WorldWideScience

Sample records for adsorption air purification

  1. Hydrogen purification by periodic adsorption

    Energy Technology Data Exchange (ETDEWEB)

    Barg, Christian; Secchi, Argimiro R.; Trierweiler, Jorge O. [Rio Grande do Sul Univ., Porto Alegre, RS (Brazil). Dept. de Engenharia Quimica]. E-mail: cbarg@enq.ufrgs.br; arge@enq.ufrgs.br; jorge@enq.ufrgs.br

    2000-07-01

    The periodic adsorption processes have been widely used for industrial applications, mainly because it spends less energy than the usual gas separation processes, like the cryogenic distillation. The largest commercial application of periodic adsorption processes is the pressure swing adsorption (PSA) applied to hydrogen purification. Although its wide use in the chemical and petrochemical industry, there are no reports in the open literature about complete modeling studies of a complex commercial unit, with multiple adsorbents and multiple beds and several feed components. This study has as objective the modeling, optimization and dynamical analysis of an industrial PSA unit for hydrogen purification. (author)

  2. Highly efficient indoor air purification using adsorption-enhanced-photocatalysis-based microporous TiO2 at short residence time.

    Science.gov (United States)

    Lv, Jinze; Zhu, Lizhong

    2013-01-01

    A short residence time is a key design parameter for the removal of organic pollutants in catalyst-based indoor air purification systems. In this study, we synthesized a series of TiO2 with different micropore volumes and studied their removal efficiency of indoor carbonyl pollutants at a short residence time. Our results indicated that the superior adsorption capability of TiO2 with micropores improved its performance in the photocatalytic degradation of cyclohexanone, while the photocatalytic removal of the pollutant successfully kept porous TiO2 from becoming saturated. When treated with 1 mg m(-3) cyclohexanone at a relatively humidity of 18%, the adsorption amount on microporous TiO2 was 5.4-7.9 times higher than that on P25. Removal efficiency via photocatalysis followed'the same order as the adsorption amount: TiO2-5 > TiO2-20 > TiO2-60 > TiO2-180 > P25. The advantage of microporous TiO2 over P25 became more pronounced when the residence time declined from 0.072 to 0.036 s. Moreover, as the concentration of cyclohexanone deceased from 1000 ppb to 500 ppb, removal efficiency by microporous TiO2 increased more rapidly than P25.

  3. Air/Water Purification

    Science.gov (United States)

    1992-01-01

    After 18 years of research into air/water pollution at Stennis Space Center, Dr. B. C. Wolverton formed his own company, Wolverton Environmental Services, Inc., to provide technology and consultation in air and water treatment. Common houseplants are used to absorb potentially harmful materials from bathrooms and kitchens. The plants are fertilized, air is purified, and wastewater is converted to clean water. More than 100 U.S. communities have adopted Wolverton's earlier water hyacinth and artificial marsh applications. Catfish farmers are currently evaluating the artificial marsh technology as a purification system.

  4. Effects of Gas-Phase Adsorption air purification on passengers and cabin crew in simulated 11-hour flights

    DEFF Research Database (Denmark)

    Strøm-Tejsen, Peter; Zukowska, Daria; Fang, Lei

    2006-01-01

    In a 3-row, 21-seat section of a simulated aircraft cabin that had been installed in a climate chamber, 4 groups of 17 subjects, acting as passengers and crew, took part in simulated 11-hour flights. Each group experienced 4 conditions in balanced order, defined by two outside air supply rates (2.......4 and 3.3 L/s per person), with and without a Gas-Phase Adsorption (GPA) unit in the re-circulated air system. Objective physical and physiological measurements and subjective human assessments of symptom intensity were obtained. The GPA unit provided advantages with no apparent disadvantages....

  5. Radiation-adsorption purification of effluents containing pesticides

    International Nuclear Information System (INIS)

    Brusentseva, S.A.; Shubin, V.N.; Nikonorova, G.K.; Zorin, D.M.; Sosnovskaya, A.A.; Petryaev, E.P.; Vlasova, V.I.; Edimicheva, I.P.; Subbotina, N.N.; Belorusskij Gosudarstvennyj Univ., Minsk)

    1986-01-01

    The radiation-adsorption purification is one of the new direction in the radiation purification of natural wastes and effluents containing pesticides. This method combines the conventional adsorption purification with radiation treatment of the sorbent, and the result the protection time of the sorbent increases due to the radiation regeneration of carbon. In present work the method was used for purification of effluents from pesticides, such as 4,4'Dichlorodiphenyltrichloroethane /DDT/, 1,2,3,4,5,6-hexachlorocyclohexane /HCCH/, dimethyl 2,2-dichlorovinylphosphate /DDVF/ and petroleum products (a mixture of kerosene and xylene in ratio 7:1). Such effluents are formed at factories producing an insecticide aerosol 'Prime-71'. Three investigations were carried out on model with a solution similar composition to industrial effluents. (author)

  6. Photocatalytic materials and technologies for air purification.

    Science.gov (United States)

    Ren, Hangjuan; Koshy, Pramod; Chen, Wen-Fan; Qi, Shaohua; Sorrell, Charles Christopher

    2017-03-05

    Since there is increasing concern for the impact of air quality on human health, the present work surveys the materials and technologies for air purification using photocatalytic materials. The coverage includes (1) current photocatalytic materials for the decomposition of chemical contaminants and disinfection of pathogens present in air and (2) photocatalytic air purification systems that are used currently and under development. The present work focuses on five main themes. First, the mechanisms of photodegradation and photodisinfection are explained. Second, system designs for photocatalytic air purification are surveyed. Third, the photocatalytic materials used for air purification and their characteristics are considered, including both conventional and more recently developed photocatalysts. Fourth, the methods used to fabricate these materials are discussed. Fifth, the most significant coverage is devoted to materials design strategies aimed at improving the performance of photocatalysts for air purification. The review concludes with a brief consideration of promising future directions for materials research in photocatalysis. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Rotary adsorbers for waste air purification and solvent recovery

    International Nuclear Information System (INIS)

    Konrad, G.; Eigenberger, G.

    1994-01-01

    Rotary Adsorbers for Waste Air Purification and Solvent Recovery. Thanks to their compact construction and low pressure drops, adsorbers with rotating adsorbent beds are highly suitable both for retrofitting of waste air purification units and generally for the removal of absorbable components from gas streams. When used in conjunction with straightforward hot gas desorption they permit almost complete purification of gas flows with concomitant concentration of the separated components in the desorbate by a factor of 10 to 20. They can also be used in conjunction with recovery of the separated components by partial condensation of the desorbate. Owing to the fixed coupling of adsorption and desorption times, which is determined by the geometry of the unit, the behaviour of the system is distinctly different from that of conventional multiple bed systems in cyclic operation. A detailed model description and computer simulation of operating behaviour are particularly useful for their analysis. It is shown that the behaviour of commercially available rotor concepts can be much better understood in this way and new concepts for exhaust air purification with integrated solvent recovery can be developed which are characterised by significantly reduced energy requirements for desorption and condensation. (orig.) [de

  8. Effects of Humidity Swings on Adsorption Columns for Air Revitalization: Modeling and Experiments

    Science.gov (United States)

    LeVan, M. Douglas; Finn, John E.

    1997-01-01

    Air purification systems are necessary to provide clean air in the closed environments aboard spacecraft. Trace contaminants are removed using adsorption. One major factor concerning the removal of trace contaminants is relative humidity. Water can reduce adsorption capacity and, due to constant fluctuations, its presence is difficult to incorporate into adsorption column designs. The purpose of the research was to allow for better design techniques in trace contaminant adsorption systems, especially for feeds with water present. Experiments and mathematical modeling research on effects of humidity swings on adsorption columns for air revitalization were carried out.

  9. A low inventory adsorptive process for tritium extraction and purification

    International Nuclear Information System (INIS)

    Keefer, B.; Bora, B.; Chew, M.; Rump, M.; Kveton, O.K.

    1990-08-01

    The fuel cycles of future fusion power systems present a diverse spectrum of challenges to gas separation technology, for extraction, concentration, purification and confinement of tritium in fusion fuel cycles. Economic and safety factors motivate process design for minimum tritium inventory, functional simplicity, and overall reliability. A new gas separation process with some features of interest to fusion has been demonstrated under the auspices of the Canadian Fusion Fuels Technology Project. This process (Thermally Coupled Pressure Swing Adsorption or 'TCPSA') is potentially applicable to several fusion applications for separation purification of hydrogen, notably for tritium extraction from breeder blanket purge helium. Recent experimental tests have been directed toward fusion applications, primarily extraction and concentration of tritium-rich hydrogen from the blanket purge helium stream, and also considering purification of this and other hydrogen isotope streams such as the plasma exhaust. For example, hydrogen at 0.1% concentration in helium has been extracted in a TCPSA module operating at 195 K, with the process performed in a single working space to achieve simultaneous high extraction and concentration of the hydrogen. With methane or carbon oxides as the impurities, substantially complete separation is achieved by the same apparatus at ambient temperature. Engineering projections for scale-up to ITER blanket purge extraction and purification applications indicate a low working inventory of tritium

  10. Research progress of novel adsorption processes in water purification:A review

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    As an effective, efficient, and economic approach for water purification, adsorbents and adsorption processes have been widely studied and applied in different aspects for a long time. In the recent years, a lot of novel adsorption processes have been developed for enhancing the efficiency of removing the organic and inorganic contaminants from water. This article reviews some new adsorbents and advanced adsorption methods that specialize in their compositions, structures, functions, and characteristics used in water treatment. The review emphasizes adsorption/catalytic oxidation process, adsorption/catalytic reduction process, adsorption coupled with redox process, biomimetic sorbent and its sorption behaviors of POPs, and modified adsorbents and their water purification efficiency.

  11. The Viability of Photocatalysis for Air Purification

    Directory of Open Access Journals (Sweden)

    Stephen O. Hay

    2015-01-01

    Full Text Available Photocatalytic oxidation (PCO air purification technology is reviewed based on the decades of research conducted by the United Technologies Research Center (UTRC and their external colleagues. UTRC conducted basic research on the reaction rates of various volatile organic compounds (VOCs. The knowledge gained allowed validation of 1D and 3D prototype reactor models that guided further purifier development. Colleagues worldwide validated purifier prototypes in simulated realistic indoor environments. Prototype products were deployed in office environments both in the United States and France. As a result of these validation studies, it was discovered that both catalyst lifetime and byproduct formation are barriers to implementing this technology. Research is ongoing at the University of Connecticut that is applicable to extending catalyst lifetime, increasing catalyst efficiency and extending activation wavelength from the ultraviolet to the visible wavelengths. It is critical that catalyst lifetime is extended to realize cost effective implementation of PCO air purification.

  12. Microwave Regenerable Air Purification Device

    Science.gov (United States)

    Atwater, James E.; Holtsnider, John T.; Wheeler, Richard R., Jr.

    1996-01-01

    The feasibility of using microwave power to thermally regenerate sorbents loaded with water vapor, CO2, and organic contaminants has been rigorously demonstrated. Sorbents challenged with air containing 0.5% CO2, 300 ppm acetone, 50 ppm trichloroethylene, and saturated with water vapor have been regenerated, singly and in combination. Microwave transmission, reflection, and phase shift has also been determined for a variety of sorbents over the frequency range between 1.3-2.7 GHz. This innovative technology offers the potential for significant energy savings in comparison to current resistive heating methods because energy is absorbed directly by the material to be heated. Conductive, convective and radiative losses are minimized. Extremely rapid heating is also possible, i.e., 1400 C in less than 60 seconds. Microwave powered thermal desorption is directly applicable to the needs of Advance Life Support in general, and of EVA in particular. Additionally, the applicability of two specific commercial applications arising from this technology have been demonstrated: the recovery for re-use of acetone (and similar solvents) from industrial waste streams using a carbon based molecular sieve; and the separation and destruction of trichloroethylene using ZSM-5 synthetic zeolite catalyst, a predominant halocarbon environmental contaminant. Based upon these results, Phase II development is strongly recommended.

  13. Separation and purification of rebaudioside A from extract of Stevia Rebaudiana leaves by macroporous adsorption resins

    Directory of Open Access Journals (Sweden)

    Anvari Masoumeh

    2016-03-01

    Full Text Available The separation and purification of rebaudioside A from Stevia rebaudiana crude extracts (Steviosides by macroporous resin were optimized by Taguchi orthogonal array (OA experimental design methodology. This approach was applied to evaluate the influence of five factors (adsorption temperature, desorption time, elution solution ratio, adsorption volume and type of resin on the rebaudioside A yield. The percentage contribution of each factor was also determined. The results showed that elution solution ratio and adsorption volume made the greatest (59.6% and the lowest (1.3% contribution, respectively. The results showed that the Taguchi method is able to model the purification of rebaudioside A process well (R2 > 0.998 and can therefore be applied in future studies conducted in various fields. Adsorption temperature 35°C, desorption time 60min, elution solution ratio 3, adsorption volume 200ml and HPD-400 as resin were the best conditions determined by the Taguchi method.

  14. Adsorption purification of helium coolant of high-temperature gas-cooled reactors of carbon dioxide

    International Nuclear Information System (INIS)

    Varezhkin, A.V.; Zel'venskij, Ya.D.; Metlik, I.V.; Khrulev, A.A.; Fedoseenkin, A.N.

    1986-01-01

    A series experiments on adsorption purification of helium of CO 2 using national adsorbent under the conditions characteristic of HTGR type reactors cleanup system is performed. The experimnts have been conducted under the dynamic mode with immobile adsorbent layer (CaA zeolite) at gas flow rates from 0,02 to 0,055 m/s in the pressure range from 0,8 to 5 MPa at the temperature of 273 and 293 K. It is shown that the adsorption grows with the decrease of gas rate, i.e. with increase of contact time with adsorbent. The helium pressure, growth noticeably whereas the temperature decrease from 293 to 273 K results in adsorption 2,6 times increase. The conclusion is drawn that it is advisable drying and purification of helium of CO 2 to perform separately using different zeolites: NaA - for water. CaA - for CO 2 . Estimations of purification unit parameters are realized

  15. Purification Simulation With Vapor Permeation and Distillation-Adsorption In Bioethanol Plant

    OpenAIRE

    Misri Gozan; Mia Sari Setiawan; Kenny Lischer

    2017-01-01

    High purity of Bioethanol is required in biofuel mixing with gasoline (EXX). In bioethanol production line, the azeotropic property of ethanol-water becomes the barrier for purification process. This study examined two bioethanol separation processes by support of simulation tools, Superpro Designer 9.0 software. Ethanol purity and a low costeconomical process were the major considerations. Purification method of vapor permeation membrane technology was compared with distillation-adsorption m...

  16. CARBON ADSORPTION FOR INDOOR AIR CLEANING

    Science.gov (United States)

    The paper discusses the use of carbon adsorption for indoor air cleaning, focusing on the removal of volatile organic compounds (VOCs) using granular activated carbon (GAC). It addresses GAC performance in two directions. Initially, it presents performance measurements for GAC at...

  17. Adsorption performance of titanium dioxide (TiO2) coated air filters for volatile organic compounds.

    Science.gov (United States)

    Zhong, Lexuan; Lee, Chang-Seo; Haghighat, Fariborz

    2012-12-01

    The photocatalytic oxidation (PCO) technology as an alternative method for air purification has been studied for decades and a variety of PCO models indicate that the adsorption of reactants on the catalyst surface is one of the major physical and chemical processes occurring at a heterogeneous photocatalytic reaction. However, limited study explored the adsorption effect of a photocatalyst. This study carried out a systematic evaluation of adsorption performance of titanium dioxide (TiO(2)) coated fiberglass fibers (FGFs), TiO(2) coated carbon cloth fibers (CCFs), and original CCFs air filters at various relative humidity conditions for nine volatile organic compounds. TiO(2)/FGFs, TiO(2)/CCFs, and CCFs were characterized by SEM for morphology and N(2) adsorption isotherm for BET surface area and pore structure. A bench-scale adsorption test setup was constructed and adsorption tests were performed at various relative humidity conditions and four different injected concentrations for each compound. The isothermal adsorption curves at low concentration levels were obtained and they were well described by Langmuir isotherm model. It was noticed that there were significant differences between the adsorption behaviors and photocatalytic activities of TiO(2)/FGFs and TiO(2)/CCFs. It was concluded that adsorption performance is closely related to the characteristics of substrates and therefore, the development of a substrate with high adsorption ability is a promising trend for improving the performance of the UV-PCO technology. Copyright © 2012 Elsevier B.V. All rights reserved.

  18. Experimental investigation of CO_2 separation by adsorption methods in natural gas purification

    International Nuclear Information System (INIS)

    Chen, S.J.; Fu, Y.; Huang, Y.X.; Tao, Z.C.; Zhu, M.

    2016-01-01

    Highlights: • The ideal swing adsorption tank can improve the adsorption performance. • Pure CO_2 adsorption experimental data agrees well with extended Langmuir model. • Langmuir-Freundlich model correlates CO_2/CH_4 mixture adsorption data fairly well. • The temperature increases in the order swing 2 > swing1 > static for pure CO_2 adsorption. • Swinging the adsorption tank can improve the separation efficiency. - Abstract: CO_2 separation for natural gas purification by the adsorption method was studied in detail using volumetric adsorption apparatus. The crystalline phase and microstructure of the experimental sample were analyzed using X-ray diffraction (XRD), scanning electron microscopy (SEM) and Micromeritics ASAP 2020 instrument. The XRD pattern proves that the experimental sample consists of 13X zeolites. The SEM images show that the 13X zeolites expose a large number of micro-channels on the surface of the particles. The microporous volume is 0.22 cm"3 (STP)/g. The ideal swing frequency for the adsorption tank can improve the adsorption performance of an adsorbent compared with a static adsorption tank. The pure CO_2 adsorption experimental data agrees well with the extended Langmuir model. The Langmuir-Freundlich model correlates the CO_2/CH_4 mixture adsorption experimental data fairly well. The relative errors between the simulated results and the experimental data are very little, which indicates that these fitted models are correct. The average selectivity of CO_2/CH_4 in a static and swing adsorption tank are, respectively, 3.57 and 3.93, considerably higher than 1, indicating preferential CO_2 adsorption over CH_4 in CO_2/CH_4 mixtures. This also shows that the swing can improve CO_2 separation for natural gas purification. For the three types of motion status, the temperature of the adsorption tank increased in the order swing 2 > swing1 > static state for pure CO_2 adsorption in 13X zeolites. The temperature variation decreased as the

  19. A programmable air sampler with adsorption tubes

    International Nuclear Information System (INIS)

    Riesing, J.; Roetzer, H.; Hick, H.

    1997-01-01

    The Air Sampler AS3 was utilized for the European Tracer Experiment (ETEX) to measure the concentrations of the perfluorocarbon tracers. At thirty-two sampling points these devices were placed to collect the tracer substances in adsorption tubes for subsequent laboratory analysis in the Environment Institute of the JRC Ispra. The Air Sampler is also suitable for monitoring the environment, particularly of industrial emitters or landfills, by sampling of volatile substances. The Air Sampler AS3 is a portable, user-friendly instrument due to light weight, ruggedness and reliable operation. It is capable of fully automatic sampling of air and gas with 24 adsorption tubes and program-controlled gas flow. Collection times can be programmed freely between 1 sec and 8 days and waiting times between 1 sec and 30 days. Programming is possible via keyboard, memory card or serial interface. A protocol of sampling control data is stored on a memory card giving documentation of sampling conditions. On the memory card there is space for the storage of 10 sampling programs and 10 sets of sampling control data. Before the start of ETEX the AS3 was used in a measurement campaign to measure the background concentrations of the perfluorocarbon tracers in Austria. In the provinces of Upper Austria and Salzburg the Air Sampler is used by the departments for environmental protection for the monitoring of BTX-concentrations in air. (author)

  20. Plasma exhaust purification by thermal swing adsorption: Experimental results and modeling

    International Nuclear Information System (INIS)

    Ricapito, I.; Malara, R.C.

    1996-01-01

    For several years at the Joint Research Centre-Ispra laboratories, cyclic adsorption processes have been developed for the purification of the plasma exhaust stream of a deuterium-tritium fusion reactor. A purification process consisting of two coupled thermal swing adsorption systems seemed to be the most convenient process. In this context, a screening study was carried out to select the most suitable adsorbent materials and appropriate working temperatures. This was mainly done by experimental measurements of adsorption isotherms of the single components of the plasma exhaust stream and by a careful evaluation of the multicomponent adsorption equilibria. Experiments on adsorption dynamics were carried out in a pilot plant to demonstrate the feasibility and to evaluate the performance of the process. The experimental apparatus was designed to treat gas mixture flow rates up to 20 to 30 standard temperature and pressure l/h. A mathematical model was developed and tested against the experimental results to describe the adsorption process and, in particular, to evaluate and to optimize the process cycle time. 27 refs., 4 figs., 9 tabs

  1. An Investigation on the Efficiency of Air Purification Using a Biofilter with Activated Bed of Different Origin

    Directory of Open Access Journals (Sweden)

    Zagorskis Alvydas

    2014-12-01

    Full Text Available Recent studies in the area of biological air treatment in filters have addressed fundamental key issues, such as a biofilter bed of different origin composed of natural zeolite granules, foam cubes and wood chips. When foam and zeolite are mixed with wood chips to remove volatile organic compounds from the air, not only biological but also adsorption air purification methods are accomplished. The use of complex purification technologies helps to improve the efficiency of a filter as well as the bed service life of the filter bed. Investigations revealed that microorganisms prevailing in biological purification, can also reproduce themselves in biofilter beds of inorganic and synthetic origin composed of natural zeolite and foam. By cultivating associations of spontaneous microorganisms in the filter bed the dependencies of the purification efficiency of filter on the origin, concentration and filtration time of injected pollutants were determined. The highest purification efficiency was obtained when air polluted with acetone vapour was supplied to the equipment at 0.1 m/s of superficial gas velocity. When cleaning air from volatile organic compounds (acetone, toluene and butanol, under the initial pollutant concentration of ~100 mg/m3, the filter efficiency reached 95 %.

  2. Radiation-Adsorption Purification of bisolute containing pesticide and dye

    International Nuclear Information System (INIS)

    Abd El-Aal, S.E.; Sokker, H.H.; Dessouki, A.M.

    2005-01-01

    Radiation induced decomposition of various organic hydrocarbons such as pesticide (Atrazine) and dye (Cresol Red) in water represents a new and very efficient possibility for elimination of the steadily increasing pollution. Experimental results considering the removal of pesticides and dyes alone and in their mixtures were studied. Adsorption of the remaining part of the under graded pollutants will be carried out using granular activated carbon (GAC) and acrylamide (AAm) graft copolymer onto poly vinylalcohol (PVA).Freundlich model will be used to predict the equilibrium uptake of pesticide and dye in binary and single solutions.the preliminary results show that the method of radiation combined with adsorption using GAC was effective than that of a graft copolymer

  3. Breathing Air Purification for Hyperbaric Purposes, Part II

    Directory of Open Access Journals (Sweden)

    Woźniak Arkadiusz

    2015-03-01

    Full Text Available Determining the efficiency of breathing air purification for hyperbaric purposes with the use of filtration systems is of a crucial importance. However, when the Polish Navy took samples of breathing air from their own filtration plant for quality purposes, these were found to not meet the required standard. The identification of this problem imposed the need to undertake actions aimed at the elimination of the identified disruptions in the process of breathing air production, with the objective of assuring its proper quality. This study presents the results of the initial tests on the air supply sources utilised by the Polish Navy, which were carried out for the purpose of setting a proper direction of future works and implementing corrective measures in order to optimise the breathing air production process. The obtained test results will be used in a subsequent publication devoted to the assessment of the level of efficiency of air purification with the use of a multifaceted approach consisting in the utilisation of various types of air supply sources and different configurations of purification systems.

  4. Pulsed corona demonstrator for semi-industrial scale air purification

    NARCIS (Netherlands)

    Beckers, F.J.C.M.; Hoeben, W.F.L.M.; Huiskamp, T.; Pemen, A.J.M.; Heesch, van E.J.M.

    2013-01-01

    Although pulsed corona technology for air purification is widely investigated by the lab experiments, large-scale application has yet to be proven. Industrial systems require large flow handling and thus, high corona power. An autonomous semi-industrial scale pilot wire-cylinder type corona reactor

  5. Purification yields of forced air filters for radioactive breath protection

    International Nuclear Information System (INIS)

    Landman, E.B.

    1986-01-01

    Air filters for breath protection were tested as to purification yield using the in-situ DOP testing method. Only some of them satisfied the requirements made by the authors. Requirements, testing methods, experimental set-up and results are presented. (G.J.P.)

  6. An experimental evaluation on air purification performance of Clean-Air Heat Pump (CAHP) air cleaner

    DEFF Research Database (Denmark)

    Sheng, Ying; Fang, Lei; Sun, Yuexia

    2018-01-01

    was 96.8%, which indicated that the most of gaseous pollutants were not accumulated in the CAHP. The regeneration temperature for the wheel could affect the air purification performance of CAHP. At 70 °C of regeneration temperature, the air-cleaning efficiency reached 96.7%. Up to 70% of the outdoor air......The escalation of energy consumption in buildings and heightened concerns about acceptable indoor air quality stimulate interest in the usage of air cleaner as an adjunct for indoor environmental conditioning. A regenerative desiccant wheel integrated into a ventilation system termed Clean-Air Heat...... Pump (CAHP) can improve the air quality during the process of dehumidification without using additional energy. An experimental study in a field lab was performed to investigate the air cleaning performance of CAHP. Photoacoustic gas analyzer-INNOVA was used to characterize chemical removal of indoor...

  7. Study of air purification in the production of radioactive compounds

    International Nuclear Information System (INIS)

    Fradin, J.; Desroches, J.

    1958-12-01

    As the fabrication of radio-elements takes place in almost airtight enclosures in which a frequent air renewal is required, and while taking the purification rate into account (1.000 to 5.000 m 3 /h), the authors report the study of wet purification in conjunction with dry purification through paper filters, in order to capture dusts. An apparatus has been implemented which allows high gas flow rates. A radioactive aerosol has been introduced in this apparatus and its efficiency has been measured by different means. The authors describe the instrumentation (column, aerosol generator), operation, rate adjustment, and losses. Aerosols of manganese and sodium have been used. Their particle granulometry has been determined. The authors report several types of tests [fr

  8. Finite Element Modeling of Adsorption Processes for Gas Separation and Purification

    International Nuclear Information System (INIS)

    Humble, Paul H.; Williams, Richard M.; Hayes, James C.

    2009-01-01

    Pacific Northwest National Laboratory (PNNL) has expertise in the design and fabrication of automated radioxenon collection systems for nuclear explosion monitoring. In developing new systems there is an ever present need to reduce size, power consumption and complexity. Most of these systems have used adsorption based techniques for gas collection and/or concentration and purification. These processes include pressure swing adsorption, vacuum swing adsorption, temperature swing adsorption, gas chromatography and hybrid processes that combine elements of these techniques. To better understand these processes, and help with the development of improved hardware, a finite element software package (COMSOL Multiphysics) has been used to develop complex models of these adsorption based operations. The partial differential equations used include a mass balance for each gas species and adsorbed species along with a convection conduction energy balance equation. These equations in conjunction with multicomponent temperature dependent isotherm models are capable of simulating separation processes ranging from complex multibed PSA processes, and multicomponent temperature programmed gas chromatography, to simple two component temperature swing adsorption. These numerical simulations have been a valuable tool for assessing the capability of proposed processes and optimizing hardware and process parameters.

  9. NASA - Johnson Space Center's New Capabilities for Air Purification

    Science.gov (United States)

    Graf, John

    2015-01-01

    NASA has some unique and challenging air purification problems that cannot be adequately met with COTS technology: 1) ammonia removal from air, 2) hydrazine removal from air, 3) CO conversion to CO2 in low temperature, high humidity environments. NASA has sponsored the development of new sorbents and new catalysts. These new sorbents and catalysts work better than COTS technology for our application. If attendees have a need for an effective ammonia sorbent, an effective hydrazine sorbent, or an effective CO conversion catalyst, we should learn to see if NASA sponsored technology development can help.

  10. Air purification in industrial plants producing automotive rubber components in terms of energy efficiency

    Directory of Open Access Journals (Sweden)

    Grzebielec Andrzej

    2017-04-01

    Full Text Available In automotive industry plants, which use injection molding machines for rubber processing, tar contaminates air to such an extent that air fails to enter standard heat recovery systems. Accumulated tar clogs ventilation heat recovery exchangers in just a few days. In the plant in which the research was conducted, tar contamination causes blockage of ventilation ducts. The effect of this phenomenon was that every half year channels had to be replaced with new ones, since the economic analysis has shown that cleaning them is not cost-efficient. Air temperature inside such plants is often, even in winter, higher than 30°C. The air, without any means of heat recovery, is discharged outside the buildings. The analyzed plant uses three types of media for production: hot water, cold water at 14°C (produced in a water chiller, and compressed air, generated in a unit with a rated power consumption of 180 kW. The aim of the study is to determine the energy efficiency improvement of this type of manufacturing plant. The main problem to solve is to provide an air purification process so that air can be used in heat recovery devices. The next problem to solve is to recover heat at such a temperature level that it would be possible to produce cold for technological purposes without air purification. Experimental studies have shown that air purification is feasible. By using one microjet head, a total of 75% of tar particles was removed from the air; by using 4 heads, a purification efficiency of 93% was obtained. This method of air purification causes air temperature to decrease from 35°C to 20°C, which significantly reduces the potential for heat recovery. The next step of the research was designing a cassette-plate heat exchanger to exchange heat without air purification. The economic analysis of such a solution revealed that replacing the heat exchanger with a new one even once a year was not cost-efficient. Another issue examined in the context of

  11. Sulfur hexafluoride purification from mixtures with air: a process feasibility study for the Holifield Heavy Ion Research Facility

    International Nuclear Information System (INIS)

    Perona, J.J.

    1979-01-01

    A preliminary feasibility study was made for the purification of SF 6 vapor contaminated with air for application at the Holifield Heavy Ion Research Facility. Liquefaction appears to be a good way to recover about 90% of the SF 6 if it is badly contaminated (15% air), and even greater recovery will be possible for mixtures containing less air. Where liquefaction is insufficient alone, adsorption of SF 6 on activated carbon at -50 0 F looks promising. Two carbon beds each containing about 500 lb of carbon should be sufficient. The refrigeration system for liquefaction and adsorption would have a capacity of about 2 tons. As alternatives, the use of molecular sieves to trap out the air was investigated, but such a bed would require at least 15,000 lb of molecular sieves and very long cycle times. A large-scale desublimer was investigated and appears workable but would require some development work to permit design work to proceed with confidence

  12. Purification Simulation With Vapor Permeation and Distillation-Adsorption In Bioethanol Plant

    Directory of Open Access Journals (Sweden)

    Misri Gozan

    2017-04-01

    Full Text Available High purity of Bioethanol is required in biofuel mixing with gasoline (EXX. In bioethanol production line, the azeotropic property of ethanol-water becomes the barrier for purification process. This study examined two bioethanol separation processes by support of simulation tools, Superpro Designer 9.0 software. Ethanol purity and a low costeconomical process were the major considerations. Purification method of vapor permeation membrane technology was compared with distillation-adsorption method. Data from previous lab experiments and some literatures were used. The results showed that distillation-adsorption method is more economical compared to vapor permeation technology. Payback period of the simulation is 3.9 years and 4.3 years to distillation adsorption and vapor permeation respectively with each IRR value is 20.23% and 17.89%. Initial investment value of vapor permeation is 9.6% higher than distillation method. Significant difference observed in operating costs, since more units involved in vapor permeation require more labors to operate.

  13. Indoor Air Purification by Potted Plants

    DEFF Research Database (Denmark)

    Dela Cruz, Majbrit

    by allowing air exchange and continuous emission of a VOC or VOC mixture. The system was operational in dynamic and semi-dynamic mode which highlighted that experimental set-up can affect calculated removal rates. With exposure to toluene Hibiscus rosa-sinensis was not affected by an increase in light...

  14. PTR-MS Assessment of Photocatalytic and Sorption-Based Purification of Recirculated Cabin Air during Simulated 7-h Flights with High Passenger Density

    DEFF Research Database (Denmark)

    Wisthaler, Armin; Strøm-Tejsen, Peter; Fang, Lei

    2007-01-01

    Four different air purification conditions were established in a simulated 3-row 21-seat section of an aircraft cabin: no air purifier; a photocatalytic oxidation unit with an adsorptive prefilter; a second photocatalytic unit with an adsorptive prefil-ter; and a two-stage sorptionbased air filter...... (gas-phase absorption and adsorption). The air purifiers placed in the cabin air recirculation system were commercial prototypes developed for use in aircraft cabin systems. The four conditions were established in balanced order on 4 successive days of each of 4 successive weeks during simulated 7-h...... flights with 17 occupants. Protontransfer reaction mass spectrometry was used to assess organic gas-phase pollutants and the performance of each air purifier. The concentration of most organic pollutants present in aircraft cabin air was effi-ciently reduced by all three units. The photocatalytic units...

  15. Sulfur hexafluoride purification from mixtures with air: a process feasibility study

    International Nuclear Information System (INIS)

    Perona, J.J.; Watson, J.S.

    1979-10-01

    Studies were made of the purification of SF 6 vapor contaminated with air for application at the Holifield Heavy-Ion Research Facility. Liquefaction appears to be a good method for recovering about 90% of the SF 6 if it is badly contaminated (15% air), and an even greater fraction can be recovered from mixtures containing less air. In cases where liquefaction is insufficient by itself, adsorption of SF 6 on activated carbon at -50 0 F is promising. Two carbon beds, each containing about 500 lb of carbon, should be sufficient. The refrigeration system for liquefaction and adsorption would have a capacity of about 2 tons. As an alternative, the use of molecular sieves to trap out the air was investigated, but such a bed would require at least 15,000 lb of molecular sieves and very long cycle times. A large-scale desublimer was also investigated and appears workable, but it would require some development effort before the design could proceed with confidence

  16. Photodetoxification and purification of water and air

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, M. [Univ. of Wisconsin, Madison, WI (United States); Blake, D.M. [National Renewable Energy Lab., Golden, CO (United States)

    1996-09-01

    The scope of interest in this section is basic research in photochemistry that can remove barriers to the development of photochemical technologies for the removal of hazardous chemicals from contaminated air or water (photodetoxification). Photochemistry is be broadly interpreted to include direct photochemistry, indirect photochemistry (sensitized and photocatalytic), photochemistry of species adsorbed on inert surfaces, and complementary effects of high energy radiation photons and particles. These may occur in either homogeneous or heterogeneous media. The photon source may span the range from ionizing radiation to the near infrared.

  17. Regenerable Air Purification System for Gas-Phase Contaminant Control

    Science.gov (United States)

    Constantinescu, Ileana C.; Finn, John E.; LeVan, M. Douglas; Lung, Bernadette (Technical Monitor)

    2000-01-01

    Tests of a pre-prototype regenerable air purification system (RAPS) that uses water vapor to displace adsorbed contaminants from an adsorbent column have been performed at NASA Ames Research Center. A unit based on this design can be used for removing trace gas-phase contaminants from spacecraft cabin air or from polluted process streams including incinerator exhaust. During the normal operation mode, contaminants are removed from the air on the column. Regeneration of the column is performed on-line. During regeneration, contaminants are displaced and destroyed inside the closed oxidation loop. In this presentation we discuss initial experimental results for the performance of RAPS in the removal and treatment of several important spacecraft contaminant species from air.

  18. Influence of Water Salinity on Air Purification from Hydrogen Sulfide

    Directory of Open Access Journals (Sweden)

    Leybovych L.I.

    2015-12-01

    Full Text Available Mathematical modeling of «sliding» water drop motion in the air flow was performed in software package FlowVision. The result of mathematical modeling of water motion in a droplet with diameter 100 microns at the «sliding» velocity of 15 m/s is shown. It is established that hydrogen sulfide oxidation occurs at the surface of phases contact. The schematic diagram of the experimental setup for studying air purification from hydrogen sulfide is shown. The results of the experimental research of hydrogen sulfide oxidation by tap and distilled water are presented. The dependence determining the share of hydrogen sulfide oxidized at the surface of phases contact from the dimensionless initial concentration of hydrogen sulfide in the air has been obtained.

  19. New research on bioregenerative air/water purification systems

    Science.gov (United States)

    Johnson, Anne H.; Ellender, R. D.; Watkins, Paul J.

    1991-01-01

    For the past several years, air and water purification systems have been developed and used. This technology is based on the combined activities of plants and microorganisms as they function in a natural environment. More recently, researchers have begun to address the problems associated with indoor air pollution. Various common houseplants are currently being evaluated for their abilities to reduce concentrations of volatile organic compounds (VOCS) such as formaldehyde and benzene. With development of the Space Exploration Initiative, missions will increase in duration, and problems with resupply necessitates implementation of regenerative technology. Aspects of bioregenerative technology have been included in a habitat known as the BioHome. The ultimate goal is to use this technology in conjunction with physicochemical systems for air and water purification within closed systems. This study continued the risk assessment of bioregenerative technology with emphasis on biological hazards. In an effort to evaluate the risk for human infection, analyses were directed at enumeration of fecal streptococci and enteric viruses with the BioHome waste water treatment system.

  20. Ionic liquid-impregnated activated carbon for biohydrogen purification in an adsorption unit

    Science.gov (United States)

    Yusuf, N. Y.; Masdar, M. S.; Isahak, W. N. R. W.; Nordin, D.; Husaini, T.; Majlan, E. H.; Rejab, S. A. M.; Chew, C. L.

    2017-06-01

    Biological methods for hydrogen production (biohydrogen) are known as energy intensive and can be operated at ambient temperature and pressure; however, consecutive productions such as purification and separation processes still remain challenging in the industry. Various techniques are used to purify and separate hydrogen. These techniques include the use of sorbents/solvents, membranes and cryogenic distillation. In this study, carbon dioxide (CO2) was purified and separated from biohydrogen to produce high purity hydrogen gas. CO2 capture was studied using the activated carbon (AC) modified with the ionic liquid (IL) choline chloride as adsorbent. The physical and chemical properties of the adsorbents were characterized through XRD, FTIR, SEM-EDX, TGA, and BET analyses. The effects of IL loading, flow rate, temperature, and gas mixture were also investigated based on the absorption and desorption of CO2. The CO2 level in the biohydrogen composition was analyzed using a CO2 gas analyzer. The SEM image indicated that the IL homogeneously covered the AC surface. High IL dispersion inlet enhanced the capability of the adsorbent to capture CO2 gas. The thermal stability and presence of the functionalized group of ILs on AC were analyzed by TGA and FTIR techniques, respectively. CO2 adsorption experiments were conducted using a 1 L adsorber unit. Hence, adsorption technologies exhibit potential for biohydrogen purification and mainly affected by adsorbent ability and operating parameters. This research presents an improved biohydrogen technique based on adsorption technology with novel adsorbents. Two different types of commercial CO2 adsorbents were used in the experiment. Results show that the IL/AC exhibited properties suitable for CO2 adsorption. The IL/AC sample presented a high CO2 uptake of 30 wt. % IL when treated at 30 °C for 6 h under a flow rate of 1 L/min. The presence of IL increased the selectivity of CO2 removal during the adsorption process. This IL

  1. Advantages for passengers and cabin crew of operating a Gas-Phase Adsorption air purifier in 11-h simulated flights

    DEFF Research Database (Denmark)

    Strøm-Tejsen, Peter; Zukowska, Daria; Fang, Lei

    2008-01-01

    Experiments were carried out in a 3-row, 21-seat section of a simulated aircraft cabin installed in a climate chamber to evaluate the extent to which passengers’ perception of cabin air quality is affected by the operation of a Gas-Phase Adsorption (GPA) purification unit. A total of 68 subjects......, divided into four groups of 17 subjects took part in simulated 11-hour flights. Each group experienced 4 conditions in balanced order, defined by two outside air supply rates (2.4 and 3.3 L/s per person), with and without the GPA purification unit installed in the recirculated air system. During each...... flight the subjects completed questionnaires five times to provide subjective assessments of air quality, cabin environment, intensity of symptoms, and thermal comfort. Additionally, the subjects’ visual acuity, finger temperature, skin dryness and nasal peak flow were measured three times during each...

  2. AIR SEPARATION BY PRESSURE SWING ADSORPTION USING SUPERIOR ADSORBENTS; FINAL

    International Nuclear Information System (INIS)

    Ralph T Yang

    2001-01-01

    Li-X zeolite (Si/Al= 1.0) is currently the best sorbent for use in the separation of air by adsorption processes. In particular, pressure swing adsorption (PSA) using zeolite sorbents is being increasingly used for air separation. Silver is also known to strongly affect the adsorptive properties of zeolites; and it is known that thermal vacuum dehydration of silver zeolites leads to the formation of silver clusters within the zeolite. In this work we have synthesized type X zeolites containing Ag and also varying mixtures of Li and Ag. In this project, we developed the Ag-containing zeolite as the best sorbent for air separation. We have also studied Co-ligand compounds as oxygen-selective sorbents. Syntheses, structural characterization and adsorption properties have been performed on all sorbents. The results are described in detail in 5 chapters

  3. AIR SEPARATION BY PRESSURE SWING ADSORPTION USING SUPERIOR ADSORBENTS

    Energy Technology Data Exchange (ETDEWEB)

    Ralph T. Yang

    2001-08-31

    Li-X zeolite (Si/Al = 1.0) is currently the best sorbent for use in the separation of air by adsorption processes. In particular, pressure swing adsorption (PSA) using zeolite sorbents is being increasingly used for air separation. Silver is also known to strongly affect the adsorptive properties of zeolites; and it is known that thermal vacuum dehydration of silver zeolites leads to the formation of silver clusters within the zeolite. In this work we have synthesized type X zeolites containing Ag and also varying mixtures of Li and Ag. In this project, we developed the Ag-containing zeolite as the best sorbent for air separation. We have also studied Co-ligand compounds as oxygen-selective sorbents. Syntheses, structural characterization and adsorption properties have been performed on all sorbents. The results are described in detail in 5 chapters.

  4. Air Purification in Closed Environments: An Overview of Spacecraft Systems

    Science.gov (United States)

    Perry, Jay L.; LeVan, Douglas; Crumbley, Robert (Technical Monitor)

    2002-01-01

    The primary goal for a collective protection system and a spacecraft environmental control and life support system (ECLSS) are strikingly similar. Essentially both function to provide the occupants of a building or vehicle with a safe, habitable environment. The collective protection system shields military and civilian personnel from short-term exposure to external threats presented by toxic agents and industrial chemicals while an ECLSS sustains astronauts for extended periods within the hostile environment of space. Both have air quality control similarities with various aircraft and 'tight' buildings. This paper reviews basic similarities between air purification system requirements for collective protection and an ECLSS that define surprisingly common technological challenges and solutions. Systems developed for air revitalization on board spacecraft are discussed along with some history on their early development as well as a view of future needs. Emphasis is placed upon two systems implemented by the National Aeronautics and Space Administration (NASA) onboard the International Space Station (ISS): the trace contaminant control system (TCCS) and the molecular sieve-based carbon dioxide removal assembly (CDRA). Over its history, the NASA has developed and implemented many life support systems for astronauts. As the duration, complexity, and crew size of manned missions increased from minutes or hours for a single astronaut during Project Mercury to days and ultimately months for crews of 3 or more during the Apollo, Skylab, Shuttle, and ISS programs, these systems have become more sophisticated. Systems aboard spacecraft such as the ISS have been designed to provide long-term environmental control and life support. Challenges facing the NASA's efforts include minimizing mass, volume, and power for such systems, while maximizing their safety, reliability, and performance. This paper will highlight similarities and differences among air purification systems

  5. Experimental research on photocatalytic oxidation air purification technology applied to aircraft cabins

    DEFF Research Database (Denmark)

    Sun, Yuexia; Fang, Lei; Wyon, David Peter

    2008-01-01

    The experiment presented in this report was performed in a simulated aircraft cabin to evaluate the air cleaning effects of two air purification devices that used photocatalytic oxidation (PCO) technology. Objective physical, chemical and physiological measurements and subjective human assessment...

  6. Air purification by cementitious materials: Evaluation of air purifying properties

    NARCIS (Netherlands)

    Hüsken, G.; Brouwers, H.J.H.; Al-Mattarneh, H.; Mustapha, K.N.; Nuruddin, M.F.

    2008-01-01

    This paper addresses the evaluation of the photocatalytic properties of concrete containing titanium dioxide (TiO2). Here, the assessment of the air purifying abilities of the hardened concrete regarding the degradation of nitric oxide (NO) is of major interest. A setup for measuring the performance

  7. Air purification by cementitious materials : Evaluation of air purifying properties

    NARCIS (Netherlands)

    Hüsken, G.; Brouwers, H.J.H.; Al-Mattarneh, H.; Mustapha, K.N.; Nuruddin, M.F.

    2008-01-01

    This paper addresses the evaluation of the photocatalytic properties of concrete containing titanium dioxide (TiO2). Here, the assessment of the air purifying abilities of the hardened concrete regarding the degradation of nitric oxide (NO) is of major interest. A setup for measuring the performance

  8. An improved method for purification of recombinant truncated heme oxygenase-1 by expanded bed adsorption and gel filtration.

    Science.gov (United States)

    Hu, Hong-Bo; Wang, Wei; Han, Ling; Zhou, Wen-Pu; Zhang, Xue-Hong

    2007-03-01

    Recombinant truncated human heme oxygenase-1 (hHO-1) expressed in Escherichia coli was efficiently separated and purified from feedstock by DEAE-ion exchange expanded bed adsorption. Protocol optimization of hHO-1 on DEAE adsorbent resulted in adsorption in 0 M NaCl and elution in 150 mM NaCl at a pH of 8.5. The active enzyme fractions separated from the expanded bed column were further purified by a Superdex 75 gel filtration step. The specific hHO-1 activity increased from 0.82 +/- 0.05 to 24.8 +/- 1.8 U/mg during the whole purification steps. The recovery and purification factor of truncated hHO-1 of the whole purification were 72.7 +/- 4.7 and 30.2 +/- 2.3%, respectively. This purification process can decrease the demand on the preparation of feedstock and simplify the purification process.

  9. Evaluation of adsorption selectivity of immunoglobulins M, A and G and purification of immunoglobulin M with mixed-mode resins.

    Science.gov (United States)

    Luo, Ying-Di; Zhang, Qi-Lei; Yao, Shan-Jing; Lin, Dong-Qiang

    2018-01-19

    This study investigated adsorption selectivity of immunoglobulin M (IgM), immunoglobulin A (IgA) and immunoglobulin (IgG) on four mixed-mode resins with the functional ligands of 4-mercatoethyl-pyridine (MEP), 2-mercapto-1-methylimidazole (MMI), 5-aminobenzimidazole (ABI) and tryptophan-5-aminobenzimidazole (W-ABI), respectively. IgM purification processes with mixed-mode resins were also proposed. All resins showed typical pH-dependent adsorption, and high adsorption capacity was found at pH 5.0-8.0 with low adsorption capacity under acidic conditions. Meanwhile, high selectivity of IgM/IgA and IgM/IgG was obtained with ABI-4FF and MMI-4FF resins at pH 4.0-5.0, which was used to develop a method for IgM, IgA and IgG separation by controlling loading and elution pH. Capture of monoclonal IgM from cell culture supernatant with ABI-4FF resins was studied and high purity (∼99%) and good recovery (80.8%) were obtained. Moreover, IgM direct separation from human serum with combined two-step chromatography (ABI-4FF and MMI-4FF) was investigated, and IgM purity of 65.2% and a purification factor of 28.3 were obtained after optimization. The antibody activity of IgM was maintained after purification. The results demonstrated that mixed-mode chromatography with specially-designed ligands is a promising way to improve adsorption selectivity and process efficiency of IgM purification from complex feedstock. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Adsorption of sugar surfactants at the air/water interface.

    Science.gov (United States)

    Varga, Imre; Mészáros, Róbert; Stubenrauch, Cosima; Gilányi, Tibor

    2012-08-01

    The adsorption isotherms of n-decyl-β-D-glucoside (β-C(10)G(1)) as well as various n-alkyl-β-D-maltosides (β-C(n)G(2)) with n=8, 10, 12 and 14 were determined from surface tension measurements. Based on the analysis of the adsorption isotherms, the total free energy change of adsorption was determined and a novel method was proposed to determine the maximum adsorbed amount of surfactant. It can be concluded that the driving force for adsorption first increases with increasing adsorbed amount of the sugar surfactants and then levels off in a plateau. This peculiar behaviour is interpreted as formation of a thin liquid-like alkane film of overlapping alkyl chains at the air/water interface once a certain adsorbed amount is exceeded. The driving force of adsorption depends on the alkyl chain length only and is not affected by the type of the head group. The hydrophobic contribution to the standard free energy change of adsorption was compared with the values of sodium alkylsulfate and alkyltrimethylammonium bromide surfactants. This comparison reveals that the hydrophobic driving force of adsorption is the largest for the sodium alkylsulfates, whereas it is the same for the sugar surfactants and the alkyltrimethylammonium bromides. Copyright © 2012 Elsevier Inc. All rights reserved.

  11. Sustainable Air Handling by Evaporation and Adsorption

    NARCIS (Netherlands)

    Esfandiari Nia, F.

    2011-01-01

    A considerable fraction of today's energy consumption is due to air-conditioning of buildings, involving both heating and cooling. Energy cost and environmental concerns force designers to find sustainable solutions. Desiccant cooling as a sustainable technology is attractive to be investigated for

  12. Study on cryogenic adsorption capability of trace nitrogen and methane by activated carbon for cooIant helium purification

    International Nuclear Information System (INIS)

    Chang Hua; Wu Zongxin

    2014-01-01

    A fixed-bed apparatus with dynamic two-route proportional gas mixing system was designed to investigate the cryogenic adsorption behavior of nitrogen and methane on activated carbon for designing the helium purification system of high-temperature gas-cooled reactors (HTGR). With helium as carrier gas and at the impurity partial pressure of tens Pa, experiments were performed at near atmospheric pressure and by dynamic column breakthrough method at -196°C. The breakthrough curves and desorption curves were measured. By analyzing the breakthrough curve, both the equilibrium adsorption capacity and the kinetic adsorption capacity at breakthrough point were determined. Based on mass-transfer zone model, the experimental breakthrough curves were analyzed. (author)

  13. Influence of thermodynamic mechanism of inter- facial adsorption on purifying air-conditioning engineering under intensification of electric field

    Directory of Open Access Journals (Sweden)

    Chen Yun-Yu

    2016-12-01

    Full Text Available As a kind of mass transfer process as well as the basis of separating and purifying mixtures, interfacial adsorption has been widely applied to fields like chemical industry, medical industry and purification engineering in recent years. Influencing factors of interfacial adsorption, in addition to the traditional temperature, intensity of pressure, amount of substance and concentration, also include external fields, such as magnetic field, electric field and electromagnetic field, etc. Starting from the point of thermodynamics and taking the Gibbs adsorption as the model, the combination of energy axiom and the first law of thermodynamics was applied to boundary phase, and thus the theoretical expression for the volume of interface absorption under electric field as well as the mathematical relationship between surface tension and electric field intensity was obtained. In addition, according to the obtained theoretical expression, the volume of interface absorption of ethanol solution under different electric field intensities and concentrations was calculated. Moreover, the mechanism of interfacial adsorption was described from the perspective of thermodynamics and the influence of electric field on interfacial adsorption was explained reasonably, aiming to further discuss the influence of thermodynamic mechanism of interfacial adsorption on purifying air-conditioning engineering under intensification of electric field.

  14. Thermally moderated hollow fiber sorbent modules in rapidly cycled pressure swing adsorption mode for hydrogen purification

    KAUST Repository

    Lively, Ryan P.; Bessho, Naoki; Bhandari, Dhaval A.; Kawajiri, Yoshiaki; Koros, William J.

    2012-01-01

    We describe thermally moderated multi-layered pseudo-monolithic hollow fiber sorbents entities, which can be packed into compact modules to provide small-footprint, efficient H2 purification/CO2 removal systems for use in on-site steam methane reformer product gas separations. Dual-layer hollow fibers are created via dry-jet, wet-quench spinning with an inner "active" core of cellulose acetate (porous binder) and zeolite NaY (69 wt% zeolite NaY) and an external sheath layer of pure cellulose acetate. The co-spun sheath layer reduces the surface porosity of the fiber and was used as a smooth coating surface for a poly(vinyl-alcohol) post-treatment, which reduced the gas permeance through the fiber sorbent by at least 7 orders of magnitude, essentially creating an impermeable sheath layer. The interstitial volume between the individual fibers was filled with a thermally-moderating paraffin wax. CO2 breakthrough experiments on the hollow fiber sorbent modules with and without paraffin wax revealed that the "passively" cooled paraffin wax module had 12.5% longer breakthrough times than the "non-isothermal" module. The latent heat of fusion/melting of the wax offsets the released latent heat of sorption/desorption of the zeolites. One-hundred rapidly cycled pressure swing adsorption cycles were performed on the "passively" cooled hollow fiber sorbents using 25 vol% CO2/75 vol% He (H2 surrogate) at 60 °C and 113 psia, resulting in a product purity of 99.2% and a product recovery of 88.1% thus achieving process conditions and product quality comparable to conventional pellet processes. Isothermal and non-isothermal dynamic modeling of the hollow fiber sorbent module and a traditional packed bed using gPROMS® indicated that the fiber sorbents have sharper fronts (232% sharper) and longer adsorbate breakthrough times (66% longer), further confirming the applicability of the new fiber sorbent approach for H2 purification. © 2012, Hydrogen Energy Publications, LLC

  15. Thermally moderated hollow fiber sorbent modules in rapidly cycled pressure swing adsorption mode for hydrogen purification

    KAUST Repository

    Lively, Ryan P.

    2012-10-01

    We describe thermally moderated multi-layered pseudo-monolithic hollow fiber sorbents entities, which can be packed into compact modules to provide small-footprint, efficient H2 purification/CO2 removal systems for use in on-site steam methane reformer product gas separations. Dual-layer hollow fibers are created via dry-jet, wet-quench spinning with an inner "active" core of cellulose acetate (porous binder) and zeolite NaY (69 wt% zeolite NaY) and an external sheath layer of pure cellulose acetate. The co-spun sheath layer reduces the surface porosity of the fiber and was used as a smooth coating surface for a poly(vinyl-alcohol) post-treatment, which reduced the gas permeance through the fiber sorbent by at least 7 orders of magnitude, essentially creating an impermeable sheath layer. The interstitial volume between the individual fibers was filled with a thermally-moderating paraffin wax. CO2 breakthrough experiments on the hollow fiber sorbent modules with and without paraffin wax revealed that the "passively" cooled paraffin wax module had 12.5% longer breakthrough times than the "non-isothermal" module. The latent heat of fusion/melting of the wax offsets the released latent heat of sorption/desorption of the zeolites. One-hundred rapidly cycled pressure swing adsorption cycles were performed on the "passively" cooled hollow fiber sorbents using 25 vol% CO2/75 vol% He (H2 surrogate) at 60 °C and 113 psia, resulting in a product purity of 99.2% and a product recovery of 88.1% thus achieving process conditions and product quality comparable to conventional pellet processes. Isothermal and non-isothermal dynamic modeling of the hollow fiber sorbent module and a traditional packed bed using gPROMS® indicated that the fiber sorbents have sharper fronts (232% sharper) and longer adsorbate breakthrough times (66% longer), further confirming the applicability of the new fiber sorbent approach for H2 purification. © 2012, Hydrogen Energy Publications, LLC

  16. 76 FR 82323 - Design, Inspection, and Testing Criteria for Air Filtration and Adsorption Units

    Science.gov (United States)

    2011-12-30

    ... Filtration and Adsorption Units AGENCY: Nuclear Regulatory Commission. ACTION: Draft regulatory guide... for Air Filtration and Adsorption Units of Postaccident Engineered-Safety-Feature Atmosphere Cleanup... testing of air filtration and iodine adsorption units of engineered-safety-feature (ESF) atmosphere...

  17. Experimental research on photocatalytic oxidation air purification technology applied to aircraft cabins

    DEFF Research Database (Denmark)

    Sun, Yuexia; Fang, Lei; Wyon, David P.

    2005-01-01

    The experiment presented in this report was performed in a simulated aircraft cabin to evalu-ate the air cleaning effects of two air purification devices using Photocatalytic Oxidation (PCO) technology. Objective physical, chemical and physiological measurements and subjec-tive human assessments ...

  18. Research on a compact adsorption room air conditioner

    International Nuclear Information System (INIS)

    Yang, G.Z.; Xia, Z.Z.; Wang, R.Z.; Keletigui, Daou; Wang, D.C.; Dong, Z.H.; Yang, X.

    2006-01-01

    A novel compact adsorption room air conditioner with a cooling capacity of 1 kW has been designed, and two prototypes have been built. A two bed, continuous adsorption refrigeration cycle with heat recovery and mass recovery is adopted. Micropore spherical silica gel and water are selected as the working pair. A gravity heat pipe with methanol as working medium is designed to output the cooling. Experimental investigations have indicated that under typical air conditioning conditions, for the first prototype, a cooling capacity of 687 W and a COP (coefficient of performance) of 0.307 can be obtained. However, for the improved one, a cooling capacity of 790 W and a COP of 0.446 can be reached. It is also proved that the operating temperatures have strong influences on the performance. The designed room air conditioner can be driven by a low grade heat source ( o C) and has small dimensions of 300 mm (depth), 500 mm (width) and 950 mm (height)

  19. Purification

    DEFF Research Database (Denmark)

    Andersen, Astrid Oberborbeck

    2017-01-01

    In Arequipa, Peru’s second largest city, engineers work hard to control water flows and provide different sectors with clean and sufficient water. In 2011, only 10 percent of the totality of water used daily by Arequipa’s then close to 1 million people—in households, tourism, industry, and mining......—was treated before it was returned to the river where it continues its flow downstream towards cultivated fields and, finally, into the Pacific Ocean. It takes specialized knowledge and manifold technologies to manage water and sustain life in Arequipa, and engineers are central actors for making water flow...... of categories can be understood as practices of purification. However, a purely technical grip on water is never possible. Unruly elements, like weather, contamination, urban dwellers, and competing interests, interfere and make processes of intervention unstable. Water is never completely cleaned, and, equally...

  20. Central air conditioning based on adsorption and solar energy

    International Nuclear Information System (INIS)

    Pralon Ferreira Leite, Antonio; Belo, Francisco Antonio; Martins, Moacir Machado; Bressan Riffel, Douglas

    2011-01-01

    This paper presents the characterization and the pre-dimensioning of an adsorption chiller as part of a 20 kW air conditioning central unit for cooling a set of rooms that comprises an area of 110 m 2 . The system is basically made up of a cold water storage tank supplied by an activated carbon-methanol adsorption chiller, a hot water storage tank, fed by solar energy and natural gas, and a fan-coil. During an acclimatization of 8 h (9-17 h), the following parameters were obtained for dimensioning the cooling system: 504 kg of activated carbon, 180 L of methanol, 7000 L of hot water, 10,300 L of cold water with its temperature varying in the fan-coil from 1 deg. C to 14 C. Considering the mean value of the total daily irradiation in Joao Pessoa (7 o 8'S, 34 o 50'WG), and a cover of regenerating heat supplied by solar energy equivalent to 70%, the adsorption chiller's expected coefficient of performance (COP) was found to be around 0.6.

  1. Pentachlorophenol reduction in raw Cauca river water through activated carbon adsorption in water purification

    OpenAIRE

    Camilo Hernán Cruz Vélez; Magally González; Héctor Mario Gutiérrez; Luz Edith Barba; Juan Carlos Escobar; Luis Germán Delgado; Patricia Torres

    2008-01-01

    Reducing chemical risk in raw water from the River Cauca (caused by the presence of pentachlorophenol and organic matter (real color, UV254 absorbance)) was evaluated at bench scale by using three treatment sequences: adsorption with powdered ac-tivated coal (PAC); adsorption – coagulation; and, adsorption – disinfection – coagulation. The results showed that although PAC is appropriate for pentachlorophenol removal, and its use together with the coagulant (aluminium sulphate) significantly i...

  2. Experimental study on cryogenic adsorption of methane by activated carbon for helium coolant purification of High-Temperature Gas-cooled Reactor

    International Nuclear Information System (INIS)

    Chang, Hua; Wu, Zong-Xin; Jia, Hai-Jun

    2017-01-01

    Highlights: • The cryogenic CH 4 adsorption on activated carbon was studied for design of HTGR. • The breakthrough curves at different conditions were analyzed by the MTZ model. • The CH 4 adsorption isotherm was fitted well by the Toth model and the D-R model. • The work provides valuable reference data for helium coolant purification of HTGR. - Abstract: The cryogenic adsorption behavior of methane on activated carbon was investigated for helium coolant purification of high-temperature gas-cooled reactor by using dynamic column breakthrough method. With helium as carrier gas, experiments were performed at −196 °C and low methane partial pressure range of 0–120 Pa. The breakthrough curves at different superficial velocities and different feed concentrations were measured and analyzed by the mass-transfer zone model. The methane single-component adsorption isotherm was obtained and fitted well by the Toth model and the Dubinin-Radushkevich model. The adsorption heat of methane on activated carbon was estimated. The cryogenic adsorption process of methane on activated carbon has been verified to be effective for helium coolant purification of high-temperature gas-cooled reactor.

  3. Expanded bed adsorption as a fast technique for the large-scale purification of the complete isoform pool of Ber e 1, the major allergen from Brazil nuts.

    NARCIS (Netherlands)

    Boxtel, van E.L.; Koningsveld, van G.A.; Koppelman, S.J.; Broek, van den L.A.M.; Voragen, A.G.J.; Gruppen, H.

    2006-01-01

    A new, fast, large-scale purification method for Ber e 1, the major allergen from Brazil nuts, using expanded bed adsorption (EBA) chromatography, is presented. Using EBA, crude extracts can be applied to a fluidized column, which allows the unhindered passage of particulate impurities, thereby

  4. Application of superparamagnetic microspheres for affinity adsorption and purification of glutathione

    International Nuclear Information System (INIS)

    Wang Qiang; Guan Yueping; Yang Mingzhu

    2012-01-01

    The superparamagnetic poly-(MA–DVB) microspheres with micron size were synthesized by the modified suspension polymerization method. Adsorption of glutathione by magnetic poly-(MA–DVB) microspheres with IDA-copper was investigated. The effect of solution pH value, affinity adsorption and desorption of glutathione was studied. The results showed that the optimum pH value for glutathione adsorption was found at pH=3.5, the maximum capacity for glutathione of magnetic poly-(MA–DVB) microspheres was estimated at 42.4 mg/g by fitting the experimental data to the Langmuir equation. The adsorption equilibrium of glutathione was obtained in about 10 min and the adsorbed glutathione was desorbed from the magnetic microspheres in about 30 min using NaCl buffer solution. The magnetic microspheres could be repeatedly utilized for the affinity adsorption of glutathione. - Highlights: ► The magnetic microsphere with surface IDA–Cu groups was synthesized. ► The magnetic microspheres were applied for adsorption of GSH. ► The adsorption–desorption of glutathione was investigated. ► The maximum adsorption capacity of GSH was fitted at 42.4 mg/g.

  5. An efficient dye-sensitized BiOCl photocatalyst for air and water purification under visible light irradiation.

    Science.gov (United States)

    Li, Guisheng; Jiang, Bo; Xiao, Shuning; Lian, Zichao; Zhang, Dieqing; Yu, Jimmy C; Li, Hexing

    2014-08-01

    A photosensitized BiOCl catalyst was found to be effective for photocatalytic water purification and air remediation under visible light irradiation (λ > 420 nm). Prepared by a solvothermal method, the BiOCl crystals possessed a 3D hierarchical spherical structure with the highly active facets exposed. When sensitized by Rhodamine B (RhB), the photocatalyst system was more active than N-doped TiO2 for breaking down 4-chlorophenol (4-CP, 200 ppm) and nitric monoxide (NO, 500 ppb). The high activity could be attributed to the hierarchical structure (supplying feasible reaction tunnels for adsorption and transition of reactants or products) and the efficient exposure of the {001} facets. The former provides an enriched oxygen atom density that promotes adsorption of cationic dye RhB, and creates an oxygen vacancy state. The HO˙ and ˙O2(-) radicals produced from the injected electrons from the excited dye molecule (RhB*) into the conduction band of BiOCl were responsible for the excellent photocatalytic performance of the RhB-BiOCl system.

  6. 77 FR 38857 - Design, Inspection, and Testing Criteria for Air Filtration and Adsorption Units of Normal...

    Science.gov (United States)

    2012-06-29

    ... Filtration and Adsorption Units of Normal Atmosphere Cleanup Systems in Light-Water- Cooled Nuclear Power... Criteria for Air Filtration and Adsorption Units of Normal Atmosphere Cleanup Systems in Light-Water-Cooled... draft regulatory guide (DG), DG-1280, ``Design, Inspection, and Testing Criteria for Air Filtration and...

  7. Pentachlorophenol reduction in raw Cauca river water through activated carbon adsorption in water purification

    Directory of Open Access Journals (Sweden)

    Camilo Hernán Cruz Vélez

    2008-09-01

    Full Text Available Reducing chemical risk in raw water from the River Cauca (caused by the presence of pentachlorophenol and organic matter (real color, UV254 absorbance was evaluated at bench scale by using three treatment sequences: adsorption with powdered ac-tivated coal (PAC; adsorption – coagulation; and, adsorption – disinfection – coagulation. The results showed that although PAC is appropriate for pentachlorophenol removal, and its use together with the coagulant (aluminium sulphate significantly impro-ved phenolic compound and organic matter removal (promoting enhanced coagulation, the most efficient treatment sequence was adsorption – disinfection - coagulation, achieving minor pentachlorophenol levels than detection (1.56 μg/l and WHO li-mits (9μg/l due to the effect of chloride on PAC.

  8. Adsorption onto activated carbons in environmental engineering: some trends in water and air treatment processes

    Energy Technology Data Exchange (ETDEWEB)

    Le Cloirec, P. [Ecole des Mines de Nantes, UMR CNRS 6144 GEPEA, 44 (France)

    2005-07-01

    Full text of publication follows: Adsorption is commonly used in environmental protection processes and particularly in water and air treatment systems. Organic pollutants in aqueous or gaseous phases are transferred and adsorbed onto porous materials. Activated carbon (powder, grains) treatment is usually carried out and filters are used to eliminate volatile organic compounds (VOC), odors or micropollutants. The main objectives of this paper are to present examples of classical or new activated carbon processes used in drinking water production, wastewater purification or in air treatment in terms of processes, performances and modeling. - Water treatment: Micropollutants such as pesticides, herbicides... are classically removed by activated carbon granular systems in drinking water treatment plants. In order to get a good water quality and to safe money, the breakthrough time has to be accurately determined. Models with mass balance and transfer equations are proposed. However, some difficulties are found especially for complex solutions to get good agreement between experimental data and calculated values. A statistical approach using neural networks is proposed to simulate breakthrough curves. Examples are presented and compared to deterministic models. In order to intensify processes, a combination of ultrafiltration and activated carbon fiber cloth (ACFC) is presented to remove the large spectra of particles and organic molecules present in water. Systems (UF/ACFC) for surface water and industrial colored wastewater are applied and performances are determined as a function of operating conditions. - Air treatment: Activated carbon grain filters are used to control VOC emissions. Due to an exothermic reaction, an increase of local temperature in the reactor is noted and some fire accidents have been reported. For safety technologies, this temperature has to be previously determined. A model is proposed to simulate the breakthrough curves and temperatures

  9. Adsorption onto activated carbons in environmental engineering: some trends in water and air treatment processes

    International Nuclear Information System (INIS)

    Le Cloirec, P.

    2005-01-01

    Full text of publication follows: Adsorption is commonly used in environmental protection processes and particularly in water and air treatment systems. Organic pollutants in aqueous or gaseous phases are transferred and adsorbed onto porous materials. Activated carbon (powder, grains) treatment is usually carried out and filters are used to eliminate volatile organic compounds (VOC), odors or micropollutants. The main objectives of this paper are to present examples of classical or new activated carbon processes used in drinking water production, wastewater purification or in air treatment in terms of processes, performances and modeling. - Water treatment: Micropollutants such as pesticides, herbicides... are classically removed by activated carbon granular systems in drinking water treatment plants. In order to get a good water quality and to safe money, the breakthrough time has to be accurately determined. Models with mass balance and transfer equations are proposed. However, some difficulties are found especially for complex solutions to get good agreement between experimental data and calculated values. A statistical approach using neural networks is proposed to simulate breakthrough curves. Examples are presented and compared to deterministic models. In order to intensify processes, a combination of ultrafiltration and activated carbon fiber cloth (ACFC) is presented to remove the large spectra of particles and organic molecules present in water. Systems (UF/ACFC) for surface water and industrial colored wastewater are applied and performances are determined as a function of operating conditions. - Air treatment: Activated carbon grain filters are used to control VOC emissions. Due to an exothermic reaction, an increase of local temperature in the reactor is noted and some fire accidents have been reported. For safety technologies, this temperature has to be previously determined. A model is proposed to simulate the breakthrough curves and temperatures

  10. Final Report: Air Purification: Nanostructured Media for Individual Protection

    Science.gov (United States)

    linker. A main focus of this overall work was to evaluate MOFs for selective removal of ammonia from air . We found that UiO-66-OH has a capacity of...and high selectivity and high capacity for ammonia is crucial to developing new adsorbents for ammonia removal from air .

  11. Air purification by house plants : a literature survey

    NARCIS (Netherlands)

    Visser, de Pieter

    2017-01-01

    Within the project ‘Plant champion air purification’, a public-private cooperation, a literate survey was carried out to explore recent findings on the possibilities of plants to purify indoor contaminated air. Literature was searched in academic journals, on the internet and within reports recently

  12. Molybdenum adsorption by alumina and Dowex 1x8 resin for the separation and purification process of fission 99Mo

    International Nuclear Information System (INIS)

    Yamaura, M.; Damasceno, M.O.; Freitas, A.A.; Camilo, R.L.; Araujo, I.C.; Forbicini, C.A.L.G. de O.

    2011-01-01

    Molybdenum-99 is the most widely employed radioisotope in nuclear medicine, due to its decay product, Technetium-99m, a radioisotope used in over 80% of diagnostic tests. Since 2009, the production of generators 99 Mo/ 99m Tc suffers a crisis of global supply. The raw material, the 99 Mo, is produced mainly by fission of 235 U in the reactor in uranium targets. Brazilian government invests in building of a research reactor suitable for the domestic production of 99 Mo from LEU (Low Enriched Uranium) targets and the IPEN/CNEN develops the production technology. This work is part of the research for the development of production technology of 99 Mo at the IPEN/CNEN-SP. The study has evaluated the adsorption behaviour of molybdenum from the alkaline dissolution of aluminum plates by the alumina and by the anionic resin Dowex 1x8 aiming at their use in the process of separation and purification in chromatography columns. Influences of pH and of aluminum concentration in the retention of molybdenum were investigated. Results showed high performance in the wide pH range. However in strongly acid solutions containing aluminum, alumina showed higher adsorption percentage than that achieved by the resin Dowex 1x8. (author)

  13. [Virus adsorption from batch experiments as influenced by air-water interface].

    Science.gov (United States)

    Zhang, Hui; Zhao, Bing-zi; Zhang, Jia-bao; Zhang, Cong-zhi; Wang, Qiu-ying; Chen, Ji

    2007-12-01

    The presence of air-water interface in batch sorption experiments may result in inaccurate estimation of virus adsorption onto various soils. A batch sorption experiment was conducted to compare the adsorption results of MS2 in different soils under presence/absence of air-water interface. Soils with sterilization/nonterilization treatment were used. Virus recovery efficiency in a blank experiment (no soil) was also evaluated as affected by different amount of air-water interface. The presence of air-water interface altered the results of virus adsorption in different soils with different extent, with Sandy fluvo-aquic soil being the most considerably affected, followed by Red loam soil, and the least being Red clay soil, probably because of different soil properties associated with virus adsorption/inactivation. Soil sterilization resulted in more significant difference of virus adsorption onto the Sandy fluvo-aquic soil between the presence and absence of air-water interface, while a reduced difference was observed in the Red loam soil. The presence of air-water interface significantly decreased virus recovery efficiency, with the values being decreased with increase in the amount of air-water interface. Soil particles likely prohibit viruses from reaching the air-water interface or alter the forces at the solid-water-air interface so that the results from the blank experiment did not truly represent results from control blank, which probably resulted in adsorption difference between presence and absence of the air-water interface.

  14. Modeling adsorption of cationic surfactants at air/water interface without using the Gibbs equation.

    Science.gov (United States)

    Phan, Chi M; Le, Thu N; Nguyen, Cuong V; Yusa, Shin-ichi

    2013-04-16

    The Gibbs adsorption equation has been indispensable in predicting the surfactant adsorption at the interfaces, with many applications in industrial and natural processes. This study uses a new theoretical framework to model surfactant adsorption at the air/water interface without the Gibbs equation. The model was applied to two surfactants, C14TAB and C16TAB, to determine the maximum surface excesses. The obtained values demonstrated a fundamental change, which was verified by simulations, in the molecular arrangement at the interface. The new insights, in combination with recent discoveries in the field, expose the limitations of applying the Gibbs adsorption equation to cationic surfactants at the air/water interface.

  15. Enhanced NO2 abatement by alkaline-earth modified g-C3N4 nanocomposites for efficient air purification

    Science.gov (United States)

    Papailias, Ilias; Todorova, Nadia; Giannakopoulou, Tatiana; Karapati, Sofia; Boukos, Nikos; Dimotikali, Dimitra; Trapalis, Christos

    2018-02-01

    The emission of nitrogen dioxide (NO2) is a major problem encountered in photocatalytic NOx removal for air purification. Although the oxidation of nitric oxide (NO) has been extensively studied, the elimination of NO2 byproduct is still in preliminary stage. In this work, alkaline-earth modified graphitic carbon nitride (g-C3N4) is proposed for efficient NOx removal by minimizing the emission of NO2 during the NO oxidation process. The novel photocatalysts were synthesized by annealing mixtures of melamine and various alkaline-earth acetates (magnesium, calcium and barium acetate) at 550 °C for 3 h. The specific surface area of the photocatalysts varied between 4.65 and 11.81 m2/g. The formation of MgO, CaCO3 and BaCO3 was demonstrated by XPS and FT-IR analyses. The initial concentration of each alkaline-earth precursor was 5 and 10 wt%, while the final metal concentration in the nanocomposites was in the range of 7.19-22.39 wt%. The modified photocatalysts showed slightly reduced NO oxidation ability. However, the overall air quality was significantly improved by restraining the NO2 emission. The results were related to the basic character of the nanocomposites due to the presence of alkaline-earths and their enhanced NO2 adsorption capability.

  16. Photocatalytic removal of NO and HCHO over nanocrystalline Zn2SnO4 microcubes for indoor air purification

    International Nuclear Information System (INIS)

    Ai Zhihui; Lee Shuncheng; Huang Yu; Ho Wingkei; Zhang Lizhi

    2010-01-01

    Nanocrystalline Zn 2 SnO 4 microcubes were hydrothermally synthesized and systematically characterized by XRD, SEM, TEM, XPS, N 2 adsorption-desorption, and UV-vis DRS analysis. The resulting Zn 2 SnO 4 microcubes with the edge size ranging from 0.8 to 1.2 μm were composed of numerous nanoparticles with size of 10-20 nm, and their optical band gap energy was estimated to be 3.25 eV from the UV-vis diffuse reflectance spectra. On degradation of nitrogen monoxide (NO) and formaldehyde (HCHO) at typical concentrations for indoor air quality, these nanocrystalline Zn 2 SnO 4 microcubes exhibited superior photocatalytic activity to the hydrothermally synthesized ZnO, SnO 2 , and Degussa TiO 2 P25, as well as C doped TiO 2 under UV-vis light irradiation. This enhanced photocatalytic activity of the nanocrystalline Zn 2 SnO 4 microcubes was attributed to their bigger surface areas, smaller particle size, special porous structures, and special electronic configuration. The nanocrystalline Zn 2 SnO 4 microcubes were chemically stable as there was no obvious deactivation during the multiple photocatalytic reactions. This work presents a promising approach for scaling-up industrial production of Zn 2 SnO 4 nanostructures and suggests that the synthesized nanocrystalline Zn 2 SnO 4 microcubes are promising photocatalysts for indoor air purification.

  17. Role of air bubbles overlooked in the adsorption of perfluorooctanesulfonate on hydrophobic carbonaceous adsorbents.

    Science.gov (United States)

    Meng, Pingping; Deng, Shubo; Lu, Xinyu; Du, Ziwen; Wang, Bin; Huang, Jun; Wang, Yujue; Yu, Gang; Xing, Baoshan

    2014-12-02

    Hydrophobic interaction has been considered to be responsible for adsorption of perfluorooctanesulfonate (PFOS) on the surface of hydrophobic adsorbents, but the long C-F chain in PFOS is not only hydrophobic but also oleophobic. In this study, for the first time we propose that air bubbles on the surface of hydrophobic carbonaceous adsorbents play an important role in the adsorption of PFOS. The level of adsorption of PFOS on carbon nanotubes (CNTs), graphite (GI), graphene (GE), and powdered activated carbon (PAC) decreases after vacuum degassing. Vacuum degassing time and pressure significantly affect the removal of PFOS by these adsorbents. After vacuum degassing at 0.01 atm for 36 h, the extent of removal of PFOS by the pristine CNTs and GI decreases 79% and 74%, respectively, indicating the main contribution of air bubbles to PFOS adsorption. When the degassed solution is recontacted with air during the adsorption process, the removal of PFOS recovers to the value obtained without vacuum degassing, further verifying the key role of air bubbles in PFOS adsorption. By theoretical calculation, the distribution of PFOS in air bubbles on the adsorbent surfaces is discussed, and a new schematic sorption model of PFOS on carbonaceous adsorbents in the presence of air bubbles is proposed. The accumulation of PFOS at the interface of air bubbles on the adsorbents is primarily responsible for its adsorption, providing a new mechanistic insight into the transport, fate, and removal of PFOS.

  18. [Investigation of microbial contamination of the air and equipment of a biological waste water purification station].

    Science.gov (United States)

    Alikbaeva, L A; Figurovskiĭ, A P; Vasil'ev, O D; Ermolaev-Makovskiĭ, M A; Merkur'eva, M A

    2010-01-01

    The paper describes the results of a study of ambient air microbiological pollution in the working premises and equipment surfaces in the main shops of the biological waste water purification station of a cardboard-polygraphic plant. The findings suggest that there is high microbial contamination of the working environment, which should be born in mind on developing measures to optimize working conditions and on studying morbidity rates among the workers.

  19. Purification of Single-Stranded cDNA Based on RNA Degradation Treatment and Adsorption Chromatography.

    Science.gov (United States)

    Trujillo-Esquivel, Elías; Franco, Bernardo; Flores-Martínez, Alberto; Ponce-Noyola, Patricia; Mora-Montes, Héctor M

    2016-08-02

    Analysis of gene expression is a common research tool to study networks controlling gene expression, the role of genes with unknown function, and environmentally induced responses of organisms. Most of the analytical tools used to analyze gene expression rely on accurate cDNA synthesis and quantification to obtain reproducible and quantifiable results. Thus far, most commercial kits for isolation and purification of cDNA target double-stranded molecules, which do not accurately represent the abundance of transcripts. In the present report, we provide a simple and fast method to purify single-stranded cDNA, exhibiting high purity and yield. This method is based on the treatment with RNase H and RNase A after cDNA synthesis, followed by separation in silica spin-columns and ethanol precipitation. In addition, our method avoids the use of DNase I to eliminate genomic DNA from RNA preparations, which improves cDNA yield. As a case report, our method proved to be useful in the purification of single-stranded cDNA from the pathogenic fungus Sporothrix schenckii.

  20. Use of polysaccharides to control protein adsorption to the air-water interface

    NARCIS (Netherlands)

    Ganzevles, R.A.; Cohen Stuart, M.A.; Vliet, T.v.; Jongh, H.H.J.de

    2006-01-01

    In order to understand foaming behaviour of mixed protein/anionic polysaccharide solutions, we investigated the effect of β-lactoglobulin/pectin interaction in the bulk on β-lactoglobulin adsorption to the air-water interface. Adsorption kinetics were evaluated by following surface pressure

  1. Experimental study of photocatalytic concrete products for air purification

    Energy Technology Data Exchange (ETDEWEB)

    Huesken, G.; Hunger, M.; Brouwers, H.J.H. [Department of Civil Engineering, Faculty of Engineering Technology, University of Twente, P.O. Box 217, 7500 AE Enschede (Netherlands)

    2009-12-15

    Air quality in inner-city areas is a topic which receives much attention nowadays but in the coming years, the overall interest on this topic will become even bigger. One major concern is caused by the reduction of the limiting values given by the European Council Directive 1999/30/EC [Relating to limit values for sulphur dioxide, nitrogen dioxide and oxides of nitrogen, particulate matter and lead in ambient air. Official Journal of the European Communities 1999, L 163/41-60] and increasing traffic rates especially for diesel powered passenger cars and freight vehicles. A promising approach for solving the problem of nitrogen oxides (NO{sub x}) is the photochemical conversion of nitrogen oxides to low concentrated nitrates due to heterogeneous photocatalytic oxidation (PCO) using titanium dioxide (TiO{sub 2}) as photocatalyst. A variety of products containing TiO{sub 2} are already available on the European market and their working mechanism under laboratory conditions is proven. However, there is still a lack of transforming the experimental results obtained under laboratory conditions to practical applications considering real world conditions. This paper presents the research conducted on photocatalytic concrete products with respect to the evaluation of air-purifying properties. The degradation process of nitric oxide (NO) under laboratory conditions is studied using a test setup for measuring the performance of photocatalytic active concrete products. The test setup uses the UV-A induced degradation of NO and is oriented on the ISO standard ISO 22197-1:2007. Besides the introduction of the test setup, a uniform measuring procedure is presented to the reader which allows for an evaluation and direct comparison of the performance of photocatalytic active concrete products. This kind of direct comparison was not possible so far. Furthermore, the results of a comparative study on varying photocatalytic concrete products of the European market will be discussed

  2. Recent Photocatalytic Applications for Air Purification in Belgium

    Directory of Open Access Journals (Sweden)

    Elia Boonen

    2014-07-01

    Full Text Available Photocatalytic concrete constitutes a promising technique to reduce a number of air contaminants such as NOx and VOC’s, especially at sites with a high level of pollution: highly trafficked canyon streets, road tunnels, the urban environment, etc. Ideally, the photocatalyst, titanium dioxide, is introduced in the top layer of the concrete pavement for best results. In addition, the combination of TiO2 with cement-based products offers some synergistic advantages, as the reaction products can be adsorbed at the surface and subsequently be washed away by rain. A first application has been studied by the Belgian Road Research Center (BRRC on the side roads of a main entrance axis in Antwerp with the installation of 10.000 m² of photocatalytic concrete paving blocks. For now however, the translation of laboratory testing towards results in situ remains critical of demonstrating the effectiveness in large scale applications. Moreover, the durability of the air cleaning characteristic with time remains challenging for application in concrete roads. From this perspective, several new trial applications have been initiated in Belgium in recent years to assess the “real life” behavior, including a field site set up in the Leopold II tunnel of Brussels and the construction of new photocatalytic pavements on industrial zones in the cities of Wijnegem and Lier (province of Antwerp. This paper first gives a short overview of the photocatalytic principle applied in concrete, to continue with some main results of the laboratory research recognizing the important parameters that come into play. In addition, some of the methods and results, obtained for the existing application in Antwerp (2005 and during the implementation of the new realizations in Wijnegem and Lier (2010–2012 and in Brussels (2011–2013, will be presented.

  3. Adsorption and purification of radiogallium in hydrochloric acid and metal chloride solutions by non-ionic resin of macro-reticular type

    International Nuclear Information System (INIS)

    Imai, Kiyoko; Watari, Kazuo; Ohno, Shigeru; Ohmiya, Toshinobu; Kuroda, Emi; Izawa, Masami.

    1986-01-01

    Adsorption behavior of radiogallium ( 67 Ga, 68 Ga) on non-ionic MR resin (XAD-7) from hydrochloric acid, lithium chloride and other metal chloride solutions, and purification of 68 Ga by this resin were studied. Radiogallium was adsorbed on XAD-7 rapidly and quantitatively from the solution of higher chloride concentration than 6M. The adsorption behavior is similar to that obtained with 59 Fe and 195 Au previously. Based on adsorption data, elimination of trace amount of 68 Ge commonly contained in 68 Ga milked from a 68 Ge/ 68 Ga generator was tried. When 68 Ga-6M hydrochloric acid solution containing 68 Ge was passed through a XAD-7 column, all the activity was transferred on the column. After eliminating 68 Ge fraction with 3M hydrochloric acid, 68 Ga was obtained in high purity by eluting with 0.1M hydrochloric acid. (author)

  4. Effects of Cabin Upsets on Adsorption Columns for Air Revitalization

    Science.gov (United States)

    LeVan, Douglas

    1999-01-01

    The National Aeronautics and Space Administration (NASA) utilizes adsorption technology as part of contaminant removal systems designed for long term missions. A variety of trace contaminants can be effectively removed from gas streams by adsorption onto activated carbon. An activated carbon adsorption column meets NASA's requirements of a lightweight and efficient means of controlling trace contaminant levels aboard spacecraft and space stations. The activated carbon bed is part of the Trace Contaminant Control System (TCCS) which is utilized to purify the cabin atmosphere. TCCS designs oversize the adsorption columns to account for irregular fluctuations in cabin atmospheric conditions. Variations in the cabin atmosphere include changes in contaminant concentrations, temperature, and relative humidity. Excessively large deviations from typical conditions can result from unusual crew activity, equipment malfunctions, or even fires. The research carried out under this award focussed in detail on the effects of cabin upsets on the performance of activated carbon adsorption columns. Both experiments and modeling were performed with an emphasis on the roll of a change in relative humidity on adsorption of trace contaminants. A flow through fixed-bed apparatus was constructed at the NASA Ames Research Center, and experiments were performed there. Modeling work was performed at the University of Virginia.

  5. Operation of a catalytic reverse flow reactor for the purification of air contamined with volatile organic compounds

    NARCIS (Netherlands)

    van de Beld, L.; van de Beld, L.; Westerterp, K.R.

    1997-01-01

    Catalytic oxidation in a reverse flow reactor is an attractive process for the decontamination of air polluted with volatile organic compounds (VOCs). In this paper several aspects of operating this type of reactor for air purification under strongly varying conditions will be discussed. For a

  6. Phenomenological studies and modelling of the gaseous impurities oxidation and adsorption mechanisms in helium: application for the purification system optimization in gas cooled nuclear reactors

    International Nuclear Information System (INIS)

    Legros, F.

    2008-01-01

    In GEN IV studies on future fission nuclear reactors, two concepts using helium as a coolant have been selected: GFR and VHTR. Among radioactive impurities and dusts, helium can contain H 2 , CO, CH 4 , CO 2 , H 2 O, O 2 , as well as nitrogenous species. To optimize the reactor functioning and lifespan, it is necessary to control the coolant chemical composition using a dedicated purification system. A pilot designed at the CEA allows studying this purification system. Its design includes three unit operations: H 2 and CO oxidation on CuO, then two adsorption steps. This study aims at providing a detailed analysis of the first and second purification steps, which have both been widely studied experimentally at laboratory scale. A first modelling based on a macroscopic approach was developed to represent the behaviour of the reactor and has shown that the CuO fixed bed conversion is dependent on the chemistry (mass transfer is not an issue) and is complete. The results of the structural analysis of the solids allow considering the CuO as particles made of 200 nm diameter grains. Hence, a new model at grain scale is proposed. It is highlighted that the kinetic constants from these two models are related with a scale factor which depends on geometry. A competition between carbon monoxide and hydrogen oxidation has been shown. Activation energies are around 30 kJ.mol-1. Simulation of the simultaneous oxidations leads to consider CO preferential adsorption. A similar methodology has been applied for CO 2 and H 2 O adsorption. The experimental isotherms showed a Langmuir type adsorption. Using this model, experimental and theoretical results agree. (author) [fr

  7. Soil-based filtration technology for air purification: potentials for environmental and space life support application

    Science.gov (United States)

    Nelson, Mark; Bohn, Hinrich

    Soil biofiltration, also known as Soil bed reactor (SBR), technology was originally developed in Germany to take advantage of the diversity in microbial mechanisms to control gases producing malodor in industrial processes. The approach has since gained wider international acceptance and seen numerous improvements, for example, by the use of high-organic compost beds to maximize microbial processes. This paper reviews the basic mechanisms which underlay soil processes involved in air purification, advantages and limitations of the technology and the cur-rent research status of the approach. Soil biofiltration has lower capital and operating/energetic costs than conventional technologies and is well adapted to handle contaminants in moderate concentrations. The systems can be engineered to optimize efficiency though manipulation of temperature, pH, moisture content, soil organic matter and airflow rates. SBR technology was modified for application in the Biosphere 2 project, which demonstrated in preparatory research with a number of closed system testbeds that soil could also support crop plants while also serving as soil filters with air pumps to push air through the soil. This Biosphere 2 research demonstrated in several closed system testbeds that a number of important trace gases could be kept under control and led to the engineering of the entire agricultural soil of Biosphere 2 to serve as a soil filtration unit for the facility. Soil biofiltration, coupled with food crop produc-tion, as a component of bioregenerative space life support systems has the advantages of lower energy use and avoidance of the consumables required for other air purification approaches. Expanding use of soil biofiltration can aid a number of environmental applications, from the mitigation of indoor air pollution, improvement of industrial air emissions and prevention of accidental release of toxic gases.

  8. Adsorption kinetics of c-Fos and c-Jun to air-water interfaces.

    Science.gov (United States)

    Del Boca, Maximiliano; Nobre, Thatyane Morimoto; Zaniquelli, Maria Elisabete Darbello; Maggio, Bruno; Borioli, Graciela A

    2007-11-01

    The kinetics of adsorption to air-water interfaces of the biomembrane active transcription factors c-Fos, c-Jun and their mixtures is investigated. The adsorption process shows three distinct stages: a lag time, a fast pseudo zero-order stage, and a halting stage. The initial stage determines the course of the process, which is concentration dependent until the end of the fast stage. We show that c-Fos has faster adsorption kinetics than c-Jun over all three stages and that the interaction between both proteins is apparent in the adsorption profiles of the mixtures. Protein molecular reorganization at the interface determines the transition to the final adsorption stage of the pure proteins as well as that of the mixtures.

  9. Entropy of adsorption of mixed surfactants from solutions onto the air/water interface

    Science.gov (United States)

    Chen, L.-W.; Chen, J.-H.; Zhou, N.-F.

    1995-01-01

    The partial molar entropy change for mixed surfactant molecules adsorbed from solution at the air/water interface has been investigated by surface thermodynamics based upon the experimental surface tension isotherms at various temperatures. Results for different surfactant mixtures of sodium dodecyl sulfate and sodium tetradecyl sulfate, decylpyridinium chloride and sodium alkylsulfonates have shown that the partial molar entropy changes for adsorption of the mixed surfactants were generally negative and decreased with increasing adsorption to a minimum near the maximum adsorption and then increased abruptly. The entropy decrease can be explained by the adsorption-orientation of surfactant molecules in the adsorbed monolayer and the abrupt entropy increase at the maximum adsorption is possible due to the strong repulsion between the adsorbed molecules.

  10. On the problem of low-temperature air adsorption studies by the volume method

    International Nuclear Information System (INIS)

    Gur'yanov, V.V.; Gashin, V.M.; Shcherbakov, V.P.; Misin, M.S.; Sizova, G.P.

    1975-01-01

    The properties of a porous structure and the adsorption of a series of carbon adsorbents at 77 K were studied. It was shown that isotherms may be constructed within the framework of the theory of volume filling only for a degree of filling of theta>20.5. Deviations from theoretical curves are observed with practically no accumulation in the high-vacuum equipment of carbon-adsorbed helium, hydrogen, and neon. Therefore the initial parts of the air-adsorption isotherm at 77 K may not be used for characterizing the adsorption properties and parameters of the porous structure of a microporous adsorbent. The effect of adsorbent microporosity on the adsorption isotherm begins to appear only when the pressure of the poorly sorbed components of the air is less than the total pressure of the nitrogen and oxygen

  11. Air Stripping Designs and Reactive Water Purification Processes for the Lunar Surface

    Science.gov (United States)

    Boul, Peter J.; Lange, Kevin; Conger, Bruce; Anderson, Molly

    2010-01-01

    Air stripping designs are considered to reduce the presence of volatile organic compounds in the purified water. Components of the wastewater streams are ranked by Henry's Law Constant and the suitability of air stripping in the purification of wastewater in terms of component removal is evaluated. Distillation processes are modeled in tandem with air stripping to demonstrate the potential effectiveness and utility of these methods in recycling wastewater on the Moon. Scaling factors for distillation and air stripping columns are presented to account for the difference in the lunar gravitation environment. Commercially available distillation and air stripping units which are considered suitable for Exploration Life Support are presented. The advantages to the various designs are summarized with respect to water purity levels, power consumption, and processing rates. An evaluation of reactive distillation and air stripping is presented with regards to the reduction of volatile organic compounds in the contaminated water and air. Among the methods presented, an architecture is presented for the evaluation of the simultaneous oxidation of organics in air and water. These and other designs are presented in light of potential improvements in power consumptions and air and water purities for architectures which include catalytic activity integrated into the water processor. In particular, catalytic oxidation of organics may be useful as a tool to remove contaminants that more traditional distillation and/or air stripping columns may not remove. A review of the current leading edge at the commercial level and at the research frontier in catalytically active materials is presented. Themes and directions from the engineering developments in catalyst design are presented conceptually in light of developments in the nanoscale chemistry of a variety of catalyst materials.

  12. Fixed bed adsorption of hexavalent chromium onto natural zeolite from air stream

    OpenAIRE

    F. Golbabaei; E. Rahmanzadeh; G. R. Moussavi; A. Faghihi zarandi; M. R. Baneshi

    2014-01-01

    Introduction: Chromium (VI) is a known human carcinogenic agent which is used in numerous industrial processes such as electroplating, welding, textile, cement and steel fabrication. The aim of this study was to determine the effectiveness of natural zeolite on the fixed bed adsorption of Cr (VI) from air stream. . Material and Method: In this experimental study, chromium mists were generated by a nebulizer (3A model, Italy). Performance of natural zeolite in the Cr (VI) adsorption and ...

  13. Plasma flame for mass purification of contaminated air with chemical and biological warfare agents

    International Nuclear Information System (INIS)

    Uhm, Han S.; Shin, Dong H.; Hong, Yong C.

    2006-01-01

    An elimination of airborne simulated chemical and biological warfare agents was carried out by making use of a plasma flame made of atmospheric plasma and a fuel-burning flame, which can purify the interior air of a large volume in isolated spaces such as buildings, public transportation systems, and military vehicles. The plasma flame generator consists of a microwave plasma torch connected in series to a fuel injector and a reaction chamber. For example, a reaction chamber, with the dimensions of a 22 cm diameter and 30 cm length, purifies an airflow rate of 5000 lpm contaminated with toluene (the simulated chemical agent) and soot from a diesel engine (the simulated aerosol for biological agents). Large volumes of purification by the plasma flame will free mankind from the threat of airborne warfare agents. The plasma flame may also effectively purify air that is contaminated with volatile organic compounds, in addition to eliminating soot from diesel engines as an environmental application

  14. Air purification from a mixture VOCs in the pilot-scale trickle-bed bioreactor (TBB

    Directory of Open Access Journals (Sweden)

    Sarzyński Rafał

    2017-01-01

    Full Text Available The efficiency of the air bio-purification from the mixture of two volatile organic compounds (styrene and p-xylene was studied. The process was carried out in a pilot-scale trickle-bed bioreactor installation designed to purify ∼200 m3h-1 of the polluted air. The bioreactor operated at concurrent flow of gas and liquid (mineral salt solution through packing (polypropylene Ralu rings covered with a thin layer of microorganisms (bacterial consortium of Pseudomonas sp. E-022150 and Pseudomonas putida mt-2. The experiments, carried out for various values of a reactor load with pollutant, confirmed the great efficiency of the investigated process. At the tested bed load with pollution (inlet specific pollutant load was changed within the range of 41 – 84 gm-3 h -1, styrene conversion degree changed within the range of 80-87% and p-xylene conversion degree within the range of 42-48%.

  15. Air purification from a mixture VOCs in the pilot-scale trickle-bed bioreactor (TBB)

    Science.gov (United States)

    Sarzyński, Rafał; Gąszczak, Agnieszka; Janecki, Daniel; Bartelmus, Grażyna

    2017-10-01

    The efficiency of the air bio-purification from the mixture of two volatile organic compounds (styrene and p-xylene) was studied. The process was carried out in a pilot-scale trickle-bed bioreactor installation designed to purify ˜200 m3h-1 of the polluted air. The bioreactor operated at concurrent flow of gas and liquid (mineral salt solution) through packing (polypropylene Ralu rings) covered with a thin layer of microorganisms (bacterial consortium of Pseudomonas sp. E-022150 and Pseudomonas putida mt-2). The experiments, carried out for various values of a reactor load with pollutant, confirmed the great efficiency of the investigated process. At the tested bed load with pollution (inlet specific pollutant load was changed within the range of 41 - 84 gm-3 h -1), styrene conversion degree changed within the range of 80-87% and p-xylene conversion degree within the range of 42-48%.

  16. Air separation by pressure swing adsorption on a carbon molecular sieve

    Energy Technology Data Exchange (ETDEWEB)

    Hassan, M M; Ruthven, D M; Raghaven, N S

    1986-01-01

    A simplified dynamic model for a PSA air separation process is developed based on linearized mass transfer rate expressions and binary Langmuir equilibrium. Constant pressure is assumed during adsorption and desorption steps but the variation in flow rate through the column due to adsorption is accounted for. The model predictions, using independently measured kinetic and equilibrium data are compared with experimental results obtained in a simple two-bed air separation PSA system packed with a carbon molecular sieve adsorbent. The model is shown to provide a good representation of the experimentally observed behavior over a wide range of conditions.

  17. Adsorbent synthesis of polypyrrole/TiO(2) for effective fluoride removal from aqueous solution for drinking water purification: Adsorbent characterization and adsorption mechanism.

    Science.gov (United States)

    Chen, Jie; Shu, Chiajung; Wang, Ning; Feng, Jiangtao; Ma, Hongyu; Yan, Wei

    2017-06-01

    More than 20 countries are still suffering problems of excessive fluoride containing water, and greater than 8mg/L fluoride groundwater has been reported in some villages in China. In order to meet the challenge in the drinking water defluoridation engineering, a high efficiency and affinity defluoridation adsorbent PPy/TiO 2 composite was designed and synthetized by in-situ chemical oxidative polymerization. Fourier Transform Infrared Spectroscopy (FTIR), X-ray diffraction Investigator (XRD), X-ray photoelectron spectroscopy (XPS), Thermogravimetric analysis (TG), N 2 isotherm analysis, Scanning Electron Microscopy (SEM) and Zeta potential analysis were conducted to characterize surface and textural properties of the as-prepared PPy/TiO 2 , and the possibility of fluoride adsorption was carefully estimated by adsorption isotherm and kinetic studies. Characterization investigations demonstrate the uniqueness of surface and textural properties, such as suitable specific surface area and abundant positively charged nitrogen atoms (N + ), which indicate the composite is a suitable material for the fluoride adsorption. Adsorption isotherms and kinetics follow better with Langmuir and pseudo-second-order model, respectively. The maximum adsorption capacity reaches 33.178mg/g at 25°C according to Langmuir model, and particular interest was the ability to reduce the concentration of fluoride from 11.678mg/L to 1.5mg/L for drinking water at pH of 7 within 30min. Moreover, the adsorbent can be easily recycled without the loss of adsorption capacity after six cycles, greatly highlighting its outstanding affinity to fluoride, low-cost and novel to be used in the purification of fluoride containing water for drinking. Furthermore, the adsorption mechanism was extensively investigated and discussed by FTIR investigation and batch adsorption studies including effect of pH, surface potential and thermodynamics. The adsorption is confirmed to be a spontaneous and exothermic

  18. Mechanism of ion adsorption to aqueous interfaces: Graphene/water vs. air/water.

    Science.gov (United States)

    McCaffrey, Debra L; Nguyen, Son C; Cox, Stephen J; Weller, Horst; Alivisatos, A Paul; Geissler, Phillip L; Saykally, Richard J

    2017-12-19

    The adsorption of ions to aqueous interfaces is a phenomenon that profoundly influences vital processes in many areas of science, including biology, atmospheric chemistry, electrical energy storage, and water process engineering. Although classical electrostatics theory predicts that ions are repelled from water/hydrophobe (e.g., air/water) interfaces, both computer simulations and experiments have shown that chaotropic ions actually exhibit enhanced concentrations at the air/water interface. Although mechanistic pictures have been developed to explain this counterintuitive observation, their general applicability, particularly in the presence of material substrates, remains unclear. Here we investigate ion adsorption to the model interface formed by water and graphene. Deep UV second harmonic generation measurements of the SCN - ion, a prototypical chaotrope, determined a free energy of adsorption within error of that for air/water. Unlike for the air/water interface, wherein repartitioning of the solvent energy drives ion adsorption, our computer simulations reveal that direct ion/graphene interactions dominate the favorable enthalpy change. Moreover, the graphene sheets dampen capillary waves such that rotational anisotropy of the solute, if present, is the dominant entropy contribution, in contrast to the air/water interface.

  19. Adsorption of asparagine on the gold electrode and air/solution interface

    International Nuclear Information System (INIS)

    Slojkowska, R.; Palys, B.; Jurkiewicz-Herbich, M.

    2004-01-01

    The adsorption of asparagine (Asn) on a gold electrode from 0.1 M LiClO 4 aqueous solutions was investigated. The experimental data obtained from ac impedance measurements were analyzed to determine the dependence of adsorption parameters, i.e. the standard Gibbs energy of adsorption (ΔG 0 ), maximal value of surface excess concentration (Γ max ) of Asn and parameter of interactions in the adsorbed layer (A) on the electrode potential. The relatively large value of Gibbs energy of adsorption (∼ -47 kJ mol -1 ) gives the evidence of a very strong adsorption of Asn at the polycrystalline Au electrode. The comparison of the adsorption behavior of Asn at the air/solution and the Au/solution interfaces points out to the significant electronic interactions of adsorbate molecules with the Au electrode, since the adsorption of Asn on a free surface (from the same solutions) is very week. The analysis of the electrochemical data as well as the infrared reflection absorption spectroscopy (IRAS) results reveal that Asn molecules are anchored to the Au surface through oxygen atoms of the carboxylate group COO - and through the amide carbonyl group

  20. Summary of Adsorption/Desorption Experiments for the European Database on Indoor Air Pollution Sources in Buildings

    DEFF Research Database (Denmark)

    Kjær, Ulla Dorte; Tirkkonen, T.

    1996-01-01

    Experimental data for adsorption/desorption in building materials. Contribution to the European Database on Indoor Air Pollution Sources in buildings.......Experimental data for adsorption/desorption in building materials. Contribution to the European Database on Indoor Air Pollution Sources in buildings....

  1. Adsorption

    Directory of Open Access Journals (Sweden)

    Sushmita Banerjee

    2017-05-01

    Full Text Available Application of saw dust for the removal of an anionic dye, tartrazine, from aqueous solutions has been investigated. The experiments were carried out in batch mode. Effect of the parameters such as pH, initial dye concentration and temperature on the removal of the dye was studied. Equilibrium was achieved in 70 min. Maximum adsorption of dye was achieved at pH 3. Removal percent was found to be dependent on the initial concentration of dye solution, and maximum removal was found to be 97% at 1 mg/L of tartrazine. The removal increases from 71% to 97% when the initial concentration of dye solution decreases from 15 mg/L to 1 mg/L. The equilibrium adsorption data were analyzed by Langmuir, Freundlich, Temkin and Dubinin–Radushkevich isotherm models. The (Langmuir adsorption capacity of the adsorbent is found to be 4.71 mg/g at 318 K. Kinetic modeling of the process of removal was carried out and the process of removal was found to follow a pseudo second order model and the value of rate constant for adsorption process was calculated as 2.7 × 10−3 g mg−1 min−1 at 318 K. The thermodynamic parameters such as change in free energy (ΔG°, enthalpy (ΔH° and entropy (ΔS° were determined and the negative values of ΔG° indicated that the process of removal was spontaneous at all values of temperatures. Further, the values of ΔH° indicated the endothermic nature of the process of removal.

  2. Protein adsorption at air-water interfaces: A combination of details

    NARCIS (Netherlands)

    Jongh, de H.H.J.; Kosters, H.A.; Kudryashova, E.; Meinders, M.B.J.; Trofimova, D.; Wierenga, P.A.

    2004-01-01

    Using a variety of spectroscopic techniques, a number of molecular functionalities have been studied in relation to the adsorption process of proteins to air-water interfaces. While ellipsometry and drop tensiometry are used to derive information on adsorbed amount and exerted surface pressure,

  3. Tritium removal from air streams by catalytic oxidation and water adsorption

    International Nuclear Information System (INIS)

    Sherwood, A.E.

    1976-06-01

    An effective method of capturing tritium from air streams is by catalytic oxidation followed by water adsorption on a microporous solid adsorbent. Performance of a burner/dryer combination is illustrated by overall mass balance equations. Engineering design methods for packed bed reactors and adsorbers are reviewed, emphasizing the experimental data needed for design and the effect of operating conditions on system performance

  4. Protein Adsorption at Air-Water Interfaces: A Combination of Details

    NARCIS (Netherlands)

    Jongh, H.H.J.de; Kosters, H.A.; Kudryashova, E.; Meinders, M.B.J.; Trofimova, D.; Wierenga, P.A.

    2004-01-01

    Using a variety of spectroscopic techniques, a number of molecular functionalities have been studied in relation to the adsorption process of proteins to air-water interfaces. While ellipsometry and drop tensiometry are used to derive information on adsorbed amount and exerted surface pressure,

  5. Dependence of adsorption quality of carbon in NPP air cleaning systems

    International Nuclear Information System (INIS)

    Vujisic, Lj.

    1994-01-01

    A relationship which describes the influence of aging, relative humidity and organic poisons on the adsorption quality of coconut charcoal has been established. The relationship is rearranged for easy calculation of the reliable operation time of the adsorbent media in charcoal filters of any single nuclear air-cleaning system during accidental and incidental situation of NPP (author)

  6. Air-Cooled Design of a Temperature-Swing Adsorption Compressor for Closed-Loop Air Revitalization Systems

    Science.gov (United States)

    Mulloth, Lila M.; Affleck, Dave L.; Rosen, Micha; LeVan, M. Douglas; Wang, Yuan; Cavalcante, Celio L.

    2004-01-01

    The air revitalization system of the International Space Station (ISS) operates in an open loop mode and relies on the resupply of oxygen and other consumables from earth for the life support of astronauts. A compressor is required for delivering the carbon dioxide from a removal assembly to a reduction unit to recover oxygen and thereby closing the air-loop. We have a developed a temperature-swing adsorption compressor (TSAC) for performing these tasks that is energy efficient, quiet, and has no rapidly moving parts. This paper discusses the mechanical design and the results of thermal model validation tests of a TSAC that uses air as the cooling medium.

  7. Indoor air purification by dielectric barrier discharge combined with ionic wind: physical and microbiological investigations

    Science.gov (United States)

    Timmermann, E.; Prehn, F.; Schmidt, M.; Höft, H.; Brandenburg, R.; Kettlitz, M.

    2018-04-01

    A non-thermal plasma source based on a surface dielectric barrier discharge (DBD) is developed for purification of recirculating air in operating theatres in hospitals. This is a challenging application due to high flow rates, short treatment times and the low threshold for ozone in the ventilated air. Therefore, the surface DBD was enhanced in order to generate an ionic wind, which can deflect and thus, filter out airborne microorganisms. Electrical and gas diagnostics as well as microbiological experiments were performed in a downscaled plasma source under variation of various electrical parameters, but application-oriented airflow velocity and humidity. The dependence of electrical power and ozone concentration as well as charged particles in the plasma treated air on frequency, voltage and relative humidity is presented and discussed. The presence of humidity causes a more conductive dielectric surface and thus a weaker plasma formation, especially at low frequency. The airborne test bacteria, Escherichia coli, showed significant effect to plasma treatment (up to 20% reduction) and to plasma with ionic wind (up to 90% removal); especially a configuration with 70% removal and an accompanying ozone concentration of only 360 ppb is promising for future application.

  8. Can a Clean-Air Heat Pump (CAHP) maintain air purification capability when using polluted air for regeneration?

    DEFF Research Database (Denmark)

    Sheng, Ying; Fang, Lei

    2018-01-01

    Clean Air Heat Pump (CAHP) was one type of rotary desiccant cooling system which combined a silica gel rotor with a heat pump to achieve air cleaning, dehumidifying and cooling in buildings. Using exhaust air from the conditioned room for regeneration of the silica gel rotor might have an advantage...... on reducing the regeneration air temperature and further improving the energy performance of the CAHP. However, the exhaust air carried a lot of indoor air pollutants. Whether using exhaust air for the regeneration of the silica gel rotor had an impact on the air cleaning performance of the CAHP...... was experimentally studied. The results showed that using the air contained acetone or toluene for regeneration reduced the pollutants removal capability of CAHP with a reduction of approx. 10% in air cleaning efficiency. The energy performance of the CAHP when using exhaust air for regeneration was also evaluated...

  9. Adsorption cold storage system with zeolite-water working pair used for locomotive air conditioning

    International Nuclear Information System (INIS)

    Lu, Y.Z.; Wang, R.Z.; Zhang, M.; Jiangzhou, S.

    2003-01-01

    Adsorption cold storage has lately attracted attention for its large storage capacity and zero cold energy loss during the storing process. Thermodynamic and experimental studies on the cold storage capacity and the cold discharging process, in which the adsorber is either air cooled or adiabatic, have been presented. An adsorption cold storage system with zeolite-water working pair has been developed, and some operating results are summarized. This system is used for providing air conditioning for the driver's cab of an internal combustion locomotive. Unlike a normal adsorption air conditioner, the system starts running with the adsorption process, during which the cold energy stored is discharged, and ends running with the generation process. The adsorbent temperature decreases during the cold storing period between two runs. The refrigeration power output for the whole running cycle is about 4.1 kW. It appears that such a system is quite energetically efficient and is comparatively suitable for providing discontinuous refrigeration capacity when powered by low grade thermal energy, such as industrial exhausted heat or solar energy

  10. Rediscovering the Schulze-Hardy rule in competitive adsorption to an air-water interface.

    Science.gov (United States)

    Stenger, Patrick C; Isbell, Stephen G; St Hillaire, Debra; Zasadzinski, Joseph A

    2009-09-01

    The ratio of divalent to monovalent ion concentration necessary to displace the surface-active protein, albumin, by lung surfactant monolayers and multilayers at an air-water interface scales as 2(-6), the same concentration dependence as the critical flocculation concentration (CFC) for colloids with a high surface potential. Confirming this analogy between competitive adsorption and colloid stability, polymer-induced depletion attraction and electrostatic potentials are additive in their effects; the range of the depletion attraction, twice the polymer radius of gyration, must be greater than the Debye length to have an effect on adsorption.

  11. Design and Development of an air-cooled Temperature-Swing Adsorption Compressor for Carbon Dioxide

    Science.gov (United States)

    Mulloth, Lila M.

    2003-01-01

    The air revitalization system of the International Space Station (ISS) operates in an open loop mode and relies on the resupply of oxygen and other consumables from earth for the life support of astronauts. A compressor is required for delivering the carbon dioxide from a removal assembly to a reduction unit to recover oxygen and thereby closing the air-loop. We have a developed a temperature-swing adsorption compressor (TSAC) for performing these tasks that is energy efficient, quiet, and has no wearing parts. This paper discusses the design features of a TSAC hardware that uses air as the cooling medium and has Space Station application.

  12. TiO2-Impregnated Porous Silica Tube and Its Application for Compact Air- and Water-Purification Units

    Directory of Open Access Journals (Sweden)

    Tsuyoshi Ochiai

    2015-09-01

    Full Text Available A simple, convenient, reusable, and inexpensive air- and water-purification unit including a one-end sealed porous amorphous-silica (a-silica tube coated with TiO2 photocatalyst layers has been developed. The porous a-silica layers were formed through outside vapor deposition (OVD. TiO2 photocatalyst layers were formed through impregnation and calcination onto a-silica layers. The resulting porous TiO2-impregnated a-silica tubes were evaluated for air-purification capacity using an acetaldehyde gas decomposition test. The tube (8.5 mm e.d. × 150 mm demonstrated a 93% removal rate for high concentrations (ca. 300 ppm of acetaldehyde gas at a single-pass condition with a 250 mL/min flow rate under UV irradiation. The tube also demonstrated a water purification capacity at a rate 2.0 times higher than a-silica tube without TiO2 impregnation. Therefore, the tubes have a great potential for developing compact and in-line VOC removal and water-purification units.

  13. Dynamic surface tension and adsorption mechanism of surfactin biosurfactant at the air-water interface.

    Science.gov (United States)

    Onaizi, Sagheer A

    2018-03-01

    The dynamic adsorption of the anionic biosurfactant, surfactin, at the air-water interface has been investigated in this work and compared to those of two synthetic surfactants: the anionic sodium dodecylbenzenesulfonate (SDBS) and the nonionic octaethylene glycol monotetradecyl ether (C 14 E 8 ). The results revealed that surfactin adsorption at the air-water interface is purely controlled by diffusion mechanism at the initial stage of the adsorption process (i.e., [Formula: see text]), but shifts towards a mixed diffusion-barrier mechanism when surface tension approaches equilibrium (i.e., [Formula: see text]) due to the development of an energy barrier for adsorption. Such energy barrier has been found to be a function of the surfactin bulk concentration (increases with increasing surfactin concentration) and it is estimated to be in the range of 1.8-9.5 kJ/mol. Interestingly, such a trend (pure diffusion-controlled mechanism at [Formula: see text] and mixed diffusion-barrier mechanism at [Formula: see text]) has been also observed for the nonionic C 14 E 8 surfactant. Unlike the pure diffusion-controlled mechanism of the initial surfactin adsorption, which was the case in the presence and the absence of the sodium ion (Na + ), SDBS showed a mixed diffusion-barrier controlled at both short and long time, with an energy barrier of 3.0-9.0 and 3.8-18.0 kJ/mol, respectively. Such finding highlights the nonionic-like adsorption mechanism of surfactin despite its negative charge.

  14. Sodium dodecyl sulfate-ethoxylated polyethylenimine adsorption at the air-water interface: how the nature of ethoxylation affects the pattern of adsorption.

    Science.gov (United States)

    Batchelor, Stephen N; Tucker, Ian; Petkov, Jordan T; Penfold, Jeffrey; Thomas, Robert K

    2014-08-19

    The strong interaction between ionic surfactants and polyelectrolytes of opposite charge results in enhanced surface adsorption at the air-water interface down to low surfactant concentrations and in some cases in the formation of ordered surface structures. A notable example which exhibits such properties is the mixture of polyethylenimine, PEI, and sodium dodecyl sulfate, SDS. However, the electrostatic interaction, around charge neutralization, between the surfactant and polymer often results in precipitation or coacervation. This can be mitigated for PEI-surfactant mixtures by ethoxylation of the PEI, but this can also result in a weaker surface interaction and a significant reduction in the adsorption. It is shown here that by localizing the ethoxylation of the PEI into discrete regions of the polymer precipitation upon the addition of SDS is suppressed, the strong surface interaction and enhanced adsorption of the polymer-surfactant mixture is retained. The adsorption of SDS in the presence of ethoxylated PEI is greatly enhanced at low SDS concentrations compared to the adsorption for pure SDS. The adsorption is equally pronounced at pH 7 and 10 and is largely independent of the degree of ethoxylation. Surface ordering, more than monolayer adsorption, is observed over a relatively narrow range of SDS concentrations and is most pronounced at pH 10 and for the polymers with the lower degree of ethoxylation. The results show that ethoxylated PEI's reported here provide a suitable route to enhanced surfactant adsorption while retaining favorable solution properties in which precipitation effects are minimized.

  15. Equilibrium of adsorption of mixed milk protein/surfactant solutions at the water/air interface.

    Science.gov (United States)

    Kotsmar, C; Grigoriev, D O; Xu, F; Aksenenko, E V; Fainerman, V B; Leser, M E; Miller, R

    2008-12-16

    Ellipsometry and surface profile analysis tensiometry were used to study and compare the adsorption behavior of beta-lactoglobulin (BLG)/C10DMPO, beta-casein (BCS)/C10DMPO and BCS/C12DMPO mixtures at the air/solution interface. The adsorption from protein/surfactant mixed solutions is of competitive nature. The obtained adsorption isotherms suggest a gradual replacement of the protein molecules at the interface with increasing surfactant concentration for all studied mixed systems. The thickness, refractive index, and the adsorbed amount of the respective adsorption layers, determined by ellipsometry, decrease monotonically and reach values close to those for a surface covered only by surfactant molecules, indicating the absence of proteins from a certain surfactant concentration on. These results correlate with the surface tension data. A continuous increase of adsorption layer thickness was observed up to this concentration, caused by the desorption of segments of the protein and transforming the thin surface layer into a rather diffuse and thick one. Replacement and structural changes of the protein molecules are discussed in terms of protein structure and surface activity of surfactant molecules. Theoretical models derived recently were used for the quantitative description of the equilibrium state of the mixed surface layers.

  16. Mechanisms of polyelectrolyte enhanced surfactant adsorption at the air-water interface.

    Science.gov (United States)

    Stenger, Patrick C; Palazoglu, Omer A; Zasadzinski, Joseph A

    2009-05-01

    Chitosan, a naturally occurring cationic polyelectrolyte, restores the adsorption of the clinical lung surfactant Survanta to the air-water interface in the presence of albumin at much lower concentrations than uncharged polymers such as polyethylene glycol. This is consistent with the positively charged chitosan forming ion pairs with negative charges on the albumin and lung surfactant particles, reducing the net charge in the double-layer, and decreasing the electrostatic energy barrier to adsorption to the air-water interface. However, chitosan, like other polyelectrolytes, cannot perfectly match the charge distribution on the surfactant, which leads to patches of positive and negative charge at net neutrality. Increasing the chitosan concentration further leads to a reduction in the rate of surfactant adsorption consistent with an over-compensation of the negative charge on the surfactant and albumin surfaces, which creates a new repulsive electrostatic potential between the now cationic surfaces. This charge neutralization followed by charge inversion explains the window of polyelectrolyte concentration that enhances surfactant adsorption; the same physical mechanism is observed in flocculation and re-stabilization of anionic colloids by chitosan and in alternate layer deposition of anionic and cationic polyelectrolytes on charged colloids.

  17. A novel approach for blood purification : Mixed-matrix membranes combining diffusion and adsorption in one step

    NARCIS (Netherlands)

    Tijink, M.S.L.; Wester, M.; Sun, Junfen; Saris, A.; Bolhuis-Versteeg, L.A.M.; Saiful, Saiful; Joles, J.A.; Borneman, Z.; Wessling, Matthias; Stamatialis, D.

    Hemodialysis is a commonly used blood purification technique in patients requiring kidney replacement therapy. Sorbents could increase uremic retention solute removal efficiency but, because of poor biocompatibility, their use is often limited to the treatment of patients with acute poisoning. This

  18. Protein Exposed Hydrophobicity Reduces the Kinetic Barrier for Adsorption of Ovalbumin to the Air-Water Interface

    NARCIS (Netherlands)

    Wierenga, P.A.; Meinders, M.B.J.; Egmond, M.R.; Voragen, F.A.G.J.; Jongh, H.H.J. de

    2003-01-01

    Using native and caprylated ovalbumin, the role of exposed hydrophobicity on the kinetics of protein adsorption to the air - water interface is studied. First, changes in the chemical properties of the protein upon caprylation were characterized followed by measurement of the changes in adsorption

  19. Adsorption, folding, and packing of an amphiphilic peptide at the air/water interface.

    Science.gov (United States)

    Engin, Ozge; Sayar, Mehmet

    2012-02-23

    Peptide oligomers play an essential role as model compounds for identifying key motifs in protein structure formation and protein aggregation. Here, we present our results, based on extensive molecular dynamics simulations, on adsorption, folding, and packing within a surface monolayer of an amphiphilic peptide at the air/water interface. Experimental results suggest that these molecules spontaneously form ordered monolayers at the interface, adopting a β-hairpin-like structure within the surface layer. Our results reveal that the β-hairpin structure can be observed both in bulk and at the air/water interface. However, the presence of an interface leads to ideal partitioning of the hydrophobic and hydrophilic residues, and therefore reduces the conformational space for the molecule and increases the stability of the hairpin structure. We obtained the adsorption free energy of a single β-hairpin at the air/water interface, and analyzed the enthalpic and entropic contributions. The adsorption process is favored by two main factors: (1) Free-energy reduction due to desolvation of the hydrophobic side chains of the peptide and release of the water molecules which form a cage around these hydrophobic groups in bulk water. (2) Reduction of the total air/water contact area at the interface upon adsorption of the peptide amphiphile. By performing mutations on the original molecule, we demonstrated the relative role of key design features of the peptide. Finally, by analyzing the potential of mean force among two peptides at the interface, we investigated possible packing mechanisms for these molecules within the surface monolayer. © 2012 American Chemical Society

  20. Role of amine structure on carbon dioxide adsorption from ultradilute gas streams such as ambient air.

    Science.gov (United States)

    Didas, Stephanie A; Kulkarni, Ambarish R; Sholl, David S; Jones, Christopher W

    2012-10-01

    A fundamental study on the adsorption properties of primary, secondary, and tertiary amine materials is used to evaluate what amine type(s) are best suited for ultradilute CO(2) capture applications. A series of comparable materials comprised of primary, secondary, or tertiary amines ligated to a mesoporous silica support via a propyl linker are used to systematically assess the role of amine type. Both CO(2) and water adsorption isotherms are presented for these materials in the range relevant to CO(2) capture from ambient air and it is demonstrated that primary amines are the best candidates for CO(2) capture from air. Primary amines possess both the highest amine efficiency for CO(2) adsorption as well as enhanced water affinity compared to other amine types or the bare silica support. The results suggest that the rational design of amine adsorbents for the extraction of CO(2) from ambient air should focus on adsorbents rich in primary amines. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. An investigation of an underwater steam plasma discharge as alternative to air plasmas for water purification

    International Nuclear Information System (INIS)

    Gucker, Sarah N; Foster, John E; Garcia, Maria C

    2015-01-01

    An underwater steam plasma discharge, in which water itself is the ionizing media, is investigated as a means to introduce advanced oxidation species into contaminated water for the purpose of water purification. The steam discharge avoids the acidification observed with air discharges and also avoids the need for a feed gas, simplifying the system. Steam discharge operation did not result in a pH changes in the processing of water or simulated wastewater, with the actual pH remaining roughly constant during processing. Simulated wastewater has been shown to continue to decompose significantly after steam treatment, suggesting the presence of long-lived plasma produced radicals. During steam discharge operation, nitrate production is limited, and nitrite production was found to be below the detection threshold of (roughly 0.2 mg L −1 ). The discharge was operated over a broad range of deposited power levels, ranging from approximately 30 W to 300 W. Hydrogen peroxide production was found to scale with increasing power. Additionally, the hydrogen peroxide production efficiency of the discharge was found to be higher than many of the rates reported in the literature to date. (paper)

  2. Air environment purification using photocatalyst. Hikari shokubai ni yoru taiki kankyo joka

    Energy Technology Data Exchange (ETDEWEB)

    Takeuchi, K [National Institute for Resources and Environment, Tsukuba (Japan)

    1993-12-02

    Noticing that metal oxides have photocatalysis for reduction in NOx concentration and examining effects of the TiO2 selected on removal of pollutant, the paper proposes a direct purification method for the air environment. Since TiO2 causes electron excitation meeting near ultraviolet irradiation, it manifests a catalytic function for various oxidation/reduction reactions. Details of the reaction mechanism are unknown, various active oxygen species generated on the surface of TiO2 under light irradiation oxidize NOx and acquire it as nitric acid on the surface. It is found that mixture of activated carbon of low hygroscopicity with TiO2 is effective to prevent a tendency of NO to desorb before NO becomes nitric acid. What 40% of the catalyst with fluorine resin is formed into like a sheet shows a high removal rate even in the amount of ultraviolet irradiation in a winter cloudy day in the wide range of 0.5 - 95.0% of NOx and SO2, and if the photocatalyst is applied to the side wall of city buildings, the NOx concentration is estimated to be reduced by as much as 20%. 5 refs., 3 figs.

  3. Air purification by heterogeneous photocatalytic oxidation with multi-doped thin film titanium dioxide

    Energy Technology Data Exchange (ETDEWEB)

    O' Keeffe, Cormac, E-mail: cormac.okeeffe@theta.ie [Theta Chemicals Ltd., Station Road, Ballindine, Claremorris, Mayo (Ireland); Gannon, Paul; Gilson, Paul [Theta Chemicals Ltd., Station Road, Ballindine, Claremorris, Mayo (Ireland); Kafizas, Andreas; Parkin, Ivan P. [Department of Chemistry, University College London, Christopher Ingold Laboratories, 20 Gordon Street, London WC1H 0AJ (United Kingdom); Binions, Russell [School of Engineering and Materials Sciences, Queen Mary University of London, Mile End Road, London E1 4NS (United Kingdom)

    2013-06-30

    Multi element-doped titania films (F, S-TiO{sub 2}) were produced via sol–gel techniques and deposited on glass and ceramic substrates with an annealing temperature of 500 °C. The films were characterised by X-ray diffraction, Raman Spectroscopy, X-ray photoelectron spectroscopy and scanning electron microscopy. The X-ray diffraction and Raman spectrum showed the films to have an anatase TiO{sub 2} structure with X-ray photoelectron spectroscopy confirming the presence of sulphur, fluorine and carbon doping. The titania coated glass and ceramic substrates were compared against two commercially available TiO{sub 2} coated products for the photo-destruction of NO{sub 2(g)}. The study included both equivalent indoor and outdoor test conditions. The multi-doped titania films were shown to provide a genuine method of air purification under both visible (room lighting) and UVA lighting with photo-destruction rates as high as 72%. - Highlights: • Synthesis of multi-doped titania films • Excellent NO{sub 2} conversion rates for coated ceramic tiles • Excellent NO{sub 2} conversion rates for coated glass substrates • Significantly better conversion rates for existing commercial products.

  4. Adsorption behavior of hydrophobin and hydrophobin/surfactant mixtures at the air-water interface.

    Science.gov (United States)

    Zhang, Xiaoli L; Penfold, Jeffrey; Thomas, Robert K; Tucker, Ian M; Petkov, Jordan T; Bent, Julian; Cox, Andrew; Campbell, Richard A

    2011-09-20

    The adsorption of the surface-active protein hydrophobin, HFBII, and the competitive adsorption of HFBII with the cationic, anionic, and nonionic surfactants hexadecyltrimethylammonium bromide, CTAB, sodium dodecyl sulfate, SDS, and hexaethylene monododecyl ether, C(12)E(6), has been studied using neutron reflectivity, NR. HFBII adsorbs strongly at the air-water interface to form a dense monolayer ∼30 Å thick, with a mean area per molecule of ∼400 Å(2) and a volume fraction of ∼0.7, for concentrations greater than 0.01 g/L, and the adsorption is independent of the solution pH. In competition with the conventional surfactants CTAB, SDS, and C(12)E(6) at pH 7, the HFBII adsorption totally dominates the surface for surfactant concentrations less than the critical micellar concentration, cmc. Above the cmc of the conventional surfactants, HFBII is displaced by the surfactant (CTAB, SDS, or C(12)E(6)). For C(12)E(6) this displacement is only partial, and some HFBII remains at the surface for concentrations greater than the C(12)E(6) cmc. At low pH (pH 3) the patterns of adsorption for HFBII/SDS and HFBII/C(12)E(6) are different. At concentrations just below the surfactant cmc there is now mixed HFBII/surfactant adsorption for both SDS and C(12)E(6). For the HFBII/SDS mixture the structure of the adsorbed layer is more complex in the region immediately below the SDS cmc, resulting from the HFBII/SDS complex formation at the interface. © 2011 American Chemical Society

  5. Molybdenum adsorption by alumina and Dowex 1x8 resin for the separation and purification process of fission {sup 99}Mo

    Energy Technology Data Exchange (ETDEWEB)

    Yamaura, M.; Damasceno, M.O.; Freitas, A.A.; Camilo, R.L.; Araujo, I.C.; Forbicini, C.A.L.G. de O., E-mail: myamaura@ipen.b, E-mail: molidam@ipen.b, E-mail: afreitas@ipen.b, E-mail: rcamilo@ipen.b, E-mail: cruz.araujo@uol.com.b, E-mail: cforbici@ipen.b [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2011-07-01

    Molybdenum-99 is the most widely employed radioisotope in nuclear medicine, due to its decay product, Technetium-99m, a radioisotope used in over 80% of diagnostic tests. Since 2009, the production of generators {sup 99}Mo/{sup 99m}Tc suffers a crisis of global supply. The raw material, the {sup 99}Mo, is produced mainly by fission of {sup 235}U in the reactor in uranium targets. Brazilian government invests in building of a research reactor suitable for the domestic production of {sup 99}Mo from LEU (Low Enriched Uranium) targets and the IPEN/CNEN develops the production technology. This work is part of the research for the development of production technology of {sup 99}Mo at the IPEN/CNEN-SP. The study has evaluated the adsorption behaviour of molybdenum from the alkaline dissolution of aluminum plates by the alumina and by the anionic resin Dowex 1x8 aiming at their use in the process of separation and purification in chromatography columns. Influences of pH and of aluminum concentration in the retention of molybdenum were investigated. Results showed high performance in the wide pH range. However in strongly acid solutions containing aluminum, alumina showed higher adsorption percentage than that achieved by the resin Dowex 1x8. (author)

  6. Experimental studies of applicability of the wet air oxidation for purification liquid radioactive waste

    International Nuclear Information System (INIS)

    Sergienko, V. I.; Dobrzansky, V. G.

    2005-01-01

    The scheme of handling with liquid radioactive waste (LRW) accepted to exploitation at atomic electric station (AWS) is often connected with evaporating technologies. In this case vat residues of evaporating systems with activity 10 5 -10 6 Bq/1 and containing to 200-300 g/1 of salts are delivered up to LRW storages for lasting keeping. This schema does not correlate to the modern safety standards of handling with LRW, therefore at present numerous works are being carried on including those using technology of accumulated vat residues processing. Some successful experiments on sorption purification of high-salt LRW from cesium radionuclides giving the principal contribution into the total activity of a certain LRW are known. Unfortunately, attempts of sorption purification of the vat residues from other long-lived radionuclides (mainly from 60 Co-radionuclide) were unsuccessful up to the present time. It is found with the fact that the vat residues contain a considerable amount of complexing agent producing stable complexes with transition metal radionuclides including those of 60 Co. Extreme oxidation of the vat residues for decomposition of radioactive organic complexes is one of the solutions of this problem. The works related to oxidation of LRW including the AES vat residues with ozone, hydrogen peroxide as well as photo catalytic and electrochemical oxidation are known, however, possibilities of wet air oxidation (WAO) for LRW processing are not studied till the present time. Condition for decomposition of cobalt complex compounds and necessary excess of oxidizing agent may be easily attained with WAO usage. The necessary experiments were carried out at the experimental plant with the great interface surface (oxygen-solutions) equal to 400m -1 and 3 mm probe bed thickness. The heating time of the reactor to the working temperature 250 .deg. C did not exceed 50 seconds. 20... 50-fold oxidizer excess was achieved by the initial oxygen pressure into the reactor

  7. Determination of mercury in air by adsorption on Hopcalite and by neutron activation analysis

    International Nuclear Information System (INIS)

    Leyni-Barbaz, D.; Zikovsky, L.; Poissant, L.

    2002-01-01

    A new method for the determination of mercury in air has been developed. It combines the adsorption of mercury on Hopcalite (a material approved for this purpose by the National Institute of Health of the United States) and its quantification by neutron activation. The concentrations of mercury in office air in Montreal, Canada, were determined by instrumental semiabsolute neutron activation analysis. They varied from 39 to 48 ng/m 3 . The results were compared with the concentrations of mercury in office air determined simultaneously at the same place by cold vapour atomic fluorescence spectrophotometry. A close correlation between the results of the 2 methods was obtained. The detection limit of our method is about 14 ng/m 3 . (author)

  8. Degradation of paracetamol by catalytic wet air oxidation and sequential adsorption - Catalytic wet air oxidation on activated carbons

    Energy Technology Data Exchange (ETDEWEB)

    Quesada-Penate, I. [Universite de Toulouse, INPT, UPS, Laboratoire de Genie Chimique, 4, Allee Emile Monso, F-31432 Toulouse (France); CNRS, Laboratoire de Genie Chimique, F-31432 Toulouse (France); Julcour-Lebigue, C., E-mail: carine.julcour@ensiacet.fr [Universite de Toulouse, INPT, UPS, Laboratoire de Genie Chimique, 4, Allee Emile Monso, F-31432 Toulouse (France); CNRS, Laboratoire de Genie Chimique, F-31432 Toulouse (France); Jauregui-Haza, U. J. [Instituto Superior de Tecnologias y Ciencias Aplicadas, Ave. Salvador Allende y Luaces, Habana (Cuba); Wilhelm, A. M.; Delmas, H. [Universite de Toulouse, INPT, UPS, Laboratoire de Genie Chimique, 4, Allee Emile Monso, F-31432 Toulouse (France); CNRS, Laboratoire de Genie Chimique, F-31432 Toulouse (France)

    2012-06-30

    Highlights: Black-Right-Pointing-Pointer Three activated carbons (AC) compared as adsorbents and oxidation catalysts. Black-Right-Pointing-Pointer Similar evolution for catalytic and adsorptive properties of AC over reuses. Black-Right-Pointing-Pointer Acidic and mesoporous AC to be preferred, despite lower initial efficiency. Black-Right-Pointing-Pointer Oxidative degradation of paracetamol improves biodegradability. Black-Right-Pointing-Pointer Convenient hybrid adsorption-regenerative oxidation process for continuous treatment. - Abstract: The concern about the fate of pharmaceutical products has raised owing to the increasing contamination of rivers, lakes and groundwater. The aim of this paper is to evaluate two different processes for paracetamol removal. The catalytic wet air oxidation (CWAO) of paracetamol on activated carbon was investigated both as a water treatment technique using an autoclave reactor and as a regenerative treatment of the carbon after adsorption in a sequential fixed bed process. Three activated carbons (ACs) from different source materials were used as catalysts: two microporous basic ACs (S23 and C1) and a meso- and micro-porous acidic one (L27). During the first CWAO experiment the adsorption capacity and catalytic performance of fresh S23 and C1 were higher than those of fresh L27 despite its higher surface area. This situation changed after AC reuse, as finally L27 gave the best results after five CWAO cycles. Respirometry tests with activated sludge revealed that in the studied conditions the use of CWAO enhanced the aerobic biodegradability of the effluent. In the ADOX process L27 also showed better oxidation performances and regeneration efficiency. This different ageing was examined through AC physico-chemical properties.

  9. A study on purification of Kr and Xe from He carrier gas in HTGR by fixed bed adsorption%吸附法净化高温气冷堆He载气中Kr、Xe的研究

    Institute of Scientific and Technical Information of China (English)

    廖翠萍; 郑振宏; 施福恩; 周大森

    2001-01-01

    用椰子壳活性炭吸附剂固定床吸附法去除高温气冷堆He载气中Kr、Xe杂质。获得了Kr、Xe在椰子壳活性炭上的动吸附规律。考察了吸附温度、浓度、流速及床高等因素对保护作用时间、完全饱和时间、吸附容量的影响,获得最佳运行参数。结果表明:采用椰子壳活性炭可以除去高温气冷堆He载气中Kr、Xe等有害杂质,满足净化系统的要求。%The purification of krypton and xenon from the helium carrier gas of high temperature gas-cooled reactor by fixed bed activate carbon adsorption is studied.Experimental data at different adsorptive temperature,concentration,flow rate and bed depth are obtained from isothermal adsorption tests in order to examine the effects of these parameters on adsorption dynamic and for the optimal parameters selection of adsorption process.The results show that krypton and xenon from the helium carrier gas in HTGR can be eliminated by the coconut putamina activated carbon to meet the demands of purification system.

  10. Protein adsorption at the electrified air-water interface: implications on foam stability.

    Science.gov (United States)

    Engelhardt, Kathrin; Rumpel, Armin; Walter, Johannes; Dombrowski, Jannika; Kulozik, Ulrich; Braunschweig, Björn; Peukert, Wolfgang

    2012-05-22

    The surface chemistry of ions, water molecules, and proteins as well as their ability to form stable networks in foams can influence and control macroscopic properties such as taste and texture of dairy products considerably. Despite the significant relevance of protein adsorption at liquid interfaces, a molecular level understanding on the arrangement of proteins at interfaces and their interactions has been elusive. Therefore, we have addressed the adsorption of the model protein bovine serum albumin (BSA) at the air-water interface with vibrational sum-frequency generation (SFG) and ellipsometry. SFG provides specific information on the composition and average orientation of molecules at interfaces, while complementary information on the thickness of the adsorbed layer can be obtained with ellipsometry. Adsorption of charged BSA proteins at the water surface leads to an electrified interface, pH dependent charging, and electric field-induced polar ordering of interfacial H(2)O and BSA. Varying the bulk pH of protein solutions changes the intensities of the protein related vibrational bands substantially, while dramatic changes in vibrational bands of interfacial H(2)O are simultaneously observed. These observations have allowed us to determine the isoelectric point of BSA directly at the electrolyte-air interface for the first time. BSA covered air-water interfaces with a pH near the isoelectric point form an amorphous network of possibly agglomerated BSA proteins. Finally, we provide a direct correlation of the molecular structure of BSA interfaces with foam stability and new information on the link between microscopic properties of BSA at water surfaces and macroscopic properties such as the stability of protein foams.

  11. Evaluation of an adsorption system to concentrate VOC in air streams prior to catalytic incineration.

    Science.gov (United States)

    Campesi, María A; Luzi, Carlos D; Barreto, Guillermo F; Martínez, Osvaldo M

    2015-05-01

    Catalytic combustion is a well-developed process for the removal of volatile organic compounds (VOCs). In order to reduce both the amount of catalyst needed for incineration and the surface area of recuperative heat exchangers, an evaluation of the use of thermal swing adsorption as a previous step for VOC concentration is made. An air stream containing ethyl acetate and ethanol (employed as solvents in printing processes) has been taken as a case study. Based on the characteristics of the adsorption/desorption system and the properties of the stream to be treated, a monolithic rotor concentrator with activated carbon as adsorbent material is adopted. Once the temperature of the inlet desorption stream TD is chosen, the minimum possible desorption flow rate, WD,min, and the amount of adsorbent material can be properly defined according to the extent of the Mass Transfer Zone (MTZ) at the end of the adsorption stage. An approximate procedure to speed up the calculations needed for sizing the bed and predicting the operating variables is also presented. In the case studied here, the concentration of the VOC stream can reach 6 times that of the primary effluent when TD = 200 °C is chosen. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Effect of sample digestion, air filter contamination, and post-adsorption on the analysis of trace elements in air particulate matter

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Xiao Jin [Department of Environment and Climate Change, Environmental Forensic and Analytical Science Section, New South Wales (Australia); Department of Applied Chemistry, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing (China); Wan, Pingyu [Department of Applied Chemistry, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing (China); Foley, Roy [Department of Environment and Climate Change, Environmental Forensic and Analytical Science Section, New South Wales (Australia)

    2012-11-15

    Inductively coupled plasma atomic emission spectrometry and inductively coupled plasma MS are the major analytical tools for trace elements in environmental matrices, however, the underestimate of certain trace elements in analysis of air particulate matter by these two techniques has long been observed. This has been attributed to incomplete sample digestion. Here, we demonstrate that the combined effects of sample digestion, air filter impurities, and post-adsorption of the analytes contribute to the interference of the analysis. Particular attention should be paid to post-adsorption of analytes onto air filters after acid digestion. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  13. Effect of sample digestion, air filter contamination, and post-adsorption on the analysis of trace elements in air particulate matter

    International Nuclear Information System (INIS)

    Yang, Xiao Jin; Wan, Pingyu; Foley, Roy

    2012-01-01

    Inductively coupled plasma atomic emission spectrometry and inductively coupled plasma MS are the major analytical tools for trace elements in environmental matrices, however, the underestimate of certain trace elements in analysis of air particulate matter by these two techniques has long been observed. This has been attributed to incomplete sample digestion. Here, we demonstrate that the combined effects of sample digestion, air filter impurities, and post-adsorption of the analytes contribute to the interference of the analysis. Particular attention should be paid to post-adsorption of analytes onto air filters after acid digestion. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  14. Factors affecting the removal of ammonia from air on carbonaceous materials: Investigation of reactive adsorption mechanism

    Science.gov (United States)

    Petit, Camille

    Air pollution related to the release of industrial toxic gases, represents one of the main concerns of our modern world owing to its detrimental effect on the environment. To tackle this growing issue, efficient ways to reduce/control the release of pollutants are required. Adsorption of gases on porous materials appears as a potential solution. However, the physisorption of small molecules of gases such as ammonia is limited at ambient conditions. For their removal, adsorbents providing strong adsorption forces must be used/developed. In this study, new carbon-based materials are prepared and tested for ammonia adsorption at ambient conditions. Characterization of the adsorbents' texture and surface chemistry is performed before and after exposure to ammonia to identify the features responsible for high adsorption capacity and for controlling the mechanisms of retention. The characterization techniques include: nitrogen adsorption, thermal analysis, potentiometric titration, FT-IR spectroscopy, X-ray diffraction, Energy Dispersive X-ray spectroscopy, X-ray photoelectron spectroscopy and Electron Microscopy. The results obtained indicate that ammonia removal is governed by the adsorbent's surface chemistry. On the contrary, porosity (and thus physisorption) plays a secondary role in this process, unless strong dispersive forces are provided by the adsorbent. The surface chemistry features responsible for the enhanced ammonia adsorption include the presence of oxygen-(carboxyl, hydroxyl, epoxy) and sulfur- (sulfonic) containing groups. Metallic species improve the breakthrough capacity as well as they lead to the formation of Lewis acid-base interactions, hydrogen-bonding or complexation. In addition to the latter three mechanisms, ammonia is retained on the adsorbent surface via Bronsted acid-base interactions or via specific reactions with the adsorbent's functionalities leading to the incorporation of ammonia into the adsorbent's matrix. Another mechanism

  15. Analysis of the outlook for using narrow-band spontaneous emission sources for atmospheric air purification

    International Nuclear Information System (INIS)

    Boyarchuk, K A; Karelin, A V; Shirokov, R V

    2003-01-01

    The outlook for using narrow-band spontaneous emission sources for purification of smoke gases from sulphur and nitrogen oxides is demonstrated by calculations based on a nonstationary kinetic model of the N 2 - O 2 - H 2 O - CO 2 - SO 2 mixture. The dependences of the mixture purification efficiency on the UV source power at different wavelengths, the exposure time, and the mixture temperature are calculated. It is shown that the radiation sources proposed in the paper will provide better purification of waste gases in the atmosphere. The most promising is a KrCl* lamp emitting an average power of no less than 100 W at 222 nm. (laser applications and other topics in quantum electronics)

  16. Adsorption of surfactant ions and binding of their counterions at an air/water interface.

    Science.gov (United States)

    Tagashira, Hiroaki; Takata, Youichi; Hyono, Atsushi; Ohshima, Hiroyuki

    2009-01-01

    An expression for the surface tension of an aqueous mixed solution of surfactants and electrolyte ions in the presence of the common ions was derived from the Helmholtz free energy of an air/water surface. By applying the equation to experimental data for the surface tension, the adsorption constant of surfactant ions onto the air/water interface, the binding constant of counterions on the surfactants, and the surface potential and surface charge density of the interface were estimated. The adsorption constant and binding constant were dependent on the species of surfactant ion and counterion, respectively. Taking account of the dependence of surface potential and surface charge density on the concentration of electrolyte, it was suggested that the addition of electrolyte to the aqueous surfactant solution brings about the decrease in the surface potential, the increase in the surface density of surfactant ions, and consequently, the decrease in the surface tension. Furthermore, it was found that the configurational entropy plays a predominant role for the surface tension, compared to the electrical work.

  17. Study on adsorption of activated carbon fiber to background-level xenon in air by the method of 133Xe tracer

    International Nuclear Information System (INIS)

    Zhang Haitao; Wang Yalong; Zhang Lixing; Wang Xuhui; Zhang Xiaolin

    2001-01-01

    The adsorption behaviors of the different activated carbon fibers to ultra-trace xenon in air are studied using the method of 133 Xe as tracer. The efficiency equation of adsorption columns are determined. The comparison of adsorptive capacity between activated carbon fibers and activated carbon indicates that activated carbon fibers are better than activated carbon under low temperature

  18. Degradation of paracetamol by catalytic wet air oxidation and sequential adsorption – Catalytic wet air oxidation on activated carbons

    International Nuclear Information System (INIS)

    Quesada-Peñate, I.; Julcour-Lebigue, C.; Jáuregui-Haza, U.J.; Wilhelm, A.M.; Delmas, H.

    2012-01-01

    Highlights: ► Three activated carbons (AC) compared as adsorbents and oxidation catalysts. ► Similar evolution for catalytic and adsorptive properties of AC over reuses. ► Acidic and mesoporous AC to be preferred, despite lower initial efficiency. ► Oxidative degradation of paracetamol improves biodegradability. ► Convenient hybrid adsorption–regenerative oxidation process for continuous treatment. - Abstract: The concern about the fate of pharmaceutical products has raised owing to the increasing contamination of rivers, lakes and groundwater. The aim of this paper is to evaluate two different processes for paracetamol removal. The catalytic wet air oxidation (CWAO) of paracetamol on activated carbon was investigated both as a water treatment technique using an autoclave reactor and as a regenerative treatment of the carbon after adsorption in a sequential fixed bed process. Three activated carbons (ACs) from different source materials were used as catalysts: two microporous basic ACs (S23 and C1) and a meso- and micro-porous acidic one (L27). During the first CWAO experiment the adsorption capacity and catalytic performance of fresh S23 and C1 were higher than those of fresh L27 despite its higher surface area. This situation changed after AC reuse, as finally L27 gave the best results after five CWAO cycles. Respirometry tests with activated sludge revealed that in the studied conditions the use of CWAO enhanced the aerobic biodegradability of the effluent. In the ADOX process L27 also showed better oxidation performances and regeneration efficiency. This different ageing was examined through AC physico-chemical properties.

  19. Thermodynamic modelling and performance study of an engine waste heat driven adsorption cooling for automotive air-conditioning

    International Nuclear Information System (INIS)

    Ali, Syed Muztuza; Chakraborty, Anutosh

    2015-01-01

    Waste heat from engine can be utilized to drive an adsorption cooling system for air conditioning purposes in the vehicle cabin, which not only improves the fuel economy but also reduces the carbon footprint. It is also important to reduce the size of the adsorption bed to adopt the adsorption technology for air-conditioning applications in passenger cars, buses and trucks or even trains. In this article, we present a two stage indirect exhaust heat recovery system of automotive engine employing an effective lumped parameter model to simulate the dynamic behaviors of an adsorption chiller that ranges from the transient to the cyclic steady states. The thermodynamic framework of adsorption chiller is developed from the rigor of mass and energy balances of each component of the system and experimentally confirmed isotherms and kinetics data of various adsorbent–adsorbate pairs. The performance factors are calculated in terms of COP (Coefficient of Performance) and SCP (Specific Cooling Power) for different operating parameters such as cycle time, exhaust gas temperatures, cooling water temperatures and flow rates. From the simulation results, it is found that the exhaust energy of a six cylinder 3000 cc private car is able to produce nearly 3 kW of cooling power for the car cabin. It is also observed that the driving heat source temperature does not remain constant throughout the cycle time unlike the conventional adsorption chiller, and the hot water temperatures as driving source vary from 65 to 95 °C. CaCl 2 -in-silica gel–water system is found better in terms of COP and SCP as compared with other adsorbents – water systems. - Highlights: • Adsorption cooling for car air conditioning. • Thermodynamic frameworks with adsorption isotherms and kinetics. • Various adsorbents such as silica gel, zeolites (AQSOA-Z01, Z-02), CaCl 2 -in-silica gel are tested. • Cooling power for car cabin employing waste heat recovery.

  20. Degradation of paracetamol by catalytic wet air oxidation and sequential adsorption - Catalytic wet air oxidation on activated carbons.

    Science.gov (United States)

    Quesada-Peñate, I; Julcour-Lebigue, C; Jáuregui-Haza, U J; Wilhelm, A M; Delmas, H

    2012-06-30

    The concern about the fate of pharmaceutical products has raised owing to the increasing contamination of rivers, lakes and groundwater. The aim of this paper is to evaluate two different processes for paracetamol removal. The catalytic wet air oxidation (CWAO) of paracetamol on activated carbon was investigated both as a water treatment technique using an autoclave reactor and as a regenerative treatment of the carbon after adsorption in a sequential fixed bed process. Three activated carbons (ACs) from different source materials were used as catalysts: two microporous basic ACs (S23 and C1) and a meso- and micro-porous acidic one (L27). During the first CWAO experiment the adsorption capacity and catalytic performance of fresh S23 and C1 were higher than those of fresh L27 despite its higher surface area. This situation changed after AC reuse, as finally L27 gave the best results after five CWAO cycles. Respirometry tests with activated sludge revealed that in the studied conditions the use of CWAO enhanced the aerobic biodegradability of the effluent. In the ADOX process L27 also showed better oxidation performances and regeneration efficiency. This different ageing was examined through AC physico-chemical properties. Copyright © 2012 Elsevier B.V. All rights reserved.

  1. Effect of conditions of air-lift type reactor work on cadmium adsorption

    International Nuclear Information System (INIS)

    Filipkowska, Urszula; Szymczyk, Paula Szymczyk; Kuczajowska-Zadrozna, Malgorzata; Joezwiak, Tomasz

    2015-01-01

    We investigated cadmium sorption by activated sludge immobilized in 1.5% sodium alginate with 0.5% polyvinyl alcohol. Experiments were conducted in an air-lift type reactor at the constant concentration of biosorbent reaching 5 d.m./dm 3 , at three flow rates: 0.1, 0.25 and 0.5 V/h, and at three concentrations of the inflowing cadmium solution: 10, 25 and 50mg/dm 3 . Analyses determined adsorption capacity of activated sludge immobilized in alginate as well as reactor's work time depending on flow rate and initial concentration of the solution. Results achieved were described with the use of Thomas model. The highest adsorption capacity of the sorbent (determined from the Thomas model), i.e., 200.2mg/g d.m. was obtained at inflowing solution concentration of 50mg/dm 3 and flow rate of 0.1V/h, whereas the lowest one reached 53.69mg/g d.m. at the respective values of 10mg/dm 3 and 0.1 V/h. Analyses were also carried out to determine the degree of biosorbent adsorption capacity utilization at the assumed effectiveness of cadmium removal - at the breakthrough point (C=0.05*C 0 ) and at adsorption capacity depletion point (C−0.9*C0). The study demonstrated that the effectiveness of adsorption capacity utilization was influenced by both the concentration and flow rate of the inflowing solution. The highest degree of sorbent capacity utilization was noted at inflowing solution concentration of 50mg/dm 3 and flow rate of 0.1 V/h, whereas the lowest one at the respective values of 10mg/dm 3 and 0.1 V/h. The course of the process under dynamic conditions was evaluated using coefficients of tangent inclination - a, at point C/C 0 =1/2. A distinct tendency was demonstrated in changes of tangent slope a as affected by the initial concentration of cadmium and flow rate of the solution. The highest values of a coefficient were achieved at the flow rate of 0.1 V/h and initial cadmium concentration of 50mg/dm 3 .

  2. Effects of coal storage in air on physical and chemical properties of coal and on gas adsorption

    Science.gov (United States)

    Mastalerz, Maria; Solano-Acosta, W.; Schimmelmann, A.; Drobniak, A.

    2009-01-01

    This paper investigates changes in the high-volatile bituminous Lower Block Coal Member from Indiana owing to moisture availability and oxidation in air at ambient pressure and temperature over storage time. Specifically, it investigates changes in chemistry, in surface area, and pore structure, as well as changes in methane and carbon dioxide adsorption capacities. Our results document that the methane adsorption capacity increased by 40%, whereas CO2 adsorption capacity increased by 18% during a 13-month time period. These changes in adsorption are accompanied by changes in chemistry and surface area of the coal. The observed changes in adsorption capacity indicate that special care must be taken when collecting samples and preserving coals until adsorption characteristics are measured in the laboratory. High-pressure isotherms from partially dried coal samples would likely cause overestimation of gas adsorption capacities, lead to a miscalculation of coal-bed methane prospects, and provide deceptively optimistic prognoses for recovery of coal-bed methane or capture of anthropogenic CO2. ?? 2009 Elsevier B.V. All rights reserved.

  3. Modeling and simulation of a solar powered two bed adsorption air conditioning system

    International Nuclear Information System (INIS)

    Li Yong; Sumathy, K.

    2004-01-01

    A simple lumped parameter model is established to investigate the performance of a solar powered adsorption air conditioning system driven by flat-type solar collectors with three different configurations of glazes: (i) single glazed cover; (ii) double glazed cover and (iii) transparent insulation material (TIM) cover. The dynamic performance of a continuous adsorption cycle using a double adsorber along with heat recovery is measured in terms of the temperature histories, gross solar coefficient of performance and specific cooling power. Also, the influences of some important design and operational parameters on the performance of the system are studied. It is found that the chosen three types of collector configurations make no big difference on the performance, but the adsorbent mass and lumped capacitance have significant effects on the system performance as well as on the system size. Simulation results indicate that the effect of overall heat transfer coefficient is not predominant if the cycle duration is longer. Also, there exists an optimum time to initiate the heating of the adsorbent bed in a day's operation

  4. Adsorption and Distribution of Edible Gliadin Nanoparticles at the Air/Water Interface.

    Science.gov (United States)

    Peng, Dengfeng; Jin, Weiping; Li, Jing; Xiong, Wenfei; Pei, Yaqiong; Wang, Yuntao; Li, Yan; Li, Bin

    2017-03-22

    Edible gliadin nanoparticles (GNPs) were fabricated using the anti-solvent method. They possessed unique high foamability and foam stability. An increasing concentration of GNPs accelerated their initial adsorption speed from the bulk phase to the interface and raised the viscoelastic modulus of interfacial films. High foamability (174.2 ± 6.4%) was achieved at the very low concentration of GNPs (1 mg/mL), which was much better than that of ovalbumin and sodium caseinate. Three stages of adsorption kinetics at the air/water interface were characterized. First, they quickly diffused and adsorbed at the interface, resulting in a fast increase of the surface pressure. Then, nanoparticles started to fuse into a film, and finally, the smooth film became a firm and rigid layer to protect bubbles against coalescence and disproportionation. These results explained that GNPs had good foamability and high foam stability simultaneously. That provides GNPs as a potential candidate for new foaming agents applied in edible and biodegradable products.

  5. Adsorption of Hydrophobin-Protein Mixtures at the Air-Water Interface: The Impact of pH and Electrolyte.

    Science.gov (United States)

    Tucker, Ian M; Petkov, Jordan T; Penfold, Jeffrey; Thomas, Robert K; Cox, Andrew R; Hedges, Nick

    2015-09-15

    The adsorption of the proteins β-casein, β-lactoglobulin, and hydrophobin, and the protein mixtures of β-casein/hydrophobin and β-lactoglobulin/hydrophobin have been studied at the air-water interface by neutron reflectivity, NR. Changing the solution pH from 7 to 2.6 has relatively little impact on the adsorption of hydrophobin or β-lactoglobulin, but results in a substantial change in the structure of the adsorbed layer of β-casein. In β-lactoglobulin/hydrophobin mixtures, the adsorption is dominated by the hydrophobin adsorption, and is independent of the hydrophobin or β-lactoglobulin concentration and solution pH. At pH 2.6, the adsorption of the β-casein/hydrophobin mixtures is dominated by the hydrophobin adsorption over the range of β-casein concentrations studied. At pH 4 and 7, the adsorption of β-casein/hydrophobin mixtures is dominated by the hydrophobin adsorption at low β-casein concentrations. At higher β-casein concentrations, β-casein is adsorbed onto the surface monolayer of hydrophobin, and some interpenetration between the two proteins occurs. These results illustrate the importance of pH on the intermolecular interactions between the two proteins at the interface. This is further confirmed by the impact of PBS, phosphate buffered saline, buffer and CaCl2 on the coadsorption and surface structure. The results provide an important insight into the adsorption properties of protein mixtures and their application in foam and emulsion stabilization.

  6. Headgroup effects of template monolayers on the adsorption behavior and conformation of glucose oxidase adsorbed at air/liquid interfaces.

    Science.gov (United States)

    Wang, Ke-Hsuan; Syu, Mei-Jywan; Chang, Chien-Hsiang; Lee, Yuh-Lang

    2011-06-21

    Stearic acid (SA) and octadecylamine (ODA) monolayers at the air/liquid interface were used as template layers to adsorb glucose oxidase (GOx) from aqueous solution. The effect of the template monolayers on the adsorption behavior of GOx was studied in terms of the variation of surface pressure, the evolution of surface morphology observed by BAM and AFM, and the conformation of adsorbed GOx. The results show that the presence of a template monolayer can enhance the adsorption rate of GOx; furthermore, ODA has a higher ability, compared to SA, to adsorb GOx, which is attributed to the electrostatic attractive interaction between ODA and GOx. For adsorption performed on a bare surface or on an SA monolayer, the surface pressure approaches an equilibrium value (ca. 8 mN/m) after 2 to 3 h of adsorption and remains nearly constant in the following adsorption process. For the adsorption on an ODA monolayer, the surface pressure will increase further 1 to 2 h after approaching the first equilibrium pressure, which is termed the second adsorption stage. The measurement of circular dichroism (CD) spectroscopy indicates that the Langmuir-Blodgett films of adsorbed GOx transferred at the first equilibrium state (π = 8 mN/m) have mainly a β-sheet conformation, which is independent of the type of template monolayers. However, the ODA/GOx LB film transferred at the second adsorption stage has mainly an α-helix conformation. It is concluded that the specific interaction between ODA and GOx not only leads to a higher adsorption rate and adsorbed amount of GOx but also induces a conformation change in adsorbed GOx from β-sheet to α-helix. The present results indicate that is possible to control the conformation of adsorbed protein by selecting the appropriate template monolayer. © 2011 American Chemical Society

  7. Design Strategy for CO2 Adsorption from Ambient Air Using a Supported Amine Based Sorbent in a Fixed Bed Reactor

    NARCIS (Netherlands)

    Yu, Qian; Brilman, D. W.F.

    In this work, a fixed bed reactor is evaluated for CO2 capture from ambient air using an amine based ion exchange resin. Using adsorption experiments, the effect of superficial velocity and bed length on process economics is investigated. It is shown that the optimal conditions are found at an

  8. TG-FTIR measurement of CO2-H2O co-adsorption for CO2 air capture sorbent screening

    NARCIS (Netherlands)

    Smal, I.M.; Yu, Qian; Veneman, Rens; Fränzel-Luiten, B.; Brilman, Derk Willem Frederik

    2014-01-01

    Capturing atmospheric CO2 using solid sorbents is gaining interest. As ambient air normally contains much more (up to 100 times) water than CO2, a selective sorbent is desirable as co-adsorption will most likely occur. In this study, a convenient method based on an TG-FTIR analysis system is

  9. Quantitative description of the relation between protein net charge and protein adsorption to air-water interfaces

    NARCIS (Netherlands)

    Wierenga, P.A.; Meinders, M.B.J.; Egmond, M.R.; Voragen, A.G.J.; Jongh, H.H.J.de

    2005-01-01

    In this study a set of chemically engineered variants of ovalbumin was produced to study the effects of electrostatic charge on the adsorption kinetics and resulting surface pressure at the air-water interface. The modification itself was based on the coupling of succinic anhydride to lysine

  10. Purification by molecular sieve of helium used as inert cover gas in nuclear reactors; Epuration de l'helium de couverture des reacteurs nucleaires par adsorption sur tamis moleculaire

    Energy Technology Data Exchange (ETDEWEB)

    Rozenberg, J; Kahan, H [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1967-07-01

    A method carried out at fairly low temperatures (between -50 and -80 deg. C) has been studied for the purification of the helium used as cover gas for heavy water in reactors. The use of the 5A molecular sieve has been adopted because of its superiority over other adsorbents in this temperature range. The particular problems connected with adsorption under dynamic conditions have been dealt with separately. The nitrogen adsorption isotherms have been plotted and the heat of adsorption calculated. (authors) [French] Une methode d'epuration, a temperature moderement basse (comprise entre -50 et -80 deg. C) de l'helium servant de couverture inerte a l'eau lourde des reacteurs a ete etudiee. L'emploi au tamis moleculaire 5A a ete retenu pour la superiorite de celui-ci sur d'autres adsorbants dans ce domaine de temperatures. Les problemes particuliers a l'adsorption en regime dynamique ont ete separement traites. Les isothermes d'adsorption d'azote ont ete tracees et la chaleur d'adsorp. tion calculee. (auteurs)

  11. Adsorption of naphthalene and ozone on atmospheric air/ice interfaces coated with surfactants: a molecular simulation study.

    Science.gov (United States)

    Liyana-Arachchi, Thilanga P; Valsaraj, Kalliat T; Hung, Francisco R

    2012-03-15

    The adsorption of gas-phase naphthalene and ozone molecules onto air/ice interfaces coated with different surfactant species (1-octanol, 1-hexadecanol, or 1-octanal) was investigated using classical molecular dynamics (MD) simulations. Naphthalene and ozone exhibit a strong preference to be adsorbed at the surfactant-coated air/ice interfaces, as opposed to either being dissolved into the bulk of the quasi-liquid layer (QLL) or being incorporated into the ice crystals. The QLL becomes thinner when the air/ice interface is coated with surfactant molecules. The adsorption of both naphthalene and ozone onto surfactant-coated air/ice interfaces is enhanced when compared to bare air/ice interface. Both naphthalene and ozone tend to stay dissolved in the surfactant layer and close to the QLL, rather than adsorbing on top of the surfactant molecules and close to the air region of our systems. Surfactants prefer to orient at a tilted angle with respect to the air/ice interface; the angular distribution and the most preferred angle vary depending on the hydrophilic end group, the length of the hydrophobic tail, and the surfactant concentration at the air/ice interface. Naphthalene prefers to have a flat orientation on the surfactant coated air/ice interface, except at high concentrations of 1-hexadecanol at the air/ice interface; the angular distribution of naphthalene depends on the specific surfactant and its concentration at the air/ice interface. The dynamics of naphthalene molecules at the surfactant-coated air/ice interface slow down as compared to those observed at bare air/ice interfaces. The presence of surfactants does not seem to affect the self-association of naphthalene molecules at the air/ice interface, at least for the specific surfactants and the range of concentrations considered in this study.

  12. Impact of biogenic amine molecular weight and structure on surfactant adsorption at the air-water interface.

    Science.gov (United States)

    Penfold, Jeffrey; Thomas, Robert K; Li, Peixun

    2016-02-01

    The oligoamines, such as ethylenediamine to pentaethylenetetramine, and the aliphatic biogenic amines, such as putrescine, spermidine and spermine, strongly interact with anionic surfactants, such as sodium dodecylsulfate, SDS. It has been shown that this results in pronounced surfactant adsorption at the air-water interface and the transition from monolayer to multilayer adsorption which depends upon solution pH and oligoamine structure. In the neutron reflectivity, NR, and surface tension, ST, results presented here the role of the oligoamine structure on the adsorption of SDS is investigated more fully using a range of different biogenic amines. The effect of the extent of the intra-molecular spacing between amine groups on the adsorption has been extended by comparing results for cadavarine with putrescine and ethylenediamine. The impact of more complex biogenic amine structures on the adsorption has been investigated with the aromatic phenethylamine, and the heterocyclic amines histamine and melamine. The results provide an important insight into how surfactant adsorption at interfaces can be manipulated by the addition of biogenic amines, and into the role of solution pH and oligoamine structure in modifying the interaction between the surfactant and oligoamine. The results impact greatly upon potential applications and in understanding some of the important biological functions of biogenic amines. Copyright © 2015 Elsevier Inc. All rights reserved.

  13. Interaction Mechanisms between Air Bubble and Molybdenite Surface: Impact of Solution Salinity and Polymer Adsorption.

    Science.gov (United States)

    Xie, Lei; Wang, Jingyi; Yuan, Duowei; Shi, Chen; Cui, Xin; Zhang, Hao; Liu, Qi; Liu, Qingxia; Zeng, Hongbo

    2017-03-07

    The surface characteristics of molybdenite (MoS 2 ) such as wettability and surface interactions have attracted much research interest in a wide range of engineering applications, such as froth flotation. In this work, a bubble probe atomic force microscope (AFM) technique was employed to directly measure the interaction forces between an air bubble and molybdenite mineral surface before/after polymer (i.e., guar gum) adsorption treatment. The AFM imaging showed that the polymer coverage on the surface of molybdenite could achieve ∼5.6, ∼44.5, and ∼100% after conditioning in 1, 5, and 10 ppm polymer solution, respectively, which coincided with the polymer coverage results based on contact angle measurements. The electrolyte concentration and surface treatment by polymer adsorption were found to significantly affect bubble-mineral interaction and attachment. The experimental force results on bubble-molybdenite (without polymer treatment) agreed well with the calculations using a theoretical model based on the Reynolds lubrication theory and augmented Young-Laplace equation including the effect of disjoining pressure. The overall surface repulsion was enhanced when the NaCl concentration decreased from 100 to 1 mM, which inhibited the bubble-molybdenite attachment. After conditioning the molybdenite surface in 1 ppm polymer solution, it was more difficult for air bubbles to attach to the molybdenite surface due to the weakened hydrophobic interaction with a shorter decay length. Increasing the polymer concentration to 5 ppm effectively inhibited bubble attachment on mineral surface, which was mainly due to the much reduced hydrophobic interaction as well as the additional steric repulsion between the extended polymer chains and bubble surface. The results provide quantitative information on the interaction mechanism between air bubbles and molybdenite mineral surfaces on the nanoscale, with useful implications for the development of effective polymer

  14. Effects of Post-Pyrolysis Air Oxidation of Biomass Chars on Adsorption of Neutral and Ionizable Compounds.

    Science.gov (United States)

    Xiao, Feng; Pignatello, Joseph J

    2016-06-21

    This study was conducted to understand the effects of thermal air oxidation of biomass chars experienced during formation or production on their adsorptive properties toward various compounds, including five neutral nonpolar and polar compounds and seven weak acids and bases (pKa = 3-5.2) selected from among industrial chemicals and the triazine and phenoxyacetic acid herbicide classes. Post-pyrolysis air oxidation (PPAO) at 400 °C of anoxically prepared wood and pecan shell chars for up to 40 min enhanced the mass-normalized adsorption at pH ∼ 7.4 of all test compounds, especially the weak acids and bases, by up to 100-fold. Both general and specific effects were identified. The general effect results from "reaming" of pores by the oxidative removal of pore wall matter and/or tarry deposits generated during the pyrolysis step. Reaming creates new surface area and enlarges nanopores, which helps relieve steric hindrance to adsorption. The specific effect results from creation of new acidic functionality that provides sites for the formation of very strong, charge-assisted hydrogen bonds (CAHB) with solutes having comparable pKa. The CAHB hypothesis was supported by competition experiments and the finding that weak acid anion adsorption increased with surface carboxyl content, despite electrostatic repulsion from the growing negative charge. The results provide insight into the effects of air oxidation on pollutant retention.

  15. Session 6: Water depollution from aniline and phenol by air oxidation and adsorptive-catalytic oxidation in liquid phase

    Energy Technology Data Exchange (ETDEWEB)

    Dobrynkin, N.M.; Batygina, M.V.; Noskov, A.S. [Boreskov Institute of Catalysis of Siberian Branch of Russian Academy of Sciences, Pr. Ak. Lavrentieva (Russian Federation)

    2004-07-01

    This paper is devoted to development of carbon catalysts and application of catalytic wet air oxidation for deep cleaning of polluted waters. The described catalysts and method are solving the problem of development environmentally reliable method for fluids treatment and allow carrying out the adsorption of pollutants on carbon CAPM (catalytically active porous material) with following regeneration of the CAPM without the loss of adsorptive qualities. The experiments have shown a principal capability simultaneously to use carbon CAPM as adsorbent and either as catalyst, or as a catalyst support for oxidation of aniline and phenol in water solutions. (authors)

  16. Integration of a photocatalytic multi-tube reactor for indoor air purification in HVAC systems: a feasibility study.

    Science.gov (United States)

    van Walsem, Jeroen; Roegiers, Jelle; Modde, Bart; Lenaerts, Silvia; Denys, Siegfried

    2018-04-24

    This work is focused on an in-depth experimental characterization of multi-tube reactors for indoor air purification integrated in ventilation systems. Glass tubes were selected as an excellent photocatalyst substrate to meet the challenging requirements of the operating conditions in a ventilation system in which high flow rates are typical. Glass tubes show a low-pressure drop which reduces the energy demand of the ventilator, and additionally, they provide a large exposed surface area to allow interaction between indoor air contaminants and the photocatalyst. Furthermore, the performance of a range of P25-loaded sol-gel coatings was investigated, based on their adhesion properties and photocatalytic activities. Moreover, the UV light transmission and photocatalytic reactor performance under various operating conditions were studied. These results provide vital insights for the further development and scaling up of multi-tube reactors in ventilation systems which can provide a better comfort, improved air quality in indoor environments, and reduced human exposure to harmful pollutants.

  17. Adsorption of ionic surfactants at microscopic air-water interfaces using the micropipette interfacial area-expansion method

    DEFF Research Database (Denmark)

    Kinoshita, Koji; Parra, Elisa; Needham, David

    2017-01-01

    The dynamic adsorption of ionic surfactants at air-water interfaces have been less-well studied than that of the simpler non-ionics since experimental limitations on dynamic surface tension (DST) measurements create inconsistencies in their kinetic analysis. Using our newly designed "Micropipette...... interfacial area-expansion method", we have measured and evaluated both equilibrium and dynamic adsorption of a well-known anionic surfactant, sodium dodecyl sulphate (SDS), in the absence or presence of 100mM NaCl. Our focus was to determine if and to what extent the inclusion of a new correction parameter...... for the "ideal ionic activity", A±i, can renormalize both equilibrium and dynamic surface tension measurements and provide better estimates of the diffusion coefficient of ionic surfactants in aqueous media obtained from electroneutral models, namely extended Frumkin isotherm and Ward-Tordai adsorption models...

  18. Effect of charcoal on water purification

    OpenAIRE

    Suzuki, Hirotaka; Kawahigashi, Tatsuo

    2014-01-01

    [Abstract] A natural basin system purifies water through self-purification, but the water pollution load of a river might exceed its self-purification capacity. Charcoal, which is used for other uses aside from heating, such as air purification, was evaluated experimentally for water quality purification. The experiment described herein is based on simple water quality measurements. Some experimentally obtained results are discussed.

  19. Adsorption of butyl acetate in air over silver-loaded Y and ZSM-5 zeolites: experimental and modelling studies.

    Science.gov (United States)

    Bhatia, Subhash; Abdullah, Ahmad Zuhairi; Wong, Cheng Teng

    2009-04-15

    Adsorption behaviours of butyl acetate in air have been studied over silver-loaded Y (Si/Al=40) and ZSM-5 (Si/Al=140) zeolites. The silver metal was loaded into the zeolites by ion exchange (IE) and impregnation (IM) methods. The adsorption study was mainly conducted at a gas hourly space velocity (GHSV) of 13,000 h(-1) with the organic concentration of 1000 ppm while the desorption step was carried out at a GHSV of 5000 h(-1). The impregnated silver-loaded adsorbents showed lower uptake capacity and shorter breakthrough time by about 10 min, attributed to changes in the pore characteristics and available surface for adsorption. Silver exchanged Y (AgY(IE)) with lower hydrophobicity showed higher uptake capacity of up to 35%, longer adsorbent service time and easier desorption compared to AgZSM-5(IE). The presence of water vapour in the feed suppressed the butyl acetate adsorption of AgY(IE) by 42% due to the competitive adsorption of water on the surface and the effect was more pronounced at lower GHSV. Conversely, the adsorption capacity of AgZSM-5(IE) was minimally affected, attributed to the higher hydrophobicity of the material. A mathematical model is proposed to simulate the adsorption behaviour of butyl acetate over AgY(IE) and AgZSM-5(IE). The model parameters were successfully evaluated and used to accurately predict the breakthrough curves under various process conditions with root square mean errors of between 0.05 and 0.07.

  20. Adsorption of sophorolipid biosurfactants on their own and mixed with sodium dodecyl benzene sulfonate, at the air/water interface.

    Science.gov (United States)

    Chen, Minglei; Dong, Chuchuan; Penfold, Jeff; Thomas, Robert K; Smyth, Thomas J P; Perfumo, Amedea; Marchant, Roger; Banat, Ibrahim M; Stevenson, Paul; Parry, Alyn; Tucker, Ian; Campbell, Richard A

    2011-07-19

    The adsorption of the lactonic (LS) and acidic (AS) forms of sophorolipid and their mixtures with the anionic surfactant sodium dodecyl benzene sulfonate (LAS) has been measured at the air/water interface by neutron reflectivity, NR. The AS and LS sophorolipids adsorb with Langmuir-like adsorption isotherms. The more hydrophobic LS is more surface active than the AS, with a lower critical micellar concentration, CMC, and stronger surface adsorption, with an area/molecule ∼70 Å(2) compared with 85 Å(2) for the AS. The acidic sophorolipid shows a maximum in its adsorption at the CMC which appears to be associated with a mixture of different isomeric forms. The binary LS/AS and LS/LAS mixtures show a strong surface partitioning in favor of the more surface active and hydrophobic LS component but are nevertheless consistent with ideal mixing at the interface. In contrast, the surface composition of the AS/LAS mixture is much closer to the solution composition, but the surface mixing is nonideal and can be accounted for by regular solution theory, RST. In the AS/LS/LAS ternary mixtures, the surface adsorption is dominated by the sophorolipid, and especially the LS component, in a way that is not consistent with the observations for the binary mixtures. The extreme partitioning in favor of the sophorolipid for the LAS/LS/AS (1:2) mixtures is attributed to a reduction in the packing constraints at the surface due to the AS component. Measurements of the surface structure reveal a compact monolayer for LS and a narrow solvent region for LS, LS/AS, and LS/LAS mixtures, consistent with the more hydrophobic nature of the LS component. The results highlight the importance of the relative packing constraints on the adsorption of multicomponent mixtures, and the impact of the lactonic form of the sophorolipid on the adsorption of the sophorolipid/LAS mixtures.

  1. Indoor air purification using heterogeneous photocatalytic oxidation. Part I: Experimental study

    NARCIS (Netherlands)

    Yu, Q.; Brouwers, H.J.H.

    2009-01-01

    Heterogeneous photocatalytic oxidation (PCO) has shown to be a promising air purifying technology in outdoor conditions using TiO2 as photocatalyst activated with UV light. Also to indoor air quality more and more attention is paid because of the very important role it plays on human health, and it

  2. A nonpolar, nonamphiphilic molecule can accelerate adsorption of phospholipids and lower their surface tension at the air/water interface.

    Science.gov (United States)

    Nguyen, Phuc Nghia; Trinh Dang, Thuan Thao; Waton, Gilles; Vandamme, Thierry; Krafft, Marie Pierre

    2011-10-04

    The adsorption dynamics of a series of phospholipids (PLs) at the interface between an aqueous solution or dispersion of the PL and a gas phase containing the nonpolar, nonamphiphilic linear perfluorocarbon perfluorohexane (PFH) was studied by bubble profile analysis tensiometry. The PLs investigated were dioctanoylphosphatidylcholine (DiC(8)-PC), dilaurylphosphatidylcholine, dimyristoylphosphatidylcholine, and dipalmitoylphosphatidylcholine. The gas phase consisted of air or air saturated with PFH. The perfluorocarbon gas was found to have an unexpected, strong effect on both the adsorption rate and the equilibrium interfacial tension (γ(eq)) of the PLs. First, for all of the PLs, and at all concentrations investigated, the γ(eq) values were significantly lower (by up to 10 mN m(-1)) when PFH was present in the gas phase. The efficacy of PFH in decreasing γ(eq) depends on the ability of PLs to form micelles or vesicles in water. For vesicles, it also depends on the gel or fluid state of the membranes. Second, the adsorption rates of all the PLs at the interface (as assessed by the time required for the initial interfacial tension to be reduced by 30%) are significantly accelerated (by up to fivefold) by the presence of PFH for the lower PL concentrations. Both the surface-tension reducing effect and the adsorption rate increasing effect establish that PFH has a strong interaction with the PL monolayer and acts as a cosurfactant at the interface, despite the absence of any amphiphilic character. Fitting the adsorption profiles of DiC(8)-PC at the PFH-saturated air/aqueous solution interface with the modified Frumkin model indicated that the PFH molecule lay horizontally at the interface. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Enhanced Adsorption Efficiency through Materials Design for Direct Air Capture over Supported Polyethylenimine.

    Science.gov (United States)

    Sayari, Abdelhamid; Liu, Qing; Mishra, Prashant

    2016-10-06

    Until recently, carbon capture and sequestration (CCS) was regarded as the most promising technology to address the alarming increase in the concentration of anthropogenic CO 2 in the atmosphere. There is now an increasing interest in carbon capture and utilization (CCU). In this context, the capture of CO 2 from air is an ideal solution to supply pure CO 2 wherever it is needed. Here, we describe innovative materials for direct air capture (DAC) with unprecedented efficiency. Polyethylenimine (PEI) was supported on PME, which is an extra-large-pore silica (pore-expanded MCM-41) with its internal surfaces fully covered by a uniform layer of readily accessible C 16 chains from cetyltrimethylammonium (CTMA + ) cations. The CTMA + layer plays a key role in enhancing the amine efficiency toward dry or humid ultradilute CO 2 (400 ppm CO 2 /N 2 ) to unprecedented levels. At the same PEI content, the amine efficiency of PEI/PME was two to four times higher than that of the corresponding calcined mesoporous silica loaded with PEI or with different combinations of C 16 chains and PEI. Under humid conditions, the amine efficiency of 40 wt % PEI/PME reached 7.31 mmolCO2 /g PEI , the highest ever reported for any supported PEI in the presence of 400 ppm CO 2 . Thus, amine accessibility, which reflects both the state of PEI dispersion and the adsorption efficiency, is intimately associated with the molecular design of the adsorbent. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Driving forces for adsorption of amphiphilic peptides to the air-water interface.

    Science.gov (United States)

    Engin, Ozge; Villa, Alessandra; Sayar, Mehmet; Hess, Berk

    2010-09-02

    We have studied the partitioning of amphiphilic peptides at the air-water interface. The free energy of adsorption from bulk to interface was calculated by determining the potential of mean force via atomistic molecular dynamics simulations. To this end a method is introduced to restrain or constrain the center of mass of a group of molecules in a periodic system. The model amphiphilic peptides are composed of alternating valine and asparagine residues. The decomposition of the free energy difference between the bulk and interface is studied for different peptide block lengths. Our analysis revealed that for short amphiphilic peptides the surface driving force dominantly stems from the dehydration of hydrophobic side chains. The only opposing force is associated with the loss of orientational freedom of the peptide at the interface. For the peptides studied, the free energy difference scales linearly with the size of the molecule, since the peptides mainly adopt extended conformations both in bulk and at the interface. The free energy difference depends strongly on the water model, which can be rationalized through the hydration thermodynamics of hydrophobic solutes. Finally, we measured the reduction of the surface tension associated with complete coverage of the interface with peptides.

  5. Substantial Humic Acid Adsorption to Activated Carbon Air Cathodes Produces a Small Reduction in Catalytic Activity.

    Science.gov (United States)

    Yang, Wulin; Watson, Valerie J; Logan, Bruce E

    2016-08-16

    Long-term operation of microbial fuel cells (MFCs) can result in substantial degradation of activated carbon (AC) air-cathode performance. To examine a possible role in fouling from organic matter in water, cathodes were exposed to high concentrations of humic acids (HA). Cathodes treated with 100 mg L(-1) HA exhibited no significant change in performance. Exposure to 1000 mg L(-1) HA decreased the maximum power density by 14% (from 1310 ± 30 mW m(-2) to 1130 ± 30 mW m(-2)). Pore blocking was the main mechanism as the total surface area of the AC decreased by 12%. Minimization of external mass transfer resistances using a rotating disk electrode exhibited only a 5% reduction in current, indicating about half the impact of HA adsorption was associated with external mass transfer resistance and the remainder was due to internal resistances. Rinsing the cathodes with deionized water did not restore cathode performance. These results demonstrated that HA could contribute to cathode fouling, but the extent of power reduction was relatively small in comparison to large mass of humics adsorbed. Other factors, such as biopolymer attachment, or salt precipitation, are therefore likely more important contributors to long-term fouling of MFC cathodes.

  6. Assessment of internal contamination problems associated with bioregenerative air/water purification systems

    Science.gov (United States)

    Johnson, Anne H.; Bounds, B. Keith; Gardner, Warren

    1990-01-01

    The emphasis is to characterize the mechanisms of bioregenerative revitalization of air and water as well as to assess the possible risks associated with such a system in a closed environment. Marsh and aquatic plants are utilized for purposes of wastewater treatment as well as possible desalinization and demineralization. Foliage plants are also being screened for their ability to remove toxic organics from ambient air. Preliminary test results indicate that treated wastewater is typically of potable quality with numbers of pathogens such as Salmonella and Shigella significantly reduced by the artificial marsh system. Microbiological analyses of ambient air indicate the presence of bacilli as well as thermophilic actinomycetes.

  7. The adsorption and unfolding kinetics determines the folding state of proteins at the air-water interface and thereby the equation of state

    NARCIS (Netherlands)

    Wierenga, P.A.; Egmond, M.R.; Voragen, A.G.J.; Jongh, H.H.J.de

    2006-01-01

    Unfolding of proteins has often been mentioned as an important factor during the adsorption process at air-water interfaces and in the increase of surface pressure at later stages of the adsorption process. This work focuses on the question whether the folding state of the adsorbed protein depends

  8. Surface adsorption behaviour of milk whey protein and pectin mixtures under conditions of air-water interface saturation.

    Science.gov (United States)

    Perez, Adrián A; Sánchez, Cecilio Carrera; Patino, Juan M Rodríguez; Rubiolo, Amelia C; Santiago, Liliana G

    2011-07-01

    Milk whey proteins (MWP) and pectins (Ps) are biopolymer ingredients commonly used in the manufacture of colloidal food products. Therefore, knowledge of the interfacial characteristics of these biopolymers and their mixtures is very important for the design of food dispersion formulations (foams and/or emulsions). In this paper, we examine the adsorption and surface dilatational behaviour of MWP/Ps systems under conditions in which biopolymers can saturate the air-water interface on their own. Experiments were performed at constant temperature (20 °C), pH 7 and ionic strength 0.05 M. Two MWP samples, β-lactoglobulin (β-LG) and whey protein concentrate (WPC), and two Ps samples, low-methoxyl pectin (LMP) and high-methoxyl pectin (HMP) were evaluated. The contribution of biopolymers (MWP and Ps) to the interfacial properties of mixed systems was evaluated on the basis of their individual surface molecular characteristics. Biopolymer bulk concentration capable of saturating the air-water interface was estimated from surface pressure isotherms. Under conditions of interfacial saturation, dynamic adsorption behaviour (surface pressure and dilatational rheological characteristics) of MWP/Ps systems was discussed from a kinetic point of view, in terms of molecular diffusion, penetration and configurational rearrangement at the air-water interface. The main adsorption mechanism in MWP/LMP mixtures might be the MWP interfacial segregation due to the thermodynamic incompatibility between MWP and LMP (synergistic mechanism); while the interfacial adsorption in MWP/HMP mixtures could be characterized by a competitive mechanism between MWP and HMP at the air-water interface (antagonistic mechanism). The magnitude of these phenomena could be closely related to differences in molecular composition and/or aggregation state of MWP (β-LG and WPC). Copyright © 2011 Elsevier B.V. All rights reserved.

  9. Amine-tethered solid adsorbents coupling high adsorption capacity and regenerability for CO2 capture from ambient air.

    Science.gov (United States)

    Choi, Sunho; Gray, McMahan L; Jones, Christopher W

    2011-05-23

    Silica supported poly(ethyleneimine) (PEI) materials are prepared via impregnation and demonstrated to be promising adsorbents for CO(2) capture from ultra-dilute gas streams such as ambient air. A prototypical class 1 adsorbent, containing 45 wt% PEI (PEI/silica), and two new modified PEI-based aminosilica adsorbents, derived from PEI modified with 3-aminopropyltrimethoxysilane (A-PEI/silica) or tetraethyl orthotitanate (T-PEI/silica), are prepared and characterized by using thermogravimetric analysis and FTIR spectroscopy. The modifiers are shown to enhance the thermal stability of the polymer-oxide composites, leading to higher PEI decomposition temperatures. The modified adsorbents present extremely high CO(2) adsorption capacities under conditions simulating ambient air (400 ppm CO(2) in inert gas), exceeding 2 mol(CO (2)) kg(sorbent)(-1), as well as enhanced adsorption kinetics compared to conventional class 1 sorbents. The new adsorbents show excellent stability in cyclic adsorption-desorption operations, even under dry conditions in which aminosilica adsorbents are known to lose capacity due to urea formation. Thus, the adsorbents of this type can be considered promising materials for the direct capture of CO(2) from ultra-dilute gas streams such as ambient air. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Adsorption of copolymers at polymer/air and polymer/solid interfaces

    Science.gov (United States)

    Oslanec, Robert

    Using mainly low-energy forward recoil spectrometry (LE-FRES) and neutron reflectivity (NR), copolymer behavior at polymer/air and polymer/solid interfaces is investigated. For a miscible blend of poly(styrene-ran-acrylonitrile) copolymers, the volume fraction profile of the copolymer with lower acrylonitrile content is flat near the surface in contrast to mean field predictions. Including copolymer polydispersity into a self consistent mean field (SCMF) model does not account for this profile shape. LE-FRES and NR is also used to study poly(deuterated styrene-block-methyl-methacrylate) (dPS-b-PMMA) adsorption from a polymer matrix to a silicon oxide substrate. The interfacial excess, zsp*, layer thickness, L, and layer-matrix width, w, depend strongly on the number of matrix segments, P, for P 2N, the matrix chains are repelled from the adsorbed layer and the layer characteristics become independent of P. An SCMF model of block copolymer adsorption is developed. SCMF predictions are in qualitative agreement with the experimental behavior of zsp*, L, and w as a function of P. Using this model, the interaction energy of the MMA block with the oxide substrate is found to be -8ksb{B}T. In a subsequent experiment, the matrix/dPS interaction is made increasingly unfavorable by increasing the 4-bromostyrene mole fraction, x, in a poly(styrene-ran-4-bromostyrene) (PBrsbxS) matrix. Whereas experiments show that zsp* slightly decreases as x increases, the SCMF model predicts that zsp* should increase as the matrix becomes more unfavorable. Upon including a small matrix attraction for the substrate, the SCMF model shows that zsp* decreases with x because of competition between PBrsbxS and dPS-b-PMMA for adsorbing sites. In thin film dewetting experiments on silicon oxide, the addition of dPS-b-PMMA to PS coatings acts to slow hole growth and prevent holes from impinging. Dewetting studies show that longer dPS-b-PMMA chains are more effective stabilizing agents than shorter

  11. New developments in adsorptive gas and water purification. Lectures and posters; Neue Entwicklungen zur adsorptiven Gas- und Wasserreinigung. Beitraege und Poster

    Energy Technology Data Exchange (ETDEWEB)

    Heschel, W [comp.

    2000-07-01

    The conference discussed the following issues: Activated carbon preparation and selective pretreatment, lignite adsorbers, purification of liquid effluents containing heavy metals and/or salts, purification of off-gas and natural gas, desulphurisation, regeneration of adsorbents. [German] Die Tagung beschaeftigte sich u.a. mit den Themen: Aktivkohle Herstellung und Vorbehandlung zum gezielten Einsatz, Adsorber aus Braunkohle, Reinigung von Schwermetall- und Salz-haltigem Abwasser, Reinigung von Abgasen und Erdgas, Entschwefelung, und der Regenerierung der Adsorbentien.

  12. Kinetics of adsorption of whey proteins and hydroxypropyl-methyl-cellulose mixtures at the air-water interface.

    Science.gov (United States)

    Pérez, Oscar E; Carrera Sánchez, Cecilio; Pilosof, Ana M R; Rodríguez Patino, Juan M

    2009-08-15

    The aim of this research is to quantify the competitive adsorption of a whey protein concentrate (WPC) and hydroxypropyl-methyl-cellulose (HPMC so called E4M, E50LV and F4M) at the air-water interface by means of dynamic surface tensiometry and Brewster angle microscopy (BAM). These biopolymers are often used together in many food applications. The concentration of both protein and HPMC, and the WPC/HPMC ratio in the aqueous bulk phase were variables, while pH (7), the ionic strength (0.05 M) and temperature (20 degrees C) were kept constant. The differences observed between mixed systems were in accordance with the relative bulk concentration of these biopolymers (C(HPMC) and C(WPC)) and the molecular structure of HPMC. At short adsorption times, the results show that under conditions where both WPC and HPMC could saturate the air-water interface on their own or when C(HPMC) > or = C(WPC), the polysaccharide dominates the surface. At concentrations where none of the biopolymers was able to saturate the interface, a synergistic behavior was observed for HPMC with lower surface activity (E50LV and F4M), while a competitive adsorption was observed for E4M (the HPMC with the highest surface activity). At long-term adsorption the rate of penetration controls the adsorption of mixed components. The results reflect complex competitive/synergistic phenomena under conditions of thermodynamic compatibility or in the presence of a "depletion mechanism". Finally, the order in which the different components reach the interface will influence the surface composition and the film properties.

  13. Fixed bed adsorption of hexavalent chromium onto natural zeolite from air stream

    Directory of Open Access Journals (Sweden)

    F. Golbabaei

    2014-07-01

    Conclusion: Due to the extensive use of chromium in various industries and regulatory requirements related to workplace health and safety, Cr emission control in the occupational environment is essential. The adsorption process is one of the controlling measures of chromium emissions. The results indicated that natural zeolite has a high efficiency in Cr (VI adsorption.

  14. Kinetics of marine surfactant adsorption at an air water interface. Baltic Sea studies

    Directory of Open Access Journals (Sweden)

    Stanis³aw J. Pogorzelski

    2001-12-01

    Full Text Available The paper contains the results of studies of natural surface film adsorption kinetics carried out in inland waters and in shallow offshore regions of the Baltic Sea during 2000-01 under calm sea conditions. The novel approach presented here for the adsorption dynamics is based on the mixed kinetic-diffusion model and analyses of the surface pressure-time plots at short (t ->0 and long( t -> ∞ adsorption time intervals. Values of the effective relative diffusion coefficient Deff / D (= 0.008-0.607 and energy barrier for adsorption Ea / RT (= 0.49-7.10 agree well with the data reported for model non-ionic surfactant solutions of pre-cmc concentrations. Wind speed is one of the factors affecting the adsorption barrier via the increased surface pressure of the natural film exposed to wind shear stress (~ U102, and enters the relation Ea / RT = 1.70 U101/3.

  15. Dry purification of aspirational air in coke-sorting systems with wet slaking of coke

    Energy Technology Data Exchange (ETDEWEB)

    T.F. Trembach; A.G. Klimenko [Giprokoks, the State Institute for the Design of Coke-Industry Enterprises, Kharkov (Ukraine)

    2009-07-15

    Coke transportation after wet slaking is accompanied by the release of dust in the production building and in the surrounding atmosphere. Wet methods are traditionally used to purify very humid air. Giprokoks has developed designs for highly efficient dry dust-removal methods in such conditions.

  16. Design and performance evaluation of the functional coating for air purification under indoor conditions

    NARCIS (Netherlands)

    Lorencik, S.; Yu, Q.L.; Brouwers, H.J.H.

    2015-01-01

    The present work aims to develop a photocatalytic coating for the improvement of indoor air quality. Two types of visible-light responsive photocatalysts (powder and suspension form) were applied into a water-based acrylic coating. The applied materials were characterized and the developed coatings

  17. Artificial intelligence modeling to evaluate field performance of photocatalytic asphalt pavement for ambient air purification.

    Science.gov (United States)

    Asadi, Somayeh; Hassan, Marwa; Nadiri, Ataallah; Dylla, Heather

    2014-01-01

    In recent years, the application of titanium dioxide (TiO₂) as a photocatalyst in asphalt pavement has received considerable attention for purifying ambient air from traffic-emitted pollutants via photocatalytic processes. In order to control the increasing deterioration of ambient air quality, urgent and proper risk assessment tools are deemed necessary. However, in practice, monitoring all process parameters for various operating conditions is difficult due to the complex and non-linear nature of air pollution-based problems. Therefore, the development of models to predict air pollutant concentrations is very useful because it can provide early warnings to the population and also reduce the number of measuring sites. This study used artificial neural network (ANN) and neuro-fuzzy (NF) models to predict NOx concentration in the air as a function of traffic count (Tr) and climatic conditions including humidity (H), temperature (T), solar radiation (S), and wind speed (W) before and after the application of TiO₂ on the pavement surface. These models are useful for modeling because of their ability to be trained using historical data and because of their capability for modeling highly non-linear relationships. To build these models, data were collected from a field study where an aqueous nano TiO₂ solution was sprayed on a 0.2-mile of asphalt pavement in Baton Rouge, LA. Results of this study showed that the NF model provided a better fitting to NOx measurements than the ANN model in the training, validation, and test steps. Results of a parametric study indicated that traffic level, relative humidity, and solar radiation had the most influence on photocatalytic efficiency.

  18. Adsorption of mixtures of poly(amidoamine) dendrimers and sodium dodecyl sulfate at the air-water interface.

    Science.gov (United States)

    Arteta, Marianna Yanez; Campbell, Richard A; Nylander, Tommy

    2014-05-27

    We relate the adsorption from mixtures of well-defined poly(amidoamine) (PAMAM) dendrimers of generations 4 and 8 with sodium dodecyl sulfate (SDS) at the air-water interface to the bulk solution properties. The anionic surfactant shows strong attractive interactions with the cationic dendrimers at pH 7, and electrophoretic mobility measurements indicate that the association is primarily driven by electrostatic interactions. Optical density measurements highlight the lack of colloidal stability of the formed bulk aggregates at compositions close to charge neutrality, the time scale of which is dependent on the dendrimer generation. Adsorption at the air-water interface was followed from samples immediately after mixing using a combination of surface tension, neutron reflectometry, and ellipsometry measurements. In the phase separation region for dendrimers of generation 4, we observed high surface tension corresponding to a depleted surfactant solution but only when the aggregates carried an excess of surfactant. Interestingly, these depleted adsorption layers contained spontaneously adsorbed macroscopic aggregates, and these embedded particles do not rearrange to spread monomeric material at the interface. These findings are discussed in relation to the interfacial properties of mixtures involving dendrimers of generation 8 as well as polydisperse linear and hyperbranched polyelectrolytes where there is polyelectrolyte bound to a surfactant monolayer. The results presented here demonstrate the capability of dendrimers to sequester anionic surfactants in a controllable manner, with potential applications as demulsification and antifoaming agents.

  19. Energy efficiency method of purification of water and air from bacteria

    International Nuclear Information System (INIS)

    Khaydarov, R.A.; Khaydarov, R.R.

    2005-01-01

    Full text: Creation of harmless and cheap water disinfection methods is one of important tasks today. Besides most of building ventilation systems and air conditioners using in many countries have inside some capacity of water as the component allowing to cooling air. There is a chance that if anthrax or legionella or several other dangerous bacteria will be entered in this water then such conditioners will become the source of infection, and it can lead to catastrophic consequences. To prevent this possibility we offer to set in each source of drinking water or air conditioner (especially those in public places) mini-size cheap energy-effective device developed using our new technology. This me of water disinfection is based on using of electrochemical processes treatment by electrostatic field. Experimental results from tests conducted in Uzbekistan, the United States, Russia, etc. concerning the destruction of vegetative forms of bacteria follow: Energy consumption of the unit with a production capacity of 5 cubic meters of water per hour did not exceed 50 watts. This is significantly less than conventional methods. The destruction time for bacteria did not exceed 60 minutes at a bacterial concentration 1000 CFU/L. Spores are more resistant to destruction than vegetative cells (orders of magnitude more difficult). Preliminary test results for destroying the spore form of bacteria follow: Bacteria destruction time was 2 hours at an initial concentration of 1000 CFU/L. Energy consumption of the unit with a production capacity of 5 cubic meters of water per hour did not exceed 50 watts The purpose of this work is further elaboration of this technology, and its accommodation to conditions of different countries. Test models will be made and tested in laboratories of interested countries. Research would be conducted with acceptable bacteria and analog spores. As the result, new cheap and energy-effective devices for disinfection of drinking water and defense of

  20. Photocatalytic pavement blocks. Air purification by pavement blocks. Final results of the research at BRRC

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2009-07-01

    The use of materials can influence to a large extent the environmental impact of traffic and of road infrastructure. Especially in urban areas, where the risk on smog formation during hot summer days is high, the use of photocatalytic pavement blocks can reduce the air pollution significantly. A project on environmental friendly concrete pavement blocks is conducted at the Belgian Road Research Centre. The use of photocatalytic material in the surface of pavement blocks to obtain air purifying materials is investigated. In contact with light, TiO2 as photocatalyst, is able to reduce the NO and NO2 content in the air, caused by the exhaust of traffic. The efficiency is tested on pavement blocks, but the technique can as well be applied on other road elements (e.g. noise reducing walls, linear elements) or as a coating on new materials or existing structures. At the previous TRA conference in Gotenborgh, Sweden, the principle of photocatalysis was presented. In this paper, emphasis will be put on the final results of the 4-year project obtained in laboratory as well as on site at the Leien of Antwerp (10,000 m{sup 2}). The results indicate a durable efficiency towards NOx reduction, which is in favour for the diminishing of the risk on ozone formation. However, the precise translation from the laboratory towards the site is still in question. The results obtained during the project are discussed in this paper.

  1. Photocatalytic pavement blocks. Air purification by pavement blocks. Final results of the research at BRRC

    International Nuclear Information System (INIS)

    2009-01-01

    The use of materials can influence to a large extent the environmental impact of traffic and of road infrastructure. Especially in urban areas, where the risk on smog formation during hot summer days is high, the use of photocatalytic pavement blocks can reduce the air pollution significantly. A project on environmental friendly concrete pavement blocks is conducted at the Belgian Road Research Centre. The use of photocatalytic material in the surface of pavement blocks to obtain air purifying materials is investigated. In contact with light, TiO2 as photocatalyst, is able to reduce the NO and NO2 content in the air, caused by the exhaust of traffic. The efficiency is tested on pavement blocks, but the technique can as well be applied on other road elements (e.g. noise reducing walls, linear elements) or as a coating on new materials or existing structures. At the previous TRA conference in Gotenborgh, Sweden, the principle of photocatalysis was presented. In this paper, emphasis will be put on the final results of the 4-year project obtained in laboratory as well as on site at the Leien of Antwerp (10,000 m 2 ). The results indicate a durable efficiency towards NOx reduction, which is in favour for the diminishing of the risk on ozone formation. However, the precise translation from the laboratory towards the site is still in question. The results obtained during the project are discussed in this paper

  2. Green spaces are not all the same for the provision of air purification and climate regulation services: The case of urban parks.

    Science.gov (United States)

    Vieira, Joana; Matos, Paula; Mexia, Teresa; Silva, Patrícia; Lopes, Nuno; Freitas, Catarina; Correia, Otília; Santos-Reis, Margarida; Branquinho, Cristina; Pinho, Pedro

    2018-01-01

    The growing human population concentrated in urban areas lead to the increase of road traffic and artificial areas, consequently enhancing air pollution and urban heat island effects, among others. These environmental changes affect citizen's health, causing a high number of premature deaths, with considerable social and economic costs. Nature-based solutions are essential to ameliorate those impacts in urban areas. While the mere presence of urban green spaces is pointed as an overarching solution, the relative importance of specific vegetation structure, composition and management to improve the ecosystem services of air purification and climate regulation are overlooked. This avoids the establishment of optimized planning and management procedures for urban green spaces with high spatial resolution and detail. Our aim was to understand the relative contribution of vegetation structure, composition and management for the provision of ecosystem services of air purification and climate regulation in urban green spaces, in particular the case of urban parks. This work was done in a large urban park with different types of vegetation surrounded by urban areas. As indicators of microclimatic effects and of air pollution levels we selected different metrics: lichen diversity and pollutants accumulation in lichens. Among lichen diversity, functional traits related to nutrient and water requirements were used as surrogates of the capacity of vegetation to filter air pollution and to regulate climate, and provide air purification and climate regulation ecosystem services, respectively. This was also obtained with very high spatial resolution which allows detailed spatial planning for optimization of ecosystem services. We found that vegetation type characterized by a more complex structure (trees, shrubs and herbaceous layers) and by the absence of management (pruning, irrigation and fertilization) had a higher capacity to provide the ecosystems services of air

  3. Adsorption of β-casein-surfactant mixed layers at the air-water interface evaluated by interfacial rheology.

    Science.gov (United States)

    Maestro, Armando; Kotsmar, Csaba; Javadi, Aliyar; Miller, Reinhard; Ortega, Francisco; Rubio, Ramón G

    2012-04-26

    This work presents a detailed study of the dilational viscoelastic moduli of the adsorption layers of the milk protein β-casein (BCS) and a surfactant at the liquid/air interface, over a broad frequency range. Two complementary techniques have been used: a drop profile tensiometry technique and an excited capillary wave method, ECW. Two different surfactants were studied: the nonionic dodecyldimethylphosphine oxide (C12DMPO) and the cationic dodecyltrimethylammonium bromide (DoTAB). The interfacial dilational elasticity and viscosity are very sensitive to the composition of protein-surfactant mixed adsorption layers at the air/water interface. Two different dynamic processes have been observed for the two systems studied, whose characteristic frequencies are close to 0.01 and 100 Hz. In both systems, the surface elasticity was found to show a maximum when plotted versus the surfactant concentration. However, at frequencies above 50 Hz the surface elasticity of BCS + C12DMPO is higher than the one of the aqueous BCS solution over most of the surfactant concentration range, whereas for the BCS + DoTAB it is smaller for high surfactant concentrations and higher at low concentrations. The BCS-surfactant interaction modifies the BCS random coil structure via electrostatic and/or hydrophobic interactions, leading to a competitive adsorption of the BCS-surfactant complexes with the free, unbound surfactant molecules. Increasing the surfactant concentration decreases the adsorbed proteins. However, the BCS molecules are rather strongly bound to the interface due to their large adsorption energy. The results have been fitted to the model proposed by C. Kotsmar et al. ( J. Phys. Chem. B 2009 , 113 , 103 ). Even though the model describes well the concentration dependence of the limiting elasticity, it does not properly describe its frequency dependence.

  4. The adsorption properties of short chain alcohols and Triton X-100 mixtures at the water-air interface.

    Science.gov (United States)

    Zdziennicka, Anna

    2009-07-15

    The adsorption behaviour at the water-air interface of aqueous solutions of Triton X-100 and methanol (ethanol) mixtures at constant Triton X-100 (TX-100) concentration equal to 10(-7), 10(-6), 10(-5), 10(-4), 6x10(-4) and 10(-3)M, respectively, in a wide range of alcohol concentration was investigated by surface tension measurements of solutions. The obtained values of the surface tension of aqueous solutions of "pure" methanol and ethanol and their mixtures with TX-100, as well as the values of propanol solutions and their mixtures with TX-100 as a function of alcohol concentration taken from the literature were compared with those calculated from the Szyszkowski, Connors and Fainerman and Miller equations. On the basis of this comparison it was stated that these equations can be useful for description of the solution surface tension in the wide range of alcohol concentration, but only at the concentrations of Triton X-100 corresponding to its unsaturated layer in the absence of alcohol. It was also stated that the Connors equation is more adequate for concentrated aqueous organic solutions. The measured values of the surface tension were used in the Gibbs equation to determine the surface excess concentration of Triton X-100 and alcohol. Next, on the basis of Gibbs adsorption isotherms those of Guggenheim and Adam and real adsorption isotherms were established. From the obtained adsorption isotherms it results that alcohol influences the shape of TX-100 isotherms in the whole range of alcohol and TX-100 concentration, but TX-100 influences the alcohol isotherms only at TX-100 concentration at which the saturated monolayer at the solution-air interface is formed in the absence of alcohol. This conclusion was confirmed by analysis of the composition of the surface layer in comparison to the composition of the bulk phase in the equilibrium state.

  5. Air purification from TCE and PCE contamination in a hybrid bioreactors and biofilter integrated system.

    Science.gov (United States)

    Tabernacka, Agnieszka; Zborowska, Ewa; Lebkowska, Maria; Borawski, Maciej

    2014-01-15

    A two-stage waste air treatment system, consisting of hybrid bioreactors (modified bioscrubbers) and a biofilter, was used to treat waste air containing chlorinated ethenes - trichloroethylene (TCE) and tetrachloroethylene (PCE). The bioreactor was operated with loadings in the range 0.46-5.50gm(-3)h(-1) for TCE and 2.16-9.02gm(-3)h(-1) for PCE. The biofilter loadings were in the range 0.1-0.97gm(-3)h(-1) for TCE and 0.2-2.12gm(-3)h(-1) for PCE. Under low pollutant loadings, the efficiency of TCE elimination was 23-25% in the bioreactor and 54-70% in the biofilter. The efficiency of PCE elimination was 44-60% in the bioreactor and 50-75% in the biofilter. The best results for the bioreactor were observed one week after the pollutant loading was increased. However, the process did not stabilize. In the next seven days contaminant removal efficiency, enzymatic activity and biomass content were all diminished. Copyright © 2013 Elsevier B.V. All rights reserved.

  6. The surface emissions trap: a new approach in indoor air purification.

    Science.gov (United States)

    Markowicz, Pawel; Larsson, Lennart

    2012-11-01

    A new device for stopping or reducing potentially irritating or harmful emissions from surfaces indoors is described. The device is a surface emissions trap prototype and consists of an adsorbent sheet with a semipermeable barrier surrounded by two thin nonwoven layers. The trap may be applied directly at the source of the emissions e.g. at moisture-affected floors and walls, surfaces contaminated by chemical spills etc. This results in an immediate stop or reduction of the emitting pollutants. The trap has a very low water vapor resistance thus allowing drying of wet surfaces. In laboratory experiments typically 98% reduction of air concentrations of volatile organic compounds and a virtually total reduction of mold particle-associated mycotoxins was observed. The surface emissions trap may represent a convenient and efficient way of restoring indoor environments polluted by microbial and other moisture-associated emissions. Copyright © 2012 Elsevier B.V. All rights reserved.

  7. Are TiO2 nanotubes worth using in photocatalytic purification of air and water?

    Science.gov (United States)

    Pichat, Pierre

    2014-09-19

    Titanium dioxide nanotubes (TNT) have mainly been used in dye sensitized solar cells, essentially because of a higher transport rate of electrons from the adsorbed photo-excited dye to the Ti electrode onto which TNT instead of TiO2 nanoparticles (TNP) are attached. The dimension ranges and the two main synthesis methods of TNT are briefly indicated here. Not surprisingly, the particular and regular texture of TNT was also expected to improve the photocatalytic efficacy for pollutant removal in air and water with respect to TNP. In this short review, the validity of this expectation is checked using the regrettably small number of literature comparisons between TNT and commercialized TNP referring to films of similar thickness and layers or slurries containing an equal TiO2 mass. Although the irradiated geometrical area differed for each study, it was identical for each comparison considered here. For the removal of toluene (methylbenzene) or acetaldehyde (ethanal) in air, the average ratio of the efficacy of TNT over that of TiO2 P25 was about 1.5, and for the removal of dyes in water, it was around 1. This lack of major improvement with TNT compared to TNP could partially be due to TNT texture disorders as seems to be suggested by the better average performance of anodic oxidation-prepared TNT. It could also come from the fact that the properties influencing the efficacy are more numerous, their interrelations more complex and their effects more important for pollutant removal than for dye sensitized solar cells and photoelectrocatalysis where the electron transport rate is the crucial parameter.

  8. The effect of low-NOx combustion on residual carbon in fly ash and its adsorption capacity for air entrainment admixtures in concrete

    DEFF Research Database (Denmark)

    Pedersen, Kim Hougaard; Jensen, Anker Degn; Dam-Johansen, Kim

    2010-01-01

    been combusted in an entrained flow reactor to test the impact of changes in operating conditions and fuel type on the AEA adsorption of ash and NOx formation. Increased oxidizing conditions, obtained by improved fuel-air mixing or higher excess air, decreased the AEA requirements of the produced ash......Fly ash from pulverized coal combustion contains residual carbon that can adsorb the air-entraining admixtures (AEAs) added to control the air entrainment in concrete. This is a problem that has increased by the implementation of low-NOx combustion technologies. In this work, pulverized fuel has...... by up to a factor of 25. This was due to a lower carbon content in the ash and a lower specific AEA adsorptivity of the carbon. The latter was suggested to be caused by changes in the adsorption properties of the unburned char and a decreased formation of soot, which was found to have a large AEA...

  9. Experimental investigation of photocatalytic effects of concrete in air purification adopting entire concrete waste reuse model.

    Science.gov (United States)

    Xu, Yidong; Chen, Wei; Jin, Ruoyu; Shen, Jiansheng; Smallbone, Kirsty; Yan, Chunyang; Hu, Lei

    2018-07-05

    This research investigated the capacities of recycled aggregate concrete adopting entire concrete waste reuse model in degrading NO 2. Two major issues within environmental sustainability were addressed: concrete waste reuse rate and mitigation of hazards substances in the polluted air. The study consisted of two stages: identification of proper replacement rates of recycled concrete wastes in new concrete mixture design, and the evaluation of photocatalytic performance of recycled aggregate concrete in degrading NO 2 . It was found that replacement rates up to 3%, 30%, and 50% for recycled power, recycled fine aggregate, and recycled coarse aggregate respectively could be applied in concrete mixture design without deteriorating concrete strength. Recycled aggregates contained both positive attributes ("internal curing") and negative effects (e.g., lower hardness) to concrete properties. It was found that 30%-50% of natural coarse aggregate replaced by recycled coarse aggregates coated with TiO 2 would significantly improve the photocatalytic performance of concrete measured by degradation rate of NO 2 . Micro-structures of recycled aggregates observed under microscope indicated that soaking recycled aggregates in TiO 2 solution resulted in whiskers that filled the porosity within recycled aggregates which enhanced concrete strength. Copyright © 2018 Elsevier B.V. All rights reserved.

  10. Exergy Analysis of Air-Gap Membrane Distillation Systems for Water Purification Applications

    Directory of Open Access Journals (Sweden)

    Daniel Woldemariam

    2017-03-01

    Full Text Available Exergy analyses are essential tools for the performance evaluation of water desalination and other separation systems, including those featuring membrane distillation (MD. One of the challenges in the commercialization of MD technologies is its substantial heat demand, especially for large scale applications. Identifying such heat flows in the system plays a crucial role in pinpointing the heat loss and thermal integration potential by the help of exergy analysis. This study presents an exergetic evaluation of air-gap membrane distillation (AGMD systems at a laboratory and pilot scale. A series of experiments were conducted to obtain thermodynamic data for the water streams included in the calculations. Exergy efficiency and destruction for two different types of flat-plate AGMD were analyzed for a range of feed and coolant temperatures. The bench scale AGMD system incorporating condensation plate with more favorable heat conductivity contributed to improved performance parameters including permeate flux, specific heat demand, and exergy efficiency. For both types of AGMD systems, the contributions of the major components involved in exergy destruction were identified. The result suggested that the MD modules caused the highest fraction of destructions followed by re-concentrating tanks.

  11. Purification of rhamnolipid using colloidal magnetic nanoparticles ...

    African Journals Online (AJOL)

    Phospholipid-coated colloidal magnetic nanoparticles with mean magnetite core size of 9 nm are shown to be effective ion exchange media for the recovery and purification of Rhaminolipid from culture mixtures. These particles have high adsorption capacity for purification (an order of magnitude larger than the best ...

  12. Memory effects on adsorption tubes for mercury vapor measurement in ambient air: elucidation, quantification, and strategies for mitigation of analytical bias.

    Science.gov (United States)

    Brown, Richard J C; Kumar, Yarshini; Brown, Andrew S; Kim, Ki-Hyun

    2011-09-15

    The short- and long-term memory effects associated with measurements of mercury vapor in air using gold-coated silica adsorption tubes have been described. Data are presented to quantify these effects and to determine their dependence on certain relevant measurement parameters, such as number of heating cycles used for each analysis, age of adsorption tube, mass of mercury on adsorption tube, and the length of time between analyses. The results suggest that the long-term memory effect is due to absorption of mercury within the bulk gold in the adsorption tube, which may only be fully liberated by allowing enough time for this mercury to diffuse to the gold surface. The implications of these effects for air quality networks making these measurements routinely has been discussed, and recommendations have been made to ensure any measurement bias is minimized.

  13. Synthesis and photocatalytic activity for TiO2 nanoparticles as air purification

    Directory of Open Access Journals (Sweden)

    Haider Adawiya

    2018-01-01

    Full Text Available In the present work, titanium dioxide (TiO2 nanoparticles (NP’s were prepared using sol-gel process from Titanium Tetrachloride (TiCl4 as a precursor with calcinations at two temperatures (500 and 900 °C. The effect of calcinations temperatures on the structural, optical, morphological and Root Mean Square (roughness properties were investigated by means of Scanning Electron Microscopy, X-ray Diffraction (XRD, and Atomic Force Microscopy (AFM. Bacterial inactivation was evaluated using TiO2-coated Petri dishes. A thin layer of photocatalytic TiO2 powder was deposited on glass substrate in order to investigate the self-cleaning effect of TiO2 nanoparticles in indoor and outdoor applications. Ultra-hydrophilicity was assessed by measuring the contact angle and it evaluated photolysis properties through the degradation of potassium permanganate (KMnO4 under direct sunlight. XRD analysis indicated that the structure of TiO2 was anatase at 500 °C and rutile at 900 °C calcination temperatures. As the calcination temperature increases, the crystallinity is improved and the crystallite size becomes larger. Coated films of TiO2 made the has permeability, low water contact angle and good optical activity. These are properties essential for the application of the surface of the self-cleaning. The final results illustrate that titanium dioxide can be used in the build materials to produce coated surfaces in order to minimize air pollutants that are placed in microbiologically sensitive circumference like hospitals and the food factory.

  14. House-plant placement for indoor air purification and health benefits on asthmatics

    Directory of Open Access Journals (Sweden)

    Ho-Hyun Kim

    2014-10-01

    Full Text Available Objectives Some plants were placed in indoor locations frequented by asthmatics in order to evaluate the quality of indoor air and examine the health benefits to asthmatics. Methods The present study classified the participants into two groups: households of continuation and households of withdrawal by a quasi-experimental design. The households of continuation spent the two observation terms with indoor plants, whereas the households of withdrawal passed the former observation terms with indoor plants and went through the latter observation term without any indoor plants. Results The household of continuation showed a continual decrease in the indoor concentrations of volatile organic compounds (VOCs during the entire observation period, but the household of withdrawal performed an increase in the indoor concentrations of VOCs, except formaldehyde and toluene during the latter observation term after the decrease during the former observation term. Peak expiratory flow rate (PEFR increased in the households of continuation with the value of 13.9 L/min in the morning and 20.6 L/ min in the evening, but decreased in the households of withdrawal with the value of -24.7 L/min in the morning and -30.2 L/min in the evening in the first experimental season. All of the households exhibited a decrease in the value of PEFR in the second experimental season. Conclusions Limitations to the generalizability of findings regarding the presence of plants indoors can be seen as a more general expression of such a benefit of human-environment relations.

  15. Unusual hepatic mitochondrial arginase in an Indian air-breathing teleost, Heteropneustes fossilis: purification and characterization.

    Science.gov (United States)

    Srivastava, Shilpee; Ratha, B K

    2013-02-01

    A functional urea cycle with both cytosolic (ARG I) and mitochondrial (ARG II) arginase activity is present in the liver of an ureogenic air-breathing teleost, Heteropneustes fossilis. Antibodies against mammalian ARG II showed no cross-reactivity with the H. fossilis ARG II. ARG II was purified to homogeneity from H. fossilis liver. Purified ARG II showed a native molecular mass of 96 kDa. SDS-PAGE showed a major band at 48 kDa. The native enzyme, therefore, appears to be a homodimer. The pI value of the enzyme was 7.5. The purified enzyme showed maximum activity at pH 10.5 and 55 °C. The K(m) of purified ARG II for l-arginine was 5.25±1.12 mM. L-Ornithine and N(ω)-hydroxy-L-arginine showed mixed inhibition with K(i) values 2.16±0.08 and 0.02±0.004 mM respectively. Mn(+2) and Co(+2) were effective activators of arginase activity. Antibody raised against purified H. fossilis ARG II did not cross-react with fish ARG I, and mammalian ARG I and ARG II. Western blot with the antibodies against purified H. fossilis hepatic ARG II showed cross reactivity with a 96 kDa band on native PAGE and a 48 kDa band on SDS-PAGE. The molecular, immunological and kinetic properties suggest uniqueness of the hepatic mitochondrial ARG II in H. fossilis. Copyright © 2012 Elsevier Inc. All rights reserved.

  16. Visible Light Responsive Catalysts Using Quantum Dot-Modified Ti02 for Air and Water Purification

    Science.gov (United States)

    Coutts, Janelle L.; Levine, Lanfang H.; Richards, Jeffrey T.; Hintze, paul; Clausen, Christian

    2012-01-01

    The method of photocatalysis utilizing titanium dioxide, TiO2, as the catalyst has been widely studied for trace contaminant control for both air and water applications because of its low energy consumption and use of a regenerable catalyst. Titanium dioxide requires ultraviolet light for activation due to its band gap energy of 3.2 eV. Traditionally, Hg-vapor fluorescent light sources are used in PCO reactors and are a setback for the technology for space application due to the possibility of Hg contamination. The development of a visible light responsive (VLR) TiO2-based catalyst could lead to the use of solar energy in the visible region (approx.45% of the solar spectrum lies in the visible region; > 400 nm) or highly efficient LEDs (with wavelengths > 400 nm) to make PCO approaches more efficient, economical, and safe. Though VLR catalyst development has been an active area of research for the past two decades, there are few commercially available VLR catalysts; those that are available still have poor activity in the visible region compared to that in the UV region. Thus, this study was aimed at the further development of VLR catalysts by a new method - coupling of quantum dots (QD) of a narrow band gap semiconductor (e.g., CdS, CdSe, PbS, ZnSe, etc.) to the TiO2 by two preparation methods: 1) photodeposition and 2) mechanical alloying using a high-speed ball mill. A library of catalysts was developed and screened for gas and aqueous phase applications, using ethanol and 4-chlorophenol as the target contaminants, respectively. Both target compounds are well studied in photocatalytic systems serve as model contaminants for this research. Synthesized catalysts were compared in terms of preparation method, type of quantum dots, and dosage of quantum dots.

  17. Second harmonic generation study of malachite green adsorption at the interface between air and an electrolyte solution: observing the effect of excess electrical charge density at the interface.

    Science.gov (United States)

    Song, Jinsuk; Kim, Mahn Won

    2010-03-11

    Understanding the differential adsorption of ions at the interface of an electrolyte solution is very important because it is closely related, not only to the fundamental aspects of biological systems, but also to many industrial applications. We have measured the excess interfacial negative charge density at air-electrolyte solution interfaces by using resonant second harmonic generation of oppositely charged probe molecules. The excess charge density increased with the square root of the bulk electrolyte concentration. A new adsorption model that includes the electrostatic interaction between adsorbed molecules is proposed to explain the measured adsorption isotherm, and it is in good agreement with the experimental results.

  18. Dependence of Rn adsorption rate and effective half-life time on diffusion barrier type and moving air environment

    International Nuclear Information System (INIS)

    Arafa, Wafaa; Badran, Heba

    2005-01-01

    The variation of the adsorbed radon rate during the exposure time using charcoal canister was studied applying moving air environment inside the radon chamber and compared to the static air measurements. The air movement increases the accumulation time leading to more accurate results. Different types of membrane have been tested as diffusion barrier for activated charcoal canisters. The Makrofol and aluminized polycarbonate improve the adsorption/desorption rate more than the polyehylene membrane. The measured effective half-life time showed a remarkable correlation with the previously measured permeability constant for corresponding membranes. Different types of commercially available charcoal were investigated to develop a local version of charcoal canister for radon measurements. Applying static and moving air environments, the break point and radon collection efficiency were determined at different temperatures. Both of the temperature and air movement accelerate the appearance of the break point. Th efficiency of the locally developed charcoal is 87% and 84.5% of that Calgon PCB charcoal used by EPA. (author)

  19. Integrated Testing of a 4-Bed Molecular Sieve, Air-Cooled Temperature Swing Adsorption Compressor, and Sabatier Engineering Development Unit

    Science.gov (United States)

    Knox, James C.; Miller, Lee; Campbell, Melissa; Mulloth, Lila; Varghese, Mini

    2006-01-01

    Accumulation and subsequent compression of carbon dioxide that is removed from the space cabin are two important processes involved in a closed-loop air revitalization scheme of the International Space Station (ISS). The 4-Bed Molecular Sieve (4BMS) of ISS currently operates in an open loop mode without a compressor. The Sabatier Engineering Development Unit (EDU) processes waste CO2 to provide water to the crew. This paper reports the integrated 4BMS, air-cooled Temperature Swing Adsorption Compressor (TSAC), and Sabatier EDU testing. The TSAC prototype was developed at NASA Ames Research Center (ARC). The 4BMS was modified to a functionally flight-like condition at NASA Marshall Space Flight Center (MSFC). Testing was conducted at MSFC. The paper provides details of the TSAC operation at various CO2 loadings and corresponding performance of the 4BMS and Sabatier.

  20. Bile salts at the air-water interface: adsorption and desorption.

    Science.gov (United States)

    Maldonado-Valderrama, J; Muros-Cobos, J L; Holgado-Terriza, J A; Cabrerizo-Vílchez, M A

    2014-08-01

    Bile salts (BS) are bio-surfactants which constitute a vital component in the process of fat digestion. Despite the importance of the interfacial properties in their biological role, these have been scarcely studied in the literature. In this work, we present the adsorption-desorption profiles of two BS (NaTC and NaGDC) including dilatational rheology. Findings from this study reveal very different surface properties of NaTC and NaGDC which originate from different complexation properties relevant to the digestion process. Dynamic adsorption curves show higher adsorption rates for NaTC and suggest the existence of various conformational regimes in contrast to NaGDC which presents only one conformational regime. This is corroborated by analysis of the adsorption isotherms and more in detail by the rheological behaviour. Accordingly, the dilatational response at 1Hz displays two maxima of the dilatational modulus for NaTC as a function of bulk concentration, in contrast to NaGDC which displays only one maximum. The desorption profiles reveal that NaTC adopts an irreversibly adsorbed form at high surface coverage whereas NaGDC fully desorbs from the surface within the whole range of concentrations used. Analysis of the adsorption-desorption profiles provides new insight into the surface properties of BS, suggesting a surface complexation of NaTC. This knowledge can be useful since through interfacial engineering we might control the extent of lipolysis providing the basis for the rational design of food products with tailored digestibility. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. Adsorption Study on Moringa Oleifera Seeds and Musa Cavendish as Natural Water Purification Agents for Removal of Lead, Nickel and Cadmium from Drinking Water

    Science.gov (United States)

    Aziz, N. A. A.; Jayasuriya, N.; Fan, L.

    2016-07-01

    The effectiveness of plant based materials Moringa oleifera (Moringa) seeds and Musa cavendish (banana peel) for removing heavy metals namely lead (Pb), nickel (Ni) and cadmium (Cd) from contaminated groundwater was studied. Tests were carried out with individual and combined biomass at neutral pH condition on synthetic groundwater samples. The optimum biomass doses were determined as 200 mg/L for single biomass and 400 mg/L (in the ratio of 200 mg/L: 200 mg/L) for combined biomasses and used for adsorption isotherm studies with contact time of 30 minutes. Results showed that combined biomasses was able to met the Pb, Ni and Cd WHO standards from higher Pb, Ni and Cd initial concentrations which were up to 40 µg/L, 50 µg/L 9 µg/L, respectively compared to individual biomass of Moringa seed and banana peel. Moringa seeds exhibited the highest removal of Pb (81%) while the combined biomasses was most effective in removing Ni (74%) and Cd (97%) over wider their initial concentration ranges. The experimental data were linearized with Langmuir and Freundlich adsorption isotherm models. Freundlich model described the Pb adsorption better than the Langmuir model for all the tested biomasses. However, the Langmuir model fit better with the experimental data of Ni adsorption by Moringa seeds. Both models showed negligible differences in the coefficient of determination (R2) when applied for Ni and Cd adsorption on banana peel and combined biomasses, suggesting that there were multiple layers on the biomass interacting with the metals. Chemisorption is suggested to be involved in Pb adsorption for all tested biomasses as the value of nF calculated was lower than one. This type of adsorption could explain the phenomenon of different behavior of Pb removal and the higher Pb adsorption capacity (represented by KF values) compared to Ni and Cd. The study demonstrates that Moringa seeds, banana peel and their combination have the potential to be used as a natural alternative

  2. Driving force behind adsorption-induced protein unfolding: a time-resolved X-ray reflectivity study on lysozyme adsorbed at an air/water interface.

    Science.gov (United States)

    Yano, Yohko F; Uruga, Tomoya; Tanida, Hajime; Toyokawa, Hidenori; Terada, Yasuko; Takagaki, Masafumi; Yamada, Hironari

    2009-01-06

    Time-resolved X-ray reflectivity measurements for lysozyme (LSZ) adsorbed at an air/water interface were performed to study the mechanism of adsorption-induced protein unfolding. The time dependence of the density profile at the air/water interface revealed that the molecular conformation changed significantly during adsorption. Taking into account previous work using Fourier transform infrared (FTIR) spectroscopy, we propose that the LSZ molecules initially adsorbed on the air/water interface have a flat unfolded structure, forming antiparallel beta-sheets as a result of hydrophobic interactions with the gas phase. In contrast, as adsorption continues, a second layer forms in which the molecules have a very loose structure having random coils as a result of hydrophilic interactions with the hydrophilic groups that protrude from the first layer.

  3. DEMONSTRATION BULLETIN: ADSORPTION-INTEGRATED-REACTION (AIR2000) PROCESS, KSE, INC.

    Science.gov (United States)

    This Bulletin is a brief description of the AIR2000 technology developed by KSE, Inc., of Amherst, MA. The AIR2000 unit treats air streams containing volatile organic compounds (VOCs). The demonstration occurred at the Stamina Mills superfund site in North Smithfield, RI from Aug...

  4. Effect of pendant isophthalic acid moieties on the adsorption properties of light hydrocarbons in HKUST-1-like tbo -MOFs: Application to methane purification and storage

    KAUST Repository

    Belmabkhout, Youssef; Mouttaki, Hasnaa; Eubank, Jarrod F.; Guillerm, Vincent; Eddaoudi, Mohamed

    2014-01-01

    Equilibrium adsorption of methane (CH4), C2+ gases (ethane (C2H6), ethylene (C2H4), propane (C3H8), and propylene (C3H6)), and carbon dioxide (CO2) was measured on a series of tbo-MOFs (topological analogues of the prototypical MOF, HKUST-1

  5. Carbon nanomaterials for gas adsorption

    CERN Document Server

    Terranova, Maria Letizia

    2012-01-01

    Research in adsorption of gases by carbon nanomaterials has experienced considerable growth in recent years, with increasing interest for practical applications. Many research groups are now producing or using such materials for gas adsorption, storage, purification, and sensing. This book provides a selected overview of some of the most interesting scientific results regarding the outstanding properties of carbon nanomaterials for gas adsorption and of interest both for basic research and technological applications. Topics receiving special attention in this book include storage of H, purific

  6. Development and Testing of a Temperature-swing Adsorption Compressor for Carbon Dioxide in Closed-loop Air Revitalization Systems

    Science.gov (United States)

    Mulloth, Lila M.; Rosen, Micha; Affleck, David; LeVan, M. Douglas; Wang, Yuan

    2005-01-01

    The air revitalization system of the International Space Station (ISS) operates in an open loop mode and relies on the resupply of oxygen and other consumables from earth for the life support of astronauts. A compressor is required for delivering the carbon dioxide from a removal assembly to a reduction unit to recover oxygen and thereby dosing the air-loop. We have developed a temperature-swing adsorption compressor (TSAC) that is energy efficient, quiet, and has no rapidly moving parts for performing these tasks. The TSAC is a solid-state compressor that has the capability to remove CO2 from a low- pressure source, and subsequently store, compress, and deliver at a higher pressure as required by a processor. The TSAC is an ideal interface device for CO2 removal and reduction units in the air revitalization loop of a spacecraft for oxygen recovery. This paper discusses the design and testing of a TSAC for carbon dioxide that has application in the ISS and future spacecraft for closing the air revitalization loop.

  7. Kinetic and equilibrium aspects of adsorption and desorption of class II hydrophobins HFBI and HFBII at silicon oxynitride/water and air/water interfaces.

    Science.gov (United States)

    Krivosheeva, Olga; Dėdinaitė, Andra; Linder, Markus B; Tilton, Robert D; Claesson, Per M

    2013-02-26

    Hydrophobins are relatively small globular proteins produced by filamentous fungi. They display unusual high surface activity and are implied as mediators of attachment to surfaces, which has resulted in high scientific and technological interest. In this work we focus on kinetic and equilibrium aspects of adsorption and desorption properties of two representatives of class II hydrophobins, namely HFBI and HFBII, at a negatively charged hydrophilic solid/water interface and at the air/water interface. The layers formed at the air/liquid interface were examined in a Langmuir trough, whereas layers formed at the solid/liquid interface were studied using dual polarization interferometry (DPI) under different flow conditions. For comparison, another globular protein, lysozyme, was also investigated. It was found that both the adsorbed amount and the adsorption kinetics were different for HFBI and HFBII, and the adsorption behavior of both hydrophobins on the negatively charged surface displayed some unusual features. For instance, even though the adsorption rate for HFBI was slowed down with increasing adsorbed amount as expected from packing constraints at the interface, the adsorption kinetics curves for HFBII displayed a region indicating adsorption cooperativity. Further, it was found that hydrophobin layers formed under flow partly desorbed when the flow was stopped, and the desorption rate for HFBII was enhanced in the presence of hydrophobins in solution.

  8. Vacuum Exhaust Process in Pilot-Scale Vacuum Pressure Swing Adsorption for Coal Mine Ventilation Air Methane Enrichment

    Directory of Open Access Journals (Sweden)

    Xiong Yang

    2018-04-01

    Full Text Available Recovery and treatment of methane from coal mine ventilation air methane (VAM with cost-effective technologies have been an ongoing challenge due to low methane concentrations. In this study, a type of coconut shell-based active carbon was employed to enrich VAM with a three-bed vacuum pressure swing adsorption unit. A new vacuum exhaust step for the VPSA process was introduced. The results show that the vacuum exhaust step can increase the methane concentration of the product without changing adsorption and desorption pressure. Under laboratory conditions, the concentration of product increased from 0.4% to 0.69% as the vacuum exhaust ratio increased from 0 to 3.1 when the feed gas concentration was 0.2%. A 500 m³/h pilot-scale test system for VAM enrichment was built rendering good correlation with the laboratory results in terms of the vacuum exhaust step. By using a two-stage three-bed separation unit, the VAM was enriched from 0.2% to over 1.2%.

  9. AIR STRIPPING AND OFF-GAS ADSORPTION FOR THE REMOVAL OF MTBE FROM DRINKING WATER

    Science.gov (United States)

    Methyl-tertiary butyl ether (MTBE) is a synthetic organic chemical, primarily used for oxgenating fuel. The 1990 Federal Clean Air Act Amendments mandated the use of fuel oxgenates in areas where air quality did not meet national standards, which led to widespread use of MTBE in...

  10. Surface potential of methyl isobutyl carbinol adsorption layer at the air/water interface.

    Science.gov (United States)

    Phan, Chi M; Nakahara, Hiromichi; Shibata, Osamu; Moroi, Yoshikiyo; Le, Thu N; Ang, Ha M

    2012-01-26

    The surface potential (ΔV) and surface tension (γ) of MIBC (methyl isobutyl carbinol) were measured on the subphase of pure water and electrolyte solutions (NaCl at 0.02 and 2 M). In contrast to ionic surfactants, it was found that surface potential gradually increased with MIBC concentration. The ΔV curves were strongly influenced by the presence of NaCl. The available model in literature, in which surface potential is linearly proportional to surface excess, failed to describe the experimental data. Consequently, a new model, employing a partial charge of alcohol adsorption layer, was proposed. The new model predicted the experimental data consistently for MIBC in different NaCl solutions. However, the model required additional information for ionic impurity to predict adsorption in the absence of electrolyte. Such inclusion of impurities is, however, unnecessary for industrial applications. The modeling results successfully quantify the influence of electrolytes on surface potential of MIBC, which is critical for froth stability.

  11. Modulation of the adsorption properties at air-water interfaces of complexes of egg white ovalbumin with pectin by the dielectric constant

    NARCIS (Netherlands)

    Kudryashova, E.V.; Jongh, H.H.J.de

    2008-01-01

    The possibility of modulating the mesoscopic properties of food colloidal systems by the dielectric constant is studied by determining the impact of small amounts of ethanol (10%) on the adsorption of egg white ovalbumin onto the air-water interface in the absence and presence of pectin. The

  12. Effect of pendant isophthalic acid moieties on the adsorption properties of light hydrocarbons in HKUST-1-like tbo -MOFs: Application to methane purification and storage

    KAUST Repository

    Belmabkhout, Youssef

    2014-01-01

    Equilibrium adsorption of methane (CH4), C2+ gases (ethane (C2H6), ethylene (C2H4), propane (C3H8), and propylene (C3H6)), and carbon dioxide (CO2) was measured on a series of tbo-MOFs (topological analogues of the prototypical MOF, HKUST-1, correspondingly dubbed tbo-MOF-1), which were developed via the supermolecular building layer (SBL) pillaring strategy. Specifically, tbo-MOF-2 and its isoreticular, functionalized analogue, tbo-MOF-2-{CH2O[Ph(CO2H)2]}2 (or tbo-MOF-3), which is characterized by pendant isophthalic acid moieties freely pointing into the cavities, were evaluated on the basis of potential use in methane storage and C2+/CH4 separation. The parent, tbo-MOF-2, showed high gravimetric and volumetric CH4 uptake, close to the U.S. Department of Energy (DOE) target for methane storage at 35 bar and room temperature. Though the presence of the pendant isophthalic acid moiety in the analogous compound, tbo-MOF-3, led to a decrease in total CH4 uptake, due mainly to the reduced size of the cavities, interestingly, it increased the affinity of the SBL-based tbo-MOF platform for propane, propene, ethane, and ethylene at low pressures compared with CH4, due additionally to the enhanced interactions of the highly polarizable light hydrocarbons with the isophthalic acid moiety. Using Ideal Adsorption Solution Theory (IAST), the predicted mixture adsorption equilibria for the C3H8/CH4, C3H6/CH4, C2H6/CH4, C2H4/CH4, and C3H8/CO2 systems showed high adsorption selectivity for C2+ over methane for tbo-MOF-3 compared with tbo-MOF-2. The high working storage capacity of tbo-MOF-2 and the high affinity of tbo-MOF-3 for C2+ over CH4 and CO2 make tbo-MOF an ideal platform for studies in gas storage and separation.

  13. The impact of alkyl sulfate surfactant geometry and electrolyte on the co-adsorption of anionic surfactants with model perfumes at the air-solution interface.

    Science.gov (United States)

    Bradbury, Robert; Penfold, Jeffrey; Thomas, Robert K; Tucker, Ian M; Petkov, Jordan T; Jones, Craig

    2013-08-01

    The impact of surfactant geometry and electrolyte on the co-adsorption of anionic surfactants and model perfumes at the air-solution interface has been studied by neutron reflectivity. The more hydrophobic perfume linalool, competes more favourably for the surface with sodium dodecylsulfate than was previously reported for the anionic surfactant, sodium dodecyl 6-benzenesulfonate. Due to an increase in surface activity of the sodium dodecylsulfate, the addition of electrolyte results in a reduction in the linalool adsorption. Changing the alkyl chain length affects the relative adsorption of linalool and surfactant at the interface. Similar measurements for the different alkyl sulfates and with electrolyte with the more hydrophilic perfume phenyl ethanol, reveal broadly similar trends. Although the relative adsorption of phenyl ethanol with sodium dodecylsulfate is substantially enhanced compared to sodium dodecyl-6-benzenesulfonate the effects are not as significant as was observed with linalool. The variations with alkyl chain geometry show the importance of the hydrophobic interaction between the perfume and surfactant and changes in the packing constraints on the relative adsorption. The results highlight the importance of the specific interaction between the surfactant and perfume, and the surfactant and perfume geometries on the relative adsorption at the interface. Copyright © 2013 Elsevier Inc. All rights reserved.

  14. Formation of lactoferrin/sodium caseinate complexes and their adsorption behaviour at the air/water interface.

    Science.gov (United States)

    Li, Quanyang; Zhao, Zhengtao

    2017-10-01

    This research investigated the complexation behaviour between lactoferrin (Lf) and sodium caseinate (NaCas) before and after heat treatment. The results showed that heating facilitated their interaction and different complexes were formed at different Lf/NaCas ratios. The presence of low concentrations of NaCas resulted in the rapid precipitation of Lf, while no precipitation was observed at the NaCas concentrations higher than Lf/NaCas ratio of 2:1. The formed complexes at the ratio of 2:1 have an average diameter of 194±9.0nm and they exhibited a great capacity in lowering the air/water interfacial tension. Further increase of NaCas concentration to ratios of 1:1 and 1:2 resulted in the formation of smaller complexes with average diameters of 60±2.5nm. The complexes formed at these two ratios showed similar adsorption behaviour at the air/water interface and they exhibited lower capacity in decreasing the interfacial tension than the ratio of 2:1. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Gas purification project

    International Nuclear Information System (INIS)

    Broothaerts, J.; Claes, J.; Collard, G.; Goossens, W.; Harnie, R.; Heylen, P.; Vaesen, J.; Beukelaer, R. de; Dubois, G.; Glibert, R.; Mestrez, J.; Zahlen, A.

    1975-06-01

    Conceptual and experimental studies on LMFBR reprocessing and reactor off-gas purification systems are summarized. Iodine sorption on zeolites, low-temperature adsorption of noble gases on charcoal and catalytic oxidation of hydrogen, simulating tritium, are being studied in laboratory set-ups. A pilot loop with 25 m 3 h -1 throughput has been constructed. Results are quoted from the first phase of the iodine removal programme by scrubbing systems. Further extension of the test loop, comprising off-gases conditioning to removal of krypton in a cryodistillation unit, has been prepared. Delay-bed studies on 133 Xe extraction from LWR off-gases are reported. (author)

  16. Polyether sulfone/hydroxyapatite mixed matrix membranes for protein purification

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Junfen, E-mail: junfensun@dhu.edu.cn [State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Material Science and Engineering, Donghua University, North People Road 2999, Shanghai 201620 (China); Wu, Lishun [Department of Chemistry and Chemical Engineering, Heze University, Daxue Road 2269, Heze, Shandong Province 274015 (China)

    2014-07-01

    This work proposes a novel approach for protein purification from solution using mixed matrix membranes (MMMs) comprising of hydroxyapatite (HAP) inside polyether sulfone (PES) matrix. The influence of HAP particle loading on membrane morphology is studied. The MMMs are further characterized concerning permeability and adsorption capacity. The MMMs show purification of protein via both diffusion as well as adsorption, and show the potential of using MMMs for improvements in protein purification techniques. The bovine serum albumin (BSA) was used as a model protein. The properties and structures of MMMs prepared by immersion phase separation process were characterized by pure water flux, BSA adsorption and scanning electron microscopy (SEM).

  17. REMEDIATION OF MTBE FROM DRINKING WATER: AIR STRIPPING FOLLOWED BY OFF-GAS ADSORPTION

    Science.gov (United States)

    The widespread use of methyl tertiary butyl ether (MTBE) as an oxygenate in gasoline has resulted in the contamination of a large number of ground and surface water sources. Even though air stripping has been proven to be an effective treatment technology for MTBE removal, off-ga...

  18. Molecular adsorption steers bacterial swimming at the air/water interface.

    Science.gov (United States)

    Morse, Michael; Huang, Athena; Li, Guanglai; Maxey, Martin R; Tang, Jay X

    2013-07-02

    Microbes inhabiting Earth have adapted to diverse environments of water, air, soil, and often at the interfaces of multiple media. In this study, we focus on the behavior of Caulobacter crescentus, a singly flagellated bacterium, at the air/water interface. Forward swimming C. crescentus swarmer cells tend to get physically trapped at the surface when swimming in nutrient-rich growth medium but not in minimal salt motility medium. Trapped cells move in tight, clockwise circles when viewed from the air with slightly reduced speed. Trace amounts of Triton X100, a nonionic surfactant, release the trapped cells from these circular trajectories. We show, by tracing the motion of positively charged colloidal beads near the interface that organic molecules in the growth medium adsorb at the interface, creating a high viscosity film. Consequently, the air/water interface no longer acts as a free surface and forward swimming cells become hydrodynamically trapped. Added surfactants efficiently partition to the surface, replacing the viscous layer of molecules and reestablishing free surface behavior. These findings help explain recent similar studies on Escherichia coli, showing trajectories of variable handedness depending on media chemistry. The consistent behavior of these two distinct microbial species provides insights on how microbes have evolved to cope with challenging interfacial environments. Copyright © 2013 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  19. Gas separation by pressure swing adsorption

    International Nuclear Information System (INIS)

    Martin, J.R.; Gottzman, C.F.; Notaro, F.; Stewart, H.A.

    1986-01-01

    Over the past twenty years separation processes based upon pressure swing adsorption have replaced cryogenic processes in a number of selected applications such as air separation for production of moderate quantities of nitrogen and oxygen and recovery of hydrogen from refinery and chemical plant gases. Key events contributing to the emergence of PSA as an important process option have been the development of synthetic zeolite molecular sieves by Union Carbide Corporation in the USA and of carbon molecular sieves by Bergbau-Forschung in Germany. Today PSA processes enjoy significant commercial use producing oxygen from 0.1 Nm 3 /h for medical application to 1500 Nm 3 /h for steel mill use, for making nitrogen up to 1000 Nm 3 /h for inerting and in purifying hydrogen streams of up to 100,000 Nm 3 /h for refinery use. In this paper some of the principles of adsorptive separations are reviewed. The history of the technology is traced briefly with emphasis on key material, process and application events. The major commercial processes in the application of adsorption to bulk separation of air and hydrogen purification are reviewed in more detail with comparisons made to cryogenic alternatives in terms of specific characteristics, advantages and disadvantages where appropriate. Information on performance, reliability and comparative economics are discussed where available

  20. Graphene oxide papers with high water adsorption capacity for air dehumidification.

    Science.gov (United States)

    Liu, Renlong; Gong, Tao; Zhang, Kan; Lee, Changgu

    2017-08-29

    Graphene oxide (GO) has shown a high potential to adsorb and store water molecules due to the oxygen-containing functional groups on its hydrophilic surface. In this study, we characterized the water absorbing properties of graphene oxide in the form of papers. We fabricated three kinds of graphene oxide papers, two with rich oxygen functional groups and one with partial chemical reduction, to vary the oxygen/carbon ratio and found that the paper with high oxygen content has higher moisture adsorption capability. For the GO paper with reduction, the overall moisture absorbance was reduced. However, the absorbance at high humidity was significantly improved due to direct formation of multilayer water vapor in the system, which derived from the weak interaction between the adsorbent and the adsorbate. To demonstrate one application of GO papers as a desiccant, we tested grape fruits with and without GO paper. The fruits with a GO paper exhibited longer-term preservation with delayed mold gathering because of desiccation effect from the paper. Our results suggest that GO will find numerous practical applications as a desiccant and is a promising material for moisture desiccation and food preservation.

  1. Adsorption of multilamellar tubes with a temperature tunable diameter at the air/water interface.

    Science.gov (United States)

    Fameau, Anne-Laure; Douliez, Jean-Paul; Boué, François; Ott, Frédéric; Cousin, Fabrice

    2011-10-15

    The ethanolamine salt of 12-hydroxy stearic acid is known to form tubes having a temperature tunable diameter. Here, we study the behavior of those tubes at the air/water interface by using Neutron Reflectivity. We observed that tubes indeed adsorbed at this interface below a fatty acid monolayer and exhibit the same temperature behavior as in bulk. There is however a peculiar behavior at around 50 °C for which the increase of the diameter of the tubes at the interface yields an unfolding of those tubes into a multilamellar layer. Upon further heating, the tubes re-fold and their diameter re-decreases after which they melt into micelles as observed in the bulk. All structural transitions at the interface are nevertheless reversible. This provides to the system a high interest for its interfacial properties because the structure at the air/water interface can be tuned easily by the temperature. Copyright © 2011 Elsevier Inc. All rights reserved.

  2. Mechanical properties of protein adsorption layers at the air/water and oil/water interface: a comparison in light of the thermodynamical stability of proteins.

    Science.gov (United States)

    Mitropoulos, Varvara; Mütze, Annekathrin; Fischer, Peter

    2014-04-01

    Over the last decades numerous studies on the interfacial rheological response of protein adsorption layers have been published. The comparison of these studies and the retrieval of a common parameter to compare protein interfacial activity are hampered by the fact that different boundary conditions (e.g. physico-chemical, instrumental, interfacial) were used. In the present work we review previous studies and attempt a unifying approach for the comparison between bulk protein properties and their adsorption films. Among many common food grade proteins we chose bovine serum albumin, β-lactoglobulin and lysozyme for their difference in thermodynamic stability and studied their adsorption at the air/water and limonene/water interface. In order to achieve this we have i) systematically analyzed protein adsorption kinetics in terms of surface pressure rise using a drop profile analysis tensiometer and ii) we addressed the interfacial layer properties under shear stress using an interfacial shear rheometer under the same experimental conditions. We could show that thermodynamically less stable proteins adsorb generally faster and yield films with higher shear rheological properties at air/water interface. The same proteins showed an analog behavior when adsorbing at the limonene/water interface but at slower rates. Copyright © 2013 Elsevier B.V. All rights reserved.

  3. Research on the removal of radium from uranium effluent by air-aeration hydrated manganese hydroxide adsorption

    International Nuclear Information System (INIS)

    Zhang Jianguo; Chen Shaoqing; Qi Jing

    2002-01-01

    In the acidic leaching uranium process, pyrolusite or manganese oxide (MnO 2 ) powder is often used as an oxidizer. In the processed effluent, manganese ion present as a contaminant in addition to U, Ra, Th, As, Zn, Cu, F, SO 4 2- , etc. Manganese ion content is about 100∼200 mg/1 in effluent. In this case, a new process technique can be developed to treat the effluent using the Mn 2+ present in the effluent. The approach is as follows: The effluent is neutralized by lime milk to pH about 11. As a result, most contaminants are precipitated to meet the uranium effluent discharge standards (U, Th, Mn, SO 4 2- etc.), but radium is still present in the effluent. In this process, manganese ion forms manganese hydroxide Mn(OH) 2 . The manganese hydroxide is easily to oxide to form MnO(OH) 2 by air aeration. This hydrated manganese hydroxide complex can then be used to adsorb radium in effluent. The experiments show: (1) Effluent pH, manganese concentration in effluent, and aeration strength and time etc. influence the radium removal efficiency. Under the test conditions, when manganese in effluent is between 100∼300 mg/l, and pH is over 10.5, radium can be reduced to lower 1.11 Bq/1 in the processed effluent. Higher contents of impurity elements such as aluminum, silicon and magnesium in the effluent affect the removal efficiency; (2) Under the experimental conditions, the lime precipitation air-aeration formed hydrated manganese hydroxide complex sludge is stable. There is no obvious release of radium from the adsorbed hydrated manganese hydroxide complex sludge; (3) The current experiments show that hydrated manganese hydroxide complex sludge has a very good re-adsorption ability for removal of radium from uranium effluent. Some experimental parameters have been measured. (author)

  4. Foaming and adsorption behavior of bovine and camel proteins mixed layers at the air/water interface.

    Science.gov (United States)

    Lajnaf, Roua; Picart-Palmade, Laetitia; Attia, Hamadi; Marchesseau, Sylvie; Ayadi, M A

    2017-03-01

    The aim of this work was to examine foaming and interfacial behavior of three milk protein mixtures, bovine α-lactalbumin-β-casein (M1), camel α-lactalbumin-β-casein (M2) and β-lactoglobulin-β-casein (M3), alone and in binary mixtures, at the air/water interface in order to better understand the foaming properties of bovine and camel milks. Different mixture ratios (100:0; 75:25; 50:50; 25:75; 0:100) were used during foaming tests and interfacial protein interactions were studied with a pendant drop tensiometer. Experimental results evidenced that the greatest foam was obtained with a higher β-casein amount in all camel and bovine mixtures. Good correlation was observed with the adsorption and the interfacial rheological properties of camel and bovine protein mixtures. The proteins adsorbed layers are mainly affected by the presence of β-casein molecules, which are probably the most abundant protein at interface and the most efficient in reducing the interfacial properties. In contrast of, the globular proteins, α-lactalbumin and β-lactoglobulin that are involved in the protein layer composition, but could not compact well at the interface to ensure foams creation and stabilization because of their rigid molecular structure. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Effect of hydration of sugar groups on adsorption of Quillaja bark saponin at air/water and Si/water interfaces.

    Science.gov (United States)

    Wojciechowski, Kamil; Orczyk, Marta; Marcinkowski, Kuba; Kobiela, Tomasz; Trapp, Marcus; Gutberlet, Thomas; Geue, Thomas

    2014-05-01

    Adsorption of a natural glycoside surfactant Quillaja bark saponin ("QBS", Sigma Aldrich 84510) was studied at the air/water and Si/water interfaces using a combination of surface pressure (SP), surface dilatational rheology, neutron reflectivity (NR), Infra-Red Attenuated Total Reflection Spectroscopy (IR ATR) and Quartz Crystal Microbalance (QCM). The adsorbed layers formed at the air/water interface are predominantly elastic, with the dilatational surface storage modulus reaching the maximum value of E'=184 mN/m. The NR results point to a strong hydration of the adsorbed layers (about 65% hydration, corresponding to about 60 molecules of water per one QBS molecule), most likely related to the presence of multiple sugar groups constituting the glycone part of the QBS molecules. With a layer thickness of 19 Å, the adsorbed amount obtained from NR seems largely underestimated in comparison to the value obtained from the surface tension isotherm. While this high extent of hydration does not prevent formation of dense and highly elastic layers at the air-water surface, QBS adsorption at the Si/water interface is much weaker. The adsorption isotherm of QBS on Si obtained from the QCM study reflects much lower affinity of highly hydrated and negatively charged saponin molecules to the Si/water interface. We postulate that at the air/water interface, QBS adsorbs through the triterpene aglycone moiety. In contrast, weak hydrogen bonding between the glycone part and the surface silanol groups of Si is responsible for QBS adsorption on more polar Si/water interface. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. 77 FR 60481 - Design, Inspection, and Testing Criteria for Air Filtration and Adsorption Units of Post-Accident...

    Science.gov (United States)

    2012-10-03

    ... filtration and iodine adsorption units of ESF atmosphere cleanup systems in light-water-cooled nuclear power... Filtration and Adsorption Units of Post-Accident Engineered-Safety-Feature Atmosphere Cleanup Systems in Light-Water-Cooled Nuclear Power Plants AGENCY: Nuclear Regulatory Commission. ACTION: Regulatory guide...

  7. The role of electrolyte and polyelectrolyte on the adsorption of the anionic surfactant, sodium dodecylbenzenesulfonate, at the air-water interface.

    Science.gov (United States)

    Zhang, X L; Taylor, D J F; Thomas, R K; Penfold, J

    2011-04-15

    The role of the polyelectrolyte, poly(ethyleneimine), PEI, and the electrolytes NaCl and CaCl(2), on the adsorption of the anionic surfactant, sodium dodecylbenzenesulfonate, LAS, at the air-water interface have been investigated by neutron reflectivity and surface tension. The surface tension data for the PEI/LAS mixtures are substantially affected by pH and the addition of electrolyte, and are consistent with a strong adsorption of surface polymer/surfactant complexes down to relatively low surfactant concentrations. The effects are most pronounced at high pH, and this is confirmed by the adsorption data obtained directly from neutron reflectivity. However, the effects of the addition of PEI and electrolyte on the LAS adsorption are not as pronounced as previously reported for PEI/SDS mixtures. This is attributed primarily to the steric hindrance of the LAS phenyl group resulting in a reduction in the ion-dipole attraction between the LAS sulfonate and amine groups that dominates the interaction at high pH. Copyright © 2011 Elsevier Inc. All rights reserved.

  8. Atomic oxygen adsorption and its effect on the oxidation behaviour of ZrB2-ZrC-SiC in air

    International Nuclear Information System (INIS)

    Gao Dong; Zhang Yue; Xu Chunlai; Song Yang; Shi Xiaobin

    2011-01-01

    Research highlights: → Atomic oxygen was adsorbed on the surface of ZrB 2 -ZrC-SiC ceramics. → Atomic oxygen was preferred reacted with borides according to XPS spectra. → The atomic oxygen adsorption is detrimental to the oxidation resistance. → The porosity should be the major reason which provides diffusion path for the atomic oxygen. → The structure evolution of the ceramics during oxidation is analyzed. - Abstract: Atomic oxygen is adsorbed on the surface of the hot-pressed ZrB 2 -ZrC-SiC ceramic composites, and then the ceramic composites are oxidized in air up to 1500 deg. C with the purpose of clarifying the effect of atomic oxygen adsorption on the oxidation behaviour of the ceramic composites. The XPS spectra are employed to identify the adsorption mechanism of atomic oxygen on the surface of the ceramic composites, and the formation of O-B, O-Zr, and O-Si bonds indicates that atomic oxygen is chemically adsorbed on the surface of the ceramic. In addition, atomic oxygen is preferred to be adsorbed on the surface of borides according to the Zr 3d core level spectrum. On the other hand, the atomic oxygen adsorption is detrimental to the oxidation resistance according to experimental results, and the porosity of the ceramic should be the major reason which provides diffusion path for the atomic oxygen. Furthermore, the structure evolution of the ceramic composites during oxidation process is analyzed.

  9. Adsorption properties of biologically active derivatives of quaternary ammonium surfactants and their mixtures at aqueous/air interface II. Dynamics of adsorption, micelles dissociation and cytotoxicity of QDLS.

    Science.gov (United States)

    Rojewska, Monika; Prochaska, Krystyna; Olejnik, Anna; Rychlik, Joanna

    2014-07-01

    The main aim of our study was analysis of adsorption dynamics of mixtures containing quaternary derivatives of lysosomotropic substance (QDLS). Two types of equimolar mixtures were considered: the ones containing two derivatives of lysosomotropic substances (DMALM-12 and DMGM-12) as well as the catanionic mixtures i.e. the systems containing QDLS and DBSNa. Dynamic surface tension measurements of surfactant mixtures were made. The results suggested that the diffusivity of the mixed system could be treated as the average value of rates of diffusion of individual components, micelles and ion pairs, which are present in the mixtures studied. Moreover, an attempt was made to explain the influence of the presence of micelles in the mixtures on their adsorption dynamics. The compounds examined show interesting biological properties which can be useful, especially for drug delivery in medical treatment. In vitro cytotoxic activities of the mixtures studied towards human cancer cells were evaluated. Most of the mixtures showed a high antiproliferative potential, especially the ones containing DMALM-12. Each cancer cell line used demonstrated different sensitivity to the same dose of the mixtures tested. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. Experimental investigation of the formaldehyde removal mechanisms in a dynamic botanical filtration system for indoor air purification.

    Science.gov (United States)

    Wang, Zhiqiang; Pei, Jingjing; Zhang, Jensen S

    2014-09-15

    Botanical filtration has been proved to be effective for indoor gas pollutant removal. To understand the roles of different transport, storage and removal mechanism by a dynamic botanical air filter, a series of experimental investigations were designed and conducted in this paper. Golden Pothos (Epipremnum aureum) plants was selected for test, and its original soil or activated/pebbles root bed was used in different test cases. It was found that flowing air through the root bed with microbes dynamically was essential to obtain meaningful formaldehyde removal efficiency. For static potted plant as normally place in rooms, the clean air delivery rate (CADR), which is often used to quantify the air cleaning ability of portable air cleaners, was only ∼ 5.1m(3)/h per m(2) bed, while when dynamically with air flow through the bed, the CADR increased to ∼ 233 m(3)/h per m(2) bed. The calculated CADR due to microbial activity is ∼ 108 m(3)/h per m(2) bed. Moisture in the root bed also played an important role, both for maintaining a favorable living condition for microbes and for absorbing water-soluble compounds such as formaldehyde. The role of the plant was to introduce and maintain a favorable microbe community which effectively degraded the volatile organic compounds adsorbed or absorbed by the root bed. The presence of the plant increased the removal efficiency by a factor of two based on the results from the bench-scale root bed experiments. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. The bubble method of water purification

    Science.gov (United States)

    Smirnov, B. M.; Babaeva, N. Yu.; Naidis, G. V.; Panov, V. A.; Saveliev, A. S.; Son, E. E.; Tereshonok, D. V.

    2018-02-01

    The processes of water purification from admixture molecules are analyzed. The purification rate is limited due to a low diffusion coefficient of the admixture molecules in water. At non-small concentrations of the admixture molecules, the water purication can proceed through association of molecules in condensed nanoparticles which fall on the bottom of the water volume. The rate of association may be increased in an external electric field, but in reality this cannot change significantly the rate of the purification process. The bubble method of water purification is considered, where air bubbles formed at the bottom of the water volume, transfer admixture molecules to the interface. This method allows one to clean small water volumes fast. This mechanism of water purification is realized experimentally and exhibits the promises of the bubble purification method.

  12. Screening metal-organic frameworks for selective noble gas adsorption in air: effect of pore size and framework topology.

    Science.gov (United States)

    Parkes, Marie V; Staiger, Chad L; Perry, John J; Allendorf, Mark D; Greathouse, Jeffery A

    2013-06-21

    The adsorption of noble gases and nitrogen by sixteen metal-organic frameworks (MOFs) was investigated using grand canonical Monte Carlo simulation. The MOFs were chosen to represent a variety of net topologies, pore dimensions, and metal centers. Three commercially available MOFs (HKUST-1, AlMIL-53, and ZIF-8) and PCN-14 were also included for comparison. Experimental adsorption isotherms, obtained from volumetric and gravimetric methods, were used to compare krypton, argon, and nitrogen uptake with the simulation results. Simulated trends in gas adsorption and predicted selectivities among the commercially available MOFs are in good agreement with experiment. In the low pressure regime, the expected trend of increasing adsorption with increasing noble gas polarizabilty is seen. For each noble gas, low pressure adsorption correlates with several MOF properties, including free volume, topology, and metal center. Additionally, a strong correlation exists between the Henry's constant and the isosteric heat of adsorption for all gases and MOFs considered. Finally, we note that the simulated and experimental gas selectivities demonstrated by this small set of MOFs show improved performance compared to similar values reported for zeolites.

  13. A Kinetic Model for β-Amyloid Adsorption at the Air/Solution Interface and Its Implication to the β-Amyloid Aggregation Process

    Science.gov (United States)

    Jiang, Dianlu; Dinh, Kim Lien; Ruthenburg, Travis; Zhang, Yi; Su, Lei; Land, Donald; Zhou, Feimeng

    2011-01-01

    The kinetics of adsorption at the air/buffer solution interface of amyloid beta peptide, Aβ(1–42), whose bulk concentration (submicromolar) is more than two orders of magnitude lower than that typically used in other in vitro aggregation studies, has been studied using a Langmuir-Blodgett trough. The pressure–time curves exhibit a lag phase, wherein the surface pressure essentially remains at zero, and a rising phase, corresponding to the Aβ adsorption at the interface. The duration of the lag phase was found to be highly dependent on both the Aβ bulk concentration and the solution temperature. A large activation energy (62.2 ± 4.1 KJ/mol) was determined and the apparent adsorption rate constant was found to be linearly dependent on the Aβ bulk concentration. Attenuated total reflection-IR spectra of the adsorbed Aβ transferred to a solid substrate and circular dichroism measurements of Aβ in the solution layer near the interface reveal that the natively unstructured Aβ in the bulk undergo a conformation change (folding) to mainly the α-helical structure. The results suggest that, prior to the adsorption step, an equilibrium between Aβ conformations is established within the subsurface. The kinetic equation derived from this model confirms that the overall Aβ adsorption is kinetically controlled and the apparent rate constant is proportional to the Aβ bulk concentration. This model also indicates that interfaces such as cell membranes and lipid bilayers may facilitate Aβ aggregation/fibrillation by providing a thin hydrophobic layer adjacent to the interface for the initial Aβ conformation change (misfolding) and accumulation. Such a preconcentration effect offers a plausible explanation of the fact that Aβ fibrillation occurs in vivo at nanomolar concentrations. Another important biological implication from our work is that Aβ misfolding may occur before its adsorption onto a cell membrane. This general kinetic model should also find

  14. A kinetic model for beta-amyloid adsorption at the air/solution interface and its implication to the beta-amyloid aggregation process.

    Science.gov (United States)

    Jiang, Dianlu; Dinh, Kim Lien; Ruthenburg, Travis C; Zhang, Yi; Su, Lei; Land, Donald P; Zhou, Feimeng

    2009-03-12

    At the air/buffer solution interface the kinetics of adsorption of amyloid beta peptide, Abeta(1-42), whose bulk concentration (submicromolar) is more than 2 orders of magnitude lower than that typically used in other in vitro aggregation studies, has been studied using a Langmuir-Blodgett trough. The pressure-time curves exhibit a lag phase, wherein the surface pressure essentially remains at zero, and a rising phase, corresponding to the Abeta adsorption at the interface. The duration of the lag phase was found to be highly dependent on both the Abeta bulk concentration and the solution temperature. A large activation energy (62.2 +/- 4.1 KJ/mol) was determined and the apparent adsorption rate constant was found to be linearly dependent on the Abeta bulk concentration. Attenuated total reflection-IR spectra of the adsorbed Abeta transferred to a solid substrate and circular dichroism measurements of Abeta in the solution layer near the interface reveal that the natively unstructured Abeta in the bulk undergo a conformation change (folding) to mainly the alpha-helical structure. The results suggest that, prior to the adsorption step, an equilibrium between Abeta conformations is established within the subsurface. The kinetic equation derived from this model confirms that the overall Abeta adsorption is kinetically controlled and the apparent rate constant is proportional to the Abeta bulk concentration. This model also indicates that interfaces such as cell membranes and lipid bilayers may facilitate Abeta aggregation/ fibrillation by providing a thin hydrophobic layer adjacent to the interface for the initial A/beta conformation change (misfolding) and accumulation. Such a preconcentration effect offers a plausible explanation of the fact that Abeta fibrillation occurs in vivo at nanomolar concentrations. Another important biological implication from our work is that Abeta misfolding may occur before its adsorption onto a cell membrane. This general kinetic model

  15. Visible-Light Responsive Catalysts Using Quantum Dot-Modified TiO2 for Air and Water Purification

    Science.gov (United States)

    Coutts, Janelle L.; Hintze, Paul E.; Clausen, Christian A.; Richards, Jeffrey T.

    2014-01-01

    Photocatalysis, the oxidation or reduction of contaminants by light-activated catalysts, utilizing titanium dioxide (TiO2) as the catalytic substrate has been widely studied for trace contaminant control in both air and water applications. The interest in this process is due primarily to its low energy consumption and capacity for catalyst regeneration. Titanium dioxide requires ultraviolet light for activation due to its relatively large band gap energy of 3.2 eV. Traditionally, Hg-vapor fluorescent light sources are used in PCO reactors; however, the use of mercury precludes the use of this PCO technology in a spaceflight environment due to concerns over crew Hg exposure.

  16. Integrated Testing of a Carbon Dioxide Removal Assembly and a Temperature-Swing Adsorption Compressor for Closed-Loop Air Revitalization

    Science.gov (United States)

    Knox, J. C.; Mulloth, Lila; Frederick, Kenneth; Affleck, Dave

    2003-01-01

    Accumulation and subsequent compression of carbon dioxide that is removed from space cabin are two important processes involved in a closed-loop air revitalization scheme of the International Space Station (ISS). The carbon dioxide removal assembly (CDRA) of ISS currently operates in an open loop mode without a compressor. This paper describes the integrated test results of a flight-like CDRA and a temperature-swing adsorption compressor (TSAC) for carbon dioxide removal and compression. The paper provides details of the TSAC operation at various CO2 loadings and corresponding performance of CDRA.

  17. Adsorption properties of regenerative materials for removal of low concentration of toluene.

    Science.gov (United States)

    Xie, Zhen-Zhen; Wang, Lin; Cheng, Ge; Shi, Lei; Zhang, Yi-Bo

    2016-12-01

    A specific type of material, activated carbon fiber (ACF), was modified by SiO 2 , and the final products ACF-x were obtained as ACF-12.5, ACF-20, ACF-40, and ACF-80 according to different dosages of tetraethoxysilane (TEOS). The modified material on the ACF surface had a significant and smooth cover layer with low content of silica from scanning electron microscope (SEM) image. The modified ACF-x showed the stronger hydrophobicity, thermal stability, and adsorption capacity, which had almost no effect in the presence of water vapor and no destruction in multiple cycles. ACF-20 was proven as the most efficient adsorbent in humid conditions. The dual-function system composed of the regenerative adsorbents and the combustion catalyst would be efficient in consecutive toluene adsorption/oxidation cycles, in which the combustion catalyst was prepared by the displacement reaction of H 2 PtCl 6 with foam Ni. Therefore, the adsorption/catalytic oxidation could be a promising technique in the indoor air purification, especially in the case of very low volatile organic compound (VOC; toluene) concentration levels. Exploring highly effective adsorptive materials with less expensive costs becomes an urgent issue in the indoor air protection. ACF-20 modified by SiO 2 with Pt/Ni catalysts shows stronger hydrophobicity, thermal stability, and adsorption capacity. This dual-function system composed of the regenerative materials and the combustion catalyst would be a promising technique in the indoor air purification, especially in the case of removal of very low concentration of toluene.

  18. Interactions in the aqueous phase and adsorption at the air-water interface of caseinoglycomacropeptide (GMP) and beta-lactoglobulin mixed systems.

    Science.gov (United States)

    Martinez, María J; Sánchez, Cecilio Carrera; Patino, Juan M Rodríguez; Pilosof, Ana M R

    2009-01-01

    The aim of this work was to study the interactions and adsorption of caseinoglycomacropeptide (GMP) and GMP:beta-lactoglobulin (beta-lg) mixed system in the aqueous phase and at the air-water interface. The existence of associative interactions between GMP and beta-lg in the aqueous phase was investigated by dynamic light scattering, differential scanning calorimetry (DSC), fluorometry and native PAGE-electrophoresis. The surface pressure isotherm and the static and dynamic surface pressure were determined by tensiometry and surface dilatational properties. The results showed that GMP presented higher surface activity than beta-lg at a concentration of 4%wt but beta-lg showed higher film forming ability. In the mixed systems beta-lg dominated the static and dynamic surface pressure and the rheological properties of interfacial films suggesting that beta-lg hinders GMP adsorption because, in simple competition, GMP should dominate because of its higher surface activity. The surface predominance of beta-lg can be attributed to binding of GMP to beta-lg in the aqueous phase that prevents GMP adsorption on its own.

  19. Surface adsorption of oppositely charged C14TAB-PAMPS mixtures at the air/water interface and the impact on foam film stability.

    Science.gov (United States)

    Fauser, Heiko; von Klitzing, Regine; Campbell, Richard A

    2015-01-08

    We have studied the oppositely charged polyelectrolyte/surfactant mixture of poly(acrylamidomethylpropanesulfonate) sodium salt (PAMPS) and tetradecyl trimethylammonium bromide (C14TAB) using a combination of neutron reflectivity and ellipsometry measurements. The interfacial composition was determined using three different analysis methods involving the two techniques for the first time. The bulk surfactant concentration was fixed at a modest value while the bulk polyelectrolyte concentration was varied over a wide range. We reveal complex changes in the surface adsorption behavior. Mixtures with low bulk PAMPS concentrations result in the components interacting synergistically in charge neutral layers at the air/water interface. At the bulk composition where PAMPS and C14TAB are mixed in an equimolar charge ratio in the bulk, we observe a dramatic drop in the surfactant surface excess to leave a large excess of polyelectrolyte at the interface, which we infer to have loops in its interfacial structure. Further increase of the bulk PAMPS concentration leads to a more pronounced depletion of material from the surface. Mixtures containing a large excess of PAMPS in the bulk showed enhanced adsorption, which is attributed to the large increase in total ionic strength of the system and screening of the surfactant headgroup charges. The data are compared to our former results on PAMPS/C14TAB mixtures [Kristen et al. J. Phys. Chem. B, 2009, 23, 7986]. A peak in the surface tension is rationalized in terms of the changing surface adsorption and, unlike in more concentrated systems, is unrelated to bulk precipitation. Also, a comparison between the determined interfacial composition with zeta potential and foam film stability data shows that the highest film stability occurs when there is enhanced synergistic adsorption of both components at the interface due to charge screening when the total ionic strength of the system is highest. The additional contribution to the

  20. Theoretical modelling and experimental study of air thermal conditioning process of a heat pump assisted solid desiccant cooling system

    DEFF Research Database (Denmark)

    Nie, Jinzhe; Li, Zan; Hu, Wenju

    2017-01-01

    purification aimed at improving indoor air quality and reducing building energy consumption. The heat and moisture transfer in adsorption desiccant rotor was theoretical modelled with one-dimensional partial differential equations. The theoretical model was validated with experimental measurements...... system, the energy performance of HP-SDC was more efficient mainly due to high efficient air purification capacity, reduction of cooling load and raised evaporation temperature. The energy performance of HP-SDC was sensitive to outdoor humidity ratio. Further improvements of HP-SDC energy efficiency......Taking the integrated gaseous contaminants and moisture adsorption potential of desiccant material, a new heat pump assisted solid desiccant cooling system (HP-SDC) was proposed based on the combination of desiccant rotor with heat pump. The HP-SDC was designed for dehumidification, cooling and air...

  1. Strong cooperative effect of oppositely charged surfactant mixtures on their adsorption and packing at the air-water interface and interfacial water structure.

    Science.gov (United States)

    Nguyen, Khoi T; Nguyen, Tuan D; Nguyen, Anh V

    2014-06-24

    Remarkable adsorption enhancement and packing of dilute mixtures of water-soluble oppositely-charged surfactants, sodium dodecyl sulfate (SDS) and dodecyl amine hydrochloride (DAH), at the air-water interface were observed by using sum frequency generation spectroscopy and tensiometry. The interfacial water structure was also observed to be significantly influenced by the SDS-DAH mixtures, differently from the synergy of the single surfactants. Most strikingly, the obtained spectroscopic evidence suggests that the interfacial hydrophobic alkyl chains of the binary mixtures assemble differently from those of single surfactants. This study highlights the significance of the cooperative interaction between the headgroups of oppositely charged binary surfactant systems and subsequently provides some insightful observations about the molecular structure of the air-aqueous interfacial water molecules and, more importantly, about the packing nature of the surfactant hydrophobic chains of dilute SDS-DAH mixtures of concentration below 1% of the CMC.

  2. Development of a Next-Generation Membrane-Integrated Adsorption Processor for CO2 Removal and Compression for Closed-Loop Air Revitalization Systems

    Science.gov (United States)

    Mulloth, Lila; LeVan, Douglas

    2002-01-01

    The current CO2 removal technology of NASA is very energy intensive and contains many non-optimized subsystems. This paper discusses the concept of a next-generation, membrane integrated, adsorption processor for CO2 removal nd compression in closed-loop air revitalization systems. This processor will use many times less power than NASA's current CO2 removal technology and will be capable of maintaining a lower CO2 concentration in the cabin than that can be achieved by the existing CO2 removal systems. The compact, consolidated, configuration of gas dryer, CO2 separator, and CO2 compressor will allow continuous recycling of humid air in the cabin and supply of compressed CO2 to the reduction unit for oxygen recovery. The device has potential application to the International Space Station and future, long duration, transit, and planetary missions.

  3. Adsorption--from theory to practice.

    Science.gov (United States)

    Dabrowski, A

    2001-10-08

    Adsorption at various interfaces has concerned scientists since the beginning of this century. This phenomenon underlies a number of extremely important processes of utilitarian significance. The technological, environmental and biological importance of adsorption can never be in doubt. Its practical applications in industry and environmental protection are of paramount importance. The adsorption of substrates is the first stage in many catalytic processes. The methods for separation of mixtures on a laboratory and on an industrial scale are increasingly based on utilising the change in concentration of components at the interface. Moreover, such vital problems as purification of water, sewages, air and soil are involved here too. On the other hand, many areas in which technological innovation has covered adsorption phenomena have been expanded more through art and craft than through science. A basic understanding of the scientific principles is far behind; in part because the study of interfaces requires extremely careful experimentation if meaningful and reproducible results are to be obtained. In recent years, however, considerable effort has been increasingly directed toward closing the gap between theory and practice. Crucial progress in theoretical description of the adsorption has been achieved, mainly through the development of new theoretical approaches formulated on a molecular level, by means of computer simulation methods and owing to new techniques which examine surface layers or interfacial regions. Moreover, during the last 15 years new classes of solid adsorbents have been developed, such as activated carbon fibres and carbon molecular sieves, fullerenes and heterofullerenes, microporous glasses and nanoporous--both carbonaceous and inorganic--materials. Nanostructured solids are very popular in science and technology and have gained extreme interest due to their sorption, catalytic, magnetic, optical and thermal properties. Although the development

  4. Polysaccharide charge density regulating protein adsorption to air/water interfaces by protein/polysaccharide complex formation

    NARCIS (Netherlands)

    Ganzevles, R.A.; Kosters, H.; Vliet, T. van; Stuart, M.A.C.; Jongh, H.H.J. de

    2007-01-01

    Because the formation of protein/polysaccharide complexes is dominated by electrostatic interaction, polysaccharide charge density is expected to play a major role in the adsorption behavior of the complexes. In this study, pullulan (a non-charged polysaccharide) carboxylated to four different

  5. Quasi-Phase Diagrams at Air/Oil Interfaces and Bulk Oil Phases for Crystallization of Small-Molecular Semiconductors by Adjusting Gibbs Adsorption.

    Science.gov (United States)

    Watanabe, Satoshi; Ohta, Takahisa; Urata, Ryota; Sato, Tetsuya; Takaishi, Kazuto; Uchiyama, Masanobu; Aoyama, Tetsuya; Kunitake, Masashi

    2017-09-12

    The temperature and concentration dependencies of the crystallization of two small-molecular semiconductors were clarified by constructing quasi-phase diagrams at air/oil interfaces and in bulk oil phases. A quinoidal quaterthiophene derivative with four alkyl chains (QQT(CN)4) in 1,1,2,2-tetrachroloethane (TCE) and a thienoacene derivative with two alkyl chains (C8-BTBT) in o-dichlorobenzene were used. The apparent crystal nucleation temperature (T n ) and dissolution temperature (T d ) of the molecules were determined based on optical microscopy examination in closed glass capillaries and open dishes during slow cooling and heating processes, respectively. T n and T d were considered estimates of the critical temperatures for nuclear formation and crystal growth, respectively. The T n values of QQT(CN)4 and C8-BTBT at the air/oil interfaces were higher than those in the bulk oil phases, whereas the T d values at the air/oil interfaces were almost the same as those in the bulk oil phases. These Gibbs adsorption phenomena were attributed to the solvophobic effect of the alkyl chain moieties. The temperature range between T n and T d corresponds to suitable supercooling conditions for ideal crystal growth based on the suppression of nucleation. The T n values at the water/oil and oil/glass interfaces did not shift compared with those of the bulk phases, indicating that adsorption did not occur at the hydrophilic interfaces. Promotion and inhibition of nuclear formation for crystal growth of the semiconductors were achieved at the air/oil and hydrophilic interfaces, respectively.

  6. Improving the technology of purification of gas emissions petrochemical industries

    OpenAIRE

    USMANOVA R.R.; ZAIKOV G.E.

    2014-01-01

    The technology of cleaning of gas emissions flares in the production of synthetic rubber. Developed dynamic scrubber for scrubbing gas emissions. Complex studies served as the basis for the design of an air purification system of industrial premises. Purification of gas emissions before combustion in flares has significantly reduced air pollution by toxic substances.

  7. Visible-Light-Responsive Catalysts Using Quantum Dot-Modified TiO2 for Air and Water Purification

    Science.gov (United States)

    Coutts, Janelle L.; Hintze, Paul E.; Clausen, Christian; Richards, Jeffrey Todd

    2014-01-01

    Photocatalysis, the oxidation or reduction of contaminants by light-activated catalysts, utilizing titanium dioxide (TiO2) as the catalytic substrate has been widely studied for trace contaminant control in both air and water applications. The interest in this process is due primarily to its low energy consumption and capacity for catalyst regeneration. Titanium dioxide requires ultraviolet light for activation due to its relatively large band gap energy of 3.2 eV. Traditionally, Hg-vapor fluorescent light sources are used in PCO reactors; however, the use of mercury precludes the use of this PCO technology in a spaceflight environment due to concerns over crew Hg exposure. The development of a visible-light responsive (VLR) TiO2-based catalyst would eliminate the concerns over mercury contamination. Further, VLR development would allow for the use of ambient visible solar radiation or highly efficient LEDs, both of which would make PCO approaches more efficient, flexible, economical, and safe. Though VLR catalyst development has been an active area of research for the past two decades, there are few commercially available VLR catalysts. Those VLR catalysts that are commercially available do not have adequate catalytic activity, in the visible region, to make them competitive with those operating under UV irradiation. This study was initiated to develop more effective VLR catalysts through a novel method in which quantum dots (QD) consisting of narrow band gap semiconductors (e.g., CdS, CdSe, PbS, ZnSe, etc.) are coupled to TiO2 via two preparation methods: 1) photodeposition and 2) mechanical alloying using a high-speed ball mill. A library of catalysts was developed and screened for gas and aqueous phase applications using ethanol and 4-chlorophenol as the target contaminants, respectively. Both target compounds are well studied in photocatalytic systems and served as model contaminants for this research. Synthesized catalysts were compared in terms of

  8. Tensiometry and dilational rheology of mixed β-lactoglobulin/ionic surfactant adsorption layers at water/air and water/hexane interfaces.

    Science.gov (United States)

    Dan, Abhijit; Gochev, Georgi; Miller, Reinhard

    2015-07-01

    Oscillating drop tensiometry was applied to study adsorbed interfacial layers at water/air and water/hexane interfaces formed from mixed solutions of β-lactoglobulin (BLG, 1 μM in 10 mM buffer, pH 7 - negative net charge) and the anionic surfactant SDS or the cationic DoTAB. The interfacial pressure Π and the dilational viscoelasticity modulus |E| of the mixed layers were measured for mixtures of varying surfactant concentrations. The double capillary technique was employed which enables exchange of the protein solution in the drop bulk by surfactant solution (sequential adsorption) or by pure buffer (washing out). The first protocol allows probing the influence of the surfactant on a pre-adsorbed protein layer thus studying the protein/surfactant interactions at the interface. The second protocol gives access to the residual values of Π and |E| measured after the washing out procedure thus bringing information about the process of protein desorption. The DoTAB/BLG complexes exhibit higher surface activity and higher resistance to desorption in comparison with those for the SDS/BLG complexes due to hydrophobization via electrostatic binding of surfactant molecules. The neutral DoTAB/BLG complexes achieve maximum elastic response of the mixed layer. Mixed BLG/surfactant layers at the water/oil interface are found to reach higher surface pressure and lower maximum dilational elasticity than those at the water/air surface. The sequential adsorption mode experiments and the desorption study reveal that binding of DoTAB to pre-adsorbed BLG globules is somehow restricted at the water/air surface in comparison with the case of complex formation in the solution bulk and subsequently adsorbed at the water/air surface. Maximum elasticity is achieved with washed out layers obtained after simultaneous adsorption, i.e. isolation of the most surface active DoTAB/BLG complex. These specific effects are much less pronounced at the W/H interface. Copyright © 2015 Elsevier Inc

  9. Long-Duration Testing of a Temperature-Swing Adsorption Compressor for Carbon Dioxide for Closed-Loop Air Revitalization Systems

    Science.gov (United States)

    Rosen, Micha; Mulloth, Lila; Varghese, Mini

    2005-01-01

    This paper describes the results of long-duration testing of a temperature-swing adsorption compressor that has application in the International Space Station (ISS) and future spacecraft for closing the air revitalization loop. The air revitalization system of the ISS operates in an open loop mode and relies on the resupply of oxygen and other consumables from Earth for the life support of astronauts. A compressor is required for delivering the carbon dioxide from a removal assembly to a reduction unit to recover oxygen and thereby closing the air-loop. The TSAC is a solid-state compressor that has the capability to remove CO2 from a low-pressure source, and subsequently store, compress, and deliver at a higher pressure as required by a processor. The TSAC is an ideal interface device for CO2 removal and reduction units in the air revitalization loop of a spacecraft for oxygen recovery. The TSAC was developed and its operation was successfully verified in integration tests with the flight-like Carbon Dioxide Removal Assembly (CDRA) at Marshall Space Flight Center prior to the long-duration tests. Long-duration tests reveal the impacts of repeated thermal cycling on the compressor components and the adsorbent material.

  10. Dynamics of adsorption of polyallylamine hydrochloride/sodium dodecyl sulphate at water/air and water/hexane interfaces

    Czech Academy of Sciences Publication Activity Database

    Sharipova, A.; Aidarova, S.; Fainerman, V. B.; Stocco, A.; Černoch, Peter; Miller, R.

    2011-01-01

    Roč. 391, 1-3 (2011), s. 112-118 ISSN 0927-7757. [International Symposium on Surfactants in Solution /18./ - SIS 2010. Melbourne, 14.11.2010-19.11.2010] Institutional research plan: CEZ:AV0Z40500505 Keywords : mixed adsorption layers * polymer/surfactant mixtures * water /oil interface Subject RIV: CD - Macromolecular Chemistry Impact factor: 2.236, year: 2011

  11. Adsorption of GST-PI3Kγ at the Air-Buffer Interface and at Substrate and Nonsubstrate Phospholipid Monolayers

    Science.gov (United States)

    Hermelink, Antje; Kirsch, Cornelia; Klinger, Reinhard; Reiter, Gerald; Brezesinski, Gerald

    2009-01-01

    The recruitment of phosphoinositide 3-kinase γ (PI3Kγ) to the cell membrane is a crucial requirement for the initiation of inflammation cascades by second-messenger production. In addition to identifying other regulation pathways, it has been found that PI3Kγ is able to bind phospholipids directly. In this study, the adsorption behavior of glutathione S-transferase (GST)-PI3Kγ to nonsubstrate model phospholipids, as well as to commercially available substrate inositol phospholipids (phosphoinositides), was investigated by use of infrared reflection-absorption spectroscopy (IRRAS). The nonsubstrate phospholipid monolayers also yielded important information about structural requirements for protein adsorption. The enzyme did not interact with condensed zwitterionic or anionic monolayers; however, it could penetrate into uncompressed fluid monolayers. Compression to values above its equilibrium pressure led to a squeezing out and desorption of the protein. Protein affinity for the monolayer surface increased considerably when the lipid had an anionic headgroup and contained an arachidonoyl fatty acyl chain in sn-2 position. Similar results on a much higher level were observed with substrate phosphoinositides. No structural response of GST-PI3Kγ to lipid interaction was detected by IRRAS. On the other hand, protein adsorption caused a condensing effect in phosphoinositide monolayers. In addition, the protein reduced the charge density at the interface probably by shifting the pK values of the phosphate groups attached to the inositol headgroups. Because of their strongly polar headgroups, an interaction of the inositides with the water molecules of the subphase can be expected. This interaction is disturbed by protein adsorption, causing the ionization state of the phosphates to change. PMID:19186139

  12. Adsorption of GST-PI3Kgamma at the air-buffer interface and at substrate and nonsubstrate phospholipid monolayers.

    Science.gov (United States)

    Hermelink, Antje; Kirsch, Cornelia; Klinger, Reinhard; Reiter, Gerald; Brezesinski, Gerald

    2009-02-01

    The recruitment of phosphoinositide 3-kinase gamma (PI3Kgamma) to the cell membrane is a crucial requirement for the initiation of inflammation cascades by second-messenger production. In addition to identifying other regulation pathways, it has been found that PI3Kgamma is able to bind phospholipids directly. In this study, the adsorption behavior of glutathione S-transferase (GST)-PI3Kgamma to nonsubstrate model phospholipids, as well as to commercially available substrate inositol phospholipids (phosphoinositides), was investigated by use of infrared reflection-absorption spectroscopy (IRRAS). The nonsubstrate phospholipid monolayers also yielded important information about structural requirements for protein adsorption. The enzyme did not interact with condensed zwitterionic or anionic monolayers; however, it could penetrate into uncompressed fluid monolayers. Compression to values above its equilibrium pressure led to a squeezing out and desorption of the protein. Protein affinity for the monolayer surface increased considerably when the lipid had an anionic headgroup and contained an arachidonoyl fatty acyl chain in sn-2 position. Similar results on a much higher level were observed with substrate phosphoinositides. No structural response of GST-PI3Kgamma to lipid interaction was detected by IRRAS. On the other hand, protein adsorption caused a condensing effect in phosphoinositide monolayers. In addition, the protein reduced the charge density at the interface probably by shifting the pK values of the phosphate groups attached to the inositol headgroups. Because of their strongly polar headgroups, an interaction of the inositides with the water molecules of the subphase can be expected. This interaction is disturbed by protein adsorption, causing the ionization state of the phosphates to change.

  13. Adsorption energies of poly(ethylene oxide)-based surfactants and nanoparticles on an air-water surface.

    Science.gov (United States)

    Zell, Zachary A; Isa, Lucio; Ilg, Patrick; Leal, L Gary; Squires, Todd M

    2014-01-14

    The self-assembly of polymer-based surfactants and nanoparticles on fluid-fluid interfaces is central to many applications, including dispersion stabilization, creation of novel 2D materials, and surface patterning. Very often these processes involve compressing interfacial monolayers of particles or polymers to obtain a desired material microstructure. At high surface pressures, however, even highly interfacially active objects can desorb from the interface. Methods of directly measuring the energy which keeps the polymer or particles bound to the interface (adsorption/desorption energies) are therefore of high interest for these processes. Moreover, though a geometric description linking adsorption energy and wetting properties through the definition of a contact angle can be established for rigid nano- or microparticles, such a description breaks down for deformable or aggregating objects. Here, we demonstrate a technique to quantify desorption energies directly, by comparing surface pressure-density compression measurements using a Wilhelmy plate and a custom-microfabricated deflection tensiometer. We focus on poly(ethylene oxide)-based polymers and nanoparticles. For PEO-based homo- and copolymers, the adsorption energy of PEO chains scales linearly with molecular weight and can be tuned by changing the subphase composition. Moreover, the desorption surface pressure of PEO-stabilized nanoparticles corresponds to the saturation surface pressure for spontaneously adsorbed monolayers, yielding trapping energies of ∼10(3) k(B)T.

  14. Analysis of Bioelectrical Potential When Plant Purifies Air Pollution(Bioelectronic and Sensor)(Recent Progress in Organic Molecular Electronics)

    OpenAIRE

    長谷川, 有貴; 浅田, 茂裕; KATSUBE, Teruaki; 池口, 、徹

    2004-01-01

    Some plants have air purification ability. This purification ability of plants is considered a promising method for indoor air purification because of the low cost and high purification performance. Therefore, several studies have been carried out to investigate the relationship between the air purification ability of plants and environmental conditions. Nevertheless, the purification mechanism and process have not been clarified yet. In this paper, we investigated the air purification proces...

  15. Adsorption at air-water and oil-water interfaces and self-assembly in aqueous solution of ethoxylated polysorbate nonionic surfactants.

    Science.gov (United States)

    Penfold, Jeffrey; Thomas, Robert K; Li, Peixun X; Petkov, Jordan T; Tucker, Ian; Webster, John R P; Terry, Ann E

    2015-03-17

    The Tween nonionic surfactants are ethoxylated sorbitan esters, which have 20 ethylene oxide groups attached to the sorbitan headgroup and a single alkyl chain, lauryl, palmityl, stearyl, or oleyl. They are an important class of surfactants that are extensively used in emulsion and foam stabilization and in applications associated with foods, cosmetics and pharmaceuticals. A range of ethoxylated polysorbate surfactants, with differing degrees of ethoxylation from 3 to 50 ethylene oxide groups, have been synthesized and characterized by neutron reflection, small-angle neutron scattering, and surface tension. In conjunction with different alkyl chain groups, this provides the opportunity to modify their surface properties, their self-assembly in solution, and their interaction with macromolecules, such as proteins. Adsorption at the air-water and oil-water interfaces and solution self-assembly of the range of ethoxylated polysorbate surfactants synthesized are presented and discussed.

  16. Concurrent separation of CO2 and H2O from air by a temperature-vacuum swing adsorption/desorption cycle.

    Science.gov (United States)

    Wurzbacher, Jan Andre; Gebald, Christoph; Piatkowski, Nicolas; Steinfeld, Aldo

    2012-08-21

    A temperature-vacuum swing (TVS) cyclic process is applied to an amine-functionalized nanofibrilated cellulose sorbent to concurrently extract CO(2) and water vapor from ambient air. The promoting effect of the relative humidity on the CO(2) capture capacity and on the amount of coadsorbed water is quantified. The measured specific CO(2) capacities range from 0.32 to 0.65 mmol/g, and the corresponding specific H(2)O capacities range from 0.87 to 4.76 mmol/g for adsorption temperatures varying between 10 and 30 °C and relative humidities varying between 20 and 80%. Desorption of CO(2) is achieved at 95 °C and 50 mbar(abs) without dilution by a purge gas, yielding a purity exceeding 94.4%. Sorbent stability and a closed mass balance for both H(2)O and CO(2) are demonstrated for ten consecutive adsorption-desorption cycles. The specific energy requirements of the TVS process based on the measured H(2)O and CO(2) capacities are estimated to be 12.5 kJ/mol(CO2) of mechanical (pumping) work and between 493 and 640 kJ/mol(CO2) of heat at below 100 °C, depending on the air relative humidity. For a targeted CO(2) capacity of 2 mmol/g, the heat requirement would be reduced to between 272 and 530 kJ/mol(CO2), depending strongly on the amount of coadsorbed water.

  17. Solution self-assembly and adsorption at the air-water interface of the monorhamnose and dirhamnose rhamnolipids and their mixtures.

    Science.gov (United States)

    Chen, M L; Penfold, J; Thomas, R K; Smyth, T J P; Perfumo, A; Marchant, R; Banat, I M; Stevenson, P; Parry, A; Tucker, I; Grillo, I

    2010-12-07

    The self-assembly in solution and adsorption at the air-water interface, measured by small-angle neutron scattering, SANS, and neutron reflectivity, NR, of the monorhamnose and dirhamnose rhamnolipids (R1, R2) and their mixtures, are discussed. The production of the deuterium-labeled rhamnolipids (required for the NR studies) from a Pseudomonas aeruginosa culture and their separation into the pure R1 and R2 components is described. At the air-water interface, R1 and R2 exhibit Langmuir-like adsorption isotherms, with saturated area/molecule values of about 60 and 75 Å(2), respectively. In R1/R2 mixtures, there is a strong partitioning of R1 to the surface and R2 competes less favorably because of the steric or packing constraints of the larger R2 dirhamnose headgroup. In dilute solution (<20 mM), R1 and R2 form small globular micelles, L(1), with aggregation numbers of about 50 and 30, respectively. At higher solution concentrations, R1 has a predominantly planar structure, L(α) (unilamellar, ULV, or bilamellar, BLV, vesicles) whereas R2 remains globular, with an aggregation number that increases with increasing surfactant concentration. For R1/R2 mixtures, solutions rich in R2 are predominantly micellar whereas solutions rich in R1 have a more planar structure. At an intermediate composition (60 to 80 mol % R1), there are mixed L(α)/L(1) and L(1)/L(α) regions. However, the higher preferred curvature associated with R2 tends to dominate the mixed R1/R2 microstructure and its associated phase behavior.

  18. METHANOL REMOVAL FROM METHANOL-WATER MIXTURE USING ACTIVATED SLUDGE, AIR STRIPPING AND ADSORPTION PROCESS: COMPARATIVE STUDY

    Directory of Open Access Journals (Sweden)

    SALAM K. AL-DAWERY

    2015-12-01

    Full Text Available An experimental research has been carried out in order to examine the removal of methanol from methanol-water mixtures using three different methods; activated sludge; activated carbon and air stripping. The results showed that the methanol was totally consumed by the bacteria as quickly as the feed entered the activated sludge vessel. Air stripping process has a limited ability for removing of methanol due to strong intermolecular forces between methanol and water; however, the results showed that the percentage of methanol removed using air pressure at 0.5 bar was higher than that of using air pressure of 0.25 bar. Removal of methanol from the mixture with a methanol content of 5% using activated carbon was not successful due to the limited capacity of the of the activated carbon. Thus, the activated sludge process can be considered as the most suitable process for the treatment of methanol-water mixtures.

  19. Abatement of VOCs with Alternate Adsorption and Plasma-Assisted Regeneration: A Review

    Directory of Open Access Journals (Sweden)

    Sharmin Sultana

    2015-04-01

    Full Text Available Energy consumption is an important concern for the removal of volatile organic compounds (VOCs from waste air with non-thermal plasma (NTP. Although the combination of NTP with heterogeneous catalysis has shown to reduce the formation of unwanted by-products and improve the energy efficiency of the process, further optimization of these hybrid systems is still necessary to evolve to a competitive air purification technology. A newly developed innovative technique, i.e., the cyclic operation of VOC adsorption and NTP-assisted regeneration has attracted growing interest of researchers due to the optimized energy consumption and cost-effectiveness. This paper reviews this new technique for the abatement of VOCs as well as for regeneration of adsorbents. In the first part, a comparison of the energy consumption between sequential and continuous treatment is given. Next, studies dealing with adsorption followed by NTP oxidation are reviewed. Particular attention is paid to the adsorption mechanisms and the regeneration of catalysts with in-plasma and post-plasma processes. Finally, the influence of critical process parameters on the adsorption and regeneration steps is summarized.

  20. Removal of traces of toluene and p-xylene in indoor air using biofiltration and a hybrid system (biofiltration + adsorption).

    Science.gov (United States)

    Luengas, Angela Tatiana; Hort, Cécile; Platel, Vincent; Elias, Ana; Barona, Astrid; Moynault, Laurent

    2017-04-01

    Biofiltration technology and the hybrid system combining biofiltration and adsorption (onto activated carbon) were compared as possible methods to toluene and p-xylene at parts per million concentration levels (2-45 and 1-33 ppb, respectively). An organic material was used as packing material for the biofiltration process. Even at low empty bed residence times (EBRTs) and concentrations, toluene removal efficiency reached 100% and p-xylene showed an increasing trend on their removal efficiency over the time using biofiltration. The assessment of by-products and particle generation by the biofilter and the hybrid system were taken into account. Acetone and acetic acid were identified as by-products of the biofilter. Particle emissions in the range of 0.03 to 10 μm were recorded for both systems.

  1. Conformational aspects of proteins at the air/water interface studied by infrared reflection-adsorption spectroscopy

    NARCIS (Netherlands)

    Martin, A.H.; Meinders, M.B.J.; Bos, M.A.; Cohen Stuart, M.A.; Vliet, van T.

    2003-01-01

    From absorption spectra obtained with infrared reflection-absorption spectroscopy (IRRAS), it is possible to obtain information on conformational changes at a secondary folding level of proteins adsorbed at the air/water interface. In addition, information on protein concentration at the interface

  2. Purification apparatus

    Energy Technology Data Exchange (ETDEWEB)

    Mortenson, C.W.

    1982-04-27

    An apparatus is provided for converting sea or other undrinkable waters to drinkable water without the use of driven or moving parts. Reliance upon gradient effects is made to effect the vaporization of, for example, sea water, followed by the condensation of the vapor to form distilled water. Gradient effects are achieved through the provision of differentials in the thermal conductivity, capillary activity, adsorptive, absorptive and/or pressure characteristics of particulate materials, or combinations of such physicals. For example, a column is packed with material graded as to its conductivity, the least thermally conductive material being nearest the cold or ambient water that is to be purified. In packing the column each successive layer of material has a greater thermal conductivity than the layer beneath it with the most conductive being at the top near the outlet arm of the column. The final outlet arm or tube is unheated or is at a temperature lower than that of the topmost conductive material so that vapor reaching the outlet tube gets condensed. This tube leads to a container kept in a cool place as, for example, buried in the ground, as, for instance, at the seashore deep enough to be cooled or to be surrounded by water, thus keeping the condensate cold. Pure water so collected is removed by such means as is desired. Other impure, volatile liquids may be similarly purified.

  3. Adsorption of 1- and 2-butylimidazoles at the copper/air and steel/air interfaces studied by sum frequency generation vibrational spectroscopy.

    Science.gov (United States)

    Casford, Michael T L; Davies, Paul B

    2012-07-24

    The structure of thin films of 1- and 2-butylimidazoles adsorbed on copper and steel surfaces under air was examined using sum frequency generation (SFG) vibrational spectroscopy in the ppp and ssp polarizations. Additionally, the SFG spectra of both isomers were recorded at 55 °C at the liquid imidazole/air interface for reference. Complementary bulk infrared, reflection-absorption infrared spectroscopy (RAIRS), and Raman spectra of both imidazoles were recorded for assignment purposes. The SFG spectra in the C-H stretching region at the liquid/air interface are dominated by resonances from the methyl end group of the butyl side chain of the imidazoles, indicating that they are aligned parallel or closely parallel to the surface normal. These are also the most prominent features in the SFG spectra on copper and steel. In addition, both the ppp and ssp spectra on copper show resonances from the C-H stretching modes of the imidazole ring for both isomers. The ring C-H resonances are completely absent from the spectra on steel and at the liquid/air interface. The relative intensities of the SFG spectra can be interpreted as showing that, on copper, under air, both butylimidazoles are adsorbed with their butyl side chains perpendicular to the interface and with the ring significantly inclined away from the surface plane and toward the surface normal. The SFG spectra of both imidazoles on steel indicate an orientation where the imidazole rings are parallel or nearly parallel to the surface. The weak C-H resonances from the ring at the liquid/air interface suggest that the tilt angle of the ring from the surface normal at this interface is significantly greater than it is on copper.

  4. Salt effects on the air/solution interfacial properties of PEO-containing copolymers: equilibrium, adsorption kinetics and surface rheological behavior.

    Science.gov (United States)

    Llamas, Sara; Mendoza, Alma J; Guzmán, Eduardo; Ortega, Francisco; Rubio, Ramón G

    2013-06-15

    Lithium cations are known to form complexes with the oxygen atoms of poly(oxyethylene) chains. The effect of Li(+) on the surface properties of three block-copolymers containing poly(oxyethylene) (PEO) have been studied. Two types of copolymers have been studied, a water soluble one of the pluronic family, PEO-b-PPO-b-PEO, PPO being poly(propyleneoxyde), and two water insoluble ones: PEO-b-PS and PEO-b-PS-b-PEO, PS being polystyrene. In the case of the pluronic the adsorption kinetics, the equilibrium surface tension isotherm and the aqueous/air surface rheology have been measured, while for the two insoluble copolymers only the surface pressure and the surface rheology have been studied. In all the cases two different Li(+) concentrations have been used. As in the absence of lithium ions, the adsorption kinetics of pluronic solutions shows two processes, and becomes faster as [Li(+)] increases. The kinetics is not diffusion controlled. For a given pluronic concentration the equilibrium surface pressure increases with [Li(+)], and the isotherms show two surface phase transitions, though less marked than for [Li(+)]=0. A similar behavior was found for the equilibrium isotherms of PEO-b-PS and PEO-b-PS-b-PEO. The surface elasticity of these two copolymers was found to increase with [Li(+)] over the whole surface concentration and frequency ranges studied. A smaller effect was found in the case of the pluronic solutions. The results of the pluronic solutions were modeled using a recent theory that takes into account that the molecules can be adsorbed at the surface in two different states. The theory gives a good fit for the adsorption kinetics and a reasonably good prediction of the equilibrium isotherms for low and intermediate concentrations of pluronic. However, the theory is not able to reproduce the isotherm for [Li(+)]=0. Only a semi-quantitative prediction of the surface elasticity is obtained for [pluronic]≤1×10(-3) mM. Copyright © 2013 Elsevier Inc. All

  5. Formation of protein/surfactant adsorption layer at the air/water interface as studied by dilational surface rheology.

    Science.gov (United States)

    Mikhailovskaya, A A; Noskov, B A; Lin, S-Y; Loglio, G; Miller, R

    2011-08-25

    The dynamic dilatational surface elasticity of mixed solutions of globular proteins (β-lactoglobulin (BLG) and bovine serum albumin (BSA)) with cationic (dodecyltrimethylammonium bromide (DTAB)) and anionic (sodium dodecyl sulfate (SDS)) surfactants was measured as a function of the surfactant concentration and surface age. If the cationic surfactant concentration exceeds a certain critical value, the kinetic dependencies of the dynamic surface elasticity of BLG/DTAB and BSA/DTAB solutions become nonmonotonous and resemble those of mixed solutions of proteins with guanidine hydrochloride. This result indicates not only the destruction of the protein tertiary structure in the surface layer of mixed solution but also a strong perturbation of the secondary structure. The corresponding kinetic dependencies for protein solutions with added anionic surfactants are always monotonous, thereby revealing a different mechanism of the adsorption layer formation. One can assume that the secondary structure is destroyed to a lesser extent in the latter case and hinders the formation of loops and tails at the interface. The increase of the solution's ionic strength by the addition of sodium chloride results in stronger changes of the protein conformations in the surface layer and the appearance of a local maximum in the kinetic dependencies of the dynamic surface elasticity in a relatively narrow range of SDS concentration. © 2011 American Chemical Society

  6. Arsenic removal by using colloidal adsorption flotation utilizing Fe(OH)3 floc in a dissolved air flotation system

    International Nuclear Information System (INIS)

    Pavez, O.; Palacios, J. M.; Aguilar, C.

    2009-01-01

    In the present work, the influence of Fe/As ratio on the As removal, from aqueous solutions, applying flotation by colloidal adsorption was studied. Ferric chloride was used as coagulant and dodec il sulfate as collector, and arsenic trioxide was utilized to preparing the solutions. The obtained results show that the highest arsenic removal was accomplished in the range of pH between 4 and 5,5, and the increasing of the initial concentration of Fe(III), increases the removal of arsenic from the solution. However, with the decreasing of the initial concentration of arsenic in the solution, it is required a larger Fe/As ratio for its removal. For solutions containing: 13,73, 1,71 and 0,105 mg/L of arsenic, it was shown that to remove around 95% of the dissolved arsenic, a Fe/As ratios of approximately 6/1, 18/1 and 800/1, respectively, are required. (Author) 31 refs

  7. Determination of Glycol Ethers in Ambient Air by Adsorption Sampling and Thermal Desorption with GC/MS Analysis: Performance Evaluation and Field Application

    Directory of Open Access Journals (Sweden)

    Young-Kyo Seo

    2012-01-01

    Full Text Available Some of glycol ethers, such as 2-methoxyethanol (2-ME and 2-ethoxyethanol (2-EE are known to be toxic and classified as hazardous air pollutants in USA, Japan and Germany. In Korea, however, there has been no study conducted so far for these compounds in ambient air. In addition, no clear methodologies for the measurement of glycol ethers have been yet established. We carried out this study to evaluate a sampling and analytical method for the determination of glycol ethers, in ambient air samples collected in specific industrial areas of South Korea. To measure glycol ethers, adsorption sampling and thermal desorption with GC/MS analysis were used in this study. The analytical method showed good repeatability, linearity and sensitivity. The lower detection limits were estimated to be approximately 0.3∼0.5 ppb. Based on storage tests, it was suggested that samples should be analyzed within two weeks. It was also demonstrated that this method can be used for the simultaneous measurement of glycol ethers and other aromatic VOCs such as benzene, toluene, and xylenes. Field sampling campaign was carried out at 2 sites, located in a large industrial area, from October 2006 to June 2007, and a total of 480 samples were collected seasonally. Among them, 2-ME was not detected from any samples, while 2-EE and 2-Ethyloxyethylacetate (2-EEA were found in 7 and 70 samples, respectively. The measured concentrations of 2-EE and 2-EEA for samples were ranged from 0.7-2.5 ppb and from 0.5-10.5 ppb, respectively. To our knowledge, this is the first measurement report for glycol ethers in the ambient atmosphere not only in Korea but also the rest of the world.

  8. Exposure of unsuspecting workers to deadly atmospheres in below-ground confined spaces and investigation of related whole-air sample composition using adsorption gas chromatography.

    Science.gov (United States)

    Smith, Philip A; Lockhart, Bonnie; Besser, Brett W; Michalski, Michael A R

    2014-01-01

    Hazardous atmospheres in confined spaces may be obvious when a source of air contamination or oxygen (O2) deficiency is recognized. Such is often the case in general industry settings, especially with work processes which create hazardous atmospheres that may be anticipated. Hazards present in active sewers are also well recognized; but the possibility that O2 deficiency or high airborne contaminant concentrations may exist in new construction sewers or storm drains has been repeatedly ignored with deadly results. Low O2 and high carbon dioxide (CO2) concentrations may exist in new construction manholes that have not yet been connected to an active sewer or drain system, and these concentrations have been shown to vary over time. A recent incident is described where workers repeatedly entered such a confined space without incident, but subsequent entry resulted in a fatality and a near-miss for a co-worker rescuer. Additional cases are discussed, with an emphasis placed on elevated CO2 concentrations as a causative factor. A description is provided for the adsorptive gas chromatography whole-air analysis methodology used to quantitatively determine atmospheric conditions present at this type of fatality site or others after an incident, and for the gas chromatography-mass spectrometry method used to provide confirmation of analyte identity with high certainty. Many types of confined spaces may be encountered in addition to the underground varieties discussed, and many possible atmospheric hazards are possible. The definitive whole-air analysis approach described here may be of use and should be considered to investigate many confined space fatality and near-miss cases, and to better understand the causes of dangerous atmosphere conditions that may arise in confined spaces.

  9. Effect of urea and glycerol on the adsorption of ribonuclease A at the air-water interface.

    Science.gov (United States)

    Hüsecken, Anne K; Evers, Florian; Czeslik, Claus; Tolan, Metin

    2010-08-17

    This study reports on the influence of nonionic cosolvents on the interfacial structure of ribonuclease A (RNase) adsorbed at the air-water interface. We applied X-ray reflectometry to obtain detailed volume fraction profiles of the adsorbed layers and to follow the effect of glycerol and urea on the adsorbate structure as a function of cosolvent concentration. Under all conditions studied, the adsorbed RNase layer maintains its compact shape, and the adsorbed RNase molecules adopt a flat-on orientation at the interface. Both kosmotropic glycerol and chaotropic urea exert profound effects on the adsorbate: The surface excess decreases linearly with glycerol content and is also reduced at low urea concentration. However, at high urea concentration, parts of the adsorbed layer are dehydrated and become exposed to air. The electron density and volume fraction profiles of the adsorbed protein provide clear evidence that these effects are ruled by different mechanisms.

  10. New sensitive micro-measurements of dynamic surface tension and diffusion coefficients: Validated and tested for the adsorption of 1-Octanol at a microscopic air-water interface and its dissolution into water.

    Science.gov (United States)

    Kinoshita, Koji; Parra, Elisa; Needham, David

    2017-02-15

    Currently available dynamic surface tension (DST) measurement methods, such as Wilhelmy plate, droplet- or bubble-based methods, still have various experimental limitations such as the large size of the interface, convection in the solution, or a certain "dead time" at initial measurement. These limitations create inconsistencies for the kinetic analysis of surfactant adsorption/desorption, especially significant for ionic surfactants. Here, the "micropipette interfacial area-expansion method" was introduced and validated as a new DST measurement having a high enough sensitivity to detect diffusion controlled molecular adsorption at the air-water interfaces. To validate the new technique, the diffusion coefficient of 1-Octanol in water was investigated with existing models: the Ward Tordai model for the long time adsorption regime (1-100s), and the Langmuir and Frumkin adsorption isotherm models for surface excess concentration. We found that the measured diffusion coefficient of 1-Octanol, 7.2±0.8×10 -6 cm 2 /s, showed excellent agreement with the result from an alternative method, "single microdroplet catching method", to measure the diffusion coefficient from diffusion-controlled microdroplet dissolution, 7.3±0.1×10 -6 cm 2 /s. These new techniques for determining adsorption and diffusion coefficients can apply for a range of surface active molecules, especially the less-characterized ionic surfactants, and biological compounds such as lipids, peptides, and proteins. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. Solution pH and oligoamine molecular weight dependence of the transition from monolayer to multilayer adsorption at the air-water interface from sodium dodecyl sulfate/oligoamine mixtures.

    Science.gov (United States)

    Halacheva, S S; Penfold, J; Thomas, R K; Webster, J R P

    2013-05-14

    Neutron reflectivity and surface tension have been used to investigate the solution pH and oligoamine molecular weight dependence of the adsorption of sodium dodecyl sulfate (SDS)/oligoamine mixtures at the air-water interface. For diethylenetriamine, triamine, or triethylenetetramine, tetramine mixed with SDS, there is monolayer adsorption at pH 7 and 10, and multilayer adsorption at pH 3. For the slightly higher molecular weight tetraethylenepentamine, pentamine, and pentaethylenehexamine, hexamine, the adsorption is in the form of a monolayer at pH 3 and multilayers at pH 7 and 10. Hence, there is a pH driven transition from monolayer to multilayer adsorption, which shifts from low pH to higher pH as the oligoamine molecular weight increases from tetramine to pentamine. This results from the relative balance between the electrostatic attraction between the SDS and amine nitrogen group which decreases as the charge density decreases with increasing pH, the ion-dipole interaction between the amine nitrogen and SDS sulfate group which is dominant at higher pH, and the hydrophobic interalkyl chain interaction between bound SDS molecules which changes with oligoamine molecular weight.

  12. Extraction and Purification of Flavonoids from Radix Puerariae | Li ...

    African Journals Online (AJOL)

    Purpose: To develop an efficient method for the purification of flavonoids from Radix puerariae. Methods: Optimal extraction technology was obtained using orthogonal test. Through adsorption and desorption tests, 8 resins with different polarity, diameter, and surface area were studied. Finally, a novel macroporous resin, ...

  13. Monolayer collapse regulating process of adsorption-desorption of palladium nanoparticles at fatty acid monolayers at the air-water interface.

    Science.gov (United States)

    Goto, Thiago E; Lopez, Ricardo F; Iost, Rodrigo M; Crespilho, Frank N; Caseli, Luciano

    2011-03-15

    In this paper, we investigate the affinity of palladium nanoparticles, stabilized with glucose oxidase, for fatty acid monolayers at the air-water interface, exploiting the interaction between a planar system and spheroids coming from the aqueous subphase. A decrease of the monolayer collapse pressure in the second cycle of interface compression proved that the presence of the nanoparticles causes destabilization of the monolayer in a mechanism driven by the interpenetration of the enzyme into the bilayer/multilayer structure formed during collapse, which is not immediately reversible after monolayer expansion. Surface pressure and surface potential-area isotherms, as well as infrared spectroscopy [polarization modulation infrared reflection adsorption spectroscopy (PM-IRRAS)] and deposition onto solid plates as Langmuir-Blodgett (LB) films, were employed to construct a model in which the nanoparticle has a high affinity for the hydrophobic core of the structure formed after collapse, which provides a slow desorption rate from the interface after monolayer decompression. This may have important consequences on the interaction between the metallic particles and fatty acid monolayers, which implies the regulation of the multifunctional properties of the hybrid material.

  14. Effects of bulk colloidal stability on adsorption layers of poly(diallyldimethylammonium chloride)/sodium dodecyl sulfate at the air-water interface studied by neutron reflectometry.

    Science.gov (United States)

    Campbell, Richard A; Yanez Arteta, Marianna; Angus-Smyth, Anna; Nylander, Tommy; Varga, Imre

    2011-12-29

    We show for the oppositely charged system poly(diallyldimethylammonium chloride)/sodium dodecyl sulfate that the cliff edge peak in its surface tension isotherm results from the comprehensive precipitation of bulk complexes into sediment, leaving a supernatant that is virtually transparent and a depleted adsorption layer at the air/water interface. The aggregation and settling processes take about 3 days to reach completion and occur at bulk compositions around charge neutrality of the complexes which lack long-term colloidal stability. We demonstrate excellent quantitative agreement between the measured surface tension values and a peak calculated from the surface excess of surfactant in the precipitation region measured by neutron reflectometry, using the approximation that there is no polymer left in the liquid phase. The nonequilibrium nature of the system is emphasized by the production of very different interfacial properties from equivalent aged samples that are handled differently. We go on to outline our perspective on the "true equilibrium" state of this intriguing system and conclude with a comment on its practical relevance given that the interfacial properties can be so readily influenced by the handling of kinetically trapped bulk aggregates. © 2011 American Chemical Society

  15. 用于空气中水蒸气吸-脱附的微孔泡沫炭制备研究%Preparation of microporous carbon foams for adsorption/desorption of water vapor in ambient air

    Institute of Scientific and Technical Information of China (English)

    Naoto Ohta; Yoko Nishi; Takahiro Morishita; Yumiko Ieko; Akifumi Ito; Michio Inagaki

    2008-01-01

    以蜜胺泡沫体为模板,采用氟化聚酰业胺制备了微孔泡沫炭.测定了其对环境中水气的吸附/脱附行为,发现:泡沫炭在空气中400℃活化1 h,可以提高其对水气的吸附能力.与活化前相比,对水气的吸附量几乎高达3倍,尽管其微孔容积仅增大了1.5倍.对环境水气中的可逆吸附率与微孔容积成线性关系,微孔容积为0.75mL/g的泡沫炭,其水气吸附率约为质最分数40%.%Microporous carbon foams were prepared from a fluorinated polyimide using melamine foam as a template. The adsorption/desorption behavior of water vapor in ambient air was examined. The activation of carbon foams at 400℃ for 1 h in air was found to be effective in increasing the adsorptivity of water vapor. The amount of water vapor adsorbed after air activation was almost 3 times as large as that before activation, although the micropore volume increase was only 1.5 times. The reversible adsorptivity for water vapor in ambient air showed a linear dependence on micropore volume with an adsorptivity of about 40% mass fraction for a micropore volume of 0.75 mL/g.

  16. Determination of a wide range of volatile organic compounds in ambient air using multisorbent adsorption/thermal desorption and gas chromatography/mass spectrometry

    Science.gov (United States)

    Pankow, J.F.; Luo, W.; Isabelle, L.M.; Bender, D.A.; Baker, R.J.

    1998-01-01

    Adsorption/thermal desorption with multisorbent air-sampling cartridges was developed for the determination of 87 method analytes including halogenated alkanes, halogenated alkenes, ethers, alcohols, nitriles, esters, ketones, aromatics, a disulfide, and a furan. The volatilities of the compounds ranged from that of dichlorofluoromethane (CFC12) to that of 1,2,3- trichlorobenzene. The eight most volatile compounds were determined using a 1.5-L air sample and a sample cartridge containing 50 mg of Carbotrap B and 280 mg of Carboxen 1000; the remaining 79 compounds were determined using a 5-L air sample and a cartridge containing 180 mg of Carbotrap B and 70 mg of Carboxen 1000. Analysis and detection were by gas chromatography/mass spectrometry. The minimum detectable level (MDL) concentration values ranged from 0.01 parts per billion by volume (ppbv) for chlorobenzene to 0.4 ppbv for bromomethane; most of the MDL values were in the range 0.02-0.06 ppbv. No breakthrough was detected with the prescribed sample volumes. Analyte stability on the cartridges was very good. Excellent recoveries were obtained with independent check standards. Travel spike recoveries ranged from 90 to 110% for 72 of the 87 compounds. The recoveries were less than 70% for bromomethane and chloroethene and for a few compounds such as methyl acetate that are subject to losses by hydrolysis; the lowest travel spike recovery was obtained for bromomethane (62%). Blank values for all compounds were either below detection or very low. Ambient atmospheric sampling was conducted in New Jersey from April to December, 1997. Three sites characterized by low, moderate, and high densities of urbanization/traffic were sampled. The median detected concentrations of the compounds were either similar at all three sites (as with the chlorofluorocarbon compounds) or increased with the density of urbanization/traffic (as with dichloromethane, MTBE, benzene, and toluene). For toluene, the median detected

  17. Evaluation of the adsorption capacity of nano-graphene and nano-graphene oxide for xylene removal from air and their comparison with the standard adsorbent of activated carbon to introduce the optimized one

    Directory of Open Access Journals (Sweden)

    Akram Tabrizi

    2016-06-01

    Full Text Available Introduction: Volatile organic compounds from industrial activities are one of the most important pollutants released into the air and have adverse effects on human and environment. Therefore, they should be removed before releasing into atmosphere. The aim of the study was to evaluate xylene removal from air by nano-grapheme and nano-graphene oxide in comparison with activated carbon adsorbent. Material and Method:  After preparing adsorbents of activated carbon, nano-graphene, and nano-graphene oxide, experiments adsorption capacity in static mode (Batch were carried out in a glass vial. Some variables including contact time, the amount of adsorbent, the concentration of xylene, and the temperature were studied. Langmuir absorption isotherms were used in order to study the adsorption capacity of xylene on adsorbents. Moreover, sample analysis was done by gas chromatography with Flame Ionization Detector (GC-FID. Results: The adsorption capacities of activated carbon, nano-graphene oxide and nano-graphene for removal of xylene were obtained 349.8, 14.5, and 490 mg/g, respectively. The results of Scanning Electron Microscope (SEM for nano-graphene and nano-graphene oxide showed particle size of less than 100 nm. While, the results of Transmission Electron Microscope (TEM showed particle size of 45nm for nano-graphene and 65 nm for nano-graphene oxide. Also, X-Ray Diffraction (XRD showed cube structure of nano-adsorbents. Conclusion: In constant humidity, increase in exposure time and temperature caused an increase in the adsorption capacity. The results revealed greater adsorption capacity of xylene removal for nano-graphene compared to the activated carbon, and nano-graphene oxide.

  18. Adsorption of Chloroform by the Rapid Response System Filter

    National Research Council Canada - National Science Library

    Karwacki, Christopher

    1997-01-01

    Adsorption equilibria and dynamic breakthrough data were measured to determine the adsorption capacity and effect of purge air on the desorption of chloroform from activated carbon simulating the Rapid Response System (RRS) filter...

  19. Radon adsorption on present activated charcoals

    International Nuclear Information System (INIS)

    Kazankin, Yu.N.; Trofimov, A.M.; Mikhajlova, L.K.

    1978-01-01

    Radon adsorption from helium and air has been studied on modern activated carbons of SKT-1, SKT-2a, SKT-3, SKT-2b, SKT-6, PAU-1 within the temperature range from 100 to 80 deg. It has been shown that PAU-1 carbon has the highest activity with respect to radon in the temperature range studied. With decreasing temperature the adsorption coefficients increase sharply. It has been found that for the case of radon adsorption from helium the logarythm of the Henry coefficient linearly depends on the inverse value of absolute temperature. Adsorption of radon from air is inhibited and the above-cited relationship is deviated from linear. The results of calculating differential heats of radon and air adsorption as well as coefficients of radon and air separation on carbons are presented

  20. Performance evaluation of a hybrid system for efficient palm oil mill effluent treatment via an air-cathode, tubular upflow microbial fuel cell coupled with a granular activated carbon adsorption.

    Science.gov (United States)

    Tee, Pei-Fang; Abdullah, Mohammad Omar; Tan, Ivy Ai Wei; Mohamed Amin, Mohamed Afizal; Nolasco-Hipolito, Cirilo; Bujang, Kopli

    2016-09-01

    An air-cathode MFC-adsorption hybrid system, made from earthen pot was designed and tested for simultaneous wastewater treatment and energy recovery. Such design had demonstrated superior characteristics of low internal resistance (29.3Ω) and favor to low-cost, efficient wastewater treatment and power generation (55mW/m(3)) with average current of 2.13±0.4mA. The performance between MFC-adsorption hybrid system was compared to the standalone adsorption system and results had demonstrated great pollutants removals of the integrated system especially for chemical oxygen demand (COD), biochemical oxygen demand (BOD3), total organic carbon (TOC), total volatile solids (TVS), ammoniacal nitrogen (NH3-N) and total nitrogen (TN) because such system combines the advantages of each individual unit. Besides the typical biological and electrochemical processes that happened in an MFC system, an additional physicochemical process from the activated carbon took place simultaneously in the MFC-adsorption hybrid system which would further improved on the wastewater quality. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Capillary condensation and adsorption of binary mixtures.

    Science.gov (United States)

    Weinberger, B; Darkrim-Lamari, F; Levesque, D

    2006-06-21

    The adsorption of equimolar binary mixtures of hydrogen-carbon dioxide, hydrogen-methane, and methane-carbon dioxide in porous material models is determined by grand canonical Monte Carlo simulations. The material models have an adsorbent surface similar to that of nanofibers with a herringbone structure. Our main result, which is relevant for hydrogen purification and carbon dioxide capture, is that the adsorption selectivities calculated for the mixtures can differ significantly from those deduced from simulations of the adsorption of pure gases, in particular, when one of the adsorbed gases presents a capillary condensation induced by confinement within the pore network. A comparison of our data is also made with theoretical models used in the literature for predicting the properties of the mixture adsorption.

  2. The Blood Compatibilities of Blood Purification Membranes and Other Materials Developed in Japan

    Directory of Open Access Journals (Sweden)

    Takaya Abe

    2011-01-01

    Full Text Available The biocompatibilities in blood purification therapy are defined as “a concept to stipulate safety of blood purification therapy by an index based on interaction in the body arising from blood purification therapy itself.” The biocompatibilities are associated with not only materials to be used but also many factors such as sterilization method and eluted substance. It is often evaluated based on impacts on cellular pathways and on humoral pathways. Since the biocompatibilities of blood purification therapy in particular hemodialysis are not just a prognostic factor for dialysis patients but a contributory factor for long-term complications, it should be considered with adequate attention. It is important that blood purification therapy should be performed by consistently evaluating not only risks associated with these biocompatibilities but also the other advantages obtained from treatments. In this paper, the biocompatibilities of membrane and adsorption material based on Japanese original which are used for blood purification therapy are described.

  3. Process for purification of gas mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Vasiliev, S Z; Letitschevskij, V I; Maergojz, I I; Michailov, L A; Puschkarev, L I

    1977-06-23

    The process relates to the purification of gas mixtures of N, H, and Ar, or N and H, or N and O which contain CO, CO/sub 2/ and water vapour. Single-stage adsorption occurs under standard pressure at temperatures from -40 to +4/sup 0/C up to the point of CO penetration through the zeolite layer. Zeolite is of type A or X combined with Ca, Na, Ag, Cd, Co, Ni, Mn or a natural zeolite of the type klinoptilolite. Regeneration is achieved at constant temperature and pressure of 1-5x10/sup -1/ Torr or by heating to 120-600/sup 0/C.

  4. Study on the Adsorption Capacities for Airborne Particulates of Landscape Plants in Different Polluted Regions in Beijing (China

    Directory of Open Access Journals (Sweden)

    Wei-Kang Zhang

    2015-08-01

    Full Text Available Urban landscape plants are an important component of the urban ecosystem, playing a significant role in the adsorption of airborne particulates and air purification. In this study, six common landscape plants in Beijing were chosen as research subjects, and the adsorption capacities for each different plant leaf and the effects of the leaf structures for the adsorption capacities for particulates were determined. Preliminary results show that needle-leaved tree species adsorbed more airborne particulates than broad-leaved tree species for the same leaf area. Pinus tabuliformis exhibits the highest adsorption capacity, at 3.89 ± 0.026 μg·cm−2, almost two times as much as that of Populus tomentosa (2.00 ± 0.118 μg·cm−2. The adsorption capacities for PM10 of the same tree species leaves, in different polluted regions had significant differences, and the adsorption capacities for PM10 of the tree species leaf beside the Fifth Ring Road were higher than those of the tree species leaves in the Botanical Garden, although the adsorption capacities for PM2.5 of the same tree species in different polluted regions had no significant differences. By determining the soluble ion concentrations of the airborne particulates in two regions, it is suggested that the soluble ion concentrations of PM10 in the atmosphere in the Botanical Garden and beside the Fifth Ring Road have significant differences, while those of PM2.5 in the atmosphere had no significant differences. In different polluted regions there are significant adaptive changes to the leaf structures, and when compared with slightly polluted region, in the seriously polluted region the epidermis cells of the plant leaves shrinked, the surface textures of the leaves became rougher, and the stomas’ frequency and the pubescence length increased. Even though the plant leaves exposed to the seriously polluted region changed significantly, these plants can still grow normally and healthily.

  5. Purification of a synthetic pterocarpanquinone by countercurrent chromatography

    International Nuclear Information System (INIS)

    Costa, Fernanda das Neves; Silva, Alcides Jose M. da; Domingos, Jorge L. de Oliveira; Costa, Paulo Roberto R.; Leitao, Gilda G.; Daher Netto, Chaquip

    2012-01-01

    Countercurrent chromatography (CCC) was employed as a useful, fast and economic alternative to conventional chromatography techniques for the purification of a synthetic pterocarpanquinone, LQB-118. The separation was performed in a two-step CCC with the solvent system hexanechloroform- methanol-water 2:1.5:5:2 in both steps. Traditional purification of these reaction products by silica gel column chromatography demanded a large amount of solvent and time, besides allowing the irreversible adsorption of the compound in the column. The use of 1 H NMR for the calculation of KD of target compound is proposed as an alternative for HPLC measurements. (author)

  6. THERMODYNAMICS AND ADSORPTION ISOTHERMS FOR THE ...

    African Journals Online (AJOL)

    BAFFA

    data were tested using Freundlich and Langmuir adsorption isotherms. The values of the numeric constants ... Keywords: Adsorbate, Adsorbent, Adsorption isotherms, Maize cob, Thermodynamics. INTRODUCTION. Maize (Zea mays) ... several times with water, air – dried and ground to. 850μm particle size and finally kept ...

  7. Purification and characterization of two DyP isozymes from Thanatephorus cucumeris Dec 1 specifically expressed in an air-membrane surface bioreactor.

    Science.gov (United States)

    Shimokawa, Takuya; Shoda, Makoto; Sugano, Yasushi

    2009-02-01

    DyP isozymes (DyP2 and DyP3) from the culture fluid of the fungus Thanatephorus cucumeris Dec 1 by air-membrane surface bioreactor were purified and characterized. The characteristics of DyP2 were almost the same as those of a recombinant DyP reported previously, but different from DyP3.

  8. Commercial Charcoal Characterisation For Water Purification

    International Nuclear Information System (INIS)

    Saryati; Sumardjo; Sutisna; Handayani, Ari; Suprapti, Siti

    2001-01-01

    In order to provide a drinking water purification substance, has been studied the charcoal characterisation that based on a porous profile and an adsorption properties of the charcoal. There were using the commercial charcoal like wood charcoals, coconut shell charcoals and activated charcoals. The porous profile was studied by using an electron microscope SEM-EDX and the adsorption properties was studied by using the water sample simulation that contains several metal ions. The concentration of all ions was ten times greater that the maximum ions concentration that permissible in the drinking water. From the grain surface microscopic analysis was shown that the pore structure of the wood charcoal was more regular than the coconut shell charcoal. Mean while the activated charcoal has pore more than wood and coconut shell charcoal. Grains size was not an adsorption parameter. The absorptivitas charcoal was affected by pH solution, but this effect was not linear proportion. There are no significant deference in the adsorptivitas among the tree charcoals that has been studied for Al 3 + , Cr 3+ , Ag 1 +, and Pb 2+ ions the adsorption was large enough (> 60%), for Mn 2+ , Fe 3+ , Se 4+ , Cd 2+ and Ba 2+ ions was 20%-60% dan for Mg 2+ , Na 1+ , Ca 2+ , and Zn 2+ ions was less than 20 %. Generally the wood and coconut shell charcoal absorptivity in the pH 4 solutions was lower than in the pH 5-7 solutions

  9. Laboratory of minerals purification

    International Nuclear Information System (INIS)

    2002-01-01

    The laboratory of minerals purification was organized in 1962 where with application of modern physical and chemical methods were investigated the mechanism of flotation reagents interaction with minerals' surface, was elaborated technologies on rising complexity of using of republic's minerals

  10. Synthesis of LaVO4/TiO2 heterojunction nanotubes by sol-gel coupled with hydrothermal method for photocatalytic air purification.

    Science.gov (United States)

    Zou, Xuejun; Li, Xinyong; Zhao, Qidong; Liu, Shaomin

    2012-10-01

    With the aim of improving the effective utilization of visible light, the LaVO(4)/TiO(2) heterojunction nanotubes were fabricated by sol-gel coupled with hydrothermal method. The photocatalytic ability was demonstrated through catalytic removal of gaseous toluene species. The nanotube samples were characterized by scanning electron microscope (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), surface photovoltage (SPV), Raman spectra and N(2) adsorption-desorption measurements. The characterization results showed that the samples with high specific surface areas were of typical nanotubular morphology, which would lead to the high separation and transfer efficiency of photo induced electron-hole pairs. The as-prepared nanotubes exhibited high photocatalytic activity in decomposing toluene species under visible light irradiation with fine photochemical stability. The enhanced photocatalytic performance of LaVO(4)/TiO(2) nanotubes might be attributed to the matching band potentials, the interconnected heterojunction of LaVO(4) versus TiO(2), and the large specific surface areas of nanotubes. Copyright © 2012 Elsevier Inc. All rights reserved.

  11. A new helium gas recovery and purification system

    International Nuclear Information System (INIS)

    Yamamotot, T.; Suzuki, H.; Ishii, J.; Hamana, I.; Hayashi, S.; Mizutani, S.; Sanjo, S.

    1974-01-01

    A helium gas recovery and purification system, based on the principle of gas permeation through a membrane, is described. The system can be used for the purification of helium gas containing air as a contaminant. The apparatus, operating at ambient temperature does not need constant attention, the recovery ratio of helium gas is satisfactory and running costs are low. Gases other than helium can be processed with the apparatus. (U.K.)

  12. Design of a nitrogen purification system with cryogenic method for neutrino detection.

    Science.gov (United States)

    Peng, Zhang; Zhongjun, Hu; Bingming, Wang; Qing, Li

    2018-04-04

    In order to detect the neutrino with liquid scintillation detector, high-purity nitrogen is essential for gas stripping in this detector. Therefore, it is necessary to design a purification system for the detector to purify nitrogen. Using the method of low temperature adsorption for the purification system, the key designs including the flow path, the adsorber and the selection of activated carbon, are introduced in this study. In these designs, the selection of activated carbon is the most important because the adsorption characteristic of the carbon is related to the performance of the purification system. The method of grand canonical ensemble Monte Carlo is adopted to simulate the adsorption of radon by the activated carbon with its slit pore model. Using this method, the working temperature and the key characteristic of the activated carbon are obtained. Copyright © 2018 Elsevier Ltd. All rights reserved.

  13. Development for a process for the adsorptive separation of krypton-85

    International Nuclear Information System (INIS)

    Messler, M.

    1985-03-01

    In the final process step of dissolver waste gas purification in a reprocessing facility, the radioactive noble gas Kr-85 is separated by physical separation processes. The experiments showed that the available mixture of air/Kr/Xe can be appropriately separated by chromatography. In principle, the adsorption column is laded with the waste gas and subsequently regenerated by puring with a carrier gas. A complete separation of the waste gas components can thus be achieved. He suggests itself as a purge gas. Fine-grained activated charcoals are to be preferred as adsorbing agents. Among the adsorptive process alternatives studied, one variant in which the adsorber was split into two halves and loaded at -130 0 C or -160 0 C proved to be particularly suitable. It can be seen that a total of only 0.2 m 3 of activated charcoal would be required for a commerical facility with a waste gas throughput of 100 nm 3 /h. The helium flux required only amounts to 4% of the waste gas flow to be purified. If valuable xenon is also to be recovered then this value increases to 7%. In this case the quantity of activated charcoal necessary would be 0.28 m 3 . A comparison with alternative process principles indicated that the adsorptive concept has advantages with respect to process engineering and regarding high safety standards in nuclear engineering facilities. (orig./HP) [de

  14. Adsorption properties of biologically active derivatives of quaternary ammonium surfactants and their mixtures at aqueous/air interface. I. Equilibrium surface tension, surfactant aggregation and wettability.

    Science.gov (United States)

    Rojewska, Monika; Biadasz, Andrzej; Kotkowiak, Michał; Olejnik, Anna; Rychlik, Joanna; Dudkowiak, Alina; Prochaska, Krystyna

    2013-10-01

    The adsorption properties of surfactant mixtures containing two types of quaternary derivatives of lysosomotropic substances: alkyl N,N-dimethylalaninates methobromides and alkyl N,N-dimethylglycinates methobromides were studied. Quantitative and qualitative description of the adsorption process was carried out on the basis of experimentally obtained equilibrium surface tension isotherms. The results indicated that most of the systems studied revealed synergistic effect both in adsorption and wetting properties. In vitro studies on human cancer cells were undertaken and the data obtained showed that the mixtures suppressed the cancer cells' proliferation more effectively than individual components. Results of preliminary research on the interaction of catanionic mixtures with phospholipids suggested a possibility of a strong penetration of cell membranes by the mixtures investigated. Copyright © 2013 Elsevier B.V. All rights reserved.

  15. Adsorption Isotherms from Temperature-Programmed Physiosorption - Equilibrium & Kinetics -

    NARCIS (Netherlands)

    Mugge, J.M.

    2000-01-01

    The separation of gas mixtures is a major operation in the process industry for hydrocarbon separation, removal of pollutant from effluent streams, and purification of process streams. The work in this thesis is related to gas separation by pressure swing adsorption (PSA); a well-known example is

  16. Henna wood as an adsorptive material for bentazon

    African Journals Online (AJOL)

    SAM

    2014-08-27

    Aug 27, 2014 ... removal of impurities from liquids and gases (Chowdhury ... terrestrial non-food crops: ornamental lawns and turf. It ... Carbonization was carried out in a vertical stainless-steel reactor ..... an essential procedure before designing the adsorption ..... Catalytic processes for the purification of drinking water.

  17. Adsorption Properties and Potential Applications of Bamboo Charcoal: A Review

    Directory of Open Access Journals (Sweden)

    Isa S.S.M.

    2016-01-01

    Full Text Available Bamboo charcoal was produced by pyrolysis or carbonization process with extraordinary properties such as high conductivity, large surface area and adsorption property. These properties can be improved by activation process that can be done thermally or chemically. In this paper, carbonization and activation process of bamboo, its structural and adsorption properties will be presented. Herein, the adsorption properties of bamboo charcoal that has fully utilized in solar cell as the electrode, adsorbent for water purification and electromagnetic wave absorber are reviewed.

  18. Removal of ethylene from air stream by adsorption and plasma-catalytic oxidation using silver-based bimetallic catalysts supported on zeolite.

    Science.gov (United States)

    Trinh, Quang Hung; Lee, Sang Baek; Mok, Young Sun

    2015-03-21

    Dynamic adsorption of ethylene on 13X zeolite-supported Ag and Ag-M(x)O(y) (M: Co, Cu, Mn, and Fe), and plasma-catalytic oxidation of the adsorbed ethylene were investigated. The experimental results showed that the incorporation of Ag into zeolite afforded a marked enhancement in the adsorptivity for ethylene. The addition of transition metal oxides was found to have a positive influence on the ethylene adsorption, except Fe(x)O(y). The presence of the additional metal oxides, however, appeared to somewhat interrupt the diffusion of ozone into the zeolite micro-pores, leading to a decrease in the plasma-catalytic oxidation efficiency of the ethylene adsorbed there. Among the second additional metal oxides, Fe(x)O(y) was able to reduce the emission of ozone during the plasma-catalytic oxidation stage while keeping a high effectiveness for the oxidative removal of the adsorbed ethylene. The periodical treatment consisting of adsorption followed by plasma-catalytic oxidation may be a promising energy-efficient ethylene abatement method. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. Improved adsorption-desorption extraction applied to the partial characterization of the antilisterial bacteriocin produced by Carnobacterium maltaromaticum C2

    Directory of Open Access Journals (Sweden)

    F. L Tulini

    2010-06-01

    Full Text Available Bacteriocins are ribosomally produced peptides useful for food biopreservation. An improved adsorption-desorption process is proposed for the partial purification of the bacteriocin produced by the fish isolate Carnobacterium maltaromaticum C2. Analyzis of extract by SDS-PAGE indicated this method may offer an alternative to improve the yield of purification of bacteriocins.

  20. Water purification in Borexino

    Energy Technology Data Exchange (ETDEWEB)

    Giammarchi, M. [Infn Milano (Italy); Balata, M.; Ioannucci, L.; Nisi, S. [Laboratori Nazionali del Gran Sasso (Italy); Goretti, A.; Ianni, A. [Princeton University (United States); Miramonti, L. [Dip. di Fisica dell' Università di Milano e Infn (Italy)

    2013-08-08

    Astroparticle Physics and Underground experiments searching for rare nuclear events, need high purity materials to act as detectors or detector shielding. Water has the advantage of being cheap, dense and easily available. Most of all, water can be purified to the goal of obatining a high level of radiopurity. Water Purification can be achieved by means of a combination of processes, including filtration, reverse osmosis, deionization and gas stripping. The Water Purification System for the Borexino experiment, will be described together with its main performances.

  1. Environmental and Economic Assessment of Electrothermal Swing Adsorption of Air Emissions from Sheet-Foam Production Compared to Conventional Abatement Techniques.

    Science.gov (United States)

    Johnsen, David L; Emamipour, Hamidreza; Guest, Jeremy S; Rood, Mark J

    2016-02-02

    A life-cycle assessment (LCA) and cost analysis are presented comparing the environmental and economic impacts of using regenerative thermal oxidizer (RTO), granular activated carbon (GAC), and activated carbon fiber cloth (ACFC) systems to treat gaseous emissions from sheet-foam production. The ACFC system has the lowest operational energy consumption (i.e., 19.2, 8.7, and 3.4 TJ/year at a full-scale facility for RTO, GAC, and ACFC systems, respectively). The GAC system has the smallest environmental impacts across most impact categories for the use of electricity from select states in the United States that produce sheet foam. Monte Carlo simulations indicate the GAC and ACFC systems perform similarly (within one standard deviation) for seven of nine environmental impact categories considered and have lower impacts than the RTO for every category for the use of natural gas to produce electricity. The GAC and ACFC systems recover adequate isobutane to pay for themselves through chemical-consumption offsets, whereas the net present value of the RTO is $4.1 M (20 years, $0.001/m(3) treated). The adsorption systems are more environmentally and economically competitive than the RTO due to recovered isobutane for the production process and are recommended for resource recovery from (and treatment of) sheet-foam-production exhaust gas. Research targets for these adsorption systems should focus on increasing adsorptive capacity and saturation of GAC systems and decreasing electricity and N2 consumption of ACFC systems.

  2. Sodium purification in Rapsodie

    International Nuclear Information System (INIS)

    Giraud, B.

    1968-01-01

    This report is one of a series of publications presenting the main results of tests carried out during the start-up of the first french fast neutron reactor: Rapsodie. The article presents the sodium purification techniques used in the reactor cooling circuits both from the constructional point of view and with respect to results obtained during the first years working. (author) [fr

  3. High performance gas adsorption and separation of natural gas in two microporous metal-organic frameworks with ternary building units.

    Science.gov (United States)

    Wang, Dongmei; Zhao, Tingting; Cao, Yu; Yao, Shuo; Li, Guanghua; Huo, Qisheng; Liu, Yunling

    2014-08-14

    Two novel MMOFs, JLU-Liu5 and JLU-Liu6, are based on ternary building units and exhibit high adsorption selectivity for CO2, C2H6 and C3H8 over CH4, which is attributed to steric effects and host-guest interactions. These MMOFs are promising materials for gas adsorption and natural gas purification.

  4. Air

    International Nuclear Information System (INIS)

    Gugele, B.; Scheider, J.; Spangl, W.

    2001-01-01

    In recent years several regulations and standards for air quality and limits for air pollution were issued or are in preparation by the European Union, which have severe influence on the environmental monitoring and legislation in Austria. This chapter of the environmental control report of Austria gives an overview about the legal situation of air pollution control in the European Union and in specific the legal situation in Austria. It gives a comprehensive inventory of air pollution measurements for the whole area of Austria of total suspended particulates, ozone, volatile organic compounds, nitrogen oxides, sulfur dioxide, carbon monoxide, heavy metals, benzene, dioxin, polycyclic aromatic hydrocarbons and eutrophication. For each of these pollutants the measured emission values throughout Austria are given in tables and geographical charts, the environmental impact is discussed, statistical data and time series of the emission sources are given and legal regulations and measures for an effective environmental pollution control are discussed. In particular the impact of fossil-fuel power plants on the air pollution is analyzed. (a.n.)

  5. Adsorption of proteins at the solution/air interface influenced by added nonionic surfactants at very low concentrations for both components. 2. Effect of different surfactants and theoretical model.

    Science.gov (United States)

    Fainerman, V B; Lotfi, M; Javadi, A; Aksenenko, E V; Tarasevich, Yu I; Bastani, D; Miller, R

    2014-11-04

    The influence of the addition of the nonionic surfactants dodecyl dimethyl phosphine oxide (C12DMPO), tetradecyl dimethyl phosphine oxide (C14DMPO), decyl alcohol (C10OH), and C10EO5 at concentrations between 10(-5) and 10(-1) mmol/L to solutions of β-casein (BCS) and β-lactoglobulin (BLG) at a fixed concentration of 10(-5) mmol/L on the surface tension is studied. It is shown that a significant decrease of the water/air surface tension occurs for all the surfactants studied at very low concentrations (10(-5)-10(-3) mmol/L). All measurements were performed with the buoyant bubble profile method. The dynamics of the surface tension was simulated using the Fick and Ward-Tordai equations. The calculation results agree well with the experimental data, indicating that the equilibration times in the system studied do not exceed 30 000 s, while the time required to attain the equilibrium on a plane surface is by one order of magnitude higher. To achieve agreement between theory and experiment for the mixtures, a supposition was made about the influence of the concentration of nonionic surfactant on the adsorption activity of the protein. The adsorption isotherm equation of the protein was modified accordingly, and this corrected model agrees well with all experimental data.

  6. Adsorption and Photocatalytic Kinetics of Visible-Light Response N-Doped TiO2 Nanocatalyst for Indoor Acetaldehyde Removal under Dark and Light Conditions

    Directory of Open Access Journals (Sweden)

    Yu-Hao Lin

    2016-01-01

    Full Text Available Understanding the removal nature of the indoor volatile organic compounds under realistic environment conditions would give clear guidance for the development of air purification devices. The study investigated the removal of indoor acetaldehyde using visible-light-responsive N-doped TiO2 (N-TiO2 photocatalyst under visible-light irradiation (light and in the absence of light (dark. The adsorption kinetics of acetaldehyde onto N-TiO2 followed a pseudo-second-order model. The magnitude of acetaldehyde adsorption is proportional to temperature, and the results were fitted to the Langmuir isotherm model. Moreover, the effect of initial acetaldehyde concentration and visible-light intensity on the photooxidation of acetaldehyde was well described by the Langmuir-Hinshelwood model. Results show that the mesoporous N-TiO2 catalyst had a high ability to absorb acetaldehyde in the dark condition, and then acetaldehyde was subsequently photooxidized under visible-light irradiation. The adsorption capacity was found to increase with decreasing temperature. The negative value of ΔG° and the positive value of ΔS° indicate that the adsorption of acetaldehyde onto N-TiO2 was a spontaneous process. Finally, a reaction scheme for removal process of indoor acetaldehyde by N-TiO2 was proposed.

  7. Adsorption of xenon and krypton on shales

    Science.gov (United States)

    Podosek, F. A.; Bernatowicz, T. J.; Kramer, F. E.

    1981-01-01

    A method that uses a mass spectrometer as a manometer is employed in the measurement of Xe and Kr adsorption parameters on shales and related samples, where gas partial pressures were lower than 10 to the -11th atm, corresponding adsorption coverages are only small fractions of a monolayer, and Henry's Law behavior is expected and observed. Results show heats of adsorption in the 2-7 kcal/mol range, and Henry constants at 0-25 C of 1 cu cm STP/g per atmosphere are extrapolated. Although the adsorption properties obtained are variable by sample, the range obtained suggests that shales may be capable of an equilibrium adsorption with modern air high enough to account for a significant fraction of the atmospheric inventory of Xe, and perhaps even of Kr. This effect will nevertheless not account for the factor-of-25 defficiency of atmospheric Xe, in comparison with the planetary gas patterns observed in meteorites.

  8. TSOAK-M1: a computer code to determine tritium reaction/adsorption/release parameters from experimental results of air-detritiation tests

    International Nuclear Information System (INIS)

    Land, R.H.; Maroni, V.A.; Minkoff, M.

    1979-01-01

    A computer code has been developed which permits the determination of tritium reaction (T 2 to HTO)/adsorption/release and instrument correction parameters from enclosure (building) - detritiation test data. The code is based on a simplified model which treats each parameter as a normalized time-independent constant throughout the data-unfolding steps. Because of the complicated four-dimensional mathematical surface generated by the resulting differential equation system, occasional local-minima effects are observed, but these effects can be overcome in most instances by selecting a series of trial guesses for the initial parameter values and observing the reproducibility of final parameter values for cases where the best overall fit to experimental data is achieved. The code was then used to analyze existing small-cubicle test data with good success, and the resulting normalized parameters were employed to evaluate hypothetical reactor-building detritiation scenarios. It was concluded from the latter evaluation that the complications associated with moisture formation, adsorption, and release, particularly in terms of extended cleanup times, may not be as great as was previously thought. It is recommended that the validity of the TSOAK-M1 model be tested using data from detritiation tests conducted on large experimental enclosures (5 to 10 cm 3 ) and, if possible, actual facility buildings

  9. Nanocellulose-Based Materials for Water Purification.

    Science.gov (United States)

    Voisin, Hugo; Bergström, Lennart; Liu, Peng; Mathew, Aji P

    2017-03-05

    Nanocellulose is a renewable material that combines a high surface area with high strength, chemical inertness, and versatile surface chemistry. In this review, we will briefly describe how nanocellulose is produced, and present-in particular, how nanocellulose and its surface modified versions affects the adsorption behavior of important water pollutants, e.g., heavy metal species, dyes, microbes, and organic molecules. The processing of nanocellulose-based membranes and filters for water purification will be described in detail, and the uptake capacity, selectivity, and removal efficiency will also be discussed. The processing and performance of nanocellulose-based membranes, which combine a high removal efficiency with anti-fouling properties, will be highlighted.

  10. Nanocellulose-Based Materials for Water Purification

    Directory of Open Access Journals (Sweden)

    Hugo Voisin

    2017-03-01

    Full Text Available Nanocellulose is a renewable material that combines a high surface area with high strength, chemical inertness, and versatile surface chemistry. In this review, we will briefly describe how nanocellulose is produced, and present—in particular, how nanocellulose and its surface modified versions affects the adsorption behavior of important water pollutants, e.g., heavy metal species, dyes, microbes, and organic molecules. The processing of nanocellulose-based membranes and filters for water purification will be described in detail, and the uptake capacity, selectivity, and removal efficiency will also be discussed. The processing and performance of nanocellulose-based membranes, which combine a high removal efficiency with anti-fouling properties, will be highlighted.

  11. Bio-template-assisted synthesis of hierarchically hollow SiO2 microtubes and their enhanced formaldehyde adsorption performance

    International Nuclear Information System (INIS)

    Le, Yao; Guo, Daipeng; Cheng, Bei; Yu, Jiaguo

    2013-01-01

    The indoor air quality is crucial for human health, taking into account that people often spend more than 80% of their time in houses, offices and cars. Formaldehyde (HCHO) is a major pollutant and long-term exposure to HCHO may cause health problems such as nasal tumors and skin irritation. In this work, for the first time, hierarchically hollow silica microtubes (HHSM) were synthesized by a simple sol–gel and calcination method using cetyltrimethyl ammonium bromide (CTAB) and bio-template poplar catkin (PC) as co-templates and the PC/SiO 2 weight ratio R was varied from 0, 0.1, 0.3 and 1. The prepared samples were further modified with tetraethylenepentamine (TEPA) and characterized by scanning electron microscope (SEM), transmission electron microscopy (TEM), Fourier transform infrared (FTIR), X-ray photoelectron spectroscopy (XPS), differential thermal analysis (DTA), thermal gravimetric analysis (TGA), and N 2 physisorption techniques. This was followed by formaldehyde adsorption tests at ambient temperature. The results showed that all the prepared HHSM samples contained small mesopores with peak pore size at ca. 2.5 nm and large several tens of nanometer-sized pores on the tube wall. The R exhibited an obvious influence on specific surface areas and the sample prepared at R = 0.3 exhibited highest specific surface area (896 m 2 /g). All the TEPA-modified samples exhibited enhanced formaldehyde adsorption performance. The maximum HCHO adsorption capacity (20.65 mg/g adsorbent) was achieved on the sample prepared at R = 0.3 and modified by 50 wt.% TEPA. The present study will provide new insight for the utilization of bio-template used for the fabrication of inorganic hollow tubes with high HCHO adsorption performance for indoor air purification.

  12. Modeling adsorption: Investigating adsorbate and adsorbent properties

    Science.gov (United States)

    Webster, Charles Edwin

    1999-12-01

    adsorption and catalysis. These studies are also applicable to environmental cleanup applications, such as waste stream purification and separation procedures as well as decontamination of chemical warfare agents.

  13. Adsorption of Pb(II by Activated Pyrolytic Char from Used Tire

    Directory of Open Access Journals (Sweden)

    Lu Ping

    2016-01-01

    Full Text Available As a renewable resource, the pyrolytic char derived from used tire has promising adsorption capacities owing to its similar structure and properties with active carbon. The purification and activation of the pyrolytic char from used tire, as well as the application of this material in the adsorption of Pb(II in water is conducted. The influences on the adsorption capacity by temperature and pH value are investigated and discussed; the adsorption thermodynamics and kinetics are also studied. The results show that the pyrolytic char from used tire has remarkable adsorption capacity for Pb(II, and the adsorption is an endothermic process complying with the Langmuir isotherm. The adsorption kinetics is a pseudo second-order reaction.

  14. Uranium hexafluoride purification

    International Nuclear Information System (INIS)

    Araujo, Eneas F. de

    1986-01-01

    Uranium hexafluoride might contain a large amount of impurities after manufacturing or handling. Three usual methods of purification of uranium hexafluoride were presented: selective sorption, sublimation, and distillation. Since uranium hexafluoride usually is contaminated with hydrogen fluoride, a theoretical study of the phase equilibrium properties was performed for the binary system UF 6 -HF. A large deviation from the ideal solution behaviour was observed. A purification unity based on a constant reflux batch distillation process was developed. A procedure was established in order to design the re boiler, condenser and packed columns for the UF 6 -HF mixture separation. A bench scale facility for fractional distillation of uranium hexafluoride was described. Basic operations for that facility and results extracted from several batches were discussed. (author)

  15. Electron beam silicon purification

    Energy Technology Data Exchange (ETDEWEB)

    Kravtsov, Anatoly [SIA ' ' KEPP EU' ' , Riga (Latvia); Kravtsov, Alexey [' ' KEPP-service' ' Ltd., Moscow (Russian Federation)

    2014-11-15

    Purification of heavily doped electronic grade silicon by evaporation of N-type impurities with electron beam heating was investigated in process with a batch weight up to 50 kilos. Effective temperature of the melt, an indicative parameter suitable for purification process characterization was calculated and appeared to be stable for different load weight processes. Purified material was successfully approbated in standard CZ processes of three different companies. Each company used its standard process and obtained CZ monocrystals applicable for photovoltaic application. These facts enable process to be successfully scaled up to commercial volumes (150-300 kg) and yield solar grade silicon. (copyright 2014 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  16. Recovery of glycols, sugars, and Related Multiple -OH Compounds from Dilute-Aqueous Solution by Regenerable Adsorption onto Activated Carbons

    Energy Technology Data Exchange (ETDEWEB)

    Chinn, Daniel [Univ. of California, Berkeley, CA (United States)

    1999-06-01

    The present research explores the use of adsorption onto activated carbons as a means of recover glycerol, glycols, and sugars from dilute-aqueous solution. Our work is focused on understanding the mechanisms of adsorption onto carbons, assessing the degree of adsorption reversibility with precision, and implementing a bench-scale recovery process that results in a higher product concentration and reduction of the energy load for final purification.

  17. Kevlar based nanofibrous particles as robust, effective and recyclable absorbents for water purification.

    Science.gov (United States)

    Nie, Chuanxiong; Peng, Zihang; Yang, Ye; Cheng, Chong; Ma, Lang; Zhao, Changsheng

    2016-11-15

    Developing robust and recyclable absorbents for water purification is of great demand to control water pollution and to provide sustainable water resources. Herein, for the first time, we reported the fabrication of Kevlar nanofiber (KNF) based composite particles for water purification. Both the KNF and KNF-carbon nanotube composite particles can be produced in large-scale by automatic injection of casting solution into ethanol. The resulted nanofibrous particles showed high adsorption capacities towards various pollutants, including metal ions, phenylic compounds and various dyes. Meanwhile, the adsorption process towards dyes was found to fit well with the pseudo-second-order model, while the adsorption speed was controlled by intraparticle diffusion. Furthermore, the adsorption capacities of the nanofibrous particles could be easily recovered by washing with ethanol. In general, the KNF based particles integrate the advantages of easy production, robust and effective adsorption performances, as well as good recyclability, which can be used as robust absorbents to remove toxic molecules and forward the application of absorbents in water purification. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Corona-discharge air-purification system

    Science.gov (United States)

    Wydeven, T. J.; Flamm, D. L.

    1979-01-01

    Plasma reaction chamber removes trace contaminants from spacecraft, submarines, and other closed environments by oxidizing contaminants to produce carbon dioxide and water. Contaminants are alcohols, esters, hydrogen sulfide, and ammonia. Others are lubricant solvents such as Freons, aromatics, and Ketones. Contaminants are removed from chamber by scrubber.

  19. Functionalized Organosilicate Sorbents for Air Purification

    Science.gov (United States)

    2013-12-23

    Average mesopore diameters are similar to E50 (81 Å). There is a significant reduction in the pore diameter distribution near the micropore range...capacity. This tends to indicate bulk and internal diffusion limitations. Under humid conditions the phenomenon is exacerbated; breakthrough occurs more...One possibility is that octane sorption is limited by internal pore diffusion rates resulting from condensation in smaller pores first which may

  20. Multimodal charge-induction chromatography for antibody purification.

    Science.gov (United States)

    Tong, Hong-Fei; Lin, Dong-Qiang; Chu, Wen-Ning; Zhang, Qi-Lei; Gao, Dong; Wang, Rong-Zhu; Yao, Shan-Jing

    2016-01-15

    Hydrophobic charge-induction chromatography (HCIC) has advantages of high capacity, salt-tolerance and convenient pH-controlled elution. However, the binding specificity might be improved with multimodal molecular interactions. New ligand W-ABI that combining tryptophan and 5-amino-benzimidazole was designed with the concept of mutimodal charge-induction chromatography (MCIC). The indole and benzimidazole groups of the ligand could provide orientated mutimodal binding to target IgG under neutral pH, while the imidazole groups could induce the electrostatic repulsion forces for efficient elution under acidic pH. W-ABI ligand was coupled successfully onto agarose gel, and IgG adsorption behaviors were investigated. High affinity to IgG was found with the saturated adsorption capacity of 70.4 mg/ml at pH 7, and the flow rate of mobile phase showed little impact on the dynamic binding capacity. In addition, efficient elution could be achieved at mild acidic pH with high recovery. Two separation cases (IgG separation from albumin containing feedstock and monoclonal antibody purification from cell culture supernatant) were verified with high purity and recovery. In general, MCIC with the specially-designed ligand is an expanding of HCIC with improved adsorption selectivity, which would be a potential alternative to Protein A-based capture for the cost-effective purification of antibodies. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Gas adsorption during storage of plutonium dioxide powders

    International Nuclear Information System (INIS)

    Cuillerdier, C.; Cossonnet, C.; Germain, M.

    1984-10-01

    Adsorption phenomena occuring in plutonium dioxide containers are studied for the determination of safe conditions for storage and transportation of plutonium dioxide powders. Adsorption on dried PuO 2 of air individual gases, influence of powder isotopic composition, chemisorption, effect of moisture are determined. Adsorption of dry air obeys an Elovich's law for its kinetics it is greatly exchange by α radiolysis. Pressure in the container can be reduced by storage under dry inert gas (Ar), decreasing the PuO 2 load and using powder containing preadsorbed water or wet air then radiolysis may occur (H 2 formation)

  2. Adsorption of proteins at the solution/air interface influenced by added nonionic surfactants at very low concentrations for both components. 3. Dilational surface rheology.

    Science.gov (United States)

    Fainerman, V B; Aksenenko, E V; Lylyk, S V; Lotfi, M; Miller, R

    2015-03-05

    The influence of the addition of the nonionic surfactants C12DMPO, C14DMPO, C10OH, and C10EO5 at concentrations between 10(-5) and 10(-1) mmol/L to solutions of β-casein (BCS) and β-lactoglobulin (BLG) at a fixed concentration of 10(-5) mmol/L on the dilational surface rheology is studied. A maximum in the viscoelasticity modulus |E| occurs at very low surfactant concentrations (10(-4) to 10(-3) mmol/L) for mixtures of BCS with C12DMPO and C14DMPO and for mixtures of BLG with C10EO5, while for mixture of BCS with C10EO5 the value of |E| only slightly increased. The |E| values calculated with a recently developed model, which assumes changes in the interfacial molar area of the protein molecules due to the interaction with the surfactants, are in satisfactory agreement with experimental data. A linear dependence exists between the ratio of the maximum modulus for the mixture to the modulus of the single protein solution and the coefficient reflecting the influence of the surfactants on the adsorption activity of the protein.

  3. Water Purification Product

    Science.gov (United States)

    2004-01-01

    Ecomaster, an affiliate of BioServe Space Technologies, this PentaPure technology has been used to purify water for our nation's Space Shuttle missions since 1981. WTC-Ecomaster of Mirneapolis, Minnesota manufactures water purification systems under the brand name PentaPure (TM). BioServe researcher Dr. George Marchin, of Kansas State University, first demonstrated the superiority of this technology and licensed it to WTC. Marchin continues to perform microgravity research in the development of new technologies for the benefit of life on Earth.

  4. Membrane and Adsorption Processes for Removing of Organics and Inorganics from Urban Wastewaters

    OpenAIRE

    Majlinda Daci-Ajvazi; Bashkim Thaçi; Nexhat Daci; Salih Gash

    2016-01-01

    Since in Kosovo there are still no water purification plants and untreated wastewaters are discharged in environment, in this paper we’ve studied methods for removing of different organic and inorganic pollutants from Kosovo urban wastewaters. For best results we’ve used two methods, reverse osmosis and adsorption. For reverse osmosis, all samples were pretreated with coagulant (FeSO4) and flocculant (CaO) and then treated with reverse osmosis membranes. For adsorption, we used Kosovo coal as...

  5. Air Pollution, Causes and Cures.

    Science.gov (United States)

    Manufacturing Chemists Association, Washington, DC.

    This commentary on sources of air pollution and air purification treatments is accompanied by graphic illustrations. Sources of carbon monoxide, sulfur oxides, nitrogen oxides, and hydrocarbons found in the air are discussed. Methods of removing these pollutants at their source are presented with cut-away diagrams of the facilities and technical…

  6. Simple purification for E. coli putrescine aminopropyl-transferase

    International Nuclear Information System (INIS)

    Gavagan, J.E.; Anton, D.L.

    1986-01-01

    Putrescine aminopropyltransferase transfers an aminopropyl group from decarboxylated S-adenosylmethionine to putrescine forming spermidine. They have recently developed a rapid assay based on the separation of the spermidine product from the unreacted [ 14 C-met] labeled decarboxylated S-adenosylmethionine substrate by charcoal adsorption. Using this assay they have developed a simple protocol for the purification of putrescine aminopropyltransferase from E. coli HT 527. The procedure involves ammonium sulfate fractionation, phenyl Sepharose chromatography, and FPLC. The enzyme is greater than 80% pure as judged by SDS-PAGE and has an apparent subunit molecular weight of 35,000. The kinetics of this enzyme are being reinvestigated

  7. A supramolecular strategy for self-mobile adsorption sites in affinity membrane.

    Science.gov (United States)

    Lin, Ligang; Dong, Meimei; Liu, Chunyu; Wei, Chenjie; Wang, Yuanyuan; Sun, Hui; Ye, Hui

    2014-09-01

    Disclosed here is the design of a novel supramolecular membrane with self-mobile adsorption sites for biomolecules purification. In the 3D micropore channels of membrane matrix, the ligands are conjugated onto the cyclic compounds in polyrotaxanes for protein adsorption. During membrane filtration, the adsorption sites can rotate and/or slide along the axial chain, which results in the enhanced adsorption capacity. The excellent performance of supra-molecular membrane is related with the dynamic working manner of adsorption sites, which plays a crucial role on avoiding spatial mismatching and short-circuit effect. The supra-molecular strategy described here has general suggestions for the "sites" involved technologies such as catalysis, adsorption, and sensors, which is of broad interest. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Adsorption and Retardation of PFASs in Soil

    Science.gov (United States)

    Chen, W.; Yan, N.; Fu, X.; Carroll, K. C.; Holguin, F. O. O.; Brusseau, M. L.

    2017-12-01

    Per- and poly-fluorinated alkyl substances (PFASs) are emerging contaminants of concern that are present in the subsurface at numerous military and industrial facilities. Knowledge of the retention behavior of these compounds in the subsurface environment is critical for effective risk characterization and remediation. The objective of this research is to investigate the role of adsorption at the air-water interface on PFAS retention in vadose-zone systems. Surface tensions were measured for select PFAS to determine interfacial adsorption coefficients. Column experiments were conducted to characterize retardation and transport under saturated and unsaturated flow conditions. The impact of soil properties and groundwater constituents on surface tension, solid-phase adsorption, and interfacial adsorption was investigated.

  9. Microporosity development in phenolic resin-based mesoporous carbons for enhancing CO2 adsorption at ambient conditions

    Science.gov (United States)

    Choma, Jerzy; Jedynak, Katarzyna; Fahrenholz, Weronika; Ludwinowicz, Jowita; Jaroniec, Mietek

    2014-01-01

    Soft-templating method was used to prepare mesoporous carbons. The synthesis in the presence of hydrochloric and citric acids involved resorcinol and formaldehyde as carbon precursors and triblock copolymer Pluronic F127 as a template. The as-synthesized samples underwent carbonization in flowing nitrogen at various temperatures; namely 600 °C, 700 °C and 800 °C. Two routes were used to develop microporosity in the mesoporous carbons studied. The first one involved introduction of tetraethyl orthosilicate to the reaction system. After silica dissolution with NaOH, an increase in microporosity was observed. The second method, chemical activation with KOH at 700 °C, was explored as an alternative approach to create microporosity. It is noteworthy that the TEOS addition not only led to the development of microporosity but also to some improvement of mesoporosity. The post-synthesis KOH activation resulted in more significant increase in the microporosity as compared to the samples obtained by TEOS-assisted synthesis. The mesopore volume was somewhat lower for activated carbons as compared to that in mesoporous carbons. Both methods resulted in micro-mesoporous carbons with good adsorption properties; for instance, in the case of carbons prepared in the presence of TEOS, the best sample exhibited BET surface area of 1463 m2/g and the total pore volume of 1.31 cm3/g. For the KOH activated carbons the best adsorption parameters were as follows: the specific surface area = 1906 m2/g, and the total pore volume = 0.98 cm3/g. Both procedures used for microporosity development afforded carbons with good adsorption properties that can be useful for applications such as CO2 adsorption, air and water purification.

  10. A new support material for IgG adsorption: Syntrichia papillosissima (Copp.) Loeske.

    Science.gov (United States)

    Demir, Mithat Evrim; Aktaş Uygun, Deniz; Erdağ, Adnan; Akgöl, Sinan

    2017-11-01

    In this presented work, Syntrichia papillosissima (Copp.) Loeske (S. papillosissima) was used as a natural phytosorbent for IgG purification. These moss species were collected for the natural habitat and prepared for IgG adsorption studies by cleaning, drying, and grinding to uniform size. Syntrichia papillosissima samples were characterized by using FTIR and SEM studies. Functional groups of S. papillosissima were identified by FTIR analysis, while surface characteristics were determined by SEM studies. A batch system was used for the adsorption of IgG onto S. papillosissima surface and physical conditions of the IgG adsorption medium were investigated by modifying the pH, IgG concentration and temperature. Maximum IgG adsorption onto S. papillosissima was found to be 68.01 mg/g moss by using pH 5.0 buffer system. Adsorption kinetic isotherms were also studied and it was found that, Langmuir adsorption model was appropriate for this adsorption study. Reusability profile of S. papillosissima was also investigated and IgG adsorption capacity did not decrease significantly after 5 reuse studies. Results indicated that S. papillosissima species have the capacity to be used as biosorbent for IgG purification, with its low cost, natural and biodegradable structure.

  11. Statistical and Judgmental Criteria for Scale Purification

    DEFF Research Database (Denmark)

    Wieland, Andreas; Durach, Christian F.; Kembro, Joakim

    2017-01-01

    of scale purification, to critically analyze the current state of scale purification in supply chain management (SCM) research and to provide suggestions for advancing the scale-purification process. Design/methodology/approach A framework for making scale-purification decisions is developed and used...

  12. Adsorption of heavy metal ions on different clays

    International Nuclear Information System (INIS)

    Kruse, K.

    1992-01-01

    The aim of the present dissertation is to study the adsorption of heavy metal ions (Cd 2+ , Cu 2+ , Pb 2+ , Zn 2+ ) and their mixtures on clays. Different clays and bentonites (Ca 2+ -bentonite, activated Na + -bentonite, special heavy metal adsorber bentonite, two organophilic bentonites and a mixed layer clay) were used. The adsorbed metal ions were desorbed by appropriate solutions of HCl, EDTA and dioctadecyl dimethylammonium bromide. High concentrations of the heavy metal ions in the solutions can be reached. The desorption guarantees economical recycling. After desorption the clays were used (up to three times) for purification of contaminated water. The best experimental conditions, i.e. the highest adsorption of heavy metal ions from aqueous solutions was found for the greatest ratio of adsorbent/adsorbate. The adsorption was very fast. Calcium, sodium bentonites and the heavy metal adsorber bentonite attained the highest adsorption and desorption for Cu 2+, Zn 2+ and Pb 2+ ions. Cd 2+ ions were only absorbed by Silitonit, a special heavy metal absorber bentonite. The mixed layer clay (Opalit) ranges in adsorption and desorption properties below the unmodified Ca 2+ -bentonite (Montigel) or the activated Na + -bentonite. Only Tixosorb and Tixogel (organophilic bentonites) reach the lowest value of heavy metal adsorption. Only lead cations which are characterised by good polarizability were adsorbed at higher rates, therefore the organophilic bentonites are not appropriate for adsorption of heavy metal ions from aqueous solutions. Mixing of the metal ions generally decreases the adsorption of Pb 2+ and increases the adsorption of Cd 2+ . From mixtures if heavy metal ions adsorption and desorption of Cu 2+ ions reached a maximum for all clays. (author) figs., tabs., 56 refs

  13. Carbon nanotubes for energy storage using their hydrogen adsorption capacity: state of the art and perspectives; Nanotubos de carbono para estocagem de energia por adsorcao de hidrogenio: estado da arte e perspectivas

    Energy Technology Data Exchange (ETDEWEB)

    Maestro, Luis Fernando; Luengo, Carlos Alberto [Universidade Estadual de Campinas (UNICAMP), SP (Brazil). Inst. de Fisica. Grupo de Combustiveis Alternativos], e-mail: lmaestro@ifi.unicamp.br

    2004-07-01

    It is presented an updated scope of the research in carbon nanotubes synthesis, their purification and a discussion of recent results in energy storage using their hydrogen adsorption capacity. The GCA activities in this area are also discussed. (author)

  14. Contribution to the thermal and thermodynamic study of an adsorption cooling system running with pulsed warm air; Contribution a l'etude thermique et thermodynamique d'une machine frigorifique a adsorption fonctionnant avec une source chaude a air pulse

    Energy Technology Data Exchange (ETDEWEB)

    Dumas, A.

    1998-07-01

    This work is dedicated to the study of a cooling machine based on methanol adsorption by activated charcoal. In the first part of this work, some thermal characteristics of methanol: conductivity and wall conductance have been experimentally analysed. The second part of this work deals with the thermodynamic behaviour of the system. Thermal and thermodynamic phenomena have been reproduced on a laboratory bench in order to estimate the performance of such a system. It is shown that under certain circumstances the length of the cycle can be drastically reduced.

  15. Future of antibody purification.

    Science.gov (United States)

    Low, Duncan; O'Leary, Rhona; Pujar, Narahari S

    2007-03-15

    Antibody purification seems to be safely ensconced in a platform, now well-established by way of multiple commercialized antibody processes. However, natural evolution compels us to peer into the future. This is driven not only by a large, projected increase in the number of antibody therapies, but also by dramatic improvements in upstream productivity, and process economics. Although disruptive technologies have yet escaped downstream processes, evolution of the so-called platform is already evident in antibody processes in late-stage development. Here we perform a wide survey of technologies that are competing to be part of that platform, and provide our [inherently dangerous] assessment of those that have the most promise.

  16. Integrated Testing of a 4-Bed Molecular Sieve and a Temperature-Swing Adsorption Compressor for Closed-Loop Air Revitalization

    Science.gov (United States)

    Knox, James C.; Mulloth, Lila M.; Affleck, David L.

    2004-01-01

    Accumulation and subsequent compression of carbon dioxide that is removed from space cabin are two important processes involved in a closed-loop air revitalization scheme of the International Space Station (ISS). The 4-Bed Molecular Sieve (4BMS) of ISS currently operates in an open loop mode without a compressor. This paper reports the integrated 4BMS and liquid-cooled TSAC testing conducted during the period of March 3 to April 18, 2003. The TSAC prototype was developed at NASA Ames Research Center (ARC). The 4BMS was modified to a functionally flight-like condition at NASA Marshall Space Flight Center (MSFC). Testing was conducted at MSFC. The paper provides details of the TSAC operation at various CO2 loadings and corresponding performance of CDRA.

  17. Radon adsorption in fibrous carbon sorbents

    International Nuclear Information System (INIS)

    Anshakov, O.M.; Kish, A.O.; Chudakov, V.A.; Matvejchuk, S.V.; Sokolovskij, A.S.; Ugolev, I.I.

    2006-01-01

    Radon sorption in woven fibrous sorbents 'AUT-M' and 'Busofit' and nonwoven fiber in the temperature range 0-50 degrees centigrade was studied. Adsorption heat of radon from the ambient air in different types of carbon fiber was determined. (authors)

  18. The method of purification of waste water of NPS from petroleum oil using UV-radiation

    International Nuclear Information System (INIS)

    Kulemin, V.V.; Kareta, V.I.

    1993-01-01

    The main methods of concentration and purification of radioactive waste water of russian NPS are distillation and ion exchange. When waste water containing petroleum oil and washing matter is distillated, part of petroleum and washing matters go to the condensate. The purification of this condensate leads to pollution of ion exchange resins by petroleum oil and reduction of the filter cycle number. The purification of condensate of Russian NPS from petroleum oil is carried out using active carbon and polymer filters, but this process is not effective and fails to give pure condensate. Therefore, the authors began to search for more effective methods of purification of waste water from petroleum oil. They found that UV-radiation makes it possible to purify water from petroleum matter to concentration of the organic phase less than 0.5 mg/dm3. In this process of purification the air, contained in the water phase, was used as an oxidant. When purification is carried out in the absence of sorbents, the quantity of radioactive solid waste, which have to be recovered, decreases. During the study of purification of waste water it was found that increasing of the temperature of the process increases the rate of UV-radiation-induced oxidation of organic phase. The increase in the initial concentration of petroleum products also increases the rate of petroleum oil decomposition. The content of ions in water phase decreases the purification rate. The investigations were carried out on the laboratory scale with water and condensate from Tver's NPS

  19. Aspartic acid incorporated monolithic columns for affinity glycoprotein purification.

    Science.gov (United States)

    Armutcu, Canan; Bereli, Nilay; Bayram, Engin; Uzun, Lokman; Say, Rıdvan; Denizli, Adil

    2014-02-01

    Novel aspartic acid incorporated monolithic columns were prepared to efficiently affinity purify immunoglobulin G (IgG) from human plasma. The monolithic columns were synthesised in a stainless steel HPLC column (20 cm × 5 mm id) by in situ bulk polymerisation of N-methacryloyl-L-aspartic acid (MAAsp), a polymerisable derivative of L-aspartic acid, and 2-hydroxyethyl methacrylate (HEMA). Monolithic columns [poly(2-hydroxyethyl methacrylate-N-methacryloyl-L-aspartic acid) (PHEMAsp)] were characterised by swelling studies, Fourier transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM). The monolithic columns were used for IgG adsorption/desorption from aqueous solutions and human plasma. The IgG adsorption depended on the buffer type, and the maximum IgG adsorption from aqueous solution in phosphate buffer was 0.085 mg/g at pH 6.0. The monolithic columns allowed for one-step IgG purification with a negligible capacity decrease after ten adsorption-desorption cycles. Copyright © 2013 Elsevier B.V. All rights reserved.

  20. Recovery and purification of ethylene

    Science.gov (United States)

    Reyneke, Rian [Katy, TX; Foral, Michael J [Aurora, IL; Lee, Guang-Chung [Houston, TX; Eng, Wayne W. Y. [League City, TX; Sinclair, Iain [Warrington, GB; Lodgson, Jeffery S [Naperville, IL

    2008-10-21

    A process for the recovery and purification of ethylene and optionally propylene from a stream containing lighter and heavier components that employs an ethylene distributor column and a partially thermally coupled distributed distillation system.

  1. [Studies on purification of total glycosides of paeony (TGP) from Paeonia lactiflora by ethanol gradient combined with resin processing].

    Science.gov (United States)

    Shu, Xin-Ying; Meng, Xian-Sheng; Pan, Ying; Han, Ling; Bao, Yong-Rui; Guo, Xiao-Rui

    2010-11-01

    To study the purification technology of TGP from Paeonia lactiflora by ethanol gradient combined with resin processing and determine the optimum technological conditions and parameters. Using orthogonal test design to investigate the effect of ethanol gradient treatment on the content of TGP. Moreover, from the static and dynamic adsorption nine types of macroporous adsorption resin were evaluated to select the best resin type and the optimum separation and purification conditions. The best technology of Paeonia lactiflora ethanol precipitation was concentration of 1 g crude drug/mL precipitated by 95% ethanol to 90% concentration and then frozen for 10 h. HPD300 resin was the optimal model for the separation and purification of TGP from Paeonia lactiflora, with 5BV of 50% ethanol eluenting and the ratio of herb to resin was 2:1 . This technology is suitable and advanced for industry production and it is simple and convenient, rapid, accurate, etc.

  2. Interfacial adsorption of insulin - Conformational changes and reversibility of adsorption

    NARCIS (Netherlands)

    Mollmann, SH; Jorgensen, L; Bukrinsky, JT; Elofsson, U; Norde, W; Frokjaer, S

    The adsorption of human insulin to Teflon particles was studied with respect to conformational changes and the reversibility of adsorption was examined by total internal reflection fluorescence (TIRF). Adsorption isotherms for the adsorption of human insulin indicated high affinity adsorption, even

  3. Removal of heavy metals and pollutants by membrane adsorption techniques

    Science.gov (United States)

    Khulbe, K. C.; Matsuura, T.

    2018-03-01

    Application of polymeric membranes for the adsorption of hazardous pollutants may lead to the development of next-generation reusable and portable water purification appliances. Membranes for membrane adsorption (MA) have the dual function of membrane filtration and adsorption to be very effective to remove trace amounts of pollutants such as cationic heavy metals, anionic phosphates and nitrates. In this review article, recent progresses in the development of MA membranes are surveyed. In addition, recent progresses in the development of advanced adsorbents such as nanoparticles are summarized, since they are potentially useful as fillers in the host membrane to enhance its performance. The future directions of R&D in this field are also shown in the conclusion section.

  4. Simplified local density model for adsorption over large pressure ranges

    International Nuclear Information System (INIS)

    Rangarajan, B.; Lira, C.T.; Subramanian, R.

    1995-01-01

    Physical adsorption of high-pressure fluids onto solids is of interest in the transportation and storage of fuel and radioactive gases; the separation and purification of lower hydrocarbons; solid-phase extractions; adsorbent regenerations using supercritical fluids; supercritical fluid chromatography; and critical point drying. A mean-field model is developed that superimposes the fluid-solid potential on a fluid equation of state to predict adsorption on a flat wall from vapor, liquid, and supercritical phases. A van der Waals-type equation of state is used to represent the fluid phase, and is simplified with a local density approximation for calculating the configurational energy of the inhomogeneous fluid. The simplified local density approximation makes the model tractable for routine calculations over wide pressure ranges. The model is capable of prediction of Type 2 and 3 subcritical isotherms for adsorption on a flat wall, and shows the characteristic cusplike behavior and crossovers seen experimentally near the fluid critical point

  5. Topotactic growth, selective adsorption, and adsorption-driven photocatalysis of protonated layered titanate nanosheets.

    Science.gov (United States)

    Wu, Qili; Yang, Xianfeng; Liu, Jia; Nie, Xin; Huang, Yongliang; Wen, Yuping; Khan, Javid; Khan, Wasim U; Wu, Mingmei; An, Taicheng

    2014-10-22

    Layered titanates with selective adsorption ability and adsorption-driven photocatalytic property can be quite attractive due to their potential applications in water purification. In this work, lepidocrocite-like layered protonated titanate (H2Ti2O5·H2O, denoted as HTO) nanosheets were successfully synthesized by an ion-exchange process. It turns out that this layered structure displays an abundant and selective adsorption toward the fluoroquinolone pharmaceutical compared with some large dye molecules due to a size selectivity of the interlayer spacing of HTO and the molecular horizontal size, as well as their electrostatic interaction. The uptake ability of HTO could be readily controlled through adjusting the pH values of adsorbate solution, and the maximum uptake capacity was achieved at the pH value of about 5.5 for ciprofloxacin (CIP) and 6.5 for moxifloxacin (MOX). The adsorption amount of smaller nalidixic acid (NAL) showed an increasing tendency as the pH value decreased. Moreover, the two-dimensional layered crystal structure also permits such HTO nanosheets to have a large percentage of (010) faces exposed, which is considerably provided by the interlayer surfaces of these nanosheets. The (010) surface has a similar Ti and O atomic arrangement as to the highly reactive anatase TiO2(001) one. Due to these specific characteristics, these HTO nanosheets show excellent photocatalytic activity in degrading CIP under UV light irradiation as well as possess a superior adsorption ability to remove CIP from aqueous solution selectively and efficiently. The photocatalytic reaction is believed to be mainly conducted on the active anatase (001)-like interlayer (010) surfaces of the layered structures since the as-prepared HTO performs an adsorption-driven molecular recognitive photocatalytic reaction.

  6. Review of Membranes for Helium Separation and Purification

    Directory of Open Access Journals (Sweden)

    Colin A. Scholes

    2017-02-01

    Full Text Available Membrane gas separation has potential for the recovery and purification of helium, because the majority of membranes have selectivity for helium. This review reports on the current state of the research and patent literature for membranes undertaking helium separation. This includes direct recovery from natural gas, as an ancillary stage in natural gas processing, as well as niche applications where helium recycling has potential. A review of the available polymeric and inorganic membranes for helium separation is provided. Commercial gas separation membranes in comparable gas industries are discussed in terms of their potential in helium separation. Also presented are the various membrane process designs patented for the recovery and purification of helium from various sources, as these demonstrate that it is viable to separate helium through currently available polymeric membranes. This review places a particular focus on those processes where membranes are combined in series with another separation technology, commonly pressure swing adsorption. These combined processes have the most potential for membranes to produce a high purity helium product. The review demonstrates that membrane gas separation is technically feasible for helium recovery and purification, though membranes are currently only applied in niche applications focused on reusing helium rather than separation from natural sources.

  7. Intensification of oily waste waters purification by means of liquid atomization

    Science.gov (United States)

    Eskin, A. A.; Tkach, N. S.; Kim, M. I.; Zakharov, G. A.

    2017-10-01

    In this research, a possibility of using liquid atomization for improving the efficiency of purification of wastewater by different methods has been studied. By the introduced method and an experimental setup for wastewater purification, saturation rate increases with its purification by means of dissolved air flotation. Liquid atomization under excess pressure allows to gain a large interfacial area between the saturated liquid and air, which may increase the rate of purified liquid saturation almost twice, compared to the existing methods of saturation. Current disadvantages of liquid atomization used for intensification of wastewater purification include high energy cost and secondary emulsion of polluting agents. It is also known that by means of liquid atomization a process of ozonizing can be intensified. Large contact surface between the purified liquid and ozone-air mixture increases the oxidizing efficiency, which allows to diminish ozone discharge. Liquid atomization may be used for purification of wastewaters by ultraviolet radiation. Small drops of liquid will be proportionally treated by ultraviolet, which makes it possible to do purification even of turbid wastewaters. High-speed liquid motion will prevent the pollution of quartz tubes of ultraviolet lamps.

  8. Adsorption. What else?

    OpenAIRE

    Rodrigues, Alirio E.

    2012-01-01

    [EN] Chemical Engineering today combines Molecular and Materials Engineerig and Process and Product Engineering (ChE=M2P2). Cyclic adsorptive processes (Simulated Moving Bed –SMB and Pressure Swing Adsorption-PSA) will be discussed for “old” and “new” applications making use of “old” and “new” (MOFs) adsorbent materials. After revisiting my memory as PhD student and the First Brazilian Adsorption meeting I will review the basic concepts involved in adsorption processes and then...

  9. [Treatment of organic waste gas by adsorption rotor].

    Science.gov (United States)

    Zhu, Run-Ye; Zheng, Liang-Wei; Mao, Yu-Bo; Wang, Jia-De

    2013-12-01

    The adsorption rotor is applicable to treating organic waste gases with low concentration and high air volume. The performance of adsorption rotor for purifying organic waste gases was investigated in this paper. Toluene was selected as the simulative gaseous pollutant and the adsorption rotor was packed with honeycomb modified 13X molecular sieves (M-13X). Experimental results of the fixed adsorption and the rotor adsorption were analyzed and compared. The results indicated that some information on the fixed adsorption was useful for the rotor adsorption. Integrating the characteristics of the adsorbents, waste gases and the structures of the rotor adsorption, the formulas on optimal rotor speed and cycle removal efficiency of the adsorption rotor were deduced, based on the mass and heat balances of the adsorbing process. The numerical results were in good agreement with the experimental data, which meant that the formulas on optimal rotor speed and cycle removal efficiency could be effectively applied in design and operation of the adsorption rotor.

  10. State-of-the-art technocology in blood purification at present

    Directory of Open Access Journals (Sweden)

    Zhi-hong LIU

    2011-02-01

    Full Text Available Objective To review the recent advancement in clinical practices and studies on blood purification techniques,and to provide a guide for further studies on its application in military medicine.Methods Literature published in recent five years limited to blood purification field either in English or Chinese were retrieved by searching PubMed and CHKD.Analysis and summary were performed based on the literature.Results The advancements in blood purification in recent five years could be categorized into four fields,i.e.hemodialysis(HD,peritoneal dialysis(PD,continuous renal replacement therapy(CRRT,and adsorption therapy.The development in HD was aimed at promoting the ability of removal of toxic elements producing uremia and online monitor techniques,and PD was aimed at improvement of patients’ general condition and intervention to reduce the risk factors affecting long-term outcomes,and preparation of new PD solutions to improve the efficacy of PD.In regard to CRRT,the current progress had been focused on initiation time,dose and proposal of new hypothesis for high-volume hemofiltration(HVHF application.Adsorption therapy was another choice of blood purification.Domestic military medicine progress in blood purification in our armed forces was focused on techniques that could be used in treatment of casualties in war,including the basic and clinical study of extracorporeal circuit intervention(ECI for treatment of critically ill patients,problems arising from anticoagulation in ECI for patients with trauma,chemical agents poisoning,and adsorption technique.Conclusions Recently,the main advancement of blood purification technique is combined application of series techniques such as dialysis,hemofiltration,adsorption,and plasma exchange in treatment of critically ill patients.Studies on blood purification in domestic military medicine should be updated continuously to follow closely to the latest achievement in world,and translate these latest

  11. Use of a palladium catalyst in the purification of coke oven gas

    Energy Technology Data Exchange (ETDEWEB)

    Gotoh, T; Nakamura, M; Hirooka, N

    1986-01-01

    In the production of hydrogen from coke oven gas (COG) by pressure swing adsorption (PSA), various impurities in the COG have to be removed prior to the PSA. The stages of this purification are as follows: 1) removal of polymerizable substances such as NO gum by compressing the COG and then feeding it through a hot bottle and cooler arrangement; 2) removal of BTX in a scrubber; 3) removal of naphthalene and mist by means of chillers and filters; 4) removal of oxygen in a special reactor using a Pd catalyst. These various purification treatments have enabled the PSA plant to operate smoothly for 3.5 years. The authors report the results of pilot plant tests, and compare the results obtained using alternative purification techniques. 4 figures, 5 tables.

  12. Water Purification Systems

    Science.gov (United States)

    1994-01-01

    Clearwater Pool Technologies employs NASA-developed silver/copper ionization to purify turtle and dolphin tanks, cooling towers, spas, water recycling systems, etc. The pool purifier consists of a microcomputer to monitor water conditions, a pair of metallic electrodes, and a rheostat controller. Ions are generated by passing a low voltage current through the electrodes; the silver ions kill the bacteria, and the copper ions kill algae. This technology has found broad application because it offers an alternative to chemical disinfectants. It was originally developed to purify water on Apollo spacecraft. Caribbean Clear has been using NASA's silver ionization technology for water purification for more than a decade. Two new products incorporate advancements of the basic technology. One is the AquaKing, a system designed for areas with no source of acceptable drinking water. Another is the Caribbean Clear Controller, designed for commercial pool and water park applications where sanitizing is combined with feedback control of pH and an oxidizer, chlorine or bromine. The technology was originally developed to purify water on Apollo spacecraft.

  13. Liquid metal purification device

    International Nuclear Information System (INIS)

    Sakai, Takao; Shimoyashiki, Shigehiro.

    1992-01-01

    The device of the present invention concerns a liquid metal purification device for removing and purifying impuries in liquid metal sodium used as coolants of an FBR type reactor. A vessel having a group of pipes made of hydrogen permeable metal at the inside thereof is disposed to the inlet pipeline of a cold trap. The group of hydrogen permeable metal pipes is connected to an exhaust pipe and a vacuum pump, so that the inside of the pipes is exhausted. Liquid metal sodium branched from the main pipeline of a coolant system passes through the outer side of the group of the hydrogen permeable metal pipes. In this cae, hydrogen contained as impurities in the liquid metal sodium diffuses and permeates the hydrogen permeation metal pipes and enters into the pipe group and is discharged out of the system by the vacuum pump. This can mitigate the hydrogen removing burden of the cold trap, to extend the device life time. (I.N.)

  14. Probing Gas Adsorption in Zeolites by Variable-Temperature IR Spectroscopy: An Overview of Current Research.

    Science.gov (United States)

    Garrone, Edoardo; Delgado, Montserrat R; Bonelli, Barbara; Arean, Carlos O

    2017-09-15

    The current state of the art in the application of variable-temperature IR (VTIR) spectroscopy to the study of (i) adsorption sites in zeolites, including dual cation sites; (ii) the structure of adsorption complexes and (iii) gas-solid interaction energy is reviewed. The main focus is placed on the potential use of zeolites for gas separation, purification and transport, but possible extension to the field of heterogeneous catalysis is also envisaged. A critical comparison with classical IR spectroscopy and adsorption calorimetry shows that the main merits of VTIR spectroscopy are (i) its ability to provide simultaneously the spectroscopic signature of the adsorption complex and the standard enthalpy change involved in the adsorption process; and (ii) the enhanced potential of VTIR to be site specific in favorable cases.

  15. [Studies on the process of Herba Clinopodii saponins purified with macroporous adsorption resin].

    Science.gov (United States)

    Zhang, Yi; Yan, Dan; Han, Yumei

    2005-10-01

    To study the technological parameters of the purification process of saponins with macroporous adsorption resin. The adsorptive characteristics and elutive parameters of the process were studied by taking the elutive and purified ratio of saponins as markers. 11.4 ml of the extraction of Herba Clinopodii (crude drugs 0.2 g/ml) was purified with a column of macroporous adsorption resin (phi15 mm x H90 mm, dry weight 2.5 g) and washed with 3BV of distilled water, then eluted with 3BV of 30% ethanol and 3BV of 70% ethanol. Most of saponins were collected in the 70% ethanol. With macroporous adsorption resin adsorbing and purifying,the elutive ratio of saponins is 86.8% and the purity reaches 153.2%. So this process of applying macroporous adsorption resin to adsorb and purify Saponins is feasible.

  16. Purification of yeast alcohol dehydrogenase by using immobilized metal affinity cryogels

    Energy Technology Data Exchange (ETDEWEB)

    Akduman, Begüm [Chemistry Department, Adnan Menderes University, Aydın (Turkey); Uygun, Murat [Koçarlı Vocational and Training School, Adnan Menderes University, Aydın (Turkey); Uygun, Deniz Aktaş, E-mail: daktas@adu.edu.tr [Chemistry Department, Adnan Menderes University, Aydın (Turkey); Akgöl, Sinan [Biochemistry Department, Ege University, İzmir (Turkey); Denizli, Adil [Chemistry Department, Hacettepe University, Ankara (Turkey)

    2013-12-01

    In this study, poly(2-hydroxyethyl methacrylate–glycidylmethacrylate) [poly(HEMA–GMA)] cryogels were prepared by radical cryocopolymerization of HEMA with GMA as a functional comonomer and N,N′-methylene-bisacrylamide (MBAAm) as a crosslinker. Iminodiacetic acid (IDA) functional groups were attached via ring opening of the epoxy group on the poly(HEMA–GMA) cryogels and then Zn(II) ions were chelated with these structures. Characterization of cryogels was performed by FTIR, SEM, EDX and swelling studies. These cryogels have interconnected pores of 30–50 μm size. The equilibrium swelling degree of Zn(II) chelated poly(HEMA–GMA)-IDA cryogels was approximately 600%. Zn(II) chelated poly(HEMA–GMA)-IDA cryogels were used in the adsorption of alcohol dehydrogenase from aqueous solutions and adsorption was performed in continuous system. The effects of pH, alcohol dehydrogenase concentration, temperature, and flow rate on adsorption were investigated. The maximum amount of alcohol dehydrogenase adsorption was determined to be 9.94 mg/g cryogel at 1.0 mg/mL alcohol dehydrogenase concentration and in acetate buffer at pH 5.0 with a flow rate of 0.5 mL/min. Desorption of adsorbed alcohol dehydrogenase was carried out by using 1.0 M NaCI at pH 8.0 phosphate buffer and desorption yield was found to be 93.5%. Additionally, these cryogels were used for purification of alcohol dehydrogenase from yeast with a single-step. The purity of desorbed alcohol dehydrogenase was shown by silver-stained SDS–PAGE. This purification process can successfully be used for the purification of alcohol dehydrogenase from unclarified yeast homogenates and this work is the first report about the usage of the cryogels for purification of alcohol dehydrogenase. - Highlights: • Poly(HEMA–GMA) cryogels were synthesized by radical cryocopolymerization technique. • Prepared cryogels were functionalized with IDA, then Zn(II) ions were chelated to the cryogel. • Zn(II) chelated poly

  17. Purification of yeast alcohol dehydrogenase by using immobilized metal affinity cryogels

    International Nuclear Information System (INIS)

    Akduman, Begüm; Uygun, Murat; Uygun, Deniz Aktaş; Akgöl, Sinan; Denizli, Adil

    2013-01-01

    In this study, poly(2-hydroxyethyl methacrylate–glycidylmethacrylate) [poly(HEMA–GMA)] cryogels were prepared by radical cryocopolymerization of HEMA with GMA as a functional comonomer and N,N′-methylene-bisacrylamide (MBAAm) as a crosslinker. Iminodiacetic acid (IDA) functional groups were attached via ring opening of the epoxy group on the poly(HEMA–GMA) cryogels and then Zn(II) ions were chelated with these structures. Characterization of cryogels was performed by FTIR, SEM, EDX and swelling studies. These cryogels have interconnected pores of 30–50 μm size. The equilibrium swelling degree of Zn(II) chelated poly(HEMA–GMA)-IDA cryogels was approximately 600%. Zn(II) chelated poly(HEMA–GMA)-IDA cryogels were used in the adsorption of alcohol dehydrogenase from aqueous solutions and adsorption was performed in continuous system. The effects of pH, alcohol dehydrogenase concentration, temperature, and flow rate on adsorption were investigated. The maximum amount of alcohol dehydrogenase adsorption was determined to be 9.94 mg/g cryogel at 1.0 mg/mL alcohol dehydrogenase concentration and in acetate buffer at pH 5.0 with a flow rate of 0.5 mL/min. Desorption of adsorbed alcohol dehydrogenase was carried out by using 1.0 M NaCI at pH 8.0 phosphate buffer and desorption yield was found to be 93.5%. Additionally, these cryogels were used for purification of alcohol dehydrogenase from yeast with a single-step. The purity of desorbed alcohol dehydrogenase was shown by silver-stained SDS–PAGE. This purification process can successfully be used for the purification of alcohol dehydrogenase from unclarified yeast homogenates and this work is the first report about the usage of the cryogels for purification of alcohol dehydrogenase. - Highlights: • Poly(HEMA–GMA) cryogels were synthesized by radical cryocopolymerization technique. • Prepared cryogels were functionalized with IDA, then Zn(II) ions were chelated to the cryogel. • Zn(II) chelated poly

  18. A Simple Adsorption Experiment

    Science.gov (United States)

    Guirado, Gonzalo; Ayllon, Jose A.

    2011-01-01

    The study of adsorption phenomenon is one of the most relevant and traditional physical chemistry experiments performed by chemistry undergraduate students in laboratory courses. In this article, we describe an easy, inexpensive, and straightforward way to experimentally determine adsorption isotherms using pieces of filter paper as the adsorbent…

  19. Rapid purification of recombinant histones.

    Science.gov (United States)

    Klinker, Henrike; Haas, Caroline; Harrer, Nadine; Becker, Peter B; Mueller-Planitz, Felix

    2014-01-01

    The development of methods to assemble nucleosomes from recombinant histones decades ago has transformed chromatin research. Nevertheless, nucleosome reconstitution remains time consuming to this day, not least because the four individual histones must be purified first. Here, we present a streamlined purification protocol of recombinant histones from bacteria. We termed this method "rapid histone purification" (RHP) as it circumvents isolation of inclusion bodies and thereby cuts out the most time-consuming step of traditional purification protocols. Instead of inclusion body isolation, whole cell extracts are prepared under strongly denaturing conditions that directly solubilize inclusion bodies. By ion exchange chromatography, the histones are purified from the extracts. The protocol has been successfully applied to all four canonical Drosophila and human histones. RHP histones and histones that were purified from isolated inclusion bodies had similar purities. The different purification strategies also did not impact the quality of octamers reconstituted from these histones. We expect that the RHP protocol can be readily applied to the purification of canonical histones from other species as well as the numerous histone variants.

  20. Radioactive nuclide adsorption

    International Nuclear Information System (INIS)

    Fukushima, Kimichika.

    1982-01-01

    Purpose: To improve the efficiency of a radioactive nuclide adsorption device by applying a nickel plating on a nickel plate to render the surface active. Constitution: A capturing device for radioactive nuclide such as manganese 54, cobalt 60, 58 and the like is disposed to the inside of a pipeway provided on the upper portion of fuel assemblies through which liquid sodium as the coolant for LMFBR type reactor is passed. The device comprises a cylindrical adsorption body and spacers. The adsorption body is made of nickel and applied with a nickel plating on the surface thereof. The surface of the adsorption body is unevened to result in disturbance in the coolant and thereby improve the adsorptive efficiency. (Kawakami, Y.)

  1. New concept of gas purification by electron attachment

    International Nuclear Information System (INIS)

    Tamon, Hajime; Mizota, Hirotoshi; Sano, Noriaki; Schulze, S.; Okazaki, Morio

    1995-01-01

    Recently, the public has become interested in the following types of gas purification: (1) removal of indoor air pollutants; (2) complete removal of dioxin from incineration plants; (3) complete removal of radioactive iodine compounds; (4) simultaneous removal of NOx and SOx in exhaust gases from cogeneration plants; (5) removal and decomposition of halocarbons; (6) ultrahigh purification of gas sued for semiconductor industries. A new concept of gas purification by electron attachment is proposed. Low-energy electrons generated in a corona-discharge reactor are captured by electronegative impurities, producing negative ions. The ions drift to the anode in the electric field and are removed at the anode of the reactor. Two types of reactors were used to remove the negative ions: a deposition-type reactor, which deposits negative ions at the anode surface; a sweep-out-type reactor, which sweeps out enriched electronegative impurities through the porous anode. Removals of dilute sulfur compounds, oxygen and iodine from nitrogen were conducted to verify the concept of gas purification. Simulation models were used to estimate removal efficiencies of these compounds, by taking into account electron attachment, and experimental constants of the models were determined. The removal efficiency correlated by the models agreed well with the experimental one

  2. Possibility of using adsorption refrigeration unit in district heating network

    Science.gov (United States)

    Grzebielec, Andrzej; Rusowicz, Artur; Jaworski, Maciej; Laskowski, Rafał

    2015-09-01

    Adsorption refrigeration systems are able to work with heat sources of temperature starting with 50 °C. The aim of the article is to determine whether in terms of technical and economic issues adsorption refrigeration equipment can work as elements that produce cold using hot water from the district heating network. For this purpose, examined was the work of the adsorption air conditioning equipment cooperating with drycooler, and the opportunities offered by the district heating network in Warsaw during the summer. It turns out that the efficiency of the adsorption device from the economic perspective is not sufficient for production of cold even during the transitional period. The main problem is not the low temperature of the water supply, but the large difference between the coefficients of performance, COPs, of adsorption device and a traditional compressor air conditioning unit. When outside air temperature is 25 °C, the COP of the compressor type reaches a value of 4.49, whereas that of the adsorption device in the same conditions is 0.14. The ratio of the COPs is 32. At the same time ratio between the price of 1 kWh of electric power and 1 kWh of heat is only 2.85. Adsorption refrigeration equipment to be able to compete with compressor devices, should feature COPads efficiency to be greater than 1.52. At such a low driving temperature and even changing the drycooler into the evaporative cooler it is not currently possible to achieve.

  3. RELIGION AND PURIFICATION OF SOUL

    Directory of Open Access Journals (Sweden)

    Azam Khodashenas Pelko

    2010-11-01

    Full Text Available The Jainism emphasizes three major teachings about the purification of the soul (jiva, Ahimsa, Aparigrapha and anekantwad. Jainism, The focus of this religion has been purification of the soul by means of right conduct, right faith and right knowledge. The ultimate goal of Hinduism is Moksha or liberation (total freedom. In Hinduism, purification of the soul is a goal that one must work to attain. The Buddhism is the science of pursuing the aim of making the human mind perfect, and of purifying the human soul. The knowledge of purifying of the soul and softening of the hearts is as essential for human. They having the correct motivations means purifying our souls from hypocrisy, caprice, and heedlessness. The primary goal of Taoism may be described as the mystical intuition of the Tao, which is the way, the undivided unity, and the ultimate Reality. According to the Christianity access to truth cannot be conceived without purity of the soul

  4. Antimicrobial Peptide Production and Purification.

    Science.gov (United States)

    Suda, Srinivas; Field, Des; Barron, Niall

    2017-01-01

    Antimicrobial peptides (AMPs) are natural defense compounds which are synthesized as ribosomal gene-encoded pre-peptides and produced by all living organisms. AMPs are small peptides, usually cationic and typically have hydrophobic residues which interact with cell membranes and have either a narrow or broad spectrum of biological activity. AMPs are isolated from the natural host or heterologously expressed in other hosts such as Escherichia coli. The proto-typical lantibiotic Nisin is a widely used AMP that is produced by the food-grade organism Lactococcus lactis. Although AMP production and purification procedures require optimization for individual AMPs, the Nisin production and purification protocol outlined in this chapter can be easily applied with minor modifications for the production and purification of other lantibiotics or AMPs. While Nisin is produced and secreted into the supernatant, steps to recover Nisin from both cell-free supernatant and cell pellet are outlined in detail.

  5. The various sodium purification techniques

    International Nuclear Information System (INIS)

    Courouau, J.L.; Masse, F.; Rodriguez, G.; Latge, C.; Redon, B.

    1997-01-01

    In the framework of sodium waste treatment, the sodium purification phase plays an essential role in the chain of operations leading to the transformation of the active sodium, considered as waste, into a stable sodium salt. The objectives of the purification operations are: To keep a low impurity level, particularly a low concentration in oxygen and hydrogen, in order to allow its transfer to a processing plant, and in order to avoid risks of plugging and/or corrosion in sodium facilities; To reduce the sodium activity in order to limit the dose rate close to the facilities, and in order to reduce the activity of the liquid and gaseous effluents. After a recall of the different kind of impurities that can be present in sodium, and of the different purification methods that could be associated with, the following points are highlighted: (i) Oxygen and hydrogen purification needs, and presentation of some selection criteria for a purification unit adapted to a sodium processing plant, as well as 2 cold trap concepts that are in accordance with these criteria: PSICHOS and PIRAMIDE. (ii) Tritium reduction in a bulk of liquid sodium by swamping, isotopic exchange, or permeation throughout a membrane. (iii) Caesium trapping on carbonaceous matrix. The main matrices used at present are R.V.C. (Reticulated Vitreous Carbon) and Actitex/Pica products. Tests in the laboratory and on an experimental device have demonstrated the performances of these materials, which are able to reduce sodium activity in Cs 134 and Cs 137 to very low values. The sodium purification processes as regards to the hydrogen, oxygen and caesium, that are aimed at facilitating the subsequent treatment of sodium, are therefore mastered operations. Regarding the operations associated with the reduction of the tritium activity, the methods are in the process of being qualified, or to be qualified. (author)

  6. Partial Purification and Characterization of Extracellular Protease ...

    African Journals Online (AJOL)

    Nigerian Journal of Basic and Applied Sciences ... Purification of the enzyme by gel filtration chromatography on Sephadex G75 following ammonium sulphate precipitation gave 2.26 fold increase in purification with specific activity of 46.13 units/mg protein while purification on Sephadex CM50 resulted in reduced ...

  7. Purification of Water by Aquatic Plants

    OpenAIRE

    Morimitsu, Katsuhito; Kawahigashi, Tatsuo

    2013-01-01

    [Abstract] Water quality purification of many water systems including those occurring in rivers depends to a great degree on water quality purification activities of aquatic plants and microbes. This paper presents a discussion of results, based on laboratory experiments, of purification by aquatic plants.

  8. Study on Shale Adsorption Equation Based on Monolayer Adsorption, Multilayer Adsorption, and Capillary Condensation

    Directory of Open Access Journals (Sweden)

    Qing Chen

    2017-01-01

    Full Text Available Shale gas is an effective gas resource all over the world. The evaluation of pore structure plays a critical role in exploring shale gas efficiently. Nitrogen adsorption experiment is one of the significant approaches to analyze pore size structure of shale. Shale is extremely heterogeneous due to component diversity and structure complexity. Therefore, adsorption isotherms for homogeneous adsorbents and empirical isotherms may not apply to shale. The shape of adsorption-desorption curve indicates that nitrogen adsorption on shale includes monolayer adsorption, multilayer adsorption, and capillary condensation. Usually, Langmuir isotherm is a monolayer adsorption model for ideal interfaces; BET (Brunauer, Emmett, Teller adsorption isotherm is a multilayer adsorption model based on specific assumptions; Freundlich isotherm is an empirical equation widely applied in liquid phase adsorption. In this study, a new nitrogen adsorption isotherm is applied to simultaneously depict monolayer adsorption, multilayer adsorption, and capillary condensation, which provides more real and accurate representation of nitrogen adsorption on shale. In addition, parameters are discussed in relation to heat of adsorption which is relevant to the shape of the adsorption isotherm curve. The curve fitting results indicate that our new nitrogen adsorption isotherm can appropriately describe the whole process of nitrogen adsorption on shale.

  9. Materials for Molybdenum 99 purification

    International Nuclear Information System (INIS)

    Wilkinson, M. Victoria; Mondino, Angel V.; Manzini, Alberto C.

    2003-01-01

    The National Atomic Energy Commission (CNEA) produces fission Mo 99, an isotope of wide use in nuclear medicine. In order to simplify the current Mo 99 production process, to shorten its duration and reduce impurities in the final product, alternative methods for purification steps were looked for. In this work a variety of new materials for the purification columns were designed, all of them with carbon. These materials were studied and a material which contribute with the best results for molybdenum retention, was selected. The preparation procedure and the working conditions were determined. (author)

  10. ADSORPTION OF GIBBERELLIC ACID ONTO NATURAL KAOLIN FROM TATAKAN, SOUTH KALIMANTAN

    Directory of Open Access Journals (Sweden)

    Sunardi Sunardi

    2010-06-01

    Full Text Available Adsorption of gibberellic acid (GA3 onto raw and purified kaolin from Tatakan, South Kalimantan was investigated in this study. Purification process was done by sedimentation to obtain relative pure kaolinite. Raw and purified kaolin samples were characterized by Fourier transformed infrared (FTIR spectroscopy and X-ray diffractometer (XRD. The adsorption process was carried out in a batch system and the effect of pH, contact time and GA3 concentration were experimentally studied to evaluate the adsorption capacity. The amount of GA3 adsorbed was determined by UV spectrophotometer. The result showed that the raw kaolin from South Kalimantan consist of 53.36% kaolinite, 29.47% halloysite, 4.47% chlorite, 11.32% quartz and 1.38% christobalite and the purified kaolin consist of 73.03% kaolinite, 22.6% halloysite, 0.77% chlorite, 1.37% quartz and 2.23% christobalite Adsorption experimental indicate that the optimum adsorption took place at pH 7 and contact time for 4 h. Adsorption of GA3 was described by the Langmuir adsorption isotherm model with adsorption capacity of 8.91 mg/g on raw kaolin and 10.38 mg/g on purified kaolin.   Keywords: kaolin, gibberellic acid, adsorption

  11. Prevention of air pollution: guidebook of the French techniques of dedusting and purification of gases and smokes in the industry; Prevention de la pollution de l'air: guide des techniques francaises de depoussierage et d'epuration des gaz et fumees dans l'industrie

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-07-01

    This new edition favours the multi-pollutants approach and integrates the improvements made in the European standardization of emission measurements. It contributes to the diffusion of the French techniques in the domain of gases dedusting and purification. (J.S.)

  12. adsorption, eosin, humic, peat

    OpenAIRE

    anshar, andi muhammad

    2015-01-01

    Eosin is one of the dyes commonly used in the industry and has the potential to cause pollution of the water environment. The Eosin pollution treatment methods used in this study was the adsorption method using humin fraction obtained from the peat land comes from Kalimantan. From the research data showed that the adsorption of eosin in humin result of washing with HCl / HF optimum at pH 4 and a contact time of 60 minutes with the adsorption-order rate was 8,4 x 10-3 min-1

  13. Competitive Protein Adsorption - Multilayer Adsorption and Surface Induced Protein Aggregation

    DEFF Research Database (Denmark)

    Holmberg, Maria; Hou, Xiaolin

    2009-01-01

    In this study, competitive adsorption of albumin and IgG (immunoglobulin G) from human serum solutions and protein mixtures onto polymer surfaces is studied by means of radioactive labeling. By using two different radiolabels (125I and 131I), albumin and IgG adsorption to polymer surfaces...... is monitored simultaneously and the influence from the presence of other human serum proteins on albumin and IgG adsorption, as well as their mutual influence during adsorption processes, is investigated. Exploring protein adsorption by combining analysis of competitive adsorption from complex solutions...... of high concentration with investigation of single protein adsorption and interdependent adsorption between two specific proteins enables us to map protein adsorption sequences during competitive protein adsorption. Our study shows that proteins can adsorb in a multilayer fashion onto the polymer surfaces...

  14. Experimental study and simulation of phosphorus purification effects of bioretention systems on urban surface runoff.

    Directory of Open Access Journals (Sweden)

    Jiake Li

    Full Text Available Excessive phosphorus (P contributes to eutrophication by degrading water quality and limiting human use of water resources. Identifying economic and convenient methods to control soluble reactive phosphorus (SRP pollution in urban runoff is the key point of rainwater management strategies. Through three series of different tests involving influencing factors, continuous operation and intermittent operation, this study explored the purification effects of bioretention tanks under different experimental conditions, it included nine intermittent tests, single field continuous test with three groups of different fillers (Fly ash mixed with sand, Blast furnace slag, and Soil, and eight intermittent tests with single filler (Blast furnace slag mixed with sand. Among the three filler combinations studied, the filler with fly ash mixed with sand achieved the best pollution reduction efficiency. The setting of the submerged zone exerted minimal influence on the P removal of the three filler combinations. An extension of the dry period slightly promoted the P purification effect. The combination of fly ash mixed with sand demonstrated a positive purification effect on SRP during short- or long-term simulated rainfall duration. Blast furnace slag also presented a positive purification effect in the short term, although its continuous purification effect on SRP was poor in the long term. The purification abilities of soil in the short and long terms were weak. Under intermittent operations across different seasons, SRP removal was unstable, and effluent concentration processes were different. The purification effect of the bioretention system on SRP was predicted through partial least squares regression (PLS modeling analysis. The event mean concentration removal of SRP was positively related to the adsorption capacity of filler and rainfall interval time and negatively related to submerged zones, influent concentration and volume.

  15. New apparatus for measuring radon adsorption on solid adsorbents

    International Nuclear Information System (INIS)

    Hassan, N.M.; Hines, A.L.; Ghosh, T.K.; Loyalka, S.K.; Ketring, A.R.

    1991-01-01

    A new experimental system was designed to measure radon uptake by solid adsorbents from air or other carrier gases/vapors. The total amount of radon adsorbed corresponding to a specific gas-phase concentration was determined by simultaneously measuring the solid-phase and gas-phase concentrations. The system was used to measure radon adsorption isotherms on BPL activated carbon at 288, 298, and 308 K and on silica gel and molecular sieve 13X at 298 K. The isotherms were of type III according to Brunauer's classification. The heat of adsorption data indicated that the BPL activated carbon provided a heterogeneous surface for radon adsorption. The equilibrium data were correlated by the Freundlich equation. In this paper the possible adsorption mechanism and the use of the adsorption isotherms to measure indoor radon concentrations are discussed

  16. INVESTIGATIONS ON BIOCHEMICAL PURIFICATION OF GROUND WATER FROM HYDROGEN SULFIDE

    Directory of Open Access Journals (Sweden)

    Yu. P. Sedlukho

    2015-01-01

    Full Text Available The paper considers problems and features of biochemical removal of hydrogen sulfide from ground water. The analysis of existing methods for purification of ground water from hydrogen sulfide has been given in the paper. The paper has established shortcomings of physical and chemical purification of ground water. While using aeration methods for removal of hydrogen sulfide formation of colloidal sulfur that gives muddiness and opalescence to water occurs due to partial chemical air oxidation. In addition to this violation of sulfide-carbonate equilibrium taking place in the process of aeration due to desorption of H2S and CO2, often leads to clogging of degasifier nozzles with formed CaCO3 that causes serious operational problems. Chemical methods require relatively large flow of complex reagent facilities, storage facilities and transportation costs.In terms of hydrogen sulfide ground water purification the greatest interest is given to the biochemical method. Factors deterring widespread application of the biochemical method is its insufficient previous investigation and necessity to execute special research in order to determine optimal process parameters while purifying groundwater of a particular water supply source. Biochemical methods for oxidation of sulfur compounds are based on natural biological processes that ensure natural sulfur cycle. S. Vinogradsky has established a two-stage mechanism for oxidation of hydrogen sulfide with sulfur bacteria (Beggiatoa. The first stage presupposes oxidation of hydrogen sulphide to elemental sulfur which is accumulating in the cytoplasm in the form of globules. During the second stage sulfur bacteria begin to oxidize intracellular sulfur to sulfuric acid due to shortage of hydrogen sulfide.The paper provides the results of technological tests of large-scale pilot plants for biochemical purification of groundwater from hydrogen sulfide in semi-industrial conditions. Dependences of water quality

  17. Strep-Tagged Protein Purification.

    Science.gov (United States)

    Maertens, Barbara; Spriestersbach, Anne; Kubicek, Jan; Schäfer, Frank

    2015-01-01

    The Strep-tag system can be used to purify recombinant proteins from any expression system. Here, protocols for lysis and affinity purification of Strep-tagged proteins from E. coli, baculovirus-infected insect cells, and transfected mammalian cells are given. Depending on the amount of Strep-tagged protein in the lysate, a protocol for batch binding and subsequent washing and eluting by gravity flow can be used. Agarose-based matrices with the coupled Strep-Tactin ligand are the resins of choice, with a binding capacity of up to 9 mg ml(-1). For purification of lower amounts of Strep-tagged proteins, the use of Strep-Tactin magnetic beads is suitable. In addition, Strep-tagged protein purification can also be automated using prepacked columns for FPLC or other liquid-handling chromatography instrumentation, but automated purification is not discussed in this protocol. The protocols described here can be regarded as an update of the Strep-Tag Protein Handbook (Qiagen, 2009). © 2015 Elsevier Inc. All rights reserved.

  18. Bioinspired Materials for Water Purification

    Directory of Open Access Journals (Sweden)

    Alfredo Gonzalez-Perez

    2016-06-01

    Full Text Available Water scarcity issues associated with inadequate access to clean water and sanitation is a ubiquitous problem occurring globally. Addressing future challenges will require a combination of new technological development in water purification and environmental remediation technology with suitable conservation policies. In this scenario, new bioinspired materials will play a pivotal role in the development of more efficient and environmentally friendly solutions. The role of amphiphilic self-assembly on the fabrication of new biomimetic membranes for membrane separation like reverse osmosis is emphasized. Mesoporous support materials for semiconductor growth in the photocatalytic degradation of pollutants and new carriers for immobilization of bacteria in bioreactors are used in the removal and processing of different kind of water pollutants like heavy metals. Obstacles to improve and optimize the fabrication as well as a better understanding of their performance in small-scale and pilot purification systems need to be addressed. However, it is expected that these new biomimetic materials will find their way into the current water purification technologies to improve their purification/removal performance in a cost-effective and environmentally friendly way.

  19. Hybrid adsorptive membrane reactor

    Science.gov (United States)

    Tsotsis, Theodore T [Huntington Beach, CA; Sahimi, Muhammad [Altadena, CA; Fayyaz-Najafi, Babak [Richmond, CA; Harale, Aadesh [Los Angeles, CA; Park, Byoung-Gi [Yeosu, KR; Liu, Paul K. T. [Lafayette Hill, PA

    2011-03-01

    A hybrid adsorbent-membrane reactor in which the chemical reaction, membrane separation, and product adsorption are coupled. Also disclosed are a dual-reactor apparatus and a process using the reactor or the apparatus.

  20. Co adsorption in kaolinite

    International Nuclear Information System (INIS)

    Souza, Eliel S.; Silva, Paulo S.C.

    2017-01-01

    Adsorption of metal ions in clay minerals has been used as an alternative to water and effluents treatment. Kaolinite is a clay mineral that presents low specific surface area and exchange ion capacity. Nevertheless, structural modifications can be achieved by means of acid or thermal activation. In this paper, it was studied the surface area of kaolinite/bentonite, kaolinite/activated carbon mixtures, thermal activated kaolinite and thermal activated kaolinite/activated carbon mixture. The mixture of kaolinite/activated carbon was tested for pH, contact time, interfering ions and initial concentration effects in the cobalt adsorption. Results showed that the optimized parameters are pH 6 and contact time of 30 min. Chromium acted as a competitive ion, zinc does not appear to have affected adsorption while iron seems to have favored it. Langmuir and Freundlich isotherms indicated that the adsorption of Co in the mixture of kaolinite/activated carbon is a spontaneous process. (author)

  1. Co adsorption in kaolinite

    Energy Technology Data Exchange (ETDEWEB)

    Souza, Eliel S.; Silva, Paulo S.C., E-mail: eliel201019@hotmail.com, E-mail: pscsilva@ipen.br [Instituto de Pesquisas Energética s e Nucleares (IPEN/CNEN-SP), São Paulo, SP (Brazil)

    2017-07-01

    Adsorption of metal ions in clay minerals has been used as an alternative to water and effluents treatment. Kaolinite is a clay mineral that presents low specific surface area and exchange ion capacity. Nevertheless, structural modifications can be achieved by means of acid or thermal activation. In this paper, it was studied the surface area of kaolinite/bentonite, kaolinite/activated carbon mixtures, thermal activated kaolinite and thermal activated kaolinite/activated carbon mixture. The mixture of kaolinite/activated carbon was tested for pH, contact time, interfering ions and initial concentration effects in the cobalt adsorption. Results showed that the optimized parameters are pH 6 and contact time of 30 min. Chromium acted as a competitive ion, zinc does not appear to have affected adsorption while iron seems to have favored it. Langmuir and Freundlich isotherms indicated that the adsorption of Co in the mixture of kaolinite/activated carbon is a spontaneous process. (author)

  2. Filters for water purification from radionuclides

    International Nuclear Information System (INIS)

    Mironov, V.V.; Khaydarov, R.R.; Khaydarov, R.A.; Gapurova, O.U.

    2006-01-01

    Full text: At present purification of waste water and drinking water from radionuclides, heavy metal ions, and organic contaminants is one of the most important problems. One of widely used methods for solving this problem is the ion exchange method based on using of different types of resins and fibroid sorbents. This paper deals with new chemically modified polyester fibroid filters having satisfactory adsorption characteristics. The process of the filter production includes their treatment by acrylonitrilic emulsion for improving mechanical characteristics. An advantage of the fibroid ion-exchange sorbents over resin is in their high sorption rate, effective regeneration and small value of pressure drop of the sorbent layer for purified water. The specific surface of the fibroid sorbents is (2 - 3). 10 4 m 2 / kg, i.e. about 10 2 times greater than that of the resin (10 2 m 2 / kg). Owing to that fact the rate of the sorption process on the developed fibroid sorbents is much greater than that on the resin. The developed cation- and anion-exchange filters can be used for removing metal ions (Zn, Ni, Cu, Sb, Co, Cd, Cr, etc.) and organic compounds (M- 32 P, M- 131 I, M- 99 Mo+ 99m Tc, etc.) from water. Capacity of the cation-exchange sorbents is 0.25 meq/g (Cu 2+ ) and that of the anion - exchange is 0.45 meq/g (Cr 6+ ). The cation- and anion-exchange filters are also selective for removing radionuclides 134 , 137 Cs, 90 Sr, 60 Co and 129 I in presence of Na + , K + , Ca 2+ , Mg 2+ , Cl - ions in water at concentrations up to 500 mg/L. New developed ion-exchange sorbents have been used in drinking water filters and mini-systems for removing organic and inorganic contaminants, in the equipment for waste water purification from oil products (at atomic power stations, car-washing stations, etc), from heavy metal ions (in electronic industry, match fabrics, leather processing plants etc). (author)

  3. Structure sensitivity in adsorption

    DEFF Research Database (Denmark)

    Hammer, Bjørk; Nielsen, Ole Holm; Nørskov, Jens Kehlet

    1997-01-01

    The structure sensitivity of CO adsorption on different flat, stepped, kinked and reconstructed Pt surfaces is studied using large-scale density-functional calculations. We find an extremely strong structure sensitivity in the adsorption energy with variations up to 1 eV (or 100%) from one...... structure to the next. We propose a model to explain this behavior, and use it to discuss more generally the origin of structure sensitivity in heterogeneous catalysis....

  4. Exhaust purification with on-board ammonia production

    Science.gov (United States)

    Robel, Wade J.; Driscoll, James J.; Coleman, Gerald N.; Knox, Kevin J.

    2009-06-30

    A power source is provided for use with selective catalytic reduction systems for exhaust-gas purification. The power source includes a first cylinder group with a first air-intake passage and a first exhaust passage, and a second cylinder group with a second air-intake passage and a second exhaust passage. The second air-intake passage is fluidly isolated from the first air-intake passage. A fuel-supply device may be configured to supply fuel into the first exhaust passage, and a catalyst may be disposed downstream of the fuel-supply device to convert at least a portion of the exhaust stream in the first exhaust passage into ammonia.

  5. Adsorption of krypton from helium by low temperature charcoal

    International Nuclear Information System (INIS)

    Cooper, M.H.; Simmons, C.R.; Taylor, G.R.

    1975-01-01

    Adsorption of krypton from helium by charcoal at temperatures from -100 0 C to -140 0 C was experimentally investigated to verify adsorption system design methods and to determine effects of regeneration for the Gas Purification System of the Liquid-Metal Fast Breeder Reactor. Helium with two krypton concentrations, traced by krypton-85 at 0.0044 μCi/cm 3 , was passed through a 1/2-inch diameter, three-inch long trap packed with coconut charcoal. Breakthrough curves were measured by continuously recording the activity of the effluent gas using a sampler with a krypton-85 detection limit of about 5 x 10 -7 μCi/cm 3 . Experimental breakthrough curves with continuous feed for both concentrations and for superficial gas velocities of 5 to 28 cm/sec were closely fitted when the pore diffusion term was omitted from the Anzelius linear equilibrium adsorption model indicating that the adsorption process for this system was controlled by gas phase mass transport kinetics. Adsorption capacities determined in these experiments at -140 0 C agreed closely with published data. A discontinuity, however, was observed in the krypton adsorption coefficient between -100 and -120 0 C. This discontinuity may be caused by capillary condensation of krypton in the charcoal pores. Breakthrough times for pulse experiments at 400 ppM (vol.) krypton concentration were several times greater than breakthrough for continuous feed experiments at equivalent conditions. The differences in breakthrough times indicate that the adsorption isotherms are non-linear in this concentration range. Regeneration experiments showed that purging with helium at room temperature for 16 hours was inadequate, since lower breakthrough times were obtained after this treatment. Regeneration under vacuum at 100 0 C or 200 0 C for 16 hours resulted in satisfactory regeneration (i.e., no reduction in breakthrough times occurred in subsequent runs). (U.S.)

  6. An adsorption of carbon dioxide on activated carbon controlled by temperature swing adsorption

    Science.gov (United States)

    Tomas, Korinek; Karel, Frana

    2017-09-01

    This work deals with a method of capturing carbon dioxide (CO2) in indoor air. Temperature Swing Adsorption (TSA) on solid adsorbent was chosen for CO2 capture. Commercial activated carbon (AC) in form of extruded pellets was used as a solid adsorbent. There was constructed a simple device to testing effectiveness of CO2 capture in a fixed bed with AC. The TSA cycle was also simulated using the open-source software OpenFOAM. There was a good agreement between results obtained from numerical simulations and experimental data for adsorption process.

  7. Synthesis, characterization, and application of Zn(NH 3)(CO3) for selective adsorptive separation of CO2

    Science.gov (United States)

    Khazeni, Naasser

    (NH3)(CO 3), renders this compound a potential candidate for separating CO 2 from H2and N2. The adsorbent selection screening affirmed that Zn(NH3)(CO 3) can be a potential candidate for LFG separation using PSA, LFG separation using VSA, oxy-fuel CO2 purification using PSA, and air separation using PSA at 263K. For those applications, the low CO2 uptake by Zn(NH3)(CO3) was offset by considerable selectivity, regenerability, and adsorbent selection parameter.

  8. A review on adsorption refrigeration technology and adsorption deterioration in physical adsorption systems

    Energy Technology Data Exchange (ETDEWEB)

    Wang, D.C.; Li, Y.H. [College of Electromechanical Engineering, Qingdao University, 308 Ningxia Road, Qingdao 266071 (China); Laboratory of Fiber Materials and Modern Textile, the Growing Base for State Key Laboratory, Qingdao University, 308 Ningxia Road, Qingdao 266071 (China); Li, D.; Zhang, J.P. [College of Electromechanical Engineering, Qingdao University, 308 Ningxia Road, Qingdao 266071 (China); Xia, Y.Z. [Laboratory of Fiber Materials and Modern Textile, the Growing Base for State Key Laboratory, Qingdao University, 308 Ningxia Road, Qingdao 266071 (China)

    2010-01-15

    As one kind of environmentally friendly refrigeration, the adsorption refrigeration has attracted many attentions in resent decades. This paper introduces the researches of adsorption refrigeration systems with the commonly used working pairs, advanced adsorption cycles, heat and mass transfer enhancement and attempts of adsorption refrigeration applications. Poor heat and mass transfer problem is a bottleneck to prevent the improvements of the adsorption refrigeration technique. Two ways to enhance the heat and mass transfer are discussed in this paper. The adsorption deterioration of adsorbent, another obstacle to physical adsorption refrigeration applications, is also pointed out. And the possible reasons and the possible methods are analyzed. (author)

  9. High performance of a unique mesoporous polystyrene-based adsorbent for blood purification.

    Science.gov (United States)

    Chen, Jian; Han, Wenyan; Chen, Jie; Zong, Wenhui; Wang, Weichao; Wang, Yue; Cheng, Guanghui; Li, Chunran; Ou, Lailiang; Yu, Yaoting

    2017-02-01

    A multi-functional polystyrene based adsorbent (NKU-9) with a unique mesoporous and a high surface area was prepared by suspension polymerization for removal of therapeutic toxins in blood purification. The adsorbent produced had an almost equal amount of mesopore distribution in the range from 2 to 50 nm. The adsorption of serum toxins with different molecular weights were examined by in vitro adsorption assays and compared with some clinical currently used adsorbents such as HA-330, Cytosorb and BL-300 which are produced by China, America and Japan, respectively. Test results indicated that the adsorption rate for pentobarbital by NKU-9 was 81.24% which is nearly as high as HA-330 (81.44%). The latter adsorbent is currently used for acute detoxification treatment in China. To reach adsorption equilibrium, NKU-9 was faster than HA-330, which implies short treatment time. For the removal of middle molecular toxins such as β2-microglobulin (98.88%), NKU-9 performed better adsorptive selectivity than Cytosorb (92.80%). In addition, NKU-9 showed high performance for the removal of albumin-bound toxins (e.g., bilirubin), and its adsorption rate for total bilirubin (80.79%) in plasma was 8.4% higher than that of anion exchange resin BL-300 which is currently used to eliminate bilirubin in clinic. Therefore, our results indicate that the newly developed adsorbent with a wide distribution and almost equal amount of mesopores is a multifunctional adsorbent for high efficient removal of serum toxins with different molecular weights which might be an excellent blood purification adsorbent especially to treat diseases that conventional medical methods are low or not efficient.

  10. Adsorption of surfactants and polymers at interfaces

    Science.gov (United States)

    Rojas, Orlando Jose

    Surface tension and high-resolution laser light scattering experiments were used to investigate the adsorption of isomeric sugar-based surfactants at the air/liquid interface in terms of surfactant surface packing and rheology. Soluble monolayers of submicellar surfactant solutions exhibited a relatively viscous behavior. It was also proved that light scattering of high-frequency thermally-induced capillary waves can be utilized to study surfactant exchange between the surface and the bulk solution. Such analysis revealed the existence of a diffusional relaxation mechanism. A procedure based on XPS was developed for quantification, on an absolute basis, of polymer adsorption on mica and Langmuir-Blodgett cellulose films. The adsorption of cationic polyelectrolytes on negatively-charged solid surfaces was highly dependent on the polymer ionicity. It was found that the adsorption process is driven by electrostatic mechanisms. Charge overcompensation (or charge reversal) of mica occurred after adsorption of polyelectrolytes of ca. 50% charge density, or higher. It was demonstrated that low-charge-density polyelectrolytes adsorb on solid surfaces with an extended configuration dominated by loops and tails. In this case the extent of adsorption is limited by steric constraints. The conformation of the polyelectrolyte in the adsorbed layer is dramatically affected by the presence of salts or surfactants in aqueous solution. The phenomena which occur upon increasing the ionic strength are consistent with the screening of the electrostatic attraction between polyelectrolyte segments and solid surface. This situation leads to polyelectrolyte desorption accompanied by both an increase in the layer thickness and the range of the steric force. Adsorbed polyelectrolytes and oppositely charged surfactants readily associate at the solid/liquid interface. Such association induces polyelectrolyte desorption at a surfactant concentration which depends on the polyelectrolyte charge

  11. Control of water absorption by purification of graphite

    International Nuclear Information System (INIS)

    Simpkins, J.E.; Strehlow, R.A.; Mioduszewski, P.K.; Uckan, T.

    1988-01-01

    It is well known that graphite can absorb large quantities of water, which can represent an abundant source of oxygen impurities in fusion plasmas if the corresponding components are not properly outgassed. We have outgassed various fusion-relevant graphites (e.g., POCO AXF-5Q) for 1.5 h at 1500/degree/C to release absorbed water and have subsequently exposed the samples to air for various periods of time. Re-absorption of water during the air exposure was estimated by measuring the amount of water produced in subsequent outgassing runs. The results show that the amount of water re-absorbed increases by a factor of approximately 10 within 8 h compared to the sample in the outgassed state but with no air exposure. The water content of the 'as received' material is reached after approximately 30 days. Re-absorption of water was significantly reduced by purification of the investigated graphite samples. This purification process, which consists of heating the sample at 2800/degree/C for 30 min in an argon atmosphere, reduces the levels of trace impurities which can be responsible for catalytic surface reactions on the internal surfaces of the graphite. After exposing an outgassed sample to an electron cyclotron heated plasma followed by 1 h air exposure, the amount of water desorbed was observed to increase by a factor of 6. Data will be presented to correlate this effect with trace impurities. 9 refs., 2 figs., 5 tabs

  12. Sodium purification in Rapsodie; La purification du sodium a Rapsodie

    Energy Technology Data Exchange (ETDEWEB)

    Giraud, B [Commissariat a l' Energie Atomique, Dir. des Piles Atomiques, Cadarache (France). Centre d' Etudes Nucleaires

    1968-07-01

    This report is one of a series of publications presenting the main results of tests carried out during the start-up of the first french fast neutron reactor: Rapsodie. The article presents the sodium purification techniques used in the reactor cooling circuits both from the constructional point of view and with respect to results obtained during the first years working. (author) [French] Ce rapport fait partie d'une serie de publications presentant l'essentiel des resultats des essais effectues a l'occasion du demarrage du premier reacteur francais a neutrons rapides: RAPSODIE. Cet article expose les techniques de la purification du sodium utilise dans les circuits de refroidissement du reacteur tant au point de vue de leur realisation technologique, que des resultats obtenus pendant la premiere annee de fonctionnement. (auteur)

  13. Chitinolytic Bacteria-Assisted Conversion of Squid Pen and Its Effect on Dyes and Pigments Adsorption

    Directory of Open Access Journals (Sweden)

    Tzu-Wen Liang

    2015-07-01

    Full Text Available The aim of this work was to produce chitosanase by fermenting from squid pen, and recover the fermented squid pen for dye removal by adsorption. One chitosanase induced from squid pen powder (SPP-containing medium by Bacillus cereus TKU034 was purified in high purification fold (441 and high yield of activity recovery (51% by ammonium sulfate precipitation and combined column chromatography. The SDS-PAGE results showed its molecular mass to be around 43 kDa. The TKU034 chitosanase used for the chitooligomers preparation was studied. The enzyme products revealed that the chitosanase could degrade chitosan with various degrees of polymerization, ranging from 3 to 9, as well as the chitosanase in an endolytic manner. Besides, the fermented SPP was recovered and displayed a better adsorption rate (up to 99.5% for the disperse dyes (red, yellow, blue, and black than the water-soluble food colorants, Allura Red AC (R40 and Tartrazine (Y4. The adsorbed R40 on the unfermented SPP and the fermented SPP was eluted by distilled water and 1 M NaOH to confirm the dye adsorption mechanism. The fermented SPP had a slightly higher adsorption capacity than the unfermented, and elution of the dye from the fermented SPP was easier than from the unfermented. The main dye adsorption mechanism of fermented SPP was physical adsorption, while the adsorption mechanism of unfermented SPP was chemical adsorption.

  14. Chitinolytic Bacteria-Assisted Conversion of Squid Pen and Its Effect on Dyes and Pigments Adsorption.

    Science.gov (United States)

    Liang, Tzu-Wen; Lo, Bo-Chang; Wang, San-Lang

    2015-07-23

    The aim of this work was to produce chitosanase by fermenting from squid pen, and recover the fermented squid pen for dye removal by adsorption. One chitosanase induced from squid pen powder (SPP)-containing medium by Bacillus cereus TKU034 was purified in high purification fold (441) and high yield of activity recovery (51%) by ammonium sulfate precipitation and combined column chromatography. The SDS-PAGE results showed its molecular mass to be around 43 kDa. The TKU034 chitosanase used for the chitooligomers preparation was studied. The enzyme products revealed that the chitosanase could degrade chitosan with various degrees of polymerization, ranging from 3 to 9, as well as the chitosanase in an endolytic manner. Besides, the fermented SPP was recovered and displayed a better adsorption rate (up to 99.5%) for the disperse dyes (red, yellow, blue, and black) than the water-soluble food colorants, Allura Red AC (R40) and Tartrazine (Y4). The adsorbed R40 on the unfermented SPP and the fermented SPP was eluted by distilled water and 1 M NaOH to confirm the dye adsorption mechanism. The fermented SPP had a slightly higher adsorption capacity than the unfermented, and elution of the dye from the fermented SPP was easier than from the unfermented. The main dye adsorption mechanism of fermented SPP was physical adsorption, while the adsorption mechanism of unfermented SPP was chemical adsorption.

  15. Chitinolytic Bacteria-Assisted Conversion of Squid Pen and Its Effect on Dyes and Pigments Adsorption

    Science.gov (United States)

    Liang, Tzu-Wen; Lo, Bo-Chang; Wang, San-Lang

    2015-01-01

    The aim of this work was to produce chitosanase by fermenting from squid pen, and recover the fermented squid pen for dye removal by adsorption. One chitosanase induced from squid pen powder (SPP)-containing medium by Bacillus cereus TKU034 was purified in high purification fold (441) and high yield of activity recovery (51%) by ammonium sulfate precipitation and combined column chromatography. The SDS-PAGE results showed its molecular mass to be around 43 kDa. The TKU034 chitosanase used for the chitooligomers preparation was studied. The enzyme products revealed that the chitosanase could degrade chitosan with various degrees of polymerization, ranging from 3 to 9, as well as the chitosanase in an endolytic manner. Besides, the fermented SPP was recovered and displayed a better adsorption rate (up to 99.5%) for the disperse dyes (red, yellow, blue, and black) than the water-soluble food colorants, Allura Red AC (R40) and Tartrazine (Y4). The adsorbed R40 on the unfermented SPP and the fermented SPP was eluted by distilled water and 1 M NaOH to confirm the dye adsorption mechanism. The fermented SPP had a slightly higher adsorption capacity than the unfermented, and elution of the dye from the fermented SPP was easier than from the unfermented. The main dye adsorption mechanism of fermented SPP was physical adsorption, while the adsorption mechanism of unfermented SPP was chemical adsorption. PMID:26213948

  16. Experimental analysis of indoor air quality improvement achieved by using a Clean-Air Heat Pump (CAHP) air-cleaner in a ventilation system

    DEFF Research Database (Denmark)

    Sheng, Ying; Fang, Lei; Nie, Jinzhe

    2017-01-01

    This study investigated the air purification effect of a Clean-Air Heat Pump (CAHP) air-cleaner which combined a silica gel rotor with a heat pump to achieve air cleaning, heating and ventilation in buildings. The experiments were conducted in a field laboratory and compared a low outdoor air...... supply rate with CAHP air purification of recirculated air with three different outdoor air supply rates without recirculation or air cleaning. Sensory assessments of perceived air quality and chemical measurements of TVOC concentration were used to evaluate the air-cleaning performance of the CAHP....... The results of the experiment showed that the operation of the CAHP significantly improved the perceived air quality in a room polluted by both human bio-effluents and building materials. At the outdoor airflow rate of 2 L/s per person, the indoor air quality with CAHP was equivalent to what was achieved...

  17. A purification process for an inert gas system

    International Nuclear Information System (INIS)

    Raj, S.S.; Samanta, S.K.; Jain, N.G.; Deshingkar, D.S.; Ramaswamy, M.

    1984-01-01

    Special inert atmosphere is desired inside hot cells used for handling radioactive materials. In this report, details of experiments conducted to generate data required for the design of a system for maintaining very low levels of organic and acid vapours, oxygen and moisture in a nitrogen gas inert atmosphere, are described. Several grades of activated charcoals impregnated with 1% KOH were studied for the adsorption of acidic and organic vapours. A Pd/Al 2 O 3 catalyst was developed to remove oxygen with greater than 90% efficiency. For the removal of moisture, a regenerable molecular sieve 4A dual-bed was provided. Based on the performance data thus generated, an integrated purification system for nitrogen gas is proposed. (author)

  18. Adsorption of uranium on halloysite

    International Nuclear Information System (INIS)

    Kilislioglu, A.; Bilgin, B.

    2002-01-01

    Adsorption of uranium (U(VI)) from aqueous solutions on halloysite type clay was studied as a function of amount of adsorbent, initial concentration and pH. The values of adsorption data were fitted to Freundlich, Langmuir and Dubinin-Radushkevich (D-R) adsorption isotherms. The mean energy of adsorption was calculated as 5.91 kJ/mol from D-R adsorption isotherm. Lagergren and Bangham equation has been used for dynamic modelling of process and the rate constants of adsorption of uranium on halloysite type clay were calculated at 293, 313 and 333 K. In order to explain the mechanism of adsorption reaction, the rate constants were calculated at high and low uranium concentrations. Adsorption reaction was studied at 293, 303, 313, 323 and 333 K for halloysite type clay and also thermodynamic constants have been calculated. The results show that the adsorption reaction was endothermic and more spontaneous at high temperature. (orig.)

  19. Adsorption of uranium on halloysite

    Energy Technology Data Exchange (ETDEWEB)

    Kilislioglu, A.; Bilgin, B. [Istanbul Univ. (Turkey). Faculty of Engineering

    2002-07-01

    Adsorption of uranium (U(VI)) from aqueous solutions on halloysite type clay was studied as a function of amount of adsorbent, initial concentration and pH. The values of adsorption data were fitted to Freundlich, Langmuir and Dubinin-Radushkevich (D-R) adsorption isotherms. The mean energy of adsorption was calculated as 5.91 kJ/mol from D-R adsorption isotherm. Lagergren and Bangham equation has been used for dynamic modelling of process and the rate constants of adsorption of uranium on halloysite type clay were calculated at 293, 313 and 333 K. In order to explain the mechanism of adsorption reaction, the rate constants were calculated at high and low uranium concentrations. Adsorption reaction was studied at 293, 303, 313, 323 and 333 K for halloysite type clay and also thermodynamic constants have been calculated. The results show that the adsorption reaction was endothermic and more spontaneous at high temperature. (orig.)

  20. Comparison of a novel TiO₂/diatomite composite and pure TiO₂ for the purification of phosvitin phosphopeptides.

    Science.gov (United States)

    Zhang, Yang; Li, Junhua; Niu, Fuge; Sun, Jun; Dou, Yuan; Liu, Yuntao; Su, Yujie; Zhou, Bei; Xu, Qinqin; Yang, Yanjun

    2014-06-01

    A novel TiO2/diatomite composite (TD) was prepared and then characterized by scanning electron microscope (SEM) and Fourier Transform Infrared (FTIR). The results of SEM showed that after modification, the porous surface of diatomite was covered with TiO2. Both diatomite and TD had clear disc-shaped structures with average grain diameters of around 25 μm. Then TD and pure TiO2 were applied in the purification of phosvitin phosphopeptides (PPPs) from the digest of egg yolk protein, and a comparative study of adsorption properties of PPPs on TD and TiO2 was performed. In the study of adsorption kinetics, the adsorption equilibrium of PPPs on TD and TiO2 fitted well with the Langmuir model, and the time needed to reach adsorption equilibrium were both around 10 min. The maximum dynamic adsorption capacity of TD (8.15 mg/g) was higher than that of TiO2 (4.96 mg/g). The results of repeated use showed that TD and TiO2 were very stable after being subjected to ten repeated adsorption-elution cycles, and TD could easily be separated from aqueous solution by filtration. On the other hand, the present synthetic technology of TD was very simple, cost-effective, organic solvent-free and available for large-scale preparation. Thus, this separation method not only brings great advantages in the purification of PPPs from egg yolk protein but also provides a promising purification material for the enrichment of phosphopeptides in proteomic researches. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. Preparation, purification, and characterization of aminopropyl-functionalized silica sol.

    Science.gov (United States)

    Pálmai, Marcell; Nagy, Lívia Naszályi; Mihály, Judith; Varga, Zoltán; Tárkányi, Gábor; Mizsei, Réka; Szigyártó, Imola Csilla; Kiss, Teréz; Kremmer, Tibor; Bóta, Attila

    2013-01-15

    A new, simple, and "green" method was developed for the surface modification of 20 nm diameter Stöber silica particles with 3-aminopropyl(diethoxy)methylsilane in ethanol. The bulk polycondensation of the reagent was inhibited and the stability of the sol preserved by adding a small amount of glacial acetic acid after appropriate reaction time. Centrifugation, ultrafiltration, and dialysis were compared in order to choose a convenient purification technique that allows the separation of unreacted silylating agent from the nanoparticles without destabilizing the sol. The exchange of the solvent to acidic water during the purification yielded a stable colloid, as well. Structural and morphological analysis of the obtained aminopropyl silica was performed using transmission electron microscopy (TEM), dynamic light scattering (DLS) and zeta potential measurements, Fourier-transform infrared (FTIR), (13)C and (29)Si MAS nuclear magnetic resonance (NMR) spectroscopies, as well as small angle X-ray scattering (SAXS). Our investigations revealed that the silica nanoparticle surfaces were partially covered with aminopropyl groups, and multilayer adsorption followed by polycondensation of the silylating reagent was successfully avoided. The resulting stable aminopropyl silica sol (ethanolic or aqueous) is suitable for biomedical uses due to its purity. Copyright © 2012 Elsevier Inc. All rights reserved.

  2. Water purification using organic salts

    Science.gov (United States)

    Currier, Robert P.

    2004-11-23

    Water purification using organic salts. Feed water is mixed with at least one organic salt at a temperature sufficiently low to form organic salt hydrate crystals and brine. The crystals are separated from the brine, rinsed, and melted to form an aqueous solution of organic salt. Some of the water is removed from the aqueous organic salt solution. The purified water is collected, and the remaining more concentrated aqueous organic salt solution is reused.

  3. Technological assumptions for biogas purification.

    Science.gov (United States)

    Makareviciene, Violeta; Sendzikiene, Egle

    2015-01-01

    Biogas can be used in the engines of transport vehicles and blended into natural gas networks, but it also requires the removal of carbon dioxide, hydrogen sulphide, and moisture. Biogas purification process flow diagrams have been developed for a process enabling the use of a dolomite suspension, as well as for solutions obtained by the filtration of the suspension, to obtain biogas free of hydrogen sulphide and with a carbon dioxide content that does not exceed 2%. The cost of biogas purification was evaluated on the basis of data on biogas production capacity and biogas production cost obtained from local water treatment facilities. It has been found that, with the use of dolomite suspension, the cost of biogas purification is approximately six times lower than that in the case of using a chemical sorbent such as monoethanolamine. The results showed travelling costs using biogas purified by dolomite suspension are nearly 1.5 time lower than travelling costs using gasoline and slightly lower than travelling costs using mineral diesel fuel.

  4. Adsorption of Phosphate Ion in Water with Lithium-Intercalated Gibbsite

    OpenAIRE

    Riwandi Sihombing; Yuni Krisyuningsih Krisnandi; Rahma Widya; Siti Zahrotul Luthfiyah; Rika Tri Yunarti

    2015-01-01

    In order to enhance adsorption capacity of gibbsite (Al(OH)3 as an adsorbent for the adsorption of phosphate in water, gibbsite was modified through lithium-intercalation. The purification method of Tributh and Lagaly was applied prior to intercalation. The Li-Intercalation was prepared by the dispersion of gibbsite into LiCl solution for 24 hours. This intercalation formed an cationic clay with the structure of [LiAl2(OH)6]+ and exchangeable Cl- anions in the gibbsite interlayer. A phosphate...

  5. Separation and purification of hyaluronic acid by glucuronic acid imprinted microbeads

    Energy Technology Data Exchange (ETDEWEB)

    Akdamar, H.Acelya; Sarioezlue, Nalan Yilmaz [Department of Biology, Anadolu University, Eskisehir (Turkey); Ozcan, Ayca Atilir; Ersoez, Arzu [Department of Chemistry, Anadolu University, Eskisehir (Turkey); Denizli, Adil [Department of Chemistry, Hacettepe University, Ankara (Turkey); Say, Ridvan, E-mail: rsay@anadolu.edu.tr [Department of Chemistry, Anadolu University, Eskisehir (Turkey); BIBAM (Plant, Drug and Scientific Researches Center), Anadolu University, Eskisehir (Turkey)

    2009-05-05

    The purification of hyaluronic acid (HA) is relatively significant to use in biomedical applications. The structure of HA is formed by the repetitive units of glucuronic acid and N-acetyl glucosamine. In this study, glucuronic acid-imprinted microbeads have been supplied for the purification of HA from cell culture (Streptococcus equi). Histidine-functional monomer, methacryloylamidohistidine (MAH) was chosen as the metal-complexing monomer. The glucuronic acid-imprinted poly(ethyleneglycoldimethacrylate-MAH-Copper(II)) [p(EDMA-MAH-Cu{sup 2+})] microbeads have been synthesized by typical suspension polymerization procedure. The template glucuronic acid has been removed by employing 5 M methanolic KOH solution. p(EDMA-MAH-Cu{sup 2+}) microbeads have been characterized by elemental analysis, Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM) images and swelling studies. Moreover, HA adsorption experiments have been performed in a batch experimental set-up. Purification of HA from cell culture supernatant has been also investigated by determining the hyaluronidase activity using purified HA as substrate. The glucuronic acid imprinted p(EDMA-MAH-Cu{sup 2+}) particles can be used many times with no significant loss in adsorption capacities. Also, the selectivity of prepared molecular imprinted polymers (MIP) has been examined. Results have showed that MIP particles are 19 times more selective for glucuronic acid than N-acetylglucose amine.

  6. TIO2 based photocatalytic gas purification: the effects of co-catalysts and process conditions

    NARCIS (Netherlands)

    Fraters, B.D.

    2015-01-01

    Photocatalysis is highly promising as a technology to mitigate environmental pollution. In this thesis the focus will be on air purification by photocatalytic oxidation of volatile organic compounds (VOC’s). A major challenge in photocatalysis is the low photonic efficiency, due to high electron

  7. The critical assessment of the carbon dioxide purification technologies after Oxyfuel combustion of coals

    International Nuclear Information System (INIS)

    Iovchev, M.; Gadjanov, P.; Tzvetkov, N.

    2012-01-01

    The critical assessment of the two carbon dioxide purification technologies after Oxyfuel - combustion of coals are discussed in the report. It is noticed that these technologies proposed by 'Foster Wheeler' and 'Air Products' companies are under development now (2012) and their presence in the international market is to be expected in the next years. (authors)

  8. Facile hydrothermal preparation of recyclable S-doped graphene sponge for Cu2+ adsorption

    International Nuclear Information System (INIS)

    Zhao, Lianqin; Yu, Baowei; Xue, Fumin; Xie, Jingru; Zhang, Xiaoliang; Wu, Ruihan; Wang, Ruijue; Hu, Zhiyan; Yang, Sheng-Tao; Luo, Jianbin

    2015-01-01

    Graphical abstract: S-doped graphene sponge was prepared via hydrothermal treatment, where S-doped graphene sponge had an adsorption capacity of 228 mg/g for Cu 2+ . - Highlights: • S-doped graphene sponge was prepared by hydrothermal treatment for heavy metal adsorption. • S-doped graphene sponge had a huge adsorption capacity for Cu 2+ , which was 40 times higher than that of active carbon. • S-doped graphene sponge could be easily regenerated by washing with acidic thiourea. - Abstract: Graphene sponge (GS) has been widely employed for water purification, but adsorption capacity loss frequently occurs during the formation of spongy structure. In this study, we reported the hydrothermal preparation of S-doped GS for the removal of Cu 2+ with a huge adsorption capacity of 228 mg/g, 40 times higher than that of active carbon. The adsorption isotherm could be well fitted into the Freundlich model with a K F value of 36.309 (L/mg) 1/n . The equilibrium adsorption could be fully achieved in the first 5 min. In the thermodynamics study, the negative ΔG indicated that the adsorption was spontaneous and physisorption in nature. The positive ΔH implied that the adsorption was endothermic. The changes of both pH and ionic strength had no apparent influence on the adsorption. S-doped GS could be easily regenerated by washing with acidic thiourea. Moreover, S-doped GS could be used for the adsorption of other heavy metal ions, too. The implication to the applications of S-doped GS in water treatment is discussed

  9. Air pollution with gaseous emissions and methods for their removal

    International Nuclear Information System (INIS)

    Vassilev, Venceslav; Boycheva, Sylvia; Fidancevska, Emilija

    2009-01-01

    Information concerning gaseous pollutants generated in the atmosphere, as a result of fuel incineration processes in thermal power and industrial plants, was summarized. The main methods and technologies for flue gases purification from the most ecologically hazardous pollutants are comparatively discussed. Keywords: gaseous pollutants, aerosols, flue gas purification systems and technologies, air ecology control

  10. Regenerative adsorption distillation system

    KAUST Repository

    Ng, Kim Choon

    2013-12-26

    There is provided a regenerative adsorption distillation system comprising a train of distillation effects in fluid communication with each other. The train of distillation effects comprises at least one intermediate effect between the first and last distillation effects of the train, each effect comprising a vessel and a condensing tube for flow of a fluid therein. The system further comprises a pair of adsorption-desorption beds in vapour communication with the last effect and at least one intermediate effect, wherein the beds contain an adsorbent that adsorbs vapour from the last effect and transmits desorbed vapour into at least one of the intermediate effect.

  11. Regenerative adsorption distillation system

    KAUST Repository

    Ng, Kim Choon; Thu, Kyaw; Amy, Gary; Chunggaze, Mohammed; Al-Ghasham, Tawfiq

    2013-01-01

    There is provided a regenerative adsorption distillation system comprising a train of distillation effects in fluid communication with each other. The train of distillation effects comprises at least one intermediate effect between the first and last distillation effects of the train, each effect comprising a vessel and a condensing tube for flow of a fluid therein. The system further comprises a pair of adsorption-desorption beds in vapour communication with the last effect and at least one intermediate effect, wherein the beds contain an adsorbent that adsorbs vapour from the last effect and transmits desorbed vapour into at least one of the intermediate effect.

  12. Theory and practice of radon monitoring with charcoal adsorption

    Energy Technology Data Exchange (ETDEWEB)

    Cohen, B L; Cohen, E S

    1983-08-01

    Because of interest in charcoal adsorption as an inexpensive radon monitoring technique that may be suitable for mass data collection, the theory of radon adsorption from air by a charcoal bed is developed, giving numerical estimates at all stages. The method is practical down to air concentrations of about 0.1 pCi/l. A simple charcoal bed is limited by the fact that its response is highly sensitive to the time interval before termination of the exposure, but two simple methods of avoiding this problem are developed. Simple methods for determining the diffusion constant for the charcoal being used, and for optimizing the depth of the charcoal bed, are presented.

  13. Fiscal 2000 achievement report on the development of energy conservation/environment purification system using cleaning effect of optical irradiation; 2000 nendo hikari clean gijutsu wo mochiita sho energy kankyo joka system no kaihatsu seika hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    The research aims to develop materials and apparatuses for the purification of atmosphere using titanium dioxide that exhibits a powerful oxidizing capability when irradiated with light. A study is conducted to find out an optimum composition for a photocatalytic fluorocarbon polymer sheet suitable for use in a denitration apparatus. A high density fluorocarbon polymer sheet composed of TiO{sub 2} modified with 0.3% of Pd/absorbent zeolite/fluorocarbon polymer PTFE (polytetrafluoroethylene) =48-63/24-36/10-20 is found to show high denitration efficiency, and this achieves the denitration efficiency goal. As for sheet thickness, 0.75mm is found to be enough. The sheet experiences some hardening in an accelerated exposure test, but does not change much in a surface gloss test or a chalking test. Although a slight reduction is observed in denitration efficiency, yet the durability goal is achieved. In the effort to develop an energy conservation type air cleaning apparatus, field tests and experiments are repeatedly conducted. As for photodenitration in the cleaning apparatus, the number of photodenitration stages and the magnitude of equimolar adsorption area necessary for achieving an 80% denitration rate is calculated from the relations of the NOx concentration profile and the denitration rate in the equimolar adsorption module to (gas flow rate/module surface), and the result shows that the initially intended goal is achieved. (NEDO)

  14. Physical adsorption and molecular dynamics

    International Nuclear Information System (INIS)

    Cohan, N.V.

    1981-01-01

    Some aspects of noble gases adsorption (except He) on graphite substracts are reviewed. Experimental results from this adsorption are analyzed and compared with molecular dynamics calculations. (L.C.) [pt

  15. Comparing Russian and Finnish standards of water purification

    OpenAIRE

    Maria, Pupkova

    2012-01-01

    The subject of this thesis is water purification. The first aim of this thesis is to consider different ways of water purification. The second aim is to compare Finnish and Russian standards of water purification. The third one is to show water purification methods on the pattern of Mikkeli water purification plan. Water purification methods of water intended for human consumption will be described.Combined tables will be done according to the quality requirement of drinking water of both,...

  16. Cover gas purification in the German LMFBR-programme

    International Nuclear Information System (INIS)

    Schillings, K.-L.; Wagner, J.; Stade, K. Ch.

    1987-01-01

    A specific problem of sodium-cooled reactor plants is the purity of the noble gas argon which is used to protect the liquid alkali metal sodium in its systems in order to avoid or reduce disagreeable reactions between sodium and gaseous compounds like moisture or air and organic products like oil and grease. But as this contact cannot completely be excluded, we have to recycle such soiled cover gas. Simultaneously this procedure has to correct the release of radioactivity. Therefore the cover gas purification of primary systems of reactor plants contains the removal of the inorganic chemical disposal and of the nuclear waste. (author)

  17. An Air Quality Assessment Onboard an Oberon Class Submarine: HMCS Okanagan

    National Research Council Canada - National Science Library

    Severs, Y

    2000-01-01

    ... submarine to determine if the atmosphere complied with Air Purification Standard BR 1326. The objective of the study was to obtain information to assist in developing plans for future submarine air quality management...

  18. Sulfate adsorption on goethite

    Energy Technology Data Exchange (ETDEWEB)

    Rietra, R P.J.J.; Hiemstra, T; Riemsdijk, W.H. van

    1999-10-15

    Recent spectroscopic work has suggested that only one surface species of sulfate is dominant on hematite. Sulfate is therefore a very suitable anion to test and develop adsorption models for variable charge minerals. The authors have studied sulfate adsorption on goethite covering a large range of sulfate concentrations, surface coverages, pH values, and electrolyte concentrations. Four different techniques were used to cover the entire range of conditions. For characterization at low sulfate concentrations, below the detection limit of sulfate with ICP-AES, the authors used proton-sulfate titrations at constant pH. Adsorption isotherms were studied for the intermediate sulfate concentration range. Acid-base titrations in sodium sulfate and electromobility were used for high sulfate concentrations. All the data can be modeled with one adsorbed species if it is assumed that the charge of adsorbed sulfate is spatially distributed in the interface. The charge distribution of sulfate follows directly from modeling the proton-sulfate adsorption stoichoimemtry sine this stoichiometry is independent of the intrinsic affinity constant of sulfate. The charge distribution can be related to the structure of the surface complex by use of the Pauling bond valence concept and is in accordance with the microscopic structure found by spectroscopy. The intrinsic affinity constant follows from the other measurements. Modeling of the proton-ion stoichoimetry with the commonly used 2-pK models, where adsorbed ions are treated as point charges, is possible only if at least two surface species for sulfate are used.

  19. Ozone adsorption on carbon nanoparticles

    Science.gov (United States)

    Chassard, Guillaume; Gosselin, Sylvie; Visez, Nicolas; Petitprez, Denis

    2014-05-01

    Carbonaceous particles produced by incomplete combustion or thermal decomposition of hydrocarbons are ubiquitous in the atmosphere. On these particles are adsorbed hundreds of chemical species. Those of great concern to health are polycyclic aromatic hydrocarbons (PAHs). During atmospheric transport, particulate PAHs react with gaseous oxidants. The induced chemical transformations may change toxicity and hygroscopicity of these potentially inhalable particles. The interaction between ozone and carbon particles has been extensively investigated in literature. However ozone adsorption and surface reaction mechanisms are still ambiguous. Some studies described a fast catalytic decomposition of ozone initiated by an atomic oxygen chemisorption followed by a molecular oxygen release [1-3]. Others suggested a reversible ozone adsorption according to Langmuir-type behaviour [4,5]. The aim of this present study is a better understanding of ozone interaction with carbon surfaces. An aerosol of carbon nanoparticles was generated by flowing synthetic air in a glass tube containing pure carbon (primary particles studied. Accordingly to literature, it has been observed that the number of gas-phase ozone molecules lost per unit particle surface area tends towards a plateau for high ozone concentration suggesting a reversible ozone adsorption according to a Langmuir mechanism. We calculated the initial reaction probability between O3 and carbon particles.An initial uptake coefficient of 1.10-4 was obtained. Similar experiments were realized by selecting the particles size with a differential mobility analyser. We observed a strong size-dependent increase in reactivity with the decrease of particles size. This result is relevant for the health issues. Indeed the smallest particles are most likely to penetrate deep into the lungs. Competitive reactions between ozone and other species like H2O or atomic oxygen were also considered. Oxygen atoms were generated by photolysis of O3

  20. Synthesis Gas Purification Purification des gaz de synthèse

    Directory of Open Access Journals (Sweden)

    Chiche D.

    2013-10-01

    Full Text Available Fischer-Tropsch (FT based B-XTL processes are attractive alternatives for future energy production. These processes aim at converting lignocellulosic biomass possibly in co-processing with petcoke, coal, or vacuum residues into synthetic biofuels. A gasification step converts the feed into a synthesis gas (CO and H2 mixture , which undergoes the Fischer-Tropsch reaction after H2/CO ratio adjustment and CO2 removal. However synthesis gas also contains various impurities that must be removed in order to prevent Fischer-Tropsch catalyst poisoning. Due to the large feedstocks variety that can be processed, significant variations of the composition of the synthesis gas are expected. Especially, this affects the nature of the impurities that are present (element, speciation, as well as their relative contents. Moreover, due to high FT catalyst sensitivity, severe syngas specifications regarding its purity are required. For these reasons, synthesis gas purification constitutes a major challenge for the development of B-XTL processes. In this article, we focus on these major hurdles that have to be overcome. The different kinds of syngas impurities are presented. The influence of the nature of feedstocks, gasification technology and operating conditions on the type and content of impurities is discussed. Highlight is given on the fate of sulfur compounds, nitrogen compounds, halides, transition and heavy metals. Main synthesis gas purification technologies (based on adsorption, absorption, catalytic reactions, etc. are finally described, as well as the related challenges. Les procédés de synthèse de biocarburants par voie Fischer-Tropsch (FT, voies B-XTL, représentent des alternatives prometteuses pour la production d’énergie. Ces procédés permettent la conversion en carburants de synthèse de biomasse lignocellulosique, éventuellement mise en oeuvre en mélange avec des charges fossiles telles que petcoke, charbons ou résidus sous vide. Pour

  1. Experimental study of adsorption chiller driven by variable heat source

    Energy Technology Data Exchange (ETDEWEB)

    Wang, D.C.; Wang, Y.J.; Zhang, J.P.; Tian, X.L. [College of Electromechanical Engineering, Qingdao University, Qingdao 266071 (China); Wu, J.Y. [Institute of Refrigeration and Cryogenics, Shanghai Jiao Tong University, Shanghai 200030 (China)

    2008-05-15

    A silica gel-water adsorption chiller has been developed in recent years and has been applied in an air conditioning system driven by solar energy. The heat source used to drive the adsorption chiller is variable at any moment because the solar radiation intensity or the waste heat from engines varies frequently. An adsorption cooling system may be badly impacted by a variable heat source with temperature variations in a large range. In this work, a silica gel-water adsorption chiller driven by a variable heat source is experimentally studied. The influences of the variable heat source on the performance of the chiller are analyzed, especially for a continuous temperature increase process and a continuous temperature decrease process of the heat source. As an example, the dynamic characteristics of the heat source are also analyzed when solar energy is taken as the heat source of the adsorption chiller. According to the experimental results for the adsorption chiller and the characteristics of the heat source from solar energy, control strategies of the adsorption chiller driven by solar energy are proposed. (author)

  2. Experimental study of adsorption chiller driven by variable heat source

    International Nuclear Information System (INIS)

    Wang, D.C.; Wang, Y.J.; Zhang, J.P.; Tian, X.L.; Wu, J.Y.

    2008-01-01

    A silica gel-water adsorption chiller has been developed in recent years and has been applied in an air conditioning system driven by solar energy. The heat source used to drive the adsorption chiller is variable at any moment because the solar radiation intensity or the waste heat from engines varies frequently. An adsorption cooling system may be badly impacted by a variable heat source with temperature variations in a large range. In this work, a silica gel-water adsorption chiller driven by a variable heat source is experimentally studied. The influences of the variable heat source on the performance of the chiller are analyzed, especially for a continuous temperature increase process and a continuous temperature decrease process of the heat source. As an example, the dynamic characteristics of the heat source are also analyzed when solar energy is taken as the heat source of the adsorption chiller. According to the experimental results for the adsorption chiller and the characteristics of the heat source from solar energy, control strategies of the adsorption chiller driven by solar energy are proposed

  3. Study on the adsorption of H2O and CO2 from the carrier gas of high-temperature gas-cooled reactor

    International Nuclear Information System (INIS)

    Liao Cuiping; Zheng Zhenhong; Shi Fuen; Zhou Dasen

    1998-01-01

    The author is focused on the experimental studies of the adsorption of moisture and carbon dioxide from the carrier gas of high-temperature gas-cooled reactor (HTGR). A suitable adsorbent--5A type molecular sieve spherical particles with an average diameter of 3 mm is chosen to purify the carrier gas with impurities of moisture and carbon dioxide. Experimental data at different concentration, flow rate, adsorptive temperature, pressure and bed depth are obtained from isothermal adsorption tests in order to examine the effects of these parameters on adsorption dynamic and for the optimal parameters selection of adsorption process. Experimental breakthrough curves, dynamic single component and multicomponent adsorption curves are obtained. The outlet concentration of H 2 O and CO 2 can reach below 1.0 x 10 -5 , so this purification system can meet the demands of HTGR

  4. Data reduction and analysis programs for neutron reflection studies of monolayer adsorption at interfaces

    International Nuclear Information System (INIS)

    Penfold, J.

    1992-07-01

    Data reduction and analysis programs for neutron reflectivity data from monolayer adsorption at interfaces are described. The application of model fitting to the reflectivity data, and the determination of partial structure factors within the kinematic approximation are discussed. Recent data for the adsorption of surfactants at the air-solution interface are used to illustrate the programs described. (author)

  5. XNAES and XPS studies on modification of SWCNTS upon gas-phase purification treatments

    International Nuclear Information System (INIS)

    Liang Xianqing; Wu Ziyu; Zhong Jun; Zhao Ting; Yao Peng; Ibrahim, K.; Qian Haijie

    2009-01-01

    A systematic characterization of single-walled carbon nanotubes (SWCNTs) after successive purification steps, including air oxidation at 350 degree C, hydrochloric acid etching and 600 degree C annealing in Ar, have been performed combining X-ray absorption near-edge structure (XANES) and X-ray photoelectron spectroscopy (XPS). The results indicated that the modification degree of SWCNTs increased after the purification procedures, but decreased significantly by annealing in Ar. It also showed that the SWCNTs could bond with chlorine atoms during the hydrochloric acid etching and suggested this modification may be importance for the applications. (authors)

  6. Ion exchange purification of scandium

    Science.gov (United States)

    Herchenroeder, Laurie A.; Burkholder, Harvey R.

    1990-10-23

    An improvement in purification of scandium through ion exchange chromatography is disclosed in which the oxidation potential of the eluting solution is altered by the addition of potassium chlorate or ammonium chloride so that removal of contaminants is encouraged. The temperature, pH and concentration of the eluent HEDTA are controlled in order to maintain the scandium in the column while minimizing dilution of the scandium band. Recovery of scandium is improved by pumping dilute scandium over the column prior to stripping the scandium and precipitation. This eliminates the HEDTA ion and other monovalent cations contaminating the scandium band. This method maximizes recovery of scandium while maintaining purity.

  7. Possibility of using adsorption refrigeration unit in district heating network

    Directory of Open Access Journals (Sweden)

    Grzebielec Andrzej

    2015-09-01

    Full Text Available Adsorption refrigeration systems are able to work with heat sources of temperature starting with 50 °C. The aim of the article is to determine whether in terms of technical and economic issues adsorption refrigeration equipment can work as elements that produce cold using hot water from the district heating network. For this purpose, examined was the work of the adsorption air conditioning equipment cooperating with drycooler, and the opportunities offered by the district heating network in Warsaw during the summer. It turns out that the efficiency of the adsorption device from the economic perspective is not sufficient for production of cold even during the transitional period. The main problem is not the low temperature of the water supply, but the large difference between the coefficients of performance, COPs, of adsorption device and a traditional compressor air conditioning unit. When outside air temperature is 25 °C, the COP of the compressor type reaches a value of 4.49, whereas that of the adsorption device in the same conditions is 0.14. The ratio of the COPs is 32. At the same time ratio between the price of 1 kWh of electric power and 1 kWh of heat is only 2.85. Adsorption refrigeration equipment to be able to compete with compressor devices, should feature COPads efficiency to be greater than 1.52. At such a low driving temperature and even changing the drycooler into the evaporative cooler it is not currently possible to achieve.

  8. Fundamentals of high pressure adsorption

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Y.P.; Zhou, L. [Tianjin University, Tianjin (China). High Pressure Adsorption Laboratory

    2009-12-15

    High-pressure adsorption attracts research interests following the world's attention to alternative fuels, and it exerts essential effect on the study of hydrogen/methane storage and the development of novel materials addressing to the storage. However, theoretical puzzles in high-pressure adsorption hindered the progress of application studies. Therefore, the present paper addresses the major theoretical problems that challenged researchers: i.e., how to model the isotherms with maximum observed in high-pressure adsorption; what is the adsorption mechanism at high pressures; how do we determine the quantity of absolute adsorption based on experimental data. Ideology and methods to tackle these problems are elucidated, which lead to new insights into the nature of high-pressure adsorption and progress in application studies, for example, in modeling multicomponent adsorption, hydrogen storage, natural gas storage, and coalbed methane enrichment, was achieved.

  9. Surface rheology of saponin adsorption layers.

    Science.gov (United States)

    Stanimirova, R; Marinova, K; Tcholakova, S; Denkov, N D; Stoyanov, S; Pelan, E

    2011-10-18

    Extracts of the Quillaja saponaria tree contain natural surfactant molecules called saponins that very efficiently stabilize foams and emulsions. Therefore, such extracts are widely used in several technologies. In addition, saponins have demonstrated nontrivial bioactivity and are currently used as essential ingredients in vaccines, food supplements, and other health products. Previous preliminary studies showed that saponins have some peculiar surface properties, such as a very high surface modulus, that may have an important impact on the mechanisms of foam and emulsion stabilization. Here we present a detailed characterization of the main surface properties of highly purified aqueous extracts of Quillaja saponins. Surface tension isotherms showed that the purified Quillaja saponins behave as nonionic surfactants with a relatively high cmc (0.025 wt %). The saponin adsorption isotherm is described well by the Volmer equation, with an area per molecule of close to 1 nm(2). By comparing this area to the molecular dimensions, we deduce that the hydrophobic triterpenoid rings of the saponin molecules lie parallel to the air-water interface, with the hydrophilic glucoside tails protruding into the aqueous phase. Upon small deformation, the saponin adsorption layers exhibit a very high surface dilatational elasticity (280 ± 30 mN/m), a much lower shear elasticity (26 ± 15 mN/m), and a negligible true dilatational surface viscosity. The measured dilatational elasticity is in very good agreement with the theoretical predictions of the Volmer adsorption model (260 mN/m). The measured characteristic adsorption time of the saponin molecules is 4 to 5 orders of magnitude longer than that predicted theoretically for diffusion-controlled adsorption, which means that the saponin adsorption is barrier-controlled around and above the cmc. The perturbed saponin layers relax toward equilibrium in a complex manner, with several relaxation times, the longest of them being around 3

  10. Lysine purification with cation exchange resin

    International Nuclear Information System (INIS)

    Khayati, GH.; Mottaghi Talab, M.; Hamooni Hagheeghat, M.; Fatemi, M.

    2003-01-01

    L-lysine is an essential amino acid for the growth most of animal species and the number one limiting amino acid for poultry. After production and biomass removal by filtration and centrifugation, the essential next step is the lysine purification and recovery. There are different methods for lysine purification. The ion exchange process is one of the most commonly used purification methods. Lysine recovery was done from broth by ion exchange resin in three different ways: repeated passing, resin soaking and the usual method. Impurities were isolated from the column by repeated wash with distilled water. Recovery and purification was done with NH 4 OH and different alcohol volumes respectively. The results showed that repeated passing is the best method for lysine absorption (maximum range 86.21 %). Washing with alkali solution revealed that most of lysine is obtained in the first step of washing. The highest degree of lysine purification was achieved with the use of 4 volumes of alcohol

  11. Comparison of two methods for purification of enterocin B, a bacteriocin produced by Enterococcus faecium W3.

    Science.gov (United States)

    Dündar, Halil; Atakay, Mehmet; Çelikbıçak, Ömür; Salih, Bekir; Bozoğlu, Faruk

    2015-01-01

    This study aimed to compare two different approaches for the purification of enterocin B from Enterococcus faecium strain W3 based on the observation that the bacteriocin was found both in cell associated form and in culture supernatant. The first approach employed ammonium sulfate precipitation, cation-exchange chromatography, and sequential reverse-phase high-performance liquid chromatography. The latter approach exploited a pH-mediated cell adsorption-desorption method to extract cell-bound bacteriocin, and one run of reverse-phase chromatography. The first method resulted in purification of enterocin B with a recovery of 4% of the initial bacteriocin activity found in culture supernatant. MALDI-TOF MS analysis and de novo peptide sequencing of the purified bacteriocin confirmed that the active peptide was enterocin B. The second method achieved the purification of enterocin B with a higher recovery (16%) and enabled us to achieve pure bacteriocin within a shorter period of time by avoiding time consuming purification protocols. The purity and identity of the active peptide were confirmed again by matrix-assisted laser desorption/ionization time-of flight (MALDI-TOF) mass spectrometry (MS) analysis. Although both approaches were satisfactory to obtain a sufficient amount of enterocin B for use in MS and amino acid sequence analysis, the latter was proved to be applicable in large-scale and rapid purification of enterocin B.

  12. Synergistic effect of Brønsted acid and platinum on purification of automobile exhaust gases.

    Science.gov (United States)

    Fu, Wei; Li, Xin-Hao; Bao, Hong-Liang; Wang, Kai-Xue; Wei, Xiao; Cai, Yi-Yu; Chen, Jie-Sheng

    2013-01-01

    The catalytic purification of automobile exhaust gases (CO, NOx and hydrocarbons) is one of the most practiced conversion processes used to lower the emissions and to reduce the air pollution. Nevertheless, the good performance of exhaust gas purification catalysts often requires the high consumption of noble metals such as platinum. Here we report that the Brønsted acid sites on the external surface of a microporous silicoaluminophosphate (SAPO) act as a promoter for exhaust gas purification, effectively cutting the loading amount of platinum in the catalyst without sacrifice of performance. It is revealed that in the Pt-loaded SAPO-CHA catalyst, there exists a remarkable synergistic effect between the Brønsted acid sites and the Pt nanoparticles, the former helping to adsorb and activate the hydrocarbon molecules for NO reduction during the catalytic process. The thermal stability of SAPO-CHA also makes the composite catalyst stable and reusable without activity decay.

  13. Synergistic effect of Brønsted acid and platinum on purification of automobile exhaust gases

    Science.gov (United States)

    Fu, Wei; Li, Xin-Hao; Bao, Hong-Liang; Wang, Kai-Xue; Wei, Xiao; Cai, Yi-Yu; Chen, Jie-Sheng

    2013-01-01

    The catalytic purification of automobile exhaust gases (CO, NOx and hydrocarbons) is one of the most practiced conversion processes used to lower the emissions and to reduce the air pollution. Nevertheless, the good performance of exhaust gas purification catalysts often requires the high consumption of noble metals such as platinum. Here we report that the Brønsted acid sites on the external surface of a microporous silicoaluminophosphate (SAPO) act as a promoter for exhaust gas purification, effectively cutting the loading amount of platinum in the catalyst without sacrifice of performance. It is revealed that in the Pt-loaded SAPO-CHA catalyst, there exists a remarkable synergistic effect between the Brønsted acid sites and the Pt nanoparticles, the former helping to adsorb and activate the hydrocarbon molecules for NO reduction during the catalytic process. The thermal stability of SAPO-CHA also makes the composite catalyst stable and reusable without activity decay. PMID:23907148

  14. Traps for phosphorus adsorption

    International Nuclear Information System (INIS)

    Montoya, Nawer D; Villegas, Wilson E; Rodriguez, Lino M; Taborda, Nelson; Montes de C, Consuelo

    2001-01-01

    Several AL 2 O 3 supported oxides such as: NiO, CuO, Co 2 O 3 BaO, CeO 2 and ZnO were investigated for phosphorus adsorption. Zno/y-Al 2 O 3 exhibited the highest phosphorus adsorption capacity. However, since it diminishes the activity of to the reaction mixture it should be located upstream of the NoX catalyst, i.e. 0,3% Pd-H-MOR, in order to protect it against p poisoning. The treatment procedure with citric acid was effective for the removal of more than 70% phosphorus from the adsorbent, ZnO/y-Al 2 O 3

  15. First principles study of the adsorption of a NO molecule on N-doped anatase nanoparticles

    International Nuclear Information System (INIS)

    Liu Juan; Liu Qin; Fang Pengfei; Pan Chunxu; Xiao Wei

    2012-01-01

    The adsorption of a NO molecule on 72 atom N-doped TiO 2 nanoparticles has been studied by first principles calculations. Two types of adsorption are considered in the calculations. In one type of the adsorption, the NO molecule forms one bond with the particle, while in the other type of adsorption, the NO molecule forms two bonds with the particle. The second type of adsorption is more energetic favorable. The adsorption energies, bond lengths, density of the states (DOSs), and the difference of the charge density are calculated to investigate the adsorption. In the adsorption process, the unpaired electron of the NO molecule transfers to the empty state of the particle, making the Fermi levels lower. As a result, the electrons of the N-doped system occupy lower energy states, making the system energy lower than that of the undoped particle. Since the adsorption of a NO molecule on N-doped nanoparticles is stronger than that on undoped particles, N-doped particles can adsorb more NO molecules on their surfaces than the undoped particles do. Meanwhile, there are more adsorption sites on the N-doped particles, on which the adsorption energies are much higher than that of the undoped particle, some of them are even higher than the highest adsorption energy of the undoped particle. It suggests that N-doped particles are more active and they can adsorb more small toxic gas molecules in the air. So, the doping method can be used to remove NO molecules for the air pollution control through the surface adsorption strategy.

  16. Pressure Swing Adsorption in the Unit Operations Laboratory

    Science.gov (United States)

    Ganley, Jason

    2018-01-01

    This paper describes a student laboratory in the Unit Operations Laboratory at the Colorado School of Mines: air separation by pressure swing adsorption. The flexibility of the system enables students to study the production of enriched nitrogen or oxygen streams. Automatic data acquisition permits the study of cycle steps and performance.…

  17. Diffusion Influenced Adsorption Kinetics.

    Science.gov (United States)

    Miura, Toshiaki; Seki, Kazuhiko

    2015-08-27

    When the kinetics of adsorption is influenced by the diffusive flow of solutes, the solute concentration at the surface is influenced by the surface coverage of solutes, which is given by the Langmuir-Hinshelwood adsorption equation. The diffusion equation with the boundary condition given by the Langmuir-Hinshelwood adsorption equation leads to the nonlinear integro-differential equation for the surface coverage. In this paper, we solved the nonlinear integro-differential equation using the Grünwald-Letnikov formula developed to solve fractional kinetics. Guided by the numerical results, analytical expressions for the upper and lower bounds of the exact numerical results were obtained. The upper and lower bounds were close to the exact numerical results in the diffusion- and reaction-controlled limits, respectively. We examined the validity of the two simple analytical expressions obtained in the diffusion-controlled limit. The results were generalized to include the effect of dispersive diffusion. We also investigated the effect of molecular rearrangement of anisotropic molecules on surface coverage.

  18. Ames Air Revitalization

    Science.gov (United States)

    Huang, Roger Z.

    2015-01-01

    This is an informal presentation presented to the University of Colorado, Boulder Bioastronautics group seminar. It highlights the key focal areas of the Air Revitalization Group research over the past year, including progress on the CO2 Removal and Compression System, testing of CDRA drying bed configurations, and adsorption research.

  19. The effect of various cations and pH on the adsorption of U(VI) on Amberlite IR-118H resin

    International Nuclear Information System (INIS)

    Kilislioglu, Ayben

    2003-01-01

    The effects of various metal cations and pH on the adsorption of uranium(VI) on strongly acidic cation exchanger Amberlite IR-118H (AIR-118H) were studied. The metal cations suppress U(VI) adsorption differently depending on their ionic radii. Adsorption of U(VI) on AIR-118H peaks at pH 3.4, which was attributed to the occurrence of different forms of U(VI) at different pH values. The adsorption data were then processed using the Frumkin-Fowler-Guggenheim equation, and the standard free energy of adsorption was calculated

  20. Production of ultrapure D-T gas by removal of molecular tritium by selective adsorption

    International Nuclear Information System (INIS)

    Maienschein, J.L.; Hudson, R.S.; Tsugawa, R.T.; Fearon, E.M.; Souers, P.C.; Collins, G.W.

    1991-07-01

    The application of selective adsorption to purification of D-T gas by removal of T 2 has been demonstrated for small quantities of gas typical in research applications. This represents a variation on the production of pure spin isomers of deuterium and hydrogen. The use of an adsorption column offers several advantages over conventional separation techniques, such as low tritium inventory, rapid delivery to prevent radiation damage of the accumulated product, compact size, simplicity of design, construction, and operation, and operation without carrier gas. Because a column can have several thousand equilibrium stages, the purity of the product can be very high. The adsorption column has been shown to be an attractive separation tool for small quantities of hydrogen isotopes

  1. Adsorption studies of water on copper, nickel, and iron: assessment of the polarization model

    International Nuclear Information System (INIS)

    Lee, S.; Staehle, R.W.

    1997-01-01

    In the atmospheric corrosion of copper, nickel, and iron, the adsorption of water affects the corrosion rates. Knowledge of water adsorption and metal oxyhydroxide formation is important in understanding the atmospheric corrosion process. The purposes of the present research were (i) to measure the adsorption of water on metal surfaces as a function of temperature and relative humidity (RH) and (ii) to assess Bradley's polarization model of adsorption. In the present research, the quartz-crystal microbalance (QCM) technique was used to measure the mass changes of copper, nickel, and iron at 0 to 100% relative humidity and 7 to 90 C under nitrogen and air environments. Less water was adsorbed on copper, nickel, and iron which form oxides than on gold. The amount of water adsorption was similar on copper, nickel, and iron under N 2 and air carrier gases. Functional relationship was first proposed as a way to include dipole/induced dipole interactions between the adsorbents and water layers. (orig.)

  2. Kinetics Study of Gas Pollutant Adsorption and Thermal Desorption on Silica Gel

    Directory of Open Access Journals (Sweden)

    Rong A

    2017-06-01

    Full Text Available Silica gel is a typical porous desiccant material. Its adsorption performance for gaseous air pollutants was investigated to determine its potential contribution to reducing such pollutants. Three gaseous air pollutants, toluene, carbon dioxide, and methane, were investigated in this paper. A thermogravimetric analyzer was used to obtain the equilibrium adsorption capacity of gases on single silica gel particles. The silica gel adsorption capacity for toluene is much higher than that for carbon dioxide and methane. To understand gas pollutant thermal desorption from silica gel, the thermogravimetric analysis of toluene desorption was conducted with 609 ppm toluene vapor at 313 K, 323 K, and 333 K. The overall regeneration rate of silica gel was strongly dependent on temperature and the enthalpy of desorption. The gas pollutant adsorption performance and thermal desorption on silica gel material may be used to estimate the operating and design parameters for gas pollutant adsorption by desiccant wheels.

  3. Copper adsorption in tropical oxisols

    Directory of Open Access Journals (Sweden)

    Silveira Maria Lucia Azevedo

    2003-01-01

    Full Text Available Cu adsorption, at concentrations between 0 to 800 mg L-1, was evaluated in surface and subsurface samples of three Brazilian soils: a heavy clayey-textured Rhodic Hapludalf (RH, a heavy clayey-textured Anionic ''Rhodic'' Acrudox (RA and a medium-textured Anionic ''Xanthic'' Acrudox (XA. After adsorption, two consecutive extractions were performed to the samples which received 100 mg L-1 copper. Surface samples adsorbed higher amounts of Cu than the subsurface, and exhibited lower Cu removed after the extractions, reinforcing the influence of the organic matter in the reactions. Cu adsorption was significant in the subsurface horizons of the Oxisols, despite the positive balance of charge, demonstrating the existence of mechanisms for specific adsorption, mainly related to the predominance of iron and aluminum oxides in the mineral fractions. In these samples, Cu was easily removed from the adsorption sites. RH demonstrated a higher capacity for the Cu adsorption in both horizons.

  4. Adsorption mechanism of magnetically separable Fe_3O_4/graphene oxide hybrids

    International Nuclear Information System (INIS)

    Ouyang, Ke; Zhu, Chuanhe; Zhao, Ya; Wang, Leichao; Xie, Shan; Wang, Qun

    2015-01-01

    Graphical abstract: A recyclable Fe_3O_4/graphene oxide (GO) magnetic hybrid was successfully synthesized via a facile one-pot polylol approach and exhibited an effective adsorption of BPA in aqueous solution. - Highlights: • Magnetically separable Fe_3O_4/GO hybrids were synthesized via a facile one-pot polylol approach. • The Fe_3O_4/GO hybrid could be easily recovered and met the need of magnetic separation, exhibiting excellent reproducibility and reusability. • The hybrids showed excellent adsorption ability for bisphenol A in aqueous solution. • The effect of pH value, temperature and coexisting ions on the adsorption was studied. • π–π interactions were postulated to be the primary mechanisms of adsorption of BPA on Fe_3O_4/GO hybrids. - Abstract: A reclaimable Fe_3O_4/graphene oxide (GO) magnetic hybrid was successfully synthesized via a facile one-pot polyol approach and employed as a recyclable adsorbent for Bisphenol A (BPA) in aqueous solutions. The maximum adsorption capacity (q_m) of the Fe_3O_4/GO hybrid for BPA was 72.80 mg/g at 273 K. The kinetics of the adsorption process and the adsorption isotherm data were fitted using the Freundlich equation and a pseudo-second-order kinetic model. The results of the thermodynamic parameters ΔH°, ΔS° and ΔG° showed that the adsorption process was exothermic and spontaneous. Furthermore, the reusability of the samples was investigated, and the results indicated that the samples exhibited high stability. The magnetic characterization demonstrated that hybrids were superparamagnetic and could be recovered conveniently by magnetic separation. The strong π–π interaction was determined to be the predominant driving force behind the adsorption of BPA onto the Fe_3O_4/GO hybrid. Therefore, the Fe_3O_4/GO hybrid could be regarded as a potential adsorbent for wastewater treatment and purification processes.

  5. A modified Poisson-Boltzmann equation applied to protein adsorption.

    Science.gov (United States)

    Gama, Marlon de Souza; Santos, Mirella Simões; Lima, Eduardo Rocha de Almeida; Tavares, Frederico Wanderley; Barreto, Amaro Gomes Barreto

    2018-01-05

    Ion-exchange chromatography has been widely used as a standard process in purification and analysis of protein, based on the electrostatic interaction between the protein and the stationary phase. Through the years, several approaches are used to improve the thermodynamic description of colloidal particle-surface interaction systems, however there are still a lot of gaps specifically when describing the behavior of protein adsorption. Here, we present an improved methodology for predicting the adsorption equilibrium constant by solving the modified Poisson-Boltzmann (PB) equation in bispherical coordinates. By including dispersion interactions between ions and protein, and between ions and surface, the modified PB equation used can describe the Hofmeister effects. We solve the modified Poisson-Boltzmann equation to calculate the protein-surface potential of mean force, treated as spherical colloid-plate system, as a function of process variables. From the potential of mean force, the Henry constants of adsorption, for different proteins and surfaces, are calculated as a function of pH, salt concentration, salt type, and temperature. The obtained Henry constants are compared with experimental data for several isotherms showing excellent agreement. We have also performed a sensitivity analysis to verify the behavior of different kind of salts and the Hofmeister effects. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Rare gases adsorption and separation on silver doped adsorbent

    International Nuclear Information System (INIS)

    Deliere, Ludovic

    2015-01-01

    The Comprehensive Nuclear-Test-Ban Treaty (CTBT) implements means for detecting nuclear tests in an International Monitoring System (IMS). The Commissariat a l'Energie Atomique et aux Energies Alternatives (CEA) has developed in the mid-90's, the SPALAX system (Systeme de Prelevement d'Air en Ligne avec l'Analyse des radioXenons). Xenon analysis, including radioactive isotopes from the fission reaction during the explosion, requires the development of highly efficient process for xenon concentration. In this work, the adsorption and diffusion phenomena of noble gases are studied in silver exchanged ZSM-5 zeolite. The 'experience/Monte Carlo simulation' coupling is used to determine the essential thermodynamic data on the adsorption of noble gases and to characterize the adsorption sites. The presence of a strong adsorption site, identified as silver nanoparticles and intervening at low concentration of noble gases (including xenon and radon) in some silver exchanged zeolites, achieves adsorption and selectivity performance to date unrivaled. These results allow considering their use in many critical applications in the field of capture and separation of rare gases: rare gas industrial production, reprocessing of spent fuel from gas, radon in air pollution control. (author) [fr

  7. Poly(N-vinylimidazole/ethylene glycol dimethacrylate) for the purification and isolation of phenolic acids

    Energy Technology Data Exchange (ETDEWEB)

    Schemeth, Dieter; Noël, Jean-Christophe [Institute of Analytical Chemistry and Radiochemistry, Leopold-Franzens University of Innsbruck, CCB—Center of Chemistry and Biomedicine, Innrain 80-82, 6020 Innsbruck (Austria); Jakschitz, Thomas [Austrian Drug Screening Institute, Innrain 66a, 6020 Innsbruck (Austria); Rainer, Matthias, E-mail: m.rainer@uibk.ac.at [Institute of Analytical Chemistry and Radiochemistry, Leopold-Franzens University of Innsbruck, CCB—Center of Chemistry and Biomedicine, Innrain 80-82, 6020 Innsbruck (Austria); Tessadri, Richard [Institute of Mineralogy and Petrography, Leopold-Franzens University of Innsbruck, Innrain 52, 6020 Innsbruck (Austria); Huck, Christian W. [Institute of Analytical Chemistry and Radiochemistry, Leopold-Franzens University of Innsbruck, CCB—Center of Chemistry and Biomedicine, Innrain 80-82, 6020 Innsbruck (Austria); Bonn, Günther K. [Institute of Analytical Chemistry and Radiochemistry, Leopold-Franzens University of Innsbruck, CCB—Center of Chemistry and Biomedicine, Innrain 80-82, 6020 Innsbruck (Austria); Austrian Drug Screening Institute, Innrain 66a, 6020 Innsbruck (Austria)

    2015-07-23

    Highlights: • Free-radical polymerization of protonable vinylimidazole with EGMDA. • Polymer-optimization by maximum loading capacity of phenolic acids. • Performs better than SiO{sub 2} and Al{sub 2}O{sub 3} in normal phase mode using acetonitrile. • Performs equal or even better in anion-exchange mode compared to Oasis-MAX. • Efficient purification of phenolic compounds from crude extract. - Abstract: In this study we report the novel polymeric resin poly(N-vinyl imidazole/ethylene glycol dimethacrylate) for the purification and isolation of phenolic acids. The monomer to crosslinker ratio and the porogen composition were optimized for isolating phenolic acids diluted in acetonitrile at normal phase chromatography conditions, first. Acetonitrile serves as polar, aprotic solvent, dissolving phenolic acids but not interrupting interactions with the stationary phase due to the approved Hansen solubility parameters. The optimized resin demonstrated high loading capacities and adsorption abilities particularly for phenolic acids in both, acetonitrile and aqueous solutions. The adsorption behavior of aqueous standards can be attributed to ion exchange effects due to electrostatic interactions between protonated imidazole residues and deprotonated phenolic acids. Furthermore, adsorption experiments and subsequent curve fittings provide information of maximum loading capacities of single standards according to the Langmuir adsorption model. Recovery studies of the optimized polymer in the normal-phase and ion-exchange mode illustrate the powerful isolation properties for phenolic acids and are comparable or even better than typical, commercially available solid phase extraction materials. In order to prove the applicability, a highly complex extract of rosemary leaves was purified by poly(N-vinyl imidazole/ethylene glycol dimethacrylate) and the isolated compounds were identified using UHPLC–qTOF-MS.

  8. Ash study for biogas purification

    International Nuclear Information System (INIS)

    Juarez V, R. I.

    2016-01-01

    This work evaluates the ashes generated from the wood and coal combustion process of the thermoelectric plant in Petacalco, Guerrero (Mexico) in order to determine its viability as a filter in the biogas purification process. The ash is constituted by particles of morphology and different chemical properties, so it required a characterization of the same by different analytical techniques: as was scanning electron microscopy and X-ray diffraction, in order to observe the microstructure and determine the elemental chemical composition of the particles. Prior to the analysis, a set of sieves was selected to classify as a function of particle size. Four different types of ashes were evaluated: one generated by the wood combustion (wood ash) and three more of the Petacalco thermoelectric generated by the coal combustion (wet fly ash, dry fly ash and dry bottom ash). (Author)

  9. Reverse osmosis water purification system

    Science.gov (United States)

    Ahlstrom, H. G.; Hames, P. S.; Menninger, F. J.

    1986-01-01

    A reverse osmosis water purification system, which uses a programmable controller (PC) as the control system, was designed and built to maintain the cleanliness and level of water for various systems of a 64-m antenna. The installation operates with other equipment of the antenna at the Goldstone Deep Space Communication Complex. The reverse osmosis system was designed to be fully automatic; with the PC, many complex sequential and timed logic networks were easily implemented and are modified. The PC monitors water levels, pressures, flows, control panel requests, and set points on analog meters; with this information various processes are initiated, monitored, modified, halted, or eliminated as required by the equipment being supplied pure water.

  10. Adsorption of Phosphate Ion in Water with Lithium-Intercalated Gibbsite

    Directory of Open Access Journals (Sweden)

    Riwandi Sihombing

    2015-12-01

    Full Text Available In order to enhance adsorption capacity of gibbsite (Al(OH3 as an adsorbent for the adsorption of phosphate in water, gibbsite was modified through lithium-intercalation. The purification method of Tributh and Lagaly was applied prior to intercalation. The Li-Intercalation was prepared by the dispersion of gibbsite into LiCl solution for 24 hours. This intercalation formed an cationic clay with the structure of [LiAl2(OH6]+ and exchangeable Cl- anions in the gibbsite interlayer. A phosphate adsorption test using Lithium-intercalated gibbsite (LIG resulted in optimum adsorption occurring at pH 4.5 with an adsorption capacity of 11.198 mg phosphate/g LIG which is equivalent with 1.04 wt% LIG. The adsorption capacity decreased with decreasing amounts of H2PO4-/HPO4- species in the solution. This study showed that LIG has potential as an adsorbent for phosphate in an aqueous solution with pH 4.5–9.5.

  11. Liquid phase adsorption behavior of inulin-type fructan onto activated charcoal.

    Science.gov (United States)

    Li, Kecheng; Liu, Song; Xing, Ronge; Yu, Huahua; Qin, Yukun; Li, Pengcheng

    2015-05-20

    This study describes liquid phase adsorption characteristics of inulin-type fructan onto activated charcoal. Batch mode experiments were conducted to study the effects of pH, contact time, temperature and initial concentration of inulin. Nearly neutral solution (pH 6-8) was favorable to the adsorption and the equilibrium was attained after 40 min with the maximum adsorption Qmax 0.182 g/g (adsorbate/adsorbent) at 298 K. The experimental data analysis indicated that the adsorption process fitted well with the pseudo-second-order kinetic model (R(2) = 1) and Langmuir isotherms model (R(2) > 0.99). Thermodynamic parameters revealed that the adsorption process was spontaneous and exothermic with a physical nature. Inulin desorption could reach 95.9% using 50% ethanol solution and activated charcoal could be reused without significant losses in adsorption capacity. These results are of practical significance for the application of activated charcoal in the production and purification of inulin-type fructan. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Investigation of protein adsorption performance of Ni2+-attached diatomite particles embedded in composite monolithic cryogels.

    Science.gov (United States)

    Ünlü, Nuri; Ceylan, Şeyda; Erzengin, Mahmut; Odabaşı, Mehmet

    2011-08-01

    As a low-cost natural adsorbent, diatomite (DA) (2 μm) has several advantages including high surface area, chemical reactivity, hydrophilicity and lack of toxicity. In this study, the protein adsorption performance of supermacroporous composite cryogels embedded with Ni(2+)-attached DA particles (Ni(2+)-ADAPs) was investigated. Supermacroporous poly(2-hydroxyethyl methacrylate) (PHEMA)-based monolithic composite cryogel column embedded with Ni(2+)-ADAPs was prepared by radical cryo-copolymerization of 2-hydroxyethyl methacrylate (HEMA) with N,N'-methylene-bis-acrylamide (MBAAm) as cross-linker directly in a plastic syringe for affinity purification of human serum albumin (HSA) both from aqueous solutions and human serum. The chemical composition and surface area of DA was determined by XRF and BET method, respectively. The characterization of composite cryogel was investigated by SEM. The effect of pH, and embedded Ni(2+)-ADAPs amount, initial HSA concentration, temperature and flow rate on adsorption were studied. The maximum amount of HSA adsorption from aqueous solution at pH 8.0 phosphate buffer was very high (485.15 mg/g DA). It was observed that HSA could be repeatedly adsorbed and desorbed to the embedded Ni(2+)-ADAPs in poly(2-hydroxyethyl methacrylate) composite cryogel without significant loss of adsorption capacity. The efficiency of albumin adsorption from human serum before and after albumin adsorption was also investigated with SDS-PAGE analyses. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Synthesis of zeolite from rice husk ash waste of brick industries as hydrophobic adsorbent for fuel grade ethanol purification

    Science.gov (United States)

    Purnomo, A.; Alhanif, M.; Khotimah, C.; Zuhra, UA; Putri, BR; Kumoro, AC

    2017-11-01

    A lot of researchers have devoted on ethanol utilization as renewable energy to substitute petroleum based gasoline. When ethanol is being used as a new fuel candidate, it should have at least of 99.5% purity. Usually produced via sugar fermentation process, further purification of ethanol from other components in fermentation broth to obtain its fuel grade is a crucial step. The purpose of this research is to produce synthetic zeolite as hydrophobic adsorbent from rice husk ash for ethanol-water separation and to investigate the influence of weight, adsorption time and initial ethanol concentration on zeolite adsorption capacity. This research consisted of rice husk silica extraction, preparation of hydrophobic zeolite adsorbent, physical characterization using SEM, EDX and adsorption test for an ethanol-water solution. Zeolite with highest adsorption capacity was obtained with 15: 1 alumina silica composition. The best adsorption condition was achieved when 4-gram hydrophobic zeolite applied for adsorption of 100 mL of 10% (v/v) ethanol-water solution for 120 minutes, which resulted in ethanol with 98.93% (v/v) purity. The hydrophobic zeolite from rice husk ash is a potential candidate as an efficient adsorbent to purify raw ethanol into fuel grade ethanol. Implementation of this new adsorbent for ethanol production in commercial scale may reduce the energy consumption of that usually used for the distillation processes.

  14. The importance of the ammonia purification process in ammonia-water absorption systems

    International Nuclear Information System (INIS)

    Fernandez-Seara, Jose; Sieres, Jaime

    2006-01-01

    Practical experience in working with ammonia-water absorption systems shows that the ammonia purification process is a crucial issue in order to obtain an efficient and reliable system. In this paper, the detrimental effects of the residual water content in the vapour refrigerant are described and quantified based on the system design variables that determine the effectiveness of the purification process. The study has been performed considering a single stage system with a distillation column with complete condensation. The ammonia purification effectiveness of the column is analysed in terms of the efficiencies in the stripping and rectifying sections and the reflux ratio. By varying the efficiencies from 0 to 1, systems with neither the rectifying nor stripping section, with either the rectifying or stripping section, or with both sections can be considered. The impact of the ammonia purification process on the absorption system performance is studied based on the column efficiencies and reflux ratio; and its effects on refrigerant concentration, system COP, system pressures and main system mass flow rates and concentrations are analysed. When the highest efficiency rectifying sections are used a combination of generation temperature and reflux ratio which leads to optimum COP values is found. The analysis covers different operating conditions with air and water cooled systems from refrigeration to air conditioning applications by changing the evaporation temperature. The importance of rectification in each kind of application is evaluated

  15. Adsorption and collective paramagnetism

    CERN Document Server

    Selwood, Pierce W

    1962-01-01

    Adsorption and Collective Paramagnetism describes a novel method for studying chemisorption. The method is based on the change in the number of unpaired electrons in the adsorbent as chemisorption occurs. The method is applicable to almost all adsorbates, but it is restricted to ferromagnetic adsorbents such as nickel, which may be obtained in the form of very small particles, that is to say, to ferromagnetic adsorbents with a high specific surface. While almost all the data used illustratively have been published elsewhere this is the first complete review of the subject. The book is addresse

  16. The adsorption of nitrogen oxides on crystalline ice

    Directory of Open Access Journals (Sweden)

    T. Bartels

    2002-01-01

    Full Text Available The partitioning of nitrogen oxides between ice and air is of importance to the ozone budget in the upper troposphere. In the present study, adsorption of nitrogen oxides on ice was investigated at atmospheric pressure using a chromatographic technique with radioactively labelled nitrogen oxides at low concentrations. The measured retentions solely depended on molecular adsorption and were not influenced by dimerisation, formation of encapsulated hydrates on the ice surface, dissociation of the acids, nor by migration into a quasi-liquid layer or grain boundaries. Based on the chromatographic retention and the model of thermo-chromatography, the standard adsorption enthalpy of -20 kJ mol-1 for NO, -22kJ mol-1 for NO2, -30kJ mol-1 for peroxyacetyl nitrate, -32kJ mol-1 for HON} and -44 kJ mol-1 for HNO3 was calculated. To perform those calculations within the model of thermo-chromatography, the standard adsorption entropy was calculated based on statistical thermodynamics. In this work, two different choices of standard states were applied, and consequently different values of the standard adsorption entropy, of either between -39 kJ mol-1 and -45kJ mol-1, or -164 kJ mol-1 and -169 kJ mol-1 for each nitrogen oxide were derived. The standard adsorption enthalpy was identical for both standard adsorption entropies and thus shown to be independent of the choice of standard state. A brief outlook on environmental implications of our findings indicates that adsorption on ice might be an important removal process of HNO3. In addition, it might be of some importance for HONO and peroxyacetyl nitrate and irrelevant for NO and NO2.

  17. Affinity purification of recombinant human plasminogen activator ...

    African Journals Online (AJOL)

    Affinity purification of recombinant human plasminogen activator from ... Screening antibody was performed using rhPA milk in an ELISA-elution assay. ... useful for purifying other tPA mutants or other novel recombinant milkderived proteins.

  18. Purification, characterization of phytase enzyme from Lactobacillus ...

    African Journals Online (AJOL)

    SAM

    2014-06-04

    Jun 4, 2014 ... 2Department of Food Technology, Erzurum Vocational Training School, Ataturk University, 25240, ... facultative anaerobic, catalase-negative, immobile (with ..... Partial purification of phytase from a soil isolate bacterium,.

  19. Purification and Characterization of Thermostable Cellulase from ...

    African Journals Online (AJOL)

    Available online at http://www.tjpr.org ... Methods: Molecular community structure of the newly selected thermophilic bacterial ... Keywords: Thermostable cellulase, Sugarcane bagasse, Purification, Characterization, Hot spring ... Currently, one.

  20. Study on Shale Adsorption Equation Based on Monolayer Adsorption, Multilayer Adsorption, and Capillary Condensation

    OpenAIRE

    Chen, Qing; Tian, Yuanyuan; Li, Peng; Yan, Changhui; Pang, Yu; Zheng, Li; Deng, Hucheng; Zhou, Wen; Meng, Xianghao

    2017-01-01

    Shale gas is an effective gas resource all over the world. The evaluation of pore structure plays a critical role in exploring shale gas efficiently. Nitrogen adsorption experiment is one of the significant approaches to analyze pore size structure of shale. Shale is extremely heterogeneous due to component diversity and structure complexity. Therefore, adsorption isotherms for homogeneous adsorbents and empirical isotherms may not apply to shale. The shape of adsorption-desorption curve indi...

  1. Removal of styrene vapor from atmospheric air using a pulsed corona discharge and UV-irridiation

    International Nuclear Information System (INIS)

    Shvedchikov, A.P.; Belousova, E.V.; Polyakova, A.V.; Ponizovskii, A.Z.; Goncharov, V.A.

    1993-01-01

    The authors have investigated processes for removal of styrene vapor from atmospheric air (volume content 0.007-0.06%) upon exposure to UV radiation and dc and pulsed corona discharges. The authors have studied the dependence of the degree of purification on various parameters (flow rate, temperature, composition, pulse frequency). It has been shown that the purification rate increases when UV radiation is combined with the discharge. A possible mechanism for the purification process is considered

  2. Adsorption Properties of Lignin-derived Activated Carbon Fibers (LACF)

    Energy Technology Data Exchange (ETDEWEB)

    Contescu, Cristian I. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Gallego, Nidia C. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Thibaud-Erkey, Catherine [United Technologies Research Center (UTRC), East Hartford, CT (United States); Karra, Reddy [United Technologies Research Center (UTRC), East Hartford, CT (United States)

    2016-04-01

    The object of this CRADA project between Oak Ridge National Laboratory (ORNL) and United Technologies Research Center (UTRC) is the characterization of lignin-derived activated carbon fibers (LACF) and determination of their adsorption properties for volatile organic compounds (VOC). Carbon fibers from lignin raw materials were manufactured at Oak Ridge National Laboratory (ORNL) using the technology previously developed at ORNL. These fibers were physically activated at ORNL using various activation conditions, and their surface area and pore-size distribution were characterized by gas adsorption. Based on these properties, ORNL did down-select five differently activated LACF materials that were delivered to UTRC for measurement of VOC adsorption properties. UTRC used standard techniques based on breakthrough curves to measure and determine the adsorption properties of indoor air pollutants (IAP) - namely formaldehyde and carbon dioxide - and to verify the extent of saturated fiber regenerability by thermal treatments. The results are summarized as follows: (1) ORNL demonstrated that physical activation of lignin-derived carbon fibers can be tailored to obtain LACF with surface areas and pore size distributions matching the properties of activated carbon fibers obtained from more expensive, fossil-fuel precursors; (2) UTRC investigated the LACF potential for use in air cleaning applications currently pursued by UTRC, such as building ventilation, and demonstrated their regenerability for CO2 and formaldehyde, (3) Both partners agree that LACF have potential for possible use in air cleaning applications.

  3. Effect of humidity on thoron adsorption in activated charcoal bed

    International Nuclear Information System (INIS)

    Sudeep Kumara, K.; Karunakara, N.; Yashodhara, I.; Sapra, B.K.; Sahoo, B.K.; Gaware, J.J.; Kanse, S.D.; Mayya, Y.S.

    2014-01-01

    Activated charcoal is a well-known adsorber of 222 Rn and 220 Rn gases. This property can be effectively used for remediation of these gases in the workplaces of uranium and thorium processing facilities. However, the adsorption on charcoal is sensitive to variation in temperature and humidity. The successful designing and characterization of adsorption systems require an adequate understanding of these sensitivities. The study has been carried out towards this end, to delineate the effect of relative humidity on the efficacy of 220 Rn mitigations in a charcoal bed. Air carrying 220 Rn from a Pylon source was passed through a column filled with coconut shell-based granular activated charcoal. The relative humidity of the air was controlled, and the transmission characteristics were examined at relative humidity varying from 45% to 60%. The mitigation factor was found to decrease significantly with an increase of humidity in the air. (author)

  4. [Investigation on the process of sapindus saponin purified with macroporous adsorption resin and screening of its bacteriostasis].

    Science.gov (United States)

    Fu, Yong; Lei, Peng; Han, Yu-mei; Yan, Dan

    2010-02-01

    To study the technological parameters of the purification process of saponins with macroporous adsorption resin. The adsorptive characteristics and elutive parameters of the process were studied by taking the elutive and purified ratio of saponins as markers. Bacteriostasis activity of each parts eluted was evaluated by the mean of cup-plate method. 13.6 mL of the extraction of sapindus saponin (crude drugs 0.01 g/mL) was purified with a column of macroporous adsorption resin (phi15 mm x H90 mm, dry weight 2.5 g) and washed with 3BV of distilled water, then eluted with 3BV of 30% ethanol and 3BV of 70% ethanol, most of saponins were collected in the 70% ethanol. With macroporous adsorption resin adsorbing and purifying, the elutive ratio of saponins was 93.8% and the purity reached 250.1%. So this process of applying macroporous adsorption resin to adsorb and purify saponins is feasible, and supplies reference to the purification of other types of saponin.

  5. Extraction and purification of yellow cake

    International Nuclear Information System (INIS)

    Yousif, E.H.

    2006-01-01

    This dissertation has reviewed current studies on production and purification of yellow cake from uranium ores by both acid and alkaline leaching processes. It comprises three chapters, the first one deal with uranium minerals, uranium deposits, geology of uranium and uranium isotopes. The second chapter covers mining and milling methods, uranium leaching chemistry, precipitation, and purification of uranium concentrate by solvent extraction and possible impurities that commonly interfered with yellow cake. The last chapter presented ongoing literature review.(Author)

  6. Multipartite electronic entanglement purification with charge detection

    Energy Technology Data Exchange (ETDEWEB)

    Sheng Yubo [Department of Physics, Tsinghua University, Beijing 100084 (China); Deng, Fu-Guo [Department of Physics, Beijing Normal University, Beijing 100875 (China); Long Guilu, E-mail: gllong@tsinghua.edu.c [Department of Physics, Tsinghua University, Beijing 100084 (China); Key Laboratory for Atomic and Molecular NanoSciences, Tsinghua University, Beijing 100084 (China); Tsinghua National Laboratory for Information Science and Technology, Beijing 100084 (China)

    2011-01-17

    We present a multipartite entanglement purification scheme in a Greenberger-Horne-Zeilinger state for electrons based on their spins and their charges. This scheme works for purification with two steps, i.e., bit-flip error correction and phase-flip error correction. By repeating these two steps, the parties in quantum communication can get some high-fidelity multipartite entangled electronic systems.

  7. Design and analysis of siloxanes removal by adsorption from landfill gas for waste-to-energy processes.

    Science.gov (United States)

    Elwell, Anthony C; Elsayed, Nada H; Kuhn, John N; Joseph, Babu

    2018-03-01

    Separation of volatile methyl siloxanes from landfill gas using fixed adsorption beds was modeled with the objective of identifying appropriate technology and the economics associated with this purification step. A general adsorption model assuming plug flow and radial symmetry was developed and used to conduct a parametric sweep of 162 unique cases. The varied parameters were adsorbent type (activated carbon and silica gel), bed height (3.05-9.15 m/10-30 ft), inlet siloxane concentration (5-15 mg/m 3 ), moisture content (0-100% relative humidity at STP or RH), and siloxane tolerance limit (0.094-9.4 mg/m 3 ) that correlated to three distinct energy conversion technologies (electricity production using engines or fuels cells or catalytic conversion to liquid hydrocarbon fuels). Due to the detrimental effect of RH on siloxane absorption, the maximum allowable moisture content of LFG before purification is 50% RH and moisture removal processes are also required. The design calculations using a selected case study show that the adsorption bed height required needed for 6 months minimum breakthrough time for catalytic fuel production is twice that for engine applications. Fuel cell applications require 3 times the bed height compared to engine applications. However, the purification costs amounted to 94%, 16% and 52% of recovered product value for engine, liquefaction, and fuel cell applications, respectively indicating the need for a high value product to justify purification costs. The approaches and conclusions can be extended to specific process conditions for landfill gas purification and to other processes that use biogas produced from waste as a feedstock. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. New developments for localized adsorption

    International Nuclear Information System (INIS)

    Boudh-hir, M.E.

    1989-02-01

    Using the diagrammatic expansion, new developments for localized adsorption are found. It is proved that the correlations in the system, in the absence of the attractive site potential, and the periodicity of the sites play a fundamental role in the adsorption phenomena. 14 refs, 2 figs, 2 tabs

  9. A dual protease approach for expression and affinity purification of recombinant proteins.

    Science.gov (United States)

    Raran-Kurussi, Sreejith; Waugh, David S

    2016-07-01

    We describe a new method for affinity purification of recombinant proteins using a dual protease protocol. Escherichia coli maltose binding protein (MBP) is employed as an N-terminal tag to increase the yield and solubility of its fusion partners. The MBP moiety is then removed by rhinovirus 3C protease, prior to purification, to yield an N-terminally His6-tagged protein. Proteins that are only temporarily rendered soluble by fusing them to MBP are readily identified at this stage because they will precipitate after the MBP tag is removed by 3C protease. The remaining soluble His6-tagged protein, if any, is subsequently purified by immobilized metal affinity chromatography (IMAC). Finally, the N-terminal His6 tag is removed by His6-tagged tobacco etch virus (TEV) protease to yield the native recombinant protein, and the His6-tagged contaminants are removed by adsorption during a second round of IMAC, leaving only the untagged recombinant protein in the column effluent. The generic strategy described here saves time and effort by removing insoluble aggregates at an early stage in the process while also reducing the tendency of MBP to "stick" to its fusion partners during affinity purification. Published by Elsevier Inc.

  10. Conductive Cotton Filters for Affordable and Efficient Water Purification

    Directory of Open Access Journals (Sweden)

    Fang Li

    2017-09-01

    Full Text Available It is highly desirable to develop affordable, energy-saving, and highly-effective technologies to alleviate the current water crisis. In this work, we reported a low-cost electrochemical filtration device composing of a conductive cotton filter anode and a Ti foil cathode. The device was operated by gravity feed. The conductive cotton filter anodes were fabricated by a facile dying method to incorporate carbon nanotubes (CNTs as fillers. The CNTs could serve as adsorbents for pollutants adsorption, as electrocatalysts for pollutants electrooxidation, and as conductive additives to render the cotton filters highly conductive. Cellulose-based cotton could serve as low-cost support to ‘host’ these CNTs. Upon application of external potential, the developed filtration device could not only achieve physically adsorption of organic compounds, but also chemically oxide these compounds on site. Three model organic compounds were employed to evaluate the oxidative capability of the device, i.e., ferrocyanide (a model single-electron-transfer electron donor, methyl orange (MO, a common recalcitrant azo-dye found in aqueous environments, and antibiotic tetracycline (TC, a common antibiotic released from the wastewater treatment plants. The devices exhibited a maximum electrooxidation flux of 0.37 mol/h/m2 for 5.0 mmol/L ferrocyanide, of 0.26 mol/h/m2 for 0.06 mmol/L MO, and of 0.9 mol/h/m2 for 0.2 mmol/L TC under given experimental conditions. The effects of several key operational parameters (e.g., total cell potential, CNT amount, and compound concentration on the device performance were also studied. This study could shed some light on the good design of effective and affordable water purification devices for point-of-use applications.

  11. EUV tools: hydrogen gas purification and recovery strategies

    Science.gov (United States)

    Landoni, Cristian; Succi, Marco; Applegarth, Chuck; Riddle Vogt, Sarah

    2015-03-01

    The technological challenges that have been overcome to make extreme ultraviolet lithography (EUV) a reality have been enormous1. This vacuum driven technology poses significant purity challenges for the gases employed for purging and cleaning the scanner EUV chamber and source. Hydrogen, nitrogen, argon and ultra-high purity compressed dry air (UHPCDA) are the most common gases utilized at the scanner and source level. Purity requirements are tighter than for previous technology node tools. In addition, specifically for hydrogen, EUV tool users are facing not only gas purity challenges but also the need for safe disposal of the hydrogen at the tool outlet. Recovery, reuse or recycling strategies could mitigate the disposal process and reduce the overall tool cost of operation. This paper will review the types of purification technologies that are currently available to generate high purity hydrogen suitable for EUV applications. Advantages and disadvantages of each purification technology will be presented. Guidelines on how to select the most appropriate technology for each application and experimental conditions will be presented. A discussion of the most common approaches utilized at the facility level to operate EUV tools along with possible hydrogen recovery strategies will also be reported.

  12. Bismuth Oxysulfide and Its Polymer Nanocomposites for Efficient Purification

    Directory of Open Access Journals (Sweden)

    Yidong Luo

    2018-03-01

    Full Text Available The danger of toxic organic pollutants in both aquatic and air environments calls for high-efficiency purification material. Herein, layered bismuth copper oxychalcogenides, BiCuSO, nanosheets of high photocatalytic activity were introduced to the PVDF (Polyvinylidene Fluoride. The fibrous membranes provide an easy, efficient, and recyclable way to purify organic pollutant. The physical and photophysical properties of the BiCuSO and its polymer composite were characterized by scanning electron microscopy (SEM, X-ray diffraction (XRD, ultraviolet-visible diffuse reflection spectroscopy (DRS, X-ray photoelectron spectroscopy (XPS, electron spin resonance (EPR. Photocatalysis of Congo Red reveals that the BiCuSO/PVDF shows a superior photocatalytic activity of a 55% degradation rate in 70 min at visible light. The high photocatalytic activity is attributed to the exposed active {101} facets and the triple vacant associates V B i ‴ V O • • V B i ‴ . By engineering the intrinsic defects on the surface of bismuth oxysulfide, high solar-driven photocatalytic activity can be approached. The successful fabrication of the bismuth oxysulfide and its polymer nanocomposites provides an easy and general approach for high-performance purification materials for various applications.

  13. Thin layer joining by gas adsorption

    Energy Technology Data Exchange (ETDEWEB)

    Taga, Yasunori, E-mail: y-taga@isc.chubu.ac.jp; Fukumura, Toshio

    2014-10-01

    Highlights: • We report thin layer molecular joining between glass and COP by gas adsorption. Thickness of joining layer is 1–2 nm and joining process was carried out at low temperature at about 100 °C. • Adhesion strength measured by 180 degree peel test revealed to be 1–10 N/25 mm and the joined stack showed high durability for practical use. - Abstract: Attempt has been made to join borosilicate glass and cycloolefin (COP) polymer film by using gas adsorption method. After corona plasma treat, COP was exposed to (3-glycidoxypropyl) trimethoxysilane (GPS) and glass to (3-aminopropyl) triethoxysilane (APS) both in air atmosphere, resulting in co-adsorption of water vapor in the atmosphere and organosilane gases. Surface characterization of plasma treated and gas adsorbed surfaces was carried out by X-ray photoelectron spectroscopy (XPS) using Mg Kα X-ray source. Joining was carried out by a roll laminator after contact of both surfaces at room temperature, followed by annealing at 130 °C for 10 min. Adhesion strength was evaluated by 180 degree peel test based on ASTM D-903 and durability was examined under the conditions of 60 °C and 95% RH. It was found that after plasma treatment, complex functional groups such as C-H, C-O, C=O, O-C=O and CO{sub 3} were found on COP and O-H on glass. Thickness of GPS gas adsorption layer on COP was evaluated by the XPS to be at least 1.1 nm by taking inelastic mean free path of Si{sub 2p} photoelectron into consideration. Joining force was found to be more than 5 N/25 mm corresponding to almost equal to COP bulk tensile strength. In addition, durability of this adhesion strength remained unchanged over 2000 h even after exposure to the durability test conditions of 60 °C and 95% RH. The results can be explained in terms of formation of H-H hydrogen bonding and Si-O covalent bonding via silanols will be made at the interface as a result of lamination and annealing processes. In conclusion, ultrathin joining method

  14. Adsorption of egg phosphatidylcholine to an air/water and triolein/water bubble interface: use of the 2-dimensional phase rule to estimate the surface composition of a phospholipid/triolein/water surface as a function of surface pressure.

    Science.gov (United States)

    Mitsche, Matthew A; Wang, Libo; Small, Donald M

    2010-03-11

    Phospholipid monolayers play a critical role in the structure and stabilization of biological interfaces, including all membranes, the alveoli of the lungs, fat droplets in adipose tissue, and lipoproteins. The behavior of phospholipids in bilayers and at an air-water interface is well understood. However, the study of phospholipids at oil-water interfaces is limited due to technical challenges. In this study, egg phosphatidylcholine (EPC) was deposited from small unilamellar vesicles onto a bubble of either air or triolein (TO) formed in a low-salt buffer. The surface tension (gamma) was measured using a drop tensiometer. We observed that EPC binds irreversibly to both interfaces and at equilibrium exerts approximately 12 and 15 mN/m of pressure (Pi) at an air and TO interface, respectively. After EPC was bound to the interface, the unbound EPC was washed out of the cuvette, and the surface was compressed to study the Pi/area relationship. To determine the surface concentration (Gamma), which cannot be measured directly, compression isotherms from a Langmuir trough and drop tensiometer were compared. The air-water interfaces had identical characteristics using both techniques; thus, Gamma on the bubble can be determined by overlaying the two isotherms. Both TO and EPC are surface-active, so in a mixed TO/EPC monolayer, both molecules will be exposed to water. Since TO is less surface-active than EPC, as Pi increases, the TO is progressively ejected. To understand the Pi/area isotherm of EPC on a TO bubble, a variety of TO-EPC mixtures were spread at the air-water interface. The isotherms show an abrupt break in the curve caused by the ejection of TO from the monolayer into a new bulk phase. By overlaying the compression isotherm above the ejection point with a TO bubble compression isotherm, Gamma can be estimated. This allows determination of Gamma of EPC on a TO bubble as a function of Pi.

  15. FY-2015 Methyl Iodide Deep-Bed Adsorption Test Report

    Energy Technology Data Exchange (ETDEWEB)

    Soelberg, Nicholas Ray [Idaho National Lab. (INL), Idaho Falls, ID (United States); Watson, Tony Leroy [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-09-30

    Nuclear fission produces fission and activation products, including iodine-129, which could evolve into used fuel reprocessing facility off-gas systems, and could require off-gas control to limit air emissions to levels within acceptable emission limits. Deep-bed methyl iodide adsorption testing has continued in Fiscal Year 2015 according to a multi-laboratory methyl iodide adsorption test plan. Updates to the deep-bed test system have also been performed to enable the inclusion of evaporated HNO3 and increased NO2 concentrations in future tests. This report summarizes the result of those activities. Test results showed that iodine adsorption from gaseous methyl iodide using reduced silver zeolite (AgZ) resulted in initial iodine decontamination factors (DFs, ratios of uncontrolled and controlled total iodine levels) under 1,000 for the conditions of the long-duration test performed this year (45 ppm CH3I, 1,000 ppm each NO and NO2, very low H2O levels [3 ppm] in balance air). The mass transfer zone depth exceeded the cumulative 5-inch depth of 4 bed segments, which is deeper than the 2-4 inch depth estimated for the mass transfer zone for adsorbing I2 using AgZ in prior deep-bed tests. The maximum iodine adsorption capacity for the AgZ under the conditions of this test was 6.2% (6.2 g adsorbed I per 100 g sorbent). The maximum Ag utilization was 51%. Additional deep-bed testing and analyses are recommended to (a) expand the data base for methyl iodide adsorption and (b) provide more data for evaluating organic iodide reactions and reaction byproducts for different potential adsorption conditions.

  16. FY-2015 Methyl Iodide Deep-Bed Adsorption Test Report

    International Nuclear Information System (INIS)

    Soelberg, Nicholas Ray; Watson, Tony Leroy

    2015-01-01

    Nuclear fission produces fission and activation products, including iodine-129, which could evolve into used fuel reprocessing facility off-gas systems, and could require off-gas control to limit air emissions to levels within acceptable emission limits. Deep-bed methyl iodide adsorption testing has continued in Fiscal Year 2015 according to a multi-laboratory methyl iodide adsorption test plan. Updates to the deep-bed test system have also been performed to enable the inclusion of evaporated HNO 3 and increased NO 2 concentrations in future tests. This report summarizes the result of those activities. Test results showed that iodine adsorption from gaseous methyl iodide using reduced silver zeolite (AgZ) resulted in initial iodine decontamination factors (DFs, ratios of uncontrolled and controlled total iodine levels) under 1,000 for the conditions of the long-duration test performed this year (45 ppm CH3I, 1,000 ppm each NO and NO 2 , very low H 2 O levels [3 ppm] in balance air). The mass transfer zone depth exceeded the cumulative 5-inch depth of 4 bed segments, which is deeper than the 2-4 inch depth estimated for the mass transfer zone for adsorbing I 2 using AgZ in prior deep-bed tests. The maximum iodine adsorption capacity for the AgZ under the conditions of this test was 6.2% (6.2 g adsorbed I per 100 g sorbent). The maximum Ag utilization was 51%. Additional deep-bed testing and analyses are recommended to (a) expand the data base for methyl iodide adsorption and (b) provide more data for evaluating organic iodide reactions and reaction byproducts for different potential adsorption conditions.

  17. EVALUATION OF AIR PURIFICATION DEVICES FOR CONTROL OF INDOOR PM

    Science.gov (United States)

    Because people spend most of their time indoors (89%), the indoor environment is a primary determinant of particle exposure. The indoor environment is especially an important determinant for the very young, the very old, and those with underlying cardiopulmonary disease because...

  18. Visible Light Responsive Catalyst for Air Water Purification Project

    Science.gov (United States)

    Wheeler, Raymond M.

    2014-01-01

    Investigate and develop viable approaches to render the normally UV-activated TIO2 catalyst visible light responsive (VLR) and achieve high and sustaining catalytic activity under the visible region of the solar spectrum.

  19. Visible Light Responsive Catalyst for Air & Water Purification

    Data.gov (United States)

    National Aeronautics and Space Administration — The objective for this project was to investigate and develop viable approaches to render the normally UV-activated titanium dioxide (TiO2) catalyst visible light...

  20. Evaluation of Catalytic Materials for Military Air Purification Applications

    National Research Council Canada - National Science Library

    Balboa, Alex; Rossin, Joseph A; Weller, Edward

    2004-01-01

    ... adsorbed, and minimal protection against several of the toxic industrial chemicals (TICs). Further, prolonged environmental exposure has been shown to reduce the capacity of these filters for agents that are removed by chemical reaction...

  1. Carbon Nanotube Electron Sources for Air Purification, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Pollution of the environment is a world wide concern and is the subject of broadly based R&D into means of prevention and remediation. The innovation proposed...

  2. Adsorption Equilibrium Equation of Carboxylic Acids on Anion-Exchange Resins in Water.

    Science.gov (United States)

    Kanazawa, Nobuhiro; Urano, Kohei; Kokado, Naohiro; Urushigawa, Yoshikuni

    2001-06-01

    The adsorption of propionic acid and benzoic acid on anion-exchange resins was analyzed, and an adsorption equilibrium equation of carboxylic acids was proposed. The adsorption of carboxylic acids on the anion-exchange resins was considered to be the sum of the physical adsorption of the molecule and the ion-exchange adsorption of the ion, which were independent of each other. For the physical adsorption of carboxylic acids, it was conformed to the Freundlich equation. For the ion-exchange adsorption of carboxylate ions, the equilibrium equation corresponded well with the experimental results for wide ranges of concentration and pH. The equation contains a selectivity coefficient S(A)(Cl) for the chloride ion versus the carboxylate ion, which was considered essentially a constant. The influent of the bicarbonate ion from carbon dioxide in air could also be expressed by the additional equilibrium equation with the selectivity coefficient S(HCO(3))(Cl) for the chloride ion versus the bicarbonate ion. Consequently, an adsorption equilibrium equation can estimate the equilibrium adsorption amounts. Even the effect of a coexisting bicarbonate ion is inconsequential when the parameters of the Freundlich isotherm equation and the selectivity coefficients of the carboxylate ion and the bicarbonate ion in each resin are determined in advance. Copyright 2001 Academic Press.

  3. Polyglycidyl methacrylate based immunoaffinity cryogels for insulin adsorption

    International Nuclear Information System (INIS)

    Memmedova, Türkan; Armutcu, Canan; Uzun, Lokman; Denizli, Adil

    2015-01-01

    Immunoaffinity chromatography (IAC) is a kind of bioaffinity chromatography which used antibodies or antibody-related molecules as the stationary phase. IAC is used by many applications for analytical, clinical and diagnostic purposes, particularly preferring in analytical purposes on one-step separation and purification of target compounds. Moreover, immunoaffinity chromatography is used in antibody enrichment and separation of cells. IAC columns are usually applied in the antibody experiments due to powerful and selective binding of antibodies and/or their target antigens. Antigen or antibody molecules could be immobilized to the solid support. Therefore, target antibody or cell is purified. Specific bioligands can be immobilized directly on glycidyl based polymeric material with simple acid–base catalyst. In this study, polyglycidyl methacrylate based therefore cryogels were prepared and anti-insulin antibodies were immobilized on porous surface of cryogels. Swelling test, Fourier transform infrared spectroscopy (FTIR), Raman spectroscopy, and scanning electron microscopy (SEM) were conducted to characterize cryogels developed. To optimize separation conditions, effects of pH, initial insulin concentration, flow rate, salt concentration, contact time and temperature on insulin adsorption capacity were examined. The results indicated that the immunoaffinity cryogel developed here could be classified as good alternative with prominent properties such as high reusability and cost-friendly adsorbent and would be one of the primary reports for immunoaffinity purification of insulin molecules in not only lab-scale but also for industrial purposes. - Highlights: • Polyglycidyl methacrylate based cryogels developed as stationary phase • Immunoaffinity cryogels for reusable and cost-friendly insulin adsorption • Increase in worldwide prevalence of diabetes, type 1 or 2 • An exponential increase in the demand on insulin market • Guiding researchers for not

  4. Polyglycidyl methacrylate based immunoaffinity cryogels for insulin adsorption

    Energy Technology Data Exchange (ETDEWEB)

    Memmedova, Türkan; Armutcu, Canan; Uzun, Lokman, E-mail: lokman@hacettepe.edu.tr; Denizli, Adil

    2015-07-01

    Immunoaffinity chromatography (IAC) is a kind of bioaffinity chromatography which used antibodies or antibody-related molecules as the stationary phase. IAC is used by many applications for analytical, clinical and diagnostic purposes, particularly preferring in analytical purposes on one-step separation and purification of target compounds. Moreover, immunoaffinity chromatography is used in antibody enrichment and separation of cells. IAC columns are usually applied in the antibody experiments due to powerful and selective binding of antibodies and/or their target antigens. Antigen or antibody molecules could be immobilized to the solid support. Therefore, target antibody or cell is purified. Specific bioligands can be immobilized directly on glycidyl based polymeric material with simple acid–base catalyst. In this study, polyglycidyl methacrylate based therefore cryogels were prepared and anti-insulin antibodies were immobilized on porous surface of cryogels. Swelling test, Fourier transform infrared spectroscopy (FTIR), Raman spectroscopy, and scanning electron microscopy (SEM) were conducted to characterize cryogels developed. To optimize separation conditions, effects of pH, initial insulin concentration, flow rate, salt concentration, contact time and temperature on insulin adsorption capacity were examined. The results indicated that the immunoaffinity cryogel developed here could be classified as good alternative with prominent properties such as high reusability and cost-friendly adsorbent and would be one of the primary reports for immunoaffinity purification of insulin molecules in not only lab-scale but also for industrial purposes. - Highlights: • Polyglycidyl methacrylate based cryogels developed as stationary phase • Immunoaffinity cryogels for reusable and cost-friendly insulin adsorption • Increase in worldwide prevalence of diabetes, type 1 or 2 • An exponential increase in the demand on insulin market • Guiding researchers for not

  5. Coupled plasma filtration adsorption: rationale, technical development and early clinical experience.

    Science.gov (United States)

    Ronco, Claudio; Brendolan, Alessandra; d'Intini, Vincenzo; Ricci, Zaccaria; Wratten, Mary Lou; Bellomo, Rinaldo

    2003-01-01

    The adjuvant treatment of sepsis remains a major therapeutic challenge. Blood purification is theoretically appealing if the humoral theory of sepsis is accepted as the basis for intervention. In this setting, blood purification would provide a broad-based restoration of humoral homeostasis thereby avoiding both excessive inflammation and counterinflammation. Several techniques of blood purification have been tried or are under active investigation. One of these is the so-called coupled plasma filtration adsorption (CPFA). CPFA is a novel extracorporeal blood purification therapy aimed at nonselectively reducing the circulating levels and activities of both pro- and anti-inflammatory mediators during sepsis and multiorgan failure. In vitro studies have shown CPFA to be effective in binding a broad range of such mediators proving its technical efficacy. Subsequent animal models have shown a beneficial effect on survival in endotoxemia. These studies have provided the necessary technical developments and biologic rationale for initial human studies. Two phase I/IIa clinical studies have now been performed. Both studies have shown that CPFA improves blood pressure and restores immune function in patients with severe sepsis and multiorgan dysfunction. In this article, we will discuss some of the basic principles involved in sorbent technology, and how these may contribute to treatment efficacy, review animal experiments with CPFA and finally discuss the results of recent human studies and their implications. Copyright 2003 S. Karger AG, Basel

  6. Adsorption Desalination: A Novel Method

    KAUST Repository

    Ng, Kim Choon

    2010-11-15

    The search for potable water for quenching global thirst remains a pressing concern throughout many regions of the world. The demand for new and sustainable sources and the associated technologies for producing fresh water are intrinsically linked to the solving of potable water availability and hitherto, innovative and energy efficient desalination methods seems to be the practical solutions. Quenching global thirst by adsorption desalination is a practical and inexpensive method of desalinating the saline and brackish water to produce fresh water for agriculture irrigation, industrial, and building applications. This chapter provides a general overview of the adsorption fundamentals in terms of adsorption isotherms, kinetics, and heat of adsorption. It is then being more focused on the principles of thermally driven adsorption desalination methods. The recent developments of adsorption desalination plants and the effect of operating conditions on the system performance in terms of specific daily water production and performance ratio are presented. Design of a large commercial adsorption desalination plant is also discussed herein.

  7. SAPO-34 coated adsorbent heat exchanger for adsorption chillers

    International Nuclear Information System (INIS)

    Freni, Angelo; Bonaccorsi, Lucio; Calabrese, Luigi; Caprì, Angela; Frazzica, Andrea; Sapienza, Alessio

    2015-01-01

    In this work, adsorbent coatings on aluminum surfaces were prepared by dip-coating method starting from a water suspension of SAPO-34 zeolite and a silane-based binder. Silane-zeolite coatings morphology and surface coverage grade were evaluated by scanning electron microscopy. Adhesive and mechanical properties were evaluated by peel, pull-off, impact and micro-hardness tests, confirming the good interaction between metal substrate, binder and zeolite. Adsorption equilibrium and kinetics of water vapour adsorption on the adsorbent coating were studied in the range T = 30–150 °C and pH 2 O = 11 mbar using a CAHN 2000 thermo-balance. It was found that, in the investigated conditions, the organic binder doesn't affect the water adsorption capacity and adsorption kinetics of the original SAPO-34 zeolite. Subsequently, the zeolite coating was applied on a finned flat-tubes aluminum heat exchanger realizing a full-scale AdHEx with an uniform adsorbent coating 0.1 mm thick and a metal/adsorbent mass ratio = 6. The cooling capacity of the realized coated AdHEx was measured by a lab-scale adsorption chiller under realistic operating conditions for air conditioning applications. The coated AdHEx produced up to 675 W/kg ads specific cooling power with a cycle time of 5 min. Adsorption stability of the coated adsorber subjected to 600 sorption cycles was successfully verified. - Highlights: • Adsorbent coatings on aluminum surfaces were prepared by dip-coating method. • Silane-zeolite coatings morphology, and mechanical properties were studied. • The zeolite coating was applied on a finned flat-tubes aluminum heat exchanger. • The coated AdHEx was tested in a lab scale adsorption chiller

  8. Predicting AEA dosage by Foam Index and adsorption on Fly Ash

    OpenAIRE

    Jacobsen, Stefan; Ollendorff, Margrethe; Geiker, Mette Rica; Tunstall, Lori; Scherer, George W.

    2012-01-01

    Abstract: The unpredictable air entrainment in fly ash concrete caused by carbon in fly ash was studied by measuring adsorption of Air Entraining Agents (AEA) on the fly ash and by Foam Index (FI) testing. The FI test measures the mass ratio of AEA/binder required to obtain stable foam when shaking a mixture of water, binder powder and AEA, while increasing AEA-dosage stepwise. A review of concrete air entrainment and new studies combining adsorption (TGA, NMR) of AEA on fly ash with various ...

  9. The adsorption of chelating reagents on oxide minerals

    International Nuclear Information System (INIS)

    Bryson, M.A.W.

    1984-06-01

    This work constitutes a fundamental study of the interaction between chelating reagents and oxide minerals. The adsorption mechanisms have been elucidated for most of the systems generated by the oxides of copper(II) or iron(III) and chelating reagents octyl hydroxamate, N-phenylbenzohydroxamate, salicylaldoxime, 5-nitro-salicylaldoxime or 8-hydroxyquinoline. In order to better understand the adsorption process associated with copper(II) oxide, the oxide was recrystallized to produce a coarser material with a more uniform surface. This allowed the oxide surface to be viewed under the scanning electron microscope. A detailed investigation of the effect of the system variables; pH, conditioning period, concentration, temperature, surface area and dispersing reagent on the rate of precipitation of the copper chelate species of general form, Cu(chel) 2 , was made. In addition the chemical nature of the adsorbed species and the structural form of the precipitates were determined with the aid of infra-red spectroscopy and the scanning electron microscope. On the basis of these results a model has been formulated for the adsorption processes. The precipitation process was examined in more detail by the study of the adsorption of chelate on copper metal. Contact angle measurements of air bubbles on copper metal conditioned with chelate were related to the adsorption results in an attempt to isolate the optimum conditions for flotation of oxide minerals

  10. Graphitic Carbon Materials Tailored for the Rapid Adsorption of Biomolecules

    Science.gov (United States)

    Pescatore, Nicholas A.

    Sepsis is an overactive inflammatory response to an infection, with 19 million cases estimated worldwide and causing organ dysfunction if left untreated. Three pro-inflammatory cytokines are seen from literature review as vital biomarkers for sepsis and are interleukin-6 (IL-6), interleukin-8 (IL-8) and tumor necrosis factor-alpha (TNF-alpha), which have the potential to be removed by hemoperfusion. This thesis examines carbon nanomaterials for their adsorption capabilities in the search for an optimal material for blood cleansing hemoperfusion application, such as mediating the effects of sepsis. Non-porous and porous carbon polymorphs and their properties are investigated in this thesis for their protein adsorption capabilities. Polymer-derived mesoporous carbons were compared to non-porous graphene nanoplatelets (GNP's) to observe changes in adsorption capacity for cytokines between porous and non-porous materials. GNP's were functionalized via high temperature vacuum annealing, air oxidation, acid oxidation and amination treatments to understand the effect of surface chemistry on adsorption. For practical use in a hemoperfusion column, polymer-derived carbon beads and composite materials such as cryogel and PTFE-GNP composites were designed and tested for their adsorption capacity. At concentrations of IL-6, IL-8, and TNF-alpha seen in septic patients, these cytokines were completely removed from the blood after 5 minutes of incubation with GNP's. Overall, a low-cost, scalable carbon adsorbent was found to provide a novel approach of rapidly removing pro-inflammatory cytokines from septic patients.

  11. Adsorption facility and adsorption vessel for radioactive carbon dioxide

    International Nuclear Information System (INIS)

    Harashina, Heihachi; Miwa, Keiichi; Kobayashi, Takeo.

    1992-01-01

    If 14 CO 2 gas-containing gases to be adsorbed are pressurized and sent to a packaging adsorption means, CO 2 ingredient in the gases to be adsorbed is adsorbed or absorbed, and remaining gases are passed through and sent out to downstream. CO 2 adsorption or absorption of the packaging adsorption means is judged by monitoring the state of the remaining gases, and if it is normal, remaining gases are sent further to downstream and processed. If abnormality is found, a gas feedback system is operated, and CO 2 removing gas is sent again to the packaging adsorption means, in which CO 2 gases are adsorbed or absorbed again repeatingly. With such procedures, in a case where C 14 nuclides having a long half decay time are supplied in the form of 14 CO 2 gas, they are efficiently adsorbed or absorbed in the packaging system to improve removing and storing property of 14 C nuclides. (T.M.)

  12. Study on optimum conditions for Mo-99 adsorption by magnetite nanoparticles

    International Nuclear Information System (INIS)

    Holland, Helber; Yamaura, Mitiko; Damasceno, Marcos O.; Santos, Jacinete L.

    2013-01-01

    Radioisotopes play an important role in the peaceful uses of atomic energy. Technetium-99m is the most used radioisotope for diagnosis imaging in nuclear medicine and it is the decay product of Mo-99. One route to obtaining Mo-99 is in the form of fission product from Uranium targets irradiated in reactor. Uranium targets are dissolved by alkaline or acid process and the obtained solution is submitted to separation and purification steps of Mo-99 from the other fission products. Traditional separation techniques are inadequate for removing large volumes containing low concentrations metals due to the low operating efficiency and high costs processes. Therefore, alternative methods are being investigated as adsorption. Adsorption advantages over other techniques is low waste generation, easy metals recovery and reusability of adsorbents. Inorganic oxides are known for their ability to bind to metal ions in solution. At nanoscale range, this characteristic is highly potentialized. Thus, the use of nanoparticles has attracted attention for metal ions recovery by adsorption. Magnetite, Fe3O4, is an oxide formed by iron ions of valence 2+ and 3+. Due to the superparamagnetic behavior that arises in this material at nanoscale and crystal structure itself which favors surface adsorption, magnetite can be used as an adsorber agent to remove metal ions in solution. In this work, adsorption studies were performed to investigate best conditions for Mo-99 removal in solution. Influence of pH, stirring speed, contact time and initial concentration of Mo were studied. (author)

  13. Coupling of Spinosad Fermentation and Separation Process via Two-Step Macroporous Resin Adsorption Method.

    Science.gov (United States)

    Zhao, Fanglong; Zhang, Chuanbo; Yin, Jing; Shen, Yueqi; Lu, Wenyu

    2015-08-01

    In this paper, a two-step resin adsorption technology was investigated for spinosad production and separation as follows: the first step resin addition into the fermentor at early cultivation period to decrease the timely product concentration in the broth; the second step of resin addition was used after fermentation to adsorb and extract the spinosad. Based on this, a two-step macroporous resin adsorption-membrane separation process for spinosad fermentation, separation, and purification was established. Spinosad concentration in 5-L fermentor increased by 14.45 % after adding 50 g/L macroporous at the beginning of fermentation. The established two-step macroporous resin adsorption-membrane separation process got the 95.43 % purity and 87 % yield for spinosad, which were both higher than that of the conventional crystallization of spinosad from aqueous phase that were 93.23 and 79.15 % separately. The two-step macroporous resin adsorption method has not only carried out the coupling of spinosad fermentation and separation but also increased spinosad productivity. In addition, the two-step macroporous resin adsorption-membrane separation process performs better in spinosad yield and purity.

  14. The Adsorption of Calmoduline via Nicotinamide Immobilized Poly(HEMA-GMA Cryogels

    Directory of Open Access Journals (Sweden)

    Kadir Erol

    2016-12-01

    Full Text Available The separation and purification methods for the isolation of an important biomolecule calmoduline protein is extremely important. Among these methods, the adsorption technique is extremely popular, and the cryogels as adsorbents with the macro porous structure and interconnected flow channels cryogel they have are preferred in this field. In this study, the adsorption of calmoduline via Ca(II immobilized poly (2-hydroxyethyl methacrylate-glycidyl methacrylate, poly (HEMA-GMA, cryogels through changing interaction time, calmoduline initial concentration and temperature conditions. For the characterization of cryogels, the swelling test, Fourier Transform Infrared (FT-IR Spectroscopy, Scanning Electron Microscopy (SEM, surface area (BET, elemental analysis and ICP-OES methods were performed. Nicotinamide molecule was used as Ca (II chelating agent and the adsorption capacity of the cryogels was estimated as 1.812 mg calmoduline / g cryogel. The adsorption models of the adsorption reaction were examined by the Langmuir and Freundlich isotherm models and was determined to be more appropriate for Langmuir isotherm model.

  15. Carbon-coated anatase for water purification - cyclic performance

    International Nuclear Information System (INIS)

    Inagaki, M.; Kojin, F.; Nonaka, M.; Toyoda, M.

    2005-01-01

    It was reported that carbon-coated anatase photo-catalysts were able to be prepared through a simple process and gave various advantages for water purification [1-6]. Carbon coating suppressed the phase transformation from anatase to rutile, resulting in a high crystallinity of anatase phase which was desirable for the decomposition of pollutants in water. A high adsorptivity was given to carbon-coated anatase, because of porous nature of carton layers [7]. In addition, these carbon-coated anatase powders could be fixed on the substrate by using organic binder because carbon layer interrupt the direct contact between photo-catalytic anatase particles and organic binder [1]. In the present work, cyclic performance of carbon-coated anatase was studied for the decomposition of a model pollutant, methylene blue (MB), in water by fixing the photo-catalyst particles on a tape. Carbon-coated anatase photo-catalysts were prepared by heating the powder mixtures of commercially available anatase (ST-01, Ishihara Sngyo Co., Ltd) with poly(vinyl alcohol) (PVA) in different mass ratios at 900 C in N 2 , gas flow. Carbon-coated anatase powders thus prepared were fixed on a scotch tape. Photo-catalytic activity was measured on these tapes by irradiating UV rays on one side of the tape in MB solution with 0.3x10 -5 mol/L concentration. Since carbon-coated anatase had a high adsorptivity for MB, all tapes were saturated their adsorption in a concentrated MB solution in advance. The rate constant k for MB photo-decomposition was determined from the linear relations of logarithm of relative concentration of MB in the solution, ln(c/c 0 ), with irradiation time t. In Fig. 1, changes in ln(c/c 0 ) of MB with irradiation time t were shown on two samples with different carbon contents, 8 and 2 mass%, with cycle number. Good linearity was obtained between ln(c/c 0 ) and t. The values of rate constant k calculated from these linear relations were plotted against carbon content of the

  16. Protein Adsorption in Three Dimensions

    Science.gov (United States)

    Vogler, Erwin A.

    2011-01-01

    Recent experimental and theoretical work clarifying the physical chemistry of blood-protein adsorption from aqueous-buffer solution to various kinds of surfaces is reviewed and interpreted within the context of biomaterial applications, especially toward development of cardiovascular biomaterials. The importance of this subject in biomaterials surface science is emphasized by reducing the “protein-adsorption problem” to three core questions that require quantitative answer. An overview of the protein-adsorption literature identifies some of the sources of inconsistency among many investigators participating in more than five decades of focused research. A tutorial on the fundamental biophysical chemistry of protein adsorption sets the stage for a detailed discussion of the kinetics and thermodynamics of protein adsorption, including adsorption competition between two proteins for the same adsorbent immersed in a binary-protein mixture. Both kinetics and steady-state adsorption can be rationalized using a single interpretive paradigm asserting that protein molecules partition from solution into a three-dimensional (3D) interphase separating bulk solution from the physical-adsorbent surface. Adsorbed protein collects in one-or-more adsorbed layers, depending on protein size, solution concentration, and adsorbent surface energy (water wettability). The adsorption process begins with the hydration of an adsorbent surface brought into contact with an aqueous-protein solution. Surface hydration reactions instantaneously form a thin, pseudo-2D interface between the adsorbent and protein solution. Protein molecules rapidly diffuse into this newly-formed interface, creating a truly 3D interphase that inflates with arriving proteins and fills to capacity within milliseconds at mg/mL bulk-solution concentrations CB. This inflated interphase subsequently undergoes time-dependent (minutes-to-hours) decrease in volume VI by expulsion of either-or-both interphase water and

  17. Strong Selective Adsorption of Polymers.

    Science.gov (United States)

    Ge, Ting; Rubinstein, Michael

    2015-06-09

    A scaling theory is developed for selective adsorption of polymers induced by the strong binding between specific monomers and complementary surface adsorption sites. By "selective" we mean specific attraction between a subset of all monomers, called "sticky", and a subset of surface sites, called "adsorption sites". We demonstrate that, in addition to the expected dependence on the polymer volume fraction ϕ bulk in the bulk solution, selective adsorption strongly depends on the ratio between two characteristic length scales, the root-mean-square distance l between neighboring sticky monomers along the polymer, and the average distance d between neighboring surface adsorption sites. The role of the ratio l / d arises from the fact that a polymer needs to deform to enable the spatial commensurability between its sticky monomers and the surface adsorption sites for selective adsorption. We study strong selective adsorption of both telechelic polymers with two end monomers being sticky and multisticker polymers with many sticky monomers between sticky ends. For telechelic polymers, we identify four adsorption regimes at l / d 1, we expect that the adsorption layer at exponentially low ϕ bulk consists of separated unstretched loops, while as ϕ bulk increases the layer crosses over to a brush of extended loops with a second layer of weakly overlapping tails. For multisticker chains, in the limit of exponentially low ϕ bulk , adsorbed polymers are well separated from each other. As l / d increases, the conformation of an individual polymer changes from a single-end-adsorbed "mushroom" to a random walk of loops. For high ϕ bulk , adsorbed polymers at small l / d are mushrooms that cover all the adsorption sites. At sufficiently large l / d , adsorbed multisticker polymers strongly overlap. We anticipate the formation of a self-similar carpet and with increasing l / d a two-layer structure with a brush of loops covered by a self-similar carpet. As l / d exceeds the

  18. Adsorption of atmospherically relevant gases at the air/water interface: Free energy profiles of aqueous solvation of N2, O2, O3, OH, H2O, HO2 and H2O2

    Czech Academy of Sciences Publication Activity Database

    Vácha, Robert; Slavíček, Petr; Mucha, Martin; Finlayson-Pitts, B. J.; Jungwirth, Pavel

    2004-01-01

    Roč. 108, - (2004), s. 11573-11579 ISSN 1089-5639 R&D Projects: GA MŠk ME 644 Grant - others:US-NSF(US) 0209719; US-NSF(US) 0431512 Institutional research plan: CEZ:AV0Z4055905 Keywords : atmospherically relevant gases * air /water interface * free energy profiles Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 2.639, year: 2004

  19. Breakthrough curve of H/sub 2/-Ti-sponge adsorption system

    Energy Technology Data Exchange (ETDEWEB)

    Yasufuku, K [Kawasaki Heavy Industries Ltd., Kobe (Japan)

    1977-11-01

    Experimental work concerning H/sub 2/-Ti-sponge adsorption system has been undertaken at Kawasaki Heavy Industry Co. to obtain necessary data for the design of hydrogen removal tower (Ti-sponge trap) to be used as an purification component of a VHTR plant. In this study, the effects of equilibrium curve, H/sub 2/ inlet concentration, and the ratio of the solid-side capacity factor to the gas-side capacity factor on the breakthrough curve were investigated. The Freundlich's equation with the diffusion model of Carter et al. was numerically solved by the Crank-Nicholson method, and the results of calculations are presented. The flow diagram and the photographs of the facilities for He gas purification experiments are also presented.

  20. Dye-Affinity Nanofibrous Membrane for Adsorption of Lysozyme: Preparation and Performance Evaluation

    Directory of Open Access Journals (Sweden)

    Steven Sheng-Shih Wang

    2018-01-01

    Full Text Available Polyacrylonitrile (PAN nanofibrous membrane was prepared by an electrospinning technique. After heat treatment and alkaline hydrolysis, the weak ion exchange membrane was grafted with chitosan molecule and then covalently immobilized with a Cibacron Blue F3GA (CB. Fibre diameter, porosity and pore size of the membrane and immobilized dye density were characterized. Furthermore, the membrane was applied to evaluate the binding performance of lysozyme under various operating parameters (pH, chitosan mass per volume ratio, dye concentration, ionic strength and temperature in batch mode. The experimental results were directly applied to purify lysozyme from chicken egg white by membrane chromatography. The results showed that the capture efficiency, recovery yield and purification factor were 90 and 87 %, and 47-fold, respectively, in a single step. The binding capacity remained consistent after five repeated cycles of adsorption-desorption operations. This work demonstrates that the dye-affinity nanofibrous membrane holds great potential for purification of lysozyme from real feedstock.