaminant concentrations (measured total organic carbon), and corrosion product particle characteristics, were selected for the study. The work was mainly carried out in the power plants using an experimental facility fed with on-line sampled condensates and drains taken from the plant sampling lines. The main results are that there is a varying influence on precoat filtration from all the aforementioned parameters. The oxygen concentration, the concentration of organic contaminants, and the type of corrosion products are, however, the factors that have the strongest influence within the parameter ranges that are representative for BWR operation. The results are rather similar when the different units are compared. There are, however, some differences that could be mainly attributed to deviations in operation parameters and the subsequent differences in the corrosion product spectra. The mechanism for precoat filtration of corrosion products in BWR condensate is complex. The filtration behavior is to a large extent governed by competition between depth filtration and electrostatic interactions. During the early stages of the filtration cycle, electrostatic interaction is of great importance, whereas depth filtration becomes more important with increasing operating time. Rapid pressure drop buildup rates have been demonstrated to be caused by the presence of amorphous corrosion products. An effect from the presence of organic contaminants has been found, although this should be of little significance

  4. EFFICACY OF FILTRATION PROCESSES TO OBTAIN WATER CLARITY AT K EAST SPENT NUCLEAR FUEL (SNF) BASIN

    International Nuclear Information System (INIS)

    The objective is to provide water clarity to the K East Basin via filtration processes. Several activities are planned that will challenge not only the capacity of the existing ion exchange modules to perform as needed but also the current filtration system to maintain water clarity. Among the planned activities are containerization of sludge, removal of debris, and hydrolasing the basin walls to remove contamination

  5. On the \\gamma-filtration of oriented cohomology of complete spin-flags

    OpenAIRE

    Zhong, Changlong

    2012-01-01

    We study the characteristic map of algebraic oriented cohomology of complete spin-flags and the ideal of invariants of formal group algebra. As an application, we provide an annihilator of the torsion part of the $\\gamma$-filtration. Moreover, if the formal group law determined by the oriented cohomology is congruent to the additive formal group law modulo 2, then at degree 2 and 3, the $\\gamma$-filtration of complete spin-flags is torsion free.

  6. A Brief Review of Filtration Studies for Waste Treatment at the Hanford Site

    Energy Technology Data Exchange (ETDEWEB)

    Daniel, Richard C.; Schonewill, Philip P.; Shimskey, Rick W.; Peterson, Reid A.

    2010-12-01

    This document completes the requirements of Milestone 1-2, PNNL Draft Literature Review, discussed in the scope of work outlined in the EM-31 Support Project task plan WP-2.3.6-2010-1. The focus of task WP 2.3.6 is to improve the U.S. Department of Energy’s (DOE’s) understanding of filtration operations for high-level waste (HLW) to enhance filtration and cleaning efficiencies, thereby increasing process throughput and reducing the sodium demand (through acid neutralization). Developing the processes for fulfilling the cleaning/backpulsing requirements will result in more efficient operations for both the Hanford Tank Waste Treatment and Immobilization Plant (WTP) and the Savannah River Site (SRS), thereby increasing throughput by limiting cleaning cycles. The purpose of this document is to summarize Pacific Northwest National Laboratory’s (PNNL’s) literature review of historical filtration testing at the laboratory and of testing found in peer-reviewed journals. Eventually, the contents of this document will be merged with a literature review by SRS to produce a summary report for DOE of the results of previous filtration testing at the laboratories and the types of testing that still need to be completed to address the questions about improved filtration performance at WTP and SRS. To this end, this report presents 1) a review of the current state of crossflow filtration knowledge available in the peer-reviewed literature, 2) a detailed review of PNNL-related filtration studies specific to the Hanford site, and 3) an overview of current waste filtration models developed by PNNL and suggested avenues for future model development.

  7. Method for semi-automated microscopy of filtration-enriched circulating tumor cells

    OpenAIRE

    Pailler, Emma; Oulhen, Marianne; Billiot, Fanny; Galland, Alexandre; Auger, Nathalie; Faugeroux, Vincent; Laplace-Builhé, Corinne; Besse, Benjamin; Loriot, Yohann; Ngo-Camus, Maud; Hemanda, Merouan; Colin R. Lindsay; Soria, Jean-Charles; Vielh, Philippe; Farace, Françoise

    2016-01-01

    Background Circulating tumor cell (CTC)-filtration methods capture high numbers of CTCs in non-small-cell lung cancer (NSCLC) and metastatic prostate cancer (mPCa) patients, and hold promise as a non-invasive technique for treatment selection and disease monitoring. However filters have drawbacks that make the automation of microscopy challenging. We report the semi-automated microscopy method we developed to analyze filtration-enriched CTCs from NSCLC and mPCa patients. Methods Spiked cell l...

  8. Modeling the adsorption of mixed gases based on pure gas adsorption properties

    Science.gov (United States)

    Tzabar, N.; Holland, H. J.; Vermeer, C. H.; ter Brake, H. J. M.

    2015-12-01

    Sorption-based Joule-Thomson (JT) cryocoolers usually operate with pure gases. A sorption-based compressor has many benefits; however, it is limited by the pressure ratios it can provide. Using a mixed-refrigerant (MR) instead of a pure refrigerant in JT cryocoolers allows working at much lower pressure ratios. Therefore, it is attractive using MRs in sorption- based cryocoolers in order to reduce one of its main limitations. The adsorption of mixed gases is usually investigated under steady-state conditions, mainly for storage and separation processes. However, the process in a sorption compressor goes through various temperatures, pressures and adsorption concentrations; therefore, it differs from the common mixed gases adsorption applications. In order to simulate the sorption process in a compressor a numerical analysis for mixed gases is developed, based on pure gas adsorption characteristics. The pure gas adsorption properties have been measured for four gases (nitrogen, methane, ethane, and propane) with Norit-RB2 activated carbon. A single adsorption model is desired to describe the adsorption of all four gases. This model is further developed to a mixed-gas adsorption model. In future work more adsorbents will be tested using these four gases and the adsorption model will be verified against experimental results of mixed-gas adsorption measurements.

  9. Arsenic Adsorption Equilibrium Concentration and Adsorption Rate of Activated Carbon Coated with Ferric-Aluminum Hydroxides

    Science.gov (United States)

    Zhang, M.; Sugita, H.; Oguma, T.; Hara, J.; Takahashi, S.

    2015-12-01

    In some areas of developing countries, ground or well water contaminated with arsenic has been reluctantly used as drinking water. It is highly desirable that effective and inexpensive arsenic removal agents should be developed and provided to reduce the potential health risk. Previous studies demonstrated that activated carbon coated with ferric-aluminum hydroxides (Fe-Al-C) has high adsorptive potential for removal of arsenic. In this study, a series of experiments using Fe-Al-C were carried to discuss adsorption equilibrium time, adsorption equilibrium concentration and adsorption rate of arsenic for Fe-Al-C. Fe-Al-C used in this study was provided by Astec Co., Ltd. Powder reagent of disodium hydrogen arsenate heptahydrate was dissolved into ion-exchanged water. The solution was then further diluted with ion-exchanged water to be 1 and 10 mg/L as arsenic concentration. The pH of the solution was adjusted to be around 7 by adding HCl and/or NaOH. The solution was used as artificial arsenic contaminated water in two types of experiments (arsenic adsorption equilibrium and arsenic adsorption rate tests). The results of the arsenic equilibrium tests were showed that a time period of about 3 days to reach apparent adsorption equilibrium for arsenic. The apparent adsorption equilibrium concentration and adsorbed amount of arsenic on Fe-Al-C adsorbent could be estimated by application of various adsorption isotherms, but the distribution coefficient of arsenic between solid and liquid varies with experimental conditions such as initial concentration of arsenic and addition concentration of adsorbent. An adsorption rate equation that takes into account the reduction in the number of effective adsorption sites on the adsorbent caused by the arsenic adsorption reaction was derived based on the data obtained from the arsenic adsorption rate tests.

  10. Adsorption of Iminodiacetic Acid Resin for Lutetium

    Institute of Scientific and Technical Information of China (English)

    熊春华; 姚彩萍; 王惠君

    2004-01-01

    The adsorption behavior and mechanism of a novel chelate resin,iminodiacetic acid resin(IDAAR) for Lu(Ⅲ) were investigated.The statically saturated adsorption capacity is 210.8 mg·g-1 at 298 K in HAc-NaAc medium.The Lu(Ⅲ) adsorbed on IDAAR can be eluted by 0.5 mol·L-1 HCl and the elution percentage reaches 96.5%.The resin can be regenerated and reused without obvious decrease in adsorption capacity.The apparent adsorption rate constant is k298=2.0×10-5 s-1.The adsorption behavior of IDAAR for Lu(Ⅲ) obeys the Freundlich isotherm.The thermodynamic adsorption parameters,enthalpy change ΔH,free energy change ΔG and entropy change ΔS of IDAAR for Lu(Ⅲ) are 13.1 kJ·mol-1,-1.37 kJ·mol-1 and 48.4 J·mol-1·K-1,respectively.The apparent activation energy is Ea=31.3 kJ·mol-1.The molar coordination ratio of the functional group of IDAAR to Lu(Ⅲ) is about 3∶1.The adsorption mechanism of IDAAR for Lu(Ⅲ) was examined by chemical method and IR spectrometry.

  11. In Vitro Selection of Peanut Somatic Embryos on Medium Containing Culture Filtrate of Sclerotium rolfsii and Plantlet Regeneration

    Directory of Open Access Journals (Sweden)

    YUSNITA

    2005-06-01

    Full Text Available Attempts to identify somaclonal variants of peanut with resistance to Sclerotium stem rot disease due to infection of S. rolfsii were conducted. The objectives of this study were to develop in vitro selection method using culture filtrates of S. rolfsii, identify culture filtrate-insensitive somatic embryo (SE of peanut after in vitro selection and regenerate peanut R0 lines originated from culture filtrate-insensitive SE. To achieve these objectives, peanut embryogenic tissues were cultured on selective medium containing various concentrations of S. rolfsii culture filtrates and sublethal concentration of the filtrates. Medium containing sublethal level of S. rolfsii culture filtrates was used to identify culture filtrate-insensitive SE of peanut. Subsequently, the selected SEs were germinated, plantlets were regenerated and preliminary tested against S. rolfsii. Results of the experiments showed that addition of S. rolfsii culture filtrates into medium for inducing peanut somatic embryos drastically reduced their growth and proliferation. S. rolfsii culture filtrates at 10% concentration has significantly reduced the number of proliferated SE per explant. However, sublethal level was achieved at 30% of culture filtrates concentration. Responses of five peanut cultivars against 30% of culture filtrates were similar, indicating they were similar in their susceptibility against S. rolfsii. A number of culture filtrate-insensitive SE were identified after culturing 1500 clumps of embryogenic tissue of peanut cv. Kelinci for three consecutive passages on medium containing 30% of culture filtrates. Germination of selected SE and regeneration of plantlet from culture filtrate-insensitive SE resulted in 50 peanut R0 lines. These lines have been grown in the plastic house and produced normal seeds for further evaluation. Results of S. rolfsii inoculation indicated the existence of chimera for insensitivity against S. rolfsii.

  12. Can combining economizers with improved filtration save energy and protect equipment in data centers?

    Energy Technology Data Exchange (ETDEWEB)

    Shehabi, Arman; Ganguly, Srirupa; Gundel, Lara A.; Horvath, Arpad; Kirchstetter, Thomas W.; Lunden, Melissa M.; Tschudi, William; Gadgil, Ashok J.; Nazaroff, William W

    2009-06-05

    Economizer use in data centers is an energy efficiency strategy that could significantly limit electricity demand in this rapidly growing economic sector. Widespread economizer implementation, however, has been hindered by potential equipment reliability concerns associated with exposing information technology equipment to particulate matter of outdoor origin. This study explores the feasibility of using economizers in data centers to save energy while controlling particle concentrations with high-quality air filtration. Physical and chemical properties of indoor and outdoor particles were analyzed at an operating northern California data center equipped with an economizer under varying levels of air filtration efficiency. Results show that when improved filtration is used in combination with an economizer, the indoor/outdoor concentration ratios for most measured particle types were similar to levels when using conventional filtration without economizers. An energy analysis of the data center reveals that, even during the summer months, chiller savings from economizer use greatly outweigh any increase in fan power associated with improved filtration. These findings indicate that economizer use combined with improved filtration could reduce data center energy demand while providing a level of protection from particles of outdoor origin similar to that observed with conventional design.

  13. Efficient and reusable polyamide-56 nanofiber/nets membrane with bimodal structures for air filtration.

    Science.gov (United States)

    Liu, Bowen; Zhang, Shichao; Wang, Xueli; Yu, Jianyong; Ding, Bin

    2015-11-01

    Nanofibrous media that both possess high airborne particle interception efficiency and robust air permeability would have broad technological implications for areas ranging from individual protection and industrial security to environmental governance; however, creating such filtration media has proved extremely challenging. Here we report a strategy to construct the bio-based polyamide-56 nanofiber/nets (PA-56 NFN) membranes with bimodal structures for effective air filtration via one-step electrospinning/netting. The PA-56 membranes are composed of completely covered two-dimensional (2D) ultrathin (∼20 nm) nanonets which are optimized by facilely regulating the solution concentration, and the bonded scaffold fibers constructed cavity structures which are synchronously created by using the CH3COOH inspiration. With integrated properties of small aperture, high porosity, and bonded scaffold, the resulting PA-56 NFN membranes exhibit high filtration efficiency of 99.995%, low pressure drop of 111 Pa, combined with large dust holding capacity of 49 g/m(2) and dust-cleaning regeneration ability, for filtrating ultrafine airborne particles in the most safe manner involving sieving principle and surface filtration. The successful synthesis of PA-56 NFN medium would not only make it a promising candidate for air filtration, but also provide new insights into the design and development of nanonet-based bimodal structures for various applications. PMID:26188726

  14. Investigation on Beer Filtration%啤酒过滤性能探讨

    Institute of Scientific and Technical Information of China (English)

    王志坚

    2011-01-01

    影响啤酒过滤的主要因素有过滤前酵母细胞浓度、酒液粘度、固形物含量、稳定剂等;对β-葡聚糖、α-葡聚糖、酵母、颗粒物对啤酒过滤性的影响进行研究分析。改善啤酒过滤性的措施主要有降低麦汁和啤酒中β-葡萄糖的含量,降低过滤前酒液中的酵母细胞数,控制添加剂的添加,添加过滤助剂。%The factors influencing beer filtration included yeast cells concentration for filtration,beer viscosity,solids content,stabilizer etc.The effects of β-dextran,α-dextran,yeast,and granules on beer filtration were investigated.The measures to improve beer filtration included reducing β-dextran content in wort and in beer,reducing yeast cells number in beer before the filtration,proper control of the addition level of additives,and the addition of auxilliary filtration agents.(Tran.by YUE Yang)

  15. Antimicrobial nanoparticle-coated electrostatic air filter with high filtration efficiency and low pressure drop.

    Science.gov (United States)

    Sim, Kyoung Mi; Park, Hyun-Seol; Bae, Gwi-Nam; Jung, Jae Hee

    2015-11-15

    In this study, we demonstrated an antimicrobial nanoparticle-coated electrostatic (ES) air filter. Antimicrobial natural-product Sophora flavescens nanoparticles were produced using an aerosol process, and were continuously deposited onto the surface of air filter media. For the electrostatic activation of the filter medium, a corona discharge electrification system was used before and after antimicrobial treatment of the filter. In the antimicrobial treatment process, the deposition efficiency of S. flavescens nanoparticles on the ES filter was ~12% higher than that on the pristine (Non-ES) filter. In the evaluation of filtration performance using test particles (a nanosized KCl aerosol and submicron-sized Staphylococcus epidermidis bioaerosol), the ES filter showed better filtration efficiency than the Non-ES filter. However, antimicrobial treatment with S. flavescens nanoparticles affected the filtration efficiency of the filter differently depending on the size of the test particles. While the filtration efficiency of the KCl nanoparticles was reduced on the ES filter after the antimicrobial treatment, the filtration efficiency was improved after the recharging process. In summary, we prepared an antimicrobial ES air filter with >99% antimicrobial activity, ~92.5% filtration efficiency (for a 300-nm KCl aerosol), and a ~0.8 mmAq pressure drop (at 13 cm/s). This study provides valuable information for the development of a hybrid air purification system that can serve various functions and be used in an indoor environment. PMID:26172593

  16. Magnetic filtration of an iron oxide aerosol by means of magnetizable grates

    Institute of Scientific and Technical Information of China (English)

    A. Alvaro; J.M. Rodríguez; Paulo A. Augusto; A.M. Estévez

    2007-01-01

    The cleaning of gases with low concentrations of small ferromagnetic or paramagnetic particles is a difficult task for conventional filtration. A new alternative procedure, magnetic filtration, is used in this work.Iron oxide aerosol was generated by elutriation of iron oxide particles from a fluidized bed consisting of a mixture of Geldart-C iron oxide powder and large spherical Geldart-B sand particles. The aerosol was filtered by means of a magnetic filter which consisted of one, two or three iron grates staggered to each other. The experimental installation contained also an isokinetic sampling system and a Microtrac SRA 150 Particle Analyser.A theoretical expression for filtration efficiency was deduced from a previous model taking into account the different forces acting on the iron oxide particles. Experimental filtration efficiency matches quite well calculated theoretical efficiency. It was found that an increase in particle size,in the number of grates or in the applied magnetic field produced higher filtration efficiencies up to 100% in some cases. In all filtration experiments pressure drop through the magnetic filter was very small.

  17. Evaluation of particulate filtration efficiency of retrofit particulate filters for light duty vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Van Asch, R.; Verbeek, R.

    2009-10-15

    In the light of the currently running subsidy programme for particulate filters in the Netherlands, the Dutch ministry of spatial planning and environment (VROM) asked TNO to execute a desk study to evaluate the particulates filtration efficiency of retrofit particulate filters for light duty vehicles (passenger cars and vans). The typical retrofit particulate filters for light duty vehicles are also called 'open' or 'half-open' filters, because a part of the exhaust gas can pass through the particulate filter unfiltered. From design point they are very different from the majority of the factory installed particulate filters, which are also called wall-flow or 'closed' particulate filters. Due to these differences there is a large difference in filtration efficiency. Whereas the 'dosed' particulate filters show a filtration efficiency of larger than 90%, the filtration efficiency of 'open' particulate filters is generally lower (type approval minimum 30%), and strongly dependent on the conditions of use. The objective of the current project was to assess the average filtration efficiency of retrofit (open) particulate fillters on light duty vehicles in real world day to day driving, based on available literature data. Also, the reasons of a possible deviation with the type approval test results (minimum filtration efficiency of 30%) was investigated.

  18. Effects of pH value and coagulant dosage on contact filtration of humic substances

    Institute of Scientific and Technical Information of China (English)

    蒋绍阶; 刘宗源; 梁建军

    2009-01-01

    Humic substances (especially fulvic acid (FA)) are the major components of natural organic matter (NOM) that widely exist in drinking water source. Due to their potential effects on public health,the removal of FA was one of the main concerns during the water treatment. Therefore,the contact filtration of FA by using aluminum sulfate as coagulant on the basis of jar tests was carried out. The effects of pH and coagulant dosage on the FA removal and the development of head loss were investigated. The results show that the range of pH value during the FA contact filtration can be effectively influenced by the dosage of aluminum sulfate,and the high aluminum sulfate dosage is an important factor that can result in early filter breakthrough. The FA filtration by deep-bed filtration or by membrane filtration is sometimes disparate under the same coagulation conditions. The choice of aluminum sulfate dosage by the method of membrane filtration,i.e. the "true color measurement",may result in inappropriate filter run,whereas it can be determined with simple jar tests by observing the formation of micro flocs. Considering the effects of pH on aluminum sulfate dosage and FA removal,the optimal pH range of 5.5?6.0 is suggested.

  19. Development of a Filtration-Based Bioluminescence Assay for Detection of Microorganisms in Tea Beverages.

    Science.gov (United States)

    Shinozaki, Yohei; Igarashi, Toshinori; Harada, Yasuhiro

    2016-03-01

    The market for tea drinks as healthy beverages has been steadily expanding, and ready-to-drink beverages in polyethylene terephthalate bottles have been popular. To more rapidly and accurately test tea beverages bottled in polyethylene terephthalate for microbial contamination, a newly developed filtration device and a washing method with a commercial bioluminescence assay were combined to detect low numbers of bacterial spores, fungal conidia, and ascospores. Washing buffers were formulated with nonionic detergents from the Tween series. Commercially available tea beverages were used to evaluate the filtration capacity of the filtration device, the effect of washing buffers, and the performance of the assay. The assay was tested with serially diluted suspensions of colonies of two bacterial strains, spores of three Bacillus strains, conidia of five fungal strains, and ascospores of four fungal strains. The filtration device enabled filtration of a large sample volume (100 to 500 ml), and the washing buffer significantly decreased the background bioluminescence intensity of tea samples when compared with the no-washing method. Low numbers (1 to 10 CFU/100 ml) of the tested strains of bacteria were detected within 8 to 18 h of cultivation, and fungi were detected within 24 to 48 h. Furthermore, a whole bottle (500 ml) of mixed tea was filtered through the filtration device and microbes were detected. This method could be used for quality control of bottled beverages without preincubation. PMID:26939661

  20. Transport of Cryptosporidium oocysts in porous media: Role of straining and physicochemical filtration

    Science.gov (United States)

    Tufenkji, N.; Miller, G.F.; Ryan, J.N.; Harvey, R.W.; Elimelech, M.

    2004-01-01

    The transport and filtration behavior of Cryptosporidium parvum oocysts in columns packed with quartz sand was systematically examined under repulsive electrostatic conditions. An increase in solution ionic strength resulted in greater oocyst deposition rates despite theoretical predictions of a significant electrostatic energy barrier to deposition. Relatively high deposition rates obtained with both oocysts and polystyrene latex particles of comparable size at low ionic strength (1 mM) suggest that a physical mechanism may play a key role in oocyst removal. Supporting experiments conducted with latex particles of varying sizes, under very low ionic strength conditions where physicochemical filtration is negligible, clearly indicated that physical straining is an important capture mechanism. The results of this study indicate that irregularity of sand grain shape (verified by SEM imaging) contributes considerably to the straining potential of the porous medium. Hence, both straining and physicochemical filtration are expected to control the removal of C. parvum oocysts in settings typical of riverbank filtration, soil infiltration, and slow sand filtration. Because classic colloid filtration theory does not account for removal by straining, these observations have important implications with respect to predictions of oocyst transport.

  1. Antimicrobial Activity of Culture Filtrate of Bacillus amyloliquefaciens RC-2 Isolated from Mulberry Leaves.

    Science.gov (United States)

    Yoshida, S; Hiradate, S; Tsukamoto, T; Hatakeda, K; Shirata, A

    2001-02-01

    ABSTRACT A potential antagonist, Bacillus amyloliquefaciens strain RC-2, against Colletotrichum dematium, mulberry anthracnose fungus, was obtained from healthy mulberry leaves by in vitro and in vivo screening techniques. Application of culture filtrate of RC-2 inhibited disease on mulberry leaves, indicating that suppression was due to antifungal compounds in the filtrate. Development of mulberry anthracnose on mulberry leaves was inhibited only when the culture filtrate was applied before fungal inoculation, and it was not inhibited by application after inoculation. These results suggest that the antifungal compounds in the filtrate exhibit a preventive effect on the disease. Peptone significantly increased production of the antifungal compounds. The culture filtrate of RC-2 also inhibited the growth of several other phytopathogenic fungi and bacteria, such as Rosellinia necatrix, Pyricularia oryzae, Agrobacterium tumefaciens, and Xanthomonas campestris pv. campestris, in vitro. From the culture filtrate of RC-2, seven kinds of antifungal compounds were isolated by high performance liquid chromatography analysis, and one of the compounds was determined as iturin A2, a cyclic peptide, by nuclear magnetic resonance and fast atom bombardment mass analysis. PMID:18944392

  2. Mathematical analysis for internal filtration of convection-enhanced high-flux hemodialyzer.

    Science.gov (United States)

    Lee, Jung Chan; Lee, Kyungsoo; Kim, Hee Chan

    2012-10-01

    Structural modifications using a conventional hemodialyzer improved the internal filtration and clearance of middle molecular weight wastes by enhanced convection effect. In this study, we employed a mathematical model describing the internal filtration rate as well as the hemodynamic and hematologic parameters in highflux dialyzer to interpret the previous reported experimental results. Conventional high-flux hemodialysis and convection-enhanced high-flux hemodialysis were configured in the mathematical forms and integrated into the iterative numerical method to predict the internal filtration phenomena inside the dialyzers during dialysis. The distributions of blood pressure, dialysate pressure, oncotic pressure, blood flow rates, dialysate flow rates, local ultrafiltration, hematocrit, protein concentration and blood viscosity along the axial length of dialyzer were calculated in order to estimate the internal filtration volume. The results show that the filtration volumes by internal filtration is two times higher in a convection-enhanced high-flux hemodialyzer than in a conventional high-flux hemodialzer and explains the experimental result of improved clearance of middle molecular size waste in convection-enhanced high-flux hemodialyzer.

  3. Efficient and reusable polyamide-56 nanofiber/nets membrane with bimodal structures for air filtration.

    Science.gov (United States)

    Liu, Bowen; Zhang, Shichao; Wang, Xueli; Yu, Jianyong; Ding, Bin

    2015-11-01

    Nanofibrous media that both possess high airborne particle interception efficiency and robust air permeability would have broad technological implications for areas ranging from individual protection and industrial security to environmental governance; however, creating such filtration media has proved extremely challenging. Here we report a strategy to construct the bio-based polyamide-56 nanofiber/nets (PA-56 NFN) membranes with bimodal structures for effective air filtration via one-step electrospinning/netting. The PA-56 membranes are composed of completely covered two-dimensional (2D) ultrathin (∼20 nm) nanonets which are optimized by facilely regulating the solution concentration, and the bonded scaffold fibers constructed cavity structures which are synchronously created by using the CH3COOH inspiration. With integrated properties of small aperture, high porosity, and bonded scaffold, the resulting PA-56 NFN membranes exhibit high filtration efficiency of 99.995%, low pressure drop of 111 Pa, combined with large dust holding capacity of 49 g/m(2) and dust-cleaning regeneration ability, for filtrating ultrafine airborne particles in the most safe manner involving sieving principle and surface filtration. The successful synthesis of PA-56 NFN medium would not only make it a promising candidate for air filtration, but also provide new insights into the design and development of nanonet-based bimodal structures for various applications.

  4. Reduction in MRSA environmental contamination with a portable HEPA-filtration unit.

    Science.gov (United States)

    Boswell, T C; Fox, P C

    2006-05-01

    There is renewed interest in the hospital environment as a potentially important factor for cross-infection with methicillin-resistant Staphylococcus aureus (MRSA) and other nosocomial pathogens. The aim of this study was to evaluate the effectiveness of a portable high-efficiency particulate air (HEPA)-filtration unit (IQAir Cleanroom H13, Incen AG, Goldach, Switzerland) at reducing MRSA environmental surface contamination within a clinical setting. The MRSA contamination rate on horizontal surfaces was assessed with agar settle plates in ward side-rooms of three patients who were heavy MRSA dispersers. Contamination rates were measured at different air filtration rates (60-235 m(3)/h) and compared with no air filtration using Poisson regression. Without air filtration, between 80% and 100% of settle plates were positive for MRSA, with the mean number of MRSA colony-forming units (cfu)/10-h exposure/plate ranging from 4.1 to 27.7. Air filtration at a rate of 140 m(3)/h (one patient) and 235 m(3)/h (two patients), resulted in a highly significant decrease in contamination rates compared with no air filtration (adjusted rate ratios 0.037, 0.099 and 0.248, respectively; P contamination within patient isolation rooms, and this may prove to be a useful addition to existing MRSA infection control measures.

  5. The perceptibility of variations in total x-ray beam filtration as evidenced on radiographs

    International Nuclear Information System (INIS)

    The use of filtration in the primary x-ray beam has long been a standard procedure in controlling radiation doses to patients in diagnostic radiology, particularly surface doses. For lightly filtered beams, the addition of further filtration effectively removes softer beam components which otherwise would be absorbed within the patient. The amount and quality of radiation reaching the film is changed only slightly. Thus the first increments of filtration added to diagnostic x-ray beams require little or no change in exposure factors. With further filtration, however, the penetration of the beam increases and a greater proportion is transmitted through the patient to the film. The image contrast is reduced. Simultaneously the useful beam intensity is reduced to the extent that compensating mAs increases begin to be required to maintain constant optical density in the radiograph. When these compensatory adjustments are made it is possible to examine the relationship between total filtration and its effects on radiographic appearance, which should be seen as variations in contrast or penetration. This report is of an exploratory study of the perceptibility to radiographers of these changes in radiographic appearance caused by variations in x-ray beam filtration. (auth)

  6. Production of hydrogen and oxygen by water splitting using laser induced photo-catalysis over Fe{sub 2}O{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Gondal, M.A. [Laser Research Section, Research Institute, Center for Applied Physical Sciences, King Fahd University of Petroleum and Minerals, KFUPM Box 372, Dhahran 31261 (Saudi Arabia); Hameed, A.; Suwaiyan, A. [Chemistry Department, King Fahd University of Petroleum and Minerals, Dhahran (Saudi Arabia); Yamani, Zain H. [Physics Department, King Fahd University of Petroleum and Minerals, Dhahran (Saudi Arabia)

    2004-08-10

    Laser induced photocatalytic splitting of water into hydrogen and oxygen has been studied. The activity of pure Fe{sub 2}O{sub 3} catalyst and various electron capture agents, such as Fe{sup 3+}, Ag{sup +}, Al{sup +3}, and Li{sup +}, in the water splitting process under the irradiation of a strong laser beam at 355nm has been investigated for the first time. The amounts of hydrogen and oxygen produced within a short span of time were quite substantial and the photonic efficiency achieved using pure Fe{sub 2}O{sub 3} was much higher than the reported conventional lamp based photocatalysis techniques. The yields of hydrogen and oxygen produced were affected considerably by the addition of electron capture agents. The highest electron capture activity was observed for Fe{sup 3+}. In addition to monitoring the activity of the Fe{sub 2}O{sub 3} catalyst for hydrogen and oxygen production, pH changes in the colloidal suspension during the photocatalytic process were also investigated. The parametric dependence of the yield as a function of laser beam intensity, irradiation (exposure) time, and concentration of the active material was carefully studied.

  7. TiO2 nanoparticles versus TiO2-SiO2 nanocomposites: A comparative study of photo catalysis on acid red 88

    Science.gov (United States)

    Balachandran, K.; Venckatesh, Rajendran; Sivaraj, Rajeshwari; Rajiv, P.

    2014-07-01

    A novel, simple, less time-consuming and cost-effective wet chemical technique was used to synthesis TiO2 nanoparticles and TiO2-SiO2 nanocomposites using Titanium tetra isopropoxide (TTIP) as a precursor relatively at low temperature in acidic pH. Titania sol was prepared by hydrolysis of TTIP and was mixed with silicic acid and tetrahydrofuran mixture. The reaction was carried out under vigorous stirring for 6 h and dried at room temperature. The resulting powders were characterized by UV-Visible spectroscopy, Fourier transform infrared (FT-IR), X-ray diffraction, scanning electron microscope (SEM) and transmission electron microscope (TEM). The grain size of the particles was calculated by X-ray diffraction, surface morphology and chemical composition was determined from scanning electron microscopy-energy dispersive spectroscopy, metal oxide stretching was confirmed from FT-IR spectroscopy, band gap was calculated using UV-Visible spectroscopy. Surface area of the composite as calculated by BET analyzer and it was found to be 65 and 75 m2/g for TiO2 and TiO2-SiO2 respectively. The photocatalytic experiments were performed with aqueous solution of acid red 88 with TiO2 and TiO2-SiO2 batch studies for 4 h irradiation, direct photolysis of TiO2 and TiO2-SiO2 contributed 94.2% and 96.5% decomposition in solar radiation for the optimized concentration of acid red 88.

  8. Adsorption of gases on heterogeneous surfaces

    CERN Document Server

    Rudzinski, W

    1991-01-01

    All real solid surfaces are heterogeneous to a greater or lesser extent and this book provides a broad yet detailed survey of the present state of gas adsorption. Coverage is comprehensive and extends from basic principles to computer simulation of adsorption. Underlying concepts are clarified and the strengths and weaknesses of the various methods described are discussed.Key Features* Adsorption isotherm equations for various types of heterogeneous solid surfaces* Methods of determining the nature of surface heterogeneity and porosity from experimental data* Studies of pha

  9. Adsorption of lead over graphite oxide.

    Science.gov (United States)

    Olanipekun, Opeyemi; Oyefusi, Adebola; Neelgund, Gururaj M; Oki, Aderemi

    2014-01-24

    The adsorption efficiency and kinetics of removal of lead in presence of graphite oxide (GO) was determined using the Atomic Absorption Spectrophotometer (AAS). The GO was prepared by the chemical oxidation of graphite and characterized using FTIR, SEM, TGA and XRD. The adsorption efficiency of GO for the solution containing 50, 100 and 150 ppm of Pb(2+) was found to be 98%, 91% and 71% respectively. The adsorption ability of GO was found to be higher than graphite. Therefore, the oxidation of activated carbon in removal of heavy metals may be a viable option to reduce pollution in portable water.

  10. Thermodynamics of binary gas adsorption in nanopores.

    Science.gov (United States)

    Dutta, Sujeet; Lefort, Ronan; Morineau, Denis; Mhanna, Ramona; Merdrignac-Conanec, Odile; Saint-Jalmes, Arnaud; Leclercq, Théo

    2016-09-21

    MCM-41 nanoporous silicas show a very high selectivity for monoalcohols over aprotic molecules during adsorption of a binary mixture in the gas phase. We present here an original use of gravimetric vapour sorption isotherms to characterize the role played by the alcohol hydrogen-bonding network in the adsorption process. Beyond simple selectivity, vapour sorption isotherms measured for various compositions help to completely unravel at the molecular level the step by step adsorption mechanism of the binary system in the nanoporous solid, from the first monolayers to the complete liquid condensation. PMID:27532892

  11. Adsorption of Cadmium By Silica Chitosan

    OpenAIRE

    Moftah Ali; Ani Mulyasuryani; Akhmad Sabarudin

    2013-01-01

    The adsorption process depends on initial concentration of Cd2+ and ratio of  chitosan in adsorbent. The present study deals with the competitive adsorption of Cd2+ ion onto silica graft with chitosan. Batch adsorption experiments were performed at five different initial Cd2+ concentrations (5, 10, 15, 20 and 25 ppm), on five different proportion from silica to chitosan (100%, 95%, 85%, 75% and 65%) as adsorbent at pH 5. In the recovery process, the high recovery at 0.5 mg and observed the re...

  12. Adsorption affinity of anions on metal oxyhydroxides

    Science.gov (United States)

    Pechenyuk, S. I.; Semushina, Yu. P.; Kuz'mich, L. F.

    2013-03-01

    The dependences of anion (phosphate, carbonate, sulfate, chromate, oxalate, tartrate, and citrate) adsorption affinity anions from geometric characteristics, acid-base properties, and complex forming ability are generalized. It is shown that adsorption depends on the nature of both the anions and the ionic medium and adsorbent. It is established that anions are generally grouped into the following series of adsorption affinity reduction: PO{4/3-}, CO{3/2-} > C2O{4/2-}, C(OH)(CH2)2(COO){3/3-}, (CHOH)2(COO){2/2-} > CrO{4/2-} ≫ SO{4/2-}.

  13. Adsorption-Induced Deformation of Mesoporous Solids

    CERN Document Server

    Gor, Gennady Yu

    2010-01-01

    The Derjaguin - Broekhoff - de Boer theory of capillary condensation is employed to describe deformation of mesoporous solids in the course of adsorption-desorption hysteretic cycles. We suggest a thermodynamic model, which relates the mechanical stress induced by adsorbed phase with the adsorption isotherm. Analytical expressions are derived for the dependence of the solvation pressure on the vapor pressure. The proposed method provides a semi-quantitative description of non-monotonic hysteretic deformation during capillary condensation without invoking any adjustable parameters. The method is showcased drawing on the examples of literature experimental data on adsorption deformation of porous glass and SBA-15 silica.

  14. Albumin (BSA) Adsorption over Graphene in Aqueous Environment: Influence of Orientation, Adsorption Protocol, and Solvent Treatment.

    Science.gov (United States)

    Vilhena, J G; Rubio-Pereda, Pamela; Vellosillo, Perceval; Serena, P A; Pérez, Rubén

    2016-02-23

    We report 150 ns explicit solvent MD simulations of the adsorption on graphene of albumin (BSA) in two orientations and using two different adsorption protocols, i.e., free and forced adsorption. Our results show that free adsorption occurs with little structural rearrangements. Even taking adsorption to an extreme, by forcing it with a 5 nN downward force applied during the initial 20 ns, we show that along a particular orientation BSA is able to preserve the structural properties of the majority of its binding sites. Furthermore, in all the cases considered in this work, the ibuprofen binding site has shown a strong resilience to structural changes. Finally, we compare these results with implicit solvent simulations and find that the latter predicts an extreme protein unfolding upon adsorption. The origin of this discrepancy is attributed to a poor description of the water entropic forces at interfaces in the implicit solvent methods.

  15. Assessment of riverbank filtration using selected organic micropollutants

    Science.gov (United States)

    Bichler, Andrea; Bruenjes, Robert; Lange, Frank Thomas; Brauch, Heinz-Juergen; Hofmann, Thilo

    2015-04-01

    Managed riverbank filtration (MRBF) is frequently used as a (pre)treatment step to improve surface water quality for drinking water use. In a managed RBF systems the understanding of flow patterns, mixing processes and groundwater residence times is a key factor to assess the effectiveness of the natural attenuation processes and to secure a good water quality. This study evaluates a suite of organic micropollutants (selected artificial sweeteners, pharmaceuticals and the MRI contrast agent gadolinium) as tracers for river water infiltration into a glaciofluvial aquifer. In particular, the transport behaviour of the selected micropollutants and their suitability to estimate groundwater residence times at a small scale (< 100 m) are assessed. The investigated MRBF system is located in a sub-alpine river valley in a rural catchment and the river permanently infiltrates into the aquifer. The aquifer consists of coarse carbonaceous gravel and is characterized by high permeabilities and groundwater flow velocities. The aquifer thickness reaches values of 16m with a saturated thickness of approximately 6m. The field site was instrumented with ten rhizons (Rhizosphere® microfiltration membrane pore water samplers) along a transect in groundwater flow direction to allow for a high spatial and temporal monitoring resolution. The rhizons were installed beneath the river bed and in the aquifer at different depths (7-13 m) and at different distances (20-60 m) to the river. The selected micropollutants were monitored over a period of ten days, water samples were collected as 12h composite samples. In addition to the selected micropollutants also conventional hydrochemical data and stable water isotopes were analyzed. Radon (²²²Rn) was used as a natural occurring tracer to determine groundwater ages. Based on ²²²Rn measurement the residence times were estimated to be below seven days in the transect. Hydrochemical data indicates that groundwater is recharged exclusively

  16. Molecular Simulation of Hydrogen Adsorption Density in Single-Walled Carbon Nanotubes and Multilayer Adsorption Mechanism

    Institute of Scientific and Technical Information of China (English)

    Lianquan GUO; Changxiang MA; Shuai WANG; He MA; Xin LI

    2005-01-01

    The adsorption of hydrogen onto single-walled carbon nanotubes (SWCNTs) was studied by molecular dynamics (MD)sim.lation. It was found that the hydrogen molecules distribute regularly inside and outside of the tube. Density distribution was computed for H2 molecule. Theoretical analysis of the result showed the multilayer adsorption mechanism of SWCNTs. The storage of H2 in SWCNTs is computed, which provides essential theoretical reference for further study of hydrogen adsorption in SWCNTs.

  17. Adsorption characteristics of siloxanes in landfill gas by the adsorption equilibrium test

    Energy Technology Data Exchange (ETDEWEB)

    Nam, Sangchul; Namkoong, Wan [Department of Environmental Engineering, Konkuk University, Hwayang-Dong, Gwangjin-Gu, Seoul 143-701 (Korea, Republic of); Kang, Jeong-Hee; Park, Jin-Kyu [Department of Environmental Engineering, Anyang University, Anyang 5-Dong, Manan-Gu, Anyang-Si, Gyeonggi-Do 430-714 (Korea, Republic of); Lee, Namhoon, E-mail: nhlee@anyang.ac.kr [Department of Environmental Engineering, Anyang University, Anyang 5-Dong, Manan-Gu, Anyang-Si, Gyeonggi-Do 430-714 (Korea, Republic of)

    2013-10-15

    Highlights: • Equilibrium test was attempted to evaluate adsorption characteristics of siloxane. • L2 had higher removal efficiency in carbon compared to noncarbon adsorbents. • Total adsorption capacity of siloxane was 300 mg/g by coal activated carbon. • Adsorption characteristics rely on size of siloxane molecule and adsorbent pore. • Conversion of siloxane was caused by adsorption of noncarbon adsorbents. - Abstract: Due to the increase in energy cost by constantly high oil prices and the obligation to reduce greenhouse effect gases, landfill gas is frequently used as an alternative energy source for producing heat and electricity. Most of landfill gas utility facilities, however, are experiencing problems controlling siloxanes from landfill gas as their catalytic oxidizers are becoming fouled by silicon dioxide dust. To evaluate adsorption characteristics of siloxanes, an adsorption equilibrium test was conducted and parameters in the Freundlich and Langmuir isotherms were analyzed. Coconut activated carbon (CA1), coal activated carbon (CA2), impregnated activated carbon (CA3), silicagel (NCA1), and activated alumina (NCA2) were used for the adsorption of the mixed siloxane which contained hexamethyldisiloxane (L2), octamethylcyclotetrasiloxane (D4), and decamethylcyclopentasiloxane (D5). L2 had higher removal efficiency in noncarbon adsorbents compared to carbon adsorbents. The application of Langmuir and Freundlich adsorption isotherm demonstrated that coconut based CA1 and CA3 provided higher adsorption capacity on L2. And CA2 and NCA1 provided higher adsorption capacity on D4 and D5. Based on the experimental results, L2, D4, and D5 were converted by adsorption and desorption in noncarbon adsorbents. Adsorption affinity of siloxane is considered to be affect by the pore size distribution of the adsorbents and by the molecular size of each siloxane.

  18. Analysis of Modified Starch Adsorption Kinetics on Cellulose Fibers via the Modified Langmuir Adsorption Theory

    OpenAIRE

    Zakrajšek, N.; Knez, S.; Ravnjak, D.; Golob, J.

    2009-01-01

    The kinetics of starch adsorption on cellulose fibers is one of the most important criteria regarding the efficient application of papermaking additives due to the continuous nature of paper production and the concomitant need to determine optimum residence times. This study presents an analysis of the kinetics of modified starch adsorption onto cellulose fibers via the application of the modified Langmuir adsorption theory (i.e. the collision theory). A model based on this theory was used to...

  19. Adsorption equilibrium and dynamics of lactase/CM-Sephadex system

    OpenAIRE

    Harsa, Hayriye Şebnem; Göksungur, Yekta; Güvenç, Ulgar

    1995-01-01

    Partitioning behaviour and adsorption isotherms of lactase/CM-Sephadex system at equilibrium were investigated together with the adsorption kinetics in this study. Maximum adsorption was obtained at the pH values between 5.5–6.0. Adsorption isotherm was a close fit to the Langmuir model.

  20. Modeling of Filtration Processes—Microfiltration and Depth Filtration for Harvest of a Therapeutic Protein Expressed in Pichia pastoris at Constant Pressure

    Directory of Open Access Journals (Sweden)

    Muthukumar Sampath

    2014-12-01

    Full Text Available Filtration steps are ubiquitous in biotech processes due to the simplicity of operation, ease of scalability and the myriad of operations that they can be used for. Microfiltration, depth filtration, ultrafiltration and diafiltration are some of the most commonly used biotech unit operations. For clean feed streams, when fouling is minimal, scaling of these unit operations is performed linearly based on the filter area per unit volume of feed stream. However, for cases when considerable fouling occurs, such as the case of harvesting a therapeutic product expressed in Pichia pastoris, linear scaling may not be possible and current industrial practices involve use of 20–30% excess filter area over and above the calculated filter area to account for the uncertainty in scaling. In view of the fact that filters used for harvest are likely to have a very limited lifetime, this oversizing of the filters can add considerable cost of goods for the manufacturer. Modeling offers a way out of this conundrum. In this paper, we examine feasibility of using the various proposed models for filtration of a therapeutic product expressed in Pichia pastoris at constant pressure. It is observed that none of the individual models yield a satisfactory fit of the data, thus indicating that more than one fouling mechanism is at work. Filters with smaller pores were found to undergo fouling via complete pore blocking followed by cake filtration. On the other hand, filters with larger pores were found to undergo fouling via intermediate pore blocking followed by cake filtration. The proposed approach can be used for more accurate sizing of microfilters and depth filters.