WorldWideScience

Sample records for adsorption chromatographic processes

  1. The behaviour of radionuclides in gas adsorption chromatographic processes with superimposed chemical reactions (chlorides)

    International Nuclear Information System (INIS)

    Eichler, B.

    1996-01-01

    Thermochemical relationships are derived describing the gas adsorption chromatographic transport of carrier-free radionuclides. Especially, complex adsorption processes such as dissociative, associative and substitutive adsorption are dealt with. The comparison of experimental with calculated data allows the determination of the type of adsorption reaction, which is the basis of the respective gas chromatographic process. The behaviour of carrier-free radionuclides of elements Pu, Ce, Ru, Co and Cr in thermochromatographic experiments with chlorinating carrier gases can be described as dissociative adsorption of chlorides in higher oxidation states. The gas adsorption chromatographic transport of Zr with oxygen and chlorine containing carrier gas is shown to be a substitutive adsorption process. The consequences of superimposed chemical reactions on the interpretation of results and the conception of gas adsorption chromatographic experiments with carrier-free radionuclides in isothermal columns and in temperature gradient tubes is discussed. (orig.)

  2. Evaluation of pesticide adsorption in gas chromatographic injector and column

    Directory of Open Access Journals (Sweden)

    Gevany Paulino de Pinho

    2012-01-01

    Full Text Available Components in complex matrices can cause variations in chromatographic response during analysis of pesticides by gas chromatography. These variations are related to the competition between analytes and matrix components for adsorption sites in the chromatographic system. The capacity of the pesticides chlorpyrifos and deltamethrin to be adsorbed in the injector and chromatographic column was evaluated by constructing three isotherms and changing the column heating rate to 10 and 30 ºC min-1. By using ANCOVA to compare the slope of calibration graphs, results showed that the higher the injector temperature (310 ºC the lower the pesticide adsorption. Also, deltamethrin influenced the adsorption of chlorpyrifos on the column chromatographic.

  3. Modeling chromatographic columns. Non-equilibrium packed-bed adsorption with non-linear adsorption isotherms

    NARCIS (Netherlands)

    Özdural, A.R.; Alkan, A.; Kerkhof, P.J.A.M.

    2004-01-01

    In this work a new mathematical model, based on non-equilibrium conditions, describing the dynamic adsorption of proteins in columns packed with spherical adsorbent particles is used to study the performance of chromatographic systems. Simulations of frontal chromatography, including axial

  4. New method for evaluating irreversible adsorption and stationary phase bleed in gas chromatographic capillary columns.

    Science.gov (United States)

    Wright, Bob W; Wright, Cherylyn W

    2012-10-26

    A novel method is described for the evaluation of irreversible adsorption and column bleed in gas chromatographic (GC) columns using a tandem GC approach. This work specifically determined the degree of irreversible adsorption behavior of specific sulfur and phosphorous containing test probe compounds at levels ranging from approximately 50 picograms (pg) to 1 nanogram (ng) on selected gas chromatographic columns. This method does not replace existing evaluation methods that characterize reversible adsorption but provides an additional tool. The test compounds were selected due to their ease of adsorption and their importance in the specific trace analytical detection methodology being developed. Replicate chromatographic columns with 5% phenylmethylpolysiloxane (PMS), polyethylene glycol (wax), trifluoropropylpolysiloxane (TFP), or 78% cyanopropylpolysiloxane stationary phases from a variety of vendors were evaluated. As expected, the results demonstrate that the different chromatographic phases exhibit differing degrees of irreversible adsorption behavior. The results also indicate that all manufacturers do not produce equally inert columns nor are columns from a given manufacturer identical. The wax-coated columns for the test probes used were more inert as a group than 5% PMS coated columns, and they were more reproducibly manufactured. Both TFP and 78% cyanopropylpolysiloxane columns displayed superior inertness to the test compounds compared to either 5% PMS- or wax-coated columns. Irreversible adsorption behavior was characterized for a limited range of stationary phase film thicknesses. In addition, the method was shown effective for characterizing column bleed and methods to remove bleed components. This method is useful in screening columns for demanding applications and to obtain diagnostic information related to improved preparation methods. Copyright © 2012 Elsevier B.V. All rights reserved.

  5. Adsorption chromatographic separation of radioiodine-labelled compounds using binary eluents

    International Nuclear Information System (INIS)

    Toth, G.

    1980-01-01

    An adsorption chromatographic method using Sephadex LH-20 dextran gel as adsorbent and water-organic solvent binary eluents was developed for the systematic separation of low molecular weight radioiodine-labelled substances like iodothyronines, iodobenzoic acids and iodotyrosine methyl ester derivatives of prostaglandins, steroids etc. The adsorbed iodine compounds were separated by water-organic solvent mixture, and the order of the compounds is in accordance with the increasing number of iodine substituents per molecule. A method is reported which enables the calculation of the eluent strength of the water-organic solvent eluents. (author)

  6. Rapid process development of chromatographic process using direct analysis in real time mass spectrometry as a process analytical technology tool.

    Science.gov (United States)

    Yan, Binjun; Chen, Teng; Xu, Zhilin; Qu, Haibin

    2014-06-01

    The concept of quality by design (QbD) is widely applied in the process development of pharmaceuticals. However, the additional cost and time have caused some resistance about QbD implementation. To show a possible solution, this work proposed a rapid process development method, which used direct analysis in real time mass spectrometry (DART-MS) as a process analytical technology (PAT) tool for studying the chromatographic process of Ginkgo biloba L., as an example. The breakthrough curves were fast determined by DART-MS at-line. A high correlation coefficient of 0.9520 was found between the concentrations of ginkgolide A determined by DART-MS and HPLC. Based on the PAT tool, the impacts of process parameters on the adsorption capacity were discovered rapidly, which showed a decreased adsorption capacity with the increase of the flow rate. This work has shown the feasibility and advantages of integrating PAT into QbD implementation for rapid process development. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. Studies on improved integrated membrane-based chromatographic process for bioseparation

    Science.gov (United States)

    Xu, Yanke

    To improve protein separation and purification directly from a fermentation broth, a novel membrane filtration-cum-chromatography device configuration having a relatively impermeable coated zone near the hollow fiber module outlet has been developed. The integrated membrane filtration-cum-chromatography unit packed with chromatographic beads on the shell side of the hollow fiber unit enjoys the advantages of both membrane filtration and chromatography; it allows one to load the chromatographic media directly from the fermentation broth or lysate and separate the adsorbed proteins through the subsequent elution step in a cyclic process. Interfacial polymerization was carried out to coat the bottom section of the hollow fiber membrane while leaving the rest of the hollow fiber membrane unaffected. Myoglobin (Mb), bovine serum albumin (BSA) and a-lactalbumin (a-LA) were used as model proteins in binary mixtures. Separation behaviors of binary protein mixtures were studied in devices using either an ultrafiltration (UF) membrane or a microfiltration (MF) membrane. Experimental results show that the breakthrough time and the protein loading capacities were dramatically improved after coating in both UF and MF modules. For a synthetic yeast fermentation broth feed, the Mb and a-LA elution profiles for the four consecutive cyclic runs were almost superimposable. Due to the lower transmembrane flux in this device plus the periodical washing-elution during the chromatographic separation, fouling was not a problem as it is in conventional microfiltration. A mathematical model describing the hydrodynamic and protein loading behaviors of the integrated device using UF membrane with a coated zone was developed. The simulation results for the breakthrough agree well with the experimental breakthrough curves. The optimal length of the coated zone was obtained from the simulation. A theoretical analysis of the protein mass transfer was performed using a diffusion-convection model

  8. Time-resolved chromatographic analysis and mechanisms in adsorption and catalysis.

    Science.gov (United States)

    Roubani-Kalantzopoulou, Fani

    2009-03-06

    The main object of this review is the study of fundamentals of adsorption and heterogeneous catalysis, a benefit for the understanding of adsorptive and catalytic properties. This work aims to define and record, with the utmost accuracy, the phenomena and the possible reactions. A new methodology for the study of the adsorption is presented, which is a version of the well-known inverse gas chromatography. This reversed-flow inverse gas chromatography (RF-IGC) is technically very simple, and it is combined with a mathematical analysis that gives the possibility for the estimation of various physicochemical parameters related to adsorbent or catalyst characterization, under conditions compatible with the operation of real adsorbents and catalysts. On this base, this methodology has been successfully applied to the study of the impact of air pollutants, volatile organic and/or inorganic, on many solids such as marbles, ceramics, oxide-pigments of works of art, building materials, authentic statues of the Greek Archaeological Museums. Moreover, this methodology proved to be a powerful tool for studying the topography of active sites of heterogeneous surfaces in the nano-scale domain. Thus, some very important local quantities for the surface chemistry have been determined experimentally for many solids including thin films. These physicochemical local quantities (among which adsorption energy and entropy, surface diffusion coefficient, probability density function) have been determined from the experimental pairs of height of extra chromatographic peaks and time by a nonlinear least-squares method, through personal computer programs written in GW BASIC and lately in FORTRAN. Through the time-resolved analysis the surface characterization of the examined materials took place. In addition, the kinetic constants responsible for adsorption/desorption and surface chemical reactions have also been calculated. Thus, important answers have been provided to the following

  9. A review of the thermodynamics of protein association to ligands, protein adsorption, and adsorption isotherms

    DEFF Research Database (Denmark)

    Mollerup, Jørgen

    2008-01-01

    The application of thermodynamic models in the development of chromatographic separation processes is discussed. The paper analyses the thermodynamic principles of protein adsorption. It can be modeled either as a reversible association between the adsorbate and the ligands or as a steady...

  10. Adsorption and gas-chromatographic properties of tungsten selenide

    International Nuclear Information System (INIS)

    Gavrilova, T.B.; Kiselev, A.V.; Roshchina, T.M.

    1988-01-01

    Method of gas chromatography was used to investigate the surface properties of a series of tungsten selenide WSe 2 samples as well as to determine the role of geometrical and electronic structure of adsorbate molecules and their orientation with respect to the surface during adsorption on WSe 2 . Thermodynamic characteristics of hydrocarbon C 6 -C 10 adsorption at surface occupation close to the zero one were determined. Correlation of the values of thermodynamic characteristics of saturated and aromatic hydrocarbon adsorption enabled to refer WSe 2 to nonspecific adsorbents. It is noted that the main role during hydrocarbon adsorption on WSe 2 is played by nonpolar basic facets, occupied by selenium atoms

  11. Use of adsorption and gas chromatographic techniques in estimating biodegradation of indigenous crude oils

    International Nuclear Information System (INIS)

    Kokub, D.; Allahi, A.; Shafeeq, M.; Khalid, Z.M.; Malik, K.A.; Hussain, A.

    1993-01-01

    Indigenous crude oils could be degraded and emulsified upto varying degree by locally isolated bacteria. Degradation and emulsification was found to be dependent upon the chemical composition of the crude oils. Tando Alum and Khashkheli crude oils were emulsified in 27 and 33 days of incubation respectively. While Joyamair crude oil and not emulsify even mainly due to high viscosity of this oil. Using adsorption chromatographic technique, oil from control (uninoculated) and bio degraded flasks was fractioned into the deasphaltened oil containing saturate, aromatic, NSO (nitrogen, sulphur, oxygen) containing hydrocarbons) and soluble asphaltenes. Saturate fractions from control and degraded oil were further analysed by gas liquid chromatography. From these analyses, it was observed that saturate fraction was preferentially utilized and the crude oils having greater contents of saturate fraction were better emulsified than those low in this fraction. Utilization of various fractions of crude oils was in the order saturate> aromatic> NSO. (author)

  12. Thermal Adsorption Processing Of Hydrocarbon Residues

    Directory of Open Access Journals (Sweden)

    Sudad H. Al.

    2017-04-01

    Full Text Available The raw materials of secondary catalytic processes must be pre-refined. Among these refining processes are the deasphalting and demetallization including their thermo adsorption or thermo-contact adsorption variety. In oil processing four main processes of thermo-adsorption refining of hydrocarbon residues are used ART Asphalt Residual Treating - residues deasphaltizing 3D Discriminatory Destructive Distillation developed in the US ACT Adsorption-Contact Treatment and ETCC Express Thermo-Contact Cracking developed in Russia. ART and ACT are processes with absorbers of lift type reactor while 3D and ETCC processes are with an adsorbing reactor having ultra-short contact time of the raw material with the adsorbent. In all these processes refining of hydrocarbon residues is achieved by partial Thermo-destructive transformations of hydrocarbons and hetero-atomic compounds with simultaneous adsorption of the formed on the surface of the adsorbents resins asphaltene and carboids as well as metal- sulphur - and nitro-organic compounds. Demetallized and deasphalted light and heavy gas oils or their mixtures are a quality raw material for secondary deepening refining processes catalytic and hydrogenation cracking etc. since they are characterized by low coking ability and low content of organometallic compounds that lead to irreversible deactivation of the catalysts of these deepening processes.

  13. Investigation on the performance of polymer zirconium compound (PZC) for chromatographic Tc-99m generator preparation

    International Nuclear Information System (INIS)

    Le Van So

    2004-01-01

    The performance of PZC was investigated for chromatographic Tc-99m generator preparation. Mo-adsorption of PZC in different Mo-solutions and Tc-99m elution of 99 Mo-PZC column were studied. Mo- adsorption capacity of higher than 250mgMo/gPZC and Tc-99m elution yield of higher than 80% were achieved with PZC adsorbent. Mo-99 breakthrough of 0.02% and Molybdenum element breakthrough of around 5μg Mo/ml were found in Tc-99m eluate. A good relationship between the Mo-content of adsorption solution and the Mo-adsorption capacity, adsorption percentage, Mo-breakthrough and Tc-99m elution yield was found. The preparation of PZC based Tc-99m chromatographic generator with 4 gram weight of PZC was successfully conducted. (author)

  14. Evaluation of adsorption and Fenton-adsorption processes for landfill leachate treatment

    OpenAIRE

    San Pedro-Cedillo, L.; Méndez-Novelo, R.I.; Rojas-Valencia, M.N.; Barceló-Quintal, M.; Castillo-Borges, E.R.; Sauri-Riancho, M.R.; Marrufo-Gómez, J.M.

    2015-01-01

    The objective of this research was to compare the adsorption and Fenton-adsorption treatments for the removal of contaminants in leachate from landfills and thus determine the most efficient one. The adsorption process with granular activated carbon was tested in two types of samples: raw leachate and leachate treated by Fenton. The results showed color, chemical oxygen demand (COD), total nitrogen and total organic carbon (TOC) removal rates higher than 99% through the Fenton-adsorption proc...

  15. The adsorption of nitrogen oxides on crystalline ice

    Directory of Open Access Journals (Sweden)

    T. Bartels

    2002-01-01

    Full Text Available The partitioning of nitrogen oxides between ice and air is of importance to the ozone budget in the upper troposphere. In the present study, adsorption of nitrogen oxides on ice was investigated at atmospheric pressure using a chromatographic technique with radioactively labelled nitrogen oxides at low concentrations. The measured retentions solely depended on molecular adsorption and were not influenced by dimerisation, formation of encapsulated hydrates on the ice surface, dissociation of the acids, nor by migration into a quasi-liquid layer or grain boundaries. Based on the chromatographic retention and the model of thermo-chromatography, the standard adsorption enthalpy of -20 kJ mol-1 for NO, -22kJ mol-1 for NO2, -30kJ mol-1 for peroxyacetyl nitrate, -32kJ mol-1 for HON} and -44 kJ mol-1 for HNO3 was calculated. To perform those calculations within the model of thermo-chromatography, the standard adsorption entropy was calculated based on statistical thermodynamics. In this work, two different choices of standard states were applied, and consequently different values of the standard adsorption entropy, of either between -39 kJ mol-1 and -45kJ mol-1, or -164 kJ mol-1 and -169 kJ mol-1 for each nitrogen oxide were derived. The standard adsorption enthalpy was identical for both standard adsorption entropies and thus shown to be independent of the choice of standard state. A brief outlook on environmental implications of our findings indicates that adsorption on ice might be an important removal process of HNO3. In addition, it might be of some importance for HONO and peroxyacetyl nitrate and irrelevant for NO and NO2.

  16. Industrial scale chromatographic separation of valuable compounds from biomass hydrolysates and side streams

    Energy Technology Data Exchange (ETDEWEB)

    Saari, P.

    2011-06-15

    Carbohydrates are composed of a number of various monosaccharides, glucose being the most abundant. Some of the monosaccharides are valuable compounds used in the food and pharmaceutical industries. They can be separated from biomass hydrolysates e.g. by chromatographic methods. In this thesis, chromatographic separation of valuable compounds using ion exchange resins was studied on an industrial scale. Of special interest were rare monosaccharides in biomass hydrolysates. A novel chromatographic separation process was developed for fucose, starting from pre-processed spent sulfite liquor. The core of the process consists of three chromatographic separations with different types of ion exchange resins. Chromatographic separation of galactose was tested with three biomass hydrolysates; lactose, gum arabic and hemicellulose hydrolysates. It was demonstrated that also galactose can be separated from complex carbohydrate mixtures. A recovery process for arabinose from citrus pectin liquid residual and for mannose from wood pulp hydrolysate were also developed and experimentally verified. In addition to monosaccharides, chromatographic separation of glycinebetaine from vinasse was examined with a hydrogen form weak acid cation exchange resin. The separation involves untypical peak formation depending, for example, on the pH and the cation composition. The retention mechanism was found to be hydrogen bonding between glycinebetaine and the resin. In the experimental part, all four resin types - strong acid cation, strong base anion, weak acid cation and weak base anion exchange resins - were used. In addition, adsorption equilibria data of seven monosaccharides and sucrose were measured with the resins in sodium and sulfate forms because such data have been lacking. It was found out that the isotherms of all sugars were linear under industrial conditions. A systematic method for conceptual process design and sequencing of chromatographic separation steps were developed

  17. Chromatographic methods

    International Nuclear Information System (INIS)

    Marhol, M.; Stary, J.

    1975-01-01

    The characteristics are given of chromatographic separation and the methods are listed. Methods and data on materials used in partition, adsorption, precipitation and ion exchange chromatography are listed and conditions are described under which ion partition takes place. Special attention is devoted to ion exchange chromatography where tables are given to show the course of values of the partition coefficients of different ions in dependence on the concentration of agents and the course of equilibrium sorptions on different materials in dependence on the solution pH. A theoretical analysis is given and the properties of the most widely used ion exchangers are listed. Experimental conditions and apparatus used for each type of chromatography are listed. (L.K.)

  18. Research progress of novel adsorption processes in water purification:A review

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    As an effective, efficient, and economic approach for water purification, adsorbents and adsorption processes have been widely studied and applied in different aspects for a long time. In the recent years, a lot of novel adsorption processes have been developed for enhancing the efficiency of removing the organic and inorganic contaminants from water. This article reviews some new adsorbents and advanced adsorption methods that specialize in their compositions, structures, functions, and characteristics used in water treatment. The review emphasizes adsorption/catalytic oxidation process, adsorption/catalytic reduction process, adsorption coupled with redox process, biomimetic sorbent and its sorption behaviors of POPs, and modified adsorbents and their water purification efficiency.

  19. Chromatographic separation of Iodine species for environmental studies

    Energy Technology Data Exchange (ETDEWEB)

    Machado, E.C. [Universidade Federal Fluminense, Niteroi, RJ (Brazil). Dept. de Geoquimica]. E-mail: geoedin@vm.uff.br; Bellido, A.V.B. [Universidade Federal Fluminense, Niteroi, RJ (Brazil). Dept. de Fisico-Quimica]. E-mail: alf@risc2.rmn.uff.br; Bellido, L.F. [Comissao Nacional de Energia Nuclear (CNEN), Rio de Janeiro, RJ (Brazil)]. E-mail: lbellido@cnen.gov.br

    1999-07-01

    In this work a experimental method was developed to separate iodine species from environmental samples by using adsorption chromatography. The radionuclide {sup 123} I which has a half-life of 13 h and a convenient gamma ray of 159 keV was used to investigate a fast and efficient procedure for the separation of iodide and iodate ions in seawater from mangrove samples. The radio-iodine tracer technique is very useful, particularly in kinetic studies because it is easy to detect without any interference of concentration due to the small amount of tracer that is spiked. It is also possible to add two tracers (I-123 and I-131) in different oxidation states. Three chromatographic methods were studied: paper, thin layer and adsorption chromatography with silica and alumina. It was found that paper chromatography is very useful for checking the valence adjustment of the radioiodine species. Initially, several coefficient distributions of iodine species by adsorption in silica and alumina from NaOH, NaHCO{sub 3} and NaNO{sub 3} solutions (in the range 05. - 0.0001 m) were determined. The best separation so far was achieved by loading the sample (after adjusting the concentration to 0.1 NNaNO{sub 3}) into a chromatographic column with Al{sub 2} O{sub 3}. The iodide passes through the column and after washing the column, the iodate was removed by eluting with 1.0 M NaHCO{sub 3} solution. (author)

  20. Chromatographic separation of Iodine species for environmental studies

    International Nuclear Information System (INIS)

    Machado, E.C.

    1999-01-01

    In this work a experimental method was developed to separate iodine species from environmental samples by using adsorption chromatography. The radionuclide 123 I which has a half-life of 13 h and a convenient gamma ray of 159 keV was used to investigate a fast and efficient procedure for the separation of iodide and iodate ions in seawater from mangrove samples. The radio-iodine tracer technique is very useful, particularly in kinetic studies because it is easy to detect without any interference of concentration due to the small amount of tracer that is spiked. It is also possible to add two tracers (I-123 and I-131) in different oxidation states. Three chromatographic methods were studied: paper, thin layer and adsorption chromatography with silica and alumina. It was found that paper chromatography is very useful for checking the valence adjustment of the radioiodine species. Initially, several coefficient distributions of iodine species by adsorption in silica and alumina from NaOH, NaHCO 3 and NaNO 3 solutions (in the range 05. - 0.0001 m) were determined. The best separation so far was achieved by loading the sample (after adjusting the concentration to 0.1 NNaNO 3 ) into a chromatographic column with Al 2 O 3 . The iodide passes through the column and after washing the column, the iodate was removed by eluting with 1.0 M NaHCO 3 solution. (author)

  1. Process for preparing radiopharmaceuticals

    International Nuclear Information System (INIS)

    Barak, M.; Winchell, H.S.

    1977-01-01

    A process for the preparation of technetium-99m labeled pharmaceuticals is disclosed. The process comprises initially isolating technetium-99m pertechnetate by adsorption upon an adsorbent packing in a chromatographic column. The technetium-99m is then eluted from the packing with a biological compound to form a radiopharmaceutical

  2. Pulse gas chromatographic study of adsorption of substituted aromatics and heterocyclic molecules on MIL-47 at zero coverage.

    Science.gov (United States)

    Duerinck, Tim; Couck, Sarah; Vermoortele, Frederik; De Vos, Dirk E; Baron, Gino V; Denayer, Joeri F M

    2012-10-02

    The low coverage adsorptive properties of the MIL-47 metal organic framework toward aromatic and heterocyclic molecules are reported in this paper. The effect of molecular functionality and size on Henry adsorption constants and adsorption enthalpies of alkyl and heteroatom functionalized benzene derivates and heterocyclic molecules was studied using pulse gas chromatography. By means of statistical analysis, experimental data was analyzed and modeled using principal component analysis and partial least-squares regression. Structure-property relationships were established, revealing and confirming several trends. Among the molecular properties governing the adsorption process, vapor pressure, mean polarizability, and dipole moment play a determining role.

  3. Modeling experimental stable isotope results from CO2 adsorption and diffusion experiments

    Science.gov (United States)

    Larson, T. E.

    2012-12-01

    Transport of carbon dioxide through porous media can be affected by diffusion, advection and adsorption processes. Developing new tools to understand which of these processes dominates migration of CO2 or other gases in the subsurface is important to a wide range of applications including CO2 storage. Whereas advection rates are not affected by isotope substitution in CO2, adsorption and diffusion constants are. For example, differences in the binary diffusion constant calculated between C12O2-He and C13O2-He results in a carbon isotope fractionation whereby the front of the chromatographic peak is enriched in carbon-12 and the tail of the peak is enriched in carbon-13. Interestingly, adsorption is shown to have an opposite, apparent inverse affect whereby the lighter isotopologues of CO2 are preferentially retained by the chromatographic column and the heavier isotopologues are eluted first. This apparent inverse chromatographic effect has been ascribed to Van der Waals dispersion forces. Smaller molar volumes of the heavier isotopologues resulting from increased bond strength (shorter bond length) effectively decreases Van der Waals forces in heavier isotopologues compared to lighter isotopologues. Here we discuss the possible application of stable isotope values measured across chromatographic peaks to differentiate diffusion-dominated from adsorption-dominated transport processes for CO2. Separate 1-dimensional flow-through columns were packed with quartz and illite, and one remained empty. Dry helium was used as a carrier gas. Constant flow rate, temperature and column pressure were maintained. After background CO2 concentrations were minimized and constant, a sustained pulse of CO2 was injected at the head of the column and the effluent was sampled at 4 minute intervals for CO2 concentration, and carbon and oxygen isotope ratios. The quartz-sand packed and empty columns resulted in similar trends in concentration and isotope ratios whereby CO2 concentrations

  4. Unified superresolution experiments and stochastic theory provide mechanistic insight into protein ion-exchange adsorptive separations.

    Science.gov (United States)

    Kisley, Lydia; Chen, Jixin; Mansur, Andrea P; Shuang, Bo; Kourentzi, Katerina; Poongavanam, Mohan-Vivekanandan; Chen, Wen-Hsiang; Dhamane, Sagar; Willson, Richard C; Landes, Christy F

    2014-02-11

    Chromatographic protein separations, immunoassays, and biosensing all typically involve the adsorption of proteins to surfaces decorated with charged, hydrophobic, or affinity ligands. Despite increasingly widespread use throughout the pharmaceutical industry, mechanistic detail about the interactions of proteins with individual chromatographic adsorbent sites is available only via inference from ensemble measurements such as binding isotherms, calorimetry, and chromatography. In this work, we present the direct superresolution mapping and kinetic characterization of functional sites on ion-exchange ligands based on agarose, a support matrix routinely used in protein chromatography. By quantifying the interactions of single proteins with individual charged ligands, we demonstrate that clusters of charges are necessary to create detectable adsorption sites and that even chemically identical ligands create adsorption sites of varying kinetic properties that depend on steric availability at the interface. Additionally, we relate experimental results to the stochastic theory of chromatography. Simulated elution profiles calculated from the molecular-scale data suggest that, if it were possible to engineer uniform optimal interactions into ion-exchange systems, separation efficiencies could be improved by as much as a factor of five by deliberately exploiting clustered interactions that currently dominate the ion-exchange process only accidentally.

  5. Simple gas chromatographic method for furfural analysis.

    Science.gov (United States)

    Gaspar, Elvira M S M; Lopes, João F

    2009-04-03

    A new, simple, gas chromatographic method was developed for the direct analysis of 5-hydroxymethylfurfural (5-HMF), 2-furfural (2-F) and 5-methylfurfural (5-MF) in liquid and water soluble foods, using direct immersion SPME coupled to GC-FID and/or GC-TOF-MS. The fiber (DVB/CAR/PDMS) conditions were optimized: pH effect, temperature, adsorption and desorption times. The method is simple and accurate (RSDfurfurals will contribute to characterise and quantify their presence in the human diet.

  6. Chromatographic separation of radioactive noble gases from xenon

    Science.gov (United States)

    Akerib, D. S.; Araújo, H. M.; Bai, X.; Bailey, A. J.; Balajthy, J.; Beltrame, P.; Bernard, E. P.; Bernstein, A.; Biesiadzinski, T. P.; Boulton, E. M.; Bramante, R.; Cahn, S. B.; Carmona-Benitez, M. C.; Chan, C.; Chiller, A. A.; Chiller, C.; Coffey, T.; Currie, A.; Cutter, J. E.; Davison, T. J. R.; Dobi, A.; Dobson, J. E. Y.; Druszkiewicz, E.; Edwards, B. N.; Faham, C. H.; Fiorucci, S.; Gaitskell, R. J.; Gehman, V. M.; Ghag, C.; Gibson, K. R.; Gilchriese, M. G. D.; Hall, C. R.; Hanhardt, M.; Haselschwardt, S. J.; Hertel, S. A.; Hogan, D. P.; Horn, M.; Huang, D. Q.; Ignarra, C. M.; Ihm, M.; Jacobsen, R. G.; Ji, W.; Kamdin, K.; Kazkaz, K.; Khaitan, D.; Knoche, R.; Larsen, N. A.; Lee, C.; Lenardo, B. G.; Lesko, K. T.; Lindote, A.; Lopes, M. I.; Manalaysay, A.; Mannino, R. L.; Marzioni, M. F.; McKinsey, D. N.; Mei, D.-M.; Mock, J.; Moongweluwan, M.; Morad, J. A.; Murphy, A. St. J.; Nehrkorn, C.; Nelson, H. N.; Neves, F.; O'Sullivan, K.; Oliver-Mallory, K. C.; Palladino, K. J.; Pease, E. K.; Pech, K.; Phelps, P.; Reichhart, L.; Rhyne, C.; Shaw, S.; Shutt, T. A.; Silva, C.; Solovov, V. N.; Sorensen, P.; Stephenson, S.; Sumner, T. J.; Szydagis, M.; Taylor, D. J.; Taylor, W.; Tennyson, B. P.; Terman, P. A.; Tiedt, D. R.; To, W. H.; Tripathi, M.; Tvrznikova, L.; Uvarov, S.; Verbus, J. R.; Webb, R. C.; White, J. T.; Whitis, T. J.; Witherell, M. S.; Wolfs, F. L. H.; Yazdani, K.; Young, S. K.; Zhang, C.

    2018-01-01

    The Large Underground Xenon (LUX) experiment operates at the Sanford Underground Research Facility to detect nuclear recoils from the hypothetical Weakly Interacting Massive Particles (WIMPs) on a liquid xenon target. Liquid xenon typically contains trace amounts of the noble radioactive isotopes 85Kr and 39Ar that are not removed by the in situ gas purification system. The decays of these isotopes at concentrations typical of research-grade xenon would be a dominant background for a WIMP search experiment. To remove these impurities from the liquid xenon, a chromatographic separation system based on adsorption on activated charcoal was built. 400 kg of xenon was processed, reducing the average concentration of krypton from 130 ppb to 3.5 ppt as measured by a cold-trap assisted mass spectroscopy system. A 50 kg batch spiked to 0.001 g/g of krypton was processed twice and reduced to an upper limit of 0.2 ppt.

  7. Finite Element Modeling of Adsorption Processes for Gas Separation and Purification

    International Nuclear Information System (INIS)

    Humble, Paul H.; Williams, Richard M.; Hayes, James C.

    2009-01-01

    Pacific Northwest National Laboratory (PNNL) has expertise in the design and fabrication of automated radioxenon collection systems for nuclear explosion monitoring. In developing new systems there is an ever present need to reduce size, power consumption and complexity. Most of these systems have used adsorption based techniques for gas collection and/or concentration and purification. These processes include pressure swing adsorption, vacuum swing adsorption, temperature swing adsorption, gas chromatography and hybrid processes that combine elements of these techniques. To better understand these processes, and help with the development of improved hardware, a finite element software package (COMSOL Multiphysics) has been used to develop complex models of these adsorption based operations. The partial differential equations used include a mass balance for each gas species and adsorbed species along with a convection conduction energy balance equation. These equations in conjunction with multicomponent temperature dependent isotherm models are capable of simulating separation processes ranging from complex multibed PSA processes, and multicomponent temperature programmed gas chromatography, to simple two component temperature swing adsorption. These numerical simulations have been a valuable tool for assessing the capability of proposed processes and optimizing hardware and process parameters.

  8. Adsorption of pesticides onto granular activated carbon in water treatment process

    OpenAIRE

    Kopecká, Ivana

    2010-01-01

    The diploma thesis is aimed at adsorption processes during the removal of pesticides onto granular activated carbon (GAC) in the process of drinking water treatment. Adsorption onto GAC represents an efficient method for pesticides removal. High adsorption efficiency can be significantly reduced due to the occurrence of natural organic matter (NOM) in raw water, which involves AOM (Algal Organic Matter) produced by phytoplankton. Analogous to NOM, AOM probably affects adsorption of pesticides...

  9. Determination of adsorption isotherms of chlorinated hydrocarbons on halloysite adsorbent by inverse gas chromatography.

    Science.gov (United States)

    Czech, K; Słomkiewicz, P M

    2013-05-03

    Inverse gas chromatographic methods of isotherm determination peak maximum (PM) and peak division (PD) were compared. These methods were applied to determine adsorption isotherms of dichloroethylene, trichloroethylene and tetrachloroethylene on acid-activated halloysite and adsorption enthalpy. Copyright © 2013 Elsevier B.V. All rights reserved.

  10. Isotope separations using chromatographic methods

    International Nuclear Information System (INIS)

    Leseticky, L.

    1985-01-01

    A survey is given of chromatographic separations of compounds only differing in isotope composition. Isotope effects on physical properties which allow chromatographic separation (vapour tension, adsorption heat, partition coefficient) are very small, with the exception of the simplest molecules. Therefore, separation factors only assume the value of several per cent. From this ensues the necessity of using columns which are specially and very carefully prepared and have a separation efficiency of the order of 10 4 theoretical plates. Briefly discussed is liquid chromatography on ion exchangers which with a varied degree of success was used for separating simple inorganic compounds or ions. Ion exchange chromatography of amino acids labelled with tritium, and chromatography of tritium labelled steroids also provided only a certain degree of separation. A detailed analysis is presented of gas chromatography separation of various deuterium and tritium labelled low-molecular compounds, to which a number of studies has been devoted in the literature. Very promising is the method of complexation gas chromatography based on the reversible formation of a complex of the ligand (the compound being separated) and the compound of the (transition) metal as the steady-state phase. (author)

  11. Adsorption of arsenic(III) into modified lamellar Na-magadiite in aqueous medium—Thermodynamic of adsorption process

    Science.gov (United States)

    Guerra, Denis Lima; Pinto, Alane Azevedo; Airoldi, Claudio; Viana, Rúbia Ribeiro

    2008-12-01

    Synthetic Na-magadiite sample was used for organofunctionalization process with N-propyldiethylenetrimethoxysilane and bis[3-(triethoxysilyl)propyl]tetrasulfide, after expanding the interlayer distance with polar organic solvents such as dimethylsulfoxide (DMSO). The resulted materials were submitted to process of adsorption with arsenic solution at pH 2.0 and 298±1 K. The adsorption isotherms were adjusted using a modified Langmuir equation with regression nonlinear; the net thermal effects obtained from calorimetric titration measurements were adjusted to a modified Langmuir equation. The adsorption process was exothermic (Δ intH=-4.15-5.98 kJ mol -1) accompanied by increase in entropy (Δ intS=41.32-62.20 J k -1 mol -1) and Gibbs energy (Δ intG=-22.44-24.56 kJ mol -1). The favorable values corroborate with the arsenic (III)/basic reactive centers interaction at the solid-liquid interface in the spontaneous process.

  12. Modeling Adsorption-Desorption Processes at the Intermolecular Interactions Level

    Science.gov (United States)

    Varfolomeeva, Vera V.; Terentev, Alexey V.

    2018-01-01

    Modeling of the surface adsorption and desorption processes, as well as the diffusion, are of considerable interest for the physical phenomenon under study in ground tests conditions. When imitating physical processes and phenomena, it is important to choose the correct parameters to describe the adsorption of gases and the formation of films on the structural materials surface. In the present research the adsorption-desorption processes on the gas-solid interface are modeled with allowance for diffusion. Approaches are proposed to describe the adsorbate distribution on the solid body surface at the intermolecular interactions level. The potentials of the intermolecular interaction of water-water, water-methane and methane-methane were used to adequately modeling the real physical and chemical processes. The energies calculated by the B3LYP/aug-cc-pVDZ method. Computational algorithms for determining the average molecule area in a dense monolayer, are considered here. Differences in modeling approaches are also given: that of the proposed in this work and the previously approved probabilistic cellular automaton (PCA) method. It has been shown that the main difference is due to certain limitations of the PCA method. The importance of accounting the intermolecular interactions via hydrogen bonding has been indicated. Further development of the adsorption-desorption processes modeling will allow to find the conditions for of surface processes regulation by means of quantity adsorbed molecules control. The proposed approach to representing the molecular system significantly shortens the calculation time in comparison with the use of atom-atom potentials. In the future, this will allow to modeling the multilayer adsorption at a reasonable computational cost.

  13. Chromatographic hydrogen isotope separation

    International Nuclear Information System (INIS)

    Aldridge, F.T.

    1983-01-01

    Intermetallic compounds with the CaCu5 type of crystal structure, particularly LaNiCo and CaNi5, exhibit high separation factors and fast equilibrium times and therefore are useful for packing a chromatographic hydrogen isotope separation column. The addition of an inert metal to dilute the hydride improves performance of the column. A large scale multi-stage chromatographic separation process run as a secondary process off a hydrogen feedstream from an industrial plant which uses large volumes of hydrogen can produce large quantities of heavy water at an effective cost for use in heavy water reactors

  14. Chromatographic hydrogen isotope separation

    International Nuclear Information System (INIS)

    Aldridge, F.T.

    1981-01-01

    Intermetallic compounds with the CaCu5 type of crystal structure , particularly LaNiCo and CaNi5, exhibit high separation factors and fast equilibrium times and therefore are useful for packing a chromatographic hydrogen isotope separation colum. The addition of an inert metal to dilute the hydride improves performance of the column. A large scale mutli-stage chromatographic separation process run as a secondary process off a hydrogen feedstream from an industrial plant which uses large volumes of hydrogen can produce large quantities of heavy water at an effective cost for use in heavy water reactors

  15. Sorption and chromatographic techniques for processing liquid waste of nuclear fuel cycle

    International Nuclear Information System (INIS)

    Gelis, V.M.; Milyutin, V.V.; Chuveleva, E.A.; Maslova, G.B.; Kudryavtseva, S.P.; Firsova, L.A.; Kozlitin, E.A.

    2000-01-01

    In the spent nuclear fuel processing procedures the significant quantity of high level liquid waste containing long-lived high toxic radionuclides of cesium, strontium, promethium, americium, curium, etc. is generated. Separation of those radionuclides from the waste not merely simplifies the further safe waste handling but also reduces the waste processing operation costs due to the market value of certain individual radionuclide preparations. Recovery and separation of high grade pure long-lived radionuclide preparations is frequently performed by means of chromatographic techniques. (authors)

  16. Development of new process network for gas chromatograph and analyzers connected with SCADA system and Digital Control Computers at Cernavoda NPP Unit 1

    International Nuclear Information System (INIS)

    Deneanu, Cornel; Popa Nemoiu, Dragos; Nica, Dana; Bucur, Cosmin

    2007-01-01

    The continuous monitoring of gas mixture concentrations (deuterium/ hydrogen/oxygen/nitrogen) accumulated in 'Moderator Cover Gas', 'Liquid Control Zone' and 'Heat Transport D 2 O Storage Tank Cover Gas', as well as the continuous monitoring of Heavy Water into Light Water concentration in 'Boilers Steam', 'Boilers Blown Down', 'Moderator heat exchangers', and 'Recirculated Water System', sensing any leaks of Cernavoda NPP U1 led to requirement of developing a new process network for gas chromatograph and analyzers connected to the SCADA system and Digital Control Computers of Cernavoda NPP Unit 1. In 2005 it was designed and implemented the process network for gas chromatograph which connected the gas chromatograph equipment to the SCADA system and Digital Control Computers of the Cernavoda NPP Unit 1. Later this process network for gas chromatograph has been extended to connect the AE13 and AE14 Fourier Transform Infrared (FTIR) analyzers with either. The Gas Chromatograph equipment measures with best accuracy the mixture gases (deuterium/ hydrogen/oxygen/nitrogen) concentration. The Fourier Transform Infrared (FTIR) AE13 and AE14 Analyzers measure the Heavy Water into Light Water concentration in Boilers Steam, Boilers BlownDown, Moderator heat exchangers, and Recirculated Water System, monitoring and signaling any leaks. The Gas Chromatograph equipment and Fourier Transform Infrared (FTIR) AE13 and AE14 Analyzers use the new OPC (Object Link Embedded for Process Control) technologies available in ABB's VistaNet network for interoperability with automation equipment. This new process network has interconnected the ABB chromatograph and Fourier Transform Infrared analyzers with plant Digital Control Computers using new technology. The result was an increased reliability and capability for inspection and improved system safety

  17. Adsorption behavior of α-cypermethrin on cork and activated carbon

    OpenAIRE

    Domingues, Valentina F.; Priolo, Giuseppe; Alves, Arminda; Cabral, Miguel; Delerue-Matos, Cristina

    2007-01-01

    Studies were undertaken to determine the adsorption behavior of α-cypermethrin [R)-α-cyano-3-phenoxybenzyl(1S)-cis- 3-(2,2-dichlorovinyl)-2,2-dimethylcyclopropanecarboxylate, and (S)-α-cyano-3-phenoxybenzyl (1R)-cis-3-(2,2-dichlorovinyl)-2,2- dimethylcyclopropanecarboxylate] in solutions on granules of cork and activated carbon (GAC). The adsorption studies were carried out using a batch equilibrium technique. A gas chromatograph with an electron capture detector (GC-ECD) was used to...

  18. Liquid chromatographic separation of terpenoid pigments in foods and food products.

    Science.gov (United States)

    Cserháti, T; Forgács, E

    2001-11-30

    The newest achievements in the use of various liquid chromatographic techniques such as adsorption and reversed-phase thin-layer chromatography and HPLC employed for the separation and quantitative determination of terpenoid-based color substances in foods and food products are reviewed. The techniques applied for the analysis of individual pigments and pigments classes are surveyed and critically evaluated. Future trends in the separation and identification of pigments in foods and food products are delineated.

  19. The processing of used cooking oil (yellow grease) using combination of adsorption and ultrafiltration membrane processes

    Science.gov (United States)

    Rosnelly, C. M.; Sofyana; Amalia, D.; Sarah, S.

    2018-03-01

    Yellow grease is used cooking oil whose quality has degraded due to the oxidation, polymerization, or hydrolysis process. In previous studies, yellow grease refining had been conducted either by adsorption or by using membrane. In this study, adsorption process using adsorbent from bagasse activated with H3PO4 12.5%, and ultrafiltration using Polyethersulfone (PES) membrane were combined. In adsorption stage, several variation of bagasse mass was fed into 200 ml of yellow grease and stirred for 60 minutes at 60 rpm. Yellow grease produced from adsorption with best condition was then processed using ultrafiltration membran that is PES membran with concentration by 15 wt % with transmembrane pressure variation by 0.5; 1; 1.5; 2; and 2.5 Bar. Analysis of yellow grease characteristics before refined showed its acid number, peroxide number, iodine number, and water content respectively by 2.68 mgKOH/Kg; 5.97 Meq/Kg; 51,48; and 1.29%. Characteristics of yellow grease after adsorption at its best condition on the parameters of acid number, peroxide number, iodine number, and water content are respectively by 2.55 mgKOH/Kg; 4.19 Meq/Kg; 40,02; and 0.27%. Characteristics of yellow grease after ultrafiltration at its best condition on the parameters of acid number, peroxide number, iodine number, and water content are respectively by 1.12 mgKOH/Kg; 1.8 Meq/Kg; 41,36; and 0.02%. Combination of adsorption and ultrafiltration processes for yellow grease processing showed decreasing value on the parameters of acid number, peroxide number, and water content that conforms to the SNI quality standard, but has not been able to increase the iodine number.

  20. [Studies on the process of Herba Clinopodii saponins purified with macroporous adsorption resin].

    Science.gov (United States)

    Zhang, Yi; Yan, Dan; Han, Yumei

    2005-10-01

    To study the technological parameters of the purification process of saponins with macroporous adsorption resin. The adsorptive characteristics and elutive parameters of the process were studied by taking the elutive and purified ratio of saponins as markers. 11.4 ml of the extraction of Herba Clinopodii (crude drugs 0.2 g/ml) was purified with a column of macroporous adsorption resin (phi15 mm x H90 mm, dry weight 2.5 g) and washed with 3BV of distilled water, then eluted with 3BV of 30% ethanol and 3BV of 70% ethanol. Most of saponins were collected in the 70% ethanol. With macroporous adsorption resin adsorbing and purifying,the elutive ratio of saponins is 86.8% and the purity reaches 153.2%. So this process of applying macroporous adsorption resin to adsorb and purify Saponins is feasible.

  1. Effect of Secondary Equilibria on the Adsorption of Ibuprofen Enantiomers on a Chiral Stationary Phase with a Grafted Antibiotic Eremomycin

    Science.gov (United States)

    Reshetova, E. N.; Asnin, L. D.; Kachmarsky, K.

    2018-02-01

    The chromatographic separation of ibuprofen enantiomers on a Nautilus-E chiral stationary phase with a grafted eremomycin antibiotic at high column loading is accompanied by distortion of the shape of chromatographic peaks. A model is proposed to explain this phenomenon. A number of factors are considered in the model: the ionization of ibuprofen in the mobile phase, the pH change in the mass transfer zone caused by ionization, and competitive adsorption involving buffer components. Simulations performed using this model within the theory of nonequilibrium chromatography allow the shape of chromatograms for large amounts of S- and R-ibuprofen samples to be predicted. The adsorption mechanism is found to be mainly ion-exchange. The contribution from the molecular adsorption of ibuprofen to the total retention is shown to be several percent.

  2. Efficient fabrication of high-capacity immobilized metal ion affinity chromatographic media: The role of the dextran-grafting process and its manipulation.

    Science.gov (United States)

    Zhao, Lan; Zhang, Jingfei; Huang, Yongdong; Li, Qiang; Zhang, Rongyue; Zhu, Kai; Suo, Jia; Su, Zhiguo; Zhang, Zhigang; Ma, Guanghui

    2016-03-01

    Novel high-capacity Ni(2+) immobilized metal ion affinity chromatographic media were prepared through the dextran-grafting process. Dextran was grafted to an allyl-activated agarose-based matrix followed by functionalization for the immobilized metal ion affinity chromatographic media. With elaborate regulation of the allylation degree, dextran was completely or partly grafted to agarose microspheres, namely, completely dextran-grafted agarose microspheres and partly dextran-grafted ones, respectively. Confocal laser scanning microscope results demonstrated that a good adjustment of dextran-grafting degree was achieved, and dextran was distributed uniformly in whole completely dextran-grafted microspheres, while just distributed around the outside of the partly dextran-grafted ones. Flow hydrodynamic properties were improved greatly after the dextran-grafting process, and the flow velocity increased by about 30% compared with that of a commercial chromatographic medium (Ni Sepharose FF). A significant improvement of protein binding performance was also achieved by the dextran-grafting process, and partly dextran-grafted Ni(2+) chelating medium had a maximum binding capacity for His-tagged lactate dehydrogenase about 2.5 times higher than that of Ni Sepharose FF. The results indicated that this novel chromatographic medium is promising for applications in high-efficiency and large-scale protein purification. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. The counterintuitive role of extra-column volume in the determination of column efficiency and scaling of chromatographic processes

    NARCIS (Netherlands)

    Schultze-Jena, A.; Boon, M.A.; Bussmann, P.J.Th.; Janssen, A.E.M.; Padt, van der A.

    2017-01-01

    In industrial liquid separation processes chromatography often has a key function in the optimization of yield and purity. For the design of an industrial system, chromatographic processes are generally simulated using mathematical models, tested and optimized at laboratory level, and then scaled

  4. The counterintuitive role of extra-column volume in the determination of column efficiency and scaling of chromatographic processes

    NARCIS (Netherlands)

    Schultze-Jena, A.; Boon, M.A.; Bussmann, P.J.T.; Janssen, A.E.M.; Padt, A. van der

    2017-01-01

    In industrial liquid separation processes chromatography often has a key function in the optimization of yield and purity. For the design of an industrial system, chromatographic processes are generally simulated using mathematical models, tested and optimized at laboratory level, and then scaled up

  5. Implementation of a fully automated process purge-and-trap gas chromatograph at an environmental remediation site

    International Nuclear Information System (INIS)

    Blair, D.S.; Morrison, D.J.

    1997-01-01

    The AQUASCAN, a commercially available, fully automated purge-and-trap gas chromatograph from Sentex Systems Inc., was implemented and evaluated as an in-field, automated monitoring system of contaminated groundwater at an active DOE remediation site in Pinellas, FL. Though the AQUASCAN is designed as a stand alone process analytical unit, implementation at this site required additional hardware. The hardware included a sample dilution system and a method for delivering standard solution to the gas chromatograph for automated calibration. As a result of the evaluation the system was determined to be a reliable and accurate instrument. The AQUASCAN reported concentration values for methylene chloride, trichloroethylene, and toluene in the Pinellas ground water were within 20% of reference laboratory values

  6. Adsorption thermal energy storage for cogeneration in industrial batch processes: Experiment, dynamic modeling and system analysis

    International Nuclear Information System (INIS)

    Schreiber, Heike; Graf, Stefan; Lanzerath, Franz; Bardow, André

    2015-01-01

    Adsorption thermal energy storage is investigated for heat supply with cogeneration in industrial batch processes. The feasibility of adsorption thermal energy storage is demonstrated with a lab-scale prototype. Based on these experiments, a dynamic model is developed and successfully calibrated to measurement data. Thereby, a reliable description of the dynamic behavior of the adsorption thermal energy storage unit is achieved. The model is used to study and benchmark the performance of adsorption thermal energy storage combined with cogeneration for batch process energy supply. As benchmark, we consider both a peak boiler and latent thermal energy storage based on a phase change material. Beer brewing is considered as an example of an industrial batch process. The study shows that adsorption thermal energy storage has the potential to increase energy efficiency significantly; primary energy consumption can be reduced by up to 25%. However, successful integration of adsorption thermal storage requires appropriate integration of low grade heat: Preferentially, low grade heat is available at times of discharging and in demand when charging the storage unit. Thus, adsorption thermal energy storage is most beneficial if applied to a batch process with heat demands on several temperature levels. - Highlights: • A highly efficient energy supply for industrial batch processes is presented. • Adsorption thermal energy storage (TES) is analyzed in experiment and simulation. • Adsorption TES can outperform both peak boilers and latent TES. • Performance of adsorption TES strongly depends on low grade heat temperature.

  7. Studies of surface adsorption on LiAlO2

    International Nuclear Information System (INIS)

    Fischer, A.K.; Johnson, C.E.; McDaniel, J.A.

    1986-01-01

    Computational and experimental approaches are being taken to understanding surface adsorption/desorption effects on tritium inventory and release. The computational survey integrates a thermodynamic treatment of surface adsorption and bulk phase effects such as solubility and gas phase composition. The system T 2 O:T 2 :LiAlO 2 was examined. The calculations indicate that surface adsorption can be expected to contribute most to tritium inventory under the conditions of lower temperatures and higher oxygen activities. Higher temperature and lower oxygen activity favor lower surface inventory. In the experimental work, a high temperature gas chromatograph was constructed in order to measure the H 2 O:H 2 surface adsorption isotherms and the solubility of hydroxide in LiAlO 2 . Preliminary data indicate that at 478 K approximately 15% of the surface is coverred for a partial pressure of H 2 O of approximately 52 Pa. Calculated values can be obtained that are in reasonable agreement with this. (orig.)

  8. Studies of surface adsorption on LiAlO2

    International Nuclear Information System (INIS)

    Fischer, A.K.; McDaniel, J.A.; Johnson, C.E.

    1986-01-01

    Computational and experimental approaches are being taken to understanding surface adsorption/desorption effects on tritium inventory and release. The computational survey integrates a thermodynamic treatment of surface adsorption and bulk phase effects such as solubility and gas phase composition. The system T 2 O:T 2 :LiAlO 2 was examined. The calculations indicate that surface adsorption can be expected to contribute most to tritium inventory under the conditions of lower temperatures and higher oxygen activities. Higher temperature and lower oxygen activity favor lower surface inventory. In the experimental work, a high temperature gas chromatograph was constructed in order to measure the H 2 O:H 2 surface adsorption isotherms and the solubility of hydroxide in LiAlO 2 . Preliminary data indicate that at 478K approximately 15% of the surface is covered for a partial pressure of H 2 O of approximately 52 Pa. Calculated values can be obtained that are in reasonable agreement with this

  9. Coagulation-Adsorption Hybrid Process for the Treatment of Dyes and Pigments Wastewater

    Directory of Open Access Journals (Sweden)

    Abdul Karim Shah

    2013-10-01

    Full Text Available The study aimed to improve the effectiveness of dyes and pigments wastewater treatment. Hybrid system of adsorption and coagulation was applied for the reduction of COD, color, turbidity and TSS. Activated carbon adsorbent was prepared from a waste of sugar industry boiler. It was processed through physicochemical treatment with sulfuric acid following grinding, sieving, washing and drying unit operations. Combined wastewater of dyes and pigments manufacturing plant was treated with a hybrid process of coagulation and adsorption. FeCl 3, FeSO 4and Alum coagulants were tested individually and found them less effective. It was revealed that FeCl 3 coagulation, adsorption and hybrid process reduced COD (41, 51 and 54%, Color (67, 70 and 89%, turbidity (69, 71 and 90% and TSS (82, 93 and 97% respectively. Combination of FeCl3 -SBFA (Sugarcane Bagasse Fly Ash proved 90% efficient in removal than coagulation as an individual process. 4g adsorbent dose was optimized for this hybrid process

  10. Processes of adsorption/desorption of iodides and cadmium cations onto/from Ag(111

    Directory of Open Access Journals (Sweden)

    VLADIMIR D. JOVIĆ

    2011-02-01

    Full Text Available In this work, the adsorption/desorption processes of iodides and cadmium cations in the presence of iodides onto/from Ag(111 were investigated. It was shown that both processes were complex, characterized by several peaks on the cyclic voltammograms (CVs. By PeakFit analysis of the recorded CVs and subsequent fitting of the obtained peaks by the Frumkin adsorption isotherm, the interaction parameter (f and the Gibbs energy of adsorption (DGads for each adsorbed phase were determined. In the case of iodide adsorption, four peaks were characterized by negative values of f, indicating attractive lateral interaction between the adsorbed anions, while two of them possessed value of f < –4, indicating phase transition processes. The adsorption/desorption processes of cadmium cations (underpotential deposition – UPD of cadmium in the presence of iodide anions was characterized by two main peaks, each of them being composed of two or three peaks with negative values of f. By the analysis of charge vs. potential dependences obtained either from the CVs or current transients on potentiostatic pulses, it was concluded that adsorbed iodides did not undergo desorption during the process of Cd UPD, but became replaced by Cd ad-atoms and remained adsorbed on top of a Cd layer and/or in between Cd the ad-atoms.

  11. Use of activated carbon adsorption in conjunction with radiation treatment processes

    International Nuclear Information System (INIS)

    Dickson, L.W.; Lopata, V.J.; Toft-Hall, A.; Kremers, W.; Singh, A.

    1988-01-01

    This report presents the results of an assessment of the potential applications of combined adsorption-irradiation treatment processes. The rationale for the study was to determine whether the cost of radiation treatment could be reduced by concentrating target species on an adsorbent in the radiation field. Several different studies on adsorption-irradiation treatment were identified in the literature, and experimental work was done on both the conversion of sulphur dioxide to elemental sulphur, and the removal of trihalomethanes from water by adsorption on activated carbon and subsequent irradiation. Adsorption-irradiation treatment would appear to be less costly than irradiation alone for radiolytic decomposition of target species at low concentration in liquid streams, in the presence of high-surface-area, electrically insulating adsorbents. 116 refs

  12. IMAGING OF FLUOROPHORES IN CHROMATOGRAPHIC BEADS, RECONSTRUCTION OF RADIAL DENSITY DISTRIBUTIONS AND CHARACTERISATION OF PROTEIN UPTAKING PROCESSES

    Directory of Open Access Journals (Sweden)

    Bernd Stanislawski

    2010-11-01

    Full Text Available A new adjustment calculus is presented to determine the true intraparticle distribution of bound protein within chromatographic beads from confocal fluorescence slice series. The calculus does not require knowledge about optical properties of different chromatographic materials like refractive index and turbidity, but it depends on a parameter which can be adjusted interactively. The algorithm is of complexity O(n where n is the pixel number. From the reconstructed data we compute the parameters of the protein uptaking process using a model-based approach. It is demonstrated that the protein uptaking rates of the beads strongly dependent on the conditions of the fluid phase influencing the strength of protein surface interaction.

  13. Removal of phthalates and pharmaceuticals from municipal wastewater by graphene adsorption process.

    Science.gov (United States)

    Yang, Gordon C C; Tang, Pei-Ling

    2016-01-01

    In this work graphene was used for evaluation of its adsorption behavior and performance in removing phthalate esters and pharmaceuticals in municipal wastewater. Di-n-butyl phthalate (DnBP), di-(2-ethylhexyl) phthalate (DEHP), acetaminophen (ACE), caffeine (CAF), cephalexin (CLX), and sulfamethoxazole (SMX) were emerging contaminants (ECs) with detection frequencies over 92% in a one-year monitoring of the occurrence of ECs in influent samples of a sewage treatment plant in Taiwan. Thus, these ECs were selected as the target contaminants for removal by graphene adsorption process. Experimental results showed that the adsorption isotherm data were fitted well to Langmuir model equation. It was also found that the adsorption process obeyed the pseudo-second-order kinetics. A graphene dosage of 0.1 g/L and adsorption time of 12 h were found to be the optimal operating conditions for the ECs of concern in model solutions in a preliminary study. By using the determined optimal operating conditions for removal of such ECs in actual municipal wastewater, removal efficiencies for various ECs were obtained and given as follows: (1) DnBP, 89%, (2) DEHP, 86%, (3) ACE, 43%, (4) CAF, 84%, (5) CLX, 81%, and (6) SMX, 34%.

  14. Adsorption of Chrysoidine R by using fly ash in batch process

    International Nuclear Information System (INIS)

    Matheswaran, Manickam; Karunanithi, Thirugnanam

    2007-01-01

    This investigation deals with effective utilization of fly ash as adsorbent for the removal of Chrysoidine R from the aqueous solution. The fly ash is a major byproduct generated in coal-based thermal power plants and has good potential for use as an adsorbent. A series of experiments were carried out in a batch adsorption technique to obtain the effect of process variables viz. contact time, pH (2, 4, 6 and 8) initial concentration of the dye (400, 600, 800 and 1000 mg L -1 ), amount of the adsorbent (125, 250, 375 and 500 mg L -1 ), and temperature (303, 313, 323 and 333 K) on adsorption. The concentration of dye was determined by spectrophotometer. The results showed that as the amount of the adsorbent was increased, the percentage of dye removal increased accordingly; higher adsorption percentage was observed at lower concentration of chrysoidine. The adsorption data were analyzed using Langmuir and Freundlich isotherms. The adsorption was found to obey pseudo-first order kinetics. An intra particle diffusion model was used to fit the experimental data. The thermodynamic parameters such as standard change in free energy, enthalpy and entropy of adsorption have been calculated. Adsorption of Chrysoidine R on fly ash was found to be an exothermic reaction

  15. Environmental protection and processing of feedstocks by adsorption on carbonaceous materials - developments at Bergbau- Forschung GmbH

    Energy Technology Data Exchange (ETDEWEB)

    Knoblauch, K; Richter, E

    1986-06-01

    Activated carbons, active cokes and carbon molecular sieves are used for regenerative processes for environmental protection and for processing of valuable feedstocks. Development of adsorption processes and their layout based on adsorption equilibria, adsorption kinetics, kinetics of desorption by heating, depressurization or purging not only as single steps but in the same combination as in the regenerative process. For example some adsorption processes are decsribed which are applied in pilot scale or industrially. These include: nitrogen production from air by pressure swing adsorption (PSA); hydrogen production from coke oven gas by PSA; upgrading of methane from biogas and from fire damp; removal of hydrogen sulfide from biogas; removal of sulfur dioxide and nitrogen oxides from flue gases and drinking water supply and waste water treatment. (71 refs.)

  16. An automated multidimensional preparative gas chromatographic system for isolation and enrichment of trace amounts of xenon from ambient air.

    Science.gov (United States)

    Larson, Tuula; Östman, Conny; Colmsjö, Anders

    2011-04-01

    The monitoring of radioactive xenon isotopes is one of the principal methods for the detection of nuclear explosions in order to identify clandestine nuclear testing. In this work, a miniaturized, multiple-oven, six-column, preparative gas chromatograph was constructed in order to isolate trace quantities of radioactive xenon isotopes from ambient air, utilizing nitrogen as the carrier gas. The multidimensional chromatograph comprised preparative stainless steel columns packed with molecular sieves, activated carbon, and synthetic carbon adsorbents (e.g., Anasorb®-747 and Carbosphere®). A combination of purification techniques--ambient adsorption, thermal desorption, back-flushing, thermal focusing, and heart cutting--was selectively optimized to produce a well-defined xenon peak that facilitated reproducible heart cutting and accurate quantification. The chromatographic purification of a sample requires approximately 4 h and provides complete separation of xenon from potentially interfering components (such as water vapor, methane, carbon dioxide, and radon) with recovery and accuracy close to 100%. The preparative enrichment process isolates and concentrates a highly purified xenon gas fraction that is suitable for subsequent ultra-low-level γ-, ß/γ-spectroscopic or high-resolution mass spectrometric measurement (e.g., to monitor the gaseous fission products of nuclear explosions at remote locations). The Xenon Processing Unit is a free-standing, relatively lightweight, and transportable system that can be interfaced to a variety of sampling and detection systems. It has a relatively inexpensive, rugged, and compact modular (19-inch rack) design that provides easy access to all parts for maintenance and has a low power requirement.

  17. Chemometric strategy for automatic chromatographic peak detection and background drift correction in chromatographic data.

    Science.gov (United States)

    Yu, Yong-Jie; Xia, Qiao-Ling; Wang, Sheng; Wang, Bing; Xie, Fu-Wei; Zhang, Xiao-Bing; Ma, Yun-Ming; Wu, Hai-Long

    2014-09-12

    Peak detection and background drift correction (BDC) are the key stages in using chemometric methods to analyze chromatographic fingerprints of complex samples. This study developed a novel chemometric strategy for simultaneous automatic chromatographic peak detection and BDC. A robust statistical method was used for intelligent estimation of instrumental noise level coupled with first-order derivative of chromatographic signal to automatically extract chromatographic peaks in the data. A local curve-fitting strategy was then employed for BDC. Simulated and real liquid chromatographic data were designed with various kinds of background drift and degree of overlapped chromatographic peaks to verify the performance of the proposed strategy. The underlying chromatographic peaks can be automatically detected and reasonably integrated by this strategy. Meanwhile, chromatograms with BDC can be precisely obtained. The proposed method was used to analyze a complex gas chromatography dataset that monitored quality changes in plant extracts during storage procedure. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. Dual liquid and gas chromatograph system

    Science.gov (United States)

    Gay, D.D.

    A chromatographic system is described that utilizes one detection system for gas chromatographic and micro-liquid chromatographic determinations. The detection system is a direct-current, atmospheric-pressure, helium plasma emission spectrometer. The detector utilizes a nontransparent plasma source unit which contains the plasma region and two side-arms which receive effluents from the micro-liquid chromatograph and the gas chromatograph. The dual nature of this chromatographic system offers: (1) extreme flexibility in the samples to be examined; (2) extreme low sensitivity; (3) element selectivity; (4) long-term stability; (5) direct correlation of data from the liquid and gas samples; (6) simpler operation than with individual liquid and gas chromatographs, each with different detection systems; and (7) cheaper than a commercial liquid chromatograph and a gas chromatograph.

  19. Adsorption chromatography to purify Spacer disaccharide of Active Pharmaceutical Ingredient of QuimiHib vaccine

    International Nuclear Information System (INIS)

    Diaz, Belinda; Heynngnezz, Lazaro; Beldarrain, Alejandro

    2013-01-01

    In this paper we study the conditions of adsorption chromatography on Silica gel 60 for purification of Spacer disaccharide a component of Active Pharmaceutical Ingredient (API) of QuimiHib vaccine. For that, we made a scale down on an analytical scale that represented at 1.8% of industrial process, indicating reproducibility between two procedures in terms of packing efficiency, purity and recovery. Dynamic binding capacity of the resin Silicagel 60 by the DSE was roughly 125±0.2 mg /mL, 3.4 times the base process. The elution profile obtained, showed the possibility of collecting a unique fraction at range 195±2 and 260±2 minutes, if it is maintained a proper packing of the chromatography resin determined by asymmetry factor from 0.8 to 1.2, which ensures a recovery of 58.9±4.5% and high purity analyzed by Thin Layer Chromatography. Adjusting the adsorption conditions increases the productivity of chromatographic operation up to 3.5 fold, indicating that it is feasible in economic terms

  20. Production of lipase from Geotrichum sp and adsorption studies on affinity resin

    Directory of Open Access Journals (Sweden)

    E. S. KAMIMURA

    1999-06-01

    Full Text Available There is a growing interest in microbial lipase production due to its great potential for industrial applications such as food additives, industrial reagents and stain removers, as well as for medical applications. Specially for medical applications a high degree of purity is required, which is accomplished with high resolution chromatographic techniques. Affinity chromatography is considered a very high resolution chromatographic technique. In this work the adsorption isotherms and kinetics of the adsorption of lipase from Geotrichum sp on biospecific resin were determined. The resin was prepared using EAH sepharose 4B gel (Pharmacia, made to react with oleic acid as the specific ligand.The lipase was produced in a five-liter fermenter, with both complex and synthetic media. Fermentation conditions were a temperature of 30°C, an aeration of 1VVM and an agitation of 400 rpm. Maximum lipase activity was around 28 U/ml after 10 hours of fermentation for the complex medium. The kinetic model and parameters were determined by dynamic fitting to experimental results using the fourth-order Runge-Kutta method.

  1. Adsorption of Xyloglucan onto Cellulose Surfaces of Different Morphologies: An Entropy-Driven Process.

    Science.gov (United States)

    Benselfelt, Tobias; Cranston, Emily D; Ondaral, Sedat; Johansson, Erik; Brumer, Harry; Rutland, Mark W; Wågberg, Lars

    2016-09-12

    The temperature-dependence of xyloglucan (XG) adsorption onto smooth cellulose model films regenerated from N-methylmorpholine N-oxide (NMMO) was investigated using surface plasmon resonance spectroscopy, and it was found that the adsorbed amount increased with increasing temperature. This implies that the adsorption of XG to NMMO-regenerated cellulose is endothermic and supports the hypothesis that the adsorption of XG onto cellulose is an entropy-driven process. We suggest that XG adsorption is mainly driven by the release of water molecules from the highly hydrated cellulose surfaces and from the XG molecules, rather than through hydrogen bonding and van der Waals forces as previously suggested. To test this hypothesis, the adsorption of XG onto cellulose was studied using cellulose films with different morphologies prepared from cellulose nanocrystals (CNC), semicrystalline NMMO-regenerated cellulose, and amorphous cellulose regenerated from lithium chloride/dimethylacetamide. The total amount of high molecular weight xyloglucan (XGHMW) adsorbed was studied by quartz crystal microbalance and reflectometry measurements, and it was found that the adsorption was greatest on the amorphous cellulose followed by the CNC and NMMO-regenerated cellulose films. There was a significant correlation between the cellulose dry film thickness and the adsorbed XG amount, indicating that XG penetrated into the films. There was also a correlation between the swelling of the films and the adsorbed amounts and conformation of XG, which further strengthened the conclusion that the water content and the subsequent release of the water upon adsorption are important components of the adsorption process.

  2. Separative analyses of a chromatographic column packed with a core-shell adsorbent for lithium isotope separation

    International Nuclear Information System (INIS)

    Sugiyama, T.; Sugura, K.; Enokida, Y.; Yamamoto, I.

    2015-01-01

    Lithium-6 is used as a blanket material for sufficient tritium production in DT fueled fusion reactors. A core-shell type adsorbent was proposed for lithium isotope separation by chromatography. The mass transfer model in a chromatographic column consisted of 4 steps, such as convection and dispersion in the column, transfer through liquid films, intra-particle diffusion and and adsorption or desorption at the local adsorption sites. A model was developed and concentration profiles and time variation in the column were numerically simulated. It became clear that core-shell type adsorbents with thin porous shell were saturated rapidly relatively to fully porous one and established a sharp edge of adsorption band. This is very important feature because lithium isotope separation requires long-distance development of adsorption band. The values of HETP (Height Equivalent of a Theoretical Plate) for core-shell adsorbent packed column were estimated by statistical moments of the step response curve. The value of HETP decreased with the thickness of the porous shell. A core-shell type adsorbent is, then, useful for lithium isotope separation. (authors)

  3. Application of adsorption analysis to the investigation of phenols and bases in low-temperature tar

    Energy Technology Data Exchange (ETDEWEB)

    Kalechts, I V; Salimgareeva, F G; Tumbusova, Z P

    1955-01-01

    The use of chromatographic adsorption for the separation of mono- and bicyclic phenols and bases from coal tar and from its hydrogenation products were studied with o-cresol, ..beta..-naphthol, pyridine, and quinoline. Experimental data show that Al/sub 2/O/sub 3/ was preferable for separating phenols, but that silica gel was better for the bases. The best order of use of the developers was as follows: C/sub 6/H/sub 6/, Et/sub 2/O, EtOH. The data show that the destructive hydrogenation process degrades the higher series phenols to lower ones.

  4. Coupling of Spinosad Fermentation and Separation Process via Two-Step Macroporous Resin Adsorption Method.

    Science.gov (United States)

    Zhao, Fanglong; Zhang, Chuanbo; Yin, Jing; Shen, Yueqi; Lu, Wenyu

    2015-08-01

    In this paper, a two-step resin adsorption technology was investigated for spinosad production and separation as follows: the first step resin addition into the fermentor at early cultivation period to decrease the timely product concentration in the broth; the second step of resin addition was used after fermentation to adsorb and extract the spinosad. Based on this, a two-step macroporous resin adsorption-membrane separation process for spinosad fermentation, separation, and purification was established. Spinosad concentration in 5-L fermentor increased by 14.45 % after adding 50 g/L macroporous at the beginning of fermentation. The established two-step macroporous resin adsorption-membrane separation process got the 95.43 % purity and 87 % yield for spinosad, which were both higher than that of the conventional crystallization of spinosad from aqueous phase that were 93.23 and 79.15 % separately. The two-step macroporous resin adsorption method has not only carried out the coupling of spinosad fermentation and separation but also increased spinosad productivity. In addition, the two-step macroporous resin adsorption-membrane separation process performs better in spinosad yield and purity.

  5. Adsorption. What else?

    OpenAIRE

    Rodrigues, Alirio E.

    2012-01-01

    [EN] Chemical Engineering today combines Molecular and Materials Engineerig and Process and Product Engineering (ChE=M2P2). Cyclic adsorptive processes (Simulated Moving Bed –SMB and Pressure Swing Adsorption-PSA) will be discussed for “old” and “new” applications making use of “old” and “new” (MOFs) adsorbent materials. After revisiting my memory as PhD student and the First Brazilian Adsorption meeting I will review the basic concepts involved in adsorption processes and then...

  6. Krypton-85 enrichment by adsorption-desorption process

    International Nuclear Information System (INIS)

    Khan, A.A.; Deshingkar, D.S.; Ramarathinam, K.

    1975-01-01

    The use of activated charcoal columns in conjunction with cryogenic distillation system for concentration of krypton-85 in fuel reprocessing process off-gas stream is reported. Dynamic adsorption of krypton on activated charcoals and its subsequent desorption by applying vacuum were studied. The possible reduction in the quantity of carrier gas to be liquified in the cryogenic system by utilising this process has been discussed on the basis of results of laboratory evaluations. The possibility of elimination of air and oxygen to avoid explosion hazards associated with radiolytic formation and concentration of ozone has also been considered. (author)

  7. Study on Shale Adsorption Equation Based on Monolayer Adsorption, Multilayer Adsorption, and Capillary Condensation

    Directory of Open Access Journals (Sweden)

    Qing Chen

    2017-01-01

    Full Text Available Shale gas is an effective gas resource all over the world. The evaluation of pore structure plays a critical role in exploring shale gas efficiently. Nitrogen adsorption experiment is one of the significant approaches to analyze pore size structure of shale. Shale is extremely heterogeneous due to component diversity and structure complexity. Therefore, adsorption isotherms for homogeneous adsorbents and empirical isotherms may not apply to shale. The shape of adsorption-desorption curve indicates that nitrogen adsorption on shale includes monolayer adsorption, multilayer adsorption, and capillary condensation. Usually, Langmuir isotherm is a monolayer adsorption model for ideal interfaces; BET (Brunauer, Emmett, Teller adsorption isotherm is a multilayer adsorption model based on specific assumptions; Freundlich isotherm is an empirical equation widely applied in liquid phase adsorption. In this study, a new nitrogen adsorption isotherm is applied to simultaneously depict monolayer adsorption, multilayer adsorption, and capillary condensation, which provides more real and accurate representation of nitrogen adsorption on shale. In addition, parameters are discussed in relation to heat of adsorption which is relevant to the shape of the adsorption isotherm curve. The curve fitting results indicate that our new nitrogen adsorption isotherm can appropriately describe the whole process of nitrogen adsorption on shale.

  8. Adsorptive removal of arsenic by novel iron/olivine composite: Insights into preparation and adsorption process by response surface methodology and artificial neural network.

    Science.gov (United States)

    Ghosal, Partha S; Kattil, Krishna V; Yadav, Manoj K; Gupta, Ashok K

    2018-03-01

    Olivine, a low-cost natural material, impregnated with iron is introduced in the adsorptive removal of arsenic. A wet impregnation method and subsequent calcination were employed for the preparation of iron/olivine composite. The major preparation process parameter, viz., iron loading and calcination temperature were optimized through the response surface methodology coupled with a factorial design. A significant variation of adsorption capacity of arsenic (measured as total arsenic), i.e., 63.15 to 310.85 mg/kg for arsenite [As(III) T ] and 76.46 to 329.72 mg/kg for arsenate [As(V) T ] was observed, which exhibited the significant effect of the preparation process parameters on the adsorption potential. The iron loading delineated the optima at central points, whereas a monotonous decreasing trend of adsorption capacity for both the As(III) T and As(V) T was observed with the increasing calcination temperature. The variation of adsorption capacity with the increased iron loading is more at lower calcination temperature showing the interactive effect between the factors. The adsorbent prepared at the optimized condition of iron loading and calcination temperature, i.e., 10% and 200 °C, effectively removed the As(III) T and As(V) T by more than 96 and 99%, respectively. The material characterization of the adsorbent showed the formation of the iron compound in the olivine and increase in specific surface area to the tune of 10 multifold compared to the base material, which is conducive to the enhancement of the adsorption capacity. An artificial neural network was applied for the multivariate optimization of the adsorption process from the experimental data of the univariate optimization study and the optimized model showed low values of error functions and high R 2 values of more than 0.99 for As(III) T and As(V) T . The adsorption isotherm and kinetics followed Langmuir model and pseudo second order model, respectively demonstrating the chemisorption in this

  9. Highly efficient fluoride adsorption from aqueous solution by nepheline prepared from kaolinite through alkali-hydrothermal process.

    Science.gov (United States)

    Wang, Hao; Feng, Qiming; Liu, Kun; Li, Zishun; Tang, Xuekun; Li, Guangze

    2017-07-01

    A direct alkali-hydrothermal induced transformation process was adopted to prepare nepheline from raw kaolinite (shortened form RK in this paper) and NaOH solution in this paper. Structure and morphology characterizations of the synthetic product showed that the nepheline possessed high degree of crystallinity and uniform surface morphology. Specific surface area of nepheline is 18 m 2 /g, with a point of zero charge at around pH 5.0-5.5. The fluoride (F - ions) adsorption by the synthetic nepheline (shortened form SN in this paper) from aqueous solution was also investigated under different experimental conditions. The adsorption process well matched the Langmuir isotherm model with an amazing maximum adsorption capacity of 183 mg/g at 323 K. The thermodynamic parameters (ΔG 0 , ΔH 0 , and ΔS 0 ) for adsorption on SN were also determined from the temperature dependence. The adsorption capacities of fluoride on SN increased with increasing of temperature and initial concentration. Initial pH value also had influence on adsorption process. Adsorption of fluoride was rapidly increased in 5-60 min and thereafter increased slowly to reach the equilibrium in about 90-180 min under all conditions. The adsorption followed a pseudo-second order rate law. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Separation of lignocelluloses from spent liquor of NSSC pulping process via adsorption.

    Science.gov (United States)

    Dashtban, Mehdi; Gilbert, Allan; Fatehi, Pedram

    2014-04-01

    Hemicelluloses and lignin present in the spent liquor (SL) of neutral sulfite semichemical (NSSC) pulping process can potentially be converted into value-added products such as furfural, hydroxymethylfurfural, levulinic acid, phenols and adhesives. However, the direct conversion of hemicelluloses and lignin of SL into value-added products is uneconomical due to the dilute nature of the SL. To have a feasible downstream process for utilizing lignocelluloses of SL, the lignocelluloses should initially be separated from the SL. In this study, an adsorption process (via applying activated carbon) was considered for isolating the dissolved lignin and hemicelluloses from the SL of an NSSC pulping process. Under the optimal conditions of pH, SL/AC weight ratio, time and temperature of 5.7, 30, 360 min and 30 °C, the maximum lignin and hemicellulose adsorptions were 0.33 and 0.25 g/g on AC. The chemical oxygen demand (COD) and turbidity of the SL were decreased by 11% and 39%, respectively, as a result of lignocellulose adsorption on AC. Also, the incineration behavior of the SL-treated AC was studied with a thermo-gravimetric analysis (TGA). Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Cyanide removal by combined adsorption and biodegradation process

    Directory of Open Access Journals (Sweden)

    R. Roshan Dash, Ch. Balomajumder, A. Kumar

    2006-04-01

    Full Text Available Investigation of the effectiveness of simultaneous adsorption and biodegradation (SAB process over individual processes by using microbes Rhizopus oryzae and Stemphylium loti with granular activated carbon (GAC as adsorbent was carried out. The maximum removal efficiency of cyanide had been achieved by biodegradation alone was 83% by R. oryzae, while it was 90% by S. loti at initial pH of 5.6 and 7.2 respectively and at initial CN- concentration of 150 mg/L. In the combined process efficiency of R. oryzae closer to S. loti (95.3% and 98.6% respectively

  12. Phosphorus removal from aqueous solution in parent and aluminum-modified eggshells: thermodynamics and kinetics, adsorption mechanism, and diffusion process.

    Science.gov (United States)

    Guo, Ziyan; Li, Jiuhai; Guo, Zhaobing; Guo, Qingjun; Zhu, Bin

    2017-06-01

    Parent and aluminum-modified eggshells were prepared and characterized with X-ray diffraction, specific surface area measurements, infrared spectroscopy, zeta potential, and scanning electron microscope, respectively. Besides, phosphorus adsorptions in these two eggshells at different temperatures and solution pH were carried out to study adsorption thermodynamics and kinetics as well as the mechanisms of phosphorus adsorption and diffusion. The results indicated that high temperature was favorable for phosphorus adsorption in parent and aluminum-modified eggshells. Alkaline solution prompted phosphorus adsorption in parent eggshell, while the maximum adsorption amount was achievable at pH 4 in aluminum-modified eggshell. Adsorption isotherms of phosphorus in these eggshells could be well described by Langmuir and Freundlich models. Phosphorus adsorption amounts in aluminum-modified eggshell were markedly higher compared to those in parent eggshell. Adsorption heat indicated that phosphorus adsorption in parent eggshell was a typically physical adsorption process, while chemical adsorption mechanism of ion exchange between phosphorus and hydroxyl groups on the surface of eggshells was dominated in aluminum-modified eggshell. The time-resolved uptake curves showed phosphorus adsorption in aluminum-modified eggshell was significantly faster than that in parent eggshell. Moreover, there existed two clear steps in time-resolved uptake curves of phosphorus in parent eggshell. Based on pseudo-second order kinetic model and intraparticle diffusion model, we inferred more than one process affected phosphorus adsorption. The first process was the diffusion of phosphorus through water to external surface and the opening of pore channel in the eggshells, and the second process was mainly related to intraparticle diffusion.

  13. Langmuir and Freundlich Isotherm Adsorption Equations for Chromium (VI) Waste Adsorption by Zeolite

    International Nuclear Information System (INIS)

    Murni Handayani; Eko Sulistiyono

    2009-01-01

    The research of chromium (VI) waste adsorption by zeolite has done. Wastes which are produced by Industries, both radioactive waste and heavy metal waste need done more processing so that they are not endanger environment and human health. Zeolite has very well-ordered crystal form with cavity each other to way entirely so that cause surface wide of zeolite become very big and very good as adsorbents. This research intends to know appropriate isotherm adsorption method to determine maximum capacity of zeolite to chromium (VI) waste. The equations which used in adsorption process are Langmuir and Freundlich isotherm Adsorption equations. The instrument was used in adsorption process by using Atomic Adsorption Spectroscopy (AAS). The experiment result showed that the biggest mass of chromium (VI) metal ion which was absorb by zeolite in 20 ppm concentration was 7.71 mg/gram zeolite. Adsorption process of Chromium (VI) waste by zeolite followed Langmuir and Freundlich isotherm equations with R 2 >0,9 . Appropriate equation to determine maximum adsorption capacity of zeolite for chromium (VI) waste adsorption is Langmuir equation. The maximum adsorption capacity of zeolite is 52.25 mg/gram. (author)

  14. Study the influence factors to the adsorption process for separation of polyphenols from green tea

    Science.gov (United States)

    Phung, Lan Huong; Tran, Trung Kien; Van Quyet, Chu; Phi, Nguyen Thien

    2017-09-01

    The objective of this work is applying adsorption process for separation of polyphenols from extract solution of green tea by-product. The older leaves and stem of green tea tree are collected from Hiep Khanh Tea Company (Hoabinh province, Vietnam). In this study, two kinds of adsorbent (silicagel, active carbon) were applied for the adsorption process in batch stirring vessel. The factors that affected to the process productivity were investigated: temperature, solid/liquid ratio, duration time, stirring speed. The process has been empirically described with statistical models obtained by Design of Experiments. The results indicated that active carbon was verified to offer good adsorption productivity (more than 95%), much more effective than silicagel (with only about 20%). From the model, the most affected factor to the process could be seen as solid/liquid ratio.

  15. Optimization and Control of Pressure Swing Adsorption Processes Under Uncertainty

    KAUST Repository

    Khajuria, Harish; Pistikopoulos, Efstratios N.

    2012-01-01

    The real-time periodic performance of a pressure swing adsorption (PSA) system strongly depends on the choice of key decision variables and operational considerations such as processing steps and column pressure temporal profiles, making its design

  16. Development for a process for the adsorptive separation of krypton-85

    International Nuclear Information System (INIS)

    Messler, M.

    1985-03-01

    In the final process step of dissolver waste gas purification in a reprocessing facility, the radioactive noble gas Kr-85 is separated by physical separation processes. The experiments showed that the available mixture of air/Kr/Xe can be appropriately separated by chromatography. In principle, the adsorption column is laded with the waste gas and subsequently regenerated by puring with a carrier gas. A complete separation of the waste gas components can thus be achieved. He suggests itself as a purge gas. Fine-grained activated charcoals are to be preferred as adsorbing agents. Among the adsorptive process alternatives studied, one variant in which the adsorber was split into two halves and loaded at -130 0 C or -160 0 C proved to be particularly suitable. It can be seen that a total of only 0.2 m 3 of activated charcoal would be required for a commerical facility with a waste gas throughput of 100 nm 3 /h. The helium flux required only amounts to 4% of the waste gas flow to be purified. If valuable xenon is also to be recovered then this value increases to 7%. In this case the quantity of activated charcoal necessary would be 0.28 m 3 . A comparison with alternative process principles indicated that the adsorptive concept has advantages with respect to process engineering and regarding high safety standards in nuclear engineering facilities. (orig./HP) [de

  17. Processes of H{sub 2} adsorption on Fe(1 1 0) surface: A density functional theory study

    Energy Technology Data Exchange (ETDEWEB)

    Xie, Weiwei; Peng, Liang; Peng, Daoling [Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, School of Chemistry and Environment, South China Normal University, Guangzhou 510006 (China); Gu, Feng Long, E-mail: gu@scnu.edu.cn [Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, School of Chemistry and Environment, South China Normal University, Guangzhou 510006 (China); Liu, Jun [Material Design and Simulation Technology Co. Ltd., Room 1716, V-Faction, 10 Vanke, 2 Ring Road of North Section, Chengdu (China)

    2014-03-01

    Highlights: • The hydrogen coverages for H{sub 2} adsorption on Fe(1 1 0) surface ranging from 0.125 to 1.000 are prepared by using different surface supercells. • With the reduction of coverage, the average iron atomic energy is increased and the adsorption energy is decreased, leading to the system more stable; while coverage has little effect on the Fe(1 1 0) surface structure and the hydrogen adsorption process. • The most stable absorption site is found to be the on-top site. • DFT calculations show that it is a weak adsorption and the adsorption energy barriers under 4.4 kcal/mol. • The final state is H{sub 2} molecule dissociated into two hydrogen atoms interacting with surface iron atoms to form stable Fe-H bonds. - Abstract: Processes of H{sub 2} adsorption on Fe(1 1 0) surface have been studied by the density functional theory, properties such as surface structure, adsorption position, and adsorption energies are discussed as well. To investigate the atomic geometries and stability under different hydrogen coverages for this adsorption, the hydrogen coverages ranging from 0.125 to 1.000 are prepared by using different surface supercells. It is found that with the reduction of coverage, the average iron atomic energy and the adsorption energy are increased, leading to the system more stable; while coverage has little effect on the Fe(1 1 0) surface structure and the hydrogen adsorption process. The most stable absorption site is found to be the on-top site. Our calculations show that it is a weak adsorption and the adsorption energy barriers under 4.4 kcal/mol. The final state is H{sub 2} molecule dissociated into two hydrogen atoms and interacting with surface iron atoms to form stable Fe-H bonds.

  18. Systematic investigations of peak deformations due to co-solvent adsorption in preparative supercritical fluid chromatography.

    Science.gov (United States)

    Glenne, Emelie; Leek, Hanna; Klarqvist, Magnus; Samuelsson, Jörgen; Fornstedt, Torgny

    2017-05-05

    Strangely shaped overloaded bands were recently reported using a standard supercritical fluid chromatographic system comprising a diol column as the stationary phase and carbon dioxide with methanol as the mobile phase. Some of these overloaded elution profiles appeared strongly deformed and even had "anti-Langmuirian" shapes although their solute compounds had "Langmuirian" adsorption. To obtain a more complete understanding of the generality of these effects, the investigation was expanded to cover also other common co-solvents, such as ethanol, 2-propanol, and acetonitrile, as well as various stationary phase materials, such as silica, and 2-ethylpyridine. From this expanded study it could be confirmed that the effects of deformed overloaded solute band shapes, due to co-solvent adsorption, is general phenomena in supercritical fluid chromatographic. It could also be concluded that these effects as well as previously observed "solvent effects" or "plug effects" are entirely due to competition between the solute and solvent molecules for the adsorption sites on the stationary phase surface. Finally, guidelines were given for how to evaluate the risk of deformations occurring for a given solvent-column combination, based simply on testing retention times of solutes and co-solvent. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Measurement of dynamic adsorption coefficient of Xe on coconut charcoal in CO2 streams by gas-solid chromatography

    International Nuclear Information System (INIS)

    Sun Xinxi; Huang Yuying; Li Wangchang

    1984-01-01

    This paper presents a method for measuring the dynamic adsorption coefficients of Xe on coconut charcoal II-2 in CO 2 carrier streams by SP-2305E gas chromatograph with the thermal conductivity cell. The adsorption column is made of stainless steel (diameter 4 x 240 mm) packed with 60-80 mesh coconut charcoal II-2. The CO 2 content in carrier streams is about 87%. Three groups of data of Xe dynamic adsorption coefficient were obtained at temperature 15.5 deg C, 31.5 deg C and 50.5 deg C by pulse injection respectively. Another group was obtained at temperature approx. 16 deg C by continueous injection. In addition, adsorption isotherms and adsorption isometrics were determined. In this experimental system, the adsorption heat of Xe on coconut charcoal II-2 is 2820 cal/mole

  20. Kaolinite adsorption-regeneration system for dyestuff treatment by Fenton based processes.

    Science.gov (United States)

    Rosales, Emilio; Anasie, Delia; Pazos, Marta; Lazar, Iuliana; Sanromán, M Angeles

    2018-05-01

    The regeneration and reuse of adsorbents is a subject of interest nowadays in order to reduce the pollution and the wastes generated in the adsorption wastewater treatment. In this work, the regeneration of the spent kaolinite by different advanced oxidation processes (Fenton, electro-Fenton and electrokinetic-Fenton) was evaluated. Initially, it was confirmed the ability of a low cost clayey material, kaolinite, for the adsorption of model dye such as Rhodamine B showing Freundlich isotherm fitting. Then, the regeneration and consequent degradation of the pollutant in the adsorbent by Fenton based processes was carried out. The role of different parameters affecting the regeneration process (H 2 O 2 :Fe 2+ ratio, liquid:solid ratio) were evaluated. Working at 100:1 H 2 O 2 :Fe 2+ ratio and 30min near complete dye removal (around 97%) from kaolinite was obtained by Fenton treatment. After that, a two-stage treatment for adsorption-regeneration was evaluated during five treatment cycles demonstrating its viability for regeneration of the adsorbent through dye degradation. Based on the successful application of Fenton technique, the improvement of the treatment by electro-Fenton and electrokinetic-Fenton were studied for different solid:liquid ratios achieving satisfactory regeneration values. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Adsorption process to recover hydrogen from feed gas mixtures having low hydrogen concentration

    Science.gov (United States)

    Golden, Timothy Christopher; Weist, Jr., Edward Landis; Hufton, Jeffrey Raymond; Novosat, Paul Anthony

    2010-04-13

    A process for selectively separating hydrogen from at least one more strongly adsorbable component in a plurality of adsorption beds to produce a hydrogen-rich product gas from a low hydrogen concentration feed with a high recovery rate. Each of the plurality of adsorption beds subjected to a repetitive cycle. The process comprises an adsorption step for producing the hydrogen-rich product from a feed gas mixture comprising 5% to 50% hydrogen, at least two pressure equalization by void space gas withdrawal steps, a provide purge step resulting in a first pressure decrease, a blowdown step resulting in a second pressure decrease, a purge step, at least two pressure equalization by void space gas introduction steps, and a repressurization step. The second pressure decrease is at least 2 times greater than the first pressure decrease.

  2. Eutrophication decrease: Phosphate adsorption processes in presence of nitrates.

    Science.gov (United States)

    Boeykens, Susana P; Piol, M Natalia; Samudio Legal, Lisa; Saralegui, Andrea B; Vázquez, Cristina

    2017-12-01

    Eutrophication causes aquatic environment degradation as well as serious problems for different purposes of water uses. Phosphorus and nitrogen, mainly as phosphate and nitrate respectively, are considered responsible for eutrophication degradation. The focus of this work was the study of adsorption processes for decreasing phosphate and nitrate concentrations in bi-component aqueous systems. Dolomite and hydroxyapatite were selected as low-cost adsorbents. Obtained results showed that both adsorbents have high capacity for phosphate adsorption which the presence of nitrate does not modify. Hydroxyapatite proved to be the most efficient adsorbent, however, it showed a low percentage of desorption and few possibilities of reuse. Dolomite, on the other hand, allows a desorption of the adsorbed material that favours its reuse. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Investigation of adsorption performance deterioration in silica gel–water adsorption refrigeration

    International Nuclear Information System (INIS)

    Wang Dechang; Zhang Jipeng; Xia Yanzhi; Han Yanpei; Wang Shuwei

    2012-01-01

    Highlights: ► Adsorption deterioration of silica gel in refrigeration systems is verified. ► Possible factors to cause such deterioration are analyzed. ► Specific surface area, silanol content and adsorption capacity are tested. ► The pollution is the primary factor to decline the adsorption capacity. ► Deteriorated samples are partly restored after being processed by acid solution. - Abstract: Silica gel acts as a key role in adsorption refrigeration systems. The adsorption deterioration must greatly impact the performance of the silica gel–water adsorption refrigeration system. In order to investigate the adsorption deterioration of silica gel, many different silica gel samples were prepared according to the application surroundings of silica gel in adsorption refrigeration systems after the likely factors to cause such deterioration were analyzed. The specific surface area, silanol content, adsorption capacity and pore size distribution of those samples were tested and the corresponding adsorption isotherms were achieved. In terms of the experimental data comparisons, it could be found that there are many factors to affect the adsorption performance of silica gel, but the pollution was the primary one to decline the adsorption capacity. In addition, the adsorption performance of the deteriorated samples after being processed by acid solution was explored in order to find the possible methods to restore its adsorption performance.

  4. A Tire-Sulfur Hybrid Adsorption Denitrification (T-SHAD) process for decentralized wastewater treatment.

    Science.gov (United States)

    Krayzelova, Lucie; Lynn, Thomas J; Banihani, Qais; Bartacek, Jan; Jenicek, Pavel; Ergas, Sarina J

    2014-09-15

    Nitrogen discharges from decentralized wastewater treatment (DWT) systems contribute to surface and groundwater contamination. However, the high variability in loading rates, long idle periods and lack of regular maintenance presents a challenge for biological nitrogen removal in DWT. A Tire-Sulfur Hybrid Adsorption Denitrification (T-SHAD) process was developed that combines nitrate (NO3(-)) adsorption to scrap tire chips with sulfur-oxidizing denitrification. This allows the tire chips to adsorb NO3(-) when the influent loading exceeds the denitrification capacity of the biofilm and release it when NO3(-) loading rates are low (e.g. at night). Three waste products, scrap tire chips, elemental sulfur pellets and crushed oyster shells, were used as a medium in adsorption, leaching, microcosm and up-flow packed bed bioreactor studies of NO3(-) removal from synthetic nitrified DWT wastewater. Adsorption isotherms showed that scrap tire chips have an adsorption capacity of 0.66 g NO3(-)-N kg(-1) of scrap tires. Leaching and microcosm studies showed that scrap tires leach bioavailable organic carbon that can support mixotrophic metabolism, resulting in lower effluent SO4(2-) concentrations than sulfur oxidizing denitrification alone. In column studies, the T-SHAD process achieved high NO3(-)-N removal efficiencies under steady state (90%), variable flow (89%) and variable concentration (94%) conditions. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Competitive Protein Adsorption - Multilayer Adsorption and Surface Induced Protein Aggregation

    DEFF Research Database (Denmark)

    Holmberg, Maria; Hou, Xiaolin

    2009-01-01

    In this study, competitive adsorption of albumin and IgG (immunoglobulin G) from human serum solutions and protein mixtures onto polymer surfaces is studied by means of radioactive labeling. By using two different radiolabels (125I and 131I), albumin and IgG adsorption to polymer surfaces...... is monitored simultaneously and the influence from the presence of other human serum proteins on albumin and IgG adsorption, as well as their mutual influence during adsorption processes, is investigated. Exploring protein adsorption by combining analysis of competitive adsorption from complex solutions...... of high concentration with investigation of single protein adsorption and interdependent adsorption between two specific proteins enables us to map protein adsorption sequences during competitive protein adsorption. Our study shows that proteins can adsorb in a multilayer fashion onto the polymer surfaces...

  6. Preparation of H2TiO3-lithium adsorbent by the sol–gel process and its adsorption performance

    International Nuclear Information System (INIS)

    Zhang, Liyuan; Zhou, Dali; Yao, Qianqian; Zhou, Jiabei

    2016-01-01

    Graphical abstract: - Highlights: • Nano-Li 2 TiO 3 was synthesized with CH 3 COOLi and Ti(OC 4 H 9 ) 4 by the sol–gel process. • H 2 TiO 3 -lithium adsorbent was obtained by treating Li 2 TiO 3 with HCl. • Langmuir and Freundlich models were used to analyze the adsorption process. • The adsorption performance of the obtained adsorbent was studied. - Abstract: CH 3 COOLi and Ti(OC 4 H 9 ) 4 were employed as lithium and titanium sources, respectively to synthesize Li 2 TiO 3 by the sol–gel process, followed by treating with hydrochloric acid to yield H 2 TiO 3 -lithium adsorbent. Various concentrations of LiOH and lithium sources were used as adsorption liquid to carry out adsorption experiment, the data from which were analyzed by Langmuir and Freundlich models. The results indicate that the optimal calcination temperature is 650 °C, and Li 2 TiO 3 with particle size 60–80 nm is observed. The Li + drawn out ratio from Li 2 TiO 3 reaches 78.9%, and the dissolution of titanium ions can be as low as 0.07%. The protonated sample obtained has a lower basal spacing, while the crystal morphology is retained. The main factors affecting the adsorptive capacity are the Li + concentration and pH in the liquid. The adsorption process of H 2 TiO 3 -lithium adsorbent can be seen as a process including surface adsorption and ion exchange. Compared with Langmuir model, Freundlich model is more suitable for describing the actual adsorption process.

  7. Pending templates imprinted polymers-hypothesis, synthesis, adsorption, and chromatographic properties.

    Science.gov (United States)

    Yang, Chun; Luan, Xinjie; Zhao, Meifeng; Liu, Guofeng; Wang, Jian; Qu, Qishu; Hu, Xiaoya

    2013-05-01

    This is the first time when protein-imprinted polymers are prepared with "pending templates." The polymers were synthesized in the presence of a real sample (chicken egg white), rather than any known commercial proteins. Compared with a simultaneously synthesized nonimprinted control polymer, the polymers show higher adsorption capacity for abundant components (as "pending templates") in the original sample. Chromatography experiments indicated that the columns made of the imprinted polymers could retain abundant species (imprinted) and separate them from those not imprinted. Thus, the sample could be split into dimidiate subfractions with reduced complexities. "Pending template imprinting" suggests a new way to investigate molecular imprinting, especially to dissect, simplify, and analyze complicated samples through a series of polymers just imprinted by the samples per se. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. The gas-chromatographic and gas-chromatographic-mass-spectrometric identification of halogen-containing organic compounds

    Science.gov (United States)

    Gidaspov, B. V.; Zenkevich, I. G.; Rodin, A. A.

    1989-09-01

    The problem of identifying halogen-containing organic compounds in their gas-chromatographic and gas-chromatographic-mass-spectrometric (GC-MS) determination in different materials has been examined. Particular attention has been paid not to the complete characterisation of methods for carrying out this analysis but to the most important problem of increasing the selectivity at the stages of sampling, separation, and interpretation of the gas-chromatographic and GC-MS information. The bibliography contains 292 references.

  9. Metal adsorption process in activated carbon fiber from textile PAN fiber aim electrode production

    International Nuclear Information System (INIS)

    Rodrigues, Aline Castilho; Goncalves, Emerson Sarmento; Silva, Elen Leal da; Marcuzzo, Jossano Saldanha; Baldan, Mauricio Ribeiro; Cuna, Andres

    2016-01-01

    Full text: Carbon fibers have a variety of applications in industry and have been increasingly studied to explore their various characteristics. Studies show that the activated carbon fiber has been effective in removing small contaminants as well as activated carbon, because of its characteristic porosity. Other studies relate carbonaceous materials to the electrical conductivity devices application. This work is based on the use of an activated carbon fiber from textile polyacrylonitrile (PAN) for metallic ion adsorption from aqueous solution. Consequently, it improves the electrical characteristics and this fact show the possibility to use this material as electrode. The work was performed by adsorption process in saline solution (NO 3 Ag and ClPd) and activated carbon fiber in felt form as adsorbent. The metal adsorption on activated carbon fiber was characterized by textural analysis, x-ray diffraction (XRD), scanning electron microscopy equipped with energy dispersive x-ray (SEM-EDX), Raman spectroscopy and x-ray photoelectron spectroscopy (XPS). It was observed that activated carbon fiber showed good adsorption capacity for the metals used. At the end of the process, the activated carbon fiber samples gained about 15% by weight, related to metallic fraction incorporated into the fiber and the process of adsorption does not changed the structural, morphological and chemistry inertness of the samples. The results indicate the feasibility of this metal incorporation techniques activated carbon fiber for the production of electrodes facing the electrochemical area. (author)

  10. Metal adsorption process in activated carbon fiber from textile PAN fiber aim electrode production

    Energy Technology Data Exchange (ETDEWEB)

    Rodrigues, Aline Castilho; Goncalves, Emerson Sarmento, E-mail: alinerodrigues_1@msn.com [Instituto Tecnologico Aeroespacial (ITA), Sao Jose dos Campos, SP (Brazil); Silva, Elen Leal da; Marcuzzo, Jossano Saldanha; Baldan, Mauricio Ribeiro [Instituto Nacional de Pesquisas Espaciais (INPE), Sao Jose dos Campos, SP (Brazil); Cuna, Andres [Faculdade de Quimica, Universidad de la Republica (Uruguay)

    2016-07-01

    Full text: Carbon fibers have a variety of applications in industry and have been increasingly studied to explore their various characteristics. Studies show that the activated carbon fiber has been effective in removing small contaminants as well as activated carbon, because of its characteristic porosity. Other studies relate carbonaceous materials to the electrical conductivity devices application. This work is based on the use of an activated carbon fiber from textile polyacrylonitrile (PAN) for metallic ion adsorption from aqueous solution. Consequently, it improves the electrical characteristics and this fact show the possibility to use this material as electrode. The work was performed by adsorption process in saline solution (NO{sub 3}Ag and ClPd) and activated carbon fiber in felt form as adsorbent. The metal adsorption on activated carbon fiber was characterized by textural analysis, x-ray diffraction (XRD), scanning electron microscopy equipped with energy dispersive x-ray (SEM-EDX), Raman spectroscopy and x-ray photoelectron spectroscopy (XPS). It was observed that activated carbon fiber showed good adsorption capacity for the metals used. At the end of the process, the activated carbon fiber samples gained about 15% by weight, related to metallic fraction incorporated into the fiber and the process of adsorption does not changed the structural, morphological and chemistry inertness of the samples. The results indicate the feasibility of this metal incorporation techniques activated carbon fiber for the production of electrodes facing the electrochemical area. (author)

  11. Adsorption removal of carbon dioxide from the helium coolant of high-temperature gas-cooled reactors

    International Nuclear Information System (INIS)

    Varezhin, A.V.; Fedoseenkov, A.N.; Khrulev, A.A.; Metlik, I.V.; Zel venskii, Y.D.

    1986-01-01

    This paper conducts experiments on the removal of CO 2 from helium by means of a Soviet-made adsorbent under the conditions characteristic of high-temperature gas-cooled reactor cleaning systems. The adsorption of CO 2 from helium was studied under dynamic conditions with a fixed layer of adsorbent in a flow-through apparatus with an adsorber 16 mm in diameter. The analysis of the helium was carried out by means of a TVT chromatograph. In order to compare the adsorption of CO 2 on CaA zeolite under dynamic conditions from the helium stream under pressure with the equilibrium adsorption on the basis of pure CO 2 , the authors determined the adsorption isotherm at 293 K by the volumetric method over a range of CO 2 equilibrium pressures from 260 to 11,970 Pa. Reducing the adsorption temperature to 273 K leads to a considerable reduction in the energy costs for regeneration, owing to the increase in adsorption and the decrease in the number of regeneration cycles; the amount of the heating gas used is reduced to less than half

  12. Lattice Boltzmann simulation of the gas-solid adsorption process in reconstructed random porous media

    Science.gov (United States)

    Zhou, L.; Qu, Z. G.; Ding, T.; Miao, J. Y.

    2016-04-01

    The gas-solid adsorption process in reconstructed random porous media is numerically studied with the lattice Boltzmann (LB) method at the pore scale with consideration of interparticle, interfacial, and intraparticle mass transfer performances. Adsorbent structures are reconstructed in two dimensions by employing the quartet structure generation set approach. To implement boundary conditions accurately, all the porous interfacial nodes are recognized and classified into 14 types using a proposed universal program called the boundary recognition and classification program. The multiple-relaxation-time LB model and single-relaxation-time LB model are adopted to simulate flow and mass transport, respectively. The interparticle, interfacial, and intraparticle mass transfer capacities are evaluated with the permeability factor and interparticle transfer coefficient, Langmuir adsorption kinetics, and the solid diffusion model, respectively. Adsorption processes are performed in two groups of adsorbent media with different porosities and particle sizes. External and internal mass transfer resistances govern the adsorption system. A large porosity leads to an early time for adsorption equilibrium because of the controlling factor of external resistance. External and internal resistances are dominant at small and large particle sizes, respectively. Particle size, under which the total resistance is minimum, ranges from 3 to 7 μm with the preset parameters. Pore-scale simulation clearly explains the effect of both external and internal mass transfer resistances. The present paper provides both theoretical and practical guidance for the design and optimization of adsorption systems.

  13. Adsorption of ion pairs onto graphene flakes and impacts of counterions during the adsorption processes

    Science.gov (United States)

    Zhu, Chang; Yun, Jiena; Wang, Qian; Yang, Gang

    2018-03-01

    Although cations and anions are two integral constituents for all electrolytes, adsorption of ion pairs onto carbonaceous materials gains obviously less attention than adsorption of only cations or anions. Here DFT calculations are employed finding that four adsorption configurations emerge for KI onto graphene flakes (GF) instead of three for the other ion pairs. Reservation of ionic bonds is critical to their stabilities, and the bilateral configurations, where GFs couple with both cations and anions, are disfavored due to rupture of ionic bonds. Relative stabilities of two vertical configurations can be regulated and even reversed through edge-functionalization. Surprisingly, the horizontal adsorption configurations, which are global energy minima as long as present, are non-existent for a majority of ion pairs, and their existence or not is determined by the adsorption differences between halide ions and alkali ions (△Ead). Counterions effects for both cations and anions increase with the atomic electronegativities and cations correspond to stronger counterion effects; e.g., Li+ added on the other side of GFs promotes the adsorption of F- more pronouncedly than edge-functionalization. Mechanisms of electron transfers are also discussed, and three alteration patterns by counterions are observed for each type of adsorption configurations. Furthermore, addition of counterions causes band gaps to vary within a wider range that may be useful to design electronic devices.

  14. Kinetics of oxygen adsorption on ZnS nanoparticles synthesized by precipitation process

    Directory of Open Access Journals (Sweden)

    Ahmadi Reza

    2016-06-01

    Full Text Available ZnS nanoparticles were synthesized through a one-step precipitation process. Effect of time and temperature on the formation reaction was investigated. The synthesized samples were characterized by X-ray diffraction (XRD, ultraviolet (UV visible absorption and photoluminescence (PL spectrophotometry. Based on XRD and UV-Vis data, the particles produced at 70 °C had a mean particle size of about 5 nm. Increasing time and temperature of the synthesis reaction resulted in photoluminescence intensification. PL spectroscopy helped understanding the adsorption kinetics of oxygen on ZnS nanoparticles during the precipitation synthesis process. Fabrication of ZnS structures with appropriate oxygen adsorption capacity was suggested as a means of PL emission intensity control.

  15. Adsorption of aluminum and lead from wastewater by chitosan-tannic acid modified biopolymers: Isotherms, kinetics, thermodynamics and process mechanism.

    Science.gov (United States)

    Badawi, M A; Negm, N A; Abou Kana, M T H; Hefni, H H; Abdel Moneem, M M

    2017-06-01

    Chitosan was reacted by tannic acid to obtain three modified chitosan biopolymer. Their chemical structures were characterized by FTIR and elemental analysis. The prepared biopolymers were used to adsorb Al(III) and Pb(II) metal ions from industrial wastewater. The factors affecting the adsorption process were biosorbent amount, initial concentration of metal ion and pH of the medium. The adsorption efficiency increased considerably with the increase of the biosorbent amount and pH of the medium. The adsorption process of biosorbent on different metal ions was fitted by Freundlich adsorption model. The adsorption kinetics was followed Pseudo-second-order kinetic model. The adsorption process occurred according to diffusion mechanism which was confirmed by the interparticle diffusion model. The modified biopolymers were efficient biosorbents for removal of Pb(II) and Al(III) metal ions from the medium. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Post-adsorption process of Yb phosphate nano-particle formation by Saccharomyces cerevisiae

    Science.gov (United States)

    Jiang, MingYu; Ohnuki, Toshihiko; Tanaka, Kazuya; Kozai, Naofumi; Kamiishi, Eigo; Utsunomiya, Satoshi

    2012-09-01

    In this study, we have investigated the post-adsorption process of ytterbium (Yb) phosphate nano-particle formation by Saccharomyces cerevisiae (yeast). The yeast grown in P-rich medium were exposed to 1.44 × 10-4 mol/L Yb(III) solution for 2-120 h, and 2 months at 25 ± 1 °C at an initial pH of 3, 4, or 5, respectively. Ytterbium concentrations in solutions decreased as a function of exposure time. Field-emission scanning electron microscopy equipped with energy-dispersive X-ray spectroscopy (FESEM), transmission electron microscopy (TEM), and synchrotron-based extended X-ray absorption fine structure (EXAFS) analyses revealed that nano-sized blocky Yb phosphate with an amorphous phase formed on the yeast cells surfaces in the solutions with Yb. These nano-sized precipitates that formed on the cell surfaces remained stable even after 2 months of exposure at 25 ± 1 °C around neutral pHs. The EXAFS data revealed that the chemical state of the accumulated Yb on the cell surfaces changed from the adsorption on both phosphate and carboxyl sites at 30 min to Yb phosphate precipitates at 5 days, indicating the Yb-phosphate precipitation as a major post-adsorption process. In addition, the precipitation of Yb phosphate occurred on cell surfaces during 7 days of exposure in Yb-free solution after 2 h of exposure (short-term Yb adsorption) in Yb solution. These results suggest that the released P from the inside of yeast cells reacted with adsorbed Yb on cell surfaces, resulting in the formation of Yb precipitates, even though no P was added to the exposure solution. In an abiotic system, the EXAFS data showed that the speciation of sorbed Yb on the reference materials, carboxymethyl cellulose and Ln resin, did not change even when the Yb was exposed to P solution, without forming Yb phosphate precipitates. This result strongly suggests that the cell surface of the yeast plays an important role in the Yb-phosphate precipitation process, not only as a carrier of the

  17. [Investigation on the process of sapindus saponin purified with macroporous adsorption resin and screening of its bacteriostasis].

    Science.gov (United States)

    Fu, Yong; Lei, Peng; Han, Yu-mei; Yan, Dan

    2010-02-01

    To study the technological parameters of the purification process of saponins with macroporous adsorption resin. The adsorptive characteristics and elutive parameters of the process were studied by taking the elutive and purified ratio of saponins as markers. Bacteriostasis activity of each parts eluted was evaluated by the mean of cup-plate method. 13.6 mL of the extraction of sapindus saponin (crude drugs 0.01 g/mL) was purified with a column of macroporous adsorption resin (phi15 mm x H90 mm, dry weight 2.5 g) and washed with 3BV of distilled water, then eluted with 3BV of 30% ethanol and 3BV of 70% ethanol, most of saponins were collected in the 70% ethanol. With macroporous adsorption resin adsorbing and purifying, the elutive ratio of saponins was 93.8% and the purity reached 250.1%. So this process of applying macroporous adsorption resin to adsorb and purify saponins is feasible, and supplies reference to the purification of other types of saponin.

  18. Nanoscopic characterization of the water vapor-salt interfacial layer reveals a unique biphasic adsorption process

    Science.gov (United States)

    Yang, Liu; He, Jianfeng; Shen, Yi; Li, Xiaowei; Sun, Jielin; Czajkowsky, Daniel M.; Shao, Zhifeng

    2016-08-01

    Our quantitative understanding of water adsorption onto salt surfaces under ambient conditions is presently quite poor owing to the difficulties in directly characterizing this interfacial layer under these conditions. Here we determine the thickness of the interfacial layer on NaCl at different relative humidities (RH) based on a novel application of atomic force spectroscopy and capillary condensation theory. In particular, we take advantage of the microsecond-timescale of the capillary condensation process to directly resolve the magnitude of its contribution in the tip-sample interaction, from which the interfacial water thickness is determined. Further, to correlate this thickness with salt dissolution, we also measure surface conductance under similar conditions. We find that below 30% RH, there is essentially only the deposition of water molecules onto this surface, typical of conventional adsorption onto solid surfaces. However, above 30% RH, adsorption is simultaneous with the dissolution of ions, unlike conventional adsorption, leading to a rapid increase of surface conductance. Thus, water adsorption on NaCl is an unconventional biphasic process in which the interfacial layer not only exhibits quantitative differences in thickness but also qualitative differences in composition.

  19. Adsorption of crystal violet with diatomite earth&carbon by a modification of hydrothermal carbonization process.

    Science.gov (United States)

    Zhang, Yanzhuo; Li, Jun; Chen, Guanghui; Bian, Wei; Lu, Yun; Li, Wenjing; Zheng, Zhaoming; Cheng, Xiaojie

    2016-01-01

    The high colority and difficulty of decolorization are the most important tasks on printing and dyeing wastewater. This study investigates the ability of diatomite earth&carbon (DE&C) as an adsorbent to removal crystal violet (CV) from aqueous solutions. Fourier transform infrared spectroscopy results indicate the importance of functional groups during the adsorption of CV. The obtained N2 adsorption-desorption isotherm values accord with well IUPAC type II. Our calculations determined a surface area of 73.15 m(2) g(-1) for DE&C and an average pore diameter of 10.56 nm. Equilibrium data of the adsorption process fitted very well to the Langmuir model (R(2) > 0.99). The results of kinetics study showed that the pseudo-second-order model fitted to the experimental data well. The thermodynamic parameters were also evaluated. ΔH° 0 and ΔG° < 0 demonstrated that the adsorption process was spontaneous and exothermic for dye. Furthermore the positive value of ΔS° reflected good affinity of the CV dye.

  20. Evaluation of a Candidate Trace Contaminant Control Subsystem Architecture: The High Velocity, Low Aspect Ratio (HVLA) Adsorption Process

    Science.gov (United States)

    Kayatin, Matthew J.; Perry, Jay L.

    2017-01-01

    Traditional gas-phase trace contaminant control adsorption process flow is constrained as required to maintain high contaminant single-pass adsorption efficiency. Specifically, the bed superficial velocity is controlled to limit the adsorption mass-transfer zone length relative to the physical adsorption bed; this is aided by traditional high-aspect ratio bed design. Through operation in this manner, most contaminants, including those with relatively high potential energy are readily adsorbed. A consequence of this operational approach, however, is a limited available operational flow margin. By considering a paradigm shift in adsorption architecture design and operations, in which flows of high superficial velocity are treated by low-aspect ratio sorbent beds, the range of well-adsorbed contaminants becomes limited, but the process flow is increased such that contaminant leaks or emerging contaminants of interest may be effectively controlled. To this end, the high velocity, low aspect ratio (HVLA) adsorption process architecture was demonstrated against a trace contaminant load representative of the International Space Station atmosphere. Two HVLA concept packaging designs (linear flow and radial flow) were tested. The performance of each design was evaluated and compared against computer simulation. Utilizing the HVLA process, long and sustained control of heavy organic contaminants was demonstrated.

  1. The separation of sup(99m)Tc from 99Mo through an aluminium oxide chromatographic columm

    International Nuclear Information System (INIS)

    Imoto, S.T.

    1980-01-01

    The separation of sup(99m)Tc from 99 Mo using the chromatographic method is studied. Alumina is used as adsorbent. The pH values for adsorption of carrier-free 99 Mo on columns filled with ordinary alumina and with that thermically treated at 1000 0 C for five hours, and the separation conditions of sup(99m)Tc using physiologic solution as eluent are determined. The sup(99m)Tc separation yields of both columns are compared and the quality of the products obtained by successive elutions for 10 days is analyzed. (Author) [pt

  2. Characterization of dextran-grafted hydrophobic charge-induction resins: Structural properties, protein adsorption and transport.

    Science.gov (United States)

    Liu, Tao; Angelo, James M; Lin, Dong-Qiang; Lenhoff, Abraham M; Yao, Shan-Jing

    2017-09-29

    The structural and functional properties of a series of dextran-grafted and non-grafted hydrophobic charge-induction chromatographic (HCIC) agarose resins were characterized by macroscopic and microscopic techniques. The effects of dextran grafting and mobile phase conditions on the pore dimensions of the resins were investigated with inverse size exclusion chromatography (ISEC). A significantly lower pore radius (17.6nm) was found for dextran-grafted than non-grafted resins (29.5nm), but increased salt concentration would narrow the gap between the respective pore radii. Two proteins, human immunoglobulin G (hIgG) and bovine serum albumin (BSA), were used to examine the effect of protein characteristics. The results of adsorption isotherms showed that the dextran-grafted resin with high ligand density had substantially higher adsorption capacity and enhanced the salt-tolerance property for hIgG, but displayed a significantly smaller benefit for BSA adsorption. Confocal laser scanning microscopy (CLSM) showed that hIgG presented more diffuse and slower moving adsorption front compared to BSA during uptake into the resins because of the selective binding of multiple species from polyclonal IgG; polymer-grafting with high ligand density could enhance the rate of hIgG transport in the dextran-grafted resins without salt addition, but not for the case with high salt and BSA. The results indicate that microscopic analysis using ISEC and CLSM is useful to improve the mechanistic understanding of resin structure and of critical functional parameters involving protein adsorption and transport, which would guide the rational design of new resins and processes. Copyright © 2017. Published by Elsevier B.V.

  3. Modeling Aquatic Toxicity through Chromatographic Systems.

    Science.gov (United States)

    Fernández-Pumarega, Alejandro; Amézqueta, Susana; Farré, Sandra; Muñoz-Pascual, Laura; Abraham, Michael H; Fuguet, Elisabet; Rosés, Martí

    2017-08-01

    Environmental risk assessment requires information about the toxicity of the growing number of chemical products coming from different origins that can contaminate water and become toxicants to aquatic species or other living beings via the trophic chain. Direct toxicity measurements using sensitive aquatic species can be carried out but they may become expensive and ethically questionable. Literature refers to the use of chromatographic measurements that correlate to the toxic effect of a compound over a specific aquatic species as an alternative to get toxicity information. In this work, we have studied the similarity in the response of the toxicity to different species and we have selected eight representative aquatic species (including tadpoles, fish, water fleas, protozoan, and bacteria) with known nonspecific toxicity to chemical substances. Next, we have selected four chromatographic systems offering good perspectives for surrogation of the eight selected aquatic systems, and thus prediction of toxicity from the chromatographic measurement. Then toxicity has been correlated to the chromatographic retention factor. Satisfactory correlation results have been obtained to emulate toxicity in five of the selected aquatic species through some of the chromatographic systems. Other aquatic species with similar characteristics to these five representative ones could also be emulated by using the same chromatographic systems. The final aim of this study is to model chemical products toxicity to aquatic species by means of chromatographic systems to reduce in vivo testing.

  4. Removal of Free Fatty Acid from Plant Oil by the Adsorption Process

    Science.gov (United States)

    Chung, Tsair-Wang; Wu, Yi-Ling; Hsu, Shih-Hong

    2018-05-01

    The food oil refinery process for deacidification is ususally conducted by the neutralization after degumming. In this study, commercialized resins will be used as adsorbents to remove the free fatty acid (FFA) in food oil without using any solvent. Applying this environmental friendly green process, the energy efficiency will be increased and the waste water will be reduced compared to the traditional process. The selected adsorbent can be reused which may reduce the process cost. Instead of using alkali neutralization, the proposed process may reduce the concern of food oil security. The commercial resins A26OH and IRA900Cl were compared as adsorbents to remove the FFA in deacidification for refinery of food oil without adding any alkali chemicals. This process will be conducted to remove the FFA form peanut oil in this study. Besides, this study will get the adsorption isotherms for one of the better sorbents of A26OH or IRA900Cl to remove FFA from peanut oil under 25, 35, and 45°C. The Langmuir and Freundlich isotherm models were compared to fit the experimental data. The obtained isotherm data is important for the adsorption system design.

  5. Description of Adsorption in Liquid Chromatography under Nonideal Conditions.

    Science.gov (United States)

    Ortner, Franziska; Ruppli, Chantal; Mazzotti, Marco

    2018-05-15

    A thermodynamically consistent description of binary adsorption in reversed-phase chromatography is presented, accounting for thermodynamic nonidealities in the liquid and adsorbed phases. The investigated system involves the adsorbent Zorbax 300SB-C18, as well as phenetole and 4- tert-butylphenol as solutes and methanol and water as inert components forming the eluent. The description is based on adsorption isotherms, which are a function of the liquid-phase activities, to account for nonidealities in the liquid phase. Liquid-phase activities are calculated with a UNIQUAC model established in this work, based on experimental phase equilibrium data. The binary interaction in the adsorbed phase is described by the adsorbed solution theory, assuming an ideal (ideal adsorbed solution theory) or real (real adsorbed solution theory) adsorbed phase. Implementation of the established adsorption model in a chromatographic code achieves a quantitative description of experimental elution profiles, with feed compositions exploiting the entire miscible region, and involving a broad range of different eluent compositions (methanol/water). The quantitative agreement of the model and experimental data serves as a confirmation of the underlying physical (thermodynamic) concepts and of their applicability to a broad range of operating conditions.

  6. High-pressure homogenization associated hydrothermal process of palygorskite for enhanced adsorption of Methylene blue

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Zhifang [Center of Eco-materials and Green Chemistry, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); University of the Chinese Academy of Sciences, Beijing 100049 (China); Wang, Wenbo [Center of Eco-materials and Green Chemistry, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); R& D Center of Xuyi Attapulgite Applied Technology, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Xuyi 211700 (China); Wang, Aiqin, E-mail: aqwang@licp.cas.cn [Center of Eco-materials and Green Chemistry, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); R& D Center of Xuyi Attapulgite Applied Technology, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Xuyi 211700 (China)

    2015-02-28

    Graphical abstract: - Highlights: • Palygorskite was modified by a homogenization associated hydrothermal process. • The crystal bundles of PAL were disaggregated efficiently after modification. • The adsorption of palygorskite for Methylene blue was greatly enhanced. • MB-loaded palygorskite exhibits excellent resistance to acid and alkali solution. - Abstract: Palygorskite (PAL) was modified by a high-pressure homogenization assisted hydrothermal process. The effects of modification on the morphology, structure and physicochemical properties of PAL were systematically investigated by Field-emission scanning electron microscopy (FESEM), Transmission electron microscopy (TEM), Fourier transform infrared spectrometry (FTIR), Brunauer–Emmett–Teller (BET) analysis, X-ray diffraction (XRD) and Zeta potential analysis techniques, and the adsorption properties were systematically evaluated using Methylene blue (MB) as the model dye. The results revealed that the crystal bundles were disaggregated and the PAL nanorods became more even after treated via associated high-pressure homogenization and hydrothermal process, and the crystal bundles were dispersed as nanorods. The intrinsic crystal structure of PAL was remained after hydrothermal treatment, and the pore size calculated by the BET method was increased. The adsorption properties of PAL for MB were evidently improved (from 119 mg/g to 171 mg/g) after modification, and the dispersion of PAL before hydrothermal reaction is favorable to the adsorption. The desorption evaluation confirms that the modified PAL has stronger affinity with MB, which is benefit to fabricate a stable organic–inorganic hybrid pigment.

  7. Adsorption

    Directory of Open Access Journals (Sweden)

    Sushmita Banerjee

    2017-05-01

    Full Text Available Application of saw dust for the removal of an anionic dye, tartrazine, from aqueous solutions has been investigated. The experiments were carried out in batch mode. Effect of the parameters such as pH, initial dye concentration and temperature on the removal of the dye was studied. Equilibrium was achieved in 70 min. Maximum adsorption of dye was achieved at pH 3. Removal percent was found to be dependent on the initial concentration of dye solution, and maximum removal was found to be 97% at 1 mg/L of tartrazine. The removal increases from 71% to 97% when the initial concentration of dye solution decreases from 15 mg/L to 1 mg/L. The equilibrium adsorption data were analyzed by Langmuir, Freundlich, Temkin and Dubinin–Radushkevich isotherm models. The (Langmuir adsorption capacity of the adsorbent is found to be 4.71 mg/g at 318 K. Kinetic modeling of the process of removal was carried out and the process of removal was found to follow a pseudo second order model and the value of rate constant for adsorption process was calculated as 2.7 × 10−3 g mg−1 min−1 at 318 K. The thermodynamic parameters such as change in free energy (ΔG°, enthalpy (ΔH° and entropy (ΔS° were determined and the negative values of ΔG° indicated that the process of removal was spontaneous at all values of temperatures. Further, the values of ΔH° indicated the endothermic nature of the process of removal.

  8. An overview of adsorptive processes in refrigeration systems

    Directory of Open Access Journals (Sweden)

    Wolak Eliza

    2016-01-01

    Full Text Available Economic reasons and quest for new solutions based on recovering the energy have provoked an increase of interest in the adsorption technology in the refrigeration industry. The confirmation can be the fact that number of published research is on rise. Adsorption appliances may turn out to be an alternative to compression-type coolers. They use ecological chemical agents instead of substances which are aggressive and harmful to the environment. For regeneration of adsorptive refrigeration systems one can use cheap energy in a form of: industrial waste heat, energy of solar radiation and cheap electric power. The paper presents principles of operation as well as advantages and disadvantages of adsorptive refrigeration systems. Basing on literature the most frequently used adsorbent – adsorbate systems – which are employed in refrigeration industry – have been characterized. A review of construction solutions of systems on both laboratory and industrial scale has been made.

  9. Conceptual design of hydrogen isotopes chromatographic separation system with super large capacity

    International Nuclear Information System (INIS)

    Xie Bo; Weng Kuiping; Liu Yunnu; Hou Jianping

    2012-01-01

    A super large capacity hydrogen isotopes separation system, including total plan, unit (including making and purification of gas, three-grade chromatographic columns, gas loop and auto-control, and carrier recovery) and experimental scheme, had been designed on the basis of a series of hydrogen-deuterium experiments by temperature programmed de- sorption. The characteristic of the system was that desorption kinetic parameters could be directly calculated from the hydrogen isotope separation desorption spectra information. In other words, the complicated dynamic process of separation could be described by the desorption rate equation, shape parameter and desorption activation energy calculation on the condition of the experimental data and appropriate assumptions (equilibrium and adsorption, uniform surface). In previous work, an experimental series of operation to verify the successive enrichment of D 2 from a H 2 -D 2 mixture, the production of the deuterium from natural hydrogen and the recovery of tritium such as from the nuclear heavy-water were carried out using MS5A at 77 K. This work was only conceptual design, so it was necessary to identify the availability of super large capacity system by experiment. (authors)

  10. Vibrational Spectroscopy of Chromatographic Interfaces

    Energy Technology Data Exchange (ETDEWEB)

    Jeanne E. Pemberton

    2011-03-10

    Chromatographic separations play a central role in DOE-supported fundamental research related to energy, biological systems, the environment, and nuclear science. The overall portfolio of research activities in the Separations and Analysis Program within the DOE Office of Basic Energy Sciences includes support for activities designed to develop a molecular-level understanding of the chemical processes that underlie separations for both large-scale and analytical-scale purposes. The research effort funded by this grant award was a continuation of DOE-supported research to develop vibrational spectroscopic methods to characterize the interfacial details of separations processes at a molecular level.

  11. Principles of qualitative analysis in the chromatographic context.

    Science.gov (United States)

    Valcárcel, M; Cárdenas, S; Simonet, B M; Carrillo-Carrión, C

    2007-07-27

    This article presents the state of the art of qualitative analysis in the framework of the chromatographic analysis. After establishing the differences between two main classes of qualitative analysis (analyte identification and sample classification/qualification) the particularities of instrumental qualitative analysis are commented on. Qualitative chromatographic analysis for sample classification/qualification through the so-called chromatographic fingerprint (for complex samples) or the volatiles profile (through the direct coupling headspace-mass spectrometry using the chromatograph as interface) is discussed. Next, more technical exposition of the qualitative chromatographic information is presented supported by a variety of representative examples.

  12. Covalently coating dextran on macroporous polyglycidyl methacrylate microsphere enabled rapid protein chromatographic separation

    International Nuclear Information System (INIS)

    Zhang, Rongyue; Li, Qiang; Li, Juan; Zhou, Weiqing; Ye, Peili; Gao, Yang; Ma, Guanghui; Su, Zhiguo

    2012-01-01

    Protein denaturation and nonspecific adsorption on polymer media as a chromatographic support have been a problem which needs to be overcome. Macroporous poly(glycidyl methacrylate–divinylbezene) (PGMA–DVB) microspheres prepared in this study were firstly covalently coated with dextran through a three-step method. The dextran was firstly adsorbed onto the microspheres and then covalently bound to the PGMA–DVB microsphere through ether bonds which were formed by hydroxyl group reacting with epoxy group at the presence of 4-(Dimethylamino) pyridine. Finally, the coating dextran layer was crosslinked by ethylene glycol diglycidyl ether to form the continuous network coating. The coated microspheres were characterized by Fourier transform infrared spectra, scanning electron microscope, mercury porosimetry measurements, laser scanning confocal microscope, and protein adsorption experiments. Results showed that PGMA–DVB microspheres coated with dextran successfully maintained the macroporous structure and high permeability. The backpressure was only 1.69 MPa at a high flow rate of 2891 cm/h. Consequently, the hydrophilicity and biocompatibility of modified microspheres were greatly improved, and the contact angle decreased from 184° to 13°, and nonspecific adsorption of proteins was decreased to little or none. The clad dextran coating with large amounts of hydroxyl group was easily derived to be various functional groups. The derived media have great potential applications in rapid protein chromatography. - Highlights: ► Macroporous PGMA–DVB microspheres were covalently coated with dextran. ► The hydrophilicity of the coated microspheres was significantly improved. ► The irreversible adsorption of proteins was reduced to zero. ► The coated microspheres can maintain the macropore structure. ► The coated microspheres were applied to rapid protein separation.

  13. Chromatographic separations of stereoisomers

    Energy Technology Data Exchange (ETDEWEB)

    Souter, R.W.

    1985-01-01

    This text covers both diastereomers and enantiomers; describes techniques for GC, HPLC, and other chromatographic methods; and tabulates results of various applications by both techniques and compound class. It provides current knowledge about separation mechanisms and interactions of asymmetric molecules, as well as experimental and commercial materials such as columns, instruments, and derivatization reagents. The contents also include stereoisomer separations by gas chromatography. Stereoisomer separations by high-performance liquid chromatography. Stereoisomer separations by other chromatographic techniques.

  14. Adsorption behavior of alpha -cypermethrin on cork and activated carbon.

    Science.gov (United States)

    Domingues, Valentina F; Priolo, Giuseppe; Alves, Arminda C; Cabral, Miguel F; Delerue-Matos, Cristina

    2007-08-01

    Studies were undertaken to determine the adsorption behavior of alpha -cypermethrin [R)-alpha -cyano-3-phenoxybenzyl(1S)-cis-3-(2,2-dichlorovinyl)-2,2-dimethylcyclopropanecarboxylate, and (S)-alpha-cyano-3-phenoxybenzyl (1R)-cis-3-(2,2-dichlorovinyl)-2,2-dimethylcyclopropanecarboxylate] in solutions on granules of cork and activated carbon (GAC). The adsorption studies were carried out using a batch equilibrium technique. A gas chromatograph with an electron capture detector (GC-ECD) was used to analyze alpha -cypermethrin after solid phase extraction with C18 disks. Physical properties including real density, pore volume, surface area and pore diameter of cork were evaluated by mercury porosimetry. Characterization of cork particles showed variations thereby indicating the highly heterogeneous structure of the material. The average surface area of cork particles was lower than that of GAC. Kinetics adsorption studies allowed the determination of the equilibrium time - 24 hours for both cork (1-2 mm and 3-4 mm) and GAC. For the studied alpha -cypermethrin concentration range, GAC revealed to be a better sorbent. However, adsorption parameters for equilibrium concentrations, obtained through the Langmuir and Freundlich models, showed that granulated cork 1-2 mm have the maximum amount of adsorbed alpha-cypermethrin (q(m)) (303 microg/g); followed by GAC (186 microg/g) and cork 3-4 mm (136 microg/g). The standard deviation (SD) values, demonstrate that Freundlich model better describes the alpha -cypermethrin adsorption phenomena on GAC, while alpha -cypermethrin adsorption on cork (1-2 mm and 3-4 mm) is better described by the Langmuir. In view of the adsorption results obtained in this study it appears that granulated cork may be a better and a cheaper alternative to GAC for removing alpha -cypermethrin from water.

  15. Statistical optimization of adsorption processes for removal of 2,4-dichlorophenol by activated carbon derived from oil palm empty fruit bunches

    Institute of Scientific and Technical Information of China (English)

    Md. Zahangir ALAM; Suleyman A. MUYIBI; Juria TORAMAE

    2007-01-01

    The adsorption capacity of activated carbon produced from oil palm empty fruit bunches through removal of 2,4-dichlorophenol from aqueous solution was carried out in the laboratory. The activated carbon was produced by thermal activation at 800℃ with 30 min of activation time. The adsorption process conditions were determined with the statistical optimization followed by central composite design. A developed polynomial model for operating conditions of adsorption process indicated that the optimum conditions for maximum adsorption of phenolic compound were: agitation rate of 100 r/min, contact time of 8 h, initial adsorbate concentration of 250 mg/L and pH 4. Adsorption isotherms were conducted to evaluate biosorption process. Langmuir isotherm was more favorable (R2=0.93) for removal of 2,4-dichlorophenol by the activated carbon produced rather than the Freundlich isotherm (R2=0.88).

  16. Adsorption of phenolic compound by aged-refuse

    Energy Technology Data Exchange (ETDEWEB)

    Chai Xiaoli [State Key Laboratory of Pollution Control and Resource Reuse, School of Enviromental Science and Engineering, Tongji University, Siping Road 1239, Shanghai 200092 (China)]. E-mail: xlchai@mail.tongji.edu.cn; Zhao Youcai [State Key Laboratory of Pollution Control and Resource Reuse, School of Enviromental Science and Engineering, Tongji University, Siping Road 1239, Shanghai 200092 (China)

    2006-09-01

    The adsorption of phenol, 2-chlorophenol, 4-chlorophenol and 2,4-dichlorophenol by aged-refuse has been studied. Adsorption isotherms have been determined for phenol, 2-chlorophenol, 4-chlorophenol and 2,4-dichlorophenol and the data fits well to the Freundlich equation. The chlorinated phenols are absorbed more strongly than the phenol and the adsorption capacity has an oblivious relationship with the numbers and the position of chlorine subsistent. The experiment data suggests that both the partition function and the chemical adsorption involve in the adsorption process. Pseudo-first-order and pseudo-second-order model were applied to investigate the kinetics of the adsorption and the results show that it fit the pseudo-second-order model. More than one step involves in the adsorption process and the overall rate of the adsorption process appears to be controlled by the chemical reaction. The thermodynamic analysis indicates that the adsorption is spontaneous and endothermic.

  17. Adsorption of phenolic compound by aged-refuse

    International Nuclear Information System (INIS)

    Chai Xiaoli; Zhao Youcai

    2006-01-01

    The adsorption of phenol, 2-chlorophenol, 4-chlorophenol and 2,4-dichlorophenol by aged-refuse has been studied. Adsorption isotherms have been determined for phenol, 2-chlorophenol, 4-chlorophenol and 2,4-dichlorophenol and the data fits well to the Freundlich equation. The chlorinated phenols are absorbed more strongly than the phenol and the adsorption capacity has an oblivious relationship with the numbers and the position of chlorine subsistent. The experiment data suggests that both the partition function and the chemical adsorption involve in the adsorption process. Pseudo-first-order and pseudo-second-order model were applied to investigate the kinetics of the adsorption and the results show that it fit the pseudo-second-order model. More than one step involves in the adsorption process and the overall rate of the adsorption process appears to be controlled by the chemical reaction. The thermodynamic analysis indicates that the adsorption is spontaneous and endothermic

  18. Sensitive high performance liquid chromatographic method for the ...

    African Journals Online (AJOL)

    A new simple, sensitive, cost-effective and reproducible high performance liquid chromatographic (HPLC) method for the determination of proguanil (PG) and its metabolites, cycloguanil (CG) and 4-chlorophenylbiguanide (4-CPB) in urine and plasma is described. The extraction procedure is a simple three-step process ...

  19. Artificial neural network (ANN) approach for modeling Zn(II) adsorption in batch process

    Energy Technology Data Exchange (ETDEWEB)

    Yildiz, Sayiter [Engineering Faculty, Cumhuriyet University, Sivas (Turkmenistan)

    2017-09-15

    Artificial neural networks (ANN) were applied to predict adsorption efficiency of peanut shells for the removal of Zn(II) ions from aqueous solutions. Effects of initial pH, Zn(II) concentrations, temperature, contact duration and adsorbent dosage were determined in batch experiments. The sorption capacities of the sorbents were predicted with the aid of equilibrium and kinetic models. The Zn(II) ions adsorption onto peanut shell was better defined by the pseudo-second-order kinetic model, for both initial pH, and temperature. The highest R{sup 2} value in isotherm studies was obtained from Freundlich isotherm for the inlet concentration and from Temkin isotherm for the sorbent amount. The high R{sup 2} values prove that modeling the adsorption process with ANN is a satisfactory approach. The experimental results and the predicted results by the model with the ANN were found to be highly compatible with each other.

  20. Artificial neural network (ANN) approach for modeling Zn(II) adsorption in batch process

    International Nuclear Information System (INIS)

    Yildiz, Sayiter

    2017-01-01

    Artificial neural networks (ANN) were applied to predict adsorption efficiency of peanut shells for the removal of Zn(II) ions from aqueous solutions. Effects of initial pH, Zn(II) concentrations, temperature, contact duration and adsorbent dosage were determined in batch experiments. The sorption capacities of the sorbents were predicted with the aid of equilibrium and kinetic models. The Zn(II) ions adsorption onto peanut shell was better defined by the pseudo-second-order kinetic model, for both initial pH, and temperature. The highest R"2 value in isotherm studies was obtained from Freundlich isotherm for the inlet concentration and from Temkin isotherm for the sorbent amount. The high R"2 values prove that modeling the adsorption process with ANN is a satisfactory approach. The experimental results and the predicted results by the model with the ANN were found to be highly compatible with each other.

  1. Chromatographic decontamination of medium-activity waste concentrates

    International Nuclear Information System (INIS)

    Faubel, W.; Menzler, P.M.; Sameh, A.A.

    1988-01-01

    The chromatographic decontamination of a MAW concentrate was carried out in a laboratory plant in 1-l-batches in the following way: In order to purify the nitric MAW concentrate from its solid and organic contamination products, it is passed through a filter and an absorber (SM7) for organic species. Subsequently the purified solution runs on-line through all following columns. First the main activity carrier cesium ( 137 Cs, 134 Cs) is transferred to ammonium molybdate phosphate (AMP-1) by means of a newly developed fluidized bed process. In the further course, 125 Sb is separated on metal oxides (Sb 2 O 5 , MnO 2 ) and the three-valued actinides/lanthanides on an extraction-chromatographic CMPO column. Finally the remaining 106 Ru and 60 Co activities are separated on dimethylglyoximes (DMG) coated on active carbon. (orig./RB) [de

  2. Adsorption of ferrous ions onto montmorillonites

    Energy Technology Data Exchange (ETDEWEB)

    Qin, Dawei, E-mail: qdw109@163.com [Qilu University of Technology, Jinan, 250353, Shandong (China); Niu, Xia [Qilu University of Technology, Jinan, 250353, Shandong (China); Qiao, Min; Liu, Gang; Li, Hongxin; Meng, Zhenxiao [Shandong SiBang pharmaceutical co., LTD, Jinan, Shandong, 250200 (China)

    2015-04-01

    Highlights: • Adsorption study of ferrous ions on montmorillonites. • Using ascorbic acid as antioxidants in adsorption process. • Fe (II)-MMT had good affinity for phosphate. - Abstract: The adsorption of Fe (II) onto montmorillonites was investigated through initial concentration, contact time, pH and temperature. During the whole adsorption process, the ascorbic acid (Vitamin C) was added as a kind of antioxidant, at the same time, deionized water (after boiling) and nitrogen protection were also used to avoid oxidation. The Fe{sup 2+}/Fe{sub total} ratio of the iron exists in the Fe-montmorillonites was found more than 95%. Two kinetic models, including pseudo-first-order and pseudo-second-order model, were used to analyze the adsorption process of Fe (II) on montmorillonites. The results of our study showed that adsorption process fitted with pseudo-second-order well. Adsorption isotherms showed that Langmuir model was better than Freundlich model. The thermodynamic parameters ΔG{sup 0} and ΔH{sup 0} were 3.696 kJ/mol and 6.689 kJ/mol (we just gave the values at 298 K), respectively. The positive values at different temperatures showed that the adsorption process was non-spontaneous and endothermic. The characteristics of materials were determined by X-ray diffraction (XRD), Fourier transform infrared (FT-IR), Surface area and porosity analyzer, Thermogravimetric analysis (TGA), Differential scanning calorimeter (DSC) and Zeta potential distribution.

  3. Viability study on using calcium carbonate for the boron adsorption process in waste waters

    International Nuclear Information System (INIS)

    Rodriguez Guerreiro, M. J.; Munoz Camacho, E.; Bernal Pita da Veiga, M. B.

    2009-01-01

    This study evaluates how viable it is to employ calcium carbonate for the boron adsorption process in waters that could be contaminated by this element. A residue form mussel shells-abundant in Galicia, northwestern Spain, was used. The data gathered from the experiments show that the performance of the boron adsorption within the sample is below 2%. Despite the inferior data obtained, the general aim was reached. An attempt was made to find solutions to the environmental problem caused by the residues mentioned above. (Author) 11 refs.

  4. Removal of micropollutants from municipal wastewater by graphene adsorption and simultaneous electrocoagulation/electrofiltration process.

    Science.gov (United States)

    Yang, Gordon C C; Tang, Pei-Ling; Yen, Chia-Heng

    2017-04-01

    In this work the optimal operating conditions for removing selected micropollutants (also known as emerging contaminants, ECs) from actual municipal wastewater by graphene adsorption (GA) and simultaneous electrocoagulation/electrofiltration (EC/EF) process, respectively, were first determined and evaluated. Then, performance and mechanisms for the removal of selected phthalates and pharmaceuticals from municipal wastewater simultaneously by the GA and EC/EF process were further assessed. ECs of concern included di-n-butyl phthalate (DnBP), di-(2-ethylhexyl) phthalate (DEHP), acetaminophen (ACE), caffeine (CAF), cefalexin (CLX) and sulfamethoxazole (SMX). It was found that GA plus EC/EF process yielded the following removal efficiencies: DnBP, 89 ± 2%; DEHP, 85 ± 3%; ACE, 99 ± 2%; CAF, 94 ± 3%; CLX, 100 ± 0%; and SMX, 98 ± 2%. Carbon adsorption, size exclusion, electrostatic repulsion, electrocoagulation, and electrofiltration were considered as the main mechanisms for the removal of target ECs by the integrated process indicated above.

  5. General framework for adsorption processes on dynamic interfaces

    International Nuclear Information System (INIS)

    Schmuck, Markus; Kalliadasis, Serafim

    2016-01-01

    We propose a novel and general variational framework modelling particle adsorption mechanisms on evolving immiscible fluid interfaces. A by-product of our thermodynamic approach is that we systematically obtain analytic adsorption isotherms for given equilibrium interfacial geometries. We validate computationally our mathematical methodology by demonstrating the fundamental properties of decreasing interfacial free energies by increasing interfacial particle densities and of decreasing surface pressure with increasing surface area. (paper)

  6. Formation of hydrocarbons in irradiated Brazilian beans: gas chromatographic analysis to detect radiation processing

    International Nuclear Information System (INIS)

    Villavicencio, A.L.C.H.; Mancini-Filho, J.; Hartmann, M.; Ammon, J.; Delincee, H.

    1997-01-01

    Radiation processing of beans, which are a major source of dietary protein in Brazil, is a valuable alternative to chemical fumigation to combat postharvest losses due to insect infestation. To ensure free consumer choice, irradiated food will be labeled as such, and to enforce labeling, analytical methods to detect the irradiation treatment in the food product itself are desirable. In two varieties of Brazilian beans, Carioca and Macacar beans, the radiolytic formation of hydrocarbons formed after alpha and beta cleavage, with regard to the carbonyl group in triglycerides, have been studied. Using gas chromatographic analysis of these radiolytic hydrocarbons, different yields per precursor fatty acid are observed for the two types of beans. However, the typical degradation pattern allows the identification of the irradiation treatment in both bean varieties, even after 6 months of storage

  7. Consequences of cavity size and chemical environment on the adsorption properties of isoreticular metal-organic frameworks: an inverse gas chromatography study.

    Science.gov (United States)

    Gutiérrez, Inés; Díaz, Eva; Vega, Aurelio; Ordóñez, Salvador

    2013-01-25

    The role of the structure of three isoreticular metal-organic frameworks (IRMOFs) on their adsorption behavior has been studied in this work, selecting different kinds of volatile organic compounds (VOCs) as adsorbates (alkanes, alkenes, cycloalkanes, aromatics and chlorinated). For this purpose, three samples (IRMOF-1, IRMOF-8 and IRMOF-10) with cubic structure and without functionalities on the organic linkers were synthesized. Adsorption capacities at infinite dilution were derived from the adsorption isotherms, whereas thermodynamic properties have been determined from chromatographic retention volume. The capacity and the strength of adsorption were strongly influenced by the adsorbate size. This effect is especially relevant for n-alkanes adsorption, indicating the key role of the cavity size on this phenomenon, and hence the importance of the IRMOF structural properties. A different behavior has been observed for the polar compounds, where an enhancement on the specificity of the adsorption with the π-electron rich regions was observed. This fact suggests the specific interaction of these molecules with the organic linkers of the IRMOFs. Copyright © 2012 Elsevier B.V. All rights reserved.

  8. High-pressure homogenization associated hydrothermal process of palygorskite for enhanced adsorption of Methylene blue

    Science.gov (United States)

    Zhang, Zhifang; Wang, Wenbo; Wang, Aiqin

    2015-02-01

    Palygorskite (PAL) was modified by a high-pressure homogenization assisted hydrothermal process. The effects of modification on the morphology, structure and physicochemical properties of PAL were systematically investigated by Field-emission scanning electron microscopy (FESEM), Transmission electron microscopy (TEM), Fourier transform infrared spectrometry (FTIR), Brunauer-Emmett-Teller (BET) analysis, X-ray diffraction (XRD) and Zeta potential analysis techniques, and the adsorption properties were systematically evaluated using Methylene blue (MB) as the model dye. The results revealed that the crystal bundles were disaggregated and the PAL nanorods became more even after treated via associated high-pressure homogenization and hydrothermal process, and the crystal bundles were dispersed as nanorods. The intrinsic crystal structure of PAL was remained after hydrothermal treatment, and the pore size calculated by the BET method was increased. The adsorption properties of PAL for MB were evidently improved (from 119 mg/g to 171 mg/g) after modification, and the dispersion of PAL before hydrothermal reaction is favorable to the adsorption. The desorption evaluation confirms that the modified PAL has stronger affinity with MB, which is benefit to fabricate a stable organic-inorganic hybrid pigment.

  9. Mechanisms of chain adsorption on porous substrates and critical conditions of polymer chromatography.

    Science.gov (United States)

    Cimino, Richard T; Rasmussen, Christopher J; Brun, Yefim; Neimark, Alexander V

    2016-11-01

    Polymer adsorption is a ubiquitous phenomenon with numerous technological and healthcare applications. The mechanisms of polymer adsorption on surfaces and in pores are complex owing to a competition between various entropic and enthalpic factors. Due to adsorption of monomers to the surface, the chain gains in enthalpy yet loses in entropy because of confining effects. This competition leads to the existence of critical conditions of adsorption when enthalpy gain and entropy loss are in balance. The critical conditions are controlled by the confining geometry and effective adsorption energy, which depends on the solvent composition and temperature. This phenomenon has important implications in polymer chromatography, since the retention at the critical point of adsorption (CPA) is chain length independent. However, the mechanisms of polymer adsorption in pores are poorly understood and there is an ongoing discussion in the theoretical literature about the very existence of CPA for polymer adsorption on porous substrates. In this work, we examine the mechanisms of chain adsorption on a model porous substrate using Monte Carlo (MC) simulations. We distinguish three adsorption mechanisms depending on the chain location: on external surface, completely confined in pores, and also partially confined in pores in so-called "flower" conformations. The free energies of different conformations of adsorbed chains are calculated by the incremental gauge cell MC method that allows one to determine the partition coefficient as a function of the adsorption potential, pore size, and chain length. We confirm the existence of the CPA for chain length independent separation on porous substrates, which is explained by the dominant contributions of the chain adsorption at the external surface, in particular in flower conformations. Moreover, we show that the critical conditions for porous and nonporous substrates are identical and depend only on the surface chemistry. The theoretical

  10. Parameter selection for peak alignment in chromatographic sample profiling: Objective quality indicators and use of control samples

    NARCIS (Netherlands)

    Peters, S.; van Velzen, E.; Janssen, H.-G.

    2009-01-01

    In chromatographic profiling applications, peak alignment is often essential as most chromatographic systems exhibit small peak shifts over time. When using currently available alignment algorithms, there are several parameters that determine the outcome of the alignment process. Selecting the

  11. Covalently coating dextran on macroporous polyglycidyl methacrylate microsphere enabled rapid protein chromatographic separation

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Rongyue; Li, Qiang; Li, Juan; Zhou, Weiqing; Ye, Peili; Gao, Yang; Ma, Guanghui, E-mail: ghma@home.ipe.ac.cn; Su, Zhiguo

    2012-12-01

    Protein denaturation and nonspecific adsorption on polymer media as a chromatographic support have been a problem which needs to be overcome. Macroporous poly(glycidyl methacrylate-divinylbezene) (PGMA-DVB) microspheres prepared in this study were firstly covalently coated with dextran through a three-step method. The dextran was firstly adsorbed onto the microspheres and then covalently bound to the PGMA-DVB microsphere through ether bonds which were formed by hydroxyl group reacting with epoxy group at the presence of 4-(Dimethylamino) pyridine. Finally, the coating dextran layer was crosslinked by ethylene glycol diglycidyl ether to form the continuous network coating. The coated microspheres were characterized by Fourier transform infrared spectra, scanning electron microscope, mercury porosimetry measurements, laser scanning confocal microscope, and protein adsorption experiments. Results showed that PGMA-DVB microspheres coated with dextran successfully maintained the macroporous structure and high permeability. The backpressure was only 1.69 MPa at a high flow rate of 2891 cm/h. Consequently, the hydrophilicity and biocompatibility of modified microspheres were greatly improved, and the contact angle decreased from 184 Degree-Sign to 13 Degree-Sign , and nonspecific adsorption of proteins was decreased to little or none. The clad dextran coating with large amounts of hydroxyl group was easily derived to be various functional groups. The derived media have great potential applications in rapid protein chromatography. - Highlights: Black-Right-Pointing-Pointer Macroporous PGMA-DVB microspheres were covalently coated with dextran. Black-Right-Pointing-Pointer The hydrophilicity of the coated microspheres was significantly improved. Black-Right-Pointing-Pointer The irreversible adsorption of proteins was reduced to zero. Black-Right-Pointing-Pointer The coated microspheres can maintain the macropore structure. Black-Right-Pointing-Pointer The coated microspheres

  12. Simulation models for food separation by adsorption process | Aoyi ...

    African Journals Online (AJOL)

    Separation of simulated industrial food products, by method of adsorption, has been studied. A thermodynamic approach has been applied to study the liquid adsorption where benzene and cyclohexane have been used to simulate edible oils in a system that employs silica gel as the adsorbent. Different models suggested ...

  13. Adsorption Behavior of Uranium and Mechanism Analysis on Banyan Leaves

    International Nuclear Information System (INIS)

    Xia Liangshu; Tan Kaixuan; Wang Xiao; Zheng Weina

    2010-01-01

    The adsorption behavior of uranium on banyan leaves was studied with static experiments. The adsorption process was analyzed in terms of thermodynamics and kinetics, and the adsorption mechanism was analyzed with FTIR and SEM. In the studied condition, the equilibrium adsorption data fit to Freundlich isotherms, with a relation coefficient greater than 0.99. The adsorption of uranium on banyan leaves is an endothermic process. Kinetic analysis shows that the adsorption rate is mainly controlled by surface adsorption. The process of adsorption can be described by an equation of Pseudo 2nd-order model. The calculation data are in good agreement with the experimental data,and the relation coefficient is 0.9998. The thermodynamic data indicate that the synergistic uranium biosorption by banyan leaves is a spontaneous and endothermal adsorption process. The adsorption of uranium on banyan leaves changes the cell's surface form of banyan leaves.In the adsorption process, UO 2 2+ mainly chelates with -OH,C=O,P-O and Si=O etc. on the cell's surface and forms the complexes. The adsorption of uranium should be of surface coordination. (authors)

  14. Incorporating water-release and lateral protein interactions in modeling equilibrium adsorption for ion-exchange chromatography.

    Science.gov (United States)

    Thrash, Marvin E; Pinto, Neville G

    2006-09-08

    The equilibrium adsorption of two albumin proteins on a commercial ion exchanger has been studied using a colloidal model. The model accounts for electrostatic and van der Waals forces between proteins and the ion exchanger surface, the energy of interaction between adsorbed proteins, and the contribution of entropy from water-release accompanying protein adsorption. Protein-surface interactions were calculated using methods previously reported in the literature. Lateral interactions between adsorbed proteins were experimentally measured with microcalorimetry. Water-release was estimated by applying the preferential interaction approach to chromatographic retention data. The adsorption of ovalbumin and bovine serum albumin on an anion exchanger at solution pH>pI of protein was measured. The experimental isotherms have been modeled from the linear region to saturation, and the influence of three modulating alkali chlorides on capacity has been evaluated. The heat of adsorption is endothermic for all cases studied, despite the fact that the net charge on the protein is opposite that of the adsorbing surface. Strong repulsive forces between adsorbed proteins underlie the endothermic heat of adsorption, and these forces intensify with protein loading. It was found that the driving force for adsorption is the entropy increase due to the release of water from the protein and adsorbent surfaces. It is shown that the colloidal model predicts protein adsorption capacity in both the linear and non-linear isotherm regions, and can account for the effects of modulating salt.

  15. Hydrogen purification by periodic adsorption

    Energy Technology Data Exchange (ETDEWEB)

    Barg, Christian; Secchi, Argimiro R.; Trierweiler, Jorge O. [Rio Grande do Sul Univ., Porto Alegre, RS (Brazil). Dept. de Engenharia Quimica]. E-mail: cbarg@enq.ufrgs.br; arge@enq.ufrgs.br; jorge@enq.ufrgs.br

    2000-07-01

    The periodic adsorption processes have been widely used for industrial applications, mainly because it spends less energy than the usual gas separation processes, like the cryogenic distillation. The largest commercial application of periodic adsorption processes is the pressure swing adsorption (PSA) applied to hydrogen purification. Although its wide use in the chemical and petrochemical industry, there are no reports in the open literature about complete modeling studies of a complex commercial unit, with multiple adsorbents and multiple beds and several feed components. This study has as objective the modeling, optimization and dynamical analysis of an industrial PSA unit for hydrogen purification. (author)

  16. Optimization of startup and shutdown operation of simulated moving bed chromatographic processes.

    Science.gov (United States)

    Li, Suzhou; Kawajiri, Yoshiaki; Raisch, Jörg; Seidel-Morgenstern, Andreas

    2011-06-24

    This paper presents new multistage optimal startup and shutdown strategies for simulated moving bed (SMB) chromatographic processes. The proposed concept allows to adjust transient operating conditions stage-wise, and provides capability to improve transient performance and to fulfill product quality specifications simultaneously. A specially tailored decomposition algorithm is developed to ensure computational tractability of the resulting dynamic optimization problems. By examining the transient operation of a literature separation example characterized by nonlinear competitive isotherm, the feasibility of the solution approach is demonstrated, and the performance of the conventional and multistage optimal transient regimes is evaluated systematically. The quantitative results clearly show that the optimal operating policies not only allow to significantly reduce both duration of the transient phase and desorbent consumption, but also enable on-spec production even during startup and shutdown periods. With the aid of the developed transient procedures, short-term separation campaigns with small batch sizes can be performed more flexibly and efficiently by SMB chromatography. Copyright © 2011 Elsevier B.V. All rights reserved.

  17. Adsorption of phosphate in hydrocalumite-like layered double hydroxides: a comparison between memory effect and ion exchange processes

    International Nuclear Information System (INIS)

    Bernardo, M.P.; Moreira, F.K.V.; Ribeiro, C.

    2016-01-01

    Phosphorus is an essential element for agriculture, but the excessive use of this element has caused severe damages to the environment. Layered double hydroxide (LDHs) are excellent candidates to remove PO 4 3- anions through adsorption process. In this work, the phosphate adsorption on hydrocalumite-like (Ca-Al) LDHs was evaluated over the ion exchange and memory effect processes. X-ray diffraction measurements revealed formation of analogous crystalline phases from both process as the phosphate concentration was increased. However, the phosphate quantity adsorbed varied according to the process used. The ion exchange route is the most efficient process to remove phosphate from aqueous medium. (author)

  18. Adsorption of ferrous ions onto montmorillonites

    Science.gov (United States)

    Qin, Dawei; Niu, Xia; Qiao, Min; Liu, Gang; Li, Hongxin; Meng, Zhenxiao

    2015-04-01

    The adsorption of Fe (II) onto montmorillonites was investigated through initial concentration, contact time, pH and temperature. During the whole adsorption process, the ascorbic acid (Vitamin C) was added as a kind of antioxidant, at the same time, deionized water (after boiling) and nitrogen protection were also used to avoid oxidation. The Fe2+/Fetotal ratio of the iron exists in the Fe-montmorillonites was found more than 95%. Two kinetic models, including pseudo-first-order and pseudo-second-order model, were used to analyze the adsorption process of Fe (II) on montmorillonites. The results of our study showed that adsorption process fitted with pseudo-second-order well. Adsorption isotherms showed that Langmuir model was better than Freundlich model. The thermodynamic parameters ΔG0 and ΔH0 were 3.696 kJ/mol and 6.689 kJ/mol (we just gave the values at 298 K), respectively. The positive values at different temperatures showed that the adsorption process was non-spontaneous and endothermic. The characteristics of materials were determined by X-ray diffraction (XRD), Fourier transform infrared (FT-IR), Surface area and porosity analyzer, Thermogravimetric analysis (TGA), Differential scanning calorimeter (DSC) and Zeta potential distribution.

  19. Study of the processes of adsorption of amine-containing surface-active substance on the surface of Aluminum powder

    Directory of Open Access Journals (Sweden)

    Antonina Dyuryagina

    2012-03-01

    Full Text Available Equilibrium characteristics of adsorption on a surface of a pigment depending on concentration factors and temperature of the dispersive environment are defined. Kinetic laws of superficial activity of binary, threefold homogeneous and heterogeneous modeling systems are studied. The estimation of mechanisms of process of adsorption is carried out.

  20. High-temperature adsorption layers based on fluoridated polyimide and diatomite carrier

    Science.gov (United States)

    Yakovleva, E. Yu.; Shundrina, I. K.; Gerasimov, E. Yu.

    2017-09-01

    A way of preparing separation layers by the pyrolysis of fluorinated polyimide obtained from 2,4,6-trimethyl- m-phenylenediamine (2,4,6-TM mPDA) and 2,2-bis(3',4'-dicarboxyphenyl)hexafluoropropane (6FDA) applied onto a diatomite carrier is described. Thermogravimetry, elemental analysis, low-temperature nitrogen adsorption, high-resolution electron microscopy, and gas chromatography are used to study changes in the texture and chromatographic characteristics of these layers. It is found that changes in the structure and the effectivity of separation characteristic of the layers depend on the temperature of pyrolysis, which ranges from 250 to 1100°C. It is established that a layer of separation is formed at 250-350°C, and the order of elution of hydrocarbons is similar to their chromatographic behavior on such stationary phases as OV-101. Layers of amorphous carbon formed on the surfaces of individual particles on a diatomite surface at 500-700°C. These layers ensure highly stable and selective separation of permanent gases and hydrocarbons when they are present together.

  1. Optimization of the gas chromatographic separations

    International Nuclear Information System (INIS)

    Gasco Sanchez, L.

    1973-01-01

    A review and a critical study on the optimization of the gas chromatographic separations are made. After dealing with the fundamental gas chromatographic equations, some methods of expressing column performances are discussed: performance indices, performance parameters, resolution and effective plate number per unit time. This is completed with a comparative study on performances of various types of columns. Moreover, optimization methods for operating chromatographic conditions are extensively dealt with: as resolution optimization, separation time, and normalization techniques for the time of analysis in order to achieve the maximum resolution at constant time. Finally, some others non operating parameters such as: selectivity of stationary phases, column preparation and optimization methods by means of computers are studied. (Author) 68 refs

  2. Treatability study of arsenic, fluoride and nitrate from drinking water by adsorption process

    International Nuclear Information System (INIS)

    Abbas, N.; Irfan, M.; Butt, M.T.

    2014-01-01

    Natural contamination of nitrate, fluoride, arsenic and dissolved salts in ground water sources is the main health menace at present in different parts of Pakistan. The metalloids especially arsenic, fluoride and nitrate pose severe health hazards to human being. The present research work investigated the removal techniques for arsenic, fluoride and nitrate from drinking water by adsorption process. Ion exchange resins, activated carbon and activated alumina were used for removal of selected contaminants. These adsorbents were evaluated by comparing their removal efficiency as well as requisite operator skills. The result of activated alumina was found good as compared to activated carbon, mix bed resins and ion exchange resins (IRA-400) for maximum removal of arsenic, nitrate and fluoride. The removal efficiency of arsenic, fluoride and nitrate were found 96%, 99%, 98% respectively in case of activated alumina. The advantage of adsorption process is easy to use and relatively cheaper as compared to other treatment methodologies. (author)

  3. A Small-Scale Low-Cost Gas Chromatograph

    Science.gov (United States)

    Gros, Natasa; Vrtacnik, Margareta

    2005-01-01

    The design and application of a small-scale portable gas chromatograph for learning of the basic concepts of chromatography is described. The apparatus consists of two basic separable units, which includes a chromatographic unit and an electronic unit.

  4. Adsorption of uranium on halloysite

    International Nuclear Information System (INIS)

    Kilislioglu, A.; Bilgin, B.

    2002-01-01

    Adsorption of uranium (U(VI)) from aqueous solutions on halloysite type clay was studied as a function of amount of adsorbent, initial concentration and pH. The values of adsorption data were fitted to Freundlich, Langmuir and Dubinin-Radushkevich (D-R) adsorption isotherms. The mean energy of adsorption was calculated as 5.91 kJ/mol from D-R adsorption isotherm. Lagergren and Bangham equation has been used for dynamic modelling of process and the rate constants of adsorption of uranium on halloysite type clay were calculated at 293, 313 and 333 K. In order to explain the mechanism of adsorption reaction, the rate constants were calculated at high and low uranium concentrations. Adsorption reaction was studied at 293, 303, 313, 323 and 333 K for halloysite type clay and also thermodynamic constants have been calculated. The results show that the adsorption reaction was endothermic and more spontaneous at high temperature. (orig.)

  5. Adsorption of uranium on halloysite

    Energy Technology Data Exchange (ETDEWEB)

    Kilislioglu, A.; Bilgin, B. [Istanbul Univ. (Turkey). Faculty of Engineering

    2002-07-01

    Adsorption of uranium (U(VI)) from aqueous solutions on halloysite type clay was studied as a function of amount of adsorbent, initial concentration and pH. The values of adsorption data were fitted to Freundlich, Langmuir and Dubinin-Radushkevich (D-R) adsorption isotherms. The mean energy of adsorption was calculated as 5.91 kJ/mol from D-R adsorption isotherm. Lagergren and Bangham equation has been used for dynamic modelling of process and the rate constants of adsorption of uranium on halloysite type clay were calculated at 293, 313 and 333 K. In order to explain the mechanism of adsorption reaction, the rate constants were calculated at high and low uranium concentrations. Adsorption reaction was studied at 293, 303, 313, 323 and 333 K for halloysite type clay and also thermodynamic constants have been calculated. The results show that the adsorption reaction was endothermic and more spontaneous at high temperature. (orig.)

  6. Bioanalytical method transfer considerations of chromatographic-based assays.

    Science.gov (United States)

    Williard, Clark V

    2016-07-01

    Bioanalysis is an important part of the modern drug development process. The business practice of outsourcing and transferring bioanalytical methods from laboratory to laboratory has increasingly become a crucial strategy for successful and efficient delivery of therapies to the market. This chapter discusses important considerations when transferring various types of chromatographic-based assays in today's pharmaceutical research and development environment.

  7. Adsorptive property of rice husk for uranium

    International Nuclear Information System (INIS)

    Feng Yuan; Yi Facheng

    2011-01-01

    The adsorption experiments were researched by using the rice husk powder as the adsorbent to remove the U(VI) from aqueous solution. The affecting factors on the U(VI) removal rate such as rice husk particle size, pH, initial concentration, adsorption time, temperature and dosage of adsorbent were evaluated, kinetics and adsorption isotherm law were analyzed, and mechanisms for U(VI) removal were discussed by SEM, FT-IR and energy spectrum analysis. The results show that U(VI) removal rate increases with the decrease of the size of adsorbent, and with the increase of adsorbent dosage and temperature. The process of adsorption can be described by an equation of pseudo 2nd-order mode, and the relation coefficient is 1. The process of adsorption also fits to Freundlich isotherm (R 2 =0.995 4). The adsorption of uranium on rice husk changes the surface form of rice husk. Hydroxyl, carboxylic, P-O and Si-O are the main functional groups in the reaction with U(VI). The adsorption mechanism is mixture adsorption, including the physical and chemical adsorption. (authors)

  8. Adsorption facility and adsorption vessel for radioactive carbon dioxide

    International Nuclear Information System (INIS)

    Harashina, Heihachi; Miwa, Keiichi; Kobayashi, Takeo.

    1992-01-01

    If 14 CO 2 gas-containing gases to be adsorbed are pressurized and sent to a packaging adsorption means, CO 2 ingredient in the gases to be adsorbed is adsorbed or absorbed, and remaining gases are passed through and sent out to downstream. CO 2 adsorption or absorption of the packaging adsorption means is judged by monitoring the state of the remaining gases, and if it is normal, remaining gases are sent further to downstream and processed. If abnormality is found, a gas feedback system is operated, and CO 2 removing gas is sent again to the packaging adsorption means, in which CO 2 gases are adsorbed or absorbed again repeatingly. With such procedures, in a case where C 14 nuclides having a long half decay time are supplied in the form of 14 CO 2 gas, they are efficiently adsorbed or absorbed in the packaging system to improve removing and storing property of 14 C nuclides. (T.M.)

  9. The modified cryogenic adsorption method for the laboratory separation of sup(85)Kr from the atmosphere

    International Nuclear Information System (INIS)

    Wilhelmova, L.; Tomasek, M.; Dvorak, Z.

    1985-01-01

    A method for laboratory separation of sup(85)Kr from the atmosphere based on cryogenic adsorption technique was developed. The physical parameters of the separation equipment were chosen with respect to the properties of scintillation crystal CaFsub(2)(Eu) used as a detector of sup(85)Kr. The apparatus contains dry-ice, silica gel and molecular sieve traps for the removal of Hsub(2)O and COsub(2). The activated charcoal columns are used for concentration and preparation of krypton sample. The separation technique is supplemented by gas-chromatographic determination of total amount of separated krypton. The apparatus enables processing of up to 20 msup(3) of air with the krypton yield about 80%. The relative errors of the determination of the concentration of sup(85)Kr in the air by elaborated method is about 5%. (author)

  10. Modification process optimization, characterization and adsorption property of granular fir-based activated carbon

    Science.gov (United States)

    Chen, Congjin; Li, Xin; Tong, Zhangfa; Li, Yue; Li, Mingfei

    2014-10-01

    Granular fir-based activated carbon (GFAC) was modified with H2O2, and orthogonal array experimental design method was used to optimize the process. The properties of the original and modified GFAC were characterized by N2 adsorption-desorption isotherms, Brunauer-Emmett-Teller (BET) equation, Barett-Joyner-Halenda (BJH) equation, field emission scanning electron microscopy (FESEM), and Fourier transform infrared spectroscopy (FT-IR) analysis, etc. When 10.00 g of GFAC with particle size of 0.25-0.85 mm was modified by 150.0 ml of aqueous H2O2 solution, the optimized conditions were found to be as follows: aqueous H2O2 solution concentration 1.0 mol·l-1, modification temperature 30.0 °C, modification time 4.0 h. Modified under the optimized conditions, decolonization of caramel, methylene blue adsorption, phenol adsorption and iodine number of the modified GFAC increased by 500.0%, 59.7%, 32.5%, and 15.1%, respectively. The original and optimally modified GFAC exhibited adsorption isotherms of hybrid Type I-IV isotherms with H4 hysteresis. BET surface area, micropore area, total pore volume, micropore volume, and microporosity of the modified GFAC increased by 7.33%, 11.25%, 3.89%, 14.23%, 9.91%, respectively. Whereas the average pore width decreased by 3.16%. In addition, the amount of surface oxygen groups (such as carbonyl or carboxyl) increased in the modified GFAC.

  11. Color removal from acid and reactive dye solutions by electrocoagulation and electrocoagulation/adsorption processes.

    Science.gov (United States)

    Bellebia, S; Kacha, S; Bouberka, Z; Bouyakoub, A Z; Derriche, Z

    2009-04-01

    In this study, electrocoagulation of Marine Blue Erionyl MR (acid dye) and electrocoagulation followed by adsorption of Brilliant Blue Levafix E-BRA (reactive dye) from aqueous solutions were investigated, using aluminum electrodes and granular activated carbon (GAC). In the electrocoagulation and adsorption of dyestuff solutions, the effects of current density, loading charge, pH, conductivity, stirring velocity, contact time, and GAC concentration were examined. The optimum conditions for the electrocoagulation process were identified as loading charges 7.46 and 1.49 F/m3, for a maximum abatement of 200 mg/L reactive and acid dye, respectively. The residual reactive dye concentration was completely removed with 700 mg/L GAC. The results of this investigation provide important data for the development of a combined process to remove significant concentrations of recalcitrant dyes from water, using moderate activated carbon energy and aluminum consumption, and thereby lowering the cost of treatment.

  12. Determination of hexachlorocyclohexane pesticide residues in wool fat by a combined high-performance liquid chromatographic-gas-liquid chromatographic method

    International Nuclear Information System (INIS)

    Ali, S.L.

    1978-01-01

    Beta- and gamma-hexachlorocyclohexane residues were determined in twelve wool fat samples by using a combined high-performance liquid chromatographic (HPLC)-gas-liquid chromatographic (GLC) method. After extraction and chromatographic clean-up on a silca-gel column, the sample was further purified by HPLC on a reversed-phase C-18 column with methanol as the mobile phase. The final determination was effected by GLC with a 1-mCi nickel-63 electron-capture detector. The analytical method was checked by addition of carbon-14-labelled lindane and measurement of the radioactivity in a liquid scintillation counter. (Auth.)

  13. ADSORPTION MALACHITE GREEN ON NATURAL ZEOLITE

    OpenAIRE

    Eko Ariyanto

    2012-01-01

    A natural zeolite was employed as adsorbent for reducing of malachite green from aqueous solution. A batch system was applied to study the adsorption of malachite green in single system on natural zeolite. The adsorption studies indicate that malachite green in single component system follows the second-order kinetics and the adsorption is diffusion process with two stages for malachite green. Malachite green adsorption isotherm follows the Langmuir model.

  14. A combined process of adsorption and Fenton-like oxidation for furfural removal using zero-valent iron residue.

    Science.gov (United States)

    Li, Furong; Bao, Jianguo; Zhang, Tian C; Lei, Yutian

    2015-01-01

    In this study, the feasibility of using a combined adsorption and Fenton-like oxidation process (with zero-valent iron (ZVI) residue from heat wraps as an absorbent and catalyst) to remove furfural in the solution was evaluated. The influencing parameters (e.g. pH, H2O2 concentration, initial furfural concentration) and the reusability of ZVI residue (to replace the iron powder) were estimated. The ZVI residue was found to have much better adsorption effect on furfural at pH 2.0 compared with pH 6.7. For Fenton-like reaction alone with ZVI residue, the highest furfural removal of 97.5% was observed at the concentration of 0.176 mol/L H2O2, and all of the samples had >80% removal efficiency at different initial furfural concentrations of 2, 10, 20, 30 and 40 mmol/L. However, with a combined adsorption and Fenton-like oxidation, the removal efficiency of furfural was nearly 100% for all treatments. The ZVI residue used for furfural removal was much better than that of iron powder in the Fenton-like reaction at a seven-cycle experiment. This study suggests the combined process of adsorption and Fenton-like oxidation using ZVI residue is effective for the treatment of furfural in the liquid.

  15. Probabilistic peak detection for first-order chromatographic data.

    Science.gov (United States)

    Lopatka, M; Vivó-Truyols, G; Sjerps, M J

    2014-03-19

    We present a novel algorithm for probabilistic peak detection in first-order chromatographic data. Unlike conventional methods that deliver a binary answer pertaining to the expected presence or absence of a chromatographic peak, our method calculates the probability of a point being affected by such a peak. The algorithm makes use of chromatographic information (i.e. the expected width of a single peak and the standard deviation of baseline noise). As prior information of the existence of a peak in a chromatographic run, we make use of the statistical overlap theory. We formulate an exhaustive set of mutually exclusive hypotheses concerning presence or absence of different peak configurations. These models are evaluated by fitting a segment of chromatographic data by least-squares. The evaluation of these competing hypotheses can be performed as a Bayesian inferential task. We outline the potential advantages of adopting this approach for peak detection and provide several examples of both improved performance and increased flexibility afforded by our approach. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Kinetic modelling and mechanism of dye adsorption on unburned carbon

    Energy Technology Data Exchange (ETDEWEB)

    Wang, S.B.; Li, H.T. [Curtin University of Technology, Perth, WA (Australia). Dept. of Chemical Engineering

    2007-07-01

    Textile dyeing processes are among the most environmentally unfriendly industrial processes by producing coloured wastewaters. The adsorption method using unburned carbon from coal combustion residue was studied for the decolourisation of typical acidic and basic dyes. It was discovered that the unburned carbon showed high adsorption capacity at 1.97 x 10{sup -4} and 5.27 x 10{sup -4} mol/g for Basic Violet 3 and Acid Black 1, respectively. The solution pH, particle size and temperature significantly influenced the adsorption capacity. Higher solution pH favoured the adsorption of basic dye while reduced the adsorption of acid dye. The adsorption of dye increased with increasing temperature but decreased with increasing particle size. Sorption kinetic data indicated that the adsorption kinetics followed the pseudo-second-order model. The adsorption mechanism consisted of two processes, external diffusion and intraparticle diffusion, and the external diffusion was the dominating process.

  17. Adsorption dynamics and equilibrium studies of Zn (II)

    Indian Academy of Sciences (India)

    Batch equilibration studies are conducted to determine the nature of adsorption of zinc (II) over chitosan. The factors affecting the adsorption process like particle size, contact time, dosage, pH, effects of chloride and nitrate are identified. The influence of temperature and co-ions on the adsorption process is verified.

  18. Adsorption behavior and mechanism of uranium on wood fiber

    International Nuclear Information System (INIS)

    Wang Zhe; Yi Facheng; Feng Yuan

    2015-01-01

    The adsorption performance of uranium on wood fiber was studied with static experiment. The influence factors on the U(Ⅵ) removal rate such as wood fiber particle size, adsorption time, dosage, temperature, pH and initial concentration were researched, and the adsorption process was analyzed in terms of thermodynamics and kinetics. The results show that the adsorption equilibrium time is 4 hours. When the pH reaches 3 for uranium-containing wastewater, uranium can be removed with the decrease of the size of adsorbent and with the increase of adsorbent dosage and temperature. The equilibrium adsorption data fit to Langmuir isotherms. The kinetic analysis shows that the adsorption rate is mainly controlled by chemical adsorption. The adsorption process can be described by an equation of pseudo 2nd-order model. The thermodynamic data indicate that the synergistic uranium bio-sorption by wood fiber is a spontaneous and endothermal adsorption process. The adsorption mechanism was analyzed with SEM, FT-IR and EDS. The results show that the surface form of wood fiber is changed and uranium mainly chelates with active groups on the fiber-s surface and forms the complexes. These indicate that the adsorption of uranium should be of surface coordination. The analyses of EDS before and after adsorption of uranium prove that the behavior of adsorption is ion exchange. The above results indicate that the adsorption mechanism is mainly surface coordination and ion exchange adsorption, followed by physical absorption. (authors)

  19. Granular activated carbon for simultaneous adsorption and biodegradation of toxic oil sands process-affected water organic compounds.

    Science.gov (United States)

    Islam, Md Shahinoor; Zhang, Yanyan; McPhedran, Kerry N; Liu, Yang; Gamal El-Din, Mohamed

    2015-04-01

    Naphthenic acids (NAs) released into oil sands process-affected water (OSPW) during bitumen processing in Northern Alberta are problematic for oil sands industries due to their toxicity in the environment and resistance to degradation during conventional wastewater treatment processes. Granular activated carbon (GAC) has shown to be an effective media in removing biopersistent organics from wastewater using a combination of adsorption and biodegradation removal mechanisms. A simultaneous GAC (0.4 g GAC/L) adsorption and biodegradation (combined treatment) study was used for the treatment of raw and ozonated OSPW. After 28 days of batch treatment, classical and oxidized NAs removals for raw OSPW were 93.3% and 73.7%, and for ozonated OSPW were 96.2% and 77.1%, respectively. Synergetic effects of the combined treatment process were observed in removals of COD, the acid extractable fraction, and oxidized NAs, which indicated enhanced biodegradation and bioregeneration in GAC biofilms. A bacteria copy number >10(8) copies/g GAC on GAC surfaces was found using quantitative real time polymerase chain reaction after treatment for both raw and ozonated OSPW. A Microtox(®) acute toxicity test (Vibrio fischeri) showed effective toxicity removal (>95.3%) for the combined treatments. Therefore, the simultaneous GAC adsorption and biodegradation treatment process is a promising technology for the elimination of toxic OSPW NAs. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Sour pressure swing adsorption process

    Science.gov (United States)

    Bhadra, Shubhra Jyoti; Wright, Andrew David; Hufton, Jeffrey Raymond; Kloosterman, Jeffrey William; Amy, Fabrice; Weist, Jr., Edward Landis

    2017-11-07

    Methods and apparatuses for separating CO.sub.2 and sulfur-containing compounds from a synthesis gas obtained from gasification of a carbonaceous feedstock. The primary separating steps are performed using a sour pressure swing adsorption (SPSA) system, followed by an acid gas enrichment system and a sulfur removal unit. The SPSA system includes multiple pressure equalization steps and a rinse step using a rinse gas that is supplied from a source other than directly from one of the adsorber beds of the SPSA system.

  1. Extension lifetime for dye-sensitized solar cells through multiple dye adsorption/desorption process

    Science.gov (United States)

    Chiang, Yi-Fang; Chen, Ruei-Tang; Shen, Po-Shen; Chen, Peter; Guo, Tzung-Fang

    2013-03-01

    In this study, we propose a novel concept of extending the lifetime of dye-sensitized solar cells (DSCs) and reducing the costs of re-conditioning DSCs by recycling the FTO/TiO2 substrates. The photovoltaic performances of DSCs using substrates with various cycles of dye uptake and rinse off history are tested. The results show that dye adsorption and Voc are significantly increased under multiple dye adsorption/desorption process and resulted in the improvement of power conversion efficiency. Moreover, the dyeing kinetics is faster after multiple recycling processes, which is favorable for the industrial application. With surface analysis and charge transport characteristics, we also demonstrate the optimal functionality of TiO2/dye interface for the improved Voc and efficiency. The results confirm that the improved performances are due to increased dye loading and dense packing of dye molecules. Our results are beneficial for the understanding on the extension of DSCs lifetime after long-term operation in the application of DSC modules. This approach may also be applied in the replacement of newly synthesized photosensitizes to the active cells.

  2. Modification process optimization, characterization and adsorption property of granular fir-based activated carbon

    International Nuclear Information System (INIS)

    Chen, Congjin; Li, Xin; Tong, Zhangfa; Li, Yue; Li, Mingfei

    2014-01-01

    Highlights: • Granular fir-based activated carbon (GFAC) was modified with H 2 O 2 . • Orthogonal array design method was used to optimize the modification process. • Optimized parameters were: aqueous H 2 O 2 concentration 1.0 mol l −1 , modification temperature and time 30.0 °C and 4.0 h. • Adsorption capacity of the modified GFAC increased by 500.0% (caramel), 59.7% (methylene blue), 32.5% (phenol), and 15.1% (I 2 ). • The pore structure parameters and surface oxygen groups changed in the modified GFAC. - Abstract: Granular fir-based activated carbon (GFAC) was modified with H 2 O 2 , and orthogonal array experimental design method was used to optimize the process. The properties of the original and modified GFAC were characterized by N 2 adsorption–desorption isotherms, Brunauer–Emmett–Teller (BET) equation, Barett–Joyner–Halenda (BJH) equation, field emission scanning electron microscopy (FESEM), and Fourier transform infrared spectroscopy (FT-IR) analysis, etc. When 10.00 g of GFAC with particle size of 0.25–0.85 mm was modified by 150.0 ml of aqueous H 2 O 2 solution, the optimized conditions were found to be as follows: aqueous H 2 O 2 solution concentration 1.0 mol·l −1 , modification temperature 30.0 °C, modification time 4.0 h. Modified under the optimized conditions, decolonization of caramel, methylene blue adsorption, phenol adsorption and iodine number of the modified GFAC increased by 500.0%, 59.7%, 32.5%, and 15.1%, respectively. The original and optimally modified GFAC exhibited adsorption isotherms of hybrid Type I–IV isotherms with H4 hysteresis. BET surface area, micropore area, total pore volume, micropore volume, and microporosity of the modified GFAC increased by 7.33%, 11.25%, 3.89%, 14.23%, 9.91%, respectively. Whereas the average pore width decreased by 3.16%. In addition, the amount of surface oxygen groups (such as carbonyl or carboxyl) increased in the modified GFAC

  3. Improved Chromatographic Bioavailability Estimations

    National Research Council Canada - National Science Library

    Dorsey, John

    1996-01-01

    .... Since the inception of reversed phase liquid chromatography there have been many attempts to correlate chromatographic retention with bioavailability and the most often used bulk measure, the octanol...

  4. ADSORPTION MALACHITE GREEN ON NATURAL ZEOLITE

    Directory of Open Access Journals (Sweden)

    Eko Ariyanto

    2012-02-01

    Full Text Available A natural zeolite was employed as adsorbent for reducing of malachite green from aqueous solution. A batch system was applied to study the adsorption of malachite green in single system on natural zeolite. The adsorption studies indicate that malachite green in single component system follows the second-order kinetics and the adsorption is diffusion process with two stages for malachite green. Malachite green adsorption isotherm follows the Langmuir model.

  5. Effects of chromatographic fractions of Euphorbia hirta on the rat ...

    African Journals Online (AJOL)

    The effects of the chromatographic fractions of Euphorbia hirta Linn on the serum biochemical parameters in rats were investigated. The ethanolic extract of this plant was subjected to chromatographic separation using the vacuum liquid chromatographic technique, a modified form of classical column chromatography.

  6. Fixed-bed adsorption separation of xylene isomers over sio2/silicallite-1 core-shell adsorbents

    KAUST Repository

    Khan, Easir A.

    2013-12-29

    SiO2/Silicalite-1 core-shell material has been demonstrated as potential shape selective adsorbent in gas phase separation of p-xylene from a mixture of p/o-xylene isomers. The core-shell composite comprised of large silica core and thin polycrystalline silicalite-1 shell which was synthesized via a self-assembly of silicalite-1 nanocrystals on core silica surface followed by a secondary seeded growth method. The core materials, SiO2 used in this study has mesoporosity with an average pore diameter of 60Å and hence offers no shape selectivity for xylene isomers. However, the shell, silicalite-1 contains rigid pore structures and preferentially adsorbs p-xylene from their isomers mixtures. A series of adsorption fixed bed breakthrough adsorption/desorption experiment was performed to obtain the equilibrium isotherms and adsorption isotherm parameters of xylene isomers. The equilibrium isotherms of xylene isomers follow the Langmuir\\'s model. A chromatographic adsorption model has been used to describe the fixed-bed breakthrough profiles of xylene isomers. The model has successfully predicted the responses of the binary mixtures of p/o-xylene isomers. The SiO2/silicalite-1 core-shell adsorbents have shown para-selectivity as high as 15. © Bangladesh Uni. of Engg. & Tech.

  7. Automation of data processing and calculation of retention parameters and thermodynamic data for gas chromatography

    Science.gov (United States)

    Makarycheva, A. I.; Faerman, V. A.

    2017-02-01

    The analyses of automation patterns is performed and the programming solution for the automation of data processing of the chromatographic data and their further information storage with a help of a software package, Mathcad and MS Excel spreadsheets, is developed. The offered approach concedes the ability of data processing algorithm modification and does not require any programming experts participation. The approach provides making a measurement of the given time and retention volumes, specific retention volumes, a measurement of differential molar free adsorption energy, and a measurement of partial molar solution enthalpies and isosteric heats of adsorption. The developed solution is focused on the appliance in a small research group and is tested on the series of some new gas chromatography sorbents. More than 20 analytes were submitted to calculation of retention parameters and thermodynamic sorption quantities. The received data are provided in the form accessible to comparative analysis, and they are able to find sorbing agents with the most profitable properties to solve some concrete analytic issues.

  8. Selective adsorption behavior of Cd(II) ion imprinted polymers synthesized by microwave-assisted inverse emulsion polymerization: Adsorption performance and mechanism

    International Nuclear Information System (INIS)

    Zhu, Fang; Li, Luwei; Xing, Junde

    2017-01-01

    Highlights: • Microwave assisted inverse emulsion polymerization was applied to prepare Cd(II) imprinted polymers. • The adsorption capacity was evaluated by static adsorption experiments. • Pseudo-second-order model and Langmuir adsorption isotherm model had the best agreement with the experimental data. • The adsorption was a spontaneous and endothermic process. • Cd(II) imprinted polymers have specific identification for Cd(II). - Abstract: Microwave-assisted inverse emulsion polymerization method was used to prepare Cd(II) imprinted polymer (IIP) by using β-cyclodextrin (β-CD) and acrylamide (AM) as functional monomer, epichlorohydrin (ECH) as crossing-linking agent, ammonium persulfate as initiator. The Cd(II) imprinted polymer was characterized by SEM, FTIR and TGA. The influences of initial concentration of Cd(II), pH values, temperature, time and competitive ions on adsorption capacity and recognition properties are investigated. Under the optimal conditions, the adsorption capacity could reach 107 mg/g. Furthermore, pseudo first order kinetic model, pseudo second order kinetic model and intra-particular diffusion model were used to describe the adsorption kinetic behavior. Results showed that the pseudo-second-order model (R"2 0.9928–0.9961) had the best agreement with the experimental data. Langmuir adsorption isotherm model described the experimental data well, which indicated that adsorption was mainly monolayer absorption. Moreover, the study of adsorption thermodynamics (ΔG"0 0, ΔS"0 > 0) suggested that the adsorption process was a spontaneous and endothermic process. Competitive selectivity experiment revealed that imprinted polymer could selectively recognize Cd(II). It provides a new idea for removing Cd(II) from aqueous solution.

  9. CONTAMINANT ADSORPTION AND OXIDATION VIA FENTON REACTION

    Science.gov (United States)

    A ground water treatment process is proposed involving two cgemical processes: adsorption and oxidation. Adsorption of an organic compound onto granulated activated carbon (GAC) containing iron conveniently results in immobilizing and concentrating contaminants from the ground w...

  10. Effects of aging process on adsorption-desorption and bioavailability of fomesafen in an agricultural soil amended with rice hull biochar

    Institute of Scientific and Technical Information of China (English)

    Mahdi Safaei Khorram; Dunli Lin; Qian Zhang; Yuan Zheng; Hua Fang; Yunlong Yu

    2017-01-01

    Biochar has been introduced as an acceptable soil amendment due to its environmental benefits such as sequestering soil contaminants.However,the aging process in biochar amended soil probably decreases the adsorption capacity of biochar through changing its physico-chemical properties.Adsorption,leaching and bioavailability of fomesafen to corn in a Chinese soil amended by rice hull biochar after 0,30,90 and 180 days were investigated.Results showed that the addition of 0.5%-2% fresh biochar significantly increases the adsorption of fomesafen 4-26 times compare to unamended soil due to higher SSA of biochar.Biochar amendment also decreases fomesafen concentration in soil pore water by 5%-23% resulting lower risk of the herbicide for cultivated plants.However,the aging process decreased the adsorption capacity ofbiochar since the adsorption coefficient values which was 1.9-12.4 in 0.5%-2% fresh biochar amended soil,declined to 1.36-4.16,1.13-2.78 and 0.95-2.31 in 1,3 and 6-month aged treatments,respectively.Consequently,higher desorption,leaching and bioavailable fraction of fomesafen belonged to 6-month aged treatment.Nevertheless,rice hull biochar was effective for sequestering fomesafen as the adsorption capacity of biochar amended soil after 6 months of aging was still 2.5-5 times higher compared to that of unamended soil.

  11. Removal of inhibitors from pre-hydrolysis liquor of kraft-based dissolving pulp production process using adsorption and flocculation processes.

    Science.gov (United States)

    Liu, Xin; Fatehi, Pedram; Ni, Yonghao

    2012-07-01

    A process for removing inhibitors from pre-hydrolysis liquor (PHL) of a kraft-based dissolving pulp production process by adsorption and flocculation, and the characteristics of this process were studied. In this process, industrially produced PHL was treated with unmodified and oxidized activated carbon as an absorbent and polydiallyldimethylammonium chloride (PDADMAC) as a flocculant. The overall removal of lignin and furfural in the developed process was 83.3% and 100%, respectively, while that of hemicelluloses was 32.7%. These results confirmed that the developed process can remove inhibitors from PHL prior to producing value-added products, e.g. ethanol and xylitol via fermentation. Copyright © 2012 Elsevier Ltd. All rights reserved.

  12. Endocrine disruptors compounds, pharmaceuticals and personal care products in urban wastewater: implications for agricultural reuse and their removal by adsorption process.

    Science.gov (United States)

    Grassi, Mariangela; Rizzo, Luigi; Farina, Anna

    2013-06-01

    In the last years, a lot of emerging contaminants, such as, endocrine disruptors compounds (EDCs), pharmaceuticals, and personal care products (PPCPs) have been detected in wastewater. Because of their toxicity and possible adverse effects on the environment and humans, their release from urban wastewater treatment plants (UWWTPs) effluents should be minimized, particularly when a wastewater reuse for crops irrigation is expected. Many processes have been investigated for advanced treatment of UWWTP effluents as well as for emerging contaminant degradation; among these, adsorption process was successfully used to remove EDCs and PPCPs from wastewater. This article shortly reviews EDCs and PPCPs removal from UWWTP effluents by adsorption process using conventional and non-conventional adsorbents. The fate of EDCs and PPCPs in UWWTPs and the implications for agricultural wastewater reuse has been addressed too. In spite of the adsorption process looking to be a valuable alternative to other advanced technologies for the removal of emerging contaminants from wastewater, some gaps still remain to evaluate the actual feasibility at full scale. However, according to a few studies available in scientific literature on the use of both powdered activated carbon and granular activated carbon at full scale, adsorption process by activated carbon is a promising, potentially effective, and economically feasible solution for producing safe wastewater for agricultural reuse.

  13. Dynamic analysis of the CTAR (constant temperature adsorption refrigeration) cycle

    International Nuclear Information System (INIS)

    Hassan, H.Z.; Mohamad, A.A.; Al-Ansary, H.A.; Alyousef, Y.M.

    2014-01-01

    The basic SAR (solar-driven adsorption refrigeration) machine is an intermittent cold production system. Recently, the CO-SAR (continuous operation solar-powered adsorption refrigeration) system is developed. The CO-SAR machine is based on the theoretical CTAR (constant temperature adsorption refrigeration) cycle in which the adsorption process takes place at a constant temperature that equals the ambient temperature. Practically, there should be a temperature gradient between the adsorption bed and the surrounding atmosphere to provide a driving potential for heat transfer. In the present study, the dynamic analysis of the CTAR cycle is developed. This analysis provides a comparison between the theoretical and the dynamic operation of the CTAR cycle. The developed dynamic model is based on the D-A adsorption equilibrium equation and the energy and mass balances in the adsorption reactor. Results obtained from the present work demonstrate that, the idealization of the constant temperature adsorption process in the theoretical CTAR cycle is not far from the real situation and can be approached. Furthermore, enhancing the heat transfer between the adsorption bed and the ambient during the bed pre-cooling process helps accelerating the heat rejection process from the adsorption reactor and therefore approaching the isothermal process. - Highlights: • The dynamic analysis of the CTAR (constant temperature adsorption refrigeration) cycle is developed. • The CTAR theoretical and dynamic cycles are compared. • The dynamic cycle approaches the ideal one by enhancing the bed precooling

  14. Large scale chromatographic separations using continuous displacement chromatography (CDC)

    International Nuclear Information System (INIS)

    Taniguchi, V.T.; Doty, A.W.; Byers, C.H.

    1988-01-01

    A process for large scale chromatographic separations using a continuous chromatography technique is described. The process combines the advantages of large scale batch fixed column displacement chromatography with conventional analytical or elution continuous annular chromatography (CAC) to enable large scale displacement chromatography to be performed on a continuous basis (CDC). Such large scale, continuous displacement chromatography separations have not been reported in the literature. The process is demonstrated with the ion exchange separation of a binary lanthanide (Nd/Pr) mixture. The process is, however, applicable to any displacement chromatography separation that can be performed using conventional batch, fixed column chromatography

  15. Thermodynamic study on the adsorption of strontium on polyantimonic acid exchanger

    International Nuclear Information System (INIS)

    Li Mingyu; Chen Jing; Wang Jianchen; Zhao Jing

    2007-01-01

    The adsorption of strontium on the polyantimonic acid adsorbent was studied. The equilibrium data for the adsorption of strontium on polyantimonic acid exchanger from aqueous solutions were obtained and correlated with Langmuir-type and Freundlich-type isotherm equation within the temperature range of 293-323 K and the experimental concentration range. Freundlich adsorption isotherms and the isosteric enthalpy indicate that the adsorption of strontium on polyantimonic acid is an endothermic process from aqueous solutions. The enthalpy, free energy, and entropy of adsorption were calculated. The results indicate that the adsorption process is a complex interaction of physical and chemical processes. The adsorption behaviors were reasonably explained. (authors)

  16. Treatment of Reactive Black 5 by combined electrocoagulation-granular activated carbon adsorption-microwave regeneration process

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Shih-Hsien, E-mail: shchang@csmu.edu.tw [Department of Public Health, Chung-Shan Medical University, 110 Chen-Kuo N. Road, Taichung 402, Taiwan (China); Wang, Kai-Sung; Liang, Hsiu-Hao; Chen, Hsueh-Yu; Li, Heng-Ching; Peng, Tzu-Huan [Department of Public Health, Chung-Shan Medical University, 110 Chen-Kuo N. Road, Taichung 402, Taiwan (China); Su, Yu-Chun; Chang, Chih-Yuan [Institute of Environmental Engineering, National Chiao-Tung University, Hsinchu, 300, Taiwan (China)

    2010-03-15

    Treatment of an azo dye, Reactive Black 5 (RB5) by combined electrocoagulation-activated carbon adsorption-microwave regeneration process was evaluated. The toxicity was also monitored by the Vibrio fischeri light inhibition test. GAC of 100 g L{sup -1} sorbed 82% of RB5 (100 mg L{sup -1}) within 4 h. RB5-loaded GAC was not effectively regenerated by microwave irradiation (800 W, 30 s). Electrocoagulation showed high decolorization of RB5 within 8 min at pH{sub 0} of 7, current density of 277 A m{sup -2}, and NaCl of 1 g L{sup -1}. However, 61% COD residue remained after treatment and toxicity was high (100% light inhibition). GAC of 20 g L{sup -1} effectively removed COD and toxicity of electrocoagulation-treated solution within 4 h. Microwave irradiation effectively regenerated intermediate-loaded GAC within 30 s at power of 800 W, GAC/water ratio of 20 g L{sup -1}, and pH of 7.8. The adsorption capacity of GAC for COD removal from the electrocoagulation-treated solution did not significantly decrease at the first 7 cycles of adsorption/regeneration. The adsorption capacity of GAC for removal of both A{sub 265} (benzene-related groups) and toxicity slightly decreased after the 6th cycle.

  17. Treatment of Reactive Black 5 by combined electrocoagulation-granular activated carbon adsorption-microwave regeneration process

    International Nuclear Information System (INIS)

    Chang, Shih-Hsien; Wang, Kai-Sung; Liang, Hsiu-Hao; Chen, Hsueh-Yu; Li, Heng-Ching; Peng, Tzu-Huan; Su, Yu-Chun; Chang, Chih-Yuan

    2010-01-01

    Treatment of an azo dye, Reactive Black 5 (RB5) by combined electrocoagulation-activated carbon adsorption-microwave regeneration process was evaluated. The toxicity was also monitored by the Vibrio fischeri light inhibition test. GAC of 100 g L -1 sorbed 82% of RB5 (100 mg L -1 ) within 4 h. RB5-loaded GAC was not effectively regenerated by microwave irradiation (800 W, 30 s). Electrocoagulation showed high decolorization of RB5 within 8 min at pH 0 of 7, current density of 277 A m -2 , and NaCl of 1 g L -1 . However, 61% COD residue remained after treatment and toxicity was high (100% light inhibition). GAC of 20 g L -1 effectively removed COD and toxicity of electrocoagulation-treated solution within 4 h. Microwave irradiation effectively regenerated intermediate-loaded GAC within 30 s at power of 800 W, GAC/water ratio of 20 g L -1 , and pH of 7.8. The adsorption capacity of GAC for COD removal from the electrocoagulation-treated solution did not significantly decrease at the first 7 cycles of adsorption/regeneration. The adsorption capacity of GAC for removal of both A 265 (benzene-related groups) and toxicity slightly decreased after the 6th cycle.

  18. Selective adsorption behavior of Cd(II) ion imprinted polymers synthesized by microwave-assisted inverse emulsion polymerization: Adsorption performance and mechanism

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Fang, E-mail: zhufang@tyut.edu.cn [College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan, Shanxi, 030024 (China); Li, Luwei [College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan, Shanxi, 030024 (China); Xing, Junde [College of Chemistry and Chemical Engineering, Taiyuan University of Technology, Taiyuan, Shanxi, 030024 (China)

    2017-01-05

    Highlights: • Microwave assisted inverse emulsion polymerization was applied to prepare Cd(II) imprinted polymers. • The adsorption capacity was evaluated by static adsorption experiments. • Pseudo-second-order model and Langmuir adsorption isotherm model had the best agreement with the experimental data. • The adsorption was a spontaneous and endothermic process. • Cd(II) imprinted polymers have specific identification for Cd(II). - Abstract: Microwave-assisted inverse emulsion polymerization method was used to prepare Cd(II) imprinted polymer (IIP) by using β-cyclodextrin (β-CD) and acrylamide (AM) as functional monomer, epichlorohydrin (ECH) as crossing-linking agent, ammonium persulfate as initiator. The Cd(II) imprinted polymer was characterized by SEM, FTIR and TGA. The influences of initial concentration of Cd(II), pH values, temperature, time and competitive ions on adsorption capacity and recognition properties are investigated. Under the optimal conditions, the adsorption capacity could reach 107 mg/g. Furthermore, pseudo first order kinetic model, pseudo second order kinetic model and intra-particular diffusion model were used to describe the adsorption kinetic behavior. Results showed that the pseudo-second-order model (R{sup 2} 0.9928–0.9961) had the best agreement with the experimental data. Langmuir adsorption isotherm model described the experimental data well, which indicated that adsorption was mainly monolayer absorption. Moreover, the study of adsorption thermodynamics (ΔG{sup 0} < 0, ΔH{sup 0} > 0, ΔS{sup 0} > 0) suggested that the adsorption process was a spontaneous and endothermic process. Competitive selectivity experiment revealed that imprinted polymer could selectively recognize Cd(II). It provides a new idea for removing Cd(II) from aqueous solution.

  19. Adsorption of Phthalates on Municipal Activated Sludge

    Directory of Open Access Journals (Sweden)

    Hongbo Wang

    2017-01-01

    Full Text Available Phthalates (PAEs are commonly detected in discharge of municipal wastewater treatment plants. This study investigated the removal of six typical PAEs with activated sludge and the results revealed that concentrations of aqueous PAEs decreased rapidly during the beginning 15 min and reached equilibrium within 2 hours due to the adsorption of activated sludge. The process followed first-order kinetic equation, except for dioctyl phthalate (DOP. The factors influencing the adsorption were also evaluated and it was found that higher initial concentrations of PAEs enhanced the removal but affected little the adsorption equilibrium time. The adsorption of PAEs favored lower operating temperature (the optimum temperature was approximately 25°C in this research, which could be an exothermic process. Additionally, lower aqueous pH could also benefit the adsorption.

  20. Adsorption of homogeneous catalysts over functionalized silica adsorbents: Modelling of the competitive adsorption isotherms

    NARCIS (Netherlands)

    Djekic, T.; van der Ham, Aloysius G.J.; Bosch, H.; de Haan, A.B.

    2007-01-01

    The reverse flow adsorption (RFA) was proposed as a novel concept for the recovery of homogeneous catalysts. For the modelling of the RFA process it is important to have a good description of the adsorption of various complex species present in the solution. Therefore the goal of this paper is to

  1. Adsorption of homogeneous catalysts over functionalized silica adsorbents : modelling of the competitive adsorption isotherms

    NARCIS (Netherlands)

    Djekic, T.; Ham, van der A.G.J.; Bosch, Hans; Haan, de A.B.

    2007-01-01

    The reverse flow adsorption (RFA) was proposed as a novel concept for the recovery of homogeneous catalysts. For the modelling of the RFA process it is important to have a good description of the adsorption of various complex species present in the solution. Therefore the goal of this paper is to

  2. Investigation of uranium (VI) adsorption by polypyrrole

    Energy Technology Data Exchange (ETDEWEB)

    Abdi, S. [Faculty of Chemical, Petroleum and Gas Engineering, Semnan University, Semnan 35195-363 (Iran, Islamic Republic of); Nasiri, M., E-mail: mnasiri@semnan.ac.ir [Faculty of Chemical, Petroleum and Gas Engineering, Semnan University, Semnan 35195-363 (Iran, Islamic Republic of); Mesbahi, A. [Faculty of Chemical, Petroleum and Gas Engineering, Semnan University, Semnan 35195-363 (Iran, Islamic Republic of); Khani, M.H. [Nuclear Fuel Cycle Research School, Nuclear Science and Technology Research Institute, Tehran, 14395-836 (Iran, Islamic Republic of)

    2017-06-15

    Highlights: • The adsorbent (polypyrrole) was synthesized by a chemical method using PEG, DBSNa and CTAB as the surfactant. • The solution pH was one of the most important parameters affecting the adsorption of uranium. • The CTAB provided higher removal percentage compared with the other surfactants. • The maximum adsorption capacity obtained from Langmuir isotherm was 87.72 mg/g. • The pseudo second-order model fitted well with the adsorption kinetic of polypyrrole to uranium. - Abstract: The purpose of this study was to investigate the adsorption of uranium (VI) ions on the polypyrrole adsorbent. Polypyrrole was synthesized by a chemical method using polyethylene glycol, sodium dodecylbenzenesulfonate, and cetyltrimethylammonium bromide as the surfactant and iron (III) chloride as an oxidant in the aqueous solution. The effect of various surfactants on the synthesized polymers and their performance as the uranium adsorbent were investigated. Adsorbent properties were characterized by scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FTIR) techniques. The effect of different parameters such as pH, contact time, initial metal ion concentrations, adsorbent dose, and the temperature was investigated in the batch system for uranium adsorption process. It has been illustrated that the adsorption equilibrium time is 7 min. The results showed that the Freundlich model had the best agreement and the maximum adsorption capacity of polypyrrole for uranium (VI) was determined 87.72 mg/g from Langmuir isotherm. In addition, the mentioned adsorption process was fast and the kinetic data were fitted to the Pseudo first and second order models. The adsorption kinetic data followed the pseudo-second-order kinetic model. Moreover, the thermodynamic parameters ΔG{sup 0}, ΔH{sup 0} and ΔS{sup 0} showed that the uranium adsorption process by polypyrrole was endothermic and spontaneous.

  3. Probabilistic peak detection for first-order chromatographic data

    NARCIS (Netherlands)

    Lopatka, M.; Vivó-Truyols, G.; Sjerps, M.J.

    2014-01-01

    We present a novel algorithm for probabilistic peak detection in first-order chromatographic data. Unlike conventional methods that deliver a binary answer pertaining to the expected presence or absence of a chromatographic peak, our method calculates the probability of a point being affected by

  4. Chromatographic fingerprinting: An innovative approach for food 'identitation' and food authentication - A tutorial.

    Science.gov (United States)

    Cuadros-Rodríguez, Luis; Ruiz-Samblás, Cristina; Valverde-Som, Lucia; Pérez-Castaño, Estefanía; González-Casado, Antonio

    2016-02-25

    Fingerprinting methods describe a variety of analytical methods that provide analytical signals related to the composition of foodstuffs in a non-selective way such as by collecting a spectrum or a chromatogram. Mathematical processing of the information in such fingerprints may allow the characterisation and/or authentication of foodstuffs. In this context, the particular meaning of 'fingerprinting', in conjunction with 'profiling', is different from the original meanings used in metabolomics. This fact has produced some confusion with the use of these terms in analytical papers. Researchers coming from the metabolomic field could use 'profiling' or 'fingerprinting' on a different way to researchers who are devoted to food science. The arrival of an eclectic discipline, named 'foodomics' has not been enough to allay this terminological problem, since the authors keep on using the terms with both meanings. Thus, a first goal of this tutorial is to clarify the difference between both terms. In addition, the chemical approaches for food authentication, i.e., chemical markers, component profiling and instrumental fingerprinting, have been described. A new term, designated as 'food identitation', has been introduced in order to complete the life cycle of the chemical-based food authentication process. Chromatographic fingerprinting has been explained in detail and some strategies which could be applied has been clarified and discussed. Particularly, the strategies for chromatographic signals acquisition and chromatographic data handling are unified in a single framework. Finally, an overview about the applications of chromatographic (GC and LC) fingerprints in food authentication using different chemometric techniques has been included. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Standard Format for Chromatographic-polarimetric System small samples assessment

    International Nuclear Information System (INIS)

    Naranjo, S.; Fajer, V.; Fonfria, C.; Patinno, R.

    2012-01-01

    The treatment of samples containing optically active substances to be evaluated as part of quality control of raw material entering industrial process, and also during the modifications exerted on it to obtain the desired final composition is still and unsolved problem for many industries. That is the case of sugarcane industry. Sometimes the troubles implied are enlarged because samples to be evaluated are not bigger than one milliliter. Reduction of gel beds in G-10 and G-50 chromatographic columns having an inner diameter of 16 mm, instead of 25, and bed heights adjustable to requirements by means of sliding stoppers to increase analytical power were evaluated with glucose and sucrose standards in concentrations from 1 to 10 g/dL, using aliquots of 1 ml without undesirable dilutions that could affect either detection or chromatographic profile. Assays with seaweed extracts gave good results that are shown. It is established the advantage to know concentration of a separated substance by the height of its peak and the savings in time and reagents resulting . Sample expanded uncertainty in both systems is compared. It is also presented several programs for data acquisition, storing and processing. (Author)

  6. Cadmium adsorption by coal combustion ashes-based sorbents-Relationship between sorbent properties and adsorption capacity

    Energy Technology Data Exchange (ETDEWEB)

    Balsamo, Marco; Di Natale, Francesco; Erto, Alessandro; Lancia, Amedeo [Dipartimento di Ingegneria Chimica, Universita degli Studi di Napoli Federico II, Piazzale Vincenzo Tecchio 80, 80125 Napoli (Italy); Montagnaro, Fabio, E-mail: fabio.montagnaro@unina.it [Dipartimento di Chimica, Universita degli Studi di Napoli Federico II, Complesso Universitario di Monte Sant' Angelo, 80126 Napoli (Italy); Santoro, Luciano [Dipartimento di Chimica, Universita degli Studi di Napoli Federico II, Complesso Universitario di Monte Sant' Angelo, 80126 Napoli (Italy)

    2011-03-15

    A very interesting possibility of coal combustion ashes reutilization is their use as adsorbent materials, that can also take advantage from proper beneficiation techniques. In this work, adsorption of cadmium from aqueous solutions was taken into consideration, with the emphasis on the intertwining among waste properties, beneficiation treatments, properties of the beneficiated materials and adsorption capacity. The characterization of three solid materials used as cadmium sorbents (as-received ash, ash sieved through a 25 {mu}m-size sieve and demineralized ash) was carried out by chemical analysis, infrared spectroscopy, laser granulometry and mercury porosimetry. Cadmium adsorption thermodynamic and kinetic tests were conducted at room temperature, and test solutions were analyzed by atomic absorption spectrophotometry. Maximum specific adsorption capacities resulted in the range 0.5-4.3 mg g{sup -1}. Different existing models were critically considered to find out an interpretation of the controlling mechanism for adsorption kinetics. In particular, it was observed that for lower surface coverage the adsorption rate is governed by a linear driving force while, once surface coverage becomes significant, mechanisms such as the intraparticle micropore diffusion may come into play. Moreover, it was shown that both external fluid-to-particle mass transfer and macropore diffusion hardly affect the adsorption process, which was instead regulated by intraparticle micropore diffusion: characteristic times for this process ranged from 4.1 to 6.1 d, and were fully consistent with the experimentally observed equilibrium times. Results were discussed in terms of the relationship among properties of beneficiated materials and cadmium adsorption capacity. Results shed light on interesting correlations among solid properties, cadmium capture rate and maximum cadmium uptake.

  7. Adsorption performance of silver-loaded activated carbon fibers

    Directory of Open Access Journals (Sweden)

    Yan Xue-Feng

    2018-01-01

    Full Text Available Silver-loaded activated carbon fiber is prepared, and its adsorption performance is studied experimentally using five methylene blue solutions with different concentrations under three different temperature conditions. The adsorption tests show that fibers adsorption increase as the increase of temperature, and there is an optimal value for solution concentration, beyond which its adsorption will de-crease. Fibers isothermal adsorption to methylene blue is different from those by the monolayer adsorption by Langmuir model and the multilayer adsorption by Freundlich model. Through the analysis of thermodynamic parameters, Gibbs free energy, standard entropy, and standard enthalpy, it is found that the fibers adsorption to methylene blue is an exothermic process of physical adsorption.

  8. Adsorption of dyes onto activated carbon cloth: using QSPRs as tools to approach adsorption mechanisms.

    Science.gov (United States)

    Metivier-Pignon, Hélène; Faur, Catherine; Le Cloirec, Pierre

    2007-01-01

    The present study aimed to investigate the adsorption of dyes onto activated carbon cloths. Kinetics and isotherms were studied based on results of batch reactors to constitute databases for the adsorption rates and capacities of 22 commercial dyes. Added to a qualitative analysis of experimental results, quantitative structure property relationships (QSPRs) were used to determine the structural features that influence most adsorption processes. QSPRs consisted of multiple linear regressions correlating adsorption parameters with molecular connectivity indices (MCIs) as molecular descriptors. Results related to adsorption kinetics showed that the size of molecules was the significant feature, the high order MCIs involved in QSPRs indicating the influence of a critical size on adsorption rate. Improved statistical fits were obtained when the database was divided according to the chemical classes of dyes. As regards to adsorption isotherms, their particular form led to the use of saturation capacity as the adsorption parameter. By contrast with adsorption kinetics, molecular overcrowding seemed to be of less influence on adsorption equilibrium. In this case, MCIs included in the QSPR were more related to details of the molecular structure. The robustness of the QSPR assessed for azo dyes was studied for the other dyes. Although the small size of the database limited predictive ability, features relevant to the influence of the database composition on QSPRs have been highlighted.

  9. Modification process optimization, characterization and adsorption property of granular fir-based activated carbon

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Congjin, E-mail: gxdxccj@163.com [School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004 (China); Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, Guangxi University, Nanning 530004 (China); Li, Xin [School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004 (China); Tong, Zhangfa [School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004 (China); Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, Guangxi University, Nanning 530004 (China); Li, Yue [School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004 (China); Li, Mingfei [Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083 (China)

    2014-10-01

    Highlights: • Granular fir-based activated carbon (GFAC) was modified with H{sub 2}O{sub 2}. • Orthogonal array design method was used to optimize the modification process. • Optimized parameters were: aqueous H{sub 2}O{sub 2} concentration 1.0 mol l{sup −1}, modification temperature and time 30.0 °C and 4.0 h. • Adsorption capacity of the modified GFAC increased by 500.0% (caramel), 59.7% (methylene blue), 32.5% (phenol), and 15.1% (I{sub 2}). • The pore structure parameters and surface oxygen groups changed in the modified GFAC. - Abstract: Granular fir-based activated carbon (GFAC) was modified with H{sub 2}O{sub 2}, and orthogonal array experimental design method was used to optimize the process. The properties of the original and modified GFAC were characterized by N{sub 2} adsorption–desorption isotherms, Brunauer–Emmett–Teller (BET) equation, Barett–Joyner–Halenda (BJH) equation, field emission scanning electron microscopy (FESEM), and Fourier transform infrared spectroscopy (FT-IR) analysis, etc. When 10.00 g of GFAC with particle size of 0.25–0.85 mm was modified by 150.0 ml of aqueous H{sub 2}O{sub 2} solution, the optimized conditions were found to be as follows: aqueous H{sub 2}O{sub 2} solution concentration 1.0 mol·l{sup −1}, modification temperature 30.0 °C, modification time 4.0 h. Modified under the optimized conditions, decolonization of caramel, methylene blue adsorption, phenol adsorption and iodine number of the modified GFAC increased by 500.0%, 59.7%, 32.5%, and 15.1%, respectively. The original and optimally modified GFAC exhibited adsorption isotherms of hybrid Type I–IV isotherms with H4 hysteresis. BET surface area, micropore area, total pore volume, micropore volume, and microporosity of the modified GFAC increased by 7.33%, 11.25%, 3.89%, 14.23%, 9.91%, respectively. Whereas the average pore width decreased by 3.16%. In addition, the amount of surface oxygen groups (such as carbonyl or carboxyl) increased

  10. Adsorption of acid-extractable organics from oil sands process-affected water onto biomass-based biochar: Metal content matters.

    Science.gov (United States)

    Bhuiyan, Tazul I; Tak, Jin K; Sessarego, Sebastian; Harfield, Don; Hill, Josephine M

    2017-02-01

    The impact of biochar properties on acid-extractable organics (AEO) adsorption from oil sands process-affected water (OSPW) was studied. Biochar from wheat straw with the highest ash content (14%) had the highest adsorption capacity (0.59 mg/g) followed by biochar from pulp mill sludge, switchgrass, mountain pine, hemp shives, and aspen wood. The adsorption capacity had no obvious trend with surface area, total pore volume, bulk polarity and aromaticity. The large impact of metal content was consistent with the carboxylates (i.e., naphthenate species) in the OSPW binding to the metals (mainly Al and Fe) on the carbon substrate. Although the capacity of biochar is still approximately two orders of magnitude lower than that of a commercial activated carbon, confirming the property (i.e., metal content) that most influenced AEO adsorption, may allow biochar to become competitive with activated carbon after normalizing for cost, especially if this cost includes environmental impacts. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. A review on adsorption refrigeration technology and adsorption deterioration in physical adsorption systems

    Energy Technology Data Exchange (ETDEWEB)

    Wang, D.C.; Li, Y.H. [College of Electromechanical Engineering, Qingdao University, 308 Ningxia Road, Qingdao 266071 (China); Laboratory of Fiber Materials and Modern Textile, the Growing Base for State Key Laboratory, Qingdao University, 308 Ningxia Road, Qingdao 266071 (China); Li, D.; Zhang, J.P. [College of Electromechanical Engineering, Qingdao University, 308 Ningxia Road, Qingdao 266071 (China); Xia, Y.Z. [Laboratory of Fiber Materials and Modern Textile, the Growing Base for State Key Laboratory, Qingdao University, 308 Ningxia Road, Qingdao 266071 (China)

    2010-01-15

    As one kind of environmentally friendly refrigeration, the adsorption refrigeration has attracted many attentions in resent decades. This paper introduces the researches of adsorption refrigeration systems with the commonly used working pairs, advanced adsorption cycles, heat and mass transfer enhancement and attempts of adsorption refrigeration applications. Poor heat and mass transfer problem is a bottleneck to prevent the improvements of the adsorption refrigeration technique. Two ways to enhance the heat and mass transfer are discussed in this paper. The adsorption deterioration of adsorbent, another obstacle to physical adsorption refrigeration applications, is also pointed out. And the possible reasons and the possible methods are analyzed. (author)

  12. Effects of Organic Matter and Clay Content in Soil on Pesticide Adsorption Processes

    Directory of Open Access Journals (Sweden)

    Rada Đurović

    2009-01-01

    Full Text Available The effect of organic matter and clay content on the adsorption of atrazine, acetochlor, clomazone, pendimethalin and oxyfluorfen in soil samples was studied. In order to determine whether and to what degree different soil properties affect the process of determinationof selected pesticides, three soils with different clay and organic matter contents were used. An optimized liquid-solid extraction procedure followed by SPME measurement was applied to analyse the selected pesticides in soil samples. Detection and quantificationwere done by gas chromatography-mass spectrometry (GC/MS. Relative standard deviation (RSD values for multiple analyses of soil samples fortified at 30 μg/kg of each pesticide were below 19%. Limits of detection (LODs for all compounds studied were less than 2 μg/kg. The results indicate that soils with different physico-chemical properties have different effects on the adsorption of most pesticides, especially at higher concentration levels.

  13. Procedure for the production of PZC based chromatographic Tc-99m generator to be available for clinical application

    International Nuclear Information System (INIS)

    Le Van So; Pham Ngoc Dien; Truong Hong Nghia; Nguyen Thi Thu; Nguyen Cong Duc; Vo Thi Cam Hoa; Bui Van Cuong

    2004-01-01

    The chemical synthesis for the preparation of polymer compound of Zirconium (PZC) and the column pre-loading procedure for the preparation of PZC based chromatographic Tc-99m generators were described in detail. In-process documentation, flow-chart of process, specific Tc-99m generator designs and picturially illustrative description of Tc-99 generator production process were systematically reported. The column pre-loading procedure was highly evaluated as a competent technology for the preparation of PZC based Tc-99m chromatographic generator of high performance using (n,γ) 99 Mo of low specific radioactivity produced on low power research reactors. (author)

  14. Adsorption characteristics of brilliant green dye on kaolin

    International Nuclear Information System (INIS)

    Nandi, B.K.; Goswami, A.; Purkait, M.K.

    2009-01-01

    Experimental investigations were carried out to adsorb toxic brilliant green dye from aqueous medium using kaolin as an adsorbent. Characterization of kaolin is done by measuring: (i) particle size distribution using particle size analyzer, (ii) BET surface area using BET surface analyzer, and (iii) structural analysis using X-ray diffractometer. The effects of initial dye concentration, contact time, kaolin dose, stirring speed, pH and temperature were studied for the adsorption of brilliant green in batch mode. Adsorption experiments indicate that the extent of adsorption is strongly dependent on pH of solution. Free energy of adsorption (ΔG 0 ), enthalpy (ΔH 0 ) and entropy (ΔS 0 ) changes are calculated to know the nature of adsorption. The calculated values of ΔG 0 at 299 K and 323 K indicate that the adsorption process is spontaneous. The estimated values of ΔH 0 and ΔS 0 both show the negative sign, which indicate that the adsorption process is exothermic and the dye molecules are organized on the kaolin surface in less randomly fashion than in solution. The adsorption kinetic has been described by first-order, pseudo-second-order and intra-particle-diffusion models. It was observed that the rate of dye adsorption follows pseudo-second-order model for the dye concentration range studied in the present case. Standard adsorption isotherms were used to fit the experimental equilibrium data. It was found that the adsorption of brilliant green on kaolin follows the Langmuir adsorption isotherm

  15. Application of activated carbon derived from scrap tires for adsorption of Rhodamine B.

    Science.gov (United States)

    Li, Li; Liu, Shuangxi; Zhu, Tan

    2010-01-01

    Activated carbon derived from solid hazardous waste scrap tires was evaluated as a potential adsorbent for cationic dye removal. The adsorption process with respect to operating parameters was investigated to evaluate the adsorption characteristics of the activated pyrolytic tire char (APTC) for Rhodamine B (RhB). Systematic research including equilibrium, kinetics and thermodynamic studies was performed. The results showed that APTC was a potential adsorbent for RhB with a higher adsorption capacity than most adsorbents. Solution pH and temperature exert significant influence while ionic strength showed little effect on the adsorption process. The adsorption equilibrium data obey Langmuir isotherm and the kinetic data were well described by the pseudo second-order kinetic model. The adsorption process followed intra-particle diffusion model with more than one process affecting the adsorption process. Thermodynamic study confirmed that the adsorption was a physisorption process with spontaneous, endothermic and random characteristics.

  16. Adsorption of phenol and 1-naphthol onto XC-72 carbon

    Energy Technology Data Exchange (ETDEWEB)

    Zuo, Liming; Yu, Shaoming; Cheng, Leilei; Du, Erling [hefei university of technology, Hefei (China)

    2013-03-15

    XC-72 carbon (XC-72) was characterized by SEM, XPS, N{sub 2} adsorption-desorption, particle size distribution analysis and potentiometric acid-base titration. The adsorption of phenol and 1-naphthol on XC-72 was studied as a function of contact time, pH, adsorbent content and temperature. The kinetic adsorption data were described well by the pseudo-second-order model. The adsorption isotherms of phenol were described well by Freundlich model, while the adsorption isotherms of 1-naphthol were fitted well by Langmuir model. The results demonstrated that XC-72 had much higher adsorption capacity for 1-naphthol than for phenol. The adsorption thermodynamic data were calculated from the temperature-dependent adsorption isotherms at T=293, 313 and 333 K, and the results indicated that the adsorption of phenol was an exothermic process, whereas the adsorption of 1-naphthol was an endothermic process. XC-72 is a suitable material for the preconcentration of phenol and 1-naphthol from large volumes of aqueous solutions.

  17. Adsorptive removal of bisphenol A using synthesized magnetite nanoparticles

    Science.gov (United States)

    Orimolade, B. O.; Adekola, F. A.; Adebayo, G. B.

    2018-03-01

    Bisphenol A (BPA) is an organic compound which is often used as plasticizer and has been reported to be hazardous to man. In this research the efficiency of removal of BPA from water by magnetite through adsorption process was studied. The magnetite was synthesized using reverse co-precipitation method and fully characterized. Various physicochemical parameters affecting the adsorption of BPA using magnetite were studied as well. The optimum time for the adsorption process was found to be 60 min at pH of 6, adsorbent dose of 0.2 g and 50 ppm of BPA. The adsorption data were fitted by the Langmuir adsorption isotherm best with a regression value of 0.957. The R L value was 0.179 which revealed that the process is favorable. The Freundlich constant n which was 1.901 also revealed that the adsorption is normal and favorable. The data were in agreement with the pseudo-second-order kinetics with regression value of 0.98. From the thermodynamic studies, the process was found to be exothermic and the Gibb's free energy value which was negative showed that the adsorption was spontaneous. The synthesized magnetite therefore offers great potential for the remediation of bisphenol A-contaminated media.

  18. Phosphoryl functionalized mesoporous silica for uranium adsorption

    International Nuclear Information System (INIS)

    Xue, Guo; Yurun, Feng; Li, Ma; Dezhi, Gao; Jie, Jing; Jincheng, Yu; Haibin, Sun; Hongyu, Gong; Yujun, Zhang

    2017-01-01

    Highlights: • Phosphoryl functionalized mesoporous silica (TBP-SBA-15) is synthesized. • The amino and phosphoryl groups are successfully grafted on SBA-15. • TBP-SBA-15 has high and rapid uranium adsorption capacity in broad pH range. • The U(VI) adsorption of TBP-SBA-15 is spontaneous and belongs to chemical adsorption. - Abstract: Phosphoryl functionalized mesoporous silica (TBP-SBA-15) was synthesized by modified mesoporous silica with γ-amino propyl triethoxy silane and tributyl phosphate. The obtained samples were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), small angle X-ray diffraction (SAXRD), thermo-gravimetric/differential thermalanalyzer (TG/DTA), N_2 adsorption–desorption (BET) and Fourier transform infrared spectroscopy (FT-IR) techniques. Results showed that TBP-SBA-15 had large surface areas with ordered channel structure. Moreover, the effects of adsorption time, sorbent dose, solution pH, initial uranium concentration and temperature on the uranium adsorption behaviors were investigated. TBP-SBA-15 showed a high uranium adsorption capacity in a broad range of pH values. The U(VI) adsorption rate of TBP-SBA-15 was fast and nearly achieved completion in 10 min with the sorbent dose of 1 g/L. The U(VI) adsorption of TBP-SBA-15 followed the pseudo-second-order kinetic model and Freundlich isotherm model, indicating that the process was belonged to chemical adsorption. Furthermore, the thermodynamic parameters (ΔG"0, ΔH"0 and ΔS"0) confirmed that the adsorption process was endothermic and spontaneous.

  19. Phosphoryl functionalized mesoporous silica for uranium adsorption

    Energy Technology Data Exchange (ETDEWEB)

    Xue, Guo; Yurun, Feng; Li, Ma; Dezhi, Gao; Jie, Jing; Jincheng, Yu; Haibin, Sun [Key Laboratory for Liquid-Solid Structural Evolution & Processing of Materials of Ministry of Education, Shandong University, Jinan 250061 (China); Key Laboratory of Special Functional Aggregated Materials, Ministry of Education, Shandong University, Jinan 250061 (China); Hongyu, Gong, E-mail: gong_hongyu@163.com [Key Laboratory for Liquid-Solid Structural Evolution & Processing of Materials of Ministry of Education, Shandong University, Jinan 250061 (China); Key Laboratory of Special Functional Aggregated Materials, Ministry of Education, Shandong University, Jinan 250061 (China); Yujun, Zhang, E-mail: yujunzhangcn@163.com [Key Laboratory for Liquid-Solid Structural Evolution & Processing of Materials of Ministry of Education, Shandong University, Jinan 250061 (China); Key Laboratory of Special Functional Aggregated Materials, Ministry of Education, Shandong University, Jinan 250061 (China)

    2017-04-30

    Highlights: • Phosphoryl functionalized mesoporous silica (TBP-SBA-15) is synthesized. • The amino and phosphoryl groups are successfully grafted on SBA-15. • TBP-SBA-15 has high and rapid uranium adsorption capacity in broad pH range. • The U(VI) adsorption of TBP-SBA-15 is spontaneous and belongs to chemical adsorption. - Abstract: Phosphoryl functionalized mesoporous silica (TBP-SBA-15) was synthesized by modified mesoporous silica with γ-amino propyl triethoxy silane and tributyl phosphate. The obtained samples were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), small angle X-ray diffraction (SAXRD), thermo-gravimetric/differential thermalanalyzer (TG/DTA), N{sub 2} adsorption–desorption (BET) and Fourier transform infrared spectroscopy (FT-IR) techniques. Results showed that TBP-SBA-15 had large surface areas with ordered channel structure. Moreover, the effects of adsorption time, sorbent dose, solution pH, initial uranium concentration and temperature on the uranium adsorption behaviors were investigated. TBP-SBA-15 showed a high uranium adsorption capacity in a broad range of pH values. The U(VI) adsorption rate of TBP-SBA-15 was fast and nearly achieved completion in 10 min with the sorbent dose of 1 g/L. The U(VI) adsorption of TBP-SBA-15 followed the pseudo-second-order kinetic model and Freundlich isotherm model, indicating that the process was belonged to chemical adsorption. Furthermore, the thermodynamic parameters (ΔG{sup 0}, ΔH{sup 0} and ΔS{sup 0}) confirmed that the adsorption process was endothermic and spontaneous.

  20. Ten years of experience in extraction chromatographic processes for the recovery, separation and purification of actinides elements

    International Nuclear Information System (INIS)

    Madic, C.; Bourges, J.; Koehly, G.

    1984-06-01

    Ten years ago the extraction chromatographic technique was developed for preparative purposes and is now applied for all chemicals separations needed for the production of actinides isotopes. That technique appears to be simple and flexible. It can be used for the production of microgram to kilogram amounts of actinide isotopes. This paper focuses on the experience gained and describes some peculiar production of actinide isotopes solved by using extraction chromatographic technique. After a review of extracting molecules and equipment, treatment of irradiated targets (preparation of Pu 238 and removal of neptunium, production of Am 243 and Cm 244), recovery of actinides from alpha aqueous wastes (preparation of Am 241) and recovery of decay products from aged actinide stocks (recovery of Am 241 from Pu stocks, of U 234 from Pu 238 stocks) are described

  1. Effect of chromatographic separation on ASP system interface tension and the countermeasures

    Directory of Open Access Journals (Sweden)

    Jiawei REN

    2016-06-01

    Full Text Available Because of the existing chromatographic separation phenomenon, ASP flooding changes original nature of the system. Therefore, in laboratory ultra-low interfacial tension ASP system is preferred for sand packs flow experiment to research on the effect of chromatographic separation on ASP system interface tension. The two parameters of "breakthrough time" and "output difference" are used to describe the degree of chromatographic separation, and the produced fluid interfacial tensions at the outlet end at 120 min is measured. The research shows that there exists chromatographic separation between three chemicals of ASP system, with first polymer breakthrough and finally surfactant breakthrough; there is most serious chromatographic separation between surfactant and polymer, while minimum chromatographic separation between alkali and polymer; chromatographic separation makes ASP interfacial tension increase from 10-3 magnitude to 10-2 magnitude, affecting flooding effect of ASP system. Thus, reducing the loss of surfactant in the formation will be the main measure to reduce the degree of chromatographic separation. Using sophorolipid as sacrificial agent to replace part of the surfactant injected into formation before ASP system can effectively reduce the impact of chromatography separation and more effectively improve the ultimate recovery ratio.

  2. Process and device for the adsorptive separation of krypton from a krypton/nitrogen gas mixture

    International Nuclear Information System (INIS)

    Ringel, H.; Messler, M.

    1985-01-01

    The gas mixture flows through an adsorption column, which is filled with a means of adsorbing Krypton and nitrogen. The adsorption column is desorbed after adsorption of the gas components by a gaseous flushing material, which flows through the adsorption column in the same direction as the gas mixture. In order to achieve a high degree of separation, the adsorption material is loaded with nitrogen and Krypton from the gas inlet, where Krypton is only absorbed over part of the length of the whole column by the adsorption material. The part of the length is such that on desorption of the adsorption column with the flushing material at first only nitrogen and later only Krypton is obtained at the outlet of the adsorption column. (Waste gas system of a reprocession plant). (orig./HP) [de

  3. A Sensitive Method Approach for Chromatographic Analysis of Gas Streams in Separation Processes Based on Columns Packed with an Adsorbent Material

    Directory of Open Access Journals (Sweden)

    I. A. A. C. Esteves

    2016-01-01

    Full Text Available A sensitive method was developed and experimentally validated for the in-line analysis and quantification of gaseous feed and product streams of separation processes under research and development based on column chromatography. The analysis uses a specific mass spectrometry method coupled to engineering processes, such as Pressure Swing Adsorption (PSA and Simulated Moving Bed (SMB, which are examples of popular continuous separation technologies that can be used in applications such as natural gas and biogas purifications or carbon dioxide sequestration. These processes employ column adsorption equilibria on adsorbent materials, thus requiring real-time gas stream composition quantification. For this assay, an internal standard is assumed and a single-point calibration is used in a simple mixture-specific algorithm. The accuracy of the method was found to be between 0.01% and 0.25% (-mol for mixtures of CO2, CH4, and N2, tested as case-studies. This makes the method feasible for streams with quality control levels that can be used as a standard monitoring and analyzing procedure.

  4. Phosphorus recovery from biogas slurry by ultrasound/H2O2 digestion coupled with HFO/biochar adsorption process.

    Science.gov (United States)

    He, Xuemeng; Zhang, Tao; Ren, Hongqiang; Li, Guoxue; Ding, Lili; Pawlowski, Lucjan

    2017-02-01

    Phosphorus (P) recovery from biogas slurry has recently attracted considerable interest. In this work, ultrasound/H 2 O 2 digestion coupled with ferric oxide hydrate/biochar (HFO/biochar) adsorption process was performed to promote P dissolution, release, and recovery from biogas slurry. The results showed that the optimal total phosphorus release efficiency was achieved at an inorganic phosphorus/total phosphorus ratio of 95.0% at pH 4, 1mL of added H 2 O 2 , and ultrasonication for 30min. The P adsorption by the HFO/biochar followed pseudo second-order kinetics and was mainly controlled by chemical processes. The Langmuir-Freundlich model matched the experimental data best for P adsorption by HFO/biochar at 298 and 308K, whereas the Freundlich model matched best at 318K. The maximum amount of P adsorbed was 220mg/g. The process was endothermic, spontaneous, and showed an increase in disorder at the solid-liquid interface. The saturated adsorbed HFO/biochar continually releases P and is most suitable for use in an alkaline environment. The amount of P released reached 29.1mg/g after five extractions. P mass balance calculation revealed that 11.3% of the total P can be made available. Copyright © 2016. Published by Elsevier Ltd.

  5. Non-equilibrium dynamics of single polymer adsorption to solid surfaces

    International Nuclear Information System (INIS)

    Panja, Debabrata; Barkema, Gerard T; Kolomeisky, Anatoly B

    2009-01-01

    The adsorption of polymers to surfaces is crucial for understanding many fundamental processes in nature. Recent experimental studies indicate that the adsorption dynamics is dominated by non-equilibrium effects. We investigate the adsorption of a single polymer of length N to a planar solid surface in the absence of hydrodynamic interactions. We find that for weak adsorption energies the adsorption timescales ∼N (1+2ν)/(1+ν) , where ν is the Flory exponent for the polymer. We argue that in this regime the single chain adsorption is closely related to a field-driven polymer translocation through narrow pores. Surprisingly, for high adsorption energies the adsorption time becomes longer, as it scales as ∼N 1+ν , which is explained by strong stretching of the unadsorbed part of the polymer close to the adsorbing surface. These two dynamic regimes are separated by an energy scale that is characterized by non-equilibrium contributions during the adsorption process. (fast track communication)

  6. Automated-process gas-chromatograph system for use in accelerated corrosion testing of HTGR core-support posts

    International Nuclear Information System (INIS)

    Harper, R.E.; Herndon, P.G.

    1982-01-01

    An automated-process gas chromatograph is the heart of a gaseous-impurities-analysis system developed for the Oak Ridge National Laboratory Core Support Performance Test, at which graphite core-support posts for high-temperature gas-cooled fission reactors are being subjected to accelerated corrosion tests under tightly controlled conditions of atmosphere and temperature. Realistic estimation of in-core corrosion rates is critically dependent upon the accurate measurement of low concentrations of CO, CO 2 , CH 4 , H 2 , and O 2 in the predominantly helium atmosphere. In addition, the capital and labor investment associated with each test puts a premium upon the reliability of the analytical system, as excessive downtime or failure to obtain accurate data would result in unacceptable costs and schedule delays. After an extensive survey of available measurement techniques, gas chromatography was chosen for reasons of accuracy, flexibility, good-performance record, and cost

  7. Preparation of porous hollow silica spheres via a layer-by-layer process and the chromatographic performance

    Science.gov (United States)

    Wei, Xiaobing; Gong, Cairong; Chen, Xujuan; Fan, Guoliang; Xu, Xinhua

    2017-03-01

    Hollow silica spheres possessing excellent mechanical properties were successfully prepared through a layer-by-layer process using uniform polystyrene (PS) latex fabricated by dispersion polymerization as template. The formation of hollow SiO2 micro-spheres, structures and properties were observed in detail by zeta potential, SEM, TEM, FTIR, TGA and nitrogen sorption porosimetry. The results indicated that the hollow spheres were uniform with particle diameter of 1.6 μm and shell thickness of 150 nm. The surface area was 511 m2/g and the pore diameter was 8.36 nm. A new stationary phase for HPLC was obtained by using C18-derivatized hollow SiO2 micro-spheres as packing materials and the chromatographic properties were evaluated for the separation of some regular small molecules. The packed column showed low column pressure, high values of efficiency (up to about 43 000 plates/m) and appropriate asymmetry factors.

  8. Adsorption of Cr(III) on ozonised activated carbon. Importance of Cpi-cation interactions.

    Science.gov (United States)

    Rivera-Utrilla, J; Sánchez-Polo, M

    2003-08-01

    The adsorption of Cr(III) in aqueous solution was investigated on a series of ozonised activated carbons, analysing the effect of oxygenated surface groups on the adsorption process. A study was carried out to determine the adsorption isotherms and the influence of the pH on the adsorption of this metal. The adsorption capacity and affinity of the adsorbent for Cr(III) increased with the increase in oxygenated acid groups on the surface of the activated carbon. These findings imply that electrostatic-type interactions predominate in the adsorption process, although the adsorption of Cr(III) on the original (basic) carbon indicates that other forces also participate in the adsorption process. Thus, the ionic exchange of protons in the -Cpi-H3O(+) interaction for Cr(III) accounts for the adsorption of cationic species in basic carbons with positive charge density. Study of the influence of pH on the adsorption of Cr(III) showed that, in each system, the maximum adsorption occurred when the charge of the carbon surface was opposite that of the species of Cr(III) present at the pH of the experiment. These results confirmed that electrostatic interactions predominate in the adsorption process.

  9. Detection of irradiated fruits and vegetables by gas-chromatographic methods and electron spin-resonance

    Energy Technology Data Exchange (ETDEWEB)

    Farag, S.E.A. (National Centre for Radiation Research and Technology, Cairo (Egypt))

    1993-01-01

    Gas chromatographic methods detected some hydrocarbons esp. 17:1, 16:2, 15:0 and 14:1 in irradiated, Avocado, Papaya, Mangoes with 0.75, 1.5, 3.0 kGy and Apricot with 0.5 and 3.0 kGy. The detection of hydrocarbons was clearly at high doses but the low doses need more sensitive conditions using Liquid-Liquid-Gas chromatographic method as used here. Using Electron Spin-Resonance, produce a specific signal from irradiated onion (dried leaves) as well as apricot (hard coat of kernels) after some weeks of irradiation process but not clear with the other foodstuffs. (orig.)

  10. Iron modified bentonite: Enhanced adsorption performance for organic pollutant and its regeneration by heterogeneous visible light photo-Fenton process at circumneutral pH

    International Nuclear Information System (INIS)

    Gao, Yaowen; Guo, Yongzhao; Zhang, Hui

    2016-01-01

    Highlights: • The iron modification markedly improved the adsorption performance of FeMB for RhB. • LED lamps emitting white light were employed as visible light source. • FeMB can be regenerated by visible light photo-Fenton process at circumneutral pH. • FeMB can be reused repeatedly after the heterogeneous photo-Fenton regeneration. - Abstract: Iron modified bentonite (FeMB) was prepared and used as an inexpensive adsorbent to rapidly remove organic pollutant (Rhodamine B, RhB) from aqueous solution. The iron modification significantly improved the adsorption performance of FeMB for RhB and permitted an easy separation of FeMB from the treated effluent. The equilibrium adsorption studies indicated that the dye molecules obeyed Langmuir type of adsorption with the calculated maximum adsorption capacity of 168.13 mg g"−"1 for FeMB. The heterogeneous photo-Fenton process operated at circumneutral pH in the presence of visible light irradiation was found to be effective for the regeneration of the spent FeMB. Furthermore, the regeneration efficiency of as high as 79% was still achieved after 5 consecutive adsorption-regeneration cycles. Considering that, the visible light photo-Fenton approach could be applied as an excellent alternative for regenerating clay-based adsorbents by avoiding the use of dissolved iron salts.

  11. Kinetic and equilibrium study of uranium(VI) adsorption by Bacillus licheniformis

    International Nuclear Information System (INIS)

    Zheng-ji Yi; University of Science and Technology Beijing, Beijing; Jun Yao

    2012-01-01

    Uranium pollution is a severe problem worldwide. Biosorption has been proposed as one of the most promising technologies for the removal of uranyl cations. Here we report on the adsorption behavior of uranium(VI) [U(VI)] on Bacillus licheniformis biomass to explore the potentiality of its application in uranium contamination control. The adsorption equilibrium, adsorption kinetics, and effects of temperature, pH and initial biosorbent dosage on the adsorption equilibrium were investigated in detail through batch experiments. The adsorption process is pronouncedly affected by the solution pH and the optimum pH range should be 4.5-5.0.Temperature range from 25 to 45 deg C has a certain effect on the rate of biosorption, but little effect on the equilibrium adsorption capacity. The U(VI) percentage removal increased concurrently with increasing biomass dosage, whereas the adsorption capacity decreased. The process follows the Langmuir isotherm model. The adsorption kinetics data were fitted very well by the pseudo-first-order rate model. Finally, the calculation results of thermodynamic constant (ΔG a = 9.98 kJ/mol) reveal that the adsorption process can be identified as a spontaneous chemical process. The present results suggest that B. licheniformis has considerable potential for the removal of uranyl from aqueous solution. (author)

  12. Study of algae's adsorption to uranium ion in water solution

    International Nuclear Information System (INIS)

    Du Yang; Qiu Yongmei; Dan Guiping; Zhang Dong; Lei Jiarong

    2007-01-01

    The adsorption efficiencies of the algae to uranium ion were determined at various pH, uranium ion concentrations, adsorption temperatures and the species of coexisted metal ions, and the effect of coexisted metal ion on the adsorption efficiency was researched. The experimental results at pH= 5-8 are as follows. 1) the adsorption capacity is a constant to be about 1.40 μg/g for the Yantai red alga and the sea spinach, and is changeable in the range of 1.03-2.23 μg/g with pH for the sea edible fungus; 2) for the algae the adsorption efficiency and adsorption capacity are related to uranium ion concentration, and the maximum adsorption efficiency and capacity is 95.8% and 65.4 μg/g, respectively; 3) the adsorption process for 24 h is not dependent on the temperature; 4) the effect of the species of coexisted metal ions on the adsorption capacity of uranium ion is various with the time during adsorption process. (authors)

  13. Plasma exhaust purification by thermal swing adsorption: Experimental results and modeling

    International Nuclear Information System (INIS)

    Ricapito, I.; Malara, R.C.

    1996-01-01

    For several years at the Joint Research Centre-Ispra laboratories, cyclic adsorption processes have been developed for the purification of the plasma exhaust stream of a deuterium-tritium fusion reactor. A purification process consisting of two coupled thermal swing adsorption systems seemed to be the most convenient process. In this context, a screening study was carried out to select the most suitable adsorbent materials and appropriate working temperatures. This was mainly done by experimental measurements of adsorption isotherms of the single components of the plasma exhaust stream and by a careful evaluation of the multicomponent adsorption equilibria. Experiments on adsorption dynamics were carried out in a pilot plant to demonstrate the feasibility and to evaluate the performance of the process. The experimental apparatus was designed to treat gas mixture flow rates up to 20 to 30 standard temperature and pressure l/h. A mathematical model was developed and tested against the experimental results to describe the adsorption process and, in particular, to evaluate and to optimize the process cycle time. 27 refs., 4 figs., 9 tabs

  14. Adsorption of ammonium dinitramide (ADN) from aqueous solutions. 1. Adsorption on powdered activated charcoal.

    Science.gov (United States)

    Santhosh, G; Venkatachalam, S; Ninan, K N; Sadhana, R; Alwan, S; Abarna, V; Joseph, M A

    2003-03-17

    Investigations on the adsorption of ammonium dinitramide (NH(4)N(NO(2))(2)) (ADN) from aqueous solutions on powdered activated charcoal (PAC) were carried out in order to find out an effective and easier method of separating ADN from aqueous solutions. The effectiveness of PAC in the selective adsorption of ADN from aqueous solutions of ADN (ADN-F) and ADN in presence of sulfate (SO(4)(2-)) and nitrate (NO(3)(-)) ions (ADN-PS) was examined and compared using batch and column methods. The adsorption process follows both Langmuir and Freundlich adsorption isotherms and the isotherm parameters for the models were determined. The observed data favor the formation of monolayer adsorption. The adsorption capacities were found to be 63.3, 119, 105.3 and 82 mg of ADN per g of PAC for ADN-F (batch), ADN-PS (batch), ADN-F (column) and ADN-PS (column), respectively. Break-through curves for ADN-F and ADN-PS were obtained for the optimization of separation of ADN from aqueous solutions. Elution curves were generated for the desorption of ADN from PAC using hot water as eluent. Copyright 2003 Elsevier Science B.V.

  15. Evaluation of the mercaptobenzothiazole degradation by combined adsorption process and Fenton reaction using iron mining residue.

    Science.gov (United States)

    Martins, Adriana Lau da Silva; Teixeira, Luís Alberto César; da Fonseca, Fabiana Valéria; Yokoyama, Lídia

    2017-08-01

    The present study investigated the degradation of mercaptobenzothiazole (MBT), evaluating homogeneous and heterogeneous systems. An iron mineral residue from the desliming step of iron mining was used as a source in the Fenton-like reaction (advanced oxidation process). A granulometric analysis of the residue was performed and yielded fractions with high hematite (Fe 2 O 3 ) and low quartz content in sieves from 74 to below 44 mm. In this particle size range, the hematite content from 58.9% to 67.4% and the Brunauer-Emmett-Teller area from 0.1345 to 1.3137 m 2  g -1 were obtained. The zeta potential curves as a function of pH were obtained for the residue, the MBT solution and mixtures thereof. The adsorption of MBT in the residue and its degradation through the Fenton-like reaction were investigated. Adsorption tests and the Fenton-like reaction were carried out, where the MBT species and the residue are oppositely charged, yielding, respectively, 10% MBT adsorption on the surface of the residue and 100% MBT degradation by the Fenton-like reaction at pH 3, hydrogen peroxide concentration of 25 mg L -1 , residue concentration of 3 g L -1 , 200 rpm and 25°C, from a 100 mg L -1 MBT solution. MBT degradation was found to occur mainly by the heterogeneous Fenton-like process.

  16. Adsorption of dodecylamine hydrochloride on graphene oxide in water

    Directory of Open Access Journals (Sweden)

    Peng Chen

    Full Text Available Cationic surfactants in water are difficult to be degraded, leading to serious water pollution. In this work, graphene oxide (GO was used as an adsorbent for removing Dodecylamine Hydrochloride (DACl, a representative cationic surfactant. X-ray diffraction (XRD, FT-IR spectroscopy and atomic force microscope (AFM were used to characterize the prepared GO. The adsorption of DACl on GO have been investigated through measurements of adsorption capacity, zeta potential, FTIR, and X-ray photoelectron spectroscopy (XPS. The experimental results have shown that the adsorption kinetics could be described as a rate-limiting pseudo second-order process, and the adsorption isotherm agreed well with the Freundlich model. GO was a good adsorbent for DACl removal, compared with coal fly ash and powdered activated carbon. The adsorption process was endothermic, and could be attributed to electrostatic interaction and hydrogen bonding between DACl and GO. Keywords: Graphene oxide, Dodecylamine hydrochloride, Adsorption isotherm, Adsorption mechanisms

  17. The Adsorption Mechanism of Modified Activated Carbon on Phenol

    Directory of Open Access Journals (Sweden)

    Lin J. Q.

    2016-01-01

    Full Text Available Modified activated carbon was prepared by thermal treatment at high temperature under nitrogen flow. The surface properties of the activated carbon were characterized by Boehm titration, BET and point of zero charge determination. The adsorption mechanism of phenol on modified activated carbon was explained and the adsorption capacity of modified activated carbon for phenol when compared to plain activated carbon was evaluated through the analysis of adsorption isotherms, thermodynamic and kinetic properties. Results shows that after modification the surface alkaline property and pHpzc value of the activated carbon increase and the surface oxygen-containing functional groups decrease. The adsorption processes of the plain and modified carbon fit with Langmuir isotherm equation well, and the maximum adsorption capacity increase from 123.46, 111.11, 103.09mg/g to 192.31, 178.57, 163,93mg/g under 15, 25 and 35°C after modification, respectively. Thermodynamic parameters show that the adsorption of phenol on activated carbon is a spontaneously exothermic process of entropy reduction, implying that the adsorption is a physical adsorption. The adsorption of phenol on activated carbon follows the pseudo-second-order kinetics (R2>0.99. The optimum pH of adsorption is 6~8.

  18. Gas-Chromatographic Determination Of Water In Freon PCA

    Science.gov (United States)

    Melton, Donald M.

    1994-01-01

    Gas-chromatographic apparatus measures small concentrations of water in specimens of Freon PCA. Testing by use of apparatus faster and provides greater protection against accidental contamination of specimens by water in testing environment. Automated for unattended operation. Also used to measure water contents of materials, other than Freon PCA. Innovation extended to development of purgeable sampling accessory for gas chromatographs.

  19. (Amino acid + silica) adsorption thermodynamics: Effects of temperature

    International Nuclear Information System (INIS)

    Sebben, Damien; Pendleton, Phillip

    2015-01-01

    Highlights: • High resolution, low concentration Gly, Lys and Glu solution adsorption isotherms. • All isotherms fitted with Langmuir–Freundlich isotherm model. • Gly, Lys and Glu show exothermic adsorption processes. • Isosteric heat analyses reveal changes in interaction strength with surface coverage. - Abstract: A thorough understanding of amino acid adsorption by mineral and oxide surfaces has a major impact on a variety of industrial and biomedical applications. Little information currently exists regarding temperature effects on most of these adsorption processes. Deeper thermodynamic analyses of their multiple temperature adsorption isotherms would aid the interpretation of the interfacial interactions. Low solution concentration adsorption isotherms for glycine, lysine and glutamic acid on a silica adsorbent were generated for T = (291, 298 and 310) K. Data analysis via the Clausius–Clapeyron method yielded the isosteric heat of adsorption as a function of fractional monolayer coverage for each adsorptive. Each amino acid showed an exothermic adsorption response. Glycine and lysine experienced a greater negative effect of increased temperature compared with glutamic acid, indicating a greater number of adsorbed molecules than glutamic acid, with the former undergoing intermolecular clustering within the adsorbed phase. Isosteric heat analyses suggest ionic interactions for lysine and hydrogen bonding for glutamic acid, both weakening with increased coverage. In contrast, initial hydrogen bonding led to ionic bonding for glycine with increasing coverage

  20. Significance, evolution and recent advances in adsorption technology, materials and processes for desalination, water softening and salt removal.

    Science.gov (United States)

    Alaei Shahmirzadi, Mohammad Amin; Hosseini, Seyed Saeid; Luo, Jianquan; Ortiz, Inmaculada

    2018-06-01

    Desalination and softening of sea, brackish, and ground water are becoming increasingly important solutions to overcome water shortage challenges. Various technologies have been developed for salt removal from water resources including multi-stage flash, multi-effect distillation, ion exchange, reverse osmosis, nanofiltration, electrodialysis, as well as adsorption. Recently, removal of solutes by adsorption onto selective adsorbents has shown promising perspectives. Different types of adsorbents such as zeolites, carbon nanotubes (CNTs), activated carbons, graphenes, magnetic adsorbents, and low-cost adsorbents (natural materials, industrial by-products and wastes, bio-sorbents, and biopolymer) have been synthesized and examined for salt removal from aqueous solutions. It is obvious from literature that the existing adsorbents have good potentials for desalination and water softening. Besides, nano-adsorbents have desirable surface area and adsorption capacity, though are not found at economically viable prices and still have challenges in recovery and reuse. On the other hand, natural and modified adsorbents seem to be efficient alternatives for this application compared to other types of adsorbents due to their availability and low cost. Some novel adsorbents are also emerging. Generally, there are a few issues such as low selectivity and adsorption capacity, process efficiency, complexity in preparation or synthesis, and problems associated to recovery and reuse that require considerable improvements in research and process development. Moreover, large-scale applications of sorbents and their practical utility need to be evaluated for possible commercialization and scale up. Copyright © 2018 Elsevier Ltd. All rights reserved.

  1. Adsorption of Hg2+ from aqueous solution onto polyacrylamide/attapulgite

    International Nuclear Information System (INIS)

    Zhao Yijiang; Chen Yan; Li Meisheng; Zhou Shouyong; Xue Ailian; Xing Weihong

    2009-01-01

    Polyacrylamide/attapulgite (PAM/ATP) was prepared by the solution polymerization of acrylamide (AM) onto γ-methacryloxypropyl trimethoxy silane (KH-570)-modified attapulgite (ATP). PAM/ATP was characterized using Fourier transform infrared (FTIR) and X-ray photoelectron spectroscopy (XPS). The effects of contact time, adsorbent dosage, and pH of the initial solution on the adsorption capacities for Hg 2+ were investigated. The adsorption process was rapid; 88% of adsorption occurred within 5 min and equilibrium was achieved at around 40 min. The equilibrium data fitted the Langmuir sorption isotherms well, and the maximum adsorption capacity of Hg 2+ onto PAM/ATP was found to be 192.5 mg g -1 . The adsorption kinetics of PAM/ATP fitted a pseudo-second-order kinetic model. Our results suggest that chemisorption processes could be the rate-limiting steps in the process of Hg 2+ adsorption. Hg 2+ adsorbed onto PAM/ATP could be effectively desorbed in hot acetic acid solution, and the adsorption capacity of the regenerated adsorbents could still be maintained at 95% by the sixth cycle.

  2. Enhanced fluoride adsorption using Al (III) modified calcium hydroxyapatite

    International Nuclear Information System (INIS)

    Nie, Yulun; Hu, Chun; Kong, Chuipeng

    2012-01-01

    Highlights: ► Al modified hydroxyapatite possessed a higher defluoridation capacity of 32.57 mg/g. ► Hydroxyl groups on the surface of Al-HAP was the adsorption sites for F − removal. ► Enhanced F − removal over Al-HAP was attributed to the modification with aluminum. - Abstract: Aluminum-modified hydroxyapatite (Al-HAP) was prepared and characterized using XRD and BET analyses. Al-HAP possessed higher defluoridation capacity (DC) of 32.57 mgF − /g than unmodified hydroxyapatite (HAP) which showed a DC of 16.38 mgF − /g. The effect of Al/Ca atomic ratio in Al-HAP, solution pH and co-existing anions was further studied. The results indicated that the adsorption data could be well described by the Langmuir isotherm model and the adsorption kinetic followed the pseudo-second-order model. The pH changes during the adsorption process suggested that the -OH on the surface of Al-HAP was the adsorption sites. The more adsorption sites were formed on Al modified HAP, which possessed abundant surface hydroxyl groups, resulting in higher efficiency of F − removal. Thermodynamic parameters such as ΔG°, ΔH° and ΔS° were calculated in order to understand the nature of adsorption process. The results revealed that the adsorption reaction was a spontaneous and endothermic process.

  3. Adsorption of hydrogen gas and redox processes in clays.

    Science.gov (United States)

    Didier, Mathilde; Leone, Laura; Greneche, Jean-Marc; Giffaut, Eric; Charlet, Laurent

    2012-03-20

    In order to assess the adsorption properties of hydrogen gas and reactivity of adsorbed hydrogen, we measured H(2)(g) adsorption on Na synthetic montmorillonite-type clays and Callovo-Oxfordian (COx) clayrock using gas chromatography. Synthetic montmorillonites with increasing structural Fe(III) substitution (0 wt %, 3.2 wt %, and 6.4 wt % Fe) were used. Fe in the synthetic montmorillonites is principally present as structural Fe(III) ions. We studied the concomitant reduction of structural Fe(III) in the clays using (57)Fe Mössbauer spectrometry. The COx, which mainly contains smectite/illite and calcite minerals, is also studied together with the pure clay fraction of this clayrock. Experiments were performed with dry clay samples which were reacted with hydrogen gas at 90 and 120 °C for 30 to 45 days at a hydrogen partial pressure close to 0.45 bar. Results indicate that up to 0.11 wt % of hydrogen is adsorbed on the clays at 90 °C under 0.45 bar of relative pressure. (57)Fe Mössbauer spectrometry shows that up to 6% of the total structural Fe(III) initially present in these synthetic clays is reduced upon adsorption of hydrogen gas. No reduction is observed with the COx sample in the present experimental conditions.

  4. Determination of solute descriptors by chromatographic methods

    International Nuclear Information System (INIS)

    Poole, Colin F.; Atapattu, Sanka N.; Poole, Salwa K.; Bell, Andrea K.

    2009-01-01

    The solvation parameter model is now well established as a useful tool for obtaining quantitative structure-property relationships for chemical, biomedical and environmental processes. The model correlates a free-energy related property of a system to six free-energy derived descriptors describing molecular properties. These molecular descriptors are defined as L (gas-liquid partition coefficient on hexadecane at 298 K), V (McGowan's characteristic volume), E (excess molar refraction), S (dipolarity/polarizability), A (hydrogen-bond acidity), and B (hydrogen-bond basicity). McGowan's characteristic volume is trivially calculated from structure and the excess molar refraction can be calculated for liquids from their refractive index and easily estimated for solids. The remaining four descriptors are derived by experiment using (largely) two-phase partitioning, chromatography, and solubility measurements. In this article, the use of gas chromatography, reversed-phase liquid chromatography, micellar electrokinetic chromatography, and two-phase partitioning for determining solute descriptors is described. A large database of experimental retention factors and partition coefficients is constructed after first applying selection tools to remove unreliable experimental values and an optimized collection of varied compounds with descriptor values suitable for calibrating chromatographic systems is presented. These optimized descriptors are demonstrated to be robust and more suitable than other groups of descriptors characterizing the separation properties of chromatographic systems.

  5. Determination of solute descriptors by chromatographic methods.

    Science.gov (United States)

    Poole, Colin F; Atapattu, Sanka N; Poole, Salwa K; Bell, Andrea K

    2009-10-12

    The solvation parameter model is now well established as a useful tool for obtaining quantitative structure-property relationships for chemical, biomedical and environmental processes. The model correlates a free-energy related property of a system to six free-energy derived descriptors describing molecular properties. These molecular descriptors are defined as L (gas-liquid partition coefficient on hexadecane at 298K), V (McGowan's characteristic volume), E (excess molar refraction), S (dipolarity/polarizability), A (hydrogen-bond acidity), and B (hydrogen-bond basicity). McGowan's characteristic volume is trivially calculated from structure and the excess molar refraction can be calculated for liquids from their refractive index and easily estimated for solids. The remaining four descriptors are derived by experiment using (largely) two-phase partitioning, chromatography, and solubility measurements. In this article, the use of gas chromatography, reversed-phase liquid chromatography, micellar electrokinetic chromatography, and two-phase partitioning for determining solute descriptors is described. A large database of experimental retention factors and partition coefficients is constructed after first applying selection tools to remove unreliable experimental values and an optimized collection of varied compounds with descriptor values suitable for calibrating chromatographic systems is presented. These optimized descriptors are demonstrated to be robust and more suitable than other groups of descriptors characterizing the separation properties of chromatographic systems.

  6. Adsorption of multi-heavy metals Zn and Cu onto surficial sediments: modeling and adsorption capacity analysis.

    Science.gov (United States)

    Li, Shanshan; Zhang, Chen; Wang, Meng; Li, Yu

    2014-01-01

    Improved multiple regression adsorption models (IMRAMs) was developed to estimate the adsorption capacity of the components [Fe oxides (Fe), Mn oxides (Mn), organic materials (OMs), residuals] in surficial sediments for multi-heavy metal Zn and Cu. IMRAM is an improved version over MRAM, which introduces a computer program in the model developing process. As MRAM, Zn(Cu) IMRAM, and Cu(Zn) IMRAM again confirmed that there is significant interaction effects that control the adsorption of compounded Zn and Cu, which was neglected by additional adsorption model. The verification experiment shows that the relative deviation of the IMRAMs is less than 13%. It is revealed by the IMRAMs that Mn, which has the greatest adsorption capability for compounded Zn and Cu (54.889 and 161.180 mg/l, respectively), follows by interference adsorption capacity of Fe/Mn (-1.072 and -24.591 mg/l respectively). Zn and Cu influence each other through different mechanisms. When Zn is the adsorbate, compounded Cu mainly affects the adsorption capacities of Fe/Mn and Fe/Mn/OMs; while when Cu is the adsorbate, compounded Zn mainly exerts its effect on Mn, Fe/Mn, and Mn/OMs. It also shows that the compounded Zn or Cu weakened the interference adsorption of Fe/Mn, and meanwhile, strengthened the interference adsorption of Mn/OMs.

  7. [Treatment of organic waste gas by adsorption rotor].

    Science.gov (United States)

    Zhu, Run-Ye; Zheng, Liang-Wei; Mao, Yu-Bo; Wang, Jia-De

    2013-12-01

    The adsorption rotor is applicable to treating organic waste gases with low concentration and high air volume. The performance of adsorption rotor for purifying organic waste gases was investigated in this paper. Toluene was selected as the simulative gaseous pollutant and the adsorption rotor was packed with honeycomb modified 13X molecular sieves (M-13X). Experimental results of the fixed adsorption and the rotor adsorption were analyzed and compared. The results indicated that some information on the fixed adsorption was useful for the rotor adsorption. Integrating the characteristics of the adsorbents, waste gases and the structures of the rotor adsorption, the formulas on optimal rotor speed and cycle removal efficiency of the adsorption rotor were deduced, based on the mass and heat balances of the adsorbing process. The numerical results were in good agreement with the experimental data, which meant that the formulas on optimal rotor speed and cycle removal efficiency could be effectively applied in design and operation of the adsorption rotor.

  8. Comparison of Fenton process and adsorption method for treatment of industrial container and drum cleaning industry wastewater.

    Science.gov (United States)

    Güneş, Elçin; Çifçi, Deniz İzlen; Çelik, Suna Özden

    2018-04-01

    The present study aims to explore the characterization of industrial container and drum cleaning (ICDC) industry wastewater and treatment alternatives of this wastewater using Fenton and adsorption processes. Wastewater derived from ICDC industry is usually treated by chemical coagulation and biological treatment in Turkey and then discharged in a centralized wastewater treatment facility. It is required that the wastewater COD is below 1500 mg/L to treat in a centralized wastewater treatment facility. The wastewater samples were characterized for parameters of pH, conductivity, COD, BOD 5 , TSS, NH 3 -N, TN, TOC, TP, Cd, Cr, Cu, Fe, Ni, Pb, Zn, and Hg. Initial COD values were in the range of 11,300-14,200 mg/L. The optimum conditions for Fenton treatment were 35-40 g/L for H 2 O 2 , 2-5 g/L for Fe 2+ , and 13-36 for H 2 O 2 /Fe 2+ molar ratio. The optimum conditions of PAC doses and contact times in adsorption studies were 20-30 g/L and 5-12 h, respectively. Removal efficiencies of characterized parameters for the three samples were compared for both Fenton and adsorption processes under optimum conditions. The results suggest that these wastewaters are suitable for discharge to a centralized wastewater treatment plant.

  9. Adsorption and exhaustion device for gaseoue uranium fluorides

    International Nuclear Information System (INIS)

    Kida, Yasuo; Nakamura, Yuichi.

    1984-01-01

    Purpose: To prevent gaseous uranium fluorides from passing through the adsorption layer upon exhausting the gaseous uranium, fluorides from a uranium fluoride processing facility through adsorption traps, by controlling the flow rate of the gaseous uranium fluorides passing through the layer constant. Constitution: An adsorption trap is connected by way of pipeways to a uranium fluoride processing facility, and a flow rate detector for detecting the flow rate of gaseous uranium fluorides and a pressure gauge for detecting the pressure at the inlet of the adsorption trap are disposed to the pipeways. The setting value for the pressure control is calculated from the detection value of the flow rate detector by the pressure control gage. Then, an operation amount for the pressure control valve is calculated based on the deviatoin between the setting value for the pressure control and the inlet pressure at the adsorption trap. This enables to control the flow rate of the gaseous uranium fluorides passing through the adsorption layer always constant thereby enabling to prevent excess increase in the flow rate which results in damages in the adsorption layer. (Moriyama, K.)

  10. Co adsorption in kaolinite

    International Nuclear Information System (INIS)

    Souza, Eliel S.; Silva, Paulo S.C.

    2017-01-01

    Adsorption of metal ions in clay minerals has been used as an alternative to water and effluents treatment. Kaolinite is a clay mineral that presents low specific surface area and exchange ion capacity. Nevertheless, structural modifications can be achieved by means of acid or thermal activation. In this paper, it was studied the surface area of kaolinite/bentonite, kaolinite/activated carbon mixtures, thermal activated kaolinite and thermal activated kaolinite/activated carbon mixture. The mixture of kaolinite/activated carbon was tested for pH, contact time, interfering ions and initial concentration effects in the cobalt adsorption. Results showed that the optimized parameters are pH 6 and contact time of 30 min. Chromium acted as a competitive ion, zinc does not appear to have affected adsorption while iron seems to have favored it. Langmuir and Freundlich isotherms indicated that the adsorption of Co in the mixture of kaolinite/activated carbon is a spontaneous process. (author)

  11. Co adsorption in kaolinite

    Energy Technology Data Exchange (ETDEWEB)

    Souza, Eliel S.; Silva, Paulo S.C., E-mail: eliel201019@hotmail.com, E-mail: pscsilva@ipen.br [Instituto de Pesquisas Energética s e Nucleares (IPEN/CNEN-SP), São Paulo, SP (Brazil)

    2017-07-01

    Adsorption of metal ions in clay minerals has been used as an alternative to water and effluents treatment. Kaolinite is a clay mineral that presents low specific surface area and exchange ion capacity. Nevertheless, structural modifications can be achieved by means of acid or thermal activation. In this paper, it was studied the surface area of kaolinite/bentonite, kaolinite/activated carbon mixtures, thermal activated kaolinite and thermal activated kaolinite/activated carbon mixture. The mixture of kaolinite/activated carbon was tested for pH, contact time, interfering ions and initial concentration effects in the cobalt adsorption. Results showed that the optimized parameters are pH 6 and contact time of 30 min. Chromium acted as a competitive ion, zinc does not appear to have affected adsorption while iron seems to have favored it. Langmuir and Freundlich isotherms indicated that the adsorption of Co in the mixture of kaolinite/activated carbon is a spontaneous process. (author)

  12. Behaviors and kinetics of toluene adsorption-desorption on activated carbons with varying pore structure.

    Science.gov (United States)

    Yang, Xi; Yi, Honghong; Tang, Xiaolong; Zhao, Shunzheng; Yang, Zhongyu; Ma, Yueqiang; Feng, Tiecheng; Cui, Xiaoxu

    2018-05-01

    This work was undertaken to investigate the behaviors and kinetics of toluene adsorption and desorption on activated carbons with varying pore structure. Five kinds of activated carbon from different raw materials were selected. Adsorption isotherms and breakthrough curves for toluene were measured. Langmuir and Freundlich equations were fitted to the equilibrium data, and the Freundlich equation was more suitable for simulating toluene adsorption. The process consisted of monolayer, multilayer and partial active site adsorption types. The effect of the pore structure of the activated carbons on toluene adsorption capacity was investigated. The quasi-first-order model was more suitable for describing the process than the quasi-second-order model. The adsorption data was also modeled by the internal particle diffusion model and it was found that the adsorption process could be divided into three stages. In the external surface adsorption process, the rate depended on the specific surface area. During the particle diffusion stage, pore structure and volume were the main factors affecting adsorption rate. In the final equilibrium stage, the rate was determined by the ratio of meso- and macro-pores to total pore volume. The rate over the whole adsorption process was dominated by the toluene concentration. The desorption behavior of toluene on activated carbons was investigated, and the process was divided into heat and mass transfer parts corresponding to emission and diffusion mechanisms, respectively. Physical adsorption played the main role during the adsorption process. Copyright © 2017. Published by Elsevier B.V.

  13. Retention-oxidation-adsorption process for emergent treatment of organic liquid spills.

    Science.gov (United States)

    Liu, Xianjun; Li, Yu; Zhang, Xingwang; Lei, Lecheng

    2011-11-15

    The feasibility and effectiveness of retention-oxidation-adsorption process (ROA) for the elimination of organic contaminants induced by chemical accidents were investigated in this study. Organobentonites (DTMA-, TTA-, CTMA- and OTMA-bentonite), potassium ferrate (Fe(VI)), ozone and granular activated carbon (GAC) were used as rapid and efficient materials in the treatment and recovery of organic liquid spills. Results indicated that the retention capacities of organobentonites (especially CTMA-bentonite) were much higher than that of natural bentonite towards the chosen organic compounds. Additionally, pH, oxidant dosage, initial concentration of contaminant and chemical structure had significant influences on the effectiveness of the oxidation process. In a pilot-scale experiment, the ferrate/GAC (F/G) and ozone/GAC (O/G) processes made a comparatively good performance in the treatment of wastewater containing aniline or nitrobenzene, with the removal efficiencies of the contaminants greater than 80%. Overall, the ROA process showed a high efficiency and steady operation in the removal of hazardous organic liquids and subsequent clean up of the contaminated site. Crown Copyright © 2011. Published by Elsevier B.V. All rights reserved.

  14. Adsorption behavior of U (Ⅵ) and mechanism analysis by organically modified vermiculite

    International Nuclear Information System (INIS)

    Xiao Yiqun; Zhou Yantong; Xia Liangshu; Fu Wanfa; Liu Wenjuan; Liang Xin

    2014-01-01

    The adsorption behavior of U (Ⅵ) on modified vermiculite by HDTMA · Br was studied with static experiments. The effects of the amount of adsorbent, pH, initial mass concentration of uranium and time on the removal rate of uranium were investigated. The unit mass of adsorption process was analyzed in thermodynamics and kinetics, and the adsorption mechanism was analyzed with FT-IR and SEM. The results indicate that the removal rate of uranium can increase with the increase of adsorbent amount and time, and the decrease of initial mass concentration of uranium. The adsorption equilibrium tends to be achieved in 120 min, and solution using flocculant and modified vermiculite can be improved. The adsorption of uranium by organically modified vermiculite is a complex process, so Langmuir monolayer adsorption theory and Freundlich adsorption theory cannot fully explain the adsorption process. The removal mechanism of uranium by using modified vermiculite fits Langmuir adsorption law, and is in line with quasi-second order kinetic equation. It is confirmed by FT-IR that -OH and Si = O play an important role in the adsorption of uranium. SEM shows that the adsorption of uranium using modified vermiculite causes the structure change. (authors)

  15. Adsorption on smooth electrodes: A radiotracer study

    International Nuclear Information System (INIS)

    Rice-Jackson, L.M.

    1990-01-01

    Adsorption on solids is a complicated process and in most cases, occurs as the early stage of other more complicated processes, i.e. chemical reactions, electrooxidation, electroreduction. The research reported here combines the electroanalytical method, cyclic voltammetry, and the use of radio-labeled isotopes, soft beta emitters, to study adsorption processes at smooth electrodes. The in-situ radiotracer method is highly anion (molecule) specific and provides information on the structure and composition of the electric double layer. The emphasis of this research was on studying adsorption processes at smooth electrodes of copper, gold, and platinum. The application of the radiotracer method to these smooth surfaces have led to direct in-situ measurements from which surface coverage was determined; anions and molecules were identified; and weak interactions of adsorbates with the surface of the electrodes were readily monitored. 179 refs

  16. Protein Adsorption in Three Dimensions

    Science.gov (United States)

    Vogler, Erwin A.

    2011-01-01

    Recent experimental and theoretical work clarifying the physical chemistry of blood-protein adsorption from aqueous-buffer solution to various kinds of surfaces is reviewed and interpreted within the context of biomaterial applications, especially toward development of cardiovascular biomaterials. The importance of this subject in biomaterials surface science is emphasized by reducing the “protein-adsorption problem” to three core questions that require quantitative answer. An overview of the protein-adsorption literature identifies some of the sources of inconsistency among many investigators participating in more than five decades of focused research. A tutorial on the fundamental biophysical chemistry of protein adsorption sets the stage for a detailed discussion of the kinetics and thermodynamics of protein adsorption, including adsorption competition between two proteins for the same adsorbent immersed in a binary-protein mixture. Both kinetics and steady-state adsorption can be rationalized using a single interpretive paradigm asserting that protein molecules partition from solution into a three-dimensional (3D) interphase separating bulk solution from the physical-adsorbent surface. Adsorbed protein collects in one-or-more adsorbed layers, depending on protein size, solution concentration, and adsorbent surface energy (water wettability). The adsorption process begins with the hydration of an adsorbent surface brought into contact with an aqueous-protein solution. Surface hydration reactions instantaneously form a thin, pseudo-2D interface between the adsorbent and protein solution. Protein molecules rapidly diffuse into this newly-formed interface, creating a truly 3D interphase that inflates with arriving proteins and fills to capacity within milliseconds at mg/mL bulk-solution concentrations CB. This inflated interphase subsequently undergoes time-dependent (minutes-to-hours) decrease in volume VI by expulsion of either-or-both interphase water and

  17. Adsorption-desorption behavior of atrazine on agricultural soils in China.

    Science.gov (United States)

    Yue, Lin; Ge, ChengJun; Feng, Dan; Yu, Huamei; Deng, Hui; Fu, Bomin

    2017-07-01

    Adsorption and desorption are important processes that affect atrazine transport, transformation, and bioavailability in soils. In this study, the adsorption-desorption characteristics of atrazine in three soils (laterite, paddy soil and alluvial soil) were evaluated using the batch equilibrium method. The results showed that the kinetics of atrazine in soils was completed in two steps: a "fast" adsorption and a "slow" adsorption and could be well described by pseudo-second-order model. In addition, the adsorption equilibrium isotherms were nonlinear and were well fitted by Freundlich and Langmuir models. It was found that the adsorption data on laterite, and paddy soil were better fitted by the Freundlich model; as for alluvial soil, the Langmuir model described it better. The maximum atrazine sorption capacities ranked as follows: paddy soil>alluvial soil>laterite. Results of thermodynamic calculations indicated that atrazine adsorption on three tested soils was spontaneous and endothermic. The desorption data showed that negative hysteresis occurred. Furthermore, lower solution pH value was conducive to the adsorption of atrazine in soils. The atrazine adsorption in these three tested soils was controlled by physical adsorption, including partition and surface adsorption. At lower equilibrium concentration, the atrazine adsorption process in soils was dominated by surface adsorption; while with the increase of equilibrium concentration, partition was predominant. Copyright © 2016. Published by Elsevier B.V.

  18. Response surface modeling of boron adsorption from aqueous solution by vermiculite using different adsorption agents: Box-Behnken experimental design.

    Science.gov (United States)

    Demirçivi, Pelin; Saygılı, Gülhayat Nasün

    2017-07-01

    In this study, a different method was applied for boron removal by using vermiculite as the adsorbent. Vermiculite, which was used in the experiments, was not modified with adsorption agents before boron adsorption using a separate process. Hexadecyltrimethylammonium bromide (HDTMA) and Gallic acid (GA) were used as adsorption agents for vermiculite by maintaining the solid/liquid ratio at 12.5 g/L. HDTMA/GA concentration, contact time, pH, initial boron concentration, inert electrolyte and temperature effects on boron adsorption were analyzed. A three-factor, three-level Box-Behnken design model combined with response surface method (RSM) was employed to examine and optimize process variables for boron adsorption from aqueous solution by vermiculite using HDTMA and GA. Solution pH (2-12), temperature (25-60 °C) and initial boron concentration (50-8,000 mg/L) were chosen as independent variables and coded x 1 , x 2 and x 3 at three levels (-1, 0 and 1). Analysis of variance was used to test the significance of variables and their interactions with 95% confidence limit (α = 0.05). According to the regression coefficients, a second-order empirical equation was evaluated between the adsorption capacity (q i ) and the coded variables tested (x i ). Optimum values of the variables were also evaluated for maximum boron adsorption by vermiculite-HDTMA (HDTMA-Verm) and vermiculite-GA (GA-Verm).

  19. Iron modified bentonite: Enhanced adsorption performance for organic pollutant and its regeneration by heterogeneous visible light photo-Fenton process at circumneutral pH

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Yaowen; Guo, Yongzhao; Zhang, Hui, E-mail: eeng@whu.edu.cn

    2016-01-25

    Highlights: • The iron modification markedly improved the adsorption performance of FeMB for RhB. • LED lamps emitting white light were employed as visible light source. • FeMB can be regenerated by visible light photo-Fenton process at circumneutral pH. • FeMB can be reused repeatedly after the heterogeneous photo-Fenton regeneration. - Abstract: Iron modified bentonite (FeMB) was prepared and used as an inexpensive adsorbent to rapidly remove organic pollutant (Rhodamine B, RhB) from aqueous solution. The iron modification significantly improved the adsorption performance of FeMB for RhB and permitted an easy separation of FeMB from the treated effluent. The equilibrium adsorption studies indicated that the dye molecules obeyed Langmuir type of adsorption with the calculated maximum adsorption capacity of 168.13 mg g{sup −1} for FeMB. The heterogeneous photo-Fenton process operated at circumneutral pH in the presence of visible light irradiation was found to be effective for the regeneration of the spent FeMB. Furthermore, the regeneration efficiency of as high as 79% was still achieved after 5 consecutive adsorption-regeneration cycles. Considering that, the visible light photo-Fenton approach could be applied as an excellent alternative for regenerating clay-based adsorbents by avoiding the use of dissolved iron salts.

  20. Adsorption Property and Mechanism of Oxytetracycline onto Willow Residues

    Directory of Open Access Journals (Sweden)

    Di Wang

    2017-12-01

    Full Text Available To elucidate the adsorption property and the mechanism of plant residues to reduce oxytetracycline (OTC, the adsorption of OTC onto raw willow roots (WR-R, stems (WS-R, leaves (WL-R, and adsorption onto desugared willow roots (WR-D, stems (WS-D, and leaves (WL-D were investigated. The structural characterization was analyzed by scanning electron microscopy, Fourier-transform infrared spectra, and an elemental analyzer. OTC adsorption onto the different tissues of willow residues was compared and correlated with their structures. The adsorption kinetics of OTC onto willow residues was found to follow the pseudo-first-order model. The isothermal adsorption process of OTC onto the different tissues of willow residues followed the Langmuir and Freundlich model and the process was also a spontaneous endothermic reaction, which was mainly physical adsorption. After the willow residues were desugared, the polarity decreased and the aromaticity increased, which explained why the adsorption amounts of the desugared willow residues were higher than those of the unmodified residues. These observations suggest that the raw and modified willow residues have great potential as adsorbents to remove organic pollutants.

  1. Design and analysis of siloxanes removal by adsorption from landfill gas for waste-to-energy processes.

    Science.gov (United States)

    Elwell, Anthony C; Elsayed, Nada H; Kuhn, John N; Joseph, Babu

    2018-03-01

    Separation of volatile methyl siloxanes from landfill gas using fixed adsorption beds was modeled with the objective of identifying appropriate technology and the economics associated with this purification step. A general adsorption model assuming plug flow and radial symmetry was developed and used to conduct a parametric sweep of 162 unique cases. The varied parameters were adsorbent type (activated carbon and silica gel), bed height (3.05-9.15 m/10-30 ft), inlet siloxane concentration (5-15 mg/m 3 ), moisture content (0-100% relative humidity at STP or RH), and siloxane tolerance limit (0.094-9.4 mg/m 3 ) that correlated to three distinct energy conversion technologies (electricity production using engines or fuels cells or catalytic conversion to liquid hydrocarbon fuels). Due to the detrimental effect of RH on siloxane absorption, the maximum allowable moisture content of LFG before purification is 50% RH and moisture removal processes are also required. The design calculations using a selected case study show that the adsorption bed height required needed for 6 months minimum breakthrough time for catalytic fuel production is twice that for engine applications. Fuel cell applications require 3 times the bed height compared to engine applications. However, the purification costs amounted to 94%, 16% and 52% of recovered product value for engine, liquefaction, and fuel cell applications, respectively indicating the need for a high value product to justify purification costs. The approaches and conclusions can be extended to specific process conditions for landfill gas purification and to other processes that use biogas produced from waste as a feedstock. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Landfill gas (LFG) processing via adsorption and alkanolamine absorption

    Energy Technology Data Exchange (ETDEWEB)

    Gaur, Ankur; Park, Jin-Won; Song, Ho-Jun; Park, Jong-Jin [Department of Chemical and Biomolecular Engineering, Yonsei University, 134 Shinchon-dong, Seodaemun-gu, Seoul 120-749 (Korea); Maken, Sanjeev [Department of Chemistry, Deenbandhu Chhotu Ram University of Science and Technology, Murthal-131 039, Haryana (India)

    2010-06-15

    Landfill gas (LFG) was upgraded to pure methane using the adsorption and absorption processes. Different toxic compounds like aromatics and chlorinated compounds were removed using granular activated carbon. The activated carbon adsorbed toxic trace components in the following order: carbon tetrachloride > toluene > chloroform > xylene > ethylbenzene > benzene > trichloroethylene {approx} tetrachloroethylene. After removing all trace components, the gas was fed to absorption apparatus for the removal of carbon dioxide (CO{sub 2}). Two alkanolamines, monoethanol amine (MEA) and diethanol amine (DEA) were used for the removal of CO{sub 2} from LFG. The maximum CO{sub 2} loading is obtained for 30 wt.% MEA which is around 2.9 mol L{sup -} {sup 1} of absorbent solution whereas for same concentration of DEA it is around 1.66 mol L {sup -} {sup 1} of solution. 30 wt% MEA displayed a higher absorption rate of around 6.64 x 10{sup -} {sup 5} mol L{sup -} {sup 1} min{sup -} {sup 1}. DEA displayed a higher desorption rate and a better cyclic capacity as compared to MEA. Methane obtained from this process can be further used in the natural gas network for city. (author)

  3. Assessment of the chromatographic lipophilicity of eight cephalosporins on different stationary phases.

    Science.gov (United States)

    Dąbrowska, Monika; Starek, Małgorzata; Komsta, Łukasz; Szafrański, Przemysław; Stasiewicz-Urban, Anna; Opoka, Włodzimierz

    2017-04-01

    The retention behaviors were investigated for a series of eight cephalosporins in thin-layer chromatography (TLC) using stationary phases of RP-2, RP-8, RP-18, NH 2 , DIOL, and CN chemically bonded silica gel. Additionally, various binary mobile phases (water/methanol and water/acetone) were used in different volume proportions. The retention behavior of the analyzed molecules was defined by R M0 constant. In addition, reversed phase high performance liquid chromatography (RP-HPLC) was performed in lipophilicity studies by using immobilized artificial membrane (IAM) stationary phase. Obtained chromatographic data (R M0 and logk' IAM ) were correlated with the lipophilicity, expressed as values of the log calculated (logP calc ) and experimental (logP exp(shake-flask) ) partition coefficient. Principal component analysis (PCA) was applied in order to obtain an overview of similarity or dissimilarity among the analyzed compounds. Hierarchical cluster analysis (HCA) was performed to compare the separation characteristics of the applied stationary phases. This study was undertaken to identify the best chromatographic system and chromatographic data processing method to enable the prediction of logP values. A comprehensive chromatographic investigation into the retention of the analyzed cephalosporins revealed a similar behavior on RP-18, RP-8 and CN stationary phases. The weak correlations obtained between experimental and certain computed lipophilicity indices revealed that R M0 and PC1/RM are relevant lipophilicity parameters and the RP-8, CN and RP-18 plates are appropriate stationary phases for lipophilicity investigation, whereas computational approaches still cannot fully replace experimentation. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Adsorption--from theory to practice.

    Science.gov (United States)

    Dabrowski, A

    2001-10-08

    Adsorption at various interfaces has concerned scientists since the beginning of this century. This phenomenon underlies a number of extremely important processes of utilitarian significance. The technological, environmental and biological importance of adsorption can never be in doubt. Its practical applications in industry and environmental protection are of paramount importance. The adsorption of substrates is the first stage in many catalytic processes. The methods for separation of mixtures on a laboratory and on an industrial scale are increasingly based on utilising the change in concentration of components at the interface. Moreover, such vital problems as purification of water, sewages, air and soil are involved here too. On the other hand, many areas in which technological innovation has covered adsorption phenomena have been expanded more through art and craft than through science. A basic understanding of the scientific principles is far behind; in part because the study of interfaces requires extremely careful experimentation if meaningful and reproducible results are to be obtained. In recent years, however, considerable effort has been increasingly directed toward closing the gap between theory and practice. Crucial progress in theoretical description of the adsorption has been achieved, mainly through the development of new theoretical approaches formulated on a molecular level, by means of computer simulation methods and owing to new techniques which examine surface layers or interfacial regions. Moreover, during the last 15 years new classes of solid adsorbents have been developed, such as activated carbon fibres and carbon molecular sieves, fullerenes and heterofullerenes, microporous glasses and nanoporous--both carbonaceous and inorganic--materials. Nanostructured solids are very popular in science and technology and have gained extreme interest due to their sorption, catalytic, magnetic, optical and thermal properties. Although the development

  5. Competitive protein adsorption to polymer surface from human serum

    DEFF Research Database (Denmark)

    Holmberg, Maria; Jensen, Karin Bagger Stibius; Larsen, Niels Bent

    2008-01-01

    Surface modification by "soft" plasma polymerisation to obtain a hydrophilic and non-fouling polymer surface has been validated using radioactive labelling. Adsorption to unmodified and modified polymer surfaces, from both single protein and human serum solutions, has been investigated. By using...... different radioisotopes, albumin and Immunoglobulin G (IgG) adsorption has been monitored simultaneously during competitive adsorption processes, which to our knowledge has not been reported in the literature before. Results show that albumin and IgG adsorption is dependent on adsorption time...... and on the presence and concentration of other proteins in bulk solutions during adsorption. Generally, lower albumin and IgG adsorption was observed on the modified and more hydrophilic polymer surfaces, but otherwise the modified and unmodified polymer surfaces showed the same adsorption characteristics....

  6. Secretory immunoglobulin purification from whey by chromatographic techniques.

    Science.gov (United States)

    Matlschweiger, Alexander; Engelmaier, Hannah; Himmler, Gottfried; Hahn, Rainer

    2017-08-15

    Secretory immunoglobulins (SIg) are a major fraction of the mucosal immune system and represent potential drug candidates. So far, platform technologies for their purification do not exist. SIg from animal whey was used as a model to develop a simple, efficient and potentially generic chromatographic purification process. Several chromatographic stationary phases were tested. A combination of two anion-exchange steps resulted in the highest purity. The key step was the use of a small-porous anion exchanger operated in flow-through mode. Diffusion of SIg into the resin particles was significantly hindered, while the main impurities, IgG and serum albumin, were bound. In this step, initial purity was increased from 66% to 89% with a step yield of 88%. In a second anion-exchange step using giga-porous material, SIg was captured and purified by step or linear gradient elution to obtain fractions with purities >95%. For the step gradient elution step yield of highly pure SIg was 54%. Elution of SIgA and SIgM with a linear gradient resulted in a step yield of 56% and 35%, respectively. Overall yields for both anion exchange steps were 43% for the combination of flow-through and step elution mode. Combination of flow-through and linear gradient elution mode resulted in a yield of 44% for SIgA and 39% for SIgM. The proposed process allows the purification of biologically active SIg from animal whey in preparative scale. For future applications, the process can easily be adopted for purification of recombinant secretory immunoglobulin species. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Multiple chromatographic fingerprinting and its application to the quality control of herbal medicines

    International Nuclear Information System (INIS)

    Fan Xiaohui; Cheng Yiyu; Ye Zhengliang; Lin Ruichao; Qian Zhongzhi

    2006-01-01

    Recently, chromatographic fingerprinting has become one of the most powerful approaches to quality control of herbal medicines. However, the performance of reported chromatographic fingerprinting constructed by single chromatogram sometimes turns out to be inadequate for complex herbal medicines, such as multi-herb botanical drug products. In this study, multiple chromatographic fingerprinting, which consists of more than one chromatographic fingerprint and represents the whole characteristics of chemical constitutions of the complex medicine, is proposed as a potential strategy in this complicated case. As a typical example, a binary chromatographic fingerprinting of 'Danshen Dropping Pill' (DSDP), the best-sold traditional Chinese medicine in China, was developed. First, two HPLC fingerprints that, respectively, represent chemical characteristics of depsides and saponins of DSDP were developed, which were used to construct binary chromatographic fingerprints of DSDP. Moreover, the authentication and validation of the binary fingerprints were performed. Then, a data-level information fusion method was employed to capture the chemical information encoded in two chromatographic fingerprints. Based on the fusion results, the lot-to-lot consistency and frauds can be determined either using similarity measure or by chemometrics approach. The application of binary chromatographic fingerprinting to consistency assessment and frauds detection of DSDP clearly demonstrated that the proposed method was a powerful approach to quality control of complex herbal medicines

  8. Effect of hydrophobicity of pharmaceuticals and personal care products for adsorption on activated carbon: Adsorption isotherms, kinetics and mechanism.

    Science.gov (United States)

    Kaur, Harkirat; Bansiwal, Amit; Hippargi, Girivyankatesh; Pophali, Girish R

    2017-09-11

    Adsorption of three pharmaceuticals and personal care products (PPCPs), namely caffeine, ibuprofen and triclosan on commercial powdered activated carbon was examined in aqueous medium. The contaminants were chosen based on their diverse log K ow (octanol-water partition coefficient) viz. - 0.07 for caffeine, 3.97 for ibuprofen and 4.76 for triclosan to examine the role of hydrophobicity on adsorption process. The adsorbent characterisation was achieved using BET surface area, SEM, pore size distribution studies and FTIR. Influence of mass of PAC, contact time, solution pH and initial concentration on adsorption capacity of PAC was studied. Adsorption isotherms and kinetics were applied to establish the mechanism of adsorption. The kinetics followed pseudo-second order with physisorption occurring through particle diffusion. The Freundlich model fitted best among the isotherm models. The adsorption capacity increased in the order CFN activated carbon.

  9. Similarity analyses of chromatographic herbal fingerprints: a review.

    Science.gov (United States)

    Goodarzi, Mohammad; Russell, Paul J; Vander Heyden, Yvan

    2013-12-04

    Herbal medicines are becoming again more popular in the developed countries because being "natural" and people thus often assume that they are inherently safe. Herbs have also been used worldwide for many centuries in the traditional medicines. The concern of their safety and efficacy has grown since increasing western interest. Herbal materials and their extracts are very complex, often including hundreds of compounds. A thorough understanding of their chemical composition is essential for conducting a safety risk assessment. However, herbal material can show considerable variability. The chemical constituents and their amounts in a herb can be different, due to growing conditions, such as climate and soil, the drying process, the harvest season, etc. Among the analytical methods, chromatographic fingerprinting has been recommended as a potential and reliable methodology for the identification and quality control of herbal medicines. Identification is needed to avoid fraud and adulteration. Currently, analyzing chromatographic herbal fingerprint data sets has become one of the most applied tools in quality assessment of herbal materials. Mostly, the entire chromatographic profiles are used to identify or to evaluate the quality of the herbs investigated. Occasionally only a limited number of compounds are considered. One approach to the safety risk assessment is to determine whether the herbal material is substantially equivalent to that which is either readily consumed in the diet, has a history of application or has earlier been commercialized i.e. to what is considered as reference material. In order to help determining substantial equivalence using fingerprint approaches, a quantitative measurement of similarity is required. In this paper, different (dis)similarity approaches, such as (dis)similarity metrics or exploratory analysis approaches applied on herbal medicinal fingerprints, are discussed and illustrated with several case studies. Copyright © 2013

  10. Miniaturized chromatographic radiochemical procedure for 131I - MIBG

    International Nuclear Information System (INIS)

    Barboza, M.F. de; Pereira, N.S. de; Colturato, M.T.; Silva, C.P.G. da.

    1989-12-01

    Different solvents were used in paper chromatographic methods to obtain the best system in routine radiochemical control for 131 I-MIBG produced at IPEN-CNEN/SP. The dates were compared with those obtained with eletrophoresis method in buffer acetate, pH=4.5, 350V, during 40 minutes. The stability of the labeled compound store under 4 0 C was studied during 15 days. Miniaturized chromatographic procedures were established using Whatman 3MM (8x1cm) and n-butanol-:acetic acid: water (S:2:1) as a solvent. the Rf values were: 0.3 (I - ) and 1.0 (MIBG). The radiochemical purity was 99.3 and 99.2% (first day) obtained with eletrophoresis and miniaturized chromatographic procedures, respectively and, 84.7% after 15 days of its preparation. It is a rapid, practical and reproductive method. (author) [pt

  11. Adsorption Properties of Lac Dyes on Wool, Silk, and Nylon

    Directory of Open Access Journals (Sweden)

    Bo Wei

    2013-01-01

    Full Text Available There has been growing interest in the dyeing of textiles with natural dyes. The research about the adsorption properties of natural dyes can help to understand their adsorption mechanism and to control their dyeing process. This study is concerned with the kinetics and isotherms of adsorption of lac dyes on wool, silk, and nylon fibers. It was found that the adsorption kinetics of lac dyes on the three fibers followed the pseudosecond-order kinetic model, and the adsorption rate of lac dyes was the fastest for silk and the slowest for wool. The activation energies for the adsorption process on wool, silk, and nylon were found to be 107.15, 87.85, and 45.31 kJ/mol, respectively. The adsorption of lac dyes on the three fibers followed the Langmuir mechanism, indicating that the electrostatic interactions between lac dyes and those fibers occurred. The saturation values for lac adsorption on the three fibers decreased in the order of wool > silk > nylon; the Langmuir affinity constant of lac adsorption on nylon was much higher than those on wool and silk.

  12. Isotherm and kinetic studies on adsorption of oil sands process-affected water organic compounds using granular activated carbon.

    Science.gov (United States)

    Islam, Md Shahinoor; McPhedran, Kerry N; Messele, Selamawit A; Liu, Yang; Gamal El-Din, Mohamed

    2018-07-01

    The production of oil from oil sands in northern Alberta has led to the generation of large volumes of oil sands process-affected water (OSPW) that was reported to be toxic to aquatic and other living organisms. The toxicity of OSPW has been attributed to the complex nature of OSPW matrix including the inorganic and organic compounds primarily naphthenic acids (NAs: C n H 2n+Z O x ). In the present study, granular activated carbon (GAC) adsorption was investigated for its potential use to treat raw and ozonated OSPW. The results indicated that NA species removal increased with carbon number (n) for a fixed Z number; however, the NA species removal decreased with Z number for a fixed carbon number. The maximum adsorption capacities obtained from Langmuir adsorption isotherm based on acid-extractable fraction (AEF) and NAs were 98.5 mg and 60.9 mg AEF/g GAC and 60 mg and 37 mg NA/g GAC for raw and ozonated OSPW, respectively. It was found that the Freundlich isotherm model best fits the AEF and NA equilibrium data (r 2  ≥ 0.88). The adsorption kinetics showed that the pseudo-second order and intraparticle diffusion models were both appropriate in modeling the adsorption kinetics of AEF and NAs to GAC (r 2  ≥ 0.97). Although pore diffusion was the rate limiting step, film diffusion was still significant for assessing the rate of diffusion of NAs. This study could be helpful to model, design and optimize the adsorption treatment technologies of OSPW and to assess the performance of other adsorbents. Copyright © 2018 Elsevier Ltd. All rights reserved.

  13. Interfacial adsorption of insulin - Conformational changes and reversibility of adsorption

    NARCIS (Netherlands)

    Mollmann, SH; Jorgensen, L; Bukrinsky, JT; Elofsson, U; Norde, W; Frokjaer, S

    The adsorption of human insulin to Teflon particles was studied with respect to conformational changes and the reversibility of adsorption was examined by total internal reflection fluorescence (TIRF). Adsorption isotherms for the adsorption of human insulin indicated high affinity adsorption, even

  14. Adsorption kinetics of Rhodamine-B on used black tea leaves

    Directory of Open Access Journals (Sweden)

    Hossain Mohammad

    2012-08-01

    Full Text Available Abstract Rhodamine B (Rh-B is one of the most common pollutants in the effluents of textile industries effluents in developing countries. This study was carried out to evaluate the applicability of used black tea leaves (UBTL for the adsorptive removal of Rh-B from aqueous system by investigating the adsorption kinetics in batch process. The effects of concentration and temperature on adsorption kinetics were examined. First-, second- and pseudo-second order kinetic equations were used to investigate the adsorption mechanism. The adsorption of Rh-B on UBTL followed pseudo-second order kinetics. The equilibrium amount adsorbed and the equilibrium concentration were calculated from pseudo-second-order kinetic plots for different initial concentrations of Rh-B to construct the adsorption isotherm. The adsorption isotherm was well expressed by Langmuir equation. The maximum adsorption capacity of UBTL to Rh-B was found to be 53.2 mg/g at pH = 2.0. The equilibrium amount adsorbed, calculated from pseudo-second-order kinetic plots, increased with temperature increase. The positive value of enthalpy of adsorption, ΔHads = 31.22 kJ/mol, suggested that the adsorption of Rh-B on UBTL at pH = 2.0 is an endothermic process.

  15. Surface Complexation Modeling of Fluoride Adsorption by Soil and the Role of Dissolved Aluminum on Adsorption

    Science.gov (United States)

    Padhi, S.; Tokunaga, T.

    2017-12-01

    Adsorption of fluoride (F) on soil can control the mobility of F and subsequent contamination of groundwater. Hence, accurate evaluation of adsorption equilibrium is a prerequisite for understanding transport and fate of F in the subsurface. While there have been studies for the adsorption behavior of F with respect to single mineral constituents based on surface complexation models (SCM), F adsorption to natural soil in the presence of complexing agents needs much investigation. We evaluated the adsorption processes of F on a natural granitic soil from Tsukuba, Japan, as a function of initial F concentration, ionic strength, and initial pH. A SCM was developed to model F adsorption behavior. Four possible surface complexation reactions were postulated with and without including dissolved aluminum (Al) and Al-F complex sorption. Decrease in F adsorption with the increase in initial pH was observed in between the initial pH range of 4 to 9, and a decrease in the rate of the reduction of adsorbed F with respect to the increase in the initial pH was observed in the initial pH range of 5 to 7. Ionic strength variation in the range of 0 to 100mM had insignificant effect on F removal. Changes in solution pH were observed by comparing the solution before and after F adsorption experiments. At acidic pH, the solution pH increased, whereas at alkaline pH, the solution pH decreased after equilibrium. The SCM including dissolved Al and the adsorption of Al-F complex can simulate the experimental results quite successfully. Also, including dissolved Al and the adsorption of Al-F complex to the model explained the change in solution pH after F adsorption.

  16. Modelling Adsorption of Foam-Forming Surfactants Modélisation de l'adsorption des produits tensio-actifs moussants

    Directory of Open Access Journals (Sweden)

    Mannhardt K.

    2006-11-01

    Full Text Available There is considerable interest in the use of foam-forming surfactants for mobility control in gas flooding enhanced oil recovery processes. The success of any such process is strongly affected by the rate of propagation of the surfactant through the reservoir. A sound understanding of surfactant adsorption on rock surfaces at reservoir conditions is therefore essential. This paper describes a model for the evaluation of adsorption during flow of surfactant solutions through porous media. The adsorption term in the flow equation is expressed in terms of the surface excess which proves to be more generally applicable than, for example, the Langmuir adsorption isotherm. Adsorption isotherms of three types of commercially available foam-forming surfactants are determined from core flooding data at different temperatures and brine salinities. L'utilisation de produits tensio-actifs moussants pour le contrôle de mobilité dans les procédés de récupération assistée du pétrole par injection de gaz suscite actuellement un grand intérêt. Mais le succès d'un tel procédé dépend largement de la vitesse de propagation du tensioactif dans le réservoir. Il est donc indispensable d'avoir une bonne connaissance de l'adsorption du tensio-actif sur les surfaces de la roche, dans les conditions de réservoir. Cet article décrit un modèle qui permet d'évaluer l'adsorption pendant l'écoulement de solutions tensio-actives en milieu poreux. Le terme qui représente l'adsorption dans l'équation de l'écoulement est exprimé en fonction de l'excédent de surface, concept qui s'est révélé d'une application plus générale que, par exemple, l'isotherme d'adsorption de Langmuir. Les isothermes d'adsorption de trois types de tensio-actifs moussants disponibles sur le marché sont déterminées à partir de données obtenues lors d'essais de déplacement dans des carottes, à différentes températures et avec des saumures de différentes salinités.

  17. Modeling the Non-Equilibrium Process of the Chemical Adsorption of Ammonia on GaN(0001) Reconstructed Surfaces Based on Steepest-Entropy-Ascent Quantum Thermodynamics.

    Science.gov (United States)

    Kusaba, Akira; Li, Guanchen; von Spakovsky, Michael R; Kangawa, Yoshihiro; Kakimoto, Koichi

    2017-08-15

    Clearly understanding elementary growth processes that depend on surface reconstruction is essential to controlling vapor-phase epitaxy more precisely. In this study, ammonia chemical adsorption on GaN(0001) reconstructed surfaces under metalorganic vapor phase epitaxy (MOVPE) conditions (3Ga-H and N ad -H + Ga-H on a 2 × 2 unit cell) is investigated using steepest-entropy-ascent quantum thermodynamics (SEAQT). SEAQT is a thermodynamic-ensemble based, first-principles framework that can predict the behavior of non-equilibrium processes, even those far from equilibrium where the state evolution is a combination of reversible and irreversible dynamics. SEAQT is an ideal choice to handle this problem on a first-principles basis since the chemical adsorption process starts from a highly non-equilibrium state. A result of the analysis shows that the probability of adsorption on 3Ga-H is significantly higher than that on N ad -H + Ga-H. Additionally, the growth temperature dependence of these adsorption probabilities and the temperature increase due to the heat of reaction is determined. The non-equilibrium thermodynamic modeling applied can lead to better control of the MOVPE process through the selection of preferable reconstructed surfaces. The modeling also demonstrates the efficacy of DFT-SEAQT coupling for determining detailed non-equilibrium process characteristics with a much smaller computational burden than would be entailed with mechanics-based, microscopic-mesoscopic approaches.

  18. Adsorption Properties and Potential Applications of Bamboo Charcoal: A Review

    Directory of Open Access Journals (Sweden)

    Isa S.S.M.

    2016-01-01

    Full Text Available Bamboo charcoal was produced by pyrolysis or carbonization process with extraordinary properties such as high conductivity, large surface area and adsorption property. These properties can be improved by activation process that can be done thermally or chemically. In this paper, carbonization and activation process of bamboo, its structural and adsorption properties will be presented. Herein, the adsorption properties of bamboo charcoal that has fully utilized in solar cell as the electrode, adsorbent for water purification and electromagnetic wave absorber are reviewed.

  19. Functionalized mesoporous silica materials for molsidomine adsorption: Thermodynamic study

    International Nuclear Information System (INIS)

    Alyoshina, Nonna A.; Parfenyuk, Elena V.

    2013-01-01

    A series of unmodified and organically modified mesoporous silica materials was prepared. The unmodified mesoporous silica was synthesized via sol–gel synthesis in the presence of D-glucose as pore-forming agent. The functionalized by phenyl, aminopropyl and mercaptopropyl groups silica materials were prepared via grafting. The fabricated adsorbent materials were characterized by Fourier transform infrared spectroscopy (FTIR) analysis, N 2 adsorption/desorption and elemental analysis methods. Then their adsorption properties for mesoionic dug molsidomine were investigated at 290–313 K and physiological pH value. Thermodynamic parameters of molsidomine adsorption on the synthesized materials have been calculated. The obtained results showed that the adsorption process of molsidomine on the phenyl modified silica is the most quantitatively and energetically favorable. The unmodified and mercaptopropyl modified silica materials exhibit significantly higher adsorption capacities and energies for molsidomine than the aminopropyl modified sample. The effects are discussed from the viewpoint of nature of specific interactions responsible for the adsorption. - Graphical abstract: Comparative analysis of the thermodynamic characteristics of molsidomine adsorption showed that the adsorption process on mesoporous silica materials is controlled by chemical nature of surface functional groups. Molsidomine adsorption on the phenyl modified silica is the most quantitatively and energetically favorable. Taking into account ambiguous nature of mesoionic compounds, it was found that molsidomine is rather aromatic than dipolar. Display Omitted - Highlights: • Unmodified and organically modified mesoporous silica materials were prepared. • Molsidomine adsorption on the silica materials was studied. • Phenyl modified silica shows the highest adsorption capacity and favorable energy. • Molsidomine exhibits the lowest affinity to aminopropyl modified silica

  20. QSAR models for prediction of chromatographic behavior of homologous Fab variants.

    Science.gov (United States)

    Robinson, Julie R; Karkov, Hanne S; Woo, James A; Krogh, Berit O; Cramer, Steven M

    2017-06-01

    While quantitative structure activity relationship (QSAR) models have been employed successfully for the prediction of small model protein chromatographic behavior, there have been few reports to date on the use of this methodology for larger, more complex proteins. Recently our group generated focused libraries of antibody Fab fragment variants with different combinations of surface hydrophobicities and electrostatic potentials, and demonstrated that the unique selectivities of multimodal resins can be exploited to separate these Fab variants. In this work, results from linear salt gradient experiments with these Fabs were employed to develop QSAR models for six chromatographic systems, including multimodal (Capto MMC, Nuvia cPrime, and two novel ligand prototypes), hydrophobic interaction chromatography (HIC; Capto Phenyl), and cation exchange (CEX; CM Sepharose FF) resins. The models utilized newly developed "local descriptors" to quantify changes around point mutations in the Fab libraries as well as novel cluster descriptors recently introduced by our group. Subsequent rounds of feature selection and linearized machine learning algorithms were used to generate robust, well-validated models with high training set correlations (R 2  > 0.70) that were well suited for predicting elution salt concentrations in the various systems. The developed models then were used to predict the retention of a deamidated Fab and isotype variants, with varying success. The results represent the first successful utilization of QSAR for the prediction of chromatographic behavior of complex proteins such as Fab fragments in multimodal chromatographic systems. The framework presented here can be employed to facilitate process development for the purification of biological products from product-related impurities by in silico screening of resin alternatives. Biotechnol. Bioeng. 2017;114: 1231-1240. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  1. Arsenic speciation in sulfidic waters: reconciling contradictory spectroscopic and chromatographic evidence.

    Science.gov (United States)

    Planer-Friedrich, Britta; Suess, Elke; Scheinost, Andreas C; Wallschläger, Dirk

    2010-12-15

    In recent years, analytical methods have been developed that have demonstrated that soluble arsenic-sulfur species constitute a major fraction of dissolved arsenic in sulfidic waters. However, an intense debate is going on about the exact chemical nature of these compounds, since X-ray absorption spectroscopy (XAS) data generated at higher (mmol/L) concentrations suggest the presence of (oxy)thioarsenites in such waters, while ion chromatographic (IC) and mass spectroscopic data at lower (μmol/L to nmol/L) concentrations indicate the presence of (oxy)thioarsenates. In this contribution, we connect and explain these two apparently different types of results. We show by XAS that thioarsenites are the primary reaction products of arsenite and sulfide in geochemical model experiments in the complete absence of oxygen. However, thioarsenites are extremely unstable toward oxidation, and convert rapidly into thioarsenates when exposed to atmospheric oxygen, e.g., while waiting for analysis on the chromatographic autosampler. This problem can only be eliminated when the entire chromatographic process is conducted inside a glovebox. We also show that thioarsenites are unstable toward sample dilution, which is commonly employed prior to chromatographic analysis when ultrasensitive detectors like ICP-MS are used. This instability has two main reasons: if pH changes during dilution, then equilibria between individual arsenic-sulfur species rearrange rapidly due to their different stability regions within the pH range, and if pH is kept constant during dilution, then this changes the ratio between OH(-) and SH(-) in solution, which in turn shifts the underlying speciation equilibria. This problem is avoided by analyzing samples undiluted. Our studies show that thioarsenites appear as thioarsenates in IC analyses if oxygen is not excluded completely, and as arsenite if samples are diluted in alkaline anoxic medium. This also points out that thioarsenites are necessary

  2. Adsorption of dodecylamine hydrochloride on graphene oxide in water

    Science.gov (United States)

    Chen, Peng; Li, Hongqiang; Song, Shaoxian; Weng, Xiaoqing; He, Dongsheng; Zhao, Yunliang

    Cationic surfactants in water are difficult to be degraded, leading to serious water pollution. In this work, graphene oxide (GO) was used as an adsorbent for removing Dodecylamine Hydrochloride (DACl), a representative cationic surfactant. X-ray diffraction (XRD), FT-IR spectroscopy and atomic force microscope (AFM) were used to characterize the prepared GO. The adsorption of DACl on GO have been investigated through measurements of adsorption capacity, zeta potential, FTIR, and X-ray photoelectron spectroscopy (XPS). The experimental results have shown that the adsorption kinetics could be described as a rate-limiting pseudo second-order process, and the adsorption isotherm agreed well with the Freundlich model. GO was a good adsorbent for DACl removal, compared with coal fly ash and powdered activated carbon. The adsorption process was endothermic, and could be attributed to electrostatic interaction and hydrogen bonding between DACl and GO.

  3. Particle size effects on protein and virus-like particle adsorption on perfusion chromatography media.

    Science.gov (United States)

    Wu, Yige; Abraham, Dicky; Carta, Giorgio

    2015-01-02

    The resin structure, chromatographic behavior, and adsorption kinetics of proteins and virus-like-particles (VLPs) are studied for POROS HS 20 and POROS HS 50 (23 and 52 μm mean diameter, respectively) to determine the effects of particle size on perfusion chromatography and to determine the predictive ability of available models. Transmission electron microscopy (TEM) and inverse size-exclusion chromatography (iSEC) show similar structures for the two resins, both containing 200-1000 nm pores that transect a network of much smaller pores. For non-binding conditions, trends of the height equivalent to a theoretical plate (HETP) as a function of reduced velocity are consistent with perfusion. The estimated intraparticle flow fractions for these conditions are 0.0018 and 0.00063 for POROS HS 20 and HS 50, respectively. For strong binding conditions, confocal laser scanning microscopy (CLSM) shows asymmetrical intraparticle concentrations profiles and enhanced rates of IgG adsorption on POROS HS 20 at 1000 cm/h. The corresponding effective diffusivity under flow is 2-3 times larger than for non-flow conditions and much larger than observed for POROS HS 50, consistent with available models. For VLPs, however, adsorption is confined to a thin layer near the particle surface for both resins, suggesting that the bound VLPs block the pores. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. Procedures for the production of poly-zirconium-compound (PZC) based chromatographic 99mTc generator to be available for clinical application

    International Nuclear Information System (INIS)

    Le Van So

    2006-01-01

    Two procedures - Column post-loading and Column pre-loading procedures - for the preparation of PZC based chromatographic Tc-99m generators were described in detail. In-process documentation, flow-chart of process for the individual procedures, specific Tc-99m generator designs and pictorially illustrative description of Tc-99m generator production process were systematically reported. The column pre-loading procedure was highly evaluated as a competent technology for the preparation of PZC based Tc-99m chromatographic generator of high performance using (n, γ) 99 Mo of low specific radioactivity produced on low power research reactors. (author)

  5. SeO2 adsorption on CaO surface: DFT study on the adsorption of a single SeO2 molecule

    Science.gov (United States)

    Fan, Yaming; Zhuo, Yuqun; Lou, Yu; Zhu, Zhenwu; Li, Liangliang

    2017-08-01

    Selenium is a hazardous element in coal. During coal combustion, most of the selenium will convert to SeO2 in the flue gas. Ca-based adsorbents, especially CaO, have been considered as a potential sorbent to adsorb SeO2 due to its low cost. In this paper, the adsorption mechanisms of single SeO2 on CaO surface were investigated by density functional theory (DFT) calculation. Both the physisorption and chemisorption structures were determined. It has been identified that the adsorption of SeO2 on CaO surface is primarily chemisorption, while physisorption takes effects at the initial stage of the process. Under O2 atmosphere, selenate is hard to form. Most of the adsorption products are selenite. Additionally, the electron density maps were obtained to reveal the surface active sites. The partial density of states (PDOS) was calculated for analyzing the electronic structural change of SeO2 and CaO surface during adsorption. The results provide fundamental information of the adsorption process, which could be meaningful for the development of new absorbents.

  6. Decolorization of a textile vat dye by adsorption on waste ash

    Directory of Open Access Journals (Sweden)

    MIODRAG ŠMELCEROVIĆ

    2010-06-01

    Full Text Available An adsorption process using cheap adsorbents could be described as a simple, selective and low cost alternative for the treatment of colored waste water compared to conventional physical and chemical processes. In this study the use of a natural waste adsorbent–ash was investigated for the removal of a textile vat dye Ostanthren blue GCD remaining after the dyeing of cotton textile. The ash obtained as a waste material during the burning of brown coal in the heating station of Leskovac (Serbia was used for the treatment of waste waters from the textile industry, i.e., waste water after the dyeing process. The effect of ash quantity, initial dye concentration, pH and agitation time on adsorption was studied. The Langmuir model was used to describe the adsorption isotherm. Based on the analytical expression of the Langmuir model, the adsorption constants, such as adsorption capacity and adsorption energy, were found. Pseudo first and second order kinetic models were studied to evaluate the kinetic data.

  7. Multiple chromatographic fingerprinting and its application to the quality control of herbal medicines

    Energy Technology Data Exchange (ETDEWEB)

    Fan Xiaohui [Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310027 (China); Cheng Yiyu [Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310027 (China)]. E-mail: chengyy@zju.edu.cn; Ye Zhengliang [Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310027 (China); Lin Ruichao [National Institute for the Control of Pharmaceutical and Biological Products, Beijing 100050 (China); Qian Zhongzhi [Committee of Chinese Pharmacopoeia, Beijing 100061 (China)

    2006-01-12

    Recently, chromatographic fingerprinting has become one of the most powerful approaches to quality control of herbal medicines. However, the performance of reported chromatographic fingerprinting constructed by single chromatogram sometimes turns out to be inadequate for complex herbal medicines, such as multi-herb botanical drug products. In this study, multiple chromatographic fingerprinting, which consists of more than one chromatographic fingerprint and represents the whole characteristics of chemical constitutions of the complex medicine, is proposed as a potential strategy in this complicated case. As a typical example, a binary chromatographic fingerprinting of 'Danshen Dropping Pill' (DSDP), the best-sold traditional Chinese medicine in China, was developed. First, two HPLC fingerprints that, respectively, represent chemical characteristics of depsides and saponins of DSDP were developed, which were used to construct binary chromatographic fingerprints of DSDP. Moreover, the authentication and validation of the binary fingerprints were performed. Then, a data-level information fusion method was employed to capture the chemical information encoded in two chromatographic fingerprints. Based on the fusion results, the lot-to-lot consistency and frauds can be determined either using similarity measure or by chemometrics approach. The application of binary chromatographic fingerprinting to consistency assessment and frauds detection of DSDP clearly demonstrated that the proposed method was a powerful approach to quality control of complex herbal medicines.

  8. Determination of adsorption parameters in numerical simulation for polymer flooding

    Science.gov (United States)

    Bao, Pengyu; Li, Aifen; Luo, Shuai; Dang, Xu

    2018-02-01

    A study on the determination of adsorption parameters for polymer flooding simulation was carried out. The study mainly includes polymer static adsorption and dynamic adsorption. The law of adsorption amount changing with polymer concentration and core permeability was presented, and the one-dimensional numerical model of CMG was established under the support of a large number of experimental data. The adsorption laws of adsorption experiments were applied to the one-dimensional numerical model to compare the influence of two adsorption laws on the historical matching results. The results show that the static adsorption and dynamic adsorption abide by different rules, and differ greatly in adsorption. If the static adsorption results were directly applied to the numerical model, the difficulty of the historical matching will increase. Therefore, dynamic adsorption tests in the porous medium are necessary before the process of parameter adjustment in order to achieve the ideal history matching result.

  9. Capillary gas chromatographic analysis of nerve agents using large volume injections. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Deinum, T.; Nieuwenhuy, C.

    1994-11-01

    The procedure developed at TNO-Prins Maurits Laboratory (TNO-PML) for the verification of intact organophosphorus chemical warfare agents in water samples was improved. The last step in this procedure, the laborious and non-reproducible transfer of an ethyl acetate extract onto a Tenax-adsorption tube followed by thermal desorption of the Tenax-tube, was replaced by large volume injection of the extract onto a capillary gas chromatographic system. The parameters controlling the injection of a large volume of an extract (200 ul) were investigated and optimized. As ethyl acetate caused severe problems, potential new solvents were evaluated. With the improved procedure, the nerve agents sarin, tabun, soman, diisopropyl fluorophosphate (DFP) and VX could be determined in freshly prepared water samples at pg/ml (ppt) levels. The fate of the nerve agents under study in water at two pH`s (4.8 and 6) was investigated. For VX, the pH should be adjusted before extraction. Moreover, it is worthwhile to acidify water samples to diminish hydrolysis.

  10. Clean technologies for energy production from coal and renewable sources

    International Nuclear Information System (INIS)

    Niculescu, Violeta; David, Elena; Sisu, Claudia; Constantinescu, Marius; Bucura, Felicia

    2006-01-01

    Carbon dioxide is captured from exhaust gases by a selective separation using a cyclic adsorption process, wherein the adsorption step of the process is conducted by passing the gas mixture through an adsorption zone containing selective adsorbents such as carbon molecular sieve and zeolites. Physical adsorption system is operated in pressure swing adsorption (PSA) or temperature swing adsorption (TSA), wherein the gas is adsorbed and then the initial conditions are modified to desorb the gas. The technical feasibility of the process is dictated by the adsorption step, whereas the desorption step controls its economic viability. Strong affinity of an adsorbent for captured CO 2 from exhaust gas is essential for an effective adsorption step and for this regenerable sorbents are developed that have high selectivity, high regenerability and high adsorption capacity for CO 2 , properties critical for the efficiency of the PSA/TSA process. The following materials and facilities will be used: carbon molecular sieves made at ICSI, zeolites, laboratory facility in operation at ICSI and gas analysis gauges (gas chromatograph, gas spectrometer, atomic adsorption spectrophotometer), etc. (authors)

  11. SeO{sub 2} adsorption on CaO surface: DFT study on the adsorption of a single SeO{sub 2} molecule

    Energy Technology Data Exchange (ETDEWEB)

    Fan, Yaming; Zhuo, Yuqun; Lou, Yu; Zhu, Zhenwu [Key Laboratory for Thermal Science and Power Engineering of Ministry of Education, Department of Thermal Engineering, Tsinghua University, Beijing 100084 (China); Li, Liangliang [Key Laboratory of Advanced Materials, Department of Material Science and Engineering, Tsinghua University, Beijing 100084 (China)

    2017-08-15

    Highlights: • Adsorption mechanisms of SeO{sub 2} on CaO surface under O{sub 2} were firstly studied by DFT. • The adsorption energies, bond length and electron density maps were calculated. • The electronic structure changes upon adsorption were studied. - Abstract: Selenium is a hazardous element in coal. During coal combustion, most of the selenium will convert to SeO{sub 2} in the flue gas. Ca-based adsorbents, especially CaO, have been considered as a potential sorbent to adsorb SeO{sub 2} due to its low cost. In this paper, the adsorption mechanisms of single SeO{sub 2} on CaO surface were investigated by density functional theory (DFT) calculation. Both the physisorption and chemisorption structures were determined. It has been identified that the adsorption of SeO{sub 2} on CaO surface is primarily chemisorption, while physisorption takes effects at the initial stage of the process. Under O{sub 2} atmosphere, selenate is hard to form. Most of the adsorption products are selenite. Additionally, the electron density maps were obtained to reveal the surface active sites. The partial density of states (PDOS) was calculated for analyzing the electronic structural change of SeO{sub 2} and CaO surface during adsorption. The results provide fundamental information of the adsorption process, which could be meaningful for the development of new absorbents.

  12. Heavy metal adsorption by modified oak sawdust: Thermodynamics and kinetics

    International Nuclear Information System (INIS)

    Argun, Mehmet Emin; Dursun, Sukru; Ozdemir, Celalettin; Karatas, Mustafa

    2007-01-01

    This paper describes the adsorption of heavy metal ions from aqueous solutions by oak (Quercus coccifera) sawdust modified by means of HCl treatment. Our study tested the removal of three heavy metals: Cu, Ni, and Cr. The optimum shaking speed, adsorbent mass, contact time, and pH were determined, and adsorption isotherms were obtained using concentrations of the metal ions ranging from 0.1 to 100 mg L -1 . The adsorption process follows pseudo-second-order reaction kinetics, as well as Langmuir and D-R adsorption isotherms. The paper discusses the thermodynamic parameters of the adsorption (the Gibbs free energy, entropy, and enthalpy). Our results demonstrate that the adsorption process was spontaneous and endothermic under natural conditions. The maximum removal efficiencies were 93% for Cu(II) at pH 4, 82% for Ni(II) at pH 8, and 84% for Cr(VI) at pH 3

  13. Temperature Control of Gas Chromatograph Based on Switched Delayed System Techniques

    Directory of Open Access Journals (Sweden)

    Xiao-Liang Wang

    2014-01-01

    Full Text Available We address the temperature control problem of the gas chromatograph. We model the temperature control system of the gas chromatograph into a switched delayed system and analyze the stability by common Lyapunov functional technique. The PI controller parameters can be given based on the proposed linear matrix inequalities (LMIs condition and the designed controller can make the temperature of gas chromatograph track the reference signal asymptotically. An experiment is given to illustrate the effectiveness of the stability criterion.

  14. Methylene blue adsorption by algal biomass based materials: biosorbents characterization and process behaviour.

    Science.gov (United States)

    Vilar, Vítor J P; Botelho, Cidália M S; Boaventura, Rui A R

    2007-08-17

    Dead algal biomass is a natural material that serves as a basis for developing a new family of sorbent materials potentially suitable for many industrial applications. In this work an algal industrial waste from agar extraction process, algae Gelidium and a composite material obtained by immobilization of the algal waste with polyacrylonitrile (PAN) were physical characterized and used as biosorbents for dyes removal using methylene blue as model. The apparent and real densities and the porosity of biosorbents particles were determined by mercury porosimetry and helium picnometry. The methylene blue adsorption in the liquid phase was the method chosen to calculate the specific surface area of biosorbent particles as it seems to reproduce better the surface area accessible to metal ions in the biosorption process than the N2 adsorption-desorption dry method. The porous texture of the biosorbents particles was also studied. Equilibrium isotherms are well described by the Langmuir equation, giving maximum uptake capacities of 171, 104 and 74 mg g(-1), respectively for algae, algal waste and composite material. Kinetic experiments at different initial methylene blue concentrations were performed to evaluate the equilibrium time and the importance of the driving force to overcome mass transfer resistances. The pseudo-first-order and pseudo-second-order kinetic models adequately describe the kinetic data. The biosorbents used in this work proved to be promising materials for removing methylene blue from aqueous solutions.

  15. Adsorption behavior of protein onto siloxane microspheres

    International Nuclear Information System (INIS)

    Liu Bailing; Cao Shunsheng; Deng Xiaobo; Li Songjun; Luo Rong

    2006-01-01

    The siloxane microspheres with core-shell structure (PMMA/PMPS) (MMA, methyl methacrylate; MPS, 3-methacryloxypropyl-trimethoxysilane) have been prepared by dispersion polymerization as described in our previous work. In this paper, the developed poly(MMA-MPS) microspheres, as a carrier, are used to investigate the adsorption behavior of bovine serum albumin (BSA) on them. The Langmuir and Freundlich models have been applied to describe the adsorption behavior. The experimental results indicated that the presence of PMPS evidently increases the adsorption rate and the amount of protein, and it also influences the interaction of BSA molecules. The adsorption of BSA on the poly(MMA-MPS) microspheres seems to be sensitive to pH and ionic strength. The fittings curves from Langmuir and Freundlich models showed that the adsorption was actually more complicated than ideal situation because one or more interactions were involved in the process. For understanding the electronic contribution, the Zeta potential was used to measure the reactive system before and after protein adsorption

  16. Adsorption behavior of protein onto siloxane microspheres

    Energy Technology Data Exchange (ETDEWEB)

    Liu Bailing [Chengdu Institute of Organic Chemistry, Graduate School of CAS, Chinese Academy of Sciences, Chengdu 610041 (China)]. E-mail: Blliuchem@hotmail.com; Cao Shunsheng [Chengdu Institute of Organic Chemistry, Graduate School of CAS, Chinese Academy of Sciences, Chengdu 610041 (China); Deng Xiaobo [Chengdu Institute of Organic Chemistry, Graduate School of CAS, Chinese Academy of Sciences, Chengdu 610041 (China); Li Songjun [Chengdu Institute of Organic Chemistry, Graduate School of CAS, Chinese Academy of Sciences, Chengdu 610041 (China); Luo Rong [Chengdu Institute of Organic Chemistry, Graduate School of CAS, Chinese Academy of Sciences, Chengdu 610041 (China)

    2006-09-15

    The siloxane microspheres with core-shell structure (PMMA/PMPS) (MMA, methyl methacrylate; MPS, 3-methacryloxypropyl-trimethoxysilane) have been prepared by dispersion polymerization as described in our previous work. In this paper, the developed poly(MMA-MPS) microspheres, as a carrier, are used to investigate the adsorption behavior of bovine serum albumin (BSA) on them. The Langmuir and Freundlich models have been applied to describe the adsorption behavior. The experimental results indicated that the presence of PMPS evidently increases the adsorption rate and the amount of protein, and it also influences the interaction of BSA molecules. The adsorption of BSA on the poly(MMA-MPS) microspheres seems to be sensitive to pH and ionic strength. The fittings curves from Langmuir and Freundlich models showed that the adsorption was actually more complicated than ideal situation because one or more interactions were involved in the process. For understanding the electronic contribution, the Zeta potential was used to measure the reactive system before and after protein adsorption.

  17. A low inventory adsorptive process for tritium extraction and purification

    International Nuclear Information System (INIS)

    Keefer, B.; Bora, B.; Chew, M.; Rump, M.; Kveton, O.K.

    1990-08-01

    The fuel cycles of future fusion power systems present a diverse spectrum of challenges to gas separation technology, for extraction, concentration, purification and confinement of tritium in fusion fuel cycles. Economic and safety factors motivate process design for minimum tritium inventory, functional simplicity, and overall reliability. A new gas separation process with some features of interest to fusion has been demonstrated under the auspices of the Canadian Fusion Fuels Technology Project. This process (Thermally Coupled Pressure Swing Adsorption or 'TCPSA') is potentially applicable to several fusion applications for separation purification of hydrogen, notably for tritium extraction from breeder blanket purge helium. Recent experimental tests have been directed toward fusion applications, primarily extraction and concentration of tritium-rich hydrogen from the blanket purge helium stream, and also considering purification of this and other hydrogen isotope streams such as the plasma exhaust. For example, hydrogen at 0.1% concentration in helium has been extracted in a TCPSA module operating at 195 K, with the process performed in a single working space to achieve simultaneous high extraction and concentration of the hydrogen. With methane or carbon oxides as the impurities, substantially complete separation is achieved by the same apparatus at ambient temperature. Engineering projections for scale-up to ITER blanket purge extraction and purification applications indicate a low working inventory of tritium

  18. Adsorption Characteristics of Polyvinyl Alcohols in Solution on Expanded Graphite

    Directory of Open Access Journals (Sweden)

    Xiu-Yan Pang

    2012-01-01

    Full Text Available Expanded graphite (EG adsorbent was prepared with 50 mesh graphite as raw materials, potassium permanganate as oxidant, and vitriol as intercalation compound. Three kinds of polyvinyl alcohol (PVA with different degree of polymerization (DP in aqueous solution were used as adsorbates. We have studied the influence of initial PVA concentration, temperature and ionic strength on adsorption capacity. Langmuir constants and Gibbs free energy change (⊿G° were calculated according to experimental data respectively. Thermodynamic analysis indicates the equilibrium adsorbance of PVA on EG increase with the rise of SO42– concentration. Adsorption isotherms of PVA with different degree of polymerization are all types and we deduce PVA molecules lie flat on EG surface. Adsorption processes are all spontaneous. Kinetic studies show that the kinetic data can be described by pseudo second-order kinetic model. Second-order rate constants and the initial adsorption rate rise with the increasing of temperature and half-adsorption time decreases with the increasing of temperature. The adsorption activation energy of each PVA is less than 20 kJ•mol−1, physical adsorption is the major mode of the overall adsorption process.

  19. Adsorption of heavy metal ions by sawdust of deciduous trees

    International Nuclear Information System (INIS)

    Bozic, D.; Stankovic, V.; Gorgievski, M.; Bogdanovic, G.; Kovacevic, R.

    2009-01-01

    The adsorption of heavy metal ions from synthetic solutions was performed using sawdust of beech, linden and poplar trees. The adsorption depends on the process time, pH of the solution, type of ions, initial concentration of metals and the sawdust concentration in suspension. The kinetics of adsorption was relatively fast, reaching equilibrium for less than 20 min. The adsorption equilibrium follows Langmuir adsorption model. The ion exchange mechanism was confirmed assuming that the alkali-earth metals from the adsorbent are substituted by heavy metal ions and protons. On lowering the initial pH, the adsorption capacity decreased, achieving a zero value at a pH close to unity. The maximum adsorption capacity (7-8 mg g -1 of sawdust) was achieved at a pH between 3.5 and 5 for all the studied kinds of sawdust. The initial concentration of the adsorbate and the concentration of sawdust strongly affect the process. No influence of particles size was evidenced. A degree of adsorption higher than 80% can be achieved for Cu 2+ ions but it is very low for Fe 2+ ions, not exceeding 10%.

  20. Non-equilibrium dynamics of single polymer adsorption to solid surfaces

    NARCIS (Netherlands)

    Panja, D.; Barkema, G.T.; Kolomeisky, A.B.

    2009-01-01

    The adsorption of polymers to surfaces is crucial for understanding many fundamental processes in nature. Recent experimental studies indicate that the adsorption dynamics is dominated by non-equilibrium effects. We investigate the adsorption of a single polymer of length N to a planar solid surface

  1. Functionalized mesoporous silica materials for molsidomine adsorption: Thermodynamic study

    Energy Technology Data Exchange (ETDEWEB)

    Alyoshina, Nonna A.; Parfenyuk, Elena V., E-mail: evp@iscras.ru

    2013-09-15

    A series of unmodified and organically modified mesoporous silica materials was prepared. The unmodified mesoporous silica was synthesized via sol–gel synthesis in the presence of D-glucose as pore-forming agent. The functionalized by phenyl, aminopropyl and mercaptopropyl groups silica materials were prepared via grafting. The fabricated adsorbent materials were characterized by Fourier transform infrared spectroscopy (FTIR) analysis, N{sub 2} adsorption/desorption and elemental analysis methods. Then their adsorption properties for mesoionic dug molsidomine were investigated at 290–313 K and physiological pH value. Thermodynamic parameters of molsidomine adsorption on the synthesized materials have been calculated. The obtained results showed that the adsorption process of molsidomine on the phenyl modified silica is the most quantitatively and energetically favorable. The unmodified and mercaptopropyl modified silica materials exhibit significantly higher adsorption capacities and energies for molsidomine than the aminopropyl modified sample. The effects are discussed from the viewpoint of nature of specific interactions responsible for the adsorption. - Graphical abstract: Comparative analysis of the thermodynamic characteristics of molsidomine adsorption showed that the adsorption process on mesoporous silica materials is controlled by chemical nature of surface functional groups. Molsidomine adsorption on the phenyl modified silica is the most quantitatively and energetically favorable. Taking into account ambiguous nature of mesoionic compounds, it was found that molsidomine is rather aromatic than dipolar. Display Omitted - Highlights: • Unmodified and organically modified mesoporous silica materials were prepared. • Molsidomine adsorption on the silica materials was studied. • Phenyl modified silica shows the highest adsorption capacity and favorable energy. • Molsidomine exhibits the lowest affinity to aminopropyl modified silica.

  2. Resorcinol adsorption from aqueous solution over activated carbon

    International Nuclear Information System (INIS)

    Blanco, Diego A; Giraldo, Liliana; Moreno, Juan C

    2007-01-01

    In this paper, the adsorption behavior of Resorcinol a monohydroxylated phenol, poorly acid to 298 K, over activated carbon is analyzed by studying the solution's pH influence and the surface reduction in the adsorption process. To do this, an activated carbon of lignocellulose origin and a reduced activated carbon was used. The interaction solid solution is characterized by the analyses of adsorption in the isotherms to 298 K and pH values of 7. 00, 9.00 and 11.00 for a period of 48 hours. The capacity adsorption of activated carbons increases when the solution's pH decreases and the retained amount increases in the reduced coal to the pH of maximum adsorption.

  3. Pilot plant development for adsorptive krypton separation from dissolver off-gas

    International Nuclear Information System (INIS)

    Ringel, H.; Printz, R.

    1987-01-01

    In view of hot cell application a separation process was investigated for the retention of Kr-85 from gaseous effluents. In the flow sheet only adsorption beds are applied. The most efficient process scheme is adsorption of the noble gas on activated charcoal and thereafter separation of the coadsorbed gas species like N 2 , O 2 , Xe and CO 2 from the krypton by gas chromatography. Adsorption is at normal pressure and low temperatures of up to -160 0 C, whereas desorption is at elevated temperatures and under helium purge. Influences on the process operation like off-gas composition, adsorption temperatures and adsorbent are experimentally investigated, as well as the behavior of trace impurities in the adsorption columns. On the basis of pilot plant operation the main components for a full scale facility are being designed

  4. Experimental study of adsorption chiller driven by variable heat source

    Energy Technology Data Exchange (ETDEWEB)

    Wang, D.C.; Wang, Y.J.; Zhang, J.P.; Tian, X.L. [College of Electromechanical Engineering, Qingdao University, Qingdao 266071 (China); Wu, J.Y. [Institute of Refrigeration and Cryogenics, Shanghai Jiao Tong University, Shanghai 200030 (China)

    2008-05-15

    A silica gel-water adsorption chiller has been developed in recent years and has been applied in an air conditioning system driven by solar energy. The heat source used to drive the adsorption chiller is variable at any moment because the solar radiation intensity or the waste heat from engines varies frequently. An adsorption cooling system may be badly impacted by a variable heat source with temperature variations in a large range. In this work, a silica gel-water adsorption chiller driven by a variable heat source is experimentally studied. The influences of the variable heat source on the performance of the chiller are analyzed, especially for a continuous temperature increase process and a continuous temperature decrease process of the heat source. As an example, the dynamic characteristics of the heat source are also analyzed when solar energy is taken as the heat source of the adsorption chiller. According to the experimental results for the adsorption chiller and the characteristics of the heat source from solar energy, control strategies of the adsorption chiller driven by solar energy are proposed. (author)

  5. Experimental study of adsorption chiller driven by variable heat source

    International Nuclear Information System (INIS)

    Wang, D.C.; Wang, Y.J.; Zhang, J.P.; Tian, X.L.; Wu, J.Y.

    2008-01-01

    A silica gel-water adsorption chiller has been developed in recent years and has been applied in an air conditioning system driven by solar energy. The heat source used to drive the adsorption chiller is variable at any moment because the solar radiation intensity or the waste heat from engines varies frequently. An adsorption cooling system may be badly impacted by a variable heat source with temperature variations in a large range. In this work, a silica gel-water adsorption chiller driven by a variable heat source is experimentally studied. The influences of the variable heat source on the performance of the chiller are analyzed, especially for a continuous temperature increase process and a continuous temperature decrease process of the heat source. As an example, the dynamic characteristics of the heat source are also analyzed when solar energy is taken as the heat source of the adsorption chiller. According to the experimental results for the adsorption chiller and the characteristics of the heat source from solar energy, control strategies of the adsorption chiller driven by solar energy are proposed

  6. An adsorption of carbon dioxide on activated carbon controlled by temperature swing adsorption

    Science.gov (United States)

    Tomas, Korinek; Karel, Frana

    2017-09-01

    This work deals with a method of capturing carbon dioxide (CO2) in indoor air. Temperature Swing Adsorption (TSA) on solid adsorbent was chosen for CO2 capture. Commercial activated carbon (AC) in form of extruded pellets was used as a solid adsorbent. There was constructed a simple device to testing effectiveness of CO2 capture in a fixed bed with AC. The TSA cycle was also simulated using the open-source software OpenFOAM. There was a good agreement between results obtained from numerical simulations and experimental data for adsorption process.

  7. Study PWA8 resin for chromatographic uranium concentration

    International Nuclear Information System (INIS)

    Coceancigh, Herman; Ramella, J. L.; Marrero, Julieta; Jiménez Rebagliati, Raúl

    2013-01-01

    For many years nuclear industry have been using resins as filler of chromatographic columns. These methods are specific and give reliable results in different applications, for those reasons are extremely useful as separation process. Currently the nuclear industry is growing and this brings new issues such as the need of reduction of the amount of waste, the optimization of the production process and others that the chromatography could solve with great results. AMBERLITETM PWA8 resin is an anion exchange resin which can be used for the removal of uranium from drinking water. In addition to high exchange capacity, this resin has excellent physical stability and a wide range of pH in which is operational. With the idea of concentrating uranium from wastes solution as main goal we made different experiments to understand the AMBERLITETM PWA8 and obtain the most important characteristics like; pH working range; capacity; activation and elution procedures. These procedures were developed and optimized the capacity was determined using a batch experiment and we obtain that the maximum capacity is 882,5 U ug /resin gr at a pH of 4,2. Following on from these results chromatographic experiments were performed in which both were obtained the percentage of recovery and the concentration factor. The percent recovery (% R) calculated as the percentage ratio between the total mass and the load mass eluted (% R = eluted mass / total mass * 100) was 94% with a concentration factor of 5 times From these results it is intended to concentrate wastes solutions from the fuel cycle processes with two main goals: decreasing volume for storage and for future reusing of the uranium coming from production. (author)

  8. Adsorption of ions by colloids in electrolyte solutions

    International Nuclear Information System (INIS)

    Kallay, N.

    1977-01-01

    The adsorption isotherm for ionic adsorption by colloid particles was evaluated. The adsorption process was treated as the reaction between colloid particles and ions. The colloid particle has been here considered as a reaction entity. The possibility of the surface potential determination was presented. The analyses of the experimental data showed, that (at electrolyte concentration higher than the critical coagulation one) the surface potential reaches its zero value

  9. Adsorption decontamination of radioactive waste solvent by activated alumina and bauxites

    International Nuclear Information System (INIS)

    Hassan, N.M.; Marra, J.C.; Kyser, E.A.

    1994-01-01

    An adsorption process utilizing activated alumina and activated bauxite adsorbents was evaluated as a function of operating parameters for the removal of low level radioactive contaminants from organic waste solvent generated in the fuel reprocessing facilities and support operations at Savannah River Site. The waste solvent, 30% volume tributyl phosphate in n-paraffin diluent, was degraded due to hydrolysis and radiolysis reactions of tributyl phosphate and n-paraffin diluent, producing fission product binding degradation impurities. The process, which has the potential for removing these activity-binding degradation impurities from the solvent, was operated downflow through glass columns packed with activated alumina and activated bauxite adsorbents. Experimental breakthrough curves were obtained under various operating temperatures and flow rates. The results show that the adsorption capacity of the activated alumina was in the order 10 4 dpm/g and the capacity of the activated bauxite was 10 5 dpm/g. The performance of the adsorption process was evaluated in terms of dynamic parameters (i.e. adsorption capacity, the height and the efficiency of adsorption zone) in such a way as to maximize the adsorption capacity and to minimize the height of the mass transfer or adsorption zone

  10. Thermodynamic features of dioxins’ adsorption

    Energy Technology Data Exchange (ETDEWEB)

    Prisciandaro, Marina [Department of Industrial and Information Engineering and of Economics, University of L’Aquila, Viale Giovanni Gronchi 18, L’Aquila 67100 (Italy); Piemonte, Vincenzo, E-mail: v.piemonte@unicampus.it [Faculty of Engineering, University Campus Biomedico of Rome, Via Alvaro del Portillo 21, Rome 00128 (Italy); Mazziotti di Celso, Giuseppe [Faculty of Bioscience, University of Teramo, Via R. Balzarini, 1, 64100 Teramo (Italy); Ronconi, Silvia [Arta Abruzzo, Department of L’Aquila, Bazzano (AQ), 67100 L’Aquila (Italy); Capocelli, Mauro [Faculty of Engineering, University Campus Biomedico of Rome, Via Alvaro del Portillo 21, Rome 00128 (Italy)

    2017-02-15

    Highlights: • We develop the P-T diagram for six PCDD. • We derive theoretical adsorption isotherms according to the Langmuir’s model. • We calculate K and w{sub max} values for several temperatures. • We estimate the adsorption heat with a good agreement with literature data. - Abstract: In this paper, the six more poisonous species among all congeners of dioxin group are taken into account, and the P-T diagram for each of them is developed. Starting from the knowledge of vapour tensions and thermodynamic parameters, the theoretical adsorption isotherms are calculated according to the Langmuir’s model. In particular, the Langmuir isotherm parameters (K and w{sub max}) have been validated through the estimation of the adsorption heat (ΔH{sub ads}), which varies in the range 20–24 kJ/mol, in agreement with literature values. This result will allow to put the thermodynamical basis for a rational design of different process units devoted to dioxins removal.

  11. USEBILITY OF HYDROGELS IN ADSORPTION TECHNOLOGHY FOR REMOVAL OF HEAVY METAL AND DYE

    Directory of Open Access Journals (Sweden)

    AÇIKEL Safiye Meriç

    2016-05-01

    Full Text Available Heavy metals and Dyes are very toxic and nonbiodegradable in waste waters to cause adverse health effects in human body and to induce irreversible pollution. Adsorption offers many potential advantages for removal of toxic heavy metals being flexibility in design and operation, high-quality treated effluent, reversible nature for multiple uses, and many commercially available adsorbent materials, such as activated carbon, zeolite, clay, sawdust, bark, biomass, lignin, chitosan and other polymer adsorbents. Compared to conventional adsorbent materials above, hydrogelbased adsorbents recently have attracted special attention to their highly potential for effective removal of heavy metals and dyes. Hydrogels are named “Hydrophilic Polymer” because of care for water. Hydrogels is not solved in water; however they have been swollen to their balance volume. Because of this swell behavior, they can adsorb big quantity of water in this structure. So they can term of “three sized polymers” due to protect their existing shape [9]. Hydrogels with porous structures and chemically-responsive functional groups, enable to readily capture metal ions and dyes from wastewater. Hydrogels with porous structures and chemically-responsive functional groups, enable to readily capture metal ions and dyes from wastewater. In adsorption applications, hydrogels are used in water purification, heavy metal/dying removing, controlled fertilizer released, ion exchange applications, chromatographic applications, dilute extractions, waste water treatments. This article general inform about usage of hydrogels in Dye and Heavy Metal adsorption.

  12. Hybrid adsorptive membrane reactor

    Science.gov (United States)

    Tsotsis, Theodore T [Huntington Beach, CA; Sahimi, Muhammad [Altadena, CA; Fayyaz-Najafi, Babak [Richmond, CA; Harale, Aadesh [Los Angeles, CA; Park, Byoung-Gi [Yeosu, KR; Liu, Paul K. T. [Lafayette Hill, PA

    2011-03-01

    A hybrid adsorbent-membrane reactor in which the chemical reaction, membrane separation, and product adsorption are coupled. Also disclosed are a dual-reactor apparatus and a process using the reactor or the apparatus.

  13. Adsorption of saturated fatty acid in urea complexation: Kinetics and equilibrium studies

    Science.gov (United States)

    Setyawardhani, Dwi Ardiana; Sulistyo, Hary; Sediawan, Wahyudi Budi; Fahrurrozi, Mohammad

    2018-02-01

    Urea complexation is fractionation process for concentrating poly-unsaturated fatty acids (PUFAs) from vegetable oil or animal fats. For process design and optimization in commercial industries, it is necessary to provide kinetics and equilibrium data. Urea inclusion compounds (UICs) as the product is a unique complex form which one molecule (guest) is enclosed within another molecule (host). In urea complexation, the guest-host bonding exists between saturated fatty acids (SFAs) and crystalline urea. This research studied the complexation is analogous to an adsorption process. The Batch adsorption process was developed to obtain the experimental data. The ethanolic urea solution was mixed with SFA in certain compositions and adsorption times. The mixture was heated until it formed homogenous and clear solution, then it cooled very slowly until the first numerous crystal appeared. Adsorption times for the kinetic data were determined since the crystal formed. The temperature was maintained constant at room temperature. Experimental sets of data were observed with adsorption kinetics and equilibrium models. High concentration of saturated fatty acid (SFA) was used to represent adsorption kinetics and equilibrium parameters. Kinetic data were examined with pseudo first-order, pseudo second-order and intra particle diffusion models. Linier, Freundlich and Langmuir isotherm were used to study the equilibrium model of this adsorption. The experimental data showed that SFA adsorption in urea crystal followed pseudo second-order model. The compatibility of the data with Langmuir isotherm showed that urea complexation was a monolayer adsorption.

  14. Analyzing chromatographic data using multilevel modeling.

    Science.gov (United States)

    Wiczling, Paweł

    2018-06-01

    It is relatively easy to collect chromatographic measurements for a large number of analytes, especially with gradient chromatographic methods coupled with mass spectrometry detection. Such data often have a hierarchical or clustered structure. For example, analytes with similar hydrophobicity and dissociation constant tend to be more alike in their retention than a randomly chosen set of analytes. Multilevel models recognize the existence of such data structures by assigning a model for each parameter, with its parameters also estimated from data. In this work, a multilevel model is proposed to describe retention time data obtained from a series of wide linear organic modifier gradients of different gradient duration and different mobile phase pH for a large set of acids and bases. The multilevel model consists of (1) the same deterministic equation describing the relationship between retention time and analyte-specific and instrument-specific parameters, (2) covariance relationships relating various physicochemical properties of the analyte to chromatographically specific parameters through quantitative structure-retention relationship based equations, and (3) stochastic components of intra-analyte and interanalyte variability. The model was implemented in Stan, which provides full Bayesian inference for continuous-variable models through Markov chain Monte Carlo methods. Graphical abstract Relationships between log k and MeOH content for acidic, basic, and neutral compounds with different log P. CI credible interval, PSA polar surface area.

  15. Adsorption-regeneration by heterogeneous Fenton process using modified carbon and clay materials for removal of indigo blue.

    Science.gov (United States)

    Almazán-Sánchez, Perla Tatiana; Solache-Ríos, Marcos J; Linares-Hernández, Ivonne; Martínez-Miranda, Verónica

    2016-01-01

    Indigo blue dye is mainly used in dyeing of denim clothes and its presence in water bodies could have adverse effects on the aquatic system; for this reason, the objective of this study was to promote the removal of indigo blue dye from aqueous solutions by iron and copper electrochemically modified clay and activated carbon and the saturated materials were regenerated by a Fenton-like process. Montmorillonite clay was modified at pH 2 and 7; activated carbon at pH 2 and pH of the system. The elemental X-ray dispersive spectroscopy analysis showed that the optimum pH for modification of montmorillonite with iron and copper was 7 and for activated carbon was 2. The dye used in this work was characterized by infrared. Unmodified and modified clay samples showed the highest removal efficiencies of the dye (90-100%) in the pH interval from 2 to 10 whereas the removal efficiencies decrease as pH increases for samples modified at pH 2. Unmodified clay and copper-modified activated carbon at pH 2 were the most efficient activated materials for the removal of the dye. The adsorption kinetics data of all materials were best adjusted to the pseudo-second-order model, indicating a chemisorption mechanism and the adsorption isotherms data showed that the materials have a heterogeneous surface. The iron-modified clay could be regenerated by a photo-Fenton-like process through four adsorption-regeneration cycles, with 90% removal efficiency.

  16. Single-column extraction chromatographic separation of U, Pu, Np and Am

    Energy Technology Data Exchange (ETDEWEB)

    Morgenstern, A.; Apostolidis, C.; Carlos-Marquez, R.; Mayer, K.; Molinet, R. [Commission of the European Communities, Karlsruhe (Germany). European Inst. for Transuranium Elements

    2002-07-01

    A rapid, single-column extraction chromatographic method using commercially available UTEVA resin has been developed for the separation of uranium, plutonium, neptunium and americium. The method yields recoveries superior to 90% and allows direct loading of separated fractions on filaments for subsequent analysis by thermal ionization mass spectrometry. The use of reagents compatible with robotized equipment allows automation of the separation process for routine analysis of nuclear materials. The redox reactions between plutonium, neptunium and hydrogen peroxide involved in the separation process were studied by UV/Vis/NIR absorption spectroscopy. (orig.)

  17. Lithium adsorption on amorphous aluminum hydroxides and gibbsite

    Directory of Open Access Journals (Sweden)

    Konstantinos P. Prodromou

    2016-01-01

    Full Text Available Lithium (Li adsorption on both amorphous aluminum hydroxides and gibbsite was studied. For the amorphous Al(OH3 the adsorption was found to be pH dependent. Generally, 1.6 times more Li was adsorbed at initial pH value 8.0 compared with pH value 6.50. Gibbsite adsorbed 11.6 to 45.5 times less Li quantities compared with amorphous Al(OH3. Lithium adsorption was not depended on equilibrium times. It remained stable for all equilibrium times used. Lithium quantities extracted with 1N CH3COONH4 pH 7 , represent the physical adsorption, while the remaining Li that was adsorbed on Al(OH3, represents the chemical adsorption. During the desorption process 19% of Li extracted with NH4+, represents the physical adsorption, while the remaining 81% of Li, which was adsorbed represents the chemical adsorption. In gibbsite, 9.6% of Li represents the physical adsorption and 90.4% the chemical one. The experimental data conformed well to Freundlich isotherm equation.

  18. Highly Efficient Adsorption of Copper Ions by a PVP-Reduced Graphene Oxide Based On a New Adsorptions Mechanism

    Institute of Scientific and Technical Information of China (English)

    Yongji Zhang; HuiJuan Chi; WenHui Zhang; Youyi Sun; Qing Liang; Yu Gu; Riya Jing

    2014-01-01

    Polyvinylpyrrolidone-reduced graphene oxide was prepared by modified hummers method and was used as adsorbent for removing Cu ions from wastewater. The effects of contact time and ions concentration on adsorption capacity were examined. The maximum adsorption capacity of 1689 mg/g was observed at an initial p H value of 3.5 after agitating for 10 min. It was demonstrated that polyvinylpyrrolidone-reduced graphene oxide had a huge adsorption capacity for Cu ions, which was 10 times higher than maximal value reported in previous works. The adsorption mechanism was also discussed by density functional theory. It demonstrates that Cu ions are attracted to surface of reduced graphene oxide by C atoms in reduced graphene oxide modified by polyvinylpyrrolidone through physisorption processes, which may be responsible for the higher adsorption capacity. Our results suggest that polyvinylpyrrolidone-reduced graphene oxide is an effective adsorbent for removing Cu ions in wastewater. It also provides a new way to improve the adsorption capacity of reduced graphene oxide for dealing with the heavy metal ion in wastewater.

  19. Adsorption of lead onto smectite from aqueous solution.

    Science.gov (United States)

    Mhamdi, M; Galai, H; Mnasri, N; Elaloui, E; Trabelsi-Ayadi, M

    2013-03-01

    The purpose of this research is to study the effect of a new method of adsorption using membrane filtration to determine the maximum amount of lead adsorbed by clay and investigate the behavior of the clay after adsorption of the said metal. Treatment of wastewater contaminated with heavy metals depends on the characteristics of the effluent, the amount of final discharge, the cost of treatment, and the compatibility of the treatment process. The process of adsorption of heavy metals by clays may be a simple, selective, and economically viable alternative to the conventional physical-chemical treatment. This is justified by the importance of the surface developed by this material, the presence of negative charges on the said surface, the possibility of ion exchange taking place, and its wide availability in nature. The removal of lead from wastewater was studied by using the adsorption technique and using clay as the adsorbent. A method was optimized for adsorption through a membrane approaching natural adsorption. This new method is simple, selective, and the lead adsorption time is about 3 days. The various properties of clay were determined. It was observed that the cation exchange capacity of the clay was 56 meq/100 g of hydrated clay for the raw sample and 82 meq/100 g for the purified sample. The total surface area determined by the methylene blue method was equal to 556 and 783 m(2)/g for the raw and purified samples, respectively. The adsorption kinetics depends on several parameters. The Pb(II) clay, obeys the Langmuir, Freundlich, and the Elovich adsorption isotherms with high regression coefficients. The use of this adsorbent notably decreases the cost of treatment. It was concluded that clay shows a strong adsorption capacity on Pb(II), the maximum interaction occurring with purified clay treated at high concentration of lead. It is proposed that this adsorption through a membrane be extended for the treatment of effluents containing other metals.

  20. ADSORPTION OF GIBBERELLIC ACID ONTO NATURAL KAOLIN FROM TATAKAN, SOUTH KALIMANTAN

    Directory of Open Access Journals (Sweden)

    Sunardi Sunardi

    2010-06-01

    Full Text Available Adsorption of gibberellic acid (GA3 onto raw and purified kaolin from Tatakan, South Kalimantan was investigated in this study. Purification process was done by sedimentation to obtain relative pure kaolinite. Raw and purified kaolin samples were characterized by Fourier transformed infrared (FTIR spectroscopy and X-ray diffractometer (XRD. The adsorption process was carried out in a batch system and the effect of pH, contact time and GA3 concentration were experimentally studied to evaluate the adsorption capacity. The amount of GA3 adsorbed was determined by UV spectrophotometer. The result showed that the raw kaolin from South Kalimantan consist of 53.36% kaolinite, 29.47% halloysite, 4.47% chlorite, 11.32% quartz and 1.38% christobalite and the purified kaolin consist of 73.03% kaolinite, 22.6% halloysite, 0.77% chlorite, 1.37% quartz and 2.23% christobalite Adsorption experimental indicate that the optimum adsorption took place at pH 7 and contact time for 4 h. Adsorption of GA3 was described by the Langmuir adsorption isotherm model with adsorption capacity of 8.91 mg/g on raw kaolin and 10.38 mg/g on purified kaolin.   Keywords: kaolin, gibberellic acid, adsorption

  1. Direct measurements of adsorption heats of hydrogen on nano-porous carbons

    International Nuclear Information System (INIS)

    Akihiko Matsumoto; Kazumasa Yamamoto; Tomoyuki Miyata

    2005-01-01

    Since a exciting report of hydrogen storage in single-walled carbon nano-tubes by Dillon and his colleagues, nano-porous carbon materials, such as carbon nano-tubes, carbon nano-horns and micro-porous activated carbon, have attracted considerable attention as hydrogen storage materials. Adsorption plays a predominating role in the hydrogen storage process on solid surfaces. The adsorption is a spontaneous process, which is caused by interaction between gas molecules and surface, hence, it is always exothermic process and observed as adsorption heats. For this reason, direct measurement of the adsorption heats by adsorption micro-calorimetry would provide quantitative information on the strength of adsorption interaction and the adsorption mechanism. However, the adsorption amounts of hydrogen on carbon materials are far less than those of condensable vapors near room temperature due to low critical temperature of hydrogen (33.2 K), therefore, the adsorption heats can not be determined accurately at conventional measurement conditions near room temperature and the atmospheric pressure. This contribution reports the calorimetric characterization of hydrogen adsorption on nano-porous carbon materials at low temperature and high-pressure conditions. The high-pressure adsorption apparatus consists of a volumetric adsorption line connected to a twin-conduction type microcalorimeter. Activated carbon fibers (ACF, Ad'all Co.) of different micro-pore sizes (Table 1) were used as model adsorbents. Each ACF has slit-shaped micropores of uniform size. The adsorption isotherms and differential heats of adsorption at high-pressure region from 0 to 10 MPa were simultaneously measured at isothermal condition from 203 to 298 K. The adsorption isotherms on ACF were of Henry type regardless of adsorption temperature and pore width; the uptakes increased linearly with equilibrium pressure. The adsorption isotherm at lower sorption temperature tended to show higher sorptivity. The

  2. Application of Zr/Ti-Pic in the adsorption process of Cu(II), Co(II) and Ni(II) using adsorption physico-chemical models and thermodynamics of the process; Aplicacao de Zr/Ti-PILC no processo de adsorcao de Cu(II), Co(II) e Ni(II) utilizando modelos fisico-quimicos de adsorcao e termodinamica do processo

    Energy Technology Data Exchange (ETDEWEB)

    Guerra, Denis Lima; Airoldi, Claudio [Universidade Estadual de Campinas (UNICAMP), SP (Brazil). Inst. de Quimica. Dept. de Quimica Inorganica]. E-mail: dlguerra@iqm.unicamp.br; Lemos, Vanda Porpino; Angelica, Romulo Simoes [Universidade Federal do Para (UFPa), Belem (Brazil); Viana, Rubia Ribeiro [Universidade Federal do Mato Grosso (UFMT), Cuiaba (Brazil). Inst. de Ciencias Exatas e da Terra. Dept. de Recursos Minerais

    2008-07-01

    The aim of this investigation is to study how Zr/Ti-Pic adsorbs metals. The physico-chemical proprieties of Zr/Ti-Pic have been optimized with pillarization processes and Cu(II), Ni(II) and Co(II) adsorption from aqueous solution has been carried out, with maximum adsorption values of 8.85, 8.30 and 7.78 x-1 mmol g{sup -1}, respectively. The Langmuir, Freundlich and Temkin adsorption isotherm models have been applied to fit the experimental data with a linear regression process. The energetic effect caused by metal interaction was determined through calorimetric titration at the solid-liquid interface and gave a net thermal effect that enabled the calculation of the exothermic values and the equilibrium constant. (author)

  3. Adsorption study of Ammonia Nitrogen by watermelon rind

    Science.gov (United States)

    Ibrahim, A.; Yusof, L.; Beddu, N. S.; Galasin, N.; Lee, P. Y.; Lee, R. N. S.; Zahrim, A. Y.

    2016-06-01

    The utilization of fruit waste for low-cost adsorbents as a replacement for costly conventional methods of removing ammonia nitrogen from wastewater has been reviewed. The adsorption studies were conducted as a function of contact time and adsorbent dosage and it were carried out on four different adsorbents; fresh watermelon rind and modified watermelon rind with sodium hydroxide (NaOH), potassium hydroxide (KOH) and sulphuric acid (H2SO4). Adsorbents were tested for characterization by using zeta potential test and all samples shows negative values thus makes it favourable for the adsorption process. The batch experimental result showed that adsorption process is rapid and equilibrium was established within 40 minutes of contact time. The ammonia nitrogen removal rate amounted in range of 96% to 99%, and the adsorption capacities were in range of 1.21 to 1.24 mg/g for all four different types of adsorbents used.

  4. Mixed-mode chromatographic matrices for the resolution of transfer ribonucleic acids

    NARCIS (Netherlands)

    Bischoff, Rainer; Mclaughlin, L.W.

    1984-01-01

    Modification of approximately 65% of the amine groups of an aminopropylsilyl bonded-phase silica high-performance liquid chromatographic anion exchanger (APS-Hypersil) with organic acids containing n-alkyl moieties of different chain lengths, results in mixed mode chromatographic matrices of varying

  5. Radioimmunoassay of methaqualone in human urine compared with chromatographic methods

    International Nuclear Information System (INIS)

    Mule, S.J.; Kogan, M.; Jukofsky, D.

    1978-01-01

    The 125 I-radioimmunoassay for methaqualone in human urine was evaluated by a comparison with newly modified gas-liquid chromatographic and thin-layer chromatographic methods. The statistically significant sensitivity value for the radioimmunoassay was at 2 μg of methaqualone per liter of urine. The coefficient of variation was 2.88 -+ 0.16% intraassay. There was cross-reactivity only with metabolites of methaqualone, 4'-hydroxymethaqualone being twice as sensitively measured as methaqualone. There was complete agreement between results by radioimmunoassay and by gas-liquid chromatography in 96.7% of the samples analyzed. Only 1.2% of the radioimmunoassay values were false positives, and 2.1% false negatives (phi = 0.8917, P < 0.001). Comparisons between the thin-layer chromatographic data and the gas--liquid chromatographic or radioimmunoassay data showed less agreement because of the 50- to 200-fold higher sensitivity of the latter techniques. Gas--liquid chromatography therefore appears to represent the best reference method for the evaluation of the radioimmunoassay, which appears to be a very sensitive and reliable technique for detecting methaqualone and its metabolites in human urine

  6. Gas separation by pressure swing adsorption

    International Nuclear Information System (INIS)

    Martin, J.R.; Gottzman, C.F.; Notaro, F.; Stewart, H.A.

    1986-01-01

    Over the past twenty years separation processes based upon pressure swing adsorption have replaced cryogenic processes in a number of selected applications such as air separation for production of moderate quantities of nitrogen and oxygen and recovery of hydrogen from refinery and chemical plant gases. Key events contributing to the emergence of PSA as an important process option have been the development of synthetic zeolite molecular sieves by Union Carbide Corporation in the USA and of carbon molecular sieves by Bergbau-Forschung in Germany. Today PSA processes enjoy significant commercial use producing oxygen from 0.1 Nm 3 /h for medical application to 1500 Nm 3 /h for steel mill use, for making nitrogen up to 1000 Nm 3 /h for inerting and in purifying hydrogen streams of up to 100,000 Nm 3 /h for refinery use. In this paper some of the principles of adsorptive separations are reviewed. The history of the technology is traced briefly with emphasis on key material, process and application events. The major commercial processes in the application of adsorption to bulk separation of air and hydrogen purification are reviewed in more detail with comparisons made to cryogenic alternatives in terms of specific characteristics, advantages and disadvantages where appropriate. Information on performance, reliability and comparative economics are discussed where available

  7. Performance of chromatographic systems to model soil-water sorption.

    Science.gov (United States)

    Hidalgo-Rodríguez, Marta; Fuguet, Elisabet; Ràfols, Clara; Rosés, Martí

    2012-08-24

    A systematic approach for evaluating the goodness of chromatographic systems to model the sorption of neutral organic compounds by soil from water is presented in this work. It is based on the examination of the three sources of error that determine the overall variance obtained when soil-water partition coefficients are correlated against chromatographic retention factors: the variance of the soil-water sorption data, the variance of the chromatographic data, and the variance attributed to the dissimilarity between the two systems. These contributions of variance are easily predicted through the characterization of the systems by the solvation parameter model. According to this method, several chromatographic systems besides the reference octanol-water partition system have been selected to test their performance in the emulation of soil-water sorption. The results from the experimental correlations agree with the predicted variances. The high-performance liquid chromatography system based on an immobilized artificial membrane and the micellar electrokinetic chromatography systems of sodium dodecylsulfate and sodium taurocholate provide the most precise correlation models. They have shown to predict well soil-water sorption coefficients of several tested herbicides. Octanol-water partitions and high-performance liquid chromatography measurements using C18 columns are less suited for the estimation of soil-water partition coefficients. Copyright © 2012 Elsevier B.V. All rights reserved.

  8. Experimental study and modelling of competitive adsorption equilibria of aromatics in liquid phase on X and Y faujasites; Etude experimentale et modelisation des equilibres d'adsorption competitive d'aromatiques en phase liquide sur des faujasites X et Y

    Energy Technology Data Exchange (ETDEWEB)

    Tournier, H.

    2000-10-13

    The separation of p-xylene from C{sub 8} aromatics is performed industrially by selective adsorption on zeolitic molecular sieves. The aim of this work is to study and model adsorption equilibria of C{sub 8} and C{sub 10} aromatics on X and Y zeolites. The experimental data are obtained by an entirely automated equipment allowing to work in a large range of temperature (50 deg. C - 250 deg. C). With this equipment, we can follow the evolution of the composition of the liquid phase and determine the composition of the adsorbed phase at equilibrium by a mass balance calculation and with an inert component. Two analytical techniques are used to determine the composition of the liquid phase: (1) a classical method using a gas chromatograph (GC) allowed to measure selectivities in the concentration range (3%-97%) in a component; (2) an original method based on the use and on the measure of {sup 13}C labelled xylenes was developed to investigate the ranges of strongly contrasting concentrations [0-3%] and [97%-100%] in a component, which are representative of high purity domains. Lastly, three thermodynamic models are used to describe the adsorption equilibria: the Langmuir-Freundlich model, the quasi-chemical model and the statistical model. The last model is the more interesting, because it is based on physical considerations. A new statistical model has been developed with taking into account some observations coming from adsorption phenomenon in zeolites. (author)

  9. The adsorption coefficient (KOC) of chlorpyrifos in clay soil

    International Nuclear Information System (INIS)

    Halimah Muhamad; Nashriyah Mat; Tan Yew Ai; Ismail Sahid

    2005-01-01

    The purpose of this study was to determine the adsorption coefficient (KOC) of chlorpyrifos in clay soil by measuring the Freundlich adsorption coefficient (Kads(f)) and desorption coefficient (1/n value) of chlorpyrifos. It was found that the Freundlich adsorption coefficient (Kads(f)) and the linear regression (r2) of the Freundlich adsorption isotherm for chlorpyrifos in the clay soil were 52.6 L/kg and 0.5244, respectively. Adsorption equilibrium time was achieved within 24 hours for clay soil. This adsorption equilibrium time was used to determine the effect of concentration on adsorption. The adsorption coefficient (KOC) of clay soil was found to be 2783 L/kg with an initial concentration solution of 1 μg/g, soil-solution ratio (1:5) at 300 C when the equilibrium between the soil matrix and solution was 24 hours. The Kdes decreased over four repetitions of the desorption process. The chlorpyrifos residues may be strongly adsorbed onto the surface of clay. (Author)

  10. A coordination chemistry approach for modeling trace element adsorption

    International Nuclear Information System (INIS)

    Bourg, A.C.M.

    1986-01-01

    The traditional distribution coefficient, Kd, is highly dependent on the water chemistry and the surface properties of the geological system being studied and is therefore quite inappropriate for use in predictive models. Adsorption, one of the many processes included in Kd values, is described here using a coordination chemistry approach. The concept of adsorption of cationic trace elements by solid hydrous oxides can be applied to natural solids. The adsorption process is thus understood in terms of a classical complexation leading to the formation of surface (heterogeneous) ligands. Applications of this concept to some freshwater, estuarine and marine environments are discussed. (author)

  11. The adsorption of chelating reagents on oxide minerals

    International Nuclear Information System (INIS)

    Bryson, M.A.W.

    1984-06-01

    This work constitutes a fundamental study of the interaction between chelating reagents and oxide minerals. The adsorption mechanisms have been elucidated for most of the systems generated by the oxides of copper(II) or iron(III) and chelating reagents octyl hydroxamate, N-phenylbenzohydroxamate, salicylaldoxime, 5-nitro-salicylaldoxime or 8-hydroxyquinoline. In order to better understand the adsorption process associated with copper(II) oxide, the oxide was recrystallized to produce a coarser material with a more uniform surface. This allowed the oxide surface to be viewed under the scanning electron microscope. A detailed investigation of the effect of the system variables; pH, conditioning period, concentration, temperature, surface area and dispersing reagent on the rate of precipitation of the copper chelate species of general form, Cu(chel) 2 , was made. In addition the chemical nature of the adsorbed species and the structural form of the precipitates were determined with the aid of infra-red spectroscopy and the scanning electron microscope. On the basis of these results a model has been formulated for the adsorption processes. The precipitation process was examined in more detail by the study of the adsorption of chelate on copper metal. Contact angle measurements of air bubbles on copper metal conditioned with chelate were related to the adsorption results in an attempt to isolate the optimum conditions for flotation of oxide minerals

  12. MgO-based adsorbents for CO2 adsorption: Influence of structural and textural properties on the CO2 adsorption performance.

    Science.gov (United States)

    Elvira, Gutiérrez-Bonilla; Francisco, Granados-Correa; Víctor, Sánchez-Mendieta; Alberto, Morales-Luckie Raúl

    2017-07-01

    A series of MgO-based adsorbents were prepared through solution-combustion synthesis and ball-milling process. The prepared MgO-based powders were characterized using X-ray diffraction, scanning electron microscopy, N 2 physisorption measurements, and employed as potential adsorbents for CO 2 adsorption. The influence of structural and textural properties of these adsorbents over the CO 2 adsorption behaviour was also investigated. The results showed that MgO-based products prepared by solution-combustion and ball-milling processes, were highly porous, fluffy, nanocrystalline structures in nature, which are unique physico-chemical properties that significantly contribute to enhance their CO 2 adsorption. It was found that the MgO synthesized by solution combustion process, using a molar ratio of urea to magnesium nitrate (2:1), and treated by ball-milling during 2.5hr (MgO-BM2.5h), exhibited the maximum CO 2 adsorption capacity of 1.611mmol/g at 25°C and 1atm, mainly via chemisorption. The CO 2 adsorption behaviour on the MgO-based adsorbents was correlated to their improved specific surface area, total pore volume, pore size distribution and crystallinity. The reusability of synthesized MgO-BM2.5h was confirmed by five consecutive CO 2 adsorption-desorption times, without any significant loss of performance, that supports the potential of MgO-based adsorbent. The results confirmed that the special features of MgO prepared by solution-combustion and treated by ball-milling during 2.5hr are favorable to be used as effective MgO-based adsorbent in post-combustion CO 2 capture technologies. Copyright © 2016. Published by Elsevier B.V.

  13. Adsorption and desorption dynamics of citric acid anions in soil

    KAUST Repository

    Oburger, E.

    2011-07-26

    The functional role of organic acid anions in soil has been intensively investigated, with special focus on (i) microbial respiration and soil carbon dynamics, (ii) nutrient solubilization or (iii) metal detoxification and reduction of plant metal uptake. Little is known about the interaction dynamics of organic acid anions with the soil matrix and the potential impact of adsorption and desorption processes on the functional significance of these effects. The aim of this study was to characterize experimentally the adsorption and desorption dynamics of organic acid anions in five agricultural soils differing in iron and aluminium oxide contents and using citrate as a model carboxylate. Results showed that both adsorption and desorption processes were fast in all soils, reaching a steady state within approximately 1 hour. However, for a given total soil citrate concentration (ct) the steady state was critically dependent on the starting conditions of the experiment, whether most of the citrate was initially present in solution (cl) or held on the solid phase (cs). Specifically, desorption-led processes resulted in significantly smaller steady-state solution concentrations than adsorption-led processes, indicating that hysteresis occurred. As it is not possible to distinguish between different adsorption and desorption pools in soil experimentally, a new dynamic hysteresis model that relies only on measured soil solution concentrations was developed. The model satisfactorily explained experimental data and was able to predict dynamic adsorption and desorption behaviour. To demonstrate its use, we applied the model to two relevant situations involving exudation and microbial degradation. The study highlighted the complex nature of citrate adsorption and desorption dynamics in soil. We conclude that existing models need to incorporate both temporal and hysteresis components to describe realistically the role and fate of organic acids in soil processes. © 2011 The

  14. Test plan for demonstrating plutonium extraction from 10-L solutions using EIChrom extraction chromatographic resins

    International Nuclear Information System (INIS)

    Barney, G.S.

    1994-01-01

    Corrosive plutonium solutions stored in 10-L containers at the Plutonium Finishing Plant must be treated to convert the plutonium to a safe, solid form for storage and to remove the americium so that radiation exposure can be reduced. Extraction chromatographic resins will be tested for separating plutonium from these solutions in the laboratory. Separation parameters will be developed during the testing for large scale processing of the 10-L solutions and solutions of similar composition. Use of chromatographic resins will allow plutonium separation with minimum of chemical addition to the feed and without the need for plutonium valence adjustment. The separated plutonium will be calcined to plutonium oxide by direct solution calcination

  15. Conceptual adsorption models and open issues pertaining to performance assessment

    International Nuclear Information System (INIS)

    Serne, R.J.

    1992-01-01

    Recently several articles have been published that question the appropriateness of the distribution coefficient, Rd, concept to quantify radionuclide migration. Several distinct issues surrounding the modeling of nuclide retardation. The first section defines adsorption terminology and discusses various adsorption processes. The next section describes five commonly used adsorption conceptual models, specifically emphasizing what attributes that affect adsorption are explicitly accommodated in each model. I also review efforts to incorporate each adsorption model into performance assessment transport computer codes. The five adsorption conceptual models are (1) the constant Rd model, (2) the parametric Rd model, (3) isotherm adsorption models, (4) mass action adsorption models, and (5) surface-complexation with electrostatics models. The final section discusses the adequacy of the distribution ratio concept, the adequacy of transport calculations that rely on constant retardation factors and the status of incorporating sophisticated adsorption models into transport codes. 86 refs., 1 fig., 1 tab

  16. Chromatographic and biological aspects of organomercurials

    Energy Technology Data Exchange (ETDEWEB)

    Fishbein, L

    1970-01-01

    A thorough review on the biological and chromatographic aspects of methylmercury, phenylmercurials, and miscellaneous organomercurials is presented. Areas covered include ecology, epidemiology, paper chromatography, thin-layer chromatography, gas chromatography, metabolism and toxicity, and environmental degradation. 183 references.

  17. Design and performance prediction of solar adsorption cooling for mobile vaccine refrigerator

    Science.gov (United States)

    Djubaedah, Euis; Taufan, Andi; Ratnasari, Nadhira; Fahrizal, Adjie; Hamidi, Qayyum; Nasruddin

    2017-03-01

    Adsorption cooling is a process that uses a drop-in pressure caused by the adsorption of adsorbate by adsorbent. Adsorption process creates a pressure drop which can bring down the temperature to the intended condition. This approach can be used in vaccine transportation as the vaccines need to be stored at low temperatures (2°C to 8°C for preserving vaccines). The pressure decrease can be obtained by adsorption water in zeolites and can also produce the temperature drop in the main chamber. The adsorption process of water will decrease until reaching saturation condition. Heat is needed to keep the system continuous as it starts a desorption process. From the simulation using MATLAB, it is found that the mobile vaccine refrigerator can reach the temperature of 2°C in 180 seconds with the amount of cooling power generated is up to 1530 W. The insulation can hold the allowable temperature range inside the vaccine cabin for 15.6795 hours.

  18. Chromatographic separation of europium and gadolinum mixtures by ethylenediaminedisuccinic acid

    International Nuclear Information System (INIS)

    Kolleganov, M.Yu.; Nazarov, P.P.; Martynenko, L.I.; Mtrofanova, N.D.; Spitsyn, V.I.

    1985-01-01

    Comparative investigation of chromatographic separation of impurities of Eu and Gd micro- and macroquantities by means of ethylenediaminedisuccinic (EDDS) and ethylene-diaminetetraacetic (EDTA) acids is performed. It is shown that EDTA is a sufficiently effective agent for separation of this pair of elements. The values of EU and Gd separation coefficients obtained in experiments with RE microquantities are not realized at Eu-Gd, macroquantities separation which probably is connected with the influence of polymerization processes in the systems containing RE and EDDS complexes

  19. Simulation of adsorption process of benzene present in effluent of the petrochemical industry; Simulacao do processo de adsorcao do benzeno presente em efluentes da industria petroquimica

    Energy Technology Data Exchange (ETDEWEB)

    Luz, Adriana D. da; Mello, Josiane M.M. de; Souza, Antonio Augusto Ulson de; Souza, Selene M.A. Guelli Ulson de [Universidade Federal de Santa Catarina (UFSC), Florianopolis, SC (Brazil); Silva, Adriano da [Universidade Comunitaria Regional de Chapeco (UNOCHAPECO), SC (Brazil)

    2008-07-01

    The adsorption processes have shown quite efficient in the removal of pollutant in liquid effluents, especially hydrocarbons of difficult removal, such as benzene. This work presents a phenomenological model that describes the process of benzene removal through the adsorption in a fixed bed column, being used coal activated as adsorbent. The model considers the internal and external resistances of mass transfer to the adsorbent particle. The method of Finite Volumes is used in the discretization of the equations. The numerical results obtained through the simulation presented good correlation when compared with experimental data found in the literature, demonstrating that the developed computational code, together with the mathematical modeling, represents an important tool for the project of adsorption columns. (author)

  20. Tungstate adsorption onto Italian soils with different characteristics.

    Science.gov (United States)

    Petruzzelli, Gianniantonio; Pedron, Francesca

    2017-08-01

    The study of tungsten in the environment is currently of considerable interest because of the growing concerns resulting from its possible toxicity and carcinogenicity. Adsorption reactions are some of the fundamental processes governing the fate and transport of tungsten compounds in soil. This paper reports data on the adsorption of tungstate ions in three different Italian soils, which are characteristic of the Mediterranean region. The results show that pH is the most important factor governing the adsorption of tungstate in these soils. The data interpreted according to the Langmuir equation show that the maximum value of adsorption is approximately 30 mmol kg -1 for the most acidic soil (pH = 4.50) and approximately 9 mmol kg -1 for the most basic soil (pH = 7.40). In addition, soil organic matter is shown to play a fundamental role in adsorption processes, which are favored in soils with a higher organic matter content. The data could contribute to a better understanding of the behavior of tungsten compounds in Italian soils for which current knowledge is very scarce, also in view of environmental regulations, which are currently lacking.

  1. Similarity analyses of chromatographic herbal fingerprints: A review

    International Nuclear Information System (INIS)

    Goodarzi, Mohammad; Russell, Paul J.; Vander Heyden, Yvan

    2013-01-01

    Graphical abstract: -- Highlights: •Similarity analyses of herbal fingerprints are reviewed. •Different (dis)similarity approaches are discussed. •(Dis)similarity-metrics and exploratory-analysis approaches are illustrated. •Correlation and distance-based measures are overviewed. •Similarity analyses illustrated by several case studies. -- Abstract: Herbal medicines are becoming again more popular in the developed countries because being “natural” and people thus often assume that they are inherently safe. Herbs have also been used worldwide for many centuries in the traditional medicines. The concern of their safety and efficacy has grown since increasing western interest. Herbal materials and their extracts are very complex, often including hundreds of compounds. A thorough understanding of their chemical composition is essential for conducting a safety risk assessment. However, herbal material can show considerable variability. The chemical constituents and their amounts in a herb can be different, due to growing conditions, such as climate and soil, the drying process, the harvest season, etc. Among the analytical methods, chromatographic fingerprinting has been recommended as a potential and reliable methodology for the identification and quality control of herbal medicines. Identification is needed to avoid fraud and adulteration. Currently, analyzing chromatographic herbal fingerprint data sets has become one of the most applied tools in quality assessment of herbal materials. Mostly, the entire chromatographic profiles are used to identify or to evaluate the quality of the herbs investigated. Occasionally only a limited number of compounds are considered. One approach to the safety risk assessment is to determine whether the herbal material is substantially equivalent to that which is either readily consumed in the diet, has a history of application or has earlier been commercialized i.e. to what is considered as reference material. In order

  2. Similarity analyses of chromatographic herbal fingerprints: A review

    Energy Technology Data Exchange (ETDEWEB)

    Goodarzi, Mohammad [Department of Analytical Chemistry and Pharmaceutical Technology, Center for Pharmaceutical Research, Vrije Universiteit Brussel, Laarbeeklaan 103, B-1090 Brussels (Belgium); Russell, Paul J. [Safety and Environmental Assurance Centre, Unilever, Colworth Science Park, Sharnbrook, Bedfordshire MK44 1LQ (United Kingdom); Vander Heyden, Yvan, E-mail: yvanvdh@vub.ac.be [Department of Analytical Chemistry and Pharmaceutical Technology, Center for Pharmaceutical Research, Vrije Universiteit Brussel, Laarbeeklaan 103, B-1090 Brussels (Belgium)

    2013-12-04

    Graphical abstract: -- Highlights: •Similarity analyses of herbal fingerprints are reviewed. •Different (dis)similarity approaches are discussed. •(Dis)similarity-metrics and exploratory-analysis approaches are illustrated. •Correlation and distance-based measures are overviewed. •Similarity analyses illustrated by several case studies. -- Abstract: Herbal medicines are becoming again more popular in the developed countries because being “natural” and people thus often assume that they are inherently safe. Herbs have also been used worldwide for many centuries in the traditional medicines. The concern of their safety and efficacy has grown since increasing western interest. Herbal materials and their extracts are very complex, often including hundreds of compounds. A thorough understanding of their chemical composition is essential for conducting a safety risk assessment. However, herbal material can show considerable variability. The chemical constituents and their amounts in a herb can be different, due to growing conditions, such as climate and soil, the drying process, the harvest season, etc. Among the analytical methods, chromatographic fingerprinting has been recommended as a potential and reliable methodology for the identification and quality control of herbal medicines. Identification is needed to avoid fraud and adulteration. Currently, analyzing chromatographic herbal fingerprint data sets has become one of the most applied tools in quality assessment of herbal materials. Mostly, the entire chromatographic profiles are used to identify or to evaluate the quality of the herbs investigated. Occasionally only a limited number of compounds are considered. One approach to the safety risk assessment is to determine whether the herbal material is substantially equivalent to that which is either readily consumed in the diet, has a history of application or has earlier been commercialized i.e. to what is considered as reference material. In order

  3. A novel method for the determination of adsorption partition coefficients of minor gases in a shale sample by headspace gas chromatography.

    Science.gov (United States)

    Zhang, Chun-Yun; Hu, Hui-Chao; Chai, Xin-Sheng; Pan, Lei; Xiao, Xian-Ming

    2013-10-04

    A novel method has been developed for the determination of adsorption partition coefficient (Kd) of minor gases in shale. The method uses samples of two different sizes (masses) of the same material, from which the partition coefficient of the gas can be determined from two independent headspace gas chromatographic (HS-GC) measurements. The equilibrium for the model gas (ethane) was achieved in 5h at 120°C. The method also involves establishing an equation based on the Kd at higher equilibrium temperature, from which the Kd at lower temperature can be calculated. Although the HS-GC method requires some time and effort, it is simpler and quicker than the isothermal adsorption method that is in widespread use today. As a result, the method is simple and practical and can be a valuable tool for shale gas-related research and applications. Copyright © 2013 Elsevier B.V. All rights reserved.

  4. Kinetics of a gas adsorption compressor

    Science.gov (United States)

    Chan, C. K.; Tward, E.; Elleman, D. D.

    1984-01-01

    Chan (1981) has suggested that a process based on gas adsorption could be used as a means to drive a Joule-Thomson (J-T) device. The resulting system has several advantages. It is heat powered, it has no sealing, there are no mechanical moving parts, and no active control is required. In the present investigation, a two-phase model is used to analyze the transients of a gas adsorption compressor. The modeling of the adsorption process is based on a consideration of complete thermal and mechanical equilibrium between the gaseous phase and the adsorbed gas phase. The experimental arrangement for two sets of kinetic tests is discussed, and data regarding the experimental results are presented in graphs. For a theoretical study, a two-phase model was developed to predict the transient behavior of the compressor. A computer code was written to solve the governing equations with the aid of a standard forward marching predictor-corrector method.

  5. ChromAlign: A two-step algorithmic procedure for time alignment of three-dimensional LC-MS chromatographic surfaces.

    Science.gov (United States)

    Sadygov, Rovshan G; Maroto, Fernando Martin; Hühmer, Andreas F R

    2006-12-15

    We present an algorithmic approach to align three-dimensional chromatographic surfaces of LC-MS data of complex mixture samples. The approach consists of two steps. In the first step, we prealign chromatographic profiles: two-dimensional projections of chromatographic surfaces. This is accomplished by correlation analysis using fast Fourier transforms. In this step, a temporal offset that maximizes the overlap and dot product between two chromatographic profiles is determined. In the second step, the algorithm generates correlation matrix elements between full mass scans of the reference and sample chromatographic surfaces. The temporal offset from the first step indicates a range of the mass scans that are possibly correlated, then the correlation matrix is calculated only for these mass scans. The correlation matrix carries information on highly correlated scans, but it does not itself determine the scan or time alignment. Alignment is determined as a path in the correlation matrix that maximizes the sum of the correlation matrix elements. The computational complexity of the optimal path generation problem is reduced by the use of dynamic programming. The program produces time-aligned surfaces. The use of the temporal offset from the first step in the second step reduces the computation time for generating the correlation matrix and speeds up the process. The algorithm has been implemented in a program, ChromAlign, developed in C++ language for the .NET2 environment in WINDOWS XP. In this work, we demonstrate the applications of ChromAlign to alignment of LC-MS surfaces of several datasets: a mixture of known proteins, samples from digests of surface proteins of T-cells, and samples prepared from digests of cerebrospinal fluid. ChromAlign accurately aligns the LC-MS surfaces we studied. In these examples, we discuss various aspects of the alignment by ChromAlign, such as constant time axis shifts and warping of chromatographic surfaces.

  6. Adsorption of NH4+-N on Chinese loess: Non-equilibrium and equilibrium investigations.

    Science.gov (United States)

    Xie, Haijian; Wang, Shaoyi; Qiu, Zhanhong; Jiang, Jianqun

    2017-11-01

    NH 4 + -N is a crucial pollutant in landfill leachate and can be in high concentrations for a long period of time due to anaerobic condition of landfills. The adsorption properties of NH 4 + -N on the Chinese loess were investigated using Batch test. The influences of ammonium concentration, temperature, reaction time, slurry concentration, and pH on the adsorption process are evaluated. Adsorption kinetics and isotherm behaviors were studied by applying different models to the test data to determine the adsorption parameters. The equilibrating duration was shown to be less than 60 min. The data on adsorption kinetics can be well fitted by the pseudo-second-order kinetics model. According to the Langmuir isotherm model, the adsorption capacity of Chinese loess about NH 4 + -N was predicted to be 72.30 mg g -1 . The uptake of NH 4 + -N by Chinese loess was considered to be the type of physical adsorption on the basis of D-R isotherm analysis. The optimal pH and slurry concentration are 4 and 2 g/50 ml, respectively. According to the calculated values of free energy, enthalpy and entropy change, the adsorption process is determined to be exothermic. The disorder of the system appeared lowest at temperature of 308.15 K. The predicted Gibb's free energies also indicate the adsorption process is endothermic and spontaneous. The FTIR spectrum and EDX analysis showed the adsorption process of NH 4 + involves cation exchange and dissolution of calcite. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Removal of Pyrethrin from Aqueous Effluents by Adsorptive Micellar Flocculation

    Directory of Open Access Journals (Sweden)

    Pardon K. Kuipa

    2015-01-01

    Full Text Available The equilibrium adsorption of pyrethrin onto aggregates formed by the flocculation of micelles of the surfactant sodium dodecyl sulphate (SDS with aluminium sulphate is reported. The experimental results were analysed using different adsorption isotherms (Langmuir, Freundlich, Redlich-Peterson, Sips, Radke-Prausnitz, Temkin, linear equilibrium, and the Dubin-Radushkevich isotherms. The Freundlich and linear equilibrium isotherms best describe the adsorption of pyrethrin onto SDS micellar flocs, with the Freundlich adsorption constant, KF, and the mass distribution coefficient, KD, of 64.266 ((mg/g(L/mg1/n and 119.65 L/g, respectively. Applicability of the Freundlich adsorption model suggests that heterogeneous surface adsorption affects the adsorption. The mean free energy value estimated using the Dubinin-Radushkevich isotherm was 0.136 kJ/mol indicating that physisorption may be predominant in the adsorption process.

  8. Biosorption of Strontium from Simulated Nuclear Wastewater by Scenedesmus spinosus under Culture Conditions: Adsorption and Bioaccumulation Processes and Models

    Science.gov (United States)

    Liu, Mingxue; Dong, Faqin; Kang, Wu; Sun, Shiyong; Wei, Hongfu; Zhang, Wei; Nie, Xiaoqin; Guo, Yuting; Huang, Ting; Liu, Yuanyuan

    2014-01-01

    Algae biosorption is an ideal wastewater treatment method when coupled with algae growth and biosorption. The adsorption and bioaccumulation of strontium from simulated nuclear wastewater by Scenedesmus spinosus were investigated in this research. One hundred mL of cultured S. spinosus cells with a dry weight of 1.0 mg in simulated nuclear wastewater were used to analyze the effects on S. spinosus cell growth as well as the adsorption and bioaccumulation characters under conditions of 25 ± 1 °C with approximately 3,000 lux illumination. The results showed that S. spinosus had a highly selective biosorption capacity for strontium, with a maximum bioremoval ratio of 76%. The adsorbed strontium ion on cell walls was approximately 90% of the total adsorbed amount; the bioaccumulation in the cytoplasm varied by approximately10%. The adsorption quantity could be described with an equilibrium isotherm. The pseudo-second-order kinetic model suggested that adsorption was the rate-limiting step of the biosorption process. A new bioaccumulation model with three parameters was proposed and could give a good fit with the experiment data. The results suggested that S. spinosus may be a potential biosorbent for the treatment of nuclear wastewater in culture conditions. PMID:24919131

  9. Biosorption of Strontium from Simulated Nuclear Wastewater by Scenedesmus spinosus under Culture Conditions: Adsorption and Bioaccumulation Processes and Models

    Directory of Open Access Journals (Sweden)

    Mingxue Liu

    2014-06-01

    Full Text Available Algae biosorption is an ideal wastewater treatment method when coupled with algae growth and biosorption. The adsorption and bioaccumulation of strontium from simulated nuclear wastewater by Scenedesmus spinosus were investigated in this research. One hundred mL of cultured S. spinosus cells with a dry weight of 1.0 mg in simulated nuclear wastewater were used to analyze the effects on S. spinosus cell growth as well as the adsorption and bioaccumulation characters under conditions of 25 ± 1 °C with approximately 3,000 lux illumination. The results showed that S. spinosus had a highly selective biosorption capacity for strontium, with a maximum bioremoval ratio of 76%. The adsorbed strontium ion on cell walls was approximately 90% of the total adsorbed amount; the bioaccumulation in the cytoplasm varied by approximately10%. The adsorption quantity could be described with an equilibrium isotherm. The pseudo-second-order kinetic model suggested that adsorption was the rate-limiting step of the biosorption process. A new bioaccumulation model with three parameters was proposed and could give a good fit with the experiment data. The results suggested that S. spinosus may be a potential biosorbent for the treatment of nuclear wastewater in culture conditions.

  10. Insight into the adsorption mechanisms of trace organic carbon on biological treatment process.

    Science.gov (United States)

    Zolfaghari, Mehdi; Drogui, Patrick; Brar, Satinder Kaur; Buelna, Gerardo; Dubé, Rino

    2017-09-01

    The presence of recalcitrant dissolved organic matter (DOM) could have a significant effect on the adsorption mechanism and capacity of the sludge for many trace organic carbons (TrOCs). In this study, adsorption of three TrOCs on the sludge and HA was investigated. The results revealed that neutral hydrophilic compounds had an insignificant interaction with both sludge and HA. Positively charged compounds, such as fluoranthene, had more affinity toward HA than sludge with solid/liquid partitioning of 57 and 3.2 L/g, respectively. The adsorption intensity (K f ) of di-2-ethyl hexyl phthalate was 0.5 and 1.13 for the HA and the sludge, respectively. By introducing the sludge to the solution of HA and TrOCs that already reached equilibrium, the sludge adsorption capacity in the presence of HA was investigated. The finding showed that at the lower concentration, adsorption of HA on the sludge was considered as the main removal pathway for the adsorbed emerging contaminants, as 70 mg of HA was adsorbed by a gram of sludge. For the higher concentration, desorption of TrOCs from DOM into the sludge comprised 15-30% of total removal efficiency. CBZ: carbamazepine; DEHP: di-2-ethyl hexyl phthalate; DOM: dissolved organic matter; FLAN: fluoranthene; f oc : fraction of organic carbon; HA: humic acid; Log Kow: octanol-water partition coefficient; PAH: polycyclic aromatic hydrocarbon TS: total solid; TrOCs: trace organic carbons VS: volatile solid.

  11. A Quantitative Gas Chromatographic Ethanol Determination.

    Science.gov (United States)

    Leary, James J.

    1983-01-01

    Describes a gas chromatographic experiment for the quantitative determination of volume percent ethanol in water ethanol solutions. Background information, procedures, and typical results are included. Accuracy and precision of results are both on the order of two percent. (JN)

  12. Modeling adsorption: Investigating adsorbate and adsorbent properties

    Science.gov (United States)

    Webster, Charles Edwin

    1999-12-01

    Surface catalyzed reactions play a major role in current chemical production technology. Currently, 90% of all chemicals are produced by heterogeneously catalyzed reactions. Most of these catalyzed reactions involve adsorption, concentrating the substrate(s) (the adsorbate) on the surface of the solid (the adsorbent). Pore volumes, accessible surface areas, and the thermodynamics of adsorption are essential in the understanding of solid surface characteristics fundamental to catalyst and adsorbent screening and selection. Molecular properties such as molecular volumes and projected molecular areas are needed in order to convert moles adsorbed to surface volumes and areas. Generally, these molecular properties have been estimated from bulk properties, but many assumptions are required. As a result, different literature values are employed for these essential molecular properties. Calculated molar volumes and excluded molecular areas are determined and tabulated for a variety of molecules. Molecular dimensions of molecules are important in the understanding of molecular exclusion as well as size and shape selectivity, diffusion, and adsorbent selection. Molecular dimensions can also be used in the determination of the effective catalytic pore size of a catalyst. Adsorption isotherms, on zeolites, (crystalline mineral oxides) and amorphous solids, can be analyzed with the Multiple Equilibrium Analysis (MEA) description of adsorption. The MEA produces equilibrium constants (Ki), capacities (ni), and thermodynamic parameters (enthalpies, ΔHi, and entropies, ΔSi) of adsorption for each process. Pore volumes and accessible surface areas are calculated from the process capacities. Adsorption isotherms can also be predicted for existing and new adsorbate-adsorbent systems with the MEA. The results show that MEA has the potential of becoming a standard characterization method for microporous solids that will lead to an increased understanding of their behavior in gas

  13. Thermal activation of serpentine for adsorption of cadmium

    Energy Technology Data Exchange (ETDEWEB)

    Cao, Chun-Yan [College of Land and Environment, Shenyang Agricultural University, Shenyang (China); College of Chemistry, Chemical Engineering and Food Safety, Bohai University, Jinzhou (China); Liang, Cheng-Hua, E-mail: liang110161@163.com [College of Land and Environment, Shenyang Agricultural University, Shenyang (China); Yin, Yan [Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang (China); Du, Li-Yu [College of Land and Environment, Shenyang Agricultural University, Shenyang (China)

    2017-05-05

    Highlights: • Thermal activated serpentine was prepared by changing heated temperature. • Thermal activated serpentine exhibited excellent adsorption behavior for cadmium. • The adsorption mechanisms could be explained as formation of CdCO{sub 3} and Cd(OH){sub 2}. • The adsorption obeyed Langmuir model and pseudo second order kinetics model. - Abstract: Thermal activated serpentine with high adsorption capacity for heavy metals was prepared. The batch experiment studies were conducted to evaluate the adsorption performance of Cd{sup 2+} in aqueous solution using thermal activated serpentine as adsorbent. These samples before and after adsorption were characterized by XRD, FT-IR, SEM, XPS, and N{sub 2} adsorption-desorption at low temperature. It was found that serpentine with layered structure transformed to forsterite with amorphous structure after thermal treatment at over 700 °C, while the surface area of the samples was increased with activated temperature and the serpentine activated at 700 °C (S-700) presented the largest surface area. The pH of solution after adsorption was increased in different degrees due to hydrolysis of MgO in serpentine, resulting in enhancing adsorption of Cd{sup 2+}. The S-700 exhibited the maximum equilibrium adsorption capacity (15.21 mg/g), which was 2 times more than pristine serpentine. Langmuir isotherm was proved to describe the equilibrium adsorption data better than Freundlich isotherm and pseudo second order kinetics model could fit the adsorption kinetics processes well. Based on the results of characterization with XPS and XRD, the adsorption mechanisms could be explained as primarily formation of CdCO{sub 3} and Cd(OH){sub 2} precipitation on the surface of serpentine.

  14. Thermal activation of serpentine for adsorption of cadmium

    International Nuclear Information System (INIS)

    Cao, Chun-Yan; Liang, Cheng-Hua; Yin, Yan; Du, Li-Yu

    2017-01-01

    Highlights: • Thermal activated serpentine was prepared by changing heated temperature. • Thermal activated serpentine exhibited excellent adsorption behavior for cadmium. • The adsorption mechanisms could be explained as formation of CdCO_3 and Cd(OH)_2. • The adsorption obeyed Langmuir model and pseudo second order kinetics model. - Abstract: Thermal activated serpentine with high adsorption capacity for heavy metals was prepared. The batch experiment studies were conducted to evaluate the adsorption performance of Cd"2"+ in aqueous solution using thermal activated serpentine as adsorbent. These samples before and after adsorption were characterized by XRD, FT-IR, SEM, XPS, and N_2 adsorption-desorption at low temperature. It was found that serpentine with layered structure transformed to forsterite with amorphous structure after thermal treatment at over 700 °C, while the surface area of the samples was increased with activated temperature and the serpentine activated at 700 °C (S-700) presented the largest surface area. The pH of solution after adsorption was increased in different degrees due to hydrolysis of MgO in serpentine, resulting in enhancing adsorption of Cd"2"+. The S-700 exhibited the maximum equilibrium adsorption capacity (15.21 mg/g), which was 2 times more than pristine serpentine. Langmuir isotherm was proved to describe the equilibrium adsorption data better than Freundlich isotherm and pseudo second order kinetics model could fit the adsorption kinetics processes well. Based on the results of characterization with XPS and XRD, the adsorption mechanisms could be explained as primarily formation of CdCO_3 and Cd(OH)_2 precipitation on the surface of serpentine.

  15. Conceptual adsorption models and open issues pertaining to performance assessment

    International Nuclear Information System (INIS)

    Serne, R.J.

    1991-10-01

    Recently several articles have been published that question the appropriateness of the distribution coefficient, Rd, concept to quantify radionuclide migration. Several distinct issues are raised by various critics. In this paper I provide some perspective on issues surrounding the modeling of nuclide retardation. The first section defines adsorption terminology and discusses various adsorption processes. The next section describes five commonly used adsorption conceptual models, specifically emphasizing what attributes that affect adsorption are explicitly accommodated in each model. I also review efforts to incorporate each adsorption model into performance assessment transport computer codes. The five adsorption conceptual models are (1) the constant Rd model, (2) the parametric Rd model, (3) isotherm adsorption models, (4) mass-action adsorption models, and (5) surface-complexation with electrostatics models. The final section discusses the adequacy of the distribution ratio concept, the adequacy of transport calculations that rely on constant retardation factors and the status of incorporating sophisticated adsorption models into transport codes

  16. Adsorption of U(VI) onto kaolin studied by batch method

    International Nuclear Information System (INIS)

    Hongxia Zhang; Zhi Liu; Peizhuo Hu; Tonghuan Liu; Wangsuo Wu

    2013-01-01

    Adsorption of U(VI) on purified kaolin was studied by batch methods under ambient conditions, including contact time, pH, fulvic acid, etc. Three kinetic models were used to model the kinetic adsorption which was very well described by the pseudo-second-order rate equation, and the activation energy of adsorption was 52.20 kJ/mol. The Freundlich and Dubinin-Radushkevich models fitted the experimental data better than the Langmuir model for the adsorption and desorption isotherms. The thermodynamic parameters indicated that the adsorption of U(VI) on kaolin was an endothermic and spontaneous process. (author)

  17. Adsorption of Congo red dye onto antimicrobial terephthaloyl thiourea cross-linked chitosan hydrogels.

    Science.gov (United States)

    El-Harby, Nouf F; Ibrahim, Shaimaa M A; Mohamed, Nadia A

    2017-11-01

    Adsorption capacity of three antimicrobial terephthaloyl thiourea cross-linked chitosan hydrogels for Congo red dye removal from its aqueous solution has been investigated for the first time in this work. These hydrogels were prepared by reacting chitosan with various amounts of terephthaloyl diisothiocyanate cross-linker. The effect of the hydrogel structural variations and several dye adsorption processing parameters to achieve the best adsorption capacity were investigated. The hydrogels' structural variations were obtained by varying their terephthaloyl thiourea moieties content. The processing variables included initial concentration of the dye solution, temperature and time of exposure to the dye. The adsorption kinetics and isotherms showed that the sorption processes were better fitted by the pseudo-second-order equation and the Langmuir equation, respectively. On the basis of the Langmuir analysis Congo red dye gave the maximum sorption capacity of 44.248 mg/g. The results obtained confirmed that the sorption phenomena are most likely to be controlled by chemisorption process. The adsorption reaction was endothermic and spontaneous according to the calculated results of adsorption thermodynamics.

  18. Adsorption of sunset yellow FCF from aqueous solution by chitosan-modified diatomite.

    Science.gov (United States)

    Zhang, Y Z; Li, J; Li, W J; Li, Y

    2015-01-01

    Sunset yellow (SY) FCF is a hazardous azo dye pollutant found in food processing effluent. This study investigates the use of diatomaceous earth with chitosan (DE@C) as a modified adsorbent for the removal of SY from wastewater. Fourier transform infrared spectroscopy results indicate the importance of functional groups during the adsorption of SY. The obtained N2 adsorption-desorption isotherm values accord well with IUPAC type II. Our calculations determined a surface area of 69.68 m2 g(-1) for DE@C and an average pore diameter of 4.85 nm. Using response surface methodology, optimized conditions of process variables for dye adsorption were achieved. For the adsorption of SY onto DE@C, this study establishes mathematical models for the optimization of pH, contact time and initial dye concentration. Contact time plays a greater role in the adsorption process than either pH or initial dye concentration. According to the adjusted correlation coefficient (adj-R2>0.97), the models used here are suitable for illustration of the adsorption process. Theoretical experimental conditions included a pH of 2.40, initial dye concentration of 113 mg L(-1) and 30.37 minutes of contact time. Experimental values for the adsorption rate (92.54%) were close to the values predicted by the models (95.29%).

  19. Liquid phase adsorption behavior of inulin-type fructan onto activated charcoal.

    Science.gov (United States)

    Li, Kecheng; Liu, Song; Xing, Ronge; Yu, Huahua; Qin, Yukun; Li, Pengcheng

    2015-05-20

    This study describes liquid phase adsorption characteristics of inulin-type fructan onto activated charcoal. Batch mode experiments were conducted to study the effects of pH, contact time, temperature and initial concentration of inulin. Nearly neutral solution (pH 6-8) was favorable to the adsorption and the equilibrium was attained after 40 min with the maximum adsorption Qmax 0.182 g/g (adsorbate/adsorbent) at 298 K. The experimental data analysis indicated that the adsorption process fitted well with the pseudo-second-order kinetic model (R(2) = 1) and Langmuir isotherms model (R(2) > 0.99). Thermodynamic parameters revealed that the adsorption process was spontaneous and exothermic with a physical nature. Inulin desorption could reach 95.9% using 50% ethanol solution and activated charcoal could be reused without significant losses in adsorption capacity. These results are of practical significance for the application of activated charcoal in the production and purification of inulin-type fructan. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Adsorption process analysis at the solid-gas interface by the polarization phenomenon study

    International Nuclear Information System (INIS)

    Mouton-Chazel, V.

    1994-01-01

    In order to improve the safety of anti-gas filters users, the Cogema (Nuclear Materials General Company) has developed a gaseous pollutants saturation detection technology for respiratory protection masks. As a matter of fact, the problem consists in studying the surface properties of a solid. In this study the adsorption has been considered as a phenomenon which can be followed by a relatively simple electrical measure technology. A microscopic description of the adsorption phenomenon has been given at first and explained by the thermodynamics laws. Then a theoretical model has been elaborated. The developments which have been brought to this model in this work have allowed to give a satisfactory interpretation of the phenomena observed during the adsorption of a polar gas on a zeolite. (O.M.)

  1. The adsorption features between insecticidal crystal protein and nano-Mg(OH)2.

    Science.gov (United States)

    Pan, Xiaohong; Xu, Zhangyan; Zheng, Yilin; Huang, Tengzhou; Li, Lan; Chen, Zhi; Rao, Wenhua; Chen, Saili; Hong, Xianxian; Guan, Xiong

    2017-12-01

    Nano-Mg(OH) 2 , with low biological toxicity, is an ideal nano-carrier for insecticidal protein to improve the bioactivity. In this work, the adsorption features of insecticidal protein by nano-Mg(OH) 2 have been studied. The adsorption capacity could reach as high as 136 mg g -1 , and the adsorption isotherm had been fitted with Langmuir and Freundlich models. Moreover, the adsorption kinetics followed a pseudo-first or -second order rate model, and the adsorption was spontaneous and an exothermic process. However, high temperatures are not suitable for adsorption, which implies that the temperature would be a critical factor during the adsorption process. In addition, FT-IR confirmed that the protein was adsorbed on the nano-Mg(OH) 2 , zeta potential analysis suggested that insecticidal protein was loaded onto the nano-Mg(OH) 2 not by electrostatic adsorption but maybe by intermolecular forces, and circular dichroism spectroscopy of Cry11Aa protein before and after loading with nano-Mg(OH) 2 was changed. The study applied the adsorption information between Cry11Aa and nano-Mg(OH) 2 , which would be useful in the practical application of nano-Mg(OH) 2 as a nano-carrier.

  2. Preparation and characterization of two organoclays aiming its use in adsorption processes

    International Nuclear Information System (INIS)

    Vazzoler, H.; Valenzuela-Diaz, F.R.; Vazzoler, F.D.

    2014-01-01

    Were prepared two organoclays aiming at studying their adsorption properties. The clayssed were the Brazilian Bentongel and Argentina Green Lake. The clays were characterized and organoclays. Performed analyzes of X-Ray diffraction, infrared, SEM, thermogravimetry and swelling experiments Foster and adsorption ASTM. The X-ray diffraction indicated collation of lamellar organic cation used. The variations thermogravimetrics were negative and ranged from around 24% in organophilic clays. The results of infrared spectroscopy indicated the presence of bands that show this barge. The form of the particles/agglomerates of clay minerals was verified by SEM before and after organofilization. The values of the measures of swelling were up to 30 mL/g for some solvents. The adsorption test showed good ability of sorption per gram of clay, reaching respectively 10.2g/g and 9.9 g/g for gasoline and ethylbenzene. These high values indicate that the modified clay may have potential use in sectors of environmental toxicity control industrial and separation. (author)

  3. Effect of pH on the adsorption of carbendazim in Polish mineral soils

    International Nuclear Information System (INIS)

    Paszko, Tadeusz

    2012-01-01

    The study aimed to determine the influence of pH on the adsorption of carbendazim in soil profiles of three mineral agricultural soils: Hyperdystric Arenosol, Haplic Luvisol and Hypereutric Cambisol. In the examined pH range between 3 and 7 the adsorption of carbendazim was inversely correlated to the pH of the soil. The adsorption coefficients were in the range between 0.3 and 151.8 mL g −1 . Decreasing the pH in the soil suspensions from 7 to 3 increased the value of this coefficient by 3 to 70 times. A decrease in the amounts of organic matter down the soil profiles was not associated with weaker carbendazim adsorption. In the samples from all soil horizons, at pH values between 3 and 6, the predominant sorption process was carbendazim adsorption on clay minerals. The adsorption of carbendazim on organic matter prevailed over that on clays only at pH > 6 and only in the Ap horizon of the examined soils. The developed mathematical models yielded very good results when the adsorption of the protonated form of carbendazim was assumed to be the predominant adsorption process on clays together with the adsorption of neutral molecules on organic matter and clays. The results from both the model fitting and the experiments revealed the negative effect of Al oxides and hydroxides and Al cations on the adsorption of the protonated form of carbendazim on clay minerals. The developed models successfully described the pH-dependent adsorption processes of carbendazim for both data from particular soil horizons and those from all three examined soil profiles. -- Highlights: ► Adsorption of carbendazim in soils was inversely correlated to soil pH. ► At low pH carbendazim was adsorbed predominantly by clay minerals. ► Al 3+ influenced adsorption of the protonated form of carbendazim on clays. ► Created models predict pH-dependent sorption processes in the whole soil profiles.

  4. The influence of pH on the adsorption of lead by Na-clinoptilolite ...

    African Journals Online (AJOL)

    The influence of pH on the adsorption of lead by Na-clinoptilolite: Kinetic and equilibrium studies. ... At high pH of the contact solution, the adsorption process occurs by ion exchange and at low pH; i.e., it is physical. The variation of the Gibbs free energy demonstrates that adsorption occurs spontaneously. The process was ...

  5. Ferric chloride modified zeolite in wastewater on Cr (VI) adsorption characteristics

    Science.gov (United States)

    Wu, Xiaoqing; Zhang, Kang; Chen, Wen; Zhang, Hua

    2018-03-01

    Zeolite was modified by ferric chloride(Fe-Z) removal Cr (VI) ion from wastewater. The results showed that the effect of Cr(VI) adsorption on modified zeolite depended significantly on pH. It is favorable for the adsorption of Cr(VI) in acid condition. The Langmuir isotherm model has high fitting accuracy with experimental data, demonstrated that is monolayer adsorption and chemical adsorption.The pseudo-second-order equation provided the best correlation to the data. The model can describe the adsorption reaction process well.

  6. Adsorption of Pb(II by Activated Pyrolytic Char from Used Tire

    Directory of Open Access Journals (Sweden)

    Lu Ping

    2016-01-01

    Full Text Available As a renewable resource, the pyrolytic char derived from used tire has promising adsorption capacities owing to its similar structure and properties with active carbon. The purification and activation of the pyrolytic char from used tire, as well as the application of this material in the adsorption of Pb(II in water is conducted. The influences on the adsorption capacity by temperature and pH value are investigated and discussed; the adsorption thermodynamics and kinetics are also studied. The results show that the pyrolytic char from used tire has remarkable adsorption capacity for Pb(II, and the adsorption is an endothermic process complying with the Langmuir isotherm. The adsorption kinetics is a pseudo second-order reaction.

  7. Isotherm, Kinetic and Thermodynamic Characteristics for Adsorption of Congo Red by Activated Carbon

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jong Jib [Kongju National University, Cheonan (Korea, Republic of)

    2015-02-15

    Batch experiment studies were carried out for adsorption of congo red using granular activated carbon with various parameters such as activated carbon dose, pH, initial dye concentration, temperature and contact time. Equilibrium experimental data are fitted to the Langmuir, Freundlich, Temkin and Dubin-Radushkevich isotherm equations. From Freundlich's separation factor (1/n) estimated, adsorption could be employed as effective treatment method for adsorption of congo red from aqueous solution. Base on Temkin constant (B) and Dubinin-Radushkevich constant (E), this adsorption process is physical adsorption. Adsorption kinetics has been tested using pseudo-first order and pseudo second order models. The results followed pseudo second order model with good correlation. Adsorption process of congo red on granular activated carbon was endothermic (ΔH=42.036 kJ/mol) and was accompanied by decrease in Gibbs free energy (ΔG=-2.414 to -4.596 kJ/mol) with increasing adsorption temperature.

  8. Isotherm, Kinetic and Thermodynamic Characteristics for Adsorption of Congo Red by Activated Carbon

    International Nuclear Information System (INIS)

    Lee, Jong Jib

    2015-01-01

    Batch experiment studies were carried out for adsorption of congo red using granular activated carbon with various parameters such as activated carbon dose, pH, initial dye concentration, temperature and contact time. Equilibrium experimental data are fitted to the Langmuir, Freundlich, Temkin and Dubin-Radushkevich isotherm equations. From Freundlich's separation factor (1/n) estimated, adsorption could be employed as effective treatment method for adsorption of congo red from aqueous solution. Base on Temkin constant (B) and Dubinin-Radushkevich constant (E), this adsorption process is physical adsorption. Adsorption kinetics has been tested using pseudo-first order and pseudo second order models. The results followed pseudo second order model with good correlation. Adsorption process of congo red on granular activated carbon was endothermic (ΔH=42.036 kJ/mol) and was accompanied by decrease in Gibbs free energy (ΔG=-2.414 to -4.596 kJ/mol) with increasing adsorption temperature

  9. Direct measurements of adsorption heats of hydrogen on nano-porous carbons

    International Nuclear Information System (INIS)

    Akihiko, Matsumoto; Kazumasa, Yamamoto; Tomoyuki, Miyata

    2005-01-01

    Since a exciting report of hydrogen storage in single-walled carbon nano-tubes by Dillon and his colleagues [1], nano-porous carbon materials, such as carbon nano-tubes, carbon nano-horns and micro-porous activated carbon, have attracted considerable attention as hydrogen storage materials. Adsorption plays a predominating role in the hydrogen storage process on solid surfaces. The adsorption is a spontaneous process, which is caused by interaction between gas molecules and surface, hence, it is always exothermic process and observed as adsorption heats. For this reason, direct measurement of the adsorption heats by adsorption microcalorimetry would provide quantitative information on the strength of adsorption interaction and the adsorption mechanism. However, the adsorption amounts of hydrogen on carbon materials are far less than those of condensable vapors near room temperature due to low critical temperature of hydrogen (33.2 K), therefore, the adsorption heats can not be determined accurately at conventional measurement conditions near room temperature and the atmospheric pressure. This contribution reports the calorimetric characterization of hydrogen adsorption on nano-porous carbon materials at low temperature and high-pressure conditions. The high-pressure adsorption apparatus consists of a volumetric adsorption line connected to a twin-conduction type microcalorimeter. Activated carbon fibers (ACF, Ad'all Co.) of different micropore sizes (Table 1) were used as model adsorbents. Each ACF has slit-shaped micropores of uniform size [2]. The adsorption isotherms and differential heats of adsorption at high-pressure region from 0 to 10 MPa were simultaneously measured at isothermal condition from 203 to 298 K. The adsorption isotherms on ACF were of Henry type regardless of adsorption temperature and pore width; the uptakes increased linearly with equilibrium pressure. The adsorption isotherm at lower sorption temperature tended to show higher sorptivity

  10. Automated chromatographic system with polarimetric detection laser applied in the control of fermentation processes and seaweed extracts characterization

    International Nuclear Information System (INIS)

    Fajer, V.; Naranjo, S.; Mora, W.; Patinno, R.; Coba, E.; Michelena, G.

    2012-01-01

    There are presented applications and innovations of chromatographic and polarimetric systems in which develop methodologies for measuring the input molasses and the resulting product of a fermentation process of alcohol from a rich honey and evaluation of the fermentation process honey servery in obtaining a drink native to the Yucatan region. Composition was assessed optically active substances in seaweed, of interest to the pharmaceutical industry. The findings provide measurements alternative raw materials and products of the sugar industry, beekeeping and pharmaceutical liquid chromatography with automated polarimetric detection reduces measurement times up to 15 min, making it comparable to the times of high chromatography resolution, significantly reducing operating costs. By chromatography system with polarimetric detection (SCDP) is new columns have included standard size designed by the authors, which allow process samples with volumes up to 1 ml and reduce measurement time to 15 min, decreasing to 5 times the volume sample and halving the time of measurement. Was evaluated determining the concentration of substances using the peaks of the chromatograms obtained for the different columns and calculate the uncertainty of measurements. The results relating to the improvement of a data acquisition program (ADQUIPOL v.2.0) and new programs for the preparation of chromatograms (CROMAPOL CROMAPOL V.1.0 and V.1.2) provide important benefits, which allow a considerable saving of time the processing of the results and can be applied in other chromatography systems with the appropriate adjustments. (Author)

  11. Macrocyclic receptors immobilized to monodisperse porous polymer particles by chemical grafting and physical impregnation for strontium capture: A comparative study

    Energy Technology Data Exchange (ETDEWEB)

    Song, Yang [Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing (China); Du, Yi [Department of Chemical Engineering, Laboratory for Advanced Materials, Tsinghua University, Beijing (China); Lv, Dachao [Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing (China); Ye, Gang, E-mail: yegang@tsinghua.edu.cn [Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing (China); Wang, Jianchen [Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing (China)

    2014-06-01

    Graphical abstract: Macrocyclic receptors grafted to monodisperse porous polymer particles for Sr(II) capture. - Highlights: • Synthesis of novel selective Sr adsorbent grafted with macrocyclic receptors. • New monodisperse porous polymer particles used to promote Sr adsorption. • Comparative study and discussion on adsorption behaviour and mechanism. • A chromatographic process proposed for Sr separation in simulated HLLW. - Abstract: Separation of strontium is of great significance for radioactive waste treatment and environmental remediation after nuclear accidents. In this work, a novel class of adsorbent (Crown-g-MPPPs) was synthesized by chemical grafting a macrocyclic ether receptor to monodisperse porous polymer particles (MPPPs) for strontium adsorption. Meanwhile, a counterpart material (Crown@MPPPs) with the receptor molecules immobilized to the MPPPs substrate by physical impregnation was prepared. To investigate how the immobilization manner and distribution of the receptors influence the adsorption ability, a comparative study on the adsorption behaviour of the two materials towards Sr(II) in HNO{sub 3} media was accomplished. Due to the shorter diffusion path and covalently-bonded structure, Crown-g-MPPPs showed faster adsorption kinetics and better stability for cycle use. While Crown@MPPPs had the advantages of facile synthesis and higher adsorption capacity, owing to the absence of conformational constraint to form complexation with Sr(II). Kinetic functions (Lagergren pseudo-first-order/pseudo-second-order functions) and adsorption isotherm models (Langmuir/Freundlich models) were used to fit the experimental data and examine the adsorption mechanism. On this basis, a chromatographic process was proposed by using Crown@MPPPs for an effective separation of Sr(II) (91%) in simulated high level liquid waste (HLLW)

  12. Topotactic growth, selective adsorption, and adsorption-driven photocatalysis of protonated layered titanate nanosheets.

    Science.gov (United States)

    Wu, Qili; Yang, Xianfeng; Liu, Jia; Nie, Xin; Huang, Yongliang; Wen, Yuping; Khan, Javid; Khan, Wasim U; Wu, Mingmei; An, Taicheng

    2014-10-22

    Layered titanates with selective adsorption ability and adsorption-driven photocatalytic property can be quite attractive due to their potential applications in water purification. In this work, lepidocrocite-like layered protonated titanate (H2Ti2O5·H2O, denoted as HTO) nanosheets were successfully synthesized by an ion-exchange process. It turns out that this layered structure displays an abundant and selective adsorption toward the fluoroquinolone pharmaceutical compared with some large dye molecules due to a size selectivity of the interlayer spacing of HTO and the molecular horizontal size, as well as their electrostatic interaction. The uptake ability of HTO could be readily controlled through adjusting the pH values of adsorbate solution, and the maximum uptake capacity was achieved at the pH value of about 5.5 for ciprofloxacin (CIP) and 6.5 for moxifloxacin (MOX). The adsorption amount of smaller nalidixic acid (NAL) showed an increasing tendency as the pH value decreased. Moreover, the two-dimensional layered crystal structure also permits such HTO nanosheets to have a large percentage of (010) faces exposed, which is considerably provided by the interlayer surfaces of these nanosheets. The (010) surface has a similar Ti and O atomic arrangement as to the highly reactive anatase TiO2(001) one. Due to these specific characteristics, these HTO nanosheets show excellent photocatalytic activity in degrading CIP under UV light irradiation as well as possess a superior adsorption ability to remove CIP from aqueous solution selectively and efficiently. The photocatalytic reaction is believed to be mainly conducted on the active anatase (001)-like interlayer (010) surfaces of the layered structures since the as-prepared HTO performs an adsorption-driven molecular recognitive photocatalytic reaction.

  13. Adsorptive separation of NOsub(x) from dissolver off-gas

    International Nuclear Information System (INIS)

    Ringel, H.

    1984-06-01

    After precleaning the dissolver off-gas contains, besides the noble gases Xe and Kr, about 0.5 vol.% each of NOsub(x) and H 2 O. For the removal of these NOsub(x) and H 2 O residues to below 1 ppm, an adsorptive gas cleaning process has been developed and tested on a lab-scale. For the process, an acid resistant molecular sieve was selected and its properties investigated with respect to application; e.g. the dependence of the adsorption capacity on temperature, gas composition and face velocity. By the operation of a lab-scale facility with 400 Nl/h continuous off-gas throughput the suitability of the adsorption process has been demonstrated for off-gas cleaning and recycling of the separated NO 2 and H 2 O to the dissolver. (orig.) [de

  14. Liquid chromatographic analysis of phenobarbitone, ethosuximide ...

    African Journals Online (AJOL)

    A liquid chromatographic method for the simultaneous assay of four anticonvulsant drugs, phenobarbitone, ethosuximide, phenytoin and carbamazepine on a polystyrene-divinyl benzene column is described. The method was developed by the systematic study of different types of co-polymer materials, type and ...

  15. Treatment of Waste Lubricating Oil by Chemical and Adsorption Process Using Butanol and Kaolin

    Science.gov (United States)

    Riyanto; Ramadhan, B.; Wiyanti, D.

    2018-04-01

    Treatment of waste lubricating oil by chemical and adsorption process using butanol and kaolin has been done. Quality of lubricating oil after treatment was analysis using Atomic Absorption Spectrophotometer (AAS) and Gas Chromatography-Mass Spectrometry (GC-MS). The effects of the treatment of butanol, KOH, and kaolin to metals contain in waste lubricating oil treatment have been evaluated. Treatment of waste lubricating oil has been done using various kaolin weight, butanol, and KOH solution. The result of this research show metal content of Ca, Mg, Pb, Fe and Cr in waste lubricating oil before treatment are 1020.49, 367.02, 16.40, 36.76 and 1,80 ppm, respectively. The metal content of Ca, Mg, Pb, Fe and Cr in the waste lubricating oil after treatment are 0.17, 9.85, 34.07, 78.22 and 1.20 ppm, respectively. The optimum condition for treatment of waste lubricating oil using butanol, KOH, and kaolin is 30 mL, 3.0 g and 1.5 g, respectively. Chemical and adsorption method using butanol and kaolin can be used for decrease of metals contain in waste lubricating oil.

  16. Entropy generation analysis of an adsorption cooling cycle

    KAUST Repository

    Thu, Kyaw

    2013-05-01

    This paper discusses the analysis of an adsorption (AD) chiller using system entropy generation as a thermodynamic framework for evaluating total dissipative losses that occurred in a batch-operated AD cycle. The study focuses on an adsorption cycle operating at heat source temperatures ranging from 60 to 85 °C, whilst the chilled water inlet temperature is fixed at 12.5 °C,-a temperature of chilled water deemed useful for dehumidification and cooling. The total entropy generation model examines the processes of key components of the AD chiller such as the heat and mass transfer, flushing and de-superheating of liquid refrigerant. The following key findings are observed: (i) The cycle entropy generation increases with the increase in the heat source temperature (10.8 to 46.2 W/K) and the largest share of entropy generation or rate of energy dissipation occurs at the adsorption process, (ii) the second highest energy rate dissipation is the desorption process, (iii) the remaining energy dissipation rates are the evaporation and condensation processes, respectively. Some of the noteworthy highlights from the study are the inevitable but significant dissipative losses found in switching processes of adsorption-desorption and vice versa, as well as the de-superheating of warm condensate that is refluxed at non-thermal equilibrium conditions from the condenser to the evaporator for the completion of the refrigeration cycle. © 2012 Elsevier Ltd. All rights reserved.

  17. Optimization and Control of Pressure Swing Adsorption Processes Under Uncertainty

    KAUST Repository

    Khajuria, Harish

    2012-03-21

    The real-time periodic performance of a pressure swing adsorption (PSA) system strongly depends on the choice of key decision variables and operational considerations such as processing steps and column pressure temporal profiles, making its design and operation a challenging task. This work presents a detailed optimization-based approach for simultaneously incorporating PSA design, operational, and control aspects under the effect of time variant and invariant disturbances. It is applied to a two-bed, six-step PSA system represented by a rigorous mathematical model, where the key optimization objective is to maximize the expected H2 recovery while achieving a closed loop product H2 purity of 99.99%, for separating 70% H2, 30% CH4 feed. The benefits over sequential design and control approach are shown in terms of closed-loop recovery improvement of more than 3%, while the incorporation of explicit/multiparametric model predictive controllers improves the closed loop performance. © 2012 American Institute of Chemical Engineers (AIChE).

  18. Adsorption of cellulase on cellulolytic enzyme lignin from lodgepole pine.

    Science.gov (United States)

    Tu, Maobing; Pan, Xuejun; Saddler, Jack N

    2009-09-09

    Enzymatic hydrolysis of lignocellulosic materials is significantly affected by cellulase adsorption onto the lignocellulosic substrates and lignin. The presence of lignin plays an important role in lignocellulosic hydrolysis and enzyme recycling. Three cellulase preparations (Celluclast, Spezyme CP, and MSUBC) were evaluated to determine their adsorption onto cellulolytic enzyme lignin (CEL) from steam-exploded Lodgepole pine (SELP) and ethanol (organosolv)-pretreated Lodgepole pine (EPLP). The adsorption affinity of cellulase (Celluclast) onto isolated lignin (CEL-EPLP and CEL-SELP) was slightly higher than that from corresponding EPLP and SELP substrates on the basis of the Langmuir constants. Effects of temperature, ionic strength, and surfactant on cellulase adsorption onto isolated lignin were also explored in this study. Thermodynamic analysis of enzyme adsorption onto isolated lignin (Gibbs free energy change DeltaG(0) approximately -30 kJ/mol) indicated this adsorption was a spontaneous process. The addition of surfactant (0.2% w/v) could reduce the adsorption of cellulase onto CEL-SELP by 60%. Two types of adsorption isotherm were compared for cellulase adsorption onto isolated lignin. A Langmuir adsorption isotherm showed better fit for the experimental data than a Freundlich adsorption isotherm.

  19. Adsorption of sodium dodecylbenzenesulfonate on activated carbons: effects of solution chemistry and presence of bacteria.

    Science.gov (United States)

    Bautista-Toledo, M I; Méndez-Díaz, J D; Sánchez-Polo, M; Rivera-Utrilla, J; Ferro-García, M A

    2008-01-01

    The objective of the present investigation was to determine the effectiveness of activated carbon in removing sodium dodecylbenzenesulfonate (SDBS) and to analyze the chemical and textural characteristics of the activated carbons that are involved in the adsorption process. Studies were also performed on the influence of operational variables (pH, ionic strength, and presence of microorganisms) and on the kinetics and interactions involved in the adsorption of this pollutant on activated carbon. The kinetics study of SDBS adsorption revealed no problems in its diffusion on any of the activated carbons studied, and Weisz-Prater coefficient (C WP) values were considerably lower than unity for all activated carbons studied. SDBS adsorption isotherms on these activated carbons showed that: (i) adsorption capacity of activated carbons was very high (260-470 mg/g) and increased with larger surface area; and (ii) dispersive interactions between SDBS and carbon surface were largely responsible for the adsorption of this pollutant. SDBS adsorption was not significantly affected by the solution pH, indicating that electrostatic adsorbent-adsorbate interactions do not play an important role in this process. The presence of electrolytes (NaCl) in the medium favors SDBS adsorption, accelerating the process and increasing adsorption capacity. Under the working conditions used, SDBS is not degraded by bacteria; however, the presence of bacteria during the process accelerates and increases SDBS adsorption on the activated carbon. Microorganism adsorption on the activated carbon surface increases its hydrophobicity, explaining the results observed.

  20. Adsorption and removal of clofibric acid and diclofenac from water with MIEX resin.

    Science.gov (United States)

    Lu, Xian; Shao, Yisheng; Gao, Naiyun; Chen, Juxiang; Zhang, Yansen; Wang, Qiongfang; Lu, Yuqi

    2016-10-01

    This study demonstrates the use of MIEX resin as an efficient adsorbent for the removal of clofibric acid (CA) and diclofenac (DCF). The adsorption performance of CA and DCF are investigated by a batch mode in single-component or bi-component adsorption system. Various factors influencing the adsorption of CA and DCF, including initial concentration, contact time, adsorbent dosage, initial solution pH, agitation speed, natural organic matter and coexistent anions are studied. The Langmuir model can well describe CA adsorption in single-component system, while the Freundlich model gives better fitting in bi-component system. The DCF adsorption can be well fitted by the Freundlich model in both systems. Thermodynamic analyses show that the adsorption of CA and DCF is an endothermic (ΔH(o) > 0), entropy driven (ΔS(o) > 0) process and more randomness exists in the DCF adsorption process. The values of Gibbs free energy (ΔG(o)  0) for CA adsorption. The kinetic data suggest the adsorption of CA and DCF follow the pseudo-first-order model in both systems and the intra-particle is not the unique rate-limiting step. The adsorption process is controlled simultaneously by external mass transfer and surface diffusion according to the surface diffusion modified Biot number (Bis) ranging from 1.06 to 26.15. Moreover, the possible removal mechanism for CA and DCF is respectively proposed based on the ion exchange stoichiometry. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Adsorption kinetics of c-Fos and c-Jun to air-water interfaces.

    Science.gov (United States)

    Del Boca, Maximiliano; Nobre, Thatyane Morimoto; Zaniquelli, Maria Elisabete Darbello; Maggio, Bruno; Borioli, Graciela A

    2007-11-01

    The kinetics of adsorption to air-water interfaces of the biomembrane active transcription factors c-Fos, c-Jun and their mixtures is investigated. The adsorption process shows three distinct stages: a lag time, a fast pseudo zero-order stage, and a halting stage. The initial stage determines the course of the process, which is concentration dependent until the end of the fast stage. We show that c-Fos has faster adsorption kinetics than c-Jun over all three stages and that the interaction between both proteins is apparent in the adsorption profiles of the mixtures. Protein molecular reorganization at the interface determines the transition to the final adsorption stage of the pure proteins as well as that of the mixtures.

  2. Adsorption of procion red using layer double hydroxide Mg/Al

    Directory of Open Access Journals (Sweden)

    Muhammad Imron

    2017-07-01

    Full Text Available Layer double hydroxide Mg/Al was synthesized by inorganic synthetic method. Material was characterized using FTIR and XRD analyses and used as adsorbent of procion red dye in aqueous medium.  Factors that affect the adsorption process are adsorption time as the kinetic parameter; and the temperature and concentration of procion red as the thermodynamic parameter. FTIR spectra of layer double hydroxides showed unique vibration at wavenumber 1300 cm-1 and 1600 cm-1. Characterization using XRD shows diffraction angles at 29o, 27o, and 28o, which are typical of Mg/Al double layer hydroxides. Adsorption of procion red using layer double hydroxide Mg/Al resulted adsorption rate 7.1 minutes-1, maximum adsorption capacity 111.1 mg/g at 60 oC with increasing energy by increasing adsorption temperature.   Keywords: Layered double hydroxides, adsorption, procion red.

  3. Study on Shale Adsorption Equation Based on Monolayer Adsorption, Multilayer Adsorption, and Capillary Condensation

    OpenAIRE

    Chen, Qing; Tian, Yuanyuan; Li, Peng; Yan, Changhui; Pang, Yu; Zheng, Li; Deng, Hucheng; Zhou, Wen; Meng, Xianghao

    2017-01-01

    Shale gas is an effective gas resource all over the world. The evaluation of pore structure plays a critical role in exploring shale gas efficiently. Nitrogen adsorption experiment is one of the significant approaches to analyze pore size structure of shale. Shale is extremely heterogeneous due to component diversity and structure complexity. Therefore, adsorption isotherms for homogeneous adsorbents and empirical isotherms may not apply to shale. The shape of adsorption-desorption curve indi...

  4. Adsorption and diffusion of hydrogen in Zircaloy-4

    International Nuclear Information System (INIS)

    Torres, E.; Desquines, J.; Baietto, M.C.; Coret, M.; Wehling, F.; Blat-Yrieix, M.; Ambard, A.

    2015-01-01

    Hydrogen in zirconium alloys is considered in many nuclear safety issues. Below 500 Celsius degrees, rather limited knowledge is available on the combined hydrogen adsorption at the sample surface and diffusion in the metal. A modeling of hydrogen gaseous charging has been established starting with a set of relevant laws and parameters derived from open literature. Simulating the hydrogen charging process requires simultaneous analysis of gaseous surface adsorption, hydrogen solid-solution diffusion and precipitation, when exceeding the material solubility limit. The modeling has been extended to reproduce the solid-gas exchange. Gaseous charging experiments have been performed at 420 C. degrees on Stress Relieved Annealed (SRA) Zircaloy-4 cladding samples to validate the model. The sample hydrogen content has been systematically measured after charging and compared to the calculated value thus providing a validation of the adsorption modeling. Complementary tests have been carried out on Recrystallized Annealed (RXA) Zircaloy-4 rods to characterize the combined diffusion and adsorption process. The hydrogen concentration distribution has been characterized using an inverse technique based on destructive analyses of the samples. This additional set of data was relevant for the validation of the hydrogen combined adsorption/diffusion modeling up to 420 C. degrees. (authors)

  5. Gas chromatographic determination of Di-n-butyl phosphate in radioactive lean organic solvent of FBTR carbide fuel reprocessing

    International Nuclear Information System (INIS)

    Velavendan, P.; Ganesh, S.; Pandey, N.K.; Kamachi Mudali, U.; Natarajan, R.

    2011-01-01

    In the present work Di-n- butyl phosphate (DBP) a degraded product of Tri-n-butyl phosphate (TBP) formed by acid hydrolysis and radiolysis in the PUREX process was analyzed. Lean organic streams of different fuel burn-up FBTR carbide fuel reprocessing solution was determined by standard Gas Chromatographic technique. The method involves the conversion of non-volatile Di-n-butyl phosphate into volatile and stable derivatives by the action of diazomethane and then determined by Gas Chromatograph (GC). A calibration graph was made for DBP concentration range of 200-2000 ppm with correlation coefficient of 0.99587 and RSD 1.2 %. (author)

  6. Adsorption methods for hydrogen isotope storage on zeolitic sieves

    International Nuclear Information System (INIS)

    Cristescu, Ioana; Cristescu, Ion; Vasut, F.; Brad, S.; Lazar, A.

    2001-01-01

    For hydrogen isotope separation, adsorption molecular sieves and active carbon were used. Adsorption process proceeds at liquid nitrogen and liquid hydrogen temperatures. Commercial zeolites have the same proprieties with natural zeolites, but they have a regular pore structure. They also have affinity for molecules of different size with defined shapes. Experimental results obtained at liquid nitrogen temperature (77.4 K) and liquid hydrogen revealed the efficient behaviour of the active carbon and zeolitic sieves for hydrogen isotopes temporary storage. We study adsorption of the synthetic zeolites in a wide range of temperatures and pressures and we used the molecular sieves 4A, 5A and active carbon. The 4A and 5A zeolites have a tridimensional structure with 11.4 A diameter. When the hydration water is eliminated, the material keeps a porous structure. The porous volume represents 45% from the zeolite mass for 4A and 5A sieves. The activation temperature of the zeolite and the carbon is very important for obtaining a high adsorption capacity. If the temperature used for activation is low, the structural water will be not eliminated and the adsorption capacity will be low. The excessive temperature will destroy the porous structure. The adsorption capacity for the hydrogen isotopes was calculated with the relation: A = V ads /m (cm 3 /g). The adsorption capacity and efficiency for the adsorbent materials, are given. Physical adsorption process of the hydrogen isotopes was carried out at liquid nitrogen temperature. The flux gas used in the adsorption system is composed of dry deuterium and protium. This mixture is cooled in liquid nitrogen and then is passed to the adsorbent getter at the same temperature (77.4 K). The gas flux in the adsorbent getter is 5 and 72 l/h (which correspond to 0.008 and 0.134 discharge velocity, respectively). (authors)

  7. Adsorption behavior of multi-walled carbon nanotubes for the removal of olaquindox from aqueous solutions

    International Nuclear Information System (INIS)

    Zhang, Lei; Xu, Tianci; Liu, Xueyan; Zhang, Yunyu; Jin, Hongjing

    2011-01-01

    Highlights: ► Removal of olaquindox—a hazardous pollutant using MWCNT was investigated. ► A comparative analysis showed MWCNT was highly efficient for the removal of olaquindox. ► Adsorption equilibrium was reached in 2.0 min following pseudo-second-order model. ► Physisorption and inner diffusion are the characteristics of the adsorption system. ► Langmuir adsorption isotherms are adequate for modeling the adsorption process. - Abstract: Multi-walled carbon nanotubes (MWCNT) were employed for the sorption of olaquindox (OLA) from aqueous solution. A detailed study of the adsorption process was performed by varying pH, ionic strength, sorbent amount, sorption time and temperature. The adsorption mechanism is probably the non-electrostatic π–π dispersion interaction and hydrophobic interaction between OLA and MWCNT. The adsorption efficiency could reach 99.7%, suggesting that MWCNT is excellent adsorbents for effective OLA removal from water. OLA adsorption kinetics were found to be very fast and equilibrium was reached within 2.0 min following the pseudo-second-order model with observed rate constants (k) of 0.169–1.048 g mg −1 min −1 (at varied temperatures). The overall rate process appeared to be influenced by both external mass transfer and intraparticle diffusion, but mainly governed by intraparticle diffusion. A rapid initial adsorption behavior occurred within a short period of time in this adsorption system. The sorption data could be well interpreted by the Langmuir model with the maximum adsorption capacity of 133.156 mg g −1 (293 K) of OLA on MWCNT. The mean energy of adsorption was calculated to be 0.124 kJ mol −1 (293 K) from the Dubinin–Radushkevich adsorption isotherm. Moreover, the thermodynamic parameters showed the spontaneous, exothermic and physical nature of the adsorption process.

  8. Selective adsorption of bovine hemoglobin on functional TiO2 nano-adsorbents: surface physic-chemical properties determined adsorption activity

    Science.gov (United States)

    Guo, Shiguang; Zhang, Jianghua; Shao, Mingxue; Zhang, Xia; Liu, Yufeng; Xu, Junli; Meng, Hao; Han, Yide

    2015-04-01

    Surface functionalized nanoparticles are efficient adsorbents which have shown good potential for protein separation. In this work, we chose two different types of organic molecules, oleic acid (OA) and 3-glycidoxypropyltrimethoxy silane (GPTMS), to functionalize the surface of TiO2 nanoparticles, and we studied the effects of this modification on their surface physicochemical properties in correlation with their selective adsorption of proteins. The results showed that the surface zeta potential and the surface water wettability of the modified TiO2 were significantly changed in comparison with the original TiO2 nanoparticles. The adsorption activities of bovine hemoglobin (BHb) and bovine serum albumin (BSA) on these functionalized TiO2 samples were investigated under different conditions, including pH values, contact time, ion strength, and initial protein concentration. In comparison with the non-specific adsorption of original TiO2, however, both the OA-TiO2 and GPTMS-TiO2 exhibited increased BHb adsorption and decreased BSA adsorption at the same time. Using a binary protein mixture as the adsorption object, a higher separation factor (SF) was obtained for OA-TiO2 under optimum conditions. The different adsorption activities of BHb and BSA on the modified TiO2 were correlated with different interactions at the protein/solid interface, and the chemical force as well as the electrostatic force played an important role in the selective adsorption process.

  9. Automatic Method for Controlling the Iodine Adsorption Number in Carbon Black Oil Furnaces

    Directory of Open Access Journals (Sweden)

    Zečević, N.

    2008-12-01

    Full Text Available There are numerous of different inlet process factors in carbon black oil furnaces which must be continuously and automatically adjusted, due to stable quality of final product. The most important six inlet process factors in carbon black oil-furnaces are:1. volume flow of process air for combustion2. temperature of process air for combustion3. volume flow of natural gas for insurance the necessary heat for thermal reaction of conversionthe hydrocarbon oil feedstock in oil-furnace carbon black4. mass flow rate of hydrocarbon oil feedstock5. type and quantity of additive for adjustment the structure of oil-furnace carbon black6. quantity and position of the quench water for cooling the reaction of oil-furnace carbon black.The control of oil-furnace carbon black adsorption capacity is made with mass flow rate of hydrocarbon feedstock, which is the most important inlet process factor. Oil-furnace carbon black adsorption capacity in industrial process is determined with laboratory analyze of iodine adsorption number. It is shown continuously and automatically method for controlling iodine adsorption number in carbon black oil-furnaces to get as much as possible efficient control of adsorption capacity. In the proposed method it can be seen the correlation between qualitatively-quantitatively composition of the process tail gasses in the production of oil-furnace carbon black and relationship between air for combustion and hydrocarbon feedstock. It is shown that the ratio between air for combustion and hydrocarbon oil feedstock is depended of adsorption capacity summarized by iodine adsorption number, regarding to BMCI index of hydrocarbon oil feedstock.The mentioned correlation can be seen through the figures from 1. to 4. From the whole composition of the process tail gasses the best correlation for continuously and automatically control of iodine adsorption number is show the volume fraction of methane. The volume fraction of methane in the

  10. Influencing the selectivity of zeolite Y for triglycine adsorption

    NARCIS (Netherlands)

    Wijntje, R.; Bosch, H.; Haan, A.B. de; Bussmann, P.J.T.

    2007-01-01

    In prior work we studied the adsorption of triglycine on zeolite Y under reference conditions. This study aims to solve the question of which adsorbent properties and process conditions influence the adsorption triglycine from an aqueous solution by zeolite Y. Relevant zeolite parameters to study

  11. Copper adsorption on magnetite-loaded chitosan microspheres: A kinetic and equilibrium study

    Energy Technology Data Exchange (ETDEWEB)

    Podzus, P.E., E-mail: ppodzus@gmail.com [Grupo de Aplicaciones de Materiales Biocompatibles, Departamento de Quimica, Facultad de Ingenieria, Universidad de Buenos Aires, Paseo Colon 850, C1063ACV Buenos Aires (Argentina); Debandi, M.V. [Grupo de Aplicaciones de Materiales Biocompatibles, Departamento de Quimica, Facultad de Ingenieria, Universidad de Buenos Aires, Paseo Colon 850, C1063ACV Buenos Aires (Argentina); Daraio, M.E., E-mail: medit@fi.uba.ar [Grupo de Aplicaciones de Materiales Biocompatibles, Departamento de Quimica, Facultad de Ingenieria, Universidad de Buenos Aires, Paseo Colon 850, C1063ACV Buenos Aires (Argentina)

    2012-08-15

    A composite of Fe{sub 3}O{sub 4} nanoparticles and the biopolymer chitosan, chemically crosslinked, was prepared as microspheres and used to adsorb copper ions, which were chosen as a model of contaminant metal in water. The adsorption of copper on the magnetic microspheres was studied in a batch process, with different aqueous solutions of Cu (II) at concentrations ranging from 40 to 1100 ppm. Kinetic and equilibrium aspects of the adsorption process were studied. The time-dependent Cu (II) adsorption data were well described by a pseudo-second-order kinetic model. It was found that the equilibrium data follow the Langmuir isotherm, with a maximum adsorption capacity of around 500 mg Cu/g chitosan. The used microspheres were removed and after desorption the material was able to be reused as an adsorbent. The prepared microspheres proved efficient in the removal of copper ions through an adsorption process whose kinetic and equilibrium characteristics were analyzed.

  12. Copper adsorption on magnetite-loaded chitosan microspheres: A kinetic and equilibrium study

    International Nuclear Information System (INIS)

    Podzus, P.E.; Debandi, M.V.; Daraio, M.E.

    2012-01-01

    A composite of Fe 3 O 4 nanoparticles and the biopolymer chitosan, chemically crosslinked, was prepared as microspheres and used to adsorb copper ions, which were chosen as a model of contaminant metal in water. The adsorption of copper on the magnetic microspheres was studied in a batch process, with different aqueous solutions of Cu (II) at concentrations ranging from 40 to 1100 ppm. Kinetic and equilibrium aspects of the adsorption process were studied. The time-dependent Cu (II) adsorption data were well described by a pseudo-second-order kinetic model. It was found that the equilibrium data follow the Langmuir isotherm, with a maximum adsorption capacity of around 500 mg Cu/g chitosan. The used microspheres were removed and after desorption the material was able to be reused as an adsorbent. The prepared microspheres proved efficient in the removal of copper ions through an adsorption process whose kinetic and equilibrium characteristics were analyzed.

  13. Using Aspen to Teach Chromatographic Bioprocessing: A Case Study in Weak Partitioning Chromatography for Biotechnology Applications

    Science.gov (United States)

    Evans, Steven T.; Huang, Xinqun; Cramer, Steven M.

    2010-01-01

    The commercial simulator Aspen Chromatography was employed to study and optimize an important new industrial separation process, weak partitioning chromatography. This case study on antibody purification was implemented in a chromatographic separations course. Parametric simulations were performed to investigate the effect of operating parameters…

  14. Cycle development and design for CO2 capture from flue gas by vacuum swing adsorption.

    Science.gov (United States)

    Zhang, Jun; Webley, Paul A

    2008-01-15

    CO2 capture and storage is an important component in the development of clean power generation processes. One CO2 capture technology is gas-phase adsorption, specifically pressure (or vacuum) swing adsorption. The complexity of these processes makes evaluation and assessment of new adsorbents difficult and time-consuming. In this study, we have developed a simple model specifically targeted at CO2 capture by pressure swing adsorption and validated our model by comparison with data from a fully instrumented pilot-scale pressure swing adsorption process. The model captures nonisothermal effects as well as nonlinear adsorption and nitrogen coadsorption. Using the model and our apparatus, we have designed and studied a large number of cycles for CO2 capture. We demonstrate that by careful management of adsorption fronts and assembly of cycles based on understanding of the roles of individual steps, we are able to quickly assess the effect of adsorbents and process parameters on capture performance and identify optimal operating regimes and cycles. We recommend this approach in contrast to exhaustive parametric studies which tend to depend on specifics of the chosen cycle and adsorbent. We show that appropriate combinations of process steps can yield excellent process performance and demonstrate how the pressure drop, and heat loss, etc. affect process performance through their effect on adsorption fronts and profiles. Finally, cyclic temperature profiles along the adsorption column can be readily used to infer concentration profiles-this has proved to be a very useful tool in cyclic function definition. Our research reveals excellent promise for the application of pressure/vacuum swing adsorption technology in the arena of CO2 capture from flue gases.

  15. On-line gas chromatographic analysis of airborne particles

    Science.gov (United States)

    Hering, Susanne V [Berkeley, CA; Goldstein, Allen H [Orinda, CA

    2012-01-03

    A method and apparatus for the in-situ, chemical analysis of an aerosol. The method may include the steps of: collecting an aerosol; thermally desorbing the aerosol into a carrier gas to provide desorbed aerosol material; transporting the desorbed aerosol material onto the head of a gas chromatography column; analyzing the aerosol material using a gas chromatograph, and quantizing the aerosol material as it evolves from the gas chromatography column. The apparatus includes a collection and thermal desorption cell, a gas chromatograph including a gas chromatography column, heated transport lines coupling the cell and the column; and a quantization detector for aerosol material evolving from the gas chromatography column.

  16. The use of natural and industrial aluminosilicates in the process of adsorption of heavy metals ions

    OpenAIRE

    Tsvetkova, A.; Akayev, O.

    2010-01-01

    The analysis of periodic scientific publications and patent literature was made, in which the possibilities of using natural and industrial silicon-containing compounds as adsorbents of ions of heavy metals are generalized. The conditions of adsorption, as well as the numerical values of the adsorption capacity of the studied materials are described Key words: adsorption, natural and industrial aluminosilicates, heavy metals ions.

  17. Time scale of random sequential adsorption.

    Science.gov (United States)

    Erban, Radek; Chapman, S Jonathan

    2007-04-01

    A simple multiscale approach to the diffusion-driven adsorption from a solution to a solid surface is presented. The model combines two important features of the adsorption process: (i) The kinetics of the chemical reaction between adsorbing molecules and the surface and (ii) geometrical constraints on the surface made by molecules which are already adsorbed. The process (i) is modeled in a diffusion-driven context, i.e., the conditional probability of adsorbing a molecule provided that the molecule hits the surface is related to the macroscopic surface reaction rate. The geometrical constraint (ii) is modeled using random sequential adsorption (RSA), which is the sequential addition of molecules at random positions on a surface; one attempt to attach a molecule is made per one RSA simulation time step. By coupling RSA with the diffusion of molecules in the solution above the surface the RSA simulation time step is related to the real physical time. The method is illustrated on a model of chemisorption of reactive polymers to a virus surface.

  18. Study on adsorption properties and mechanism of Pb2+ with different carbon based adsorbents.

    Science.gov (United States)

    Song, Min; Wei, Yuexing; Cai, Shipan; Yu, Lei; Zhong, Zhaoping; Jin, Baosheng

    2018-03-15

    Different activated carbon materials are prepared from a series of solid wastes (sawdust, acrylic fabric, tire powder and rice husk) by combination of the KOH activation method and steam activation method. The influences of several parameters such as pH, contact time, adsorbent dosage and temperature on adsorption performance of Pb 2+ with those different carbon adsorbents are investigated. The results demonstrate that C rice husk performance well in the adsorption process. In the following, the C rice husk is used to explain the adsorption mechanism of Pb 2+ by SEM-EDS, FT-IR and XPS. The results illustrate that the surface oxygen-containing functional groups such as carboxyl, lactone group, phenolic hydroxyl and other alkaline metal ions like Na + and K + have significant effect on the adsorption process. A reasonable mechanism of Pb 2+ adsorption is proposed that the ion exchange play key roles in the adsorption process. In addition, the effects of Cu 2+ , Zn 2+ on the Pb 2+ adsorption capacity with the four carbon adsorbents are also studied and the results demonstrate that other heavy metals play positive effects on the adsorption of Pb 2+ . Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Adsorption of 2,4,6-trinitrotoluene on carboxylated porous polystyrene microspheres

    International Nuclear Information System (INIS)

    Ye Zhengfang; Meng Qingqiang; Lu Shengtao

    2012-01-01

    Large-pore-size (150 nm) polystyrene (PSt) microspheres were carboxylated with phthalic anhydride (PA) through Friedel-Crafts acetylation to study the adsorption of 2,4,6-trinitrotoluene (TNT) on this material from aqueous solution. The scanning electron microscope (SEM) images and mercury porosimetry measurements (MPM) of the microspheres showed that the pore structure was unchanged during the reaction. High adsorption capacity (11.2 mg g -1 of suction-dried adsorbent) and adsorption rate (33.9 mg g -1 h -1 ) for TNT were observed during the study. As shown by the adsorption isotherm, the adsorption of TNT on PA-PSt can be described by the Freundlich adsorption equation, indicating heterogeneous adsorption process. On-column adsorption of TNT on PA-PSt and elution indicated that TNT can be completely removed from aqueous solution and condensed into acetone.

  20. Liquid chromatographic-mass spectrometric method for ...

    African Journals Online (AJOL)

    Tropical Journal of Pharmaceutical Research ... Purpose: To develop and validate a simple, efficient and reliable Liquid chromatographic-mass spectrometric (LC-MS/MS) method for the quantitative determination of two dermatological drugs, ... By Country · List All Titles · Free To Read Titles This Journal is Open Access.

  1. Batch-to-batch quality consistency evaluation of botanical drug products using multivariate statistical analysis of the chromatographic fingerprint.

    Science.gov (United States)

    Xiong, Haoshu; Yu, Lawrence X; Qu, Haibin

    2013-06-01

    Botanical drug products have batch-to-batch quality variability due to botanical raw materials and the current manufacturing process. The rational evaluation and control of product quality consistency are essential to ensure the efficacy and safety. Chromatographic fingerprinting is an important and widely used tool to characterize the chemical composition of botanical drug products. Multivariate statistical analysis has showed its efficacy and applicability in the quality evaluation of many kinds of industrial products. In this paper, the combined use of multivariate statistical analysis and chromatographic fingerprinting is presented here to evaluate batch-to-batch quality consistency of botanical drug products. A typical botanical drug product in China, Shenmai injection, was selected as the example to demonstrate the feasibility of this approach. The high-performance liquid chromatographic fingerprint data of historical batches were collected from a traditional Chinese medicine manufacturing factory. Characteristic peaks were weighted by their variability among production batches. A principal component analysis model was established after outliers were modified or removed. Multivariate (Hotelling T(2) and DModX) control charts were finally successfully applied to evaluate the quality consistency. The results suggest useful applications for a combination of multivariate statistical analysis with chromatographic fingerprinting in batch-to-batch quality consistency evaluation for the manufacture of botanical drug products.

  2. Investigation of Carbon Monoxide Adsorption on Cationic Gold- Palladium Clusters

    Science.gov (United States)

    Chen, Yang-Mei; Kuang, Xiao-Yu; Sheng, Xiao-Wei; Wang, Huai-Qian; Shao, Peng; Zhong, Min-Ming

    2013-11-01

    Density functional calculations have been performed for the carbon monoxide molecule adsorption on AunPd+m(n+m ≤ 6) clusters. In the process of CO adsorption, small Au clusters and Pd clusters tend to be an Au atom and three Pd atoms adsorption, respectively. For the mixed Au-Pd clusters, an Au atom, a Pd atom, two atoms consisted of an Au atom and a Pd atom, two Pd atoms, and three Pd atoms adsorption structures are displayed. The highest occupied molecular orbital-lowest unoccupied molecular orbital (HOMO-LUMO) gaps and natural bond orbital charge population are calculated. Moreover, CO adsorption energy, CO stretching frequency, and CO bond length (upon adsorption) are also analysed in detail. The results predict that the adsorption strength of Au clusters with CO and the C-O vibration strength is enhanced and reduced after doping of Pd in the AunPdmCO+ complexes, respectively

  3. Effective Adsorption/Reduction of Cr(VI) Oxyanion by Halloysite@Polyaniline Hybrid Nanotubes.

    Science.gov (United States)

    Zhou, Tianzhu; Li, Cuiping; Jin, Huiling; Lian, Yangyang; Han, Wenmei

    2017-02-22

    Halloysite@polyaniline (HA@PANI) hybrid nanotubes are synthesized by the in situ chemical polymerization of aniline on halloysite clay nanotubes. By facilely tuning the dopant acid, pH, and apparent weight proportion for aniline (ANI) and halloysite (HA) nanotubes in the synthesis process, PANI with tuned oxidation state, doping extent, and content are in situ growing on halloysite nanotubes. The reaction system's acidity is tuned by dopant acid, such as HCl, H 2 SO 4 , HNO 3 , and H 3 PO 4 . The adsorption result shows the fabricated HA@PANI hybrid nanotubes can effectively adsorb Cr(VI) oxyanion and the adsorption ability changes according to the dopant acid, pH, and apparent weight proportion for ANI and HA in the synthesis process. Among them, the HA@PANI fabricated with HCl as dopant acid tuning the pH at 0.5 and 204% apparent weight proportion for ANI and HA (HP/0.5/204%-HCl) shows the highest adsorption capacity. The adsorption capacity is in accordance well with the doping extent of PANI in HA@PANI. Furthermore, when HP/0.5/204%-HCl is redoped with HNO 3 , H 2 SO 4 , and H 3 PO 4 , the adsorption capacity declines, implying the dopant acid in the process of redoping exhibits a marked effect on Cr(VI) oxyanion adsorption for the HA@PANI hybrid nanotubes. HP/0.5/204%-HCl and HP/0.5/204%-H 3 PO 4 have demonstrated good regenerability with an above 80% removal ratio after four cycles. Moreover, the HA@PANI adsorbent has better sedimentation ability than that of pure PANI. The adsorption behavior is in good agreement with Langmuir and pseudo second-order equations, indicating the adsorption of HA@PANI for Cr(VI) oxyanion is chemical adsorption. FT-IR and XPS of HA@PANI after Cr(VI) oxyanion adsorption indicate that the doped amine/imine groups (-NH + /═N + - groups) are the main adsorption sites for the removal of Cr(VI) oxyanion by electrostatic adsorption and reduction of the adsorbed Cr (VI) oxyanion to Cr(III) simultaneously.

  4. Removal of cesium from simulated liquid waste with countercurrent two-stage adsorption followed by microfiltration

    Energy Technology Data Exchange (ETDEWEB)

    Han, Fei; Zhang, Guang-Hui [School of Environmental Science and Engineering, Tianjin University, Tianjin, 300072 (China); Gu, Ping, E-mail: guping@tju.edu.cn [School of Environmental Science and Engineering, Tianjin University, Tianjin, 300072 (China)

    2012-07-30

    Highlights: Black-Right-Pointing-Pointer The adsorption isotherm of cesium by copper ferrocyanide followed a Freundlich model. Black-Right-Pointing-Pointer Decontamination factor of cesium was higher in lab-scale test than that in jar test. Black-Right-Pointing-Pointer A countercurrent two-stage adsorption-microfiltration process was achieved. Black-Right-Pointing-Pointer Cesium concentration in the effluent could be calculated. Black-Right-Pointing-Pointer It is a new cesium removal process with a higher decontamination factor. - Abstract: Copper ferrocyanide (CuFC) was used as an adsorbent to remove cesium. Jar test results showed that the adsorption capacity of CuFC was better than that of potassium zinc hexacyanoferrate. Lab-scale tests were performed by an adsorption-microfiltration process, and the mean decontamination factor (DF) was 463 when the initial cesium concentration was 101.3 {mu}g/L, the dosage of CuFC was 40 mg/L and the adsorption time was 20 min. The cesium concentration in the effluent continuously decreased with the operation time, which indicated that the used adsorbent retained its adsorption capacity. To use this capacity, experiments on a countercurrent two-stage adsorption (CTA)-microfiltration (MF) process were carried out with CuFC adsorption combined with membrane separation. A calculation method for determining the cesium concentration in the effluent was given, and batch tests in a pressure cup were performed to verify the calculated method. The results showed that the experimental values fitted well with the calculated values in the CTA-MF process. The mean DF was 1123 when the dilution factor was 0.4, the initial cesium concentration was 98.75 {mu}g/L and the dosage of CuFC and adsorption time were the same as those used in the lab-scale test. The DF obtained by CTA-MF process was more than three times higher than the single-stage adsorption in the jar test.

  5. Analysis and chromatographic purification of eicosanoids multiply labeled by tritium

    International Nuclear Information System (INIS)

    Shevchenko, V.P.; Nagaev, I.Yu.; Myasoedov, N.F.

    1989-01-01

    We show the possibility of analysis and chromatographic purification of eicosanoids triply labeled by tritium. The described methods allow us to isolate chromatographically pure products obtained by selective hydrogenatin, chemical, and enzyme methods, with radiochemical purity at least 95-97%. The following methods are used to analyze the reaction mixtures and to isolate the tritium-labeled eicosanoids: gas-liquid chromatography, high-efficiency liquid chromatography, and thin-layer chromatography on supports impregnated with silver nitrate

  6. Equilibrium Kinetics and Thermodynamic Studies of the Adsorption of Tartrazine and Sunset Yellow

    Directory of Open Access Journals (Sweden)

    F. O. Okeola

    2017-04-01

    Full Text Available Batch adsorption experiment was carried out on freema (combination of Tartrazine and Sunset Yellow an adsorbent prepared from moringa pod. The adsorption capacity of the adsorbent was determined. Effect of such factors as initial concentration of the adsorbate solution, contact time with the adsorbent, pH of the dye solution, and temperature of the dye solution on the adsorption capacity of the absorbent was determined. The result showed that the optimum adsorption was attained at pH of 3, adsorption equilibrium was attained within 60 min. The adsorption capacity increases with increase in initial concentration of the dye solution. The result of the kinetics study showed that the adsorption process was better described by the pseudo-second order rate equation. The adsorption process fitted well with both Freundlich (R2 = 0.983 and Langmuir (R2 = 0.933 models. Thermodynamic result showed ΔH and ΔS were all negative. Gibbs free energy change (ΔG increases with increase in temperature of the dye solution.

  7. Equilibrium curve determination of HF adsorption by activated carbon

    International Nuclear Information System (INIS)

    Bahrami, H.; Safdari, S. J.; Mousavian, S. M. A.

    2010-01-01

    One of the byproducts of uranium enrichment industry is hydrogen fluoride gas. Due to the toxicity and corrosivity of the molecule, it has adverse effects on the environment and the process. Therefore, it must be removed by adsorption towers. The activated carbon is one of the proposed sorbent for the adsorption. Hydrogen fluoride adsorption equilibrium curve gives important information for designing the adsorption towers. In this article, the hydrogen fluoride adsorption and adsorption factors were determined experimentally, and four different types of carbon have been used. The operating pressure in all tests was less than 30 mbar. Comparison between the obtained experimental equilibrium curves shows that the first, second and fourth types of activated carbon are suitable for the adsorption of hydrogen fluoride. The experimental data were fitted using mathematical models of Langmuir, Freundlich, Toth and Henry. The results show that Toth mathematical model is more suitable than other models. Also, the absolute error were predicted by the model of Toth for the first, second and fourth types of the activated carbon were 12.9, 16.5 and 34 percent, respectively.

  8. In-line gas chromatographic apparatus for measuring the hydrophobic micropore volume (HMV) and contaminant transformation in mineral micropores

    Energy Technology Data Exchange (ETDEWEB)

    Cheng Hefa [State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640 (China); Reinhard, Martin, E-mail: reinhard@stanford.edu [Department of Civil and Environmental Engineering, Stanford University, Stanford, CA 94305-4020 (United States)

    2010-07-15

    Desorption of hydrophobic organic compounds from micropores is characteristically slow compared to surface adsorption and partitioning. The slow-desorbing mass of a hydrophobic probe molecule can be used to calculate the hydrophobic micropore volume (HMV) of microporous solids. A gas chromatographic apparatus is described that allows characterization of the sorbed mass with respect to the desorption rate. The method is demonstrated using a dealuminated zeolite and an aquifer sand as the model and reference sorbents, respectively, and trichloroethylene (TCE) as the probe molecule. A glass column packed with the microporous sorbent is coupled directly to a gas chromatograph that is equipped with flame ionization and electron capture detectors. Sorption and desorption of TCE on the sorbent was measured by sampling the influent and effluent of the column using a combination of switching and injection valves. For geosorbents, the HMV is quantified based on Gurvitsch's rule from the mass of TCE desorbed at a rate that is characteristic for micropores. Instrumental requirements, design considerations, hardware details, detector calibration, performance, and data analysis are discussed along with applications. The method is novel and complements traditional vacuum gravimetric and piezometric techniques, which quantify the total pore volume under vacuum conditions. The HMV is more relevant than the total micropore volume for predicting the fate and transport of organic contaminants in the subsurface. Sorption in hydrophobic micropores strongly impacts the mobility of organic contaminants, and their chemical and biological transformations. The apparatus can serve as a tool for characterizing microprous solids and investigating contaminant-solid interactions.

  9. In-line gas chromatographic apparatus for measuring the hydrophobic micropore volume (HMV) and contaminant transformation in mineral micropores

    International Nuclear Information System (INIS)

    Cheng Hefa; Reinhard, Martin

    2010-01-01

    Desorption of hydrophobic organic compounds from micropores is characteristically slow compared to surface adsorption and partitioning. The slow-desorbing mass of a hydrophobic probe molecule can be used to calculate the hydrophobic micropore volume (HMV) of microporous solids. A gas chromatographic apparatus is described that allows characterization of the sorbed mass with respect to the desorption rate. The method is demonstrated using a dealuminated zeolite and an aquifer sand as the model and reference sorbents, respectively, and trichloroethylene (TCE) as the probe molecule. A glass column packed with the microporous sorbent is coupled directly to a gas chromatograph that is equipped with flame ionization and electron capture detectors. Sorption and desorption of TCE on the sorbent was measured by sampling the influent and effluent of the column using a combination of switching and injection valves. For geosorbents, the HMV is quantified based on Gurvitsch's rule from the mass of TCE desorbed at a rate that is characteristic for micropores. Instrumental requirements, design considerations, hardware details, detector calibration, performance, and data analysis are discussed along with applications. The method is novel and complements traditional vacuum gravimetric and piezometric techniques, which quantify the total pore volume under vacuum conditions. The HMV is more relevant than the total micropore volume for predicting the fate and transport of organic contaminants in the subsurface. Sorption in hydrophobic micropores strongly impacts the mobility of organic contaminants, and their chemical and biological transformations. The apparatus can serve as a tool for characterizing microprous solids and investigating contaminant-solid interactions.

  10. In-line gas chromatographic apparatus for measuring the hydrophobic micropore volume (HMV) and contaminant transformation in mineral micropores.

    Science.gov (United States)

    Cheng, Hefa; Reinhard, Martin

    2010-07-15

    Desorption of hydrophobic organic compounds from micropores is characteristically slow compared to surface adsorption and partitioning. The slow-desorbing mass of a hydrophobic probe molecule can be used to calculate the hydrophobic micropore volume (HMV) of microporous solids. A gas chromatographic apparatus is described that allows characterization of the sorbed mass with respect to the desorption rate. The method is demonstrated using a dealuminated zeolite and an aquifer sand as the model and reference sorbents, respectively, and trichloroethylene (TCE) as the probe molecule. A glass column packed with the microporous sorbent is coupled directly to a gas chromatograph that is equipped with flame ionization and electron capture detectors. Sorption and desorption of TCE on the sorbent was measured by sampling the influent and effluent of the column using a combination of switching and injection valves. For geosorbents, the HMV is quantified based on Gurvitsch's rule from the mass of TCE desorbed at a rate that is characteristic for micropores. Instrumental requirements, design considerations, hardware details, detector calibration, performance, and data analysis are discussed along with applications. The method is novel and complements traditional vacuum gravimetric and piezometric techniques, which quantify the total pore volume under vacuum conditions. The HMV is more relevant than the total micropore volume for predicting the fate and transport of organic contaminants in the subsurface. Sorption in hydrophobic micropores strongly impacts the mobility of organic contaminants, and their chemical and biological transformations. The apparatus can serve as a tool for characterizing microporous solids and investigating contaminant-solid interactions. 2010 Elsevier B.V. All rights reserved.

  11. Adsorption of heavy metal in freeway by asphalt block

    Science.gov (United States)

    Zheng, Chaocheng

    2017-08-01

    Heavy metals are toxic, persistent, and carcinogenic in freeway. Various techniques are available for the removal of heavy metals from waste water among soils during freeway including ion-exchange, membrane filtration, electrolysis, coagulation, flotation, and adsorption. Among them, bio-sorption processes are widely used for heavy metal and other pollutant removal due to its sustainable, rapid and economic. In this paper, heavy metal removal facilitated by adsorption in plants during freeway was illustrated to provide concise information on exploring the adsorption efficiency.

  12. Adsorption of Cr(III) from Aqueous Solution using Borax Sludge.

    Science.gov (United States)

    Senberber, Fatma Tugce; Yildirim, Meral; Mermer, Nevin Karamahmut; Derun, Emek Moroydor

    2017-09-01

    Borax sludge is the waste produced by a trommel sieve in the borax production process and is used as an adsorbent for Cr(III) removal. The effects of various parameters, including pH, initial Cr(III) concentration and contact time were investigated for batch adsorption of Cr(III). The experimental results obtained were applied to different adsorption isotherms and kinetic models. The results indicated that the Temkin isotherm (R2 = 0.9749) was most suitable to explain the adsorption characteristics of borax sludge, and the removal of Cr(III) was achieved by a physisorption process. The overall kinetic data fitted the pseudo-second order rate model (R2 = 0.9990). According to thermodynamic studies, which were carried out at different temperatures, changes in enthalpy (ΔH) and entropy (ΔS) values for Cr(III) adsorption by borax sludge were determined to be 69.395 kJ/mol and 0.276 kJ/mol K, respectively. The study implied that borax sludge could be used as an alternative adsorbent in the adsorption of Cr(III) from aqueous solutions.

  13. Adsorption of gold onto γ-aminopropyltriethoxysilane grafted coconut pith

    International Nuclear Information System (INIS)

    Usman, M.; Akhtar, J.

    2017-01-01

    This study was carried out to investigate adsorption kinetic and adsorption thermodynamics of Au(III) ions onto γ-aminopropyltriethoxysilane grafted coconut pith. The results from equilibrium adsorption were fitted in various adsorption isotherm models such as Langmuir, Freundlich, Temkin and Dubinin-Radushkevich and the best fit for the experimental data was Langmuir isotherm. The maximum adsorption capacity for virgin coconut pith (VCP) and the grafted coconut pith (GCP) were 256.41 and 285.59 mg/g, respectively. The kinetic data was verified using pseudo-first-order, pseudo-second-order, elovich equation and intraparticle diffusion model. The correlation results suggested that the pseudo-second-order model fits the experimental data well. A thermodynamic study revealed the endothermic nature of reaction due to positive enthalpy (?Ho) values and negative values of Gibbs free energy (?Go) describes the spontaneity of adsorption process. The regenerability of VCP and GCP adsorbents were investigated with NaOH (1.0 M).

  14. Chromatographic monitoring procedures in laboratory practice

    Energy Technology Data Exchange (ETDEWEB)

    Kaplina, E G; Belova, O I; Lasunina, N A

    1976-01-01

    The Moscow Coke and Chemical Works consist of three plants in combination, viz., the coking plant, the synthetic ammonia plant using coke-oven-gas hydrogen and the oxygen plant. The plant requirements include daily analyses not only of the coke-oven gas but also of a rich gas and an ethylene fraction. The analyses are carried out in VTI-2 apparatus. The analytical data are used to calculate the calorific values and densities of the gases. The time requirements are very considerable and the laboratory has long been engaged in developing and introducing chromatographic procedures for the major constituents of coke-oven gas, rich gas and ethylene fraction. The procedure developed for the coke-oven and rich gases uses two parallel columns, one packed with molecular sieves and the other with grade KSM silica gel. Hydrogen was determined with argon as the carrier gas, and all other constituents with helium. The procedure was time-consuming and complicated. An attempt was made to separate the gases in an LKhM-7a chromatograph with a programme-controlled 50 to 250/sup 0/C heating cycle, but the procedure still had a number of serious defects and could not be recommended for regular quality control. The final variant involved two parallel columns and a procedure based on that in GOST 14920 (''Dry gas. Proximate analysis''). The chromatograph was a type KhL-69 with a 6-way cock in the gas line so that each of the columns could be brought on stream in succession. The analytical column packings were zeolite (in a 2 m column) and diatomaceous brick with 25% n-hexadecane (in a 6 m column).

  15. Effect of nitrogen doping of graphene oxide on hydrogen and hydroxyl adsorption

    Energy Technology Data Exchange (ETDEWEB)

    Min, Byeong June; Jeong, Hae Kyung [Daegu University, Kyungsan (Korea, Republic of)

    2014-05-15

    We investigate how nitrogen-doping affects the hydrogen (H) and the hydroxyl (OH) adsorption on graphene oxide (GO) and on nitrogen-doped GO (NGO) via pseudopotential plane wave density functional calculations within the local spin density approximation. We find that the nitrogen doping brings about drastic changes in the hydrogen and the hydroxyl adsorption energetics, but its effects depend sensitively on the nitrogen configuration in NGO. The H and the OH adsorption energies are comparable only for pyrrolic NGO. In GO and quarternary NGO, the H adsorption energy is greater than the OH adsorption energy while the trend is reversed in pyridinic NGO. Also, the OH adsorption process is less affected by nitrogen-doping than the H adsorption is.

  16. Water adsorption on goethite: Application of multilayer adsorption models

    Science.gov (United States)

    Hatch, C. D.; Tumminello, R.; Meredith, R.

    2016-12-01

    Adsorbed water on the surface of atmospheric mineral dust has recently been shown to significantly affect the ability of mineral dust aerosol to act as cloud condensation nuclei. We have studied water adsorption as a function of relative humidity (RH) on goethite (α-FeO(OH)), a common component of atmospheric mineral dust. The goethite surface area and particle size was determined using BET analysis and with N2 as an adsorbate and scanning electron microscopy, respectively. Water adsorption on the sample was monitored using horizontal attenuated total reflectance Fourier transform infrared (HATR-FTIR) spectroscopy equipped with a flow cell. Water content was determined using Beer's law and the optical constants for bulk water. The results were analyzed using Type II adsorption isotherms to model multilayer adsorption, including BET (Brunauer, Emmet and Teller), FHH (Frenkel, Halsey and Hill) and Freundlich. BET fits to experimental data provide parameters of monolayer coverage, while the FHH and Freundlich isotherms provide insights into multilayer adsorption mechanisms. Results indicate that goethite contains 5% H2O by mass at 50% RH, which increases to 12% by mass at 90% RH. Adsorption parameters and experimental results will be presented.

  17. Ionic Adsorption and Desorption of CNT Nanoropes

    Directory of Open Access Journals (Sweden)

    Jun-Jun Shang

    2016-09-01

    Full Text Available A nanorope is comprised of several carbon nanotubes (CNTs with different chiralities. A molecular dynamic model is built to investigate the ionic adsorption and desorption of the CNT nanoropes. The charge distribution on the nanorope is obtained by using a modified gradient method based on classical electrostatic theory. The electrostatic interactions among charged carbon atoms are calculated by using the Coulomb law. It was found here that the charged nanorope can adsorb heavy metal ions, and the adsorption and desorption can be realized by controlling the strength of applied electric field. The distance between the ions and the nanorope as well as the amount of ions have an effect on the adsorption capacity of the nanorope. The desorption process takes less time than that of adsorption. The study indicates that the CNT nanorope can be used as a core element of devices for sewage treatment.

  18. Membrane and Adsorption Processes for Removing of Organics and Inorganics from Urban Wastewaters

    OpenAIRE

    Majlinda Daci-Ajvazi; Bashkim Thaçi; Nexhat Daci; Salih Gash

    2016-01-01

    Since in Kosovo there are still no water purification plants and untreated wastewaters are discharged in environment, in this paper we’ve studied methods for removing of different organic and inorganic pollutants from Kosovo urban wastewaters. For best results we’ve used two methods, reverse osmosis and adsorption. For reverse osmosis, all samples were pretreated with coagulant (FeSO4) and flocculant (CaO) and then treated with reverse osmosis membranes. For adsorption, we used Kosovo coal as...

  19. An Adsorption Equilibria Model for Steady State Analysis

    KAUST Repository

    Ismail, Azhar Bin

    2016-02-29

    The investigation of adsorption isotherms is a prime factor in the ongoing development of adsorption cycles for a spectrum of advanced, thermally-driven engineering applications, including refrigeration, natural gas storage, and desalination processes. In this work, a novel semi-empirical mathematical model has been derived that significantly enhances the prediction of the steady state uptake in adsorbent surfaces. This model, a combination of classical Langmuir and a novel modern adsorption isotherm equation, allows for a higher degree of regression of both energetically homogenous and heterogeneous adsorbent surfaces compared to several isolated classical and modern isotherm models, and has the ability to regress isotherms for all six types under the IUPAC classification. Using a unified thermodynamic framework, a single asymmetrical energy distribution function (EDF) has also been proposed that directly relates the mathematical model to the adsorption isotherm types. This fits well with the statistical rate theory approach and offers mechanistic insights into adsorption isotherms.

  20. Use of coextraction and suppression of extraction in extraction-chromatographic separation of elements

    International Nuclear Information System (INIS)

    Karandashev, V.K.; Kuznetsov, R.A.; Grazhulene, S.S.; Usmanova, M.M.

    1988-01-01

    TBP, solutions of hydrobromic acid, indium and polytetrafluoroethylene powder, carrier for TBP, were used to study the effects of coextraction and extraction suppression on extraction-chromatographic behaviour of microamounts of elements in the presence of macroamounts of other elements. Possibility of using these effects under extraction-chromatographic element separation were considered. A new method for extraction-chromatographic separation of scandium microamounts from the mixture of large amount of elements (Y, Cd, Ce, Eu, Lu, Hf, Ta, W, Np and other) was suggested. 15 refs.; 3 figs

  1. Kinetics of a gas adsorption compressor

    International Nuclear Information System (INIS)

    Chan, C.K.; Elleman, D.D.; Tward, E.

    1984-01-01

    This chapter uses a two-phase model to analyze the transients of a gas adsorption compressor. The modeling of the adsorption process is based on complete thermal and mechanical equilibrium between the gaseous phase and the adsorbed gas phase. The theories and techniques that have been developed for a two-phase system are used to predict the pressure, the temperature and the mass flow transients in a gas sorption compressor. The analytical solutions are then compared with the performance of a laboratory gas adsorption compressor. A computer code was written to solve the governing equations, using a standard forward marching predictor-corrector method. It is found that while the analytical model overpredicts the pressure and the temperature transient, it predicts the general trend of the transient profile and the existence of the turning point

  2. Artificial neural network model for photosynthetic pigments identification using multi wavelength chromatographic data

    Science.gov (United States)

    Prilianti, K. R.; Hariyanto, S.; Natali, F. D. D.; Indriatmoko, Adhiwibawa, M. A. S.; Limantara, L.; Brotosudarmo, T. H. P.

    2016-04-01

    The development of rapid and automatic pigment characterization method become an important issue due to the fact that there are only less than 1% of plant pigments in the earth have been explored. In this research, a mathematical model based on artificial intelligence approach was developed to simplify and accelerate pigment characterization process from HPLC (high-performance liquid chromatography) procedure. HPLC is a widely used technique to separate and identify pigments in a mixture. Input of the model is chromatographic data from HPLC device and output of the model is a list of pigments which is the spectrum pattern is discovered in it. This model provides two dimensional (retention time and wavelength) fingerprints for pigment characterization which is proven to be more accurate than one dimensional fingerprint (fixed wavelength). Moreover, by mimicking interconnection of the neuron in the nervous systems of the human brain, the model have learning ability that could be replacing expert judgement on evaluating spectrum pattern. In the preprocessing step, principal component analysis (PCA) was used to reduce the huge dimension of the chromatographic data. The aim of this step is to simplify the model and accelerate the identification process. Six photosynthetic pigments i.e. zeaxantin, pheophytin a, α-carotene, β-carotene, lycopene and lutein could be well identified by the model with accuracy up to 85.33% and processing time less than 1 second.

  3. Multi-column adsorption systems with condenser for tritiated water vapor removal

    International Nuclear Information System (INIS)

    Kotoh, Kenji; Kudo, Kazuhiko

    1996-01-01

    Two types of multi-column adsorption system are proposed as the system for removal of tritiated moisture from tritium process gases or/and handling room atmospheres. The types are of recycle use of adsorption columns, and are composed of twin or triplet columns and one condenser which is used for collecting the adsorbed moisture from columns in desorption process. The systems utilize the dry gas from a working column as the purge gas for regenerating a saturated column and appropriate an active column for recovery of the tritiated moisture passing through the condenser. Each column hence needs the additional amount of adsorbent for collecting the moisture from the condenser. In the modeling and design of an adsorption column, it is primary to estimate the necessary amount of a candidate adsorbent for its packed-bed. The performance of the proposed systems is examined here by analyzing the dependence of the necessary amount of adsorbent for their columns on process operational conditions and adsorbent moisture-adsorption characteristics. The result shows that the necessary amount is sensitive to the types of adsorption isotherm, and suggests that these systems should employ adsorbents which exhibit the Langmuir-type isotherms. (author)

  4. Hierarchically structured nanoporous carbon tubes for high pressure carbon dioxide adsorption

    Directory of Open Access Journals (Sweden)

    Julia Patzsch

    2017-05-01

    Full Text Available Mesoscopic, nanoporous carbon tubes were synthesized by a combination of the Stoeber process and the use of electrospun macrosized polystyrene fibres as structure directing templates. The obtained carbon tubes have a macroporous nature characterized by a thick wall structure and a high specific surface area of approximately 500 m²/g resulting from their micro- and mesopores. The micropore regime of the carbon tubes is composed of turbostratic graphitic areas observed in the microstructure. The employed templating process was also used for the synthesis of silicon carbide tubes. The characterization of all porous materials was performed by nitrogen adsorption at 77 K, Raman spectroscopy, infrared spectroscopy, thermal gravimetric analysis (TGA, scanning electron microscopy (SEM as well as transmission electron microscopy (TEM. The adsorption of carbon dioxide on the carbon tubes at 25 °C at pressures of up to 30 bar was studied using a volumetric method. At 26 bar, an adsorption capacity of 4.9 mmol/g was observed. This is comparable to the adsorption capacity of molecular sieves and vertically aligned carbon nanotubes. The high pressure adsorption process of CO2 was found to irreversibly change the microporous structure of the carbon tubes.

  5. Ion Chromatographic Analyses of Sea Waters, Brines and Related Samples

    OpenAIRE

    Nataša Gros

    2013-01-01

    This review focuses on the ion chromatographic methods for the analyses of natural waters with high ionic strength. At the beginning a natural diversity in ionic composition of waters is highlighted and terminology clarified. In continuation a brief overview of other review articles of potential interest is given. A review of ion chromatographic methods is organized in four sections. The first section comprises articles focused on the determination of ionic composition of water samples as com...

  6. CHROMIUM (III ADSORPTION FROM AQUEOUS SOLUTION BY Rhizophora apiculata TANNINS

    Directory of Open Access Journals (Sweden)

    C. W. Oo

    2010-06-01

    Full Text Available Adsorption of Cr3+ from aqueous solution by Rhizophora apiculata tannins was investigated in batch shaking experiments. Tannins extracted from R. apiculata mangrove barks was chemically modified with formaldehyde in the basic solution of sodium hydroxide. The performance of the produced adsorbent on the adsorption of Cr3+ was evaluated based on the effect of several parameters like initial pH, adsorbent dosage, initial Cr3+ concentration and contact time. Equilibrium adsorption data was analyzed by Langmuir, Freundlich, Sips and Dubinin-Raduskhevich (D-R isotherms. The fitness of the isotherms to the experimental data was determined by non-linear regression analysis. Adsorption capacity calculated from Langmuir isotherm was found to be 10.14 mg Cr3+/g of adsorbent at optimum adsorption pH of 4.5. Mean energy of adsorption with the value of 10.35 kJ/mol indicated that adsorption Cr3+ on Rhizophora apiculata tannins followed ion-exchange reaction. Kinetic study showed that the adsorption process followed the pseudo second-order kinetic model.   Keywords:  Rhizophora apiculata, tannins, isotherms, kinetic, chromium.

  7. Equilibrium, kinetic and thermodynamic studies of adsorption of Th(IV) from aqueous solution onto kaolin

    International Nuclear Information System (INIS)

    Hongxia Zhang; Zhiwei Niu; Zhi Liu; Zhaodong Wen; Weiping Li; Xiaoyun Wang; Wangsuo Wu

    2015-01-01

    The kinetics and thermodynamics of the adsorption of Th(IV) on the kaolin were studied by using batch method. In addition, the experimental data were studied by dynamic and thermodynamic models. The results showed that the adsorption capacity of the adsorbent increased with increasing temperature and solid liquid ratio, but decreased with increasing initial Th(IV) ion concentration, and the best fit was obtained for the pseudo-second-order kinetics model. The calculated activation energy for adsorption was about 45 kJ/mol, which indicated the adsorption process to be chemisorption. The adsorption isotherm data could be well described by the Langmuir as well as Dubinin-Radushkevich model. The mean free energy (E) of adsorption was calculated to be about 15 kJ/mol. The thermodynamic data calculated showed that the adsorption was spontaneous and enhanced at higher temperature. Considering kinetics and equilibrium studies, the adsorption on the sites was the rate-limiting step and that adsorption was mainly a chemisorption process through cation exchange. (author)

  8. Study on adsorption mechanism of ammonia nitrogen in wastewater by natural heulandite

    Directory of Open Access Journals (Sweden)

    Xuekai JIN

    2018-02-01

    Full Text Available In order to explore the adsorption mechanism and optimal regeneration method of natural heulandite to high ammonia nitrogen wastewater, the natural heulandite from Hebei Province is selected as the research object. The adsorption kinetics, adsorption isotherms and adsorption thermodynamics are studied by single factor test. The results show that the adsorption process of ammonia nitrogen on heulandite with particle size range of 50~600 μm complies with the quasi-second order kinetic equation with ammonia nitrogen concentration of 500 mg/L at temperature of 25 ℃. Particle diffusion and liquid film diffusion are the dominated process of the adsorption. The adsorption capacity of heulandite is 7.81 mg/g at temperature of 45 ℃. The adsorption isotherm of ammonia nitrogen on the experimental heulandite is fitted well with Freundlich model. Gibbs free energy ΔG is calculated to be less than zero, indicating that the adsorption of ammonia nitrogen on the experimental heulandite is a spontaneous endothermic reaction. Additionally, the adsorption capacity of heulandite increases with appropriate increaseing in temperature. The optimal regeneration solvent of the saturated heulandite is 0.1 mol/L of NaCl, with which the desorption rate increases to 79%, and the times of elution and regeneration are more than 5. The results of this study can improve the economic benefits and environmental value of heulandite in the treatment of ammonia nitrogen wastewater. It can be seen that heulandite in the industrial wastewater treatment has broad prospects for application.

  9. What is the time scale of random sequential adsorption?

    OpenAIRE

    Erban, Radek; Chapman, S. Jonathan

    2006-01-01

    A simple multiscale approach to the diffusion-driven adsorption from a solution to a solid surface is presented. The model combines two important features of the adsorption process: (i) the kinetics of the chemical reaction between adsorbing molecules and the surface; and (ii) geometrical constraints on the surface made by molecules which are already adsorbed. The process (i) is modelled in a diffusion-driven context, i.e. the conditional probability of adsorbing a molecule provided that the ...

  10. Adsorption and separation of n/iso-pentane on zeolites: A GCMC study.

    Science.gov (United States)

    Fu, Hui; Qin, Hansong; Wang, Yajun; Liu, Yibin; Yang, Chaohe; Shan, Honghong

    2018-03-01

    Separation of branched chain hydrocarbons and straight chain hydrocarbons is very important in the isomerization process. Grand canonical ensemble Monte Carlo simulations were used to investigate the adsorption and separation of iso-pentane and n-pentane in four types of zeolites: MWW, BOG, MFI, and LTA. The computation of the pure components indicates that the adsorption capacity is affected by physical properties of zeolite, like pore size and structures, and isosteric heat. In BOG, MFI and LTA, the amount of adsorption of n-pentane is higher than iso-pentane, while the phenomenon is contrary in MWW. For a given zeolite, a stronger adsorption heat corresponds to a higher loading. In the binary mixture simulations, the separation capacity of n-and iso-pentane increases with the elevated pressure and the increasing iso-pentane composition. The adsorption mechanism and competition process have been examined. Preferential adsorption contributions prevail at low pressure, however, the size effect becomes important with the increasing pressure, and the relatively smaller n-pentane gradually competes successfully in binary adsorption. Among these zeolites, MFI has the best separation performance due to its high shape selectivity. This work helps to better understand the adsorption and separation performance of n- and iso-pentane in different zeolites and explain the relationship between zeolite structures and adsorption performance. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Adsorptive removal of organics from aqueous phase by acid-activated coal fly ash: preparation, adsorption, and Fenton regenerative valorization of "spent" adsorbent.

    Science.gov (United States)

    Wang, Nannan; Hao, Linlin; Chen, Jiaqing; Zhao, Qiang; Xu, Han

    2018-05-01

    Raw coal fly ash was activated to an adsorbent by sulfuric acid impregnation. The activation condition, the adsorption capacity, and the regenerative valorization of the adsorbent were studied. The results show that the optimal preparation conditions of the adsorbent are [H 2 SO 4 ] = 1 mol L -1 , activation time = 30 min, the ratio of coal fly ash to acid = 1:20 (g:mL), calcination temperature = 100 °C. The adsorption of p-nitrophenol on the adsorbent accords with the pseudo-second-order kinetic equation and the adsorption rate constant is 0.089 g mg -1  min -1 . The adsorption on this adsorbent can be considered enough after 35 min, when the corresponding adsorption capacity is 1.07 mg g -1 (85.6% of p-nitrophenol removal). Compared with raw coal fly ash, the adsorbent has a stable adsorption performance at low pH range (pH = 1-6) and the adsorption of p-nitrophenol is an exothermic process. Ninety minutes is required for the regenerative valorization of saturated adsorbent by Fenton process. The regenerative valorization for this saturated adsorbent can reach 89% under the optimal proposed conditions (30 °C, pH = 3, [H 2 O 2 ] = 5.0 mmol L -1 , [Fe 2+ ] = 5.5 mmol L -1 ). Within 15 experimental runs, the adsorbent has a better and better stability with the increase of experimental runs. Finally, the mechanism of activating coal fly ash is proposed, being verified by the results of the SEM and BET test.

  12. Adsorption behavior of carboxylated cellulose nanocrystal—polyethyleneimine composite for removal of Cr(VI) ions

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Chao; Jin, Ru-Na; Ouyang, Xiao-kun, E-mail: xkouyang@zjou.edu.cn; Wang, Yang-Guang

    2017-06-30

    Highlights: • A carboxylated cellulose nanocrystal-polyethyleneimine composite (CCN-PEI) was prepared. • The as-prepared CCN-PEI was characterized by SEM, TEM, FT-IR, and XPS. • Results suggested that the reusable CCN-PEI could remove Cr(VI) from aqueous solutions with a high adsorption capacity. • The adsorption isotherm, thermodynamics, and kinetics of the adsorption process are also discussed. - Abstract: In this study, a composite adsorbent (CCN-PEI) composed of carboxylated cellulose nanocrystals (CCN) and polyethyleneimine (PEI) was prepared through an amidation reaction between the carboxyl groups of the CCN and the amine groups of the PEI. The adsorption performance of the CCN-PEI was tested by removing Cr(VI) ions from aqueous solutions. The physicochemical properties of the CCN and the Cr(VI) ion-loaded CCN-PEI were studied using scanning electron microscopy (SEM), transmission electron microscopy, Fourier-transform infrared spectroscopy, and X-ray photoelectron spectroscopy. To investigate the adsorption kinetics of Cr(VI) ions onto this newly developed CCN-PEI, we performed experiments under different adsorption conditions, by varying the contact time, solution pH, initial Cr(VI) ion concentration, and adsorption temperature. The prepared CCN-PEI exhibited an encouraging uptake capacity of 358.42 mg × g{sup −1}. The adsorption process was fast: within the first 100 min, Cr(VI) ion adsorption onto the CCN-PEI was about 65%, and the adsorption equilibrium was reached within 250 min. Kinetics experiments indicated that the adsorption process could be described by a pseudo-second-order kinetic model. Furthermore, our adsorption equilibrium data fit the Langmuir isotherms well. The calculated thermodynamic parameters, such as the free energy change (ΔG = −2.93 kJ × mol{sup −1}), enthalpy change (ΔH = −5.69 kJ × mol{sup −1}), and entropy change (ΔS = −9.14 kJ × mol{sup −1}), indicate that the adsorption of Cr(VI) ions onto CCN

  13. Chromium (Ⅵ) removal from aqueous solutions through powdered activated carbon countercurrent two-stage adsorption.

    Science.gov (United States)

    Wang, Wenqiang

    2018-01-01

    To exploit the adsorption capacity of commercial powdered activated carbon (PAC) and to improve the efficiency of Cr(VI) removal from aqueous solutions, the adsorption of Cr(VI) by commercial PAC and the countercurrent two-stage adsorption (CTA) process was investigated. Different adsorption kinetics models and isotherms were compared, and the pseudo-second-order model and the Langmuir and Freundlich models fit the experimental data well. The Cr(VI) removal efficiency was >80% and was improved by 37% through the CTA process compared with the conventional single-stage adsorption process when the initial Cr(VI) concentration was 50 mg/L with a PAC dose of 1.250 g/L and a pH of 3. A calculation method for calculating the effluent Cr(VI) concentration and the PAC dose was developed for the CTA process, and the validity of the method was confirmed by a deviation of <5%. Copyright © 2017. Published by Elsevier Ltd.

  14. Adsorption of Remazol Black 5 from aqueous solution by the templated crosslinked-chitosans

    International Nuclear Information System (INIS)

    Chen, Arh-Hwang; Huang, Yao-Yi

    2010-01-01

    The templated crosslinked-chitosan microparticles prepared using the imprinting method with the Remazol Black5 (RB5) dye as a template, epichlorohydrin (ECH) as a crosslinker, and sodium hydroxide (NaOH) solution used for the microparticle formation showed the highest adsorption capacity for the RB5 dye compared with those that used other methods with or without a template, three crosslinkers, and two microparticle formations. The results showed that the adsorption of the RB5 dye on the microparticles was affected by the microparticle size, the initial dye concentration, the initial pH value, as well as the temperature. Both kinetics and thermodynamic parameters of the adsorption process were estimated. These data indicated an exothermic spontaneous adsorption process that kinetically followed the second-order adsorption process. Equilibrium experiments fitted well the Langmuir isotherm model, and the maximum monolayer adsorption capacity for the RB5 dye was 2941 mg/g. The competition study showed that the adsorption of the RB5 dye on the microparticles in the mixture solution was much less affected by the existence of the 3R dye than the other way around. Furthermore, the microparticles could be regenerated through the desorption of the dye in pH 10.0 of NaOH solution and could be reused to adsorb the dye again.

  15. Decolorization of industrial wastewater by ozonation followed by adsorption on activated carbon

    International Nuclear Information System (INIS)

    Konsowa, A.H.; Ossman, M.E.; Chen, Yongsheng; Crittenden, John C.

    2010-01-01

    The decolorization of industrial wastewater containing direct dye (Drimarene Red CL-3B) by advanced oxidation process using ozonation in a semi-batch bubble column reactor followed by granule activated carbon (GAC) adsorption process was studied. The effect of initial dye concentration, ozone concentration, pH and ozone-air flow rate on the rate of dye decolorization were investigated. It was found that the rate of dye decolorization increases with increasing ozone concentration, ozone-air flow rate, and pH but decreases with increasing initial dye concentration. This study is a hybrid system conducted in combination between ozonation process and GAC adsorption to reveal higher and efficient removal of color and TOC. The process started with ozonation for efficient and rapid decolorization of dyeing wastewater, followed by GAC adsorption process to gain efficient removal of color and TOC. The adsorption process was found to be very efficient in removal of ozonation residual TOC, in view of high TOC removal, up to 37% TOC removal was obtained. Numerical correlation using regression analysis for decolorization time with the operating conditions of the ozonation process were presented.

  16. Adsorption of procion red and congo red dyes using microalgae Spirulina sp

    Directory of Open Access Journals (Sweden)

    Risfidian Mohadi

    2017-10-01

    Full Text Available Adsorption of procion red and congo red dyes using microalgae Spirulina sp was conducted. Spirulina sp was obtained by cultivation and production in laboratory scale. Spirulina sp was used as adsorbent for adsorption of dyes. Adsorption process was studied by kinetic and thermodynamic in order to know the adsorption phenomena. The results showed that kinetically congo red is reactive than procion red on Spirulina sp. On the other hand, thermodynamically procion red was stable than congo red on Spirulina sp which was indicated by adsorption capacity, enthalpy, and entropy.

  17. The determination of optimum condition in water hyacinth drying process by mixed adsorption drying method and modified fly ash as an adsorbent

    Science.gov (United States)

    Saputra, Asep Handaya; Putri, Rizky Anggreini

    2017-05-01

    Water hyacinth is an aquatic weed that has a very fast growth which makes it becomes a problem to the ecosystem. On the other hand, water hyacinth has a high fiber content (up to 20% by weight) which makes it potential to become raw material for composites and textile industries. As an aquatic plant, water hyacinth has a high initial moisture content that reaches more than 90%. Meanwhile the moisture content of fiber as a raw material for composite and textile industry should not be more than 10% to maintain the good quality of the products. Mixed adsorption drying method is one of the innovative method that can replace conventional drying process. Fluidization method which has been commonly used in agricultural and pharmaceutical products drying, can be enhanced by combining it with the adsorption method as performed in this study. In mixed fluidization-adsorption drying method, fly ash as adsorbent and water hyacinth fiber were put together into the fluidization column where the drying air evaporate the moisture content in water hyacinth fiber. In addition, the adsorbent adsorb the moisture content in the drying air to make the moisture content of the drying air remain low. The drying process is performed in various temperature and composition of water hyacinth and adsorbent in order to obtain the optimum drying condition. In addition, the effect of fly ash pellet and fly ash powder to the drying process was also performed. The result shows that the higher temperature and the more amount of adsorbent results in the faster drying rate. Fly ash pellet shows a better adsorption since it has a smaller pore diameter and wider surface area. The optimum temperature obtained from this study is 60°C and the optimum ratio of water hyacinth and fly ash is 50:50.

  18. High-performance liquid-chromatographic separation of subcomponents of antimycin-A

    Science.gov (United States)

    Abidi, S.L.

    1988-01-01

    Using a reversed-phase high-performance liquid chromatographic (HPLC) technique, a mixture of antimycins A was separated into eight hitherto unreported subcomponents, Ala, Alb, A2a, A2b, A3a, A3b, A4a, and A4b. Although a base-line resolution of the known four major antimycins Al, A2, A3, and A4 was readily achieved with mobile phases containing acetate buffers, the separation of the new antibiotic subcomponents was highly sensitive to variation in mobile phase conditions. The type and composition of organic modifiers, the nature of buffer salts, and the concentration of added electrolytes had profound effects on capacity factors, separation factors, and peak resolution values. Of the numerous chromatographic systems examined, a mobile phase consisting of methanol-water (70:30) and 0.005 M tetrabutylammonium phosphate at pH 3.0 yielded the most satisfactory results for the separation of the subcomponents. Reversed-phase gradient HPLC separation of the dansylated or methylated antibiotic compounds produced superior chromatographic characteristics and the presence of added electrolytes was not a critical factor for achieving separation. Differences in the chromatographic outcome between homologous and structural isomers were interpretated based on a differential solvophobic interaction rationale. Preparative reversed-phase HPLC under optimal conditions enabled isolation of pure samples of the methylated antimycin subcomponents for use in structural studies.

  19. Number of outer electrons as descriptor for adsorption processes on transition metals and their oxides

    DEFF Research Database (Denmark)

    Calle-Vallejo, Federico; Inoglu, Nilay G.; Su, Hai-Yan

    2013-01-01

    The trends in adsorption energies of the intermediates of the oxygen reduction and evolution reactions on transition metals and their oxides are smoothly captured by the number of outer electrons. This unique descriptor permits the construction of predictive adsorption-energy grids and explains t...

  20. Adsorptive Removal and Adsorption Kinetics of Fluoroquinolone by Nano-Hydroxyapatite.

    Directory of Open Access Journals (Sweden)

    Yajun Chen

    Full Text Available Various kinds of antibiotics, especially fluoroquinolone antibiotics (FQs have been widely used for the therapy of infectious diseases in human and livestock. For their poorly absorbed by living organisms, large-scale misuse or abuse of FQs will foster drug resistance among pathogenic bacteria, as well as a variety of environmental problems when they were released in the environment. In this work, the adsorption properties of two FQs, namely norfloxacin (NOR and ciprofloxacin (CIP, by nano-hydroxyapatite (n-HAP were studied by batch adsorption experiments. The adsorption curves of FQs by n-HAP were simulated by Langmuir and Freundlich isotherms. The results shown that NOR and CIP can be adsorbed effectively by the adsorbent of n-HAP, and the adsorption capacity of FQs increase with increasing dosage of n-HAP. The optimum dosage of n-HAP for FQs removal was 20 g · L(-1, in which the removal efficiencies is 51.6% and 47.3%, and an adsorption equilibrium time is 20 min. The maximum removal efficiency occurred when pH is 6 for both FQs. The adsorption isotherm of FQs fits well for both Langmuir and Freundlich equations. The adsorption of both FQs by n-HAP follows second-order kinetics.

  1. Adsorptive Removal and Adsorption Kinetics of Fluoroquinolone by Nano-Hydroxyapatite

    Science.gov (United States)

    Chen, Yajun; Lan, Tao; Duan, Lunchao; Wang, Fenghe; Zhao, Bin; Zhang, Shengtian; Wei, Wei

    2015-01-01

    Various kinds of antibiotics, especially fluoroquinolone antibiotics (FQs) have been widely used for the therapy of infectious diseases in human and livestock. For their poorly absorbed by living organisms, large-scale misuse or abuse of FQs will foster drug resistance among pathogenic bacteria, as well as a variety of environmental problems when they were released in the environment. In this work, the adsorption properties of two FQs, namely norfloxacin (NOR) and ciprofloxacin (CIP), by nano-hydroxyapatite (n-HAP) were studied by batch adsorption experiments. The adsorption curves of FQs by n-HAP were simulated by Langmuir and Freundlich isotherms. The results shown that NOR and CIP can be adsorbed effectively by the adsorbent of n-HAP, and the adsorption capacity of FQs increase with increasing dosage of n-HAP. The optimum dosage of n-HAP for FQs removal was 20 g·L-1, in which the removal efficiencies is 51.6% and 47.3%, and an adsorption equilibrium time is 20 min. The maximum removal efficiency occurred when pH is 6 for both FQs. The adsorption isotherm of FQs fits well for both Langmuir and Freundlich equations. The adsorption of both FQs by n-HAP follows second-order kinetics. PMID:26698573

  2. Adsorption Behavior and Kinetic Characteristic of Cibacron Brilliant Red 3B-A by Granular Activated Carbon

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jong Jib [Kongju National University, Cheonan (Korea, Republic of)

    2014-08-15

    In this paper, the adsorption behavior and kinetic characteristics of cibacron brilliant red 3B-A from aqueous solution using granular activated carbon were investigated. The effect of various parameters such as adsorbent dose, pH, initial concentration, contact time and temperature on the adsorption system were studied. Base on the estimated Langmuir constant (R{sub L}) and Freundlich constant (1/n), This process could be employed as effective treatment method. From the Temkin constant (B) and Dubinin-Radushkevich constant (E), This adsorption process is physical adsorption. From kinetic experiments, the adsorption process followed the pseudo second order model with good correlation. Base on the Gibbs free energy and enthalpy, the adsorption of cibacron brilliant red 3B-A onto granular activated carbon was physisorption and endothermic in nature.

  3. Adsorption Behavior and Kinetic Characteristic of Cibacron Brilliant Red 3B-A by Granular Activated Carbon

    International Nuclear Information System (INIS)

    Lee, Jong Jib

    2014-01-01

    In this paper, the adsorption behavior and kinetic characteristics of cibacron brilliant red 3B-A from aqueous solution using granular activated carbon were investigated. The effect of various parameters such as adsorbent dose, pH, initial concentration, contact time and temperature on the adsorption system were studied. Base on the estimated Langmuir constant (R L ) and Freundlich constant (1/n), This process could be employed as effective treatment method. From the Temkin constant (B) and Dubinin-Radushkevich constant (E), This adsorption process is physical adsorption. From kinetic experiments, the adsorption process followed the pseudo second order model with good correlation. Base on the Gibbs free energy and enthalpy, the adsorption of cibacron brilliant red 3B-A onto granular activated carbon was physisorption and endothermic in nature

  4. Adsorption Model for Off-Gas Separation

    Energy Technology Data Exchange (ETDEWEB)

    Veronica J. Rutledge

    2011-03-01

    The absence of industrial scale nuclear fuel reprocessing in the U.S. has precluded the necessary driver for developing the advanced simulation capability now prevalent in so many other countries. Thus, it is essential to model complex series of unit operations to simulate, understand, and predict inherent transient behavior and feedback loops. A capability of accurately simulating the dynamic behavior of advanced fuel cycle separation processes will provide substantial cost savings and many technical benefits. The specific fuel cycle separation process discussed in this report is the off-gas treatment system. The off-gas separation consists of a series of scrubbers and adsorption beds to capture constituents of interest. Dynamic models are being developed to simulate each unit operation involved so each unit operation can be used as a stand-alone model and in series with multiple others. Currently, an adsorption model has been developed in gPROMS software. Inputs include gas stream constituents, sorbent, and column properties, equilibrium and kinetic data, and inlet conditions. It models dispersed plug flow in a packed bed under non-isothermal and non-isobaric conditions for a multiple component gas stream. The simulation outputs component concentrations along the column length as a function of time from which the breakthrough data is obtained. It also outputs temperature along the column length as a function of time and pressure drop along the column length. Experimental data will be input into the adsorption model to develop a model specific for iodine adsorption on silver mordenite as well as model(s) specific for krypton and xenon adsorption. The model will be validated with experimental breakthrough curves. Another future off-gas modeling goal is to develop a model for the unit operation absorption. The off-gas models will be made available via the server or web for evaluation by customers.

  5. Removal of Phenol and o-Cresol by Adsorption onto Activated Carbon

    Directory of Open Access Journals (Sweden)

    A. Edwin Vasu

    2008-01-01

    Full Text Available A commercial activated carbon was utilized for the adsorptive removal of phenol and o-cresol from dilute aqueous solutions. Batch mode adsorption studies were performed by varying parameters such as concentration of phenol solution, time, pH and temperature. The well known Freundlich, Langmuir and Redlich-Peterson isotherm equations were applied for the equilibrium adsorption data and the various isotherm parameters were evaluated. The Langmuir monolayer adsorption capacities were found to be 0.7877 and 0.5936 mmole/g, respectively, for phenol and o-cresol. Kinetic studies performed indicate that the sorption processes can be better represented by the pseudo-second order kinetics. The processes were found to be endothermic and the thermodynamic parameters were evaluated. Desorption studies performed indicate that the sorbed phenol molecules can be desorbed with dil. HCl.

  6. Studies on Thorium Adsorption Characteristics upon Activated Titanium Hydroxide Prepared from Rosetta Ilmenite Concentrate

    International Nuclear Information System (INIS)

    Gado, M; Zaki, S

    2016-01-01

    The titanium hydroxide prepared from Rosetta ilmenite concentrate has been applied for Th (IV) adsorption from its acid aqueous solutions. The prepared hydroxide is first characterized by both Fourier transform infrared (FT-IR) spectrum and thermogravimetric analysis. The relevant factors affecting the adsorption process have been studied. The obtained equilibrium data fits well with the Langmuir isotherm rather than Freundlich isotherm, while the adsorption kinetic data follow the pseudo-second order model. The different thermodynamic parameters have also been calculated and indicate that the adsorption process is spontaneous

  7. Static analysis of triple-effect adsorption refrigeration with compressor

    Directory of Open Access Journals (Sweden)

    Fumi Watanabe

    2017-03-01

    Full Text Available In order to improve the efficiency of the adsorption refrigeration cycle, this study proposes a triple-effect adsorption refrigeration cycle equipped with a compressor. This cycle can run in order to create a large variation in adsorbent concentration range by the compressor, even if there is little temperature variation in the desorption and adsorption processes. The objective of this study is to clarify the effect that regulating adsorption pressure using a compressor has on the adsorption refrigeration cycle, and to that end cycle efficiency was calculated using a static analysis based on a state of equilibrium. As a results from the simulation, the triple-effect cycles can operate by regulating adsorption pressure. Both COP and exergy efficiency can be improved by a factor of 1.2 if the cycled is regulated the adsorption pressure of each cycle rather than using a shared adsorption pressure. For heat sources in the temperature range of 70–100 °C, this method is superior in terms of COP and exergy efficiency. COP values of approximately 1.7–1.8 can be obtained, which is three times higher than single-effect cycles. The triple-effect cycles have one-third the SCE of single-effect cycles but about the same SCE as double-effect cycles.

  8. Removal of Dye (Blue 56 From Aqueous Solution via Adsorption onto Pistachio Shell: kinetic and isotherm study of removal process

    Directory of Open Access Journals (Sweden)

    A. Ravanpaykar

    2012-03-01

    Full Text Available In the present investigation, shells of pistachio are used as adsorbents and they have been successfully used for the removal of Blue 56, from water samples. The effect of various parameters such as: pH, amounts of adsorbents, size of adsorbent particles and contact time on removal processing were investigated. Inthisstudy Freundlichabsorptionisotherms and Langmuir were investigated. The experimental data were correlated reasonably well by the Freundlich adsorption isotherm and isotherm parameters were calculated. In order to investigate the efficiency of Blue 56 adsorption on the pistachio shell, pseudo-first-order, pseudo-second-order, Elovich and intra-particle diffusion kinetic models were studied. Themodel that hadgoodcorrelationtoattractFreundlichwas chosenasthemodel. Its kineticsfollowsthepseudosecond order reaction.

  9. Adsorption characteristics of siloxanes in landfill gas by the adsorption equilibrium test

    International Nuclear Information System (INIS)

    Nam, Sangchul; Namkoong, Wan; Kang, Jeong-Hee; Park, Jin-Kyu; Lee, Namhoon

    2013-01-01

    Highlights: • Equilibrium test was attempted to evaluate adsorption characteristics of siloxane. • L2 had higher removal efficiency in carbon compared to noncarbon adsorbents. • Total adsorption capacity of siloxane was 300 mg/g by coal activated carbon. • Adsorption characteristics rely on size of siloxane molecule and adsorbent pore. • Conversion of siloxane was caused by adsorption of noncarbon adsorbents. - Abstract: Due to the increase in energy cost by constantly high oil prices and the obligation to reduce greenhouse effect gases, landfill gas is frequently used as an alternative energy source for producing heat and electricity. Most of landfill gas utility facilities, however, are experiencing problems controlling siloxanes from landfill gas as their catalytic oxidizers are becoming fouled by silicon dioxide dust. To evaluate adsorption characteristics of siloxanes, an adsorption equilibrium test was conducted and parameters in the Freundlich and Langmuir isotherms were analyzed. Coconut activated carbon (CA1), coal activated carbon (CA2), impregnated activated carbon (CA3), silicagel (NCA1), and activated alumina (NCA2) were used for the adsorption of the mixed siloxane which contained hexamethyldisiloxane (L2), octamethylcyclotetrasiloxane (D4), and decamethylcyclopentasiloxane (D5). L2 had higher removal efficiency in noncarbon adsorbents compared to carbon adsorbents. The application of Langmuir and Freundlich adsorption isotherm demonstrated that coconut based CA1 and CA3 provided higher adsorption capacity on L2. And CA2 and NCA1 provided higher adsorption capacity on D4 and D5. Based on the experimental results, L2, D4, and D5 were converted by adsorption and desorption in noncarbon adsorbents. Adsorption affinity of siloxane is considered to be affect by the pore size distribution of the adsorbents and by the molecular size of each siloxane

  10. Adsorption characteristics of siloxanes in landfill gas by the adsorption equilibrium test

    Energy Technology Data Exchange (ETDEWEB)

    Nam, Sangchul; Namkoong, Wan [Department of Environmental Engineering, Konkuk University, Hwayang-Dong, Gwangjin-Gu, Seoul 143-701 (Korea, Republic of); Kang, Jeong-Hee; Park, Jin-Kyu [Department of Environmental Engineering, Anyang University, Anyang 5-Dong, Manan-Gu, Anyang-Si, Gyeonggi-Do 430-714 (Korea, Republic of); Lee, Namhoon, E-mail: nhlee@anyang.ac.kr [Department of Environmental Engineering, Anyang University, Anyang 5-Dong, Manan-Gu, Anyang-Si, Gyeonggi-Do 430-714 (Korea, Republic of)

    2013-10-15

    Highlights: • Equilibrium test was attempted to evaluate adsorption characteristics of siloxane. • L2 had higher removal efficiency in carbon compared to noncarbon adsorbents. • Total adsorption capacity of siloxane was 300 mg/g by coal activated carbon. • Adsorption characteristics rely on size of siloxane molecule and adsorbent pore. • Conversion of siloxane was caused by adsorption of noncarbon adsorbents. - Abstract: Due to the increase in energy cost by constantly high oil prices and the obligation to reduce greenhouse effect gases, landfill gas is frequently used as an alternative energy source for producing heat and electricity. Most of landfill gas utility facilities, however, are experiencing problems controlling siloxanes from landfill gas as their catalytic oxidizers are becoming fouled by silicon dioxide dust. To evaluate adsorption characteristics of siloxanes, an adsorption equilibrium test was conducted and parameters in the Freundlich and Langmuir isotherms were analyzed. Coconut activated carbon (CA1), coal activated carbon (CA2), impregnated activated carbon (CA3), silicagel (NCA1), and activated alumina (NCA2) were used for the adsorption of the mixed siloxane which contained hexamethyldisiloxane (L2), octamethylcyclotetrasiloxane (D4), and decamethylcyclopentasiloxane (D5). L2 had higher removal efficiency in noncarbon adsorbents compared to carbon adsorbents. The application of Langmuir and Freundlich adsorption isotherm demonstrated that coconut based CA1 and CA3 provided higher adsorption capacity on L2. And CA2 and NCA1 provided higher adsorption capacity on D4 and D5. Based on the experimental results, L2, D4, and D5 were converted by adsorption and desorption in noncarbon adsorbents. Adsorption affinity of siloxane is considered to be affect by the pore size distribution of the adsorbents and by the molecular size of each siloxane.

  11. Dynamic and thermodynamic mechanisms of TFA adsorption by particulate matter.

    Science.gov (United States)

    Guo, Junyu; Zhai, Zihan; Wang, Lei; Wang, Ziyuan; Wu, Jing; Zhang, Boya; Zhang, Jianbo

    2017-06-01

    Trifluoroacetic acid (TFA) in the atmosphere is produced by degradation of hydrochlorofluorocarbons and hydrofluorocarbons. In recent years, TFA has attracted global attention because of increased environmental concentrations, biological toxicity and accumulation in aqueous environments. This study focused on the mechanisms underlying the adsorption of TFA by particulate matter to identify the appropriate descriptive model for this process and thus improve estimation of TFA adsorption in future environmental monitoring. Onsite gas and particle phase sampling in Beijing, China, and subsequent measurement of TFA concentrations indicated that the TFA concentration in the gas phase (1396 ± 225 pg m -3 ) was much higher than that in the particle phase (62 ± 8 pg m -3 ) and that monthly concentrations varied seasonally with temperature. Based on the field results and analysis, an adsorption experiment of TFA on soot was then conducted at three different temperatures (293, 303, and 313 K) to provide parameters for kinetic and thermodynamic modelling. The proportion of atmospheric TFA concentration in the gas phase increased with temperature, indicating that temperature affected the phase distribution of TFA. The subsequent kinetic and thermodynamic modelling showed that the adsorption of TFA by soot could be described well by the Bangham kinetic model. The adsorption was controlled by diffusion, and the key mechanism was physical adsorption. The adsorption behavior can be well described by the Langmuir isotherm model. The calculated thermodynamic parameters ΔG° (-2.34, -1.25, and -0.15 kJ mol -1  at 293, 303, and 313 K, respectively), ΔH° (-34.34 kJ mol -1 ), and ΔS° (-109.22 J mol -1  K -1 ) for TFA adsorption by soot were negative, indicating that adsorption was a spontaneous, exothermic process. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Preparation of crosslinked poly (acryloyloxyethyltrimethyl ammonium chloride) microsphere and its adsorption and mechanism towards shikimic acid

    Energy Technology Data Exchange (ETDEWEB)

    Men, Jiying, E-mail: menjiying@nuc.edu.cn; Wang, Ruixin; Li, Huan; Li, Xinyan; Yang, Shanshan; Liu, Haisi; Gao, Baojiao

    2017-02-01

    Shikimic acid (SA) is a key raw material for the synthesis of the antiviral drug, but its extraction and separation from plants is still limited. Crosslinked poly (acryloyloxyethyltrimethyl ammonium chloride, DAC) microspheres were synthesized via inverse-phase suspension polymerization. In the synthesizing, N,N′-methylene bisacrylamide (MBA) was used as crosslinker, cyclohexane as dispersed medium and span-60 as dispersants, obtaining CPDAC gel microspheres. The effect of polymerization condition on balling performance and the characteristics of CPDAC were examined. The adsorption properties of CPDAC towards SA were mainly explored and the data of adsorption isotherm were analyzed by using Langmuir, Freundlich, Temkin, Sips and Toth models. Furthermore, the adsorption mechanism was analyzed in depth, and the adsorption thermodynamics was also investigated. The results show that in order to prepare CPDAC, water phase must be added dropwise to oil phase, and the volume ratio of oil-water is more than 2:1. The mean diameter of CPDAC decreases with increasing span-60 and accelerating agitating rate. The strong electrostatic interaction is formed between quaternary ammonium nitrogen of CPDAC and −COO{sup –} of SA. The adsorption kinetic data is fitted well with pseudo-first-order model. The adsorption ability is higher in aqueous water than ethanol, reaching 108 mg/g, and Toth model is more suitable for describing the actual adsorption process. The adsorption of CPDAC towards SA is dependent on the pH value of the medium. The adsorption process is exothermic, the adsorption amount decreases with the increase of temperature, and the process is driven by enthalpy. The adsorption amount decreases with the increase of salinity. The reusability of CPDAC towards SA can keep 86.1% at the sixth cycle. - Highlights: • CPDAC microspheres were synthesized via inverse-phase suspension polymerization. • SA was adsorbed strongly by strong electrostatic interaction.

  13. Adsorption on mixtures of ion exchangers

    International Nuclear Information System (INIS)

    Triolo, R.; Lietzke, M.H.

    1979-01-01

    A theoretical study has been made of adsorption on mixtures of ion exchangers. The effect of variables such as the concentration of the ion being adsorbed, the concentration of the supporting electrolyte, loading, the values of the capacities and equilibrium constants for the various exchange processes, and the fraction of each adsorber in the mixture on the observed distribution coefficient has been investigated. A computer program has been written to facilitate the calculation of distribution coefficients for the adsorption of an ion on a given mixture of ion exchangers under a specified set of conditions

  14. Adsorption of copper ions of natural montmorillonite clay

    Directory of Open Access Journals (Sweden)

    Pimneva Ludmila

    2017-01-01

    Full Text Available The prospects of montmorillonite clay using for the extraction of copper ions from natural and waste waters were determined. Specified chemical and phase composition of natural forms of the montmorillonite clay are shown in the article. Quantitative characteristics of adsorption process of copper ions, the statistical exchange capacity is 1,21 (298 К, 1,25 (313 К, 1,43 (333 К. The authors have studied the balance of copper ions by the method of constructing the isotherms. The description of the adsorption process was carried out by the Langmuir, Freundlich and Temkin models. The calculations showed that the best data for the sorption described by Langmuir model. The nature of the interaction of copper ions with montmorillonite clay in natural form is presented. The calculated thermodynamic parameters of the adsorption process, the obtained values of the Gibbs energy have a negative sign -11,5 (298 К, -15,6 (313 К, -16,2 (333 К кJ/mol, that corresponds to a sustainable consolidation of copper ions on the surface of the montmorillonite clay.

  15. Removal of methylene blue from aqueous solution by adsorption onto pineapple leaf powder

    International Nuclear Information System (INIS)

    Weng, Chih-Huang; Lin, Yao-Tung; Tzeng, Tai-Wei

    2009-01-01

    The ability of an unconventional bio-adsorbent, pineapple leaf powder (PLP) for the adsorption of methylene blue (MB) from aqueous solution was studied. It was observed that intra-particle diffusion was involved in the adsorption process and that the kinetic data fitted well with a pseudo-second-order equation. Fitting parameters revealed that the rate of adsorption increased with decrease in dye concentration and decrease in ionic strength while the mixing speed did not have a significant effect on adsorption. The adsorption was favorable at higher pH and lower temperature, and the equilibrium data were well fitted by the Langmuir isotherm. The maximum adsorption capacity varied from 4.68 x 10 -4 to 9.28 x 10 -4 mol/g when pH increases from 3.5 to 9.5. Thermodynamic parameters suggest that the adsorption is a typical physical process, spontaneous, and exothermic in nature. The results revealed that this agricultural waste has potential to be used as an economical adsorbent for the removal of methylene blue from aqueous solution.

  16. Removal of methylene blue from aqueous solution by adsorption onto pineapple leaf powder

    Energy Technology Data Exchange (ETDEWEB)

    Weng, Chih-Huang, E-mail: chweng@isu.edu.tw [Department of Civil and Ecological Engineering, I-Shou University, Da-Hsu Township, Kaohsiung 84008, Taiwan (China); Lin, Yao-Tung; Tzeng, Tai-Wei [Department of Soil and Environmental Sciences, National Chung Hsing University, TaiChung 40227, Taiwan (China)

    2009-10-15

    The ability of an unconventional bio-adsorbent, pineapple leaf powder (PLP) for the adsorption of methylene blue (MB) from aqueous solution was studied. It was observed that intra-particle diffusion was involved in the adsorption process and that the kinetic data fitted well with a pseudo-second-order equation. Fitting parameters revealed that the rate of adsorption increased with decrease in dye concentration and decrease in ionic strength while the mixing speed did not have a significant effect on adsorption. The adsorption was favorable at higher pH and lower temperature, and the equilibrium data were well fitted by the Langmuir isotherm. The maximum adsorption capacity varied from 4.68 x 10{sup -4} to 9.28 x 10{sup -4} mol/g when pH increases from 3.5 to 9.5. Thermodynamic parameters suggest that the adsorption is a typical physical process, spontaneous, and exothermic in nature. The results revealed that this agricultural waste has potential to be used as an economical adsorbent for the removal of methylene blue from aqueous solution.

  17. Adsorption of Cd(II) from aqueous solutions by rape straw biochar derived from different modification processes.

    Science.gov (United States)

    Li, Bing; Yang, Lan; Wang, Chang-Quan; Zhang, Qing-Pei; Liu, Qing-Cheng; Li, Yi-Ding; Xiao, Rui

    2017-05-01

    In order to deal with cadmium (Cd(II)) pollution, three modified biochar materials: alkaline treatment of biochar (BC-NaOH), KMnO 4 impregnation of biochar (BC-MnO x ) and FeCl 3 magnetic treatment of biochar (BC-FeO x ), were investigated. Nitrogen adsorption-desorption isotherms, Fourier transform infrared spectroscopy (FTIR), Boehm titration, and scanning electron microscopy (SEM) were used to determine the characteristics of adsorbents and explore the main adsorption mechanism. The results show that manganese oxide particles are carried successfully within the biochar, contributing to micropore creation, boosting specific surface area and forming innersphere complexes with oxygen-containing groups, while also increasing the number of oxygen-containing groups. The adsorption sites created by the loaded manganese oxide, rather than specific surface areas, play the most important roles in cadmium adsorption. Batch adsorption experiments demonstrate a Langmuir model fit for Cd(II), and BC-MnO x provided the highest sorption capacity (81.10 mg g -1 ). The sorption kinetics of Cd(II) on adsorbents follows pseudo-second-order kinetics and the adsorption rate of the BC-MnO x material was the highest (14.46 g (mg·h) -1 ). Therefore, biochar modification methods involving KMnO 4 impregnation may provide effective ways of enhancing Cd(II) removal from aqueous solutions. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Adsorption of antimony onto iron oxyhydroxides: Adsorption behavior and surface structure

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Xuejun; Wu, Zhijun [State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, No. 19 Xinjiekouwai Street, Beijing 100875 (China); He, Mengchang, E-mail: hemc@bnu.edu.cn [State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, No. 19 Xinjiekouwai Street, Beijing 100875 (China); Meng, Xiaoguang [Center for Environmental Systems, Stevens Institute of Technology, Hoboken, NJ 07030 (United States); Jin, Xin [State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, No. 19 Xinjiekouwai Street, Beijing 100875 (China); Qiu, Nan; Zhang, Jing [Beijing Synchrotron Radiation Facility (BSRF), Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049 (China)

    2014-07-15

    Graphical abstract: - Highlights: • Antimony adsorption depended on the Sb species, pH, and the type of iron oxides. • Sb(V) adsorption favored at acidic pH, Sb(III) adsorption optimized in wider pH. • Antimony was adsorbed onto the iron oxides by the inner-sphere surface complex. • Bidentate mononuclear ({sup 2}E) was the dominant form of Sb incorporated into HFO. • XAFS and XPS indicated Sb(III) adsorbed was slowly oxidized to Sb(V). - Abstract: Antimony is detected in soil and water with elevated concentration due to a variety of industrial applications and mining activities. Though antimony is classified as a pollutant of priority interest by the United States Environmental Protection Agency (USEPA) and Europe Union (EU), very little is known about its environmental behavior and adsorption mechanism. In this study, the adsorption behaviors and surface structure of antimony (III/V) on iron oxides were investigated using batch adsorption techniques, surface complexation modeling (SCM), X-ray photon spectroscopy (XPS) and extended X-ray absorption fine structure spectroscopy (EXAFS). The adsorption isotherms and edges indicated that the affinity of Sb(V) and Sb(III) toward the iron oxides depended on the Sb species, solution pH, and the characteristics of iron oxides. Sb(V) adsorption was favored at acidic pH and decreased dramatically with increasing pH, while Sb(III) adsorption was constant over a broad pH range. When pH is higher than 7, Sb(III) adsorption by goethite and hydrous ferric oxide (HFO) was greater than Sb(V). EXAFS analysis indicated that the majority of Sb(III), either adsorbed onto HFO or co-precipitated by FeCl{sub 3}, was oxidized into Sb(V) probably due to the involvement of O{sub 2} in the long duration of sample preservation. Only one Sb–Fe subshell was filtered in the EXAFS spectra of antimony adsorption onto HFO, with the coordination number of 1.0–1.9 attributed to bidentate mononuclear edge-sharing ({sup 2}E) between Sb and

  19. Research on the treatment of liquid waste containing cesium by an adsorption-microfiltration process with potassium zinc hexacyanoferrate

    International Nuclear Information System (INIS)

    Zhang Changping; Gu Ping; Zhao Jun; Zhang Dong; Deng Yue

    2009-01-01

    The removal of cesium from an aqueous solution by an adsorption-microfiltration (AMF) process was investigated in jar tests and lab-scale tests. The adsorbent was K 2 Zn 3 [Fe(CN) 6 ] 2 . The obtained cesium data in the jar test fit a Freundlich-type isotherm well. In the lab-scale test, the mean cesium concentration of the raw water and the effluent were 106.87 μg/L and 0.59 μg/L, respectively, the mean removal of cesium was 99.44%, and the mean decontamination factors (DF) and concentration factors (CF) were 208 and 539, respectively. The removal of cesium in the lab-scale test was better than that in the jar test because the old adsorbents remaining in the reactor still had adsorption capacity with the premise of no significant desorption being observed, and the continuous renewal of the adsorbent surface improved the adsorption capacity of the adsorbent. Some of the suspended solids were deposited on the bottom of the reactor, which would affect the mixing of adsorbents with the raw water and the renewing of the adsorbent surface. Membrane fouling was the main physical fouling mechanism, and the cake layer was the main filtration resistance. Specific flux (SF) decreased step by step during the whole period of operation due to membrane fouling and concentration polarization. The quality of the effluent was good and the turbidity remained lower than 0.1 NTU, and the toxic anion, CN - , could not be detected because of its low concentration, this indicated that the effluent was safe. The AMF process was feasible for practical application in the treatment of liquid waste containing cesium.

  20. Research on the treatment of liquid waste containing cesium by an adsorption-microfiltration process with potassium zinc hexacyanoferrate.

    Science.gov (United States)

    Zhang, Chang-Ping; Gu, Ping; Zhao, Jun; Zhang, Dong; Deng, Yue

    2009-08-15

    The removal of cesium from an aqueous solution by an adsorption-microfiltration (AMF) process was investigated in jar tests and lab-scale tests. The adsorbent was K(2)Zn(3)[Fe(CN)(6)](2). The obtained cesium data in the jar test fit a Freundlich-type isotherm well. In the lab-scale test, the mean cesium concentration of the raw water and the effluent were 106.87 microg/L and 0.59 microg/L, respectively, the mean removal of cesium was 99.44%, and the mean decontamination factors (DF) and concentration factors (CF) were 208 and 539, respectively. The removal of cesium in the lab-scale test was better than that in the jar test because the old adsorbents remaining in the reactor still had adsorption capacity with the premise of no significant desorption being observed, and the continuous renewal of the adsorbent surface improved the adsorption capacity of the adsorbent. Some of the suspended solids were deposited on the bottom of the reactor, which would affect the mixing of adsorbents with the raw water and the renewing of the adsorbent surface. Membrane fouling was the main physical fouling mechanism, and the cake layer was the main filtration resistance. Specific flux (SF) decreased step by step during the whole period of operation due to membrane fouling and concentration polarization. The quality of the effluent was good and the turbidity remained lower than 0.1NTU, and the toxic anion, CN(-), could not be detected because of its low concentration, this indicated that the effluent was safe. The AMF process was feasible for practical application in the treatment of liquid waste containing cesium.

  1. Removal of COD and TSS From Dye Solution Using Sand Filtration and Adsorption

    Directory of Open Access Journals (Sweden)

    Heny Juniar

    2016-11-01

    Full Text Available This research was conducted in order to obtain proper compositions and the standard condition for the simple filtration equipments and optimum operational conditions in adsorption column. The research was carried out by analyzing parameters COD and TSS. The result showed that the process was able to reduced parameters observed from filtration step until the process in adsorptions column. The optimum conditions for sand filter equipment were 10 cm sand height, at least 7 cm fibers, 3-4 cm gravel. In the adsorption column, the optimum conditions for green waste water were flow rate at 40 ml/min 60 min adsorptions time, and 60 cm bed height. While purple for waste water; 20 mL/min of flowrate, 60 min of adsorption time, and the 60 cm of bed height

  2. Characterization of crude oils and petroleum products: (I Elution liquid chromatographic separation and gas chromatographic analysis of crude oils and petroleum products

    Directory of Open Access Journals (Sweden)

    E.O. Odebunmi

    2002-12-01

    Full Text Available Some physical and chemical properties of samples of light, medium and heavy Nigerian crude oils and petroleum products including gasoline, kerosene and engine oil have been measured and are reported in this paper. The crude oils and petroleum products have also been characterized by fractional distillation and elution liquid chromatography. The fractions obtained from elution liquid chromatography were analyzed using gas chromatography (GC. The GC fractions were identified by comparing the retention time of peaks in the unknown samples with those of components of calibration standard mixtures. The importance of the physico-chemical properties and the significance of the fractional distillation and chromatographic separation methods to industrial process operations have been discussed.

  3. Enhanced removal of arsenic from a highly laden industrial effluent using a combined coprecipitation/nano-adsorption process.

    Science.gov (United States)

    Jiang, Yingnan; Hua, Ming; Wu, Bian; Ma, Hongrui; Pan, Bingcai; Zhang, Quanxing

    2014-05-01

    Effective arsenic removal from highly laden industrial wastewater is an important but challenging task. Here, a combined coprecipitation/nano-adsorption process, with ferric chloride and calcium chloride as coprecipitation agents and polymer-based nanocomposite as selective adsorbent, has been validated for arsenic removal from tungsten-smelting wastewater. On the basis of operating optimization, a binary FeCl3 (520 mg/L)-CaCl2 (300 mg/L) coprecipitation agent could remove more than 93% arsenic from the wastewater. The resulting precipitate has proved environmental safety based on leaching toxicity test. Fixed-bed column packed with zirconium or ferric-oxide-loaded nanocomposite was employed for further elimination of arsenic in coprecipitated effluent, resulting in a significant decrease of arsenic (from 0.96 to less than 0.5 mg/L). The working capacity of zirconium-loaded nanocomposite was 220 bed volumes per run, much higher than that of ferric-loaded nanocomposite (40 bed volumes per run). The exhausted zirconium-loaded nanocomposite could be efficiently in situ regenerated with a binary NaOH-NaCl solution for reuse without any significant capacity loss. The results validated the combinational coprecipitation/nano-adsorption process to be a potential alternative for effective arsenic removal from highly laden industrial effluent.

  4. Adsorption behavior of ammonium by a bioadsorbent - Boston ivy leaf powder

    Institute of Scientific and Technical Information of China (English)

    Haiwei Liu; Yuanhua Dong; Haiyun Wang; Yun Liu

    2010-01-01

    The adsorption behaviors of ammonium ions from aqueous solution by a novel bioadsorbent,the Boston ivy (Parthenocissus tricuspidata) leaf powder (BPTL) were investigated.The SEM images and FT-IR spectra were used to characterize BPTL.The mathematical models were used to analyze the adsorption kinetics and isotherms.The optimum pH range for ammonium adsorption by BPTL was found to be 5-10.The adsorption reached equilibrium at 14 hr,and the kinetic data were well fitted by the Logistic model.The intraparticle diffusion was the main rate-controlling step of the adsorption process.The high temperature was favorableto the ammonium adsorption by BPTL,indicating that the adsorption was endothermic.The adsorption equilibrium fitted well to both the Langrnuir model and Freundlich model,and the maximum monolayer adsorption capacities calculated from Langmuir model were 3.37,5.28 and 6.59 mg N/g at 15,25 and 35℃,respectively,which were comparable to those by reported minerals.Both the separation factor (RL) from the Langmuir model and Freundlich exponent (n) suggested that the ammonium adsorption by BPTL was favorable.Therefore,the Boston ivy leaf powder could be considered a novel bioadsorbent for ammonium removal from aqueous solution.

  5. Effect of Aggregate Structure on VOC Gas Adsorption onto Volcanic Ash Soil

    OpenAIRE

    濱本, 昌一郎

    2008-01-01

    The understanding of the gaseous adsorption process and the parameters of volatile organic compounds such as organic solvents or fuels onto soils is very important in the analysis of the transport or fate of these chemicals in soils. Batch adsorption experiments with six different treatments were conducted to determine the adsorption of isohexane, a gaseous aliphatic, onto volcanic ash soil (Tachikawa loam). The measured gas adsorption coefficient for samples of Tachikawa loam used in the fir...

  6. Bench Scale Development and Testing of a Novel Adsorption Process for Post-Combustion CO₂ Capture

    Energy Technology Data Exchange (ETDEWEB)

    Jain, Ravi [Innosepra Limited Liability Company, Middlesex, NJ (United States)

    2015-09-01

    A physical sorption process to produce dry CO₂ at high purity (>98%) and high recovery (>90%) from the flue gas taken before or after the FGD was demonstrated both in the lab and in the field (one ton per day scale). A CO₂ recovery of over 94% and a CO₂ purity of over 99% were obtained in the field tests. The process has a moisture, SOX, and Hg removal stage followed by a CO₂ adsorption stage. Evaluations based on field testing, process simulation and detailed engineering studies indicate that the process has the potential for more than 40% reduction in the capital and more than 40% reduction in parasitic power for CO₂ capture compared to MEA. The process has the potential to provide CO₂ at a cost (<$40/tonne) and quality (<1 ppm H₂O, <1 ppm SOX, <10 ppm O₂) suitable for EOR applications which can make CO₂ capture profitable even in the absence of climate legislation. The process is applicable to power plants without SOX, Hg and NOX removal equipment.

  7. Research on technology of online gas chromatograph for SF6 decomposition products

    Science.gov (United States)

    Li, L.; Fan, X. P.; Zhou, Y. Y.; Tang, N.; Zou, Z. L.; Liu, M. Z.; Huang, G. J.

    2017-12-01

    Sulfur hexafluoride (SF6) decomposition products were qualitatively and quantitatively analyzed by several gas chromatographs in the laboratory. Test conditions and methods were selected and optimized to minimize and eliminate the SF6’ influences on detection of other trace components. The effective separation and detection of selected characteristic gases were achieved. And by comparison among different types of gas chromatograph, it was found that GPTR-S101 can effectively separate and detect SF6 decomposition products and has best the best detection limit and sensitivity. On the basis of GPTR-S101, online gas chromatograph for SF6decomposition products (GPTR-S201) was developed. It lays the foundation for further online monitoring and diagnosis of SF6.

  8. Method for thermal swing adsorption and thermally-enhanced pressure swing adsorption

    Science.gov (United States)

    Wegeng, Robert S.; Rassat, Scot D.; Stenkamp, Victoria S.; TeGrotenhuis, Ward E.; Matson, Dean W.; Drost, M. Kevin; Viswanathan, Vilayanur V.

    2003-10-07

    The present invention provides compact adsorption systems that are capable of rapid temperature swings and rapid cycling. Novel methods of thermal swing adsorption and thermally-enhanced pressure swing adsorption are also described. In some aspects of the invention, a gas is passed through the adsorbent thus allowing heat exchangers to be very close to all portions of the adsorbent and utilize less space. In another aspect, the adsorption media is selectively heated, thus reducing energy costs. Methods and systems for gas adsorption/desorption having improved energy efficiency with capability of short cycle times are also described. Advantages of the invention include the ability to use (typically) 30-100 times less adsorbent compared to conventional systems.

  9. Apparatus for thermal swing adsorption and thermally-enhanced pressure swing adsorption

    Science.gov (United States)

    Wegeng, Robert S.; Rassat, Scot D.; Stenkamp, Victoria S.; TeGrotenhuis, Ward E.; Matson, Dean W.; Drost, M. Kevin; Viswanathan, Vilayanur V.

    2005-12-13

    The present invention provides compact adsorption systems that are capable of rapid temperature swings and rapid cycling. Novel methods of thermal swing adsorption and thermally-enhanced pressure swing adsorption are also described. In some aspects of the invention, a gas is passed through the adsorbent thus allowing heat exchangers to be very close to all portions of the adsorbent and utilize less space. In another aspect, the adsorption media is selectively heated, thus reducing energy costs. Methods and systems for gas adsorption/desorption having improved energy efficiency with capability of short cycle times are also described. Advantages of the invention include the ability to use (typically) 30-100 times less adsorbent compared to conventional systems.

  10. Effective adsorption of malachite green using magnetic barium phosphate composite from aqueous solution

    Science.gov (United States)

    Zhang, Fan; Wei, Zhong; Zhang, Wanning; Cui, Haiyan

    2017-07-01

    Magnetic Ba3(PO4)2/Fe3O4-nanoparticle (called BPFN) was prepared, characterized, and developed as a low-cost adsorbent for malachite green (MG) from aqueous solution. Factors such as adsorption temperature, pH of solution, dosage of adsorbent, adsorption kinetics and isotherms were investigated. The maximum adsorption capacity obtained in this work was 1639 mg g- 1 at 45 °C and pH 6. The adsorption process fitted the pseudo-first-order kinetic model and Langmuir isotherm model. Evidences from zeta potential, Fourier transform infrared spectroscopy (FT-IR), and X-ray photoelectron spectroscopy (XPS) data revealed that the adsorption process was driven by electrostatic attraction, the interaction between Lewis base sbnd N(CH3)2 in MG and Lewis acid Ba sites of BPFN. In addition, the BPFN could be easily regenerated by a magnet and the adsorption capacity maintained at 70% after five cycles. The present study suggests that the BPFN had high potential of removing MG from wastewater.

  11. Adsorption of plasma proteins : adsorption behaviour on apolar surfaces and effect on colloid stability

    NARCIS (Netherlands)

    van der Scheer, Albert

    1978-01-01

    In this thesis the adsorption of some plasma proteins (human albumin (HSA) and fibrinogen (HFb)) on non polar surfaces is studied, together with the influence of these proteins on the stability of polystyrene latices. The aim of these investigations is a better understanding of the processes

  12. Preparation of cellulase concoction using differential adsorption phenomenon.

    Science.gov (United States)

    Birhade, Sachinkumar; Pednekar, Mukesh; Sagwal, Shilpa; Odaneth, Annamma; Lali, Arvind

    2017-05-28

    Controlled depolymerization of cellulose is essential for the production of valuable cellooligosaccharides and cellobiose from lignocellulosic biomass. However, enzymatic cellulose hydrolysis involves multiple synergistically acting enzymes, making difficult to control the depolymerization process and generate desired product. This work exploits the varying adsorption properties of the cellulase components to the cellulosic substrate and aims to control the enzyme activity. Cellulase adsorption was favored on pretreated cellulosic biomass as compared to synthetic cellulose. Preferential adsorption of exocellulases was observed over endocellulase, while β-glucosidases remained unadsorbed. Adsorbed enzyme fraction with bound exocellulases when used for hydrolysis generated cellobiose predominantly, while the unadsorbed enzymes in the liquid fraction produced cellooligosaccharides majorly, owing to its high endocellulases activity. Thus, the differential adsorption phenomenon of the cellulase components can be used for the controlling cellulose hydrolysis for the production of an array of sugars.

  13. Aligning of single and multiple wavelength chromatographic

    DEFF Research Database (Denmark)

    Nielsen, Niels-Peter Vest; Carstensen, Jens Michael; Smedsgaard, Jørn

    1998-01-01

    optimised warping (COW) using two input parameters which can be estimated from the observed peak width. COW is demonstrated on constructed single trace chromatograms and on single and multiple wavelength chromatograms obtained from HPLC diode detection analyses of fungal extractsA copy of the C program......The use of chemometric data processing is becoming an important part of modern chromatography. Most chemometric analyses are performed on reduced data sets using areas of selected peaks detected in the chromatograms, which means a loss of data and introduces the problem of extracting peak data from...... to utilise the entire data matrix or rely on peak detection, thus having the same limitations as the commonly used chemometric procedures. The method presented uses the entire chromatographic data matrices and does not require any preprocessing e.g., peak detection. It relies on piecewise linear correlation...

  14. Radioactive nuclide adsorption

    International Nuclear Information System (INIS)

    Fukushima, Kimichika.

    1982-01-01

    Purpose: To improve the efficiency of a radioactive nuclide adsorption device by applying a nickel plating on a nickel plate to render the surface active. Constitution: A capturing device for radioactive nuclide such as manganese 54, cobalt 60, 58 and the like is disposed to the inside of a pipeway provided on the upper portion of fuel assemblies through which liquid sodium as the coolant for LMFBR type reactor is passed. The device comprises a cylindrical adsorption body and spacers. The adsorption body is made of nickel and applied with a nickel plating on the surface thereof. The surface of the adsorption body is unevened to result in disturbance in the coolant and thereby improve the adsorptive efficiency. (Kawakami, Y.)

  15. Mesoporous hydroxyapatite: Preparation, drug adsorption, and release properties

    Energy Technology Data Exchange (ETDEWEB)

    Gu, Lina; He, Xiaomei; Wu, Zhenyu, E-mail: zhenyuwuhn@sina.com

    2014-11-14

    Mesoporous hydroxyapatite (HA) was synthesized through gas–liquid chemical precipitation method at ambient temperature without any template. Structure, morphology and pore size distribution of HA were analyzed via X-ray powder diffraction, scanning electron microscopy, transmission electron microscopy, high-resolution electron microscopy and N{sub 2} adsorption/desorption. The chemotherapeutic agent doxorubicin (DOX) was used to investigate the drug adsorption and release behavior of HA. The kinetics of DOX adsorption on HA followed the pseudo-second-order rate expression. Adsorption isotherms at various temperatures were obtained, and the equilibrium data fitted the Langmuir model. The values of thermodynamic parameters (Gibbs free energy, entropy, and enthalpy changes) demonstrated that the adsorption process was spontaneous and endothermic. In vitro pH-responsive (pH = 7.4, 5.8) controlled release was investigated. DOX-loaded HA showed a slow, long-term, and steady release rate. The release rate at pH5.8 was larger than that at pH7.4. Consequently, the as-prepared mesoporous HA has potential applications in controlled drug delivery systems. - Highlights: • Mesoporous HA was synthesized by a simple precipitation method without any template. • The kinetics of adsorption followed the pseudo-second-order rate expression. • Thermodynamics investigation showed that adsorption was spontaneous and endothermic. • DOX-loaded HA showed a long-term, steady, and pH-controlled release rate.

  16. Batch study, equilibrium and kinetics of adsorption of naphthalene using waste tyre rubber granules

    Directory of Open Access Journals (Sweden)

    Felix A. Aisien

    2014-04-01

    Full Text Available The potential use of waste tyre rubber granules (WTRG for the batch adsorption of naphthalene from aqueous solutions was investigated. The effect of various operational variables such as contact time, initial naphthalene concentration, adsorbent dose, size of adsorbent particles, and temperature of solution on the adsorption capacity of WTRG was evaluated. The adsorption of naphthalene by WTRG was a fast kinetic process with an equilibrium contact time of 60 min. A low temperature (5°C, small adsorbent particle size (0.212 mm and higher adsorbent dosage favored the adsorption process. Results of isotherm studies revealed that adsorption of naphthalene was best described by the Langmuir isotherm equation (R2=0.997 while the kinetics of the process was best described by the Lagergren pseudofirst order kinetic equation (R2=0.998. This study has demonstrated the suitability of WTRG for the removal of naphthalene from aqueous solution.

  17. Methylene blue adsorption from aqueous solution by dehydrated peanut hull

    Energy Technology Data Exchange (ETDEWEB)

    Ozer, Dursun [Department of Chemical Engineering, Firat University, 23279 Elazig (Turkey); Dursun, Guelbeyi [Department of Chemical Engineering, Firat University, 23279 Elazig (Turkey)]. E-mail: gdursun@firat.edu.tr; Ozer, Ahmet [Department of Chemical Engineering, Firat University, 23279 Elazig (Turkey)

    2007-06-01

    Dyes are colour organic compounds which can colorize the other substances. These substances usually presents in the effluent water of many industries, such as textiles, leather, paper, printing and cosmetics. To observe the potential feasibility of removing colour, peanut hull as an agricultural by-product was dehydrated with sulphuric acid (DPH) and used for adsorption of methylene blue (MB) from aqueous solution. The effects of various parameters such as initial methylene blue concentrations, temperatures and particle sizes were examined and optimal experimental conditions were determined. Adsorption data were well described by the Langmuir model, although they could be modelled by the Freundlich model as well. The adsorption process followed the pseudo-second order kinetic model. The mass transfer model as intraparticle diffusion was applied to the experimental data to examine the mechanisms of rate controlling step. It was found that at the higher initial MB concentration, intraparticle diffusion is becoming significant controlling step. The thermodynamic constants of the adsorption process were also evaluated by using the Langmuir constants related to the equilibrium of adsorption at different temperatures. The results in this study indicated that dehydrated peanut hull was a good adsorbent for removing methylene blue.

  18. High-pressure liquid chromatographic assay of Bay n 7133 in human serum.

    OpenAIRE

    Fasching, C E; Hughes, C E; Hector, R F; Peterson, L R

    1984-01-01

    A high-pressure liquid chromatographic method that includes a Sep-Pak (Waters Associates, Inc., Milford , Mass.) preparation of human serum was employed for the quantitative assay of Bay n 7133. Drug levels of 0.1 to 20 micrograms/ml could be detected. No interference from amphotericin B was found in the chromatographic analysis of Bay n 7133.

  19. Kinetic and thermodynamic studies on the adsorption of anionic surfactant on quaternary ammonium cationic cellulose.

    Science.gov (United States)

    Zhang, Yuanzhang; Shi, Wenjian; Zhou, Hualan; Fu, Xing; Chen, Xuan

    2010-06-01

    Removal of anionic surfactants from aqueous solutions by adsorption onto quaternary ammonium cationic cellulose (QACC) was investigated. The effects of solution acidity, initial concentration, adsorption time, and temperature on the adsorption of sodium dodecyl-benzene sulfonate (SDBS), sodium lauryl sulfate (SLS), and sodium dodecyl sulfonate (SDS) were studied. The kinetic experimental data fit well with the pseudo-second-order model; the rate constant of the adsorption increased with temperature. The values of apparent activation energy for the adsorption were calculated as ranging from 10.2 to 17.4 kJ/ mol. The adsorption isotherm can be described by the Langmuir isotherm. The values of thermodynamic parameters (deltaH0, deltaS0, and deltaG0) for the adsorption indicated that this process was spontaneous and endothermic. At 318 K, the saturated adsorption capacities of QACC for SDBS, SLS, and SDS were 1.75, 1.53, and 1.39 mmol/g, respectively. The adsorption process was mainly chemisorption and partially physisorption. The results show that QACC is effective for the removal of anionic surfactants.

  20. Insight into the adsorption of chloramphenicol on a vermiculite surface

    Science.gov (United States)

    Tri, Nguyen Ngoc; Carvalho, A. J. P.; Dordio, A. V.; Nguyen, Minh Tho; Trung, Nguyen Tien

    2018-05-01

    Four stable configurations were found upon adsorption of the chloramphenicol on a period slab model of the vermiculite surface, using the PBE and C09-vdW functionals in a projector-augmented wave (PAW) method approach. The adsorption is a strong chemisorption process, characterized by an adsorption energy of -106.5 kcal mol-1 at the most stable configuration. Stability of configurations contributed mainly by Mg⋯O/Cl attractive electrostatic interactions and C/Osbnd H⋯O hydrogen bonds. It is remarkable that the vermiculite is found to be a solid material with good potential to be used for adsorption and consequent removal of this type of antibiotic drugs.

  1. Pyrolysis gas chromatographic atomic emission detection for sediments, coals and other petrochemical precursors

    Energy Technology Data Exchange (ETDEWEB)

    Seeley, J.A.; Zeng, Y.D.; Uden, P.C.; Eglinton, T.I.; Ericson, I. (Massachusetts University, Amherst, MA (USA). Dept. of Chemistry)

    1992-09-01

    On-line flash pyrolysis coupled to a capillary gas chromatograph for the characterization of marine sediments, coals and other heterogeneous solid samples is described. A helium microwave-induced plasma is used for chromatographic detection by atomic emission spectrometry. Simultaneous multi-element detection is achieved with a photodiode array detector. The optical path of the gas chromatographic atomic emission detector is purged with helium, allowing simultaneous, sensitive detection of atomic emission from sulfur 181 nm, phosphorous 186 nm, arsenic 189 nm, selenium 196 nm and carbon 193 nm. Several sediment and coal samples have been analysed for their carbon, nitrogen, sulfur, oxygen, phosphorous, arsenic and selenium content. Qualitative information indicating the occurrence and distribution of these elements in the samples can be used to gauge the relative stage of diagenetic evolution of the samples and provide information on their depositional environment. In some instances the chromatographic behaviour of the compounds produced upon pyrolysis is improved through on-line alkylation. This on-line derivatization is achieved by adding liquid reagents to the pyrolysis probe or by adding liquid reagents to the pyrolysis probe or by adding solid reagents either to the solid sample or by packing the reagent in the injection port of the chromatograph.

  2. Electrocoagulation-Adsorption to Remove Anionic and Cationic Dyes from Aqueous Solution by PV-Energy

    Directory of Open Access Journals (Sweden)

    J. Castañeda-Díaz

    2017-01-01

    Full Text Available The cationic dye malachite green (MG and the anionic dye Remazol yellow (RY were removed from aqueous solutions using electrocoagulation-adsorption processes. Batch and continuous electrocoagulation procedures were performed and compared. Carbonaceous materials obtained from industrial sewage sludge and commercial activated carbons were used to adsorb dyes from aqueous solutions in column systems with a 96–98% removal efficiency. The continuous electrocoagulation-adsorption system was more efficient for removing dyes than electrocoagulation alone. The thermodynamic parameters suggested the feasibility of the process and indicated that the adsorption was spontaneous and endothermic (ΔS=0.037 and −0.009 for MG and RY, resp.. The ΔG value further indicated that the adsorption process was spontaneous (−6.31 and −10.48; T=303 K. The kinetic electrocoagulation results and fixed-bed adsorption results were adequately described using a first-order model and a Bohart-Adams model, respectively. The adsorption capacities of the batch and column studies differed for each dye, and both adsorbent materials showed a high affinity for the cationic dye. Thus, the results presented in this work indicate that a continuous electrocoagulation-adsorption system can effectively remove this type of pollutant from water. The morphology and elements present in the sludge and adsorbents before and after dye adsorption were characterized using SEM-EDS and FT-IR.

  3. Adsorption and co-adsorption of graphene oxide and Ni(II) on iron oxides: A spectroscopic and microscopic investigation.

    Science.gov (United States)

    Sheng, Guodong; Huang, Chengcai; Chen, Guohe; Sheng, Jiang; Ren, Xuemei; Hu, Baowei; Ma, Jingyuan; Wang, Xiangke; Huang, Yuying; Alsaedi, Ahmed; Hayat, Tasawar

    2018-02-01

    Graphene oxide (GO) may strongly interact with toxic metal ions and mineral particles upon release into the soil environment. We evaluated the mutual effects between GO and Ni (Ni(II)) with regard to their adsorption and co-adsorption on two minerals (goethite and hematite) in aqueous phase. Results indicated that GO and Ni could mutually facilitate the adsorption of each other on both goethite and hematite over a wide pH range. Addition of Ni promoted GO co-adsorption mainly due to the increased positive charge of minerals and cation-π interactions, while the presence of GO enhanced Ni co-adsorption predominantly due to neutralization of positive charge and strong interaction with oxygen-containing functional groups on adsorbed GO. Increasing adsorption of GO and Ni on minerals as they coexist may thus reduce their mobility in soil. Extended X-ray absorption fine structure (EXAFS) spectroscopy data revealed that GO altered the microstructure of Ni on minerals, i.e., Ni formed edge-sharing surface species (at R Ni-Fe ∼3.2 Å) without GO, while a GO-bridging ternary surface complexes (at R Ni-C ∼2.49 Å and R Ni-Fe ∼4.23 Å) was formed with GO. These findings improved the understanding of potential fate and toxicity of GO as well as the partitioning processes of Ni ions in aquatic and soil environments. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Mechanism of amitriptyline adsorption on Ca-montmorillonite (SAz-2)

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Po-Hsiang [Department of Earth Sciences, National Cheng Kung University, 1 University Road, Tainan 70101, Taiwan (China); Jiang, Wei-Teh, E-mail: atwtj@mail.ncku.edu.tw [Department of Earth Sciences, National Cheng Kung University, 1 University Road, Tainan 70101, Taiwan (China); Li, Zhaohui, E-mail: li@uwp.edu [Department of Geosciences, University of Wisconsin – Parkside, 900 Wood Road, Kenosha, WI 53144 (United States); Kuo, Chung-Yih [Department of Public Health, College of Health Care and Management, Chung Shan Medical University, No. 110, Sec. 1, Chien-kuo N Road, Taichung 40242, Taiwan (China); Jean, Jiin-Shuh [Department of Earth Sciences, National Cheng Kung University, 1 University Road, Tainan 70101, Taiwan (China); Chen, Wan-Ru [Department of Environmental Engineering, National Cheng Kung University, 1 University Road, Tainan 70101, Taiwan (China); Lv, Guocheng [School of Materials Science and Technology, China University of Geosciences, Beijing 100083 (China)

    2014-07-30

    Graphical abstract: XRD patterns to show AMI intercalation into SAz-2 vs. direct mixing of the same amount of AMI with SAz-2. - Highlights: • Ca-montmorillonite is proven to be an efficient adsorbent or sink for amitriptyline. • The high adsorption capacity is accompanied with intercalation into interlayers. • The adsorption is mainly governed by a cation exchange mechanism. • Horizontal mono- and bi-layer conformations occur at low and high adsorption levels. • The process is an endothermic physisorption at high adsorption levels. - Abstract: The uptake of amitriptyline (AMI) from aqueous environment by Ca-montmorillonite (SAz-2) was studied in a batch system under different physicochemical conditions. The adsorbent was characterized by X-ray diffraction and Fourier transform infrared (FTIR) analyses. The AMI adsorption on SAz-2 obeyed the Langmuir isotherm with a capacity of 330 mg/g (1.05 mmol/g) at pH 6–7. The adsorption kinetics was fast, almost reaching equilibrium in 2 h, and followed a pseudo-second-order kinetic model. Desorption of exchangeable cations correlated with the AMI adsorption well, indicating that cation exchange was the major mechanism. X-ray diffraction patterns showing significant expansions of the d{sub 0} {sub 0} {sub 1} spacing and characteristic FTIR band shifts toward higher frequencies after AMI adsorption onto SAz-2 indicated that the adsorbed AMI molecules were intercalated into the interlayers of the mineral. Thermodynamic parameters based on partitioning coefficients suggested that the AMI adsorption was an endothermic physisorption at high adsorption levels. At low and higher AMI adsorption levels, the intercalated AMI molecules take a horizontal monolayer and bilayer conformation, respectively. The higher adsorption capacity suggested that SAz-2 could be a good candidate to remove AMI from wastewater and would be an important environmental sink for the fate and transport of AMI in soils and groundwater.

  5. Mechanism of amitriptyline adsorption on Ca-montmorillonite (SAz-2)

    International Nuclear Information System (INIS)

    Chang, Po-Hsiang; Jiang, Wei-Teh; Li, Zhaohui; Kuo, Chung-Yih; Jean, Jiin-Shuh; Chen, Wan-Ru; Lv, Guocheng

    2014-01-01

    Graphical abstract: XRD patterns to show AMI intercalation into SAz-2 vs. direct mixing of the same amount of AMI with SAz-2. - Highlights: • Ca-montmorillonite is proven to be an efficient adsorbent or sink for amitriptyline. • The high adsorption capacity is accompanied with intercalation into interlayers. • The adsorption is mainly governed by a cation exchange mechanism. • Horizontal mono- and bi-layer conformations occur at low and high adsorption levels. • The process is an endothermic physisorption at high adsorption levels. - Abstract: The uptake of amitriptyline (AMI) from aqueous environment by Ca-montmorillonite (SAz-2) was studied in a batch system under different physicochemical conditions. The adsorbent was characterized by X-ray diffraction and Fourier transform infrared (FTIR) analyses. The AMI adsorption on SAz-2 obeyed the Langmuir isotherm with a capacity of 330 mg/g (1.05 mmol/g) at pH 6–7. The adsorption kinetics was fast, almost reaching equilibrium in 2 h, and followed a pseudo-second-order kinetic model. Desorption of exchangeable cations correlated with the AMI adsorption well, indicating that cation exchange was the major mechanism. X-ray diffraction patterns showing significant expansions of the d 0 0 1 spacing and characteristic FTIR band shifts toward higher frequencies after AMI adsorption onto SAz-2 indicated that the adsorbed AMI molecules were intercalated into the interlayers of the mineral. Thermodynamic parameters based on partitioning coefficients suggested that the AMI adsorption was an endothermic physisorption at high adsorption levels. At low and higher AMI adsorption levels, the intercalated AMI molecules take a horizontal monolayer and bilayer conformation, respectively. The higher adsorption capacity suggested that SAz-2 could be a good candidate to remove AMI from wastewater and would be an important environmental sink for the fate and transport of AMI in soils and groundwater

  6. Rapid adsorption of Pb, Cu and Cd from aqueous solutions by β-cyclodextrin polymers

    Science.gov (United States)

    He, Junyong; Li, Yulian; Wang, Chengming; Zhang, Kaisheng; Lin, Dongyue; Kong, Lingtao; Liu, Jinhuai

    2017-12-01

    Removing heavy metals from aqueous solutions has drawn more and more attentions these years because of their serious global health challenge to human society. To develop an adsorbent with low-cost and high-efficiency for removal of heavy metals (HMs), β-cyclodextrin (β-CD) polymers crosslinked with rigid aromatic groups were prepared and used for lead (Pb), copper (Cu) and cadmium (Cd) removal for the first time. The negatively charged β-CD polymers with large BET surface area were suitable to be used in HMs adsorption. The adsorption process completed in 5 min was well fit by Freundlich isotherm model and pseudo-second-order model. The intraparticle diffusion model was also appropriate to describe the adsorption of Pb, Cu and Cd on β-CD polymer. The maximum of adsorption capacities at 25 °C for Pb, Cu and Cd were 196.42, 164.43 and 136.43 mg/g when the initial concentration was 200 mg/L. The HMs adsorption process on the surface of β-CD polymer was an endothermic and spontaneous process. Both of the electrostatic interaction and distribution of Pb, Cu and Cd species influenced the adsorption process at different pH values. The order of removal efficiencies in multi-component adsorption for the three metal ions were Pb > Cu > Cd. The adsorption mechanisms were H+ ions on hydroxyl groups exchanged with heavy metal ions and electrostatic interactions. This study indicated that β-CD polymers could be developed into effective adsorbents for rapid removal of heavy metals.

  7. Studies on the adsorption characteristics of some heavy elements using Vermiculite

    International Nuclear Information System (INIS)

    Ezz El Deen, A.A.; Waly, S.A.; EL Adham, K.A.; Dakroury, A.M.; Shoukry, M.M

    2012-01-01

    The uncontrolled release of liquid wastes into the environment may lead to hazard to the human and the environment. There have been extensive studies for development of various technologies for removal of Cd 2+ and Co 2+ from wastes The removal of Cd 2+ and Co 2+ ions from aqueous solution by Vermiculite has been investigated. The Vermiculite was characterized by Particle size, Surface area, and chemical analysis. The adsorption behavior of Vermiculite has been studied as a function of the solution agitation time, ph, initial metal concentration in solution, particle size, and temperature. Kinetic studies were undertaken to show the mechanistic aspects of the process. It was showed that the process was first order reaction for the two metal ions. Sorption data have been correlated with both, Langmuir and Freundlich adsorption models. Thermodynamic parameters such as ΔH degree, ΔS degree, and ΔG degree were calculated from the slope and intercept of linear plot of lnK D against 1/T. The ΔH degree and ΔG degree values of metal ions adsorption on the two adsorbents show endothermic heat of adsorption. But there is a negative free energy value, indicating that the process of ions adsorption is favored at high temperatures.

  8. Fate and transport with material response characterization of green sorption media for copper removal via adsorption process.

    Science.gov (United States)

    Chang, Ni-Bin; Houmann, Cameron; Lin, Kuen-Song; Wanielista, Martin

    2016-02-01

    Green adsorption media with the inclusion of renewable and recycled materials can be applied as a stormwater best management practice for copper removal. A green adsorption media mixture composed of recycled tire chunk, expanded clay aggregate, and coconut coir was physicochemically evaluated for its potential use in an upflow media filter. A suite of tests were conducted on the media mixture and the individual media components including studies of particle size distribution, isotherms, column adsorption and reaction kinetics. Isotherm test results revealed that the coconut coir had the highest affinity for copper (q(max) = 71.1 mg g(-1)), and that adsorption was maximized at a pH of 7.0. The coconut coir also performed the best under dynamic conditions, having an equilibrium uptake of 1.63 mg g(-1). FE-SEM imaging found a strong correlation between the porosity of the micro pore structure and the adsorptive capacity. The use of the green adsorption media mixture in isolation or the coconut coir with an expanded clay filtration chamber could be an effective and reliable stormwater best management practice for copper removal. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Coagulation and Adsorption Treatment of Printing Ink Wastewater

    Directory of Open Access Journals (Sweden)

    Maja Klančnik

    2015-03-01

    Full Text Available The intention of the study was to improve the efficiency of total organic carbon (TOC and colour removal from the wastewater samples polluted with flexographic printing ink following coagulation treatments with further adsorption onto activated carbons and ground orange peel. The treatment efficiencies were compared to those of further flocculation treatments and of coagulation and adsorption processes individually. Coagulation was a relatively effective single-treatment method, removing 99.7% of the colour and 86.9% of the organic substances (TOC from the printing ink wastewater samples. Further flocculation did not further eliminate organic pollutants, whereas subsequent adsorption with 7 g/l of granular activated carbon further reduced organic substances by 35.1%, and adsorption with 7 g/l of powdered activated carbon further reduced organic substances by 59.3%. Orange peel was an inappropriate adsorbent for wastewater samples with low amounts of pollution, such as water that had been treated by coagulation. However, in highly polluted printing ink wastewater samples, the adsorption treatment with ground orange peel achieved efficiencies comparable to those of the granular activated carbon treatments.

  10. Chromatographic generator systems for the actinides and natural decay series elements

    International Nuclear Information System (INIS)

    McAlister, D.R.; Horwitz, E.P.

    2011-01-01

    This work describes chromatographic radionuclide generator systems for the production of actinides and natural decay series elements. The generator systems begin with alpha emitting parent radioisotopes with half-lives (T 1/2 ) of greater than one year and produce alpha or beta emitting radioisotopes with half-lives of hours to days. Chromatographic systems were chosen to minimize radiolytic damage to chromatographic supports, preserve the parent activity for repeated use, provide high purity daughter radionuclide tracers, and to minimize or eliminate the need for evaporation of solutions of the parent or daughter nuclides. Useful secondary separations involving the daughters of the initial parent radionuclide are also described. Separation systems for 210 Bi, 210 Po, 211 Pb, 212 Pb, 223 Ra, 224 Ra, 225 Ra, 225 Ac, 227 Th, 228 Th, 231 Th, 234 Th, and 239 Np are outlined in detail. (orig.)

  11. CO adsorption and dissociation on Pt(111) and Ni(111) surfaces

    DEFF Research Database (Denmark)

    Morikawa, Y.; Mortensen, Jens Jørgen; Hammer, Bjørk

    1997-01-01

    CO adsorption and dissociation processes have been studied using first-principles total energy and force calculations. The adsorption energies, atomic structures and vibrational modes of molecularly chemisorbed states are well reproduced in the present calculations. We have examined several...

  12. INCREASED EFFICIENCY IN THE PROCESS OF ADSORPTION TREATMENT DURING II SATURATIO

    Directory of Open Access Journals (Sweden)

    V. A. Golybin

    2013-01-01

    Full Text Available The influence of filtroperlit, used as seed material to ensure adequate dispersion of the calcium carbonate precipitate structure with the developed adsorption surface area, in the final stages of lime-carbonic treating manufacturing sugar solutions was investigated.

  13. Study on uranium adsorption ability of tannix resin from solution

    International Nuclear Information System (INIS)

    Le Thi Kim Dung; Le Quang Thai; Nguyen Lanh; Le Ngoc Thuy

    2004-01-01

    During past years, generated liquid waste from uranium ore processing has been treated by co-precipitation method in ITRRE. In this liquid waste treatment process, mixing liquid waste and lime, decantation, filtration of precipitate were implemented. The treated fluid has underlimited toxic concentration and ensures for moving into environment. Residue was dried and packed into drums as low level radioactive waste. Next to the advantages of this method such as simplest technology, cheapest cost, easy operation. Some amount of secondary radioactive waste as noncombustible materials must be stored with complicated technologies a highly cost. We have been researching a new liquid waste treatment system replaceable precipitation system. In the new process, insoluble tannin is utilized as adsorbent of uranium liquid waste. Advantage of insoluble tannin is expected to be possible to reduce its volume incineration as well as its adsorption ability. Those are the reasons why tannix resin is used this research subject. In this subject, we have studied adsorption capacity of uranium in Tannix, relation of adsorption rate and pH, the change of adsorption ability of column system, the pyrolysis curve of dried Tannix (author)

  14. Study on the adsorption isosteres of the composite adsorbent CaCl2 and expanded graphite

    International Nuclear Information System (INIS)

    Li, S.L.; Wu, J.Y.; Xia, Z.Z.; Wang, R.Z.

    2011-01-01

    A test setup was built to study the adsorption performance of the composite adsorbent used in the adsorption system. The isovolume measurement method is adopted in the test setup to measure the adsorption isosteres of the composite adsorbent and ammonia working pair. The adsorption isosteres are the curves of the adsorption pressures variation with adsorption temperatures at constant adsorption quantity, which are convenient for the calculation of the adsorption heat and selection of the adsorption working pairs. The adsorption heats were calculated according to the adsorption isosteres, three clear crest values indicate that there were three types of reaction during the reaction processes of ammoniate calcium chloride and ammonia. The kinetic model of adsorption isosteres is obtained by the Temkin model, it is useful to estimate the adsorption performance of the working pairs and useful to guide the design of adsorption system.

  15. Predicting heavy metals' adsorption edges and adsorption isotherms on MnO2 with the parameters determined from Langmuir kinetics.

    Science.gov (United States)

    Hu, Qinghai; Xiao, Zhongjin; Xiong, Xinmei; Zhou, Gongming; Guan, Xiaohong

    2015-01-01

    Although surface complexation models have been widely used to describe the adsorption of heavy metals, few studies have verified the feasibility of modeling the adsorption kinetics, edge, and isotherm data with one pH-independent parameter. A close inspection of the derivation process of Langmuir isotherm revealed that the equilibrium constant derived from the Langmuir kinetic model, KS-kinetic, is theoretically equivalent to the adsorption constant in Langmuir isotherm, KS-Langmuir. The modified Langmuir kinetic model (MLK model) and modified Langmuir isotherm model (MLI model) incorporating pH factor were developed. The MLK model was employed to simulate the adsorption kinetics of Cu(II), Co(II), Cd(II), Zn(II) and Ni(II) on MnO2 at pH3.2 or 3.3 to get the values of KS-kinetic. The adsorption edges of heavy metals could be modeled with the modified metal partitioning model (MMP model), and the values of KS-Langmuir were obtained. The values of KS-kinetic and KS-Langmuir are very close to each other, validating that the constants obtained by these two methods are basically the same. The MMP model with KS-kinetic constants could predict the adsorption edges of heavy metals on MnO2 very well at different adsorbent/adsorbate concentrations. Moreover, the adsorption isotherms of heavy metals on MnO2 at various pH levels could be predicted reasonably well by the MLI model with the KS-kinetic constants. Copyright © 2014. Published by Elsevier B.V.

  16. The mechanism of uranium adsorption on Resin 508 and isoelectric point of the resin

    International Nuclear Information System (INIS)

    Han Qingping; Lu Weichang; Su Huijuan; Hu Jinbo; Zhang Liqin; Chen Banglin

    1990-01-01

    The adsorption process of uranium by Resin 508 at the solid-liquid interface was investigated and the mechanism of uranium adsorption including adsorption dynamics, adsorption thermodynamics and isoelectric point of resin was studied. The results are as follows: The maximum of uranium adsorption is attained at pH5-7; Uranium adsorption isotherm by Resin 508 in experimental conditions agrees with Langmuir's adsorption isotherm, the maximum of uranium adsorbed (Vm) is 716 mg U/g-dried resin; The adsorption of uranium by Resin 508 is an endothermic reaction and ΔH = 16.87 kJ/mol; The exchange-adsorption rate is mainly controlled by liquid film diffusion; The isoelectric points of Resin 508 before and after uranium adsorption are found to be pH7.5 and pH5.7 respectively. It is a specific adsorption for uranium

  17. Consequence of chitosan treating on the adsorption of humic acid by granular activated carbon.

    Science.gov (United States)

    Maghsoodloo, Sh; Noroozi, B; Haghi, A K; Sorial, G A

    2011-07-15

    In this work, equilibrium and kinetic adsorption of humic acid (HA) onto chitosan treated granular activated carbon (MGAC) has been investigated and compared to the granular activated carbon (GAC). The adsorption equilibrium data showed that adsorption behaviour of HA could be described reasonably well by Langmuir adsorption isotherm for GAC and Freundlich adsorption isotherm for MGAC. It was shown that pre-adsorption of chitosan onto the surface of GAC improved the adsorption capacity of HA changing the predominant adsorption mechanism. Monolayer capacities for the adsorption of HA onto GAC and MGAC were calculated 55.8 mg/g and 71.4 mg/g, respectively. Kinetic studies showed that film diffusion and intra-particle diffusion were simultaneously operating during the adsorption process for MGAC. Copyright © 2011 Elsevier B.V. All rights reserved.

  18. Chromatographic background drift correction coupled with parallel factor analysis to resolve coelution problems in three-dimensional chromatographic data: quantification of eleven antibiotics in tap water samples by high-performance liquid chromatography coupled with a diode array detector.

    Science.gov (United States)

    Yu, Yong-Jie; Wu, Hai-Long; Fu, Hai-Yan; Zhao, Juan; Li, Yuan-Na; Li, Shu-Fang; Kang, Chao; Yu, Ru-Qin

    2013-08-09

    Chromatographic background drift correction has been an important field of research in chromatographic analysis. In the present work, orthogonal spectral space projection for background drift correction of three-dimensional chromatographic data was described in detail and combined with parallel factor analysis (PARAFAC) to resolve overlapped chromatographic peaks and obtain the second-order advantage. This strategy was verified by simulated chromatographic data and afforded significant improvement in quantitative results. Finally, this strategy was successfully utilized to quantify eleven antibiotics in tap water samples. Compared with the traditional methodology of introducing excessive factors for the PARAFAC model to eliminate the effect of background drift, clear improvement in the quantitative performance of PARAFAC was observed after background drift correction by orthogonal spectral space projection. Copyright © 2013 Elsevier B.V. All rights reserved.

  19. The Jäntti approach to adsorption with increasing gas pressure

    NARCIS (Netherlands)

    Poulis, J.A.; Massen, C.H.; Robens, E.

    2002-01-01

    Jäntti introduced a method of calculating equilibrium adsorption from measurements where the pressure of the gas was varied in a stepwise manner. His aim was to shorten the time necessary for a given measurement. The method was applied to gas/solid systems in which simple adsorption processes

  20. Coagulation and Adsorption Treatment of Printing Ink Wastewater

    OpenAIRE

    Klančnik, Maja

    2014-01-01

    The intention of the study was to improve the efficiency of total organic carbon (TOC) and colour removal from the wastewater samples polluted with flexographic printing ink following coagulation treatments with further adsorption onto activated carbons and ground orange peel. The treatment efficiencies were compared to those of further flocculation treatments and of coagulation and adsorption processes individually. Coagulation was a relatively effective single-treatment method, removing 99...

  1. Volatile organic compounds adsorption using different types of adsorbent

    Directory of Open Access Journals (Sweden)

    Pimanmes Chanayotha

    2014-09-01

    Full Text Available Adsorbents were synthesized from coconut shell, coal and coke by pyrolysis followed by chemical activation process. These synthesized materials were used as adsorbents in adsorption test to determine the amount of volatile organic compounds (VOCs namely, 2-Hydroxyethyl methacrylate (HEMA, Octamethylcyclotetrasiloxane and Alkanes standard solution (C8-C20. The adsorption capacities of both synthesized adsorbents and commercial grade adsorbents (Carbotrap™ B and Carbotrap™ C were also compared. It was found that adsorbent A402, which was produced from coconut shell, activated with 40% (wt. potassium hydroxide and at activating temperature of 800°C for 1 hr, could adsorb higher amount of both HEMA and Octamethylcyclotetrasiloxane than other synthesized adsorbents. The maximum adsorption capacity of adsorbent A402 in adsorbing HEMA and Octamethylcyclotetrasiloxane were 77.87% and 50.82% respectively. These adsorption capabilities were 79.73% and 70.07% of the adsorption capacity of the commercial adsorbent Carbotrap™ B respectively. All three types of the synthesized adsorbent (A402, C302, C402 showed the capability to adsorb alkanes standard solution through the range of C8-C20 . However, their adsorption capacities were high in a specific range of C10-C11. The result from the isotherm plot was indicated that surface adsorption of synthesized adsorbent was isotherm type I while the surface adsorption of commercial adsorbent was isotherm type III.

  2. Synthesis and chromatographic characterization of dextran-coated zirconia high-performance liquid chromatographic stationary phases.

    Science.gov (United States)

    Dunlap, C J; Carr, P W

    1996-10-11

    Porous zirconia particles made by the oil emulsion (OE) method and the polymerization-induced colloid aggregation (PICA) method have been coated with a small, carboxymethylated (approximately 5%) dextran polymer and crosslinked in place. The parameters of the coating process (dextran concentration, adsorption time and crosslinker concentration) have all been examined and an optimum value for each determined. The coated and uncoated materials were characterized by nitrogen sorptometry and size-exclusion chromatography (SEC) using solutes (polystyrenes and dextrans) of well-defined molecular masses. Nitrogen sorptometry results show that the PICA material has a much lower pore volume and smaller pore diameter than do the OE materials. Despite this, the elution volumes of the SEC probes change very little upon polymer coating the PICA material while the OE material shows a very large change upon coating.

  3. Removal of cesium from simulated liquid waste with countercurrent two-stage adsorption followed by microfiltration.

    Science.gov (United States)

    Han, Fei; Zhang, Guang-Hui; Gu, Ping

    2012-07-30

    Copper ferrocyanide (CuFC) was used as an adsorbent to remove cesium. Jar test results showed that the adsorption capacity of CuFC was better than that of potassium zinc hexacyanoferrate. Lab-scale tests were performed by an adsorption-microfiltration process, and the mean decontamination factor (DF) was 463 when the initial cesium concentration was 101.3μg/L, the dosage of CuFC was 40mg/L and the adsorption time was 20min. The cesium concentration in the effluent continuously decreased with the operation time, which indicated that the used adsorbent retained its adsorption capacity. To use this capacity, experiments on a countercurrent two-stage adsorption (CTA)-microfiltration (MF) process were carried out with CuFC adsorption combined with membrane separation. A calculation method for determining the cesium concentration in the effluent was given, and batch tests in a pressure cup were performed to verify the calculated method. The results showed that the experimental values fitted well with the calculated values in the CTA-MF process. The mean DF was 1123 when the dilution factor was 0.4, the initial cesium concentration was 98.75μg/L and the dosage of CuFC and adsorption time were the same as those used in the lab-scale test. The DF obtained by CTA-MF process was more than three times higher than the single-stage adsorption in the jar test. Copyright © 2012 Elsevier B.V. All rights reserved.

  4. Chromatographic separation of low-temperature tar. Part II

    Energy Technology Data Exchange (ETDEWEB)

    Terres, E; Gebert, F; Huelsemann, H; Petereit, H; Toepsch, H; Ruppert, W

    1955-01-01

    Chromatographic methods and apparatus are discussed. The Folin-Denis reagent (Na tungstate molybdate in H/sub 3/PO/sub 4/) is used for developing paper chromatograms of phenol mixtures. Other reagents are given.

  5. Interaction between calcium and phosphate adsorption on goethite.

    Science.gov (United States)

    Rietra, R P; Hiemstra, T; van Riemsdijk, W H

    2001-08-15

    Quantitatively, little is known about the ion interaction processes that are responsible for the binding of phosphate in soil, water, and sediment, which determine the bioavailability and mobility of phosphate. Studies have shown that metal hydroxides are often responsible for the binding of PO4 in soils and sediments, but the binding behavior of PO4 in these systems often differs significantly from adsorption studies on metal hydroxides in laboratory. The interaction between PO4 and Ca adsorption was studied on goethite because Ca can influence the PO4 adsorption equilibria. Since adsorption interactions are very difficult to discriminate from precipitation reactions, conditions were chosen to prevent precipitation of Ca-PO4 solids. Adsorption experiments of PO4 and Ca, individually and in combination, show a strong interaction between adsorbed Ca and PO4 on goethite for conditions below the saturation index of apatite. It is shown that it is possible to predict the adsorption and interaction of PO4 and Ca on electrostatic arguments using the model parameter values derived from the single-ion systems and without invoking ternary complex formation or precipitation. The model enables the prediction of the Ca-PO4 interaction for environmentally relevant calcium and phosphate concentrations.

  6. Development of a chromatographic separation method hyphenated to electro-spray ionization mass spectrometry (ESI-MS) and inductively coupled plasma mass spectrometry (ICP-MS): application to the lanthanides speciation analysis

    International Nuclear Information System (INIS)

    Beuvier, Ludovic

    2015-01-01

    This work focuses on the development of a chromatographic separation method coupled to both ESI-MS and ICP-MS in order to achieve the comprehensive speciation analysis of lanthanides in aqueous phase representative of back-extraction phases of advanced spent nuclear fuel treatment processes. This analytical method allowed the separation, the characterization and the quantitation of lanthanides complexes holding poly-aminocarboxylic ligands, such as DTPA and EDTA, used as complexing agents in these processes. A HILIC separation method of lanthanides complexes has been developed with an amide bonded stationary phase. A screening of a wide range of mobile phase compositions demonstrated that the adsorption mechanism was predominant. This screening allowed also obtaining optimized separation conditions. Faster analysis conditions with shorter amide column packed with sub 2 μm particles reduced analysis time by 2.5 and 25% solvent consumption. Isotopic and structural characterization by HILIC ESI-MS was performed as well as the development of external calibration quantitation method. Analytical performances of quantitation method were determined. Finally, the development of the HILIC coupling to ESI-MS and ICP-MS was achieved. A simultaneous quantitation method by ESI-MS and ICP-MS was performed to determine the species quantitative distribution in solution. Analytical performances of quantitation method were also determined. (author) [fr

  7. Chromatographic determination of silicon and phosphorus as molybdic heteropoly acids with preconcentration

    International Nuclear Information System (INIS)

    Tikhomirova, T.I.; Krokhin, O.V.; Dubovik, D.B.; Ivanov, A.V.; Shpigun, O.A.

    2002-01-01

    Chromatographic behaviour of silicon and phosphorus as molybdic heteropoly acids with preconcentration as ion associations of heteropoly acid with tributylammonium bromide was studied. The technique of simultaneous analysis of silicon and phosphorus was developed. During investigation into the effect of acetonitril content in the probe on the form of chromatographic peak of molybdosilicic acid the negative influence of acetonitril on the form of peak was ascertained. This effect may be eliminated by the lowering of acetonitril content up to 50 %. It was found that under these conditions the chromatographic peak practically was absent, because of the heteropoly acid of the Mo(VI) abundance transformed in the MoO 2 2+ cation form without reaction with tributylammonium cation during concentration of heteropoly acid [ru

  8. Adsorption onto activated carbons in environmental engineering: some trends in water and air treatment processes

    Energy Technology Data Exchange (ETDEWEB)

    Le Cloirec, P. [Ecole des Mines de Nantes, UMR CNRS 6144 GEPEA, 44 (France)

    2005-07-01

    Full text of publication follows: Adsorption is commonly used in environmental protection processes and particularly in water and air treatment systems. Organic pollutants in aqueous or gaseous phases are transferred and adsorbed onto porous materials. Activated carbon (powder, grains) treatment is usually carried out and filters are used to eliminate volatile organic compounds (VOC), odors or micropollutants. The main objectives of this paper are to present examples of classical or new activated carbon processes used in drinking water production, wastewater purification or in air treatment in terms of processes, performances and modeling. - Water treatment: Micropollutants such as pesticides, herbicides... are classically removed by activated carbon granular systems in drinking water treatment plants. In order to get a good water quality and to safe money, the breakthrough time has to be accurately determined. Models with mass balance and transfer equations are proposed. However, some difficulties are found especially for complex solutions to get good agreement between experimental data and calculated values. A statistical approach using neural networks is proposed to simulate breakthrough curves. Examples are presented and compared to deterministic models. In order to intensify processes, a combination of ultrafiltration and activated carbon fiber cloth (ACFC) is presented to remove the large spectra of particles and organic molecules present in water. Systems (UF/ACFC) for surface water and industrial colored wastewater are applied and performances are determined as a function of operating conditions. - Air treatment: Activated carbon grain filters are used to control VOC emissions. Due to an exothermic reaction, an increase of local temperature in the reactor is noted and some fire accidents have been reported. For safety technologies, this temperature has to be previously determined. A model is proposed to simulate the breakthrough curves and temperatures

  9. Adsorption onto activated carbons in environmental engineering: some trends in water and air treatment processes

    International Nuclear Information System (INIS)

    Le Cloirec, P.

    2005-01-01

    Full text of publication follows: Adsorption is commonly used in environmental protection processes and particularly in water and air treatment systems. Organic pollutants in aqueous or gaseous phases are transferred and adsorbed onto porous materials. Activated carbon (powder, grains) treatment is usually carried out and filters are used to eliminate volatile organic compounds (VOC), odors or micropollutants. The main objectives of this paper are to present examples of classical or new activated carbon processes used in drinking water production, wastewater purification or in air treatment in terms of processes, performances and modeling. - Water treatment: Micropollutants such as pesticides, herbicides... are classically removed by activated carbon granular systems in drinking water treatment plants. In order to get a good water quality and to safe money, the breakthrough time has to be accurately determined. Models with mass balance and transfer equations are proposed. However, some difficulties are found especially for complex solutions to get good agreement between experimental data and calculated values. A statistical approach using neural networks is proposed to simulate breakthrough curves. Examples are presented and compared to deterministic models. In order to intensify processes, a combination of ultrafiltration and activated carbon fiber cloth (ACFC) is presented to remove the large spectra of particles and organic molecules present in water. Systems (UF/ACFC) for surface water and industrial colored wastewater are applied and performances are determined as a function of operating conditions. - Air treatment: Activated carbon grain filters are used to control VOC emissions. Due to an exothermic reaction, an increase of local temperature in the reactor is noted and some fire accidents have been reported. For safety technologies, this temperature has to be previously determined. A model is proposed to simulate the breakthrough curves and temperatures

  10. Water adsorption isotherms and thermodynamic properties of cassava bagasse

    International Nuclear Information System (INIS)

    Polachini, Tiago Carregari; Betiol, Lilian Fachin Leonardo; Lopes-Filho, José Francisco; Telis-Romero, Javier

    2016-01-01

    Highlights: • Adsorption isotherms and composition of cassava bagasse were determined. • GAB equation was the best-fitted model to sorption data of type II isotherm. • Isosteric heat of sorption was calculated in a range of equilibrium moisture content. • Differential enthalpy and entropy confirmed the isokinetic compensation theory. • Water adsorption by cassava bagasse is considered an enthalpy driven process. - Abstract: Losses of food industry are generally wet products that must be dried to posterior use and storage. In order to optimize drying processes, the study of isotherms and thermodynamic properties become essential to understand the water sorption mechanisms of cassava bagasse. For this, cassava bagasse was chemically analyzed and had its adsorption isotherms determined in the range of 293.15–353.15 K through the static gravimetric method. The models of GAB, Halsey, Henderson, Oswin and Peleg were fitted, and best adjustments were found for GAB model with R"2 > 0.998 and no pattern distribution of residual plots. Isosteric heat of adsorption and thermodynamic parameters could be determined as a function of moisture content. Compensation theory was confirmed, with linear relationship between enthalpy and entropy and higher values of isokinetic temperature (T_B = 395.62 K) than harmonic temperature. Water adsorption was considered driven by enthalpy, clarifying the mechanisms of water vapor sorption in cassava bagasse.

  11. Investigation kinetics mechanisms of adsorption malachite green onto activated carbon

    International Nuclear Information System (INIS)

    Onal, Y.; Akmil-Basar, C.; Sarici-Ozdemir, C.

    2007-01-01

    Lignite was used to prepare activated carbon (T3K618) by chemical activation with KOH. Pore properties of the activated carbon such as BET surface area, pore volume, pore size distribution, and pore diameter were characterized by t-plot based on N 2 adsorption isotherm. BET surface area of activated carbon is determined as 1000 m 2 /g. Adsorption capacity of malachite green (MG) onto T3K618 activated carbon was investigated in a batch system by considering the effects of various parameters like initial concentration (100, 150 and 200 mg/L) and temperature (25, 40 and 50 deg. C). The adsorption process was relatively fast and equilibrium was reached after about 20 min for 100, 150 mg/L at all adsorption temperature. Equilibrium time for 200 mg/L was determined as 20 min and 40 min at 298, 313 and 323 K, respectively. Simple mass and kinetic models were applied to the experimental data to examine the mechanisms of adsorption and potential rate controlling steps such as external mass transfer, intraparticle diffusion. Pseudo second-order model was found to explain the kinetics of MG adsorption most effectively. It was found that both mass transfer and pore diffusion are important in determining the adsorption rates. The intraparticle diffusion rate constant, external mass transfer coefficient, film and pore diffusion coefficient at various temperatures were evaluated. The activation energy (E a ) was determined as 48.56, 63.16, 67.93 kJ/mol for 100, 150, 200 mg/L, respectively. The Langmiur and Freundlich isotherm were used to describe the adsorption equilibrium studies at different temperatures. Langmiur isotherm shows better fit than Freundlich isotherm in the temperature range studied. The thermodynamic parameters, such as ΔG o , ΔS and ΔH o were calculated. The thermodynamics of dyes-T3K618 system indicates endothermic process

  12. Integration of coagulation and adsorption for removal of N-nitrosodimethylamine (NDMA) precursors from biologically treated municipal wastewater.

    Science.gov (United States)

    Wang, Miaomiao; Meng, Yingjie; Ma, Defang; Wang, Yan; Li, Fengli; Xu, Xing; Xia, Chufan; Gao, Baoyu

    2017-05-01

    This study investigated the N-nitrosodimethylamine (NDMA) formation potential of various dissolved organic matter (DOM) fractions in biologically treated municipal wastewater by UF fractionation, XAD-8 resin adsorption isolation, and excitation and emission matrix (EEM) fluorescence spectroscopy. Removal of various NDMA precursor fractions was also analyzed to evaluate the efficiency of traditional water treatment processes (coagulation, adsorption, and coagulation-adsorption). Results showed that NDMA were mainly formed by low molecular weight (MW) fractions (NDMA formation potential (57%), followed by isolated adsorption treatment (50%) and isolated coagulation treatment (28%). The powdered activated carbon (PAC) adsorption process could reduce the high MW precursors (>30 kDa) by 48%, which was higher than other treatments. In contrast, the highest uptake (66%) of low MW precursors (<30 kDa) was achieved by the coagulation-adsorption process. All treatments preferentially removed the hydrophobic acids (HoA) fraction compared to other fractions. Coagulation could remove more fulvic acid-like substances and adsorption could remove more microbial by-products and aromatic proteins.

  13. Removal of furan and phenolic compounds from simulated biomass hydrolysates by batch adsorption and continuous fixed-bed column adsorption methods.

    Science.gov (United States)

    Lee, Sang Cheol; Park, Sunkyu

    2016-09-01

    It has been proposed to remove all potential inhibitors and sulfuric acid in biomass hydrolysates generated from dilute-acid pretreatment of biomass, based on three steps of sugar purification process. This study focused on its first step in which furan and phenolic compounds were selectively removed from the simulated hydrolysates using activated charcoal. Batch adsorption experiments demonstrated that the affinity of activated charcoal for each component was highest in the order of vanillic acid, 4-hydroxybenzoic acid, furfural, acetic acid, sulfuric acid, and xylose. The affinity of activated charcoal for furan and phenolic compounds proved to be significantly higher than that of the other three components. Four separation strategies were conducted with a combination of batch adsorption and continuous fixed-bed column adsorption methods. It was observed that xylose loss was negligible with near complete removal of furan and phenolic compounds, when at least one fixed-bed column adsorption was implemented in the strategy. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Chromatographic characterisation, in vitro antioxidant and free ...

    African Journals Online (AJOL)

    Chromatographic fractionation and spectroscopic analysis of the ME4 fraction revealed the presence of four compounds namely garcinia biflavonoids GB1 and GB2, garcinal and garcinoic acid. These findings show that these four compounds are partly responsible for the great antioxidant potential of G. kola seeds.

  15. Heavy metal ion adsorption behavior in nitrogen-doped magnetic carbon nanoparticles: Isotherms and kinetic study

    International Nuclear Information System (INIS)

    Shin, Keun-Young; Hong, Jin-Yong; Jang, Jyongsik

    2011-01-01

    Graphical abstract: Display Omitted Research highlights: → The monodisperse and multigram-scale N-MCNPs are fabricated by carbonization of polypyrrole as a carbon precursor. → The synthesized N-MCNPs provide an enhanced adsorption uptake for various heavy metal ions. → The N-MCNPs can be applied to the Langmuir model and pseudo-second-order kinetics. → The iron-impregnated N-MCNPs are reused up to 5 times with no loss of removal efficiency. - Abstract: To clarify the heavy metal adsorption mechanism of nitrogen-doped magnetic carbon nanoparticles (N-MCNPs), adsorption capacity was investigated from the adsorption isotherms, kinetics and thermodynamics points of view. The obtained results showed that the equilibrium adsorption behavior of Cr 3+ ion onto the N-MCNPs can be applied to the Langmuir model and pseudo-second-order kinetics. It indicated that the fabricated N-MCNPs had the homogenous surface for adsorption and all adsorption sites had equal adsorption energies. Furthermore, the adsorption onto N-MCNPs taken place through a chemical process involving the valence forces. According to the thermodynamics, the adsorption process is spontaneous and endothermic in nature which means that the adsorption capacity increases with increasing temperature due to the enhanced mobility of adsorbate molecules. The effects of the solution pH and the species of heavy metal ion on the adsorption uptake were also studied. The synthesized N-MCNPs exhibited an enhanced adsorption capacity for the heavy metal ions due to the high surface area and large amount of nitrogen contents.

  16. Kinetics and equilibrium adsorption studies of dimethylamine (DMA) onto ion-exchange resin

    International Nuclear Information System (INIS)

    Hu Qinhai; Meng Yuanyuan; Sun Tongxi; Mahmood, Qaisar; Wu Donglei; Zhu Jianhang; Lu, George

    2011-01-01

    The fine grained resin ZGSPC106 was used to adsorb dimethylamine (DMA) from aqueous solution in the present research. Batch experiments were performed to examine the effects of initial pH of solution and agitation time on the adsorption process. The thermodynamics and kinetics of adsorption were also analyzed. The maximum adsorption was found at natural pH of DMA solution and equilibrium could be attained within 12 min. The equilibrium adsorption data were conformed satisfactorily to the Langmuir equation. The evaluation based on Langmuir isotherm gave the maximal static saturated adsorption capacity of 138.89 mg/g at 293 K. Various thermodynamic parameters such as free energy (ΔG o ), enthalpy (ΔH o ) and entropy (ΔS o ) showed that the adsorption was spontaneous, endothermic and feasible. DMA adsorption on ZGSPC106 fitted well to the pseudo-second-order kinetic model. Furthermore, the adsorption mechanism was discussed by Fourier transform infrared spectroscopy (FT-IR) analysis.

  17. Treatment of aqueous diethyl phthalate by adsorption using a functional polymer resin.

    Science.gov (United States)

    Xu, Zhengwen; Zhang, Weiming; Pan, Bingcai; Lv, Lu; Jiang, Zhengmao

    2011-01-01

    To study the adsorptive separation efficiency, adsorption and desorption performances of diethyl phthalate (DEP) were investigated with a functional polymer resin (NDA-702). A macroporous polymer resin (XAD-4) and a coal-based granular activated carbon (AC-750) were chosen for comparison. The kinetic adsorption data obeyed the pseudo-second-order rate model, and the adsorption processes were limited by both film and intraparticle diffusions. Adsorption equilibrium data were well fitted by the Freundlich equation, and the larger uptake and higher selection of NDA-702 than AC-750 and XAD-4 was probably due to the microporous structure, phenyl rings and polar groups on NDA-702. Thermodynamic adsorption studies indicated that the test adsorbents spontaneously adsorbed DEP, driven mainly by enthalpy change. Continuous fixed-bed runs demonstrated that there no significant loss of the resin's adsorption capacity and there was complete regeneration of NDA-702. The results suggest that NDA-702 has excellent potential as an adsorption material for water treatment.

  18. Gas-chromatographic separation of hydrogen isotopic mixtures

    International Nuclear Information System (INIS)

    Preda, Anisoara; Bidica, Nicolae

    2005-01-01

    Full text: Gas chromatographic separation of hydrogen isotopes have been reported in the literature since late of 1950's. Gas chromatography is primarily an analytical method, but because of its properties it may be used in many other fields with excellent results. A simple method is proposed for the gas-chromatographic analysis of complex gas mixtures containing hydrogen isotopes; the method is based on the substantial difference in the thermal conductivity of these isotopes. One of the main disadvantages of the conventional gas chromatography is the long retention times required for the analysis of hydrogen gas mixtures while the column is operated at very low temperature. The method described in this paper was based on using a capillary molecular sieve 5A column operated for this kind of separation at 173 K. The carrier gas was Ne and the detector was TCD. In the paper chromatograms for various carrier flow rates and various hydrogen isotope mixtures are presented. (authors)

  19. [Study on treatment of methylene blue wastewater by fly ash adsorption-Fenton and thermal regeneration].

    Science.gov (United States)

    Bai, Yu-Jie; Zhang, Ai-Li; Zhou, Ji-Ti

    2012-07-01

    The physicochemical properties of water-washed fly ash (FA) and acid modified fly ash (M-FA) were investigated. The adsorption of methylene blue by FA and M-FA were studied by batch experiments. Two methods, Fenton-drive oxidation regeneration and thermal regeneration, were used for regeneration of the used FA and M-FA. The result showed that the rate of adsorption process followed the second order kinetics and the adsorption followed Langmuir isotherms. The adsorption equilibrium time was 30 min, and the equilibrium adsorption capacity of FA and M-FA were 4.22 mg x g(-1) and 5.98 mg x g(-1) respectively. The adsorption capability of M-FA was higher than that of FA. In the range of pH 2-12, the adsorption capacity of M-FA increased with the increase of pH, whereas the adsorption capacity of FA decreased slowly until the pH 8 and then increased. Electrostatic adsorption was the major factor on the adsorption capacity. Around 61% and 55% percentage regeneration (PR) were obtained for FA and M-FA respectively when 78.4 mmol x L(-1) H2O2 and 0.72 mmol x L(-1) Fe2+ were used. When the condition of thermal regeneration was 400 degrees C and 2 h, a positive correlation can be found between the PRs of FA and regeneration times, the PRs were 102%, 104% and 107% in three cycles of adsorption-thermal regeneration process. However a negative correlation can be found between the PRs of M-FA and regeneration times, the PRs were 82%, 75% and 74% in three cycles of adsorption-thermal regeneration process. The PR of FA was higher than that of M-FA, and thermal regeneration was superior to Fenton-drive regeneration.

  20. [A peak recognition algorithm designed for chromatographic peaks of transformer oil].

    Science.gov (United States)

    Ou, Linjun; Cao, Jian

    2014-09-01

    In the field of the chromatographic peak identification of the transformer oil, the traditional first-order derivative requires slope threshold to achieve peak identification. In terms of its shortcomings of low automation and easy distortion, the first-order derivative method was improved by applying the moving average iterative method and the normalized analysis techniques to identify the peaks. Accurate identification of the chromatographic peaks was realized through using multiple iterations of the moving average of signal curves and square wave curves to determine the optimal value of the normalized peak identification parameters, combined with the absolute peak retention times and peak window. The experimental results show that this algorithm can accurately identify the peaks and is not sensitive to the noise, the chromatographic peak width or the peak shape changes. It has strong adaptability to meet the on-site requirements of online monitoring devices of dissolved gases in transformer oil.