WorldWideScience

Sample records for adsorption chromatographic processes

  1. Evaluation of pesticide adsorption in gas chromatographic injector and column

    Directory of Open Access Journals (Sweden)

    Gevany Paulino de Pinho

    2012-01-01

    Full Text Available Components in complex matrices can cause variations in chromatographic response during analysis of pesticides by gas chromatography. These variations are related to the competition between analytes and matrix components for adsorption sites in the chromatographic system. The capacity of the pesticides chlorpyrifos and deltamethrin to be adsorbed in the injector and chromatographic column was evaluated by constructing three isotherms and changing the column heating rate to 10 and 30 ºC min-1. By using ANCOVA to compare the slope of calibration graphs, results showed that the higher the injector temperature (310 ºC the lower the pesticide adsorption. Also, deltamethrin influenced the adsorption of chlorpyrifos on the column chromatographic.

  2. Characterization of lysozyme adsorption in cellulosic chromatographic materials using small-angle neutron scattering.

    Science.gov (United States)

    Koshari, Stijn H S; Wagner, Norman J; Lenhoff, Abraham M

    2015-06-19

    Measurements of the nanoscale structure of chromatographic adsorbents and the associated distribution of sorbed protein within the media can facilitate improvements in such media. We demonstrate a new technique for this purpose using small-angle neutron scattering (SANS) to characterize the nano- to microscale structure of the chromatographic media and sorbed protein under conditions relevant for preparative chromatographic separations. The adsorption of lysozyme on cellulosic S HyperCel™ (Pall Corporation), a strong cation exchanger, was investigated by SANS. The scattering spectrum is reduced to three contributions arising from (1) the chromatographic medium, (2) discrete protein molecules, and (3) the distribution of sorbed protein within the medium. These contributions are quantified for a range of protein loadings. The total concentration of protein in the chromatographic media can be quantified from the SANS spectrum and the protein is observed to retain its tertiary structure upon adsorption, within the resolution of the method. Further analysis of the SANS spectra shows that protein adsorption is uniform in the media. These measurement techniques provide new and valuable nanoscale information about protein sorption in chromatographic media. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Insights into Adsorption of Chlorobenzene in High Silica MFI and FAU Zeolites Gained from Chromatographic and Diffractometric Techniques

    Directory of Open Access Journals (Sweden)

    Luisa Pasti

    2018-02-01

    Full Text Available In this work, the capability of two commercial high silica zeolites (HSZs, namely ZSM-5 and Y, for the removal of chlorobenzene (CB from water was investigated by combining chromatographic and diffractometric techniques. The adsorption isotherms and kinetics of CB on ZSM-5 and Y zeolites were determined from batch tests. The adsorption kinetics were very fast; the time to reach equilibrium was less than 10 min. The equilibrium data of CB on the two HSZs showed dissimilarities that are particularly evident in the adsorption data concerning the low concentration range, where Y zeolite is characterized by low adsorption. On the contrary, at higher solution concentrations the adsorption capacity of Y is higher than that of ZSM-5. The crystalline structures of Y and ZSM-5 saturated with CB were investigated by X-ray diffraction (XRD techniques. Rietveld refinement analyses of XRD data allowed for quantitative probing of the structural modifications of both zeolites after CB adsorption and provided insight into the preferred zeolite adsorption sites in both microporous materials. The refined framework–extraframework bond distances confirm that interactions between the selected organic contaminant and hydrophobic zeolites are mediated via co-adsorbed H2O. The occurrence of H2O–CB–framework oxygen oligomers explains variations in both the unit cell parameters and the shape of the channels, clearly confirming that water plays a very relevant role in controlling the diffusion and adsorption processes in hydrophobic zeolites.

  4. Use of adsorption and gas chromatographic techniques in estimating biodegradation of indigenous crude oils

    International Nuclear Information System (INIS)

    Kokub, D.; Allahi, A.; Shafeeq, M.; Khalid, Z.M.; Malik, K.A.; Hussain, A.

    1993-01-01

    Indigenous crude oils could be degraded and emulsified upto varying degree by locally isolated bacteria. Degradation and emulsification was found to be dependent upon the chemical composition of the crude oils. Tando Alum and Khashkheli crude oils were emulsified in 27 and 33 days of incubation respectively. While Joyamair crude oil and not emulsify even mainly due to high viscosity of this oil. Using adsorption chromatographic technique, oil from control (uninoculated) and bio degraded flasks was fractioned into the deasphaltened oil containing saturate, aromatic, NSO (nitrogen, sulphur, oxygen) containing hydrocarbons) and soluble asphaltenes. Saturate fractions from control and degraded oil were further analysed by gas liquid chromatography. From these analyses, it was observed that saturate fraction was preferentially utilized and the crude oils having greater contents of saturate fraction were better emulsified than those low in this fraction. Utilization of various fractions of crude oils was in the order saturate> aromatic> NSO. (author)

  5. Time-resolved chromatographic analysis and mechanisms in adsorption and catalysis.

    Science.gov (United States)

    Roubani-Kalantzopoulou, Fani

    2009-03-06

    The main object of this review is the study of fundamentals of adsorption and heterogeneous catalysis, a benefit for the understanding of adsorptive and catalytic properties. This work aims to define and record, with the utmost accuracy, the phenomena and the possible reactions. A new methodology for the study of the adsorption is presented, which is a version of the well-known inverse gas chromatography. This reversed-flow inverse gas chromatography (RF-IGC) is technically very simple, and it is combined with a mathematical analysis that gives the possibility for the estimation of various physicochemical parameters related to adsorbent or catalyst characterization, under conditions compatible with the operation of real adsorbents and catalysts. On this base, this methodology has been successfully applied to the study of the impact of air pollutants, volatile organic and/or inorganic, on many solids such as marbles, ceramics, oxide-pigments of works of art, building materials, authentic statues of the Greek Archaeological Museums. Moreover, this methodology proved to be a powerful tool for studying the topography of active sites of heterogeneous surfaces in the nano-scale domain. Thus, some very important local quantities for the surface chemistry have been determined experimentally for many solids including thin films. These physicochemical local quantities (among which adsorption energy and entropy, surface diffusion coefficient, probability density function) have been determined from the experimental pairs of height of extra chromatographic peaks and time by a nonlinear least-squares method, through personal computer programs written in GW BASIC and lately in FORTRAN. Through the time-resolved analysis the surface characterization of the examined materials took place. In addition, the kinetic constants responsible for adsorption/desorption and surface chemical reactions have also been calculated. Thus, important answers have been provided to the following

  6. Thermal Adsorption Processing Of Hydrocarbon Residues

    Directory of Open Access Journals (Sweden)

    Sudad H. Al.

    2017-04-01

    Full Text Available The raw materials of secondary catalytic processes must be pre-refined. Among these refining processes are the deasphalting and demetallization including their thermo adsorption or thermo-contact adsorption variety. In oil processing four main processes of thermo-adsorption refining of hydrocarbon residues are used ART Asphalt Residual Treating - residues deasphaltizing 3D Discriminatory Destructive Distillation developed in the US ACT Adsorption-Contact Treatment and ETCC Express Thermo-Contact Cracking developed in Russia. ART and ACT are processes with absorbers of lift type reactor while 3D and ETCC processes are with an adsorbing reactor having ultra-short contact time of the raw material with the adsorbent. In all these processes refining of hydrocarbon residues is achieved by partial Thermo-destructive transformations of hydrocarbons and hetero-atomic compounds with simultaneous adsorption of the formed on the surface of the adsorbents resins asphaltene and carboids as well as metal- sulphur - and nitro-organic compounds. Demetallized and deasphalted light and heavy gas oils or their mixtures are a quality raw material for secondary deepening refining processes catalytic and hydrogenation cracking etc. since they are characterized by low coking ability and low content of organometallic compounds that lead to irreversible deactivation of the catalysts of these deepening processes.

  7. Sour pressure swing adsorption process

    Science.gov (United States)

    Bhadra, Shubhra Jyoti; Wright, Andrew David; Hufton, Jeffrey Raymond; Kloosterman, Jeffrey William; Amy, Fabrice; Weist, Jr., Edward Landis

    2017-11-07

    Methods and apparatuses for separating CO.sub.2 and sulfur-containing compounds from a synthesis gas obtained from gasification of a carbonaceous feedstock. The primary separating steps are performed using a sour pressure swing adsorption (SPSA) system, followed by an acid gas enrichment system and a sulfur removal unit. The SPSA system includes multiple pressure equalization steps and a rinse step using a rinse gas that is supplied from a source other than directly from one of the adsorber beds of the SPSA system.

  8. Physical Adsorption of Gases on Heterogeneous Solids and Equilibrium Studies of the Pressure Swing Adsorption Process.

    Science.gov (United States)

    Lu, Xiaochun

    1990-01-01

    Adsorption isotherms of ethane, propane, and n -butane on two polystyrene adsorbents and two activated carbons were measured at 0, 25, and 40^ circC. A dynamic chromatographic experimental system was used to measure the transmission curves of gases through a packed bed. The transmission is defined as the ratio of the adsorbate concentration at the bed outlet to that at the bed inlet. A mass-balance equation was used to calculate the solid-phase concentration and the dimensionless adsorption capacity. The structural and energetic heterogeneities of microporous adsorbents were explored by means of Dubinin's Theory of Volume Filling of Micropores (TVFM) and by a modified TVFM. The structural heterogeneity of a microporous adsorbent refers to the non-uniformity of the pore sizes and pore shapes. In polystyrene adsorbents, these non -uniform pores were formed by different copolymerization of monomers; while in activated carbons, these non-uniform pores were formed in the processes of carbonization and activation. The energetic heterogeneities of a microporous adsorbent comes from the structural heterogeneity as well as from the various atoms and functional groups exposed at the pore surface, the impurities strongly bound to the surface, and the irregularities in the crystallographical structure of the surface. Dubinin's original TVFM applies well in structurally homogeneous or weakly-heterogeneous microporous activated carbons; however, fits of experimental isotherms to the Dubinin-Radushkevich equation reveal deviations for structurally -heterogeneous adsorbents. We extended Dubinin's TVFM to the case of structurally-heterogeneous adsorbents by using an overall integral isotherm equation. A gamma-function type micropore-size distribution was used and a three-parameter isotherm equation was obtained. The experimental isotherms on activated carbons were fitted well by this isotherm equation. We characterized eight different activated carbons with the three

  9. Adsorption

    Directory of Open Access Journals (Sweden)

    Sushmita Banerjee

    2017-05-01

    Full Text Available Application of saw dust for the removal of an anionic dye, tartrazine, from aqueous solutions has been investigated. The experiments were carried out in batch mode. Effect of the parameters such as pH, initial dye concentration and temperature on the removal of the dye was studied. Equilibrium was achieved in 70 min. Maximum adsorption of dye was achieved at pH 3. Removal percent was found to be dependent on the initial concentration of dye solution, and maximum removal was found to be 97% at 1 mg/L of tartrazine. The removal increases from 71% to 97% when the initial concentration of dye solution decreases from 15 mg/L to 1 mg/L. The equilibrium adsorption data were analyzed by Langmuir, Freundlich, Temkin and Dubinin–Radushkevich isotherm models. The (Langmuir adsorption capacity of the adsorbent is found to be 4.71 mg/g at 318 K. Kinetic modeling of the process of removal was carried out and the process of removal was found to follow a pseudo second order model and the value of rate constant for adsorption process was calculated as 2.7 × 10−3 g mg−1 min−1 at 318 K. The thermodynamic parameters such as change in free energy (ΔG°, enthalpy (ΔH° and entropy (ΔS° were determined and the negative values of ΔG° indicated that the process of removal was spontaneous at all values of temperatures. Further, the values of ΔH° indicated the endothermic nature of the process of removal.

  10. Ammonia Process by Pressure Swing Adsorption

    Energy Technology Data Exchange (ETDEWEB)

    Dr Felix Jegede

    2010-12-27

    The overall objective of the project is to design, develop and demonstrate a technically feasible and commercially viable system to produce ammonia along with recovery of the products by adsorption separation methods and significantly decrease the energy requirement in ammonia production. This is achieved through a significantly more efficient ammonia psa recovery system. The new ammonia recovery system receives the reactor effluents and achieves complete ammonia recovery, (which completely eliminates the energy intensive refrigeration and condensation system currently used in ammonia production). It also recovers the unused reactants and recycles them back to the reactor, free of potential reactor contaminants, and without the need for re-compression and re-heat of recycle stream thereby further saving more energy. The result is a significantly lower energy consumption, along with capital cost savings.

  11. Formation of hydrocarbons in irradiated Brazilian beans: gas chromatographic analysis to detect radiation processing

    International Nuclear Information System (INIS)

    Villavicencio, A.L.C.H.; Mancini-Filho, J.; Hartmann, M.; Ammon, J.; Delincee, H.

    1997-01-01

    Radiation processing of beans, which are a major source of dietary protein in Brazil, is a valuable alternative to chemical fumigation to combat postharvest losses due to insect infestation. To ensure free consumer choice, irradiated food will be labeled as such, and to enforce labeling, analytical methods to detect the irradiation treatment in the food product itself are desirable. In two varieties of Brazilian beans, Carioca and Macacar beans, the radiolytic formation of hydrocarbons formed after alpha and beta cleavage, with regard to the carbonyl group in triglycerides, have been studied. Using gas chromatographic analysis of these radiolytic hydrocarbons, different yields per precursor fatty acid are observed for the two types of beans. However, the typical degradation pattern allows the identification of the irradiation treatment in both bean varieties, even after 6 months of storage

  12. The counterintuitive role of extra-column volume in the determination of column efficiency and scaling of chromatographic processes

    NARCIS (Netherlands)

    Schultze-Jena, A.; Boon, M.A.; Bussmann, P.J.T.; Janssen, A.E.M.; Padt, A. van der

    2017-01-01

    In industrial liquid separation processes chromatography often has a key function in the optimization of yield and purity. For the design of an industrial system, chromatographic processes are generally simulated using mathematical models, tested and optimized at laboratory level, and then scaled up

  13. The counterintuitive role of extra-column volume in the determination of column efficiency and scaling of chromatographic processes

    NARCIS (Netherlands)

    Schultze-Jena, A.; Boon, M.A.; Bussmann, P.J.Th.; Janssen, A.E.M.; Padt, van der A.

    2017-01-01

    In industrial liquid separation processes chromatography often has a key function in the optimization of yield and purity. For the design of an industrial system, chromatographic processes are generally simulated using mathematical models, tested and optimized at laboratory level, and then scaled

  14. Dynamic Adsorption/Desorption Process Model of Capacitive Deionization

    NARCIS (Netherlands)

    Biesheuvel, P.M.; Limpt, van B.; Wal, van der A.

    2009-01-01

    In capacitive deionization (CDI), an electrical potential difference is applied across oppositely placed electrodes, resulting in the adsorption of ions from aqueous solution and a partially ion-depleted product stream. CDI is a dynamic process which operates in a sequential mode; i.e., after a

  15. Modeling Adsorption-Desorption Processes at the Intermolecular Interactions Level

    Science.gov (United States)

    Varfolomeeva, Vera V.; Terentev, Alexey V.

    2018-01-01

    Modeling of the surface adsorption and desorption processes, as well as the diffusion, are of considerable interest for the physical phenomenon under study in ground tests conditions. When imitating physical processes and phenomena, it is important to choose the correct parameters to describe the adsorption of gases and the formation of films on the structural materials surface. In the present research the adsorption-desorption processes on the gas-solid interface are modeled with allowance for diffusion. Approaches are proposed to describe the adsorbate distribution on the solid body surface at the intermolecular interactions level. The potentials of the intermolecular interaction of water-water, water-methane and methane-methane were used to adequately modeling the real physical and chemical processes. The energies calculated by the B3LYP/aug-cc-pVDZ method. Computational algorithms for determining the average molecule area in a dense monolayer, are considered here. Differences in modeling approaches are also given: that of the proposed in this work and the previously approved probabilistic cellular automaton (PCA) method. It has been shown that the main difference is due to certain limitations of the PCA method. The importance of accounting the intermolecular interactions via hydrogen bonding has been indicated. Further development of the adsorption-desorption processes modeling will allow to find the conditions for of surface processes regulation by means of quantity adsorbed molecules control. The proposed approach to representing the molecular system significantly shortens the calculation time in comparison with the use of atom-atom potentials. In the future, this will allow to modeling the multilayer adsorption at a reasonable computational cost.

  16. Kinetic Description of Heterogeneous Catalytic Processes Using Adsorption Substitution Reactions

    Science.gov (United States)

    Stytsenko, V. D.

    2018-02-01

    Complex heterogeneous catalytic processes involving strongly chemisorbed particles (SCPs) are considered: syntheses of methanol, pyrocatechol, and diphenylamine and hydrogenation of CO and benzene. Nonstationary transformations of SCPs (CO and benzene) during continuous analysis of the gas phase are studied with mass spectrometric, flame ionization and thermal conductivity detectors. It is shown that the adsorption substitution reaction (ASR) proceeds before catalysis under typical conditions of these processes; in other words, the substitution reaction, rather than Langmuir adsorption equilibrium, determines the composition of reactive species on the catalyst surface. Consequently, ASRs and chemical transformations of SCPs must be considered for kinetic description of heterogeneous catalytic processes. It is shown that the ASRs allow us to describe these catalytic processes simply and adequately, and the obtained models can be used for the regulation and optimization of processes.

  17. Optimization of startup and shutdown operation of simulated moving bed chromatographic processes.

    Science.gov (United States)

    Li, Suzhou; Kawajiri, Yoshiaki; Raisch, Jörg; Seidel-Morgenstern, Andreas

    2011-06-24

    This paper presents new multistage optimal startup and shutdown strategies for simulated moving bed (SMB) chromatographic processes. The proposed concept allows to adjust transient operating conditions stage-wise, and provides capability to improve transient performance and to fulfill product quality specifications simultaneously. A specially tailored decomposition algorithm is developed to ensure computational tractability of the resulting dynamic optimization problems. By examining the transient operation of a literature separation example characterized by nonlinear competitive isotherm, the feasibility of the solution approach is demonstrated, and the performance of the conventional and multistage optimal transient regimes is evaluated systematically. The quantitative results clearly show that the optimal operating policies not only allow to significantly reduce both duration of the transient phase and desorbent consumption, but also enable on-spec production even during startup and shutdown periods. With the aid of the developed transient procedures, short-term separation campaigns with small batch sizes can be performed more flexibly and efficiently by SMB chromatography. Copyright © 2011 Elsevier B.V. All rights reserved.

  18. Biodegradation and adsorption of antibiotics in the activated sludge process.

    Science.gov (United States)

    Li, Bing; Zhang, Tong

    2010-05-01

    The removal of 11 antibiotics of 6 classes, that is, two beta-lactams (ampicillin and cefalexin), two sulfonamides (sulfamethoxazole and sulfadiazine), three fluoroquinolones (norfloxacin, ofloxacin, and ciprofloxacin), one tetracyclines (tetracycline), two macorlides (roxithromycin and anhydro-erythromycin), and one others (trimethoprim), in activated sludge process was investigated using two series of batch reactors treating freshwater and saline sewage respectively. At environmental relevant concentrations tested in this study, biodegradation and adsorption were the major removal routes for the target antibiotics, where volatilization and hydrolysis were neglectable. Among the 11 target antibiotics, cefalexin and the two sulfonamides were predominantly removed by biodegradation in both freshwater and saline sewage systems. Ampicillin, norfloxacin, ciprofloxacin, ofloxacin, tetracycline, roxithromycin, and trimethoprim were mainly removed by adsorption. Divalent cations (Ca(2+) and Mg(2+)) in saline sewage significantly decreased the adsorption of the three fluoroquinolones onto activated sludge. These three fluoroquinolones also exhibited certain biodegradability in the saline activated sludge reactor. Erythromycin-H(2)O was persistent in both saline and freshwater systems under the experimental conditions and could not be removed at all. Kinetics study showed that biodegradation of cefalexin, the two sulfonamides and the three fluoroquinolones followed first-order model well (R(2): 0.921-0.997) with the rate constants ranging from 5.2 x 10(-3) to 3.6 x 10(-1) h(-1).

  19. IMAGING OF FLUOROPHORES IN CHROMATOGRAPHIC BEADS, RECONSTRUCTION OF RADIAL DENSITY DISTRIBUTIONS AND CHARACTERISATION OF PROTEIN UPTAKING PROCESSES

    Directory of Open Access Journals (Sweden)

    Bernd Stanislawski

    2010-11-01

    Full Text Available A new adjustment calculus is presented to determine the true intraparticle distribution of bound protein within chromatographic beads from confocal fluorescence slice series. The calculus does not require knowledge about optical properties of different chromatographic materials like refractive index and turbidity, but it depends on a parameter which can be adjusted interactively. The algorithm is of complexity O(n where n is the pixel number. From the reconstructed data we compute the parameters of the protein uptaking process using a model-based approach. It is demonstrated that the protein uptaking rates of the beads strongly dependent on the conditions of the fluid phase influencing the strength of protein surface interaction.

  20. Oil sand process-affected water treatment using coke adsorption

    Energy Technology Data Exchange (ETDEWEB)

    Gamal El-Din, M.; Pourrezaei, P.; Chelme-Ayala, P.; Zubot, W. [Alberta Univ., Edmonton, AB (Canada). Dept. of Civil and Environmental Engineering

    2010-07-01

    Oil sands operations generate an array of oil sands process-affected water (OSPW) that will eventually be released to the environment. This water must be evaluated within conventional and advanced water treatment technologies. Water management strategies propose options for increased reuse and recycling of water from settling ponds, as well as safe discharge. This presentation outlined the typical composition of OSPW. Constituents of concern in OSPW include suspended solids, hydrocarbons, salts, ammonia, trace metals, and dissolved organics such as naphthenic acids (NAs). Petroleum coke is one of the by-products generated from bitumen extraction in the oil sands industry and can be used as one of the possible treatment processes for the removal of organic compounds found in OSPW. Activated carbon adsorption is an effective process, able to adsorb organic substances such as oils, radioactive compounds, petroleum hydrocarbons, poly aromatic hydrocarbons and various halogenated compounds. The objectives of this study were to evaluate the production of activated carbon from petroleum coke using steam as the activation media; to determine the factors affecting the absorption of NAs; and to evaluate the activated coke adsorption capacity for the reduction of NAs and dissolved organic carbons present in OSPW. It was concluded that petroleum non-activated coke has the ability to decrease COD, alkalinity, and NA concentration. tabs., figs.

  1. Miniature, Low Power Gas Chromatograph with Sample Pre-Processing Capability and Enhanced G-Force Survivability for Planetary Missions, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Thorleaf Research, Inc. proposes to develop a miniaturized, low power gas chromatograph (GC) with sample pre-processing capability and enhanced capability for...

  2. Characterization and optimization of a chromatographic process based on ethylenediamine-N,N,N',N'-tetra(methylphosphonic) acid-modified zirconia particles.

    Science.gov (United States)

    Sarkar, Sabyasachi; Carr, Peter W; McNeff, Clayton V; Subramanian, Anu

    2003-06-25

    The primary objective of work was to characterize, optimize and model a chromatographic process based on ethylenediamine-N,N,N',N'-tetra(methylphosphonic) acid (EDTPA)-modified zirconia particles. Zirconia particles were produced by spray-drying colloidal zirconia. Zirconia spheres produced were further classified, calcined and modified with EDTPA to yield a solid-phase support for use in bio-chromatography (r_PEZ). Specifically, the ability of r_PEZ to selectively bind and enrich IgG, IgA, and IgM from biological fluids was evaluated and demonstrated. To better understand the force of interaction between the IgG and the r_PEZ, the equilibrium disassociation constant (K(d)) was determined by static binding isotherms, as a function of temperature and by frontal analysis at different linear velocities. The maximum static binding capacity (Q(max)) was found to be in the range 55-65 mg IgG per ml of beads, and unaffected by temperature. The maximum dynamic binding capacity (Q(x)) was found to be in the range 20-12 mg IgG per ml of beads. The adsorption rate constant (k(a)) was determined by a split-peak approach to be between 982 and 3242 l mol(-1) s(-1) depending on the linear velocity. The standard enthalpy and entropy values were estimated for this interaction of IgG with this novel support.

  3. Adsorption of ion pairs onto graphene flakes and impacts of counterions during the adsorption processes

    Science.gov (United States)

    Zhu, Chang; Yun, Jiena; Wang, Qian; Yang, Gang

    2018-03-01

    Although cations and anions are two integral constituents for all electrolytes, adsorption of ion pairs onto carbonaceous materials gains obviously less attention than adsorption of only cations or anions. Here DFT calculations are employed finding that four adsorption configurations emerge for KI onto graphene flakes (GF) instead of three for the other ion pairs. Reservation of ionic bonds is critical to their stabilities, and the bilateral configurations, where GFs couple with both cations and anions, are disfavored due to rupture of ionic bonds. Relative stabilities of two vertical configurations can be regulated and even reversed through edge-functionalization. Surprisingly, the horizontal adsorption configurations, which are global energy minima as long as present, are non-existent for a majority of ion pairs, and their existence or not is determined by the adsorption differences between halide ions and alkali ions (△Ead). Counterions effects for both cations and anions increase with the atomic electronegativities and cations correspond to stronger counterion effects; e.g., Li+ added on the other side of GFs promotes the adsorption of F- more pronouncedly than edge-functionalization. Mechanisms of electron transfers are also discussed, and three alteration patterns by counterions are observed for each type of adsorption configurations. Furthermore, addition of counterions causes band gaps to vary within a wider range that may be useful to design electronic devices.

  4. Simulation models for food separation by adsorption process

    African Journals Online (AJOL)

    Separation of simulated industrial food products, by method of adsorption, has been studied. A thermodynamic approach has been applied to study the liquid adsorption where benzene and cyclohexane have been used to simulate edible oils in a system that employs silica gel as the adsorbent. Different models suggested ...

  5. Simulation models for food separation by adsorption process | Aoyi ...

    African Journals Online (AJOL)

    Separation of simulated industrial food products, by method of adsorption, has been studied. A thermodynamic approach has been applied to study the liquid adsorption where benzene and cyclohexane have been used to simulate edible oils in a system that employs silica gel as the adsorbent. Different models suggested ...

  6. Adsorption of ofloxacin and norfloxacin on carbon nanotubes: hydrophobicity- and structure-controlled process.

    Science.gov (United States)

    Peng, Hongbo; Pan, Bo; Wu, Min; Liu, Ying; Zhang, Di; Xing, Baoshan

    2012-09-30

    Adsorption of antibiotics on solid particles is a key process controlling their fate in the subsurface. This study compared the adsorption of ofloxacin and norfloxacin (NOR) on carbon nanotubes (CNTs) to evaluate the role of structural and hydrophobic properties in regulating their adsorption. A significant relationship was observed between single-point adsorption coefficients (K(d)) and specific surface area (highly hydrophobic), but not between K(d)s and oxygen content. This result suggested that site-specific adsorption was not important but hydrophobic effect may have an important contribution to OFL and NOR adsorption on CNTs. However, normalizing the adsorption coefficients by OFL and NOR solubilities enlarged their adsorption difference indicating that hydrophobicity was not the only factor controlling the difference between OFL and NOR adsorption on CNTs. Their chemical structures show that both chemicals could interact with CNTs through an electron-donor-acceptor mechanism. This mechanism was correlated with the different adsorption of OFL and NOR on functionalized CNTs (namely hydroxylized, carboxylized, and graphitized CNTs). This study revealed that OFL and NOR adsorption was controlled by their both structural- and hydrophobic-properties. Copyright © 2012 Elsevier B.V. All rights reserved.

  7. Chromatographic hydrogen isotope separation

    International Nuclear Information System (INIS)

    Aldridge, F.T.

    1983-01-01

    Intermetallic compounds with the CaCu5 type of crystal structure, particularly LaNiCo and CaNi5, exhibit high separation factors and fast equilibrium times and therefore are useful for packing a chromatographic hydrogen isotope separation column. The addition of an inert metal to dilute the hydride improves performance of the column. A large scale multi-stage chromatographic separation process run as a secondary process off a hydrogen feedstream from an industrial plant which uses large volumes of hydrogen can produce large quantities of heavy water at an effective cost for use in heavy water reactors

  8. Chromatographic hydrogen isotope separation

    Science.gov (United States)

    Aldridge, F.T.

    Intermetallic compounds with the CaCu/sub 5/ type of crystal structure, particularly LaNiCo/sub 4/ and CaNi/sub 5/, exhibit high separation factors and fast equilibrium times and therefore are useful for packing a chromatographic hydrogen isotope separation column. The addition of an inert metal to dilute the hydride improves performance of the column. A large scale multi-stage chromatographic separation process run as a secondary process off a hydrogen feedstream from an industrial plant which uses large volumes of hydrogen cn produce large quantities of heavy water at an effective cost for use in heavy water reactors.

  9. An overview of adsorptive processes in refrigeration systems

    Directory of Open Access Journals (Sweden)

    Wolak Eliza

    2016-01-01

    Full Text Available Economic reasons and quest for new solutions based on recovering the energy have provoked an increase of interest in the adsorption technology in the refrigeration industry. The confirmation can be the fact that number of published research is on rise. Adsorption appliances may turn out to be an alternative to compression-type coolers. They use ecological chemical agents instead of substances which are aggressive and harmful to the environment. For regeneration of adsorptive refrigeration systems one can use cheap energy in a form of: industrial waste heat, energy of solar radiation and cheap electric power. The paper presents principles of operation as well as advantages and disadvantages of adsorptive refrigeration systems. Basing on literature the most frequently used adsorbent – adsorbate systems – which are employed in refrigeration industry – have been characterized. A review of construction solutions of systems on both laboratory and industrial scale has been made.

  10. General framework for adsorption processes on dynamic interfaces

    International Nuclear Information System (INIS)

    Schmuck, Markus; Kalliadasis, Serafim

    2016-01-01

    We propose a novel and general variational framework modelling particle adsorption mechanisms on evolving immiscible fluid interfaces. A by-product of our thermodynamic approach is that we systematically obtain analytic adsorption isotherms for given equilibrium interfacial geometries. We validate computationally our mathematical methodology by demonstrating the fundamental properties of decreasing interfacial free energies by increasing interfacial particle densities and of decreasing surface pressure with increasing surface area. (paper)

  11. Optimization and Control of Pressure Swing Adsorption Processes Under Uncertainty

    KAUST Repository

    Khajuria, Harish

    2012-03-21

    The real-time periodic performance of a pressure swing adsorption (PSA) system strongly depends on the choice of key decision variables and operational considerations such as processing steps and column pressure temporal profiles, making its design and operation a challenging task. This work presents a detailed optimization-based approach for simultaneously incorporating PSA design, operational, and control aspects under the effect of time variant and invariant disturbances. It is applied to a two-bed, six-step PSA system represented by a rigorous mathematical model, where the key optimization objective is to maximize the expected H2 recovery while achieving a closed loop product H2 purity of 99.99%, for separating 70% H2, 30% CH4 feed. The benefits over sequential design and control approach are shown in terms of closed-loop recovery improvement of more than 3%, while the incorporation of explicit/multiparametric model predictive controllers improves the closed loop performance. © 2012 American Institute of Chemical Engineers (AIChE).

  12. Gel adsorption processing for waste solidification in NZP ceramics

    International Nuclear Information System (INIS)

    Yang, L.J.; Komareni, S.; Roy, R.

    1984-01-01

    Simulated PW-4b waste solution along with Na additive was mixed with Zr-P-O gel, dried and then fired to form the desired sodium zirconium phosphate, NaZr 2 (PO 4 ) 3 [NZP] ceramic. NZP and monazite were the only phases produced upon firing at 900 0 C with 10 to 40% of PW-4b mixed with the gel. CsZr 2 (PO 4 ) 3 which is isostructural with NZP was also identified when fired under reducing conditions. The -200 mesh powders of these waste forms prepared under reducing conditions showed excellent leach resistance under hydro-thermal conditions. Alternatively, PW-4b and Three Mile Island (TMI) wastes were adsorbed on Zr-P-O gel in a column. The gel was dried, pelletized and fired to form the desired [NZP] ceramic. Cesium was found to be selective on the Zr-P-O gel because no breakthrough of Cs was detected up to 38 column volumes of TMI waste. Thus, it is possible to use a tailored gel to sorb Cs and/or Sr from accident waste water and then fire the bed to form the [NZP] ceramic below 1000 0 C. The main advantages of the gel adsorption process are its simplicity and its enormous compositional flexibility. 12 references, 2 figures, 4 tables

  13. Automated-process gas-chromatograph system for use in accelerated corrosion testing of HTGR core-support posts

    International Nuclear Information System (INIS)

    Harper, R.E.; Herndon, P.G.

    1982-01-01

    An automated-process gas chromatograph is the heart of a gaseous-impurities-analysis system developed for the Oak Ridge National Laboratory Core Support Performance Test, at which graphite core-support posts for high-temperature gas-cooled fission reactors are being subjected to accelerated corrosion tests under tightly controlled conditions of atmosphere and temperature. Realistic estimation of in-core corrosion rates is critically dependent upon the accurate measurement of low concentrations of CO, CO 2 , CH 4 , H 2 , and O 2 in the predominantly helium atmosphere. In addition, the capital and labor investment associated with each test puts a premium upon the reliability of the analytical system, as excessive downtime or failure to obtain accurate data would result in unacceptable costs and schedule delays. After an extensive survey of available measurement techniques, gas chromatography was chosen for reasons of accuracy, flexibility, good-performance record, and cost

  14. Use of adsorption process to remove organic mercury thimerosal from industrial process wastewater.

    Science.gov (United States)

    Velicu, Magdalena; Fu, Hongxiang; Suri, Rominder P S; Woods, Kevin

    2007-09-30

    Carbon adsorption process is tested for removal of high concentration of organic mercury (thimerosal) from industrial process wastewater, in batch and continuously flow through column systems. The organic mercury concentration in the process wastewater is about 1123 mg/L due to the thimerosal compound. Four commercially available adsorbents are tested for mercury removal and they are: Calgon F-400 granular activated carbon (GAC), CB II GAC, Mersorb GAC and an ion-exchange resin Amberlite GT73. The adsorption capacity of each adsorbent is described by the Freundlich isotherm model at pH 3.0, 9.5 and 11.0 in batch isotherm experiments. Acidic pH was favorable for thimerosal adsorption onto the GACs. Columns-in-series experiments are conducted with 30-180 min empty bed contact times (EBCTs). Mercury breakthrough of 30 mg/L occurred after about 47 h (96 Bed Volume Fed (BVF)) of operation, and 97 h (197 BVF) with 120 min EBCT and 180 min EBCT, respectively. Most of the mercury removal is attributed to the 1st adsorbent column. Increase in contact time by additional adsorbent columns did not lower the effluent mercury concentration below 30 mg/L. However, at a lower influent wastewater pH 3, the mercury effluent concentration decreased to less than 7 mg/L for up to 90 h of column operation (183 BVF).

  15. Adsorption of Xyloglucan onto Cellulose Surfaces of Different Morphologies: An Entropy-Driven Process.

    Science.gov (United States)

    Benselfelt, Tobias; Cranston, Emily D; Ondaral, Sedat; Johansson, Erik; Brumer, Harry; Rutland, Mark W; Wågberg, Lars

    2016-09-12

    The temperature-dependence of xyloglucan (XG) adsorption onto smooth cellulose model films regenerated from N-methylmorpholine N-oxide (NMMO) was investigated using surface plasmon resonance spectroscopy, and it was found that the adsorbed amount increased with increasing temperature. This implies that the adsorption of XG to NMMO-regenerated cellulose is endothermic and supports the hypothesis that the adsorption of XG onto cellulose is an entropy-driven process. We suggest that XG adsorption is mainly driven by the release of water molecules from the highly hydrated cellulose surfaces and from the XG molecules, rather than through hydrogen bonding and van der Waals forces as previously suggested. To test this hypothesis, the adsorption of XG onto cellulose was studied using cellulose films with different morphologies prepared from cellulose nanocrystals (CNC), semicrystalline NMMO-regenerated cellulose, and amorphous cellulose regenerated from lithium chloride/dimethylacetamide. The total amount of high molecular weight xyloglucan (XGHMW) adsorbed was studied by quartz crystal microbalance and reflectometry measurements, and it was found that the adsorption was greatest on the amorphous cellulose followed by the CNC and NMMO-regenerated cellulose films. There was a significant correlation between the cellulose dry film thickness and the adsorbed XG amount, indicating that XG penetrated into the films. There was also a correlation between the swelling of the films and the adsorbed amounts and conformation of XG, which further strengthened the conclusion that the water content and the subsequent release of the water upon adsorption are important components of the adsorption process.

  16. Automated chromatographic system with polarimetric detection laser applied in the control of fermentation processes and seaweed extracts characterization

    International Nuclear Information System (INIS)

    Fajer, V.; Naranjo, S.; Mora, W.; Patinno, R.; Coba, E.; Michelena, G.

    2012-01-01

    There are presented applications and innovations of chromatographic and polarimetric systems in which develop methodologies for measuring the input molasses and the resulting product of a fermentation process of alcohol from a rich honey and evaluation of the fermentation process honey servery in obtaining a drink native to the Yucatan region. Composition was assessed optically active substances in seaweed, of interest to the pharmaceutical industry. The findings provide measurements alternative raw materials and products of the sugar industry, beekeeping and pharmaceutical liquid chromatography with automated polarimetric detection reduces measurement times up to 15 min, making it comparable to the times of high chromatography resolution, significantly reducing operating costs. By chromatography system with polarimetric detection (SCDP) is new columns have included standard size designed by the authors, which allow process samples with volumes up to 1 ml and reduce measurement time to 15 min, decreasing to 5 times the volume sample and halving the time of measurement. Was evaluated determining the concentration of substances using the peaks of the chromatograms obtained for the different columns and calculate the uncertainty of measurements. The results relating to the improvement of a data acquisition program (ADQUIPOL v.2.0) and new programs for the preparation of chromatograms (CROMAPOL CROMAPOL V.1.0 and V.1.2) provide important benefits, which allow a considerable saving of time the processing of the results and can be applied in other chromatography systems with the appropriate adjustments. (Author)

  17. Adsorption of ofloxacin and norfloxacin on carbon nanotubes: Hydrophobicity- and structure-controlled process

    Energy Technology Data Exchange (ETDEWEB)

    Peng, Hongbo [Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650093 (China); Pan, Bo, E-mail: panbocai@gmail.com [Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650093 (China); Wu, Min; Liu, Ying; Zhang, Di [Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650093 (China); Xing, Baoshan [Department of Plant, Soil and Insect Sciences, University of Massachusetts, Amherst, MA 01003 (United States)

    2012-09-30

    Highlights: Black-Right-Pointing-Pointer A significant relationship between K{sub d} and SSA for both OFL and NOR on CNTs. Black-Right-Pointing-Pointer No relationship was observed between K{sub d}s and oxygen content of CNTs. Black-Right-Pointing-Pointer Normalizing K{sub d}s by solubilites enlarged OFL and NOR sorption difference. Black-Right-Pointing-Pointer OFL and NOR sorption was controlled by their structural- and hydrophobic-properties. - Abstract: Adsorption of antibiotics on solid particles is a key process controlling their fate in the subsurface. This study compared the adsorption of ofloxacin and norfloxacin (NOR) on carbon nanotubes (CNTs) to evaluate the role of structural and hydrophobic properties in regulating their adsorption. A significant relationship was observed between single-point adsorption coefficients (K{sub d}) and specific surface area (highly hydrophobic), but not between K{sub d}s and oxygen content. This result suggested that site-specific adsorption was not important but hydrophobic effect may have an important contribution to OFL and NOR adsorption on CNTs. However, normalizing the adsorption coefficients by OFL and NOR solubilities enlarged their adsorption difference indicating that hydrophobicity was not the only factor controlling the difference between OFL and NOR adsorption on CNTs. Their chemical structures show that both chemicals could interact with CNTs through an electron-donor-acceptor mechanism. This mechanism was correlated with the different adsorption of OFL and NOR on functionalized CNTs (namely hydroxylized, carboxylized, and graphitized CNTs). This study revealed that OFL and NOR adsorption was controlled by their both structural- and hydrophobic-properties.

  18. Finite Element Modeling of Adsorption Processes for Gas Separation and Purification

    International Nuclear Information System (INIS)

    Humble, Paul H.; Williams, Richard M.; Hayes, James C.

    2009-01-01

    Pacific Northwest National Laboratory (PNNL) has expertise in the design and fabrication of automated radioxenon collection systems for nuclear explosion monitoring. In developing new systems there is an ever present need to reduce size, power consumption and complexity. Most of these systems have used adsorption based techniques for gas collection and/or concentration and purification. These processes include pressure swing adsorption, vacuum swing adsorption, temperature swing adsorption, gas chromatography and hybrid processes that combine elements of these techniques. To better understand these processes, and help with the development of improved hardware, a finite element software package (COMSOL Multiphysics) has been used to develop complex models of these adsorption based operations. The partial differential equations used include a mass balance for each gas species and adsorbed species along with a convection conduction energy balance equation. These equations in conjunction with multicomponent temperature dependent isotherm models are capable of simulating separation processes ranging from complex multibed PSA processes, and multicomponent temperature programmed gas chromatography, to simple two component temperature swing adsorption. These numerical simulations have been a valuable tool for assessing the capability of proposed processes and optimizing hardware and process parameters.

  19. Adsorption of hydrogen gas and redox processes in clays.

    Science.gov (United States)

    Didier, Mathilde; Leone, Laura; Greneche, Jean-Marc; Giffaut, Eric; Charlet, Laurent

    2012-03-20

    In order to assess the adsorption properties of hydrogen gas and reactivity of adsorbed hydrogen, we measured H(2)(g) adsorption on Na synthetic montmorillonite-type clays and Callovo-Oxfordian (COx) clayrock using gas chromatography. Synthetic montmorillonites with increasing structural Fe(III) substitution (0 wt %, 3.2 wt %, and 6.4 wt % Fe) were used. Fe in the synthetic montmorillonites is principally present as structural Fe(III) ions. We studied the concomitant reduction of structural Fe(III) in the clays using (57)Fe Mössbauer spectrometry. The COx, which mainly contains smectite/illite and calcite minerals, is also studied together with the pure clay fraction of this clayrock. Experiments were performed with dry clay samples which were reacted with hydrogen gas at 90 and 120 °C for 30 to 45 days at a hydrogen partial pressure close to 0.45 bar. Results indicate that up to 0.11 wt % of hydrogen is adsorbed on the clays at 90 °C under 0.45 bar of relative pressure. (57)Fe Mössbauer spectrometry shows that up to 6% of the total structural Fe(III) initially present in these synthetic clays is reduced upon adsorption of hydrogen gas. No reduction is observed with the COx sample in the present experimental conditions.

  20. Adsorption of Chrysoidine R by using fly ash in batch process

    International Nuclear Information System (INIS)

    Matheswaran, Manickam; Karunanithi, Thirugnanam

    2007-01-01

    This investigation deals with effective utilization of fly ash as adsorbent for the removal of Chrysoidine R from the aqueous solution. The fly ash is a major byproduct generated in coal-based thermal power plants and has good potential for use as an adsorbent. A series of experiments were carried out in a batch adsorption technique to obtain the effect of process variables viz. contact time, pH (2, 4, 6 and 8) initial concentration of the dye (400, 600, 800 and 1000 mg L -1 ), amount of the adsorbent (125, 250, 375 and 500 mg L -1 ), and temperature (303, 313, 323 and 333 K) on adsorption. The concentration of dye was determined by spectrophotometer. The results showed that as the amount of the adsorbent was increased, the percentage of dye removal increased accordingly; higher adsorption percentage was observed at lower concentration of chrysoidine. The adsorption data were analyzed using Langmuir and Freundlich isotherms. The adsorption was found to obey pseudo-first order kinetics. An intra particle diffusion model was used to fit the experimental data. The thermodynamic parameters such as standard change in free energy, enthalpy and entropy of adsorption have been calculated. Adsorption of Chrysoidine R on fly ash was found to be an exothermic reaction

  1. Study of the adsorption/oxidation coupling for the processing of industrial gaseous effluents; Etude du couplage adsorption / oxydation pour le traitement des effluents gazeux industriels

    Energy Technology Data Exchange (ETDEWEB)

    Monneyron, P.; Manero, M.H.; Foussard, J.N. [Institut National des Sciences Appliquees (INSA), Genie des Procedes Industriels, Lab. d' Ingenierie des Procedes de l' Environnement, 31 - Toulouse (France); Benoit-Marquie, F; Maurette, M.T. [Universite Paul Sabatier, Lab. des Interactions Moleculaires et Reactivite Chimique et Photochimique, 31 - Toulouse (France)

    2001-07-01

    This study presents a process for the abatement of the volatile organic compounds of industrial gaseous effluents. This process uses hydrophobous zeolites as adsorbent in order to avoid any risk of ignition during the adsorption of ketones. Adsorption is coupled with oxidation in the same reactor for the regeneration of the adsorbent. Two oxidation processes are evaluated: the regeneration by ozonized air and the UV photo-catalysis. (J.S.)

  2. Study the influence factors to the adsorption process for separation of polyphenols from green tea

    Science.gov (United States)

    Phung, Lan Huong; Tran, Trung Kien; Van Quyet, Chu; Phi, Nguyen Thien

    2017-09-01

    The objective of this work is applying adsorption process for separation of polyphenols from extract solution of green tea by-product. The older leaves and stem of green tea tree are collected from Hiep Khanh Tea Company (Hoabinh province, Vietnam). In this study, two kinds of adsorbent (silicagel, active carbon) were applied for the adsorption process in batch stirring vessel. The factors that affected to the process productivity were investigated: temperature, solid/liquid ratio, duration time, stirring speed. The process has been empirically described with statistical models obtained by Design of Experiments. The results indicated that active carbon was verified to offer good adsorption productivity (more than 95%), much more effective than silicagel (with only about 20%). From the model, the most affected factor to the process could be seen as solid/liquid ratio.

  3. Modeling of the Contact-Adsorption-Regeneration (CAR) activated sludge process.

    Science.gov (United States)

    Liu, Shao-Gen; Ni, Bing-jie; Li, Wen-Wei; Sheng, Guo-Ping; Tang, Yong; Yu, Han-Qing

    2011-02-01

    Contact-Adsorption-Regeneration (CAR) process is a cost-effective system for wastewater treatment and has a potential for application in less-developed regions. To offer a better understanding of this process, a mathematical model was established on the basis of Activated Sludge Model No. 1 (ASM1) and by incorporating the adsorption and different hydrolysis processes. The model predictions were compared with the measured data in terms of effluent concentrations and removals of both chemical oxygen demand (COD) and NH(4)(+)-N. A good agreement between the predicted and measured data was observed, indicating that the model was capable of predicting the rapid adsorption, COD removal and nitrification processes in the CAR system. This work provides an experimental and theoretical basis for the application of the CAR process in less-developed regions. Copyright © 2010 Elsevier Ltd. All rights reserved.

  4. Use of activated carbon adsorption in conjunction with radiation treatment processes

    International Nuclear Information System (INIS)

    Dickson, L.W.; Lopata, V.J.; Toft-Hall, A.; Kremers, W.; Singh, A.

    1988-01-01

    This report presents the results of an assessment of the potential applications of combined adsorption-irradiation treatment processes. The rationale for the study was to determine whether the cost of radiation treatment could be reduced by concentrating target species on an adsorbent in the radiation field. Several different studies on adsorption-irradiation treatment were identified in the literature, and experimental work was done on both the conversion of sulphur dioxide to elemental sulphur, and the removal of trihalomethanes from water by adsorption on activated carbon and subsequent irradiation. Adsorption-irradiation treatment would appear to be less costly than irradiation alone for radiolytic decomposition of target species at low concentration in liquid streams, in the presence of high-surface-area, electrically insulating adsorbents. 116 refs

  5. Processes of adsorption/desorption of iodides and cadmium cations onto/from Ag(111

    Directory of Open Access Journals (Sweden)

    VLADIMIR D. JOVIĆ

    2011-02-01

    Full Text Available In this work, the adsorption/desorption processes of iodides and cadmium cations in the presence of iodides onto/from Ag(111 were investigated. It was shown that both processes were complex, characterized by several peaks on the cyclic voltammograms (CVs. By PeakFit analysis of the recorded CVs and subsequent fitting of the obtained peaks by the Frumkin adsorption isotherm, the interaction parameter (f and the Gibbs energy of adsorption (DGads for each adsorbed phase were determined. In the case of iodide adsorption, four peaks were characterized by negative values of f, indicating attractive lateral interaction between the adsorbed anions, while two of them possessed value of f < –4, indicating phase transition processes. The adsorption/desorption processes of cadmium cations (underpotential deposition – UPD of cadmium in the presence of iodide anions was characterized by two main peaks, each of them being composed of two or three peaks with negative values of f. By the analysis of charge vs. potential dependences obtained either from the CVs or current transients on potentiostatic pulses, it was concluded that adsorbed iodides did not undergo desorption during the process of Cd UPD, but became replaced by Cd ad-atoms and remained adsorbed on top of a Cd layer and/or in between Cd the ad-atoms.

  6. Unfolding and aggregation of a glycosylated monoclonal antibody on a cation exchange column. Part I. Chromatographic elution and batch adsorption behavior.

    Science.gov (United States)

    Guo, Jing; Zhang, Shaojie; Carta, Giorgio

    2014-08-22

    A glycosylated IgG2 monoclonal antibody exhibits a two-peak elution behavior when loaded on a strong cation exchange column and eluted with either a linear salt gradient or two salt steps at increasing salt concentrations. The two-peak behavior is more pronounced for conditions where the initial antibody binding is stronger, i.e. at lower pH and buffer concentration, where the hold time prior to elution is longer, where the protein mass load is lower, and where the load flow rate is higher. The effect is also dependent on the resin type, being prominent for the polymer-functionalized resin Fractogel EMD SO₃(-) and virtually absent for a macroporous resin with similar backbone but no grafted polymers. Size exclusion chromatography and dynamic light scattering show that the early eluting peak consists exclusively of the native monomeric species while the late eluting peak is a mixture of monomeric and aggregated species. Batch adsorption/desorption experiments show that the bound protein can be desorbed in two steps, with a fraction desorbed in 0.33 M NaCl, corresponding to native monomer, and a second fraction desorbed in 1M NaCl. The latter fraction decreases with protein mass load and becomes almost negligible when the resin is initially completely saturated with protein. Confocal laser scanning microscopy showed that the two-peak elution/desorption behavior is related to the unique kinetics of protein binding in the Fractogel resin. Following partial loading of the resin, the bound protein migrates toward the center of the particles during a hold step and is redistributed across the particle volume attaining low local bound protein concentrations. For these conditions the protein is apparently destabilized forming a strongly-bound unfolded intermediate that, in turn, generates aggregates upon elution in high salt. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. Coupling of Spinosad Fermentation and Separation Process via Two-Step Macroporous Resin Adsorption Method.

    Science.gov (United States)

    Zhao, Fanglong; Zhang, Chuanbo; Yin, Jing; Shen, Yueqi; Lu, Wenyu

    2015-08-01

    In this paper, a two-step resin adsorption technology was investigated for spinosad production and separation as follows: the first step resin addition into the fermentor at early cultivation period to decrease the timely product concentration in the broth; the second step of resin addition was used after fermentation to adsorb and extract the spinosad. Based on this, a two-step macroporous resin adsorption-membrane separation process for spinosad fermentation, separation, and purification was established. Spinosad concentration in 5-L fermentor increased by 14.45 % after adding 50 g/L macroporous at the beginning of fermentation. The established two-step macroporous resin adsorption-membrane separation process got the 95.43 % purity and 87 % yield for spinosad, which were both higher than that of the conventional crystallization of spinosad from aqueous phase that were 93.23 and 79.15 % separately. The two-step macroporous resin adsorption method has not only carried out the coupling of spinosad fermentation and separation but also increased spinosad productivity. In addition, the two-step macroporous resin adsorption-membrane separation process performs better in spinosad yield and purity.

  8. Phosphorus removal from aqueous solution in parent and aluminum-modified eggshells: thermodynamics and kinetics, adsorption mechanism, and diffusion process.

    Science.gov (United States)

    Guo, Ziyan; Li, Jiuhai; Guo, Zhaobing; Guo, Qingjun; Zhu, Bin

    2017-06-01

    Parent and aluminum-modified eggshells were prepared and characterized with X-ray diffraction, specific surface area measurements, infrared spectroscopy, zeta potential, and scanning electron microscope, respectively. Besides, phosphorus adsorptions in these two eggshells at different temperatures and solution pH were carried out to study adsorption thermodynamics and kinetics as well as the mechanisms of phosphorus adsorption and diffusion. The results indicated that high temperature was favorable for phosphorus adsorption in parent and aluminum-modified eggshells. Alkaline solution prompted phosphorus adsorption in parent eggshell, while the maximum adsorption amount was achievable at pH 4 in aluminum-modified eggshell. Adsorption isotherms of phosphorus in these eggshells could be well described by Langmuir and Freundlich models. Phosphorus adsorption amounts in aluminum-modified eggshell were markedly higher compared to those in parent eggshell. Adsorption heat indicated that phosphorus adsorption in parent eggshell was a typically physical adsorption process, while chemical adsorption mechanism of ion exchange between phosphorus and hydroxyl groups on the surface of eggshells was dominated in aluminum-modified eggshell. The time-resolved uptake curves showed phosphorus adsorption in aluminum-modified eggshell was significantly faster than that in parent eggshell. Moreover, there existed two clear steps in time-resolved uptake curves of phosphorus in parent eggshell. Based on pseudo-second order kinetic model and intraparticle diffusion model, we inferred more than one process affected phosphorus adsorption. The first process was the diffusion of phosphorus through water to external surface and the opening of pore channel in the eggshells, and the second process was mainly related to intraparticle diffusion.

  9. Mechanism of Cu(II) adsorption inhibition on biochar by its aging process.

    Science.gov (United States)

    Guo, Yue; Tang, Wei; Wu, Jinggui; Huang, Zhaoqin; Dai, Jingyu

    2014-10-01

    Biochar exposed in the environment may experience a series of surface changes, which is called biochar aging. In order to study the effects of biochar aging on Cu(II) adsorption, we analyzed the surface properties before and after biochar aging with scanning electron microscopy (SEM) coupled to an energy-dispersive X-ray spectrometer (EDX) and diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS), and then explored the influence of the aging process on Cu(II) adsorption by batch experiments. After the aging process, the oxygen concentration, phenolic hydroxyl groups, aromatic ethers and other oxygen-containing functional groups on the biochar surface increased, while carboxyl groups slightly decreased. Thus, over a range of pH, the cation exchange capacity (CEC) and adsorption capacity of Cu(II) on the aged biochar were smaller than those of new biochar, indicating that when biochar is incubated at constant temperature and water holding capacity in the dark, the aging process may inhibit Cu(II) adsorption. Meanwhile, the dissociation characteristics of oxygen-containing functional groups changed through the aging process, which may be the mechanism by which the biochar aging process inhibits the Cu(II) adsorption. Carboxyl groups became more easily dissociated at low pH (3.3-5.0), and the variation of maximum adsorption capability (qm) of Cu(II) on the old biochar was enlarged. Phenolic hydroxyl groups increased after the aging, making them and carboxyl groups more difficult to dissociate at high pH (5.0-6.8), and the variation of qm of Cu(II) on the aged biochar was reduced. Copyright © 2014. Published by Elsevier B.V.

  10. A review of the thermodynamics of protein association to ligands, protein adsorption, and adsorption isotherms

    DEFF Research Database (Denmark)

    Mollerup, Jørgen

    2008-01-01

    The application of thermodynamic models in the development of chromatographic separation processes is discussed. The paper analyses the thermodynamic principles of protein adsorption. It can be modeled either as a reversible association between the adsorbate and the ligands or as a steady......-state process where the rate of adsorption is equal to the rate of desorption. The analysis includes the competitive Langmuir isotherm and the exponentially modified Langmuir isotherm. If the adsorbate binds to one ligand only, the different approaches become identical. When the adsorbate acts as a ligand...

  11. Adsorption process to recover hydrogen from feed gas mixtures having low hydrogen concentration

    Science.gov (United States)

    Golden, Timothy Christopher; Weist, Jr., Edward Landis; Hufton, Jeffrey Raymond; Novosat, Paul Anthony

    2010-04-13

    A process for selectively separating hydrogen from at least one more strongly adsorbable component in a plurality of adsorption beds to produce a hydrogen-rich product gas from a low hydrogen concentration feed with a high recovery rate. Each of the plurality of adsorption beds subjected to a repetitive cycle. The process comprises an adsorption step for producing the hydrogen-rich product from a feed gas mixture comprising 5% to 50% hydrogen, at least two pressure equalization by void space gas withdrawal steps, a provide purge step resulting in a first pressure decrease, a blowdown step resulting in a second pressure decrease, a purge step, at least two pressure equalization by void space gas introduction steps, and a repressurization step. The second pressure decrease is at least 2 times greater than the first pressure decrease.

  12. A Tire-Sulfur Hybrid Adsorption Denitrification (T-SHAD) process for decentralized wastewater treatment.

    Science.gov (United States)

    Krayzelova, Lucie; Lynn, Thomas J; Banihani, Qais; Bartacek, Jan; Jenicek, Pavel; Ergas, Sarina J

    2014-09-15

    Nitrogen discharges from decentralized wastewater treatment (DWT) systems contribute to surface and groundwater contamination. However, the high variability in loading rates, long idle periods and lack of regular maintenance presents a challenge for biological nitrogen removal in DWT. A Tire-Sulfur Hybrid Adsorption Denitrification (T-SHAD) process was developed that combines nitrate (NO3(-)) adsorption to scrap tire chips with sulfur-oxidizing denitrification. This allows the tire chips to adsorb NO3(-) when the influent loading exceeds the denitrification capacity of the biofilm and release it when NO3(-) loading rates are low (e.g. at night). Three waste products, scrap tire chips, elemental sulfur pellets and crushed oyster shells, were used as a medium in adsorption, leaching, microcosm and up-flow packed bed bioreactor studies of NO3(-) removal from synthetic nitrified DWT wastewater. Adsorption isotherms showed that scrap tire chips have an adsorption capacity of 0.66 g NO3(-)-N kg(-1) of scrap tires. Leaching and microcosm studies showed that scrap tires leach bioavailable organic carbon that can support mixotrophic metabolism, resulting in lower effluent SO4(2-) concentrations than sulfur oxidizing denitrification alone. In column studies, the T-SHAD process achieved high NO3(-)-N removal efficiencies under steady state (90%), variable flow (89%) and variable concentration (94%) conditions. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Removal of phthalates and pharmaceuticals from municipal wastewater by graphene adsorption process.

    Science.gov (United States)

    Yang, Gordon C C; Tang, Pei-Ling

    2016-01-01

    In this work graphene was used for evaluation of its adsorption behavior and performance in removing phthalate esters and pharmaceuticals in municipal wastewater. Di-n-butyl phthalate (DnBP), di-(2-ethylhexyl) phthalate (DEHP), acetaminophen (ACE), caffeine (CAF), cephalexin (CLX), and sulfamethoxazole (SMX) were emerging contaminants (ECs) with detection frequencies over 92% in a one-year monitoring of the occurrence of ECs in influent samples of a sewage treatment plant in Taiwan. Thus, these ECs were selected as the target contaminants for removal by graphene adsorption process. Experimental results showed that the adsorption isotherm data were fitted well to Langmuir model equation. It was also found that the adsorption process obeyed the pseudo-second-order kinetics. A graphene dosage of 0.1 g/L and adsorption time of 12 h were found to be the optimal operating conditions for the ECs of concern in model solutions in a preliminary study. By using the determined optimal operating conditions for removal of such ECs in actual municipal wastewater, removal efficiencies for various ECs were obtained and given as follows: (1) DnBP, 89%, (2) DEHP, 86%, (3) ACE, 43%, (4) CAF, 84%, (5) CLX, 81%, and (6) SMX, 34%.

  14. A STUDY ON INTERACTION OF Cd(II AND DIATOMACEOUS EARTH IN ADSORPTION PROCESS

    Directory of Open Access Journals (Sweden)

    Nuryono Nuryono

    2010-06-01

    Full Text Available In this research, interaction occurring in adsorption process between Cd(II and active site of diatomaceous earth has been studied. The study was carried out by evaluating Cd(II adsorption on diatomaceous earth at various pHs, either for the earths without treatment, those after being heated or those treated with sulfuric acid and hydrogen chloride. Adsorption was performed by mixing diatomaceous earth, without and with treatments, and Cd(II solution for one hour at various pHs (2 - 7, and un-adsorbed metallic ion was analyzed by atomic absorption spectroscopy (AAS. The treatments of diatomaceous earth included heating at temperatures of 300, 500, and 900oC for four hours, treatments with acids (3, 8, and 12 M of H2SO4, and 3, 15, and 18 M of HCl solutions for two hours at 150-200oC. Results showed that the increasing of pH from 2.0 to 3.0 and from 6.0 to 7.0 inclined adsorption of Cd(II from 13.2 to 23.3 mg/g and from 24.0 to 26.4 mg/g, respectively. At a pH range of 3.0 - 6.0 the adsorption slightly increase from 23.3 to 24.0 mg/g. Heating of diatomaceous earth higher than 500oC caused the adsorption capability to be independence of the pH of solution. On the other hand, treatments with acids (H2SO4 and HCl caused adsorption capability increased significantly with the increase in pH from 3.0 to 6.0. Adsorption evaluation at the pH range investigated showed that adsorption of Cd(II on diatomaceous earth may be through interaction between Cd2+ and functional groups of T-OH (T = Si/Al.   Keywords: adsorption, adsorbent, cadmium, diatomaceous earth

  15. Ten years of experience in extraction chromatographic processes for the recovery, separation and purification of actinides elements

    International Nuclear Information System (INIS)

    Madic, C.; Bourges, J.; Koehly, G.

    1984-06-01

    Ten years ago the extraction chromatographic technique was developed for preparative purposes and is now applied for all chemicals separations needed for the production of actinides isotopes. That technique appears to be simple and flexible. It can be used for the production of microgram to kilogram amounts of actinide isotopes. This paper focuses on the experience gained and describes some peculiar production of actinide isotopes solved by using extraction chromatographic technique. After a review of extracting molecules and equipment, treatment of irradiated targets (preparation of Pu 238 and removal of neptunium, production of Am 243 and Cm 244), recovery of actinides from alpha aqueous wastes (preparation of Am 241) and recovery of decay products from aged actinide stocks (recovery of Am 241 from Pu stocks, of U 234 from Pu 238 stocks) are described

  16. Adsorption of aluminum and lead from wastewater by chitosan-tannic acid modified biopolymers: Isotherms, kinetics, thermodynamics and process mechanism.

    Science.gov (United States)

    Badawi, M A; Negm, N A; Abou Kana, M T H; Hefni, H H; Abdel Moneem, M M

    2017-06-01

    Chitosan was reacted by tannic acid to obtain three modified chitosan biopolymer. Their chemical structures were characterized by FTIR and elemental analysis. The prepared biopolymers were used to adsorb Al(III) and Pb(II) metal ions from industrial wastewater. The factors affecting the adsorption process were biosorbent amount, initial concentration of metal ion and pH of the medium. The adsorption efficiency increased considerably with the increase of the biosorbent amount and pH of the medium. The adsorption process of biosorbent on different metal ions was fitted by Freundlich adsorption model. The adsorption kinetics was followed Pseudo-second-order kinetic model. The adsorption process occurred according to diffusion mechanism which was confirmed by the interparticle diffusion model. The modified biopolymers were efficient biosorbents for removal of Pb(II) and Al(III) metal ions from the medium. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Petroleum coke adsorption as a water management option for oil sands process-affected water

    International Nuclear Information System (INIS)

    Zubot, Warren; MacKinnon, Michael D.; Chelme-Ayala, Pamela; Smith, Daniel W.; Gamal El-Din, Mohamed

    2012-01-01

    Water is integral to both operational and environmental aspects of the oil sands industry. A water treatment option based on the use of petroleum coke (PC), a by-product of bitumen upgrading, was examined as an opportunity to reduce site oil sands process-affected water (OSPW) inventories and net raw water demand. Changes in OSPW quality when treated with PC included increments in pH levels and concentrations of vanadium, molybdenum, and sulphate. Constituents that decreased in concentration after PC adsorption included total acid-extractable organics (TAO), bicarbonate, calcium, barium, magnesium, and strontium. Changes in naphthenic acids (NAs) speciation were observed after PC adsorption. A battery of bioassays was used to measure the OSPW toxicity. The results indicated that untreated OSPW was toxic towards Vibrio fischeri and rainbow trout. However, OSPW treated with PC at appropriate dosages was not acutely toxic towards these test organisms. Removal of TAO was found to be an adsorption process, fitting the Langmuir and Langmuir–Freundlich isotherm models. For TAO concentrations of 60 mg/L, adsorption capacities ranged between 0.1 and 0.46 mg/g. This study demonstrates that freshly produced PC from fluid cokers provides an effective treatment of OSPW in terms of key constituents' removal and toxicity reduction. - Highlights: ► Treatment of oil sands process-affected water (OSPW) using petroleum coke (PC) adsorption was investigated. ► PC was effective at adsorbing naphthenic acids with higher cyclicity. ► OSPW treated with PC at appropriate dosages was not toxic towards Vibrio fisheri and rainbow trout. ► The adsorption of organic acids fitted the Langmuir and Langmuir–Freundlich isotherm models. ► PC has the potential to be an effective adsorbent to treat OSPW either directly or as a pretreatment step.

  18. Petroleum coke adsorption as a water management option for oil sands process-affected water

    Energy Technology Data Exchange (ETDEWEB)

    Zubot, Warren [Syncrude Canada Ltd., Research and Development, Edmonton, Alberta, Canada T6N 1H4 (Canada); MacKinnon, Michael D. [OSPM Solutions Ltd., Hamilton, Ontario, Canada L8H 6X2 (Canada); Chelme-Ayala, Pamela; Smith, Daniel W. [University of Alberta, Department of Civil and Environmental Engineering, Edmonton, Alberta, Canada T6G 2W2 (Canada); Gamal El-Din, Mohamed, E-mail: mgamalel-din@ualberta.ca [University of Alberta, Department of Civil and Environmental Engineering, Edmonton, Alberta, Canada T6G 2W2 (Canada)

    2012-06-15

    Water is integral to both operational and environmental aspects of the oil sands industry. A water treatment option based on the use of petroleum coke (PC), a by-product of bitumen upgrading, was examined as an opportunity to reduce site oil sands process-affected water (OSPW) inventories and net raw water demand. Changes in OSPW quality when treated with PC included increments in pH levels and concentrations of vanadium, molybdenum, and sulphate. Constituents that decreased in concentration after PC adsorption included total acid-extractable organics (TAO), bicarbonate, calcium, barium, magnesium, and strontium. Changes in naphthenic acids (NAs) speciation were observed after PC adsorption. A battery of bioassays was used to measure the OSPW toxicity. The results indicated that untreated OSPW was toxic towards Vibrio fischeri and rainbow trout. However, OSPW treated with PC at appropriate dosages was not acutely toxic towards these test organisms. Removal of TAO was found to be an adsorption process, fitting the Langmuir and Langmuir-Freundlich isotherm models. For TAO concentrations of 60 mg/L, adsorption capacities ranged between 0.1 and 0.46 mg/g. This study demonstrates that freshly produced PC from fluid cokers provides an effective treatment of OSPW in terms of key constituents' removal and toxicity reduction. - Highlights: Black-Right-Pointing-Pointer Treatment of oil sands process-affected water (OSPW) using petroleum coke (PC) adsorption was investigated. Black-Right-Pointing-Pointer PC was effective at adsorbing naphthenic acids with higher cyclicity. Black-Right-Pointing-Pointer OSPW treated with PC at appropriate dosages was not toxic towards Vibrio fisheri and rainbow trout. Black-Right-Pointing-Pointer The adsorption of organic acids fitted the Langmuir and Langmuir-Freundlich isotherm models. Black-Right-Pointing-Pointer PC has the potential to be an effective adsorbent to treat OSPW either directly or as a pretreatment step.

  19. Treatment of biodiesel wastewater by adsorption with commercial chitosan flakes: parameter optimization and process kinetics.

    Science.gov (United States)

    Pitakpoolsil, Wipawan; Hunsom, Mali

    2014-01-15

    The possibility of using commercial chitosan flakes as an adsorbent for the removal of pollutants from biodiesel wastewater was evaluated. The effect of varying the adsorption time (0.5-5 h), initial wastewater pH (2-8), adsorbent dose (0.5-5.5 g/L) and mixing rate (120-350 rpm) on the efficiency of pollutant removal was explored by univariate analysis. Under the derived optimal conditions, greater than 59.3%, 87.9% and 66.2% of the biological oxygen demand (BOD), chemical oxygen demand (COD) and oil & grease, respectively, was removed by a single adsorption. Nevertheless, the remaining BOD, COD and oil & grease were still higher than the acceptable Thai government limits for discharge into the environment. When the treatment was repeated, a greater than 93.6%, 97.6% and 95.8% removal of the BOD, COD and oil & grease, respectively, was obtained. The reusability of commercial chitosan following NaOH washing (0.05-0.2 M) was not suitable, with less than 40% efficiency after just one recycling and declining rapidly thereafter. The adsorption kinetics of all pollutant types by the commercial chitosan flakes was controlled by a mixed process of diffusion and adsorption of the pollutants during the early treatment period (0-1.5 h) and then solely controlled by adsorption after 2 h. Copyright © 2013 Elsevier Ltd. All rights reserved.

  20. Industrial scale chromatographic separation of valuable compounds from biomass hydrolysates and side streams

    Energy Technology Data Exchange (ETDEWEB)

    Saari, P.

    2011-06-15

    Carbohydrates are composed of a number of various monosaccharides, glucose being the most abundant. Some of the monosaccharides are valuable compounds used in the food and pharmaceutical industries. They can be separated from biomass hydrolysates e.g. by chromatographic methods. In this thesis, chromatographic separation of valuable compounds using ion exchange resins was studied on an industrial scale. Of special interest were rare monosaccharides in biomass hydrolysates. A novel chromatographic separation process was developed for fucose, starting from pre-processed spent sulfite liquor. The core of the process consists of three chromatographic separations with different types of ion exchange resins. Chromatographic separation of galactose was tested with three biomass hydrolysates; lactose, gum arabic and hemicellulose hydrolysates. It was demonstrated that also galactose can be separated from complex carbohydrate mixtures. A recovery process for arabinose from citrus pectin liquid residual and for mannose from wood pulp hydrolysate were also developed and experimentally verified. In addition to monosaccharides, chromatographic separation of glycinebetaine from vinasse was examined with a hydrogen form weak acid cation exchange resin. The separation involves untypical peak formation depending, for example, on the pH and the cation composition. The retention mechanism was found to be hydrogen bonding between glycinebetaine and the resin. In the experimental part, all four resin types - strong acid cation, strong base anion, weak acid cation and weak base anion exchange resins - were used. In addition, adsorption equilibria data of seven monosaccharides and sucrose were measured with the resins in sodium and sulfate forms because such data have been lacking. It was found out that the isotherms of all sugars were linear under industrial conditions. A systematic method for conceptual process design and sequencing of chromatographic separation steps were developed

  1. Artificial neural network (ANN) approach for modeling Zn(II) adsorption in batch process

    Energy Technology Data Exchange (ETDEWEB)

    Yildiz, Sayiter [Engineering Faculty, Cumhuriyet University, Sivas (Turkmenistan)

    2017-09-15

    Artificial neural networks (ANN) were applied to predict adsorption efficiency of peanut shells for the removal of Zn(II) ions from aqueous solutions. Effects of initial pH, Zn(II) concentrations, temperature, contact duration and adsorbent dosage were determined in batch experiments. The sorption capacities of the sorbents were predicted with the aid of equilibrium and kinetic models. The Zn(II) ions adsorption onto peanut shell was better defined by the pseudo-second-order kinetic model, for both initial pH, and temperature. The highest R{sup 2} value in isotherm studies was obtained from Freundlich isotherm for the inlet concentration and from Temkin isotherm for the sorbent amount. The high R{sup 2} values prove that modeling the adsorption process with ANN is a satisfactory approach. The experimental results and the predicted results by the model with the ANN were found to be highly compatible with each other.

  2. High-pressure homogenization associated hydrothermal process of palygorskite for enhanced adsorption of Methylene blue

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Zhifang [Center of Eco-materials and Green Chemistry, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); University of the Chinese Academy of Sciences, Beijing 100049 (China); Wang, Wenbo [Center of Eco-materials and Green Chemistry, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); R& D Center of Xuyi Attapulgite Applied Technology, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Xuyi 211700 (China); Wang, Aiqin, E-mail: aqwang@licp.cas.cn [Center of Eco-materials and Green Chemistry, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); R& D Center of Xuyi Attapulgite Applied Technology, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Xuyi 211700 (China)

    2015-02-28

    Graphical abstract: - Highlights: • Palygorskite was modified by a homogenization associated hydrothermal process. • The crystal bundles of PAL were disaggregated efficiently after modification. • The adsorption of palygorskite for Methylene blue was greatly enhanced. • MB-loaded palygorskite exhibits excellent resistance to acid and alkali solution. - Abstract: Palygorskite (PAL) was modified by a high-pressure homogenization assisted hydrothermal process. The effects of modification on the morphology, structure and physicochemical properties of PAL were systematically investigated by Field-emission scanning electron microscopy (FESEM), Transmission electron microscopy (TEM), Fourier transform infrared spectrometry (FTIR), Brunauer–Emmett–Teller (BET) analysis, X-ray diffraction (XRD) and Zeta potential analysis techniques, and the adsorption properties were systematically evaluated using Methylene blue (MB) as the model dye. The results revealed that the crystal bundles were disaggregated and the PAL nanorods became more even after treated via associated high-pressure homogenization and hydrothermal process, and the crystal bundles were dispersed as nanorods. The intrinsic crystal structure of PAL was remained after hydrothermal treatment, and the pore size calculated by the BET method was increased. The adsorption properties of PAL for MB were evidently improved (from 119 mg/g to 171 mg/g) after modification, and the dispersion of PAL before hydrothermal reaction is favorable to the adsorption. The desorption evaluation confirms that the modified PAL has stronger affinity with MB, which is benefit to fabricate a stable organic–inorganic hybrid pigment.

  3. Removal of micropollutants from municipal wastewater by graphene adsorption and simultaneous electrocoagulation/electrofiltration process.

    Science.gov (United States)

    Yang, Gordon C C; Tang, Pei-Ling; Yen, Chia-Heng

    2017-04-01

    In this work the optimal operating conditions for removing selected micropollutants (also known as emerging contaminants, ECs) from actual municipal wastewater by graphene adsorption (GA) and simultaneous electrocoagulation/electrofiltration (EC/EF) process, respectively, were first determined and evaluated. Then, performance and mechanisms for the removal of selected phthalates and pharmaceuticals from municipal wastewater simultaneously by the GA and EC/EF process were further assessed. ECs of concern included di-n-butyl phthalate (DnBP), di-(2-ethylhexyl) phthalate (DEHP), acetaminophen (ACE), caffeine (CAF), cefalexin (CLX) and sulfamethoxazole (SMX). It was found that GA plus EC/EF process yielded the following removal efficiencies: DnBP, 89 ± 2%; DEHP, 85 ± 3%; ACE, 99 ± 2%; CAF, 94 ± 3%; CLX, 100 ± 0%; and SMX, 98 ± 2%. Carbon adsorption, size exclusion, electrostatic repulsion, electrocoagulation, and electrofiltration were considered as the main mechanisms for the removal of target ECs by the integrated process indicated above.

  4. Coagulation-Adsorption Hybrid Process for the Treatment of Dyes and Pigments Wastewater

    Directory of Open Access Journals (Sweden)

    Abdul Karim Shah

    2013-10-01

    Full Text Available The study aimed to improve the effectiveness of dyes and pigments wastewater treatment. Hybrid system of adsorption and coagulation was applied for the reduction of COD, color, turbidity and TSS. Activated carbon adsorbent was prepared from a waste of sugar industry boiler. It was processed through physicochemical treatment with sulfuric acid following grinding, sieving, washing and drying unit operations. Combined wastewater of dyes and pigments manufacturing plant was treated with a hybrid process of coagulation and adsorption. FeCl 3, FeSO 4and Alum coagulants were tested individually and found them less effective. It was revealed that FeCl 3 coagulation, adsorption and hybrid process reduced COD (41, 51 and 54%, Color (67, 70 and 89%, turbidity (69, 71 and 90% and TSS (82, 93 and 97% respectively. Combination of FeCl3 -SBFA (Sugarcane Bagasse Fly Ash proved 90% efficient in removal than coagulation as an individual process. 4g adsorbent dose was optimized for this hybrid process

  5. Development for a process for the adsorptive separation of krypton-85

    International Nuclear Information System (INIS)

    Messler, M.

    1985-03-01

    In the final process step of dissolver waste gas purification in a reprocessing facility, the radioactive noble gas Kr-85 is separated by physical separation processes. The experiments showed that the available mixture of air/Kr/Xe can be appropriately separated by chromatography. In principle, the adsorption column is laded with the waste gas and subsequently regenerated by puring with a carrier gas. A complete separation of the waste gas components can thus be achieved. He suggests itself as a purge gas. Fine-grained activated charcoals are to be preferred as adsorbing agents. Among the adsorptive process alternatives studied, one variant in which the adsorber was split into two halves and loaded at -130 0 C or -160 0 C proved to be particularly suitable. It can be seen that a total of only 0.2 m 3 of activated charcoal would be required for a commerical facility with a waste gas throughput of 100 nm 3 /h. The helium flux required only amounts to 4% of the waste gas flow to be purified. If valuable xenon is also to be recovered then this value increases to 7%. In this case the quantity of activated charcoal necessary would be 0.28 m 3 . A comparison with alternative process principles indicated that the adsorptive concept has advantages with respect to process engineering and regarding high safety standards in nuclear engineering facilities. (orig./HP) [de

  6. Study of the processes of adsorption of amine-containing surface-active substance on the surface of Aluminum powder

    Directory of Open Access Journals (Sweden)

    Antonina Dyuryagina

    2012-03-01

    Full Text Available Equilibrium characteristics of adsorption on a surface of a pigment depending on concentration factors and temperature of the dispersive environment are defined. Kinetic laws of superficial activity of binary, threefold homogeneous and heterogeneous modeling systems are studied. The estimation of mechanisms of process of adsorption is carried out.

  7. Kinetics of oxygen adsorption on ZnS nanoparticles synthesized by precipitation process

    Directory of Open Access Journals (Sweden)

    Ahmadi Reza

    2016-06-01

    Full Text Available ZnS nanoparticles were synthesized through a one-step precipitation process. Effect of time and temperature on the formation reaction was investigated. The synthesized samples were characterized by X-ray diffraction (XRD, ultraviolet (UV visible absorption and photoluminescence (PL spectrophotometry. Based on XRD and UV-Vis data, the particles produced at 70 °C had a mean particle size of about 5 nm. Increasing time and temperature of the synthesis reaction resulted in photoluminescence intensification. PL spectroscopy helped understanding the adsorption kinetics of oxygen on ZnS nanoparticles during the precipitation synthesis process. Fabrication of ZnS structures with appropriate oxygen adsorption capacity was suggested as a means of PL emission intensity control.

  8. Highly efficient fluoride adsorption from aqueous solution by nepheline prepared from kaolinite through alkali-hydrothermal process.

    Science.gov (United States)

    Wang, Hao; Feng, Qiming; Liu, Kun; Li, Zishun; Tang, Xuekun; Li, Guangze

    2017-07-01

    A direct alkali-hydrothermal induced transformation process was adopted to prepare nepheline from raw kaolinite (shortened form RK in this paper) and NaOH solution in this paper. Structure and morphology characterizations of the synthetic product showed that the nepheline possessed high degree of crystallinity and uniform surface morphology. Specific surface area of nepheline is 18 m 2 /g, with a point of zero charge at around pH 5.0-5.5. The fluoride (F - ions) adsorption by the synthetic nepheline (shortened form SN in this paper) from aqueous solution was also investigated under different experimental conditions. The adsorption process well matched the Langmuir isotherm model with an amazing maximum adsorption capacity of 183 mg/g at 323 K. The thermodynamic parameters (ΔG 0 , ΔH 0 , and ΔS 0 ) for adsorption on SN were also determined from the temperature dependence. The adsorption capacities of fluoride on SN increased with increasing of temperature and initial concentration. Initial pH value also had influence on adsorption process. Adsorption of fluoride was rapidly increased in 5-60 min and thereafter increased slowly to reach the equilibrium in about 90-180 min under all conditions. The adsorption followed a pseudo-second order rate law. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Kaolinite adsorption-regeneration system for dyestuff treatment by Fenton based processes.

    Science.gov (United States)

    Rosales, Emilio; Anasie, Delia; Pazos, Marta; Lazar, Iuliana; Sanromán, M Angeles

    2018-05-01

    The regeneration and reuse of adsorbents is a subject of interest nowadays in order to reduce the pollution and the wastes generated in the adsorption wastewater treatment. In this work, the regeneration of the spent kaolinite by different advanced oxidation processes (Fenton, electro-Fenton and electrokinetic-Fenton) was evaluated. Initially, it was confirmed the ability of a low cost clayey material, kaolinite, for the adsorption of model dye such as Rhodamine B showing Freundlich isotherm fitting. Then, the regeneration and consequent degradation of the pollutant in the adsorbent by Fenton based processes was carried out. The role of different parameters affecting the regeneration process (H 2 O 2 :Fe 2+ ratio, liquid:solid ratio) were evaluated. Working at 100:1 H 2 O 2 :Fe 2+ ratio and 30min near complete dye removal (around 97%) from kaolinite was obtained by Fenton treatment. After that, a two-stage treatment for adsorption-regeneration was evaluated during five treatment cycles demonstrating its viability for regeneration of the adsorbent through dye degradation. Based on the successful application of Fenton technique, the improvement of the treatment by electro-Fenton and electrokinetic-Fenton were studied for different solid:liquid ratios achieving satisfactory regeneration values. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Adsorptive removal of arsenic by novel iron/olivine composite: Insights into preparation and adsorption process by response surface methodology and artificial neural network.

    Science.gov (United States)

    Ghosal, Partha S; Kattil, Krishna V; Yadav, Manoj K; Gupta, Ashok K

    2018-03-01

    Olivine, a low-cost natural material, impregnated with iron is introduced in the adsorptive removal of arsenic. A wet impregnation method and subsequent calcination were employed for the preparation of iron/olivine composite. The major preparation process parameter, viz., iron loading and calcination temperature were optimized through the response surface methodology coupled with a factorial design. A significant variation of adsorption capacity of arsenic (measured as total arsenic), i.e., 63.15 to 310.85 mg/kg for arsenite [As(III) T ] and 76.46 to 329.72 mg/kg for arsenate [As(V) T ] was observed, which exhibited the significant effect of the preparation process parameters on the adsorption potential. The iron loading delineated the optima at central points, whereas a monotonous decreasing trend of adsorption capacity for both the As(III) T and As(V) T was observed with the increasing calcination temperature. The variation of adsorption capacity with the increased iron loading is more at lower calcination temperature showing the interactive effect between the factors. The adsorbent prepared at the optimized condition of iron loading and calcination temperature, i.e., 10% and 200 °C, effectively removed the As(III) T and As(V) T by more than 96 and 99%, respectively. The material characterization of the adsorbent showed the formation of the iron compound in the olivine and increase in specific surface area to the tune of 10 multifold compared to the base material, which is conducive to the enhancement of the adsorption capacity. An artificial neural network was applied for the multivariate optimization of the adsorption process from the experimental data of the univariate optimization study and the optimized model showed low values of error functions and high R 2 values of more than 0.99 for As(III) T and As(V) T . The adsorption isotherm and kinetics followed Langmuir model and pseudo second order model, respectively demonstrating the chemisorption in this

  11. Post-adsorption process of Yb phosphate nano-particle formation by Saccharomyces cerevisiae

    Science.gov (United States)

    Jiang, MingYu; Ohnuki, Toshihiko; Tanaka, Kazuya; Kozai, Naofumi; Kamiishi, Eigo; Utsunomiya, Satoshi

    2012-09-01

    In this study, we have investigated the post-adsorption process of ytterbium (Yb) phosphate nano-particle formation by Saccharomyces cerevisiae (yeast). The yeast grown in P-rich medium were exposed to 1.44 × 10-4 mol/L Yb(III) solution for 2-120 h, and 2 months at 25 ± 1 °C at an initial pH of 3, 4, or 5, respectively. Ytterbium concentrations in solutions decreased as a function of exposure time. Field-emission scanning electron microscopy equipped with energy-dispersive X-ray spectroscopy (FESEM), transmission electron microscopy (TEM), and synchrotron-based extended X-ray absorption fine structure (EXAFS) analyses revealed that nano-sized blocky Yb phosphate with an amorphous phase formed on the yeast cells surfaces in the solutions with Yb. These nano-sized precipitates that formed on the cell surfaces remained stable even after 2 months of exposure at 25 ± 1 °C around neutral pHs. The EXAFS data revealed that the chemical state of the accumulated Yb on the cell surfaces changed from the adsorption on both phosphate and carboxyl sites at 30 min to Yb phosphate precipitates at 5 days, indicating the Yb-phosphate precipitation as a major post-adsorption process. In addition, the precipitation of Yb phosphate occurred on cell surfaces during 7 days of exposure in Yb-free solution after 2 h of exposure (short-term Yb adsorption) in Yb solution. These results suggest that the released P from the inside of yeast cells reacted with adsorbed Yb on cell surfaces, resulting in the formation of Yb precipitates, even though no P was added to the exposure solution. In an abiotic system, the EXAFS data showed that the speciation of sorbed Yb on the reference materials, carboxymethyl cellulose and Ln resin, did not change even when the Yb was exposed to P solution, without forming Yb phosphate precipitates. This result strongly suggests that the cell surface of the yeast plays an important role in the Yb-phosphate precipitation process, not only as a carrier of the

  12. Effects of Organic Matter and Clay Content in Soil on Pesticide Adsorption Processes

    Directory of Open Access Journals (Sweden)

    Rada Đurović

    2009-01-01

    Full Text Available The effect of organic matter and clay content on the adsorption of atrazine, acetochlor, clomazone, pendimethalin and oxyfluorfen in soil samples was studied. In order to determine whether and to what degree different soil properties affect the process of determinationof selected pesticides, three soils with different clay and organic matter contents were used. An optimized liquid-solid extraction procedure followed by SPME measurement was applied to analyse the selected pesticides in soil samples. Detection and quantificationwere done by gas chromatography-mass spectrometry (GC/MS. Relative standard deviation (RSD values for multiple analyses of soil samples fortified at 30 μg/kg of each pesticide were below 19%. Limits of detection (LODs for all compounds studied were less than 2 μg/kg. The results indicate that soils with different physico-chemical properties have different effects on the adsorption of most pesticides, especially at higher concentration levels.

  13. Adsorption of crystal violet with diatomite earth&carbon by a modification of hydrothermal carbonization process.

    Science.gov (United States)

    Zhang, Yanzhuo; Li, Jun; Chen, Guanghui; Bian, Wei; Lu, Yun; Li, Wenjing; Zheng, Zhaoming; Cheng, Xiaojie

    2016-01-01

    The high colority and difficulty of decolorization are the most important tasks on printing and dyeing wastewater. This study investigates the ability of diatomite earth&carbon (DE&C) as an adsorbent to removal crystal violet (CV) from aqueous solutions. Fourier transform infrared spectroscopy results indicate the importance of functional groups during the adsorption of CV. The obtained N2 adsorption-desorption isotherm values accord with well IUPAC type II. Our calculations determined a surface area of 73.15 m(2) g(-1) for DE&C and an average pore diameter of 10.56 nm. Equilibrium data of the adsorption process fitted very well to the Langmuir model (R(2) > 0.99). The results of kinetics study showed that the pseudo-second-order model fitted to the experimental data well. The thermodynamic parameters were also evaluated. ΔH° 0 and ΔG° dye. Furthermore the positive value of ΔS° reflected good affinity of the CV dye.

  14. Chromium VI adsorption on cerium oxide nanoparticles and morphology changes during the process

    Energy Technology Data Exchange (ETDEWEB)

    Recillas, Sonia; Colon, Joan [Department of Chemical Engineering, Engineering School, Autonomous University of Barcelona, 08193 Bellaterra (Spain); Casals, Eudald; Gonzalez, Edgar [Catalan Institute of Nanotechnology, Autonomous University of Barcelona Campus, 08193 Bellaterra (Spain); Puntes, Victor [Catalan Institute of Nanotechnology, Autonomous University of Barcelona Campus, 08193 Bellaterra (Spain); Catalan Institute of Research and Advanced Studies, Passeig Lluis Companys, 23, 08010 Barcelona (Spain); Sanchez, Antoni, E-mail: antoni.sanchez@uab.cat [Department of Chemical Engineering, Engineering School, Autonomous University of Barcelona, 08193 Bellaterra (Spain); Font, Xavier [Department of Chemical Engineering, Engineering School, Autonomous University of Barcelona, 08193 Bellaterra (Spain)

    2010-12-15

    In this study, suspended cerium oxide nanoparticles stabilized with hexamethylenetetramine were used for the removal of dissolved chromium VI in pure water. Several concentrations of adsorbent and adsorbate were tested, trying to cover a large range of possible real conditions. Results showed that the Freundlich isotherm represented well the adsorption equilibrium reached between nanoparticles and chromium, whereas adsorption kinetics could be modeled by a pseudo-second-order expression. The separation of chromium-cerium nanoparticles from the medium and the desorption of chromium using sodium hydroxide without cerium losses was obtained. Nanoparticles agglomeration and morphological changes during the adsorption-desorption process were observed by TEM. Another remarkable result obtained in this study is the low toxicity in the water treated by nanoparticles measured by the Microtox commercial method. These results can be used to propose this treatment sequence for a clean and simple removal of drinking water or wastewater re-use when a high toxicity heavy metal such as chromium VI is the responsible for water pollution.

  15. Chromatographic matrix based on hydrogel-coated reticulated polyurethane foams, prepared by gamma irradiation

    Science.gov (United States)

    Sánchez, Mirna L.; Giménez, Claudia Y.; Delgado, Juan F.; Martínez, Leandro J.; Grasselli, Mariano

    2017-12-01

    Novel chromatographic materials for protein purification with high adsorption capacity and fouling resistance are highly demanded to improve downstream processes. Here, we describe a novel adsorptive material based on reticulated polyurethane foam (rPUF) coated with a functional hydrogel layer. rPUF provides physical rigidity through its macroscopic structure, whereas the hydrogel layer provides capacity to adsorb proteins by specific interactions. The hydrogel coating process was performed by the dip-coating method, using a polyvinyl alcohol (PVA) solution. The PVA hydrogel was linked to the rPUF material by using a radiation-induced crosslinking process in aqueous ethanol solution. The ethanol in the solvent mixture allowed a balance between PVA swelling and PVA dissolution during the irradiation step. The resulting material showed higher thermal stability than the non-irradiated one. In addition, a simultaneous radiation-induced grafting polymerization (SRIGP) was done by simple addition of glycidyl methacrylate monomer into the irradiation solution. In a further step, sulfonic ligands were included specifically in the hydrogel layer, which contained around 200% of PVA respect to the original rPUF. Materials were characterized by FT-IR, thermogravimetric analysis, SEM microscopy and EDX analysis. The cation-exchange rPUF material was functionally characterized by the Langmuir isotherm and a dynamic adsorption experiment to analyze the chromatographic properties for protein purification processes.

  16. Preparation of H2TiO3-lithium adsorbent by the sol–gel process and its adsorption performance

    International Nuclear Information System (INIS)

    Zhang, Liyuan; Zhou, Dali; Yao, Qianqian; Zhou, Jiabei

    2016-01-01

    Graphical abstract: - Highlights: • Nano-Li 2 TiO 3 was synthesized with CH 3 COOLi and Ti(OC 4 H 9 ) 4 by the sol–gel process. • H 2 TiO 3 -lithium adsorbent was obtained by treating Li 2 TiO 3 with HCl. • Langmuir and Freundlich models were used to analyze the adsorption process. • The adsorption performance of the obtained adsorbent was studied. - Abstract: CH 3 COOLi and Ti(OC 4 H 9 ) 4 were employed as lithium and titanium sources, respectively to synthesize Li 2 TiO 3 by the sol–gel process, followed by treating with hydrochloric acid to yield H 2 TiO 3 -lithium adsorbent. Various concentrations of LiOH and lithium sources were used as adsorption liquid to carry out adsorption experiment, the data from which were analyzed by Langmuir and Freundlich models. The results indicate that the optimal calcination temperature is 650 °C, and Li 2 TiO 3 with particle size 60–80 nm is observed. The Li + drawn out ratio from Li 2 TiO 3 reaches 78.9%, and the dissolution of titanium ions can be as low as 0.07%. The protonated sample obtained has a lower basal spacing, while the crystal morphology is retained. The main factors affecting the adsorptive capacity are the Li + concentration and pH in the liquid. The adsorption process of H 2 TiO 3 -lithium adsorbent can be seen as a process including surface adsorption and ion exchange. Compared with Langmuir model, Freundlich model is more suitable for describing the actual adsorption process.

  17. Modifications of sugarcane bagasse-derived adsorbents to enhance the adsorption of microalgae biomass in easing harvesting process

    Science.gov (United States)

    Basri, Wan Nurain Farahah Wan; Lim, Jun-Wei; Isa, Mohamed Hasnain; Baloo, Lavania; Uemura, Yoshimitsu; Bashir, Mohammed J. K.

    2017-10-01

    Recently, the attempt to create adsorbents in solving various separation problems has intensified drastically. The proposal of present research lightens the way to enhance the microalgae biomass harvesting process with the addition of sugarcane bagasse-derived adsorbent in culture medium. The adsorbents were tested with several chemical activations and concentrations to determine the optimum ones. Acid modified adsorbents with concentration of 1.0M and 1.5M demonstrated the highest adsorption with attainable biomass adsorption capacities 66% for both. The samples viewed under SEM showed 1.0M and 1.5M acid modified adsorbents have highest microalgae adsorption.

  18. Discovery of discriminatory quality control markers for Chinese herbal medicines and related processed products by combination of chromatographic analysis and chemometrics methods: Radix Scutellariae as a case study.

    Science.gov (United States)

    Wang, Fei; Wang, Bo; Wang, Long; Xiong, Zi-Yue; Gao, Wen; Li, Ping; Li, Hui-Jun

    2017-05-10

    The processing procedure of traditional Chinese herbal medicines (CHMs) plays an essential role in clinical applications. However, little progress has been made on the quality control of crude and processed products. The present work, taking Radix Scutellariae (RS), wine-processed RS and carbonized RS as a typical case, developed a comprehensive strategy integrating chromatographic analysis and chemometric methods for quality evaluation and discrimination of crude RS and its processed products. Chemical fingerprints were established by high-performance liquid chromatography coupled with photodiode array detector and quadrupole time-of-flight mass spectrometry, and similarity analyses were calculated based on eleven common characteristic peaks. Subsequently, four chemical markers were discovered by back propagation-artificial neural network (BP-ANN) modeling. The selected markers were quantified by the 'single standard to determine multi-components' (SSDMC) method, and then the quantitative data were subjected to principal component analysis (PCA) and partial least-squares discriminant analysis (PLS-DA). Furthermore, support vector machine (SVM) was employed to predict the different processed products of RS. Finally, a hotmap visualization was conducted for clarifying the distribution of major flavonoids among different drugs. Collectively, the proposed strategy might be well-acceptable for quality control of CHMs and their related processed products from the processing mechanism-based perspective. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Evaluation of a Candidate Trace Contaminant Control Subsystem Architecture: The High Velocity, Low Aspect Ratio (HVLA) Adsorption Process

    Science.gov (United States)

    Kayatin, Matthew J.; Perry, Jay L.

    2017-01-01

    Traditional gas-phase trace contaminant control adsorption process flow is constrained as required to maintain high contaminant single-pass adsorption efficiency. Specifically, the bed superficial velocity is controlled to limit the adsorption mass-transfer zone length relative to the physical adsorption bed; this is aided by traditional high-aspect ratio bed design. Through operation in this manner, most contaminants, including those with relatively high potential energy are readily adsorbed. A consequence of this operational approach, however, is a limited available operational flow margin. By considering a paradigm shift in adsorption architecture design and operations, in which flows of high superficial velocity are treated by low-aspect ratio sorbent beds, the range of well-adsorbed contaminants becomes limited, but the process flow is increased such that contaminant leaks or emerging contaminants of interest may be effectively controlled. To this end, the high velocity, low aspect ratio (HVLA) adsorption process architecture was demonstrated against a trace contaminant load representative of the International Space Station atmosphere. Two HVLA concept packaging designs (linear flow and radial flow) were tested. The performance of each design was evaluated and compared against computer simulation. Utilizing the HVLA process, long and sustained control of heavy organic contaminants was demonstrated.

  20. Adsorption of phosphate in hydrocalumite-like layered double hydroxides: a comparison between memory effect and ion exchange processes

    International Nuclear Information System (INIS)

    Bernardo, M.P.; Moreira, F.K.V.; Ribeiro, C.

    2016-01-01

    Phosphorus is an essential element for agriculture, but the excessive use of this element has caused severe damages to the environment. Layered double hydroxide (LDHs) are excellent candidates to remove PO 4 3- anions through adsorption process. In this work, the phosphate adsorption on hydrocalumite-like (Ca-Al) LDHs was evaluated over the ion exchange and memory effect processes. X-ray diffraction measurements revealed formation of analogous crystalline phases from both process as the phosphate concentration was increased. However, the phosphate quantity adsorbed varied according to the process used. The ion exchange route is the most efficient process to remove phosphate from aqueous medium. (author)

  1. Preparation and Characterization of Chitosan/Feldspar Biohybrid as an Adsorbent: Optimization of Adsorption Process via Response Surface Modeling

    Directory of Open Access Journals (Sweden)

    Maryam Yazdani

    2014-01-01

    Full Text Available Chitosan/feldspar biobased beads were synthesized, characterized, and tested for the removal of Acid Black 1 dye from aquatic phases. A four-factor central composite design (CCD accompanied by response surface modeling (RSM and optimization was used to optimize the dye adsorption by the adsorbent (chitosan/feldspar composite in 31 different batch experiments. Independent variables of temperature, pH, initial dye concentration, and adsorbent dose were used to change to coded values. To anticipate the responses, a quadratic model was applied. Analysis of variance (ANOVA tested the significance of the process factors and their interactions. The adequacy of the model was investigated by the correlation between experimental and predicted data of the adsorption and the calculation of prediction errors. The results showed that the predicted maximum adsorption amount of 21.63 mg/g under the optimum conditions (pH 3, temperature 15°C, initial dye concentration 125 mg/L, and dose 0.2 g/50 mL was close to the experimental value of 19.85 mg/g. In addition, the results of adsorption behaviors of the dye illustrated that the adsorption process followed the Langmuir isotherm model and the pseudo-second-order kinetic model. Langmuir sorption capacity was found to be 17.86 mg/g. Besides, thermodynamic parameters were evaluated and revealed that the adsorption process was exothermic and favourable.

  2. Preparation and characterization of chitosan/feldspar biohybrid as an adsorbent: optimization of adsorption process via response surface modeling.

    Science.gov (United States)

    Yazdani, Maryam; Bahrami, Hajir; Arami, Mokhtar

    2014-01-01

    Chitosan/feldspar biobased beads were synthesized, characterized, and tested for the removal of Acid Black 1 dye from aquatic phases. A four-factor central composite design (CCD) accompanied by response surface modeling (RSM) and optimization was used to optimize the dye adsorption by the adsorbent (chitosan/feldspar composite) in 31 different batch experiments. Independent variables of temperature, pH, initial dye concentration, and adsorbent dose were used to change to coded values. To anticipate the responses, a quadratic model was applied. Analysis of variance (ANOVA) tested the significance of the process factors and their interactions. The adequacy of the model was investigated by the correlation between experimental and predicted data of the adsorption and the calculation of prediction errors. The results showed that the predicted maximum adsorption amount of 21.63 mg/g under the optimum conditions (pH 3, temperature 15°C, initial dye concentration 125 mg/L, and dose 0.2 g/50 mL) was close to the experimental value of 19.85 mg/g. In addition, the results of adsorption behaviors of the dye illustrated that the adsorption process followed the Langmuir isotherm model and the pseudo-second-order kinetic model. Langmuir sorption capacity was found to be 17.86 mg/g. Besides, thermodynamic parameters were evaluated and revealed that the adsorption process was exothermic and favourable.

  3. Extension lifetime for dye-sensitized solar cells through multiple dye adsorption/desorption process

    Science.gov (United States)

    Chiang, Yi-Fang; Chen, Ruei-Tang; Shen, Po-Shen; Chen, Peter; Guo, Tzung-Fang

    2013-03-01

    In this study, we propose a novel concept of extending the lifetime of dye-sensitized solar cells (DSCs) and reducing the costs of re-conditioning DSCs by recycling the FTO/TiO2 substrates. The photovoltaic performances of DSCs using substrates with various cycles of dye uptake and rinse off history are tested. The results show that dye adsorption and Voc are significantly increased under multiple dye adsorption/desorption process and resulted in the improvement of power conversion efficiency. Moreover, the dyeing kinetics is faster after multiple recycling processes, which is favorable for the industrial application. With surface analysis and charge transport characteristics, we also demonstrate the optimal functionality of TiO2/dye interface for the improved Voc and efficiency. The results confirm that the improved performances are due to increased dye loading and dense packing of dye molecules. Our results are beneficial for the understanding on the extension of DSCs lifetime after long-term operation in the application of DSC modules. This approach may also be applied in the replacement of newly synthesized photosensitizes to the active cells.

  4. Chromatographic separations of stereoisomers

    Energy Technology Data Exchange (ETDEWEB)

    Souter, R.W.

    1985-01-01

    This text covers both diastereomers and enantiomers; describes techniques for GC, HPLC, and other chromatographic methods; and tabulates results of various applications by both techniques and compound class. It provides current knowledge about separation mechanisms and interactions of asymmetric molecules, as well as experimental and commercial materials such as columns, instruments, and derivatization reagents. The contents also include stereoisomer separations by gas chromatography. Stereoisomer separations by high-performance liquid chromatography. Stereoisomer separations by other chromatographic techniques.

  5. Liquid chromatographic extraction medium

    Science.gov (United States)

    Horwitz, E. Philip; Dietz, Mark L.

    1994-01-01

    A method and apparatus for extracting strontium and technetium values from biological, industrial and environmental sample solutions using a chromatographic column is described. An extractant medium for the column is prepared by generating a solution of a diluent containing a Crown ether and dispersing the solution on a resin substrate material. The sample solution is highly acidic and is introduced directed to the chromatographic column and strontium or technetium is eluted using deionized water.

  6. Removal of paraquat and linuron from water by continuous flow adsorption/ ultrafiltration membrane processes

    International Nuclear Information System (INIS)

    Zahoor, M.

    2013-01-01

    The magnetic activated carbon (MAC) was prepared, characterized and compared with powdered activated carbon (PAC) for its adsorptive parameters. Both adsorbents were then used in combination ultrafiltration (UF) membrane as pretreatment for the removal of paraquat and linuron from water. The comparison of membrane parameters like percent retention, permeate flux and backwash times for PAC/UF and MAC/UF hybrid processes showed that percent retention of paraquat and linuron was high for PAC due to its high surface area. However due to cake formation over membrane surface the decline permeate fluxes and long backwash times for PAC were observed. PAC also caused blackening of pipes and flow meter. MAC (an iron oxide and PAC composite) was removed from slurry through magnet thus no cake formation and secondary problems observed for PAC was not encountered. Also the backwash times were minimum for MAC/UF process. (author)

  7. The adsorption of nitrogen oxides on crystalline ice

    Directory of Open Access Journals (Sweden)

    T. Bartels

    2002-01-01

    Full Text Available The partitioning of nitrogen oxides between ice and air is of importance to the ozone budget in the upper troposphere. In the present study, adsorption of nitrogen oxides on ice was investigated at atmospheric pressure using a chromatographic technique with radioactively labelled nitrogen oxides at low concentrations. The measured retentions solely depended on molecular adsorption and were not influenced by dimerisation, formation of encapsulated hydrates on the ice surface, dissociation of the acids, nor by migration into a quasi-liquid layer or grain boundaries. Based on the chromatographic retention and the model of thermo-chromatography, the standard adsorption enthalpy of -20 kJ mol-1 for NO, -22kJ mol-1 for NO2, -30kJ mol-1 for peroxyacetyl nitrate, -32kJ mol-1 for HON} and -44 kJ mol-1 for HNO3 was calculated. To perform those calculations within the model of thermo-chromatography, the standard adsorption entropy was calculated based on statistical thermodynamics. In this work, two different choices of standard states were applied, and consequently different values of the standard adsorption entropy, of either between -39 kJ mol-1 and -45kJ mol-1, or -164 kJ mol-1 and -169 kJ mol-1 for each nitrogen oxide were derived. The standard adsorption enthalpy was identical for both standard adsorption entropies and thus shown to be independent of the choice of standard state. A brief outlook on environmental implications of our findings indicates that adsorption on ice might be an important removal process of HNO3. In addition, it might be of some importance for HONO and peroxyacetyl nitrate and irrelevant for NO and NO2.

  8. Monoclonal Antibodies Production Platforms: An Opportunity Study of a Non-Protein-A Chromatographic Platform Based on Process Economics.

    Science.gov (United States)

    Grilo, António L; Mateus, Marília; Aires-Barros, Maria R; Azevedo, Ana M

    2017-12-01

    Monoclonal antibodies currently dominate the biopharmaceutical market with growing sales having reached 80 billion USD in 2016. As most top-selling mAbs are approaching the end of their patent life, biopharmaceutical companies compete fiercely in the biosimilars market. These two factors present a strong motivation for alternative process strategies and process optimization. In this work a novel purification strategy for monoclonal antibodies comprising phenylboronic acid multimodal chromatography for capture followed by polishing by ion-exchange monolithic chromatography and packed bed hydrophobic interaction chromatography is presented and compared to the traditional protein-A-based process. Although the capital investment is similar for both processes, the operation cost is 20% lower for the novel strategy. This study shows that the new process is worthwhile investing in and could present a viable alternative to the platform process used by most industrial players. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Processes governing arsenic retardation on Pleistocene sediments: Adsorption experiments and model-based analysis

    Science.gov (United States)

    Rathi, Bhasker; Neidhardt, Harald; Berg, Michael; Siade, Adam; Prommer, Henning

    2017-05-01

    In many countries of south/south-east Asia, reliance on Pleistocene aquifers for the supply of low-arsenic groundwater has created the risk of inducing migration of high-arsenic groundwater from adjacent Holocene aquifers. Adsorption of arsenic onto mineral surfaces of Pleistocene sediments is an effective attenuation mechanism. However, little is known about the sorption under anoxic conditions, in particular the behavior of arsenite. We report the results of anoxic batch experiments investigating arsenite (1-25 µmol/L) adsorption onto Pleistocene sediments under a range of field-relevant conditions. The sorption of arsenite was nonlinear and decreased with increasing phosphate concentrations (3-60 µmol/L) while pH (range 6-8) had no effect on total arsenic sorption. To simulate the sorption experiments, we developed surface complexation models of varying complexity. The simulated concentrations of arsenite, arsenate, and phosphate were in good agreement for the isotherm and phosphate experiments while secondary geochemical processes affected the pH experiments. For the latter, the model-based analysis suggests that the formation of solution complexes between organic buffers and Mn(II) ions promoted the oxidation of arsenite involving naturally occurring Mn-oxides. Upscaling the batch experiment model to a reactive transport model for Pleistocene aquifers demonstrates strong arsenic retardation and could have useful implications in the management of arsenic-free Pleistocene aquifers.

  10. Interactive, Online, Adsorption Lab to Support Discovery of the Scientific Process

    Science.gov (United States)

    Carroll, K. C.; Ulery, A. L.; Chamberlin, B.; Dettmer, A.

    2014-12-01

    Science students require more than methods practice in lab activities; they must gain an understanding of the application of the scientific process through lab work. Large classes, time constraints, and funding may limit student access to science labs, denying students access to the types of experiential learning needed to motivate and develop new scientists. Interactive, discovery-based computer simulations and virtual labs provide an alternative, low-risk opportunity for learners to engage in lab processes and activities. Students can conduct experiments, collect data, draw conclusions, and even abort a session. We have developed an online virtual lab, through which students can interactively develop as scientists as they learn about scientific concepts, lab equipment, and proper lab techniques. Our first lab topic is adsorption of chemicals to soil, but the methodology is transferrable to other topics. In addition to learning the specific procedures involved in each lab, the online activities will prompt exploration and practice in key scientific and mathematical concepts, such as unit conversion, significant digits, assessing risks, evaluating bias, and assessing quantity and quality of data. These labs are not designed to replace traditional lab instruction, but to supplement instruction on challenging or particularly time-consuming concepts. To complement classroom instruction, students can engage in a lab experience outside the lab and over a shorter time period than often required with real-world adsorption studies. More importantly, students can reflect, discuss, review, and even fail at their lab experience as part of the process to see why natural processes and scientific approaches work the way they do. Our Media Productions team has completed a series of online digital labs available at virtuallabs.nmsu.edu and scienceofsoil.com, and these virtual labs are being integrated into coursework to evaluate changes in student learning.

  11. Quality assessment of raw and processed Arctium lappa L. through multicomponent quantification, chromatographic fingerprint, and related chemometric analysis.

    Science.gov (United States)

    Qin, Kunming; Wang, Bin; Li, Weidong; Cai, Hao; Chen, Danni; Liu, Xiao; Yin, Fangzhou; Cai, Baochang

    2015-05-01

    In traditional Chinese medicine, raw and processed herbs are used to treat different diseases. Suitable quality assessment methods are crucial for the discrimination between raw and processed herbs. The dried fruit of Arctium lappa L. and their processed products are widely used in traditional Chinese medicine, yet their therapeutic effects are different. In this study, a novel strategy using high-performance liquid chromatography and diode array detection coupled with multivariate statistical analysis to rapidly explore raw and processed Arctium lappa L. was proposed and validated. Four main components in a total of 30 batches of raw and processed Fructus Arctii samples were analyzed, and ten characteristic peaks were identified in the fingerprint common pattern. Furthermore, similarity evaluation, principal component analysis, and hierachical cluster analysis were applied to demonstrate the distinction. The results suggested that the relative amounts of the chemical components of raw and processed Fructus Arctii samples are different. This new method has been successfully applied to detect the raw and processed Fructus Arctii in marketed herbal medicinal products. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. REE concentration processes in ion adsorption deposits: Evidence from Madagascar and China.

    Science.gov (United States)

    Smith, Martin; Estrade, Guillaume; Marquis, Eva; Goodenough, Kathryn; Nasun, Peter; Cheng, Xu; Kynicky, Jindrich

    2017-04-01

    Lateritic clay deposits, where the rare earth elements (REE) occur adsorbed to clay mineral surfaces, are the world's dominant supply of heavy REE (Gd-Lu). These deposits are currently only mined in China where there is a reported heavy REE enrichment, but other deposits are currently under exploration in Brazil, the Philippines and Madagascar. Concentration of REE within IADs has been proposed to be a dominantly supergene process, where easily degradable REE-minerals (e.g. REE-fluorcarbonates) break down and release REE that are then adsorbed to clay minerals resulting in HREE enrichment. Here we present data from the Ambohimirahavavy Complex, Madagascar, and compare them to data from mineralised profiles in China, with the aim of further constraining the formation and REE enrichment processes in ion adsorption deposits. Bulk rock total REE contents from Madagascar vary from 400-5000ppm, with the HREE varying from 10 to 20% of the TREE. Ammonium Sulphate leaches (designed to remove clay-adsorbed REE) of laterite show leachable TREE from 130-500ppm, with no preferential HREE adsorption. Within the sequential extraction procedure the reducible fraction (hydroxylammonium chloride leach) showed the highest REE, but this is largely attributable to Ce4+ in oxide layers. Analysis of laterite profiles show that the REE distribution is heterogeneous, with control from both bedrock heterogeneity, and the hydrological variation between pedolith and saprolith. Similar patterns are seen in Chinese profiles from Jiangxi province. X-ray diffraction shows the clay fraction in all sites is dominated by kaolinite and halloysite. These data are consistent with experimental data which show that kaolinite is only HREE selective in high ionic strength solutions (Coppin et al., 2002), and suggest that HREE enrichment in lateritic deposits may be a function of exceptional bed rock conditions. Petrographic investigation of the Zhaibei granite, immediately underlying HREE enriched

  13. Bench Scale Development and Testing of a Novel Adsorption Process for Post-Combustion CO₂ Capture

    Energy Technology Data Exchange (ETDEWEB)

    Jain, Ravi [Innosepra Limited Liability Company, Middlesex, NJ (United States)

    2015-09-01

    A physical sorption process to produce dry CO₂ at high purity (>98%) and high recovery (>90%) from the flue gas taken before or after the FGD was demonstrated both in the lab and in the field (one ton per day scale). A CO₂ recovery of over 94% and a CO₂ purity of over 99% were obtained in the field tests. The process has a moisture, SOX, and Hg removal stage followed by a CO₂ adsorption stage. Evaluations based on field testing, process simulation and detailed engineering studies indicate that the process has the potential for more than 40% reduction in the capital and more than 40% reduction in parasitic power for CO₂ capture compared to MEA. The process has the potential to provide CO₂ at a cost (<$40/tonne) and quality (<1 ppm H₂O, <1 ppm SOX, <10 ppm O₂) suitable for EOR applications which can make CO₂ capture profitable even in the absence of climate legislation. The process is applicable to power plants without SOX, Hg and NOX removal equipment.

  14. Novel characterization of Radix Angelicae Dahuricae before and after the sulfur-fumigation process by combining high performance liquid chromatographic fingerprint and multi-ingredients determination.

    Science.gov (United States)

    Liu, Xiao; Liu, Jingjing; Cai, Hao; Li, Songlin; Ma, Xiaoqing; Lou, Yajing; Qin, Kunming; Guan, Hongyue; Cai, Baochang

    2014-07-01

    Harmful sulfur-fumigation processing method is abused during Radix Angelicae Dahuricae preparation. However, the analytical technique characterizing Radix Angelicae Dahuricae before and after the sulfur-fumigation process is absent. The high performance liquid chromatography (HPLC) technique was adopted to develop methods combining finger-print analysis and multi-ingredients simultaneous determination for quality evaluation of Radix Angelicae Dahuricae before and after the sulfur-fumigation process. The chromatographic fingerprint method was established for qualitative analysis coupled with statistical cluster analysis basing on Euclidean distance. Additionally, a determination method was developed for quantitative analysis, which was able to assay the concentrations of the major coumarins including imperatorin, isoimperatorin, xanthotoxin, xanthotoxol, isoimpinellin, oxypeucedanin, and bergapten in Radix Angelicae Dahuricae simultaneously. The separations of the two methods were both achieved on a Hypersil octadecylsilyl C18 column (250 mm × 4.6 mm, 5 μm) at 35°C under different strategic gradient elution programs. The detection wavelength was set at 254 nm all the time. Method validation data indicated that the methods were both reliable and applicable. They were then used to assay different Radix Angelicae Dahuricae samples collected from good agricultural practice (GAP) bases and local herbal markets. The successful application demonstrated that the combination of HPLC fingerprint and simultaneous quantification of multi-ingredients offers an efficient approach for quality evaluation of Radix Angelicae Dahuricae before and after the sulfur-fumigation process. In order to discriminate Radix Angelicae Dahuricae before and after the sulfur-fumigation process, oxypeucedanin, and xanthotoxol were the most sensitive biomarkers and should be determined.

  15. Adsorption-desorption processes of aluminium, zinc and copper on plastic tubing in haemodialysis monitors.

    Science.gov (United States)

    Milacic, R; Benedik, M; Knezević, S

    1997-09-30

    This study was performed to identify the source of contamination of dialysate with trace elements which had been observed in some haemodialysis centres in Slovenia. A possible explanation of this phenomenon was adsorption-desorption processes occurring on the plastic tubing in which dialysate was circulating in the haemodialysis monitors during dialysis. To confirm this, contamination of tubing with trace elements was simulated in vitro. After contamination, acetate or bicarbonate dialysates were prepared by the conventional procedure and samples of each dialysate collected in 1 ml fractions. Trace elements were measured by atomic absorption spectrometry. The haemodialysis tubing was contaminated for 0.5 or 4.5 h with 1.85 or 7.41 mumol/l of aluminium, 38.24 or 76.48 mumol/l of zinc and 7.87 or 15.74 mumol/l of copper. Steady state concentrations were reached after 5 min and ranged for aluminium from 0.18 to 0.67 mumol/l, for zinc from 0.31 to 0.92 mumol/l and for copper from 0.13 to 0.28 mumol/l in acetate dialysate, and 0.15 to 0.56 mumol/l of aluminium, 0.46 to 1.53 mumol/l of zinc and 0.06 to 0.47 mumol/l of copper in bicarbonate dialysate. The results suggested that adsorption-desorption processes are a probable source of contamination of the dialysate that could affect the health of haemodialysis patients.

  16. Effect of two-step functionalization of Ti by chemical processes on protein adsorption

    Science.gov (United States)

    Pisarek, M.; Roguska, A.; Andrzejczuk, M.; Marcon, L.; Szunerits, S.; Lewandowska, M.; Janik-Czachor, M.

    2011-07-01

    Titanium and its alloys are widely used for orthopedic and dental implants because of their superior mechanical properties, low modulus, excellent corrosion resistance and good biocompatibility. However, it takes several months for titanium implants and bone tissue to reach integration. Hence, there is growing interest in shortening the process of osseointegration and thereby reducing surgical restrictions. Various surface modifications have been applied to form a bioactive titanium oxide layer on the metal surface, which is known to accelerate osseointegration. The present work shows that titanium dioxide (TiO 2) layers formed on titanium substrates by etching in a solution of sodium hydroxide (NaOH) or hydrogen peroxide/phosphoric acid (H 3PO 4/H 2O 2, with a volume ratio of 1:1) are highly suitable pre-treatments for apatite-like coating deposition. Using a two-step procedure (etching in an alkaline or acidic solution followed by soaking in Hanks' medium), biomimetic calcium phosphate coatings were deposited on porous TiO 2 layers. The combined effects of surface topography and chemistry on the formation of the calcium phosphate layer are presented. The topography of the TiO 2 layers was characterized using HR-SEM and AFM techniques. The nucleation and growth of calcium phosphate (Ca-P) coatings deposited on TiO 2 porous layers from Hanks' solution was investigated using HR-SEM microscopy. AES, XPS and FTIR surface analytical techniques were used to characterize the titanium dioxide layers before and after deposition of the calcium phosphate coatings, as well as after the process of protein adsorption. To evaluate the potential use of such materials for biomedical applications, the adsorption of serum albumin, the most abundant protein in the blood, was studied on such surfaces.

  17. A validated stability-indicating liquid chromatographic method for determination of process related impurities and degradation behavior of Irbesartan in solid oral dosage

    Directory of Open Access Journals (Sweden)

    Nishant Goswami

    2014-01-01

    Full Text Available The present work describes the development and validation of a stability-indicating RP-HPLC method for the estimation of degradation and process related impurities of Irbesartan, namely Impurity-1, Impurity-2, Impurity-3 and Impurity-4. The developed LC method was validated with respect to specificity, limit of detection and quantification, linearity, precision, accuracy and robustness. The chromatographic separation was achieved on Hypersil Octadecylsilyl (4.6 mm Χ 150 mm, 3 ΅m column by using mobile phase containing a gradient mixture of solvent A (0.55% v/v ortho-phosphoric acid, pH adjusted to 3.2 with triethyl amine and B (95:5 v/v mixture of acetonitrile and solvent A at a flow rate of 1.2 mL/min. The detection was carried out at a wavelength of 220 nm. During method validation parameter such as precision, linearity, accuracy, specificity, limit of detection and quantification were evaluated, which remained within acceptable limits. HPLC analytical method is linear, accurate, precise, robust and specific, being able to separate the main drug from its degradation products. The degradation products were well-resolved from the main peak and its impurities, thus proving the stability-indicating power of the method. The method is stability-indicating in nature and can be used for routine analysis of production samples and to check the stability of the Irbesartan HCl tablets.

  18. Vibrational Spectroscopy of Chromatographic Interfaces

    Energy Technology Data Exchange (ETDEWEB)

    Jeanne E. Pemberton

    2011-03-10

    Chromatographic separations play a central role in DOE-supported fundamental research related to energy, biological systems, the environment, and nuclear science. The overall portfolio of research activities in the Separations and Analysis Program within the DOE Office of Basic Energy Sciences includes support for activities designed to develop a molecular-level understanding of the chemical processes that underlie separations for both large-scale and analytical-scale purposes. The research effort funded by this grant award was a continuation of DOE-supported research to develop vibrational spectroscopic methods to characterize the interfacial details of separations processes at a molecular level.

  19. Valorisation of agricultural waste with adsorption/nanofiltration hybrid process: from materials to sustainable process design

    OpenAIRE

    Didaskalou, Christos; Buyuktiryaki, Sibel; Kecili, Rustem; Pereira Da Fonte, Claudio; Szekely, Gyorgy

    2017-01-01

    Downstream processing is considered to be the bottleneck in pharmaceutical manufacturing because its development has not kept pace with upstream production. In some cases, the lack of efficient downstream processing capacity can seriously affect both the sustainability and profitability of a pharmaceutical product and even result in its failure. Process intensification through minimising solvent and raw material consumption, as well as utilising waste, can make a significant difference toward...

  20. A simple and rapid chromatographic method to determine unauthorized basic colorants (rhodamine B, auramine O, and pararosaniline) in processed foods

    OpenAIRE

    Tatebe, Chiye; Zhong, Xining; Ohtsuki, Takashi; Kubota, Hiroki; Sato, Kyoko; Akiyama, Hiroshi

    2014-01-01

    A simple and rapid high-performance liquid chromatography (HPLC) method to determine basic colorants such as pararosaniline (PA), auramine O (AO), and rhodamine B (RB) in various processed foods was developed. Linearity of the calibration curves ranged from 0.05 to 50 μg/mL for PA and 0.05–100 μg/mL for AO and RB. The detection and quantification limits (LOD and LOQ) of the basic colorants, which were evaluated as signal-to-noise ratios of 3 for LOD and 10 for LOQ, ranged from 0.0125 to 0.05 ...

  1. Retention-oxidation-adsorption process for emergent treatment of organic liquid spills.

    Science.gov (United States)

    Liu, Xianjun; Li, Yu; Zhang, Xingwang; Lei, Lecheng

    2011-11-15

    The feasibility and effectiveness of retention-oxidation-adsorption process (ROA) for the elimination of organic contaminants induced by chemical accidents were investigated in this study. Organobentonites (DTMA-, TTA-, CTMA- and OTMA-bentonite), potassium ferrate (Fe(VI)), ozone and granular activated carbon (GAC) were used as rapid and efficient materials in the treatment and recovery of organic liquid spills. Results indicated that the retention capacities of organobentonites (especially CTMA-bentonite) were much higher than that of natural bentonite towards the chosen organic compounds. Additionally, pH, oxidant dosage, initial concentration of contaminant and chemical structure had significant influences on the effectiveness of the oxidation process. In a pilot-scale experiment, the ferrate/GAC (F/G) and ozone/GAC (O/G) processes made a comparatively good performance in the treatment of wastewater containing aniline or nitrobenzene, with the removal efficiencies of the contaminants greater than 80%. Overall, the ROA process showed a high efficiency and steady operation in the removal of hazardous organic liquids and subsequent clean up of the contaminated site. Crown Copyright © 2011. Published by Elsevier B.V. All rights reserved.

  2. Number of outer electrons as descriptor for adsorption processes on transition metals and their oxides

    DEFF Research Database (Denmark)

    Calle-Vallejo, Federico; Inoglu, Nilay G.; Su, Hai-Yan

    2013-01-01

    The trends in adsorption energies of the intermediates of the oxygen reduction and evolution reactions on transition metals and their oxides are smoothly captured by the number of outer electrons. This unique descriptor permits the construction of predictive adsorption-energy grids and explains...

  3. Determination and Standardization of a Method for Caffeine in the Roasting Process Chromatographic High Performance Liquid (Hplc

    Directory of Open Access Journals (Sweden)

    Jesús A. Rubiano

    2012-06-01

    Full Text Available The work done in the organization. COFFEE COLONIAL.SAS was to evaluate, analyze and verify key information for the identification and standardization of a method for caffeine in coffee roastingprocess by the technique of chromatography high performance liquid (HPLC.Assays were performed at different roasting process to get the right conditions for the samples, supported by transport phenomena such as, energy, fluids and heat, in addition to following the guidelinesof the Standard ISO 2859-1 Colombian NTC.To obtain a standard curve, leading to interpolate coffee samples, prepare a solution with Caffeine (Sigma-Aldrich, Analytical Reagent and Milli-Q water (Millipore Merck 40 ppm, to obtain a solution pattern, from the solution of caffeine more solutions were prepared by 5 micrograms per milliliter caffeine.To determine the most suitable mobile phase, it began testing different samples of caffeine of coffee with the same water-acetonitrile mobile phase in different proportions, once all the necessary tests and according to the results obtained, the mobile phase allow better separation and interaction with the stationary phase was composed of water-acetonitrile mobile phase in 20:80 ratio.After obtaining the calibration curve and the more appropriate mobile phase, where injections were made different chromatograms were obtained with bases and defined peaks, which are defined by giving a correlation coefficient of linearity close to one, after which the next step was to find the area under the curve to define the caffeine concentration of the samples and thus being able to express in percentage.

  4. MICROSCOPIC, PHYSICOCHEMICAL AND CHROMATOGRAPHIC ...

    African Journals Online (AJOL)

    Peters

    MICROSCOPIC, PHYSICOCHEMICAL AND CHROMATOGRAPHIC. FINGERPRINTS OF LEAVES OF NIGERIAN CASSIA TORA LINN. Fatokun Omolola T1*., EsievoKevwe B2., Ugbabe Grace E3. and Kunle Oluyemisi F4. Department of Medicinal Plant Research and Traditional Medicine, National Institute for.

  5. CHROMATOGRAPHIC SEPARATION AND SPECTRO ...

    African Journals Online (AJOL)

    The spectro-analytical techniques used for characterization included energy dispersive X-ray fluorescence (EDXRF), X-ray diffractometry (XRD), Optical microscopy, infrared (IR) and UV-VIS spectroscopy. Four different fractions having colours yellow, grey, orange and purple were obtained from the chromatographic ...

  6. Effect of process variables interaction on simultaneous adsorption of phenol and 4-chlorophenol: statistical modeling and optimization using RSM

    Science.gov (United States)

    Leong, Kwok-Yii; See, Sylvia; Lim, Jun-Wei; Bashir, Mohammed J. K.; Ng, Choon-Aun; Tham, Leony

    2017-07-01

    Results of the interaction of process variables and the consequential mixture of phenolic compounds adsorption study are expected to shed brighter light on the wastewater treatment applications. Accordingly, the aims of this research are to model and optimize the process variables which impinged on the simultaneous adsorption of phenol and 4-chlorophenol (4-CP) in the binary solution by spherical activated carbon (SAC). Batch assessments were designed using response surface methodology software. The process variables, namely SAC dosage and pH were varied over the 1.50-3.50 g/L and 4.00-9.00 g/L ranges, respectively, were experimented. The analysis of variance results showed the significant models could precisely predict the percentage removals of phenol and 4-CP, indicating models reliability. The interaction of process variables was inconspicuous for the case of phenol adsorption. However, increasing the pH would deteriorate the 4-CP adsorption which was partially offset by raising the SAC dosage. Considering the environmental benefits, optimization taken place at the SAC dosage and pH of 3.50 g/L and 7.60 g/L, respectively, was selected. By employing the optimized conditions of SAC dosage of 3.50 g/L at pH 7.60 for the adsorption process, the predicted phenol and 4-CP removal percentages were found to be 85.4 % (73.1 mg/g) and 96.2 % (82.6 mg/g), respectively, which were in agreement with the experimental runs.

  7. Feasibility of bioengineered two-stages sequential batch reactor and filtration-adsorption process for complex agrochemical effluent.

    Science.gov (United States)

    Manekar, Pravin; Biswas, Rima; Urewar, Chaitali; Pal, Sukdeb; Nandy, Tapas

    2013-11-01

    In the present study, the feasibility of a bioengineered two-stages sequential batch reactor (BTSSBR) followed by filtration-adsorption process was investigated to treat the agrochemical effluent by overcoming factor affecting process stability such as microbial imbalance and substrate sensitivity. An air stripper stripped 90% of toxic ammonia, and combined with other streams for bio-oxidation and filtration-adsorption. The BTSSBR system achieved bio-oxidation at 6 days hydraulic retention time by fending off microbial imbalance and substrate sensitivity. The maximum reduction in COD and BOD by heterotrophic bacteria in the first reactor was 87% and 90%, respectively. Removal of toxic ammoniacal-nitrogen by autotrophic bacteria in a post-second stage bio-oxidation was 97%. The optimum filtration and adsorption of pollutants were achieved at a filtration rate of 10 and 9 m(3)m(-2)h(-1), respectively. The treatment scheme comprising air stripper, BTSSBR and filtration-adsorption process showed a great promise for treating the agrochemical effluent. Copyright © 2013 Elsevier Ltd. All rights reserved.

  8. Mechanism and performance for adsorption of 2-chlorophenol onto zeolite with surfactant by one-step process from aqueous phase.

    Science.gov (United States)

    Peng, Sha; Tang, Zheng; Jiang, Wei; Wu, Di; Hong, Song; Xing, Baoshan

    2017-03-01

    To decrease the power, material, and time consumption in wastewater treatment, a one-step process was performed to remove 2-chlorophenol (2-CP) from aqueous phase using zeolite and cetyltrimethylammonium bromide (CTAB). Compared with the traditional two-step process, the one-step process used in this study achieved almost eight times higher 2-CP adsorption capacity within a shorter time and maintained high removal efficiencies (around 65%) in reuse tests, thus becoming an efficient and economically acceptable alternative process. For the one-step process, the kinetic data fitted well with a nonlinear pseudo-second-order model, and the isotherm data fitted well with the Dubinin-Astakhov (DA) model. The uptake of 2-CP was highly dependent on pH, increasing in the pH range of 3-6. The enhanced 2-CP removal in a one-step adsorption process can be explained by the larger amount of surfactant loading (≥0.056mmol/g), as determined from the total organic carbon (TOC) and zeta potential. Due to the formation of a loose CTAB bilayer, the hydrophobic partition and the interaction with the positively charged "head" of CTAB bilayers were decisive for the enhancement of pollutant adsorption. Therefore, organic pollutants could be removed from water alongside the synthesis of hydrophobic zeolite in a one-step process, which is a promising technology for the in-situ treatment of organic wastewater. Copyright © 2016. Published by Elsevier B.V.

  9. Significance, evolution and recent advances in adsorption technology, materials and processes for desalination, water softening and salt removal.

    Science.gov (United States)

    Alaei Shahmirzadi, Mohammad Amin; Hosseini, Seyed Saeid; Luo, Jianquan; Ortiz, Inmaculada

    2018-06-01

    Desalination and softening of sea, brackish, and ground water are becoming increasingly important solutions to overcome water shortage challenges. Various technologies have been developed for salt removal from water resources including multi-stage flash, multi-effect distillation, ion exchange, reverse osmosis, nanofiltration, electrodialysis, as well as adsorption. Recently, removal of solutes by adsorption onto selective adsorbents has shown promising perspectives. Different types of adsorbents such as zeolites, carbon nanotubes (CNTs), activated carbons, graphenes, magnetic adsorbents, and low-cost adsorbents (natural materials, industrial by-products and wastes, bio-sorbents, and biopolymer) have been synthesized and examined for salt removal from aqueous solutions. It is obvious from literature that the existing adsorbents have good potentials for desalination and water softening. Besides, nano-adsorbents have desirable surface area and adsorption capacity, though are not found at economically viable prices and still have challenges in recovery and reuse. On the other hand, natural and modified adsorbents seem to be efficient alternatives for this application compared to other types of adsorbents due to their availability and low cost. Some novel adsorbents are also emerging. Generally, there are a few issues such as low selectivity and adsorption capacity, process efficiency, complexity in preparation or synthesis, and problems associated to recovery and reuse that require considerable improvements in research and process development. Moreover, large-scale applications of sorbents and their practical utility need to be evaluated for possible commercialization and scale up. Copyright © 2018 Elsevier Ltd. All rights reserved.

  10. Membrane and Adsorption Processes for Removing of Organics and Inorganics from Urban Wastewaters

    OpenAIRE

    Majlinda Daci-Ajvazi; Bashkim Thaçi; Nexhat Daci; Salih Gash

    2016-01-01

    Since in Kosovo there are still no water purification plants and untreated wastewaters are discharged in environment, in this paper we’ve studied methods for removing of different organic and inorganic pollutants from Kosovo urban wastewaters. For best results we’ve used two methods, reverse osmosis and adsorption. For reverse osmosis, all samples were pretreated with coagulant (FeSO4) and flocculant (CaO) and then treated with reverse osmosis membranes. For adsorption, we used Kosovo coal as...

  11. Adsorption processes in a fluidised bed with internal circulation; Adsorptionsprozesse in intern zirkulierender Wirbelschicht

    Energy Technology Data Exchange (ETDEWEB)

    Reichhold, A. [Inst. fuer Verfahrenstechnik, Brennstofftechnik und Umwelttechnik, Wien (Austria); Hofbauer, H. [Inst. fuer Verfahrenstechnik, Brennstofftechnik und Umwelttechnik, Wien (Austria)

    1995-11-01

    The present contribution describes a fluidised bed with internal circulation which works as a continuous reaction/regeneration system, in this case as an adsorption/desorption system which serves to separate gaseous pollutants or recover useful gases. (orig./SR) [Deutsch] Dargestellt wird eine intern zirkulierende Wirbelschicht als kontinuierliches Reaktions/Regenerations-System, hier als Adsorptions/Desorptions-System, zur Abtrennung bzw. Rueckgewinnung eines gasfoermigen Schad- oder Wertstoffes. (orig./SR)

  12. Hydrogen storage by adsorption on activated carbon: investigation of the thermal effects during the charging process

    International Nuclear Information System (INIS)

    Hermosilla-Lara, G.

    2007-02-01

    This work presents an experimental and numerical investigation of the thermal effects occurring during the charge of adsorbent fixed bed tank. The influence of these thermal effects, which result from the exothermal character of the adsorption process and the pressure forces work, on the storage capacity is specially analysed. An experimental setup allowing the dynamic measurements of the temperature and pressure profiles has been used. Then the numerical protocol with the Fluent software, has been validated by comparison of the simulated pressure, flow rate and temperature fields in the tank with the results obtained from an experimental investigation carried out the dynamic storage. Several predictive simulations have been carried out in order to study the effect of the boundary conditions, as the wall temperature or effective thermal conductivity of the porous bed, on the storage capacity of the reservoir. We searched the optimal geometry of an interbed thermal dissipator for a given industrial tank. To do this we made vary the H/L ratio, which represents the ratio of the height of an elementary stage and the total length of the tank. We could determine an optimal geometry which corresponds to the value 1/3 of the ratio H/L. From this optimum we studied the effect of five additional cooling tubes on the tank storage capacity. The stored mass is 15 % higher than that obtained without these tubes. (author)

  13. Hydrogen storage by adsorption on activated carbon: Investigation of the thermal effects during the charging process

    Energy Technology Data Exchange (ETDEWEB)

    Hermosilla-Lara, G. [Laboratoire d' Ingenierie des Materiaux et des Hautes Pressions, CNRS UPR 1311-Universite Paris 13, 93430 Villetaneuse (France); Laboratoire des Ecoulements Geophysiques et Industriels, BP 53, 38041 Grenoble Cedex 9 (France); Momen, G.; Le Neindre, B.; Hassouni, K. [Laboratoire d' Ingenierie des Materiaux et des Hautes Pressions, CNRS UPR 1311-Universite Paris 13, 93430 Villetaneuse (France); Marty, P.H. [Laboratoire des Ecoulements Geophysiques et Industriels, BP 53, 38041 Grenoble Cedex 9 (France)

    2007-07-15

    This paper presents an investigation of the thermal effects during high-pressure charging of a packed bed hydrogen storage tank. The studied column is packed with activated IRH3 carbon, which has an average surface area of 2600m{sup 2}g{sup -1} and is fed with hydrogen or helium from an external high-pressure source. The temperature at six locations in the storage tank and the pressure value at the bottom of the tank are recorded during the charging stage. Several experiments were carried out to investigate the effect of the initial flow rate on the temperature field in the reservoir and on the duration of the charging process. A study of the respective contribution of adsorption and mechanical dissipation effects to the thermal phenomena is done in the case of hydrogen. Experimental results are compared to those obtained with the commercial code Fluent. A fair agreement is found when comparing typical pressure and temperature evolutions during the tank filling. (author)

  14. Study of the combining adsorption-microfiltration process for the treatment of coloured waters

    Directory of Open Access Journals (Sweden)

    Addaou, Abdelah

    2012-06-01

    Full Text Available Generally textile effluents are highly coloured, contain non-biodegradable compounds and they have high content of solid wastes, comprising fibres and paper wastes. The discharge of such effluents in the environment is worrying for both toxicological and esthetical reasons. The aim of the present work is to study the performances of the combining microfiltration-adsorption process for the treatment of coloured waters. Methylene Blue (MB was used as model compound. The effects of significant operating parameters such as transmembrane pressure (TMP and bentonite concentration on the process performance characterized by flux and rejection factor were investigated. Experiments carried out with Methylene Blue solutions confirmed the potential of this combined process for the treatment of dyed waters.

    Normalmente los efluentes de la industria textil están coloreados y contienen compuestos no biodegradables además de residuos sólidos, fibras y residuos de papel. La liberación de tales efluentes al ambiente es preocupante tanto por razones estéticas como toxicológicas. El propósito del presente trabajo es realizar el estudio de las prestaciones del proceso combinado de adsorción-microfiltración para el tratamiento de aguas coloreadas. Se utilizó Azul de Metileno como compuesto tipo. La influencia de parámetros de operación tales como Presión transmembrana y la concentración de bentonita en el comportamiento del proceso, caracterizado por el flujo del permeado y el factor de retorno que fueron los parámetros estudiados. Los experimentos realizados con las soluciones de Azul de Metileno han confirmado el potencial del proceso combinado para el tratamiento de las aguas teñidas.

  15. Hybrid electrooxidation and adsorption process for the removal of ammonia in low concentration chloride wastewater.

    Science.gov (United States)

    Ding, Jing; Zhao, Qing-Liang; Zhang, Jun; Jiang, Jun-Qiu; Li, Wei; Yu, Hang; Huang, Li-Kun; Zhang, Yun-Shu

    2017-02-01

    The ammonia removal performance of a hybrid electrooxidation and adsorption reactor (HEAR) is evaluated. The influences of current density, chloride concentration, and packing particles for ammonia removal in HEAR were investigated, and the performance of HEAR under serials circulation was studied. Results indicated that ammonia removal efficiency achieved around 70 % under the optimal condition after 30-min electrolysis. The optimal condition was determined as current density of 10 mA/cm 2 , Cl - /NH 4 + molar ratio of 1.8, and modified zeolites as particles. The ammonia adsorption kinetic and adsorption isotherm on zeolites fitted well with second-order kinetic and Langmuir isotherm model, respectively. Adsorption amount of ammonia on zeolites sampled at 30-min electrolysis achieved 2.4 mg/L, higher than 1.9 mg/L of zeolites at 20-min electrolysis, indicating that electrooxidation coupled with adsorption led to simultaneous ammonia removal and zeolite regeneration in HEAR. No decrease of ammonia removal efficiency was observed over several cycles with the electrooxidation treatment. The presence of free chlorine indicating ammonia removal in HEAR was due to the combined influence by adsorption and indirect electrooxidation. These results showed that HEAR was a prospective alternative as a tertiary treatment for wastewater with low chloride ions.

  16. Biosorption of Strontium from Simulated Nuclear Wastewater by Scenedesmus spinosus under Culture Conditions: Adsorption and Bioaccumulation Processes and Models

    Science.gov (United States)

    Liu, Mingxue; Dong, Faqin; Kang, Wu; Sun, Shiyong; Wei, Hongfu; Zhang, Wei; Nie, Xiaoqin; Guo, Yuting; Huang, Ting; Liu, Yuanyuan

    2014-01-01

    Algae biosorption is an ideal wastewater treatment method when coupled with algae growth and biosorption. The adsorption and bioaccumulation of strontium from simulated nuclear wastewater by Scenedesmus spinosus were investigated in this research. One hundred mL of cultured S. spinosus cells with a dry weight of 1.0 mg in simulated nuclear wastewater were used to analyze the effects on S. spinosus cell growth as well as the adsorption and bioaccumulation characters under conditions of 25 ± 1 °C with approximately 3,000 lux illumination. The results showed that S. spinosus had a highly selective biosorption capacity for strontium, with a maximum bioremoval ratio of 76%. The adsorbed strontium ion on cell walls was approximately 90% of the total adsorbed amount; the bioaccumulation in the cytoplasm varied by approximately10%. The adsorption quantity could be described with an equilibrium isotherm. The pseudo-second-order kinetic model suggested that adsorption was the rate-limiting step of the biosorption process. A new bioaccumulation model with three parameters was proposed and could give a good fit with the experiment data. The results suggested that S. spinosus may be a potential biosorbent for the treatment of nuclear wastewater in culture conditions. PMID:24919131

  17. Biosorption of Strontium from Simulated Nuclear Wastewater by Scenedesmus spinosus under Culture Conditions: Adsorption and Bioaccumulation Processes and Models

    Directory of Open Access Journals (Sweden)

    Mingxue Liu

    2014-06-01

    Full Text Available Algae biosorption is an ideal wastewater treatment method when coupled with algae growth and biosorption. The adsorption and bioaccumulation of strontium from simulated nuclear wastewater by Scenedesmus spinosus were investigated in this research. One hundred mL of cultured S. spinosus cells with a dry weight of 1.0 mg in simulated nuclear wastewater were used to analyze the effects on S. spinosus cell growth as well as the adsorption and bioaccumulation characters under conditions of 25 ± 1 °C with approximately 3,000 lux illumination. The results showed that S. spinosus had a highly selective biosorption capacity for strontium, with a maximum bioremoval ratio of 76%. The adsorbed strontium ion on cell walls was approximately 90% of the total adsorbed amount; the bioaccumulation in the cytoplasm varied by approximately10%. The adsorption quantity could be described with an equilibrium isotherm. The pseudo-second-order kinetic model suggested that adsorption was the rate-limiting step of the biosorption process. A new bioaccumulation model with three parameters was proposed and could give a good fit with the experiment data. The results suggested that S. spinosus may be a potential biosorbent for the treatment of nuclear wastewater in culture conditions.

  18. Insight into the adsorption mechanisms of trace organic carbon on biological treatment process.

    Science.gov (United States)

    Zolfaghari, Mehdi; Drogui, Patrick; Brar, Satinder Kaur; Buelna, Gerardo; Dubé, Rino

    2017-09-01

    The presence of recalcitrant dissolved organic matter (DOM) could have a significant effect on the adsorption mechanism and capacity of the sludge for many trace organic carbons (TrOCs). In this study, adsorption of three TrOCs on the sludge and HA was investigated. The results revealed that neutral hydrophilic compounds had an insignificant interaction with both sludge and HA. Positively charged compounds, such as fluoranthene, had more affinity toward HA than sludge with solid/liquid partitioning of 57 and 3.2 L/g, respectively. The adsorption intensity (K f ) of di-2-ethyl hexyl phthalate was 0.5 and 1.13 for the HA and the sludge, respectively. By introducing the sludge to the solution of HA and TrOCs that already reached equilibrium, the sludge adsorption capacity in the presence of HA was investigated. The finding showed that at the lower concentration, adsorption of HA on the sludge was considered as the main removal pathway for the adsorbed emerging contaminants, as 70 mg of HA was adsorbed by a gram of sludge. For the higher concentration, desorption of TrOCs from DOM into the sludge comprised 15-30% of total removal efficiency. CBZ: carbamazepine; DEHP: di-2-ethyl hexyl phthalate; DOM: dissolved organic matter; FLAN: fluoranthene; f oc : fraction of organic carbon; HA: humic acid; Log Kow: octanol-water partition coefficient; PAH: polycyclic aromatic hydrocarbon TS: total solid; TrOCs: trace organic carbons VS: volatile solid.

  19. Adsorption process analysis at the solid-gas interface by the polarization phenomenon study

    International Nuclear Information System (INIS)

    Mouton-Chazel, V.

    1994-01-01

    In order to improve the safety of anti-gas filters users, the Cogema (Nuclear Materials General Company) has developed a gaseous pollutants saturation detection technology for respiratory protection masks. As a matter of fact, the problem consists in studying the surface properties of a solid. In this study the adsorption has been considered as a phenomenon which can be followed by a relatively simple electrical measure technology. A microscopic description of the adsorption phenomenon has been given at first and explained by the thermodynamics laws. Then a theoretical model has been elaborated. The developments which have been brought to this model in this work have allowed to give a satisfactory interpretation of the phenomena observed during the adsorption of a polar gas on a zeolite. (O.M.)

  20. Enrichment of tropical peat with micronutrients for agricultural applications: evaluation of adsorption and desorption processes

    Energy Technology Data Exchange (ETDEWEB)

    Melo, Camila de A.; Oliveira, Lilian K. de; Fraceto, Leonardo F.; Rosa, Andre H., E-mail: ahrosa@sorocaba.unesp.br [Universidade Estadual Paulista Julio de Mesquita Filho (UNESP), Sorocaba, SP (Brazil). Dept. de Engenharia Ambiental; Goveia, Danielle [Universidade Estadual Paulista Julio de Mesquita Filho (UNESP), Araraquara, SP (Brazil). Inst. de Quimica

    2014-01-15

    The objective of this work was to evaluate the adsorption and desorption of micronutrients in tropical peats, from the perspective of potential agricultural applications. Adsorption experiments were performed at different pH values, using solutions containing individual and multiple metal ions. Maximum adsorption capacity occurred at pH 6.0, and the order of affinity was Cu > Fe > Co > Ni > Zn = Mn. Release of the micronutrients was evaluated at different pH values, using an aqueous medium as well as soil and plants. Release of the micronutrients was most efficient at pH 6.0, and followed the order: Fe > Zn > Mn > Co = Ni > Cu. Micronutrient release to the soil was accompanied by uptake by the plant. The use of tropical peat enriched with micronutrients could contribute to improved agricultural productivity, since the release profile of the micronutrients can effectively stimulate plant growth. (author)

  1. Effect of the selective adsorption on the reactive scattering process of molecular beams from stepped surfaces

    International Nuclear Information System (INIS)

    Garcia, N.

    1977-01-01

    An indicative proposal which may explain the diffusion of incident atomic beams scattered by a crystal surface is made in terms of the selective adsorption mechanism. In this sense, the stepped metallic surfaces present characteristics which enhance the displacements and the lifetimes of the beams on the surface. This may be important for increasing the exchange reactive scattering of molecules from crystal surfaces

  2. Studying the Adsorption Process of Riboflavin on Silver-Deposited Fe3O4 Nanoparticles

    Directory of Open Access Journals (Sweden)

    Morteza Akhond

    2016-12-01

    Full Text Available The adsorption characteristics of riboflavin onto silver-deposited iron oxide magnetic nanoparticles (Ag/Fe3O4 have been described. Characterization of the synthesized Ag/Fe3O4 nanoparticles was achieved by FTIR spectra, TEM image and XRD pattern. The influence of several experimental parameters such as nanoparticles dosage, pH of the sample solution, different orientations of the riboflavin molecules toward Ag/Fe3O4 surface, riboflavin concentration, contact time of the reagents, temperature, ionic strength and presence of halide anions were studied. Experimental data indicated that Ag/Fe3O4 nanoparticles adsorb more than 90% of riboflavin under the optimum experimental conditions of the adsorbent dosage of 4.0 mg, a pH of 6.0, and a contact time of 2.0 min, when an initial riboflavin concentration of 0.02 mM is used. The results revealed that the presence of halide anions lower the adsorption of riboflavin on the surface of nanoparticles due to dissolution of the silver layer of the nanoparticles. It was found that the adsorption isotherm is best fitted to Dubinin-Radushkevich and Freundlich models and kinetic model followed a pseudo-second-order adsorption rate.

  3. Study of optimizing the process of Cadmium adsorption by synthesized silver nanoparticles using Chlorella vulgaris

    Directory of Open Access Journals (Sweden)

    Faezeh Sajadi

    2016-05-01

    Full Text Available Background and Aim: Cadmium (Cd is one of the most toxic heavy metals in water that mostly enters the water cycle through industrial waste water. Silver nanoparticles have the capacity to remove heavy metals from the water resources through the mechanism of adsorption. The present study aimed at producing  silver bio-nanoparticles and optimizing . Cd removal from aquatic solutions. Materials and Methods: Silver bio-nanoparticles were extracted via a micro-algae Chlorella vulgaris extract and silver nitrate synthesis. Then, the characteristics of the particles were  determined using FT-IR, XRD, SEM devices. In order to optimize Cadmium adsorption by means of silver nanoparticles, parameters including pH, reaction time, initial concentration of Cd and concentrations of nanoparticles were studied under different conditions. Results: The resulting nanoparticles were spherical, single and crystalline, whose sizes were 10-45 nm.  Under the condition of PH = 8, the initial concentration of cadmium 0.5 mg/L, adsorbent dosage of 0.5 mg, reaction time of 10 min, temperature of 300C and mixing speed of 200 rpm, 99% of cadmium was removed. Isotherm of Cadmium-ion adsorption followed Langmuir (R2> 0/96 (and Freundlich (R2> 0/94 models. Conclusion: Under optimal conditions, silver bio-nanoparticles had the capacity of quick and effective adsorption of cadmium. Thus, with a cheap, non-toxic and environmentally friendly method  can remove heavy metals in a short time.

  4. Regenerating an Arsenic Removal Iron-Based Adsorptive Media System, Part 1: The Regeneration Process

    Science.gov (United States)

    Adsorptive media technology is a frequently used method of removing arsenic by small water systems because of its simplicity and efficiency. Current practice is to replace the media when it no longer reduces arsenic below the USEPA drinking water maximum contaminant level (MCL) ...

  5. Comparison of Fenton process and adsorption method for treatment of industrial container and drum cleaning industry wastewater.

    Science.gov (United States)

    Güneş, Elçin; Çifçi, Deniz İzlen; Çelik, Suna Özden

    2018-04-01

    The present study aims to explore the characterization of industrial container and drum cleaning (ICDC) industry wastewater and treatment alternatives of this wastewater using Fenton and adsorption processes. Wastewater derived from ICDC industry is usually treated by chemical coagulation and biological treatment in Turkey and then discharged in a centralized wastewater treatment facility. It is required that the wastewater COD is below 1500 mg/L to treat in a centralized wastewater treatment facility. The wastewater samples were characterized for parameters of pH, conductivity, COD, BOD 5 , TSS, NH 3 -N, TN, TOC, TP, Cd, Cr, Cu, Fe, Ni, Pb, Zn, and Hg. Initial COD values were in the range of 11,300-14,200 mg/L. The optimum conditions for Fenton treatment were 35-40 g/L for H 2 O 2 , 2-5 g/L for Fe 2+ , and 13-36 for H 2 O 2 /Fe 2+ molar ratio. The optimum conditions of PAC doses and contact times in adsorption studies were 20-30 g/L and 5-12 h, respectively. Removal efficiencies of characterized parameters for the three samples were compared for both Fenton and adsorption processes under optimum conditions. The results suggest that these wastewaters are suitable for discharge to a centralized wastewater treatment plant.

  6. Probing Adsorption / Desorption Processes at the Liquid / Solid Interface: Thiols and Proteins

    Science.gov (United States)

    Campbell, Charles; Jung, Linda S.; Shumaker-Parry, Jennifer; Nelsen, K. E.; Stayton, P. S.; Gelb, M. H.; Aebersold, R.

    2001-03-01

    The adsorption of molecules from liquid solutions onto solid surfaces can be monitored with high sensitivity and fast time response by following changes in the angle or wavelength at which the surface plasmon resonance (SPR) of a thin metal film is optically excited. Simple methods convert these measured changes into adsorbate concentrations. We report here the adsorption and desorption kinetics and equilibrium coverages of a variety of species on well-characterized surfaces as determined by SPR techniques. When the diffusion constant of the adsorbing species is known in the liquid phase, the intrinsic rate constants can be determined from the kinetic results. The sticking probability, defined as the rate of adsorption per molecular collision with the surface, directly expresses the difficulty encountered by a molecule in scaling the barrier to adsorption. Its prior use has been restricted to adsorption of gases. A method extending this concept to adsorption from liquid solutions is applied to transient measurements of alkylthiol adsorption onto gold from ethanol solutions. The initial sticking probability increases from 10-8 to 10-6 with alkyl chain length, implying a stabilization of the transition state by 0.65 kJ/mol per CH_2. Since their sticking probabilities in gas phase are 1.0, the solvent increases the activation free energy by 40 kJ/mol. Applications of gold-thin-film SPR sensors in quantifying biological interactions will be described also. A gold surface containing a few biotin headgroups in a self assembled alkylthiolate monolayer of mainly oligo(ethylene glycol) (OEG) headgroups selectively adsorbs the protein streptavidin with a structure that depends on the biotin / OEG ratio. The free biotin sites in the resulting streptavidin monolayer have been used as strong linker sites for further attachment of intact, biotinylated lipid vesicles and biotinylated, double-stranded oligonucleotides to the surface. These complex biological films then provide a

  7. Study on Shale Adsorption Equation Based on Monolayer Adsorption, Multilayer Adsorption, and Capillary Condensation

    Directory of Open Access Journals (Sweden)

    Qing Chen

    2017-01-01

    Full Text Available Shale gas is an effective gas resource all over the world. The evaluation of pore structure plays a critical role in exploring shale gas efficiently. Nitrogen adsorption experiment is one of the significant approaches to analyze pore size structure of shale. Shale is extremely heterogeneous due to component diversity and structure complexity. Therefore, adsorption isotherms for homogeneous adsorbents and empirical isotherms may not apply to shale. The shape of adsorption-desorption curve indicates that nitrogen adsorption on shale includes monolayer adsorption, multilayer adsorption, and capillary condensation. Usually, Langmuir isotherm is a monolayer adsorption model for ideal interfaces; BET (Brunauer, Emmett, Teller adsorption isotherm is a multilayer adsorption model based on specific assumptions; Freundlich isotherm is an empirical equation widely applied in liquid phase adsorption. In this study, a new nitrogen adsorption isotherm is applied to simultaneously depict monolayer adsorption, multilayer adsorption, and capillary condensation, which provides more real and accurate representation of nitrogen adsorption on shale. In addition, parameters are discussed in relation to heat of adsorption which is relevant to the shape of the adsorption isotherm curve. The curve fitting results indicate that our new nitrogen adsorption isotherm can appropriately describe the whole process of nitrogen adsorption on shale.

  8. Application of high silica zeolite ZSM-5 in a hybrid treatment process based on sequential adsorption and ozonation for VOCs elimination.

    Science.gov (United States)

    Zaitan, Hicham; Manero, Marie Hélène; Valdés, Héctor

    2016-03-01

    In this study, a hydrophobic synthetic zeolite, namely ZSM-5 is chosen as an adsorbent/catalyst for toluene removal. Experimental results showed that toluene adsorption onto ZSM-5 was favourable, following a Langmuir adsorption isotherm model. ZSM-5 zeolite was regenerated using gaseous ozone at low temperature. Adsorbed toluene was oxidised, releasing mainly CO2 and H2O. Traces of oxidation by-products such as acetic acid and acetaldehyde were formed and remained adsorbed after the oxidativate regeneration with ozone. After four successive cycles of adsorption/ozonation, the adsorption efficiency was not affected (92%-99%). These results showed that volatile organic compound (VOC) removal by adsorption onto ZSM-5 zeolite followed by ozone regeneration could be used as a promising hybrid process for the control of VOC emissions in terms of efficiency. Copyright © 2015. Published by Elsevier B.V.

  9. Investigation on the performance of polymer zirconium compound (PZC) for chromatographic Tc-99m generator preparation

    International Nuclear Information System (INIS)

    Le Van So

    2004-01-01

    The performance of PZC was investigated for chromatographic Tc-99m generator preparation. Mo-adsorption of PZC in different Mo-solutions and Tc-99m elution of 99 Mo-PZC column were studied. Mo- adsorption capacity of higher than 250mgMo/gPZC and Tc-99m elution yield of higher than 80% were achieved with PZC adsorbent. Mo-99 breakthrough of 0.02% and Molybdenum element breakthrough of around 5μg Mo/ml were found in Tc-99m eluate. A good relationship between the Mo-content of adsorption solution and the Mo-adsorption capacity, adsorption percentage, Mo-breakthrough and Tc-99m elution yield was found. The preparation of PZC based Tc-99m chromatographic generator with 4 gram weight of PZC was successfully conducted. (author)

  10. Selectivity of the adsorption process of modified zeolite rock with hexadecyl trimethylammonium bromide in front to chromates and dichromates

    International Nuclear Information System (INIS)

    Salgado G, N.

    2011-01-01

    In the present investigation natural zeolite (clinoptilolite) from the Chihuahua state, which was conditioned with sodium chloride solution and subsequently modified with a hexadecyl trimethylammonium bromide solution was used to evaluate the removal of Cr (Vi) from chromate or dichromate solutions. The zeolite materials were characterized by scanning electron microscopy and X-ray diffraction. The surface area was also determined. The experiments were performed in a batch system, the influence of ph, contact time between phases were investigated and during the adsorption process was calculated the concentration of chromium ion present in aqueous solution (CrO 4 2- , Cr 2 O 7 2- ). The quantification of chromium removed from the aqueous solution by atomic absorption spectrometry technique was done. In order to understand the behaviour of the adsorption kinetics the pseudo first and pseudo second order models were applied, and to determine the adsorption capacity of the zeolite materials for Cr the Langmuir, Freundlich and Langmuir-Freundlich models were chosen. It was found that the removal efficiency of chromium ion is influenced by ph and the chemical species present: chromate or dichromate. The chromate and dichromate sorption kinetic data were best fitted to the pseudo-second and pseudo-first order models, respectively; and the Langmuir and Langmuir-Freundlich models described adequately the isotherms data considering a mono component system. In a mixture of Cr (Vi) ad CrO 4 2- and Cr 2 O 7 2- , the surfactant modified zeolite has a greater selectivity for Cr 2 O 7 2- ion than CrO 4 2- . In this case the Langmuir-Freundlich model described the adsorption isotherm behavior. (Author)

  11. Removal of multi-dye wastewater by the novel integrated adsorption and Fenton oxidation process in a fluidized bed reactor.

    Science.gov (United States)

    Lyu, Cong; Zhou, Dandan; Wang, Jun

    2016-10-01

    Traditionally, a few processes have to be employed in sequence for multi-dye removal, due to the different physical and chemical characteristics of the dyes. In this study, we innovatively developed an integrated adsorption and Fenton oxidation fluidized bed reactor (FBR) based on the hydraulic classification theory, which could efficiently remove dispersed red, acid yellow, and reactive brilliant dyes. The fluidized solids such as ceramsite and activated carbon could be separately fluidized at the bottom and the top part of the FBR, respectively. As a result, Fenton oxidization of dyes was promoted by the fluidization of ceramsite and activated carbon. Besides, adsorption of activated carbon could synergistically act on the dyes. The results showed that the removal efficiencies of acid yellow 2G, disperse red 60, and reactive brilliant blue X-BR could reach 100, 79.8, and 84.9 % in 10 min, respectively. Lots of intermediates with unsaturated bonds were generated during Fenton reaction, which was further removed by adsorption of activated carbon. Consequently, a high COD removal of 93 % was obtained. Interestingly, some of Fe 3+ produced during Fenton reaction was further precipitated and crystallized as FeO(OH) or Fe(OH) 3 on the surface of activated carbon and ceramsite, which could be potentially recycled for further utilization as a heterogeneous catalyst. Meanwhile, the other Fe 3+ might be removed in the form of ferro-organic complexes by adsorption onto the activated carbon. Thus, only a little iron hydroxide sludge was generated in the FBR. This novel FBR gave us an effective clue to realize multi-reactions for textile wastewater treatment by employing hydraulic classification fluidization.

  12. Optimisation of slow-pyrolysis process conditions to maximise char yield and heavy metal adsorption of biochar produced from different feedstocks.

    Science.gov (United States)

    Hodgson, E; Lewys-James, A; Rao Ravella, S; Thomas-Jones, S; Perkins, W; Gallagher, J

    2016-08-01

    The objective of this work was to identify biomass feedstocks and optimum pyrolysis process conditions to produce a biochar capable of adsorbing metals from polluted groundwater. Taguchi experimental design was used to determine the effects of slow-pyrolysis process conditions on char yield and zinc adsorption. Treatments were repeated using six candidate feedstocks (Lolium perenne, Lolium perenne fibre, Miscanthus x giganteus, Salix viminalis, Fraxinus excelsior and Picea sitchensis) and the resultant chars were tested for metal adsorption performance. Chars produced from L. perenne and its extracted fibre displayed the greatest zinc adsorption performance and removed 83.27-92.96% respectively. Optimum process conditions in terms of both char yield and zinc adsorption performance were achieved from slow-pyrolysis at 300°C for 2h using a feedstock with a particle size of less than 1mm. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Treatment of mining waste leachate by the adsorption process using spent coffee grounds.

    Science.gov (United States)

    Ayala, Julia; Fernández, Begoña

    2018-02-15

    The removal of heavy metals from mining waste leachate by spent coffee grounds has been investigated. In synthetic solutions, metal uptake was studied in batch adsorption experiments as a function of pH, contact time, initial metal concentration, adsorbent concentration, particle size, and the effect of co-ions (Na, K, Ca, Mg, Cu, Cd, Ni, Zn). Results showed that adsorption was significantly affected by pH, showing the highest affinity within a pH range of 5-7. Sorption of heavy metals reached equilibrium in 3 h. Removal percentages of metals ions increased with increasing dosage. Particle size did not have a significant influence on metal uptake. The adsorption of heavy metals was found to fit Langmuir and Freundlich isotherms. Maximum Zn, Cd and Ni uptake values were calculated as 10.22, 5.96 and 7.51 mg/g, respectively, using unwashed coffee grounds (UCG) as the adsorbent and 5.36, 4.28 and 4.37 mg/g when employing washed coffee grounds as the adsorbent. The presence of co-ions inhibited the uptake of heavy metals, divalent ions having a more negative effect than monovalent ions. The results obtained in the experiments with mining waste leachate showed that UCG is effective in removing heavy metals.

  14. Preparation and characterization of two organoclays aiming its use in adsorption processes

    International Nuclear Information System (INIS)

    Vazzoler, H.; Valenzuela-Diaz, F.R.; Vazzoler, F.D.

    2014-01-01

    Were prepared two organoclays aiming at studying their adsorption properties. The clayssed were the Brazilian Bentongel and Argentina Green Lake. The clays were characterized and organoclays. Performed analyzes of X-Ray diffraction, infrared, SEM, thermogravimetry and swelling experiments Foster and adsorption ASTM. The X-ray diffraction indicated collation of lamellar organic cation used. The variations thermogravimetrics were negative and ranged from around 24% in organophilic clays. The results of infrared spectroscopy indicated the presence of bands that show this barge. The form of the particles/agglomerates of clay minerals was verified by SEM before and after organofilization. The values of the measures of swelling were up to 30 mL/g for some solvents. The adsorption test showed good ability of sorption per gram of clay, reaching respectively 10.2g/g and 9.9 g/g for gasoline and ethylbenzene. These high values indicate that the modified clay may have potential use in sectors of environmental toxicity control industrial and separation. (author)

  15. Competitive Protein Adsorption - Multilayer Adsorption and Surface Induced Protein Aggregation

    DEFF Research Database (Denmark)

    Holmberg, Maria; Hou, Xiaolin

    2009-01-01

    and that the outcome of IgG adsorption is much more sensitive to surface characteristics than the outcome of albumin adsorption. Using high concentrations of protein solution and hydrophobic polymer surfaces during adsorption can induce IgG aggregation, which is observed as extremely high IgG adsorptions. Besides......In this study, competitive adsorption of albumin and IgG (immunoglobulin G) from human serum solutions and protein mixtures onto polymer surfaces is studied by means of radioactive labeling. By using two different radiolabels (125I and 131I), albumin and IgG adsorption to polymer surfaces...... is monitored simultaneously and the influence from the presence of other human serum proteins on albumin and IgG adsorption, as well as their mutual influence during adsorption processes, is investigated. Exploring protein adsorption by combining analysis of competitive adsorption from complex solutions...

  16. Adsorption process of fluoride from drinking water with magnetic core-shell Ce-Ti@Fe3O4 and Ce-Ti oxide nanoparticles.

    Science.gov (United States)

    Abo Markeb, Ahmad; Alonso, Amanda; Sánchez, Antoni; Font, Xavier

    2017-11-15

    Synthesized magnetic core-shell Ce-Ti@Fe 3 O 4 nanoparticles were tested, as an adsorbent, for fluoride removal and the adsorption studies were optimized. Adsorption capacity was compared with the synthesized Ce-Ti oxide nanoparticles. The adsorption equilibrium for the Ce-Ti@Fe 3 O 4 adsorbent was found to occur in Ti oxides and Ce-Ti@Fe 3 O 4 nanoparticles, respectively. The physical sorption mechanism was estimated using the Dubinin-Radushkevich model. An anionic exchange process between the OH - group on the surface of the Ce-Ti@Fe 3 O 4 nanomaterial and the F - was involved in the adsorption. Moreover, thermodynamic parameters proved the spontaneous process for the adsorption of fluoride on Ce-Ti@Fe 3 O 4 nanoparticles. The reusability of the material through magnetic recovery was demonstrated for five cycles of adsorption-desorption. Although the nanoparticles suffer slight structure modifications after their reusability, they keep their adsorption capacity. Likewise, the efficiency of the Ce-Ti@Fe 3 O 4 was demonstrated when applied to real water to obtain a residual concentration of F - below the maximum contaminated level, 1.5mg/L (WHO, 2006). Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Dynamic modelling of an adsorption storage tank using a hybrid approach combining computational fluid dynamics and process simulation

    Science.gov (United States)

    Mota, J.P.B.; Esteves, I.A.A.C.; Rostam-Abadi, M.

    2004-01-01

    A computational fluid dynamics (CFD) software package has been coupled with the dynamic process simulator of an adsorption storage tank for methane fuelled vehicles. The two solvers run as independent processes and handle non-overlapping portions of the computational domain. The codes exchange data on the boundary interface of the two domains to ensure continuity of the solution and of its gradient. A software interface was developed to dynamically suspend and activate each process as necessary, and be responsible for data exchange and process synchronization. This hybrid computational tool has been successfully employed to accurately simulate the discharge of a new tank design and evaluate its performance. The case study presented here shows that CFD and process simulation are highly complementary computational tools, and that there are clear benefits to be gained from a close integration of the two. ?? 2004 Elsevier Ltd. All rights reserved.

  18. Design and analysis of siloxanes removal by adsorption from landfill gas for waste-to-energy processes.

    Science.gov (United States)

    Elwell, Anthony C; Elsayed, Nada H; Kuhn, John N; Joseph, Babu

    2018-03-01

    Separation of volatile methyl siloxanes from landfill gas using fixed adsorption beds was modeled with the objective of identifying appropriate technology and the economics associated with this purification step. A general adsorption model assuming plug flow and radial symmetry was developed and used to conduct a parametric sweep of 162 unique cases. The varied parameters were adsorbent type (activated carbon and silica gel), bed height (3.05-9.15 m/10-30 ft), inlet siloxane concentration (5-15 mg/m 3 ), moisture content (0-100% relative humidity at STP or RH), and siloxane tolerance limit (0.094-9.4 mg/m 3 ) that correlated to three distinct energy conversion technologies (electricity production using engines or fuels cells or catalytic conversion to liquid hydrocarbon fuels). Due to the detrimental effect of RH on siloxane absorption, the maximum allowable moisture content of LFG before purification is 50% RH and moisture removal processes are also required. The design calculations using a selected case study show that the adsorption bed height required needed for 6 months minimum breakthrough time for catalytic fuel production is twice that for engine applications. Fuel cell applications require 3 times the bed height compared to engine applications. However, the purification costs amounted to 94%, 16% and 52% of recovered product value for engine, liquefaction, and fuel cell applications, respectively indicating the need for a high value product to justify purification costs. The approaches and conclusions can be extended to specific process conditions for landfill gas purification and to other processes that use biogas produced from waste as a feedstock. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Reactivity of ionic oxides through water molecules adsorption process; MgO-V sub 2 O sub 5 behaviour

    Energy Technology Data Exchange (ETDEWEB)

    Goni-Elizalde, S. (Consejo Superior de Investigaciones Cientificas, Madrid (Spain). Instituto de Ciencias de la Construccion Eduardo Torroja); Garcia-Clavel, M.E. (Consejo Superior de Investigaciones Cientificas, Madrid (Spain). Instituto de Edafologia)

    1991-03-01

    Crystalline V{sub 2}O{sub 5} reactivity is strongly dependent on both particle size and relative humidity surrounding the sample. To study the increase of reactivity of crystalline V{sub 2}O{sub 5} (grain size<0.05 mm), a mixture of MgO-V{sub 2}O{sub 5} (1:1) has been kept in a watervapour saturated atmosphere for different periods of time. X-ray diffraction is employed to follow the structural evolution of the mixture, the adsorption process of water molecules has been studied by infrared spectroscopy as well as by thermogravimetry. (author). 11 refs.; 5 figs.; 1 tab.

  20. [The gas chromatographic analysis of volatile compounds on the compact MKhP chromatograph].

    Science.gov (United States)

    Krasnova, R R; Ianovskiĭ, S M

    1998-01-01

    Methods of analysis of biological specimens, alcohol beverages, and technological liquids in columns with standard adsorbents carbopaque B and C with carbowax 20M, widely used abroad, are described and examples of analyses presented. A special portable chromatographer (MCP) with flame ionization detector has been designed. It is intended for analysis of volatile organic compounds (alcohols, carbohydrates, organochlorine compounds, glycols, esters, etc.) in columns of different polarity. The system of processing of chromatographic findings permits a quantitative analysis of complex chromatograms and automated identification of substances in biological samples by using the available database.

  1. Treatment of mature landfill leachate using hybrid processes of hydrogen peroxide and adsorption in an activated carbon fixed bed column.

    Science.gov (United States)

    Eljaiek-Urzola, Monica; Guardiola-Meza, Luis; Ghafoori, Samira; Mehrvar, Mehrab

    2018-02-23

    In this study, the treatment of mature landfill leachate is evaluated by oxidation with hydrogen peroxide (H 2 O 2 ) combined with adsorption in a granular activated carbon (GAC) fixed bed column to determinate the increase in the biodegradability index, the reduction of chemical oxygen demand (COD) as well as the increase in the useful life of the GAC bed. The sample leachate from Loma de Los Cocos Landfill (Cartagena de Indias, Colombia) has a very low biodegradability ratio ranging from 0.034 to 0.048 that makes it difficult to meet the required water quality level according to the regulations. The COD removal is initially monitored in the H 2 O 2 oxidation treatment process. The operating conditions such as pH, H 2 O 2 dosage, and the reaction time are optimized in this process based on the percentage of COD removal. A maximum COD removal of 29.9% is achieved at an initial H 2 O 2 concentration of 5000 mg L -1 with a pH of 8 and the reaction time of 60 min. The hybrid treatment by H 2 O 2 -GAC achieved 97.3% COD removal and 116% increase in the biodegradability ratio (from 0.072 to 0.134) while this ratio was increased by 6.5% with H 2 O 2 alone. Moreover, the useful life of the GAC bed is increased from 45 min in the column fed with raw leachate to 170 min in the column fed with pretreated leachate and 5000 mg L -1 of H 2 O 2 at pH of 8 that subsequently increased the activated carbon adsorption capacity. An adsorption model for leachate treated with H 2 O 2 is also developed.

  2. Adsorption-regeneration by heterogeneous Fenton process using modified carbon and clay materials for removal of indigo blue.

    Science.gov (United States)

    Almazán-Sánchez, Perla Tatiana; Solache-Ríos, Marcos J; Linares-Hernández, Ivonne; Martínez-Miranda, Verónica

    2016-01-01

    Indigo blue dye is mainly used in dyeing of denim clothes and its presence in water bodies could have adverse effects on the aquatic system; for this reason, the objective of this study was to promote the removal of indigo blue dye from aqueous solutions by iron and copper electrochemically modified clay and activated carbon and the saturated materials were regenerated by a Fenton-like process. Montmorillonite clay was modified at pH 2 and 7; activated carbon at pH 2 and pH of the system. The elemental X-ray dispersive spectroscopy analysis showed that the optimum pH for modification of montmorillonite with iron and copper was 7 and for activated carbon was 2. The dye used in this work was characterized by infrared. Unmodified and modified clay samples showed the highest removal efficiencies of the dye (90-100%) in the pH interval from 2 to 10 whereas the removal efficiencies decrease as pH increases for samples modified at pH 2. Unmodified clay and copper-modified activated carbon at pH 2 were the most efficient activated materials for the removal of the dye. The adsorption kinetics data of all materials were best adjusted to the pseudo-second-order model, indicating a chemisorption mechanism and the adsorption isotherms data showed that the materials have a heterogeneous surface. The iron-modified clay could be regenerated by a photo-Fenton-like process through four adsorption-regeneration cycles, with 90% removal efficiency.

  3. An In-Depth Structural Study of the Carbon Dioxide Adsorption Process in the Porous Metal-Organic Frameworks CPO-27-M.

    Science.gov (United States)

    Pato-Doldán, Breogán; Rosnes, Mali H; Dietzel, Pascal D C

    2017-04-22

    The CO 2 adsorption process in the family of porous metal-organic framework materials CPO-27-M (M=Mg, Mn, Co, Ni, Cu, and Zn) was studied by variable-temperature powder synchrotron X-ray diffraction under isobaric conditions. The Rietveld analysis of the data provided a time-lapse view of the adsorption process on CPO-27-M. The results confirm the temperature-dependent order of occupation of the three adsorption sites in the pores of the CPO-27-M materials. In CPO-27-M (M=Mg, Mn, Co, Ni, and Zn), the adsorption sites are occupied in sequential order, primarily because of the high affinity of CO 2 for the open metal sites. CPO-27-Cu deviates from this stepwise mechanism, and the adsorption sites at the metal cation and the second site are occupied in parallel. The temperature dependence of the site occupancy of the individual CO 2 adsorption sites derived from the diffraction data is reflected in the shape of the volumetric sorption isotherms. The fast kinetics and high reversibility observed in these experiments support the suitability of these materials for use in temperature- or pressure-swing processes for carbon capture. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. ADSORPTION PROCESS OF MOLECULARLY IMPRINTED SILICA FOR EXTRACTION OF LACTOSE FROM MILK

    Directory of Open Access Journals (Sweden)

    A. L. Balieiro

    Full Text Available Abstract In Brazil, about 25-30% of the population has some degree of intolerance to lactose, a disorder associated with the inability of the body to digest lactose due to a disability or absence of the enzyme lactase. The goal of this study was to evaluate the performance of adsorption of lactose from fresh milk using a fixed bed column of molecularly imprinted polymer (MIP. The polymeric material was characterized using Scanning electron microscopy (SEM analysis, thermal analysis (e.g., differential scanning calorimetric (DSC and thermogravimetric analysis (TGA, Fourier Transform Infrared Spectroscopy (FTIR, and the method of Braunauer, Emmet and Teller (BET. The adsorption column dynamics and performance were studied by the breakthrough curves using a 24-1 fractional factorial design. The chemical and structural characterization of the pure matrix and imprinted polymers confirmed the molecularly imprinted polymer (MIP imprinted with lactose. The highest capacity was 62.21 mgg-1, obtained at 307.1 K and a flow rate of 12.5 mL.min-1, with central point conditions, 320.1 K and 9 mL.min-1, with an average value of 50.9 mg.g-1. The results indicate that the molecularly imprinted polymer is efficient.

  5. Removal of health hazards causing acidic dyes from aqueous solutions by the process of adsorption

    Directory of Open Access Journals (Sweden)

    Sumanjit

    2008-01-01

    Full Text Available The association of dyes, particularly acidic dyes with health related problems is not a new phenomenon. A lot of well established literature is already available on the role of dyes as a major cause in skin and respiratory diseases. The adsorbents which are of low cost, locally available and are relatively new for their acidic dyes removal capacity from aqueous solutions were investigated. Bagasse, cow dung, groundnut shells, pea shells, used tea leaves, wheat straw were used in their charcoal form whereas brick kiln ash and cement kiln ash adsorbents were used as such for the removal of acid violet 17, acid violet 49, acid violet 54, acid blue 15 and acid red 119. The effects of various experimental parameters, initial pH, dye concentration, sorbent dosage, ion strength, contact time were examined and optimal experimental conditions were decided. At initial basic pH more than 8.0, all the five dyes studied could be removed effectively. The isothermal data for adsorption followed the Freundlich and Langmuir models. The adsorption results in this study indicated that all the adsorbents were attractive candidates for removing acidic dyes from dye wastewater.

  6. Study of processes of adsorption, hydrolysis and metabolism of the substrate in sequential reactors for shifts and their mathematical modeling

    International Nuclear Information System (INIS)

    Arango P, C.

    1993-01-01

    In this article the results of the investigation on the processes of adsorption, hydrolysis and consumption of COD (chemical oxygen demand) in both aerobic and anaerobic reactors to laboratory scale, their relationship with the conditions of illumination, half of support and concentration of oxygen, and their possible application in aerobic post-treatment of anaerobic leachates are presented. The investigation consists of an experimental assembly and a theoretical development of search of descriptor equations of the global process, and rates of occurrence of the particular processes. The experimental assembly was carried out with four reactors to laboratory scale subjected to different conditions of light, half of support and concentration of oxygen; it had two phases: one of evaluation of the effect of the different conditions in the efficiency of the reactors, and another of evaluation of the kinetic constants in the reactor of better acting and their application in aerobic treatment of anaerobic leachates

  7. Antimony Adsorption from Zarshouran Gold Mineral Processing Plant Wastewater by Nano Zero Valent Iron Coated on Bentonite

    Directory of Open Access Journals (Sweden)

    nader nosrati

    2015-03-01

    Full Text Available The effluent from Zarshouran gold mineral processing plant contains high quantities of arsenic, antimony, mercury, and bismuth. These metals and metalloids are soluble in water and very toxic when they enter the environment. Their solubility in water causes the polluted area to extend beyond their point of origin. In this article, different methods of antimony removal from water and wastewater were reviewed and the zero-valent iron nanoparticles coated on Bentonite were selected as an effective and low cost material for removing antimony from wastewater. For the purposes of this study, zero-valent iron nanoparticles of 40-100 nanometers in size were synthesized by dropwise addition of sodium borohydride solution to an Iron (III aqueous solution at  ambient temperature and mixed with nitrogen gas. To avoid particle agglomeration and to enhance the product’s environmentally safe application, the  nanoparticles were coated on Bentonite and characterized by SEM/EDAX and BET. The experiments were carried out by intense mixing of the adsorbent with 10ml of real/synthtic wastewater samples in 20ml bottles.  The effects of pH, contact time, temperature, and adsorbent dosage on antimony removal efficiency were investigated under intense mixing using a magnetic mixer. Finally, the effluents were filtered upon completion of the experiments and used for atomic adsorption analysis. The results of the experiments showed that the adsorption isotherms of the synthesized nanoparticles obeyed the Langmuir and Freundlich models. The experiments carried out on real samples showed that antimony adsorption capacity for B-nZVI was 2.6 mg/g of the adsorbent and that the highest antimony removal efficiency was 99.56%.

  8. Development of adsorption process for NOx recycling in a reprocessing plant

    International Nuclear Information System (INIS)

    Matsuoka, Shingo; Kodama, Takashi; Kumagai, Mikio; Tamura, Takaaki; Izumi, Jun; Someya, Hiroshi

    2003-01-01

    A large amount of NOx, which is used in a reprocessing plant mainly as an oxidizing agent of Pu 3+ , eventually results in the formation of low-level radioactive sodium nitrate waste. Since NOx is generated by the reaction of sodium nitrite and nitric acid, non-radioactive sodium nitrate is also formed as a by-product. In order to reduce the amounts of radioactive and non-radioactive sodium nitrate wastes, a new method was examined to recover NOx for recycling from the off-gas of the denitrator of uranyl nitrate solution. Fundamental and consequent bench scale experiments showed that the vacuum pressure swing adsorption method, using combined silica-gel and clinoptilolite for water vapor removal and pentasil zeolite for NOx recovery, is applicable for this purpose. (author)

  9. Parameter selection for peak alignment in chromatographic sample profiling: Objective quality indicators and use of control samples

    NARCIS (Netherlands)

    Peters, S.; van Velzen, E.; Janssen, H.-G.

    2009-01-01

    In chromatographic profiling applications, peak alignment is often essential as most chromatographic systems exhibit small peak shifts over time. When using currently available alignment algorithms, there are several parameters that determine the outcome of the alignment process. Selecting the

  10. Cyclic process of simazine removal from waters by adsorption on zeolite H-Y and its regeneration by thermal treatment

    Energy Technology Data Exchange (ETDEWEB)

    Sannino, Filomena, E-mail: fsannino@unina.it [Dipartimento di Scienze del Suolo, della Pianta, dell' Ambiente e delle Produzioni Animali, Universita di Napoli ' Federico II' , Via Universita 100, 80055 Portici (Italy); Ruocco, Silvia [Dipartimento di Scienze del Suolo, della Pianta, dell' Ambiente e delle Produzioni Animali, Universita di Napoli ' Federico II' , Via Universita 100, 80055 Portici (Italy); Marocco, Antonello; Esposito, Serena; Pansini, Michele [Laboratorio Materiali - Dipartimento di Meccanica, Strutture, Ambiente e Territorio - Universita di Cassino - Via Di Biasio 43 - 03043 Cassino (Italy)

    2012-08-30

    Highlights: Black-Right-Pointing-Pointer Bringing agrochemical concentration below the law limit allowed in wastewaters. Black-Right-Pointing-Pointer Regenerating the adsorbent which can be used again in the cyclic process. Black-Right-Pointing-Pointer Destroying the agrochemical molecules by combustion. - Abstract: Removal of the agrochemical simazine from polluted waters through adsorption by zeolite Y in its protonic form was studied. The investigated parameters were: pH, time, initial simazine concentration and solid/liquid ratio. An iterative process of simazine removal from waters is proposed, featuring: (i) final agrochemical concentration well below 0.05 mg/dm{sup 3}, the maximum concentration allowed by Italian laws in wastewaters; (ii) regeneration of the adsorbent by a few minutes thermal treatment in air at about 500 Degree-Sign C, which results in the combustion of simazine without damage of the adsorbent; (iii) destruction of the agrochemical compound by combustion.

  11. Cyclic process of simazine removal from waters by adsorption on zeolite H-Y and its regeneration by thermal treatment

    International Nuclear Information System (INIS)

    Sannino, Filomena; Ruocco, Silvia; Marocco, Antonello; Esposito, Serena; Pansini, Michele

    2012-01-01

    Highlights: ► Bringing agrochemical concentration below the law limit allowed in wastewaters. ► Regenerating the adsorbent which can be used again in the cyclic process. ► Destroying the agrochemical molecules by combustion. - Abstract: Removal of the agrochemical simazine from polluted waters through adsorption by zeolite Y in its protonic form was studied. The investigated parameters were: pH, time, initial simazine concentration and solid/liquid ratio. An iterative process of simazine removal from waters is proposed, featuring: (i) final agrochemical concentration well below 0.05 mg/dm 3 , the maximum concentration allowed by Italian laws in wastewaters; (ii) regeneration of the adsorbent by a few minutes thermal treatment in air at about 500 °C, which results in the combustion of simazine without damage of the adsorbent; (iii) destruction of the agrochemical compound by combustion.

  12. The initial growth of ultra-thin films fabricated by a weak polyelectrolyte layer-by-layer adsorption process

    Science.gov (United States)

    Fujita, Shiro; Shiratori, Seimei

    2005-09-01

    A weak polyelectrolyte layer-by-layer self-assembled multilayer has several morphologies depending on solution pH, including the morphology of poly(allylamine hydrochloride) (PAH) pH 7.5/poly(acrylic acid) (PAA) pH 3.5, which is called texture structure. We confirmed the initial growth of a weak polyelectrolyte layer-by-layer (LBL) multilayer in a stepwise adsorption process. The growth states of bilayers from 0.5 to 4.0 and over 4.5 were different when measured by quartz crystal microbalance (QCM), scanning electron microscopy (SEM), atomic force microscopy (AFM), x-ray photoelectron spectroscopy (XPS) and contact angle measurements. The texture structure appeared in 1.0 bilayer, after PAA adsorption. The initial growth was changed around 4.0 bilayers. In this phenomenon, the LBL layer of PAH pH 7.5/PAA pH 3.5 had two zones at least, similar to a strong polyelectrolyte LBL layer.

  13. Application of sludge-based carbonaceous materials in a hybrid water treatment process based on adsorption and catalytic wet air oxidation.

    Science.gov (United States)

    Julcour Lebigue, Carine; Andriantsiferana, Caroline; N'Guessan Krou; Ayral, Catherine; Mohamed, Elham; Wilhelm, Anne-Marie; Delmas, Henri; Le Coq, Laurence; Gerente, Claire; Smith, Karl M; Pullket, Suangusa; Fowler, Geoffrey D; Graham, Nigel J D

    2010-12-01

    This paper describes a preliminary evaluation of the performance of carbonaceous materials prepared from sewage sludges (SBCMs) in a hybrid water treatment process based on adsorption and catalytic wet air oxidation; phenol was used as the model pollutant. Three different sewage sludges were treated by either carbonisation or steam activation, and the physico-chemical properties of the resultant carbonaceous materials (e.g. hardness, BET surface area, ash and elemental content, surface chemistry) were evaluated and compared with a commercial reference activated carbon (PICA F22). The adsorption capacity for phenol of the SBCMs was greater than suggested by their BET surface area, but less than F22; a steam activated, dewatered raw sludge (SA_DRAW) had the greatest adsorption capacity of the SBCMs in the investigated range of concentrations (<0.05 mol L(-1)). In batch oxidation tests, the SBCMs demonstrated catalytic behaviour arising from their substrate adsorptivity and metal content. Recycling of SA_DRAW in successive oxidations led to significant structural attrition and a hardened SA_DRAW was evaluated, but found to be unsatisfactory during the oxidation step. In a combined adsorption-oxidation sequence, both the PICA carbon and a selected SBCM showed deterioration in phenol adsorption after oxidative regeneration, but a steady state performance was reached after 2 or 3 cycles. Copyright © 2010 Elsevier Ltd. All rights reserved.

  14. Oxygen isotopic fractionation of O₂ during adsorption and desorption processes using molecular sieve at low temperatures.

    Science.gov (United States)

    Ahn, Insu; Kusakabe, Minoru; Lee, Jong Ik

    2014-06-15

    Cryogenic trapping using molecular sieves is commonly used to collect O2 extracted from silicates for (17)O/(16)O and (18)O/(16)O analyses. However, gases which interfere with (17)O/(16)O analysis, notably NF3, are also trapped and their removal is essential for accurate direct measurement of the (17)O/(16)O ratio. It is also necessary to identify and quantify any isotopic fractionation associated with the use of cryogenic trapping using molecular sieves. The oxygen isotopic compositions of O2 before and after desorption from, and adsorption onto, 13X and 5A molecular sieves (MS13X and MS5A) at 0°C, -78°C, -114°C, and -130°C were measured in order to determine the oxygen isotopic fractionation at these temperatures. We also investigated whether isotopic fractionation occurred when O2 gas was transferred sequentially into a second cold finger, also containing molecular sieve. It was confirmed that significant oxygen isotopic fractionation occurs between the gaseous O2 and that adsorbed onto molecular sieve, if desorption and adsorption are incomplete. As the fraction of released or untrapped O2 becomes smaller with decreasing trapping temperature (from 0 to -130°C), the isotopic fractionation becomes larger. Approximately half of the total adsorbed O2 is released from the molecular sieve during desorption at -114°C, which is the temperature recommended for separation from NF3 (retained on the molecular sieve), and this will interfere with (17)O/(16)O measurements. The use of a single cold finger should be avoided, because partial desorption is accompanied by oxygen isotopic fractionation, thereby resulting in inaccurate isotopic data. The use of a dual cold finger arrangement is recommended because, as we have confirmed, the transfer of O2 from the first trap to the second is almost 100%. However, even under these conditions, a small isotopic fractionation (0.18 ± 0.05‰ in δ(17)O values and 0.26 ± 0.06‰ in δ(18)O values) occurred, with O2 in

  15. Palm Oil Mill Effluent Treatment Through Combined Process Adsorption and Membrane Filtration

    Directory of Open Access Journals (Sweden)

    Muhammad Said

    2016-08-01

    Full Text Available The growth in palm oil production also leads to an Increase in the production of palm oil mill effluent (POME. Nowadays, POME was treated using an open lagoon but this method is ineffectiveness in complying with the standards for water disposal. Therefore, efficient and cohesive treatment system is highly desired to ensure the final discharge of the treated water meets the effluent discharge standards. Initially, the POME was treated through adsorption, followed by UF membranes roomates were intended to reduce COD, TSS and turbidity up to 88%, 99%, and 98%, while the final treatment of RO membranes can reduce BOD, COD and color up to 92%, 98% and 99%. To determine the optimum condition of the RO membrane, response surface methodology (RSM was used. The results showed there was correlation between all key variables. POME concentration, trans-membrane pressure, pH and time would give significant effects in reducing the parameters in POME treatment with the optimum condition of 15.77% for POME concentration, 3.73 for pH, 0.5 bar trans-membrane pressure and 5 hours for filtration time. To predict COD removal, the results were analyzed by applying the artificial neural network (ANN to derive a mathematical model.

  16. The effect of chars and their water extractable organic carbon (WEOC) fractions on atrazine adsorption-desorption processes

    Science.gov (United States)

    Cavoski, I.; Jablonowski, N.; Burauel, P.; Miano, T.

    2012-04-01

    Chars are carbonaceous material produced from different type of biomass by pyrolysis. They are known as highly effective adsorbents for atrazine therefore limiting its degradation and its diffusion into the aqueous phase. The aim of the present work is to study the effects of different chars and char's derived WEOC on atrazine sorption-desorption processes. The five chars been used in this study derived from: 1) fast pyrolysis from hard wood (FP1); 2) flash pyrolysis from soft wood (FP2); 3) slow pyrolysis from deciduous wood (CC); 4) gasification from deciduous wood (GC) and 5) the market, purchased as activated charcoal standard (AC). Short-term batch equilibration tests were conducted to assess the sorption-desorption behavior of 14C-labeled atrazine on the chars, with a special focus on the desorption behavior using successive dilution method with six consecutive desorption step. Chars and their WEOC were physically and chemically characterized. Results demonstrate that biomass and pyrolysis process used to produce chars affect their physical and chemical properties, and atrazine adsorption-desorption behavior. Atrazine desorption resulted from the positive and competitive interactions between WEOC and chars surfaces. WEOC pool play important role in atrazine adsorption-desorption behavior. FP1 and FP2 with higher concentration of WEOC showed higher desorption rates, whereas GC, CC and AC with insignificant WEOC concentration strongly adsorb atrazine with low desorption rates. According to our results, when high WEOC pools chars are concerned, an increase in atrazine desorption can be observed but further studies would help in confirming the present results.

  17. Pollutant removal from industrial discharge water using individual and combined effects of adsorption and ion-exchange processes: Chemical abatement

    Directory of Open Access Journals (Sweden)

    Jérémie Charles

    2016-03-01

    Full Text Available In this study, adsorption-oriented processes for pollutant removal from metal polycontaminated surface-finishing discharge water were applied individually as well as in combination with ion-exchange treatment to remove the remaining metal ions and organic load. Several materials were compared using batch experiments, namely an activated carbon, three ion-exchange resins (IRA 402Cl, IR 120H and TP 207, and two non-conventional cross-linked polysaccharide-based biosorbents (starch and cyclodextrin. This article presents the abatements obtained in chemical pollution as monitored by complete chemical analysis. For the same experimental conditions (similar discharge water, pollutant concentrations, stirring rate, contact time, and initial pH, the highest levels of pollutant removal were attained with the combined use of two materials, an activated carbon and a mixture of two ion-exchange resins. This physicochemical treatment effectively lowered the main pollutants present in the discharge water such as Cu, Ni and COD, by more than 96%, 79% and 74% respectively (average values for three samples, while the treatment with carbon alone lowered them by 58%, 9% and 70%, and resins alone by 85%, 61% and 16%. Similar interesting results were obtained with the cyclodextrin-based adsorbent and its use alone was sufficient to obtain decreases in Cu, Ni and COD of more than 94%, 77% and 67% respectively. The adsorption-oriented process using cyclodextrin polymer could be an advantageous approach for removing organic and metallic pollutants from metal surface-finishing discharge water due to the non-toxic character of CD to humans and the environment.

  18. Simulation of adsorption process of benzene present in effluent of the petrochemical industry; Simulacao do processo de adsorcao do benzeno presente em efluentes da industria petroquimica

    Energy Technology Data Exchange (ETDEWEB)

    Luz, Adriana D. da; Mello, Josiane M.M. de; Souza, Antonio Augusto Ulson de; Souza, Selene M.A. Guelli Ulson de [Universidade Federal de Santa Catarina (UFSC), Florianopolis, SC (Brazil); Silva, Adriano da [Universidade Comunitaria Regional de Chapeco (UNOCHAPECO), SC (Brazil)

    2008-07-01

    The adsorption processes have shown quite efficient in the removal of pollutant in liquid effluents, especially hydrocarbons of difficult removal, such as benzene. This work presents a phenomenological model that describes the process of benzene removal through the adsorption in a fixed bed column, being used coal activated as adsorbent. The model considers the internal and external resistances of mass transfer to the adsorbent particle. The method of Finite Volumes is used in the discretization of the equations. The numerical results obtained through the simulation presented good correlation when compared with experimental data found in the literature, demonstrating that the developed computational code, together with the mathematical modeling, represents an important tool for the project of adsorption columns. (author)

  19. Dual liquid and gas chromatograph system

    Science.gov (United States)

    Gay, D.D.

    A chromatographic system is described that utilizes one detection system for gas chromatographic and micro-liquid chromatographic determinations. The detection system is a direct-current, atmospheric-pressure, helium plasma emission spectrometer. The detector utilizes a nontransparent plasma source unit which contains the plasma region and two side-arms which receive effluents from the micro-liquid chromatograph and the gas chromatograph. The dual nature of this chromatographic system offers: (1) extreme flexibility in the samples to be examined; (2) extreme low sensitivity; (3) element selectivity; (4) long-term stability; (5) direct correlation of data from the liquid and gas samples; (6) simpler operation than with individual liquid and gas chromatographs, each with different detection systems; and (7) cheaper than a commercial liquid chromatograph and a gas chromatograph.

  20. Modeling the Non-Equilibrium Process of the Chemical Adsorption of Ammonia on GaN(0001) Reconstructed Surfaces Based on Steepest-Entropy-Ascent Quantum Thermodynamics.

    Science.gov (United States)

    Kusaba, Akira; Li, Guanchen; von Spakovsky, Michael R; Kangawa, Yoshihiro; Kakimoto, Koichi

    2017-08-15

    Clearly understanding elementary growth processes that depend on surface reconstruction is essential to controlling vapor-phase epitaxy more precisely. In this study, ammonia chemical adsorption on GaN(0001) reconstructed surfaces under metalorganic vapor phase epitaxy (MOVPE) conditions (3Ga-H and N ad -H + Ga-H on a 2 × 2 unit cell) is investigated using steepest-entropy-ascent quantum thermodynamics (SEAQT). SEAQT is a thermodynamic-ensemble based, first-principles framework that can predict the behavior of non-equilibrium processes, even those far from equilibrium where the state evolution is a combination of reversible and irreversible dynamics. SEAQT is an ideal choice to handle this problem on a first-principles basis since the chemical adsorption process starts from a highly non-equilibrium state. A result of the analysis shows that the probability of adsorption on 3Ga-H is significantly higher than that on N ad -H + Ga-H. Additionally, the growth temperature dependence of these adsorption probabilities and the temperature increase due to the heat of reaction is determined. The non-equilibrium thermodynamic modeling applied can lead to better control of the MOVPE process through the selection of preferable reconstructed surfaces. The modeling also demonstrates the efficacy of DFT-SEAQT coupling for determining detailed non-equilibrium process characteristics with a much smaller computational burden than would be entailed with mechanics-based, microscopic-mesoscopic approaches.

  1. Hybrid adsorptive membrane reactor

    Science.gov (United States)

    Tsotsis, Theodore T [Huntington Beach, CA; Sahimi, Muhammad [Altadena, CA; Fayyaz-Najafi, Babak [Richmond, CA; Harale, Aadesh [Los Angeles, CA; Park, Byoung-Gi [Yeosu, KR; Liu, Paul K. T. [Lafayette Hill, PA

    2011-03-01

    A hybrid adsorbent-membrane reactor in which the chemical reaction, membrane separation, and product adsorption are coupled. Also disclosed are a dual-reactor apparatus and a process using the reactor or the apparatus.

  2. Treatment of refractory contaminants by sludge-derived biochar/persulfate system via both adsorption and advanced oxidation process.

    Science.gov (United States)

    Wang, Jia; Liao, Zhuwei; Ifthikar, Jerosha; Shi, Lerong; Du, Yunan; Zhu, Jingyi; Xi, Shuang; Chen, Zhuqi; Chen, Zhulei

    2017-10-01

    A novel strategy for the removal of refractory organic contaminants was realized through sludge-derived biochar (SDBC)/persulfate (PS) system via both adsorption and advanced oxidation process under ambient conditions. SDBC was prepared by one single step of slow pyrolysis of municipal sewage sludge, appeared a porous structure, and contained abundant oxygen-containing functional groups as well as amorphous Fe species. Large surface area and porous structure of SDBC benefitted the adsorption and enrichment of contaminants, while oxygen-containing functional groups and Fe species on the surface were considered as reactive components for the activation of PS. Under conditions of [PS] 0  = 1.85 mM, [4-chlorophenol] 0  = 0.039 mM, [SDBC] 0  = 1 g L -1 , pH 0  = 6.30 and temperature = 25 °C, the removal of model compound of 4-chlorophenol achieved 92.3%, and this significant performance of SDBC/PS system was consistent in a broad pH window. Radical scavengers and electron paramagnetic resonance (EPR) studies suggested that SDBC successfully activated PS to produce various oxidative radicals. Meanwhile, recycle experiments and Fe 3+ leaching tests further demonstrated the stability of SDBC during the activation of PS. Municipal landfill leachate effluent through a membrane bio-reactor was testified as the refractory real wastewater, in which both the removal of total organic carbon and ammonia was significant. Thus, SDBC showed certain advantages in PS activation such as feasible preparation method, remarkable efficiency and stability. These advantages proved SDBC/PS system as an effective strategy of controlling waste by waste, and implicated its potential application in full-scale for the treatment of refractory organic contaminants. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Processing and Performance of MOF (Metal Organic Framework)-Loaded PAN Nanofibrous Membrane for CO2 Adsorption

    Science.gov (United States)

    Wahiduzzaman; Khan, Mujibur R.; Harp, Spencer; Neumann, Jeffrey; Sultana, Quazi Nahida

    2016-04-01

    The objective of this experimental study is to produce a nanofibrous membrane functionalized with adsorbent particles called metal organic framework (MOF) in order to adsorb CO2 from a gas source. Therefore, Polyacrylonitrile (PAN) was chosen as the precursor for nanofibers and HKUST-1, a Cu-based MOF, was chosen as adsorbent. The experimental process consists of electrospinning PAN solution blended with HKUST-1 to produce a nanofibrous mat as working substrates. The fibers were collected in a cylindrical canister model. SEM image of this mat showed nanofibers with the presence of small adsorbent particles, impregnated into the as-spun fibers discretely. To increase the amount of MOF particles for effectual gas adsorption, a secondary solvothermal process of producing MOF particles on the fibers was required. This process consists of multiple growth cycles of HKUST-1 particles by using a sol-gel precursor. SEM images showed uniform distribution of porous MOF particles of 2-4 µm in size on the fiber surface. Energy dispersive spectroscopy report of the fiber confirmed the presence of MOF particles through the identification of characteristic Copper elemental peaks of HKUST-1. To determine the thermal stability of the fibrous membrane, Thermogravimetric analysis of HKUST-1 consisting of PAN fiber was performed where a total weight loss of 40% between 210 and 360 °C was observed, hence proving the high-temperature durability of the synthesized membrane. BET surface area of the fiber membrane was measured as 540.73 m2/g. The fiber membrane was then placed into an experimental test bench containing a mixed gas inflow of CO2 and N2. Using non-dispersive infrared CO2 sensors connected to the inlet and outlet port of the bench, significant reduction of CO2 in concentration was measured. Comparative IR spectroscopic analysis between the gas-treated and gas untreated fiber samples showed the presence of characteristic peak in the vicinity of 2300 and 2400 cm-1 which

  4. Exergy balance and efficiency of the absorptive and adsorptive processes via example of deaerator

    Directory of Open Access Journals (Sweden)

    О.O. Kardasevich

    2016-05-01

    Full Text Available The work is devoted to assessing of the effectiveness of chemical-technological processes on the basis of exergy analysis method by the example of the processes in the deaerator. Aim: The aim of the work is to demonstrate the features of the application of exergy analysis method for sorption and desorption processes via example of the deaerator. Materials and Methods: The advantage of the exergy method is in the accounting not only the quantity but also the quality of energy flows and multicomponent material flows that characterize the energy balance of any power technology system that puts this method on the first place on their objectivity in comparison with traditional methods of thermodynamic analysis. Complexity of the exergy analysis devices with multi-component flows, where separation processes such as water solutions occur, is that the main technical effect of the process is shown in two ways: in one case, the major problem is to obtain clean water flow, and in another case to obtain the concentrate flow. For those processes, where the main objective is to obtain clean water, an exergy effect is manifested in the increase of the exergy flow. In processes where the main task is solution thickening the useful effect is in the growing of exergy concentrate. Results: The exergy flows value was illustrated numerically and graphically including exergy gases sorption and desorption that characterizing the chemical and thermal transformations in the deaerator. It is showing an extremely low efficiency of the processes of oxygen removing in the deaerator from the standpoint of transformation of exergy and the ability to identify ways to improve the processes of gases removing based on exergy method. Calculations of heat and physic-chemical exergy flows indicate that the deaerator is effective as a heat exchanger (95%, and absolutely no effective as mass exchanger (0.071%. This technique makes it possible to evaluate the chemical

  5. High performance liquid chromatographic determination of ...

    African Journals Online (AJOL)

    STORAGESEVER

    2010-02-08

    sulphonate (synthesized). Instrumentation. The chromatographic apparatus consisted of a Cecil 1200 series. 1000 high performance liquid chromatograph. The analytical column was ODS hypersil C18,5 µm particle size in 250 mm ...

  6. Graphene Oxide Nanoparticles and Their Influence on Chromatographic Separation Using Polymeric High Internal Phase Emulsions

    Directory of Open Access Journals (Sweden)

    Sidratul Choudhury

    2017-02-01

    Full Text Available This work presents the first instance of reversed-phase liquid chromatographic separation of small molecules using graphene oxide nanoparticle-modified polystyrene-divinylbenzene polymeric high internal phase emulsion (GONP PS-co-DVB polyHIPE materials housed within a 200-µm internal diameter (i.d. fused silica capillary. The graphene oxide nanoparticle (GONP-modified materials were produced as a potential strategy to increase both the surface area limitations and the reproducibility issues observed in monolithic stationary phase materials. GONP PS-co-DVB polyHIPEs were found to have a surface area up to 40% lower than unmodified polymeric high internal phase emulsion (polyHIPE stationary phases. However, despite having a surface area significantly lower than that of the unmodified material, the GONP-modified polyHIPEs demonstrated superior analyte adsorption properties. Reducing the GONP material did not have any significant impact on elution order or retention factor of the analytes, which was most likely due to low GONP loading attributed to the 250-nm GONPs utilised. The lower surface area of GONP-modified polyHIPEs provided similar separation efficiency and increased repeatability from injection to injection resulting in % relative standard deviations (%RSDs of less than 0.6%, indicating the potential offered by graphene oxide (GO-modified polyHIPES in flow through applications such as adsorption or separation processes.

  7. Removal of surfactants from water by adsorption on activated carbon and advanced oxidation process; Eliminacion de surfactantes de las aguas mediante adsorcion sobre carbon activado y oxidacion avanzada

    Energy Technology Data Exchange (ETDEWEB)

    Mendez Diaz, J. D.; Sanchez Polo, M.; Rivera Utrilla, J.; Bautista, M. I.

    2007-07-01

    The objective of this study was to analyze the elimination process of surfactants from water, using sodium dode-cilbencenesulfonate (SDBS) as model compound, by means of adsorption on activated carbons as well as different processes of advanced oxidation (O{sub 3}, O{sub 3}/H{sub 2}O{sub 2} and O{sub 3}/activated carbon). Results obtained have shown that the activated carbons used have a high efficiency to eliminate SDBS from waters which was enhanced when the adsorption process was carried out in the presence of bacteria. With regard to the oxidation processes studied, the results have indicated that the efficiency in the elimination of SDBS from water of the system based on the simultaneous use of O{sub 3} and powder activated carbon (PAC) is much higher than those of the other systems studied (O{sub 3},O{sub 3}/H{sub 2}O{sub 2}). (Author) 15 refs.

  8. Specifics of adsorption and chemical processes on the surface of gamma-irradiated vanadium dioxide

    International Nuclear Information System (INIS)

    Kaurkovskaya, V.N.; Dzyubenko, L.S.; Doroshenko, V.N.; Chujko, A.A.; Shakhov, A.P.

    2006-01-01

    Effect of γ-irradiation on electrophysical properties and processes of thermal desorption of water from the surface of vanadium oxides V 2 O 3 -VO 2-δ -VO 2+δ -V 2 O 5 was investigated by derivatography and electric conductivity. Content of adsorbed water at the surface and phase composition of the surface was demonstrated to change under the action of low radiation doses. Surface electric conductivity of the irradiated samples VO 2-δ in the process of chemical reactions of adsorbed following irradiation benzoic acid and ethanol was established to be much above than in irradiated-free ones. It is presumed that metal-semiconductor phase transition at the surface of VO 2-δ during chemical reaction is intensified by irradiation [ru

  9. Trace adsorption of positively charged proteins onto Sepharose FF and Sepharose FF-based anion exchangers.

    Science.gov (United States)

    Yu, Lin-Ling; Sun, Yan

    2012-08-31

    Agarose-based matrices have been widely used in ion exchange chromatography (IEC). We have herein observed that positively charged proteins (lysozyme and cytochrome c) are adsorbed on the agarose-based anion-exchangers (Q and DEAE Sepharose FF gels) in a capacity of 10-40 μg/mL. In contrast, negatively charged protein (bovine serum albumin) is not adsorbed to Sepharose FF and SP Sepharose FF gels. Elemental analysis of the gel indicated that the residual anionic sulfate groups in agarose would have worked as the cation exchange groups for the positively charged proteins. The trace adsorption behavior of lysozyme onto Sepharose FF and Sepharose FF-based anion exchangers was studied and the effects of NaCl concentration and cation group density on the adsorption were examined for better understanding of the trace adsorption in chromatographic processes. At NaCl concentrations less than 0.05 mol/L, which is the normal adsorption condition in IEC, the trace adsorption kept at a high level, so this trace adsorption cannot be avoided in the ionic strength range of routine IEC operations. Grafting poly(ethylenimine) (PEI) chain of 60 kDa to a cation group density of 700 mmol/L could reduce the adsorption capacity to about 20 μg/mL, but further reduction was not possible by increasing the cation group density to 1200 mmol/L. Therefore, attentions need to be paid to the phenomenon in protein purification practice using agarose-based matrices. The research is expected to call attentions to the trace adsorption on agarose-based matrices and to the importance in the selection of the suitable solid matrices in the production of high-purity protein products in large-scale bioprocesses. Copyright © 2012 Elsevier B.V. All rights reserved.

  10. Laccase Immobilized on a PAN/Adsorbents Composite Nanofibrous Membrane for Catechol Treatment by a Biocatalysis/Adsorption Process

    Directory of Open Access Journals (Sweden)

    Qingqing Wang

    2014-03-01

    Full Text Available The treatment of catechol via biocatalysis and adsorption with a commercial laccase immobilized on polyacrylonitrile/montmorillonite/graphene oxide (PAN/MMT/GO composite nanofibers was evaluated with a homemade nanofibrous membrane reactor. The properties in this process of the immobilized laccase on PAN, PAN/MMT as well as PAN/MMT/GO with different weight ratios of MMT and GO were investigated. These membranes were successfully applied for removal of catechol from an aqueous solution. Scanning electron microscope images revealed different morphologies of the enzyme aggregates on different supports. After incorporation of MMT or MMT/GO, the optimum pH showed an alkaline shift to 4, compared to 3.5 for laccase immobilized on pure PAN nanofibers. The optimum temperature was at 55 °C for all the immobilized enzymes. Besides, the addition of GO improved the operational stability and storage stability. A 39% ± 2.23% chemical oxygen demand (COD removal from the catechol aqueous solution was achieved. Experimental results suggested that laccase, PAN, adsorbent nanoparticles (MMT/GO can be combined together for catechol treatment in industrial applications.

  11. Laccase immobilized on a PAN/adsorbents composite nanofibrous membrane for catechol treatment by a biocatalysis/adsorption process.

    Science.gov (United States)

    Wang, Qingqing; Cui, Jing; Li, Guohui; Zhang, Jinning; Li, Dawei; Huang, Fenglin; Wei, Qufu

    2014-03-19

    The treatment of catechol via biocatalysis and adsorption with a commercial laccase immobilized on polyacrylonitrile/montmorillonite/graphene oxide (PAN/MMT/GO) composite nanofibers was evaluated with a homemade nanofibrous membrane reactor. The properties in this process of the immobilized laccase on PAN, PAN/MMT as well as PAN/MMT/GO with different weight ratios of MMT and GO were investigated. These membranes were successfully applied for removal of catechol from an aqueous solution. Scanning electron microscope images revealed different morphologies of the enzyme aggregates on different supports. After incorporation of MMT or MMT/GO, the optimum pH showed an alkaline shift to 4, compared to 3.5 for laccase immobilized on pure PAN nanofibers. The optimum temperature was at 55 °C for all the immobilized enzymes. Besides, the addition of GO improved the operational stability and storage stability. A 39% ± 2.23% chemical oxygen demand (COD) removal from the catechol aqueous solution was achieved. Experimental results suggested that laccase, PAN, adsorbent nanoparticles (MMT/GO) can be combined together for catechol treatment in industrial applications.

  12. Physicochemical and chromatographic method of characterization of Matricaria recutita tinctures

    Directory of Open Access Journals (Sweden)

    Jonathan Parra

    2016-02-01

    Full Text Available Context: The pharmacological activity of medicinal products containing plant materials depends on their specific components. However, these components are not characterized in their entirety in all cases. Therefore, manufacturing processes must be duly characterized and validated. Aims: To characterize a chamomile (Matricaria recutita tincture through chemometric analysis of chromatographic data in order to establish quality parameters for its production. Methods: Various chamomile tinctures were manufactured and the precision and robustness of the production process for each was verified. The physicochemical properties of the tinctures were characterized and their chromatographic digital fingerprints analysed through chemometric methods. Results: A good correlation between the physicochemical characterization and the chromatographic analysis was demonstrated. The preparation methodology was proved to be repeatable as long as the source of the plant material is not altered. Conclusions: The principal component multivariate analysis of chromatograms was a helpful and simple tool for the characterization and traceability of the production method.

  13. Adsorption of Cd(II) from aqueous solutions by rape straw biochar derived from different modification processes.

    Science.gov (United States)

    Li, Bing; Yang, Lan; Wang, Chang-Quan; Zhang, Qing-Pei; Liu, Qing-Cheng; Li, Yi-Ding; Xiao, Rui

    2017-05-01

    In order to deal with cadmium (Cd(II)) pollution, three modified biochar materials: alkaline treatment of biochar (BC-NaOH), KMnO 4 impregnation of biochar (BC-MnO x ) and FeCl 3 magnetic treatment of biochar (BC-FeO x ), were investigated. Nitrogen adsorption-desorption isotherms, Fourier transform infrared spectroscopy (FTIR), Boehm titration, and scanning electron microscopy (SEM) were used to determine the characteristics of adsorbents and explore the main adsorption mechanism. The results show that manganese oxide particles are carried successfully within the biochar, contributing to micropore creation, boosting specific surface area and forming innersphere complexes with oxygen-containing groups, while also increasing the number of oxygen-containing groups. The adsorption sites created by the loaded manganese oxide, rather than specific surface areas, play the most important roles in cadmium adsorption. Batch adsorption experiments demonstrate a Langmuir model fit for Cd(II), and BC-MnO x provided the highest sorption capacity (81.10 mg g -1 ). The sorption kinetics of Cd(II) on adsorbents follows pseudo-second-order kinetics and the adsorption rate of the BC-MnO x material was the highest (14.46 g (mg·h) -1 ). Therefore, biochar modification methods involving KMnO 4 impregnation may provide effective ways of enhancing Cd(II) removal from aqueous solutions. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Fate and transport with material response characterization of green sorption media for copper removal via adsorption process.

    Science.gov (United States)

    Chang, Ni-Bin; Houmann, Cameron; Lin, Kuen-Song; Wanielista, Martin

    2016-02-01

    Green adsorption media with the inclusion of renewable and recycled materials can be applied as a stormwater best management practice for copper removal. A green adsorption media mixture composed of recycled tire chunk, expanded clay aggregate, and coconut coir was physicochemically evaluated for its potential use in an upflow media filter. A suite of tests were conducted on the media mixture and the individual media components including studies of particle size distribution, isotherms, column adsorption and reaction kinetics. Isotherm test results revealed that the coconut coir had the highest affinity for copper (q(max) = 71.1 mg g(-1)), and that adsorption was maximized at a pH of 7.0. The coconut coir also performed the best under dynamic conditions, having an equilibrium uptake of 1.63 mg g(-1). FE-SEM imaging found a strong correlation between the porosity of the micro pore structure and the adsorptive capacity. The use of the green adsorption media mixture in isolation or the coconut coir with an expanded clay filtration chamber could be an effective and reliable stormwater best management practice for copper removal. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Type of adsorbent and column height in adsorption process of used cooking oil

    Science.gov (United States)

    Hasnelly, Hervelly, Taufik, Yusman; Melany, Ivo Nila

    2015-12-01

    The purpose of this research was to find out the best adsorbent and column height that can adsorb color and soluble impurities substances in used cooking oil. This research was meant for knowledge development of refined cooking oil technology. The used of this research was giving out information on the recycling process of used cooking oil. Research design used 2 × 2 factorial pattern in randomized group design with 6 repetitions. The first factor is adsorbent type (J) that consist of activated carbon (J1) and Zeolit (J2). The second factor is column height (K) with variations of 15 cm (k1) and 20 cm (k2). Chemical analysis parameter are free fatty acid, water content and saponification value. Physical parameter measurement was done on color with Hunter Lab system analysis and viscosity using viscometer method. Chemical analysis result of preliminary research on used cooking oil showed water content of 1,9%, free fatty acid 1,58%, saponification value 130,79 mg KOH/g oil, viscosity 0,6 d Pas and color with L value of -27,60, a value 1,04 and b value 1,54. Result on main research showed that adsorbent type only gave effect on water content whereas column height and its interaction was not gave significant effect on water content. Interaction between adsorbent type (J) and column height (K) gave significant effect to free fatty acid, saponification value, viscosity and color for L, a and b value of recycled cooking oil.

  16. Development, modelling, optimisation and scale-up of chromatographic purification of a therapeutic protein

    DEFF Research Database (Denmark)

    Mollerup, Jørgen; Hansen, Thomas Budde; Kidal, Steffen

    2007-01-01

    optimisation of a purification step necessitate simulations and thus models of the adsorption isotherm. A model for ion-exchange is reviewed and the strategy for estimation of model parameters is reported. Examples are shown where computer simulations are used for development and optimisation......Development of a chromatographic purification step proceeds through a number of stages. High-throughput screening techniques are used to identify suitable resins. This technique is also suitable for the design of a capture step and some intermediate chromatographic steps, but development and true...

  17. Optimum yields of dibenzylbutyrolactone-type lignans from Cynareae fruits, during their ripening, germination and enzymatic hydrolysis processes, determined by on-line chromatographic methods.

    Science.gov (United States)

    Szokol-Borsodi, Lilla; Sólyomváry, Anna; Molnár-Perl, Ibolya; Boldizsár, Imre

    2012-01-01

    Dibenzylbutyrolactone-type lignans are the physiologically active constituents of the achene fruits of Cynareae. These lignans occur in glycoside/aglycone forms: in the highest quantity of the arctiin/arctigenin, matairesinoside/matairesinol and tracheloside/trachelogenin pairs found in the fruits of Arctium lappa L., Centaurea scabiosa L. and Cirsium arvense (L.) Scop. To optimise the extraction yield of the arctiin/arctigenin, matairesinoside/matairesinol and tracheloside/trachelogenin glycoside/aglycone pairs, from the fruits of Arctium lappa, Centaurea scabiosa and Cirsium arvense, under the ripening, germination and enzymatic hydrolysis processes of the fruits. Identification and quantification of lignans were performed with on-line gas chromatography-mass spectrometry (GC-MS) and with high performance liquid chromatography (HPLC), both with UV and mass selective detections (HPLC-UV/MS). As novelties to the field it was confirmed that: (i) the unripe fruits provide a high amount of lignans, similar to the ripe fruit; (ii) the fruits of Arctium lappa and Cirsium arvense do have glycosidase activity to hydrolyse their lignan glycosides into free lignans; (iii) the glycosidase of Centaurea scabiosa fruit becomes activated under its germination process only; and (iv) the overwhelming part of the fruits lignan contents (80-94%) in all three species are accumulated in the embryo. The best sources of (i) lignan aglycones are the enzyme-hydrolysed embryos, separating spontaneously during the germination process, and (ii) lignan glycosides are the unripe fruits. Copyright © 2012 John Wiley & Sons, Ltd.

  18. Co adsorption in kaolinite

    International Nuclear Information System (INIS)

    Souza, Eliel S.; Silva, Paulo S.C.

    2017-01-01

    Adsorption of metal ions in clay minerals has been used as an alternative to water and effluents treatment. Kaolinite is a clay mineral that presents low specific surface area and exchange ion capacity. Nevertheless, structural modifications can be achieved by means of acid or thermal activation. In this paper, it was studied the surface area of kaolinite/bentonite, kaolinite/activated carbon mixtures, thermal activated kaolinite and thermal activated kaolinite/activated carbon mixture. The mixture of kaolinite/activated carbon was tested for pH, contact time, interfering ions and initial concentration effects in the cobalt adsorption. Results showed that the optimized parameters are pH 6 and contact time of 30 min. Chromium acted as a competitive ion, zinc does not appear to have affected adsorption while iron seems to have favored it. Langmuir and Freundlich isotherms indicated that the adsorption of Co in the mixture of kaolinite/activated carbon is a spontaneous process. (author)

  19. Co adsorption in kaolinite

    Energy Technology Data Exchange (ETDEWEB)

    Souza, Eliel S.; Silva, Paulo S.C., E-mail: eliel201019@hotmail.com, E-mail: pscsilva@ipen.br [Instituto de Pesquisas Energética s e Nucleares (IPEN/CNEN-SP), São Paulo, SP (Brazil)

    2017-07-01

    Adsorption of metal ions in clay minerals has been used as an alternative to water and effluents treatment. Kaolinite is a clay mineral that presents low specific surface area and exchange ion capacity. Nevertheless, structural modifications can be achieved by means of acid or thermal activation. In this paper, it was studied the surface area of kaolinite/bentonite, kaolinite/activated carbon mixtures, thermal activated kaolinite and thermal activated kaolinite/activated carbon mixture. The mixture of kaolinite/activated carbon was tested for pH, contact time, interfering ions and initial concentration effects in the cobalt adsorption. Results showed that the optimized parameters are pH 6 and contact time of 30 min. Chromium acted as a competitive ion, zinc does not appear to have affected adsorption while iron seems to have favored it. Langmuir and Freundlich isotherms indicated that the adsorption of Co in the mixture of kaolinite/activated carbon is a spontaneous process. (author)

  20. Application of Zr/Ti-Pic in the adsorption process of Cu(II), Co(II) and Ni(II) using adsorption physico-chemical models and thermodynamics of the process; Aplicacao de Zr/Ti-PILC no processo de adsorcao de Cu(II), Co(II) e Ni(II) utilizando modelos fisico-quimicos de adsorcao e termodinamica do processo

    Energy Technology Data Exchange (ETDEWEB)

    Guerra, Denis Lima; Airoldi, Claudio [Universidade Estadual de Campinas (UNICAMP), SP (Brazil). Inst. de Quimica. Dept. de Quimica Inorganica]. E-mail: dlguerra@iqm.unicamp.br; Lemos, Vanda Porpino; Angelica, Romulo Simoes [Universidade Federal do Para (UFPa), Belem (Brazil); Viana, Rubia Ribeiro [Universidade Federal do Mato Grosso (UFMT), Cuiaba (Brazil). Inst. de Ciencias Exatas e da Terra. Dept. de Recursos Minerais

    2008-07-01

    The aim of this investigation is to study how Zr/Ti-Pic adsorbs metals. The physico-chemical proprieties of Zr/Ti-Pic have been optimized with pillarization processes and Cu(II), Ni(II) and Co(II) adsorption from aqueous solution has been carried out, with maximum adsorption values of 8.85, 8.30 and 7.78 x-1 mmol g{sup -1}, respectively. The Langmuir, Freundlich and Temkin adsorption isotherm models have been applied to fit the experimental data with a linear regression process. The energetic effect caused by metal interaction was determined through calorimetric titration at the solid-liquid interface and gave a net thermal effect that enabled the calculation of the exothermic values and the equilibrium constant. (author)

  1. Evolution of molecular weight and fluorescence of effluent organic matter (EfOM) during oxidation processes revealed by advanced spectrographic and chromatographic tools.

    Science.gov (United States)

    Chen, Zhiqiang; Li, Mo; Wen, Qinxue; Ren, Nanqi

    2017-11-01

    Effluent organic matter (EfOM) is an emerging concern to receiving aquatic environment due to its refractory property. The degradation of EfOM in ozonation and other two advanced oxidation processes (AOPs), UV/H 2 O 2 and UV/persulfate (PS), was investigated in this study. Fluorescence spectra coupled with parallel factor analysis (PARAFAC) and two-dimensional correlation gel permeation chromatography (2D-GPC) were used to track the evolution of EfOM during each oxidation process. Results showed that the degradation of EfOM indicated by dissolved organic carbon (DOC), UV 254 and fluorescence components, fitted well with pseudo-first-order kinetic model during the oxidation processes. Ozonation showed higher degradation efficiency than AOPs, while UV/PS was more effective than UV/H 2 O 2 with equimolar oxidants dosage. Ozone and SO· 4 - were more reactive with terrestrial humic-like substances, while hydroxyl radical preferentially reacted with protein-like substances. Organic molecules with higher molecular weight (MW) were susceptible to ozone or radicals. Ozonation could transform higher MW (MW of 3510 and 575) organic matters into lower MW organic matters (MW of 294), while reductions of all the organics were observed in both AOPs. Due to the higher reaction rates between ozone and EfOM, ozonation maybe serve as a pre-treatment for AOPs to reduce the radical and energy consumption and improve mineralization of EfOM by AOPs. The decline in DOC, UV 254 , fluorescence and reduction in oxidants increased with the increase of oxidants dosage, and linear correlations among them were found during the ozonation and AOPs. Copyright © 2017. Published by Elsevier Ltd.

  2. Design of a Fission 99 Mo Recovery Process and Implications toward Mo Adsorption Mechanism on Titania and Alumina Sorbents

    Energy Technology Data Exchange (ETDEWEB)

    Stepinski, Dominique C.; Youker, Amanda J.; Krahn, Elizabeth O.; Vandegrift, George F.; Chung, Pei-Lun; Wang, Nien-Hwa Linda

    2017-03-01

    Molybdenum-99 is a parent of the most widely used medical isotope technetium-99m. Proliferation concerns have prompted development of alternative Mo production methods utilizing low enriched uranium. Alumina and titania sorbents were evaluated for separation of Mo from concentrated uranyl nitrate solutions. System, mass transfer, and isotherm parameters were determined to enable design of Mo separation processes under a wide range of conditions. A model-based approach was utilized to design representative commercial-scale column processes. The designs and parameters were verified with bench-scale experiments. The results are essential for design of Mo separation processes from irradiated uranium solutions, selection of support material and process optimization. Mo uptake studies show that adsorption decreases with increasing concentration of uranyl nitrate; howeveL, examination of Mo adsorption as a function of nitrate ion concentration shows no dependency, indicating that uranium competes with Mo for adsorption sites. These results are consistent with reports indicating that Mo forms inner-sphere complexes with titania and alumina surface groups.

  3. The effects of alkalinity and acidity of process water and hydrochar washing on the adsorption of atrazine on hydrothermally produced hydrochar.

    Science.gov (United States)

    Flora, Justine F R; Lu, Xiaowei; Li, Liang; Flora, Joseph R V; Berge, Nicole D

    2013-11-01

    Hydrothermal carbonization of simulated food waste was performed at 250 °C for 20 h using deionized water (DI) and 0.01 N solutions of HCl, NaCl, and NaOH. The hydrochars produced were washed with acetone and the adsorptive capacity of the washed and unwashed hydrochars for atrazine were characterized. Using a generalized linear model, it was shown that the adsorptive capacity of the washed hydrochar was significantly higher than that of the unwashed hydrochars. The HCl processed unwashed hydrochar has a slightly higher adsorptive capacity compared to the DI processed hydrochar while both the NaOH processed washed and unwashed hydrochars were slightly lower than the corresponding DI processed hydrochars. (13)C solid-state NMR results showed no discernible differences in surface functional groups among the washed hydrochars and among the unwashed hydrochars. A clear decrease in alkyl groups and an increase in aromatic/olefinic-C groups were observed after acetone washing. (1)H liquid-phase NMR showed carbon alkyl chains were present in the acetone wash. Interaction energies calculated using dispersion corrected density functional theory show that atrazine is more strongly adsorbed to surfaces without weakly associated alkyl groups. Copyright © 2013 Elsevier Ltd. All rights reserved.

  4. Coal liquefaction process streams characterization and evaluation: Application of liquid chromatographic separation methods to THF-soluble portions of integrated two-stage coal liquefaction resids

    Energy Technology Data Exchange (ETDEWEB)

    Green, J.B.; Pearson, C.D.; Young, L.L.; Green, J.A. [National Inst. for Petroleum and Energy Research, Bartlesville, OK (United States)

    1992-05-01

    This study demonstrated the feasibility of using non-aqueous ion exchange liquid chromatography (NIELC) for the examination of the tetrahydrofuran (THF)-soluble distillation resids and THF-soluble whole oils derived from direct coal liquefaction. The technique can be used to separate the material into a number of acid, base, and neutral fractions. Each of the fractions obtained by NIELC was analyzed and then further fractionated by high-performance liquid chromatography (HPLC). The separation and analysis schemes are given in the accompanying report. With this approach, differences can be distinguished among samples obtained from different process streams in the liquefaction plant and among samples obtained at the same sampling location, but produced from different feed coals. HPLC was directly applied to one THF-soluble whole process oil without the NIELC preparation, with limited success. The direct HPLC technique used was directed toward the elution of the acid species into defined classes. The non-retained neutral and basic components of the oil were not analyzable by the direct HPLC method because of solubility limitations. Sample solubility is a major concern in the application of these techniques.

  5. Development of adsorptive hybrid filters to enable two-step purification of biologics

    Science.gov (United States)

    Peck, Michael; Voloshin, Alexei M.; Moreno, Angela M.; Tan, Zhijun; Hester, Jonathan; Borys, Michael C.; Li, Zheng Jian

    2017-01-01

    ABSTRACT Recent progress in mammalian cell culture process has resulted in significantly increased product titers, but also a substantial increase in process- and product-related impurities. Due to the diverse physicochemical properties of these impurities, there is constant need for new technologies that offer higher productivity and improved economics without sacrificing the process robustness required to meet final drug substance specifications. Here, we examined the use of new synthetic adsorptive hybrid filters (AHF) modified with the high binding capacity of quaternary amine (Emphaze™ AEX) and salt-tolerant biomimetic (Emphaze™ ST-AEX) ligands for clearance of process-related impurities like host cell protein (HCP), residual DNA, and virus. The potential to remove soluble aggregates was also examined. Our aim was to develop a mechanistic understanding of the interactions governing adsorptive removal of impurities during filtration by evaluating the effect of various filter types, feed streams, and process conditions on impurity removal. The ionic capacity of these filters was measured and correlated with their ability to remove impurities for multiple molecules. The ionic capacity of AHF significantly exceeded that of traditional adsorptive depth filters (ADF) by 40% for the Emphaze™ AEX and by 700% for the Emphaze™ ST-AEX, providing substantially higher reduction of soluble anionic impurities, including DNA, HCPs and model virus. Nevertheless, we determined that ADF with filter aid provided additional hydrophobic functionality that resulted in removal of higher molecular weight species than AHF. Implementing AHF demonstrated improved process-related impurity removal and viral clearance after Protein A chromatography and enabled a two-step purification process. The consequences of enhanced process performance are far reaching because it allows the downstream polishing train to be restructured and simplified, and chromatographic purity standards to be

  6. Adsorption behavior of direct red 80 and congo red onto activated carbon/surfactant: Process optimization, kinetics and equilibrium

    Science.gov (United States)

    Cheng, Zhengjun; Zhang, Lei; Guo, Xiao; Jiang, Xiaohui; Li, Tian

    2015-02-01

    Adsorptions of congo red and direct red 80 onto activated carbon/surfactant from aqueous solution were optimized. The Box-Behnken design (BBD) has been employed to analyze the effects of concentration of surfactant, temperature, pH, and initial concentration of the dye in the adsorption capacity. Their corresponding experimental data could be evaluated excellently by second order polynomial regression models and the two models were also examined based on the analysis of variance and t test statistics, respectively. The optimum conditions were obtained as follows: Cs = 34.10 μM, T = 50 °C, pH = 3.5, and CCR = 160 mg/L for the congo red system, and Cs = 34.10 μM, T = 50 °C, pH = 6.1, and CDR80 = 110 mg/L for the direct red 80 system. And in these conditions, the measured experimental maximum adsorption capacities for the congo red and direct red 80 removals were 769.48 mg/g and 519.90 mg/g, which were consistent with their corresponding predicted values, with small relative errors of -2.81% and -0.67%, respectively. The adsorption equilibrium and kinetics for the two dye adsorptions onto AC/DDAC were also investigated. The experimental data were fitted by four isotherm models, and Langmuir model presented the best fit. The kinetic studies indicated that the kinetic data followed the pseudo-second-order model.

  7. Comparative analyses of chromatographic fingerprints of the roots of Polygonum multiflorum Thunb. and their processed products using RRLC/DAD/ESI-MS(n).

    Science.gov (United States)

    Liu, Zhenli; Liu, Yuanyan; Wang, Chao; Guo, Na; Song, Zhiqian; Wang, Chun; Xia, Lei; Lu, Aiping

    2011-11-01

    The dried roots of Polygonum multiflorum Thunb. (Heshouwu) and their processed products (Zhi-heshouwu) are widely used in traditional Chinese medicine, yet their therapeutic effects are different. Previous investigations focused mainly on the differences between Heshouwu and Zhi-heshouwu in the contents of several known compounds. In this study, a rapid resolution liquid chromatography-diode array detection/electrospray ionization tandem mass spectrometry (RRLC/DAD/ESI-MS(n)) method was developed for the comparative analysis of the components of Heshouwu and Zhi-heshouwu. A total of 23 compounds were identified or tentatively characterized. We found that 16 batches of Heshouwu and 15 batches of Zhi-heshouwu samples shared eight compounds, including gallic acid; 3,5,4'-tetrahydroxylstilbene-2,3-di-O-glucoside, CIS-2,3,5,4'-tetrahydroxylstilbene-2-O- β-D-glucoside, trans-2,3,5,4'-tetrahydroxylstilbene-2-O- β-D-glucoside, emodin-8-O- β-D-glucoside, physcion-8-O- β-D-glucoside, emodin, and physcion. Nevertheless, the relative amounts of gallic acid, emodin, and physcion were very high in Zhi-heshouwu samples compared to those in Heshouwu samples. Six compounds disappeared after processing and were unique for Heshouwu: catechin, flavanol gallate dimer, polygonimitin B, emodin-1-O-glucoside, emodin-8-O-(6'-O-malonyl)-glucoside, and physcion-8-O-(6'-O-malonyl)-glucoside. Three compounds were unique for Zhi-heshouwu: hydroxymaltol, 2,3-dihydro-3,5-dihydroxy-6-methyl-4(H)-pyran-4-one, and 5-hydroxymethyl furfural. These results suggest that the types and relative amounts of the chemical components of Heshouwu and Zhi-heshouwu are different. © Georg Thieme Verlag KG Stuttgart · New York.

  8. Determination of solute descriptors by chromatographic methods.

    Science.gov (United States)

    Poole, Colin F; Atapattu, Sanka N; Poole, Salwa K; Bell, Andrea K

    2009-10-12

    The solvation parameter model is now well established as a useful tool for obtaining quantitative structure-property relationships for chemical, biomedical and environmental processes. The model correlates a free-energy related property of a system to six free-energy derived descriptors describing molecular properties. These molecular descriptors are defined as L (gas-liquid partition coefficient on hexadecane at 298K), V (McGowan's characteristic volume), E (excess molar refraction), S (dipolarity/polarizability), A (hydrogen-bond acidity), and B (hydrogen-bond basicity). McGowan's characteristic volume is trivially calculated from structure and the excess molar refraction can be calculated for liquids from their refractive index and easily estimated for solids. The remaining four descriptors are derived by experiment using (largely) two-phase partitioning, chromatography, and solubility measurements. In this article, the use of gas chromatography, reversed-phase liquid chromatography, micellar electrokinetic chromatography, and two-phase partitioning for determining solute descriptors is described. A large database of experimental retention factors and partition coefficients is constructed after first applying selection tools to remove unreliable experimental values and an optimized collection of varied compounds with descriptor values suitable for calibrating chromatographic systems is presented. These optimized descriptors are demonstrated to be robust and more suitable than other groups of descriptors characterizing the separation properties of chromatographic systems.

  9. Determination of solute descriptors by chromatographic methods

    International Nuclear Information System (INIS)

    Poole, Colin F.; Atapattu, Sanka N.; Poole, Salwa K.; Bell, Andrea K.

    2009-01-01

    The solvation parameter model is now well established as a useful tool for obtaining quantitative structure-property relationships for chemical, biomedical and environmental processes. The model correlates a free-energy related property of a system to six free-energy derived descriptors describing molecular properties. These molecular descriptors are defined as L (gas-liquid partition coefficient on hexadecane at 298 K), V (McGowan's characteristic volume), E (excess molar refraction), S (dipolarity/polarizability), A (hydrogen-bond acidity), and B (hydrogen-bond basicity). McGowan's characteristic volume is trivially calculated from structure and the excess molar refraction can be calculated for liquids from their refractive index and easily estimated for solids. The remaining four descriptors are derived by experiment using (largely) two-phase partitioning, chromatography, and solubility measurements. In this article, the use of gas chromatography, reversed-phase liquid chromatography, micellar electrokinetic chromatography, and two-phase partitioning for determining solute descriptors is described. A large database of experimental retention factors and partition coefficients is constructed after first applying selection tools to remove unreliable experimental values and an optimized collection of varied compounds with descriptor values suitable for calibrating chromatographic systems is presented. These optimized descriptors are demonstrated to be robust and more suitable than other groups of descriptors characterizing the separation properties of chromatographic systems.

  10. Testing of the Effect of Reaction Parameters on the Enzyme Immobilization by Adsorption and Cross-Linking Processes with Kinetic Desorption Method

    Directory of Open Access Journals (Sweden)

    Dániel Radva

    2011-01-01

    Full Text Available The activity of enzymes after the immobilization by weak interactions such as adsorption or adsorption followed by a cross-linking reaction can change easily not only during further application but during the activity measured via desorption and/or inactivation of enzymes. The changes in activity could be a consequence of the interactions between the enzyme and support. In this work a quick and efficient method is developed that permits studying of the strength and properties of the forces between the enzymes and support by examining the kinetics of desorption and/or inactivation. Applying this new cyclic kinetic desorption method, the effect of reaction parameters on immobilization could also be studied. The efficiency of this method was tested for optimizing the parameters for immobilization of β-glucosidase on Amberlite IRA 900 anion exchange resin by an adsorption followed by a cross-linking with glutaraldehyde to form potential preparation for food industry. The following parameters were chosen: concentration (0.10 M of the buffer (sodium acetate, pH=5.5 and the ratio of carrier to enzyme (10:1 for the adsorption step, then the time of treatment (1 min and concentration (0.25, by mass per volume of glutaraldehyde for the cross-linking by using the kinetic desorption method. The activity of this preparation was 57 μmol/(min·g in respect of dry resin. It was established that the effect of different parameters on this enzyme immobilization could be characterized by the new cyclic kinetic desorption method in a quick and efficient way; furthermore, it permitted separate testing of the effect of parameters on the adsorption and cross-linking processes.

  11. Sensitive high performance liquid chromatographic method for the ...

    African Journals Online (AJOL)

    A new simple, sensitive, cost-effective and reproducible high performance liquid chromatographic (HPLC) method for the determination of proguanil (PG) and its metabolites, cycloguanil (CG) and 4-chlorophenylbiguanide (4-CPB) in urine and plasma is described. The extraction procedure is a simple three-step process ...

  12. Numerical Study on the Contribution of Convective Mass Transfer Inside High-Porosity Adsorbents in the VOC Adsorption Process

    DEFF Research Database (Denmark)

    Zhang, Ge; He, Wenna; Fang, Lei

    2013-01-01

    The transfer mechanism of volatile organic compounds (VOCs) being trapped inside the various types of adsorbents is usually regarded as mere diffusion. This paper investigated the contribution of convective mass transfer inside the adsorbents used for VOC air-cleaning. The adsorbents are typically...... and cavity would form, approximately, a consecutive parabola. The convective mass transfer inside the adsorbents would have little impact on the axial VOC transfer but could affect the average adsorption rate significantly at high porosities. The Peclet number Pe which is based on the inlet velocity...... error of average adsorption rate of less than 10% as found by this study....

  13. Polymeric microspheres with N-methyl-D-glucamine ligands for boron removal from water solution by adsorption-membrane filtration process.

    Science.gov (United States)

    Wolska, Joanna; Bryjak, Marek; Kabay, Nalan

    2010-08-01

    Polymeric microspheres with N-methyl-D-glucamine (NMDG) ligands have been tested in the adsorption-membrane filtration process for boron removal from aqueous solutions. The chelating resins were synthesized by reacting NMDG with the vinylbenzyl chloride-styrene-1,4-divinylbenzene (VBC/S/DVB) copolymer at the reflux temperature and in the microwave reactor. VBC/S/DVB spheres with a gel structure that contained 6 wt% DVB were obtained by membrane emulsification followed by suspension polymerization. By selecting the optimal emulsification and polymerization parameters, it was possible to obtain 25-microm-diameter particles with a narrow size distribution. Resins obtained by microwave modification showed the higher boron adsorption capacity.

  14. Kinetic of Th ions adsorption process in the magnetic chitosan; Cinetica do processo de adsorcao de ions de Th na quitosana magnetica

    Energy Technology Data Exchange (ETDEWEB)

    Oda, Hugo Takao Yamaura; Horita, Andreia Sayuri; Yamaura, Mitiko, E-mail: htyoda@hotmail.co, E-mail: ash.horita@gmail.co, E-mail: myamaura@ipen.b [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2009-07-01

    A magnetic bio absorbent called chitosan was prepared and it potentiality for removal Th ions in nitric medium was verified. The chitosan is a derivative processed from crustacean shells which is a fishing residue. The adsorption studies were accomplished by essays in batch. The equilibrium time was determined for the concentration of Th 101,4 mg L{sup -1} and the kinetic of equilibrium was analysed according to the pseudo-first order, pseudo-second order and intra particle diffusion models. A removal of 35 % by adsorption was observed to confirm that the magnetic chitosan posses a considerable potential as Th absorbent. The magnetic use of chitosan can contribute in the economic and environmental aspects, viewing the low cost of chitosan and the strategies application of control of fishing activity residues and radionuclides with development of a sustainable technology

  15. Adsorption behavior of direct red 80 and congo red onto activated carbon/surfactant: process optimization, kinetics and equilibrium.

    Science.gov (United States)

    Cheng, Zhengjun; Zhang, Lei; Guo, Xiao; Jiang, Xiaohui; Li, Tian

    2015-02-25

    Adsorptions of congo red and direct red 80 onto activated carbon/surfactant from aqueous solution were optimized. The Box-Behnken design (BBD) has been employed to analyze the effects of concentration of surfactant, temperature, pH, and initial concentration of the dye in the adsorption capacity. Their corresponding experimental data could be evaluated excellently by second order polynomial regression models and the two models were also examined based on the analysis of variance and t test statistics, respectively. The optimum conditions were obtained as follows: Cs=34.10 μM, T=50°C, pH=3.5, and CCR=160 mg/L for the congo red system, and Cs=34.10 μM, T=50°C, pH=6.1, and CDR80=110 mg/L for the direct red 80 system. And in these conditions, the measured experimental maximum adsorption capacities for the congo red and direct red 80 removals were 769.48 mg/g and 519.90 mg/g, which were consistent with their corresponding predicted values, with small relative errors of -2.81% and -0.67%, respectively. The adsorption equilibrium and kinetics for the two dye adsorptions onto AC/DDAC were also investigated. The experimental data were fitted by four isotherm models, and Langmuir model presented the best fit. The kinetic studies indicated that the kinetic data followed the pseudo-second-order model. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Liquid-Phase Adsorption Fundamentals.

    Science.gov (United States)

    Cooney, David O.

    1987-01-01

    Describes an experiment developed and used in the unit operations laboratory course at the University of Wyoming. Involves the liquid-phase adsorption of an organic compound from aqueous solution on activated carbon, and is relevant to adsorption processes in general. (TW)

  17. Adsorptive removal of crystal violet dye by a local clay and process optimization by response surface methodology

    Science.gov (United States)

    Loqman, Amal; El Bali, Brahim; Lützenkirchen, Johannes; Weidler, Peter G.; Kherbeche, Abdelhak

    2017-11-01

    The current study relates to the removal of a dye [crystal violet (CV)] from aqueous solutions through batch adsorption experiment onto a local clay from Morocco. The clay was characterized by X-ray diffraction, IR spectroscopy, X-ray fluorescence, scanning electron microscope, Brunauer-Emmett-Teller analysis and Fraunhofer diffraction method. The influence of independent variables on the removal efficiency was determined and optimized by response surface methodology using the Box-Behnken surface statistical design. The model predicted maximum adsorption of 81.62% under the optimum conditions of operational parameters (125 mg L-1 initial dye concentration, 2.5 g L-1 adsorbent dose and time of 43 min). Practically, the removal ranges in 27.4-95.3%.

  18. Preparation and Characterization of Chitosan/Feldspar Biohybrid as an Adsorbent: Optimization of Adsorption Process via Response Surface Modeling

    OpenAIRE

    Yazdani, Maryam; Bahrami, Hajir; Arami, Mokhtar

    2014-01-01

    Chitosan/feldspar biobased beads were synthesized, characterized, and tested for the removal of Acid Black 1 dye from aquatic phases. A four-factor central composite design (CCD) accompanied by response surface modeling (RSM) and optimization was used to optimize the dye adsorption by the adsorbent (chitosan/feldspar composite) in 31 different batch experiments. Independent variables of temperature, pH, initial dye concentration, and adsorbent dose were used to change to coded values. To anti...

  19. Fabrication of ultrathin MIL-96(Al) films and study of CO2adsorption/desorption processes using quartz crystal microbalance.

    Science.gov (United States)

    Andrés, Miguel A; Benzaqui, M; Serre, C; Steunou, N; Gascón, I

    2018-06-01

    This contribution reports the fabrication and characterization of ultrathin films of nanoparticles of the water stable microporous Al tricarboxylate metal organic framework MIL-96(Al). The preparation of MOF dispersions in chloroform has been optimized to obtain dense monolayer films of good quality, without nanoparticle agglomeration, at the air-water interface that can be deposited onto solid substrates of different nature without any previous substrate functionalization. The MOF studied shows great interest for CO 2 capture because it presents Al 3+ Lewis centers and hydroxyl groups that strongly interact with CO 2 molecules. A comparative CO 2 adsorption study on drop-cast, Langmuir-Blodgett (LB) and Langmuir-Schaefer (LS) films using a Quartz Crystal Microbalance-based setup (QCM) has revealed that the CO 2 uptake depends strongly on the film fabrication procedure and the storage conditions. Noteworthy the CO 2 adsorption capacity of LB films is increased by 30% using a simple and green treatment (immersion of the film into water during 12 h just after film preparation). Finally, the stability of LB MOF monolayers upon several CO 2 adsorption/desorption cycles has been demonstrated, showing that CO 2 can be easily desorbed from the films at 303 K by flowing an inert gas (He). These results show that MOF LB monolayers can be of great interest for the development of MOF-based devices that require the use of very small MOF quantities, especially gas sensors. Copyright © 2018 Elsevier Inc. All rights reserved.

  20. A combined process of activated carbon adsorption, ion exchange resin treatment and membrane concentration for recovery of dissolved organics in pre-hydrolysis liquor of the kraft-based dissolving pulp production process.

    Science.gov (United States)

    Shen, Jing; Kaur, Ishneet; Baktash, Mir Mojtaba; He, Zhibin; Ni, Yonghao

    2013-01-01

    To recover dissolved organics in pre-hydrolysis liquor (PHL) of the kraft-based dissolving pulp production process, a new combined process concept of sequential steps of activated carbon adsorption, ion exchange resin treatment, and membrane concentration, was proposed. The removal of lignin in the PHL was achieved in the activated carbon adsorption step, which also facilitates the subsequent operations, such as the membrane filtration and ion exchange resin treatment. The ion exchange resin treatment resulted in the removal/concentration of acetic acid, which opens the door for acetic acid recovery. The membrane filtration is to recover/concentrate the dissolved sugars. The combined process resulted in the production of PHL-based concentrate with relatively high concentration of hemicellulosic sugars, i.e., 22.13%. Copyright © 2012 Elsevier Ltd. All rights reserved.

  1. adsorption characteristics and mechanisms of plantain peel ...

    African Journals Online (AJOL)

    Timothy Ademakinwa

    determined. Data evaluation showed that the adsorption of Zn and Cu followed the pseudo-second order adsorption kinetic model with the Langmuir model being the best fit for the isotherm model. The thermodynamic study revealed that the adsorption was a physisorption process which was spontaneous and endothermic ...

  2. Global versus local adsorption selectivity

    Science.gov (United States)

    Pauzat, Françoise; Marloie, Gael; Markovits, Alexis; Ellinger, Yves

    2015-10-01

    The origin of the enantiomeric excess found in the amino acids present in the organic matter of carbonaceous meteorites is still unclear. Selective adsorption of one of the two enantiomers existing after a racemic formation could be part of the answer. Hereafter we report a comparative study of the adsorption of the R and S enantiomers of α-alanine and lactic acid on the hydroxylated { } chiral surface of α-quartz using numerical simulation techniques. Structurally different adsorption sites were found with opposite R versus S selectivity for the same molecule-surface couple, raising the problem of whether to consider adsorption as a local property or as a global response characteristic of the whole surface. To deal with the second term of this alternative, a statistical approach was designed, based on the occurrence of each adsorption site whose energy was calculated using first principle periodic density functional theory. It was found that R-alanine and S-lactic acid are the enantiomers preferentially adsorbed, even if the adsorption process on the quartz { } surface stays with a disappointingly poor enantio-selectivity. Nevertheless, it highlighted the important point that considering adsorption as a global property changes perspectives in the search for more efficient enantio-selective supports and more generally changes the way to apprehend adsorption processes in astro-chemistry/biology.

  3. Adsorption of phosphate in hydrocalumite-like layered double hydroxides: a comparison between memory effect and ion exchange processes; Adsorcao de fosfato em [Ca-Al]-HDL: comparacao entre o efeito de memoria e troca ionica

    Energy Technology Data Exchange (ETDEWEB)

    Bernardo, M.P., E-mail: marcelapiassib@gmail.com [Universidade Federal de Sao Carlos (UFSCar), SP (Brazil); Moreira, F.K.V.; Ribeiro, C. [Embrapa Instrumentacao (LNNA), Sao Carlos, SP (Brazil). Laboratorio Nacional de Nanotecnologia para o Agronegocio

    2016-07-01

    Phosphorus is an essential element for agriculture, but the excessive use of this element has caused severe damages to the environment. Layered double hydroxide (LDHs) are excellent candidates to remove PO{sub 4}{sup 3-} anions through adsorption process. In this work, the phosphate adsorption on hydrocalumite-like (Ca-Al) LDHs was evaluated over the ion exchange and memory effect processes. X-ray diffraction measurements revealed formation of analogous crystalline phases from both process as the phosphate concentration was increased. However, the phosphate quantity adsorbed varied according to the process used. The ion exchange route is the most efficient process to remove phosphate from aqueous medium. (author)

  4. An algorithm for emulsion stability simulations: account of flocculation, coalescence, surfactant adsorption and the process of Ostwald ripening.

    Science.gov (United States)

    Urbina-Villalba, German

    2009-03-01

    The first algorithm for Emulsion Stability Simulations (ESS) was presented at the V Conferencia Iberoamericana sobre Equilibrio de Fases y Diseño de Procesos [Luis, J.; García-Sucre, M.; Urbina-Villalba, G. Brownian Dynamics Simulation of Emulsion Stability In: Equifase 99. Libro de Actas, 1(st) Ed., Tojo J., Arce, A., Eds.; Solucion's: Vigo, Spain, 1999; Volume 2, pp. 364-369]. The former version of the program consisted on a minor modification of the Brownian Dynamics algorithm to account for the coalescence of drops. The present version of the program contains elaborate routines for time-dependent surfactant adsorption, average diffusion constants, and Ostwald ripening.

  5. Modeling Aquatic Toxicity through Chromatographic Systems.

    Science.gov (United States)

    Fernández-Pumarega, Alejandro; Amézqueta, Susana; Farré, Sandra; Muñoz-Pascual, Laura; Abraham, Michael H; Fuguet, Elisabet; Rosés, Martí

    2017-08-01

    Environmental risk assessment requires information about the toxicity of the growing number of chemical products coming from different origins that can contaminate water and become toxicants to aquatic species or other living beings via the trophic chain. Direct toxicity measurements using sensitive aquatic species can be carried out but they may become expensive and ethically questionable. Literature refers to the use of chromatographic measurements that correlate to the toxic effect of a compound over a specific aquatic species as an alternative to get toxicity information. In this work, we have studied the similarity in the response of the toxicity to different species and we have selected eight representative aquatic species (including tadpoles, fish, water fleas, protozoan, and bacteria) with known nonspecific toxicity to chemical substances. Next, we have selected four chromatographic systems offering good perspectives for surrogation of the eight selected aquatic systems, and thus prediction of toxicity from the chromatographic measurement. Then toxicity has been correlated to the chromatographic retention factor. Satisfactory correlation results have been obtained to emulate toxicity in five of the selected aquatic species through some of the chromatographic systems. Other aquatic species with similar characteristics to these five representative ones could also be emulated by using the same chromatographic systems. The final aim of this study is to model chemical products toxicity to aquatic species by means of chromatographic systems to reduce in vivo testing.

  6. Statistical designs and response surface techniques for the optimization of chromatographic systems.

    Science.gov (United States)

    Ferreira, Sergio Luis Costa; Bruns, Roy Edward; da Silva, Erik Galvão Paranhos; Dos Santos, Walter Nei Lopes; Quintella, Cristina Maria; David, Jorge Mauricio; de Andrade, Jailson Bittencourt; Breitkreitz, Marcia Cristina; Jardim, Isabel Cristina Sales Fontes; Neto, Benicio Barros

    2007-07-27

    This paper describes fundamentals and applications of multivariate statistical techniques for the optimization of chromatographic systems. The surface response methodologies: central composite design, Doehlert matrix and Box-Behnken design are discussed and applications of these techniques for optimization of sample preparation steps (extractions) and determination of experimental conditions for chromatographic separations are presented. The use of mixture design for optimization of mobile phases is also related. An optimization example involving a real separation process is exhaustively described. A discussion about model validation is presented. Some applications of other multivariate techniques for optimization of chromatographic methods are also summarized.

  7. Chromatographic analysis of tryptophan metabolites.

    Science.gov (United States)

    Sadok, Ilona; Gamian, Andrzej; Staniszewska, Magdalena Maria

    2017-08-01

    The kynurenine pathway generates multiple tryptophan metabolites called collectively kynurenines and leads to formation of the enzyme cofactor nicotinamide adenine dinucleotide. The first step in this pathway is tryptophan degradation, initiated by the rate-limiting enzymes indoleamine 2,3-dioxygenase, or tryptophan 2,3-dioxygenase, depending on the tissue. The balanced kynurenine metabolism, which has been a subject of multiple studies in last decades, plays an important role in several physiological and pathological conditions such as infections, autoimmunity, neurological disorders, cancer, cataracts, as well as pregnancy. Understanding the regulation of tryptophan depletion provide novel diagnostic and treatment opportunities, however it requires reliable methods for quantification of kynurenines in biological samples with complex composition (body fluids, tissues, or cells). Trace concentrations, interference of sample components, and instability of some tryptophan metabolites need to be addressed using analytical methods. The novel separation approaches and optimized extraction protocols help to overcome difficulties in analyzing kynurenines within the complex tissue material. Recent developments in chromatography coupled with mass spectrometry provide new opportunity for quantification of tryptophan and its degradation products in various biological samples. In this review, we present current accomplishments in the chromatographic methodologies proposed for detection of tryptophan metabolites and provide a guide for choosing the optimal approach. © 2017 The Authors. Journal of Separation Science published by Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Modeling experimental stable isotope results from CO2 adsorption and diffusion experiments

    Science.gov (United States)

    Larson, T. E.

    2012-12-01

    Transport of carbon dioxide through porous media can be affected by diffusion, advection and adsorption processes. Developing new tools to understand which of these processes dominates migration of CO2 or other gases in the subsurface is important to a wide range of applications including CO2 storage. Whereas advection rates are not affected by isotope substitution in CO2, adsorption and diffusion constants are. For example, differences in the binary diffusion constant calculated between C12O2-He and C13O2-He results in a carbon isotope fractionation whereby the front of the chromatographic peak is enriched in carbon-12 and the tail of the peak is enriched in carbon-13. Interestingly, adsorption is shown to have an opposite, apparent inverse affect whereby the lighter isotopologues of CO2 are preferentially retained by the chromatographic column and the heavier isotopologues are eluted first. This apparent inverse chromatographic effect has been ascribed to Van der Waals dispersion forces. Smaller molar volumes of the heavier isotopologues resulting from increased bond strength (shorter bond length) effectively decreases Van der Waals forces in heavier isotopologues compared to lighter isotopologues. Here we discuss the possible application of stable isotope values measured across chromatographic peaks to differentiate diffusion-dominated from adsorption-dominated transport processes for CO2. Separate 1-dimensional flow-through columns were packed with quartz and illite, and one remained empty. Dry helium was used as a carrier gas. Constant flow rate, temperature and column pressure were maintained. After background CO2 concentrations were minimized and constant, a sustained pulse of CO2 was injected at the head of the column and the effluent was sampled at 4 minute intervals for CO2 concentration, and carbon and oxygen isotope ratios. The quartz-sand packed and empty columns resulted in similar trends in concentration and isotope ratios whereby CO2 concentrations

  9. Preparation of Sulfur-Free Exfoliated Graphite by a Two-Step Intercalation Process and Its Application for Adsorption of Oils

    Directory of Open Access Journals (Sweden)

    Jun He

    2017-01-01

    Full Text Available The sulfur-free exfoliated graphite (EG was prepared by a two-step chemical oxidation process, using natural flake graphite (NFG as the precursor. The first chemical intercalation process was carried out at a temperature of 30°C for 50 min, with the optimum addition of NFG, potassium permanganate, and perchloric acid in a weight ratio of 1 : 0.4 : 10.56. Then, in the secondary intercalation step, dipotassium phosphate was employed as the intercalating agent to further increase the exfoliated volume (EV of EG. NFG, graphite intercalation compound (GIC, and EG were characterized by scanning electron microscope (SEM, energy dispersive spectrometer (EDS, X-ray diffractometer (XRD, Fourier transform infrared spectrometer (FTIR, BET surface area, and porosity analyzer. Also, the uptakes of crude oil, diesel oil, and gasoline by EG were determined. Results show that perchloric acid and hydrogen phosphate are validated to enter into the interlayer of graphite flake. The obtained EG possesses a large exfoliated volume (EV and has an excellent affinity to oils; thus, the material has rapid adsorption rates and high adsorption capacities for crude oil, diesel oil, and gasoline.

  10. Research of Adsorption on PCBs: Isotherm Modeling and Influencing Factors

    Directory of Open Access Journals (Sweden)

    Liang Peiyu

    2016-01-01

    Full Text Available PCBs are a group of persistent organic pollutants (POPs in the environment. Adsorption behavior of PCBs has obtained great attention affecting the degradation, mobility activities. In this paper, adsorption process was studied systematically to figure out the model of adsorption, adsorption mechanism and the influencing factors, which will provides the theoretical basis for further research.

  11. Adsorptive removal of fluoride from water using nanoscale ...

    African Journals Online (AJOL)

    The intraparticle diffusion was not a rate-controlling step for the adsorption process. Thus, the overall study indicates that nano-AlOOH is an efficient defluoridating material. KEY WORDS: Nanoscale AlOOH, Defluoridation, Fluoride removal efficiency, Adsorption capacity, Adsorption kinetics, Adsorption mechanism. Bull.

  12. Research of Adsorption on PCBs: Isotherm Modeling and Influencing Factors

    OpenAIRE

    Liang Peiyu; Xing Luping; Xuan Hui; Xue Wen

    2016-01-01

    PCBs are a group of persistent organic pollutants (POPs) in the environment. Adsorption behavior of PCBs has obtained great attention affecting the degradation, mobility activities. In this paper, adsorption process was studied systematically to figure out the model of adsorption, adsorption mechanism and the influencing factors, which will provides the theoretical basis for further research.

  13. An Algorithm for Emulsion Stability Simulations: Account of Flocculation, Coalescence, Surfactant Adsorption and the Process of Ostwald Ripening

    Directory of Open Access Journals (Sweden)

    2009-02-01

    Full Text Available The first algorithm for Emulsion Stability Simulations (ESS was presented at the V Conferencia Iberoamericana sobre Equilibrio de Fases y Diseño de Procesos [Luis, J.; García-Sucre, M.; Urbina-Villalba, G. Brownian Dynamics Simulation of Emulsion Stability In: Equifase 99. Libro de Actas, 1st Ed., Tojo J., Arce, A., Eds.; Solucion’s: Vigo, Spain, 1999; Volume 2, pp. 364-369]. The former version of the program consisted on a minor modification of the Brownian Dynamics algorithm to account for the coalescence of drops. The present version of the program contains elaborate routines for time-dependent surfactant adsorption, average diffusion constants, and Ostwald ripening.

  14. Green Hydrogen Production from Raw Biogas: A Techno-Economic Investigation of Conventional Processes Using Pressure Swing Adsorption Unit

    Directory of Open Access Journals (Sweden)

    Gioele Di Marcoberardino

    2018-02-01

    Full Text Available This paper discusses the techno-economic assessment of hydrogen production from biogas with conventional systems. The work is part of the European project BIONICO, whose purpose is to develop and test a membrane reactor (MR for hydrogen production from biogas. Within the BIONICO project, steam reforming (SR and autothermal reforming (ATR, have been identified as well-known technologies for hydrogen production from biogas. Two biogases were examined: one produced by landfill and the other one by anaerobic digester. The purification unit required in the conventional plants has been studied and modeled in detail, using Aspen Adsorption. A pressure swing adsorption system (PSA with two and four beds and a vacuum PSA (VPSA made of four beds are compared. VPSA operates at sub-atmospheric pressure, thus increasing the recovery: results of the simulations show that the performances strongly depend on the design choices and on the gas feeding the purification unit. The best purity and recovery values were obtained with the VPSA system, which achieves a recovery between 50% and 60% at a vacuum pressure of 0.1 bar and a hydrogen purity of 99.999%. The SR and ATR plants were designed in Aspen Plus, integrating the studied VPSA model, and analyzing the behavior of the systems at the variation of the pressure and the type of input biogas. The SR system achieves a maximum efficiency, calculated on the LHV, of 52% at 12 bar, while the ATR of 28% at 18 bar. The economic analysis determined a hydrogen production cost of around 5 €/kg of hydrogen for the SR case.

  15. Large scale chromatographic separations using continuous displacement chromatography (CDC)

    International Nuclear Information System (INIS)

    Taniguchi, V.T.; Doty, A.W.; Byers, C.H.

    1988-01-01

    A process for large scale chromatographic separations using a continuous chromatography technique is described. The process combines the advantages of large scale batch fixed column displacement chromatography with conventional analytical or elution continuous annular chromatography (CAC) to enable large scale displacement chromatography to be performed on a continuous basis (CDC). Such large scale, continuous displacement chromatography separations have not been reported in the literature. The process is demonstrated with the ion exchange separation of a binary lanthanide (Nd/Pr) mixture. The process is, however, applicable to any displacement chromatography separation that can be performed using conventional batch, fixed column chromatography

  16. Random sequential adsorption on fractals.

    Science.gov (United States)

    Ciesla, Michal; Barbasz, Jakub

    2012-07-28

    Irreversible adsorption of spheres on flat collectors having dimension d fractals (1 < d < 2), and on general Cantor set (d < 1). Adsorption process is modeled numerically using random sequential adsorption (RSA) algorithm. The paper concentrates on measurement of fundamental properties of coverages, i.e., maximal random coverage ratio and density autocorrelation function, as well as RSA kinetics. Obtained results allow to improve phenomenological relation between maximal random coverage ratio and collector dimension. Moreover, simulations show that, in general, most of known dimensional properties of adsorbed monolayers are valid for non-integer dimensions.

  17. State of the art in establishing computed models of adsorption processes to serve as a basis of radionuclide migration assessment for safety analyses

    International Nuclear Information System (INIS)

    Koss, V.

    1991-01-01

    An important point in safety analysis of an underground repository is adsorption of radionuclides in the overlying cover. Adsorption may be judged according to experimental results or to model calculations. Because of the reliability aspired in safety analyses, it is necessary to strengthen experimental results by theoretical calculations. At the time, there is no single thermodynamic model of adsorption to be agreed on. Therefore, this work reviews existing equilibrium models of adsorption. Limitations of the K d -concept and of adsorption-isotherms according to Freundlich and Langmuir are mentioned. The surface ionisation and complexation edl model is explained in full as is the criticism of this model. The application is stressed of simple surface complexation models to adsorption experiments in natural systems as is experimental and modelling work according to systems from Gorleben. Hints are given how to deal with modelling of adsorption related to Gorleben systems in the future. (orig.) [de

  18. Fabrication of Biomass-Derived Carbon Aerogels with High Adsorption of Oils and Organic Solvents: Effect of Hydrothermal and Post-Pyrolysis Processes.

    Science.gov (United States)

    Yin, Aishu; Xu, Feng; Zhang, Xueming

    2016-09-06

    Biomass is the most plentiful and well-utilized renewable carbon resource on the earth. Direct conversion of biomass to carbon aerogel provides a promising approach to develop adsorbent materials. In the present work, the effect of presence of water during hydrothermal treatment and holding temperature during post-pyrolysis process have been investigated for the preparation of carbon aerogels (CAs) using eggplant as raw material. The results showed that the addition of water during hydrothermal treatment was advantageous for the preparation of CA samples with higher surface area and stronger hydrophobicity, resulting in superior adsorption capacities of CAs for both oil and organic solvents compared with that fabricated without the presence of water. The optimized carbon aerogel possessed higher specific surface of 249 m²·g -1 and exhibited excellent hydrophobicity with a water contact angle of 133°. The adsorption capacities of carbon aerogel for oils and organic solvents could reach 35-45 times its own weight. In addition, the adsorbed oil and organic solvents could be recovered by distillation, and the regenerated carbon aerogels samples exhibited the stable performance and outstanding reusability. Therefore, the carbon aerogel has great potential in application of oil recovery and environmental protection.

  19. Fabrication of Biomass-Derived Carbon Aerogels with High Adsorption of Oils and Organic Solvents: Effect of Hydrothermal and Post-Pyrolysis Processes

    Directory of Open Access Journals (Sweden)

    Aishu Yin

    2016-09-01

    Full Text Available Biomass is the most plentiful and well-utilized renewable carbon resource on the earth. Direct conversion of biomass to carbon aerogel provides a promising approach to develop adsorbent materials. In the present work, the effect of presence of water during hydrothermal treatment and holding temperature during post-pyrolysis process have been investigated for the preparation of carbon aerogels (CAs using eggplant as raw material. The results showed that the addition of water during hydrothermal treatment was advantageous for the preparation of CA samples with higher surface area and stronger hydrophobicity, resulting in superior adsorption capacities of CAs for both oil and organic solvents compared with that fabricated without the presence of water. The optimized carbon aerogel possessed higher specific surface of 249 m2·g−1 and exhibited excellent hydrophobicity with a water contact angle of 133°. The adsorption capacities of carbon aerogel for oils and organic solvents could reach 35–45 times its own weight. In addition, the adsorbed oil and organic solvents could be recovered by distillation, and the regenerated carbon aerogels samples exhibited the stable performance and outstanding reusability. Therefore, the carbon aerogel has great potential in application of oil recovery and environmental protection.

  20. Optimization of process condition for the preparation of amine-impregnated activated carbon developed for CO2capture and applied to methylene blue adsorption by response surface methodology.

    Science.gov (United States)

    Das, Dipa; Meikap, Bhim C

    2017-10-15

    The present research describes the optimal adsorption condition for methylene blue (MB). The adsorbent used here was monoethanol amine-impregnated activated carbon (MEA-AC) prepared from green coconut shell. Response surface methodology (RSM) is the multivariate statistical technique used for the optimization of the process variables. The central composite design is used to determine the effect of activation temperature, activation time and impregnation ratio on the MB removal. The percentage (%) MB adsorption by MEA-AC is evaluated as a response of the system. A quadratic model was developed for response. From the analysis of variance, the factor which was the most influential on the experimental design response has been identified. The optimum condition for the preparation of MEA-AC from green coconut shells is the temperature of activation 545.6°C, activation time of 41.64 min and impregnation ratio of 0.33 to achieve the maximum removal efficiency of 98.21%. At the same optimum parameter, the % MB removal from the textile-effluent industry was examined and found to be 96.44%.

  1. Enhanced protein adsorption and cellular adhesion using transparent titanate nanotube thin films made by a simple and inexpensive room temperature process: application to optical biochips.

    Science.gov (United States)

    Nador, Judit; Orgovan, Norbert; Fried, Miklos; Petrik, Peter; Sulyok, Attila; Ramsden, Jeremy J; Korosi, Laszlo; Horvath, Robert

    2014-10-01

    A new type of titanate nanotube (TNT) coating is investigated for exploitation in biosensor applications. The TNT layers were prepared from stable but additive-free sols without applying any binding compounds. The simple, fast spin-coating process was carried out at room temperature, and resulted in well-formed films around 10nm thick. The films are highly transparent as expected from their nanostructure and may, therefore, be useful as coatings for surface-sensitive optical biosensors to enhance the specific surface area. In addition, these novel coatings could be applied to medical implant surfaces to control cellular adhesion. Their morphology and structure was characterized by spectroscopic ellipsometry (SE) and atomic force microscopy (AFM), and their chemical state by X-ray photoelectron spectroscopy (XPS). For quantitative surface adhesion studies, the films were prepared on optical waveguides. The coated waveguides were shown to still guide light; thus, their sensing capability remains. Protein adsorption and cell adhesion studies on the titanate nanotube films and on smooth control surfaces revealed that the nanostructured titanate enhanced the adsorption of albumin; furthermore, the coatings considerably enhanced the adhesion of living mammalian cells (human embryonic kidney and preosteoblast). Copyright © 2014 Elsevier B.V. All rights reserved.

  2. A novel biochar from Manihot esculenta Crantz waste: application for the removal of Malachite Green from wastewater and optimization of the adsorption process.

    Science.gov (United States)

    Beakou, Buscotin Horax; El Hassani, Kaoutar; Houssaini, Mohammed Amine; Belbahloul, Mounir; Oukani, Elhassan; Anouar, Abdellah

    2017-09-01

    The adsorptive removal of Malachite Green (MG) by a novel biochar namely Cassava Rind Carbon (CRC) was studied in a batch system. Moreover, Box-Behnken Response Surface Methodology was used to optimize operating conditions of the adsorption process. Characterization was done by Thermo Gravimetric Analysis (TGA), Attenuated Total Reflectance Fourier Transform Infra-Red Spectroscopy (ATR/FTIR), Brunauer-Emmett-Teller (BET) surface area, Scanning Electron Microscopy (SEM), X-Ray Diffraction (XRD) and pH zero charge point (pH ZCP ). The pseudo-second-order model and Langmuir model provided the best fit for kinetic and isotherm, respectively. The maximum capacity of dye adsorbed was 932.98 mg/g at 25 °C. The influence of temperature, the mass of adsorbent and the concentration of dye was studied. The optimal amount of adsorbed MG was 1,363.58 mg/g corresponding to 50 °C, 5 mg of CRC and 150 mg/L of dye. According to the high performance exhibited by CRC in this study, Manihot esculenta Crantz waste can be used as a better and low-cost biomass for wastewater decolourization.

  3. Chromatographic Separations of Enantiomers and Underivatized Oligosaccharides

    International Nuclear Information System (INIS)

    Ying Liu

    2004-01-01

    My graduate research has focused on separation science and bioanalytical analysis, which emphasized in method development. It includes three major areas: enantiomeric separations using high performance liquid chromatography (HPLC), Super/subcritical fluid chromatography (SFC), and capillary electrophoresis (CE); drug-protein binding behavior studies using CE; and carbohydrate analysis using liquid chromatograph-electrospray ionization mass spectrometry (LC-ESI-MS). Enantiomeric separations continue to be extremely important in the pharmaceutical industry. An in-depth evaluation of the enantiomeric separation capabilities of macrocyclic glycopeptides CSPs with SFC mobile phases was investigated using a set of over 100 chiral compounds. It was found that the macrocyclic based CSPs were able to separate enantiomers of various compounds with different polarities and functionalities. Seventy percent of all separations were achieved in less than 4 min due to the high flow rate (4.0 ml/min) that can be used in SFC. Drug-protein binding is an important process in determining the activity and fate of a drug once it enters the body. Two drug/protein systems have been studied using frontal analysis CE method. More sensitive fluorescence detection was introduced in this assay, which overcame the problem of low sensitivity that is common when using UV detection for drug-protein studies. In addition, the first usage of an argon ion laser with 257 nm beam coupled with CCD camera as a frontal analysis detection method enabled the simultaneous observation of drug fluorescence as well as the protein fluorescence. LC-ESI-MS was used for the separation and characterization of underivatized oligosaccharide mixtures. With the limits of detection as low as 50 picograms, all individual components of oligosaccharide mixtures (up to 11 glucose-units long) were baseline resolved on a Cyclobond I 2000 column and detected using ESI-MS. This system is characterized by high chromatographic

  4. Chromatographic Separations of Enantiomers and Underivatized Oligosaccharides

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Ying [Iowa State Univ., Ames, IA (United States)

    2004-01-01

    My graduate research has focused on separation science and bioanalytical analysis, which emphasized in method development. It includes three major areas: enantiomeric separations using high performance liquid chromatography (HPLC), Super/subcritical fluid chromatography (SFC), and capillary electrophoresis (CE); drug-protein binding behavior studies using CE; and carbohydrate analysis using liquid chromatograph-electrospray ionization mass spectrometry (LC-ESI-MS). Enantiomeric separations continue to be extremely important in the pharmaceutical industry. An in-depth evaluation of the enantiomeric separation capabilities of macrocyclic glycopeptides CSPs with SFC mobile phases was investigated using a set of over 100 chiral compounds. It was found that the macrocyclic based CSPs were able to separate enantiomers of various compounds with different polarities and functionalities. Seventy percent of all separations were achieved in less than 4 min due to the high flow rate (4.0 ml/min) that can be used in SFC. Drug-protein binding is an important process in determining the activity and fate of a drug once it enters the body. Two drug/protein systems have been studied using frontal analysis CE method. More sensitive fluorescence detection was introduced in this assay, which overcame the problem of low sensitivity that is common when using UV detection for drug-protein studies. In addition, the first usage of an argon ion laser with 257 nm beam coupled with CCD camera as a frontal analysis detection method enabled the simultaneous observation of drug fluorescence as well as the protein fluorescence. LC-ESI-MS was used for the separation and characterization of underivatized oligosaccharide mixtures. With the limits of detection as low as 50 picograms, all individual components of oligosaccharide mixtures (up to 11 glucose-units long) were baseline resolved on a Cyclobond I 2000 column and detected using ESI-MS. This system is characterized by high chromatographic

  5. Adsorption Properties of Lac Dyes on Wool, Silk, and Nylon

    OpenAIRE

    Wei, Bo; Chen, Qiu-Yuan; Chen, Guoqiang; Tang, Ren-Cheng; Zhang, Jun

    2013-01-01

    There has been growing interest in the dyeing of textiles with natural dyes. The research about the adsorption properties of natural dyes can help to understand their adsorption mechanism and to control their dyeing process. This study is concerned with the kinetics and isotherms of adsorption of lac dyes on wool, silk, and nylon fibers. It was found that the adsorption kinetics of lac dyes on the three fibers followed the pseudosecond-order kinetic model, and the adsorption rate of lac dyes ...

  6. Adsorption facility and adsorption vessel for radioactive carbon dioxide

    International Nuclear Information System (INIS)

    Harashina, Heihachi; Miwa, Keiichi; Kobayashi, Takeo.

    1992-01-01

    If 14 CO 2 gas-containing gases to be adsorbed are pressurized and sent to a packaging adsorption means, CO 2 ingredient in the gases to be adsorbed is adsorbed or absorbed, and remaining gases are passed through and sent out to downstream. CO 2 adsorption or absorption of the packaging adsorption means is judged by monitoring the state of the remaining gases, and if it is normal, remaining gases are sent further to downstream and processed. If abnormality is found, a gas feedback system is operated, and CO 2 removing gas is sent again to the packaging adsorption means, in which CO 2 gases are adsorbed or absorbed again repeatingly. With such procedures, in a case where C 14 nuclides having a long half decay time are supplied in the form of 14 CO 2 gas, they are efficiently adsorbed or absorbed in the packaging system to improve removing and storing property of 14 C nuclides. (T.M.)

  7. Adsorption process analysis at the solid-gas interface by the polarization phenomenon study; Analyse des processus d`adsorption a l`interface solide - gaz par l`etude du phenomene de polarisation

    Energy Technology Data Exchange (ETDEWEB)

    Mouton-Chazel, V.

    1994-10-05

    In order to improve the safety of anti-gas filters users, the Cogema (Nuclear Materials General Company) has developed a gaseous pollutants saturation detection technology for respiratory protection masks. As a matter of fact, the problem consists in studying the surface properties of a solid. In this study the adsorption has been considered as a phenomenon which can be followed by a relatively simple electrical measure technology. A microscopic description of the adsorption phenomenon has been given at first and explained by the thermodynamics laws. Then a theoretical model has been elaborated. The developments which have been brought to this model in this work have allowed to give a satisfactory interpretation of the phenomena observed during the adsorption of a polar gas on a zeolite. (O.M.). 169 refs.

  8. Up-cycling waste glass to minimal water adsorption/absorption lightweight aggregate by rapid low temperature sintering: optimization by dual process-mixture response surface methodology.

    Science.gov (United States)

    Velis, Costas A; Franco-Salinas, Claudia; O'Sullivan, Catherine; Najorka, Jens; Boccaccini, Aldo R; Cheeseman, Christopher R

    2014-07-01

    Mixed color waste glass extracted from municipal solid waste is either not recycled, in which case it is an environmental and financial liability, or it is used in relatively low value applications such as normal weight aggregate. Here, we report on converting it into a novel glass-ceramic lightweight aggregate (LWA), potentially suitable for high added value applications in structural concrete (upcycling). The artificial LWA particles were formed by rapidly sintering (waste glass powder with clay mixes using sodium silicate as binder and borate salt as flux. Composition and processing were optimized using response surface methodology (RSM) modeling, and specifically (i) a combined process-mixture dual RSM, and (ii) multiobjective optimization functions. The optimization considered raw materials and energy costs. Mineralogical and physical transformations occur during sintering and a cellular vesicular glass-ceramic composite microstructure is formed, with strong correlations existing between bloating/shrinkage during sintering, density and water adsorption/absorption. The diametrical expansion could be effectively modeled via the RSM and controlled to meet a wide range of specifications; here we optimized for LWA structural concrete. The optimally designed LWA is sintered in comparatively low temperatures (825-835 °C), thus potentially saving costs and lowering emissions; it had exceptionally low water adsorption/absorption (6.1-7.2% w/wd; optimization target: 1.5-7.5% w/wd); while remaining substantially lightweight (density: 1.24-1.28 g.cm(-3); target: 0.9-1.3 g.cm(-3)). This is a considerable advancement for designing effective environmentally friendly lightweight concrete constructions, and boosting resource efficiency of waste glass flows.

  9. Rapid Determination of Technetium-99 in Large Volume Seawater Samples Using Sequential Injection Extraction Chromatographic Separation and ICP-MS Measurement

    DEFF Research Database (Denmark)

    Shi, Keliang; Qiao, Jixin; Wu, Wangsuo

    2012-01-01

    , and measurement of 99Tc by inductively coupled plasma mass spectrometry (ICP-MS). Chromatographic behaviors of technetium, molybdenum, and ruthenium were investigated, and the mechanism of adsorption and elution of TcO4– on a TEVA column using HNO3 was explored. The results show that not only NO3– but also...

  10. Protein Adsorption in Three Dimensions

    Science.gov (United States)

    Vogler, Erwin A.

    2011-01-01

    Recent experimental and theoretical work clarifying the physical chemistry of blood-protein adsorption from aqueous-buffer solution to various kinds of surfaces is reviewed and interpreted within the context of biomaterial applications, especially toward development of cardiovascular biomaterials. The importance of this subject in biomaterials surface science is emphasized by reducing the “protein-adsorption problem” to three core questions that require quantitative answer. An overview of the protein-adsorption literature identifies some of the sources of inconsistency among many investigators participating in more than five decades of focused research. A tutorial on the fundamental biophysical chemistry of protein adsorption sets the stage for a detailed discussion of the kinetics and thermodynamics of protein adsorption, including adsorption competition between two proteins for the same adsorbent immersed in a binary-protein mixture. Both kinetics and steady-state adsorption can be rationalized using a single interpretive paradigm asserting that protein molecules partition from solution into a three-dimensional (3D) interphase separating bulk solution from the physical-adsorbent surface. Adsorbed protein collects in one-or-more adsorbed layers, depending on protein size, solution concentration, and adsorbent surface energy (water wettability). The adsorption process begins with the hydration of an adsorbent surface brought into contact with an aqueous-protein solution. Surface hydration reactions instantaneously form a thin, pseudo-2D interface between the adsorbent and protein solution. Protein molecules rapidly diffuse into this newly-formed interface, creating a truly 3D interphase that inflates with arriving proteins and fills to capacity within milliseconds at mg/mL bulk-solution concentrations CB. This inflated interphase subsequently undergoes time-dependent (minutes-to-hours) decrease in volume VI by expulsion of either-or-both interphase water and

  11. Portable gas chromatograph-mass spectrometer

    Science.gov (United States)

    Andresen, B.D.; Eckels, J.D.; Kimmons, J.F.; Myers, D.W.

    1996-06-11

    A gas chromatograph-mass spectrometer (GC-MS) is described for use as a field portable organic chemical analysis instrument. The GC-MS is designed to be contained in a standard size suitcase, weighs less than 70 pounds, and requires less than 600 watts of electrical power at peak power (all systems on). The GC-MS includes: a conduction heated, forced air cooled small bore capillary gas chromatograph, a small injector assembly, a self-contained ion/sorption pump vacuum system, a hydrogen supply, a dual computer system used to control the hardware and acquire spectrum data, and operational software used to control the pumping system and the gas chromatograph. This instrument incorporates a modified commercial quadrupole mass spectrometer to achieve the instrument sensitivity and mass resolution characteristic of laboratory bench top units. 4 figs.

  12. Optimization of the gas chromatographic separations

    International Nuclear Information System (INIS)

    Gasco Sanchez, L.

    1973-01-01

    A review and a critical study on the optimization of the gas chromatographic separations are made. After dealing with the fundamental gas chromatographic equations, some methods of expressing column performances are discussed: performance indices, performance parameters, resolution and effective plate number per unit time. This is completed with a comparative study on performances of various types of columns. Moreover, optimization methods for operating chromatographic conditions are extensively dealt with: as resolution optimization, separation time, and normalization techniques for the time of analysis in order to achieve the maximum resolution at constant time. Finally, some others non operating parameters such as: selectivity of stationary phases, column preparation and optimization methods by means of computers are studied. (Author) 68 refs

  13. Study on the adsorption isosteres of the composite adsorbent CaCl2 and expanded graphite

    International Nuclear Information System (INIS)

    Li, S.L.; Wu, J.Y.; Xia, Z.Z.; Wang, R.Z.

    2011-01-01

    A test setup was built to study the adsorption performance of the composite adsorbent used in the adsorption system. The isovolume measurement method is adopted in the test setup to measure the adsorption isosteres of the composite adsorbent and ammonia working pair. The adsorption isosteres are the curves of the adsorption pressures variation with adsorption temperatures at constant adsorption quantity, which are convenient for the calculation of the adsorption heat and selection of the adsorption working pairs. The adsorption heats were calculated according to the adsorption isosteres, three clear crest values indicate that there were three types of reaction during the reaction processes of ammoniate calcium chloride and ammonia. The kinetic model of adsorption isosteres is obtained by the Temkin model, it is useful to estimate the adsorption performance of the working pairs and useful to guide the design of adsorption system.

  14. Adsorption, Desorption, Surface Diffusion, Lattice Defect Formation, and Kink Incorporation Processes of Particles on Growth Interfaces of Colloidal Crystals with Attractive Interactions

    Directory of Open Access Journals (Sweden)

    Yoshihisa Suzuki

    2016-07-01

    Full Text Available Good model systems are required in order to understand crystal growth processes because, in many cases, precise incorporation processes of atoms or molecules cannot be visualized easily at the atomic or molecular level. Using a transmission-type optical microscope, we have successfully observed in situ adsorption, desorption, surface diffusion, lattice defect formation, and kink incorporation of particles on growth interfaces of colloidal crystals of polystyrene particles in aqueous sodium polyacrylate solutions. Precise surface transportation and kink incorporation processes of the particles into the colloidal crystals with attractive interactions were observed in situ at the particle level. In particular, contrary to the conventional expectations, the diffusion of particles along steps around a two-dimensional island of the growth interface was not the main route for kink incorporation. This is probably due to the number of bonds between adsorbed particles and particles in a crystal; the number exceeds the limit at which a particle easily exchanges its position to the adjacent one along the step. We also found novel desorption processes of particles from steps to terraces, attributing them to the assistance of attractive forces from additionally adsorbing particles to the particles on the steps.

  15. Verification of hydrogen isotope separation by pressure swing adsorption process: Successive volume reduction of isotopic gas mixture using SZ-5A column

    Energy Technology Data Exchange (ETDEWEB)

    Kotoh, K., E-mail: kotoh@nucl.kyushu-u.ac.jp [Dept. of Applied Quantum Phys. and Nucl. Eng., Faculty of Eng., Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka 819-0395 (Japan); Tanaka, M. [National Institute for Fusion Science, 322-6 Oroshi, Toki, Gifu 509-5292 (Japan); Takashima, S.; Tsuge, T. [Dept. of Applied Quantum Phys. and Nucl. Eng., Faculty of Eng., Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka 819-0395 (Japan); Asakura, Y.; Uda, T. [National Institute for Fusion Science, 322-6 Oroshi, Toki, Gifu 509-5292 (Japan); Sugiyama, T. [Faculty of Eng., Nagoya University, Furo-cho, Chigusa-ku, Nagoya 464-8601 (Japan)

    2011-12-15

    For the purpose of verifying the applicability of pressure swing adsorption (PSA) process to such as volume reduction of tritiated waste storage, an experimental series was carried out by a PSA apparatus having a zeolite packed column operated at the liquefied nitrogen temperature, where synthetic zeolite 5A was used as a candidate of adsorbents. Experimental results are shown here which were obtained from cyclic operation of isolating a volume of hydrogen decontaminated with its heaver isotope from a mixture of H{sub 2} and D{sub 2} while reducing a volume of this mixture storage. Successive reduction during six cycles is observed in the inventory of this hydrogen mixture in a gas holder. Experimental data are analyzed in order to evaluate the performance of this PSA process operating the hydrogen isotope separation, where several factors are introduced defining efficiencies of decontamination, volumetric reduction, and so on. These factors suggest that the PSA process is available for successive reduction of a tritiated hydrogen storage inventory. A tritium waste management system of PSA process combined with electrolysis is considerable which is aiming at reducing the inventory of tritiated water in storage.

  16. Effect of a new regeneration process by adsorption-coagulation and flocculation on the physicochemical properties and the detergent efficiency of regenerated cleaning solutions.

    Science.gov (United States)

    Blel, Walid; Dif, Mehdi; Sire, Olivier

    2015-05-15

    Reprocessing soiled cleaning-in-place (CIP) solutions has large economic and environmental costs, and it would be cheaper and greener to recycle them. In food industries, recycling of CIP solutions requires a suitable green process engineered to take into account the extreme physicochemical conditions of cleaning while not altering the process efficiency. To this end, an innovative treatment process combining adsorption-coagulation with flocculation was tested on multiple recycling of acid and basic cleaning solutions. In-depth analysis of time-course evolutions was carried out in the physicochemical properties (concentration, surface tension, viscosity, COD, total nitrogen) of these solutions over the course of successive regenerations. Cleaning and disinfection efficiencies were assessed based on both microbiological analyses and organic matter detachment and solubilization from fouled stainless steel surfaces. Microbiological analyses using a resistant bacterial strain (Bacillus subtilis spores) highlighted that solutions regenerated up to 20 times maintained the same bactericidal efficiency as de novo NaOH solutions. The cleanability of stainless steel surfaces showed that regenerated solutions allow better surface wettability, which goes to explain the improved detachment and solubilization found on different types of organic and inorganic fouling. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Viability study on using calcium carbonate for the boron adsorption process in waste waters; Estudio de viabilidad del proceso de adsorcion de boro de aguas residuales con carbonato calcico

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez Guerreiro, M. J.; Munoz Camacho, E.; Bernal Pita da Veiga, M. B.

    2009-07-01

    This study evaluates how viable it is to employ calcium carbonate for the boron adsorption process in waters that could be contaminated by this element. A residue form mussel shells-abundant in Galicia, northwestern Spain, was used. The data gathered from the experiments show that the performance of the boron adsorption within the sample is below 2%. Despite the inferior data obtained, the general aim was reached. An attempt was made to find solutions to the environmental problem caused by the residues mentioned above. (Author) 11 refs.

  18. Adsorption dynamics and equilibrium studies of Zn (II) onto chitosan

    Indian Academy of Sciences (India)

    Batch equilibration studies are conducted to determine the nature of adsorption of zinc (II) over chitosan. The factors affecting the adsorption process like particle size, contact time, dosage, pH, effects of chloride and nitrate are identified. The influence of temperature and co-ions on the adsorption process is verified.

  19. Adsorption dynamics and equilibrium studies of Zn (II)

    Indian Academy of Sciences (India)

    Batch equilibration studies are conducted to determine the nature of adsorption of zinc (II) over chitosan. The factors affecting the adsorption process like particle size, contact time, dosage, pH, effects of chloride and nitrate are identified. The influence of temperature and co-ions on the adsorption process is verified.

  20. Antidiarrhoeal Activity of Chromatographic Fractions of ...

    African Journals Online (AJOL)

    Erah

    Purpose: The present study was undertaken in order to evaluate the antidiarrhoeal activity of three chromatographic fractions (L, S and Y) of Stereospermum kunthianum stem bark in mice. Methods: Vacuum liquid/column chromatography (VLC/ CC) were used to obtain three fractions (L,S and Y) of Stereospermum ...

  1. Liquid chromatographic determination of pyrethroid insecticide ...

    African Journals Online (AJOL)

    A new high performance liquid chromatography (HPLC) method for the quantitative analysis of cypermethrin in vegetable samples has been described. The determination of cypermethrin was carried out on Kromosil C18 analytical column (250 mm × 4.6 mm I.D., 5 μm particle size), under reversed phase chromatographic ...

  2. Liquid chromatographic analysis of phenobarbitone, ethosuximide ...

    African Journals Online (AJOL)

    A liquid chromatographic method for the simultaneous assay of four anticonvulsant drugs, phenobarbitone, ethosuximide, phenytoin and carbamazepine on a polystyrene-divinyl benzene column is described. The method was developed by the systematic study of different types of co-polymer materials, type and ...

  3. Rapid validated liquid chromatographic method coupled with ...

    African Journals Online (AJOL)

    Abstract. Purpose: To develop and validate a fast, sensitive, and simple liquid chromatographic method coupled with tandem mass spectrometry for the ... European Medicines Agency (EMA) guidelines. Results: The proposed method ... that few articles were published for NTB quantification in rat biological fluids and tissues.

  4. High performance liquid chromatographic determination of ...

    African Journals Online (AJOL)

    STORAGESEVER

    2010-02-08

    Feb 8, 2010 ... liquid chromatographic with UV/Fluorescence detection is described. Proguanil was derivatised to its corresponding ... proguanil in combination with other antimalarial drugs has also been reported to posses synergic toxicity ..... Chlorophenyl Biguanide in Biological Fluids. Afr. J. Biotechnol. 4(8):. 856-861.

  5. Chromatographic characterisation, in vitro antioxidant and free ...

    African Journals Online (AJOL)

    Chromatographic fractionation and spectroscopic analysis of the ME4 fraction revealed the presence of four compounds namely garcinia biflavonoids GB1 and GB2, garcinal and garcinoic acid. These findings show that these four compounds are partly responsible for the great antioxidant potential of G. kola seeds.

  6. Kinetic modelling and mechanism of dye adsorption on unburned carbon

    Energy Technology Data Exchange (ETDEWEB)

    Wang, S.B.; Li, H.T. [Curtin University of Technology, Perth, WA (Australia). Dept. of Chemical Engineering

    2007-07-01

    Textile dyeing processes are among the most environmentally unfriendly industrial processes by producing coloured wastewaters. The adsorption method using unburned carbon from coal combustion residue was studied for the decolourisation of typical acidic and basic dyes. It was discovered that the unburned carbon showed high adsorption capacity at 1.97 x 10{sup -4} and 5.27 x 10{sup -4} mol/g for Basic Violet 3 and Acid Black 1, respectively. The solution pH, particle size and temperature significantly influenced the adsorption capacity. Higher solution pH favoured the adsorption of basic dye while reduced the adsorption of acid dye. The adsorption of dye increased with increasing temperature but decreased with increasing particle size. Sorption kinetic data indicated that the adsorption kinetics followed the pseudo-second-order model. The adsorption mechanism consisted of two processes, external diffusion and intraparticle diffusion, and the external diffusion was the dominating process.

  7. Langmuir and Freundlich Isotherm Adsorption Equations for Chromium (VI) Waste Adsorption by Zeolite

    International Nuclear Information System (INIS)

    Murni Handayani; Eko Sulistiyono

    2009-01-01

    The research of chromium (VI) waste adsorption by zeolite has done. Wastes which are produced by Industries, both radioactive waste and heavy metal waste need done more processing so that they are not endanger environment and human health. Zeolite has very well-ordered crystal form with cavity each other to way entirely so that cause surface wide of zeolite become very big and very good as adsorbents. This research intends to know appropriate isotherm adsorption method to determine maximum capacity of zeolite to chromium (VI) waste. The equations which used in adsorption process are Langmuir and Freundlich isotherm Adsorption equations. The instrument was used in adsorption process by using Atomic Adsorption Spectroscopy (AAS). The experiment result showed that the biggest mass of chromium (VI) metal ion which was absorb by zeolite in 20 ppm concentration was 7.71 mg/gram zeolite. Adsorption process of Chromium (VI) waste by zeolite followed Langmuir and Freundlich isotherm equations with R 2 >0,9 . Appropriate equation to determine maximum adsorption capacity of zeolite for chromium (VI) waste adsorption is Langmuir equation. The maximum adsorption capacity of zeolite is 52.25 mg/gram. (author)

  8. A Small-Scale Low-Cost Gas Chromatograph

    Science.gov (United States)

    Gros, Natasa; Vrtacnik, Margareta

    2005-01-01

    The design and application of a small-scale portable gas chromatograph for learning of the basic concepts of chromatography is described. The apparatus consists of two basic separable units, which includes a chromatographic unit and an electronic unit.

  9. Adsorption of ferrous ions onto montmorillonites

    Energy Technology Data Exchange (ETDEWEB)

    Qin, Dawei, E-mail: qdw109@163.com [Qilu University of Technology, Jinan, 250353, Shandong (China); Niu, Xia [Qilu University of Technology, Jinan, 250353, Shandong (China); Qiao, Min; Liu, Gang; Li, Hongxin; Meng, Zhenxiao [Shandong SiBang pharmaceutical co., LTD, Jinan, Shandong, 250200 (China)

    2015-04-01

    Highlights: • Adsorption study of ferrous ions on montmorillonites. • Using ascorbic acid as antioxidants in adsorption process. • Fe (II)-MMT had good affinity for phosphate. - Abstract: The adsorption of Fe (II) onto montmorillonites was investigated through initial concentration, contact time, pH and temperature. During the whole adsorption process, the ascorbic acid (Vitamin C) was added as a kind of antioxidant, at the same time, deionized water (after boiling) and nitrogen protection were also used to avoid oxidation. The Fe{sup 2+}/Fe{sub total} ratio of the iron exists in the Fe-montmorillonites was found more than 95%. Two kinetic models, including pseudo-first-order and pseudo-second-order model, were used to analyze the adsorption process of Fe (II) on montmorillonites. The results of our study showed that adsorption process fitted with pseudo-second-order well. Adsorption isotherms showed that Langmuir model was better than Freundlich model. The thermodynamic parameters ΔG{sup 0} and ΔH{sup 0} were 3.696 kJ/mol and 6.689 kJ/mol (we just gave the values at 298 K), respectively. The positive values at different temperatures showed that the adsorption process was non-spontaneous and endothermic. The characteristics of materials were determined by X-ray diffraction (XRD), Fourier transform infrared (FT-IR), Surface area and porosity analyzer, Thermogravimetric analysis (TGA), Differential scanning calorimeter (DSC) and Zeta potential distribution.

  10. Adsorptive property of rice husk for uranium

    International Nuclear Information System (INIS)

    Feng Yuan; Yi Facheng

    2011-01-01

    The adsorption experiments were researched by using the rice husk powder as the adsorbent to remove the U(VI) from aqueous solution. The affecting factors on the U(VI) removal rate such as rice husk particle size, pH, initial concentration, adsorption time, temperature and dosage of adsorbent were evaluated, kinetics and adsorption isotherm law were analyzed, and mechanisms for U(VI) removal were discussed by SEM, FT-IR and energy spectrum analysis. The results show that U(VI) removal rate increases with the decrease of the size of adsorbent, and with the increase of adsorbent dosage and temperature. The process of adsorption can be described by an equation of pseudo 2nd-order mode, and the relation coefficient is 1. The process of adsorption also fits to Freundlich isotherm (R 2 =0.995 4). The adsorption of uranium on rice husk changes the surface form of rice husk. Hydroxyl, carboxylic, P-O and Si-O are the main functional groups in the reaction with U(VI). The adsorption mechanism is mixture adsorption, including the physical and chemical adsorption. (authors)

  11. Extraction chromatographic studies on a strontium selective crown ether

    International Nuclear Information System (INIS)

    Pathak, P.N.; Mohapatra, P.K.; Kulkarni, M.J.; Manchanda, V.K.

    1998-08-01

    Selective adsorption of radiostrontium from nitric acid medium on a chromatographic resin material consisting of di-t-butyl cyclohexano 18 crown 6/n-octanol sorbed onto amberlite XAD-7 (particle size: 100-150μm) has been carried out. The column capacity is evaluated as ∼ 21 mg of Sr per gram of the resin material. The separation of radiostrontium from several metal ions present in environmental and biological samples viz. Li, Na, K, Mg, Ca, Al, Fe, Co, Ni, Zn and Cd has been achieved. A promising separation method for 90 Y from 90 Sr- 90 Y mixture has also been developed. Nitric acid concentration has no observable effect on the elution profile of 90 Y as the entire amount of the loaded 90 Y activity can be eluted by 1.5 ml of the acid in a wide concentration range (0. 1 - 10 M). Half-life of the eluted 90 Y sample is calculated as 63.75 ± 0.40 hours by following the decay profile. Repeated elutions using 1.5 ml of 3 M HNO 3 after loading 200 μCi of 90 Sr - 90 Y revealed that the product with ∼ 98% radiochemical purity could be obtained up to the 12th run beyond which the contamination due to 90 Sr increased significantly. (author)

  12. Conceptual adsorption models and open issues pertaining to performance assessment

    International Nuclear Information System (INIS)

    Serne, R.J.

    1992-01-01

    Recently several articles have been published that question the appropriateness of the distribution coefficient, Rd, concept to quantify radionuclide migration. Several distinct issues surrounding the modeling of nuclide retardation. The first section defines adsorption terminology and discusses various adsorption processes. The next section describes five commonly used adsorption conceptual models, specifically emphasizing what attributes that affect adsorption are explicitly accommodated in each model. I also review efforts to incorporate each adsorption model into performance assessment transport computer codes. The five adsorption conceptual models are (1) the constant Rd model, (2) the parametric Rd model, (3) isotherm adsorption models, (4) mass action adsorption models, and (5) surface-complexation with electrostatics models. The final section discusses the adequacy of the distribution ratio concept, the adequacy of transport calculations that rely on constant retardation factors and the status of incorporating sophisticated adsorption models into transport codes. 86 refs., 1 fig., 1 tab

  13. Adsorption performance of silver-loaded activated carbon fibers

    Directory of Open Access Journals (Sweden)

    Yan Xue-Feng

    2018-01-01

    Full Text Available Silver-loaded activated carbon fiber is prepared, and its adsorption performance is studied experimentally using five methylene blue solutions with different concentrations under three different temperature conditions. The adsorption tests show that fibers adsorption increase as the increase of temperature, and there is an optimal value for solution concentration, beyond which its adsorption will de-crease. Fibers isothermal adsorption to methylene blue is different from those by the monolayer adsorption by Langmuir model and the multilayer adsorption by Freundlich model. Through the analysis of thermodynamic parameters, Gibbs free energy, standard entropy, and standard enthalpy, it is found that the fibers adsorption to methylene blue is an exothermic process of physical adsorption.

  14. Kinetics of polymer adsorption, desorption and exchange

    NARCIS (Netherlands)

    Dijt, J.C.

    1993-01-01

    The aim of the study in this thesis was to gain more insight in the kinetics of polymer adsorption. To this end some well-characterised polymers have been systematically investigated.

    In the process of polymer adsorption one may distinguish three kinetic contributions: transport to

  15. Adsorption-driven translocation of polymer chain into nanopores

    Science.gov (United States)

    Yang, Shuang; Neimark, Alexander V.

    2012-06-01

    The polymer translocation into nanopores is generally facilitated by external driving forces, such as electric or hydrodynamic fields, to compensate for entropic restrictions imposed by the confinement. We investigate the dynamics of translocation driven by polymer adsorption to the confining walls that is relevant to chromatographic separation of macromolecules. By using the self-consistent field theory, we study the passage of a chain trough a small opening from cis to trans compartments of spherical shape with adsorption potential applied in the trans compartment. The chain transfer is modeled as the Fokker-Plank diffusion along the free energy landscape of the translocation pass represented as a sum of the free energies of cis and trans parts of the chain tethered to the pore opening. We investigate how the chain length, the size of trans compartment, the magnitude of adsorption potential, and the extent of excluded volume interactions affect the translocation time and its distribution. Interplay of these factors brings about a variety of different translocation regimes. We show that excluded volume interactions within a certain range of adsorption potentials can cause a local minimum on the free energy landscape, which is absent for ideal chains. The adsorption potential always leads to the decrease of the free energy barrier, increasing the probability of successful translocation. However, the translocation time depends non-monotonically of the magnitude of adsorption potential. Our calculations predict the existence of the critical magnitude of adsorption potential, which separates favorable and unfavorable regimes of translocation.

  16. Optimization of adsorption process parameters by response surface methodology for hexavalent chromium removal from aqueous solutions using Annona reticulata Linn peel microparticles.

    Science.gov (United States)

    Saranya, N; Nakeeran, E; Giri Nandagopal, M S; Selvaraju, N

    2017-05-01

    Fruit peel microparticles of Annona reticulata Linn were used as biosorbent for the sequestration of hexavalent chromium (CR(VI)). Characterization of the biosorbent was done using scanning electron microscopy-energy dispersive X-ray spectroscopy (SEM-EDXS), Fourier transfer infrared spectroscopy (FTIR), gas chromatography-mass spectrometry (GCMS), carbon, hydrogen, nitrogen and sulphur (CHNS) elemental analysis, mercury intrusion porosimetry and point of zero charge. Influential parameters were optimized using response surface methodology (RSM) with a total of 17 experimental runs based on the Box-Behnken design and found to be pH 1.0, temperature 25 °C and 100 mg/L initial chromium concentration. pH and concentration were found to be more influential than temperature. The analysis of variance indicated that a second-order polynomial regression equation was the most suitable for fitting the experimental data. The experimental runs showed a good correlation with the predicted responses (R 2 = 0.9956). The biosorption process fitted well with the Langmuir isotherm with an adsorption capacity of 108. 32 mg/g out of the other isotherms such as Freundlich and Dubinin-Radushkevich that were analyzed. Non linear pseudo first order, pseudo second order, and intraparticle diffusion kinetics were applied to describe the interaction between the biosorbent and Cr(VI). Desorption and regeneration performances showed that fruit peels of Annona reticulata Linn can be an environmental friendly option for hexavalent chromium removal from aqueous solutions.

  17. Removal of metals and phenols by adsorption/ion exchange process; Eliminacion conjunta de metales y fenoles por adsorcion/intercambio ionico

    Energy Technology Data Exchange (ETDEWEB)

    Maranon, E.; Castrillon, I.; Monster, T.; Sastre, H.

    2002-07-01

    The present work studies the possible interactions in the removal of metals and phenolic compounds that may be present in an industrial wastewater by means of an adsorption/ion exchange process. The resins employed were Amberlite 252-C for the removal of metals and Amberlite XAD-4 for the removal of phenol. Firstly, elimination was studied by means of assays with solutions that contained either 100 mg/l of copper, 100 mg/l of zinc or 1000 mg/l of phenol. Subsequently, assays were carried out using solutions containing a mixture of 100 mg/l of each metal, and finally, with solutions containing a mixture of 100 mg/l of each metal and 1000 mg/l of phenol. The saturation capacity of the Amberlite 252-C resin for metals decreased slightly in the presence of phenol, the decrease in working capacity being greater than that of saturation capacity. However, the presence of metallic cations increased the sorption of phenol by the Amberlite XAD-4 resin. (Author) 14 refs.

  18. Transesterification of propylene glycol methyl ether in chromatographic reactors using anion exchange resin as a catalyst.

    Science.gov (United States)

    Oh, Jungmin; Sreedhar, Balamurali; Donaldson, Megan E; Frank, Timothy C; Schultz, Alfred K; Bommarius, Andreas S; Kawajiri, Yoshiaki

    2016-09-30

    Reactive chromatography using an anion exchange resin is proposed for a transesterification reaction of propylene glycol methyl ether (DOWANOL™ PM) with ethyl acetate to produce propylene glycol methyl ether acetate (DOWANOL™ PMA). This reaction is studied in batch and chromatographic reactors catalyzed by an anion exchange resin. Several anion exchange resins are tested and compared based on the performance of resin as an adsorbent and a catalyst. A chromatographic column is packed with a selected catalyst, AMBERLITE™ IRA904, and both reaction and chromatographic elution are studied at different temperatures and feed concentrations. The resulting chromatograms are fitted to a mathematical model to obtain adsorption equilibrium and reaction kinetic parameters by the inverse method. Compared to esterification investigated in a previous study, transesterification has advantages such as a higher conversion at lower temperature and easy removal of the byproduct which may lead to higher productivity. Deactivation of anion exchange resins is observed and potential solutions are suggested. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. The activation process of ZrCo by an adsorption-desorption cycle of H{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sunmi; Paek, Seungwoo; Lee, Minsoo; Kim, Sihyung; Kim, Kwangrag; Ahn, Dohee [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Sohn, Soonhwan; Song, Kyumin [Korea Electric Power Research Institute, Daejeon (Korea, Republic of)

    2008-05-15

    Along with uranium, a zirconium-cobalt intermetallic compound has been extensively studied and widely used due to its attractive properties as a tritium getter for a handling, transport, and storage of tritium. The zirconium-cobalt has two strong advantages compared with uranium. While uranium is restricted for a handling due to its radioactive characteristics, zirconium-cobalt is easy to handle. Also, from the point of view of a safety, zirconium-cobalt and its hydrides have proven to be much less pyrophoric than uranium and its hydrides are the most widely used as a tritium getter. However, the zirconium-cobalt has one shortcoming in that it brings about a disproportionation at above 673 K. In the current study, before the experiment for the pressure-composition isotherm of zirconium-cobalt at room temperature, the activation process of the zirconium-cobalt intermetallic compound was dealt with and its result was discussed.

  20. Chromatographic 188W →188Re generator

    International Nuclear Information System (INIS)

    Khujaev, S.

    2005-01-01

    Full text: The main purpose of the generator - reception of daughter radioisotope Rhenium-188 from it by periodic elution for a long period of time (more than half-year). It is generally known that Rhenium-188, in the form of its complex connections, is applied in nuclear medicine in treatment and removal of painful syndromes. The generator possesses convenient nuclear-physical characteristics of a daughter radioisotope Rhenium-188. It is a source of (Irradiation with energy 2.12 MeV (98 %) with small contribution soft γ-radiation with energy 0.155 MeV (15 %). The Period of half-life destruction of radioisotope is 17 hours. The 188 W parent radioisotope for the generator is formed by irradiation of 186 W neutrons based on the following reaction: 186 W (n,γ) 187 W (n,γ) 188 W (69 days) → 188 Re (17 hours) + β The following were used as targets for irradiation: 1) Metal Tungsten (powder) of natural structure; 2) Metal Tungsten (plate) of natural structure; 3) Metal Tungsten (wire) of natural structure, d = 12 mm; 4) Metal Tungsten (powder) with enrichment on isotope 186 W - 99.79 %. The irradiated material was exposed to chemical processing with reception of radioactive solution of tungsten-188, from which sorption Tungsten was carried out onto sorbent as poly-wolframate-ions. It is established that Tungsten sorption depends on many factors as there are various chemical forms of Tungsten (VI) in water solutions, ratio of which depends on pH of the solution, concentration of Tungsten in the solution and presence of foreign ions. Tungsten sorption was carried out in static and in dynamic regimes. At dynamic regime the sorbent was placed directly in the generating column. The generator consisted of chromatographic columns with sorbent and radioisotope 188 W, eluting system and radiation protection. Rhenium-188 was taken from the generator as perrhenate sodium by elution of 0.9 % solution of chloride sodium in 10 ml. Technical characteristics of the generator

  1. Chromatographic separation of human salivary peroxidases.

    Science.gov (United States)

    Mäkinen, K K; Tenovuo, J

    1976-01-01

    A series of rapid and simple chromatographic purification procedures for peroxidase-like enzymes occurring in the human oral cavity is presented. Samples of whole saliva, parotid saliva, gingival exudate and various bacterial preparations contain peroxidases which were purified using molecular exclusion and ion exchange chromatography, and isoelectric focusing. Salivary lactoperoxidase can be easily separated from bacterial and leucocyte peroxidase activity by the methods presented.

  2. Amalgam-chromatographic separation of magnesium isotopes

    International Nuclear Information System (INIS)

    Klinskij, G.D.; Levkin, A.V.; Ivanov, S.A.

    1990-01-01

    Separation of magnesium isotopes within Mg(Hg)-MgI 2 system (in dimethylformamide) is conducted under amalgam-chromatographic conditions. Separation maximal degree, that is (1.09), for 24 Mg and 26 Mg and separation coefficient (α = 1.0089±0.006) are determined. Light isotopes are found to concentrate in the amalgam. Technique of thermal conversion of flows within amalgam-dimethylformamide system is suggested on the basis of reversible reaction of Ca-Mg element exchange

  3. GAS CHROMATOGRAPHIC AND SPECTROSCOPIC ANALYSIS OF ...

    African Journals Online (AJOL)

    Peroxyformic acid prepared in-situ was employed for epoxidation of canola oil in the presence of toluene. Gas chromatographic analysis of the product revealed the following species: C16:0; C18:0; C18:1; C18:2; C18:3; monoepoxy C18:0; monoepoxy C18:1; monoepoxy C18:2; diepoxy C18:0; diepoxy C18:1 and triepoxy ...

  4. Application of Empirical Peleg Model to Study the Water Adsorption of Full Cream Milk in Drying Process

    Science.gov (United States)

    Hashib, S. Abd; Rosli, H.; Suzihaque, M. U. H.; Zaki, N. A. Md; Ibrahim, U. K.

    2017-06-01

    The ability of spray dryer in producing full cream milk at different inlet temperatures and the effectiveness of empirical model used in order to interpret the drying process data is evaluated in this study. In this study, a lab-scale spray dryer was used to dry full cream milk into powder with inlet temperature from 100 to 160°C with a constant pump speed 4rpm. Peleg empirical model was chosen in order to manipulate the drying data into the mathematical equation. This research was carry out specifically to determine the equilibrium moisture content of full cream milk powder at various inlet temperature and to evaluate the effectiveness of Peleg empirical model equation in order to describe the moisture sorption curves for full cream milk. There were two conditions set for this experiments; in the first condition (C1), further drying process of milk powder in the oven at 98°C to 100°C while the second condition (C2) is mixing the milk powder with different salt solutions like Magnesium Chloride (MgCl), Potassium Nitrite (KNO2), Sodium Nitrite (NaNO2) and Ammonium Sulfate ((NH4)2SO4). For C1, the optimum temperature were 160°C with equilibrium moisture content at 3.16 weight dry basis and slowest sorption rates (dM/dt) at 0.0743 weight dry basis/hr. For C2, the best temperature for the mixture of dry samples with MgCl is at 115°C with equilibrium moisture content and sorption rates is -78.079 weight dry basis and 0.01 weight dry basis/hr. The best temperature for the mixture of milk powder with KNO2 is also at 115°C with equilibrium moisture content and sorption rates at -83.9645 weight dry basis and 0.0008 weight dry basis/hr respectively. For mixture of dry samples with NaNO2, the best temperature is 160°C with equilibrium moisture content and sorption rates at 84.1306 weight dry basis and 0.0013 weight dry basis/hr respectively. Lastly, the mixture of dry samples with ((NH4)2SO4 where the best temperature is at 115°C with equilibrium moisture content -83

  5. Standard Format for Chromatographic-polarimetric System small samples assessment

    International Nuclear Information System (INIS)

    Naranjo, S.; Fajer, V.; Fonfria, C.; Patinno, R.

    2012-01-01

    The treatment of samples containing optically active substances to be evaluated as part of quality control of raw material entering industrial process, and also during the modifications exerted on it to obtain the desired final composition is still and unsolved problem for many industries. That is the case of sugarcane industry. Sometimes the troubles implied are enlarged because samples to be evaluated are not bigger than one milliliter. Reduction of gel beds in G-10 and G-50 chromatographic columns having an inner diameter of 16 mm, instead of 25, and bed heights adjustable to requirements by means of sliding stoppers to increase analytical power were evaluated with glucose and sucrose standards in concentrations from 1 to 10 g/dL, using aliquots of 1 ml without undesirable dilutions that could affect either detection or chromatographic profile. Assays with seaweed extracts gave good results that are shown. It is established the advantage to know concentration of a separated substance by the height of its peak and the savings in time and reagents resulting . Sample expanded uncertainty in both systems is compared. It is also presented several programs for data acquisition, storing and processing. (Author)

  6. Adsorption mechanisms and the effect of oxytetracycline on activated sludge.

    Science.gov (United States)

    Song, Xiancai; Liu, Dongfang; Zhang, Guowei; Frigon, Matthew; Meng, Xianrong; Li, Kexun

    2014-01-01

    The adsorption mechanisms and the effect of Oxytetracycline (OTC) onto activated sludge were studied. The results show that the adsorption of Oxytetracycline (OTC) onto activated sludge was coincident with the Langmuir, Freundlich and Temkin isotherm models. The Freundlich model had the best fit which suggested that chemical adsorption mechanism was dominant. The influences including pH and metal ions on the OTC were examined. It was demonstrated that the adsorption process was highly pH-dependant, which indicate that cationic exchange mechanisms may play an important role in the adsorption process. Na(+), K(+), Ca(2+), Mg(2+) and Cd(2+) ions more or less inhibited the adsorption of OTC on activated sludge while Cu(2+) enhanced the adsorption ability. The phenomenon may reflect the result that a surface complexation mechanism could involved in the adsorption. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. Adsorption mechanisms and impact factors of oxytetracycline on activated sludge

    Science.gov (United States)

    Xiancai, Song; Dongfang, Liu; Lejun, Zhao

    2017-03-01

    The adsorption mechanisms and the effect of Oxytetracycline (OTC) onto activated sludge were studied. The results show that the adsorption of Oxytetracycline (OTC) onto activated sludge was coincident with the Pseudo-second-order kinetic model which suggested that chemical adsorption mechanism was dominant. The influences including pH and metal ions on the OTC were examined. It was demonstrated that the adsorption process was highly pH-dependant, which indicate that cationic exchange mechanisms may play an important role in the adsorption process. Na+, K+, Ca2+, Mg2+ and Cd2+ ions more or less inhibited the adsorption of OTC on activated sludge while Cu2+ enhanced the adsorption ability. The phenomenon may reflect the result that a surface complexation mechanism could involved in the adsorption.

  8. Adsorption of Phthalates on Municipal Activated Sludge

    Directory of Open Access Journals (Sweden)

    Hongbo Wang

    2017-01-01

    Full Text Available Phthalates (PAEs are commonly detected in discharge of municipal wastewater treatment plants. This study investigated the removal of six typical PAEs with activated sludge and the results revealed that concentrations of aqueous PAEs decreased rapidly during the beginning 15 min and reached equilibrium within 2 hours due to the adsorption of activated sludge. The process followed first-order kinetic equation, except for dioctyl phthalate (DOP. The factors influencing the adsorption were also evaluated and it was found that higher initial concentrations of PAEs enhanced the removal but affected little the adsorption equilibrium time. The adsorption of PAEs favored lower operating temperature (the optimum temperature was approximately 25°C in this research, which could be an exothermic process. Additionally, lower aqueous pH could also benefit the adsorption.

  9. Adsorption chromatography to purify Spacer disaccharide of Active Pharmaceutical Ingredient of QuimiHib vaccine

    International Nuclear Information System (INIS)

    Diaz, Belinda; Heynngnezz, Lazaro; Beldarrain, Alejandro

    2013-01-01

    In this paper we study the conditions of adsorption chromatography on Silica gel 60 for purification of Spacer disaccharide a component of Active Pharmaceutical Ingredient (API) of QuimiHib vaccine. For that, we made a scale down on an analytical scale that represented at 1.8% of industrial process, indicating reproducibility between two procedures in terms of packing efficiency, purity and recovery. Dynamic binding capacity of the resin Silicagel 60 by the DSE was roughly 125±0.2 mg /mL, 3.4 times the base process. The elution profile obtained, showed the possibility of collecting a unique fraction at range 195±2 and 260±2 minutes, if it is maintained a proper packing of the chromatography resin determined by asymmetry factor from 0.8 to 1.2, which ensures a recovery of 58.9±4.5% and high purity analyzed by Thin Layer Chromatography. Adjusting the adsorption conditions increases the productivity of chromatographic operation up to 3.5 fold, indicating that it is feasible in economic terms

  10. ADSORPTION OF SURFACTANT ON CLAYS

    Science.gov (United States)

    Surfactants used to enhance remediation of soils by soil washing are often lost in the process. Neither the amount nor the cause of this loss is known. It is assumed that clays present in the soil are responsible for the loss of the surfactant. In this papere, adsorption prope...

  11. Adsorption materials for the recovery and separation of biobased molecules

    NARCIS (Netherlands)

    IJzer, Anne

    2016-01-01

    In this thesis we studied several strategies to improve adsorption technology for the adsorption of biobased molecules. These strategies are based on the adsorbent as well as the adsorption process. A systematic investigation of the chemical and physical structure of resin materials and their

  12. Behavior of the Enthalpy of Adsorption in Nanoporous Materials close to Saturation Conditions

    NARCIS (Netherlands)

    Torres-Knoop, Ariana; Poursaeidesfahani, A.; Vlugt, T.J.H.; Dubbeldam, D.

    2017-01-01

    Many important industrial separation processes based on adsorption operate close to saturation. In this regime, the underlying adsorption processes are mostly driven by entropic forces. At equilibrium, the entropy of adsorption is closely related to the enthalpy of adsorption. Thus, studying the

  13. adsorption isotherm a

    African Journals Online (AJOL)

    ADOWIE PERE

    sawmill factory waste: adsorption isotherm and kinetic studies. KELLE, HI. Department of Pure and ... Keywords: Sawdust, crude oil, adsorption kinetics, oil sorption capacity, sorbed oil recoverability, adsorption isotherm. Key methods available for ..... of Basic Dyes from Aqueous Solution. By Sphagnum Moss Peat, Can.

  14. The Initial Adsorption of Pb2+ to Dunaliella Salina

    OpenAIRE

    Muhaemin, Moh

    2006-01-01

    The adsorption process of metal ion to algal sudace groups and complexes to become organic material at all growth phases could be ajecting their behaviour in seawater. The dwerential pulse anodic stripping voltammetry (DPASIO method was used to determine the adsorption and interaction between the Dunaliella salina and Pbz`. The rate of adsorption was found in two steps; first a relative fast adsorption step (I0 min) and second slower or aw'usion—controlled uptake into the cells. The parabolic...

  15. Phosphoryl functionalized mesoporous silica for uranium adsorption

    Science.gov (United States)

    Xue, Guo; Yurun, Feng; Li, Ma; Dezhi, Gao; Jie, Jing; Jincheng, Yu; Haibin, Sun; Hongyu, Gong; Yujun, Zhang

    2017-04-01

    Phosphoryl functionalized mesoporous silica (TBP-SBA-15) was synthesized by modified mesoporous silica with γ-amino propyl triethoxy silane and tributyl phosphate. The obtained samples were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), small angle X-ray diffraction (SAXRD), thermo-gravimetric/differential thermalanalyzer (TG/DTA), N2 adsorption-desorption (BET) and Fourier transform infrared spectroscopy (FT-IR) techniques. Results showed that TBP-SBA-15 had large surface areas with ordered channel structure. Moreover, the effects of adsorption time, sorbent dose, solution pH, initial uranium concentration and temperature on the uranium adsorption behaviors were investigated. TBP-SBA-15 showed a high uranium adsorption capacity in a broad range of pH values. The U(VI) adsorption rate of TBP-SBA-15 was fast and nearly achieved completion in 10 min with the sorbent dose of 1 g/L. The U(VI) adsorption of TBP-SBA-15 followed the pseudo-second-order kinetic model and Freundlich isotherm model, indicating that the process was belonged to chemical adsorption. Furthermore, the thermodynamic parameters (ΔG0, ΔH0 and ΔS0) confirmed that the adsorption process was endothermic and spontaneous.

  16. Adsorption of dyes onto activated carbon cloth: using QSPRs as tools to approach adsorption mechanisms.

    Science.gov (United States)

    Metivier-Pignon, Hélène; Faur, Catherine; Le Cloirec, Pierre

    2007-01-01

    The present study aimed to investigate the adsorption of dyes onto activated carbon cloths. Kinetics and isotherms were studied based on results of batch reactors to constitute databases for the adsorption rates and capacities of 22 commercial dyes. Added to a qualitative analysis of experimental results, quantitative structure property relationships (QSPRs) were used to determine the structural features that influence most adsorption processes. QSPRs consisted of multiple linear regressions correlating adsorption parameters with molecular connectivity indices (MCIs) as molecular descriptors. Results related to adsorption kinetics showed that the size of molecules was the significant feature, the high order MCIs involved in QSPRs indicating the influence of a critical size on adsorption rate. Improved statistical fits were obtained when the database was divided according to the chemical classes of dyes. As regards to adsorption isotherms, their particular form led to the use of saturation capacity as the adsorption parameter. By contrast with adsorption kinetics, molecular overcrowding seemed to be of less influence on adsorption equilibrium. In this case, MCIs included in the QSPR were more related to details of the molecular structure. The robustness of the QSPR assessed for azo dyes was studied for the other dyes. Although the small size of the database limited predictive ability, features relevant to the influence of the database composition on QSPRs have been highlighted.

  17. Efficient Adsorption of Sulfamethazine onto Modified Activated Carbon: A Plausible Adsorption Mechanism.

    Science.gov (United States)

    Liu, Ying; Liu, Xiaohui; Dong, Wenping; Zhang, Lingli; Kong, Qiang; Wang, Weiliang

    2017-09-29

    Activated carbon (AC) was modified by FeCl 3 . Batch experiments were carried out to evaluate the characteristics of equilibrium, kinetics and thermodynamics of Sulfamethazine adsorption onto original and modified AC. The results showed that Fe 3+ treatment changed the surface area, pore volume and surface zeta potential and increased the number of surface oxygenic functional groups. The adsorption of Sulfamethazine on modified activated carbon (MAC) was significantly improved. Isotherm test results revealed that the adsorption isotherms of Sulfamethazine on MAC fit the Freundlich, Langmuir and Temkin equations well. The maximum adsorption quantity of Sulfamethazine on MAC was 17.2414 mg/g at 25 °C. The adsorption kinetics of Sulfamethazine on AC and MAC can be characterized by the pseudo-second-order model. The adsorption process was affected by membrane diffusion, surface adsorption and internal diffusion. The adsorption quantities of Sulfamethazine first increased and then decreased for pH between 3 and 10. The removal efficiencies decreased with increasing temperature, which is favorable for adsorption at low temperature. It was also found that the mechanisms of adsorption included micropore capture and electrostatic, hydrogen bonding, π-π electron donor-acceptor (EDA) and coordination interactions as well as other interactions.

  18. Methanol Adsorption on Graphene

    Directory of Open Access Journals (Sweden)

    Elsebeth Schröder

    2013-01-01

    bonds like the covalent and hydrogen bonds. The adsorption of a single methanol molecule and small methanol clusters on graphene is studied at various coverages. Adsorption in clusters or at high coverages (less than a monolayer is found to be preferable, with the methanol C-O axis approximately parallel to the plane of graphene. The adsorption energies calculated with vdW-DF are compared with previous DFT-D and MP2-based calculations for single methanol adsorption on flakes of graphene (polycyclic aromatic hydrocarbons. For the high coverage adsorption energies, we also find reasonably good agreement with previous desorption measurements.

  19. Test plan for demonstrating plutonium extraction from 10-L solutions using EIChrom extraction chromatographic resins

    International Nuclear Information System (INIS)

    Barney, G.S.

    1994-01-01

    Corrosive plutonium solutions stored in 10-L containers at the Plutonium Finishing Plant must be treated to convert the plutonium to a safe, solid form for storage and to remove the americium so that radiation exposure can be reduced. Extraction chromatographic resins will be tested for separating plutonium from these solutions in the laboratory. Separation parameters will be developed during the testing for large scale processing of the 10-L solutions and solutions of similar composition. Use of chromatographic resins will allow plutonium separation with minimum of chemical addition to the feed and without the need for plutonium valence adjustment. The separated plutonium will be calcined to plutonium oxide by direct solution calcination

  20. Investigation of uranium (VI) adsorption by polypyrrole

    Energy Technology Data Exchange (ETDEWEB)

    Abdi, S. [Faculty of Chemical, Petroleum and Gas Engineering, Semnan University, Semnan 35195-363 (Iran, Islamic Republic of); Nasiri, M., E-mail: mnasiri@semnan.ac.ir [Faculty of Chemical, Petroleum and Gas Engineering, Semnan University, Semnan 35195-363 (Iran, Islamic Republic of); Mesbahi, A. [Faculty of Chemical, Petroleum and Gas Engineering, Semnan University, Semnan 35195-363 (Iran, Islamic Republic of); Khani, M.H. [Nuclear Fuel Cycle Research School, Nuclear Science and Technology Research Institute, Tehran, 14395-836 (Iran, Islamic Republic of)

    2017-06-15

    Highlights: • The adsorbent (polypyrrole) was synthesized by a chemical method using PEG, DBSNa and CTAB as the surfactant. • The solution pH was one of the most important parameters affecting the adsorption of uranium. • The CTAB provided higher removal percentage compared with the other surfactants. • The maximum adsorption capacity obtained from Langmuir isotherm was 87.72 mg/g. • The pseudo second-order model fitted well with the adsorption kinetic of polypyrrole to uranium. - Abstract: The purpose of this study was to investigate the adsorption of uranium (VI) ions on the polypyrrole adsorbent. Polypyrrole was synthesized by a chemical method using polyethylene glycol, sodium dodecylbenzenesulfonate, and cetyltrimethylammonium bromide as the surfactant and iron (III) chloride as an oxidant in the aqueous solution. The effect of various surfactants on the synthesized polymers and their performance as the uranium adsorbent were investigated. Adsorbent properties were characterized by scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FTIR) techniques. The effect of different parameters such as pH, contact time, initial metal ion concentrations, adsorbent dose, and the temperature was investigated in the batch system for uranium adsorption process. It has been illustrated that the adsorption equilibrium time is 7 min. The results showed that the Freundlich model had the best agreement and the maximum adsorption capacity of polypyrrole for uranium (VI) was determined 87.72 mg/g from Langmuir isotherm. In addition, the mentioned adsorption process was fast and the kinetic data were fitted to the Pseudo first and second order models. The adsorption kinetic data followed the pseudo-second-order kinetic model. Moreover, the thermodynamic parameters ΔG{sup 0}, ΔH{sup 0} and ΔS{sup 0} showed that the uranium adsorption process by polypyrrole was endothermic and spontaneous.

  1. Dynamic analysis of the CTAR (constant temperature adsorption refrigeration) cycle

    International Nuclear Information System (INIS)

    Hassan, H.Z.; Mohamad, A.A.; Al-Ansary, H.A.; Alyousef, Y.M.

    2014-01-01

    The basic SAR (solar-driven adsorption refrigeration) machine is an intermittent cold production system. Recently, the CO-SAR (continuous operation solar-powered adsorption refrigeration) system is developed. The CO-SAR machine is based on the theoretical CTAR (constant temperature adsorption refrigeration) cycle in which the adsorption process takes place at a constant temperature that equals the ambient temperature. Practically, there should be a temperature gradient between the adsorption bed and the surrounding atmosphere to provide a driving potential for heat transfer. In the present study, the dynamic analysis of the CTAR cycle is developed. This analysis provides a comparison between the theoretical and the dynamic operation of the CTAR cycle. The developed dynamic model is based on the D-A adsorption equilibrium equation and the energy and mass balances in the adsorption reactor. Results obtained from the present work demonstrate that, the idealization of the constant temperature adsorption process in the theoretical CTAR cycle is not far from the real situation and can be approached. Furthermore, enhancing the heat transfer between the adsorption bed and the ambient during the bed pre-cooling process helps accelerating the heat rejection process from the adsorption reactor and therefore approaching the isothermal process. - Highlights: • The dynamic analysis of the CTAR (constant temperature adsorption refrigeration) cycle is developed. • The CTAR theoretical and dynamic cycles are compared. • The dynamic cycle approaches the ideal one by enhancing the bed precooling

  2. Adsorption of arsenic, phosphorus and chromium by bismuth impregnated biochar: Adsorption mechanism and depleted adsorbent utilization.

    Science.gov (United States)

    Zhu, Ningyuan; Yan, Tingmei; Qiao, Jun; Cao, Honglei

    2016-12-01

    Bismuth impregnated biochar were synthesized to deal with wastewater pollution. Nitrogen adsorption-desorption isotherms, scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) were used to determine the characteristics of adsorbents and explore the main adsorption mechanism. Results showed that bismuth particle was carried successfully within the biochar matrix, making contributions to creating micropore and boost specific surface area. The loaded bismuth, served as the adsorption site, rather than the specific surface area played an important role in arsenic and phosphorus adsorption. Batch adsorption experiments demonstrated a fit Langmuir model for arsenic (As) and phosphorus (P) and a suitable Freundlich model for chromium (Cr). Thermodynamic parameters depicted the endothermic nature and the spontaneous process for phosphate and arsenic adsorption. Besides, this contaminant-loaded carbon adsorbent was further applied for the removal of methylene blue from aqueous solution. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Evaluation of thermodynamic parameters of cadmium adsorption on sand from Temkin adsorption isotherm

    OpenAIRE

    KHAN, Abdul Sattar Ali

    2012-01-01

    Thermodynamic parameters provide clues for finding the spontaneity of a given process at a given temperature. In the present work, the Temkin adsorption model was applied for evaluation of the thermodynamic parameters of cadmium adsorption studied on sand. The lateral interaction energy parameter was found to be unity, which showed that the heat of adsorption is directly proportional to the fraction of free adsorption sites. The values of D H° and D S° were --4.8 kJ mol-1 and 42 J m...

  4. [Adsorption behavior of anionic dyes onto magnetic chitosan derivatives].

    Science.gov (United States)

    Zhang, Cong-lu; Hu, Xiao-min; Zhao, Yan; Su, Lei

    2015-01-01

    Adsorption of acid red 1 (AR1) and xylenol orange (XO) onto magnetic quaternary chitosan particles were studied through the static adsorption method. The results showed that, the maximal adsorption capacities calculated by Langmuir equations were 781.55 mg x g(-1) for AR1, 537.40 mg x g(-1) for XO at pH 3.0 and 25 degrees C. The constant n obtained by Frendlich equations were 1.71 and 1.92 respectively, which reflected the favourable adsorption of the dyes onto CS/EPTAC/Fe3O4. Temkin equations showed that heterogeneous surface of adsorbent was the main adsorption point. The adsorption kinetics of two kinds of dyes followed the pseudo-second-order model, which indicated the process was mainly chemical adsorption. Compared with the powder activated carbon, CS/EPTAC/Fe3O4 showed advantages of excellent adsorption performance, rapid separation and easy regeneration.

  5. Removal of Pyrethrin from Aqueous Effluents by Adsorptive Micellar Flocculation

    Directory of Open Access Journals (Sweden)

    Pardon K. Kuipa

    2015-01-01

    Full Text Available The equilibrium adsorption of pyrethrin onto aggregates formed by the flocculation of micelles of the surfactant sodium dodecyl sulphate (SDS with aluminium sulphate is reported. The experimental results were analysed using different adsorption isotherms (Langmuir, Freundlich, Redlich-Peterson, Sips, Radke-Prausnitz, Temkin, linear equilibrium, and the Dubin-Radushkevich isotherms. The Freundlich and linear equilibrium isotherms best describe the adsorption of pyrethrin onto SDS micellar flocs, with the Freundlich adsorption constant, KF, and the mass distribution coefficient, KD, of 64.266 ((mg/g(L/mg1/n and 119.65 L/g, respectively. Applicability of the Freundlich adsorption model suggests that heterogeneous surface adsorption affects the adsorption. The mean free energy value estimated using the Dubinin-Radushkevich isotherm was 0.136 kJ/mol indicating that physisorption may be predominant in the adsorption process.

  6. Using Aspen to Teach Chromatographic Bioprocessing: A Case Study in Weak Partitioning Chromatography for Biotechnology Applications

    Science.gov (United States)

    Evans, Steven T.; Huang, Xinqun; Cramer, Steven M.

    2010-01-01

    The commercial simulator Aspen Chromatography was employed to study and optimize an important new industrial separation process, weak partitioning chromatography. This case study on antibody purification was implemented in a chromatographic separations course. Parametric simulations were performed to investigate the effect of operating parameters…

  7. Application of numerical modeling of selective NOx reduction by hydrocarbon under diesel transient conditions in consideration of hydrocarbon adsorption and desorption process

    International Nuclear Information System (INIS)

    Watanabe, Y.; Asano, A.; Banno, K.; Yokota, K.; Sugiura, M.

    2001-01-01

    A model of NO x selective reduction by hydrocarbon (HC) was developed, which takes into account the adsorption and desorption of HC. The model was applied for predicting the performance of a De-NO x catalytic reactor, working under transient conditions such as a legislative driving cycle. Diesel fuel was used as a supplemental reductant. The behavior of HC and NO x reactions and HC adsorption and desorption has been simulated successfully by our numerical approach under the transient conditions of the simulated Japanese 10-15 driving cycle. Our model is expected to optimize the design of selective diesel NO x reduction systems using a diesel fuel as a supplemental reductant

  8. Chromatographic screening techniques in systematic toxicological analysis.

    Science.gov (United States)

    Drummer, O H

    1999-10-15

    A review of techniques used to screen biological specimens for the presence of drugs was conducted with particular reference to systematic toxicological analysis. Extraction systems of both the liquid-liquid and solid-phase type show little apparent difference in their relative ability to extract a range of drugs according to their physio-chemical properties, although mixed-phase SPE extraction is a preferred technique for GC-based applications, and liquid-liquid were preferred for HPLC-based applications. No one chromatographic system has been shown to be capable of detecting a full range of common drugs of abuse, and common ethical drugs, hence two or more assays are required for laboratories wishing to cover a reasonably comprehensive range of drugs of toxicological significance. While immunoassays are invariably used to screen for drugs of abuse, chromatographic systems relying on derivatization and capable of extracting both acidic and basic drugs would be capable of screening a limited range of targeted drugs. Drugs most difficult to detect in systematic toxicological analysis include LSD, psilocin, THC and its metabolites, fentanyl and its designer derivatives, some potent opiates, potent benzodiazepines and some potent neuroleptics, many of the newer anti-convulsants, alkaloids colchicine, amantins, aflatoxins, antineoplastics, coumarin-based anti-coagulants, and a number of cardiovascular drugs. The widespread use of LC-MS and LC-MS-MS for specific drug detection and the emergence of capillary electrophoresis linked to MS and MS-MS provide an exciting possibility for the future to increase the range of drugs detected in any one chromatographic screening system.

  9. Green synthesis of Ag-Cr-AC nanocomposites by Azadirachta indica and its application for the simultaneous removal of binary mixture of dyes by ultrasonicated assisted adsorption process using Response Surface Methodology.

    Science.gov (United States)

    Saad, Muhammad; Tahir, Hajira; Ali, Duaa

    2017-09-01

    In the present studies the Ag-Cr-AC nanocomposites were synthesized by Azadirachta indica leaves extract. They were inoculated on the amorphous surface of activated carbon. The surface morphology and structural identification was determined by SEM, FTIR and XRD techniques. The simultaneous removal of binary dye system of Reactive Red and Crystal Violet were performed by ultrasonicated assisted adsorption process utilizing Ag-Cr-AC nanocomposites. Central Composite Design (CCD) having 5 factors of time, pH, amount of Ag-Cr-AC (adsorbent), concentrations of Reactive Red (RR) and Crystal Violet (CV) was employed. Response Surface Methodology was applied to study the Optimum Operating Parameters (OOP) for the adsorption process. The current studies showed that they can be efficiently employed to remove the coloured effluent from aqueous media as the simultaneous removal of dyes was observed to be 64.92% and 82.47% for RR and CV dyes respectively. Adsorption equilibrium was studied by Freundlich, Langmuir, Dubinin-Radushkevich, Temkin and Harkins-Jura Isotherm Models. The Langmuir isotherm was observed to be followed by the RR-Ag-Cr-AC system while CV-Ag-Cr-AC followed Harkins-Jura Isotherm model. For the binary system, the removal of CV and RR dyes by the nanocomposites obeyed Harkins-Jura model at temperature of 40°C. Thermodynamics studies affirmed the spontaneous nature of adsorption process. pH pzc was evaluated to be 6.29. The purification cost per cubic meter of the effluent was evaluated to be US$ 85.08. The proposed method might prove to be an efficient and cost effective way to eradicate color from the binary mixture of RR and CV dyes. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Host cell protein adsorption characteristics during protein A chromatography.

    Science.gov (United States)

    Tarrant, Richard D R; Velez-Suberbie, M Lourdes; Tait, Andrew S; Smales, C Mark; Bracewell, Daniel G

    2012-07-01

    Protein A chromatography is a critical and 'gold-standard' step in the purification of monoclonal antibody (mAb) products. Its ability to remove >98% of impurities in a single step alleviates the burden on subsequent process steps and facilitates the implementation of platform processes, with a minimal number of chromatographic steps. Here, we have evaluated four commercially available protein A chromatography matrices in terms of their ability to remove host cell proteins (HCPs), a complex group of process related impurities that must be removed to minimal levels. SELDI-TOF MS was used as a screening tool to generate an impurity profile fingerprint for each resin and indicated a number of residual impurities present following protein A chromatography, agreeing with HCP ELISA. Although many of these were observed for all matrices there was a significantly elevated level of impurity binding associated with the resin based on controlled pore glass under standard conditions. Use of null cell line supernatant with and without spiked purified mAb demonstrated the interaction of HCPs to be not only with the resin back-bone but also with the bound mAb. A null cell line column overload and sample enrichment method before 2D-PAGE was then used to determine individual components associated with resin back-bone adsorption. The methods shown allow for a critical analysis of HCP removal during protein A chromatography. Taken together they provide the necessary process understanding to allow process engineers to identify rational approaches for the removal of prominent HCPs. Copyright © 2012 American Institute of Chemical Engineers (AIChE).

  11. Phosphoryl functionalized mesoporous silica for uranium adsorption

    Energy Technology Data Exchange (ETDEWEB)

    Xue, Guo; Yurun, Feng; Li, Ma; Dezhi, Gao; Jie, Jing; Jincheng, Yu; Haibin, Sun [Key Laboratory for Liquid-Solid Structural Evolution & Processing of Materials of Ministry of Education, Shandong University, Jinan 250061 (China); Key Laboratory of Special Functional Aggregated Materials, Ministry of Education, Shandong University, Jinan 250061 (China); Hongyu, Gong, E-mail: gong_hongyu@163.com [Key Laboratory for Liquid-Solid Structural Evolution & Processing of Materials of Ministry of Education, Shandong University, Jinan 250061 (China); Key Laboratory of Special Functional Aggregated Materials, Ministry of Education, Shandong University, Jinan 250061 (China); Yujun, Zhang, E-mail: yujunzhangcn@163.com [Key Laboratory for Liquid-Solid Structural Evolution & Processing of Materials of Ministry of Education, Shandong University, Jinan 250061 (China); Key Laboratory of Special Functional Aggregated Materials, Ministry of Education, Shandong University, Jinan 250061 (China)

    2017-04-30

    Highlights: • Phosphoryl functionalized mesoporous silica (TBP-SBA-15) is synthesized. • The amino and phosphoryl groups are successfully grafted on SBA-15. • TBP-SBA-15 has high and rapid uranium adsorption capacity in broad pH range. • The U(VI) adsorption of TBP-SBA-15 is spontaneous and belongs to chemical adsorption. - Abstract: Phosphoryl functionalized mesoporous silica (TBP-SBA-15) was synthesized by modified mesoporous silica with γ-amino propyl triethoxy silane and tributyl phosphate. The obtained samples were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), small angle X-ray diffraction (SAXRD), thermo-gravimetric/differential thermalanalyzer (TG/DTA), N{sub 2} adsorption–desorption (BET) and Fourier transform infrared spectroscopy (FT-IR) techniques. Results showed that TBP-SBA-15 had large surface areas with ordered channel structure. Moreover, the effects of adsorption time, sorbent dose, solution pH, initial uranium concentration and temperature on the uranium adsorption behaviors were investigated. TBP-SBA-15 showed a high uranium adsorption capacity in a broad range of pH values. The U(VI) adsorption rate of TBP-SBA-15 was fast and nearly achieved completion in 10 min with the sorbent dose of 1 g/L. The U(VI) adsorption of TBP-SBA-15 followed the pseudo-second-order kinetic model and Freundlich isotherm model, indicating that the process was belonged to chemical adsorption. Furthermore, the thermodynamic parameters (ΔG{sup 0}, ΔH{sup 0} and ΔS{sup 0}) confirmed that the adsorption process was endothermic and spontaneous.

  12. Removal of diethyl phthalate from water solution by adsorption, photo-oxidation, ozonation and advanced oxidation process (UV/H2O2, O3/H2O2 and O3/activated carbon)

    International Nuclear Information System (INIS)

    Medellin-Castillo, Nahum A.; Ocampo-Pérez, Raúl; Leyva-Ramos, Roberto; Sanchez-Polo, Manuel; Rivera-Utrilla, José; Méndez-Díaz, José D.

    2013-01-01

    The objective of this work was to compare the effectiveness of conventional technologies (adsorption on activated carbon, AC, and ozonation) and technologies based on advanced oxidation processes, AOPs, (UV/H 2 O 2 , O 3 /AC, O 3 /H 2 O 2 ) to remove phthalates from aqueous solution (ultrapure water, surface water and wastewater). Diethyl phthalate (DEP) was chosen as a model pollutant because of its high water solubility (1080 mg/L at 293 K) and toxicity. The activated carbons showed a high adsorption capacity to adsorb DEP in aqueous solution (up to 858 mg/g), besides the adsorption mechanism of DEP on activated carbon is governed by dispersive interactions between π electrons of its aromatic ring with π electrons of the carbon graphene planes. The photodegration process showed that the pH solution does not significantly affect the degradation kinetics of DEP and the first-order kinetic model satisfactorily fitted the experimental data. It was observed that the rate of decomposition of DEP with the O 3 /H 2 O 2 and O 3 /AC systems is faster than that with only O 3 . The technologies based on AOPs (UV/H 2 O 2 , O 3 /H 2 O 2 , O 3 /AC) significantly improve the degradation of DEP compared to conventional technologies (O 3 , UV). AC adsorption, UV/H 2 O 2 , O 3 /H 2 O 2 , and O 3 /AC showed a high yield to remove DEP; however, the disadvantage of AC adsorption is its much longer time to reach maximum removal. The best system to treat water (ultrapure and natural) polluted with DEP is the O 3 /AC one since it achieved the highest DEP degradation and TOC removal, as well as the lower water toxicity. -- Highlights: ► Activated carbons showed a high adsorption capacity (up to 858 mg/g) to remove DEP. ► The pH solution did not significantly affect the photodegradation kinetics of DEP. ► The O 3 /H 2 O 2 and O 3 /AC systems were more efficient than O 3 to degrade DEP. ► The generation of HO • from O 3 was enhanced by ACs, mainly by those of basic nature. ► O

  13. Interfacial adsorption of insulin - Conformational changes and reversibility of adsorption

    NARCIS (Netherlands)

    Mollmann, SH; Jorgensen, L; Bukrinsky, JT; Elofsson, U; Norde, W; Frokjaer, S

    The adsorption of human insulin to Teflon particles was studied with respect to conformational changes and the reversibility of adsorption was examined by total internal reflection fluorescence (TIRF). Adsorption isotherms for the adsorption of human insulin indicated high affinity adsorption, even

  14. Interfacial adsorption of insulin. Conformational changes and reversibility of adsorption

    NARCIS (Netherlands)

    Mollmann, S.H.; Bukrinsky, J.T.; Elofsson, U.; Norde, W.; Frokjaer, S.

    2006-01-01

    The adsorption of human insulin to Teflon particles was studied with respect to conformational changes and the reversibility of adsorption was examined by total internal reflection fluorescence (TIRF). Adsorption isotherms for the adsorption of human insulin indicated high affinity adsorption, even

  15. Adsorption Properties and Potential Applications of Bamboo Charcoal: A Review

    OpenAIRE

    Isa S.S.M.; Ramli M.M.; Hambali N.A.M.A.; Kasjoo S.R.; Isa M.M.; Nor N.I.M.; Khalid N.; Ahmad N.

    2016-01-01

    Bamboo charcoal was produced by pyrolysis or carbonization process with extraordinary properties such as high conductivity, large surface area and adsorption property. These properties can be improved by activation process that can be done thermally or chemically. In this paper, carbonization and activation process of bamboo, its structural and adsorption properties will be presented. Herein, the adsorption properties of bamboo charcoal that has fully utilized in solar cell as the electrode, ...

  16. Secretory immunoglobulin purification from whey by chromatographic techniques.

    Science.gov (United States)

    Matlschweiger, Alexander; Engelmaier, Hannah; Himmler, Gottfried; Hahn, Rainer

    2017-08-15

    Secretory immunoglobulins (SIg) are a major fraction of the mucosal immune system and represent potential drug candidates. So far, platform technologies for their purification do not exist. SIg from animal whey was used as a model to develop a simple, efficient and potentially generic chromatographic purification process. Several chromatographic stationary phases were tested. A combination of two anion-exchange steps resulted in the highest purity. The key step was the use of a small-porous anion exchanger operated in flow-through mode. Diffusion of SIg into the resin particles was significantly hindered, while the main impurities, IgG and serum albumin, were bound. In this step, initial purity was increased from 66% to 89% with a step yield of 88%. In a second anion-exchange step using giga-porous material, SIg was captured and purified by step or linear gradient elution to obtain fractions with purities >95%. For the step gradient elution step yield of highly pure SIg was 54%. Elution of SIgA and SIgM with a linear gradient resulted in a step yield of 56% and 35%, respectively. Overall yields for both anion exchange steps were 43% for the combination of flow-through and step elution mode. Combination of flow-through and linear gradient elution mode resulted in a yield of 44% for SIgA and 39% for SIgM. The proposed process allows the purification of biologically active SIg from animal whey in preparative scale. For future applications, the process can easily be adopted for purification of recombinant secretory immunoglobulin species. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Study PWA8 resin for chromatographic uranium concentration

    International Nuclear Information System (INIS)

    Coceancigh, Herman; Ramella, J. L.; Marrero, Julieta; Jiménez Rebagliati, Raúl

    2013-01-01

    For many years nuclear industry have been using resins as filler of chromatographic columns. These methods are specific and give reliable results in different applications, for those reasons are extremely useful as separation process. Currently the nuclear industry is growing and this brings new issues such as the need of reduction of the amount of waste, the optimization of the production process and others that the chromatography could solve with great results. AMBERLITETM PWA8 resin is an anion exchange resin which can be used for the removal of uranium from drinking water. In addition to high exchange capacity, this resin has excellent physical stability and a wide range of pH in which is operational. With the idea of concentrating uranium from wastes solution as main goal we made different experiments to understand the AMBERLITETM PWA8 and obtain the most important characteristics like; pH working range; capacity; activation and elution procedures. These procedures were developed and optimized the capacity was determined using a batch experiment and we obtain that the maximum capacity is 882,5 U ug /resin gr at a pH of 4,2. Following on from these results chromatographic experiments were performed in which both were obtained the percentage of recovery and the concentration factor. The percent recovery (% R) calculated as the percentage ratio between the total mass and the load mass eluted (% R = eluted mass / total mass * 100) was 94% with a concentration factor of 5 times From these results it is intended to concentrate wastes solutions from the fuel cycle processes with two main goals: decreasing volume for storage and for future reusing of the uranium coming from production. (author)

  18. Supercritical Fluid Chromatographic Separation of Dimethylpolysiloxane Polymer

    Energy Technology Data Exchange (ETDEWEB)

    Pyo, Dong Jin; Lim, Chang Hyun [Kangwon National University, Chuncheon (Korea, Republic of)

    2005-02-15

    Water was used as a polar modifier and a μ-porasil column as a saturator column. The μ-porasil column was inserted between the pump outlet and the injection valve. During the passage of the supercritical fluid mobile phase through the silica column, a polar modifier (water) can be dissolved in the pressurized supercritical fluid. Dimethylpolysiloxane polymer has been known as more polar polymer than polystyrene polymer. Dimethylpolysiloxane polymer has never been separated using water modified mobile phase. In this paper, using a μ-porasil column as a saturator column, excellent supercritical fluid chromatograms of dimethylpolysiloxane oligomers were obtained. The use of compressed (dense) gases and supercritical fluids as chromatographic mobile phases in conjunction with liquid chromatographic (LC)-type packed columns was first reported by Klesper et al. in 1962. During its relatively short history, supercritical fluid chromatography (SFC) has become an attractive alternative to GC and LC in certain industrially important applications. SFC gives the advantage of high efficiency and allows the analysis of nonvolatile or thermally labile mixtures.

  19. Removal of Acid Green 25 from Aqueous Solution by Adsorption

    Directory of Open Access Journals (Sweden)

    R. Parimalam

    2012-01-01

    Full Text Available The adsorptive removal of Acid Green 25 by Ananas Comosus (L Activated carbon was investigated in this study. The effects of initial dye concentration, contact time, pH and temperature were studied for the adsorption of Acid Green 25 in batch mode. At 100 mg/L of initial dye concentration the adsorbent removes 182.6 mg/g of dye from solution; it further increases on increasing the temperature. The calculated values of ∆G° indicate that the adsorption process is spontaneous, negative ∆H° indicate that the adsorption process is exothermic and the positive value of ∆S° indicates the increase in randomness. The rate of dye adsorption follows pseudo second order model with an r2 value of 0. 999. Standard adsorption isotherms were used to fit the experimental equilibrium data. The Langmuir, Freundlich, and Tempkin models are appropriate to explain the adsorption phenomenon with good fit.

  20. Evaluating the performance of different multicolumn setups for chromatographic separation of proteins on hydrophobic interaction chromatography media by a numerical study.

    Science.gov (United States)

    Bochenek, Roman; Marek, Wojciech; Piątkowski, Wojciech; Antos, Dorota

    2013-08-02

    A theoretical study has been performed on the effectiveness of isolating a target component out of a multi-component protein mixture using different arrangements of chromatographic columns. Three continuous systems have been considered which were able to perform solvent gradient separations, such as: open loop simulated moving bed, countercurrent solvent gradient purification and carousel multicolumn setup. The performance of the continuous processes was examined with respect to productivity, yield and eluent consumption and compared to a single-column batch system. As a case study separation of a ternary mixture of proteins on HIC media has been selected. Two separation problems have been analyzed referring to the situation when the target component was the most strongly adsorbed as well as when it exhibited intermediate adsorption strength. A mathematical model has been used to simulate the process dynamics and to optimize operating conditions for the separation. The numerical study indicated that batch column arrangements can outperform SMB-based configurations regarding all performance indicators considered, which has been attributed to solvent mixing in the recycled streams and distortion of the gradient shape in SMB units. It has been concluded that the performance of complex multicolumn systems should be verified vs. batch column operations prior to the realization of the separation process. Copyright © 2013 Elsevier B.V. All rights reserved.

  1. Biological adsorptive process for removal of organics from raw water as pre-treatment of a demineralisation plant; Biologisch adsorptives Verfahren zur Entfernung von Organika aus Rohwaessern als Vorstufe fuer Vollentsalzungsanlagen

    Energy Technology Data Exchange (ETDEWEB)

    Schoenfelder, T. [KNG Kraftwerks- und Netzgesellschaft mbH, Kraftwerk Rostock, Rostock (Germany); Keil, U. [STEAG encotec, Essen (Germany)

    2002-07-01

    The production of highly-purified demineralised water as feedwater for boilers with values of <0.2 {mu}S/cm conductivity and <200 ppb TOC is essential for the quality of steam within the steamwater cycle. Especially for the combined mode of operation with additional dosing of oxygen it is necessary not only to stay within these values but to remain below the requirements. Nowadays it is no problem to produce demineralized water with corresponding low conductivity. The sufficient reduction of TOC has become the main problem. The Rostock Power Plant, in co-operation with Steag encotec GmbH, Essen, and the University Hamburg Harburg, developed a new treatment and tested it for more than two years with accompanying analysis. (orig.) [German] Um die VGB-Richtwerte fuer das Kesselspeisewasser im Kraftwerk Rostock zu erreichen, wurde eine Vollentsalzungsanlage einschliesslich Vorreinigungsstufe errichtet. Sie bestand aus nur einem Aktivkohlefilter zur Adsorption der im Trinkwasser enthaltenen geloesten organischen Substanzen. Hohe Aluminiumgehalte im Trinkwasser fuehrten bald zu einer Blockierung der Aktivkohle, wodurch die Adsorbtion der Organika an der Aktivkohle erheblich gestoert wurde. Daraufhin erfolgte die Nachruestung eines zweiten Adsorberfilters, der vor den Aktivkohlefilter geschaltet wurde. Die erhoffte Reduzierung der Organika durch die neu errichtete zweistufige Ozonierung trat jedoch nicht ein. Im Gegenteil, die teilweise nur angespaltenen Organika wurden vom Adsorberharz der Vorreinigung teilweise irreversibel adsorbiert. Ueber Abhilfemassnahmen wird berichtet. (orig.)

  2. Competitive protein adsorption to polymer surface from human serum

    DEFF Research Database (Denmark)

    Holmberg, Maria; Jensen, Karin Bagger Stibius; Larsen, Niels Bent

    2008-01-01

    Surface modification by "soft" plasma polymerisation to obtain a hydrophilic and non-fouling polymer surface has been validated using radioactive labelling. Adsorption to unmodified and modified polymer surfaces, from both single protein and human serum solutions, has been investigated. By using...... different radioisotopes, albumin and Immunoglobulin G (IgG) adsorption has been monitored simultaneously during competitive adsorption processes, which to our knowledge has not been reported in the literature before. Results show that albumin and IgG adsorption is dependent on adsorption time...

  3. Study and analysis of two semi-humid flue acid gas industrial treatment processes and study of an adsorption process of gaseous mercury on active carbon; Etude et analyse de deux dispositifs industriels de traitement d'effluents gazeux acide par voie semi-humide et etude d'un procede d'elimination du mercure gazeux par adsorption sur charbon actif

    Energy Technology Data Exchange (ETDEWEB)

    Anki, F.

    1998-07-01

    During the process of waste incineration, gaseous pollutants contained in fumes such as hydrochloric acid or mercury have to be removed before being discharged in air. A study has then been conducted on incineration plant fumes (municipal and industrial wastes). Four alkaline reagents have been tested in two semi-humid fume treatment processes for neutralizing hydrochloric acid. The reagents are: hydrated lime, sodium hydroxide, sodium bicarbonate and sodium carbonate. The alkaline solutions, pulverized in thin droplets, absorb and neutralize thus HCl and lead to the formation of a solid residue. On the other hand, a study of the adsorption of gaseous mercury on a coconut-based activated carbon has been conducted with a pilot fixed bed reactor. The taken incineration fume (flow rate: 2000 L/H) is introduced in the reactor at temperatures between 150 and 200 degrees Celsius. Different exposure times are tested to determine the saturation of the activated carbon by mercury. An evaporation model and an absorption model are applied; they represent the experimental evolution of the HCl absorption rates in terms of the liquid flow or of the stoichiometric factor. A model of mercury adsorption by the activated carbon is applied for determining the total transfer coefficient and the adsorption equilibrium constant. (O.M.)

  4. Thermodynamic features of dioxins’ adsorption

    Energy Technology Data Exchange (ETDEWEB)

    Prisciandaro, Marina [Department of Industrial and Information Engineering and of Economics, University of L’Aquila, Viale Giovanni Gronchi 18, L’Aquila 67100 (Italy); Piemonte, Vincenzo, E-mail: v.piemonte@unicampus.it [Faculty of Engineering, University Campus Biomedico of Rome, Via Alvaro del Portillo 21, Rome 00128 (Italy); Mazziotti di Celso, Giuseppe [Faculty of Bioscience, University of Teramo, Via R. Balzarini, 1, 64100 Teramo (Italy); Ronconi, Silvia [Arta Abruzzo, Department of L’Aquila, Bazzano (AQ), 67100 L’Aquila (Italy); Capocelli, Mauro [Faculty of Engineering, University Campus Biomedico of Rome, Via Alvaro del Portillo 21, Rome 00128 (Italy)

    2017-02-15

    Highlights: • We develop the P-T diagram for six PCDD. • We derive theoretical adsorption isotherms according to the Langmuir’s model. • We calculate K and w{sub max} values for several temperatures. • We estimate the adsorption heat with a good agreement with literature data. - Abstract: In this paper, the six more poisonous species among all congeners of dioxin group are taken into account, and the P-T diagram for each of them is developed. Starting from the knowledge of vapour tensions and thermodynamic parameters, the theoretical adsorption isotherms are calculated according to the Langmuir’s model. In particular, the Langmuir isotherm parameters (K and w{sub max}) have been validated through the estimation of the adsorption heat (ΔH{sub ads}), which varies in the range 20–24 kJ/mol, in agreement with literature values. This result will allow to put the thermodynamical basis for a rational design of different process units devoted to dioxins removal.

  5. [Adsorption characteristics and mechanism of uranium on attapulgite].

    Science.gov (United States)

    Liu, Juan; Chen, Di-yun; Zhang, Jing; Song, Gang; Luo, Ding-gui

    2012-08-01

    The adsorption characteristics of uranium on attapulgite were investigated by conducting a series of batch adsorption experiments in this study. The influence of solution pH, initial uranium concentration and contact time was investigated. Scanning electron microscope (SEM) and X-ray diffraction (XRD) were used to characterize the surface structure of the attapulgite, Fourier transform infrared spectrometer (FTIR) were used to characterize the surface properties of the attapulgite before and after uranium adsorption, and to analyze the adsorption mechanism and adsorption kinetics of uranium on attapulgite. The experimental results showed that sorption of uranium on attapulgite was strongly dependent on pH, and the highest adsorption reached at pH = 5. The adsorption quantity increased with time, adsorption could achieve balance in 2 h. The adsorption isotherm equation conformed to the Langmuir isothermal adsorption model and adsorption process could be described by the two-order kinetics model. According to FTIR spectral, the absorbance of attapulgite decreased, which may result from R--OUO2+ or (R--O)2UO2 formed by the bond between uranium and R-OH of attapulgite in the high frequency area 3700-3000 cm(-1), and which uranium ion and magnesium ions may produce ion exchanges in the intermediate frequency area 1700-800 cm(-1). Adsorption mechanism of uranium on attapulgite was mainly ion exchange and complexation.

  6. Selectivity of the adsorption process of modified zeolite rock with hexadecyl trimethylammonium bromide in front to chromates and dichromates; Selectividad del proceso de adsorcion de roca zeolitica modificada con bromuro de hexadeciltrimetilamonio frente a cromatos y dicromatos

    Energy Technology Data Exchange (ETDEWEB)

    Salgado G, N.

    2011-07-01

    In the present investigation natural zeolite (clinoptilolite) from the Chihuahua state, which was conditioned with sodium chloride solution and subsequently modified with a hexadecyl trimethylammonium bromide solution was used to evaluate the removal of Cr (Vi) from chromate or dichromate solutions. The zeolite materials were characterized by scanning electron microscopy and X-ray diffraction. The surface area was also determined. The experiments were performed in a batch system, the influence of ph, contact time between phases were investigated and during the adsorption process was calculated the concentration of chromium ion present in aqueous solution (CrO{sub 4}{sup 2-}, Cr{sub 2}O{sub 7}{sup 2-}). The quantification of chromium removed from the aqueous solution by atomic absorption spectrometry technique was done. In order to understand the behaviour of the adsorption kinetics the pseudo first and pseudo second order models were applied, and to determine the adsorption capacity of the zeolite materials for Cr the Langmuir, Freundlich and Langmuir-Freundlich models were chosen. It was found that the removal efficiency of chromium ion is influenced by ph and the chemical species present: chromate or dichromate. The chromate and dichromate sorption kinetic data were best fitted to the pseudo-second and pseudo-first order models, respectively; and the Langmuir and Langmuir-Freundlich models described adequately the isotherms data considering a mono component system. In a mixture of Cr (Vi) ad CrO{sub 4}{sup 2-} and Cr{sub 2}O{sub 7}{sup 2-}, the surfactant modified zeolite has a greater selectivity for Cr{sub 2}O{sub 7}{sup 2-} ion than CrO{sub 4}{sup 2-}. In this case the Langmuir-Freundlich model described the adsorption isotherm behavior. (Author)

  7. The evaluation of temperature in synthesizing process of natural iron sand based Fe3O4 nanoparticles for Ni ion adsorption

    Science.gov (United States)

    Setiadi, Eko Arief; Amriani, Feni; Sebayang, Perdamean

    2017-11-01

    The magnetic nanoparticles of natural mineral-iron sand based Magnetite (Fe3O4) have been successfully prepared as the adsorbent for Ni ion adsorption purpose. The Fe3O4 was prepared by using co-precipitation method at the various synthesis temperatures, 70, 90, and 110 °C. The surface area decreases as the increasing of synthesis temperature, meanwhile, the particle diameter and pore size increase. The optimum magnetic properties are obtained at 70 °C by 56.74 Oe for the coercivity, 38.40 emu/g for the saturation and 3.04 emu/g for the remanence. In addition, the maximum adsorption capacity toward Ni ion is 786.56 mg/g at the optimum condition as well as 55.96% Ni ion removal efficieny.

  8. Similarity analyses of chromatographic herbal fingerprints: A review

    International Nuclear Information System (INIS)

    Goodarzi, Mohammad; Russell, Paul J.; Vander Heyden, Yvan

    2013-01-01

    Graphical abstract: -- Highlights: •Similarity analyses of herbal fingerprints are reviewed. •Different (dis)similarity approaches are discussed. •(Dis)similarity-metrics and exploratory-analysis approaches are illustrated. •Correlation and distance-based measures are overviewed. •Similarity analyses illustrated by several case studies. -- Abstract: Herbal medicines are becoming again more popular in the developed countries because being “natural” and people thus often assume that they are inherently safe. Herbs have also been used worldwide for many centuries in the traditional medicines. The concern of their safety and efficacy has grown since increasing western interest. Herbal materials and their extracts are very complex, often including hundreds of compounds. A thorough understanding of their chemical composition is essential for conducting a safety risk assessment. However, herbal material can show considerable variability. The chemical constituents and their amounts in a herb can be different, due to growing conditions, such as climate and soil, the drying process, the harvest season, etc. Among the analytical methods, chromatographic fingerprinting has been recommended as a potential and reliable methodology for the identification and quality control of herbal medicines. Identification is needed to avoid fraud and adulteration. Currently, analyzing chromatographic herbal fingerprint data sets has become one of the most applied tools in quality assessment of herbal materials. Mostly, the entire chromatographic profiles are used to identify or to evaluate the quality of the herbs investigated. Occasionally only a limited number of compounds are considered. One approach to the safety risk assessment is to determine whether the herbal material is substantially equivalent to that which is either readily consumed in the diet, has a history of application or has earlier been commercialized i.e. to what is considered as reference material. In order

  9. Similarity analyses of chromatographic herbal fingerprints: A review

    Energy Technology Data Exchange (ETDEWEB)

    Goodarzi, Mohammad [Department of Analytical Chemistry and Pharmaceutical Technology, Center for Pharmaceutical Research, Vrije Universiteit Brussel, Laarbeeklaan 103, B-1090 Brussels (Belgium); Russell, Paul J. [Safety and Environmental Assurance Centre, Unilever, Colworth Science Park, Sharnbrook, Bedfordshire MK44 1LQ (United Kingdom); Vander Heyden, Yvan, E-mail: yvanvdh@vub.ac.be [Department of Analytical Chemistry and Pharmaceutical Technology, Center for Pharmaceutical Research, Vrije Universiteit Brussel, Laarbeeklaan 103, B-1090 Brussels (Belgium)

    2013-12-04

    Graphical abstract: -- Highlights: •Similarity analyses of herbal fingerprints are reviewed. •Different (dis)similarity approaches are discussed. •(Dis)similarity-metrics and exploratory-analysis approaches are illustrated. •Correlation and distance-based measures are overviewed. •Similarity analyses illustrated by several case studies. -- Abstract: Herbal medicines are becoming again more popular in the developed countries because being “natural” and people thus often assume that they are inherently safe. Herbs have also been used worldwide for many centuries in the traditional medicines. The concern of their safety and efficacy has grown since increasing western interest. Herbal materials and their extracts are very complex, often including hundreds of compounds. A thorough understanding of their chemical composition is essential for conducting a safety risk assessment. However, herbal material can show considerable variability. The chemical constituents and their amounts in a herb can be different, due to growing conditions, such as climate and soil, the drying process, the harvest season, etc. Among the analytical methods, chromatographic fingerprinting has been recommended as a potential and reliable methodology for the identification and quality control of herbal medicines. Identification is needed to avoid fraud and adulteration. Currently, analyzing chromatographic herbal fingerprint data sets has become one of the most applied tools in quality assessment of herbal materials. Mostly, the entire chromatographic profiles are used to identify or to evaluate the quality of the herbs investigated. Occasionally only a limited number of compounds are considered. One approach to the safety risk assessment is to determine whether the herbal material is substantially equivalent to that which is either readily consumed in the diet, has a history of application or has earlier been commercialized i.e. to what is considered as reference material. In order

  10. Avaliação da eficiência de caulinita intercalada com dimetilsulfóxido em adsorção com o Zn(II em meio aquoso: cinética do processo de adsorção Evaluation of intercaled kaolinite efficiency with dimetilsulfoxide in adsorption with Zn(II in aqueous medium: kinetics of the adsorption process

    Directory of Open Access Journals (Sweden)

    D. L. Guerra

    2008-09-01

    Full Text Available Amostras de caulinita oriundas da região do Rio Capim, estado do Pará, Brasil, foram intercaladas com dimetilsulfóxido - DMSO. As amostras de caulinita naturais e intercaladas foram utilizadas em processo de adsorção com Zn(II em meio aquoso em pH 5,0 e temperatura controlada de 298 ± 1K. As propriedades físico-químicas das amostras de caulinita foram otimizadas pelo processo de intercalação, como: área superficial de 14,74 para 91,72 m²g-1 (A1 e diâmetro de poros de 2,79 para 10,72 nm (A1. A análise dos resultados experimentais de adsorção foi feita pelos modelos de Langmuir, Temkin e Freundlich. O modelo de Langmuir apresentou melhor aproximação com os dados experimentais de adsorção. Estes resultados foram bem representados pelo modelo cinético de segunda ordem de Lagergren, com a taxa constante K2 no intervalo de 4,76x10-3 a 11,81x10-3 g(mmol.min-1 (A2. O processo de adsorção foi considerado rápido alcançando o equilíbrio em 180 min.The kaolinite clay samples from Capim River region, Pará state, Brazil, were intercalated with dimethylsulfoxide - DMSO. The natural and intercalated kaolinite were used in adsorption process with Zn(II in aqueous medium at pH 5.0 and controlled temperature of 298 ± 1K. The physical-chemical properties of kaolinite samples were optimized for the intercalation process, such as: specific area of 14.74 to 91.72 m²g-1 (A1 and pore diameter of 2.79 to 10.72 nm (A1. The adsorption experimental results were analyzed for Langmuir, Temkin and Freundlich models, the Langmuir model has been presented best approximation with experimental adsorption isotherms data. These results best fitted the second order kinetic of Lagergren model with rate constant K2, in the range of 4.76x10-3 to 11.81x10-3 g(mmol.min-1 (A2. The adsorption process was very fast and equilibrium was approached within 180 min.

  11. Adsorption of Phosphonate Antiscalant from Reverse Osmosis Membrane Concentrate onto Granular Ferric Hydroxide

    NARCIS (Netherlands)

    Boels, L.; Keesman, K.J.; Witkamp, G.J.

    2012-01-01

    Adsorptive removal of antiscalants offers a promising way to improve current reverse osmosis (RO) concentrate treatment processes and enables the reuse of the antiscalant in the RO desalination process. This work investigates the adsorption and desorption of the phosphonate antiscalant

  12. Magnetic carbon composites with a hierarchical structure for adsorption of tetracycline, prepared from sugarcane bagasse via hydrothermal carbonization coupled with simple heat treatment process.

    Science.gov (United States)

    Rattanachueskul, Natthanan; Saning, Amonrada; Kaowphong, Sulawan; Chumha, Nawapong; Chuenchom, Laemthong

    2017-02-01

    Sugarcane bagasse, an agricultural waste, was successfully converted into novel magnetic carbon composites by low temperature hydrothermal carbonization at 230°C for 24h, followed by heat treatment at 400°C for only 1h in air. Effects of NaOH and iron loading on the chemical properties of the composites were studied. In addition, various techniques were employed to investigate the physicochemical properties of the composites. Adsorption kinetics and isotherms were investigated with tetracycline (TC) for the magnetic composites. The magnetic carbon composite exhibited 48.35mg/g maximum adsorption capacity and was highly stable chemically and mechanically, with also good magnetic properties. The adsorption of TC by the magnetic adsorbent was mainly attributed to H-bonds and π-π interactions. The results indicate that waste sugarcane bagasse from the sugar industries can be efficiently transformed to a magnetic adsorbent for TC removal via a facile environmentally friendly method. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Preparation and characterization of two organoclays aiming its use in adsorption processes; Sintese de argilas organofilicas e compositos organoceramicos aplicados a adsorcao de organicos contaminates

    Energy Technology Data Exchange (ETDEWEB)

    Vazzoler, H.; Valenzuela-Diaz, F.R.; Vazzoler, F.D., E-mail: heverton@usp.br [Universidade de Sao Paulo (USP), SP (Brazil). Departamento de Engenharia Metalurgica e de Materiais. Laboratorio de Solidos Nao Metalicos

    2014-07-01

    Were prepared two organoclays aiming at studying their adsorption properties. The clayssed were the Brazilian Bentongel and Argentina Green Lake. The clays were characterized and organoclays. Performed analyzes of X-Ray diffraction, infrared, SEM, thermogravimetry and swelling experiments Foster and adsorption ASTM. The X-ray diffraction indicated collation of lamellar organic cation used. The variations thermogravimetrics were negative and ranged from around 24% in organophilic clays. The results of infrared spectroscopy indicated the presence of bands that show this barge. The form of the particles/agglomerates of clay minerals was verified by SEM before and after organofilization. The values of the measures of swelling were up to 30 mL/g for some solvents. The adsorption test showed good ability of sorption per gram of clay, reaching respectively 10.2g/g and 9.9 g/g for gasoline and ethylbenzene. These high values indicate that the modified clay may have potential use in sectors of environmental toxicity control industrial and separation. (author)

  14. Effects of chromatographic fractions of Euphorbia hirta on the rat ...

    African Journals Online (AJOL)

    The ethanolic extract of this plant was subjected to chromatographic separation using the vacuum liquid chromatographic technique, a modified form of classical column chromatography. With the aid of thin layer chromatography, six fractions of this plant were obtained and were administered to rats in graded doses of ...

  15. Gas-Chromatographic Determination Of Water In Freon PCA

    Science.gov (United States)

    Melton, Donald M.

    1994-01-01

    Gas-chromatographic apparatus measures small concentrations of water in specimens of Freon PCA. Testing by use of apparatus faster and provides greater protection against accidental contamination of specimens by water in testing environment. Automated for unattended operation. Also used to measure water contents of materials, other than Freon PCA. Innovation extended to development of purgeable sampling accessory for gas chromatographs.

  16. Phytochemical screening and thin layer chromatographic profile of ...

    African Journals Online (AJOL)

    The present study investigates the phytochemicals and thin layer chromatographic profile of. Nauclea diderrichii (Rubiaceae) leaf extracts. Phytochemical in the hexane, ethyl acetate and methanol extracts were determined using standard chemical tests. Thin layer chromatographic techniques were carried out using various ...

  17. Interface for liquid chromatograph-mass spectrometer

    Science.gov (United States)

    Andresen, Brian D.; Fought, Eric R.

    1989-01-01

    A moving belt interface for real-time, high-performance liquid chromatograph (HPLC)/mass spectrometer (MS) analysis which strips away the HPLC solvent as it emerges from the end of the HPLC column and leaves a residue suitable for mass-spectral analysis. The interface includes a portable, stand-alone apparatus having a plural stage vacuum station, a continuous ribbon or belt, a drive train magnetically coupled to an external drive motor, a calibrated HPLC delivery system, a heated probe tip and means located adjacent the probe tip for direct ionization of the residue on the belt. The interface is also capable of being readily adapted to fit any mass spectrometer.

  18. Fast gas chromatographic separation of biodiesel.

    Science.gov (United States)

    Pauls, R E

    2011-05-01

    A high-speed gas chromatographic method has been developed to determine the FAME distribution of B100 biodiesel. The capillary column used in this work has dimensions of 20 m × 0.100 mm and is coated with a polyethylene glycol film. Analysis times are typically on the order of 4-5 min depending upon the composition of the B100. The application of this method to a variety of vegetable and animal derived B100 is demonstrated. Quantitative results obtained with this method were in close agreement with those obtained by a more conventional approach on a 100 m column. The method, coupled with solid-phase extraction, was also found suitable to determine the B100 content of biodiesel-diesel blends.

  19. A Simple Adsorption Experiment

    Science.gov (United States)

    Guirado, Gonzalo; Ayllon, Jose A.

    2011-01-01

    The study of adsorption phenomenon is one of the most relevant and traditional physical chemistry experiments performed by chemistry undergraduate students in laboratory courses. In this article, we describe an easy, inexpensive, and straightforward way to experimentally determine adsorption isotherms using pieces of filter paper as the adsorbent…

  20. Structure sensitivity in adsorption

    DEFF Research Database (Denmark)

    Hammer, Bjørk; Nielsen, Ole Holm; Nørskov, Jens Kehlet

    1997-01-01

    The structure sensitivity of CO adsorption on different flat, stepped, kinked and reconstructed Pt surfaces is studied using large-scale density-functional calculations. We find an extremely strong structure sensitivity in the adsorption energy with variations up to 1 eV (or 100%) from one...

  1. FTIR gas chromatographic analysis of perfumes

    Science.gov (United States)

    Diederich, H.; Stout, Phillip J.; Hill, Stephen L.; Krishnan, K.

    1992-03-01

    Perfumes, natural or synthetic, are complex mixtures consisting of numerous components. Gas chromatography (GC) and gas chromatography-mass spectrometry (GC-MS) techniques have been extensively utilized for the analysis of perfumes and essential oils. A limited number of perfume samples have also been analyzed by FT-IR gas chromatographic (GC-FTIR) techniques. Most of the latter studies have been performed using the conventional light pipe (LP) based GC-FTIR systems. In recent years, cold-trapping (in a matrix or neat) GC-FTIR systems have become available. The cold-trapping systems are capable of sub-nanogram sensitivities. In this paper, comparison data between the LP and the neat cold-trapping GC- FTIR systems is presented. The neat cold-trapping interface is known as Tracer. The results of GC-FTIR analysis of some commercial perfumes is also presented. For comparison of LP and Tracer GC-FTIR systems, a reference (synthetic) mixture containing 16 major and numerous minor constituents was used. The components of the mixture are the compounds commonly encountered in commercial perfumes. The GC-FTIR spectra of the reference mixture was obtained under identical chromatographic conditions from an LP and a Tracer system. A comparison of the two sets of data thus generated do indeed show the enhanced sensitivity level of the Tracer system. The comparison also shows that some of the major components detected by the Tracer system were absent from the LP data. Closer examination reveals that these compounds undergo thermal decomposition on contact with the hot gold surface that is part of the LP system. GC-FTIR data were obtained for three commercial perfume samples. The major components of these samples could easily be identified by spectra search against a digitized spectral library created using the Tracer data from the reference mixture.

  2. Adsorption of catechol from aqueous solution by aminated hypercrosslinked polymers.

    Science.gov (United States)

    Sun, Yue; Li, Xiao-Tao; Xu, Chao; Chen, Jin-Long; Li, Ai-Min; Zhang, Quan-Xing

    2005-01-01

    Adsorption of catechol from aqueous solution with the hypercrosslinked polymeric adsorbent NDA-100 and its derivatives AH-1, AH-2 and AH-3 aminated by dimethylamine, the commercial resin Amberlite XAD-4 and weakly basic anion exchanger resin D301 was compared. It was found that the aminated hypercrosslinked resins had the highest adsorption capacities among the tested polymers. The empirical Freundlich equation was successfully employed to describe the adsorption process. Specific surface area and micropore structure of the adsorbent, in company with tertiary amino groups on matrix affected the adsorption performance towards catechol. In addition, thermodynamic study was carried out to interpret the adsorption mechanism. Kinetic study testified that the tertiary amino groups on the polymer matrix could decrease the adsorption rate and increase the adsorption apparent activation energy.

  3. Effects of the surface concentration of fixed charges in C18-bonded stationary phases on the adsorption process and on the preparative chromatography of small ionizable compounds.

    Science.gov (United States)

    Gritti, Fabrice; Guiochon, Georges

    2014-11-06

    The effects of the surface concentration of positive charges attached to the surface of research BEH-C 18 hybrid particles on the overloaded band profiles and the adsorption isotherms of a neutral (caffeine) and a positively charged (nortryptilinium hydrochloride) compounds were measured and investigated. The inverse method (IM) of chromatography was used to determine the isotherm parameters. Three columns were packed with endcapped BEH-C 18 particles doped with three different charge densities on their surfaces (LOW, MEDIUM and HIGH). Two other columns packed with unbonded, non-endcapped, and endcapped BEH-C 18 particles served as standard reference materials. Minor disturbance method (MDM) experiments were conducted with acetonitrile/water mixtures in order to assess qualitatively the surface densities of the fixed positive charges. A more quantitative approach based on the solution of the linearized Poisson-Boltzmann equation and the decrease of the experimental Henry constant was also applied. The results show that the surface concentrations of the fixed charges in the LOW, MEDIUM and HIGH columns were 0.029, 0.050, and 0.064μmol/m 2 , e.g., close to two orders of magnitude smaller than the surface density of bonded C 18 chains (2.1μmol/m 2 ). The adsorption isotherm of the ionizable compound nortryptilinium onto the BEH-C 18 columns is consistent with a two-sites adsorption model. The density of the high energy sites correlates directly to the total amount of the fixed charges and isolated silanols amidst the C 18 -bonded chains. The amount of low energy sites reflects the specific surface area of the adsorbent. The binding constants on the high- and low-energy adsorption sites are respectively ten and two times lower on the HIGH column than on the reference endcapped column. The active sites are closer to the adsorbent surface than the weak adsorption sites. Finally, a higher production rate of ionizable compounds can be achieved in preparative

  4. Radioactive nuclide adsorption

    International Nuclear Information System (INIS)

    Fukushima, Kimichika.

    1982-01-01

    Purpose: To improve the efficiency of a radioactive nuclide adsorption device by applying a nickel plating on a nickel plate to render the surface active. Constitution: A capturing device for radioactive nuclide such as manganese 54, cobalt 60, 58 and the like is disposed to the inside of a pipeway provided on the upper portion of fuel assemblies through which liquid sodium as the coolant for LMFBR type reactor is passed. The device comprises a cylindrical adsorption body and spacers. The adsorption body is made of nickel and applied with a nickel plating on the surface thereof. The surface of the adsorption body is unevened to result in disturbance in the coolant and thereby improve the adsorptive efficiency. (Kawakami, Y.)

  5. Surface Complexation Modeling of Fluoride Adsorption by Soil and the Role of Dissolved Aluminum on Adsorption

    Science.gov (United States)

    Padhi, S.; Tokunaga, T.

    2017-12-01

    Adsorption of fluoride (F) on soil can control the mobility of F and subsequent contamination of groundwater. Hence, accurate evaluation of adsorption equilibrium is a prerequisite for understanding transport and fate of F in the subsurface. While there have been studies for the adsorption behavior of F with respect to single mineral constituents based on surface complexation models (SCM), F adsorption to natural soil in the presence of complexing agents needs much investigation. We evaluated the adsorption processes of F on a natural granitic soil from Tsukuba, Japan, as a function of initial F concentration, ionic strength, and initial pH. A SCM was developed to model F adsorption behavior. Four possible surface complexation reactions were postulated with and without including dissolved aluminum (Al) and Al-F complex sorption. Decrease in F adsorption with the increase in initial pH was observed in between the initial pH range of 4 to 9, and a decrease in the rate of the reduction of adsorbed F with respect to the increase in the initial pH was observed in the initial pH range of 5 to 7. Ionic strength variation in the range of 0 to 100mM had insignificant effect on F removal. Changes in solution pH were observed by comparing the solution before and after F adsorption experiments. At acidic pH, the solution pH increased, whereas at alkaline pH, the solution pH decreased after equilibrium. The SCM including dissolved Al and the adsorption of Al-F complex can simulate the experimental results quite successfully. Also, including dissolved Al and the adsorption of Al-F complex to the model explained the change in solution pH after F adsorption.

  6. Adsorption of cellulase on cellulolytic enzyme lignin from lodgepole pine.

    Science.gov (United States)

    Tu, Maobing; Pan, Xuejun; Saddler, Jack N

    2009-09-09

    Enzymatic hydrolysis of lignocellulosic materials is significantly affected by cellulase adsorption onto the lignocellulosic substrates and lignin. The presence of lignin plays an important role in lignocellulosic hydrolysis and enzyme recycling. Three cellulase preparations (Celluclast, Spezyme CP, and MSUBC) were evaluated to determine their adsorption onto cellulolytic enzyme lignin (CEL) from steam-exploded Lodgepole pine (SELP) and ethanol (organosolv)-pretreated Lodgepole pine (EPLP). The adsorption affinity of cellulase (Celluclast) onto isolated lignin (CEL-EPLP and CEL-SELP) was slightly higher than that from corresponding EPLP and SELP substrates on the basis of the Langmuir constants. Effects of temperature, ionic strength, and surfactant on cellulase adsorption onto isolated lignin were also explored in this study. Thermodynamic analysis of enzyme adsorption onto isolated lignin (Gibbs free energy change DeltaG(0) approximately -30 kJ/mol) indicated this adsorption was a spontaneous process. The addition of surfactant (0.2% w/v) could reduce the adsorption of cellulase onto CEL-SELP by 60%. Two types of adsorption isotherm were compared for cellulase adsorption onto isolated lignin. A Langmuir adsorption isotherm showed better fit for the experimental data than a Freundlich adsorption isotherm.

  7. Efficient adsorption of phenanthrene by simply synthesized hydrophobic MCM-41 molecular sieves

    Science.gov (United States)

    Hu, Yun; He, Yinyun; Wang, Xiaowen; Wei, Chaohai

    2014-08-01

    Hydrophobic molecular sieve MCM-41 including surfactant template was synthesized by a simple method. The adsorption properties of this material toward phenanthrene were studied. The effects of adsorbent dose and pH value on the adsorption process as well as the adsorption mechanism and reuse performance were investigated. The template-containing MCM-41 showed a significant adsorption for phenanthrene, due to its hydrophobicity created by the surfactant template in MCM-41. The solution pH had little effect on the adsorption capacity. The adsorption kinetic could be fitted well with pseudo-second-order kinetic model. The adsorption equilibrium was fitted well by the linear model, and the adsorption process followed the liquid/solid phase distribution mechanism. The thermodynamic results indicated that the adsorption was a spontaneous and exothermic process.

  8. [Adsorption kinetics and mechanism of lead (II) on polyamine-functionalized mesoporous activated carbon].

    Science.gov (United States)

    Li, Kun-Quan; Wang, Yan-Jin; Yang, Mei-Rong; Zhu, Zhi-Qiang; Zheng, Zheng

    2014-08-01

    Bagasse mesoporous carbon was prepared by microwave assisted H3 PO4 activation. Amido and imido groups were modified with ethanediamine on the channels' surface of mesoporous carbon through nitric oxidation and amide reaction. The influence of Pb(II) concentration, adsorption time on Pb(II) adsorption on the ethanediamine-modified mesoporous carbon (AC-EDA) was investigated. The adsorption kinetics and mechanism were also discussed. The results showed that AC-EDA had a great performance for Pb(II) adsorption, and more than 70% of Pb(II) was adsorbed in 5 minutes. The adsorption amount of Pb(II) on the carbon increased with the increase of solution pH in acidic conditions. It was found that AC-EDA had different binding energies on different adsorption sites for Pb(II) separation. The Pb(II) adsorption process on AC-EDA was controlled by intra-particle diffusion in the first 3 min, and then film diffusion played the important pole on the adsorption. The adsorption amount increased with the increase of temperature, indicating the adsorption was an endothermic reaction. The high adsorption energy (> 11 kJ x mol(-1)) implied that the) adsorption was a chemical adsorption. The XPS of AC-EDA before and after Pb(II) adsorption showed that the polyamine group was involved in the adsorption, and should be a main factor of the high efficient adsorption.

  9. Study of algae's adsorption to uranium ion in water solution

    International Nuclear Information System (INIS)

    Du Yang; Qiu Yongmei; Dan Guiping; Zhang Dong; Lei Jiarong

    2007-01-01

    The adsorption efficiencies of the algae to uranium ion were determined at various pH, uranium ion concentrations, adsorption temperatures and the species of coexisted metal ions, and the effect of coexisted metal ion on the adsorption efficiency was researched. The experimental results at pH= 5-8 are as follows. 1) the adsorption capacity is a constant to be about 1.40 μg/g for the Yantai red alga and the sea spinach, and is changeable in the range of 1.03-2.23 μg/g with pH for the sea edible fungus; 2) for the algae the adsorption efficiency and adsorption capacity are related to uranium ion concentration, and the maximum adsorption efficiency and capacity is 95.8% and 65.4 μg/g, respectively; 3) the adsorption process for 24 h is not dependent on the temperature; 4) the effect of the species of coexisted metal ions on the adsorption capacity of uranium ion is various with the time during adsorption process. (authors)

  10. The Adsorption Mechanism of Modified Activated Carbon on Phenol

    Directory of Open Access Journals (Sweden)

    Lin J. Q.

    2016-01-01

    Full Text Available Modified activated carbon was prepared by thermal treatment at high temperature under nitrogen flow. The surface properties of the activated carbon were characterized by Boehm titration, BET and point of zero charge determination. The adsorption mechanism of phenol on modified activated carbon was explained and the adsorption capacity of modified activated carbon for phenol when compared to plain activated carbon was evaluated through the analysis of adsorption isotherms, thermodynamic and kinetic properties. Results shows that after modification the surface alkaline property and pHpzc value of the activated carbon increase and the surface oxygen-containing functional groups decrease. The adsorption processes of the plain and modified carbon fit with Langmuir isotherm equation well, and the maximum adsorption capacity increase from 123.46, 111.11, 103.09mg/g to 192.31, 178.57, 163,93mg/g under 15, 25 and 35°C after modification, respectively. Thermodynamic parameters show that the adsorption of phenol on activated carbon is a spontaneously exothermic process of entropy reduction, implying that the adsorption is a physical adsorption. The adsorption of phenol on activated carbon follows the pseudo-second-order kinetics (R2>0.99. The optimum pH of adsorption is 6~8.

  11. Effect of Secondary Equilibria on the Adsorption of Ibuprofen Enantiomers on a Chiral Stationary Phase with a Grafted Antibiotic Eremomycin

    Science.gov (United States)

    Reshetova, E. N.; Asnin, L. D.; Kachmarsky, K.

    2018-02-01

    The chromatographic separation of ibuprofen enantiomers on a Nautilus-E chiral stationary phase with a grafted eremomycin antibiotic at high column loading is accompanied by distortion of the shape of chromatographic peaks. A model is proposed to explain this phenomenon. A number of factors are considered in the model: the ionization of ibuprofen in the mobile phase, the pH change in the mass transfer zone caused by ionization, and competitive adsorption involving buffer components. Simulations performed using this model within the theory of nonequilibrium chromatography allow the shape of chromatograms for large amounts of S- and R-ibuprofen samples to be predicted. The adsorption mechanism is found to be mainly ion-exchange. The contribution from the molecular adsorption of ibuprofen to the total retention is shown to be several percent.

  12. Heavy metal adsorption by modified oak sawdust: Thermodynamics and kinetics

    Energy Technology Data Exchange (ETDEWEB)

    Argun, Mehmet Emin [Department of Environmental Engineering, Engineering and Architecture Faculty, Selcuk University, 42031 Selcuklu-Konya (Turkey)]. E-mail: argun@selcuk.edu.tr; Dursun, Sukru [Department of Environmental Engineering, Engineering and Architecture Faculty, Selcuk University, 42031 Selcuklu-Konya (Turkey); Ozdemir, Celalettin [Department of Environmental Engineering, Engineering and Architecture Faculty, Selcuk University, 42031 Selcuklu-Konya (Turkey); Karatas, Mustafa [Department of Environmental Engineering, Engineering and Architecture Faculty, Selcuk University, 42031 Selcuklu-Konya (Turkey)

    2007-03-06

    This paper describes the adsorption of heavy metal ions from aqueous solutions by oak (Quercus coccifera) sawdust modified by means of HCl treatment. Our study tested the removal of three heavy metals: Cu, Ni, and Cr. The optimum shaking speed, adsorbent mass, contact time, and pH were determined, and adsorption isotherms were obtained using concentrations of the metal ions ranging from 0.1 to 100 mg L{sup -1}. The adsorption process follows pseudo-second-order reaction kinetics, as well as Langmuir and D-R adsorption isotherms. The paper discusses the thermodynamic parameters of the adsorption (the Gibbs free energy, entropy, and enthalpy). Our results demonstrate that the adsorption process was spontaneous and endothermic under natural conditions. The maximum removal efficiencies were 93% for Cu(II) at pH 4, 82% for Ni(II) at pH 8, and 84% for Cr(VI) at pH 3.

  13. Quality evaluation of extracted ion chromatograms and chromatographic peaks in liquid chromatography/mass spectrometry-based metabolomics data.

    Science.gov (United States)

    Zhang, Wenchao; Zhao, Patrick X

    2014-01-01

    Extracted ion chromatogram (EIC) extraction and chromatographic peak detection are two important processing procedures in liquid chromatography/mass spectrometry (LC/MS)-based metabolomics data analysis. Most commonly, the LC/MS technique employs electrospray ionization as the ionization method. The EICs from LC/MS data are often noisy and contain high background signals. Furthermore, the chromatographic peak quality varies with respect to its location in the chromatogram and most peaks have zigzag shapes. Therefore, there is a critical need to develop effective metrics for quality evaluation of EICs and chromatographic peaks in LC/MS based metabolomics data analysis. We investigated a comprehensive set of potential quality evaluation metrics for extracted EICs and detected chromatographic peaks. Specifically, for EIC quality evaluation, we analyzed the mass chromatographic quality index (MCQ index) and propose a novel quality evaluation metric, the EIC-related global zigzag index, which is based on an EIC's first order derivatives. For chromatographic peak quality evaluation, we analyzed and compared six metrics: sharpness, Gaussian similarity, signal-to-noise ratio, peak significance level, triangle peak area similarity ratio and the local peak-related local zigzag index. Although the MCQ index is suited for selecting and aligning analyte components, it cannot fairly evaluate EICs with high background signals or those containing only a single peak. Our proposed EIC related global zigzag index is robust enough to evaluate EIC qualities in both scenarios. Of the six peak quality evaluation metrics, the sharpness, peak significance level, and zigzag index outperform the others due to the zigzag nature of LC/MS chromatographic peaks. Furthermore, using several peak quality metrics in combination is more efficient than individual metrics in peak quality evaluation.

  14. Separative analyses of a chromatographic column packed with a core-shell adsorbent for lithium isotope separation

    International Nuclear Information System (INIS)

    Sugiyama, T.; Sugura, K.; Enokida, Y.; Yamamoto, I.

    2015-01-01

    Lithium-6 is used as a blanket material for sufficient tritium production in DT fueled fusion reactors. A core-shell type adsorbent was proposed for lithium isotope separation by chromatography. The mass transfer model in a chromatographic column consisted of 4 steps, such as convection and dispersion in the column, transfer through liquid films, intra-particle diffusion and and adsorption or desorption at the local adsorption sites. A model was developed and concentration profiles and time variation in the column were numerically simulated. It became clear that core-shell type adsorbents with thin porous shell were saturated rapidly relatively to fully porous one and established a sharp edge of adsorption band. This is very important feature because lithium isotope separation requires long-distance development of adsorption band. The values of HETP (Height Equivalent of a Theoretical Plate) for core-shell adsorbent packed column were estimated by statistical moments of the step response curve. The value of HETP decreased with the thickness of the porous shell. A core-shell type adsorbent is, then, useful for lithium isotope separation. (authors)

  15. Chromatographic Separation of Vitamin E Enantiomers

    Directory of Open Access Journals (Sweden)

    Ju-Yen Fu

    2017-02-01

    Full Text Available Vitamin E is recognized as an essential vitamin since its discovery in 1922. Most vegetable oils contain a mixture of tocopherols and tocotrienols in the vitamin E composition. Structurally, tocopherols and tocotrienols share a similar chromanol ring and a side chain at the C-2 position. Owing to the three chiral centers in tocopherols, they can appear as eight different stereoisomers. Plant sources of tocopherol are naturally occurring in the form of RRR while synthetic tocopherols are usually in the form of all-racemic mixture. Similarly, with only one chiral center, natural tocotrienols occur as the R-isoform. In this review, we aim to discuss a few chromatographic methods that had been used to separate the stereoisomers of tocopherols and tocotrienols. These methods include high performance liquid chromatography, gas chromatography and combination of both. The review will focus on method development including selection of chiral columns, detection method and choice of elution solvent in the context of separation efficiency, resolution and chiral purity. The applications for separation of enantiomers in vitamin E will also be discussed especially in terms of the distinctive biological potency among the stereoisoforms.

  16. Method for chromatographically recovering scandium and yttrium

    International Nuclear Information System (INIS)

    Snyder, T.S.; Stoltz, R.A.

    1991-01-01

    This paper describes a method for chromatographically recovering scandium and yttrium from the residue of a sand chlorinator. It comprises: providing a residue from a sand chlorinator, the residue containing scandium, yttrium, sodium, calcium and at least one radioactive metal of the group consisting of radium, thorium and uranium; digesting the residue with an acid to produce an aqueous liquid containing scandium, yttrium, sodium, calcium and at least one radioactive metal of the group consisting of radium, thorium and uranium; feeding the metal containing liquid through a cation exchanger; eluding the cation exchanger with an acid eluant to to produce: a first eluate containing at least half of the total weight of the calcium and sodium in the feed liquid; a second eluate containing at least half of the total weight of the one or more radioactive metals in the feed liquid; a third eluate containing at least half of the yttrium in the feed liquid, and a fourth eluate containing at least half of the weight of the scandium in the feed liquid

  17. Chromatographic Techniques for Rare Earth Elements Analysis

    Science.gov (United States)

    Chen, Beibei; He, Man; Zhang, Huashan; Jiang, Zucheng; Hu, Bin

    2017-04-01

    The present capability of rare earth element (REE) analysis has been achieved by the development of two instrumental techniques. The efficiency of spectroscopic methods was extraordinarily improved for the detection and determination of REE traces in various materials. On the other hand, the determination of REEs very often depends on the preconcentration and separation of REEs, and chromatographic techniques are very powerful tools for the separation of REEs. By coupling with sensitive detectors, many ambitious analytical tasks can be fulfilled. Liquid chromatography is the most widely used technique. Different combinations of stationary phases and mobile phases could be used in ion exchange chromatography, ion chromatography, ion-pair reverse-phase chromatography and some other techniques. The application of gas chromatography is limited because only volatile compounds of REEs can be separated. Thin-layer and paper chromatography are techniques that cannot be directly coupled with suitable detectors, which limit their applications. For special demands, separations can be performed by capillary electrophoresis, which has very high separation efficiency.

  18. Mechanism of the cooperative adsorption of oppositely charged nanoparticles.

    Science.gov (United States)

    Tretiakov, Konstantin V; Bishop, Kyle J M; Kowalczyk, Bartlomiej; Jaiswal, Archana; Poggi, Mark A; Grzybowski, Bartosz A

    2009-04-23

    Quartz crystal microbalance experiments were performed to study the kinetics of surface adsorption from solutions containing oppositely charged nanoparticles. A theoretical model was developed according to which formation of dense nanoparticle (NP) monolayers is driven by a cooperative process, in which the already-adsorbed NPs facilitate adsorption of NPs from solution. The kinetic rate constants change with the NP solution concentration and can be used to backtrack adsorption free energies. These energies agree with the predictions of a simple DLVO model.

  19. Adsorption behavior of protein onto siloxane microspheres

    International Nuclear Information System (INIS)

    Liu Bailing; Cao Shunsheng; Deng Xiaobo; Li Songjun; Luo Rong

    2006-01-01

    The siloxane microspheres with core-shell structure (PMMA/PMPS) (MMA, methyl methacrylate; MPS, 3-methacryloxypropyl-trimethoxysilane) have been prepared by dispersion polymerization as described in our previous work. In this paper, the developed poly(MMA-MPS) microspheres, as a carrier, are used to investigate the adsorption behavior of bovine serum albumin (BSA) on them. The Langmuir and Freundlich models have been applied to describe the adsorption behavior. The experimental results indicated that the presence of PMPS evidently increases the adsorption rate and the amount of protein, and it also influences the interaction of BSA molecules. The adsorption of BSA on the poly(MMA-MPS) microspheres seems to be sensitive to pH and ionic strength. The fittings curves from Langmuir and Freundlich models showed that the adsorption was actually more complicated than ideal situation because one or more interactions were involved in the process. For understanding the electronic contribution, the Zeta potential was used to measure the reactive system before and after protein adsorption

  20. New gas chromatographic instrumentation for studying the action of sulfur dioxide on marbles.

    Science.gov (United States)

    Bakaoukas, Nikolaos; Kapolos, John; Koliadima, Athanasia; Karaiskakis, George

    2005-09-16

    Reversed-flow gas chromatography, which is a sub-technique of inverse gas chromatography, is an experimental arrangement simulating a simple model for the action of air pollutants on buildings and monuments, in laboratory scale. By using a commercial gas chromatograph and an appropriate mathematical analysis, kinetic parameters such as rate constants for adsorption k1, adsorption/desorption kR and surface reaction k2, as well as surface diffusion coefficients Dgamma, deposition velocities Vd and reaction probabilities gamma of SO2 on marble surfaces at different temperatures (303.15-353.15 K) in the presence or in the absence of protective materials (an acrylic copolymer, Paraloid B-72 or a siloxane, CTS Silo 111) were calculated. From the above mentioned physicochemical quantities the ability of the examined materials to minimize the dry deposition of SO2 on marble is carrying out and a possible mechanism for the interaction between SO2 and Paraloid B-72 was suggested. Both materials (CTS SILO 111 and Paraloid B-72) are good enough for protecting marble against SO2 at low temperatures (303.15-323.15), while at high temperatures (333.15-353.15), siloxane seems to protect marble better than acrylic copolymer.

  1. Chromatographic and electrophoretic methods for nanodisc purification and analysis

    DEFF Research Database (Denmark)

    Justesen, Bo Højen; Günther-Pomorski, Thomas

    2014-01-01

    of proper reconstitution are still major challenges during the sample preparation. This review gives an overview of the methods used for purifying and analyzing nanodiscs and nanodisc-reconstituted membrane proteins, with an emphasis on the chromatographic and electrophoretic approaches....

  2. THERMODYNAMICS AND ADSORPTION ISOTHERMS FOR THE ...

    African Journals Online (AJOL)

    BAFFA

    ABSTRACT. The use of maize (Zea mays) cob for the biosorption of Cr(VI), Ni(II) and Cd(II) is reported. Biosorption experiments were carried out using batch process with 8g weight of adsorbent and variable adsorbate concentrations. Variations in the concentration of the different adsorbates during the adsorption process.

  3. Comprehensive description of the photodegradation of bromophenols using chromatographic monitoring and chemometric tools.

    Science.gov (United States)

    Mas, Sílvia; Carbó, Albert; Lacorte, Sílvia; de Juan, Anna; Tauler, Romà

    2011-01-30

    A general procedure for the study of complex photodegradation processes of environmental pollutants based on chromatographic monitoring and chemometric method is proposed. The procedure consists of multiset data analysis of aliquots collected at different reaction times and injected in High-Performance Liquid Chromatography coupled to diode array detection and mass spectrometry (HPLC-DAD-MS). In this study, photodegradation of six bromophenols with different degrees of bromination has been investigated in order to find out their photodegradation pathways and kinetics and to show the potential of the procedure proposed. Multivariate curve resolution-alternating least squares (MCR-ALS) has been used to resolve chromatographic elution profiles and pure spectra of species involved in the photodegradation process and, hence, to elucidate the photodegradation mechanism and to propose the chemical structure of the main photoproducts. This study shows that chromatographic monitoring is the preferred option when photochemical systems with large number of components with similar spectra and kinetic evolution are analyzed. This work reveals the advantages of the double DAD and MS detection to provide mechanistic and structural information about these complex photodegradation processes. Copyright © 2010 Elsevier B.V. All rights reserved.

  4. CO adsorption and dissociation on Pt(111) and Ni(111) surfaces

    DEFF Research Database (Denmark)

    Morikawa, Y.; Mortensen, Jens Jørgen; Hammer, Bjørk

    1997-01-01

    CO adsorption and dissociation processes have been studied using first-principles total energy and force calculations. The adsorption energies, atomic structures and vibrational modes of molecularly chemisorbed states are well reproduced in the present calculations. We have examined several...

  5. Studies of surface adsorption on LiAlO2

    International Nuclear Information System (INIS)

    Fischer, A.K.; Johnson, C.E.; McDaniel, J.A.

    1986-01-01

    Computational and experimental approaches are being taken to understanding surface adsorption/desorption effects on tritium inventory and release. The computational survey integrates a thermodynamic treatment of surface adsorption and bulk phase effects such as solubility and gas phase composition. The system T 2 O:T 2 :LiAlO 2 was examined. The calculations indicate that surface adsorption can be expected to contribute most to tritium inventory under the conditions of lower temperatures and higher oxygen activities. Higher temperature and lower oxygen activity favor lower surface inventory. In the experimental work, a high temperature gas chromatograph was constructed in order to measure the H 2 O:H 2 surface adsorption isotherms and the solubility of hydroxide in LiAlO 2 . Preliminary data indicate that at 478 K approximately 15% of the surface is coverred for a partial pressure of H 2 O of approximately 52 Pa. Calculated values can be obtained that are in reasonable agreement with this. (orig.)

  6. Thermal activation of serpentine for adsorption of cadmium

    Energy Technology Data Exchange (ETDEWEB)

    Cao, Chun-Yan [College of Land and Environment, Shenyang Agricultural University, Shenyang (China); College of Chemistry, Chemical Engineering and Food Safety, Bohai University, Jinzhou (China); Liang, Cheng-Hua, E-mail: liang110161@163.com [College of Land and Environment, Shenyang Agricultural University, Shenyang (China); Yin, Yan [Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang (China); Du, Li-Yu [College of Land and Environment, Shenyang Agricultural University, Shenyang (China)

    2017-05-05

    Highlights: • Thermal activated serpentine was prepared by changing heated temperature. • Thermal activated serpentine exhibited excellent adsorption behavior for cadmium. • The adsorption mechanisms could be explained as formation of CdCO{sub 3} and Cd(OH){sub 2}. • The adsorption obeyed Langmuir model and pseudo second order kinetics model. - Abstract: Thermal activated serpentine with high adsorption capacity for heavy metals was prepared. The batch experiment studies were conducted to evaluate the adsorption performance of Cd{sup 2+} in aqueous solution using thermal activated serpentine as adsorbent. These samples before and after adsorption were characterized by XRD, FT-IR, SEM, XPS, and N{sub 2} adsorption-desorption at low temperature. It was found that serpentine with layered structure transformed to forsterite with amorphous structure after thermal treatment at over 700 °C, while the surface area of the samples was increased with activated temperature and the serpentine activated at 700 °C (S-700) presented the largest surface area. The pH of solution after adsorption was increased in different degrees due to hydrolysis of MgO in serpentine, resulting in enhancing adsorption of Cd{sup 2+}. The S-700 exhibited the maximum equilibrium adsorption capacity (15.21 mg/g), which was 2 times more than pristine serpentine. Langmuir isotherm was proved to describe the equilibrium adsorption data better than Freundlich isotherm and pseudo second order kinetics model could fit the adsorption kinetics processes well. Based on the results of characterization with XPS and XRD, the adsorption mechanisms could be explained as primarily formation of CdCO{sub 3} and Cd(OH){sub 2} precipitation on the surface of serpentine.

  7. Comparison of thin layer chromatographic and gas chromatographic determination of propoxur residues in a cocoa ecosystem

    International Nuclear Information System (INIS)

    Yeboah, P.O.; Lowor, S.; Akpabli, C.K.

    2005-01-01

    The fate of propoxur in a cocoa ecosystem has been studied using thin layer chromatographic (TLC) and gas chromatographic (GC) methods. Residues of propoxur as determined by both TLC and GC were not significantly different. TLC analysis of propoxur residues in soil, cocoa leaves and pods did not require any rigorous cleanup since residues measured from cleaned extracts and without cleanup were not significantly different. The residue levels of propoxur in the soil were found to decrease rapidly and, by the 21st day, none was detected in the topsoil (0-15 cm). Evidence of leaching of propoxur residues in the soil has also been demonstrated. The amount left in the top soil after the first seven days were 27%, 23% and 24% of the initial one as determined by the TLC without cleanup, TLC with cleanup and GLC, respectively. No propoxur residue was detected in topsoil 21 days after spraying. About 38% of pesticides detected on the cocoa pod on the day of treatment remained on the pod seven days after treatment. The residue detected on the leaves on the day of treatment was higher than that in or on the soil. This decreased rapidly to 1.7% in 21 days compared to 16% for the soil and 23% for the pod. (author)

  8. Thermodynamic vs. extrathermodynamic modeling of chromatographic retention.

    Science.gov (United States)

    Kaliszan, Roman; Wiczling, Paweł; Markuszewski, Michał J; Al-Haj, Mehdi A

    2011-08-05

    To predict a given physicochemical or biological property, and hence, to design rationally requested chemical entity, the relationships must be identified between the chemical structure and the desired property. Unfortunately, classical thermodynamics never predicts any property by itself, even so simple one like chromatographic retention. Therefore progress in understanding and describing molecular equilibrium between phases requires a combination of experimental measurements and correlations by means of empirical equations and approximate theories. In this work the retention prediction performance was tested of the well thermodynamically founded solvophobic theory of Horváth and co-workers of reversed-phase HPLC. The retention parameters of four series of analytes were modeled with regard to their chemical structure by: (1) observing the rules of classical thermodynamics; (2) applying an extrathermodynamically derived correction to the model based on the thermodynamic hermeneutics; (3) using extrathermodynamic, chemical intuition-based Quantitative Structure-Retention Relationships (QSRR). The combined thermodynamic/extrathermodynamic model with empirical correction accounting for the number of polar atoms provided an improvement of the agreement between the observed and the predicted retention parameters. However, a purely extrathermodynamic QSRR model, employing analyte descriptors from calculation chemistry, produced similar retention predictions. Both thermodynamic and QSRR models accounted well for abilities of analyte to participate in nonspecific, dispersive intermolecular interactions. Less reliable appeared descriptors of analyte polarity. The approach presented here can be further developed to search for proper polarity parameters, necessary to correctly predict complex physicochemical and biological properties of chemical compounds. Copyright © 2011 Elsevier B.V. All rights reserved.

  9. Adsorption of aqueous copper on peanut hulls

    Science.gov (United States)

    Davis, Kanika Octavia

    A method was established for measuring the adsorption of Cu(II) from aqueous solution to unmodified and modified peanut hulls at constant temperature and pH. Modification of the hulls was performed by oxidation with alkaline hydrogen peroxide. During the modification process, the hydrogen peroxide solubilizes the lignin component, making the surface more porous which increases the availability of binding sites, while simultaneously oxidizing the cellulose. The oxidation of alcohol groups creates more binding sites by creating functional groups such as COO-, which increases chelation to metal ions. Fourier transform infrared spectroscopy confirms delignification of the peanut hulls by the disappearance of carboxyl peaks of the modified hulls, which were originally produced from the lignin content. Although, oxidation is not fully confirmed, it is not ruled out because the expected carboxylate peak (1680 cm-1) maybe overshadowed by a broad peak due to OH bending of water adsorbed to the hulls. Hulls adsorbed copper from solutions in the concentration range of 50-1000 ppm of CuCl2. Concentrations of pre- and post-adsorption solutions were determined using inductively coupled plasma optical emission spectroscopy. The adsorption isotherms were fit to known two and three-parameter models, evaluated and the binding mechanism was inferred. Maximum surface coverage was 3.5 +/- 0.6 mg Cu2+ /g hull for unmodified hulls and 11 +/- 1 mg Cu2+/g hull for modified hulls. The adsorption for the hulls is best described by the Langmuir model, suggesting monolayer, homogeneous adsorption. With a free energy of adsorption of 10.5 +/- 0.9 kJ/mol for unmodified hulls and 14.5 +/-0.4 kJ/mol for modified hulls, the process is categorized as chemisorption for both types of hulls. The adsorption for both hulls is also described by the Redlich-Peterson model, giving beta nearer to 1 than 0, which further suggests homogeneous adsorption described by the Langmuir model. After rinsing the hulls

  10. Thermodynamics and kinetics of glyphosate adsorption on resin D301

    Directory of Open Access Journals (Sweden)

    Fei-xiong Chen

    2016-11-01

    Full Text Available The adsorption isotherms, kinetics, and thermodynamics are investigated in batch experiments. The adsorption isotherms and kinetics in the range of 303.15–318.15 K are determined. Langmuir, Freundlich, and Temkin isotherms are employed to describe the adsorption process, indicating that the Langmuir isotherm fits the data better. By thermodynamic functions, ΔHθ, ΔGθ and ΔSθ are calculated. The kinetics of the adsorption follows a pseudo-second order model. The apparent activation energy is calculated to be 83.11 kJ mol−1 by Arrhenius equation.

  11. Experimental study of water adsorption on Geysers reservoir rocks

    Energy Technology Data Exchange (ETDEWEB)

    Shubo Shang; Horne, Roland N.; Ramey, Henry J., Jr.

    1993-01-28

    Experimental isotherms of water vapor adsorption/desorption on three geothermal reservoir rock samples have been measured at temperatures of 80, 100, 120 and 140°C. Initial surface status of the sample was found to influence the amount of water adsorbed. At low relative pressures, adsorption is the dominant process of water retention onto the rock samples. Adsorption/desorption hysteresis was observed to exist over the whole pressure range at all temperatures. Similar observations were made for all three samples. The results of this study suggest that adsorption is important in storing water in geothermal reservoir rocks not only in itself, but also in inducing capillary condensation.

  12. Gas chromatographic determination of Di-n-butyl phosphate in radioactive lean organic solvent of FBTR carbide fuel reprocessing

    International Nuclear Information System (INIS)

    Velavendan, P.; Ganesh, S.; Pandey, N.K.; Kamachi Mudali, U.; Natarajan, R.

    2011-01-01

    In the present work Di-n- butyl phosphate (DBP) a degraded product of Tri-n-butyl phosphate (TBP) formed by acid hydrolysis and radiolysis in the PUREX process was analyzed. Lean organic streams of different fuel burn-up FBTR carbide fuel reprocessing solution was determined by standard Gas Chromatographic technique. The method involves the conversion of non-volatile Di-n-butyl phosphate into volatile and stable derivatives by the action of diazomethane and then determined by Gas Chromatograph (GC). A calibration graph was made for DBP concentration range of 200-2000 ppm with correlation coefficient of 0.99587 and RSD 1.2 %. (author)

  13. Adsorption Properties of Lac Dyes on Wool, Silk, and Nylon

    Directory of Open Access Journals (Sweden)

    Bo Wei

    2013-01-01

    Full Text Available There has been growing interest in the dyeing of textiles with natural dyes. The research about the adsorption properties of natural dyes can help to understand their adsorption mechanism and to control their dyeing process. This study is concerned with the kinetics and isotherms of adsorption of lac dyes on wool, silk, and nylon fibers. It was found that the adsorption kinetics of lac dyes on the three fibers followed the pseudosecond-order kinetic model, and the adsorption rate of lac dyes was the fastest for silk and the slowest for wool. The activation energies for the adsorption process on wool, silk, and nylon were found to be 107.15, 87.85, and 45.31 kJ/mol, respectively. The adsorption of lac dyes on the three fibers followed the Langmuir mechanism, indicating that the electrostatic interactions between lac dyes and those fibers occurred. The saturation values for lac adsorption on the three fibers decreased in the order of wool > silk > nylon; the Langmuir affinity constant of lac adsorption on nylon was much higher than those on wool and silk.

  14. (Amino acid + silica) adsorption thermodynamics: Effects of temperature

    International Nuclear Information System (INIS)

    Sebben, Damien; Pendleton, Phillip

    2015-01-01

    Highlights: • High resolution, low concentration Gly, Lys and Glu solution adsorption isotherms. • All isotherms fitted with Langmuir–Freundlich isotherm model. • Gly, Lys and Glu show exothermic adsorption processes. • Isosteric heat analyses reveal changes in interaction strength with surface coverage. - Abstract: A thorough understanding of amino acid adsorption by mineral and oxide surfaces has a major impact on a variety of industrial and biomedical applications. Little information currently exists regarding temperature effects on most of these adsorption processes. Deeper thermodynamic analyses of their multiple temperature adsorption isotherms would aid the interpretation of the interfacial interactions. Low solution concentration adsorption isotherms for glycine, lysine and glutamic acid on a silica adsorbent were generated for T = (291, 298 and 310) K. Data analysis via the Clausius–Clapeyron method yielded the isosteric heat of adsorption as a function of fractional monolayer coverage for each adsorptive. Each amino acid showed an exothermic adsorption response. Glycine and lysine experienced a greater negative effect of increased temperature compared with glutamic acid, indicating a greater number of adsorbed molecules than glutamic acid, with the former undergoing intermolecular clustering within the adsorbed phase. Isosteric heat analyses suggest ionic interactions for lysine and hydrogen bonding for glutamic acid, both weakening with increased coverage. In contrast, initial hydrogen bonding led to ionic bonding for glycine with increasing coverage

  15. Adsorption analysis equilibria and kinetics

    CERN Document Server

    Do, Duong D

    1998-01-01

    This book covers topics of equilibria and kinetics of adsorption in porous media. Fundamental equilibria and kinetics are dealt with for homogeneous as well as heterogeneous particles. Five chapters of the book deal with equilibria and eight chapters deal with kinetics. Single component as well as multicomponent systems are discussed. In kinetics analysis, we deal with the various mass transport processes and their interactions inside a porous particle. Conventional approaches as well as the new approach using Maxwell-Stefan equations are presented. Various methods to measure diffusivity, such

  16. A preliminary study on the adsorptive removal of Cr(VI) using seaweed, Hydrilla verticillata

    Energy Technology Data Exchange (ETDEWEB)

    Baral, S.S., E-mail: ss_baral2003@yahoo.co.in [Chemical Engineering Group, Birla Institute of Technology and Science, Pilani - Goa Campus, Zuarinagar, Goa-403726 (India); Das, Namrata; Roy Chaudhury, G.; Das, S.N. [Department of Environment and Sustainability, Institute of Minerals and Materials Technology, Bhubaneswar-751013 (India)

    2009-11-15

    The Cr(VI) adsorption efficiency of the seaweed, Hydrilla verticillata, was studied in batches. The adsorbent was characterized using SEM, BET surface area analyzer, Malvern particle size analyzer, EDAX and FT-IR. Cr(VI) removal efficiency of the adsorbent was studied as a function of different adsorption parameters such as contact time, stirring speed, pH, adsorbent dose, particle size, adsorbate concentration, and temperature. Langmuir, Freundlich, and Temkin adsorption isotherm equations were used in the equilibrium modeling. The adsorption process followed pseudo second-order kinetics and intra-particle diffusion was found to be the rate-controlling step. Experimental data follow Langmuir adsorption isotherm. Thermodynamic parameters such as Gibbs free energy and enthalpy of the adsorption process were evaluated to find out the feasibility of the adsorption process. The negative values of Gibb's free energy and positive enthalpy values show the feasibility and endothermic nature of the process. The significance of different adsorption parameters along with their combined effect on the adsorption process has been established through a full 2{sup 4} factorial design. Among the different adsorption parameters, pH has the most influential effect on the adsorption process followed by adsorbate concentration and combined effects of all the four parameters were tested. The correlation among different adsorption parameters were studied using multi-variate analysis.

  17. Chromatographic fingerprinting: An innovative approach for food 'identitation' and food authentication - A tutorial.

    Science.gov (United States)

    Cuadros-Rodríguez, Luis; Ruiz-Samblás, Cristina; Valverde-Som, Lucia; Pérez-Castaño, Estefanía; González-Casado, Antonio

    2016-02-25

    Fingerprinting methods describe a variety of analytical methods that provide analytical signals related to the composition of foodstuffs in a non-selective way such as by collecting a spectrum or a chromatogram. Mathematical processing of the information in such fingerprints may allow the characterisation and/or authentication of foodstuffs. In this context, the particular meaning of 'fingerprinting', in conjunction with 'profiling', is different from the original meanings used in metabolomics. This fact has produced some confusion with the use of these terms in analytical papers. Researchers coming from the metabolomic field could use 'profiling' or 'fingerprinting' on a different way to researchers who are devoted to food science. The arrival of an eclectic discipline, named 'foodomics' has not been enough to allay this terminological problem, since the authors keep on using the terms with both meanings. Thus, a first goal of this tutorial is to clarify the difference between both terms. In addition, the chemical approaches for food authentication, i.e., chemical markers, component profiling and instrumental fingerprinting, have been described. A new term, designated as 'food identitation', has been introduced in order to complete the life cycle of the chemical-based food authentication process. Chromatographic fingerprinting has been explained in detail and some strategies which could be applied has been clarified and discussed. Particularly, the strategies for chromatographic signals acquisition and chromatographic data handling are unified in a single framework. Finally, an overview about the applications of chromatographic (GC and LC) fingerprints in food authentication using different chemometric techniques has been included. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Adsorption of Wine Constituents on Functionalized Surfaces.

    Science.gov (United States)

    Mierczynska-Vasilev, Agnieszka; Smith, Paul A

    2016-10-18

    The adsorption of macromolecules on solid surfaces is of great importance in the field of nanotechnology, biomaterials, biotechnological, and food processes. In the field of oenology adsorption of wine macromolecules such as polyphenols, polysaccharides, and proteins is much less desirable on membrane materials because of fouling and reduced filtering performance. On the other hand, adsorption of these molecules on processing aids is very beneficial for achieving wine clarity and stability. In this article, the effect of surface chemical functionalities on the adsorption of white, rosé, and red wine constituents was evaluated. Allylamine, acrylic acid, and ethanol were selected as precursors for plasma polymerization in order to generate coatings rich in amine, carboxyl, and hydroxyl chemical groups, respectively. The surface chemical functionalities were characterized by X-ray photoelectron spectroscopy (XPS) and the ability of different surface chemical functionalities to adsorb wine constituents were characterized by quartz crystal microbalance with dissipation (QCM-D) and atomic force microscopy (AFM). The results demonstrated that the amine and carboxyl modified surfaces encourage adsorption of constituents from white wine. The hydroxyl modified surfaces have the ability to preferentially adsorb rosé wine constituents, whereas red wine adsorbed to the highest extent on acrylic acid surface.

  19. Albumin (BSA) adsorption onto graphite stepped surfaces

    Science.gov (United States)

    Rubio-Pereda, Pamela; Vilhena, J. G.; Takeuchi, Noboru; Serena, Pedro A.; Pérez, Rubén

    2017-06-01

    Nanomaterials are good candidates for the design of novel components with biomedical applications. For example, nano-patterned substrates may be used to immobilize protein molecules in order to integrate them in biosensing units. Here, we perform long MD simulations (up to 200 ns) using an explicit solvent and physiological ion concentrations to characterize the adsorption of bovine serum albumin (BSA) onto a nano-patterned graphite substrate. We have studied the effect of the orientation and step size on the protein adsorption and final conformation. Our results show that the protein is stable, with small changes in the protein secondary structure that are confined to the contact area and reveal the influence of nano-structuring on the spontaneous adsorption, protein-surface binding energies, and protein mobility. Although van der Waals (vdW) interactions play a dominant role, our simulations reveal the important role played by the hydrophobic lipid-binding sites of the BSA molecule in the adsorption process. The complex structure of these sites, that incorporate residues with different hydrophobic character, and their flexibility are crucial to understand the influence of the ion concentration and protein orientation in the different steps of the adsorption process. Our study provides useful information for the molecular engineering of components that require the immobilization of biomolecules and the preservation of their biological activity.

  20. Adsorption of Wine Constituents on Functionalized Surfaces

    Directory of Open Access Journals (Sweden)

    Agnieszka Mierczynska-Vasilev

    2016-10-01

    Full Text Available The adsorption of macromolecules on solid surfaces is of great importance in the field of nanotechnology, biomaterials, biotechnological, and food processes. In the field of oenology adsorption of wine macromolecules such as polyphenols, polysaccharides, and proteins is much less desirable on membrane materials because of fouling and reduced filtering performance. On the other hand, adsorption of these molecules on processing aids is very beneficial for achieving wine clarity and stability. In this article, the effect of surface chemical functionalities on the adsorption of white, rosé, and red wine constituents was evaluated. Allylamine, acrylic acid, and ethanol were selected as precursors for plasma polymerization in order to generate coatings rich in amine, carboxyl, and hydroxyl chemical groups, respectively. The surface chemical functionalities were characterized by X-ray photoelectron spectroscopy (XPS and the ability of different surface chemical functionalities to adsorb wine constituents were characterized by quartz crystal microbalance with dissipation (QCM-D and atomic force microscopy (AFM. The results demonstrated that the amine and carboxyl modified surfaces encourage adsorption of constituents from white wine. The hydroxyl modified surfaces have the ability to preferentially adsorb rosé wine constituents, whereas red wine adsorbed to the highest extent on acrylic acid surface.

  1. Influencing the selectivity of zeolite Y for triglycine adsorption

    NARCIS (Netherlands)

    Wijntje, R.; Bosch, H.; Haan, A.B. de; Bussmann, P.J.T.

    2007-01-01

    In prior work we studied the adsorption of triglycine on zeolite Y under reference conditions. This study aims to solve the question of which adsorbent properties and process conditions influence the adsorption triglycine from an aqueous solution by zeolite Y. Relevant zeolite parameters to study

  2. Brazilian organic sugarcane spirits: Physicochemical and chromatographic profile

    Directory of Open Access Journals (Sweden)

    Felipe Cimino Duarte

    Full Text Available ABSTRACT There has been a growing demand for products from organic agriculture for the food market. Brazil leads the production of sugarcane spirits and produces about 1.6 billion liters/year. New technologies have been sought throughout the supply chain to improve production, and organic raw material has been used in the production of sugar cane for the production of beverages. This study aimed to define the physicochemical and chromatographic profiles of eleven organic sugarcane spirits samples from various Brazilian states. The secondary components and contaminants were identified and quantified through physicochemical analyses, HPLC and gas chromatography (GC. A significant percentage of the organic sugarcane spirits samples contained concentrations of components that were above the limits required by the Ministry of Agriculture, Livestock and Provisioning (MAPA, specifically the esters (18.20%, copper and dry extract (9.10%. This contamination is caused by bad conditions employed during the production process, which are not in compliance with the good manufacturing practices determined and legislated by Brazilian law.

  3. Incident at university research facility - melt down of gas chromatograph evaporation block and failure of a passive safety barrier

    DEFF Research Database (Denmark)

    Jensen, Niels; Jørgensen, Sten Bay

    2014-01-01

    Two incidents are described highlighting the importance of process hazard analysis in university laboratories. In the first incident, an online gas chromatograph (GC) was being developed. A complete meltdown of the heating blog was experienced during testing because the PC had failed to turn off...

  4. Adsorption mechanism of microcrystalline cellulose as green adsorbent for the removal of cationic methylene blue dye

    International Nuclear Information System (INIS)

    Tan, K.B.; Salamatinia, B.

    2016-01-01

    The adsorption mechanism of pure cellulose is yet to be explored. Thus, in this study, the adsorption mechanism of Microcrystalline Cellulose (MCC), a polysaccharide which is renewable, low cost and non-toxic, was studied on the adsorption of model dye Methylene blue (MB). It was found that the main adsorption mechanism of MB on MCC was due to the electrostatic attraction between the positively charged MB dye and negatively charged MCC. Thus, physical adsorption was the dominant effect, since electrostatic attraction is categorized as physical adsorption. This was verified by Dubinin-Radushkevich isotherm, whereby mean free energy adsorption value was found to be less than 8 kJ/mol. The values of Gibbs free energy for thermodynamics studies were found to be within the range of -20 kJ/mol and 0 kJ/mol, which also indicated physical adsorption. It was due to the electrostatic attraction as adsorption mechanism of this adsorption process which resulted rapid adsorption of MB dye. It was found that equilibrium dye concentration was achieved between 1-3 minutes, depending on the adsorption temperature. The rapid adsorption, as compared to a lot of materials, showed the potential of MCC as the future of green adsorbent. The adsorption of Methylene Blue on MCC fitted well in Langmuir Isotherm, with R2 values of higher than 0.99, while fitted moderately in Freundlich Isotherm, with R2 values between 0.9224 and 0.9223. Comparatively, the adsorption of MB on MCC fitted best Langmuir Isotherm as compared to Freundlich Isotherm which monolayer adsorption occurred at the homogenous surface of MCC. This also indicated adsorbed MB molecules do not interact with each other at neighboring adsorption sites. The maximum adsorption capacity calculated from Langmuir Isotherm was found to be 4.95 mg/g. Despite the potential of MCC as green adsorbent, the challenge of low adsorption capacity has to be addressed in the future. (author)

  5. Application of response surface methodology and artificial neural network: modeling and optimization of Cr(VI) adsorption process using Dowex 1X8 anion exchange resin.

    Science.gov (United States)

    Harbi, Soumaya; Guesmi, Fatma; Tabassi, Dorra; Hannachi, Chiraz; Hamrouni, Bechir

    2016-01-01

    We report the adsorption efficiency of Cr(VI) on a strong anionic resin Dowex 1X8. The Fourier transform infrared spectroscopy (FTIR) and X-ray diffraction (XRD) analysis of this adsorbent were investigated. Response surface methodology was applied to evaluate the main effects and interactions among initial pH, initial Cr(VI) concentration, adsorbent dose and temperature. Analysis of variance depicted that resin dose and initial pH were the most significant factors. Desirability function (DF) showed that the maximum Cr(VI) removal of 95.96% was obtained at initial pH 5, initial Cr(VI) concentration of 100 mg/L, resin dose of 2 g and temperature of 283 K. Additionally, a simulated industrial wastewater containing 14.95 mg/L of Cr(VI) was treated successfully by Dowex 1X8 at optimum conditions. Same experimental design was employed to develop the artificial neural network. Both models gave a high correlation coefficient (RRSM(2) = 0.932, RANN(2) = 0.996).

  6. Regenerative adsorption distillation system

    KAUST Repository

    Ng, Kim Choon

    2013-12-26

    There is provided a regenerative adsorption distillation system comprising a train of distillation effects in fluid communication with each other. The train of distillation effects comprises at least one intermediate effect between the first and last distillation effects of the train, each effect comprising a vessel and a condensing tube for flow of a fluid therein. The system further comprises a pair of adsorption-desorption beds in vapour communication with the last effect and at least one intermediate effect, wherein the beds contain an adsorbent that adsorbs vapour from the last effect and transmits desorbed vapour into at least one of the intermediate effect.

  7. Activated Carbon Preparation and Modification for Adsorption

    Science.gov (United States)

    Cao, Yuhe

    Butanol is considered a promising, infrastructure-compatible biofuel. Butanol has a higher energy content than ethanol and can be used in conventional gas engines without modifications. Unfortunately, the fermentation pathway for butanol production is restricted by its toxicity to the microbial strains used in the process. Butanol is toxic to the microbes, and this can slow fermentation rates and reduce butanol yields. Gas stripping technology can efficiently remove butanol from the fermentation broth as it is produced, thereby decreasing its inhibitory effects. Traditional butanol separation heavily depends on the energy intensive distillation method. One of the main issues in acetone-butanol-ethanol fermentation is that butanol concentrations in the fermentation broth are low, ranging from 1 to 1.2 percent in weight, because of its toxicity to the microorganisms. Therefore distillation of butanol is even worse than distillation of corn ethanol. Even new separation methods, such as solid- extraction methods involve adding substances, such as polymer resin and zeolite or activated carbon, to biobutanol fermentatioon broth did not achieve energy efficient separation of butanol due to low adsorption selectivity and fouling in broth. Gas-stripping - condensation is another new butanol recovery method, however, the butanol in gas-stripping stream is too low to be condensed without using expensive and energy intensive liquid nitrogen. Adsorption can then be used to recover butanol from the vapor phase. Activated carbon (AC) samples and zeolite were investigated for their butanol vapor adsorption capacities. Commercial activated carbon was modified via hydrothermal H2O2 treatment, and the specific surface area and oxygen-containing functional groups of activated carbon were tested before and after treatment. Hydrothermal H2O 2 modification increased the surface oxygen content, Brunauer-Emmett-Teller surface area, micropore volume, and total pore volume of active carbon

  8. Effects of Biochar on Adsorption Characteristics of Water-soluble Fluorine in Tea Garden Soil

    Directory of Open Access Journals (Sweden)

    SUN Yong-hong

    2017-06-01

    Full Text Available The adsorption characteristics of water-soluble fluoride with application of biochar in tea garden soil was studied by indoor culture test. The results showed that the adsorption quantity and adsorption rate of water-soluble fluorine decreased gradually with the increase of biochar amounts in tea garden soil. The isothermal adsorption of Langmuir equation, Freundlich equation and Temkin equation could be better used to describe the adsorption law of water-soluble fluorine, and the Freundlich equation had the best fitting curve. With the increase of biochar content of soil, the net amount of fluoride adsorption reduced gradually. The adsorption kinetics of fluoride in soil was characterized by fast adsorption and slow reaction stages. The equilibrium time was less than 120 min for the rapid increase of adsorption, 0.25% and 0.50% biomass carbon content treatments of the soil reached to equilibrium after 1 440 min. The results of theoretic calculation were in good agreement with experimental adsorption quantity by dual constant equation, Elovich equation and first order kinetics equation, which could accurately describe the adsorption process of water-soluble fluorine in soil with biochar. The increase of soil pH with the addition of biochar was closely related to the decrease of maximum adsorption quantity, adsorption intensity and net adsorption quantity of water-soluble fluorine in tea garden soil.

  9. Mechanism of amitriptyline adsorption on Ca-montmorillonite (SAz-2)

    International Nuclear Information System (INIS)

    Chang, Po-Hsiang; Jiang, Wei-Teh; Li, Zhaohui; Kuo, Chung-Yih; Jean, Jiin-Shuh; Chen, Wan-Ru; Lv, Guocheng

    2014-01-01

    Graphical abstract: XRD patterns to show AMI intercalation into SAz-2 vs. direct mixing of the same amount of AMI with SAz-2. - Highlights: • Ca-montmorillonite is proven to be an efficient adsorbent or sink for amitriptyline. • The high adsorption capacity is accompanied with intercalation into interlayers. • The adsorption is mainly governed by a cation exchange mechanism. • Horizontal mono- and bi-layer conformations occur at low and high adsorption levels. • The process is an endothermic physisorption at high adsorption levels. - Abstract: The uptake of amitriptyline (AMI) from aqueous environment by Ca-montmorillonite (SAz-2) was studied in a batch system under different physicochemical conditions. The adsorbent was characterized by X-ray diffraction and Fourier transform infrared (FTIR) analyses. The AMI adsorption on SAz-2 obeyed the Langmuir isotherm with a capacity of 330 mg/g (1.05 mmol/g) at pH 6–7. The adsorption kinetics was fast, almost reaching equilibrium in 2 h, and followed a pseudo-second-order kinetic model. Desorption of exchangeable cations correlated with the AMI adsorption well, indicating that cation exchange was the major mechanism. X-ray diffraction patterns showing significant expansions of the d 0 0 1 spacing and characteristic FTIR band shifts toward higher frequencies after AMI adsorption onto SAz-2 indicated that the adsorbed AMI molecules were intercalated into the interlayers of the mineral. Thermodynamic parameters based on partitioning coefficients suggested that the AMI adsorption was an endothermic physisorption at high adsorption levels. At low and higher AMI adsorption levels, the intercalated AMI molecules take a horizontal monolayer and bilayer conformation, respectively. The higher adsorption capacity suggested that SAz-2 could be a good candidate to remove AMI from wastewater and would be an important environmental sink for the fate and transport of AMI in soils and groundwater

  10. Enhanced fluoride adsorption using Al (III) modified calcium hydroxyapatite

    International Nuclear Information System (INIS)

    Nie, Yulun; Hu, Chun; Kong, Chuipeng

    2012-01-01

    Highlights: ► Al modified hydroxyapatite possessed a higher defluoridation capacity of 32.57 mg/g. ► Hydroxyl groups on the surface of Al-HAP was the adsorption sites for F − removal. ► Enhanced F − removal over Al-HAP was attributed to the modification with aluminum. - Abstract: Aluminum-modified hydroxyapatite (Al-HAP) was prepared and characterized using XRD and BET analyses. Al-HAP possessed higher defluoridation capacity (DC) of 32.57 mgF − /g than unmodified hydroxyapatite (HAP) which showed a DC of 16.38 mgF − /g. The effect of Al/Ca atomic ratio in Al-HAP, solution pH and co-existing anions was further studied. The results indicated that the adsorption data could be well described by the Langmuir isotherm model and the adsorption kinetic followed the pseudo-second-order model. The pH changes during the adsorption process suggested that the -OH on the surface of Al-HAP was the adsorption sites. The more adsorption sites were formed on Al modified HAP, which possessed abundant surface hydroxyl groups, resulting in higher efficiency of F − removal. Thermodynamic parameters such as ΔG°, ΔH° and ΔS° were calculated in order to understand the nature of adsorption process. The results revealed that the adsorption reaction was a spontaneous and endothermic process.

  11. Polyphenols and β-glucan interactions through linear adsorption models

    Directory of Open Access Journals (Sweden)

    Š. Ukić

    2016-01-01

    Full Text Available The aim of this work was to obtain information about interactions between polyphenols and β-glucan through linear adsorption equilibrium models. Polyphenolic compounds can interact with various food ingredients such as carbohydrates, proteins and lipids and these interactions can affect polyphenol bioactivities. Interactions can be studied through the adsorption process at a constant temperature and adsorption isotherms can be obtained. In this work the interactions between polyphenols like gallic acid, cyanidin-3-galactoside and cyanidin-3-glucoside and β-glucan as a natural dietary fiber were studied through the Freundlich's, Langmuir's, Dubinin-Radushkevich's, Tempkin's and Hill's models. The adsorption was carried out through model solutions of different concentrations of polyphenols and β-glucan for 16 hours at 25 °C. After the adsorption, the unadsorbed polyphenols were separated from the adsorbed ones by ultrafiltration. Concentrations of the unadsorbed polyphenols were determined by the spectrophotometric Folin-Ciocalteu method for gallic acid, and the pH differential method for cyanidin-3-galactoside and cyanidin-3-glucoside. The results of adsorption isotherm parameters showed that adsorption between all polyphenols and β-glucan were physical, and all interactions were favorized. Gallic acid showed the highest maximum adsorption capacity onto β-glucan. This study showed that information about interactions between polyphenols and dietary fibers can be obtained through the linear adsorption equilibrium isotherms.

  12. Physical adsorption and molecular dynamics

    International Nuclear Information System (INIS)

    Cohan, N.V.

    1981-01-01

    Some aspects of noble gases adsorption (except He) on graphite substracts are reviewed. Experimental results from this adsorption are analyzed and compared with molecular dynamics calculations. (L.C.) [pt

  13. Adsorption of 2,4-Dichlorophenoxyacetic Acid from an Aqueous Solution on Fly Ash.

    Science.gov (United States)

    Kuśmierek, Krzysztof; Świątkowski, Andrzej

    2016-03-01

    The adsorption of 2,4-dichlorophenoxyacetic acid (2,4-D) on fly ash was studied. The effects of adsorbent dose, contact time, pH, ionic strength, and temperature on the adsorption were investigated. Adsorption kinetic data were analyzed using pseudo-first and pseudo-second order models, and results showed that adsorption kinetics were better represented by the pseudo-second order model. Adsorption isotherms of 2,4-D on fly ash were analyzed using the Freundlich and Langmuir models. Thermodynamic parameters (ΔG°, ΔH°, and ΔS°) indicated that the adsorption process was spontaneous and endothermic. The negative values of ΔG° and the positive value of ΔH° indicate the spontaneous nature of 2,4-D adsorption on fly ash, and that the adsorption process was endothermic. Results showed that fly ash is an efficient, low-cost adsorbent for removal of 2,4-D from water.

  14. Adsorption of dodecylamine hydrochloride on graphene oxide in water

    Science.gov (United States)

    Chen, Peng; Li, Hongqiang; Song, Shaoxian; Weng, Xiaoqing; He, Dongsheng; Zhao, Yunliang

    Cationic surfactants in water are difficult to be degraded, leading to serious water pollution. In this work, graphene oxide (GO) was used as an adsorbent for removing Dodecylamine Hydrochloride (DACl), a representative cationic surfactant. X-ray diffraction (XRD), FT-IR spectroscopy and atomic force microscope (AFM) were used to characterize the prepared GO. The adsorption of DACl on GO have been investigated through measurements of adsorption capacity, zeta potential, FTIR, and X-ray photoelectron spectroscopy (XPS). The experimental results have shown that the adsorption kinetics could be described as a rate-limiting pseudo second-order process, and the adsorption isotherm agreed well with the Freundlich model. GO was a good adsorbent for DACl removal, compared with coal fly ash and powdered activated carbon. The adsorption process was endothermic, and could be attributed to electrostatic interaction and hydrogen bonding between DACl and GO.

  15. Adsorption Properties and Potential Applications of Bamboo Charcoal: A Review

    Directory of Open Access Journals (Sweden)

    Isa S.S.M.

    2016-01-01

    Full Text Available Bamboo charcoal was produced by pyrolysis or carbonization process with extraordinary properties such as high conductivity, large surface area and adsorption property. These properties can be improved by activation process that can be done thermally or chemically. In this paper, carbonization and activation process of bamboo, its structural and adsorption properties will be presented. Herein, the adsorption properties of bamboo charcoal that has fully utilized in solar cell as the electrode, adsorbent for water purification and electromagnetic wave absorber are reviewed.

  16. Adsorption Properties of Chalk Reservoir Materials

    DEFF Research Database (Denmark)

    Okhrimenko, Denis

    Understanding adsorption energetics and wetting properties of calcium carbonate surfaces is essential for developing remediation strategies for aquifers, improving oil recovery, minimising risk in CO2 storage and optimising industrial processes. This PhD was focussed on comparing the vapour....../gas adsorption properties of synthetic calcium carbonate phases (calcite, vaterite and aragonite) with chalk, which is composed of biogenic calcite (>98%). In combination with data from nanotechniques, the results demonstrate the complexity of chalk behavior and the role of nanoscale clay particles. The results...

  17. Adsorption on mixtures of ion exchangers

    International Nuclear Information System (INIS)

    Triolo, R.; Lietzke, M.H.

    1979-01-01

    A theoretical study has been made of adsorption on mixtures of ion exchangers. The effect of variables such as the concentration of the ion being adsorbed, the concentration of the supporting electrolyte, loading, the values of the capacities and equilibrium constants for the various exchange processes, and the fraction of each adsorber in the mixture on the observed distribution coefficient has been investigated. A computer program has been written to facilitate the calculation of distribution coefficients for the adsorption of an ion on a given mixture of ion exchangers under a specified set of conditions

  18. Adsorption-desorption behavior of atrazine on agricultural soils in China.

    Science.gov (United States)

    Yue, Lin; Ge, ChengJun; Feng, Dan; Yu, Huamei; Deng, Hui; Fu, Bomin

    2017-07-01

    Adsorption and desorption are important processes that affect atrazine transport, transformation, and bioavailability in soils. In this study, the adsorption-desorption characteristics of atrazine in three soils (laterite, paddy soil and alluvial soil) were evaluated using the batch equilibrium method. The results showed that the kinetics of atrazine in soils was completed in two steps: a "fast" adsorption and a "slow" adsorption and could be well described by pseudo-second-order model. In addition, the adsorption equilibrium isotherms were nonlinear and were well fitted by Freundlich and Langmuir models. It was found that the adsorption data on laterite, and paddy soil were better fitted by the Freundlich model; as for alluvial soil, the Langmuir model described it better. The maximum atrazine sorption capacities ranked as follows: paddy soil>alluvial soil>laterite. Results of thermodynamic calculations indicated that atrazine adsorption on three tested soils was spontaneous and endothermic. The desorption data showed that negative hysteresis occurred. Furthermore, lower solution pH value was conducive to the adsorption of atrazine in soils. The atrazine adsorption in these three tested soils was controlled by physical adsorption, including partition and surface adsorption. At lower equilibrium concentration, the atrazine adsorption process in soils was dominated by surface adsorption; while with the increase of equilibrium concentration, partition was predominant. Copyright © 2016. Published by Elsevier B.V.

  19. ADSORPTIVE REMOVAL OF FLUORIDE FROM WATER USING ...

    African Journals Online (AJOL)

    Preferred Customer

    It requires high capital investment cost and high energy consumption, and is not economical as in the case of the ..... and Temkin isotherm. Freundlich isotherm model assumes unlimited sorption sites which .... energy 13.15 kJ mol-1, which indicates the fluoride removal by nano-AlOOH is chemisorption process. Adsorption ...

  20. Langmuir, Freundlich and Temkin Adsorption Isotherms of Propranolol on Multi-Wall Carbon Nanotube

    OpenAIRE

    Mehdi Vadi

    2017-01-01

    We have studied the adsorption of the isotherm of Propranolol, on multi carbon nanotube. The adsorption equilibrium isotherms were fitted by Freundlich, Langmuir, and Temkin models. It was found that the Langmuir model described the adsorption process better than other two isotherm models. The amount of NSAIDs (Propranolol) adsorbed on carbon nanotube surface increased with the increase of the initial NSAIDs concentration.

  1. Non-equilibrium dynamics of single polymer adsorption to solid surfaces

    NARCIS (Netherlands)

    Panja, D.; Barkema, G.T.; Kolomeisky, A.B.

    2009-01-01

    The adsorption of polymers to surfaces is crucial for understanding many fundamental processes in nature. Recent experimental studies indicate that the adsorption dynamics is dominated by non-equilibrium effects. We investigate the adsorption of a single polymer of length N to a planar solid surface

  2. Adsorption in cryogenics

    International Nuclear Information System (INIS)

    Ravex, A.

    1989-01-01

    There are two main fields for application of physical adsorption in cryogenics: cryopumping and refrigeration. Cryopumping has known many developments but is now almost industrial. Basic principles, applications and realizations are presented, for instance, in nuclear fusion and particle physics. For refrigeration developments and realizations are rare but present potential space applications [fr

  3. Adsorption of multi-heavy metals Zn and Cu onto surficial sediments: modeling and adsorption capacity analysis.

    Science.gov (United States)

    Li, Shanshan; Zhang, Chen; Wang, Meng; Li, Yu

    2014-01-01

    Improved multiple regression adsorption models (IMRAMs) was developed to estimate the adsorption capacity of the components [Fe oxides (Fe), Mn oxides (Mn), organic materials (OMs), residuals] in surficial sediments for multi-heavy metal Zn and Cu. IMRAM is an improved version over MRAM, which introduces a computer program in the model developing process. As MRAM, Zn(Cu) IMRAM, and Cu(Zn) IMRAM again confirmed that there is significant interaction effects that control the adsorption of compounded Zn and Cu, which was neglected by additional adsorption model. The verification experiment shows that the relative deviation of the IMRAMs is less than 13%. It is revealed by the IMRAMs that Mn, which has the greatest adsorption capability for compounded Zn and Cu (54.889 and 161.180 mg/l, respectively), follows by interference adsorption capacity of Fe/Mn (-1.072 and -24.591 mg/l respectively). Zn and Cu influence each other through different mechanisms. When Zn is the adsorbate, compounded Cu mainly affects the adsorption capacities of Fe/Mn and Fe/Mn/OMs; while when Cu is the adsorbate, compounded Zn mainly exerts its effect on Mn, Fe/Mn, and Mn/OMs. It also shows that the compounded Zn or Cu weakened the interference adsorption of Fe/Mn, and meanwhile, strengthened the interference adsorption of Mn/OMs.

  4. [Retention behavior of solutes on liquid chromatographic column packed with dynamically modified zirconia].

    Science.gov (United States)

    Zhang, Q; Feng, Y; Yan, L; Da, S

    1999-05-01

    Zirconia was dynamically modified with stearic acid, beta-cyclodextrin and sodium dodecylsulfonate, separately, to form liquid chromatographic packings. The chromatographic behaviors of aromatic hydrocarbons, acidic compounds (phenol, nitrophenols and benzoic acids) and basic compounds (aniline, nitroanilines and toluidines) were investigated on these modified zirconia packings with a mixture of methanol/water as the mobile phase. On stearic acid modified zirconia, aromatic hydrocarbons and the basic compounds exhibit symmetrical peaks. The retention time of these solutes decreases with increasing the concentration of methanol in the mobile phase. When the mobile phases with stearic acid were used, the retention time of these solutes has a maximum with variation of stearic acid concentration (0-1.0 mmol/L) in the mobile phase. However, the acidic compounds such as nitrophenols and benzoic acids are strongly adsorbed and can not be eluted from the column with the mobile phases. No leaking of stearic acid on the modified zirconia was found after 3000 column volumes of the methanol/water mobile phase were used. The results showed that the stearic acid modified zirconia can be used as a stationary phase for reversed-phase liquid chromatography. On beta-cyclodextrin modified zirconia, aromatic hydrocarbons and basic compounds exhibit shorter retention time than those on the stearic acid modified zirconia under the same mobile phase composition, however, nitrophenols can be eluted but give unsymmetrical peaks. On sodium dodecylsulfonate modified zirconia packings, the basic compounds can not be retarded; Aromatic hydrocarbons and acidic compounds exhibit short retention time. The results can be ascribed to the weak adsorption of sodium dodecylsulfonate on the zirconia.

  5. A DFT study of the NO adsorption on Pdn (n = 1–4) clusters

    OpenAIRE

    Lacaze-Dufaure, Corinne; Roques, Jérôme; Mijoule, Claude; Sicilia, Emilia; Russo, Nino; Alexiev, Valentin; Mineva, Tzonka

    2011-01-01

    We report a density-functional study of some properties of the adsorption process of the NO molecule on small palladium clusters (n = 1–4). The interaction between NO and the Pdn clusters is studied on various adsorption sites. Both, NO and Pdn geometrical relaxations are taken into account. The significant conformational reconstruction of the metallic cluster upon NO adsorption induces a large decrease of the NO adsorption energy. Nevertheless, the N–O binding energy is strongly weakened whe...

  6. Miniaturized chromatographic radiochemical procedure for 131I - MIBG

    International Nuclear Information System (INIS)

    Barboza, M.F. de; Pereira, N.S. de; Colturato, M.T.; Silva, C.P.G. da.

    1989-12-01

    Different solvents were used in paper chromatographic methods to obtain the best system in routine radiochemical control for 131 I-MIBG produced at IPEN-CNEN/SP. The dates were compared with those obtained with eletrophoresis method in buffer acetate, pH=4.5, 350V, during 40 minutes. The stability of the labeled compound store under 4 0 C was studied during 15 days. Miniaturized chromatographic procedures were established using Whatman 3MM (8x1cm) and n-butanol-:acetic acid: water (S:2:1) as a solvent. the Rf values were: 0.3 (I - ) and 1.0 (MIBG). The radiochemical purity was 99.3 and 99.2% (first day) obtained with eletrophoresis and miniaturized chromatographic procedures, respectively and, 84.7% after 15 days of its preparation. It is a rapid, practical and reproductive method. (author) [pt

  7. Adsorption of ammonium dinitramide (ADN) from aqueous solutions. 1. Adsorption on powdered activated charcoal.

    Science.gov (United States)

    Santhosh, G; Venkatachalam, S; Ninan, K N; Sadhana, R; Alwan, S; Abarna, V; Joseph, M A

    2003-03-17

    Investigations on the adsorption of ammonium dinitramide (NH(4)N(NO(2))(2)) (ADN) from aqueous solutions on powdered activated charcoal (PAC) were carried out in order to find out an effective and easier method of separating ADN from aqueous solutions. The effectiveness of PAC in the selective adsorption of ADN from aqueous solutions of ADN (ADN-F) and ADN in presence of sulfate (SO(4)(2-)) and nitrate (NO(3)(-)) ions (ADN-PS) was examined and compared using batch and column methods. The adsorption process follows both Langmuir and Freundlich adsorption isotherms and the isotherm parameters for the models were determined. The observed data favor the formation of monolayer adsorption. The adsorption capacities were found to be 63.3, 119, 105.3 and 82 mg of ADN per g of PAC for ADN-F (batch), ADN-PS (batch), ADN-F (column) and ADN-PS (column), respectively. Break-through curves for ADN-F and ADN-PS were obtained for the optimization of separation of ADN from aqueous solutions. Elution curves were generated for the desorption of ADN from PAC using hot water as eluent. Copyright 2003 Elsevier Science B.V.

  8. Adsorption of heavy metal ions by sawdust of deciduous trees.

    Science.gov (United States)

    Bozić, D; Stanković, V; Gorgievski, M; Bogdanović, G; Kovacević, R

    2009-11-15

    The adsorption of heavy metal ions from synthetic solutions was performed using sawdust of beech, linden and poplar trees. The adsorption depends on the process time, pH of the solution, type of ions, initial concentration of metals and the sawdust concentration in suspension. The kinetics of adsorption was relatively fast, reaching equilibrium for less than 20 min. The adsorption equilibrium follows Langmuir adsorption model. The ion exchange mechanism was confirmed assuming that the alkali-earth metals from the adsorbent are substituted by heavy metal ions and protons. On lowering the initial pH, the adsorption capacity decreased, achieving a zero value at a pH close to unity. The maximum adsorption capacity (7-8 mg g(-1) of sawdust) was achieved at a pH between 3.5 and 5 for all the studied kinds of sawdust. The initial concentration of the adsorbate and the concentration of sawdust strongly affect the process. No influence of particles size was evidenced. A degree of adsorption higher than 80% can be achieved for Cu(2+) ions but it is very low for Fe(2+) ions, not exceeding 10%.

  9. Adsorption Property and Mechanism of Oxytetracycline onto Willow Residues.

    Science.gov (United States)

    Wang, Di; Xu, Haiyang; Yang, Shengke; Wang, Wenke; Wang, Yanhua

    2017-12-22

    To elucidate the adsorption property and the mechanism of plant residues to reduce oxytetracycline (OTC), the adsorption of OTC onto raw willow roots (WR-R), stems (WS-R), leaves (WL-R), and adsorption onto desugared willow roots (WR-D), stems (WS-D), and leaves (WL-D) were investigated. The structural characterization was analyzed by scanning electron microscopy, Fourier-transform infrared spectra, and an elemental analyzer. OTC adsorption onto the different tissues of willow residues was compared and correlated with their structures. The adsorption kinetics of OTC onto willow residues was found to follow the pseudo-first-order model. The isothermal adsorption process of OTC onto the different tissues of willow residues followed the Langmuir and Freundlich model and the process was also a spontaneous endothermic reaction, which was mainly physical adsorption. After the willow residues were desugared, the polarity decreased and the aromaticity increased, which explained why the adsorption amounts of the desugared willow residues were higher than those of the unmodified residues. These observations suggest that the raw and modified willow residues have great potential as adsorbents to remove organic pollutants.

  10. Influencing the selectivity of zeolite Y for triglycine adsorption.

    Science.gov (United States)

    Wijntje, R; Bosch, H; de Haan, A B; Bussmann, P J T

    2007-02-16

    In prior work we studied the adsorption of triglycine on zeolite Y under reference conditions. This study aims to solve the question of which adsorbent properties and process conditions influence the adsorption triglycine from an aqueous solution by zeolite Y. Relevant zeolite parameters to study are: the amount of acidic sites (Si/Al(2) ratio), counter ion, micropore structure. Process conditions that may influence triglycine adsorption are pH, other components such as sugars, amino acids and salts, and temperature. Adsorption of triglycine on zeolite HY is dominated by ionic interaction. The capacity and selectivity of zeolite HY for triglycine can be changed by choosing different Si/Al(2) ratios or changing the counter ion. The presence of cations and basic anions in solutions reduces triglycine adsorption. Fructose and glycine have no significant influence on triglycine adsorption. Temperature only has a slight influence. The pore structure of zeolite Y is not a critical factor for triglycine adsorption, provided pores are accessible to triglycine and in the micropore range (<2 nm). While this allows other zeolites than zeolite Y to be applied, the presence of the supercage structure of zeolite Y is beneficial to obtain better adsorption of triglycine in its neutral form.

  11. Adsorption of heavy metal ions by sawdust of deciduous trees

    International Nuclear Information System (INIS)

    Bozic, D.; Stankovic, V.; Gorgievski, M.; Bogdanovic, G.; Kovacevic, R.

    2009-01-01

    The adsorption of heavy metal ions from synthetic solutions was performed using sawdust of beech, linden and poplar trees. The adsorption depends on the process time, pH of the solution, type of ions, initial concentration of metals and the sawdust concentration in suspension. The kinetics of adsorption was relatively fast, reaching equilibrium for less than 20 min. The adsorption equilibrium follows Langmuir adsorption model. The ion exchange mechanism was confirmed assuming that the alkali-earth metals from the adsorbent are substituted by heavy metal ions and protons. On lowering the initial pH, the adsorption capacity decreased, achieving a zero value at a pH close to unity. The maximum adsorption capacity (7-8 mg g -1 of sawdust) was achieved at a pH between 3.5 and 5 for all the studied kinds of sawdust. The initial concentration of the adsorbate and the concentration of sawdust strongly affect the process. No influence of particles size was evidenced. A degree of adsorption higher than 80% can be achieved for Cu 2+ ions but it is very low for Fe 2+ ions, not exceeding 10%.

  12. Adsorption Characteristics of Polyvinyl Alcohols in Solution on Expanded Graphite

    Directory of Open Access Journals (Sweden)

    Xiu-Yan Pang

    2012-01-01

    Full Text Available Expanded graphite (EG adsorbent was prepared with 50 mesh graphite as raw materials, potassium permanganate as oxidant, and vitriol as intercalation compound. Three kinds of polyvinyl alcohol (PVA with different degree of polymerization (DP in aqueous solution were used as adsorbates. We have studied the influence of initial PVA concentration, temperature and ionic strength on adsorption capacity. Langmuir constants and Gibbs free energy change (⊿G° were calculated according to experimental data respectively. Thermodynamic analysis indicates the equilibrium adsorbance of PVA on EG increase with the rise of SO42– concentration. Adsorption isotherms of PVA with different degree of polymerization are all types and we deduce PVA molecules lie flat on EG surface. Adsorption processes are all spontaneous. Kinetic studies show that the kinetic data can be described by pseudo second-order kinetic model. Second-order rate constants and the initial adsorption rate rise with the increasing of temperature and half-adsorption time decreases with the increasing of temperature. The adsorption activation energy of each PVA is less than 20 kJ•mol−1, physical adsorption is the major mode of the overall adsorption process.

  13. Measurement, by adsorption, of the dispersion of platinum on supported catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Castells, R.C.

    1979-12-01

    A gas chromatographic pulsed adsorption technique similar to that of Freel was used in hydrogen and oxygen chemisorption measurements, and in ''titrating'' adsorbed hydrogen with oxygen pulses (H-O) and adsorbed oxygen with hydrogen pulses (O-H) on the surfaces of a Houdry 3H (0.30-0.70% platinum/alumina) catalyst and of 3.7 and 2.3% Pt/silica catalysts. In successive H-O and O-H titration cycles, hydrogen and oxygen consumption increased, leveling off after 8-10 cycles for Pt/alumina and after 3-4 cycles for the Pt/silica catalyst. The adsorption of hydrogen increased, whereas that of oxygen decreased with increasing number of cycles. The H-O titration sequence was a more accurate method of measuring metal dispersion than hydrogen adsorption or the O-H sequence.

  14. Chemical characterization of Brickellia cavanillesii (Asteraceae) using gas chromatographic methods

    OpenAIRE

    Eshiet, Etetor R; Zhu, Jinqiu; Anderson, Todd A; Smith, Ernest E

    2013-01-01

    A methanol extract of lyophilized Brickellia cavanillesii was quantitatively analyzed using gas chromatographic (GC) techniques. The chromatographic methods employed were (i) GC-flame ionization detector (GC-FID), (ii) GC-mass spectrometry (GC-MS), and (iii) purge and trap GC-MS (P&T GC-MS). Thirteen compounds were identified with a quality match of 90% and above using GC-MS. The compounds were (1) Cyclohexene, 6-ethenyl-6-methyl-1-(1-methylethyl)-3-(1-methylethylidene)-, (S)-; (2) Bicylo (2....

  15. Adsorption properties of Silochrom chemically modified with nickel acetylacetonate

    Science.gov (United States)

    Pakhnutova, Evgeniya; Slizhov, Yuriy

    2017-11-01

    One of the areas of development of gas chromatography is the creation of new chromatographic materials that have improved sorption and analytical characteristics. In this work, for the first time, a new sorbent based on Silochrom C-120 modified with nickel acetylacetonate was studied using a complex of physico-chemical methods. It has been established that due to chemical modification of silica gel surface with nickel acetylacetonate the surface area of the specific surface decreases from 112 to 98 m2/g and surface acidity diminishes by 1.2 pH units. Using the thermogravimetric analysis it has been revealed that the obtained sorbent can be used in gas chromatography up to 290°C. Gas chromatography method was used to investigate the adsorption properties of the modified materials. According to the retention data of adsorbates: n-alkanes (C6-C9), benzene, ethanol, nitropropane and butanone-2 the differential molar adsorption energy q¯dif, 1, Henry adsorption constants K1,C, the differential molar entropy ΔS¯S1 and Δ q¯dif, 1 (special) of adsorbates in dispersion and specific interactions were calculated. The influence of the modifying additive on the changings in the thermodynamic retention characteristics of all sorbates because of the manifestation of specific sorbate-sorbent interactions has been shown. The highest values of the thermodynamic parameters were indicative for sorbates forming hydrogen bonds and capable of donor-acceptor interaction.

  16. A coordination chemistry approach for modeling trace element adsorption

    International Nuclear Information System (INIS)

    Bourg, A.C.M.

    1986-01-01

    The traditional distribution coefficient, Kd, is highly dependent on the water chemistry and the surface properties of the geological system being studied and is therefore quite inappropriate for use in predictive models. Adsorption, one of the many processes included in Kd values, is described here using a coordination chemistry approach. The concept of adsorption of cationic trace elements by solid hydrous oxides can be applied to natural solids. The adsorption process is thus understood in terms of a classical complexation leading to the formation of surface (heterogeneous) ligands. Applications of this concept to some freshwater, estuarine and marine environments are discussed. (author)

  17. Adsorption behavior of SO2 on vacancy-defected graphene: A DFT study

    Science.gov (United States)

    Zhou, Qingxiao; Ju, Weiwei; Su, Xiangying; Yong, Yongliang; Li, Xiaohong

    2017-10-01

    The adsorption of an SO2 molecule on the perfect and point-defective graphene surfaces were investigated using density functional theory (DFT). The geometric structure, adsorption energy, charge transfer, and electronic properties were calculated and analyzed to characterize the effect of vacancy on the adsorption process of SO2 on the graphene. The result indicated that the presence of vacancy enhanced the adsorption stability with the larger adsorption energy and net charge transfer compared to that of perfect graphene. Moreover, the SO2 molecule on different adsorption sites exhibited dissimilar states because of the adsorption. Furthermore, the results of the electronic properties revealed that the adsorption of SO2 induced an opening of the band gap.

  18. Adsorption and desorption characteristics of lindane, carbofuran and methyl parathion on various Indian soils

    International Nuclear Information System (INIS)

    Rama Krishna, K.; Philip, Ligy

    2008-01-01

    Adsorption and desorption characteristics of three insecticides on four Indian soils were studied. Insecticides used were representative of organochlorine, organophosphate, and carbomate groups. The order of adsorption of pesticides on soils was: lindane > methyl parathion > carbofuran. Compost soil had shown the maximum adsorption capacity. The order of adsorption capacity of various soils were: compost soil > clayey soil > red soil > sandy soil. Adsorption isotherms were better fitted to Freundlich model and K f values increased with increase in organic matter content of the soils. Thermodynamic parameters indicated favorable adsorption of all the three pesticides in four different soils. Adsorption was exothermic in nature. Distilled water desorbed 30-60% of adsorbed pesticides whereas; organic solvents were able to affect 50-80% of sorbed pesticides. Clay content and organic matter played a significant role in pesticide adsorption and desorption processes. Hysteresis effect was observed in red, clayey and compost soils. Hysteresis effect increased with increase in organic matter and clay content of the soils

  19. Adsorption of 2,4,6-trinitrotoluene on carboxylated porous polystyrene microspheres

    International Nuclear Information System (INIS)

    Ye Zhengfang; Meng Qingqiang; Lu Shengtao

    2012-01-01

    Large-pore-size (150 nm) polystyrene (PSt) microspheres were carboxylated with phthalic anhydride (PA) through Friedel-Crafts acetylation to study the adsorption of 2,4,6-trinitrotoluene (TNT) on this material from aqueous solution. The scanning electron microscope (SEM) images and mercury porosimetry measurements (MPM) of the microspheres showed that the pore structure was unchanged during the reaction. High adsorption capacity (11.2 mg g -1 of suction-dried adsorbent) and adsorption rate (33.9 mg g -1 h -1 ) for TNT were observed during the study. As shown by the adsorption isotherm, the adsorption of TNT on PA-PSt can be described by the Freundlich adsorption equation, indicating heterogeneous adsorption process. On-column adsorption of TNT on PA-PSt and elution indicated that TNT can be completely removed from aqueous solution and condensed into acetone.

  20. Adsorption of Monobutyl Phthalate from Aqueous Phase onto Two Macroporous Anion-Exchange Resins

    Directory of Open Access Journals (Sweden)

    Zhengwen Xu

    2014-01-01

    Full Text Available As new emerging pollutants, phthalic acid monoesters (PAMs pose potential ecological and human health risks. In the present study, adsorption performance of monobutyl phthalate (MBP onto two macroporous base anion-exchange resins (D-201 and D-301 was discussed. It was found that the adsorption isotherms were best fitted by the Langmuir equation while the adsorption kinetics were well described by pseudo-first-order model. Analyses of sorption isotherms and thermodynamics proved that the adsorption mechanisms for DBP onto D-201 were ion exchange. However, the obtained enthalpy values indicate that the sorption process of MBP onto D-301 is physical adsorption. The equilibrium adsorption capacities and adsorption rates of DBP on two different resins increased with the increasing temperature of the solution. D-301 exhibited a higher adsorption capacity of MBP than D-201. These results proved that D-301, as an effective sorbent, can be used to remove phthalic acid monoesters from aqueous solution.

  1. An Adsorption Equilibria Model for Steady State Analysis

    KAUST Repository

    Ismail, Azhar Bin

    2016-02-29

    The investigation of adsorption isotherms is a prime factor in the ongoing development of adsorption cycles for a spectrum of advanced, thermally-driven engineering applications, including refrigeration, natural gas storage, and desalination processes. In this work, a novel semi-empirical mathematical model has been derived that significantly enhances the prediction of the steady state uptake in adsorbent surfaces. This model, a combination of classical Langmuir and a novel modern adsorption isotherm equation, allows for a higher degree of regression of both energetically homogenous and heterogeneous adsorbent surfaces compared to several isolated classical and modern isotherm models, and has the ability to regress isotherms for all six types under the IUPAC classification. Using a unified thermodynamic framework, a single asymmetrical energy distribution function (EDF) has also been proposed that directly relates the mathematical model to the adsorption isotherm types. This fits well with the statistical rate theory approach and offers mechanistic insights into adsorption isotherms.

  2. Traps for phosphorus adsorption

    International Nuclear Information System (INIS)

    Montoya, Nawer D; Villegas, Wilson E; Rodriguez, Lino M; Taborda, Nelson; Montes de C, Consuelo

    2001-01-01

    Several AL 2 O 3 supported oxides such as: NiO, CuO, Co 2 O 3 BaO, CeO 2 and ZnO were investigated for phosphorus adsorption. Zno/y-Al 2 O 3 exhibited the highest phosphorus adsorption capacity. However, since it diminishes the activity of to the reaction mixture it should be located upstream of the NoX catalyst, i.e. 0,3% Pd-H-MOR, in order to protect it against p poisoning. The treatment procedure with citric acid was effective for the removal of more than 70% phosphorus from the adsorbent, ZnO/y-Al 2 O 3

  3. Hydrogen storage by adsorption on activated carbon: investigation of the thermal effects during the charging process; Stockage de l'hydrogene par adsorption sur charbon actif: etude des effets thermiques lors de la charge dynamique d'un reservoir a lit fixe adsorbant

    Energy Technology Data Exchange (ETDEWEB)

    Hermosilla-Lara, G

    2007-02-15

    This work presents an experimental and numerical investigation of the thermal effects occurring during the charge of adsorbent fixed bed tank. The influence of these thermal effects, which result from the exothermal character of the adsorption process and the pressure forces work, on the storage capacity is specially analysed. An experimental setup allowing the dynamic measurements of the temperature and pressure profiles has been used. Then the numerical protocol with the Fluent software, has been validated by comparison of the simulated pressure, flow rate and temperature fields in the tank with the results obtained from an experimental investigation carried out the dynamic storage. Several predictive simulations have been carried out in order to study the effect of the boundary conditions, as the wall temperature or effective thermal conductivity of the porous bed, on the storage capacity of the reservoir. We searched the optimal geometry of an interbed thermal dissipator for a given industrial tank. To do this we made vary the H/L ratio, which represents the ratio of the height of an elementary stage and the total length of the tank. We could determine an optimal geometry which corresponds to the value 1/3 of the ratio H/L. From this optimum we studied the effect of five additional cooling tubes on the tank storage capacity. The stored mass is 15 % higher than that obtained without these tubes. (author)

  4. Behaviors and mechanisms of copper adsorption on hydrolyzed polyacrylonitrile fibers.

    Science.gov (United States)

    Deng, Shubo; Bai, Renbi; Chen, J P

    2003-04-15

    Polyacrylonitrile fiber (PANF) was hydrolyzed in a solution of sodium hydroxide and the hydrolyzed polyacrylonitrile fiber (HPANF) was used as an adsorbent to remove copper ions from aqueous solution. Scanning electron microscopy (SEM) showed that the hydrolysis process made the surface of HPANF rougher than that of PANF. Fourier transform infrared (FTIR) spectroscopy revealed that the HPANF contained conjugated imine (-Cz=Nz-) sequences. Batch adsorption results indicated that the HPANF was very effective in adsorbing copper, and the adsorption equilibrium could be reached within 10-20 min. Atomic force microscopy (AFM) showed that some aggregates formed on the surface of the HPANF after copper ion adsorption and the average surface roughness (R(a)) value of the HPANF changed from 0.363 to 3.763 nm due to copper adsorption. FTIR analysis indicated that copper adsorption caused a decrease of the light adsorption intensity of the imine (-Cz=Nz-) groups at 1573 and 1406 cm(-1) wavenumbers, and X-ray photoelectron spectroscopy (XPS) showed that the binding energy (BE) of some of the nitrogen atoms in the HPANF increased to a greater value due to copper adsorption. The FTIR and XPS results suggest that the adsorption of copper ions to the HPANF is attributed to the imine groups on the surface of the HPANF.

  5. Lithium adsorption on amorphous aluminum hydroxides and gibbsite

    Directory of Open Access Journals (Sweden)

    Konstantinos P. Prodromou

    2016-01-01

    Full Text Available Lithium (Li adsorption on both amorphous aluminum hydroxides and gibbsite was studied. For the amorphous Al(OH3 the adsorption was found to be pH dependent. Generally, 1.6 times more Li was adsorbed at initial pH value 8.0 compared with pH value 6.50. Gibbsite adsorbed 11.6 to 45.5 times less Li quantities compared with amorphous Al(OH3. Lithium adsorption was not depended on equilibrium times. It remained stable for all equilibrium times used. Lithium quantities extracted with 1N CH3COONH4 pH 7 , represent the physical adsorption, while the remaining Li that was adsorbed on Al(OH3, represents the chemical adsorption. During the desorption process 19% of Li extracted with NH4+, represents the physical adsorption, while the remaining 81% of Li, which was adsorbed represents the chemical adsorption. In gibbsite, 9.6% of Li represents the physical adsorption and 90.4% the chemical one. The experimental data conformed well to Freundlich isotherm equation.

  6. Adsorption of gold (III) from aqueous solutions on bagasse ash

    International Nuclear Information System (INIS)

    Hussain, G.; Khan, M.A.

    2011-01-01

    To assess the potential of cheap biomass materials for the recovery of gold from industrial, and electroplating waste water effluents, adsorption of gold (III) from dilute solutions of hydrochloric acid on bagasse ash has been studied under various experimental conditions by using batch technique. Percentage extraction of gold (III) on bagasse ash was determined from its distribution coefficients as a function of contact time, pH, adsorbent, adsorbate concentrations, and temperature. The uptake of gold (III) by bagasse ash is time, pH, metal concentration, amount of adsorbate, and temperature dependent. Adsorption data have been interpreted in terms of Langmuir, and the Freundlich equations. Thermodynamic parameters for the adsorption of gold (III) on bagasse ash have been determined at three different temperatures. The positive value of heat of adsorption; delta H 44.52 kJ/mol shows that the adsorption of gold (III) on bagasse ash is endothermic where as the negative value of delta G = -0.5303 kJ/mol at 318 K shows the spontaneity of the process. Delta G becomes more negative with increase in temperature which shows that the adsorption is more favorable at higher temperatures. Under the optimal adsorption conditions the adsorption capacity of gold is 0.70 mg /g of the adsorbent out of which 0.65 mg of gold gets desorbed with 0.1 % thiourea solution. (author)

  7. Volatile organic compounds adsorption using different types of adsorbent

    Directory of Open Access Journals (Sweden)

    Pimanmes Chanayotha

    2014-09-01

    Full Text Available Adsorbents were synthesized from coconut shell, coal and coke by pyrolysis followed by chemical activation process. These synthesized materials were used as adsorbents in adsorption test to determine the amount of volatile organic compounds (VOCs namely, 2-Hydroxyethyl methacrylate (HEMA, Octamethylcyclotetrasiloxane and Alkanes standard solution (C8-C20. The adsorption capacities of both synthesized adsorbents and commercial grade adsorbents (Carbotrap™ B and Carbotrap™ C were also compared. It was found that adsorbent A402, which was produced from coconut shell, activated with 40% (wt. potassium hydroxide and at activating temperature of 800°C for 1 hr, could adsorb higher amount of both HEMA and Octamethylcyclotetrasiloxane than other synthesized adsorbents. The maximum adsorption capacity of adsorbent A402 in adsorbing HEMA and Octamethylcyclotetrasiloxane were 77.87% and 50.82% respectively. These adsorption capabilities were 79.73% and 70.07% of the adsorption capacity of the commercial adsorbent Carbotrap™ B respectively. All three types of the synthesized adsorbent (A402, C302, C402 showed the capability to adsorb alkanes standard solution through the range of C8-C20 . However, their adsorption capacities were high in a specific range of C10-C11. The result from the isotherm plot was indicated that surface adsorption of synthesized adsorbent was isotherm type I while the surface adsorption of commercial adsorbent was isotherm type III.

  8. Development of a chromatographic separation method hyphenated to electro-spray ionization mass spectrometry (ESI-MS) and inductively coupled plasma mass spectrometry (ICP-MS): application to the lanthanides speciation analysis

    International Nuclear Information System (INIS)

    Beuvier, Ludovic

    2015-01-01

    This work focuses on the development of a chromatographic separation method coupled to both ESI-MS and ICP-MS in order to achieve the comprehensive speciation analysis of lanthanides in aqueous phase representative of back-extraction phases of advanced spent nuclear fuel treatment processes. This analytical method allowed the separation, the characterization and the quantitation of lanthanides complexes holding poly-aminocarboxylic ligands, such as DTPA and EDTA, used as complexing agents in these processes. A HILIC separation method of lanthanides complexes has been developed with an amide bonded stationary phase. A screening of a wide range of mobile phase compositions demonstrated that the adsorption mechanism was predominant. This screening allowed also obtaining optimized separation conditions. Faster analysis conditions with shorter amide column packed with sub 2 μm particles reduced analysis time by 2.5 and 25% solvent consumption. Isotopic and structural characterization by HILIC ESI-MS was performed as well as the development of external calibration quantitation method. Analytical performances of quantitation method were determined. Finally, the development of the HILIC coupling to ESI-MS and ICP-MS was achieved. A simultaneous quantitation method by ESI-MS and ICP-MS was performed to determine the species quantitative distribution in solution. Analytical performances of quantitation method were also determined. (author) [fr

  9. Procedures for the production of poly-zirconium-compound (PZC) based chromatographic 99mTc generator to be available for clinical application

    International Nuclear Information System (INIS)

    Le Van So

    2006-01-01

    Two procedures - Column post-loading and Column pre-loading procedures - for the preparation of PZC based chromatographic Tc-99m generators were described in detail. In-process documentation, flow-chart of process for the individual procedures, specific Tc-99m generator designs and pictorially illustrative description of Tc-99m generator production process were systematically reported. The column pre-loading procedure was highly evaluated as a competent technology for the preparation of PZC based Tc-99m chromatographic generator of high performance using (n, γ) 99 Mo of low specific radioactivity produced on low power research reactors. (author)

  10. Microstructure-based analysis and simulation of flow and mass transfer in chromatographic stationary phases

    Science.gov (United States)

    Koku, Harun

    Limitations of mass transfer in chromatographic bioseparations employing traditional packed particles have fuelled the inception and development of alternative stationary phases with improved performance characteristics. This work investigates case studies in two categories of these alternative media, namely polymer-modified packed particles and continuous monolithic phases, for insight into their enhanced properties. Specifically, high-resolution microscopy techniques and image-based analysis algorithms were implemented to extract morphology information for these materials, in an attempt to elucidate the relation between microstructure and performance. For the monolith, mesoscopic simulation methods were also employed for a more rigorous analysis of the flow and dispersion behavior. Scanning and transmission electron microscopy images of the commercial polymer-modified, agarose-based particle Sepharose XL were compared to those for its unmodified counterpart, Sepharose FF. Local regions in the composite dextran-agarose Sepharose XL particles were noted to exhibit a denser network of fibers and smaller pore sizes overall, compared to those in the traditional Sepharose FF particles. Images of particles equilibrated with high concentrations of protein revealed a significant difference in protein localization patterns, with the stained protein in XL occupying a markedly higher area fraction of the images. This suggests a higher volume available for adsorption and provides visual clues into how the consistently higher static capacity of these polymer-modified particles is manifested. Treatment of the XL particles with dextranase, an enzyme that breaks down dextran, resulted in a reduction of protein coverage, providing evidence that it is indeed the dextran that is responsible for the improved static capacity in this polymer-modified stationary phase. Imaging and image analysis techniques were also used to analyze the commercial CIM(TM) disk monolith. Two- and three

  11. Liquid Chromatographic Determination of Alternaria Toxins in Carrots

    NARCIS (Netherlands)

    Solfrizzo, M.; Girolamo, De A.; Vitti, C.; Bulk, van den R.W.

    2004-01-01

    A liquid chromatographic (LC) method was developed for the determination of Alternaria radicina and A. alternata toxins in carrots. Toxins were extracted from carrot with an acidified mixture of water¿methanol¿acetonitrile. The filtered extract was divided in 2 parts that were purified by

  12. Chromatographic separation of alkaline phosphatase from dental enamel

    DEFF Research Database (Denmark)

    Moe, D; Kirkeby, S; Salling, E

    1989-01-01

    Alkaline phosphatase (AP) was prepared from partly mineralized bovine enamel by extraction in phosphate buffer, centrifugation and various chromatographic techniques. Chromatofocusing showed that the enamel enzyme possessed five isoelectric points at the acid pH level ranging from pH 5.7 to pH 4...

  13. Development and Validation of a Liquid Chromatographic Method ...

    African Journals Online (AJOL)

    A liquid chromatographic method for the simultaneous determination of six human immunodeficiency virus (HIV) protease inhibitors, indinavir, saquinavir, ritonavir, amprenavir, nelfinavir and lopinavir, was developed and validated. Optimal separation was achieved on a PLRP-S 100 Å, 250 x 4.6 mm I.D. column maintained ...

  14. Radioimmunoassay of methaqualone in human urine compared with chromatographic methods

    International Nuclear Information System (INIS)

    Mule, S.J.; Kogan, M.; Jukofsky, D.

    1978-01-01

    The 125 I-radioimmunoassay for methaqualone in human urine was evaluated by a comparison with newly modified gas-liquid chromatographic and thin-layer chromatographic methods. The statistically significant sensitivity value for the radioimmunoassay was at 2 μg of methaqualone per liter of urine. The coefficient of variation was 2.88 -+ 0.16% intraassay. There was cross-reactivity only with metabolites of methaqualone, 4'-hydroxymethaqualone being twice as sensitively measured as methaqualone. There was complete agreement between results by radioimmunoassay and by gas-liquid chromatography in 96.7% of the samples analyzed. Only 1.2% of the radioimmunoassay values were false positives, and 2.1% false negatives (phi = 0.8917, P < 0.001). Comparisons between the thin-layer chromatographic data and the gas--liquid chromatographic or radioimmunoassay data showed less agreement because of the 50- to 200-fold higher sensitivity of the latter techniques. Gas--liquid chromatography therefore appears to represent the best reference method for the evaluation of the radioimmunoassay, which appears to be a very sensitive and reliable technique for detecting methaqualone and its metabolites in human urine

  15. Transport Characteristics of Porous Solids Derived from Chromatographic Measurements

    Czech Academy of Sciences Publication Activity Database

    Šolcová, Olga; Schneider, Petr

    2002-01-01

    Roč. 144, - (2002), s. 475-482 ISSN 0167-2991 R&D Projects: GA ČR GA104/01/0546; GA AV ČR IAA4072915 Keywords : transport parameters * diffusion coefficients * chromatographic column Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 3.468, year: 2002

  16. Optimizing Chromatographic Separation: An Experiment Using an HPLC Simulator

    Science.gov (United States)

    Shalliker, R. A.; Kayillo, S.; Dennis, G. R.

    2008-01-01

    Optimization of a chromatographic separation within the time constraints of a laboratory session is practically impossible. However, by employing a HPLC simulator, experiments can be designed that allow students to develop an appreciation of the complexities involved in optimization procedures. In the present exercise, a HPLC simulator from "JCE…

  17. Adsorption of anionic surfactants from aqueous solution by high content of primary amino crosslinked chitosan microspheres.

    Science.gov (United States)

    Zhang, Caihong; Wen, Haifeng; Huang, Yingying; Shi, Wenjian

    2017-04-01

    High content of primary amino crosslinked chitosan microspheres (ACCMs) were synthesized and characterized with IR, XRD and SEM technologies. Subsequently, ACCMs were adopted to adsorb three common anionic surfactants from aqueous solution: sodium dodecyl benzene sulfonate (SDBS), sodium lauryl sulfate (SLS), and sodium dodecyl sulfonate (SDS). The adsorption performances were evaluated based on different variables such as the pH, contact time, temperature and initial concentration of the anionic surfactants. Moreover, the adsorption were investigated with kinetic models, equilibrium isotherms and thermodynamic models. The experimental results indicated that the adsorption processes were fitted very well with a pseudo-second-order model. The adsorption isotherms could be better described by Langmuir model rather than Freundlich model. The adsorption of SDBS was a spontaneous, exothermic process. While the adsorption of SLS and SDS were spontaneous, endothermic. The adsorption processes were complex physical-chemistry adsorption models, which are dominated by physisorption. Furthermore, this study found that the material had strong absorption abilities for anionic surfactants, the saturation adsorption capacity of ACCMs were 1220mg/g for SDBS, 888mg/g for SLS, and 825mg/g for SDS at pH 3.0 and 298K, respectively. The adsorption capacity was reduced only 5.7% after 8 cycles of the adsorption-desorption processes. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Batch-to-batch quality consistency evaluation of botanical drug products using multivariate statistical analysis of the chromatographic fingerprint.

    Science.gov (United States)

    Xiong, Haoshu; Yu, Lawrence X; Qu, Haibin

    2013-06-01

    Botanical drug products have batch-to-batch quality variability due to botanical raw materials and the current manufacturing process. The rational evaluation and control of product quality consistency are essential to ensure the efficacy and safety. Chromatographic fingerprinting is an important and widely used tool to characterize the chemical composition of botanical drug products. Multivariate statistical analysis has showed its efficacy and applicability in the quality evaluation of many kinds of industrial products. In this paper, the combined use of multivariate statistical analysis and chromatographic fingerprinting is presented here to evaluate batch-to-batch quality consistency of botanical drug products. A typical botanical drug product in China, Shenmai injection, was selected as the example to demonstrate the feasibility of this approach. The high-performance liquid chromatographic fingerprint data of historical batches were collected from a traditional Chinese medicine manufacturing factory. Characteristic peaks were weighted by their variability among production batches. A principal component analysis model was established after outliers were modified or removed. Multivariate (Hotelling T(2) and DModX) control charts were finally successfully applied to evaluate the quality consistency. The results suggest useful applications for a combination of multivariate statistical analysis with chromatographic fingerprinting in batch-to-batch quality consistency evaluation for the manufacture of botanical drug products.

  19. Gas separation by pressure swing adsorption

    International Nuclear Information System (INIS)

    Martin, J.R.; Gottzman, C.F.; Notaro, F.; Stewart, H.A.

    1986-01-01

    Over the past twenty years separation processes based upon pressure swing adsorption have replaced cryogenic processes in a number of selected applications such as air separation for production of moderate quantities of nitrogen and oxygen and recovery of hydrogen from refinery and chemical plant gases. Key events contributing to the emergence of PSA as an important process option have been the development of synthetic zeolite molecular sieves by Union Carbide Corporation in the USA and of carbon molecular sieves by Bergbau-Forschung in Germany. Today PSA processes enjoy significant commercial use producing oxygen from 0.1 Nm 3 /h for medical application to 1500 Nm 3 /h for steel mill use, for making nitrogen up to 1000 Nm 3 /h for inerting and in purifying hydrogen streams of up to 100,000 Nm 3 /h for refinery use. In this paper some of the principles of adsorptive separations are reviewed. The history of the technology is traced briefly with emphasis on key material, process and application events. The major commercial processes in the application of adsorption to bulk separation of air and hydrogen purification are reviewed in more detail with comparisons made to cryogenic alternatives in terms of specific characteristics, advantages and disadvantages where appropriate. Information on performance, reliability and comparative economics are discussed where available

  20. Influence of alternating current on the adsorption of indigo carmine.

    Science.gov (United States)

    Kesraoui, Aida; Selmi, Taher; Seffen, Monig; Brouers, François

    2017-04-01

    The main purpose of this work is to study the effect of a new process of accelerating which consist to couple the electrochemical process with the adsorption to remove an anionic dye, the indigo carmine. That is why, we investigated the effects of the new process of accelerating the adsorption process by using alternating current (AC) on the retention of an anionic dye, the indigo carmine. The adsorption capacity of dye (mg/g) was raised with the raise of current voltage in solution, temperature, and initial indigo carmine concentration and decreased with the increase of initial solution pH, current density, and mass of carbon. The results demonstrate that the removal efficiency of 97.0 % with the current voltage of 15 V is achieved at a current density of 0.014 A/cm 2 , of pH 2 using zinc as electrodes and contact time of 210 min for adsorption in the presence of AC. Concerning the adsorption without AC, the results obtained showed that for an initial concentration equal to 20 mg/L, more than 95 % amount of adsorbed dye was retained after 405 min of contact in batch system. The comparison between adsorption in the presence and absence of an alternating current shows the importance of the alternating current in the acceleration of the adsorption method and improve the performances of FILTRASORB 200. For both cases, the adsorption mechanism follows the fractal kinetics BSf(n,α) model and the Brouers-Sotolongo isotherm model provides a good fit of the experimental data for both adsorption with and without alternating current.

  1. Adsorption Isotherms of Boron in Soil: the effects of Sodium Adsorption Ratio (SAR, pH and Ionic strength

    Directory of Open Access Journals (Sweden)

    Mojtaba Moqbeli

    2017-03-01

    Full Text Available Introduction: Boron (B is an essential plant micronutrient whose soil availability is influenced by many soil factors.Understanding the processes controling activity of boron (B in the soil solution is important for soil fertility management. The reaction of adsorption and desorption of boron in soil determines the amount of boron that is available to plants. Adsorption–desorption processes play a major role on boron equilibrium concentration and therefore on its bio-availability. Ionic strength, pH and ionic composition in exchangeable phase are among themajor factors affecting B adsorption reactions.Reducedadsorption of boron at high pH is because of a surface potential decrease onminerals with pH-dependent charge. Ionic strength has also a considerable effect on B adsorption.Several studies have been performed inthe adsorption of boron and the effect of factors such as ionicstrength and cations has been understudied, however, the effect of sodium adsorption ratio and itsinteraction with the ionic strength on boron adsorption behavior has not been reported. In thisstudy, the adsorption isotherms of boron in the soils affected by the combined effects of ionic strengthand sodium adsorption ratio were investigated. Materials and Methods: In order to assess the effects of ionic strength (IS and Sodium Adsorption Ratio (SAR on availability of B, the adsorption of B was investigated in a calcareous soil that hadlow levels of electrical conductivity, sodium adsorption ratio and available P. For this purpose, 5 g soil wasequilibrated with 20 mL of B solution (0, 2, 5, 8, 10, 15, 20 mg L-1 in 0.02, 0.06 and 0.12 M background solutions (prepared by NaC1,CaC12.2H2O, MgCl2.6H2O, at two SAR levels (20 and 100.The reaction temperature was 25◦C. The suspension was centrifuged, filtered, and a sample was removed and B was determined by Azomethine-H spectrophotometric method (at a wavelength of 420 nm. B adsorption in Soil was obtained by subtracting B in

  2. Ion-exchange chromatographic protein refolding

    NARCIS (Netherlands)

    Freydell, E.; Wielen, van der L.; Eppink, M.H.M.; Ottens, M.

    2010-01-01

    The application of ion-exchange (IEX) chromatography to protein refolding (IExR) has been successfully proven, as supported by various studies using different model proteins, ion-exchange media and flow configurations. Ion-exchange refolding offers a relatively high degree of process

  3. Fundamental studies of chalcogenide nanocrystals, carbonaceous nanoparticles, and chromatographic materials

    Science.gov (United States)

    Baker, Jared Scott

    2011-12-01

    The development of novel nanomaterials and the understanding of their fundamental physical and chemical properties represent an exciting area of research. These materials are continuously being sought for ever-increasing applications; finding their way into uses that influence mankind on a daily basis. Combining elements from traditional nanoparticle characterization with electrophoretic-based techniques, this dissertation presents the analysis of carbon nanoparticles (CNPs) generated from a novel source (candle soot) as well as a unique perspective on the reactivity and degradation process of magic-sized cadmium chalcogenide nanocrystals. One potential application of CNPs is their use as an alternative fluorophore in a separation-based sensor system. Laser-induced-fluorescence (LIF) is a commonly used manner of detection in this type of platform, but is limited in many cases by problems associated with the fluorophore. Carbon-based nanoparticles have the potential to improve upon traditional fluorophores in applications that make use of LIF as the detection scheme. CNPs were extracted from the carbonaceous material produced by the incomplete combustion of a candle. The soot was submitted to an oxidizing treatment and extraction/filtration procedures rendering watersoluble luminescent species. Electron microscopy was used to identify globular, amorphous structures in the nanometer size-range. An aqueous suspension of CNPs demonstrated excellent stability in terms of its electronic properties, showing little change in absorption and emission spectra upon storage under ambient conditions over a two-year period. Capitalizing on the strengths of capillary electrophoresis (CE) as a characterization technique, we have analyzed the negatively-charged CNPs in terms of charge and size by studying the influence of variable CE conditions on the resulting separation. Separations at different pH revealed a highly complex mixture of CNPs, containing species with large

  4. Adsorption behavior of U (Ⅵ) and mechanism analysis by organically modified vermiculite

    International Nuclear Information System (INIS)

    Xiao Yiqun; Zhou Yantong; Xia Liangshu; Fu Wanfa; Liu Wenjuan; Liang Xin

    2014-01-01

    The adsorption behavior of U (Ⅵ) on modified vermiculite by HDTMA · Br was studied with static experiments. The effects of the amount of adsorbent, pH, initial mass concentration of uranium and time on the removal rate of uranium were investigated. The unit mass of adsorption process was analyzed in thermodynamics and kinetics, and the adsorption mechanism was analyzed with FT-IR and SEM. The results indicate that the removal rate of uranium can increase with the increase of adsorbent amount and time, and the decrease of initial mass concentration of uranium. The adsorption equilibrium tends to be achieved in 120 min, and solution using flocculant and modified vermiculite can be improved. The adsorption of uranium by organically modified vermiculite is a complex process, so Langmuir monolayer adsorption theory and Freundlich adsorption theory cannot fully explain the adsorption process. The removal mechanism of uranium by using modified vermiculite fits Langmuir adsorption law, and is in line with quasi-second order kinetic equation. It is confirmed by FT-IR that -OH and Si = O play an important role in the adsorption of uranium. SEM shows that the adsorption of uranium using modified vermiculite causes the structure change. (authors)

  5. Adsorption Model for Off-Gas Separation

    Energy Technology Data Exchange (ETDEWEB)

    Veronica J. Rutledge

    2011-03-01

    The absence of industrial scale nuclear fuel reprocessing in the U.S. has precluded the necessary driver for developing the advanced simulation capability now prevalent in so many other countries. Thus, it is essential to model complex series of unit operations to simulate, understand, and predict inherent transient behavior and feedback loops. A capability of accurately simulating the dynamic behavior of advanced fuel cycle separation processes will provide substantial cost savings and many technical benefits. The specific fuel cycle separation process discussed in this report is the off-gas treatment system. The off-gas separation consists of a series of scrubbers and adsorption beds to capture constituents of interest. Dynamic models are being developed to simulate each unit operation involved so each unit operation can be used as a stand-alone model and in series with multiple others. Currently, an adsorption model has been developed in gPROMS software. Inputs include gas stream constituents, sorbent, and column properties, equilibrium and kinetic data, and inlet conditions. It models dispersed plug flow in a packed bed under non-isothermal and non-isobaric conditions for a multiple component gas stream. The simulation outputs component concentrations along the column length as a function of time from which the breakthrough data is obtained. It also outputs temperature along the column length as a function of time and pressure drop along the column length. Experimental data will be input into the adsorption model to develop a model specific for iodine adsorption on silver mordenite as well as model(s) specific for krypton and xenon adsorption. The model will be validated with experimental breakthrough curves. Another future off-gas modeling goal is to develop a model for the unit operation absorption. The off-gas models will be made available via the server or web for evaluation by customers.

  6. Cooperation within von Willebrand factors enhances adsorption mechanism.

    Science.gov (United States)

    Heidari, Maziar; Mehrbod, Mehrdad; Ejtehadi, Mohammad Reza; Mofrad, Mohammad R K

    2015-08-06

    von Willebrand factor (VWF) is a naturally collapsed protein that participates in primary haemostasis and coagulation events. The clotting process is triggered by the adsorption and conformational changes of the plasma VWFs localized to the collagen fibres found near the site of injury. We develop coarse-grained models to simulate the adsorption dynamics of VWF flowing near the adhesive collagen fibres at different shear rates and investigate the effect of factors such as interaction and cooperativity of VWFs on the success of adsorption events. The adsorption probability of a flowing VWF confined to the receptor field is enhanced when it encounters an adhered VWF in proximity to the collagen receptors. This enhancement is observed within a wide range of shear rates and is mostly controlled by the attractive van der Waals interactions rather than the hydrodynamic interactions among VWF monomers. The cooperativity between the VWFs acts as an effective mechanism for enhancing VWF adsorption to the collagen fibres. Additionally, this implies that the adsorption of such molecules is nonlinearly dependent on the density of flowing VWFs. These findings are important for studies of primary haemostasis as well as general adsorption dynamics processes in polymer physics. © 2015 The Author(s).

  7. Adsorption of procion red and congo red dyes using microalgae Spirulina sp

    Directory of Open Access Journals (Sweden)

    Risfidian Mohadi

    2017-10-01

    Full Text Available Adsorption of procion red and congo red dyes using microalgae Spirulina sp was conducted. Spirulina sp was obtained by cultivation and production in laboratory scale. Spirulina sp was used as adsorbent for adsorption of dyes. Adsorption process was studied by kinetic and thermodynamic in order to know the adsorption phenomena. The results showed that kinetically congo red is reactive than procion red on Spirulina sp. On the other hand, thermodynamically procion red was stable than congo red on Spirulina sp which was indicated by adsorption capacity, enthalpy, and entropy.

  8. The in vitro adsorption of some antibiotics on antacids.

    Science.gov (United States)

    Khalil, S A; Daabis, N A; Naggar, V F; Motawi, M M

    1976-01-01

    The adsorption of oxytetracycline hydrochloride, tetracycline hydrochloride, doxycycline hyclate, triacetyloleandomycin, chloramphenicol, ampicillin, and cloxacillin sodium was studied on various antacids namely, magnesium trisilicate, magnesium oxide, calcium carbonate, bismuth oxycarbonate, aluminium hydroxide, and kaolin. The adsorption of the various antibiotics by milk was also tested as milk is frequently used as an antacid. Charcoal was included in the present study as a model adsorbent having a large hydrophobic surface. The adsorption of the various antibiotics on the different antacids and other adsorbents in most cases obeyed the Freundlich adsorption isotherm. Magnesium trisilicate and magnesium oxide showed the highest adsorptive capacity, relative to other antacids used, for most antibiotics. Calcium carbonate and aluminium hydroxide and intermediate power while kaolin and bismuth oxycarbonate had the least adsorptive power. Charcoal exhibited a marked adsorption for all antibiotics tested. Tetracyclines were found to be more highly adsorbed than other antibiotics studied. Triacetyloleandomycin and chloramphenicol had intermediate values. Ampicillin was only adsorbed to a slight extent while cloxacillin was not adsorbed on the antacids used. The extent of adsorption was correlated to the structure of both the adsorbent and adsorbate, the pH of the adsorbent suspension, and to the polarity of the antibiotic in such pH. The reversibility of the adsorption process was studied in different media and at pH values similar to those of the gastrointestinal tract. The extent of elution was found to be inversely proportional to the adsorptive capacity of the different adsorbents. In general, 0.0143 n NaHCO3 solution was found to possess higher eluting properties than 0.01 n HCl. An exception to this pattern was observed with tetracyclines adsorbed on aluminium hydroxide where the elution with acid resulted in a higher degree of desorption. Careful in vitro and

  9. On-line coupling of supercritical fluid extraction and chromatographic techniques.

    Science.gov (United States)

    Sánchez-Camargo, Andrea Del Pilar; Parada-Alfonso, Fabián; Ibáñez, Elena; Cifuentes, Alejandro

    2017-01-01

    This review summarizes and discusses recent advances and applications of on-line supercritical fluid extraction coupled to liquid chromatography, gas chromatography, and supercritical fluid chromatographic techniques. Supercritical fluids, due to their exceptional physical properties, provide unique opportunities not only during the extraction step but also in the separation process. Although supercritical fluid extraction is especially suitable for recovery of non-polar organic compounds, this technique can also be successfully applied to the extraction of polar analytes by the aid of modifiers. Supercritical fluid extraction process can be performed following "off-line" or "on-line" approaches and their main features are contrasted herein. Besides, the parameters affecting the supercritical fluid extraction process are explained and a "decision tree" is for the first time presented in this review work as a guide tool for method development. The general principles (instrumental and methodological) of the different on-line couplings of supercritical fluid extraction with chromatographic techniques are described. Advantages and shortcomings of supercritical fluid extraction as hyphenated technique are discussed. Besides, an update of the most recent applications (from 2005 up to now) of the mentioned couplings is also presented in this review. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Kinetic and equilibrium studies of urea adsorption onto activated carbon: Adsorption mechanism

    OpenAIRE

    Kameda, Tomohito; Ito, Saya; Yoshioka, Toshiaki

    2017-01-01

    We found that activated carbon effectively removed urea from solution and that urea adsorption onto activated carbon followed a pseudo-second-order kinetic model. We classified the urea adsorption on activated carbon as physical adsorption and found that it was best described by the Halsey adsorption isotherm, suggesting that the multilayer adsorption of urea molecules on the adsorption sites of activated carbon best characterized the adsorption system. The mechanism of adsorption of urea by ...

  11. Adsorption behavior of multi-walled carbon nanotubes for the removal of olaquindox from aqueous solutions

    International Nuclear Information System (INIS)

    Zhang, Lei; Xu, Tianci; Liu, Xueyan; Zhang, Yunyu; Jin, Hongjing

    2011-01-01

    Highlights: ► Removal of olaquindox—a hazardous pollutant using MWCNT was investigated. ► A comparative analysis showed MWCNT was highly efficient for the removal of olaquindox. ► Adsorption equilibrium was reached in 2.0 min following pseudo-second-order model. ► Physisorption and inner diffusion are the characteristics of the adsorption system. ► Langmuir adsorption isotherms are adequate for modeling the adsorption process. - Abstract: Multi-walled carbon nanotubes (MWCNT) were employed for the sorption of olaquindox (OLA) from aqueous solution. A detailed study of the adsorption process was performed by varying pH, ionic strength, sorbent amount, sorption time and temperature. The adsorption mechanism is probably the non-electrostatic π–π dispersion interaction and hydrophobic interaction between OLA and MWCNT. The adsorption efficiency could reach 99.7%, suggesting that MWCNT is excellent adsorbents for effective OLA removal from water. OLA adsorption kinetics were found to be very fast and equilibrium was reached within 2.0 min following the pseudo-second-order model with observed rate constants (k) of 0.169–1.048 g mg −1 min −1 (at varied temperatures). The overall rate process appeared to be influenced by both external mass transfer and intraparticle diffusion, but mainly governed by intraparticle diffusion. A rapid initial adsorption behavior occurred within a short period of time in this adsorption system. The sorption data could be well interpreted by the Langmuir model with the maximum adsorption capacity of 133.156 mg g −1 (293 K) of OLA on MWCNT. The mean energy of adsorption was calculated to be 0.124 kJ mol −1 (293 K) from the Dubinin–Radushkevich adsorption isotherm. Moreover, the thermodynamic parameters showed the spontaneous, exothermic and physical nature of the adsorption process.

  12. Adsorption of plasma proteins : adsorption behaviour on apolar surfaces and effect on colloid stability

    NARCIS (Netherlands)

    van der Scheer, Albert

    1978-01-01

    In this thesis the adsorption of some plasma proteins (human albumin (HSA) and fibrinogen (HFb)) on non polar surfaces is studied, together with the influence of these proteins on the stability of polystyrene latices. The aim of these investigations is a better understanding of the processes

  13. Adsorption of heavy metal in freeway by asphalt block

    Science.gov (United States)

    Zheng, Chaocheng

    2017-08-01

    Heavy metals are toxic, persistent, and carcinogenic in freeway. Various techniques are available for the removal of heavy metals from waste water among soils during freeway including ion-exchange, membrane filtration, electrolysis, coagulation, flotation, and adsorption. Among them, bio-sorption processes are widely used for heavy metal and other pollutant removal due to its sustainable, rapid and economic. In this paper, heavy metal removal facilitated by adsorption in plants during freeway was illustrated to provide concise information on exploring the adsorption efficiency.

  14. Adsorption and collective paramagnetism

    CERN Document Server

    Selwood, Pierce W

    1962-01-01

    Adsorption and Collective Paramagnetism describes a novel method for studying chemisorption. The method is based on the change in the number of unpaired electrons in the adsorbent as chemisorption occurs. The method is applicable to almost all adsorbates, but it is restricted to ferromagnetic adsorbents such as nickel, which may be obtained in the form of very small particles, that is to say, to ferromagnetic adsorbents with a high specific surface. While almost all the data used illustratively have been published elsewhere this is the first complete review of the subject. The book is addresse

  15. [Adsorption characteristics of f2 bacteriophages by four substrates in constructed wetland].

    Science.gov (United States)

    Chen, Di; Zheng, Xiang; Wei, Yuan-Song; Yang, Yong

    2013-10-01

    Performance of f2 phages adsorption by four substrates including anthracite coal, steel slag, zeolite and forsterite was investigated through batch and dynamic experiments. Results of batch experiments showed that the removal efficiency of f2 phages by these four substrates was in the order of anthracite > steel slag > forsterite approximately zeolite. The adsorption of f2 phages by anthracite experienced fast, medium and slow stages, and the removal efficiency of f2 phages increased gradually with the increase of anthracite dosage, e. g. the optimized dosage of anthracite was 8.0 g at a solid/liquid ratio of 1:12.5 (m/V). The isothermal adsorption of all four substrates was described with Freundlich and Langmuir isothermal adsorption equation very well, and the adsorption of f2 phages by both anthracite and steel slag fitted pseudo-second order adsorption kinetics at their theoretical adsorption capacities of 3. 35 x 10(8) PFU.g-1 and 2.56 x 10(8) PFU.g-1, respectively, nearly the same as the equilibrium adsorption capacities obtained under the experiment conditions. And the liquid diffusion process was a rate-limiting step of the adsorption of f2 phage by both anthracite and steel slag, but not the only one. The results of dynamic adsorption experiments showed that the adsorption process of f2 phages in the three adsorption columns including anthracite, steel slag and zeolite experienced four stages of adaption, adsorption, pulse adsorption and adsorption equilibrium, and the total removal rates of f2 phages were more than 2. 55 Ig.

  16. Response surface modeling of boron adsorption from aqueous solution by vermiculite using different adsorption agents: Box-Behnken experimental design.

    Science.gov (United States)

    Demirçivi, Pelin; Saygılı, Gülhayat Nasün

    2017-07-01

    In this study, a different method was applied for boron removal by using vermiculite as the adsorbent. Vermiculite, which was used in the experiments, was not modified with adsorption agents before boron adsorption using a separate process. Hexadecyltrimethylammonium bromide (HDTMA) and Gallic acid (GA) were used as adsorption agents for vermiculite by maintaining the solid/liquid ratio at 12.5 g/L. HDTMA/GA concentration, contact time, pH, initial boron concentration, inert electrolyte and temperature effects on boron adsorption were analyzed. A three-factor, three-level Box-Behnken design model combined with response surface method (RSM) was employed to examine and optimize process variables for boron adsorption from aqueous solution by vermiculite using HDTMA and GA. Solution pH (2-12), temperature (25-60 °C) and initial boron concentration (50-8,000 mg/L) were chosen as independent variables and coded x 1 , x 2 and x 3 at three levels (-1, 0 and 1). Analysis of variance was used to test the significance of variables and their interactions with 95% confidence limit (α = 0.05). According to the regression coefficients, a second-order empirical equation was evaluated between the adsorption capacity (q i ) and the coded variables tested (x i ). Optimum values of the variables were also evaluated for maximum boron adsorption by vermiculite-HDTMA (HDTMA-Verm) and vermiculite-GA (GA-Verm).

  17. Time distribution of adsorption entropy of gases on heterogeneous surfaces by reversed-flow gas chromatography.

    Science.gov (United States)

    Katsanos, Nicholas A; Kapolos, John; Gavril, Dimitrios; Bakaoukas, Nicholas; Loukopoulos, Vassilios; Koliadima, Athanasia; Karaiskakis, George

    2006-09-15

    The reversed-flow gas chromatography (RF-GC) technique has been applied to measure the adsorption entropy over time, when gaseous pentane is adsorbed on the surface of two solids (gamma-alumina and a silica supported rhodium catalyst) at 393.15 and 413.15K, respectively. Utilizing experimental chromatographic data, this novel methodology also permits the simultaneous measurement of the local adsorption energy, epsilon, local equilibrium adsorbed concentration, c(s)(*), and local adsorption isotherm, theta(p, T, epsilon) in a time resolved way. In contrast with other inverse gas chromatographic methods, which determine the standard entropy at zero surface coverage, the present method operates over a wide range of surface coverage taking into account not only the adsorbate-adsorbent interaction, but also the adsorbate-adsorbate interaction. One of the most interesting observations of the present work is the fact that the interaction of n-pentane is spontaneous on the Rh/SiO(2) catalyst for a very short time interval compared to that on gamma-Al(2)O(3). This can explain the different kinetic behavior of each particular gas-solid system, and it can be attributed to the fact that large amounts of n-C(5)H(12) are present on the active sites of the Rh/SiO(2) catalyst compared to those on gamma-Al(2)O(3), as the local equilibrium adsorbed concentration values, c(s)(*), indicate.

  18. Study on Shale Adsorption Equation Based on Monolayer Adsorption, Multilayer Adsorption, and Capillary Condensation

    OpenAIRE

    Chen, Qing; Tian, Yuanyuan; Li, Peng; Yan, Changhui; Pang, Yu; Zheng, Li; Deng, Hucheng; Zhou, Wen; Meng, Xianghao

    2017-01-01

    Shale gas is an effective gas resource all over the world. The evaluation of pore structure plays a critical role in exploring shale gas efficiently. Nitrogen adsorption experiment is one of the significant approaches to analyze pore size structure of shale. Shale is extremely heterogeneous due to component diversity and structure complexity. Therefore, adsorption isotherms for homogeneous adsorbents and empirical isotherms may not apply to shale. The shape of adsorption-desorption curve indi...

  19. Adsorption kinetics of NO on ordered mesoporous carbon (OMC) and cerium-containing OMC (Ce-OMC)

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Jinghuan; Cao, Feifei; Chen, Songze; Ni, Mingjiang; Gao, Xiang, E-mail: xgao1@zju.edu.cn; Cen, Kefa

    2014-10-30

    Graphical abstract: - Highlights: • Ordered mesoporous carbon (OMC) and Ce-OMC were used for NO adsorption. • The NO adsorption capacity of OMC was two times larger than that of activated carbon. • With the addition of cerium both adsorption capacity and adsorption rate increased. • The pseudo-second-order model was the most suitable model for NO adsorption on OMC. • Intraparticle diffusion was the rate controlling step for NO adsorption. - Abstract: Ordered mesoporous carbon (OMC) and cerium-containing OMC (Ce-OMC) were prepared using evaporation-induced self-assembly (EISA) method and used to adsorb NO. N{sub 2} sorption, X-ray diffraction (XRD) and transmission electron microscopy (TEM) were used to confirm their structures. The results showed that the ordered and uniform structures were successfully synthesized and with the introduction of cerium pore properties were not significantly changed. The NO adsorption capacity of OMC was two times larger than that of activated carbon (AC). With the introduction of cerium both the adsorption capacity and the adsorption rate were improved. The effects of residence time and oxygen concentration on NO adsorption were also investigated. Oxygen played an important role in the NO adsorption (especially in the form of chemisorption) and residence time had small influence on the NO adsorption capacity. The NO adsorption kinetics was analyzed using pseudo-first-order, pseudo-second-order, Elovich equation and intraparticle diffusion models. The results indicated that the NO adsorption process can be divided into rapid adsorption period, slow adsorption period, and equilibrium adsorption period. The pseudo-second-order model was the most suitable model for NO adsorption on OMC and Ce-OMC. The rate controlling step was the intraparticle diffusion together with the adsorption reaction.

  20. Adsorption kinetics of NO on ordered mesoporous carbon (OMC) and cerium-containing OMC (Ce-OMC)

    International Nuclear Information System (INIS)

    Chen, Jinghuan; Cao, Feifei; Chen, Songze; Ni, Mingjiang; Gao, Xiang; Cen, Kefa

    2014-01-01

    Graphical abstract: - Highlights: • Ordered mesoporous carbon (OMC) and Ce-OMC were used for NO adsorption. • The NO adsorption capacity of OMC was two times larger than that of activated carbon. • With the addition of cerium both adsorption capacity and adsorption rate increased. • The pseudo-second-order model was the most suitable model for NO adsorption on OMC. • Intraparticle diffusion was the rate controlling step for NO adsorption. - Abstract: Ordered mesoporous carbon (OMC) and cerium-containing OMC (Ce-OMC) were prepared using evaporation-induced self-assembly (EISA) method and used to adsorb NO. N 2 sorption, X-ray diffraction (XRD) and transmission electron microscopy (TEM) were used to confirm their structures. The results showed that the ordered and uniform structures were successfully synthesized and with the introduction of cerium pore properties were not significantly changed. The NO adsorption capacity of OMC was two times larger than that of activated carbon (AC). With the introduction of cerium both the adsorption capacity and the adsorption rate were improved. The effects of residence time and oxygen concentration on NO adsorption were also investigated. Oxygen played an important role in the NO adsorption (especially in the form of chemisorption) and residence time had small influence on the NO adsorption capacity. The NO adsorption kinetics was analyzed using pseudo-first-order, pseudo-second-order, Elovich equation and intraparticle diffusion models. The results indicated that the NO adsorption process can be divided into rapid adsorption period, slow adsorption period, and equilibrium adsorption period. The pseudo-second-order model was the most suitable model for NO adsorption on OMC and Ce-OMC. The rate controlling step was the intraparticle diffusion together with the adsorption reaction

  1. Kinetic and equilibrium study of adsorption of di-azo dyes on commercial activated carbon

    International Nuclear Information System (INIS)

    Hyali, E.A.S.A.; Abady, T.G.A.

    2013-01-01

    This research work is concerned with studying the adsorption of a number of di-azo dyes on commercial activated carbon (CAC). The synthesized dyes vary in their structures by the central parts. which are either ortho, meta or para phenvlene diamine. This variation affects the linearity of molecules, their spatial arrangement and electron movement throughout the molecule by resonance. Factors a fleeting adsorption process, such as the efiect of contact time, initial concentration, p1-I of the adsorption medium, adsorbent dose, effect of solvent and temperature were studied. The results indicated that, the adsorption process is fast in the first 10 mm, then gradually decreased with time and approaches maximum within 70-80 min for all the studied dyes. The increase of initial concentration and temperature decreased the adsorption efficiency. The results also shows that, the adsorption is found to be more efficient at low Ph value. The increase of the adsorbent dose increases the adsorption efficiency and decreases its capacity. The variation of solvent (ethanol-water ratio) indicates that the decrease of dielectric constant lowers the adsorption efficiency. The study included application of three adsorption isotherms, Freundlich, Langmuir and Tempkin on the experimental data of the studied systems. The results indicated that, Freundlich isotherm fits better the adsorption data. Kinetic analysis of the adsorption data was also conducted by employing 4 kinetic models; pseudo first order and pseudo second order, Elovich and intra particle diffusion equations. The results obtained conclude that, the studied systems follow the Pseudo second order model. (author)

  2. Dynamic and thermodynamic mechanisms of TFA adsorption by particulate matter.

    Science.gov (United States)

    Guo, Junyu; Zhai, Zihan; Wang, Lei; Wang, Ziyuan; Wu, Jing; Zhang, Boya; Zhang, Jianbo

    2017-06-01

    Trifluoroacetic acid (TFA) in the atmosphere is produced by degradation of hydrochlorofluorocarbons and hydrofluorocarbons. In recent years, TFA has attracted global attention because of increased environmental concentrations, biological toxicity and accumulation in aqueous environments. This study focused on the mechanisms underlying the adsorption of TFA by particulate matter to identify the appropriate descriptive model for this process and thus improve estimation of TFA adsorption in future environmental monitoring. Onsite gas and particle phase sampling in Beijing, China, and subsequent measurement of TFA concentrations indicated that the TFA concentration in the gas phase (1396 ± 225 pg m -3 ) was much higher than that in the particle phase (62 ± 8 pg m -3 ) and that monthly concentrations varied seasonally with temperature. Based on the field results and analysis, an adsorption experiment of TFA on soot was then conducted at three different temperatures (293, 303, and 313 K) to provide parameters for kinetic and thermodynamic modelling. The proportion of atmospheric TFA concentration in the gas phase increased with temperature, indicating that temperature affected the phase distribution of TFA. The subsequent kinetic and thermodynamic modelling showed that the adsorption of TFA by soot could be described well by the Bangham kinetic model. The adsorption was controlled by diffusion, and the key mechanism was physical adsorption. The adsorption behavior can be well described by the Langmuir isotherm model. The calculated thermodynamic parameters ΔG° (-2.34, -1.25, and -0.15 kJ mol -1  at 293, 303, and 313 K, respectively), ΔH° (-34.34 kJ mol -1 ), and ΔS° (-109.22 J mol -1  K -1 ) for TFA adsorption by soot were negative, indicating that adsorption was a spontaneous, exothermic process. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Adsorption study of Ammonia Nitrogen by watermelon rind

    Science.gov (United States)

    Ibrahim, A.; Yusof, L.; Beddu, N. S.; Galasin, N.; Lee, P. Y.; Lee, R. N. S.; Zahrim, A. Y.

    2016-06-01

    The utilization of fruit waste for low-cost adsorbents as a replacement for costly conventional methods of removing ammonia nitrogen from wastewater has been reviewed. The adsorption studies were conducted as a function of contact time and adsorbent dosage and it were carried out on four different adsorbents; fresh watermelon rind and modified watermelon rind with sodium hydroxide (NaOH), potassium hydroxide (KOH) and sulphuric acid (H2SO4). Adsorbents were tested for characterization by using zeta potential test and all samples shows negative values thus makes it favourable for the adsorption process. The batch experimental result showed that adsorption process is rapid and equilibrium was established within 40 minutes of contact time. The ammonia nitrogen removal rate amounted in range of 96% to 99%, and the adsorption capacities were in range of 1.21 to 1.24 mg/g for all four different types of adsorbents used.

  4. Adsorption of chromium onto activated alumina: kinetics and thermodynamics studies.

    Science.gov (United States)

    Marzouk, Ikhlass; Dammak, Lassaad; Hamrouni, Béchir

    2013-02-01

    In this study, the removal of chromium (VI) by adsorption on activated alumina was investigated and the results were fitted to Langmuir, Freundlich, Dubinin-Redushkevich, and Temkin adsorption models at various temperatures. The constants of each model were evaluated depending on temperature. Thermodynamic parameters for the adsorption system were determined at 10, 25 and 40 degrees C. (deltaH degrees = -21.18 kJ x mol(-1); deltaG degrees = -8.75 to -7.43 kJ x mol(-1) and deltaS degrees = -0.043 kJ x K(-1) x mol(-1)). The obtained values showed that chromium (VI) adsorption is a spontaneous and exothermic process. The kinetic process was evaluated by first-order, second-order and Elovich kinetic models.

  5. Statistical optimization of process parameters for the simultaneous adsorption of Cr(VI) and phenol onto Fe-treated tea waste biomass

    Science.gov (United States)

    Gupta, Ankur; Balomajumder, Chandrajit

    2017-12-01

    In this study, simultaneous removal of Cr(VI) and phenol from binary solution was carried out using Fe-treated tea waste biomass. The effect of process parameters such as adsorbent dose, pH, initial concentration of Cr(VI) (mg/L), and initial concentration of phenol (mg/L) was optimized. The analysis of variance of the quadratic model demonstrates that the experimental results are in good agreement with the predicted values. Based on experimental design at an initial concentration of 55 mg/L of Cr(VI), 27.50 mg/L of phenol, pH 2.0, 15 g/L adsorbent dose, 99.99% removal of Cr(VI), and phenol was achieved.

  6. Warping methods for spectroscopic and chromatographic signal alignment: a tutorial.

    Science.gov (United States)

    Bloemberg, Tom G; Gerretzen, Jan; Lunshof, Anton; Wehrens, Ron; Buydens, Lutgarde M C

    2013-06-05

    Warping methods are an important class of methods that can correct for misalignments in (a.o.) chemical measurements. Their use in preprocessing of chromatographic, spectroscopic and spectrometric data has grown rapidly over the last decade. This tutorial review aims to give a critical introduction to the most important warping methods, the place of warping in preprocessing and current views on the related matters of reference selection, optimization, and evaluation. Some pitfalls in warping, notably for liquid chromatography-mass spectrometry (LC-MS) data and similar, will be discussed. Examples will be given of the application of a number of freely available warping methods to a nuclear magnetic resonance (NMR) spectroscopic dataset and a chromatographic dataset. As part of the Supporting Information, we provide a number of programming scripts in Matlab and R, allowing the reader to work the extended examples in detail and to reproduce the figures in this paper. Copyright © 2013 Elsevier B.V. All rights reserved.

  7. New portable micro gas chromatograph for environmental analysis

    Energy Technology Data Exchange (ETDEWEB)

    Overton, E.B.; Carney, K.R.; Dharmasena, H.P.; Mainga, A.M.; Ehrmann, U. [Louisiana State Univ., Baton Rouge, LA (United States). Inst. for Environmental Studies

    1994-12-31

    Efforts directed at developing a truly portable method for the analysis of semivolatile compounds have led to the construction and testing of a new generation of micro-GC instrumentation. Building on the successful application of microbore GC columns for in-field analysis of volatile organic compounds, the instrument development group at the LSU-Institute for Environmental Studies has developed a hand portable GC capable of analyzing samples containing compounds with retention indices (100% dimethylpolysiloxane column) up to at least 2,000 in less than 4 minutes, using less than 50 watts (peak) of electrical power. In addition to the ability to analyze semivolatile compounds, the chromatograph is capable of analyzing volatile organics competitively with the most sophisticated of the current commercial portable GCs. The presentation will evaluate chromatographic performance of the instrument at its latest stage of development and demonstrate some applications to environmental analysis using the prototype instrument.

  8. Batch-to-Batch Quality Consistency Evaluation of Botanical Drug Products Using Multivariate Statistical Analysis of the Chromatographic Fingerprint

    OpenAIRE

    Xiong, Haoshu; Yu, Lawrence X.; Qu, Haibin

    2013-01-01

    Botanical drug products have batch-to-batch quality variability due to botanical raw materials and the current manufacturing process. The rational evaluation and control of product quality consistency are essential to ensure the efficacy and safety. Chromatographic fingerprinting is an important and widely used tool to characterize the chemical composition of botanical drug products. Multivariate statistical analysis has showed its efficacy and applicability in the quality evaluation of many ...

  9. Liquid chromatographic-tandem mass spectrometric assay for ...

    African Journals Online (AJOL)

    Methods: Blood and urine samples were obtained from healthy volunteers who admitted to not being on any medications. The investigated analytes were chromatographically separated on a C18 column (Luna®-PFP 100Å column, 50 mm × 2.0 mm i.d., 3.0 μm) with the aid of a mobile phase containing A; acetonitrile (ACN) ...

  10. Binary chromatographic fingerprint analysis of stemonae radix from three Stemona plants and its applications.

    Science.gov (United States)

    Fan, Lan-Lan; Xu, Feng; Hu, Jun-Ping; Yang, Dong-Hui; Chen, Hu-Biao; Komatsu, Katsuko; Zhu, Shu; Shang, Ming-Ying; Wang, Xuan; Cai, Shao-Qing

    2015-07-01

    The dried root tubers of Stemona tuberosa, S. japonica and S. sessilifolia are the original sources of Stemonae Radix (SR) for antitussive and insecticidal activities. The products of SR which are available on the market are variable, and imitations exist. In order to characterize the overall chemical constituents of SR and evaluate its quality, a novel, binary high-performance liquid chromatographic fingerprinting method, describing the pattern of alkaloids (fingerprint I) and non-alkaloids (fingerprint II) of SR was developed. It was also applied to determine whether the medicinal parts and the processing methods affect the quality of SR. Similarity and high-performance liquid chromatography-mass spectrometry (HPLC-MS(n)) were utilized to compare or identify the chemical constituents of SR. The results indicate that the chemical constituents from different parts of the underground material of Stemona plants are diverse and that the processing methods affect certain constituents in the root tuber samples. The similarity and the resulting chemical consitituents obtained show that the binary chromatographic fingerprint method can be used to differentiate the three official Stemona species or the adulterants of SR, which is helpful for the identification and quality evaluation of SR.

  11. A comparison of protein A chromatographic stationary phases: performance characteristics for monoclonal antibody purification.

    Science.gov (United States)

    Liu, Zhuo; Mostafa, Sigma S; Shukla, Abhinav A

    2015-01-01

    Protein A chromatography remains the dominant capture step used during the downstream purification of monoclonal antibodies (mAbs). With the recent expiry of the Repligen patent on recombinant Protein A, a variety of new Protein A resins have been introduced in the market. Given productivity limitations during downstream processing that have come into sharper focus with the recent increase in cell culture titers for mAbs, the selection of an appropriate Protein A resin has direct implications on the overall process economics of mAb production. The performance of seven different Protein A chromatographic resins was compared with respect to static binding capacity and dynamic binding capacity as a function of flow rate. This data was translated into a comparison of productivity (g mAb purified per unit resin volume per unit time) for the seven stationary phases. In addition, elution pH and host cell protein impurity levels after product capture on each of these resins were determined. The current article provides an effective methodology and dataset for the selection of the optimal Protein A chromatographic resin. © 2014 International Union of Biochemistry and Molecular Biology, Inc.

  12. Study on Detection and Identification of Gas Sensor Based on Chromatographic Separation

    Directory of Open Access Journals (Sweden)

    Xiao Wanfu

    2014-08-01

    Full Text Available This paper developed a chromatographic separation and sensor based on a combination of gas detector, the common precursor gases such as acetone, ether, chloroform and other gas detection. According to the obtained experimental data, proposed one kind based on the principal component analysis and support vector machine algorithm of gas chromatography identification sensor signal processing and recognition; the method used for detection and identification of the air in the precursor gases combine tester self-developed, obtained very good result. This paper designed and developed a chromatographic separation and sensor based on the combination of gas detection instruments, to multi gas detection instrument. On separation characteristics using chromatography, to solve the traditional single common precursor gas detection. The use of a pre processing based on domestication, principal component analysis for feature extraction method of all kinds of gas data. This effectively avoids the sensor substrate voltage fluctuation and gas concentration effects on body recognition, and reduces the gas sample feature vector dimension.

  13. Characterization of crude oils and petroleum products: (I Elution liquid chromatographic separation and gas chromatographic analysis of crude oils and petroleum products

    Directory of Open Access Journals (Sweden)

    E.O. Odebunmi

    2002-12-01

    Full Text Available Some physical and chemical properties of samples of light, medium and heavy Nigerian crude oils and petroleum products including gasoline, kerosene and engine oil have been measured and are reported in this paper. The crude oils and petroleum products have also been characterized by fractional distillation and elution liquid chromatography. The fractions obtained from elution liquid chromatography were analyzed using gas chromatography (GC. The GC fractions were identified by comparing the retention time of peaks in the unknown samples with those of components of calibration standard mixtures. The importance of the physico-chemical properties and the significance of the fractional distillation and chromatographic separation methods to industrial process operations have been discussed.

  14. Adsorption dynamics of copper ion by low cost activated carbon

    International Nuclear Information System (INIS)

    Arivoli, S.; Saravanan, S.; Nandhakumar, V.; Nagarajan, Sulochana

    2009-01-01

    The activated carbon was prepared using solid waste called Terminalia Catappa Linn shell and the physicochemical properties of carbon were investigated to explore the adsorption process. The effectiveness of such carbon in adsorbing copper ion from aqueous solution has been studied as a function of agitation time, adsorbent dosage, initial metal ion concentration, temperature, pH, and desorption. Adsorption equilibrium studies were carried out in order to optimize the experimental conditions. The adsorption of copper ion onto carbon followed a first order kinetic model. Adsorption data were modeled using both Langmuir and Freundlich classical adsorption isotherms. The adsorption capacity Qm was 30.60, 33.85, 35.87, and 38.35 at initial PH 7.0. The equilibrium time was found to be 40 min for all initial concentrations studied. Desorption studies were performed with dilute HCl and show that ion exchange is the predominant copper ion adsorption mechanism. The adsorbent was found to be both effective and economically viable. (author)

  15. Equilibrium and kinetic adsorption study of the adsorptive removal of Cr(VI) using modified wheat residue.

    Science.gov (United States)

    Chen, Suhong; Yue, Qinyan; Gao, Baoyu; Xu, Xing

    2010-09-01

    A new adsorbent modified from wheat residue was synthesized after reaction with epichlorohydrin and triethylamine by using the modifying agents of diethylenetriamine in the presence of organic medium of N,N-dimethylformamide. The performance of the modified wheat straw (MWS) was characterized by Fourier transform infrared spectroscopy and point of zero charge analysis. The adsorption was investigated in a batch adsorption system, including both equilibrium adsorption isotherms and kinetics. Results showed that MWR had great anion-adsorbing capacity, due to the existence of a large number of introduced amino groups, and the value of pH(PZC) was around 5.0. Equilibrium data were analyzed using the Langmuir, Freundlich, and Temkin isotherm models and were found to be best represented by the Freundlich isotherm model. Evaluation of the adsorption process identified its endothermic nature. The maximum adsorption capacity of MWS for the removal of Cr(VI) was 322.58mg/g at 328K, indicating that MWS has high chromium removal efficiency, compared to other adsorbents reported. The kinetics of adsorption followed the pseudo-second-order kinetic equation. The mechanism of adsorption was investigated using the intraparticle diffusion model. Thermodynamic parameters (free energy change, enthalpy change, and entropy change) revealed that the adsorption of Cr(VI) onto MWS was endothermic and spontaneous; additionally, the adsorption can be characterized as an ion-exchange process. The results suggest that MWS is an inexpensive and efficient adsorbent for removing Cr(VI) ions from aqueous solution. Copyright 2010 Elsevier Inc. All rights reserved.

  16. Ion chromatographic determination of sulfites in foods.

    Science.gov (United States)

    Anderson, C; Warner, C R; Daniels, D H; Padgett, K L

    1986-01-01

    Ion chromatography (IC) is shown to be a promising technique for the determination of sulfites (SO2, SO2/3-) in foods. Results of a 10 min flash distillation and 10 min IC determination compare favorably with the results from the conventional Monier-Williams method for total sulfite in a variety of food matrices. The IC technique also provides a wealth of additional information, such as (1) sulfite and sulfate (oxidized sulfite) content of the spiking or treatment solution, (2) residual sulfite applied to the food after oxidation losses in the treatment process, (3) free sulfite in foods, and (4) total sulfite in foods. As a further check on the Monier-Williams method, the sulfate content of the trapping solution can be determined by IC. Because the IC technique traps the liberated SO2 in a non-oxidizing rather than an oxidizing medium, it is considered free from interfering sulfides and organic sulfur-containing groups which can give false positives in the Monier-Williams method. IC thus offers a high speed, more sensitive, and cost-effective alternative to conventional techniques for the determination of sulfite in foods.

  17. Advanced ion chromatograph detects low MEA levels

    Energy Technology Data Exchange (ETDEWEB)

    Lindsay, S. (Texaco Refining and Marketing Inc., Anacortes, WA (US)); Palladino, D. (Beckmann Instruments Inc., Westbury, N.Y. (US))

    1990-01-22

    Texaco Refining and Marketing Inc. is using an advanced method of ion chromatography at its Puget Sound refinery in Anacortes, Wash., to detect and measure monoethanolamine (MEA) in process effluent water at low-ppm levels. The method reported in this article is electronically suppressed, single-column, ion chromatography (SCIC). The method was selected for use in this service subsequent to successful use to improve titrimetric analysis of wash water, where low-ppm ranges of chlorides needed to be measured. SCIC was also able to detect halides of other constituents, such as bromides and iodides. The advanced method can measure precisely very low levels of both monoethanolamine and ammonia, and it assists in locating the sources that allow the contaminants to escape into the wastewater stream. In these analyses, the SCIC unit operated in less than one third the time of automatic titrimetry and other wet chemistry methods available in the laboratory. It also proved to be more economical than conventional chemically suppressed ion chromatography (CSIC).

  18. Adsorption potential of mercury(II) from aqueous solutions onto Romanian peat moss.

    Science.gov (United States)

    Bulgariu, Laura; Ratoi, Mioara; Bulgariu, Dumitru; Macoveanu, Matei

    2009-06-01

    This study was undertaken to evaluate the adsorption potential of Romanian peat moss for the removal of mercury(II) from aqueous solutions. The batch system experiments carried out showed that this natural material was effective in removing mercury(II). The analysis of FT-IR spectra indicated that the mechanism involved in the adsorption can be mainly attributed to the binding of mercury(II) with the carboxylic groups of Romanian peat moss. Adsorption equilibrium approached within 60 min. The adsorption data fitted well the Langmuir isotherm model. The maximum adsorption capacity (qmax) was 98.94 mg g(-1). Pseudo-second-order kinetic model was applicable to the adsorption data. The thermodynamic parameters indicate that the adsorption process was spontaneous as the Gibbs free energy values were found to be negative (between -17.58 and -27.25 kJ mol(-1)) at the temperature range of 6-54 degrees C.

  19. Effect of nitrogen doping of graphene oxide on hydrogen and hydroxyl adsorption

    Energy Technology Data Exchange (ETDEWEB)

    Min, Byeong June; Jeong, Hae Kyung [Daegu University, Kyungsan (Korea, Republic of)

    2014-05-15

    We investigate how nitrogen-doping affects the hydrogen (H) and the hydroxyl (OH) adsorption on graphene oxide (GO) and on nitrogen-doped GO (NGO) via pseudopotential plane wave density functional calculations within the local spin density approximation. We find that the nitrogen doping brings about drastic changes in the hydrogen and the hydroxyl adsorption energetics, but its effects depend sensitively on the nitrogen configuration in NGO. The H and the OH adsorption energies are comparable only for pyrrolic NGO. In GO and quarternary NGO, the H adsorption energy is greater than the OH adsorption energy while the trend is reversed in pyridinic NGO. Also, the OH adsorption process is less affected by nitrogen-doping than the H adsorption is.

  20. Study on the methylene blue adsorption from wastewaters by pore-expanded calcium fluoride sludge adsorbent.

    Science.gov (United States)

    Hong, Junming; Lin, Bing; Hong, Gui-Bing; Chang, Chang-Tang

    2014-04-01

    The adsorption of methylene blue (MB) onto pore-expanded calcium fluoride sludge (ECF) by the batch adsorption technique was investigated. The results showed that the adsorption capacity increased with increasing MB concentration but decreased as pH was increased. In order to investigate the adsorption mechanisms, three simplified isotherm models and kinetic models were used in this study. The best-fit adsorption isotherm was achieved with the Temkin model. Furthermore, the pseudo-second-order kinetic model agreed very well with the dynamical behavior for the adsorption of MB onto ECF. Thermodynamic studies revealed that the adsorption process of MB onto ECF was spontaneous and exothermic. The results indicated that ECF adsorbed MB efficiently and could be used as a waste adsorbent for the removal of cationic dyes in wastewater treatment.

  1. Adsorption of Pb(II by Activated Pyrolytic Char from Used Tire

    Directory of Open Access Journals (Sweden)

    Lu Ping

    2016-01-01

    Full Text Available As a renewable resource, the pyrolytic char derived from used tire has promising adsorption capacities owing to its similar structure and properties with active carbon. The purification and activation of the pyrolytic char from used tire, as well as the application of this material in the adsorption of Pb(II in water is conducted. The influences on the adsorption capacity by temperature and pH value are investigated and discussed; the adsorption thermodynamics and kinetics are also studied. The results show that the pyrolytic char from used tire has remarkable adsorption capacity for Pb(II, and the adsorption is an endothermic process complying with the Langmuir isotherm. The adsorption kinetics is a pseudo second-order reaction.

  2. Development of a simple technique for the coating of monolithic silica with pristine boron nitride nanotubes (BNNTs): HPLC chromatographic applications.

    Science.gov (United States)

    Guillaume, Yves Claude; André, Claire

    2017-03-01

    In this paper, a novel and very simple homogeneous coating of a monolithic silica HPLC support using pristine boron nitride nanotubes (BNNTs) was d0.escribed. The chromatographic support was coated with BNNTs in a non covalent way to preserve the nanotube structure. A solution of BNNTs dispersed in dimethylacetamide (DMAc) was pumped through the column at a flow-rate of 0.3mL/min for 24h at room temperature. Strong interaction between amino groups and the BNNT surfaces induces the adsorption of the BNNTs on the silica, while the stable solvation in DMAc hampers further adsorption of the tubes. The excellent stability of the non covalent BNNT-coating on the monolithic silica in view of application for HPLC was also demonstrated. It was shown that this novel stationary phase was efficient for the HPLC isocratic or gradient mode separation of molecules of different structure such as phenol derivatives, alkylbenzene or doping agents (steroids). As well, this simple technique of BNNT immobilization offers new perspectives for the BNNT-coating on the surfaces of a wide range of solid substrates. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Exploring reverse shape selectivity and molecular sieving effect of metal-organic framework UIO-66 coated capillary column for gas chromatographic separation.

    Science.gov (United States)

    Chang, Na; Yan, Xiu-Ping

    2012-09-28

    Metal-organic frameworks (MOFs) which offer a variety of topologies, porous networks and high surface areas are promising and have potential for the applications of specific adsorption, isomerization, catalysis and separation. UIO-66 is the first MOF that has been observed to have reverse shape selectivity. However, such reverse shape selectivity of MOFs has never been explored for capillary gas chromatographic separation. Here we report the fabrication of MOF UIO-66 coated capillary column and exploration of the reverse shape selectivity and molecular sieving effect of such column for capillary gas chromatographic separation of alkane isomers and benzene homologues with excellent selectivity and precision. The adsorption enthalpies and entropies on the interaction between hydrocarbons and UIO-66 were measured to illustrate the energy effect on the separation of alkane isomers and benzene homologues on the UIO-66 coated capillary column. UIO-66 coated capillary column gave preferential retention of branched alkane isomers over their linear isomer, showing reverse shape selectivity, making UIO-66 coated capillary column attractive for capillary gas chromatographic separation of alkane isomers. iso-Propylbenzene (branched) eluted after n-propylbenzene on the UIO-66 coated capillary column again shows reverse shape selectivity. However, much bulkier 1,3,5-trimethylbenzene eluted earlier than n-propylbenzene and iso-propylbenzene on the UIO-66 coated capillary column, exhibiting molecular sieving effect. The combination of reverse shape selectivity with molecular sieving effect makes the UIO-66 coated capillary column promising for the separation of structural isomers. Copyright © 2012 Elsevier B.V. All rights reserved.

  4. Effect of hydrophobicity of pharmaceuticals and personal care products for adsorption on activated carbon: Adsorption isotherms, kinetics and mechanism.

    Science.gov (United States)

    Kaur, Harkirat; Bansiwal, Amit; Hippargi, Girivyankatesh; Pophali, Girish R

    2017-09-11

    Adsorption of three pharmaceuticals and personal care products (PPCPs), namely caffeine, ibuprofen and triclosan on commercial powdered activated carbon was examined in aqueous medium. The contaminants were chosen based on their diverse log K ow (octanol-water partition coefficient) viz. - 0.07 for caffeine, 3.97 for ibuprofen and 4.76 for triclosan to examine the role of hydrophobicity on adsorption process. The adsorbent characterisation was achieved using BET surface area, SEM, pore size distribution studies and FTIR. Influence of mass of PAC, contact time, solution pH and initial concentration on adsorption capacity of PAC was studied. Adsorption isotherms and kinetics were applied to establish the mechanism of adsorption. The kinetics followed pseudo-second order with physisorption occurring through particle diffusion. The Freundlich model fitted best among the isotherm models. The adsorption capacity increased in the order CFN hydrophobicity (log K ow ), molecular weight and decreasing water solubility, respectively. We conclude that micro-pollutant hydrophobicity contributes towards adsorption on activated carbon.

  5. Adsorption mechanism of sodium dodecyl benzene sulfonate on carbon blacks by adsorption isotherm and zeta potential determinations.

    Science.gov (United States)

    Zhao, Yapei; Lu, Pei; Li, Caiting; Fan, Xiaopeng; Wen, Qingbo; Zhan, Qi; Shu, Xin; Xu, Tieliang; Zeng, Guangming

    2013-01-01

    Surfactant solutions were propounded to remove fine and hydrophobic carbon black particles from coal-fired flue gas. The adsorption mechanisms between sodium dodecyl benzene sulfonate (SDBS, an anionic surfactant) and carbon black particles in suspension were investigated. The influence of inorganic salt (NaCl) was also considered. As results showed, hydrophobic interactions contributed to the strong adsorption between SDBS and carbon black particles in the absence of NaCl, and adding NaCl affected the adsorption process. The adsorption amount of SDBS significantly increased when NaCl was added into the SDBS solution; however, when SDBS was in low concentration, the amount of adsorbed SDBS, which was responsible for the shift of zeta potentials, varied little under different concentrations of NaCl. This indicated that the adsorption of SDBS was mainly caused by hydrophobic interaction and Na+ could not change the adsorption of SDBS on adsorption site when SDBS was in low concentration. Moreover, the adsorbed SDBS and Na+ were retained in the Stern layer.

  6. Selective adsorption and separation of organic dyes from aqueous solution on polydopamine microspheres.

    Science.gov (United States)

    Fu, Jianwei; Xin, Qianqian; Wu, Xuechen; Chen, Zhonghui; Yan, Ya; Liu, Shujun; Wang, Minghuan; Xu, Qun

    2016-01-01

    Polydopamine (PDA) microspheres, synthesized by a facile oxidation polymerization route, were evaluated as a potential adsorbent for selective adsorption and separation of organic dyes. The adsorption processes towards nine water-soluble dyes (anionic dyes: methyl orange (MO), eosin-Y (EY), eosin-B (EB), acid chrome blue K (ACBK), neutral dye: neutral red (NR), and cationic dyes: rhodamine B (RhB), malachite green (MG), methylene blue (MB), safranine T (ST)) were thoroughly investigated. The adsorption selectivity of organic dyes onto PDA microspheres was successfully applied for the separation of dyes mixtures. Various influential factors such as solution pH, temperature, and contact time were employed to ascertain the optimal condition for adsorption of representative organic dyes including MB, MG and NR. The pseudo-first-order and pseudo-second-order kinetics models were used to fit the adsorption kinetics process. Five isothermal adsorption models (Langmuir, Dubnin-Radushkevich, Temkin, Freundlich and Harkins-Jura) were used to investigate the adsorption thermodynamics properties. The results showed that the PDA microspheres owned good selective adsorption ability towards cationic dyes. The adsorption kinetics process conformed to the pseudo-second-order kinetics model and the Langmuir isotherm model was more appropriate for tracing the adsorption behavior than other isotherm models. Thus, we can conclude PDA microspheres may be a high-efficiency selective adsorbent towards some cationic dyes. Copyright © 2015 Elsevier Inc. All rights reserved.

  7. Adsorption behaviour of direct yellow 50 onto cotton fiber: Equilibrium, kinetic and thermodynamic profile

    Science.gov (United States)

    Ismail, L. F. M.; Sallam, H. B.; Abo Farha, S. A.; Gamal, A. M.; Mahmoud, G. E. A.

    2014-10-01

    This study investigated the adsorption of direct yellow 50 onto cotton fiber from aqueous solution by using parameters, such as pH, temperature, contact time, initial dye concentration and the effect of sodium sulphate, tetrasodium edate and trisodium citrate. The extent of dye adsorption increased with increasing contact time, temperature and solution concentration. The experimental data were analyzed by the Langmuir and Freundlich models of adsorption. It was found that the Langmuir equation fit better than the Freundlich equation. The results show that the presence of SE and SC significantly enhance the dye adsorption onto cotton fiber. In addition, the adsorption data obtained at different temperatures of DY50 onto cotton fiber were applied to pseudo first-order, pseudo second-order and intraparticle diffusion models. The rates of adsorption were found to conform to pseudo second-order kinetics with good correlation. Also, free energy of adsorption (ΔG#), enthalpy (ΔH#), and entropy (ΔS#) changes were determined to predict the nature of adsorption. The positive value of the enthalpy change indicated that the adsorption is endothermic process. The activation energy, Ea, is ranged between 1.9 and 3.9 kJ mol-1 indicated that the adsorption process is a physisorption. This low value of Ea generally indicates diffusion controlled process.

  8. Adsorption of bovine alpha-lactalbumin on suspended solid nanospheres and its subsequent displacement studied by NMR spectroscopy

    NARCIS (Netherlands)

    Engel, M.F.M.; Visser, A.J.W.G.; Mierlo, van C.P.M.

    2004-01-01

    Detailed knowledge of the adsorption-induced conformational changes of proteins is essential to understand the process of protein adsorption. However, not much information about these conformational changes is available. Here, the adsorption of calcium-depleted (APO)- and calcium-containing

  9. Adsorptivity of uranium by aluminium-activated carbon composite adsorbent

    International Nuclear Information System (INIS)

    Katoh, Shunsaku; Sugasaka, Kazuhiko; Fujii, Ayako; Takagi, Norio; Miyai, Yoshitaka

    1976-01-01

    To research the adsorption process of uranium from sea water by aluminium-activated carbon composite adsorbent (C-Al-OH), the authors examined the effects of temperature, pH and carbonate ion concentration of the solution upon the adsorption of uranium, using sodium chloride solution and natural sea water. The continued mixing of the solution for the duration of two to four hours was required to attain the apparent equilibrium of adsorption. The adsorption velocity at an early stage and the uptake of uranium at the final stage showed an increase in proportion to a rise in the adsorption temperature. In the experiment of adsorption for which sodium chloride solution was used, the linear relationship between the logarithm of the distribution coefficient (K sub(d)) and the pH of the solution was recognized. The uptake of the uranium from the solution at the pH of 12 increased as the carbonate ion concentration in the solution decreased. The uranyl ion in the natural sea water was assumed to be uranyl carbonate complex ion (UO 2 (CO 3 ) 3 4- ). As the result of the calculation conducted by using the formation constants for uranyl complexes in literature, it was found that uranyl hydroxo complex ion (UO 2 (OH) 3 - ) increased in line with a decrease of the carbonate ion concentration in the solution. The above results of the experiment suggested that the adsorption of uranium by the adsorbent (C-Al-OH) was cationic adsorption or hydrolysis adsorption being related with the active proton on the surface of the adsorbent. (auth.)

  10. Topotactic growth, selective adsorption, and adsorption-driven photocatalysis of protonated layered titanate nanosheets.

    Science.gov (United States)

    Wu, Qili; Yang, Xianfeng; Liu, Jia; Nie, Xin; Huang, Yongliang; Wen, Yuping; Khan, Javid; Khan, Wasim U; Wu, Mingmei; An, Taicheng

    2014-10-22

    Layered titanates with selective adsorption ability and adsorption-driven photocatalytic property can be quite attractive due to their potential applications in water purification. In this work, lepidocrocite-like layered protonated titanate (H2Ti2O5·H2O, denoted as HTO) nanosheets were successfully synthesized by an ion-exchange process. It turns out that this layered structure displays an abundant and selective adsorption toward the fluoroquinolone pharmaceutical compared with some large dye molecules due to a size selectivity of the interlayer spacing of HTO and the molecular horizontal size, as well as their electrostatic interaction. The uptake ability of HTO could be readily controlled through adjusting the pH values of adsorbate solution, and the maximum uptake capacity was achieved at the pH value of about 5.5 for ciprofloxacin (CIP) and 6.5 for moxifloxacin (MOX). The adsorption amount of smaller nalidixic acid (NAL) showed an increasing tendency as the pH value decreased. Moreover, the two-dimensional layered crystal structure also permits such HTO nanosheets to have a large percentage of (010) faces exposed, which is considerably provided by the interlayer surfaces of these nanosheets. The (010) surface has a similar Ti and O atomic arrangement as to the highly reactive anatase TiO2(001) one. Due to these specific characteristics, these HTO nanosheets show excellent photocatalytic activity in degrading CIP under UV light irradiation as well as possess a superior adsorption ability to remove CIP from aqueous solution selectively and efficiently. The photocatalytic reaction is believed to be mainly conducted on the active anatase (001)-like interlayer (010) surfaces of the layered structures since the as-prepared HTO performs an adsorption-driven molecular recognitive photocatalytic reaction.

  11. Adsorption of RE3+from aqueous solutions by bayberry tannin immobilized on chitosan.

    Science.gov (United States)

    Qiu, Xianying; Shen, Yueyue; Yang, Ruilin; Zhang, Hongcheng; Zhao, Shilin

    2017-10-06

    Bayberry tannin immobilized on chitosan (CS-BT) was successfully prepared, and its adsorption performance was studied for aqueous solutions of rare earth ions. The as-prepared absorbents were characterized by Fourier transform infrared spectrometry and scanning electron microscopy. The equilibrium adsorption capacity was achieved in approximately 30 min. The adsorption process of CS-BT for Nd 3+ was well fitted with a Freundlich model and the kinetics followed the pseudo-second-order rate equation. The maximum adsorption capacity for Nd 3+ was 133.72 mg/g and dynamic adsorption characteristics of single ion (La 3+ , Ce 3+ , Nd 3+ ) were investigated. The solution concentration was less than 30 mg/L when effluent volume was approximately 800 mL. Subsequently, the adsorbent column was desorbed by HNO 3 solution. There was no significant loss of adsorption capacity after three cycles of regeneration, showing a satisfactory recyclability. Furthermore, CS-BT exhibited excellent dynamic adsorption performance of two mixed ions (La 3+ /Ce 3+ , La 3+ /Nd 3+ , Ce 3+ /Nd 3+ ) and three mixed ions (La 3+ /Ce 3+ /Nd 3+ ). The competitive adsorption capacity was La 3+ < Ce 3+ < Nd 3+ . The results indicate that the adsorption selectivity of column adsorption could provide a theoretical basis for the adsorption and separation of light rare earth ions. Therefore, this efficient adsorbent shows promising potential for the treatment of industrial wastewater.

  12. Adsorptive removal of Cu(II) from aqueous solutions using collagen-tannin resin

    Energy Technology Data Exchange (ETDEWEB)

    Sun Xia; Huang Xin [Department of Biomass Chemistry and Engineering, Sichuan University, Chengdu 610065 (China); Liao Xuepin, E-mail: xpliao@scu.edu.cn [Department of Biomass Chemistry and Engineering, Sichuan University, Chengdu 610065 (China); National Engineering Laboratory for Clean Technology of Leather Manufacture, Sichuan University, Chengdu 610065 (China); Shi Bi, E-mail: shibi@scu.edu.cn [National Engineering Laboratory for Clean Technology of Leather Manufacture, Sichuan University, Chengdu 610065 (China)

    2011-02-28

    The collagen-tannin resin (CTR), as a novel adsorbent, was prepared via a reaction of collagen with black wattle tannin and aldehyde, and its adsorption properties to Cu(II) were systematically investigated, including pH effect, adsorption equilibrium, adsorption kinetics, and column adsorption. The adsorption capacity of Cu(II) on CTR was pH-dependent, and it increased with the increase of solution pH. The adsorption isotherms were well described by Langmuir isotherm model with correlating constant (R{sup 2}) higher than 0.99. The adsorption capacity determined at 303 K was high up to 0.26 mmol/g, which was close to the value (0.266 mmol/g) estimated from Langmuir equation. The adsorption capacity was increased with the increase of temperature, and thermodynamic calculations suggested that the adsorption of Cu(II) on CTR is an endothermic process. The adsorption kinetics were well fitted by the pseudo-second-order rate model. Further column studies suggested that CTR was effective for the removal of Cu(II) from solutions, and more than 99% of Cu(II) was desorbed from column using 0.1 mol/L HNO{sub 3} solution. The CTR column can be reused to adsorb Cu(II) without any loss of adsorption capacity.

  13. Adsorption of cadmium by biochar derived from municipal sewage sludge: Impact factors and adsorption mechanism.

    Science.gov (United States)

    Chen, Tan; Zhou, Zeyu; Han, Rong; Meng, Ruihong; Wang, Hongtao; Lu, Wenjing

    2015-09-01

    Static equilibrium experiments were carried out to investigate the impact factors and the mechanism of cadmium adsorption on biochar derived from municipal sewage sludge. An appropriate dosage of biochar is sufficient; in the experiment, 0.2% is the optimal dosage for the largest removal capacity, while the removal capacity of biochar reduces with the increasing dosage. pH is another dominant factor of the adsorption process. The removal capacity of biochar is lower than 20 mg·g(-1) when the solution initial pH is lower than 2 pH units, comparatively retaining more than 40 mg·g(-1) at the solution initial pH higher than 3 pH units. Temperature has weak influence on the adsorptive performance. The main mechanism of the adsorption process of biochar for cadmium mainly involves (1) surface precipitation by forming insoluble cadmium compounds in alkaline condition, and (2) ion exchange for cadmium with exchangeable cations in the biochar, such as calcium ions. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Protein adsorption to poly(ethylenimine)-modified Sepharose FF. IV. Dynamic adsorption and elution behaviors.

    Science.gov (United States)

    Liu, Na; Yu, Lin-Ling; Sun, Yan

    2014-10-03

    We have previously investigated bovine serum albumin (BSA) uptake to poly(ethylenimine) (PEI)-grafted Sepharose FF. It was found that there was a critical ionic capacity (cIC; 600mmol/L) for BSA, above which the protein adsorption capacity and uptake kinetics increased drastically. In this work, two poly(ethylenimine) (PEI)-grafted resins with IC values of 271mmol/L (FF-PEI-L270) and 683mmol/L (FF-PEI-L680), which were below and above the cIC, respectively, were chosen to investigate the breakthrough and linear gradient elution (LGE) behaviors of BSA. Commercially available anion exchanger, Q Sepharose FF, was used for comparison. The DBC values of FF-PEI-L680 were much higher in the entire residence time range (2-10min) than the other two resins due to its high static adsorption capacity and uptake kinetics. At a residence time of 5.0min, the DBC of FF-PEI-L680 (104mg/mL) was about seven times that of FF-PEI-L270 and three times that of Q Sepharose FF. A rise-fall trend of the DBCs with increasing ionic strength (IS) was found for all the three resins studied, indicating the presence of electrostatic exclusion for protein uptake at low IS. With increasing NaCl concentration from 20 to 200mmol/L, FF-PEI-L680 kept very high DBC values (64-114mg/mL). In addition, FF-PEI-L270 showed more favorable adsorption properties than Q Sepharose FF at 100-300mmol/L NaCl. These results proved that the three-dimensional grafting ion exchange layer on the PEI resins enhanced their tolerance to IS. In the study of LGE, the three resins showed similar elution behaviors and no distinct peak tailings were observed. The salt concentrations at the elution peaks (IR) were in the order of FF-PEI-L680>FF-PEI-L270>Q Sepharose FF, indicating that the elution for the PEI resins needed higher salt concentrations, which was also an appearance of the salt-tolerant feature of the PEI resins. When protein loading amount was increased to the value equivalent to the DBC at 10% breakthrough, the

  15. The Use Of New Adsorption Technology

    International Nuclear Information System (INIS)

    Khattaby, M.; El-Azm, A.

    2004-01-01

    Adsorption is widely used in Gas Dehydration. Recently, new technology has been applied by using a new type of silica gel adsorbent for both gas dehydration and hydrocarbon dew pointing. A study to evaluate the different methods of hydrocarbon dew pointing was performed by Enppi and proved that the use of adsorption process with a new type of silica gel has significant cost benefits over the life of field. In Egypt, this new technology has been used in the Rosetta gas plant, which was designed for 302 MMSCFD (275 + 10%). The plant has been operational for about 4 years and experience demonstrated that the new type of silica gel has high performance, excellent reliability and low operating cost. Following these good results, the plant has been tested up to 380 MMSCFD and again the adsorbent proved its high performance and efficiency

  16. Removal of mercury by adsorption: a review.

    Science.gov (United States)

    Yu, Jin-Gang; Yue, Bao-Yu; Wu, Xiong-Wei; Liu, Qi; Jiao, Fei-Peng; Jiang, Xin-Yu; Chen, Xiao-Qing

    2016-03-01

    Due to natural and production activities, mercury contamination has become one of the major environmental problems over the world. Mercury contamination is a serious threat to human health. Among the existing technologies available for mercury pollution control, the adsorption process can get excellent separation effects and has been further studied. This review is attempted to cover a wide range of adsorbents that were developed for the removal of mercury from the year 2011. Various adsorbents, including the latest adsorbents, are presented along with highlighting and discussing the key advancements on their preparation, modification technologies, and strategies. By comparing their adsorption capacities, it is evident from the literature survey that some adsorbents have shown excellent potential for the removal of mercury. However, there is still a need to develop novel, efficient adsorbents with low cost, high stability, and easy production and manufacture for practical utility.

  17. AIR SEPARATION BY PRESSURE SWING ADSORPTION USING SUPERIOR ADSORBENTS

    Energy Technology Data Exchange (ETDEWEB)

    Ralph T. Yang

    2001-08-31

    Li-X zeolite (Si/Al = 1.0) is currently the best sorbent for use in the separation of air by adsorption processes. In particular, pressure swing adsorption (PSA) using zeolite sorbents is being increasingly used for air separation. Silver is also known to strongly affect the adsorptive properties of zeolites; and it is known that thermal vacuum dehydration of silver zeolites leads to the formation of silver clusters within the zeolite. In this work we have synthesized type X zeolites containing Ag and also varying mixtures of Li and Ag. In this project, we developed the Ag-containing zeolite as the best sorbent for air separation. We have also studied Co-ligand compounds as oxygen-selective sorbents. Syntheses, structural characterization and adsorption properties have been performed on all sorbents. The results are described in detail in 5 chapters.

  18. Adsorption of Atenolol on Kaolinite

    Directory of Open Access Journals (Sweden)

    Yingmo Hu

    2015-01-01

    Full Text Available In this study the adsorption of atenolol (AT, a β-blocker, on kaolinite, a clay mineral of low surface charge, was investigated under varying initial AT concentration, equilibrium time, solution pH, ionic strength, and temperature conditions. The results showed that the amounts of AT uptake by kaolinite were close to its cation exchange capacity value and the AT adsorption was almost instantaneous, suggesting a surface adsorption. The adsorption was exothermic and the free energy of adsorption was small negative, indicating physical adsorption. The increase in ionic strength of the solution drastically reduced AT uptake on kaolinite. A significant reduction in AT uptake was found at solution pH below 5 or above 10. The FTIR results showed band shifting and disappearance for NH bending vibration and benzene ring skeletal vibration at 3360 and 1515 cm−1 and band splitting at 1412 and 1240 cm−1 attributed to C–N valence vibration coupled with NH bending vibrations and alkyl aryl ether linkage, suggesting the participation of NH, –O–, and benzene ring for AT adsorption on kaolinite.

  19. Adsorption Desalination: A Novel Method

    KAUST Repository

    Ng, Kim Choon

    2010-11-15

    The search for potable water for quenching global thirst remains a pressing concern throughout many regions of the world. The demand for new and sustainable sources and the associated technologies for producing fresh water are intrinsically linked to the solving of potable water availability and hitherto, innovative and energy efficient desalination methods seems to be the practical solutions. Quenching global thirst by adsorption desalination is a practical and inexpensive method of desalinating the saline and brackish water to produce fresh water for agriculture irrigation, industrial, and building applications. This chapter provides a general overview of the adsorption fundamentals in terms of adsorption isotherms, kinetics, and heat of adsorption. It is then being more focused on the principles of thermally driven adsorption desalination methods. The recent developments of adsorption desalination plants and the effect of operating conditions on the system performance in terms of specific daily water production and performance ratio are presented. Design of a large commercial adsorption desalination plant is also discussed herein.

  20. Suitability of selected chromatographic columns for analysis of fatty acids in dialyzed patients.

    Science.gov (United States)

    Pazda, Magdalena; Stepnowski, Piotr; Sledzinski, Tomasz; Chmielewski, Michal; Mika, Adriana

    2017-11-01

    Gas chromatography-mass spectrometry is a preferred method for fatty acid (FA) analysis in biofluids from patients with metabolic diseases. Complex characteristics of FAs make their analysis particularly challenging. Selection of an appropriate chromatographic column is particularly important component of the process as it provides optimal separation and detection of possibly all FAs present in the sample. However, no accurate protocol for comparative evaluation of capillary columns for the analysis of whole serum FA profile in patients with chronic kidney disease (CKD) has been developed thus far. Therefore, in the present study four columns were examined to select the one providing optimal separation and determination of FA profiles in this group of patients. Moreover, serum FA profiles obtained with the selected column in CKD patients subjected to peritoneal dialysis and healthy controls were compared. Thirty-seven component FAME Mix and sera from CKD patients were used to optimize chromatographic conditions and to select the most appropriate column. The ZB-5 column turned out to be the most appropriate for the analysis of whole FA profile in CKD patients' sera. Then, this column was used to compare FA profiles in patients subjected to peritoneal dialysis and in healthy controls. The analysis demonstrated many abnormalities in the FA profile of CKD patients. Further studies involving larger groups of patients presenting with other stages of CKD are required to explain the impact of the disease progression on composition of serum FAs. Copyright © 2017 John Wiley & Sons, Ltd.

  1. Ionic liquid functionalization of semi-packed columns for high-performance gas chromatographic separations.

    Science.gov (United States)

    Regmi, Bishnu P; Chan, Ryan; Agah, Masoud

    2017-08-11

    Gas chromatography columns fabricated using microelectromechanical system (MEMS) technology provide a number of clear advantages. However, successful deposition of stationary phases having a wide application range remains an important technical challenge. In this paper, we report, for the first time, on the deposition of room temperature ionic liquids (RTILs)-a versatile class of stationary phases-inside the channels of semi-packed columns (SPCs) for high-performance gas chromatographic separation of complex chemical mixtures. A 1m long, 240μm deep, 190μm wide column comprising an array circular micropillars of 20μm in diameter and 40μm post spacing was fabricated using MEMS processes. Two RTILs were immobilized inside these columns using a dynamic coating method, and the columns were tested for separation of three different mixtures: a 15-component mixture of hazardous chemical pollutants, an 8-component mixture of fatty acid methyl esters, and a sample of gasoline. These columns displayed sharp and symmetrical peaks, significant selectivity variation between the two columns, and rapid separation times. The columns yielded high separation efficiencies measured by approximately 2300 plates/m under isothermal conditions. This work highlights the potential of RTILs to be used as excellent stationary phases for SPCs, thereby dramatically expanding the range of complex mixtures that could be analyzed using a micro gas chromatograph. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Determination of drugs in biological fluids by direct injection of samples for liquid-chromatographic analysis.

    Science.gov (United States)

    Mullett, Wayne M

    2007-03-10

    The analysis of drugs in various biological fluids is an important criterion for the determination of the physiological performance of a drug. After sampling of the biological fluid, the next step in the analytical process is sample preparation. The complexity of biological fluids adds to the challenge of direct determination of the drug by chromatographic analysis, therefore demanding a sample preparation step that is often time-consuming, tedious, and frequently overlooked. However, direct on-line injection methods offer the advantage of reducing sample preparation steps and enabling effective pre-concentration and clean-up of biological fluids. These procedures can be automated and therefore reduce the requirements for handling potentially infectious biomaterial, improve reproducibility, and minimize sample manipulations and potential contamination. The objective of this review is to present an overview of the existing literature with emphasis on advances in automated sample preparation methods for liquid-chromatographic methods. More specifically, this review concentrates on the use of direct injection techniques, such as restricted-access materials, turbulent-flow chromatography and other automated on-line solid-phase extraction (SPE) procedures. It also includes short overviews of emerging automated extraction-phase technologies, such as molecularly imprinted polymers, in-tube solid-phase micro-extraction, and micro-extraction in a packed syringe for a more selective extraction of analytes from complex samples, providing further improvements in the analysis of biological materials. Lastly, the outlook for these methods and potential new applications for these technologies are briefly discussed.

  3. Behavior of the Enthalpy of Adsorption in Nanoporous Materials Close to Saturation Conditions.

    Science.gov (United States)

    Torres-Knoop, Ariana; Poursaeidesfahani, Ali; Vlugt, Thijs J H; Dubbeldam, David

    2017-07-11

    Many important industrial separation processes based on adsorption operate close to saturation. In this regime, the underlying adsorption processes are mostly driven by entropic forces. At equilibrium, the entropy of adsorption is closely related to the enthalpy of adsorption. Thus, studying the behavior of the enthalpy of adsorption as a function of loading is fundamental to understanding separation processes. Unfortunately, close to saturation, the enthalpy of adsorption is hard to measure experimentally and hard to compute in simulations. In simulations, the enthalpy of adsorption is usually obtained from energy/particle fluctuations in the grand-canonical ensemble, but this methodology is hampered by vanishing insertions/deletions at high loading. To investigate the fundamental behavior of the enthalpy and entropy of adsorption at high loading, we develop a simplistic model of adsorption in a channel and show that at saturation the enthalpy of adsorption diverges to large positive values due to repulsive intermolecular interactions. However, there are many systems that can avoid repulsive intermolecular interactions and hence do not show this drastic increase in enthalpy of adsorption close to saturation. We find that the conventional grand-canonical Monte Carlo method is incapable of determining the enthalpy of adsorption from energy/particle fluctuations at high loading. Here, we show that by using the continuous fractional component Monte Carlo, the enthalpy of adsorption close to saturation conditions can be reliably obtained from the energy/particle fluctuations in the grand-canonical ensemble. The best method to study properties at saturation is the NVT energy (local-) slope methodology.

  4. Optimization of lead adsorption of mordenite by response surface methodology: characterization and modification.

    Science.gov (United States)

    Turkyilmaz, Havva; Kartal, Tolga; Yigitarslan Yildiz, Sibel

    2014-01-06

    In order to remove heavy metals, water treatment by adsorption of zeolite is gaining momentum due to low cost and good performance. In this research, the natural mordenite was used as an adsorbent to remove lead ions in an aqueous solution. The effects of adsorption temperature, time and initial concentration of lead on the adsorption yield were investigated. Response surface methodology based on Box-Behnken design was applied for optimization. Adsorption data were analyzed by isotherm models. The process was investigated by batch experiments; kinetic and thermodynamic studies were carried out. Adsorption yields of natural and hexadecyltrimethylammonium-bromide-modified mordenite were compared. The optimum conditions of maximum adsorption (nearly 84 percent) were found as follows: adsorption time of 85-90 min, adsorption temperature of 50°C, and initial lead concentration of 10 mg/L. At the same optimum conditions, modification of mordenite produced 97 percent adsorption yield. The most appropriate isotherm for the process was the Freundlich. Adsorption rate was found as 4.4. Thermodynamic calculations showed that the adsorption was a spontaneous and an exothermic process. Quadratic model and reduced cubic model were developed to correlate the variables with the adsorption yield of mordenite. From the analysis of variance, the most influential factor was identified as initial lead concentration. At the optimum conditions modification increased the adsorption yield up to nearly 100 percent. Mordenite was found an applicable adsorbent for lead ions especially in dilute solutions and may also be applicable in more concentrated ones with lower yields.

  5. Adsorption and desorption dynamics of citric acid anions in soil

    KAUST Repository

    Oburger, E.

    2011-07-26

    The functional role of organic acid anions in soil has been intensively investigated, with special focus on (i) microbial respiration and soil carbon dynamics, (ii) nutrient solubilization or (iii) metal detoxification and reduction of plant metal uptake. Little is known about the interaction dynamics of organic acid anions with the soil matrix and the potential impact of adsorption and desorption processes on the functional significance of these effects. The aim of this study was to characterize experimentally the adsorption and desorption dynamics of organic acid anions in five agricultural soils differing in iron and aluminium oxide contents and using citrate as a model carboxylate. Results showed that both adsorption and desorption processes were fast in all soils, reaching a steady state within approximately 1 hour. However, for a given total soil citrate concentration (ct) the steady state was critically dependent on the starting conditions of the experiment, whether most of the citrate was initially present in solution (cl) or held on the solid phase (cs). Specifically, desorption-led processes resulted in significantly smaller steady-state solution concentrations than adsorption-led processes, indicating that hysteresis occurred. As it is not possible to distinguish between different adsorption and desorption pools in soil experimentally, a new dynamic hysteresis model that relies only on measured soil solution concentrations was developed. The model satisfactorily explained experimental data and was able to predict dynamic adsorption and desorption behaviour. To demonstrate its use, we applied the model to two relevant situations involving exudation and microbial degradation. The study highlighted the complex nature of citrate adsorption and desorption dynamics in soil. We conclude that existing models need to incorporate both temporal and hysteresis components to describe realistically the role and fate of organic acids in soil processes. © 2011 The

  6. Studies on Thorium Adsorption Characteristics upon Activated Titanium Hydroxide Prepared from Rosetta Ilmenite Concentrate

    International Nuclear Information System (INIS)

    Gado, M; Zaki, S

    2016-01-01

    The titanium hydroxide prepared from Rosetta ilmenite concentrate has been applied for Th (IV) adsorption from its acid aqueous solutions. The prepared hydroxide is first characterized by both Fourier transform infrared (FT-IR) spectrum and thermogravimetric analysis. The relevant factors affecting the adsorption process have been studied. The obtained equilibrium data fits well with the Langmuir isotherm rather than Freundlich isotherm, while the adsorption kinetic data follow the pseudo-second order model. The different thermodynamic parameters have also been calculated and indicate that the adsorption process is spontaneous

  7. Galactose adsorption on Ru(0001)

    Science.gov (United States)

    Alatalo, Matti; Puisto, Mikko

    2014-03-01

    In order to understand the valorisation of biomass, it is essential to study the behavior of sugar molecules on catalytic surfaces. We have studied the adsorption of galactose molecules on the Ru(0001) surface using first principles calculations. We present results for the fully relaxed configurations of the molecule at different adsorption sites. We also compare the effect of the inclusion of the van der Waals interactions on both the energetics of the free galactose molecule and the adsorption energy of galactose on Ru(0001). We compare our results, obtained using periodically repeated supercells, to those obtained with cluster calculations.

  8. Carbon nanomaterials for gas adsorption

    CERN Document Server

    Terranova, Maria Letizia

    2012-01-01

    Research in adsorption of gases by carbon nanomaterials has experienced considerable growth in recent years, with increasing interest for practical applications. Many research groups are now producing or using such materials for gas adsorption, storage, purification, and sensing. This book provides a selected overview of some of the most interesting scientific results regarding the outstanding properties of carbon nanomaterials for gas adsorption and of interest both for basic research and technological applications. Topics receiving special attention in this book include storage of H, purific

  9. Adsorption of lead ion from aqueous solution by modified walnut shell: kinetics and thermodynamics.

    Science.gov (United States)

    Li, Shenmaishang; Zeng, Zuoxiang; Xue, Weilan

    2018-02-02

    The novel modified walnut shell (WNS-MAH) with higher adsorption capacity for lead ion was prepared by reacting walnut shell (WNS) with maleic anhydride. Both WNS and WNS-MAH were analyzed by SEM and FTIR. The adsorption capacity of WNS-MAH for lead ion was evaluated at different adsorbent doses, pHs, time and temperatures. The adsorption kinetics and adsorption isotherms were investigated from (298 to 318) K. The adsorption kinetics of lead ion onto WNS-MAH were fitted using pseudo-first-order, pseudo-second-order and Elovich models. It was found that pseudo-second-order model gives the best correlation results. The diffusion mechanism was determined according to the intraparticle diffusion equation and Boyd equation. Results suggested the adsorption process was governed by film diffusion. The equilibrium adsorption data were fitted with the Freundlich model and the Langmuir model. The maximum adsorption capacity of WNS-MAH for lead ion removal was 221.24 mg/g at 318 K. The equilibrium adsorption data were analyzed using the D-R model, and the feature concentration ([Formula: see text]) was determined to distinguish chemisorption and physisorption. The thermodynamic parameters (ΔG, ΔH and ΔS) were calculated. Additionally, the regeneration property was studied and the adsorption process was confirmed by energy disperse spectroscopy.

  10. Adsorption kinetics of Rhodamine-B on used black tea leaves

    Directory of Open Access Journals (Sweden)

    Hossain Mohammad

    2012-08-01

    Full Text Available Abstract Rhodamine B (Rh-B is one of the most common pollutants in the effluents of textile industries effluents in developing countries. This study was carried out to evaluate the applicability of used black tea leaves (UBTL for the adsorptive removal of Rh-B from aqueous system by investigating the adsorption kinetics in batch process. The effects of concentration and temperature on adsorption kinetics were examined. First-, second- and pseudo-second order kinetic equations were used to investigate the adsorption mechanism. The adsorption of Rh-B on UBTL followed pseudo-second order kinetics. The equilibrium amount adsorbed and the equilibrium concentration were calculated from pseudo-second-order kinetic plots for different initial concentrations of Rh-B to construct the adsorption isotherm. The adsorption isotherm was well expressed by Langmuir equation. The maximum adsorption capacity of UBTL to Rh-B was found to be 53.2 mg/g at pH = 2.0. The equilibrium amount adsorbed, calculated from pseudo-second-order kinetic plots, increased with temperature increase. The positive value of enthalpy of adsorption, ΔHads = 31.22 kJ/mol, suggested that the adsorption of Rh-B on UBTL at pH = 2.0 is an endothermic process.

  11. Study on the adsorption mechanism of DNA with mesoporous silica nanoparticles in aqueous solution.

    Science.gov (United States)

    Li, Xu; Zhang, Jixi; Gu, Hongchen

    2012-02-07

    Among the numerous adsorption strategies for DNA adsorption into mesopores, the salt-solution-induced adsorption method has a great application potential in nucleic acids science; thus, it is important to understand the adsorption mechanism. This work demonstrates the mechanistic aspects underlying the adsorption behaviors of DNA with mesoporous silica nanoparticles (MSNs) in aqueous solution. The driving forces for the adsorption process can be categorized into three parts: the shielded electrostatic force, the dehydration effect, and the intermolecular hydrogen bonds. Compared to the adsorption behaviors of DNA with a solid silica nanosphere, we find some unique features for DNA adsorption into the mesopores, such as increasing the salt concentration or decreasing the pH value can promote DNA adsorption into the mesoporous silica. Further analysis indicates that the entrance of DNA into mesopores is probably controlled by the Debye length in solution and DNA can generate direct and indirect hydrogen bonds in the pores with different diameters. The following desorption study depicts that such types of hydrogen bonds result in different energy barriers for the desorption process. In summary, our study depicts the mechanism of DNA adsorption within mesopores in aqueous solution and sets the stage for formulating MSNs as carriers of nucleic acids.

  12. The influence of pH on the adsorption of lead by Na-clinoptilolite ...

    African Journals Online (AJOL)

    2011-09-28

    Sep 28, 2011 ... At high pH of the contact solution, the adsorption process occurs by ion exchange and at low pH; i.e., it is physical. The variation of the Gibbs free energy demonstrates that adsorption occurs spontaneously. The process was also observed to occur at a higher rate at low acidity. Diffusion through the internal ...

  13. 8-Hydroxyqunoline adsorption from aqueous solution using powdered orange peel: kinetic and isotherm study

    Directory of Open Access Journals (Sweden)

    Siraj Khalid

    2015-12-01

    Full Text Available Adsorption of 8-hydroxyquinoline (8HQ on powdered orange peel (POP, a locally available adsorbent, has been studied. Experiment was performed on different 8HQ concentration, particle size, and adsorbent dosage. The Langmuir and Freundlich adsorption isotherm model has been tested. The obtained results best fitted the Langmuir model, suggesting monolayer adsorption of 8HQ on POP. The kinetic studies for the adsorption process were also carried out using pseudo-first- and pseudo-second-order models, and the data obtained is best fitted to the pseudo-second-order kinetic model. Thermodynamic parameters were calculated for the adsorption process and the result showed that the values of ΔGads, ΔHads, and ΔSads are −1171.4J/mol, −140J/mol and −40.5 J/K at 303 K. Thus, it can be summarized that the adsorption of 8HQ is spontaneous, chemisorbed, monolayer, and exothermic

  14. Water adsorption on goethite: Application of multilayer adsorption models

    Science.gov (United States)

    Hatch, C. D.; Tumminello, R.; Meredith, R.

    2016-12-01

    Adsorbed water on the surface of atmospheric mineral dust has recently been shown to significantly affect the ability of mineral dust aerosol to act as cloud condensation nuclei. We have studied water adsorption as a function of relative humidity (RH) on goethite (α-FeO(OH)), a common component of atmospheric mineral dust. The goethite surface area and particle size was determined using BET analysis and with N2 as an adsorbate and scanning electron microscopy, respectively. Water adsorption on the sample was monitored using horizontal attenuated total reflectance Fourier transform infrared (HATR-FTIR) spectroscopy equipped with a flow cell. Water content was determined using Beer's law and the optical constants for bulk water. The results were analyzed using Type II adsorption isotherms to model multilayer adsorption, including BET (Brunauer, Emmet and Teller), FHH (Frenkel, Halsey and Hill) and Freundlich. BET fits to experimental data provide parameters of monolayer coverage, while the FHH and Freundlich isotherms provide insights into multilayer adsorption mechanisms. Results indicate that goethite contains 5% H2O by mass at 50% RH, which increases to 12% by mass at 90% RH. Adsorption parameters and experimental results will be presented.

  15. Adsorption kinetics of NO on ordered mesoporous carbon (OMC) and cerium-containing OMC (Ce-OMC)

    Science.gov (United States)

    Chen, Jinghuan; Cao, Feifei; Chen, Songze; Ni, Mingjiang; Gao, Xiang; Cen, Kefa

    2014-10-01

    Ordered mesoporous carbon (OMC) and cerium-containing OMC (Ce-OMC) were prepared using evaporation-induced self-assembly (EISA) method and used to adsorb NO. N2 sorption, X-ray diffraction (XRD) and transmission electron microscopy (TEM) were used to confirm their structures. The results showed that the ordered and uniform structures were successfully synthesized and with the introduction of cerium pore properties were not significantly changed. The NO adsorption capacity of OMC was two times larger than that of activated carbon (AC). With the introduction of cerium both the adsorption capacity and the adsorption rate were improved. The effects of residence time and oxygen concentration on NO adsorption were also investigated. Oxygen played an important role in the NO adsorption (especially in the form of chemisorption) and residence time had small influence on the NO adsorption capacity. The NO adsorption kinetics was analyzed using pseudo-first-order, pseudo-second-order, Elovich equation and intraparticle diffusion models. The results indicated that the NO adsorption process can be divided into rapid adsorption period, slow adsorption period, and equilibrium adsorption period. The pseudo-second-order model was the most suitable model for NO adsorption on OMC and Ce-OMC. The rate controlling step was the intraparticle diffusion together with the adsorption reaction.

  16. Kinetic and equilibrium study of uranium(VI) adsorption by Bacillus licheniformis

    International Nuclear Information System (INIS)

    Zheng-ji Yi; University of Science and Technology Beijing, Beijing; Jun Yao

    2012-01-01

    Uranium pollution is a severe problem worldwide. Biosorption has been proposed as one of the most promising technologies for the removal of uranyl cations. Here we report on the adsorption behavior of uranium(VI) [U(VI)] on Bacillus licheniformis biomass to explore the potentiality of its application in uranium contamination control. The adsorption equilibrium, adsorption kinetics, and effects of temperature, pH and initial biosorbent dosage on the adsorption equilibrium were investigated in detail through batch experiments. The adsorption process is pronouncedly affected by the solution pH and the optimum pH range should be 4.5-5.0.Temperature range from 25 to 45 deg C has a certain effect on the rate of biosorption, but little effect on the equilibrium adsorption capacity. The U(VI) percentage removal increased concurrently with increasing biomass dosage, whereas the adsorption capacity decreased. The process follows the Langmuir isotherm model. The adsorption kinetics data were fitted very well by the pseudo-first-order rate model. Finally, the calculation results of thermodynamic constant (ΔG a = 9.98 kJ/mol) reveal that the adsorption process can be identified as a spontaneous chemical process. The present results suggest that B. licheniformis has considerable potential for the removal of uranyl from aqueous solution. (author)

  17. Adsorption of saturated fatty acid in urea complexation: Kinetics and equilibrium studies

    Science.gov (United States)

    Setyawardhani, Dwi Ardiana; Sulistyo, Hary; Sediawan, Wahyudi Budi; Fahrurrozi, Mohammad

    2018-02-01

    Urea complexation is fractionation process for concentrating poly-unsaturated fatty acids (PUFAs) from vegetable oil or animal fats. For process design and optimization in commercial industries, it is necessary to provide kinetics and equilibrium data. Urea inclusion compounds (UICs) as the product is a unique complex form which one molecule (guest) is enclosed within another molecule (host). In urea complexation, the guest-host bonding exists between saturated fatty acids (SFAs) and crystalline urea. This research studied the complexation is analogous to an adsorption process. The Batch adsorption process was developed to obtain the experimental data. The ethanolic urea solution was mixed with SFA in certain compositions and adsorption times. The mixture was heated until it formed homogenous and clear solution, then it cooled very slowly until the first numerous crystal appeared. Adsorption times for the kinetic data were determined since the crystal formed. The temperature was maintained constant at room temperature. Experimental sets of data were observed with adsorption kinetics and equilibrium models. High concentration of saturated fatty acid (SFA) was used to represent adsorption kinetics and equilibrium parameters. Kinetic data were examined with pseudo first-order, pseudo second-order and intra particle diffusion models. Linier, Freundlich and Langmuir isotherm were used to study the equilibrium model of this adsorption. The experimental data showed that SFA adsorption in urea crystal followed pseudo second-order model. The compatibility of the data with Langmuir isotherm showed that urea complexation was a monolayer adsorption.

  18. In vitro adsorption revealing an apparent strong interaction between endophyte Pantoea agglomerans YS19 and host rice.

    Science.gov (United States)

    Miao, Yuxuan; Zhou, Jia; Chen, Cuicui; Shen, Delong; Song, Wei; Feng, Yongjun

    2008-12-01

    Pantoea (formerly Enterobacter) agglomerans YS19 is a dominant diazotrophic endophyte isolated from rice (Oryza sativa cv. Yuefu) grown in a temperate-climate region in west Beijing, China. In vitro adsorption and invasion of YS19 on host plant root were studied in this research. Adsorption of YS19 on rice seedling roots closely resembled the Langmuir adsorption and showed a higher adsorption quantity than the control strains Paenibacillus polymyxa WY110 (a rhizospheric bacterium from the same rice cultivar) and Escherichia coli HB101 (a general model bacterium). Adsorption dynamics study revealed high rates and a long duration of the YS19-rice root adsorption process. Adsorption of YS19 was mainly observed on the root hair, though which it enters the plant. This in vitro adsorption study revealed an apparent strong interaction between YS19 and rice at the early endophyte-host recognition stage.

  19. Chromatographic fingerprint similarity analysis for pollutant source identification

    International Nuclear Information System (INIS)

    Xie, Juan-Ping; Ni, Hong-Gang

    2015-01-01

    In the present study, a similarity analysis method was proposed to evaluate the source-sink relationships among environmental media for polybrominated diphenyl ethers (PBDEs), which were taken as the representative contaminants. Chromatographic fingerprint analysis has been widely used in the fields of natural products chemistry and forensic chemistry, but its application to environmental science has been limited. We established a library of various sources of media containing contaminants (e.g., plastics), recognizing that the establishment of a more comprehensive library allows for a better understanding of the sources of contamination. We then compared an environmental complex mixture (e.g., sediment, soil) with the profiles in the library. These comparisons could be used as the first step in source tracking. The cosine similarities between plastic and soil or sediment ranged from 0.53 to 0.68, suggesting that plastic in electronic waste is an important source of PBDEs in the environment, but it is not the only source. A similarity analysis between soil and sediment indicated that they have a source-sink relationship. Generally, the similarity analysis method can encompass more relevant information of complex mixtures in the environment than a profile-based approach that only focuses on target pollutants. There is an inherent advantage to creating a data matrix containing all peaks and their relative levels after matching the peaks based on retention times and peak areas. This data matrix can be used for source identification via a similarity analysis without quantitative or qualitative analysis of all chemicals in a sample. - Highlights: • Chromatographic fingerprint analysis can be used as the first step in source tracking. • Similarity analysis method can encompass more relevant information of pollution. • The fingerprints strongly depend on the chromatographic conditions. • A more effective and robust method for identifying similarities is required

  20. Retention Study of Flavonoids Under Different Chromatographic Modes.

    Science.gov (United States)

    Sentkowska, Aleksandra; Biesaga, Magdalena; Pyrzynska, Krystyna

    2016-04-01

    The goal of this study was to investigate the chromatographic behavior of selected flavonoids from their different subgroups (flavonols, flavanones, flavones and isoflavones) in hydrophilic interaction liquid chromatography (HILIC). Chromatographic measurements were made on two different HILIC columns: cross-linked DIOL (Luna HILIC) and zwitterionic sulfoalkylbetaine (SeQuant ZIC-HILIC). Separation parameters such as the content of acetonitrile and pH of an eluent were studied. On the ZIC column, the retention factors of flavonoids increased with decreasing water content in the mobile phase. The increase in pH of the aqueous component mainly affects the polarity of the analytes. DIOL stationary phase shows more or less apparent dual retention mechanism, HILIC at the acetonitrile (ACN) content ≥75% and reversed phase (RP) with lower content of organic modifier. In the presence of ammonium acetate in the mobile phase, the retention of flavonoids onto the DIOL column increases without change in the selectivity of the separations. The similar effect, but considerably smaller was observed for aglycones on the ZIC column. The retention of studied glycosides (hesperidin, rutin) decreases in the presence of salt in the mobile phase. The significantly higher mass spectrometry sensitivity was observed under HILIC conditions in comparison with the most often used RP LC due to much higher content of ACN in the mobile phase. Finally, under optimal chromatographic conditions, the method was validated and applied for the determination of flavonoids in chamomile (Matricaria chamomilla L.) infusion. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.