WorldWideScience

Sample records for adsorbents

  1. Molecular Adsorber Coating

    Science.gov (United States)

    Straka, Sharon; Peters, Wanda; Hasegawa, Mark; Hedgeland, Randy; Petro, John; Novo-Gradac, Kevin; Wong, Alfred; Triolo, Jack; Miller, Cory

    2011-01-01

    A document discusses a zeolite-based sprayable molecular adsorber coating that has been developed to alleviate the size and weight issues of current ceramic puck-based technology, while providing a configuration that more projects can use to protect against degradation from outgassed materials within a spacecraft, particularly contamination-sensitive instruments. This coating system demonstrates five times the adsorption capacity of previously developed adsorber coating slurries. The molecular adsorber formulation was developed and refined, and a procedure for spray application was developed. Samples were spray-coated and tested for capacity, thermal optical/radiative properties, coating adhesion, and thermal cycling. Work performed during this study indicates that the molecular adsorber formulation can be applied to aluminum, stainless steel, or other metal substrates that can accept silicate-based coatings. The coating can also function as a thermal- control coating. This adsorber will dramatically reduce the mass and volume restrictions, and is less expensive than the currently used molecular adsorber puck design.

  2. Transporting method for adsorbing tower and the adsorbing tower

    International Nuclear Information System (INIS)

    A cylindrical plastic bag is disposed to the upper surface of an adsorbing tower so as to surround a suspending piece. One opening of the bag is sealed, and other opening is secured in a sealed state to a bag holding portion disposed to glove box at a gate for the adsorbing tower box. The adsorbing tower is transported into the glove box, and after the completion of the operation of the adsorbing tower, the adsorbing tower is taken out in a state that the bag is restricted and sealed at a portion below the adsorbing tower. The bag may be made of a vinyl plastic, the bag holding portion may be a short-cylindrical protrusion, and may have an O-ring groove at the outer surface. Even if the adsorbing tower is heavy, the adsorbing tower can be carried out easily in a state where it is sealed gas tightly. (N.H.)

  3. High performance Mo adsorbent PZC

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    1998-10-01

    We have developed Mo adsorbents for natural Mo(n, {gamma}){sup 99}Mo-{sup 99m}Tc generator. Among them, we called the highest performance adsorbent PZC that could adsorb about 250 mg-Mo/g. In this report, we will show the structure, adsorption mechanism of Mo, and the other useful properties of PZC when you carry out the examination of Mo adsorption and elution of {sup 99m}Tc. (author)

  4. Positronium chemistry in porous adsorbents

    International Nuclear Information System (INIS)

    Kinetic studies on the annihilation of orthopositronium in porous adsorbents have been performed using lifetime spectroscopy. The positron source applied was 22Na with 0.2 MBq activity. The adsorbents investigated were silica gels of different particle size and pore structure. The appearance of the long-lived component in the lifetime spectra can be explained by the diffusion of the orthopositronium into the pores affected by the particle size and the pore size of the adsorbent, the coverage on it and the chemical nature of the adsorbate. The long-term aim of the work is to determine and to explain these effects. (author)

  5. Substrate-adsorbate coupling in CO-adsorbed copper

    CERN Document Server

    Lewis, S P; Lewis, Steven P.; Rappe, Andrew M.

    1996-01-01

    The vibrational properties of carbon monoxide adsorbed to the copper (100) surface are explored within density functional theory. Atoms of the substrate and adsorbate are treated on an equal footing in order to examine the effect of substrate--adsorbate coupling. This coupling is found to have a significant effect on the vibrational modes, particularly the in-plane frustrated translation, which mixes strongly with substrate phonons and broadens into a resonance. The predicted lifetime due to this harmonic decay mechanism is in excellent quantitative agreement with experiment.

  6. MODIFICATION OF CARBONACEOUS ADSORBENTS WITH MANGANESE COMPOUNDS

    OpenAIRE

    Irina Ginsari; Larisa Postolachi; Vasile Rusu; Oleg Petuhov; Tatiana Goreacioc; Tudor Lupascu; Raisa Nastas

    2015-01-01

    Four series of samples containing manganese supported carbonaceous adsorbents were prepared. Obtained results reveal the importance of surface chemistry of carbonaceous adsorbents on the manganese loading.

  7. Krypton retention on solid adsorbents

    International Nuclear Information System (INIS)

    Radioactive krypton-85 is released to the atmosphere in the off-gas from nuclear reprocessing plants. Three main methods have been suggested for removal of krypton from off-gas streams: cryogenic distillation; fluorocarbon absorption; and adsorption on solid sorbents. Use of solid adsorbents is the least developed of these methods, but offers the potential advantages of enhanced safety and lower operating costs. An experimental laboratory program was developed that will be used to investigate systematically many solid adsorbents (such as zeolites, i.e., mordenites) for trapping krypton in air. The objective of this investigation is to find an adsorbent that is more economical than silver-exchanged mordenite. Various physical and chemical characteristics such as adsorption isotherms, decontamination factors, co-adsorption, regeneration, and the mechanism and kinetics of noble gas adsorption were used to characterize the adsorbents. In the experimental program, a gas chromatograph using a helium ionization detector was used to measure the krypton in air before and after the adsorbent bed. This method can determine directly decontamination factors greater than 100

  8. Protein purification using magnetic adsorbent particles

    DEFF Research Database (Denmark)

    Franzreb, M; Siemann-Herzberg, M.; Hobley, Timothy John;

    2006-01-01

    The application of functionalised magnetic adsorbent particles in combination with magnetic separation techniques has received considerable attention in recent years. The magnetically responsive nature of such adsorbent particles permits their selective manipulation and separation in the presence...

  9. Black Sprayable Molecular Adsorber Coating Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This novel molecular adsorber coating would alleviate the size, weight, and complexity issues of traditional molecular adsorber puck.  A flexible tape version...

  10. Dissolved Air Flotation of arsenic adsorbent particles

    OpenAIRE

    Santander, M.; Valderrama, L.

    2015-01-01

    The removal of arsenic from synthetic effluent was studied using the adsorbent particle flotation technique (APF) and dissolved air flotation (DAF). A sample of an iron mineral was used as adsorbent particles of arsenic, ferric chloride as coagulant, cationic polyacrylamide (NALCO 9808) as flocculants, and sodium oleate as collector. Adsorption studies to determine the pH influence, contact time, and adsorbent particles concentration on the adsorption of arsenic were carried out along with fl...

  11. A novel fiber-based adsorbent technology

    Energy Technology Data Exchange (ETDEWEB)

    Reynolds, T.A. [Chemica Technologies, Inc., Bend, OR (United States)

    1997-10-01

    In this Phase I Small Business Innovation Research program, Chemica Technologies, Inc. is developing an economical, robust, fiber-based adsorbent technology for removal of heavy metals from contaminated water. The key innovation is the development of regenerable adsorbent fibers and adsorbent fiber cloths that have high capacity and selectivity for heavy metals and are chemically robust. The process has the potential for widespread use at DOE facilities, mining operations, and the chemical process industry.

  12. Filter-adsorber aging assessment

    International Nuclear Information System (INIS)

    An aging assessment of high-efficiency particulate (HEPA) air filters and activated carbon gas adsorption units was performed by the Pacific Northwest Laboratory as part of the U.S. Nuclear Regulatory Commission's (USNRC) Nuclear Plant Aging Research (NPAR) Program. This evaluation of the general process in which characteristics of these two components gradually change with time or use included the compilation of information concerning failure experience, stressors, aging mechanisms and effects, and inspection, surveillance, and monitoring methods (ISMM). Stressors, the agents or stimuli that can produce aging degradation, include heat, radiation, volatile contaminants, and even normal concentrations of aerosol particles and gasses. In an experimental evaluation of degradation in terms of the tensile breaking strength of aged filter media specimens, over forty percent of the samples did not meet specifications for new material. Chemical and physical reactions can gradually embrittle sealants and gaskets as well as filter media. Mechanisms that can lead to impaired adsorber performance are associated with the loss of potentially available active sites as a result of the exposure of the carbon to airborne moisture or volatile organic compounds. Inspection, surveillance, and monitoring methods have been established to observe filter pressure drop buildup, check HEPA filters and adsorbers for bypass, and determine the retention effectiveness of aged carbon. These evaluations of installed filters do not reveal degradation in terms of reduced media strength but that under normal conditions aged media can continue to effectively retain particles. However, this degradation may be important when considering the likelihood of moisture, steam, and higher particle loadings during severe accidents and the fact it is probable that the filters have been in use for an extended period

  13. Scanning tunneling microscopy theory for an adsorbate: Application to adenine adsorbed on a graphite surface

    OpenAIRE

    Ou-Yang, Hui; Marcus, R. A.; Källebring, Bruno

    1994-01-01

    An expression is obtained for the current in scanning tunneling microscopy (STM) for a single adsorbate molecule. For this purpose the ``Newns–Anderson'' treatment (a ``discrete state in a continuum'' treatment) is used to obtain wave functions and other properties of the adsorbate/substrate system. The current is expressed in terms of the adsorbate–tip matrix elements, and an effective local density of states of the adsorbate/substrate system, at the adsorbate. As an example, the treatment i...

  14. Ecological applications of the irradiated adsorbents

    International Nuclear Information System (INIS)

    Full text: In our previous works it was shown that after irradiation some adsorbents gain new interesting properties such as increasing (or decreasing) of their adsorption capacity, selectivity in relation to some gases, change of chemical bounds of gas molecules with adsorbent surface as well as other properties. We investigated a lot of adsorbents with semiconducting and dielectric properties. A high temperature superconductor was investigated also. Adsorbents were irradiated by ultraviolet (UV) and gamma - radiation, reactor (n.γ) - radiation, α-particles (E=40-50 MeV), protons ( E=30 MeV), and also He-3 ions (E-29-60 MeV). The following techniques were used: volumetric (manometrical), mass-spectrometer and IR spectroscopic methods, and also method of electronic - paramagnetic resonance (spin paramagnetic resonance) The obtained results allow to speak about creation of new adsorbents for gas purification (clearing) from harmful impurities, gas selection into components, an increasing of adsorbing surface. Thus one more advantage of the irradiated adsorbents is that they have 'memory effect', i.e. they can be used enough long time after irradiation. In laboratory conditions we built the small-sized adsorptive pump on the basis of the irradiated zeolites which are capable to work in autonomous conditions. It was found, that some of adsorbents after irradiation gain (or lose) selectivity in relation to definite gases. So, silica gel, which one in initial state does not adsorb hydrogen, after gamma irradiation it becomes active in relation to hydrogen. Some of rare earths oxides also show selectivity in relation to hydrogen and oxygen depending on a type of irradiation. Thus, it is possible to create different absorbents, depending on a solved problem, using a way or selection of adsorbents, either of radiation type and energy, as a result obtained adsorbents can be used for various ecological purposes

  15. Complete braided adsorbent for marine testing to demonstrate 3g-U/kg-adsorbent

    Energy Technology Data Exchange (ETDEWEB)

    Janke, Chris [ORNL; Yatsandra, Oyola [ORNL; Mayes, Richard [ORNL; none,; Gill, Gary [PNNL; Li-Jung, Kuo [PNNL; Wood, Jordana [PNNL; Sadananda, Das [ORNL

    2014-04-30

    ORNL has manufactured four braided adsorbents that successfully demonstrated uranium adsorption capacities ranging from 3.0-3.6 g-U/kg-adsorbent in marine testing at PNNL. Four new braided and leno woven fabric adsorbents have also been prepared by ORNL and are currently undergoing marine testing at PNNL.

  16. A theoretical study of adsorbate-adsorbate interactions on Ru(0001)

    DEFF Research Database (Denmark)

    Mortensen, Jens Jørgen; Hammer, Bjørk; Nørskov, Jens Kehlet

    1998-01-01

    Using density functional theory we study the effect of pre-adsorbed atoms on the dissociation of N(2) and the adsorption of N, N(2), and CO on Ru(0001). We have done calculations for pre-adsorbed Na, Cs, and S, and find that alkali atoms adsorbed close to a dissociating N(2) molecule will lower t...

  17. Fluorescence dynamics of microsphere-adsorbed sunscreens

    Science.gov (United States)

    Krishnan, R.

    2005-03-01

    Sunscreens are generally oily substances which are prepared in organic solvents, emulsions or dispersions with micro- or nanoparticles. These molecules adsorb to and integrate into skin cells. In order to understand the photophysical properties of the sunscreen, we compare steady-state and time-resolved fluorescence in organic solvent of varying dielectric constant ɛ and adsorbed to polystyrene microspheres and dispersed in water. Steady-state fluorescence is highest and average fluorescence lifetime longest in toluene, the solvent of lowest ɛ. However, there is no uniform dependence on ɛ. Sunscreens PABA and padimate-O show complex emission spectra. Microsphere-adsorbed sunscreens exhibit highly non-exponential decay, illustrative of multiple environments of the adsorbed molecule. The heterogeneous fluorescence dynamics likely characterizes sunscreen adsorbed to cells.

  18. NOx adsorber and method of regenerating same

    Science.gov (United States)

    Endicott, Dennis L.; Verkiel, Maarten; Driscoll, James J.

    2007-01-30

    New technologies, such as NOx adsorber catalytic converters, are being used to meet increasingly stringent regulations on undesirable emissions, including NOx emissions. NOx adsorbers must be periodically regenerated, which requires an increased fuel consumption. The present disclosure includes a method of regenerating a NOx adsorber within a NOx adsorber catalytic converter. At least one sensor positioned downstream from the NOx adsorber senses, in the downstream exhaust, at least one of NOx, nitrous oxide and ammonia concentrations a plurality of times during a regeneration phase. The sensor is in communication with an electronic control module that includes a regeneration monitoring algorithm operable to end the regeneration phase when a time rate of change of the at least one of NOx, nitrous oxide and ammonia concentrations is after an expected plateau region begins.

  19. Nanovalved Adsorbents for CH4 Storage.

    Science.gov (United States)

    Song, Zhuonan; Nambo, Apolo; Tate, Kirby L; Bao, Ainan; Zhu, Minqi; Jasinski, Jacek B; Zhou, Shaojun J; Meyer, Howard S; Carreon, Moises A; Li, Shiguang; Yu, Miao

    2016-05-11

    A novel concept of utilizing nanoporous coatings as effective nanovalves on microporous adsorbents was developed for high capacity natural gas storage at low storage pressure. The work reported here for the first time presents the concept of nanovalved adsorbents capable of sealing high pressure CH4 inside the adsorbents and storing it at low pressure. Traditional natural gas storage tanks are thick and heavy, which makes them expensive to manufacture and highly energy-consuming to carry around. Our design uses unique adsorbent pellets with nanoscale pores surrounded by a coating that functions as a valve to help manage the pressure of the gas and facilitate more efficient storage and transportation. We expect this new concept will result in a lighter, more affordable product with increased storage capacity. The nanovalved adsorbent concept demonstrated here can be potentially extended for the storage of other important gas molecules targeted for diverse relevant functional applications. PMID:27124722

  20. Inorganic chemically active adsorbents (ICAAs)

    Energy Technology Data Exchange (ETDEWEB)

    Ally, M.R. [Oak Ridge National Lab., TN (United States); Tavlarides, L.

    1997-10-01

    Oak Ridge National Laboratory (ORNL) researchers are developing a technology that combines metal chelation extraction technology and synthesis chemistry. They begin with a ceramic substrate such as alumina, titanium oxide or silica gel because they provide high surface area, high mechanical strength, and radiolytic stability. One preparation method involves silylation to hydrophobize the surface, followed by chemisorption of a suitable chelation agent using vapor deposition. Another route attaches newly designed chelating agents through covalent bonding by the use of coupling agents. These approaches provide stable and selective, inorganic chemically active adsorbents (ICAAs) tailored for removal of metals. The technology has the following advantages over ion exchange: (1) higher mechanical strength, (2) higher resistance to radiation fields, (3) higher selectivity for the desired metal ion, (4) no cation exchange, (5) reduced or no interference from accompanying anions, (6) faster kinetics, and (7) easy and selective regeneration. Target waste streams include metal-containing groundwater/process wastewater at ORNL`s Y-12 Plant (multiple metals), Savannah River Site (SRS), Rocky Flats (multiple metals), and Hanford; aqueous mixed wastes at Idaho National Engineering Laboratory (INEL); and scrubber water generated at SRS and INEL. Focus Areas that will benefit from this research include Mixed Waste, and Subsurface Contaminants.

  1. Characterization of adsorbed dicarbonyls of rhodium

    International Nuclear Information System (INIS)

    We have studies the adsorbed states of CO on dispersed RH in Y zeolites by solid-state 13C NMR spectroscopy. The structure of the dicarbonyl form of adsorbed rhodium has been revealed using a Carr-Purcell-Meiboom-Gill multiple pulse sequence. NMR lineshape calculations show that adsorbed Rh(CO)2 species are undergoing a 180 deg. flipping motion about the C2 axis which bisects the C-Rh-C angle. Spectra calculated with this motional model have been compared with published spectra of CO on Rh-Y zeolites. (author). 7 refs.; 3 figs

  2. States of water adsorbed on perindopril crystals

    Science.gov (United States)

    Stepanov, V. A.; Khmelevskaya, V. S.; Bogdanov, N. Yu.; Gorchakov, K. A.

    2011-10-01

    The relationship between the structural state of adsorbed water, the crystal structure of the substances, and the solubility of the perindopril salt C19H32N2O5 · C4H11N in water was studied by IR spectroscopy and X-ray diffractometry. The high-frequency shift of the stretching vibrations of adsorbed water and the solubility depend on the crystal structure of the drug substance. A reversible chemical reaction occurred between the adsorbed water and the perindopril salt.

  3. New liquid waste control with tannin adsorbent

    International Nuclear Information System (INIS)

    Since 1971, the Mitsubishi Nuclear Fuel Co., Ltd. (MNF) has been fabricating PWR fuels and developing related technology and processes. In the UF6 reconversion lines of MNF, the ammonium diuranate (ADU) process has been operating and the newly developed process of liquid waste treatment was installed last year. The characteristic of this process is to use insoluble tannin adsorbent which has been developed by MNF. The tannin adsorbent is not only an effective means to adsorb heavy metals such as uranium and plutonium but is also easy to incinerate at low temperature. Control of radioactive liquid waste from nuclear facilities is generally implemented by co-precipitation. However, it produces secondary wastes such as noncombustible materials which include radionuclides and it is anticipated that the storage and disposal of those wastes will be at high cost. Those are the reasons why tannin adsorbent has an advantage, and why MNF develops it. (author)

  4. Properties and selection criteria for adsorbents

    International Nuclear Information System (INIS)

    The paper gives a survey of the most important industrial adsorbents and of their suitability for different purposes. With special consideration of activated carbon, the properties and characteristic data are discussed which are used for assessing adsorbents. These, among other things, are as follows: specific surface area, pore size distribution, adsorption isotherms, hydrophobic properties, catalytic properties, chemical resistance, heat resistance, particle size and hardness. (orig.)

  5. Dissolved Air Flotation of arsenic adsorbent particles

    Directory of Open Access Journals (Sweden)

    M. Santander

    2015-04-01

    Full Text Available The removal of arsenic from synthetic effluent was studied using the adsorbent particle flotation technique (APF and dissolved air flotation (DAF. A sample of an iron mineral was used as adsorbent particles of arsenic, ferric chloride as coagulant, cationic polyacrylamide (NALCO 9808 as flocculants, and sodium oleate as collector. Adsorption studies to determine the pH influence, contact time, and adsorbent particles concentration on the adsorption of arsenic were carried out along with flotation studies to determine the removal efficiency of adsorbents particles. The results achieved indicate that the adsorption kinetic of arsenic is very rapid and that in range of pH’s from 2 to 7 the adsorption percentages remain constant. The equilibrium conditions were achieved in 60 minutes and about 95% of arsenic was adsorbed when used an adsorbent concentration of 2 g/L and pH 6.3. The maximum adsorption capacity of adsorbent particles was 4.96 mg/g. The mean free energy of adsorption (E was found to be 2.63 kJ/mol, which suggests physisorption. The results of the flotation studies demonstrated that when synthetic effluents with 8.9 mg/L of arsenic were treated under the following experimental conditions; 2 g/L of adsorbent particles, 120 mg/L of Fe(III, 2 mg/L of Nalco 9808, 20 mg/L of sodium oleate, and 40% of recycle ratio in the DAF, it was possible to reach 98% of arsenic removal and 6.3 NTU of residual turbidity in clarified synthetic effluent.

  6. Hydrophobic Porous Material Adsorbs Small Organic Molecules

    Science.gov (United States)

    Sharma, Pramod K.; Hickey, Gregory S.

    1994-01-01

    Composite molecular-sieve material has pore structure designed specifically for preferential adsorption of organic molecules for sizes ranging from 3 to 6 angstrom. Design based on principle that contaminant molecules become strongly bound to surface of adsorbent when size of contaminant molecules is nearly same as that of pores in adsorbent. Material used to remove small organic contaminant molecules from vacuum systems or from enclosed gaseous environments like closed-loop life-support systems.

  7. Membrane Perturbation Induced by Interfacially Adsorbed Peptides

    OpenAIRE

    Zemel, Assaf; Ben-Shaul, Avinoam; May, Sylvio

    2004-01-01

    The structural and energetic characteristics of the interaction between interfacially adsorbed (partially inserted) α-helical, amphipathic peptides and the lipid bilayer substrate are studied using a molecular level theory of lipid chain packing in membranes. The peptides are modeled as “amphipathic cylinders” characterized by a well-defined polar angle. Assuming two-dimensional nematic order of the adsorbed peptides, the membrane perturbation free energy is evaluated using a cell-like model;...

  8. Behavior of macromolecules in adsorbed layers

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    A model for describing the behavior of macromolecules in adsorbed layers is developed by introducing a concept of distribution density of layer thickness U based on stochastic process and probabilistic statistics. The molecular behavior of layers adsorbed on clay particle surfaces is discussed; the random distribution and its statistics of the layer thickness are given by incorporating experimental results with an ionic polyelectrolyte with the molecular weight of 1.08×106 and chain charged density of 0.254.

  9. ADSORBENTS USED IN THE CLEARANCE OF ENDOTOXIN

    Institute of Scientific and Technical Information of China (English)

    YU Mei; LIU Tao; Hou Guanghui; YUAN Zhi

    2003-01-01

    A series of modified poly (methyl methacrylate, PMMA) resins were prepared and compared their adsorption abilities to endotoxin. The results showed that adsorbents, which were grafted with tertiary amine and long spacing arms, had the best adsorption capacities and good blood compatibility, It is hopeful to be used as adsorbent in hemoperfusion for clinical clearance of endotoxin. The influence of original concentration of endotoxin on adsorption and the adsorption mechanism were also investigated.

  10. Photochemistry of Nitrate Adsorbed on Mineral Dust

    Science.gov (United States)

    Gankanda, A.; Grassian, V. H.

    2013-12-01

    Mineral dust particles in the atmosphere are often associated with adsorbed nitrate from heterogeneous reactions with nitrogen oxides including HNO3 and NO2. Although nitrate ion is a well-studied chromophore in natural waters, the photochemistry of adsorbed nitrate on mineral dust particles is yet to be fully explored. In this study, wavelength dependence of the photochemistry of adsorbed nitrate on different model components of mineral dust aerosol has been investigated using transmission FTIR spectroscopy. Al2O3, TiO2 and NaY zeolite were used as model systems to represent non-photoactive oxides, photoactive semiconductor oxides and porous materials respectively, present in mineral dust aerosol. In this study, adsorbed nitrate is irradiated with 254 nm, 310 nm and 350 nm narrow band light. In the irradiation with narrow band light, NO2 is the only detectable gas-phase product formed from nitrate adsorbed on Al2O3 and TiO2. The NO2 yield is highest at 310 nm for both Al2O3 and TiO2. Unlike Al2O3 and TiO2, in zeolite, adsorbed nitrate photolysis to nitrite is observed only at 310 nm during narrow band irradiation. Moreover gas phase products were not detected during nitrate photolysis in zeolite at all three wavelengths. The significance of these differences as related to nitrate photochemistry on different mineral dust components will be highlighted.

  11. Insight into the adsorption of PPCPs by porous adsorbents: Effect of the properties of adsorbents and adsorbates.

    Science.gov (United States)

    Zhu, Zengyin; Xie, Jiawen; Zhang, Mancheng; Zhou, Qing; Liu, Fuqiang

    2016-07-01

    Adsorption is an efficient method for removal of pharmaceuticals and personal care products (PPCPs). Magnetic resins are efficient adsorbents for water treatment and exhibit potential for PPCP removal. In this study, the magnetic hypercrosslinked resin Q100 was used for adsorption of PPCPs. The adsorption behavior of this resin was compared with those of two activated carbons, namely, Norit and F400D. Norit exhibited the fastest adsorption kinetics, followed by Q100. Norit featured a honeycomb shape and long-range ordered pore channels, which facilitated the diffusion of PPCPs. Moreover, the large average pore size of Q100 reduced diffusion resistance. The adsorbed amounts of 11 PPCPs on the three adsorbents increased with increasing adsorbate hydrophobicity. For Q100, a significant linear correlation was observed between the adsorption performance for PPCPs and hydrophobicity (logD value) of adsorbates (R(2) = 0.8951); as such, PPCPs with high logD values (>1.69) could be efficiently removed. Compared with those of Norit and F400D, the adsorption performance of Q100 was less affected by humic acid because of the dominant hydrophobic interaction. Furthermore, Q100 showed improved regeneration performance, which renders it promising for PPCP removal in practical applications. PMID:27131811

  12. Novel Fiber-Based Adsorbent Technology; FINAL

    International Nuclear Information System (INIS)

    The overall of this Department of Energy (DOE) Phase II SBIR program was to develop a new class of highly robust fiber-based adsorbents for recovery of heavy metals from aqueous waste-streams. The fiber-based adsorbents,when commercialized,will be used for clean up metals in aqueous waste-streams emanating from DOE facilities,industry,mining,and groundwater-cleanup operations.The amount of toxic waste released by these streams is of great significance.The U.S.Environment Protection Agency (EPA) reports that in 1990 alone,4.8 billion pounds of toxic chemicals were released into the environment.Of this waste,the metals-containing waste was the second largest contributor,representing 569 million pounds. This report presents the results of the Phase II program,which successfully synthesized noval fiber-based adsorbents for the removal of Group 12 metals(i.e.mercury),Group 14 metals (lead),and Group 10 metals(platinum and palladium) from contaminated groundwater and industrial waste streams.These fiber-based adsorbents are ideally suited for the recovery of metal ions from aqueous waste streams presently not treatable due to the degrading nature of corrosive chemicals or radioactive components in the feed stream. The adsorbents developed in this program rely on chemically resistant and robust carbon fibers and fabrics as supports for metal-ion selective ligands.These adsorbents demonstrate loading capacities and selectivities for metal ions exceeding those of conventional ion-exchange resins.The adsorbents were also used to construct filter modules that demonstrate minimal fouling,minimal compaction,chemical and physical robustness,and regeneration of metal loading capacity without loss of performance

  13. Size selective hydrophobic adsorbent for organic molecules

    Science.gov (United States)

    Sharma, Pramod K. (Inventor); Hickey, Gregory S. (Inventor)

    1997-01-01

    The present invention relates to an adsorbent formed by the pyrolysis of a hydrophobic silica with a pore size greater than 5 .ANG., such as SILICALITE.TM., with a molecular sieving polymer precursor such as polyfurfuryl alcohol, polyacrylonitrile, polyvinylidene chloride, phenol-formaldehyde resin, polyvinylidene difluoride and mixtures thereof. Polyfurfuryl alcohol is the most preferred. The adsorbent produced by the pyrolysis has a silicon to carbon mole ratio of between about 10:1 and 1:3, and preferably about 2:1 to 1:2, most preferably 1:1. The pyrolysis is performed as a ramped temperature program between about 100.degree. and 800.degree. C., and preferably between about 100.degree. and 600.degree. C. The present invention also relates to a method for selectively adsorbing organic molecules having a molecular size (mean molecular diameter) of between about 3 and 6 .ANG. comprising contacting a vapor containing the small organic molecules to be adsorbed with the adsorbent composition of the present invention.

  14. Black Molecular Adsorber Coatings for Spaceflight Applications

    Science.gov (United States)

    Abraham, Nithin Susan; Hasegawa, Mark Makoto; Straka, Sharon A.

    2014-01-01

    The molecular adsorber coating is a new technology that was developed to mitigate the risk of on-orbit molecular contamination on spaceflight missions. The application of this coating would be ideal near highly sensitive, interior surfaces and instruments that are negatively impacted by outgassed molecules from materials, such as plastics, adhesives, lubricants, epoxies, and other similar compounds. This current, sprayable paint technology is comprised of inorganic white materials made from highly porous zeolite. In addition to good adhesion performance, thermal stability, and adsorptive capability, the molecular adsorber coating offers favorable thermal control characteristics. However, low reflectivity properties, which are typically offered by black thermal control coatings, are desired for some spaceflight applications. For example, black coatings are used on interior surfaces, in particular, on instrument baffles for optical stray light control. Similarly, they are also used within light paths between optical systems, such as telescopes, to absorb light. Recent efforts have been made to transform the white molecular adsorber coating into a black coating with similar adsorptive properties. This result is achieved by optimizing the current formulation with black pigments, while still maintaining its adsorption capability for outgassing control. Different binder to pigment ratios, coating thicknesses, and spray application techniques were explored to develop a black version of the molecular adsorber coating. During the development process, coating performance and adsorption characteristics were studied. The preliminary work performed on black molecular adsorber coatings thus far is very promising. Continued development and testing is necessary for its use on future contamination sensitive spaceflight missions.

  15. Defluoridization Using a Natural Adsorbent, Strychnos Potatorum

    Directory of Open Access Journals (Sweden)

    S.Rayappan

    2014-10-01

    Full Text Available The study assessed the suitability of low-cost natural adsorbent to effectively remediate fluoride contaminated water. The removal of fluoride from aqueous solution by using Strychnos Potatorum was studied in batch technique. Influence of pH, adsorbent dose, contact time, co ions, speed and initial concentration on the adsorption were investigated. The maximum removal of fluoride ion was obtained at pH 7. The removal of fluoride was expressed with Langmuir and Freundlich isotherm. It was found that the sufficient time for adsorption equilibrium of fluoride ion was 1 hour. The removal of fluoride ions was maximum for the adsorbent dosage of SP is 50mg/50ml. The fluoride adsorption was maximum at 60minutes. The adsorption of F- ion was maximum in the shaking speed of 120 rpm. The presence of interfering ions such as nitrate and carbonate showed positive effect while sulphate and chloride showed little negative effect and phosphate showed high negative effect for the adsorbent. The optimum initial fluoride concentration for SP adsorbent was 1mg/50ml.

  16. Process for producing zeolite adsorbent and process for treating radioactive liquid waste with the zeolite adsorbent

    International Nuclear Information System (INIS)

    Zeolite is contacted with an aqueous solution containing at least one of copper, nickel, cobalt, manganese and zinc salts, preferably copper and nickel salts, particularly preferably copper salt, in such a form as sulfate, nitrate, or chloride, thereby adsorbing the metal on the zeolite in its pores by ion exchange, then the zeolite is treated with a water-soluble ferrocyanide compound, for example, potassium ferrocyanide, thereby forming metal ferrocyanide on the zeolite in its pores. Then, the zeolite is subjected to ageing treatment, thereby producing a zeolite adsorbent impregnated with metal ferrocyanide in the pores of zeolite. The adsorbent can selectively recover cesium with a high percent cesium removal from a radioactive liquid waste containing at least radioactive cesium, for example, a radioactive liquid waste containing cesium and such coexisting ions as sodium, magnesium, calcium and carbonate ions at the same time at a high concentration. The zeolite adsorbent has a stable adsorbability for a prolonged time

  17. Theoretical Insight of Physical Adsorption for a Single Component Adsorbent + Adsorbate System: II. The Henry Region

    KAUST Repository

    Chakraborty, Anutosh

    2009-07-07

    The Henry coefficients of a single component adsorbent + adsorbate system are calculated from experimentally measured adsorption isotherm data, from which the heat of adsorption at zero coverage is evaluated. The first part of the papers relates to the development of thermodynamic property surfaces for a single-component adsorbent + adsorbate system1 (Chakraborty, A.; Saha, B. B.; Ng, K. C.; Koyama, S.; Srinivasan, K. Langmuir 2009, 25, 2204). A thermodynamic framework is presented to capture the relationship between the specific surface area (Ai) and the energy factor, and the surface structural and the surface energy heterogeneity distribution factors are analyzed. Using the outlined approach, the maximum possible amount of adsorbate uptake has been evaluated and compared with experimental data. It is found that the adsorbents with higher specific surface areas tend to possess lower heat of adsorption (ΔH°) at the Henry regime. In this paper, we have established the definitive relation between Ai and ΔH° for (i) carbonaceous materials, metal organic frameworks (MOFs), carbon nanotubes, zeolites + hydrogen, and (ii) activated carbons + methane systems. The proposed theoretical framework of At and AH0 provides valuable guides for researchers in developing advanced porous adsorbents for methane and hydrogen uptake. © 2009 American Chemical Society.

  18. Effect of Adsorbent Diameter on the Performance of Adsorption Refrigeration

    Institute of Scientific and Technical Information of China (English)

    黄宏宇; 何兆红; 袁浩然; 小林敬幸; 赵丹丹; 窪田光宏; 郭华芳

    2014-01-01

    Adsorbents are important components in adsorption refrigeration. The diameter of an adsorbent can af-fect the heat and mass transfer of an adsorber. The effect of particle diameter on effective thermal conductivity was investigated. The heat transfer coefficient of the refrigerant and the void rate of the adsorbent layer can also affect the effective thermal conductivity of adsorbents. The performance of mass transfer in the adsorber is better when pressure drop decreases. Pressure drop decreases with increasing permeability. The permeability of the adsorbent layer can be improved with increasing adsorbent diameter. The effect of adsorbent diameter on refrigeration output power was experimentally studied. Output power initially increases and then decreases with increasing diameter under different cycle time conditions. Output power increases with decreasing cycle time under similar diameters.

  19. The Dynamics and Structures of Adsorbed Surfaces

    DEFF Research Database (Denmark)

    Nielsen, M; Ellenson, W. D.; McTague, J. P.

    1978-01-01

    Reviews neutron scattering work performed on films of simple gas atoms and molecules adsorbed primarily on graphite surfaces. Exfoliated graphite substrates such as Grafoil were first used in this kind of measurements about five years ago and new results have been reported at an increasing pace. ...

  20. Antiferromagnets Structure in Adsorbed O2 Monolayers

    DEFF Research Database (Denmark)

    Nielsen, Mourits; McTague, J. P.

    1977-01-01

    Neutron diffraction from monolayers of O2 adsorbed on graphite shows structural arrangements similar to the dense planes of bulk O2. At monolayer completion and above, a magnetic superlattice reflection shows well-developed antiferromagnetic order for T ⩽ 10 K. The submonolayer phase also shows...

  1. Organosilicon Ion-Exchange and Complexing Adsorbents

    Institute of Scientific and Technical Information of China (English)

    M. Voronkov; N. Vlasova; Yu. Pozhidaev; L. Belousova

    2005-01-01

    @@ 1Introduction Modification of mineral synthetic or natural substrates by organosilicon G-functionally substituted monomers, copolycondensation of the latter with organic and organosilicon compounds, and hydrolytic polycondensation of these monomers are the most widely used methods of synthesis of organosilicon adsorbents.

  2. Study of plutonium adsorption by fibrous adsorbent

    International Nuclear Information System (INIS)

    Japan Atomic Energy Research Institute and Unitika Ltd. have been conducting, under a joint effort, development of an inorganic fibrous adsorbent (FAC), which is capable of adsorbing plutonium (Pu) contained in radioactive liquid waste and which is also able to contribute to reduction of the volume of α-waste by incineration. The fibrous adsorbent constitutes fibrous activated carbon of coal tar pitch derivative and has the following characteristics: (1) It has a large surface area. (2) Carbon constitutes more than 90% in the adsorbent; it is physically and chemically stable as an inorganic adsorbent; it is easy to be incinerated. (3) It is easy to be formed or molded into different shapes such as cartridges, and handling of the material is extremely easy. By using various kinds of Pu solution, we carried out tests and evaluations on the equilibrium adsorption quantity of Pu by the fibrous adsorbent, the adsorption property of the material by flow-through column test and the incineration property of the material in the cold test. The tests show that: (1) adsorption of Pu is the best with 0.8∼0.9 mg-Pu/g-FAC when the concentration of nitric acid is near 1 M; (2) as the concentration of nitric acid is increased, its adsorption capacity becomes poorer; (3) when Pu coexists with Uranium (U), the adsorption capacity becomes slightly inferior; (4) in the flow-through column test, no breakthrough of Pu was observed until the volume of Pu liquid becomes about 3 times larger than the column volume; (5) in the incineration tests in the cold test using a laboratory scale incinerator, no flying of particles or soot was observed; and (6) it is possible to get good incineration at 500 ∼ 600 degrees C. The above results show that, by using the fibrous adsorbent, it became possible to remove Pu from radioactive liquid waste by adsorption, to reduce the volume only to residual ash by incineration, and to reduce substantially the volume of α-waste

  3. Development of XZ-1200 ripple-bed iodine adsorber

    International Nuclear Information System (INIS)

    The structure and specifications of XZ-1200 ripple-bed iodine adsorbers are described in detail. The performance of the adsorbers in use in Daya Bay NPP are presented and compared with that of the French ones

  4. Zeolites as alcohol adsorbents from aqueous solutions

    Directory of Open Access Journals (Sweden)

    Cekova Blagica

    2006-01-01

    Full Text Available The potential usage of zeolites as adsorbents for the removal of organic molecules from water was investigated in a series of experiments with aqueous solutions of lower alcohols. This could represent a simple solution to the problem of cleaning up industrial wastewater as well as recovering valuable chemicals at relatively low costs. Adsorption isotherms of the Langmuir type were applied, and calculations showed that the amount of propanol adsorbed on silicalite corresponded to approximately 70% of the pore volume. The adsorption process is simple, and recovery of the more concentrated products is easily done by heat treatment and/or at lowered pressures. Adsorption experiments with aqueous acetone showed that silicalite had approximately the same adsorption capacity for acetone as for n-propanol. Heats of adsorption were determined calorimetrically.

  5. Computer simulations of adsorbed liquid crystal films

    Science.gov (United States)

    Wall, Greg D.; Cleaver, Douglas J.

    2003-01-01

    The structures adopted by adsorbed thin films of Gay-Berne particles in the presence of a coexisting vapour phase are investigated by molecular dynamics simulation. The films are adsorbed at a flat substrate which favours planar anchoring, whereas the nematic-vapour interface favours normal alignment. On cooling, a system with a high molecule-substrate interaction strength exhibits substrate-induced planar orientational ordering and considerable stratification is observed in the density profiles. In contrast, a system with weak molecule-substrate coupling adopts a director orientation orthogonal to the substrate plane, owing to the increased influence of the nematic-vapour interface. There are significant differences between the structures adopted at the two interfaces, in contrast with the predictions of density functional treatments of such systems.

  6. Removal of micropollutants from water by nanocomposite membrane adsorbers

    OpenAIRE

    Niedergall, K.; Bach, M.; Hirth, T.; Tovar, G.E.M.; Schiestel, T.

    2014-01-01

    Nanoscaled spheric polymer adsorbers with a variety of chemical surface functionalities were synthesized by miniemulsion polymerization and inverse miniemulsion polymerization. The nanospheres were embedded in polyethersulfone (PES) matrices by a wet-phase inversion process to form nanocomposite membrane adsorbers. The resulting membrane adsorbers were characterized by scanning electron microscopy (SEM), pore size measurements, water flux measurements and various adsorption experiments. The m...

  7. Characterising electrospun nanofibre adsorbents for bioprocessing

    OpenAIRE

    Dods, S. R.

    2016-01-01

    Biopharmaceutical manufacturing is one of largest sectors in the world and purification steps are expensive. Packed-bed resins are widely used, but are limited by diffusion mass transfer. Convective mass transfer media offer improved productivities using high flowrates. Electrospun nanofibres are a non-woven with an open structure and high surface area. Cellulose acetate was electrospun into reproducible adsorbents and activation methodologies were evaluated. Aldehyde activation caused degrad...

  8. Green Adsorbents for Wastewaters: A Critical Review

    Directory of Open Access Journals (Sweden)

    George Z. Kyzas

    2014-01-01

    Full Text Available One of the most serious environmental problems is the existence of hazardous and toxic pollutants in industrial wastewaters. The major hindrance is the simultaneous existence of many/different types of pollutants as (i dyes; (ii heavy metals; (iii phenols; (iv pesticides and (v pharmaceuticals. Adsorption is considered to be one of the most promising techniques for wastewater treatment over the last decades. The economic crisis of the 2000s led researchers to turn their interest in adsorbent materials with lower cost. In this review article, a new term will be introduced, which is called “green adsorption”. Under this term, it is meant the low-cost materials originated from: (i agricultural sources and by-products (fruits, vegetables, foods; (ii agricultural residues and wastes; (iii low-cost sources from which most complex adsorbents will be produced (i.e., activated carbons after pyrolysis of agricultural sources. These “green adsorbents” are expected to be inferior (regarding their adsorption capacity to the super-adsorbents of previous literature (complex materials as modified chitosans, activated carbons, structurally-complex inorganic composite materials etc., but their cost-potential makes them competitive. This review is a critical approach to green adsorption, discussing many different (maybe in some occasions doubtful topics such as: (i adsorption capacity; (ii kinetic modeling (given the ultimate target to scale up the batch experimental data to fixed-bed column calculations for designing/optimizing commercial processes and (iii critical techno-economical data of green adsorption processes in order to scale-up experiments (from lab to industry with economic analysis and perspectives of the use of green adsorbents.

  9. Behavior of macromolecules in adsorbed layers

    Institute of Scientific and Technical Information of China (English)

    牟伯中[1; 姚恒申[2; 罗平亚[3

    2000-01-01

    A model for describing the behavior ot macromoiecuies in aosoroea layers is developed by introducing a concept of distribution density of layer thickness U based on stochastic process and probabilistic statistics. The molecular behavior of layers adsorbed on clay particle surfaces is discussed; the random distribution and its statistics of the layer thickness are given by incorporating experimental results with an ionic polyelectrolyte with the molecular weight of 1.08×106and chain charged density of 0.254.

  10. Indirect interactions of membrane-adsorbed cylinders

    OpenAIRE

    Weikl, Thomas R.

    2003-01-01

    Biological and biomimetic membranes often contain aggregates of embedded or adsorbed macromolecules. In this article, the indirect interactions of cylindrical objects adhering to a planar membrane are considered theoretically. The adhesion of the cylinders causes a local perturbation of the equilibrium membrane shape, which leads to membrane-mediated interactions. For a planar membrane under lateral tension, the interaction is repulsive for a pair of cylinders adhering to the same side of the...

  11. Orbital tomography for highly symmetric adsorbate systems

    Science.gov (United States)

    Stadtmüller, B.; Willenbockel, M.; Reinisch, E. M.; Ules, T.; Bocquet, F. C.; Soubatch, S.; Puschnig, P.; Koller, G.; Ramsey, M. G.; Tautz, F. S.; Kumpf, C.

    2012-10-01

    Orbital tomography is a new and very powerful tool to analyze the angular distribution of a photoemission spectroscopy experiment. It was successfully used for organic adsorbate systems to identify (and consequently deconvolute) the contributions of specific molecular orbitals to the photoemission data. The technique was so far limited to surfaces with low symmetry like fcc(110) oriented surfaces, owing to the small number of rotational domains that occur on such surfaces. In this letter we overcome this limitation and present an orbital tomography study of a 3,4,9,10-perylene-tetra-carboxylic-dianhydride (PTCDA) monolayer film adsorbed on Ag(111). Although this system exhibits twelve differently oriented molecules, the angular resolved photoemission data still allow a meaningful analysis of the different local density of states and reveal different electronic structures for symmetrically inequivalent molecules. We also discuss the precision of the orbital tomography technique in terms of counting statistics and linear regression fitting algorithm. Our results demonstrate that orbital tomography is not limited to low-symmetry surfaces, a finding which makes a broad field of complex adsorbate systems accessible to this powerful technique.

  12. Removal of adsorbent particles od copper ions by Jet flotation

    International Nuclear Information System (INIS)

    The present study shows the results obtained on the removal of copper ions from synthetic effluents by using the adsorbent particles flotation technique (APF) in a Jet flotation cell (Jameson type). In a typical experimental run, a mineral with high quartz content was used as adsorbent particles in the adsorption and flotation experiments, to determine optimal pH conditions, adsorbent particles concentration; flotation reagents dosage and air/effluent flow ratio for applying in the Jet cell to maximize the efficiency of copper ions adsorptions and the removal of particles adsorbents containing the absorbed copper ions. The results indicate the at pH>7 and at adsorbent particles concentration of 2 kg.m-3, 99% of copper ions is adsorbed and, when the air/effluent flow ratio applied in the Jet cell is 0,2, 98% of absorbent particles containing the adsorbed copper ions is removed. (Author) 39 refs.

  13. Adsorption equilibria and kinetics for phenol and cresol onto polymeric adsorbents: Effects of adsorbents/adsorbates structure and interface

    International Nuclear Information System (INIS)

    Phenol and cresol (o-, m-, and p-) were selected as the adsorbates with different dipole moment (cresol > phenol, methyl being electron-drawing group) and solubility (phenol > cresol, methyl being hydrophobic group). Macropore polymers (NDA-1800 and XAD-4), hypercrosslinked polymers (NDA-100), and chemically modified adsorbents (NDA-150 and NDA-99), were comparatively used to investigate the adsorption properties including equilibria, thermodynamics and kinetics. First, all of the results about equilibria show that the adsorption data fit well to the Freundlich model. The adsorption capacity of NDA-99 and NDA-150 especially for phenol is larger in a certain extent than other three types of polymers. The hydrophobic interaction from large specific surface was mainly occurred, while the polar groups containing oxygen and amine markedly enhance the adsorption process via hydrogen interaction. Furthermore, the adsorption amount for NDA-99 and XAD-4 decrease linearly with the solubility of solutes tested. Then, the negative values of enthalpy demonstrate the predominantly exothermic and physical solid-extraction processes. Finally, the relatively more rapid adsorption process could be found onto NDA-150 than NDA-99, with the reason of the double larger pore size of the former. In conclusion, solubility of solute, together with surface area, pore size and modified groups, extremely exerts influences to the adsorption performances

  14. Isothermal composite adsorbent. Part I: Thermal characterisation

    International Nuclear Information System (INIS)

    Adsorption and desorption are respectively exo and endothermic phenomena leading to significant temperature changes in adsorption columns. Enhanced efficiency of a sorption process could be obtained under isothermal conditions, either for gas storage, purification or separation applications. The heat transfer within the adsorbent beds can be managed in situ, using thermal energy storage material: a phase change materials (PCM) for example. The thermal behaviour of a mixture of activated carbon and PCM during CO2 adsorption has been studied. The thermal characteristics of the involved materials have been determined and experiments carried out to highlight the positive effect of the PCM to reduce the CO2 adsorption heat effects on an activated carbon bed. Calorimetry was the technique used for all the thermal characterisations. It appears that the heat effects induced by CO2 adsorption are reduced by the presence of the PCM together with the adsorbent. The endothermic effect of fusion balances the heat effect of adsorption and significantly reduces the temperature changes

  15. The persistence length of adsorbed dendronized polymers.

    Science.gov (United States)

    Grebikova, Lucie; Kozhuharov, Svilen; Maroni, Plinio; Mikhaylov, Andrey; Dietler, Giovanni; Schlüter, A Dieter; Ullner, Magnus; Borkovec, Michal

    2016-07-21

    The persistence length of cationic dendronized polymers adsorbed onto oppositely charged substrates was studied by atomic force microscopy (AFM) and quantitative image analysis. One can find that a decrease in the ionic strength leads to an increase of the persistence length, but the nature of the substrate and of the generation of the side dendrons influence the persistence length substantially. The strongest effects as the ionic strength is being changed are observed for the fourth generation polymer adsorbed on mica, which is a hydrophilic and highly charged substrate. However, the observed dependence on the ionic strength is much weaker than the one predicted by the Odijk, Skolnik, and Fixman (OSF) theory for semi-flexible chains. Low-generation polymers show a variation with the ionic strength that resembles the one observed for simple and flexible polyelectrolytes in solution. For high-generation polymers, this dependence is weaker. Similar dependencies are found for silica and gold substrates. The observed behavior is probably caused by different extents of screening of the charged groups, which is modified by the polymer generation, and to a lesser extent, the nature of the substrate. For highly ordered pyrolytic graphite (HOPG), which is a hydrophobic and weakly charged substrate, the electrostatic contribution to the persistence length is much smaller. In the latter case, we suspect that specific interactions between the polymer and the substrate also play an important role. PMID:27353115

  16. Dye sequestration using agricultural wastes as adsorbents

    Directory of Open Access Journals (Sweden)

    Kayode Adesina Adegoke

    2015-12-01

    Full Text Available Color is a visible pollutant and the presence of even minute amounts of coloring substance makes it undesirable due to its appearance. The removal of color from dye-bearing effluents is a major problem due to the difficulty in treating such wastewaters by conventional treatment methods. The most commonly used methods for color removal are biological oxidation and chemical precipitation. However, these processes are effective and economic only in the case where the solute concentrations are relatively high. Most industries use dyes and pigments to color their products. The presence of dyes in effluents is a major concern due to its adverse effect on various forms of life. The discharge of dyes in the environment is a matter of concern for both toxicological and esthetical reasons. It is evident from a literature survey of about 283 recently published papers that low-cost adsorbents have demonstrated outstanding removal capabilities for dye removal and the optimal equilibrium time of various dyes with different charcoal adsorbents from agricultural residues is between 4 and 5 h. Maximum adsorptions of acidic dyes were obtained from the solutions with pH 8–10. The challenges and future prospects are discussed to provide a better framework for a safer and cleaner environment.

  17. Optimizing heterosurface adsorbent synthesis for liquid chromatography

    Science.gov (United States)

    Bogoslovskii, S. Yu.; Serdan, A. A.

    2016-03-01

    The structural and geometric parameters of a silica matrix (SM) for the synthesis of heterosurface adsorbents (HAs) are optimized. Modification is performed by shielding the external surfaces of alkyl-modified silica (AS) using human serum albumin and its subsequent crosslinking. The structural and geometric characteristics of the SM, AS, and HA are measured via low-temperature nitrogen adsorption. It is found that the structural characteristics of AS pores with diameters D 9 nm reduces significantly due to adsorption of albumin. It is concluded that silica gel with a maximum pore size distribution close to 5 nm and a minimal proportion of pores with D > 9 nm is optimal for HA synthesis; this allows us to achieve the greatest similarity between the chromatographic retention parameters for HA and AS. The suitability of the synthesized adsorbents for analyzing drugs in biological fluids through direct sample injection is confirmed by chromatography. It was found that the percentage of the protein fraction detected at the outlet of the chromatographic column is 98%.

  18. Investigation of drug-porous adsorbent interactions in drug mixtures with selected porous adsorbents.

    Science.gov (United States)

    Madieh, Shadi; Simone, Michael; Wilson, Wendy; Mehra, Dev; Augsburger, Larry

    2007-04-01

    The adsorption of drugs onto porous substrates may prove to be a convenient method by which to enhance the dissolution rate of certain poorly water-soluble drugs in body fluids. The purpose of this research is to provide a better understanding of the type of interactions occurring between drugs and certain pharmaceutically acceptable porous adsorbents that leads to enhanced drug dissolution rates. The interactions between ibuprofen (acidic drug), acetaminophen (acidic drug), dipyridamole (basic drug), and the porous adsorbents used (calcium silicate and silica gel) were investigated using differential scanning calorimetry (DSC), powder X-ray diffraction (PXRD), and Fourier Transform infrared spectroscopy (FTIR). DSC and PXRD results indicated a significant loss of crystallinity of both ibuprofen and acetaminophen but not dipyridamole. In the case of ibuprofen, FTIR results indicated the ionization of the carboxylic group based on the shift in the FTIR carboxylic band. Dissolution of ibuprofen from its mixtures with porous adsorbents was found to be significantly higher compared to the neat drug, whereas dipyridamole dissolution from its mixtures with porous adsorbents was not significantly different from that of the neat drug. PMID:17221849

  19. Equilibrium molecular theory of two-dimensional adsorbate drops on surfaces of heterogeneous adsorbents

    Science.gov (United States)

    Tovbin, Yu. K.

    2016-08-01

    A molecular statistical theory for calculating the linear tension of small multicomponent droplets in two-dimensional adsorption systems is developed. The theory describes discrete distributions of molecules in space (on a scale comparable to molecular size) and continuous distributions of molecules (at short distances inside cells) in their translational and vibrational motions. Pair intermolecular interaction potentials (the Mie type potential) in several coordination spheres are considered. For simplicity, it is assumed that distinctions in the sizes of mixture components are slight and comparable to the sizes of adsorbent adsorption centers. Expressions for the pressure tensor components inside small droplets on the heterogeneous surface of an adsorbent are obtained, allowing calculations of the thermodynamic characteristics of a vapor-fluid interface, including linear tension. Problems in refining the molecular theory are discussed: describing the properties of small droplets using a coordination model of their structure, considering the effect an adsorbate has on the state of a near-surface adsorbent region, and the surface heterogeneity factor in the conditions for the formation of droplets.

  20. Interplay of adsorbate-adsorbate and adsorbate-substrate interactions in self-assembled molecular surface nanostructures

    DEFF Research Database (Denmark)

    Schnadt, Joachim; Xu, Wei; Vang, Ronnie Thorbjørn;

    2010-01-01

    The adsorption of 2,6-naphthalenedicarboxylic acid (NDCA) molecules on the Ag(110), Cu(110), and Ag(111) surfaces at room temperature has been studied by means of scanning tunnelling microscopy (STM). Further supporting results were obtained using X-ray photoelectron spectroscopy (XPS) and soft X......-ray absorption spectroscopy (XAS). On the Ag(110) support, which had an average terrace width of only 15 nm, the NDCA molecules form extended one-dimensional (1-D) assemblies, which are oriented perpendicular to the step edges and have lengths of several hundred nanometres. This shows that the assemblies have a......-edge crossing is not observed when the molecules are adsorbed on the isotropic Ag(111) or more reactive Cu(110) surfaces. On Ag(111), similar 1-D assemblies are formed to those on Ag(110), but they are oriented along the step edges. On Cu(110), the carboxylic groups of NDCA are deprotonated and form covalent...

  1. The adsorption of water isotopomers on carbon adsorbents

    International Nuclear Information System (INIS)

    Adsorption isotherms in the range 50-80 Deg C were measured by gas chromatography, and isosteric adsorption heats of isotopomers of water were calculated in the range of low fillings at two activated carbons (Norit and FAS) with close volume of micropores (0.38 and 0.37 cm3/g), but various surface chemistry (AC Norit with hydrophilic surface and AC FAS with hydrophobic one). Adsorption of H2O and D2O at AC Norit exceeds adsorption at AC FAS at all equilibrium pressures. Adsorption isotherms of H2O and D2O at every adsorbents are close, but some excess of isotherms and adsorption heats of D2O as compared with H2O ones observes. It is connected with the differences in adsorbate-adsorbent and adsorbate-adsorbate interactions as well as with the structure of molecules of adsorbates

  2. Adsorbent Alkali Conditioning for Uranium Adsorption from Seawater. Adsorbent Performance and Technology Cost Evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Tsouris, Costas [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Mayes, Richard T. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Janke, Christopher James [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Dai, Sheng [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Das, S. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Liao, W. -P. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Kuo, Li-Jung [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Wood, Jordana [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Gill, Gary [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Byers, Maggie Flicker [Univ. of Texas, Austin, TX (United States); Schneider, Eric [Univ. of Texas, Austin, TX (United States)

    2015-09-30

    The Fuel Resources program of the Fuel Cycle Research and Development program of the Office of Nuclear Energy (NE) is focused on identifying and implementing actions to assure that nuclear fuel resources are available in the United States. An immense source of uranium is seawater, which contains an estimated amount of 4.5 billion tonnes of dissolved uranium. This unconventional resource can provide a price cap and ensure centuries of uranium supply for future nuclear energy production. NE initiated a multidisciplinary program with participants from national laboratories, universities, and research institutes to enable technical breakthroughs related to uranium recovery from seawater. The goal is to develop advanced adsorbents to reduce the seawater uranium recovery technology cost and uncertainties. Under this program, Oak Ridge National Laboratory (ORNL) has developed a new amidoxime-based adsorbent of high surface area, which tripled the uranium capacity of leading Japanese adsorbents. Parallel efforts have been focused on the optimization of the physicochemical and operating parameters used during the preparation of the adsorbent for deployment. A set of parameters that need to be optimized are related to the conditioning of the adsorbent with alkali solution, which is necessary prior to adsorbent deployment. Previous work indicated that alkali-conditioning parameters significantly affect the adsorbent performance. Initiated in 2014, this study had as a goal to determine optimal parameters such as base type and concentration, temperature, and duration of conditioning that maximize the uranium adsorption performance of amidoxime functionalized adsorbent, while keeping the cost of uranium production low. After base-treatment at various conditions, samples of adsorbent developed at ORNL were tested in this study with batch simulated seawater solution of 8-ppm uranium concentration, batch seawater spiked with uranium nitrate at 75-100 ppb uranium, and continuous

  3. Optimizing Conditions to Cholesterol Adsorbed with Carboxymethyl Chitosan

    OpenAIRE

    Mardiyah Kurniasih; Dwi Kartika; Riyanti Riyanti

    2016-01-01

    A research on optimizing conditions to cholesterol adsorbed have been performed. Optimization was performed by varying: contact time, adsorbent weight and temperature of the system's. A full factorial experimental design was used in this study. Characterization performed on the synthesized chitosan and carboxymethyl chitosan including FTIR, water content, ash content, solubility, porosity, and swelling effect. The results showed that carboxymethyl chitosan able to adsorb cholesterol under con...

  4. Separation and Recovery of Tetramethyl Ammonium Hydroxide with Zeolitic Adsorbents

    OpenAIRE

    S. Nishihama; Takatori, K.; K. Yoshizuka

    2010-01-01

    Separation and recovery of tetramethyl ammonium hydroxide (TMAH) has been investigated, employing several zeolites as adsorbents. Zeolite X, prepared by using TMAH as a structure directing agent, possesses highest adsorption ability among the adsorbents investigated in the present work, which corresponds to the specific surface area and pore volume of the zeolite. The adsorption amount of TMAH with the zeolitic adsorbents increases with increase in pH value in the aqueous solution, indicating...

  5. WGS-Adsorbent Reaction Studies at Laboratory Scale

    International Nuclear Information System (INIS)

    This document reports the most significant results obtained during the experimental work performed under task WGS adsorbent experimental studies within CAPHIGAS project (National Research Plan 2008-2011, ref: ENE2009-08002). The behavior of the binary adsorbent-catalyst system which will be used in the hybrid system is described in this document. Main results reported here were used during the design and development of the hybrid system adsorbent catalyst- membrane proposed in the CAPHIGAS project. The influence of main operating parameters and the optimized volume ratio adsorbent-catalyst are also presented in this report. (Author)

  6. Theoretical Insight of Physical Adsorption for a Single-Component Adsorbent + Adsorbate System: I. Thermodynamic Property Surfaces

    KAUST Repository

    Chakraborty, Anutosh

    2009-02-17

    Thermodynamic property surfaces for a single-component adsorbent + adsorbate system are derived and developed from the viewpoint of classical thermodynamics, thermodynamic requirements of chemical equilibrium, Gibbs law, and Maxwell relations. They enable us to compute the entropy and enthalpy of the adsorbed phase, the isosteric heat of adsorption, specific heat capacity, and the adsorbed phase volume thoroughly. These equations are very simple and easy to handle for calculating the energetic performances of any adsorption system. We have shown here that the derived thermodynamic formulations fill up the information gap with respect to the state of adsorbed phase to dispel the confusion as to what is the actual state of the adsorbed phase. We have also discussed and established the temperature-entropy diagrams of (i) CaCl 2-in-silica gel + water system for cooling applications, and (ii) activated carbon (Maxsorb III) + methane system for gas storage. © Copyright 2009 American Chemical Society.

  7. Linear transport models for adsorbing solutes

    Science.gov (United States)

    Roth, K.; Jury, W. A.

    1993-04-01

    A unified linear theory for the transport of adsorbing solutes through soils is presented and applied to analyze movement of napropamide through undisturbed soil columns. The transport characteristics of the soil are expressed in terms of the travel time distribution of the mobile phase which is then used to incorporate local interaction processes. This approach permits the analysis of all linear transport processes, not only the small subset for which a differential description is known. From a practical point of view, it allows the direct use of measured concentrations or fluxes of conservative solutes to characterize the mobile phase without first subjecting them to any model. For complicated flow regimes, this may vastly improve the identification of models and estimation of their parameters for the local adsorption processes.

  8. Nanopatterned monolayers of an adsorbed chromophore

    Energy Technology Data Exchange (ETDEWEB)

    Frederich, N; Nysten, B; Jonas, A M [Unite de Physique et de Chimie des hauts Polymeres, Universite Catholique de Louvain, Croix du Sud 1, B-1348 Louvain-la-Neuve (Belgium); Duwez, A-S [NanoChemistry and Molecular Systems, Department of Chemistry, University of Liege, B6a Sart-Tilman, B-4000 Liege (Belgium); Muls, B; Habib-Jiwan, J-L [Unite de Chimie des Materiaux Organiques et Inorganiques, Universite Catholique de Louvain, Place Louis Pasteur 1, B-1348 Louvain-la-Neuve (Belgium); Hofkens, J [Department of Chemistry, Katholieke Universiteit Leuven, Celestijnenlaan 200F, 3001 Heverlee (Belgium)

    2008-08-20

    A simple lift-off process was developed to rapidly fabricate nanopatterned photofunctional surfaces. Dye molecules of a perylene derivative (PDID) were adsorbed irreversibly on clean silicon through the holes of an electron-beam lithographied polymer mask. The subsequent removal of the mask in a proper solvent results in PDID nanosized regions of width as small as 30 nm for stripes and of diameter as small as 120 nm for dots. Numerical analyses of atomic force microscopy and laser-scanning confocal microscopy images show that the dye molecules are confined to the regions defined by the lithographic process, with the integrated fluorescence intensity being essentially proportional to the size of the nanofeatures. This demonstrates that a simple organic lift-off process compatible with clean-room technology, and not involving any chemical step, is able to produce photofunctional nanopatterned surfaces, even though the dye is not chemically bonded to the silicon surface.

  9. In vitro hydroxyapatite adsorbed salivary proteins

    International Nuclear Information System (INIS)

    In spite of the present knowledge about saliva components and their respective functions, the mechanism(s) of pellicle and dental plaque formation have hitherto remained obscure. This has prompted recent efforts on in vitro studies using hydroxyapatite (HA) as an enamel model. In the present study salivary proteins adsorbed to HA were extracted with TFA and EDTA and resolved by 2D electrophoresis over a pH range between 3 and 10, digested, and then analysed by MALDI-TOF/TOF mass spectrometry and tandem mass spectrometry. Nineteen different proteins were identified using automated MS and MS/MS data acquisition. Among them, cystatins, amylase, carbonic anhydrase, and calgranulin B, were identified

  10. Understanding Trends in Catalytic Activity: The Effect of Adsorbate-Adsorbate Interactions for CO Oxidation Over Transition Metals

    DEFF Research Database (Denmark)

    Grabow, Lars; Larsen, Britt Hvolbæk; Nørskov, Jens Kehlet

    2010-01-01

    Using high temperature CO oxidation as the example, trends in the reactivity of transition metals are discussed on the basis of density functional theory (DFT) calculations. Volcano type relations between the catalytic rate and adsorption energies of important intermediates are introduced and the...... effect of adsorbate-adsorbate interaction on the trends is discussed. We find that adsorbate-adsorbate interactions significantly increase the activity of strong binding metals (left side of the volcano) but the interactions do not change the relative activity of different metals and have a very small...... influence on the position of the top of the volcano, that is, on which metal is the best catalyst....

  11. Thermodynamic study of fatty acids adsorption on different adsorbents

    International Nuclear Information System (INIS)

    This work has as objective the study about the adsorption behavior of fatty acids (acetic, propionic, and butyric) on activated carbon and on modified and unmodified montmorillonite clays as a function of temperature and initial concentration of the adsorbate, through adsorption isotherms and their thermodynamic parameters (ΔG, ΔH, and ΔS). The activated carbon presented a higher adsorption capacity due to its relatively large surface area, compared to others adsorbents. The polar characteristic of fatty acids decreased with the increase in the length of non-polar hydrocarbon chain, improving the affinity between the activated carbon (non-polar adsorbent) and the acids. The adsorption capacity of modified montmorillonite (polar adsorbent) was favored due to the presence of the organic cation among its layers, which make the surface more hydrophobic and organophilic when compared to the unmodified montmorillonite surface. The amount of fatty acids adsorbed in the adsorbents surface increased with the concentration, at constant temperature, and decreased with the increase of temperature, at constant concentration. The amount of fatty acids adsorbed in the three adsorbents was related to the surface area and polarity of the adsorbent, concentration and solubility of the adsorbate and temperature of the solution. The negative values of ΔG and ΔH showed that the adsorption on activated carbon and on modified and unmodified montmorillonite clays was a spontaneous and an exothermic process. The decrease in the values of ΔG, with the increase of temperature, demonstrated that the adsorption was benefited by the high temperature and the positive values of ΔS showed that the fatty acids molecules were in a more randomic condition in the adsorbed state than in solution. The experimental results obtained at the temperatures of (298, 303, 313, and 323) K showed that experimental data were well represented by the Langmuir and Freundlich isotherms models

  12. NOx Removal and Effect of Adsorbate-Adsorbate Interactions

    DEFF Research Database (Denmark)

    Khan, Tuhin Suvra

    industrial chemical processes, nano-science and nano-technology, in general any process where a solid surface interacts with any surrounding liquid or gas-phase species. Computational approaches play an increasingly important role in modern surface science, and density functional theory (DFT) in particular......-standing dream of an environmentally sustainable energy sector is to be fulfilled, heterogeneous catalysts aiding production, storage, and use of energy from sustainable sources, e.g. sunlight, wind, and biomass, are expected to be essential. New catalysts improving the efficiency of existing chemical processes...... have analyzed these challenges systematically and have developed some new methods and models to counter those challenges and obtain some general understanding of the catalytic process. I have developed an adsorbate-adsorbate interaction model to include the coverage dependency of the adsorption energy...

  13. Application of bifunctional magnetic adsorbent to adsorb metal cations and anionic dyes in aqueous solution

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Ya-Fen [Department of Chemical and Materials Engineering, National I-Lan University, I-Lan 260, Taiwan (China); Chen, Hua-Wei [Department of Cosmetic Application and Management, St. Mary' s Medicine Nursing and Management College, I-Lan, Taiwan (China); Chien, Poh-Sun [Department of Environmental Engineering, National I-Lan University, 1, Sec. 1, Shen-Lung Road, I-Lan, 260, Taiwan (China); Chiou, Chyow-San, E-mail: cschiou@niu.edu.tw [Department of Environmental Engineering, National I-Lan University, 1, Sec. 1, Shen-Lung Road, I-Lan, 260, Taiwan (China); Liu, Cheng-Chung [Department of Environmental Engineering, National I-Lan University, 1, Sec. 1, Shen-Lung Road, I-Lan, 260, Taiwan (China)

    2011-01-30

    A magnetic adsorbent, amine-functionalized silica magnetite (NH{sub 2}/SiO{sub 2}/Fe{sub 3}O{sub 4}), has been synthesized to behave as an anionic or cationic adsorbent by adjusting the pH value of the aqueous solution to make amino groups protonic or neutral. NH{sub 2}/SiO{sub 2}/Fe{sub 3}O{sub 4} were used to adsorb copper ions (metal cation) and Reactive Black 5 (RB5, anionic dye) in an aqueous solution in a batch system, and the maximum adsorption were found to occur at pH 5.5 and 3.0, respectively. The adsorption equilibrium data were all fitted the Langmuir isotherm equation reasonably well, with a maximum adsorption capacity of 10.41 mg g{sup -1} for copper ions and of 217 mg g{sup -1} for RB5. A pseudo-second-order model also could best describe the adsorption kinetics, and the derived activation energy for copper ions and RB5 were 26.92 kJ mol{sup -1} and 12.06 kJ mol{sup -1}, respectively. The optimum conditions to desorb cationic and anionic adsorbates from NH{sub 2}/SiO{sub 2}/Fe{sub 3}O{sub 4} were provided by a solution with 0.1 M HNO{sub 3} for copper ions and with 0.05 M NaOH for RB5.

  14. Single bank NOx adsorber for heavy duty diesel engines

    NARCIS (Netherlands)

    Genderen, M. van; Aken, M.G. van

    2003-01-01

    In a NOx adsorber programme the feasibility for applying this technology to heavy duty diesel engines was investigated. After modelling and simulations for realising best λ < 1 engine conditions a platform was build which was used to obtain good NOx adsorber regeneration settings in a number of stea

  15. Sulfometuron incorporation in cationic micelles adsorbed on montmorillonite.

    Science.gov (United States)

    Mishael, Yael Golda; Undabeytia, Tomas; Rytwo, Giora; Papahadjopoulos-Sternberg, Brigitte; Rubin, Baruch; Nir, Shlomo

    2002-05-01

    The aim of this study was to understand the interactions between alkylammonium cations present as monomers and micelles and a clay mineral, montmorillonite, to develop slow release formulations of anionic herbicides, such as sulfometuron (SFM) whose leaching in soils is an environmental and economic problem. In the proposed formulation the herbicide is incorporated in positively charged micelles of quaternary amine cations, which in turn adsorb on the negatively charged clay. The adsorption of hexadecyltrimethylammonium (HDTMA) and octadecyltrimethylammonium (ODTMA) on montmorillonite was studied above and below their critical micelle concentrations (CMC). At concentrations above the CMC, the loading exceeded the clay's cation exchange capacity (CEC) and indicated higher affinity of the cation with the longer alkyl chain. An adsorption model could adequately simulate adsorption at concentrations below the CMC, and yield fair predictions for the effect of ionic strength. The model indicated that above the CMC adsorbed micelles contributed significantly to the amount of ODTMA adsorbed. Evidence for adsorption of ODTMA micelles on montmorillonite was provided by X-ray diffraction, freeze-fracture electron microscopy, and dialysis bag measurements. SFM was not adsorbed directly on the clay mineral, and adsorbed at low levels, when the organic cation was adsorbed as monomers. In contrast, a large fraction of SFM adsorbed on the clay mineral when incorporated in micelles that adsorbed on the clay. PMID:11982411

  16. A nuclear standard high-efficiency adsorber for iodine

    International Nuclear Information System (INIS)

    The structure of a nuclear standard high-efficiency adsorber, adsorbent and its performance are introduced. The performance and structure were compared with the same kind product of other firms. The results show that the leakage rate is less than 0.005%

  17. Selective sorption of perfluorooctane sulfonate on molecularly imprinted polymer adsorbents

    Institute of Scientific and Technical Information of China (English)

    Shubo DENG; Danmeng SHUAI; Qiang YU; Jun HUANG; Gang YU

    2009-01-01

    Perfluorooctane sulfonate (PFOS), as a potential persistent organic pollutant, has been widely detected in water environments, and has become a great concern in recent years. PFOS is very stable and difficult to decompose using conventional techniques. Sorption may be an attractive method to remove it from water. In this study, the molecularly imprinted polymer (MIP) adsorbents were prepared through the polymerization of 4-vinylpyridine under different preparation conditions in order to remove perfluorooctane sulfonate (PFOS) from water. The MIP adsorbents using perfluorooctanoic acid (PFOA) as the template had good imprinting effects and could selectively remove PFOS from aqueous solution. The sorption behaviors including sorption kinetics,isotherms, and effect of pH, salt, and competitive anions were investigated. Experimental results showed that the sorption of PFOS On the MIP adsorbents was very fast, pH-dependent, and highly selective. The achieved fast sorption equilibrium within 1 h was attributed to the surface sorption on the fine adsorbents. The sorption isotherms showed that the sorption selectivity of PFOS on the MIP adsorbents decreased at high PFOS concentrations, which may be due to the double-layer sorption and the formation of PFOS micelles on the sorbent surface. The sorption of PFOS on the MIP adsorbents was mainly dominated by the electrostatic interaction between the protonated vinylpyridine on the adsorbent surface and the anionic PFOS. The prepared MIP adsorbents can potentially be applied in water and wastewater treatment for selective removal of PFOS.

  18. Synthesis and properties of porous zeolite aluminosilicate adsorbents

    International Nuclear Information System (INIS)

    Environmentally safe non-energy-intensive methods of the synthesis have been developed and the properties of solid inorganic nanostructured zeolite-like adsorbents of a broad spectrum have been studied. The sorption capacities of the adsorbents with respect to various components of water pollution have been determined

  19. Ionogenic adsorbents based on local raw materials for radiation protection

    International Nuclear Information System (INIS)

    The successful management of uranium wastes and creating the conditions for effective rehabilitation activities require special adsorbents capable of holding on the surface complexes, including radioactive elements. Currently tested and have shown promising synthetic adsorbents based pitted apricot fruits and other fruit plants. This report presents data for the establishment of ionic type available adsorbents based on Tajikistan coal. As the base for the creation of this type of adsorbent were taken the coal of the 'Ziddi' deposits. As follows from our data on the chemical composition, the studied coals contain more than 20% of the ash. According to the available literature theses ashes contains various minerals compositions that can form the adsorbent's active surface. Thus, the model for this type of activated carbon can serve as a mixture of zeolite, ion exchange resins and activated carbon itself.

  20. Kinetic Study of Lead Adsorption to Composite Biopolymer Adsorbent.

    Science.gov (United States)

    Seki; Suzuki

    1999-03-15

    A kinetic study of lead adsorption to composite biopolymer adsorbents was carried out. Spherical and membranous adsorbents containing two biopolymers, humic acid and alginic acid, were used for lead adsorption in dilute acidic solutions. The shrinking core model derived by M. G. Rao and A. K. Gupta (Chem. Eng. J. 24, 181, 1982) was applied to describe the rate process of lead adsorption to spherical adsorbents (average radii of 0.12, 0.15, and 0.16 cm). Furthermore, the shrinking core model was modified and adapted for description of the rate process of lead adsorption to membranous adsorbent (average thickness of 0.0216 cm). The adsorption rate process for the both cases was well described and average apparent lead diffusion coefficients of about 6 x 10(-6) and 7 x 10(-6) cm2 s-1 were found for the spherical and membranous adsorbents, respectively. Copyright 1999 Academic Press. PMID:10049553

  1. Structure and properties of water film adsorbed on mica surfaces

    Science.gov (United States)

    Zhao, Gutian; Tan, Qiyan; Xiang, Li; Cai, Di; Zeng, Hongbo; Yi, Hong; Ni, Zhonghua; Chen, Yunfei

    2015-09-01

    The structure profiles and physical properties of the adsorbed water film on a mica surface under conditions with different degrees of relative humidity are investigated by a surface force apparatus. The first layer of the adsorbed water film shows ice-like properties, including a lattice constant similar with ice crystal, a high bearing capacity that can support normal pressure as high as 4 MPa, a creep behavior under the action of even a small normal load, and a character of hydrogen bond. Adjacent to the first layer of the adsorbed water film, the water molecules in the outer layer are liquid-like that can flow freely under the action of external loads. Experimental results demonstrate that the adsorbed water layer makes the mica surface change from hydrophilic to weak hydrophobic. The weak hydrophobic surface may induce the latter adsorbed water molecules to form water islands on a mica sheet.

  2. Adsorption of Fluoride Ion by Inorganic Cerium Based Adsorbent

    Institute of Scientific and Technical Information of China (English)

    Jiao Zhongzhi(焦中志); Chen Zhonglin; Yang Min; Zhang Yu; Li Guibai

    2004-01-01

    Excess of fluoride in drinking water is harmful to human health, the concentration of F- ions must be maintained in the range of 0.5 to 1.5 mg/L. An inorganic cerium based adsorbent (CTA) is developed on the basis of research of adsorption of fluoride on cerium oxide hydrate. Some adsorption of fluoride by CTA adsorbent experiments were carried out, and results showed that CTA adsorbent has a quick adsorption speed and a large adsorption capacity. Adsorption follows Freundlich isotherm, and low pH value helps fluoride removal. Some physical-chemical characteristics of CTA adsorbent were experimented, fluoride removal mechanism was explored, and results showed that hydroxyl group of CTA adsorbent played an important role in the fluoride removal.

  3. Milestone Report - Complete New Adsorbent Materials for Marine Testing to Demonstrate 4.5 g-U/kg Adsorbent

    Energy Technology Data Exchange (ETDEWEB)

    Janke, Christopher James [ORNL; Das, Sadananda [ORNL; Oyola, Yatsandra [ORNL; Mayes, Richard T. [ORNL; Saito, Tomonori [ORNL; Brown, Suree [ORNL; Gill, Gary [PNNL; Kuo, Li-Jung [PNNL; Wood, Jordana [PNNL

    2014-08-01

    This report describes work on the successful completion of Milestone M2FT-14OR03100115 (8/20/2014) entitled, “Complete new adsorbent materials for marine testing to demonstrate 4.5 g-U/kg adsorbent”. This effort is part of the Seawater Uranium Recovery Program, sponsored by the U.S. Department of Energy, Office of Nuclear Energy, and involved the development of new adsorbent materials at the Oak Ridge National Laboratory (ORNL) and marine testing at the Pacific Northwest National Laboratory (PNNL). ORNL has recently developed two new families of fiber adsorbents that have demonstrated uranium adsorption capacities greater than 4.5 g-U/kg adsorbent after marine testing at PNNL. One adsorbent was synthesized by radiation-induced graft polymerization of itaconic acid and acrylonitrile onto high surface area polyethylene fibers followed by amidoximation and base conditioning. This fiber showed a capacity of 4.6 g-U/kg adsorbent in marine testing at PNNL. The second adsorbent was prepared by atom-transfer radical polymerization of t-butyl acrylate and acrylonitrile onto halide-functionalized round fibers followed by amidoximation and base hydrolysis. This fiber demonstrated uranium adsorption capacity of 5.4 g-U/kg adsorbent in marine testing at PNNL.

  4. Neutron reflectivity study of adsorbed diblock copolymers

    International Nuclear Information System (INIS)

    This paper summarizes our cumulative work on neutron reflectivity studies of polystyrene-poly(vinyl-2-pyridine) (PS-PVP) and polystyrenepolyethylene oxide (PS-PEO) adsorbed at a quartz-solvent interface. Deuterated toluene was chosen as the solvent since it is a good solvent for PS and a poor one for either of the other two blocks. In this case, the polystyrene dangles into the solvent while the other block acts as an anchor. The neutron reflectivity studies reveal that the form of the polymer density profile normal to the substrate may be varied from an extended ''brush'' to a condensed ''mushroom'' conformation by manipulating the ratio of the molecular weights of the two blocks. In addition, we present new data on the PS-PEO system in a poor solvent, deuterated cyclohexane, under conditions of shear flow in Poiseuille geometry. We find that when the PS-PEO diblock is absorbed from cyclohexane and is allowed to relax, the PS chain takes on a ''mushroom'' conformation. However, when the shear is applied, the layer shear thickens due to the PS chains extended to nearly twice their original lengths

  5. Surface characterization of Ag/Titania adsorbents

    Science.gov (United States)

    Samokhvalov, Alexander; Nair, Sachin; Duin, Evert C.; Tatarchuk, Bruce J.

    2010-03-01

    The Ag/Titania adsorbent for selective removal of the desulfurization-refractive polycyclic aromatic sulfur heterocycles (PASHs) from liquid hydrocarbon fuels was prepared, its total and the Ag specific surface area were determined and the surface reaction sites in the sorbent that may be active in the adsorptive selective desulfurization were characterized by several spectroscopic and surface science techniques. The sorbent contains Ag, Ti, O and spurious C on its surface, as by the XPS measurements. Silver is present as an oxide, as judged by the XPS Auger parameter (AP). The complementary electron spin resonance (ESR) spectroscopy confirms that the majority of Ag is present in the diamagnetic Ag 1+ form, with the minor concentration (˜0.1% of total Ag) present as Ag 2+. The findings by XPS and ESR are confirmed by the XRD, UV-vis spectroscopy and thermodynamic considerations. The supported Ag is highly dispersed on the surface of the titania support, with the particle size of ˜30-60 Å depending on Ag content, with an Ag specific surface area of ˜7-14 m 2/g, vs. the total surface area of ˜114-58 m 2/g.

  6. A theoretical study of adsorbate-adsorbate interactions on Ru(0001)

    DEFF Research Database (Denmark)

    Mortensen, Jens Jørgen; Hammer, Bjørk; Nørskov, Jens Kehlet

    1998-01-01

    barrier for dissociation, whereas S will increase it. The interaction with alkali atoms is mainly of an electrostatic nature. The poisoning by S is due to two kinds of repulsive interactions: a Pauli repulsion and a reduced covalent bond strength between the adsorbate and the surface d-electrons. In order...... to investigate these different interactions in more detail, we look at three different species (N atoms, and terminally bonded N(2) and CO) and use them as probes to study their interaction with two modifier atoms (Na and S). The two modifier atoms have very different properties, which allows us to...

  7. Filter for high temperature water coated with ion adsorbent

    International Nuclear Information System (INIS)

    The surface of filters is covered with ion adsorbents comprising compound oxides consisting of 50 to 70 wt% of iron or nickel and 30 to 50 wt% of titanium. Cooling water at high temperature and high pressure flows from an entrance nozzle and reaches the filters coated with the ion adsorbents, where ionic corrosion products are adsorbed and removed. Then, in the course of passing through porous fine sintered metal tubes, granular corrosion products contained in the cooling water are filtered and removed. This enables to directly clean-up reactor coolants at high temperature and high pressure. (Y.Y.)

  8. Dynamics of CO 2 Adsorption on Amine Adsorbents. 2. Insights Into Adsorbent Design

    KAUST Repository

    Bollini, Praveen

    2012-11-21

    Packed bed breakthrough experiments are reported for commercial zeolite 13X and 3-aminopropyl-functionalized SBA-15 silica materials with three different amine loadings. Mass and heat transfer dynamics for all four materials are modeled successfully. Amine adsorbents with open pores are found to exhibit faster mass diffusion rates compared to zeolite 13X. When amine loading is increased by coupling aminopropyl groups, premature breakthrough combined with a long tail is observed. Contrary to conventional physisorbants, finite heat losses to the column wall do not explain the long breakthrough tail. A rate model that accounts for heterogeneity in diffusion was found to accurately capture the breakthrough shape of the high loading material. Batch uptake measurements support the hypothesis that slow diffusion through the polymer phase is what hampers adsorption kinetics in the high amine loading adsorbent. The results emphasize the importance of designing materials that are not overloaded with amine sites, as excessive amine loadings can lead to depressed adsorption kinetics and premature column breakthrough. © 2012 American Chemical Society.

  9. TESTING OF CARBONACEOUS ADSORBENTS FOR REMOVAL OF POLLUTANTS FROM WATER

    Directory of Open Access Journals (Sweden)

    RAISA NASTAS

    2012-03-01

    Full Text Available Testing of carbonaceous adsorbents for removal of pollutants from water. Relevant direction for improving of quality of potable water is application of active carbons at various stages of water treatments. This work includes complex research dealing with testing of a broad spectrum of carbonaceous adsorbents for removal of hydrogen sulfide and nitrite ions from water. The role of the surface functional groups of carbonaceous adsorbents, their acid-basic properties, and the influence of the type of impregnated heteroatom (N, O, or metals (Fe, Cu, Ni, on removal of hydrogen sulfide species and nitrite ions have been researched. The efficiency of the catalyst obtained from peach stones by impregnation with Cu2+ ions of oxidized active carbon was established, being recommended for practical purposes to remove the hydrogen sulfide species from the sulfurous ground waters. Comparative analysis of carbonaceous adsorbents reveals the importance of surface chemistry for oxidation of nitrite ions.

  10. Electronic structure of benzene adsorbed on Ni and Cu surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Weinelt, M.; Nilsson, A.; Wassdahl, N. [Uppsala Univ. (Sweden)] [and others

    1997-04-01

    Benzene has for a long time served as a prototype adsorption system of large molecules. It adsorbs with the molecular plane parallel to the surface. The bonding of benzene to a transition metal is typically viewed to involve the {pi} system. Benzene adsorbs weakly on Cu and strongly on Ni. It is interesting to study how the adsorption strength is reflected in the electronic structure of the adsorbate-substrate complex. The authors have used X-ray Emission (XE) and X-ray Absorption (XA) spectroscopies to selectively study the electronic states localized on the adsorbed benzene molecule. Using XES the occupied states can be studies and with XAS the unoccupied states. The authors have used beamline 8.0 and the Swedish endstation equipped with a grazing incidence x-ray spectrometer and a partial yield absorption detector. The resolution in the XES and XAS were 0.5 eV and 0.05 eV, respectively.

  11. REVIEW: USE of COMPOSITE ADSORBENTS in ADSORPTION REFRIGERATION

    Directory of Open Access Journals (Sweden)

    Satishchandra V. Joshi

    2012-01-01

    Full Text Available The urbanization across the world has resulted in increased demand for refrigeration and air conditioning. The main disadvantage with the conventional method i.e. vapor compression system is environment pollution. Another problem faced during urbanization is energy crisis. The adsorption refrigeration system is one of the solutions to this problem. The advantages of this system are environment friendly, less noise, use of waste heat or solar energy. But the disadvantage with adsorption system is low coefficient of performance (COP and bulkiness. Researchers across the world are working on this issue to make adsorption system a viable alternative to the compression systems. Since the last two decades considerable work is being done on the use of composite adsorbents to improve the heat and mass transfer performance. This kind of adsorbent is usually obtained by the combination of a chemical adsorbents and physical adsorbents.

  12. SUPERCRITICAL FLUID EXTRACTION OF PARTICULATE AND ADSORBENT MATERIALS

    Science.gov (United States)

    The report is a summary of work performed by PNL on the extraction of semivolatile organic materials (SVOCs), for example, polynuclear aromatic compounds, from various adsorbents and environmental matrices, using supercritical fluids (SCFs) as extractants. The results of the work...

  13. Low Pressure Adsorbent for Recovery & Storage Vented Hydrogen Project

    Data.gov (United States)

    National Aeronautics and Space Administration — A high performance fullerene-based adsorbent is proposed for recovery and storage hydrogen and separating helium via pressure-swing-adsorption (PSA) process....

  14. Large-scale separation of magnetic bioaffinity adsorbents

    Czech Academy of Sciences Publication Activity Database

    Šafařík, Ivo; Ptáčková, Lucie; Šafaříková, Miroslava

    2001-01-01

    Roč. 23, - (2001), s. 1953-1956. ISSN 0141-5492 Institutional research plan: CEZ:AV0Z6087904 Keywords : magnetic adsorbents * magnetic separation Subject RIV: EI - Biotechnology ; Bionics Impact factor: 0.915, year: 2001

  15. Synthesis and uranium adsorption behavior of alginate-based adsorbents

    International Nuclear Information System (INIS)

    The crosslinked microspheres of alginate were synthesized by inverse suspension polymerization, and the effect of the concentration of sodium alginate solution and stirring speed on the formation of microsphere was studied. Biopolymeric adsorbents with amidocyanogen were synthesized based on alginate polymeric matrixes by chemical modification. The adsorbents were characterized by FTIR and determination of ammonio content. When the concentration of sodium alginate solution was 3%-4% and stirring speed was 250-300 r/min, the crosslinked microsphere had regular morphology and high mechanical strength. Uranium can be removed effectively from low concentration uranium solutions by the alginate-based adsorbent (SATT) modified with triethylenetetreamine, and the removal rate was more than 92%. The adsorbent was expected to use for wastewater treatment in uranium hydrometallurgy. (authors)

  16. Development of novel adsorbents for environmental cleaning by radiation

    International Nuclear Information System (INIS)

    In order to improve our amenity spaces, the demand of non-odorous atmosphere is needed. Toxic gases such as trimethylamine and ammonia have been treated as the pollutant of the atmosphere. The development of an excellent and effective adsorbent for the toxic gases has been performed here and there all over the world. However, the development of the adsorbent with the consideration for conservation of environment must be made as one of the requisites. Therefore, we proposed the use of radiation for the preparation of toxic-gas-adsorbing materials. On the other hand, in our daily life, the large amount of calcium and magnesium contained in our drinking water has hindered the removal of a trace amount of pollutant such as lead. As a result, the development of the metal-ion-adsorbing material is very indispensable indeed. (J.P.N.)

  17. Adsorption of remazol brilliant blue on an orange peel adsorbent

    Directory of Open Access Journals (Sweden)

    M. R. Mafra

    2013-09-01

    Full Text Available A novel orange peel adsorbent developed from an agricultural waste material was characterised and utilised for the removal of Remazol Brilliant Blue from an artificial textile-dye effluent. The adsorption thermodynamics of this dye-adsorbent pair was studied in a series of equilibrium experiments. The time to reach equilibrium was 15 h for the concentration range of 30 mg L-1 to 250 mg L-1. The adsorption capacity decreased with increasing temperature, from 9.7 mg L-1 at 20 ºC to 5.0 mg L-1 at 60 ºC. Both the Langmuir and Freundlich isotherm models fitted the adsorption data quite reasonably. The thermodynamic analysis of dye adsorption onto the orange peel adsorbent indicated its endothermic and spontaneous nature. Thus, the application of orange peel adsorbent for the removal of dye from a synthetic textile effluent was successfully demonstrated.

  18. Development of solid adsorbent materials for CO₂capture

    OpenAIRE

    Ogbuka, Chidi Premie

    2013-01-01

    The application of solid adsorbents for gas separation in pre-combustion carbon capture from gasification processes has gained attention in recent times. This is due to the potential of the technology to reduce the overall energy penalty associated with the capture process. However, this requires the development of solid adsorbent materials with large selectivity, large adsorption capacity, fast adsorption kinetics for CO2 coupled with good mechanical strength and thermal stability. In this ...

  19. Electronic and electrochemical doping of graphene by surface adsorbates

    OpenAIRE

    Hugo Pinto; Alexander Markevich

    2014-01-01

    Many potential applications of graphene require its precise and controllable doping with charge carriers. Being a two-dimensional material graphene is extremely sensitive to surface adsorbates, so its electronic properties can be effectively modified by deposition of different atoms and molecules. In this paper, we review two mechanisms of graphene doping by surface adsorbates, namely electronic and electrochemical doping. Although, electronic doping has been extensively studied and discussed...

  20. Enhancement of dissolution profile of gliclazide by solid dispersion adsorbates

    OpenAIRE

    Singh, Narender; Arora, Ashish; Kaushik, Deepak

    2011-01-01

    This article investigates enhancement of the dissolution profile of gliclazide, an antidiabetic drug, using the combination of solid dispersions and melt adsorption techniques. Poloxamer and PEG 6000 were utilized as hydrophilic carriers for solid dispersions preparation and lactose selected on the basis of preliminary studies was utilized as an adsorbent for the preparation of solid dispersion adsorbates. The techniques of FTIR spectroscopy, differential scanning calorimetry (DSC), and X-ray...

  1. Residence time determination for adsorbent beds of different configurations

    Energy Technology Data Exchange (ETDEWEB)

    Otermat, J.E.; Wikoff, W.O.; Kovach, J.L.

    1995-02-01

    The residence time calculations of ASME AG-1 Code, Section FC, currently specify a screen surface area method, that is technically incorrect. Test data has been obtained on Type II adsorber trays of different configurations to establish residence time in the adsorber trays. These data indicate that the air volume/carbon volume ratio or the average screen area are more appropriate for the calculation of the residence time calculation than the currently used, smallest screen area basis.

  2. THE USE OF LOW COST ADSORBENTS FOR PURIFICATION WASTEWATER

    OpenAIRE

    Višekruna, Antonija; Štrkalj, Anita; Marinić Pajc, Ljiljana

    2011-01-01

    Adsorption is one of the effective methods of advanced wastewater treatment, which industries employ to reduce hazardous organic and inorganic wastes in effluents. The use of low cost adsorbent has been investigated as a replacement for current costly methods of removing toxic substances from wastewater. In this article, the use of low cost adsorbents for the removal of toxic substances from wastewater has been reviewed.

  3. Development of an adsorbent for both cesium and strontium

    International Nuclear Information System (INIS)

    Described is the development of the adsorbent in the title at the process of developing the agent to adsorb each element. For cooling the reactors injured by the Fukushima Nuclear Power Plant Accident by the earthquake and tsunami on the day before (Mar. 11, 2011), fresh/ sea water is supplied in the reactor and flows out contaminated with radioactive elements in the turbine building and then in the treatment plant to remove oil and cesium for re-circulation to the reactor. Water from the plant still contains radioisotopes derived from fission, like 90Sr/90Y at 1.2 x 108 Bq/L and 137Cs/137mBa at 6.1 x 103 Bq/L, and from activation of reactor materials. Before the plant, the water contains 137Cs at the level as high as 4.1 x 107 Bq/L. Authors have examined various agents to adsorb 90Sr and 137Cs with a measure of partition coefficient Kd (L of the artificial sea water/kg) and have come to find out the adsorbent in the title: it is derived from the Cs-adsorbing crystalized silico-titanate (CST). The adsorbent is obtainable by surface treatment of CST with NaOH and has high Kds of >1 x 103 and >1 x 104 L/kg for Sr and Cs, respectively, while other ordinary adsorbents' Kds are: artificial zeolite 1-10 x 102/1-10 x 101 for Sr/Cs, respectively; natural one 0.1-10 x 101/1-10 x 102; ferrocyanide 0.1-10 x 101/1-10 x 104, and CST 1 x 101/>1 x 104. When 1 m3 of the present adsorbent is used, >99% of Cs and Sr can be removable in >3,000 m3 of contaminated water, suggesting its usefulness for dealing with water after the Accident. (T.T.)

  4. Vanadium (4) complexing in phase of adsorbent with benzimidazole groups

    International Nuclear Information System (INIS)

    Equilibrium and kinetic characteristics of V4+ sorption by POLYORGS XI-H adsorbent with benzimidazole groups (BIm) are investigated. Using ESR method it is stated that [VO2+]:[BIm]1:2 complex, where VO2+ is combined with nitrogen atoms of two imidazole groups, is formed in adsorbent phase. The highest distribution factor of 4.7x103 is attained at pH6

  5. Plant waste materials from restaurants as the adsorbents for dyes

    OpenAIRE

    Pavlović Marija D.; Nikolić Ivan R.; Milutinović Milica D.; Dimitrijević-Branković Suzana I.; Šiler-Marinković Slavica S.; Antonović Dušan G.

    2015-01-01

    This paper has demonstrated the valorization of inexpensive and readily available restaurant waste containing most consumed food and beverage residues as adsorbents for methylene blue dye. Coffee, tea, lettuce and citrus waste have been utilized without any pre-treatment, thus the adsorption capacities and dye removal efficiency were determined. Coffee waste showed highest adsorbent capacity, followed by tea, lettuce and citrus waste. The dye removal was mo...

  6. Efforts to Consolidate Chalcogels with Adsorbed Iodine

    Energy Technology Data Exchange (ETDEWEB)

    Riley, Brian J.; Pierce, David A.; Chun, Jaehun

    2013-08-28

    This document discusses ongoing work with non-oxide aerogels, called chalcogels, that are under development at the Pacific Northwest National Laboratory as sorbents for gaseous iodine. Work was conducted in fiscal year 2012 to demonstrate the feasibility of converting Sn2S3 chalcogel without iodine into a glass. This current document summarizes the work conducted in fiscal year 2013 to assess the consolidation potential of non-oxide aerogels with adsorbed iodine. The Sn2S3 and Sb13.5Sn5S20 chalcogels were selected for study. The first step in the process for these experiments was to load them with iodine (I2). The I2 uptake was ~68 mass% for Sn2S3 and ~50 mass% for Sb13.5Sn5S20 chalcogels. X-ray diffraction (XRD) of both sets of sorbents showed that metal-iodide complexes were formed during adsorption, i.e., SnI4 for Sn2S3 and SbI3 for Sb13.5Sn5S20. Additionally, metal-sulfide-iodide complexes were formed, i.e., SnSI for Sn2S3 and SbSI for Sb13.5Sn5S20. No XRD evidence for unreacted iodine was found in any of these samples. Once the chalcogels had reached maximum adsorption, the consolidation potential was assessed. Here, the sorbents were heated for consolidation in vacuum-sealed quartz vessels. The Sb13.5Sn5S20 chalcogel was heated both (1) in a glassy carbon crucible within a fused quartz tube and (2) in a single-containment fused quartz tube. The Sn2S3 chalcogel was only heated in a single-containment fused quartz tube. In both cases with the single-containment fused quartz experiments, the material consolidated nicely. However, in both cases, there were small fractions of metal iodides not incorporated into the final product as well as fused quartz particles within the melt due to the sample attacking the quartz wall during the heat treatment. The Sb13.5Sn5S20 did not appear to attack the glassy carbon crucible so, for future experiments, it would be ideal to apply a coating, such as pyrolytic graphite, to the inner walls of the fused quartz vessel to prevent

  7. Cryogenic adsorber design in a helium refrigeration system

    Science.gov (United States)

    Hu, Zhongjun; Zhang, Ning; Li, Zhengyu; Li, Q.

    2012-06-01

    The cryogenic adsorber is specially designed to eliminate impurities in gaseous helium such as O2, and N2 which is normally difficult to remove, based on the reversible cryotrapping of impurities on an activated carbon bed. The coconut shell activated carbon is adopted because of its developed micropore structure and specific surface area. This activated carbon adsorption is mostly determined by the micropore structure, and the adsorption rate of impurities is inversely proportional to the square of the particle sizes. The active carbon absorber's maximum permissible flow velocity is 0.25 m/s. When the gas flow velocity increases, the adsorption diffusion rate of the adsorbent is reduced, because an increase in the magnitude of the velocity resulted in a reduced amount of heat transfer to a unit volume of impure gas. According to the numerical simulation of N2 adsorption dynamics, the appropriate void tower link speed and the saturated adsorption capacity are determined. Then the diameter and height of the adsorber are designed. The mass transfer length should be taken into account in the adsorber height design. The pressure decrease is also calculated. The important factors that influence the adsorber pressure decrease are the void tower speed, the adsorbed layer height, and the active carbon particle shape and size.

  8. Evaluation of a cesium adsorbent grafted with ammonium 12-molybdophosphate

    Science.gov (United States)

    Shibata, Takuya; Seko, Noriaki; Amada, Haruyo; Kasai, Noboru; Saiki, Seiichi; Hoshina, Hiroyuki; Ueki, Yuji

    2016-02-01

    A fibrous cesium (Cs) adsorbent was developed using radiation-induced graft polymerization with a cross-linked structure containing a highly stable adsorption ligand. The ligand, ammonium 12-molybdophosphate (AMP), was successfully introduced onto the fibrous polyethylene trunk material. The resulting Cs adsorbent contained 36% nonwoven fabric polyethylene (NFPE), 1% AMP, 2% triallyl isocyanurate (TAIC) and 61% glycidyl methacrylate (GMA). The adsorbent's Cs adsorption capacity was evaluated using batch and column tests. It was determined that the adsorbent could be used in a wide pH range. The amount of desorbed molybdenum, which can be used as an estimate for AMP stability on the Cs adsorbent, was minimized at the standard drinking water pH range of 5.8-8.6. Based from the inspection on the adherence of these results to the requirements set forth by the Food Sanitation Act by a third party organization, it can be concluded that the developed Cs adsorbent can be safely utilized for drinking water.

  9. Optimizing Conditions to Cholesterol Adsorbed with Carboxymethyl Chitosan

    Directory of Open Access Journals (Sweden)

    Mardiyah Kurniasih

    2016-05-01

    Full Text Available A research on optimizing conditions to cholesterol adsorbed have been performed. Optimization was performed by varying: contact time, adsorbent weight and temperature of the system's. A full factorial experimental design was used in this study. Characterization performed on the synthesized chitosan and carboxymethyl chitosan including FTIR, water content, ash content, solubility, porosity, and swelling effect. The results showed that carboxymethyl chitosan able to adsorb cholesterol under conditions optimal adsorbent with cholesterol ratio (1:200 with a contact time of 90 minutes at temperature of 40 °C. Meanwhile, at a temperature of 55 °C carboxymethyl chitosan capable of adsorb cholesterol under conditions optimal adsorbent with cholesterol ratio (1:300 with a contact time of 30 minutes. Chitosan and carboxymethyl chitosan synthesized has a water content of 7.4 and 10.2%, ash content of 0.14 and 2.29%, solubility in distilled water at 1.10-5and 1.98.10-3%, solubility in acetic acid 0.02 and 0.04%, porosity at 88.3% and 88.8%, and swelling at 163.13 and 182.98%.

  10. Application of Silver Impregnated Iodine Adsorbent to Nuclear Facilities

    Science.gov (United States)

    Fukasawa, Tetsuo; Nakamura, Tomotaka; Kondo, Yoshikazu; Funabashi, Kiyomi

    Radioactive iodine is one of the most important nuclides to be prevented for release from nuclear facilities and many facilities have off-gas treatment systems to minimize the volatile nuclides dispersion to the environment. Silver impregnated inorganic adsorbents were known as inflammable and stable fixing materials for iodine and the authors started to develop 25 years ago a kind of inorganic adsorbent that has better capability compared with conventional ones. Aluminum oxide (Alumina) was selected as a carrier material and silver nitrate as an impregnated one. Pore diameters were optimized to avoid the influence of impurities such as humidity in the off-gas stream at lower temperatures. Experiments and improvements were alternately conducted for the new adsorbent. The tests were carried out in various conditions to confirm the performance of the developed adsorbent, which clarified its good ability to remove iodine. Silver nitrate impregnated alumina adsorbent (AgA) has about twice the capacity for iodine adsorption and higher iodine removal efficiency at relatively high humidity than conventional ones. The AgA chemically and stably fixes radioactive iodine and fits the storage and disposal of used adsorbent. AgA is now and will be applied to nuclear power plants, reprocessing plants, and research facilities.

  11. Gold recovery from low concentrations using nanoporous silica adsorbent

    Science.gov (United States)

    Aledresse, Adil

    The development of high capacity adsorbents with uniform porosity denoted 5%MP-HMS (5% Mercaptopropyl-Hexagonal Mesoporous Structure) to extract gold from noncyanide solutions is presented. The preliminary studies from laboratory simulated noncyanide gold solutions show that the adsorption capacities of these materials are among the highest reported. The high adsorption saturation level of these materials, up to 1.9 mmol/g (37% of the adsorbent weight) from gold chloride solutions (potassium tetrachloroaurate) and 2.9 mmol/g (57% of the adsorbent weight) from gold bromide solutions (potassium tetrabromoaurate) at pH = 2, is a noteworthy feature of these materials. This gold loading from [AuC4]- and [AuBr4 ]- solutions corresponds to a relative Au:S molar ratio of 2.5:1 and 3.8:1, respectively. These rates are significantly higher than the usual 1:1 (Au:S) ratio expected for metal ion binding with the material. The additional gold ions loaded have been spontaneously reduced to metallic gold in the mesoporous material. Experimental studies indicated high maximum adsorptions of gold as high as 99.9% recovery. Another promising attribute of these materials is their favourable adsorption kinetics. The MP-HMS reaches equilibrium (saturation) in less than 1 minute of exposure in gold bromide and less than 10 minutes in gold chloride. The MP-HMS materials adsorption is significantly improved by agitation and the adsorption capacity of Au (III) ions increases with the decrease in pH. The recovery of adsorbed gold and the regeneration of spent adsorbent were investigated for MP-HMS adsorbent. The regenerated adsorbent (MP-HMS) maintained its adsorption capacity even after repeated use and all the gold was successfully recovered from the spent adsorbent. For the fist time, a promising adsorbent system has been found that is capable of effectively concentrating gold thiosulphate complexes, whereas conventional carbon-inpulp (CIP) and carbon-in-leach (CIL) systems fail. The

  12. Utility of adsorbents in the purification of drinking water: a review of characterization, efficiency and safety evaluation of various adsorbents.

    Science.gov (United States)

    Dubey, Shashi Prabha; Gopal, Krishna; Bersillon, J L

    2009-05-01

    Clean drinking water is one of the implicit requisites fora healthy human population. However the growing industrialization and extensive use of chemicals for various concerns, has increased the burden of unwanted pollutants in the drinking water of developing countries like India. The entry of potentially hazardous substances into the biota has been magnifying day by day. In the absence of a possible stoppage of these, otherwise, useful chemicals, the only way to maintain safer water bodies is to develop efficient purifying technologies. One such immensely beneficial procedure that has been in use is that of purification of water using 'adsorbents'. Indigenous minerals and natural plants products have potential for removing many pollutants viz. fluoride, arsenic, nitrate, heavy metals, pesticides as well as trihalomethanes. Adsorbents which are derived from carbon, alumina, zeolite, clay minerals, iron ores, industrial by products, and natural products viz. parts of the plants, herbs and algal biomass offer promising potential of removal. In the recent years attention has been paid to develop process involving screening/pretreatment/activation/impregnation using alkalies, acids, alum, lime, manganese dioxide, ferric chloride and other chemicals which are found to enhance their adsorbing efficiency. Chemical characterization of these adsorbents recapitulates the mechanism of the process. It is imperative to observe that capacities of the adsorbents may vary depending on the characteristics, chemical modifications and concentration of the individual adsorbent. Removal kinetics is found to be based on the experimental conditions viz. pH, concentration of the adsorbate, quantity of the adsorbent and temperature. It is suggested that isotherm model is suitable tool to assess the adsorption capacities in batch and column modes. Safety evaluation and risk assessment of the process/products may be useful to provide guidelines for its sustainable disposal. PMID:20120453

  13. Elution by Le Chatelier's principle for maximum recyclability of adsorbents: applied to polyacrylamidoxime adsorbents for extraction of uranium from seawater.

    Science.gov (United States)

    Oyola, Yatsandra; Vukovic, Sinisa; Dai, Sheng

    2016-05-28

    Amidoxime-based polymer adsorbents have attracted interest within the last decade due to their high adsorption capacities for uranium and other rare earth metals from seawater. The ocean contains an approximated 4-5 billion tons of uranium and even though amidoxime-based adsorbents have demonstrated the highest uranium adsorption capacities to date, they are still economically impractical because of their limited recyclability. Typically, the adsorbed metals are eluted with a dilute acid solution that not only damages the amidoxime groups (metal adsorption sites), but is also not strong enough to remove the strongly bound vanadium, which decreases the adsorption capacity with each cycle. We resolved this challenge by incorporating Le Chatelier's principle to recycle adsorbents indefinitely. We used a solution with a high concentration of amidoxime-like chelating agents, such as hydroxylamine, to desorb nearly a 100% of adsorbed metals, including vanadium, without damaging the metal adsorption sites and preserving the high adsorption capacity. The method takes advantage of knowing the binding mode between the amidoxime ligand and the metal and mimics it with chelating agents that then in a Le Chatelier's manner removes metals by shifting to a new chemical equilibrium. For this reason the method is applicable to any ligand-metal adsorbent and it will make an impact on other extraction technologies. PMID:27117598

  14. Study on the adsorption performance of composite adsorbent of CaCl2 and expanded graphite with ammonia as adsorbate

    International Nuclear Information System (INIS)

    A novel constant volume test unit was built to study the adsorption performance of a new type composite adsorbent. This test unit can measure the adsorption isosteres of the working pairs. The adsorption isosteres are the curves of the adsorption pressure variation with the adsorption temperatures at constant adsorption quantities. Compared to the former test results of isothermals and isobars, the isosteres are better for the calculation of the adsorption heat, desorption heat and the selection the adsorption working pairs. Three experimental results were obtained: the first result was that the expanded graphite powders were superior to the expandable graphite powders to facilitate the transportation of working fluid in the composite adsorbent. The second one was that the composite adsorbent treated by solution is more homogeneous than the simple mixed composite adsorbent and the treated composite adsorbent has a better mass transfer performance. The last one was that the adsorption isosteres was the same one not only in the heating process but also in the cooling process and this performance was not relevant to the homogeneity of the composite adsorbent

  15. Experimental study on extraction chromatography using CMPO adsorbent. 2

    International Nuclear Information System (INIS)

    In order to study the applicability of extraction chromatographic method to the TRUEX and SETFICS processes for MA separation in the program of Feasibility Study on Commercialized Fast Reactor Cycle Systems, this work investigated some basic characteristics of a novel silica-supported CMPO adsorbent and synthesis method of the porous silica-support. Resistant behavior of the CMPO adsorbent against nitric acid, temperature and γ-irradiation has been examined experimentally. Removal tests of CMPO dissolved in aqueous solution were conducted. Furthermore, synthesis procedure for preparing the silica-support was investigated. Obvious decrease in adsorption capacity of the CMPO adsorbent resulted from HNO3-treatment was not observed, indicating the adsorbent has excellent resistance to HNO3. HNO3-treatment at 80 caused a decrease in adsorption capacity by 4-12% and the capacity decreased with increasing HNO3 concentration. The capacity decrease is resulted from the decomposition and dissolution of a small amount of CMPO without the structure change of the adsorbent. On the other hand, in the cases of γ-irradiation the adsorption capacity declined markedly with the increase of absorption dose and structure change of the adsorbent was also observed. The CMPO dissolved in aqueous solution with a concentration of about 40 ppm could be effectively removed by using the column packed with a porous adsorbent such as SiO2-P. As a manufacture method of the porous SiO2 support, the details of ultrasonic vibration technique for dividing molten SiO2 were surveyed. (author)

  16. Experimental study on extraction chromatography using CMPO adsorbent

    International Nuclear Information System (INIS)

    In order to study the applicability of extraction chromatographic method to the TRUEX and SETFICS processes for MA separation in the program of Feasibility Study on Commercialized Fast Reactor Cycle Systems, this work investigated some basic characteristics of a novel silica-supported CMPO adsorbent. The leaching behavior of CMPO from the adsorbent by specified eluent solutions, adsorption capacity, dissolution method of CMPO form the support and thermal decomposition performance have been examined experimentally. The experimental results indicate that the leaching of CMPO from the adsorbent is resulted from the solubility of CMPO in an eluent solution. The dissolubility by a dilute nitric acid is relatively high and the concentration of leached CMPO is about 20-50 ppm. It was found that almost the same amount of CMPO is leached out from the adsorbent packed column during the elution operation. However, the leaching problem of CMPO would be cleared by packing an extra amount of the adsorbent to column or by using the eluent solutions saturated by CMPO. The adsorption capacity of the CMPO adsorbent for Nd(III) in 3M HNO3 solution was measured as 0.19-0.22 mmol/g, which is approximately 70-80% of the maximum adsorption amount as M(NO3)3·3 CMPO. The impregnated CMPO can be completely dissolved out from the support by an organic solvent such as acetone. From the thermal analysis results, it was recognized that CMPO in the adsorbent decomposed at 200degC and the SDB-polymer at 290degC, leaving the silica particles. (author)

  17. Adsorption behavior of lithium from seawater using manganese oxide adsorbent

    International Nuclear Information System (INIS)

    The deuterium-tritium (D-T) fusion reactor system is expected to provide the main source of electricity in the future. Large amounts of lithium will be required, dependent on the reactor design concept, and alternative resources should be found to provide lithium inventories for nuclear fusion plants. Seawater has recently become an attractive source of this element and the separation and recovery of lithium from seawater by co-precipitation, solvent extraction and adsorption have been investigated. Amongst these techniques, the adsorption method is suitable for recovery of lithium from seawater, because certain inorganic ion-exchange materials, especially spinel-type manganese oxides, show extremely high selectivity for the lithium ion. In this study, we prepared a lithium adsorbent (HMn2O4) by elution of spinel-type lithium di-manganese-tetra-oxide (LiMn2O4) and examined the kinetics of the adsorbent for lithium ions in seawater using a pseudo-second-order kinetic model. The intermediate, LiMn2O4, can be synthesized from LiOH·H2O and Mn3O4, from which the lithium adsorbent can subsequently be prepared via acid treatment., The adsorption kinetics become faster and the amount of lithium adsorbed on the adsorbent increases with increasing solution temperature. The thermodynamic values, ΔG0, ΔH0 and ΔS0, indicate that adsorption is an endothermic and spontaneous process. (author)

  18. [DSC and FTIR study of adsorbed lysozyme on hydrophobic surface].

    Science.gov (United States)

    Lei, Zu-meng; Geng, Xin-peng; Dai, Li; Geng, Xin-du

    2008-09-01

    During a process of hen egg white lysozyme adsorption and folding on a moderately hydrophobic surface (PEG-600), the effects of salt((NH4)2SO4) concentrations, surface coverage and denaturant (guanidine hydrochloride, GuHCl) concentrations on thermal stability and the changes in the molecular conformation of adsorbed native and denatured lysozyme without aqueous solution were studied with a combination of differential scanning calorimetry (DSC) with FTIR spectroscopy. The results showed that temperature due to endothermic peaks was reduced and the disturbance increased at higher temperature with the increase in salt concentration and surface coverage of adsorbed protein. beta-Sheet and beta-Turn stucture increased while alpha-Helix structure decreased after the adsorption. The peaks corresponding to both C-C stretching frequency in 1400-1425 cm(-1) and amide I band frequency in 1650-1670 cm(-1) of adsorbed denatured lysozyme can be detected in FTIR spectra while that due to amide I band frequency of adsorbed native lysozyme almost can't be observed. Adsorption resulted in structural loss of adsorbed native lysozyme, whose performance was less stable. PMID:19093560

  19. Adsorption of rare earths with crown ether adsorbents

    International Nuclear Information System (INIS)

    Crown ether - phosphotungstic acid (PW) and crown ether -phosphomolybdic acid (PMo) precipitates, and also the granular entrapped crown ether - PMo (or PW) in polyacrylamide, were prepared and applied as adsorbents for rare earth metal ions. Adsorbents containing 15-crown-5, such as 15-crown-5 - PMo, were better adsorbents than the other crown ether precipitates. The adsorption capacity of 15-crown-5 - PMo for Eu3+ was determined and corresponded to about 0.166 mmol of Eu3+ per gram of the absorbent. The effects of pH and metal ion concentration on adsorption were also investigated. Crown ether - PMo (or PW) precipitates underwent hydrolysis at pH >= 1, but the granular entrapped crown ether - PMo (or PW) - polyacrylamide adsorbents were not hydrolysed at pH >= 1. The adsorption of individual rare earth ions with 15-crown-5 - PMo - polyacrylamide showed that Tb3+, Nd3+, Eu3+ and Gd3+ were readily adsorbed, but adsorption was difficult for Ce4+, Sm3+ and Dy3+. (author)

  20. Studies on The Adsorption Capacity for Bilirubin of The Adsorbent Chitosan-β-Cyclodextrin

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The adsorbent crosslinked chitosan-β-cyclodextrin (β-CD) was prepared by the reaction of glutaraldehyde with chitosan and β-cyclodextrin. This type of adsorbent has high adsorption capacity for unconjugated bilirubin. The adsorption capacity was related to the β-CD content of the adsorbent; phosphate buffer concentration; temperature; pH value; ionic strength and the adsorbent beads. The results indicated that the chitosan-β-CD was a good adsorbent for unconjugated bilirubin with high capacity.

  1. Emanation-thermal analysis of basalt fiber adsorbents

    International Nuclear Information System (INIS)

    Complex emanation-thermal analysis is used for investigating structural changes in basalt adsorbents taking place during thermal affects on material. Adsorbent is prepared by two-stage treatment of staple basalt fibers by hydrochloric acid. Isotherms of sorption of liquid nitrogen vapors by new sorbents are measured. Areas of the open surface, porosity and pores size spectra of leached fibers are calculated. It is determined by the method of thermostimulated gassing that adsorbed water is in two energetically different states in porous basalt fiber: basic part of water vapors is desorbed at 90-110 Deg C, remained part -at 300-320 Deg C. Full regeneration of sorbent requires warming up to 550 Deg C

  2. Lotus Dust Mitigation Coating and Molecular Adsorber Coating

    Science.gov (United States)

    O'Connor, Kenneth M.; Abraham, Nithin S.

    2015-01-01

    NASA Goddard Space Flight Center has developed two unique coating formulations that will keep surfaces clean and sanitary and contain contaminants.The Lotus Dust Mitigation Coating, modeled after the self-cleaning, water-repellant lotus leaf, disallows buildup of dust, dirt, water, and more on surfaces. This coating, has been successfully tested on painted, aluminum, glass, silica, and some composite surfaces, could aid in keeping medical assets clean.The Molecular Adsorber Coating is a zeolite-based, sprayable molecular adsorber coating, designed to prevent outgassing in materials in vacuums. The coating works well to adsorb volatiles and contaminates in manufacturing and processing, such as in pharmaceutical production. The addition of a biocide would also aid in controlling bacteria levels.

  3. Synthesis of silica adsorbent and its selective separation for flavone

    Institute of Scientific and Technical Information of China (English)

    Yuqing ZHANG; Yahui ZHANG; Zhen QIN; Zhenrong MA

    2008-01-01

    One kind of built,in silica adsorbent, which has high adsorption selectivity to rutin, was synthesized using molecular imprinting technology by the following steps:synthesis of precursor from the reaction between water soluble rutin (as template molecule) and the functional monomer chloropropyltriethoxysilane, co,hydrolysis of the precursor and tetraethoxysilane (TEOS), sol,gel aging process, and removal of template molecules. The results of adsorption experiment show that this adsorbent has a high adsorption capacity for rutin, and good adsorptionselectivity towards rutin even under the interference of a flavone with a similar structure. TEM photos suggest that nanocaves corresponding to rutin were formed inside the adsorbent while FTIR spectra indicate that new bond was generated during the recognition process.

  4. Decontamination of radioactive process waste water by adsorbing colloid flotation

    International Nuclear Information System (INIS)

    Adsorbing colloid flotation was tested to remove 144Ce, 60Co, 65Zn, and 89Sr from radioactive process waste water. Potassium oleate was used as the collector, and Fe(III) hydroxide, Al(III) hydroxide or Co(II) hydroxide as the coprecipitant. Under optimal conditions, removals exceeding 99% could be achieved for 65Zn with any of the tested coprecipitants, for 144Ce with Fe(III) and Co(II) hydroxides and for 60Co with only Co(II) hydroxide. For 89Sr removals of 90% could be achieved only with Fe(III) hydroxide. The adsorbing colloid flotation process was compared with both chemical precipitation and ion exchange. Advantages of adsorbing colloid flotation are discussed. (author)

  5. A Review of Adsorbents Used for Storm Water Runoff Cleaning

    Directory of Open Access Journals (Sweden)

    Andrius Agintas

    2011-04-01

    Full Text Available Heavy metals, petroleum products, sediments and other pollutants get in the environment with insufficiently cleaned storm water runoff. Contaminated storm water runoff is one of the most significant sources for pollution in rivers, lakes and estuaries. Storm water runoff must be treated using not only simple methods but also using adsorption processes. Adsorbents can be natural organic, natural nonorganic and synthetic. Main adsorption characteristic, way of utilization and storm water runoff inflow rate, quantity and pollution need to be investigated when trying to use adsorbents in reasonably way. It is very important to treat storm water properly during the primary mechanical treatment otherwise adsorbents will act as mechanical filters.Article in Lithuanian

  6. Extracting uranium from seawater: Promising AF series adsorbents

    International Nuclear Information System (INIS)

    Here, a new family of high surface area polyethylene fiber adsorbents (AF series) was recently developed at the Oak Ridge National Laboratory (ORNL). The AF series of were synthesized by radiation-induced graft polymerization of acrylonitrile and itaconic acid (at different monomer/co-monomer mol ratios) onto high surface area polyethylene fibers. The degree of grafting (%DOG) of AF series adsorbents was found to be 154 354%. The grafted nitrile groups were converted to amidoxime groups by treating with hydroxylamine. The amidoximated adsorbents were then conditioned with 0.44M KOH at 80 C followed by screening at ORNL with simulated seawater spiked with 8 ppm uranium. Uranium adsorption capacity in simulated seawater screening ranged from 170-200 g-U/kg-ads irrespective of %DOG. A monomer/co-monomer mol ratio in the range of 7.57-10.14 seemed to be optimum for highest uranium loading capacity. Subsequently, the adsorbents were also tested with natural seawater at Pacific Northwest National Laboratory (PNNL) using flow-through exposure uptake experiments to determine uranium loading capacity with varying KOH conditioning time at 80 C. The highest adsorption capacity of AF1 measured after 56 days of marine testing was demonstrated as 3.9 g-U/kg-adsorbent and 3.2 g-U/kg-adsorbent for 1hr and 3hrs of KOH conditioning at 80 C, respectively. Based on capacity values of several AF1 samples, it was observed that changing KOH conditioning from 3hrs to 1hr at 80 C resulted in 22-27% increase in uranium loading capacity in seawater

  7. SAPO-34 coated adsorbent heat exchanger for adsorption chillers

    International Nuclear Information System (INIS)

    In this work, adsorbent coatings on aluminum surfaces were prepared by dip-coating method starting from a water suspension of SAPO-34 zeolite and a silane-based binder. Silane-zeolite coatings morphology and surface coverage grade were evaluated by scanning electron microscopy. Adhesive and mechanical properties were evaluated by peel, pull-off, impact and micro-hardness tests, confirming the good interaction between metal substrate, binder and zeolite. Adsorption equilibrium and kinetics of water vapour adsorption on the adsorbent coating were studied in the range T = 30–150 °C and pH2O = 11 mbar using a CAHN 2000 thermo-balance. It was found that, in the investigated conditions, the organic binder doesn't affect the water adsorption capacity and adsorption kinetics of the original SAPO-34 zeolite. Subsequently, the zeolite coating was applied on a finned flat-tubes aluminum heat exchanger realizing a full-scale AdHEx with an uniform adsorbent coating 0.1 mm thick and a metal/adsorbent mass ratio = 6. The cooling capacity of the realized coated AdHEx was measured by a lab-scale adsorption chiller under realistic operating conditions for air conditioning applications. The coated AdHEx produced up to 675 W/kgads specific cooling power with a cycle time of 5 min. Adsorption stability of the coated adsorber subjected to 600 sorption cycles was successfully verified. - Highlights: • Adsorbent coatings on aluminum surfaces were prepared by dip-coating method. • Silane-zeolite coatings morphology, and mechanical properties were studied. • The zeolite coating was applied on a finned flat-tubes aluminum heat exchanger. • The coated AdHEx was tested in a lab scale adsorption chiller

  8. Electrochemical Studies of Paraquat Adsorbed onto Crystalline Apatite

    Directory of Open Access Journals (Sweden)

    Moulay Abderrahim EL MHAMMEDI

    2007-09-01

    Full Text Available The carbon paste electrode (CPE has been used to analyze the electrochemical behavior of paraquat (PQ adsorbed onto synthesized hydroxyapatite phosphocalcique (HAP in K2SO4 (0.1M. The cyclic voltammetry results obtained corrobate with square wave voltammetry. The influence of variables such as the concentration of paraquat adsorbed onto apatite (PQ/HAP, and the potential scan rate was tested.X-ray diffraction analysis (XRD, Fourier transformed infrared spectroscopy (FTIR analysis and inductively coupled plasma-atomic emission spectrometry (ICP, AES were used for characterization of the apatite.

  9. Removal of uranium by the adsorbents produced from coffee residues

    International Nuclear Information System (INIS)

    Large amounts of coffee residues contaminate the environment and reprocessing of them as valuable products such as adsorbents will be a good solution from an environmental and economic point of view. In this study some adsorbents were produced from coffee residues and used for batch removal experiments of uranium from aqueous solutions. The adsorption kinetics was found to follow the Lagergren equation. The adsorption process was described with the Langmuir and Freundlich isotherms. Additionally, the effect of different cations on the adsorption of uranium was studied. (author)

  10. Hydrogen molecule on lithium adsorbed graphene: A DFT study

    Science.gov (United States)

    Kaur, Gagandeep; Gupta, Shuchi; Gaganpreet, Dharamvir, Keya

    2016-05-01

    Electronic structure calculations for the adsorption of molecular hydrogen on lithium (Li) decorated and pristine graphene have been studied systematically using SIESTA code [1] within the framework of the first-principle DFT under the Perdew-Burke-Ernzerhof (PBE) form of the generalized gradient approximation (GGA)[2], including spin polarization. The energy of adsorption of hydrogen molecule on graphene is always enhanced by the presence of co-adsorbed lithium. The most efficient adsorption configuration is when H2 is lying parallel to lithium adsorbed graphene which is in contrast to its adsorption on pristine graphene (PG) where it prefers perpendicular orientation.

  11. Photoinduced Surface Dynamics of CO Adsorbed on a Platinum Electrode

    OpenAIRE

    Noguchi, Hidenori; Okada, Tsubasa; Uosaki, Kohei

    2006-01-01

    The surface dynamics of adsorbed CO molecules formed by dissociative adsorption of HCHO at a polycrystalline Pt electrode/electrolyte solution interface was studied by picosecond time-resolved sum-frequency generation (TR-SFG) spectroscopy. A SFG peak at 2050-2060 cm^[-1] was observed at the Pt electrode in HClO4 solution containing HCHO at 0-300 mV (vs Ag/AgCl), indicating the formation of adsorbed CO at an atop site of the Pt surface as a result of dissociative adsorption of HCHO. The peak ...

  12. Photochemistry of adsorbed nitrate on aluminum oxide particle surfaces.

    Science.gov (United States)

    Rubasinghege, Gayan; Grassian, Vicki H

    2009-07-01

    Nitrogen oxides, including nitrogen dioxide and nitric acid, react with mineral dust particles in the atmosphere to yield adsorbed nitrate. Although nitrate ion is a well-known chromophore in natural waters, little is known about the surface photochemistry of nitrate adsorbed on mineral particles. In this study, nitrate adsorbed on aluminum oxide, a model system for mineral dust aerosol, is irradiated with broadband light (lambda > 300 nm) as a function of relative humidity (RH) in the presence of molecular oxygen. Upon irradiation, the nitrate ion readily undergoes photolysis to yield nitrogen-containing gas-phase products including NO(2), NO, and N(2)O, with NO being the major product. The relative ratio and product yields of these gas-phase products change with RH, with N(2)O production being highest at the higher relative humidities. Furthermore, an efficient dark reaction readily converts the major NO product into NO(2) during post-irradiation. Photochemical processes on mineral dust aerosol surfaces have the potential to impact the chemical balance of the atmosphere, yet little is known about these processes. In this study, the impact that adsorbed nitrate photochemistry may have on the renoxification of the atmosphere is discussed. PMID:19534452

  13. Utilization of Roselle charcoal as nitrate-nitrogen adsorbent

    Directory of Open Access Journals (Sweden)

    Yimrattanabovorn, J.

    2006-11-01

    Full Text Available Recently, the attempts have been made by utilizing natural material as an adsorbent for wastewater treatment due to its low cost, low energy requirement and the fewer chemicals used. In this study, Roselle (Hibiscus sabdariffa L. var. altissima was prepared to use as a charcoal adsorbent in the treatment process. The nitrate-nitrogen adsorption capacities of Roselle charcoal with 2 different particle sizes, A (4.75- .30 mm and B (2.00-4.75 mm were measured and compared with an activated carbon (AC. The equilibrium data fitted well with the Freundlich Isotherm. The K values related to the capacity of adsorbent for nitratenitrogen of such charcoal studied were in the following orders: AC > B > A expressed as 0.0321, 0.0147 and 0.0071 respectively. In addition, activated carbon required less contact time to reach equilibrium than both of Roselle charcoal A and B. Although removal efficiency of activated carbon was higher than that of Roselle charcoal, Roselle charcoal is an interesting alternative adsorbent due to the lower cost of its production.

  14. Interactions of organic contaminants with mineral-adsorbed surfactants

    Science.gov (United States)

    Zhu, L.; Chen, B.; Tao, S.; Chiou, C.T.

    2003-01-01

    Sorption of organic contaminants (phenol, p-nitrophenol, and naphthalene) to natural solids (soils and bentonite) with and without myristylpyridinium bromide (MPB) cationic surfactant was studied to provide novel insight to interactions of contaminants with the mineral-adsorbed surfactant. Contaminant sorption coefficients with mineral-adsorbed surfactants, Kss, show a strong dependence on surfactant loading in the solid. At low surfactant levels, the Kss values increased with increasing sorbed surfactant mass, reached a maximum, and then decreased with increasing surfactant loading. The Kss values for contaminants were always higher than respective partition coefficients with surfactant micelles (Kmc) and natural organic matter (Koc). At examined MPB concentrations in water the three organic contaminants showed little solubility enhancement by MPB. At low sorbed-surfactant levels, the resulting mineral-adsorbed surfactant via the cation-exchange process appears to form a thin organic film, which effectively "adsorbs" the contaminants, resulting in very high Kss values. At high surfactant levels, the sorbed surfactant on minerals appears to form a bulklike medium that behaves essentially as a partition phase (rather than an adsorptive surface), with the resulting Kss being significantly decreased and less dependent on the MPB loading. The results provide a reference to the use of surfactants for remediation of contaminated soils/sediments or groundwater in engineered surfactant-enhanced washing.

  15. Interactions between adsorbed macromolecules : measurements on emulsions and liquid films

    NARCIS (Netherlands)

    Vliet, van T.

    1977-01-01

    The aim of this study was to gain more insight into the factors, determining the inter- and intramolecular interactions between adsorbed macromolecules. To that end several experimental and theoretical approaches were followed, using well-defined systems. It was shown that these interactions could c

  16. Pulling adsorbed self-avoiding walks from a surface

    Science.gov (United States)

    Guttmann, Anthony J.; Jensen, I.; Whittington, S. G.

    2014-01-01

    We consider a self-avoiding walk model of polymer adsorption where the adsorbed polymer can be desorbed by the application of a force, concentrating on the case of the square lattice. Using series analysis methods we investigate the behaviour of the free energy of the system when there is an attractive potential ɛ with the surface and a force f applied at the last vertex, normal to the surface, and extract the phase boundary between the ballistic and adsorbed phases. We believe this to be exact to graphical accuracy. We give precise estimates of the location of the transition from the free phase to the ballistic phase, which we find to be at yc = exp (f/kBTc) = 1, and from the free phase to the adsorbed phase, which we estimate to be at ac = exp ( - ɛ/kBTc) = 1.775 615 ± 0.000 005. In addition we prove that the phase transition from the ballistic to the adsorbed phase is first order.

  17. Pulling adsorbed self-avoiding walks from a surface

    International Nuclear Information System (INIS)

    We consider a self-avoiding walk model of polymer adsorption where the adsorbed polymer can be desorbed by the application of a force, concentrating on the case of the square lattice. Using series analysis methods we investigate the behaviour of the free energy of the system when there is an attractive potential ϵ with the surface and a force f applied at the last vertex, normal to the surface, and extract the phase boundary between the ballistic and adsorbed phases. We believe this to be exact to graphical accuracy. We give precise estimates of the location of the transition from the free phase to the ballistic phase, which we find to be at yc = exp (f/kBTc) = 1, and from the free phase to the adsorbed phase, which we estimate to be at ac = exp ( − ϵ/kBTc) = 1.775 615 ± 0.000 005. In addition we prove that the phase transition from the ballistic to the adsorbed phase is first order. (paper)

  18. Adsorption of iodine by silver-impregnated hydrophobic adsorbent

    International Nuclear Information System (INIS)

    Hydrophobic adsorbents, which consist of porous styrene-divinylbenzene copolymer (SDB) impregnated with silver, were developed for the removal of iodine from the dissolver off-gas (DOG). The adsorption of iodine in a simulated off-gas including iodine, NOx and water vapor was examined by use of an adsorption column packed with the hydrophobic adsorbents. Silver impregnation methods using organic solutions were proposed. By use of dioxan and butylamine, which can swell the SDB easily, silver nitrate and metallic silver were uniformly distributed in the SDB particles. The breakthrough of iodine was not influenced by the presence of NOx and water vapor. For a macroporous SDB with the pore volume of 1.59 ml/g-SDB and the average pore diameter of 500A, impregnated with metallic silver at silver content of 28 wt%, a high adsorption capacity of 0.14g-I2/cm3-adsorbent was obtained, compared to that of a commercial adsorbent. AgNO3-impregnated silica gel. The impregnated silver was utilized about 91% for the iodine adsorption. (author)

  19. Alpha spectrometry sample preparation using selectively adsorbing thin films

    International Nuclear Information System (INIS)

    Several years ago, Switzerland introduced limits for natural radionuclides in food, e.g. 1 Bq/l for 226Ra or 10 Bq/l for the sum of 238U and 234U in drinking water. To make enforcement by regional (cantonal) laboratories more attractive, simplified analytical methods had to be offered, at least for drinking water. A first step has been the development of radium adsorbing sheets. A 20 mm x 20 mm MnO2 film on a polyamide substrate adsorbs more than 80% of the radium present in a 100 ml water sample within 6 h. The film is thin enough to allow for high resolution alpha spectrometry. A second step now under way is to produce thin films, which selectively adsorb uranium. Actually, an ion exchange resin with diphosphonic and sulfonic acid groups is used for this purpose. Although not yet very thin, these films make possible energy resolutions far better than with any liquid scintillation alpha spectrometry method. Adsorption efficiencies are more than 80% after 20 h exposition to a 100 ml water sample (20 mm x 20 mm sheet). A third step is to have a system that measures radionuclide concentrations in water on-line. A prototype is presented where radionuclides are adsorbed on a film in contact with the water. A Si-detector placed on the other side of the film support counts the alphas passing through

  20. Chitosan membrane adsorber for low concentration copper ion removal.

    Science.gov (United States)

    Wang, Xiaomin; Li, Yanxiang; Li, Haigang; Yang, Chuanfang

    2016-08-01

    Thin chitosan membranes with symmetric and interconnected pore structure were prepared using silica as porogen, and their physical properties including pore structure, pore size distribution, porosity and water affinity were analyzed. The membrane showed a maximum Cu(II) adsorption capacity of 87.5mg/g in static adsorption, and the adsorption fitted pseudo-second order kinetics and Toth adsorption isotherm. The membranes were then stacked in layers as an adsorber to remove small concentration Cu(II) from water dynamically. At feed concentration of 5mg/L, the adsorber could retain Cu(II) effectively when its thickness reached over 200μm, and the performance was further improved by using more membranes layers. Within a certain limit, the adsorber showed a 'flow-independent' loading behavior, an indication of fast mass transfer inside the membrane. The adsorption process was correlated well with bed depth service time (BDST) model, Thomas model and Yoon and Nelson model, and the adsorber was also found to be regenerable and re-usable. PMID:27112875

  1. Extracting uranium from seawater: Promising AI series adsorbents

    International Nuclear Information System (INIS)

    A series of adsorbent (AI10 through AI17) were successfully developed at ORNL by radiation induced graft polymerization (RIGP) of acrylonitrile (AN) and vinylphosphonic acid (VPA) (at different mole/mole ratios) onto high surface area polyethylene fiber, with higher degree of grafting which ranges from 110 300%. The grafted nitrile groups were converted to amidoxime groups by reaction with 10 wt% hydroxylamine at 80 C for 72 hours. The amidoximated adsorbents were then conditioned with 0.44M KOH at 80 C followed by screening at ORNL with simulated seawater spiked with 8 ppm uranium. Uranium adsorption capacity in simulated seawater screening ranged from 171-187 g-U/kg-ads irrespective of %DOG. The performance of the adsorbents for uranium adsorption in natural seawater was also carried out using flow-through-column at Pacific Northwest National Laboratory (PNNL). The three hours KOH conditioning was better for higher uranium uptake than one hour. The adsorbent AI11 containing AN and VPA at the mole ration of 3.52, emerged as the potential candidate for higher uranium adsorption (3.35 g-U/Kg-ads.) after 56 days of exposure in the seawater in the flow-through-column. The rate vanadium adsorption over uranium was linearly increased throughout the 56 days exposure. The total vanadium uptake was ~5 times over uranium after 56 days

  2. Agricultural By-products as Mercury Adsorbents in Gas Applications

    Science.gov (United States)

    Increased emphasis on reduction of mercury emissions from coal fired electric power plans have resulted in environmental regulations that may in the future require application of activated carbons as mercury sorbents. The sorbents could be injected into the flue gas stream where is adsorbs the merc...

  3. Enhanced encapsulation of metoprolol tartrate with carbon nanotubes as adsorbent

    Science.gov (United States)

    Garala, Kevin; Patel, Jaydeep; Patel, Anjali; Dharamsi, Abhay

    2011-12-01

    A highly water-soluble antihypertensive drug, metoprolol tartrate (MT), was selected as a model drug for preparation of multi-walled carbon nanotubes (MWCNTs)-impregnated ethyl cellulose (EC) microspheres. The present investigation was aimed to increase encapsulation efficiency of MT with excellent adsorbent properties of MWCNTs. The unique surface area, stiffness, strength and resilience of MWCNTs have drawn much anticipation as carrier for highly water-soluble drugs. Carbon nanotubes drug adsorbate (MWCNTs:MT)-loaded EC microspheres were further optimized by the central composite design of the experiment. The effects of independent variables (MWCNTs:MT and EC:adsorbate) were evaluated on responses like entrapment efficiency (EE) and t 50 (time required for 50% drug release). The optimized batch was compared with drug alone EC microspheres. The results revealed high degree of improvement in encapsulation efficiency for MWCNTs:MT-loaded EC microspheres. In vitro drug release study exhibited complete release form drug alone microspheres within 15 h, while by the same time only 50-60% drug was released for MWCNTs-impregnated EC microspheres. The optimized batch was further characterized by various instrumental analyses such as scanning electron microscopy, powder X-ray diffraction and differential scanning calorimetry. The results endorse encapsulation of MWCNTs:MT adsorbate inside the matrix of EC microspheres, which might have resulted in enhanced encapsulation and sustained effect of MT. Hence, MWCNTs can be utilized as novel carriers for extended drug release and enhanced encapsulation of highly water-soluble drug, MT.

  4. HYDROGEN BONDING IN POLYMERIC ADSORBENTS BASED ADSORPTION AND SEPARATION

    Institute of Scientific and Technical Information of China (English)

    XUMancai; SHIZuoqing; 等

    2000-01-01

    After a concise introduction of hydrogen bonding effects in solute-solute and solute-solvent bonding,the design of polymeric adsorbents based on hydrogen bonding ,selectivity in adsorption through hydrogen bonding,and characterization of hydrogen bonding in adsorption and separation were reviewed with 28 references.

  5. PREPARATION AND ADSORBABILITY OF DEXTRAN MICROSPHERES WITH UNIFORM DIAMETER

    Institute of Scientific and Technical Information of China (English)

    Ri-sheng Yao; Wen-xia Gao; Jing Sun; Ya-hua You

    2005-01-01

    The method of preparing uniform dextran microspheres with a narrow diameter distribution was introduced and the adsorbability of these microspheres was evaluated. The microspheres were prepared in W/O microemulsion using 0.5% dextran solution as the aqueous phase and n-hexane as the oil phase. Characteristics of the prepared dextran microspheres were examined with laser light blocking technique, optical microscope and ultraviolet spectrometer. The results show that the prepared dextran microspheres have uniform morphology and narrow diameter distribution, nearly 92% of them having a diameter of 56.6 μm. In vitro evaluation of adsorbability, wet dextran microspheres have good adsorption of 98.32 mg/g of model drug methylene blue in 20.86 mg/L methylene blue solution at 25℃. The adsorption of dried dextran microspheres under the same condition is 132.15 mg/g, which is even higher. And the adsorbability of dextran microspheres has significant relationship with the concentration of methylene blue and temperature. The adsorbability is better at lower temperature and higher concentration of methylene blue.

  6. Results of testing various natural gas desulfurization adsorbents

    Science.gov (United States)

    Israelson, Gordon

    2004-06-01

    This article presents the results of testing many commercially available and some experimental sulfur adsorbents. The desired result of our testing was to find an effective method to reduce the quantity of sulfur in natural gas to less than 100 ppb volume (0.1 ppm volume). An amount of 100 ppb sulfur is the maximum limit permitted for Siemens Westinghouse solid oxide fuel cells (SOFCs). The tested adsorbents include some that rely only on physical adsorption such as activated carbon, some that rely on chemisorption such as heated zinc oxide, and some that may use both processes. The testing was performed on an engineering scale with beds larger than those used for typical laboratory tests. All tests were done at about 3.45 barg (50 psig). The natural gas used for testing was from the local pipeline in Pittsburgh and averaged 6 ppm volume total sulfur. The primary sulfur species were dimethyl sulfide (DMS), isopropyl mercaptan, tertiary butyl mercaptan, and tetrahydrothiophene. Some tests required several months to achieve a sulfur breakthrough of the bed. It was found that DMS always came through a desulfurizer bed first, independent of adsorption process. Since the breakthrough of DMS always exceeds the 100 ppb SOFC sulfur limit before other sulfurs were detected, an index was created to rate the adsorbents in units of ppm DMS × absorbent bed volume. This index is useful for calculating the expected adsorbent bed lifetime before sulfur breakthrough when the inlet natural gas DMS content is known. The adsorbents that are included in these reports were obtained from suppliers in the United States, the Netherlands, Japan, and England. Three activated carbons from different suppliers were found to have identical performance in removing DMS. One of these activated carbons was operated at four different space velocities and again showed the same performance. When using activated carbon as the basis of comparison for other adsorbents, three high-performance adsorbents

  7. Natural material adsorbed onto a polymer to enhance immune function

    Directory of Open Access Journals (Sweden)

    Reinaque AP

    2012-08-01

    Full Text Available Ana Paula Barcelos Reinaque,1 Eduardo Luzía França,2 Edson Fredulin Scherer,3 Mayra Aparecida Côrtes,1 Francisco José Dutra Souto,4 Adenilda Cristina Honorio-França51Post Graduate Program in Material Science, 2Institute of Biological and Health Science, Federal University of Mato Grosso, Barra do Garças, 3Post Graduate Program in Material Science, Institute of Biological and Health Science, Federal University of Mato Grosso, Pontal do Araguaia, 4Faculty of Medical Sciences, Federal University of Mato Grosso, Cuiabá, 5Institute of Biological and Health Science, Federal University of Mato Grosso, Pontal do Araguaia, MT, BrazilBackground: In this study, we produced poly(ethylene glycol (PEG microspheres of different sizes and adsorbing a medicinal plant mixture, and verified their effect in vitro on the viability, superoxide production, and bactericidal activity of phagocytes in the blood.Methods: The medicinal plant mixture was adsorbed onto PEG microspheres and its effects were evaluated by flow cytometry and fluorescence microscopy.Results: Adsorption of the herbal mixture onto the PEG microspheres was achieved and the particles were internalized by phagocytes. PEG microspheres bearing the adsorbed herbal mixture stimulated superoxide release, and activated scavenging and microbicidal activity in phagocytes. No differences in functional activity were observed when the phagocytes were not incubated with PEG microspheres bearing the adsorbed herbal mixture.Conclusion: This system may be useful for the delivery of a variety of medicinal plants and can confer additional protection against infection. The data reported here suggest that a polymer adsorbed with a natural product is a treatment alternative for enhancing immune function.Keywords: natural product, polymer, adsorption, immune function, phagocytes

  8. Microporous carbonaceous adsorbents for CO2 separation via selective adsorption

    KAUST Repository

    Zhao, Yunfeng

    2015-01-01

    Selective adsorption of CO2 has important implications for many energy and environment-related processes, which require the separation of CO2 from other gases (e.g. N2 and CH4) with high uptakes and selectivity. The development of high-performance adsorbents is one of the most promising solutions to the success of these processes. The present review is focused on the state-of-the-art of carbon-based (carbonaceous) adsorbents, covering microporous inorganic carbons and microporous organic polymers, with emphasis on the correlation between their textural and compositional properties and their CO2 adsorption/separation performance. Special attention is given to the most recently developed materials that were not covered in previous reviews. We summarize various effective strategies (N-doping, surface functionalization, extra-framework ions, molecular design, and pore size engineering) for enhancing the CO2 adsorption capacity and selectivity of carbonaceous adsorbents. Our discussion focuses on CO2/N2 separation and CO2/CH4 separation, while including an introduction to the methods and criteria used for evaluating the performance of the adsorbents. Critical issues and challenges regarding the development of high-performance adsorbents as well as some overlooked facts and misconceptions are also discussed, with the aim of providing important insights into the design of novel carbonaceous porous materials for various selective adsorption based applications. This journal is © The Royal Society of Chemistry.

  9. Effect of adsorbent addition on floc formation and clarification.

    Science.gov (United States)

    Younker, Jessica M; Walsh, Margaret E

    2016-07-01

    Adding adsorbent into the coagulation process is an emerging treatment solution for targeting hard-to-remove dissolved organic compounds from both drinking water and industrial wastewater. The impact of adding powdered activated carbon (PAC) or organoclay (OC) adsorbents with ferric chloride (FeCl3) coagulant was investigated in terms of potential changes to the coagulated flocs formed with respect to size, structure, and breakage and regrowth properties. The ability of dissolved air flotation (DAF) and sedimentation (SED) clarification processes to remove hybrid adsorbent-coagulant flocs was also evaluated through clarified water quality analysis of samples collected in bench-scale jar test experiments. The jar tests were conducted using both a synthetic fresh water and oily wastewater test water spiked with dissolved aromatic compounds phenol and naphthalene. Results of the study demonstrated that addition of adsorbent reduced the median coagulated floc size by up to 50% but did not affect floc strength or regrowth potential after application of high shear. Experimental results in fresh water demonstrated that sedimentation was more effective than DAF for clarification of both FeCl3-PAC and FeCl3-OC floc aggregates. However, experimental tests performed on the synthetic oily wastewater showed that coagulant-adsorbent floc aggregates were effectively removed with both DAF and sedimentation treatment, with lower residual turbidity achieved in clarified water samples than with coagulation treatment alone. Addition of OC or PAC into the coagulation process resulted in removals of over half, or nearly all of the dissolved aromatics, respectively. PMID:27064206

  10. Preparation of Urea Nitrogen Adsorbent of Complex Type and Adsorption Capacity of Urea Nitrogen onto the Adsorbent

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    The urea nitroge n adsorbent of complex type, which consists of chitosan coated dialdehyde cellulose (CDAC) and immobilized urease in gelatin membrane (IE), was prepared. The cellulose, the dialdehyde cellulose (DAC) and the CDAC were characterized by scanning electronic microscope. The results indicate that the cellulose C2-C3 bond was broken under the oxidation of periodate and it was oxidated to DAC. The DAC was coated with chitosan and the CDAC was obtained. The adsorption of urea nitrogen onto the adsorbent in Na2HPO4-NaH2PO4 buffer solution was studied in batch system. The effects of the experiment parameters, including degree of oxidation of CDAC, initial urea nitrogen concentration, pH and temperature, on the adsorption capacity of urea nitrogen onto the adsorbent at CDAC/IE weight ratio 10:1 were investigated. The results indicate that these parameters affected significantly the adsorption capacity. The adsorption capacity of urea nitrogen onto the adsorbent was 36.7 mg/g at the degree of oxidation of CDAC 88%, initial urea nitrogen concentration 600 mg/L, pH 7.4 and temperature 37 ℃.

  11. Characterization and adsorption behavior of a novel triolein-embedded activated carbon composite adsorbent

    Institute of Scientific and Technical Information of China (English)

    RU Jia; LIU Huijuan; QU Jiuhui; WANG Aimin; DAI Ruihua

    2005-01-01

    A novel triolein-embedded activated carbon composite adsorbent was developed. Experiments were carried out in areas such as the preparation method, the characterization of physicochemical properties, and the adsorption behavior of the composite adsorbent in removing dieldrin from aqueous solution. Results suggested that the novel composite adsorbent was composed of the supporting activated carbon and the surrounding triolein-embedded cellulose acetate membrane. The adsorbent was stable in water, for no triolein leakage was detected after soaking the adsorbent for five weeks. The adsorbent had good adsorption capability to dieldrin, which was indicated by a residual dieldrin concentration of 0.204 μg·L-1. The removal efficiency of the composite adsorbent was higher than the traditional activated carbon adsorbent.

  12. Removal of acutely hazardous pharmaceuticals from water using multi-template imprinted polymer adsorbent.

    Science.gov (United States)

    Venkatesh, Avinash; Chopra, Nikita; Krupadam, Reddithota J

    2014-05-01

    Molecularly imprinted polymer adsorbent has been prepared to remove a group of recalcitrant and acutely hazardous (p-type) chemicals from water and wastewaters. The polymer adsorbent exhibited twofold higher adsorption capacity than the commercially used polystyrene divinylbenzene resin (XAD) and powdered activated carbon adsorbents. Higher adsorption capacity of the polymer adsorbent was explained on the basis of high specific surface area formed during molecular imprinting process. Freundlich isotherms drawn showed that the adsorption of p-type chemicals onto polymer adsorbent was kinetically faster than the other reference adsorbents. Matrix effect on adsorption of p-type chemicals was minimal, and also polymer adsorbent was amenable to regeneration by washing with water/methanol (3:1, v/v) solution. The polymer adsorbent was unaltered in its adsorption capacity up to 10 cycles of adsorption and desorption, which will be more desirable in cost reduction of treatment compared with single-time-use activated carbon. PMID:24499987

  13. Adsorbed molecules in external fields: Effect of confining potential.

    Science.gov (United States)

    Tyagi, Ashish; Silotia, Poonam; Maan, Anjali; Prasad, Vinod

    2016-12-01

    We study the rotational excitation of a molecule adsorbed on a surface. As is well known the interaction potential between the surface and the molecule can be modeled in number of ways, depending on the molecular structure and the geometry under which the molecule is being adsorbed by the surface. We explore the effect of change of confining potential on the excitation, which is largely controlled by the static electric fields and continuous wave laser fields. We focus on dipolar molecules and hence we restrict ourselves to the first order interaction in field-molecule interaction potential either through permanent dipole moment or/and the molecular polarizability parameter. It is shown that confining potential shapes, strength of the confinement, strongly affect the excitation. We compare our results for different confining potentials. PMID:27387127

  14. pyIAST: Ideal adsorbed solution theory (IAST) Python package

    Science.gov (United States)

    Simon, Cory M.; Smit, Berend; Haranczyk, Maciej

    2016-03-01

    Ideal adsorbed solution theory (IAST) is a widely-used thermodynamic framework to readily predict mixed-gas adsorption isotherms from a set of pure-component adsorption isotherms. We present an open-source, user-friendly Python package, pyIAST, to perform IAST calculations for an arbitrary number of components. pyIAST supports several common analytical models to characterize the pure-component isotherms from experimental or simulated data. Alternatively, pyIAST can use numerical quadrature to compute the spreading pressure for IAST calculations by interpolating the pure-component isotherm data. pyIAST can also perform reverse IAST calculations, where one seeks the required gas phase composition to yield a desired adsorbed phase composition.

  15. Ordered molecular layer structure of lubricating oil adsorbed films

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Low-angle X-ray diffraction has been applied to analyze the structure of stearic acid LB films and self-grown surface adsorbed films of aluminium product metalworking lubricants. The results show that LB films exhibit a good layer-like ordered structure in the normal direction of film-carrying surface, while in the tangential direction, they do not show a cyclically ordered molecular arrangement; as for the self-grown surface adsorbed films of aluminium sheet and strip metalworking lubricants, their molecules are orderly arranged to certain degree in both the tangential and the normal directions of film-carrying surface, and they have a short-range ordered structure. Moreover, the better the orientation of normal molecules is, the higher the oil film strength is, and the smaller the friction factor is.

  16. Radiolysis of alanine adsorbed in a clay mineral

    International Nuclear Information System (INIS)

    Optical activity in molecules is a chemical characteristic of living beings. In this work, we examine the hypothesis of the influence of different mineral surfaces on the development of a specific chirality in organic molecules when subjected to conditions simulating the primitive Earth during the period of chemical evolution. By using X-ray diffraction techniques and HPLC/ELSD to analyze aqueous suspensions of amino acids adsorbed on minerals irradiated in different doses with a cobalt-60 gamma source, the experiments attempt to prove the hypothesis that some solid surfaces (like clays and meteorite rocks) may have a concentration capacity and protective role against external sources of ionizing radiation (specifically γ-ray) for some organic compounds (like some amino acids) adsorbed on them. Preliminary results show a slight difference in the adsorption and radiolysis of the D-and L-alanine

  17. Forces and pressures in adsorbing partially directed walks

    Science.gov (United States)

    Janse van Rensburg, E. J.; Prellberg, T.

    2016-05-01

    Polymers in confined spaces lose conformational entropy. This induces a net repulsive entropic force on the walls of the confining space. A model for this phenomenon is a lattice walk between confining walls, and in this paper a model of an adsorbing partially directed walk is used. The walk is placed in a half square lattice {{{L}}}+2 with boundary \\partial {{{L}}}+2, and confined between two vertical parallel walls, which are vertical lines in the lattice, a distance w apart. The free energy of the walk is determined, as a function of w, for walks with endpoints in the confining walls and adsorbing in \\partial {{{L}}}+2. This gives the entropic force on the confining walls as a function of w. It is shown that there are zero force points in this model and the locations of these points are determined, in some cases exactly, and in other cases asymptotically.

  18. Determination of Cr and Cd concentration adsorbed by chicken feathers

    International Nuclear Information System (INIS)

    In this work the results of the samples analysis of chicken feathers are presented, used as adsorber of the heavy metals Cd and Cr present in water solutions with well-known concentrations of these metals. It was used the Neutron Activation Analysis technique (AAN), using the TRIGA Mark-III reactor of the Nuclear Center of Mexico. The obtained results they show the advantages of having a versatile installation for the analysis of this type of samples. By means of the analysis of the results, it was determined the feasibility of using chicken feathers like adsorber of these metals present in polluted waters, additionally, it was detected the presence of others polluting elements in the inputs to prepare the reference solutions as well as in the processes, so much of preparation of the feathers like of the metals adsorption. (Author)

  19. Adsorbed self-avoiding walks subject to a force

    International Nuclear Information System (INIS)

    We consider a self-avoiding walk model of polymer adsorption where the adsorbed polymer can be desorbed by the application of a force. In this paper the force is applied normal to the surface at the last vertex of the walk. We prove that the appropriate limiting free energy exists where there is an applied force and a surface potential term, and prove that this free energy is convex in appropriate variables. We then derive an expression for the limiting free energy in terms of the free energy without a force and the free energy with no surface interaction. Finally we show that there is a phase boundary between the adsorbed phase and the desorbed phase in the presence of a force, prove some qualitative properties of this boundary and derive bounds on the location of the boundary. (paper)

  20. Adsorbed self-avoiding walks subject to a force

    Science.gov (United States)

    Janse van Rensburg, E. J.; Whittington, S. G.

    2013-11-01

    We consider a self-avoiding walk model of polymer adsorption where the adsorbed polymer can be desorbed by the application of a force. In this paper the force is applied normal to the surface at the last vertex of the walk. We prove that the appropriate limiting free energy exists where there is an applied force and a surface potential term, and prove that this free energy is convex in appropriate variables. We then derive an expression for the limiting free energy in terms of the free energy without a force and the free energy with no surface interaction. Finally we show that there is a phase boundary between the adsorbed phase and the desorbed phase in the presence of a force, prove some qualitative properties of this boundary and derive bounds on the location of the boundary.

  1. Plant waste materials from restaurants as the adsorbents for dyes

    Directory of Open Access Journals (Sweden)

    Pavlović Marija D.

    2015-01-01

    Full Text Available This paper has demonstrated the valorization of inexpensive and readily available restaurant waste containing most consumed food and beverage residues as adsorbents for methylene blue dye. Coffee, tea, lettuce and citrus waste have been utilized without any pre-treatment, thus the adsorption capacities and dye removal efficiency were determined. Coffee waste showed highest adsorbent capacity, followed by tea, lettuce and citrus waste. The dye removal was more effective as dye concentration increases from 5 up to 60 mg/L. The favorable results obtained for lettuce waste have been especially encouraged, as this material has not been commonly employed for sorption purposes. Equilibrium data fitted very well in a Freundlich isotherm model, whereas pseudo-second-order kinetic model describes the process behavior. Restaurant waste performed rapid dye removal at no cost, so it can be adopted and widely used in industries for contaminated water treatment.

  2. Molecular origins of friction. The force on adsorbed layers

    Energy Technology Data Exchange (ETDEWEB)

    Cieplak, M.; Smith, E.D.; Robbins, M.O. [Johns Hopkins Univ, Baltimore, MD (United States)

    1994-08-01

    Simulations and perturbation theory are used to study the molecular origins of an ideal model system, a layer of adsorbed molecules sliding over a substrate. These calculations reproduce several surprising features of experimental results. In most cases, the frictional force on a solid monolayer has a different form from that observed between macroscopic solids. No threshold force or static friction is needed to initiate sliding; instead, the velocity is proportional to the force. As in experiments, incommensurate solid layers actually slide more readily than fluid layers. A comparison of experiment, simulation, and analytic results shows that dissipation arises from anharmonic coupling between phonon modes and substrate-induced deformations in the adsorbate. 19 refs.

  3. Development of high temperature adsorbent in PWR primary system

    International Nuclear Information System (INIS)

    Radiation exposure reduction in PWR is one of the most important problems to be solved. We have developed a high temperature Co adsorbent (HTA), which could be directly applied under primary reactor coolant conditions. This adsorbent was Fe-Ti-O system ceramics, and was fabricated to a suitable form for using in a packed column. Through those experiments of adsorption tests, compatibility tests, leaching tests and hot loop tests, it was found that HTA had superior adsorption capability to not only Co and Ni-ion but also many other transition metal ions. And it was also found that HTA was compatible with high temperature water, as well as advantageous for its waste solidification. Based on the experimental results, dose reduction effect was evaluated by a computer code. From this evaluation, it was found that more than 50 % dose reduction could be expected, when an advanced reactor coolant clean-up (RCC) system with HTA would be realized. (author)

  4. Development of adsorber system utilizing ocean current for uranium recovery from seawater

    International Nuclear Information System (INIS)

    Based on the concept of adsorber previously proposed by some of the present authors, a submarine adsorber system utilizing the energy of ocean current was proposed. In order to make the concept of adsorber practical, the system design was made by taking into account the support of equipment in the sea, the equipment structure, the packed bed of adsorbents, the mooring method and the replacement of adsorbents. An estimation equation of adsorber cost was derived for the present type of adsorber. The optimum dimensions of adsorber were determined under the restrictions such as the size of dock in a shipbuilding factory and the stability in towing and mooring the equipment. The calculated results suggested that the adsorber cost decreased by around 30 % under the optimum condition. And the transportation system of the adsorbent was investigated. In the case where a mother ship system was adopted, the transportation cost was 5,000 yen/ton-adsorbent. It was made clear that the total recovery cost of uranium from the seawater could be reduced to 140,000 yen/kg-U from 190,000 yen/kg-U based on the above consideration. It was also considered necessary to further improve the adsorption capacity of adsorbent in order to realize a sharp reduction in the recovery cost of uranium. (author)

  5. Sulfometuron incorporation in cationic micelles adsorbed on montmorillonite

    OpenAIRE

    Mishael, Y. G.; Undabeytia López, Tomás; Rytwo, Giora; Papahadjopoulos Sternberg, B.; Rubin, Baruch; Nir, Shlomo

    2002-01-01

    The aim of this study was to understand the interactions between alkylammonium cations present as monomers and micelles and a clay mineral, montmorillonite, to develop slow release formulations of anionic herbicides, such as sulfometuron (SFM) whose leaching in soils is an environmental and economic problem. In the proposed formulation the herbicide is incorporated in positively charged micelles of quaternary amine cations, which in turn adsorb on the negatively charged clay. The adsorption o...

  6. Removing 3,5-Dichlorophenol from Wastewater by Alternative Adsorbents

    OpenAIRE

    Kobetičová Hana; Galbičková Blanka; Ševčíková Janka; Soldán Maroš

    2014-01-01

    The main objective of this paper is to evaluate an efficiency of 3,5 - dichlorophenol removal from wastewater by using alternative adsorbents. Chlorophenols are organic compounds consisting of a benzene ring, OH groups and also atoms of chlorine. Chlorophenols may have a huge isomere variety that means there are differences in their chemical and physical properties. Due to their toxicity it is necessary to remove them from waste water and in this paper an alternative way of such process is de...

  7. PREPARATION OF CHITOSAN COATED METAL AFFINITY CHROMATOGRAPHY ADSORBENT

    Institute of Scientific and Technical Information of China (English)

    AanTianwei; XuWeijiang; 等

    1998-01-01

    A new and an inexpensive adsorbent of chitosan coated silica for immobilized metal affinity chromatography(IMAC) was studied.After a double coating,the chitosan coated on silica beads could be up to 53.4mg/g silica beads.When pH>3.8,the metal ligand Cu2+ was chelated on the coated chitosan with a bound capacity of 14.6mg/g chitosan without introducing iminodiacetic acid(IDA).

  8. Linear response theory of activated surface diffusion with interacting adsorbates

    International Nuclear Information System (INIS)

    Graphical abstract: Activated surface diffusion with interacting adsorbates is analyzed within the Linear Response Theory framework. The so-called interacting single adsorbate model is justified by means of a two-bath model, where one harmonic bath takes into account the interaction with the surface phonons, while the other one describes the surface coverage, this leading to defining a collisional friction. Here, the corresponding theory is applied to simple systems, such as diffusion on flat surfaces and the frustrated translational motion in a harmonic potential. Classical and quantum closed formulas are obtained. Furthermore, a more realistic problem, such as atomic Na diffusion on the corrugated Cu(0 0 1) surface, is presented and discussed within the classical context as well as within the framework of Kramer's theory. Quantum corrections to the classical results are also analyzed and discussed. - Abstract: Activated surface diffusion with interacting adsorbates is analyzed within the Linear Response Theory framework. The so-called interacting single adsorbate model is justified by means of a two-bath model, where one harmonic bath takes into account the interaction with the surface phonons, while the other one describes the surface coverage, this leading to defining a collisional friction. Here, the corresponding theory is applied to simple systems, such as diffusion on flat surfaces and the frustrated translational motion in a harmonic potential. Classical and quantum closed formulas are obtained. Furthermore, a more realistic problem, such as atomic Na diffusion on the corrugated Cu(0 0 1) surface, is presented and discussed within the classical context as well as within the framework of Kramer's theory. Quantum corrections to the classical results are also analyzed and discussed.

  9. Toxicity of Uranium Adsorbent Materials using the Microtox Toxicity Test

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jiyeon [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Jeters, Robert T. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Gill, Gary A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Kuo, Li-Jung [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Bonheyo, George T. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2015-10-01

    The Marine Sciences Laboratory at the Pacific Northwest National Laboratory evaluated the toxicity of a diverse range of natural and synthetic materials used to extract uranium from seawater. The uranium adsorbent materials are being developed as part of the U. S. Department of Energy, Office of Nuclear Energy, Fuel Resources Program. The goal of this effort was to identify whether deployment of a farm of these materials into the marine environment would have any toxic effects on marine organisms.

  10. Onion membrane: an efficient adsorbent for decoloring of wastewater

    OpenAIRE

    Saber-Samandari, Samaneh; Heydaripour, Jalil

    2015-01-01

    Background Recently, researchers have tried to design synthetic materials by replicating natural materials as an adsorbent for removing various types of environmental pollutants, which have reached to the risky levels in nature for many countries in the world. In this research, the potential of onion membrane obtained from intermediate of onion shells for adsorption of methylene blue (MB) as a model cationic dye was exhibited. Methods Before and after adsorption, the membrane was characterize...

  11. Dynamic scanning probe microscopy of adsorbed molecules on graphite

    OpenAIRE

    Berdunov, N.; Pollard, A J; Beton, P. H.

    2008-01-01

    We have used a combined dynamic scanning tunneling and atomic force microscope to study the organisation of weakly bound adsorbed molecules on a graphite substrate. Specifically we have acquired images of islands of the perylene derivative molecules. These weakly bound molecules may be imaged in dynamic STM, in which the probe is oscillated above the surface. We show that molecular resolution may be readily attained and that a similar mode of imaging may be realised using conventional STM arr...

  12. Equipment review: The molecular adsorbents recirculating system (MARS®)

    OpenAIRE

    Boyle, Martin; Kurtovic, Jelica; Bihari, David; Riordan, Stephen; Steiner, Christian

    2004-01-01

    The molecular adsorbents recirculating system (MARS®) is a form of artificial liver support that has the potential to remove substantial quantities of albumin-bound toxins that have been postulated to contribute to the pathogenesis of liver cell damage, haemodynamic instability and multi-organ failure in patients with acute liver failure (ALF) and acute-on-chronic liver failure (AoCLF). These toxins include fatty acids, bile acids, tryptophan, bilirubin, aromatic amino acids and nitric oxide....

  13. A Review of Adsorbents Used for Storm Water Runoff Cleaning

    OpenAIRE

    Andrius Agintas; Marina Valentukevičienė

    2011-01-01

    Heavy metals, petroleum products, sediments and other pollutants get in the environment with insufficiently cleaned storm water runoff. Contaminated storm water runoff is one of the most significant sources for pollution in rivers, lakes and estuaries. Storm water runoff must be treated using not only simple methods but also using adsorption processes. Adsorbents can be natural organic, natural nonorganic and synthetic. Main adsorption characteristic, way of utilization and storm water runoff...

  14. Preparation of lignin derivatives and their application as protease adsorbents

    OpenAIRE

    Xian-Su Cheng; Yin Lin; Run Fang

    2009-01-01

    Synthesis of two lignin derivatives, lignophenol and lignin-aminophenol, were presented in this article. The chemical structure and the func-tional groups of lignin derivatives were charac-terized through FT-IR analysis. The immobiliza-tion of three proteases (papain, trypsin and pepsin) on lignin and lignin derivatives was carried out using adsorption technique. The influence of contact time and pH on the enzyme adsorption by different adsorbents was inves-tigated. Furthermore, enzyme activi...

  15. Non-linear optical studies of adsorbates: Spectroscopy and dynamics

    International Nuclear Information System (INIS)

    In the first part of this thesis, we have established a systematic procedure to apply the surface optical second-harmonic generation (SHG) technique to study surface dynamics of adsorbates. In particular, we have developed a novel technique for studies of molecular surface diffusions. In this technique, the laser-induced desorption with two interfering laser beams is used to produce a monolayer grating of adsorbates. The monolayer grating is detected with diffractions of optical SHG. By monitoring the first-order second-harmonic diffraction, we can follow the time evolution of the grating modulation from which we are able to deduce the diffusion constant of the adsorbates on the surface. We have successfully applied this technique to investigate the surface diffusion of CO on Ni(111). The unique advantages of this novel technique will enable us to readily study anisotropy of a surface diffusion with variable grating orientation, and to investigate diffusion processes of a large dynamic range with variable grating spacings. In the second part of this work, we demonstrate that optical infrared-visible sum-frequency generation (SFG) from surfaces can be used as a viable surface vibrational spectroscopic technique. We have successfully recorded the first vibrational spectrum of a monolayer of adsorbates using optical infrared-visible SFG. The qualitative and quantitative correlation of optical SFG with infrared absorption and Raman scattering spectroscopies are examined and experimentally demonstrated. We have further investigated the possibility to use transient infrared-visible SFG to probe vibrational transients and ultrafast relaxations on surfaces. 146 refs

  16. Silver diffusion over silicon surfaces with adsorbed tin atoms

    International Nuclear Information System (INIS)

    Silver diffusion over the (111), (100), and (110) surfaces of silicon with preliminarily adsorbed tin atoms is studied by Auger electron spectroscopy and low-energy electron diffraction. Diffusion is observed only on the surface of Si(111)-2√3 × 2√3-Sn. The diffusion mechanism is established. It is found that the diffusion coefficient depends on the concentration of diffusing atoms. The diffusion coefficient decreases with increasing silver concentration, while the activation energy and the preexponential factor increase

  17. Adsorption capacity of various adsorbents for decolorization of wastewater

    OpenAIRE

    Romčević, Gorana

    2014-01-01

    Adsorption is applied for the removal of dyes from wastewater effluent from textile and other industries. Dyes from wastewater need to be removed before it mixes with water bodies. Among the treatment options, adsorption appears to have considerable potential for the removal of colour from wastewaters. Activated carbon is the most widely used adsorbent, but its use is limited due to its high cost. This cost problem has led to a search for the use of alternate cheap and efficient materials. ...

  18. Fate of adsorbable micropollutants through sludge drying and composting processes

    OpenAIRE

    Besnault, S.; Martin Ruel, S.; Choubert, JM.; Budzinski, H.; Miege, C.; Esperanza, M.; Noyon, N.; Garnaud, S.; Coquery, M.

    2012-01-01

    The objective of the paper was to evaluate the fate of 79 adsorbed micropollutants through 9 sludge treatment processes. A specific sampling strategy was applied to follow a “batch” of sludge through the treatment (inlet and outlet sludge, intermediary mixture for some processes such as composting and condensates). Mass balances were established to calculate micropollutants removal efficiencies and the fate of the substances through these facilities was evaluated. In order to limi...

  19. Non-linear optical studies of adsorbates: Spectroscopy and dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Xiangdong.

    1989-08-01

    In the first part of this thesis, we have established a systematic procedure to apply the surface optical second-harmonic generation (SHG) technique to study surface dynamics of adsorbates. In particular, we have developed a novel technique for studies of molecular surface diffusions. In this technique, the laser-induced desorption with two interfering laser beams is used to produce a monolayer grating of adsorbates. The monolayer grating is detected with diffractions of optical SHG. By monitoring the first-order second-harmonic diffraction, we can follow the time evolution of the grating modulation from which we are able to deduce the diffusion constant of the adsorbates on the surface. We have successfully applied this technique to investigate the surface diffusion of CO on Ni(111). The unique advantages of this novel technique will enable us to readily study anisotropy of a surface diffusion with variable grating orientation, and to investigate diffusion processes of a large dynamic range with variable grating spacings. In the second part of this work, we demonstrate that optical infrared-visible sum-frequency generation (SFG) from surfaces can be used as a viable surface vibrational spectroscopic technique. We have successfully recorded the first vibrational spectrum of a monolayer of adsorbates using optical infrared-visible SFG. The qualitative and quantitative correlation of optical SFG with infrared absorption and Raman scattering spectroscopies are examined and experimentally demonstrated. We have further investigated the possibility to use transient infrared-visible SFG to probe vibrational transients and ultrafast relaxations on surfaces. 146 refs.

  20. Development Trends in Porous Adsorbents for Carbon Capture.

    Science.gov (United States)

    Sreenivasulu, Bolisetty; Sreedhar, Inkollu; Suresh, Pathi; Raghavan, Kondapuram Vijaya

    2015-11-01

    Accumulation of greenhouse gases especially CO2 in the atmosphere leading to global warming with undesirable climate changes has been a serious global concern. Major power generation in the world is from coal based power plants. Carbon capture through pre- and post- combustion technologies with various technical options like adsorption, absorption, membrane separations, and chemical looping combustion with and without oxygen uncoupling have received considerable attention of researchers, environmentalists and the stake holders. Carbon capture from flue gases can be achieved with micro and meso porous adsorbents. This review covers carbonaceous (organic and metal organic frameworks) and noncarbonaceous (inorganic) porous adsorbents for CO2 adsorption at different process conditions and pore sizes. Focus is also given to noncarbonaceous micro and meso porous adsorbents in chemical looping combustion involving insitu CO2 capture at high temperature (>400 °C). Adsorption mechanisms, material characteristics, and synthesis methods are discussed. Attention is given to isosteric heats and characterization techniques. The options to enhance the techno-economic viability of carbon capture techniques by integrating with CO2 utilization to produce industrially important chemicals like ammonia and urea are analyzed. From the reader's perspective, for different classes of materials, each section has been summarized in the form of tables or figures to get a quick glance of the developments. PMID:26422294

  1. Two dimensional condensation of argon adsorbed on lamellar halides

    International Nuclear Information System (INIS)

    Lamellar halides such as NiCl2, FeCl2, NiBr2, MnBr2, MgBr2, CdBr2, CoI2, FeI2, MnI2, CaI2 and PbI2 were sublimed in a rapid stream of dry nitrogen. The adsorption of argon on such materials shows stepped isotherms which reveal two dimensional condensations. From sets of isotherms the Helmholtz free energy, the internal energy and the entropy of the successive layers are determined. From the entropy of the first layer the role of the potential relief of the adsorbent surface on the structure of the adsorbed layer may be determined while the Helmholtz free energy reveals how the ionic character of the adsorbent governs the attractive force of adsorption. The study of the second third and fourth layers shows that their growth follows quite a different behaviour depending on whether the Van der Waals diameter of argon is greater or smaller than the distance between adjacent anions on the crystal surface. A proposition is made to account for the difference in the critical temperatures of the first and second dense layers in terms of the vibrationnal state of their respective substrate. The occurence for the maximum critical temperature observed of corresponding to a triangular layer 3% more expanded than the (111) plane of solid argon is discussed

  2. Regeneration of thiol-functionalized mesostructured silica adsorbents of mercury

    Science.gov (United States)

    Arencibia, Amaya; Aguado, José; Arsuaga, Jesús M.

    2010-06-01

    The regeneration of thiol-functionalized SBA-15 adsorbents of mercury is presented in this article. The influence of temperature and pH on the adsorption process was studied. The effect due to the presence of complexing agents in aqueous solution on the desorption step was also evaluated. Hg(II) maximum adsorption capacities at different temperatures ranging from 20 °C to 60 °C were obtained and it was found that temperature does not affect the adsorption process. Mercury adsorption capacity was also determined in the presence of HNO 3 and HCl up to 3 M concentration. The comparison of the results showed that whereas hydrochloric acid exhibits an appreciable capacity to regenerate the thiol-functionalized SBA-15 adsorbent, the nitric acid results inefficient. The difference was attributed to the mercury complexing ability of chloride anion. Four complexing compounds, KBr, KSCN, (NH 2) 2CS, and HBr were tested for desorbing mercury in regeneration experiments. All agents were able to remove significant amounts of adsorbed mercury, being hydrobromic acid the complexing compound that yields the best results.

  3. Distribution of metal and adsorbed guest species in zeolites

    International Nuclear Information System (INIS)

    Because of their high internal surface areas and molecular-size cavity dimensions, zeolites are used widely as catalysts, shape- selective supports, or adsorbents in a variety of important chemical processes. For metal-catalyzed reactions, active metal species must be dispersed to sites within the zeolite pores that are accessible to diffusing reactant molecules. The distribution of the metal, together with transport and adsorption of reactant molecules in zeolite powders, are crucial to ultimate catalyst performance. The nature of the metal or adsorbed guest distribution is known, however, to be dramatically dependent upon preparatory conditions. Our objective is to understand, at the molecular level, how preparatory treatments influence the distribution of guest species in zeolites, in order that macroscopic adsorption and reaction properties of these materials may be better understood. The sensitivity of xenon to its adsorption environment makes 129Xe NMR spectroscopy an important diagnostic probe of metal clustering and adsorbate distribution processes in zeolites. The utility of 129Xe NMR depends on the mobility of the xenon atoms within the zeolite-guest system, together with the length scale of the sample heterogeneity being studied. In large pore zeolites containing dispersed guest species, such as Pt--NaY, 129Xe NMR is insensitive to fine structural details at room temperature

  4. The influence of frequency on fractal dimension of adsorbed layers

    International Nuclear Information System (INIS)

    Alternating current (AC) voltammetry and electrochemical impedance spectroscopy are often the methods of choice for use in study of adsorption of organic molecules. The adsorption of organic molecules on interface may result in the formation of fractal structures, whose fractal dimension can be estimated using the method of scaling the hanging mercury drop electrode (HMDE). The aim of present study was to check whether the estimated fractal dimension, D (or for that matter the fractal ordering of the adsorbed layer) shows any correlation (dependence) with change of applied frequency, and second, to check the possibility to extend the method to broad frequency spectrum compatible with impedance spectroscopy. The investigation included two surfactants nonionic Triton-X-100 (T-X-100) and anionic sodium dodecyl sulfate (SDS) and alcohol tert-butanol. All measurements were performed on HMDE at thermodynamic equilibrium employing broad frequency spectrum. The validity of the approach was checked by measurements on pure electrolyte and by comparison with previously obtained results for fractal layers. The results of the investigations show that: (1) the method of scaling the HMDE to obtain the fractal dimension of adsorbed layer is compatible with impedance spectroscopy and the combination of these methods can be used as a powerful tool to investigate fractal aspect of adsorption of organic molecules; (2) fractal ordering of adsorbed layer and the value of fractal dimension is not influenced by the frequency of applied sinusoidal voltage perturbations

  5. Specific binding-adsorbent assay method and test means

    International Nuclear Information System (INIS)

    A description is given of an improved specific binding assay method and test means employing a nonspecific adsorbent for the substance to be determined, particularly hepatitis B surface (HBsub(s)) antigen, in its free state or additionally in the form of its immune complex. The invention is illustrated by 1) the radioimmunoadsorbent assay for HBsub(s) antigen, 2) the radioimmunoadsorbent assay for HBsub(s) antigen in the form of immune complex with antibody, 3) a study of adsorption characteristics of various anion exchange materials for HBsub(s) antigen, 4) the use of hydrophobic adsorbents in a radioimmunoadsorbent assay for HBsub(s) antigen and 5) the radioimmunoadsorbent assay for antibody to HBsub(s) antigen. The advantages of the present method for detecting HBsub(s) antigen compared to previous methods include the manufacturing advantages of eliminating the need for insolubilised anti-HBsub(s) and the advantages of a single incubation step, fewer manipulations, storability of adsorbent materials, increased sensitivity and versatility of detecting HBsub(s) antigen in the form of its immune complex if desired. (U.K.)

  6. Photoinduced surface dynamics of CO adsorbed on a platinum electrode.

    Science.gov (United States)

    Noguchi, Hidenori; Okada, Tsubasa; Uosaki, Kohei

    2006-08-10

    The surface dynamics of adsorbed CO molecules formed by dissociative adsorption of HCHO at a polycrystalline Pt electrode/electrolyte solution interface was studied by picosecond time-resolved sum-frequency generation (TR-SFG) spectroscopy. A SFG peak at 2050-2060 cm(-1) was observed at the Pt electrode in HClO(4) solution containing HCHO at 0-300 mV (vs Ag/AgCl), indicating the formation of adsorbed CO at an atop site of the Pt surface as a result of dissociative adsorption of HCHO. The peak position varied with potential by approximately 33 cm(-1)/V, as previously found in an infrared reflection absorption spectroscopy (IRAS) study. Irradiation of an intense picosecond visible pulse (25 ps, 532 nm) caused an instant intensity decrease and broadening of the CO peak accompanied by the emergence of a new broad peak at approximately 1980 cm(-1) within the time resolution of the system. These results suggest a decrease and increase in the populations of CO adsorbed on atop and bridge sites, respectively, upon visible pump pulse irradiation. PMID:16884215

  7. Distribution of metal and adsorbed guest species in zeolites

    Energy Technology Data Exchange (ETDEWEB)

    Chmelka, B.F.

    1989-12-01

    Because of their high internal surface areas and molecular-size cavity dimensions, zeolites are used widely as catalysts, shape- selective supports, or adsorbents in a variety of important chemical processes. For metal-catalyzed reactions, active metal species must be dispersed to sites within the zeolite pores that are accessible to diffusing reactant molecules. The distribution of the metal, together with transport and adsorption of reactant molecules in zeolite powders, are crucial to ultimate catalyst performance. The nature of the metal or adsorbed guest distribution is known, however, to be dramatically dependent upon preparatory conditions. Our objective is to understand, at the molecular level, how preparatory treatments influence the distribution of guest species in zeolites, in order that macroscopic adsorption and reaction properties of these materials may be better understood. The sensitivity of xenon to its adsorption environment makes {sup 129}Xe NMR spectroscopy an important diagnostic probe of metal clustering and adsorbate distribution processes in zeolites. The utility of {sup 129}Xe NMR depends on the mobility of the xenon atoms within the zeolite-guest system, together with the length scale of the sample heterogeneity being studied. In large pore zeolites containing dispersed guest species, such as Pt--NaY, {sup 129}Xe NMR is insensitive to fine structural details at room temperature.

  8. Foam-based adsorbents having high adsorption capacities for recovering dissolved metals and methods thereof

    Energy Technology Data Exchange (ETDEWEB)

    Janke, Christopher J.; Dai, Sheng; Oyola, Yatsandra

    2015-06-02

    Foam-based adsorbents and a related method of manufacture are provided. The foam-based adsorbents include polymer foam with grafted side chains and an increased surface area per unit weight to increase the adsorption of dissolved metals, for example uranium, from aqueous solutions. A method for forming the foam-based adsorbents includes irradiating polymer foam, grafting with polymerizable reactive monomers, reacting with hydroxylamine, and conditioning with an alkaline solution. Foam-based adsorbents formed according to the present method demonstrated a significantly improved uranium adsorption capacity per unit weight over existing adsorbents.

  9. Powder-based adsorbents having high adsorption capacities for recovering dissolved metals and methods thereof

    Energy Technology Data Exchange (ETDEWEB)

    Janke, Christopher J.; Dai, Sheng; Oyola, Yatsandra

    2016-05-03

    A powder-based adsorbent and a related method of manufacture are provided. The powder-based adsorbent includes polymer powder with grafted side chains and an increased surface area per unit weight to increase the adsorption of dissolved metals, for example uranium, from aqueous solutions. A method for forming the powder-based adsorbent includes irradiating polymer powder, grafting with polymerizable reactive monomers, reacting with hydroxylamine, and conditioning with an alkaline solution. Powder-based adsorbents formed according to the present method demonstrated a significantly improved uranium adsorption capacity per unit weight over existing adsorbents.

  10. Electric field cancellation on quartz: a Rb adsorbate induced negative electron affinity surface

    CERN Document Server

    Sedlacek, J A; Rittenhouse, S T; Weck, P F; Sadeghpour, H R; Shaffer, J P

    2015-01-01

    We investigate the (0001) surface of single crystal quartz with a submonolayer of Rb adsorbates. Using Rydberg atom electromagnetically induced transparency, we investigate the electric fields resulting from Rb adsorbed on the quartz surface, and measure the activation energy of the Rb adsorbates. We show that the adsorbed Rb induces a negative electron affinity (NEA) on the quartz surface. The NEA surface allows low energy electrons to bind to the surface and cancel the electric field from the Rb adsorbates. Our results are important for integrating Rydberg atoms into hybrid quantum systems and the fundamental study of atom-surface interactions, as well as applications for electrons bound to a 2D surface.

  11. Electric Field Cancellation on Quartz by Rb Adsorbate-Induced Negative Electron Affinity

    Science.gov (United States)

    Sedlacek, J. A.; Kim, E.; Rittenhouse, S. T.; Weck, P. F.; Sadeghpour, H. R.; Shaffer, J. P.

    2016-04-01

    We investigate the (0001) surface of single crystal quartz with a submonolayer of Rb adsorbates. Using Rydberg atom electromagnetically induced transparency, we investigate the electric fields resulting from Rb adsorbed on the quartz surface, and measure the activation energy of the Rb adsorbates. We show that the adsorbed Rb induces negative electron affinity (NEA) on the quartz surface. The NEA surface allows low energy electrons to bind to the surface and cancel the electric field from the Rb adsorbates. Our results will be important for integrating Rydberg atoms into hybrid quantum systems, as fundamental probes of atom-surface interactions, and for studies of 2D electron gases bound to surfaces.

  12. Elimination of dyes from aqueous solutions using iron oxides and chitosan as adsorbents: a comparative study

    Directory of Open Access Journals (Sweden)

    Silvina Pirillo

    2009-01-01

    Full Text Available This work investigates the adsorption of Alizarin, Eriochrome Blue Black R and Fluorescein using chitosan, goethite and magnetite as adsorbents. For Alizarin, the best adsorbent is chitosan with a Langmuir parameter of 15.8 mmol dye/g adsorbent. For Eriochrome Blue Black R only 1.94 mmol dye/g chitosan is adsorbed. Langmuir parameters for the Alizarin adsorption on both iron oxides display one or two orders of magnitude lower than for chitosan and two orders of magnitude lower in the case of Eriochrome Blue Black R. Fluorescein does not adsorb in appreciable amounts on chitosan and it presents the lower affinity on the iron oxides.

  13. Design and performance prediction of a new generation adsorption chiller using composite adsorbent

    International Nuclear Information System (INIS)

    Research highlights: → Composite adsorbent 'employing lithium chloride in silica gel' and water as working pair. → A new type adsorbent bed is used to accommodate the composite adsorbent. → A dynamic model of the adsorption chiller is built. → The coefficient of performance (COP) and the cooling capacity will be improved. -- Abstract: This paper presents a novel adsorption chiller using composite adsorbent 'employing lithium chloride in silica gel' as adsorbent and water as adsorbate. A new type adsorbent bed is used to accommodate the composite adsorbent. The mass recovery between two adsorbent beds usually results in the adsorbate unbalance. So a novel auto water makeup unite is used to solve the problem. A dynamic model of the adsorption chiller is built based on the adsorption isotherms to predict the performance. The simulation result shows that the coefficient of performance (COP) and the cooling capacity will increase by using this new composite adsorbent. When the temperatures of hot water inlet, cooling water inlet, and chilled water inlet are 363, 303 and 293 K, COP will be 0.43, and the cooling capacity will be 5.295 kW. Also operation strategy is optimized. Different temperatures of hot water inlet, cooling water inlet and chilling water inlet will result in different COP and cooling capacity.

  14. Preparation and characterization of a novel adsorbent for removing lipophilic organic from water

    Institute of Scientific and Technical Information of China (English)

    LIU; Huijuan; DAI; Ruihua; QU; Jiuhui; RU; Jia

    2005-01-01

    A novel composite adsorbent containing a kind of lipid-triolein is studied. The adsorbent is prepared by embedding triolein into cellulose acetate (CA) sphere. The preparation method, the physical-chemical properties of the adsorbent and the removal efficiency of two organochlorinated pesticides are studied. The adsorbent is stable in water and no triolein leaks into water for 465 h soaking. The adsorbent has high adsorption capacity for organochlorinated pesticides such as dieldrin and aldrin. The results suggest that triolein-containing adsorbent could serve as a good adsorbent for lipophilic organic pollutants. The adsorption rate for lipophilic pollutants is very fast and has relation with the logKow of the compounds.

  15. Recovery system for uranium from seawater with fibrous adsorbent and its preliminary cost estimation

    International Nuclear Information System (INIS)

    The cost of uranium recovered from seawater was estimated to extract the technical problems in the practical application of the fibrous amidoxime adsorbent synthesized by radiation graftpolymerization. Each cost of the adsorbent production, the dipping in seawater for uranium absorption, and the uranium elution from the adsorbent was estimated in three different mooring systems of a buoy, floating body, and chain binding system. The recovery cost was estimated to be 5-10 times of that from mining uranium. More than 80% of the total cost was occupied by the cost for marine equipment for mooring the adsorbents in seawater, which is owing to a weight of metal cage for adsorbents. Thus, the cost can be reduced to half by the reduction of the equipment weight to 1/4. The improvement of adsorbent ability is research subjects in the future also, since the cost directly depends on the adsorbent performance. (author)

  16. Amine-pillared Nanosheet Adsorbents for CO2 Capture Applications

    Science.gov (United States)

    Jiang, Hui

    Amine-functionalized solid adsorbents have gained attention within the last decade for their application in carbon dioxide capture, due to their many advantages such as low energy cost for regeneration, tunable structure, elimination of corrosion problems, and additional advantages. However, one of the challenges facing this technology is to accomplish both high CO 2 capture capacity along with high CO2 diffusion rates concurrently. Current amine-based solid sorbents such as porous materials similar to SBA-15 have large pores diffusion entering molecules; however, the pores become clogged upon amine inclusion. To meet this challenge, our group's solution involves the creation of a new type of material which we are calling-amino-pillared nanosheet (APN) adsorbents which are generated from layered nanosheet precursors. These materials are being proposed because of their unique lamellar structure which exhibits ability to be modified by organic or inorganic pillars through consecutive swelling and pillaring steps to form large mesoporous interlayer spaces. After the expansion of the layer space through swelling and pillaring, the large pore space can be functionalized with amine groups. This selective functionalization is possible by the choice of amine group introduced. Our choice, large amine molecules, do not access the micropore within each layer; however, either physically or chemically immobilized onto the surface of the mesoporous interlayer space between each layer. The final goal of the research is to investigate the ability to prepare APN adsorbents from a model nanoporous layered materials including nanosheets precursor material MCM-22(P) and nanoporous layered silicate material AMH-3. MCM-22(P) contains 2-dimensional porous channels, 6 membered rings (MB) openings perpendicular to the layers and 10 MB channels in the plane of the layers. However, the transport limiting openings (6 MB) to the layers is smaller than CO2 gas molecules. In contrast, AMH-3 has

  17. Bioavailability in rats of metal adsorbed to soils

    International Nuclear Information System (INIS)

    The toxicity of metals to humans and animals has been well documented, however little data are available on the physiological bioavailability of metals from various soil types. These studies were designed to assess the bioavailability of sodium 75selenate (NaS), 63nickel chloride (NiCl) and 109cadmium chloride (CdCl) adsorbed to sand or clay loam in rats. Each test compound was administered in seven dose groups: Group 1 - intravenously, Group 2 and 3 - oral aqueous solution by gavage, Groups 4-7 - aqueous suspension adsorbed to each soil type by gavage. Blood was collected from the jugular vein at intervals up to 48 hours post dosing and analyzed for radio-activity. Both NiCl and CdCl were poorly adsorbed from the soils. Approximately 3% of the CdCl bound to sand and 1.5% of the NiCl bound to clay loam were absorbed into the bloodstream. Approximately 0.5% and 0.1% of the CdCl bound to sand and clay, respectively were absorbed. NaS was well absorbed following oral administration with approximately 85% of the compound bound to sand and 94% bound to clay being absorbed into the blood. Bioavailability of metals from soil appears to be primarily affected by the ionic state of the metal. Anions, such as selenium, are more mobile in an acid environment and may leach more readily from soil. Cations, such as Ni and Cd may bind to soil more tightly, thus soil type becomes a factor affecting bioavailability

  18. Magnetically modified microbial cells: A new type of magnetic adsorbents

    Institute of Scientific and Technical Information of China (English)

    Ivo Safarik; Mirka Safarikova

    2007-01-01

    Microbial cells, either in free or immobilized form, can be used for the preconcentration or removal of metal ions, organic and inorganic xenobiotics or biologically active compounds. Magnetic modification of these cells enables to prepare magnetic adsorbents that can be easily manipulated in difficult-to-handle samples, such as suspensions, in the presence of external magnetic field. In this review, typical examples of magnetic modifications of microbial cells are presented, as well as their possible applications for the separation of organic xenobiotics and heavy metal ions.

  19. Behavior of adsorbed Poly-A onto sodium montmorillonite

    Science.gov (United States)

    Palomino-Aquino, Nayeli; Negrón-Mendoza, Alicia

    2015-07-01

    The adsorption of Poly-A (a polynucleotide consisting of adenine, ribose and a phosphate group), onto a clay mineral, was studied to investigate the extent of adsorption, the site of binding, and the capacity of the clay to protect Poly-A, while it is adsorbed onto the clay, from external sources of energy. The results showed that Poly-A presented a high percentage of adsorption at the edges of the clay and that the survival of the polynucleotide was superior to irradiating the polymer in the absence of the clay.

  20. Radiolysis of carboxylic acids adsorbed in clay minerals

    International Nuclear Information System (INIS)

    This research is aimed at studying the effect of ionizing radiation in an heterogeneous system formed by a carboxylic acid adsorbed in a clay mineral. The study is focussed to discriminate if the presence of a solid surface alters the formation and distribution of radiolytic products in relation to the radiolysis of the carboxylic acid without the surface (clay). The results showed that the radiolysis of the system clay-acid goes along a defined path rather than showing various pathways of decomposition as in the case of simple aqueous solutions. The main pathway was the decarboxylation of the target compound rather than condensation/dimerization reactions

  1. 3,5-Dichlorophenol Removal From Wastewater Using Alternative Adsorbents

    Directory of Open Access Journals (Sweden)

    Kobetičová Hana

    2015-06-01

    Full Text Available The main objective of this paper is to evaluate the efficiency of 3,5-dichlorophenol removal from wastewater by using alternative low cost adsorbents. Waste from the production and processing of metals (black nickel mud, red mud and a biosorbent (Lemna minor were used for this research. Initial concentration of the contaminant was 4 mmol L−1, the contact time of sorbent and waste water was 0 - 48 hrs and the temperature during experiment was 25 ± 0.2 °C. The results show that the highest removal efficiency of 3,5 - dichlorophenol (58.18 % was reached by the red mud in 48 hours.

  2. Removing 3,5-Dichlorophenol from Wastewater by Alternative Adsorbents

    Directory of Open Access Journals (Sweden)

    Kobetičová Hana

    2014-12-01

    Full Text Available The main objective of this paper is to evaluate an efficiency of 3,5 - dichlorophenol removal from wastewater by using alternative adsorbents. Chlorophenols are organic compounds consisting of a benzene ring, OH groups and also atoms of chlorine. Chlorophenols may have a huge isomere variety that means there are differences in their chemical and physical properties. Due to their toxicity it is necessary to remove them from waste water and in this paper an alternative way of such process is described.

  3. 3,5-Dichlorophenol Removal From Wastewater Using Alternative Adsorbents

    Science.gov (United States)

    Kobetičová, Hana; Lipovský, Marek; Wachter, Igor; Soldán, Maroš

    2015-06-01

    The main objective of this paper is to evaluate the efficiency of 3,5-dichlorophenol removal from wastewater by using alternative low cost adsorbents. Waste from the production and processing of metals (black nickel mud, red mud) and a biosorbent (Lemna minor) were used for this research. Initial concentration of the contaminant was 4 mmol L-1, the contact time of sorbent and waste water was 0 - 48 hrs and the temperature during experiment was 25 ± 0.2 °C. The results show that the highest removal efficiency of 3,5 - dichlorophenol (58.18 %) was reached by the red mud in 48 hours.

  4. Behavior of adsorbed Poly-A onto sodium montmorillonite

    Energy Technology Data Exchange (ETDEWEB)

    Palomino-Aquino, Nayeli [Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México (Mexico); Negrón-Mendoza, Alicia, E-mail: negron@nucleares.unam.mx [Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México (Mexico)

    2015-07-23

    The adsorption of Poly-A (a polynucleotide consisting of adenine, ribose and a phosphate group), onto a clay mineral, was studied to investigate the extent of adsorption, the site of binding, and the capacity of the clay to protect Poly-A, while it is adsorbed onto the clay, from external sources of energy. The results showed that Poly-A presented a high percentage of adsorption at the edges of the clay and that the survival of the polynucleotide was superior to irradiating the polymer in the absence of the clay.

  5. Detection of adsorbed water and hydroxyl on the moon

    Science.gov (United States)

    Clark, R.N.

    2009-01-01

    Data from the Visual and Infrared Mapping Spectrometer (VIAAS) on Cassini during its flyby of the AAoon in 1999 show a broad absorption at 3 micrometers due to adsorbed water and near 2.8 micrometers attributed to hydroxyl in the sunlit surface on the AAoon. The amounts of water indicated in the spectra depend on the type of mixing and the grain sizes in the rocks and soils but could be 10 to 1000 parts per million and locally higher. Water in the polar regions may be water that has migrated to the colder environments there. Trace hydroxyl is observed in the anorthositic highlands at lower latitudes.

  6. Electrically heated particulate filter regeneration using hydrocarbon adsorbents

    Science.gov (United States)

    Gonze, Eugene V [Pinckney, MI

    2011-02-01

    An exhaust system that processes exhaust generated by an engine is provided. The system generally includes a particulate filter (PF) that filters particulates from the exhaust wherein an upstream end of the PF receives exhaust from the engine. A grid of electrically resistive material selectively heats exhaust passing through the upstream end to initiate combustion of particulates within the PF. A hydrocarbon adsorbent coating applied to the PF releases hydrocarbons into the exhaust to increase a temperature of the combustion of the particulates within the PF.

  7. Sustainable catalyst supports for carbon dioxide gas adsorbent

    Science.gov (United States)

    Mazlee, M. N.

    2016-07-01

    The adsorption of carbon dioxide (CO2) become the prime attention nowadays due to the fact that increasing CO2 emissions has been identified as a contributor to global climate change. Major sources of CO2 emissions are thermoelectric power plants and industrial plants which account for approximately 45% of global CO2 emissions. Therefore, it is an urgent need to develop an efficient CO2 reduction technology such as carbon capture and storage (CCS) that can reduce CO2 emissions particularly from the energy sector. A lot of sustainable catalyst supports have been developed particularly for CO2 gas adsorbent applications.

  8. Structure of adsorbed monolayers. The surface chemical bond

    International Nuclear Information System (INIS)

    This paper attempts to provide a summary of what has been learned about the structure of adsorbed monolayers and about the surface chemical bond from molecular surface science. While the surface chemical bond is less well understood than bonding of molecules in the gas phase or in the solid state, our knowledge of its properties is rapidly accumulating. The information obtained also has great impact on many surface science based technologies, including heterogeneous catalysis and electronic devices. It is hoped that much of the information obtained from studies at solid-gas interfaces can be correlated with molecular behavior at solid-liquid interfaces. 31 references, 42 figures, 1 table

  9. Controllable Catalysis with Nanoparticles: Bimetallic Alloy Systems and Surface Adsorbates

    KAUST Repository

    Chen, Tianyou

    2016-05-16

    Transition metal nanoparticles are privileged materials in catalysis due to their high specific surface areas and abundance of active catalytic sites. While many of these catalysts are quite useful, we are only beginning to understand the underlying catalytic mechanisms. Opening the “black box” of nanoparticle catalysis is essential to achieve the ultimate goal of catalysis by design. In this Perspective we highlight recent work addressing the topic of controlled catalysis with bimetallic alloy and “designer” adsorbate-stabilized metal nanoparticles.

  10. Temperature programmed desorption of weakly bound adsorbates on Au(111)

    Science.gov (United States)

    Engelhart, Daniel P.; Wagner, Roman J. V.; Meling, Artur; Wodtke, Alec M.; Schäfer, Tim

    2016-08-01

    We have performed temperature programmed desorption (TPD) experiments to analyze the desorption kinetics of Ar, Kr, Xe, C2H2, SF6, N2, NO and CO on Au(111). We report desorption activation energies (Edes), which are an excellent proxy for the binding energies. The derived binding energies scale with the polarizability of the molecules, consistent with the conclusion that the surface-adsorbate bonds arise due to dispersion forces. The reported results serve as a benchmark for theories of dispersion force interactions of molecules at metal surfaces.

  11. Study of the Adsorbent-Adsorbate Interactions from Cd(II) and Pb(II) Adsorption on Activated Carbon and Activated Carbon Fiber

    International Nuclear Information System (INIS)

    The adsorption characteristics of Cd(II) and Pb(II) in aqueous solution using granular activated carbon (GAC), activated carbon fiber (ACF), modified ACF (NaACF), and a mixture of GAC and NaACF (GAC/NaACF) have been studied. The surface properties, such as morphology, surface functional groups, and composition of various adsorbents were determined using X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM) measurements. The specific surface area, total pore volume, and pore size distribution were investigated using nitrogen adsorption, Brunauer-Emmett-Teller (BET), and Barrett-Joyner-Halenda (BJH) methods. In this study, NaACF showed a high adsorption capacity and rate for heavy metal ions due to the improvement of its ion-exchange capabilities by additional oxygen functional groups. Moreover, the GAC and NaACF mixture was used as an adsorbent to determine the adsorbent-adsorbate interaction in the presence of two competitive adsorbents

  12. Influence of mechanical abrasion of carbon adsorbents on aerodynamic resistance of filters of system of ventilation of NPS

    International Nuclear Information System (INIS)

    Influence of mechanical abrasion of granules on aerodynamic resistance of different carbon adsorbents at conditions similar to work of filters AU-1500 is studied. The change of fractional composition of the probed adsorbents by abrasion is determined. The obtained experimental data allow making conclusion about practicability using mixture of adsorbent Norit with different fractional composition for renewal of adsorbers of ventilation system of NPS.

  13. Home-made carbonaceous adsorbents for the iodine filter

    International Nuclear Information System (INIS)

    Assuming, that at the moment, an activated charcoal is the most widely used adsorbent in off-gas cleaning systems for elemental iodine removal, it was analyzed how to improve the adsorption properties of this filter material for removing the organic iodine compounds, especially in the presence of high relative humidity. Three different indigenous activated charcoals were selected for studies: two kinds of charcoal, designated as type A and N, as well as the charcoals used for flue gas desulfurization, as the third type S. These charcoals were impregnated with tin iodide (SnI2), potassium iodide (KI) and triethylenediamine (TEDA). Considering the results of the laboratory tests of the efficiency methyl iodide retention by the impregnated charcoals, it was concluded, that the carbonaceous adsorbent containing 1+1.5% KI showed efficient retention of the methyl iodide (CH3I), compared with, for example, foreign activated charcoals, as, NORIT-CGI 1% KI (West Germany) and GA-1 0.5% KI (Czechoslovakia). (author)

  14. Continuous vapour adsorption cooling system with three adsorber beds

    International Nuclear Information System (INIS)

    In this paper, the design of a new solar operated adsorption cooling system with two identical small and one large adsorber beds, which is capable of producing cold continuously, has been proposed. In this system, cold energy is stored in the form of refrigerant in a separate refrigerant storage tank at ambient temperature. Silica gel–water is used as a working pair and system is driven by solar energy. The operating principle is described in details and its thermodynamic transient analysis is presented. Effect of COP and SCE for different adsorbent mass and adsorption/desorption time of smaller beds are discussed. Recommended mass and number of cycles of operation for smaller beds to attain continuous cooling with average COP and SCE of 0.63 and 337.5 kJ/kg, respectively are also discussed, at a generation, condenser and evaporator temperatures of 368 K, 303 K and 283 K, respectively. - Highlights: • A three-bed silica gel–water continuous adsorption cooling system is analyzed. • Cold energy is stored in the form of liquid refrigerant at ambient temperature. • The influence of mass of beds and cycle time on the system performance is discussed. • Sizing of the beds for a given cooling capacity is recommended

  15. Work function of alkali metal-adsorbed molybdenium dichalcogenides

    Science.gov (United States)

    Kim, Sol; Jhi, Seung-Hoon

    2015-03-01

    The lowest work function of materials, reported so far over the last few decades, is an order of 1eV experimentally and theoretically. Designing materials that has work-function less than 1eV is essential in the thermionic energy conversion. To explore new low work function materials, we study MoX2(X =S, Se, Te) adsorbed with alkali metals (Li, Na, K, Rb and Cs), and investigate the charge transfer, the formation of surface dipole, and the change in work function using first-principles calculations. It is found that the charge transfer from alkali metals to MoX2substrates decreases as the atomic number of adsorbates increases. Regardless of the amount of the charge transfer, K on MoTe2 exhibits the biggest surface dipole moment, which consequently makes the surface work function the lowest. We show that the formation of the surface dipole is a key in changing the work function. We find the trimerization of Mo atoms in the substrate with the lowest work-function, which may contribute to enhancement of the surface dipole.

  16. Contact and friction of nanoasperities: effects of adsorbed monolayers.

    Science.gov (United States)

    Cheng, Shengfeng; Luan, Binquan; Robbins, Mark O

    2010-01-01

    Molecular dynamics simulations are used to study contact between a rigid, nonadhesive, and spherical tip with radius of order 30 nm and a flat elastic substrate covered with a fluid monolayer of adsorbed chain molecules. Previous studies of bare surfaces showed that the atomic scale deviations from a sphere that are present on any tip constructed from discrete atoms lead to significant deviations from continuum theory and dramatic variability in friction forces. Introducing an adsorbed monolayer leads to larger deviations from continuum theory but decreases the variations between tips with different atomic structure. Although the film is fluid, it remains in the contact and behaves qualitatively like a thin elastic coating except for certain tips at high loads. Measures of the contact area based on the moments or outer limits of the pressure distribution and on counting contacting atoms are compared. The number of tip atoms making contact during a time interval Deltat grows as a power of Deltat when the film is present and as the logarithm of Deltat for bare surfaces. Friction is measured by displacing the tip at a constant velocity or pulling the tip with a spring. Both static and kinetic friction rise linearly with load at small loads. Transitions in the state of the film lead to nonlinear behavior at large loads. The friction is less clearly correlated with contact area than load. PMID:20365427

  17. Fibrous adsorbent for removal of aqueous aromatic hydrocarbons.

    Science.gov (United States)

    Jung, Yong-Jun; Kiso, Yoshiaki; Oguchi, Tatsuo; Yamada, Toshiro; Takagi, Hiroo; Nishimura, Kazuyuki

    2007-01-01

    Bundles of a strongly hydrophobic fibrous material (p-phenylene-2,6-benzobisoxazole; PBO; Zylon) were employed as an adsorbent for the removal of aqueous aromatic compounds, because the PBO fibers are too rigid to be woven and did not entrap suspended solids. The removal performance for nine kinds of polyaromatic hydrocarbons (PAHs) and di-(2-ethylhexyl) phthalate (DEHP) was evaluated. PAHs and DEHP at initial concentrations of 50 microg L(-1) were removed at 72.5-99.9% and ca. 95%, respectively, although the removal efficiencies were affected by the phase ratio (fiber weight/solution volume). The logarithm of the partition coefficient (log K) for planar PAHs was linearly correlated with the logarithm of the n-octanol/water partition coefficient (log P), but nonplanar PAHs, such as cis-stilbene, p-terphenyl, and o-terphenyl, showed significantly lower adsorption performance. The adsorbed PAHs were not desorbed effectively with CH3CN, CH2Cl2, and toluene. On the other hand, DEHP was effectively desorbed with methanol. PMID:17585293

  18. Solvent cleanup using base-treated silica gel solid adsorbent

    International Nuclear Information System (INIS)

    A solvent cleanup method using silica gel columns treated with either sodium hydroxide (NaOH) or lithium hydroxide (LiOH) has been investigated. Its effectiveness compares favorably with that of traditional wash methods. After treatment with NaOH solution, the gels adsorb HNO3, dibutyl phosphate (DBP), UO22+, Pu4+, various metal-ion fission products, and other species from the solvent. Adsorption mechanisms include neutralization, hydrolysis, polymerization, and precipitation, depending on the species adsorbed. Sodium dibutyl phosphate, which partially distributes to the solvent from the gels, can be stripped with water; the stripping coefficient ranges from 280 to 540. Adsorption rates are diffusion controlled such that temperature effects are relatively small. Recycle of the gels is achieved either by an aqueous elution and recycle sequence or by a thermal treatment method, which may be preferable. Potential advantages of this solvent cleanup method are that (1) some operational problems are avoided and (2) the amount of NaNO3 waste generated per metric ton of nuclear fuel reprocessed would be reduced significantly. 19 references, 6 figures, 12 tables

  19. Dynamics of different molecules adsorbed in porous media

    Indian Academy of Sciences (India)

    S Mitra; V S Kamble; A K Tripathi; N M Gupta; R Mukhopadhyay

    2004-08-01

    We present in this paper a comparative study on the dynamics of benzene, cyclohexane, and methanol molecules, confined in the pores of MCM-41 molecular sieve and HZSM-5 zeolite. The quasi-elastic neutron scattering (QENS) measurements revealed that the physical state of these adsorbed molecules depended not only on the structural characteristics of the host matrix but also on the chemical properties, such as dipole moment, of the guest molecules. Thus, while no motion was observed in the time-scale of 10−10 –10−12 s in the case of methanol, the larger size benzene and cyclohexane molecules are found to perform six-fold and three-fold jump rotation, respectively, when adsorbed inside the cages of HZSM-5 at room temperature. At the same time, all the three molecules are found to undergo a translational motion inside the pores of MCM-41 molecular sieves, the value of diffusion constant being the lowest in case of methanol because of its higher polarity. Translationl motion of the guest molecules inside the pores of MCM-41 can be satisfactorily described by Chudley–Eliott fixed jump length diffusion and accordingly the residence time, jump length and diffusion constant are estimated.

  20. Heterogeneous radiolysis of HCN adsorbed on a solid surface

    International Nuclear Information System (INIS)

    Hydrogen cyanide is a key molecule for chemical evolution studies because, when it is exposed to different sources of energy, it forms various compounds of biological importance. To understand the role of minerals in chemical evolution, a series of experiments was performed. First, the adsorption capacity of HCN on different surface minerals was studied; the results show that HCN is readily adsorbed onto the solids proposed (zeolite, serpentine, dolomite, and sodium montmorillonite), in particular zeolite and montmorillonite. Second, the radiolysis of HCN adsorbed on olivine (as an example of a mineral surface) was also followed; it was found that the rate of HCN decomposition by gamma irradiation is enhanced in the presence of the solid. The third series of studies show that organic material was produced in high abundance from HCN at high radiation doses. The radiolytic products included gases (CO2, NH4, and CO) and oligomeric materials that release carboxylic acids (succinic, malonic, citric, and tricarballylic acids) and amino acids upon acid hydrolysis. These experiments suggest that minerals could have participated actively in chemical evolution processes.

  1. Adsorption of T-2 toxin by natural mineral adsorbents

    Directory of Open Access Journals (Sweden)

    Stojanović Ana I.

    2008-01-01

    Full Text Available The contamination of animal feed with mycotoxins represents a worldwide problem leading to economic losses in animal production. According to the Food and Agriculture Organization (FAO, 25% of the world's cereal grain production is contaminated with mycotoxins. The most common mycotoxins found in grains are the aflatoxins, ochratoxins, fumonisins, trichothecenes, zearalenone and the ergopeptine alkaloids. Trichothecenes, constitute the largest group of Fusarium mycotoxins. Among others, T-2 toxin is the most acute toxic trichothecene. In this paper, adsorption of T-2 toxin by natural mineral adsorbents zeolite-clinop-tilolite and smectite minerals - bentonite and hectorite, at pH 3 was investigated. The highest adsorption index was achieved for hectorite (95%, while clinoptilolite and bentonite showed low adsorption index for T-2 toxin, 8% and 13%, respectively. Results of T-2 toxin adsorption on hectorite, at different amount of solid phase in suspension, and at pH 3, 7 and 9, showed that toxin adsorption indexes increased with increase of adsorbent concentration in suspension, at all investigated pH values. No significant differences in T-2 toxin adsorption by hectorite, at pH 3, 7 and 9 were observed.

  2. Confocal Raman microscopy of protein adsorbed in chromatographic particles.

    Science.gov (United States)

    Xiao, Yuewu; Stone, Thomas; Bell, David; Gillespie, Christopher; Portoles, Marta

    2012-09-01

    Confocal Raman microscopy is a nondestructive analytical technique that combines the chemical information from vibrational spectroscopy with the spatial resolution of confocal microscopy. It was applied, for the first time, to measure conformation and distribution of protein adsorbed in wetted chromatographic particles. Monoclonal antibody was loaded into the Fractogel EMD SO(3) (M) cation exchanger at 2 mS/cm or 10 mS/cm. Amide I and III frequencies in the Raman spectrum of the adsorbed protein suggest that there are no detectable changes of the original β-sheet conformation in the chromatographic particles. Protein depth profile measurements indicate that, when the conductivity is increased from 2 mS/cm to 10 mS/cm, there is a change in mass transport mechanism for protein adsorption, from the shrinking-core model to the homogeneous-diffusion model. In this study, the use of confocal Raman microscopy to measure protein distribution in chromatographic particles fundamentally agrees with previous confocal laser scanning microscopic investigations, but confocal Raman spectroscopy enjoys additional advantages: use of unlabeled protein to eliminate fluorescent labeling, ability for characterization of protein secondary structure, and ability for spectral normalization to provide a nondestructive experimental approach to correct light attenuation effects caused by refractive index (RI) mismatching in semiopaque chromatographic particles. PMID:22803776

  3. Vibrational spectroscopic studies of adsorbates on bimetallic surfaces. Doctoral thesis

    Energy Technology Data Exchange (ETDEWEB)

    Kuhn, W.K.

    1992-12-01

    In this work, well-defined bimetallic surfaces have been studied using carbon monoxide adsorption in conjunction with infrared reflection absorption spectroscopy (IRAS). These studies have indicated that for CO adsorbed on Cu overlayers, the bond between the CO and the Cu adatoms is comprised of both pi-back-donation and polarization interaction components. The sum of the contributions from these effects determines the observed bond strength with the observed CO stretching frequency being determined by the relative contributions of the components. In addition, it was determined that IR spectra of adsorbed CO show a remarkable sensitivity to surface structure. Three-dimensional Cu clusters, well-ordered two dimensional Cu islands and isolated Cu atoms are distinctively characterized by their CO IR peaks. In addition, both disorder-order and order-order transitions are observed for the metal overlayers on the single crystal metal substrates. It was also observed that localized segregation and ordering of mixed Co and S overlayers on a Mo(110) substrate occurs upon annealing.

  4. Selective Response of Mesoporous Silicon to Adsorbants with Nitro Groups

    Energy Technology Data Exchange (ETDEWEB)

    McLeod, John A.; Kurmaev, Ernst Z.; Sushko, Petr V.; Boyko, Teak D.; Levitsky, Igor A.; Moewes, Alexander

    2012-01-30

    We demonstrate that the electronic structure of mesoporous silicon is affected by adsorption of nitrobased explosive molecules in a compound-selective manner. This selective response is demonstrated by probing the adsorption of two nitro-based molecular explosives (trinitrotoluene and cyclotrimethylenetrinitramine) and a nonexplosive nitro-based aromatic molecule (nitrotoluene) on mesoporous silicon using soft X-ray spectroscopy. The Si atoms strongly interact with adsorbed molecules to form Si-O and Si-N bonds, as evident from the large shifts in emission energy present in the Si L2,3 X-ray emission spectroscopy (XES) measurements. Furthermore, we find that the energy gap (band gap) of mesoporous silicon changes depending on the adsorbant, as estimated from the Si L2,3 XES and 2p X-ray absorption spectroscopy (XAS) measurements. Our ab initio molecular dynamics calculations of model compounds suggest that these changes are due to spontaneous breaking of the nitro groups upon contacting surface Si atoms. This compound-selective change in electronic structure may provide a powerful tool for the detection and identification of trace quantities of airborne explosive molecules.

  5. Ceramics adsorbing virus and cells. Uirusu, saibo bunri ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Hiraide, T. (Asahi Optical Co. Ltd., Tokyo (Japan))

    1993-07-01

    It has been reported that hydroxyapatite (HA), which is the main inorganic component of teeth and bones of homo sapiens and used for biomaterials such as artificial tooth roots, adsorbs viruses such as influenza viruses. In this article, the history of development up to now of HA and its adsorption mechanism of protein, virus, etc., are introduced. HA was applied for chromatography in 1956 becoming one of the separating and refining methods of protein and nucleic acid, then after the development of spherical porous HA, it has become applied for high speed liquid chromatography (HPLC). Also by means of a column filled with HA granules, T-cells have been able to be purified in a short time from lymphocyte which was separated from the blood of homo sapiens. Recently it has also been reported that HA granules can adsorb influenza viruses, Japanese encephalitis viruses, polio viruses and hepatitis B viruses, and a cold-preventative mask based upon this report is now on sale. 11 refs., 7 figs.

  6. Structure of Inert Gases Adsorbed in MCM-41

    Science.gov (United States)

    Evans, Dylan; Sokol, Paul

    One-dimensional quantum liquids of 3He or 4He have generated recent interest for investigation in the Luttinger liquid model. Unfortunately, current studies lack a clear demonstration of definitively one-dimensional behavior. We propose using the templated, porous material, MCM-41, as a host for an atomic Luttinger liquid. In general, the pores of MCM-41 are too wide to provide a strictly one-dimensional environment, so we investigate preplating these pores with inert gases to effectively reduce their diameter. We present the results of studies of the structure of inert gases in MCM-41. Nitrogen sorption isotherms were used to characterize the sample. Then, using inert gases as adsorbates, we determined the minimum effective pore diameter that can be achieved in our sample before capillary condensation takes over. X-ray powder diffraction (XRD) was performed on the ideally preplated sample to investigate the structure of the adsorbates in the nanopores. The XRD measurements are compared to simulations of core-shell cylinder model scattering, and the validity of the model is assessed. The prospects for creating a definitively one-dimensional channel for the application of studying the structure and dynamics of helium confined in one dimension are discussed. This work was supported by the National Science Foundation under Grant DGE-1069091.

  7. Microcanonical simulations of adsorbing self-avoiding walks

    Science.gov (United States)

    Janse van Rensburg, E. J.

    2016-03-01

    Linear polymers adsorbing on a wall can be modelled by half-space self-avoiding walks adsorbing on a line in the square lattice, or on a surface in the cubic lattice. In this paper a numerical approach based on the GAS algorithm is used to approximately enumerate states in the partition function of this model. The data are used to approximate the free energy in the model, from which estimates of the location of the critical point and crossover exponents are made. The critical point is found to be located at \\begin{equation} a_c^+ = \\cases{ 1.779 \\pm 0.003, & \\hbox{in the square lattice}; \\\\ 1.306 \\pm 0.007, & \\hbox{in the cubic lattice}. } \\end{equation} These results are then used to estimate the crossover exponent $\\phi$ associated with the adsorption transition, giving \\begin{equation} \\phi = \\cases{ 0.496 \\pm 0.009, & \\hbox{in two dimensions}; \\\\ 0.505 \\pm 0.006, & \\hbox{in three dimensions}. } \\end{equation} In addition, the scaling of these thermodynamic quantities is examined using the numerical data, including the scaling of metric quantities, and the partition and generating functions. In all cases results and numerical values of exponents were obtained which are consistent with estimates in the literature.

  8. Adsorbent cartridge for the exhaust of diazo process machines

    International Nuclear Information System (INIS)

    A disposable cartridge filled with a chemical composition that acts as an adsorbent for ammonia vapor is adapted to be used in connection with a diazo process printing machine having a vacuum exhausted chamber. Exhaust from the chamber is passed through the cartridge to remove the noxious ammonia vapors and then is vented into the atmosphere. The cartridge is housed in an elongated rectangular cardboard box having three end flaps formed at each of its opposed open ends. Two opposed flaps of each set are formed with central holes and a plastic screen section adhered between these flaps to retain and allow access to the center section of the box which contains the adsorbent chemical. The center end flaps have knock-outs or tear strips that allow holes to be formed in their centers. These center end flaps cover the screens during shipment and when the cartridge is ready for use the center sections of these end flaps are knocked-out to allow the machine exhaust to be vented into and out of the cartridge

  9. Geometric rearrangement of adsorbate driven by the charge transfer

    Energy Technology Data Exchange (ETDEWEB)

    Pavlyukh, Yaroslav; Berakdar, Jamal [Institut fuer Physik, Martin-Luther-Universitaet Halle-Wittenberg, Halle (Germany); Huebner, Wolfgang [Department of Physics and Research Center OPTIMAS, Kaiserslautern University of Technology (Germany)

    2010-05-15

    Adsorption of alkali atoms induces a significant charge redistribution in the region around the adatom. Such charge displacement is associated with a large dipole moment responsible for the interaction of adatoms and a reduction of the surface work function. In addition to these well-known effects our first principles simulations for the Na{sub 9}{sup +} cluster on the Cu(001) surface demonstrate how the charge transfer (CT) from the adsorbate to the substrate can drastically change the geometric structure of the cluster. We report on a detailed study of the adsorption process using quantum chemistry. A representation of the substrate by a cluster of 54 Cu atoms allows us to treat quantum mechanically the electronic structure of both systems, the adsorbate and the surface, on equal footing. Subsequently, we analyze the charge distribution in the composite system. Convergence of the results is verified by considering a much larger substrate cluster containing 126 Cu atoms. The role of the CT is further elucidated by the geometry optimization of the bare cluster with and without an electron deficit. It is shown that the CT drives the system to a meta-stable state which thereafter relaxes to a new configuration. (Abstract Copyright [2010], Wiley Periodicals, Inc.)

  10. Treatment of uranium mining and milling wastewater using biological adsorbents

    International Nuclear Information System (INIS)

    Selected samples of waste microbial biomass originating from various industrial fermentation processes and biological treatment plants have been screened for biosorbent properties in conjunction with uranium, thorium and radium in aqueous solutions. Biosorption isotherms were used for the evaluation of biosorptive uptake capacity of the biomass. The biomass was also compared to synthetic adsorbents such as activated carbon. Determined uranium, thorium and radium biosorption isotherms were independent of the initial solution concentrations. Solution pH affected uptake. Rhizopus arrhizus at pH 4 exhibited the highest uranium and thorium biosorptive uptake capacity in excess of 180 Mg/g. It removed about 2.5 and 3.3 times more uranium than the ion exchange resin and activated carbon tested. Penicillium chrysogenum adsorbed 50000 pCi/g radium at pH 7 and at an equilibrium radium concentration of 1000 pCi/L. The most effective biomass types studied exhibited removals in excess of 99% of the radium in solution

  11. Purification of Sardinella sp., Oil: Centrifugation and Bentonite Adsorbent

    Directory of Open Access Journals (Sweden)

    S.H. Suseno

    2014-01-01

    Full Text Available Centrifugation and purification using adsorbents is one example of a fish oil refining techniques applied to reduce impurities of fish oil. The study aimed to determine the sardine oil quality before treatment, to determine yield of fish oil after centrifugation treatment and to determine the influence of centrifugation speed and bentonite concentration on sardine oil quality. Factorial design with two factors was used in this study. Level of free fatty acid and peroxide value before purification was 35.53% and 170 mEq/kg. Yield of fish oil after centrifugation treatment has been ranged from 17.42±3.56 to 76.33±0.21%. The best treatment which could reduce the peroxide value and total oxidation was a treatment with centrifugation speed at 6500 rpm and bentonite concentration at 3%. Peroxide value and total oxidation of its treatment was 25.00±0.00 and 51.43±0.01 mEq/kg. The lowest value of p-anisidine was 1.29±0.05 mEq/kg and its value could be found in a treatment with centrifugation speed at 4500 rpm and bentonite concentration at 5%. The level of free fatty acid after purification process was ranged from 27.35 to 34.69%. Oil clarity tended to increase with the increase of centrifugation speed and adsorbent concentration.

  12. Adsorbate Electric Fields on a Cryogenic Atom Chip

    CERN Document Server

    Chan, K S; Hufnagel, C; Dumke, R

    2013-01-01

    We investigate the behaviour of electric fields originating from adsorbates deposited on a cryogenic atom chip as it is cooled from room temperature to cryogenic temperature. Using Rydberg electromagnetically induced transparency we measure the field strength versus distance from a 1 mm square of YBCO patterned onto a YSZ chip substrate. We find a localized and stable dipole field at room temperature and attribute it to a saturated layer of chemically adsorbed rubidium atoms on the YBCO. As the chip is cooled towards 83 K we observe a change in sign of the electric field as well as a transition from a localized to a delocalized dipole density. We relate these changes to the onset of physisorption on the chip surface when the van der Waals attraction overcomes the thermal desorption mechanisms. Our findings suggest that, through careful selection of substrate materials, it may be possible to reduce the electric fields caused by atomic adsorption on chips, opening up experiments to controlled Rydberg-surface co...

  13. Oil palm biomass-based adsorbents for the removal of water pollutants--a review.

    Science.gov (United States)

    Ahmad, Tanweer; Rafatullah, Mohd; Ghazali, Arniza; Sulaiman, Othman; Hashim, Rokiah

    2011-07-01

    This article presents a review on the role of oil palm biomass (trunks, fronds, leaves, empty fruit bunches, shells, etc.) as adsorbents in the removal of water pollutants such as acid and basic dyes, heavy metals, phenolic compounds, various gaseous pollutants, and so on. Numerous studies on adsorption properties of various low-cost adsorbents, such as agricultural wastes and its based activated carbons, have been reported in recent years. Studies have shown that oil palm-based adsorbent, among the low-cost adsorbents mentioned, is the most promising adsorbent for removing water pollutants. Further, these bioadsorbents can be chemically modified for better efficiency and can undergo multiple reuses to enhance their applicability at an industrial scale. It is evident from a literature survey of more than 100 recent papers that low-cost adsorbents have demonstrated outstanding removal capabilities for various pollutants. The conclusion is been drawn from the reviewed literature, and suggestions for future research are proposed. PMID:21929380

  14. A WATER—COMPATIBLE PHENOLIC HYDROXYL ODIFIED POLYSTYRENE AS AN ADSORBENT FOR ADSORBING PHENOLIC COMPOUNDS FROM AQUEOUS SOLUTIONS

    Institute of Scientific and Technical Information of China (English)

    LIAimin; FeiZhenghao; 等

    2001-01-01

    A water-compatible phenolic hydroxyl modified polystyrene adsorbent (AM-1) for adsorbing and removing phenolic compounds from aqueous solutions was prepared by covalent bonding of phenolic hydroxyl groups to the surface of porous polystyrene-divinylbenzene beads,this resin can be used directly without wetting process.A comparison of the sorption properites of the new resin and Amberlite XAD-4 toward four phenolic compounds,phenol,p-cresol,p-chlorophenol,and p-nitrophenol was made.The capacities of equilibrium adsorption of AM-1 for all four phenolic compounds increased around 20% over that of Amberlite XAD-4,which may be contributed to pheonl hydroxyl group on the surface and the unusual poe distribution.At their dilute solution,the equilibrium adsorption capacities of AM-1 for phenol increased aout 62% over that of Amberlite XAD-4,while equilibrium adsorption capacities of the other three phenolic compounds increased 4-35%,suggesting an advantage of AM-1 over Amberlite XAD-4 in the collection of phenol.Freundlich isotherm equations and isosteric adsorption enthalpies for the four phenolic compunds indicate a physical adsorption process on the Amberlite XAD-4 and AM-1 resins,Column studies for phenol show that AM-1 resin has excellent adsorption and desorption performance.

  15. Theory of Inelastic Tunneling Current-Driven Motions of Single Adsorbates (Review Article)

    OpenAIRE

    Ueba, H.; Tikhodeev, S. G.; Persson, B.N.J.

    2010-01-01

    The theory of inelastic electron tunneling spectroscopy (IETS) and motions of single adsorbed atoms and molecules on metal surfaces induced by vibrational excitation with a scanning tunneling microscope (STM) is reviewed. The theory of STM-IETS is described using the adsorbate-induced resonance model. Elementary processes of how an adsorbate overcomes the potential barrier along the reaction coordinate (RC) by inelastic tunneling current are described with a focus on direct excitation of the ...

  16. Attractive and repulsive interactions between and within adsorbed ribonuclease A layers.

    OpenAIRE

    Belfort, G; Lee, C S

    1991-01-01

    Adsorbed layers of pancreatic RNase A on molecularly smooth mica in aqueous solution attract inorganic mica surfaces whereas they repel similarly adsorbed RNase A layers. As the clean mica surface is covered with RNase A, the attractive interaction slowly diminishes with time and eventually converts to a purely repulsive interaction. Solvent is squeezed out of the solution in the gap during compression of the two surfaces so that the adsorbed protein concentration, as measured directly by the...

  17. Performance of Laterite Soil Grains as Adsorbent in the Removal of Chromium

    OpenAIRE

    Syama I J; Arun Kumar Thalla; Manu D S

    2015-01-01

    The present study aims to examine the efficiency of laterite grains (LG) and acid activated laterite grains (AALG) as an adsorbent for removal hexavalent chromium and ferric ion from synthetic wastewater, under laboratory conditions. Adsorption of hexavalent chromium and ferric ion from synthetic wastewater is examined by batch and column studies wherein it is found to be dependent on pH, Contact time, adsorbent dosage and initial adsorbate concentration. Percentage removal enhances with the ...

  18. Screening of natural adsorbents for removal of radio-contaminants from aqueous effluents

    International Nuclear Information System (INIS)

    The present paper is a summary of studies carried out to examine the uptake potential of some of the bio/natural adsorbents for removal of radiocontaminants from aqueous effluents. Three different bio/natural materials namely coconut coir pith, sugarcane bagasse and saw dust were selected as adsorbents. Preliminary characterisations of the above adsorbents were carried out and percentage of removal of 239Pu and 241Am from aqueous solutions were checked using batch equilibration method. (author)

  19. Fractional elution and determination of uranium and vandium adsorbed on amidoxime fiber from seawater

    International Nuclear Information System (INIS)

    A method was studied to elute iron and copper adsorbed on the amidoxime fiber, which is a promising adsorbent for the uranium recovery from seawater. The elution of Mn, Ca, Ni, Zn, Cu and Fe were measured with different concentration of hydrochloric acid. The increasing L-ascorbic acid concentration gives increase in liberation of iron. Vanadium adsorbed strongly on amidoxime fiber. A procedure to recover vanadium was established. (J.P.N.)

  20. Preparation of metal adsorbents from chitin/chitosan by radiation technology

    International Nuclear Information System (INIS)

    The methods of preparation of metal adsorbents basing on chitin/chitosan were developed. That include the adsorbent from chitin grafted with acrylic acid by different irradiation doses; the clinging chitosan gel beads; the coagulable solution and the chitosan composite filter. The process of metal adsorption for each adsorbent was studied as adsorption kinetic, isothermal adsorption. The results have been applied for removal of some elements as Hg, Pb, Cd, U, Cu, ect. in the wastewater. (NHA)

  1. Preparation of the fibrous adsorbent containing amidoxime group or triazine group

    International Nuclear Information System (INIS)

    Amidoxime fiber and triazine fiber were prepared by chemical modification of commercially available polyacrylonitril fiber. It was found that the amidoxime fiber is efficient to adsorb uranium ions in the artificial seawater. The efficency of the preferential adsorption decreases by treatment the material with an acid or an alkaline solution. The triazine fiber adsorbs uranium ions only in aqueous solutions of such uranyl acetate, in the absence of other ions. In the artificial seawater, it adsorbs other ions instead of uranium. (author)

  2. Calculation of Henry constant on the base of critical parameters of adsorbable gas

    International Nuclear Information System (INIS)

    Calculation of Henry constant using correlation between critical parameters Psub(c), Tsub(c) and adsorption energy, determined by the value of internal pressure in molecular field of adsorbent, has been made. The calculated Henry constants for Ar, Kr and Xe, adsorbed by MoS2 and zeolite NaX, are compared with the experimental ones. The state of the molecules adsorbed is evaluated

  3. Natural Transformation of Acinetobacter calcoaceticus by Plasmid DNA Adsorbed on Sand and Groundwater Aquifer Material

    OpenAIRE

    Chamier, Bärbel; Lorenz, Michael G.; Wackernagel, Wilfried

    1993-01-01

    It is known that plasmid DNA and linear duplex DNA molecules adsorb to chemically purified mineral grains of sand and to particles of several clay fractions. It seemed desirable to examine whether plasmid DNA would also adsorb to nonpurified mineral materials taken from the environment and, particularly, whether adsorbed plasmid DNA would be available for natural transformation of bacteria. Therefore, microcosms consisting of chemically pure sea sand plus buffered CaCl2 solution were compared...

  4. The Removal of Dye from Aqueous Solution by Adsorption on Low Cost Adsorbents

    OpenAIRE

    J. J. Chamargore; Bharad, J. V.; Madje, B. R.; Ubale, M. B.

    2010-01-01

    Removal of color from aqueous solution by using low cost easily available adsorbent was conducted by batch experiment. The potential of the low cost adsorbent (Marble powder-treated and untreated) to remove methylene red from aqueous solution were assessed at room temperature. Laboratory investigation of the potential of marble powder and sulphuric acid treated marble powder to remove dye color from aqueous solution has been studied. Parameters studied included pH, adsorbent dose, initial dye...

  5. Waste Material Adsorbents for Zinc Removal from Wastewater: A Comprehensive Review

    OpenAIRE

    Zwain, Haider M.; Mohammadtaghi Vakili; Irvan Dahlan

    2014-01-01

    This review examines a variety of adsorbents and discusses mechanisms, modification methods, recovery and regeneration, and commercial applications. A summary of available researches has been composed by a wide range of potentially low-cost modified adsorbents including activated carbon, natural source adsorbents (clay, bentonite, zeolite, etc.), biosorbents (black gram husk, sugar-beet pectin gels, citrus peels, banana and orange peels, carrot residues, cassava waste, algae, algal, marine gr...

  6. CONDUCTIVITY METHOD APPLIED TO THE STUDY OF INTERACTION BETWEEN ADSORBENT AND ADSORBATE I.ADSORPTION OF LOW CONCENYRATION OF FREE ACID BY REGENERABLE CHITIN

    Institute of Scientific and Technical Information of China (English)

    ChenBingren; HeGuangping; 等

    1997-01-01

    The adsorption of low concentration of free acid by regenerable chitin is followed by electric conductance determination.The effect of acid concentratioin,content of functioinal amino groups,and ionic strength on adsorption was discussed.Experimental results indicate that the active centre of regenerable chitin is the free amino groups on ist surface ,and that the rate of adsorption of free acid was found to be affected by two factors:the interaction between the adsorbent and the adsorbate in solution and that between the adsorbate molecules or ions in solution.

  7. SYNTHESIS OF SPHERICAL MACROPOROUS ADSORBENT BASED ON UREA—FORMALDEHYDE CONDENSED POLYMER

    Institute of Scientific and Technical Information of China (English)

    XUMingcheng; XUMancai; 等

    2000-01-01

    Spherical macroporous adsorbents with active sites capable of hydrogen bonding adsorption based on urea-formaldehyde condensed polymer were synthesized via reversed suspension polymerization.The properties of the obtained adsorbent were also investigated in detail.The results showed that the water permeability could be improved by adding hydroxyl-contatining organic compound moiety into the adsorbent.The specific surface area and average pore diameter of these adsorbents increaswed while the porosity first increased then decreased with the increase of the amount of the added hydroxyl-containing compound.

  8. Investigations into Alternative Desorption Agents for Amidoxime-Based Polymeric Uranium Adsorbents

    Energy Technology Data Exchange (ETDEWEB)

    Gill, Gary A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Kuo, Li-Jung [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Strivens, Jonathan E. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Wood, Jordana R. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Wai, Chien [LCW Supercritical Technologies, Inc., Seattle, WA (United States); Pan, Horng-Bin [Univ. of Idaho, Moscow, ID (United States)

    2015-06-01

    Amidoxime-based polymeric braid adsorbents that can extract uranium (U) from seawater are being developed to provide a sustainable supply of fuel for nuclear reactors. A critical step in the development of the technology is to develop elution procedures to selectively remove U from the adsorbents and to do so in a manner that allows the adsorbent material to be reused. This study investigates use of high concentrations of bicarbonate along with targeted chelating agents as an alternative means to the mild acid elution procedures currently in use for selectively eluting uranium from amidoxime-based polymeric adsorbents.

  9. Detection of adsorbed explosive molecules using thermal response of suspended microfabricated bridges

    DEFF Research Database (Denmark)

    Yi, Dechang; Greve, Anders; Hales, Jan Harry;

    2008-01-01

    Here we present a thermophysical technique that is capable of differentiating vapor phase adsorbed explosives from nonexplosives and is additionally capable of differentiating individual species of common explosive vapors. This technique utilizes pairs of suspended microfabricated silicon bridges...... that can be heated in a controlled fashion. The differential thermal response of the bridges with and without adsorbed explosive vapor shows unique and reproducible characteristics depending on the nature of the adsorbed explosives. The tunable heating rate method described here is capable of providing...... unique signals for subnanogram quantities of adsorbed explosives within 50 ms. (C) 2008 American Institute of Physics....

  10. Preparation and characterization of a novel electrospun ammonium molybdophosphate/polyacrylonitrile nanofiber adsorbent for cesium removal

    International Nuclear Information System (INIS)

    Adsorption of Cs+ ion from aqueous solution onto a novel electrospun ammonium molybdophosphate/polyacrylonitrile nanofiber adsorbent with variation in AMP content, adsorbent concentration, pH, contact time, initial concentration and temperature was studied. The physicochemical characterization was performed by FTIR, XRD, BET and SEM analyses. Langmuir, Freundlich and Dubinin-Radushkevich models were used for analysis of equilibrium data. Kinetic results showed that the experimental data best fitted the pseudo-second-order kinetic model. The adsorption affinity of metal ions onto adsorbent was in order of Cs+ > Co2+ > Mg2+ > Ca2+ > Sr2+. The adsorbent could be easily regenerated after five cycles of adsorption-desorption. (author)

  11. Photoluminescence Enhancement of Adsorbed Species on Si Nanoparticles.

    Science.gov (United States)

    Matsumoto, Taketoshi; Maeda, Masanori; Kobayashi, Hikaru

    2016-12-01

    We have fabricated Si nanoparticles from Si swarf using the beads milling method. The mode diameter of produced Si nanoparticles was between 4.8 and 5.2 nm. Si nanoparticles in hexane show photoluminescence (PL) spectra with peaks at 2.56, 2.73, 2.91, and 3.09 eV. The peaked PL spectra are attributed to the vibronic structure of adsorbed dimethylanthracene (DMA) impurity in hexane. The PL intensity of hexane with DMA increases by ~3000 times by adsorption on Si nanoparticles. The PL enhancement results from an increase in absorption probability of incident light by DMA caused by adsorption on the surface of Si nanoparticles. PMID:26744147

  12. New adsorbent, silver-alumina for radioactive iodine filter

    International Nuclear Information System (INIS)

    Silver-alumina adsorbent has been developed for the iodine filter installed in the off-gas treatment system of a radioactive waste tank vent. In order to improve the removal efficiency under a highly humid atmosphere and to reduce susceptibility to contaminants in the air, the optimum average pore size of alumina was determined to be about 600 A when the impregnated silver compound was silver nitrate. The holding capability of impregnated silver was also improved by developing a double pore structure alumina. The effects of chemical forms and contaminants on the removal efficiency were explained by an ionic reaction mechanism at high relative humidity, which involves water vapor adsorption in micropores by capillary condensation followed by formation of a silver iodide compound

  13. The adsorbed state of a thiol on palladium nanoparticles.

    Science.gov (United States)

    Rogers, Scott M; Dimitratos, Nikolaos; Jones, Wilm; Bowker, Michael; Kanaras, Antonios G; Wells, Peter P; Catlow, C Richard A; Parker, Stewart F

    2016-06-29

    In the present work, a combination of imaging, spectroscopic and computational methods shows that 1-dodecanethiol undergoes S-deprotonation to form 1-dodecanethiolate on the surface of palladium nanoparticles, which then self-assembles into a structure that shows a high degree of order. The alkyl chain is largely in the all-trans conformation, which occurs despite the small size of the nanoparticle, (mean diameter = 3.9 nm). Inelastic neutron scattering spectroscopy is readily able to characterise organic surface layers on nanoparticles; the nature of the material is irrelevant: whether the nanoparticle core is an oxide, a metal or a semiconductor makes no difference. Comparison to DFT calculations allows insights into the nature and conformation of the adsorbed layer. PMID:27087637

  14. Concept of filter-adsorber type integrated air purifier

    Directory of Open Access Journals (Sweden)

    Raos Miomir

    2010-01-01

    Full Text Available In order to prove flow-thermal and operating parameters of air purifiers in a filter-adsorber system, the authors conducted comprehensive experimental examination in the laboratory for air quality control at the Faculty of Occupational Safety in Niš. Experimental examination was carried out on original experimental equipment with the concept of integrated air purifier which includes simultaneous activity of two different filter screens on separating mechanical and chemical test contaminants from a gas mixture. For that purpose, in cooperation with several companies, we designed and produced original filter screens and provided certain conceptual solutions for purifiers. Experimental data were recorded with suitable acquisition equipment in order to identify the processes.

  15. Conversion of olive wastes to volatiles and carbon adsorbents

    Energy Technology Data Exchange (ETDEWEB)

    Petrov, N.; Budinova, T.; Razvigorova, M. [Institute of Organic Chemistry, Bulgarian Academy of Sciences, Acad. G. Bonchev str. bl. 9, Sofia 1113 (Bulgaria); Parra, J. [Instituto Nacional del Carbon, Apartado de Correos 73, 33080 Oviedo (Spain); Galiatsatou, P. [Institute of Technology of Agricultural Products, I.S. Venizelow Str., Lykovrissi 141.23 (Greece)

    2008-12-15

    Investigations for the utilization of olive stones and solvent-extracted olive pulp are carried out. Tar, solid and gas products are obtained by pyrolysis of both precursors under vacuum and atmospheric pressure. Vacuum pyrolysis causes a decrease in the solid yield and an increase in the liquid and gas yields. The identified compounds of the liquid products are predominantly oxygen-containing structures (derivatives of phenol, dihydroxybenzenes, guaiacol, syringol, vanilin, veratrol, furan, acids). Activated carbons with a developed porous structure and alkaline character of the surface are produced by steam activation of the solid product and steam pyrolysis of the raw material. Oxidation treatment with air leads to the formation of a large number of oxygen functional groups with different chemical characters on the carbon surface. Chemical activation with K{sub 2}CO{sub 3} allows the preparing of carbon adsorbents with a high surface area and alkaline character of the surface. (author)

  16. Carrier-dependent magnetic anisotropy of Gd-adsorbed graphene

    Directory of Open Access Journals (Sweden)

    Yuan Lu

    2016-05-01

    Full Text Available Using first-principles calculation based on density functional theory, we study the magnetic anisotropy of Gd-adsorbed graphene and its dependence on carrier accumulation. We show that carrier accumulation not only impacts the magnitude of magnetic anisotropy but also switches its sign. Hole accumulation enhances the perpendicular anisotropy up to ∼16 meV per Gd atom, while electron accumulation switches the anisotropy from perpendicular to in-plane direction. Moreover, we find that the first order perturbation of spin-orbit coupling interaction induces a pseudo-gap at Γ for the perpendicular magnetization, which leads to the the anomalous magnetic anisotropy for the neutral composite. Our findings pave the way for magneto-electric materials based on rare-earth-decorated graphene for voltage-controlled spintronics.

  17. Application of Henry's Law for Binding Energies of Adsorbed Hydrogen

    Science.gov (United States)

    Gillespie, Andrew; Dohnke, Elmar; Stalla, David; Sweany, Mark; Pfeifer, Peter

    2015-03-01

    The method of isosteres is the simplest method used to calculate the differential enthalpy of adsorption. However, it is incredibly sensitive to the choice of model and respective fitting parameters. For a set of isotherms measured on a specific sample, most models converge upon a similar value at high coverage, but are inconsistent in the low pressure regime. In this talk, we investigate the application of various models for localized and mobile adsorption at low pressures in order to obtain binding energy of hydrogen to the adsorbent surface. Henry's Law analysis of the Langmuir Model of adsorption yield binding energies in excellent agreement with those obtained from the Clausius Clapeyron relation. Work supported by DOE-EERE, Award No. DE-FG36-08GO18142.

  18. Spontaneous Symmetry Breaking in Metal Adsorbed Graphene Sheets

    CERN Document Server

    Jalbout, A F

    2012-01-01

    Graphene has received a great deal of attention and this has more recently extended to boron nitride sheets (BNS) with a similar structure. Both have hexagonal lattices and it is only the alternation of atoms in boron nitride, which changes the symmetry structure. This difference can for example be seen in the mean field equations, which for the corners of the Brillouin Zone are Dirac equations. For the case of graphene (equal atoms) we have the equation for massless particles, while for Boron Nitride has a finite gap and is more near a Dirac equation with mass near this gap.. Carbon structures in general and in particular also graphene can adsorb electron donors, such as alkaline atoms or molecules with a dipole moment. Typically these atoms and the dipoles can only attach in the sense to donate electron density. Some results for small sheet like structures are available.

  19. Desulfurization of gasoline using molecularly imprinted chitosan as selective adsorbents.

    Science.gov (United States)

    Chang, Yonghui; Zhang, Lei; Ying, Hanjie; Li, Zhenjiang; Lv, Hao; Ouyang, Pingkai

    2010-01-01

    For desulfurization of gasoline, novel chitosan-based molecularly imprinted polymer (MIP) was prepared by cross-linking chitosan with epichlorohydrin in the presence of dibenzothiophene (DBT) as the template. The influence of cross-linking ratio on the specific adsorption was evaluated. The effects of the types and the amounts of porogen on selectivity of the chitosan MIP were also examined. Results showed that MIP has a higher recognition property to DBT. The maximum rebinding capacities of the MIP reached 22.69 mg g(-1) in the model solution. The adsorption behaviors of the MIP including adsorption kinetics, isotherms, and thermodynamic parameters were investigated and the experimental data agreed well with the Langmuir model. The dynamical adsorption behaved in first-order kinetics. Negative values for the Gibbs free energy showed that the adsorptions were spontaneous processes. The MIP was further used to selectively adsorb organosulfur from gasoline. PMID:19050832

  20. Charge transfer properties of pentacene adsorbed on silver: DFT study

    International Nuclear Information System (INIS)

    Charge transfer properties of pentacene adsorbed on silver is investigated using DFT methods. Optimized geometry of pentacene after adsorption on silver indicates distortion in hexagonal structure of the ring close to the silver cluster and deviations in co-planarity of carbon atoms due to the variations in bond angles and dihedral angles. Theoretically simulated absorption spectrum has a symmetric surface plasmon resonance peak around 486nm corresponding to the transfer of charge from HOMO-2 to LUMO. Theoretical SERS confirms the process of adsorption, tilted orientation of pentacene on silver surface and the charge transfers reported. Localization of electron density arising from redistribution of electrostatic potential together with a reduced bandgap of pentacene after adsorption on silver suggests its utility in the design of electro active organic semiconducting devices

  1. Adsorbent comparisons for anesthetic gas capture in hospital air emissions.

    Science.gov (United States)

    Mehrata, Mina; Moralejo, Carol; Anderson, William A

    2016-08-23

    For the development of emission control strategies, activated carbon, zeolite, molecular sieves, and a silica gel were tested for adsorption of the newer anesthetic gases isoflurane, sevoflurane, and desflurane from air. The activated carbon Norit GCA 48 was selected for the best performance, and adsorption isotherms at room temperature were developed for the three anesthetics. Equilibrium capacities for this carbon were in the range of 500 to 1,000 mg g(-1) for these anesthetics at partial pressures ranging from 5 to 45 Torr, with the most volatile compound (desflurane) showing the least favorable adsorption. Activated carbons are therefore suggested for use as effective adsorbents in emission control of these anesthetic gases from hospitals. PMID:27222158

  2. Challenge to high-activity-level water treatment by adsorbents

    International Nuclear Information System (INIS)

    There are over 280,000 tonnes of contaminated water in the damaged Fukushima Daiichi Nuclear Plant site in various tanks and barges and a large amount of contaminated water is now producing at the rate of several tonnes/day owing to inevitable cooling of the reactor cores. SARRY (Simplified Active Water Retrieve and Recovery System) and ALPS (Advanced Liquid Processing System) are installed to remove Cs and multi-elements respectively utilizing ion exchangers (zeolite, crystalline silicon titanate, and metal ferrocyanides) from contaminated water. The author continues efforts to find effective and selective adsorbents for Cs and Sr by measuring partition data, adsorption isotherms and adsorption rate referring with chemical structure elucidated from X-ray diffraction and SEM techniques. The obtained data are presented. (S. Ohno)

  3. Carrier-dependent magnetic anisotropy of Gd-adsorbed graphene

    Science.gov (United States)

    Lu, Yuan; Zhou, Tie-ge; Shao, Bin; Zuo, Xu; Feng, Min

    2016-05-01

    Using first-principles calculation based on density functional theory, we study the magnetic anisotropy of Gd-adsorbed graphene and its dependence on carrier accumulation. We show that carrier accumulation not only impacts the magnitude of magnetic anisotropy but also switches its sign. Hole accumulation enhances the perpendicular anisotropy up to ˜16 meV per Gd atom, while electron accumulation switches the anisotropy from perpendicular to in-plane direction. Moreover, we find that the first order perturbation of spin-orbit coupling interaction induces a pseudo-gap at Γ for the perpendicular magnetization, which leads to the the anomalous magnetic anisotropy for the neutral composite. Our findings pave the way for magneto-electric materials based on rare-earth-decorated graphene for voltage-controlled spintronics.

  4. Evaluation of {sup 131}I retention in several adsorbers

    Energy Technology Data Exchange (ETDEWEB)

    Catanoso, Marcela F.; Osso Junior, Joao Alberto, E-mail: marcela.forli@gmail.co, E-mail: jaosso@ipen.b [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil). Diretoria de Radiofarmacia

    2011-07-01

    Several iodine radioisotopes are used in nuclear medicine for treatment and diagnostic purposes. The radioisotope {sup 131}I is used both in diagnosis and therapy due to its physical characteristics of decay by {beta}{sup -} and its {gamma}-ray emissions suitable for diagnosis. It is routinely produced at IPEN through the irradiation of TeO{sub 2} targets in the IEA-R1m nuclear reactor. After the irradiation, the {sup 131}I is separated by dry distillation, where the targets are put in an oven, heated at 760 deg C for 2 hours and the {sup 131}I, volatile, is carried by an O{sub 2} gas stream. The aim of this work was to evaluate the retention and elution of {sup 131}I samples produced at IPEN in several adsorbers as part of a project aiming the purification of these radioisotopes, allowing the labeling of biomolecules. Samples of {sup 131}I were used for retention and elution studies with the following adsorbers: commercial cartridges, anionic resin columns and cationic resin column. The results showed that Ag cartridges and anionic resins Dowex 1X8, Dowex 3 and IRA 400 had a great iodine retention but no elution after using specific eluents. The QMA light, acid alumina, neutral alumina and cationic resin Dowex 50WX4 showed high retention and elution and QMA plus and cationic resin Dowex 50WX8 and Dowex 50WX12 had a good retention but lower elution. Regarding to the better retention and elution, Ag cartridges and resins showed a higher percentage of iodine retention but lower elution yield and QMA light, acid and neutral alumina cartridges showed better results. (author)

  5. Band mapping of surface states vs. adsorbate coverage

    International Nuclear Information System (INIS)

    The theory of electron bands, which arises from basic quantum mechanical principles, has been the cornerstone of solid state physics for over 60 years. Simply put, an energy band is an electron state in a solid whose energy varies with its momentum (similar to, but with a more complicated dependence than, how a free electron's energy is proportional to its momentum squared). Much attention over the last 15 years has been given to the study of band structure of surfaces and interfaces, especially as the applications of these two-dimensional systems have become increasingly important to industry and science. The ultraESCA endstation at beamline 7.01 at the Advanced Light Source was developed for very high-energy - (∼50 meV) and angular - (12 photons/sec) makes the detailed study of the evolution of bands possible. The authors are interested in learning how, when one forms a chemical bond between a metal and an overlaying atom or molecule, the resulting charge transfer to or from the adsorbate affects the surface bands. In some cases of interest, intermediate coverages lead to different band structure than at the extremes of clean and saturated surfaces. Surfaces of tungsten are particularly interesting, as their atomic geometry has been shown to be exquisitely sensitive to both the surface vibrational and electronic properties. In this study, the authors looked at the surface bands of tungsten ((110) surface), as a function both of coverage and mass of overlaying atoms. The adsorbed atoms were hydrogen and the alkali atoms lithium and cesium

  6. Evaluation of 131I retention in several adsorbers

    International Nuclear Information System (INIS)

    Several iodine radioisotopes are used in nuclear medicine for treatment and diagnostic purposes. The radioisotope 131I is used both in diagnosis and therapy due to its physical characteristics of decay by β- and its γ-ray emissions suitable for diagnosis. It is routinely produced at IPEN through the irradiation of TeO2 targets in the IEA-R1m nuclear reactor. After the irradiation, the 131I is separated by dry distillation, where the targets are put in an oven, heated at 760 deg C for 2 hours and the 131I, volatile, is carried by an O2 gas stream. The aim of this work was to evaluate the retention and elution of 131I samples produced at IPEN in several adsorbers as part of a project aiming the purification of these radioisotopes, allowing the labeling of biomolecules. Samples of 131I were used for retention and elution studies with the following adsorbers: commercial cartridges, anionic resin columns and cationic resin column. The results showed that Ag cartridges and anionic resins Dowex 1X8, Dowex 3 and IRA 400 had a great iodine retention but no elution after using specific eluents. The QMA light, acid alumina, neutral alumina and cationic resin Dowex 50WX4 showed high retention and elution and QMA plus and cationic resin Dowex 50WX8 and Dowex 50WX12 had a good retention but lower elution. Regarding to the better retention and elution, Ag cartridges and resins showed a higher percentage of iodine retention but lower elution yield and QMA light, acid and neutral alumina cartridges showed better results. (author)

  7. Controlling SO2 by Using Low Cost Adsorbents

    Directory of Open Access Journals (Sweden)

    Nenavath Gandhi

    2013-01-01

    Full Text Available Sulphur oxides are formed during high temperature combustion processes from the oxidation of sulphur in the air. The principal source of sulphur oxides is sulphur oxide (SO and sulphur dioxide (SO2, collectively known as SOx. SO and SO2 concentrations are therefore the highest in industrial area. Other important sources are power stations, heating plants, and industrial processes. Long-term exposure to sulphur dioxide may affect lung function, and that exposure to sulphur dioxide enhances the response to allergens in sensitized individuals. The feasibility of using waste materials as adsorbent for air pollutant SOx was evaluated in the present study. The experiments were carried out in laboratory on certain waste materials like Neem leaf powder, orange peel powder, custard apple leaf powder, Horse gram seed powder, Ragi seed powder, mango bark dust, mixed algae, and Neem bark dust. The experimental investigations were carried out by traditional adsorption studies, and they showed that all substances had certain capacity to adsorb SOx from aqueous solution of SOx. The order of adsorption by different low cost materials is Mango bark dust > Orange peel powder >Custard apple leaf powder> Neem leaf powder> Horse gram seed powder> Ragi seed powder> Neem bark powder, mixed algae by 98%>95%>88%>82%>80%>78%>77%>74%, respectively. At lower concentration the adsorption is more compared to higher concentration. It is found that the adsorption increases with an increase in surface area.DOI: http://dx.doi.org/10.5755/j01.erem.62.4.1947

  8. Selective cesium removal from radioactive liquid waste by crown ether immobilized new class conjugate adsorbent

    Energy Technology Data Exchange (ETDEWEB)

    Awual, Md. Rabiul, E-mail: awual.rabiul@jaea.go.jp [Actinide Coordination Chemistry Group, Quantum Beam Science Centre (QuBS), Japan Atomic Energy Agency (SPring-8), Hyogo 679-5148 (Japan); Yaita, Tsuyoshi [Actinide Coordination Chemistry Group, Quantum Beam Science Centre (QuBS), Japan Atomic Energy Agency (SPring-8), Hyogo 679-5148 (Japan); Taguchi, Tomitsugu [Nano-Structure Synthesis Research Group, Quantum Beam Science Centre (QuBS), Japan Atomic Energy Agency, Tokai-mura, Ibaraki-ken 319-1195 (Japan); Shiwaku, Hideaki; Suzuki, Shinichi; Okamoto, Yoshihiro [Actinide Coordination Chemistry Group, Quantum Beam Science Centre (QuBS), Japan Atomic Energy Agency (SPring-8), Hyogo 679-5148 (Japan)

    2014-08-15

    Graphical abstract: - Highlights: • DB24C8 crown ether was functionalized for preparation of conjugate adsorbent. • Radioactive {sup 137}Cs can be selectively removed by the conjugate adsorbent. • Adsorbent can effectively capture Cs even in the presence of a high amount Na and K. • Adsorbent is reversible and able to be reused without significant deterioration. - Abstract: Conjugate materials can provide chemical functionality, enabling an assembly of the ligand complexation ability to metal ions that are important for applications, such as separation and removal devices. In this study, we developed ligand immobilized conjugate adsorbent for selective cesium (Cs) removal from wastewater. The adsorbent was synthesized by direct immobilization of dibenzo-24-crown-8 ether onto inorganic mesoporous silica. The effective parameters such as solution pH, contact time, initial Cs concentration and ionic strength of Na and K ion concentrations were evaluated and optimized systematically. This adsorbent was exhibited the high surface area-to-volume ratios and uniformly shaped pores in case cavities, and its active sites kept open functionality to taking up Cs. The obtained results revealed that adsorbent had higher selectivity toward Cs even in the presence of a high concentration of Na and K and this is probably due to the Cs–π interaction of the benzene ring. The proposed adsorbent was successfully applied for radioactive Cs removal to be used as the potential candidate in Fukushima nuclear wastewater treatment. The adsorbed Cs was eluted with suitable eluent and simultaneously regenerated into the initial form for the next removal operation after rinsing with water. The adsorbent retained functionality despite several cycles during sorption-elution-regeneration operations.

  9. Selective cesium removal from radioactive liquid waste by crown ether immobilized new class conjugate adsorbent

    International Nuclear Information System (INIS)

    Graphical abstract: - Highlights: • DB24C8 crown ether was functionalized for preparation of conjugate adsorbent. • Radioactive 137Cs can be selectively removed by the conjugate adsorbent. • Adsorbent can effectively capture Cs even in the presence of a high amount Na and K. • Adsorbent is reversible and able to be reused without significant deterioration. - Abstract: Conjugate materials can provide chemical functionality, enabling an assembly of the ligand complexation ability to metal ions that are important for applications, such as separation and removal devices. In this study, we developed ligand immobilized conjugate adsorbent for selective cesium (Cs) removal from wastewater. The adsorbent was synthesized by direct immobilization of dibenzo-24-crown-8 ether onto inorganic mesoporous silica. The effective parameters such as solution pH, contact time, initial Cs concentration and ionic strength of Na and K ion concentrations were evaluated and optimized systematically. This adsorbent was exhibited the high surface area-to-volume ratios and uniformly shaped pores in case cavities, and its active sites kept open functionality to taking up Cs. The obtained results revealed that adsorbent had higher selectivity toward Cs even in the presence of a high concentration of Na and K and this is probably due to the Cs–π interaction of the benzene ring. The proposed adsorbent was successfully applied for radioactive Cs removal to be used as the potential candidate in Fukushima nuclear wastewater treatment. The adsorbed Cs was eluted with suitable eluent and simultaneously regenerated into the initial form for the next removal operation after rinsing with water. The adsorbent retained functionality despite several cycles during sorption-elution-regeneration operations

  10. Adsorbate-adsorbate interactions and chemisorption at different coverage studied by accurate {\\em ab initio} calculations: CO on transition metal surfaces

    OpenAIRE

    Mason, Sara E.; Grinberg, Ilya; Rappe, Andrew M.

    2005-01-01

    We use density functional theory (DFT) with the generalized gradient approximation (GGA) and our first-principles extrapolation method for accurate chemisorption energies {[Mason {\\em et al.}, Phys. Rev. B {\\bf 69}, 161401R (2004)]} to calculate the chemisorption energy for CO on a variety of transition metal surfaces for various adsorbate densities and patterns. We identify adsorbate through-space repulsion, bonding competition, and substrate-mediated electron delocalization as key factors d...

  11. Investigations on the adsorbents for uremic middle molecular toxins (II) —Influences of crosslinking agent chain length on the adsorption capacities of crosslinked chitosan adsorbents

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Chitosan resins, which clinically served as adsorbents in hemoperfusion therapy, were prepared with reversed-phase suspension methodology using three differently structured crosslinking agents, methanal, glyoxal and glutaraldehyde. And the glyoxal and glutaraldehyde crosslinked chitosan resins were reduced with NaBH4 afterwards. By analyzing the results from FTIR and SEM, it was found that the reduction treatment to the adsorbents efficiently improved the chemical stability of these chitosan resins, and the shifts in crosslinking agents exerted influences over the morphologies of the adsorbents obviously. After being put to use in the adsorption tests upon some model uremic middle molecular toxins and BSA in vitro, all three adsorbents demon- strated a fairly realistic adsorption capability to the model toxins but little to BSA. And the adsorp- tion process reached the equilibrium in a clinically qualified short time. But the adsorption capaci- ties of these adsorbents to the model toxins were quite different. It had been found that with the growing of fatty chain length of crosslinking agent, these adsorbents showed a gradually increased adsorption capacity to the model toxins, and the glutaraldehyde crosslinked chitosan resin be- haved best.

  12. The development of an adsorbent for corrosion products in high-temperature water

    International Nuclear Information System (INIS)

    In order to use as adsorbent for removal of the soluble corrosion products, mainly Co60 under PWR reactor coolant conditions (300 deg C, 160 kg/cm2), stable ZrO2 adsorbent was prepared using sol-gel process from zirconyl nitrate, AlO adsorbent was prepared by hydrolysis of aluminum isopropoxide, and titanium tetraisopropoxide, respectively. The prepared adsorbents were calcined at various temperature and analyzed by physical properties and the Co2+ adsorption capacity. And it was shown that the Co2+ adsorption capacity of the TiO2-Al2O3 adsorbents were found to have larger than that of ZrO2 and Al2O3 adsorbents in high-temperature water. ZrO2, Al2O3 and TiO2-Al2O3 adsorbents were found to be suitable high-temperature adsorbents for the removal of dissolved corrosion products, mainly Co in PWR reactor coolant conditions. 15 tabs., 51 figs., 55 refs. (Author)

  13. Synthesis of 4-vinylpyridine–divinylbenzene copolymer adsorbents for microwave-assisted desorption of benzene

    International Nuclear Information System (INIS)

    Highlights: ► Macroporous polymers with hydrophilic methylpyridinium groups were synthesized. ► Microwave-assisted desorption increased with the hydrophilicity of polymers. ► Adsorbed moisture allowed indirect heating of the polymers to a higher temperature. ► The enhanced desorption was due mainly to more adsorbed moisture on the polymers. - Abstract: Reports on the development of polymer adsorbents for microwave-assisted desorption of nonpolar volatile organic compounds (VOCs) are rare. In this study, we synthesized macroporous polymeric adsorbents with hydrophilic methyl pyridinium units for microwave-assisted desorption of nonpolar VOCs. The benzene adsorption and desorption properties of the adsorbents were investigated under both dry and humid conditions. Under humid conditions, as the content of the hydrophilic methyl pyridinium units in the adsorbents increased from 0 to 20%, the adsorption capacity of benzene decreased from about 21 to 7 mg/g, while the desorption efficiency of benzene increased significantly from 48 to 87%. The maximum concentration of desorbate also increased significantly as the content of the hydrophilic units was increased under humid conditions. We attributed the enhanced desorption efficiency mainly to more adsorbed moisture, which indirectly allowed heating of the polymer adsorbents to higher temperatures upon irradiation with 600 W microwaves.

  14. Examination of uranium recovery technique from sea water using natural components for adsorbent

    International Nuclear Information System (INIS)

    In this study, we investigated the potency of natural components as adsorbent for uranium recovery from seawater. In addition, cost evaluation of uranium recovery from seawater using natural components for adsorbents was performed. Furthermore, new ideas on reservation system of adsorbents at sea area were proposed. Several poly-phenols were selected as adsorbent reagents, then they were adsorbed on the support such as cotton fiber by several methods as the followings; chemical syntheses, electrical beam irradiation, and traditional dyeing. As a result, the adsorbent made by traditional dyeing method using gallnut tannin as natural component, was showed high performance for uranium recovery from seawater on only the first. It was evaluated that traditional dyeing method had also advantage in the manufacturing cost, comparing with earlier method. Additionally, it was considered that reservation system of adsorbent at sea was able to be simplified compared with earlier system. Consequently, uranium recovery from sea water using natural components as adsorbent proposed in this study had a potency of practical use. (author)

  15. An innovative zinc oxide-coated zeolite adsorbent for removal of humic acid.

    Science.gov (United States)

    Wang, Lingling; Han, Changseok; Nadagouda, Mallikarjuna N; Dionysiou, Dionysios D

    2016-08-01

    Zinc oxide (ZnO)-coated zeolite adsorbents were developed by both nitric acid modification and Zn(NO3)2·6H2O functionalization of zeolite 4A. The developed adsorbents were used for the removal of humic acid (HA) from aqueous solutions. The synthesized materials were characterized by porosimetry analysis, scanning electron microscopy, X-Ray diffraction analysis, and high resolution transmission electron microscopy. The maximum adsorption capacity of the adsorbents at 21±1°C was about 60mgCg(-1). The results showed that the positive charge density of ZnO-coated zeolite adsorbents was proportional to the amount of ZnO coated on zeolite and thus, ZnO-coated zeolite adsorbents exhibited a greater affinity for negatively charged ions. Furthermore, the adsorption capacity of ZnO-coated zeolite adsorbents increased markedly after acid modification. Adsorption experiments demonstrated ZnO-coated zeolite adsorbents possessed high adsorption capacity to remove HA from aqueous solutions mainly due to strong electrostatic interactions between negative functional groups of HA and the positive charges of ZnO-coated zeolite adsorbents. PMID:27135170

  16. Adsorbate-metal bond effect on empirical determination of surface plasmon penetration depth.

    Science.gov (United States)

    Kegel, Laurel L; Menegazzo, Nicola; Booksh, Karl S

    2013-05-21

    The penetration depth of surface plasmons is commonly determined empirically from the observed response for adsorbate loading on gold surface plasmon resonance (SPR) substrates. However, changes in the SPR spectrum may originate from both changes in the effective refractive index near the metal surface and changes in the metal permittivity following covalent binding of the adsorbate layer. Herein, the significance of incorporating an additional adsorbate-metal bonding effect in the calculation is demonstrated in theory and in practice. The bonding effect is determined from the nonzero intercept of a SPR shift versus adsorbate thickness calibration and incorporated into the calculation of penetration depth at various excitation wavelengths. Determinations of plasmon penetration depth with and without the bonding response for alkanethiolate-gold are compared and are shown to be significantly different for a thiol monolayer adsorbate system. Additionally, plasmon penetration depth evaluated with bonding effect compensation shows greater consistency over different adsorbate thicknesses and better agreement with theory derived from Maxwell's equation, particularly for adsorbate thicknesses that are much smaller (<5%) than the plasmon penetration depth. The method is also extended to a more practically applicable polyelectrolyte multilayer adsorbate system. PMID:23566015

  17. Synergistic process design: Reducing drying energy consumption by optimal adsorbent selection

    NARCIS (Netherlands)

    Atuonwu, J.C.; Straten, van G.; Deventer, van H.C.; Boxtel, van A.J.B.

    2013-01-01

    This work analyzes the synergy between two complementary unit operations - adsorbent dehumidification and drying - and presents a mixed integer nonlinear programming approach to optimize energy performance in a two-stage system. Combined with active constraint analysis, the adsorbent properties that

  18. Interstitial and adsorbed phosphates in shelf sediments off Visakhapatnam, east coast of India

    Digital Repository Service at National Institute of Oceanography (India)

    Sarma, V.V.; Raju, G

    Spatial distribution of interstitial and adsorbed phosphates in the shelf sediments shows an increasing trend with distance from coastal to inshore region. Maximum concentration ranges of interstitial and adsorbed phosphates are 16-19 and 40-50 mu g.g...

  19. Poly(vinylpyridine) adsorbent for the removal of SIPA from its aqueous solution

    Institute of Scientific and Technical Information of China (English)

    Wei Hua Tao; Ai Min Li; Chao Long; Hong Ming Qian

    2009-01-01

    Poly(vinylpyridine) WH-225 resin was prepared and characterized.Compared with the commercial hypercrosslinked adsorbent NDA-100 and macroporous adsorbent XAD-4 resins,the newly synthesized poly(vinylpyridine) WH-225 resin exhibited the highest adsorption capacity toward SIPA from aqueous solution.

  20. Effect of adsorbents and chemical treatments on the removal of strontium from aqueous solutions

    International Nuclear Information System (INIS)

    In the present investigation, three different solid wastes namely almond green hull, eggplant hull, and moss were initially treated and used as adsorbents for the adsorption of strontium ion from aqueous solutions. Adsorbent types and chemical treatments are proved to have effective roles on the adsorption of Sr(II) ion. Among the three adsorbents, almond green hull demonstrated strong affinity toward strontium ion in different solutions. The effectiveness of this new adsorbent was studied in batch adsorption mode under a variety of experimental conditions such as: different chemical treatments, various amounts of adsorbent, and initial metal-ion concentration. The optimum doses of adsorbent for the maximum Sr(II) adsorption were found to be 0.2 and 0.3 g for 45 and 102 mg L-1 solutions, respectively. High Sr(II) adsorption efficiencies were achieved only in the first 3 min of adsorbent's contact time. The kinetics of Sr(II) adsorption on almond green hull was also examined and it was observed that it follows the pseudo second-order behavior. Both Langmuir and Freundlich models well predicted the experimental adsorption isotherm data. The maximum adsorption capacity on almond green hull was found to be 116.3 mg g-1. The present study also confirmed that these low cost agriculture byproducts could be used as efficient adsorbents for the removal of strontium from wastewater streams.

  1. SHIFTS IN ADSORBATE VIBRATIONAL FREQUENCIES DUE TO INTERNAL ELECTRIC-FIELDS

    NARCIS (Netherlands)

    BAGUS, PS; ILLAS, F

    1994-01-01

    A new physical mechanism is proposed to explain the shifts in vibrational frequency of negatively adsorbed species on a metal surface. Ab initio cluster model calculations for NO adsorbed Dn Ag(111) in two different orientations, N-down and O-down, suggest that the low-coverage HREELS peak appearing

  2. Structure and dynamics of egg white ovalbumin adsorbed at the air/water interface

    NARCIS (Netherlands)

    Kudryashova, E.V.; Meinders, M.B.J.; Visser, A.J.W.G.; Hoek, A. van; Jongh, H.H.J. de

    2003-01-01

    The molecular properties of egg white ovalbumin adsorbed at the air/water interface were studied using infrared reflection absorption spectroscopy (IRRAS) and time-resolved fluorescence anisotropy (TRFA) techniques. Ovalbumin adsorbed at the air/ water interface adopts a characteristic partially unf

  3. Sorption of methylene blue on treated agricultural adsorbents: equilibrium and kinetic studies

    Science.gov (United States)

    Tiwari, D. P.; Singh, S. K.; Sharma, Neetu

    2015-03-01

    Agricultural adsorbents are reported to have a remarkable performance for adsorption of dyes. In the present study, formaldehyde and sulphuric acid treated two agricultural adsorbents; potato peel and neem bark are used to adsorb methylene blue. On the whole, the acid-treated adsorbents are investigated to have high sorption efficiency compared to HCHO treated adsorbents. The percentage removal efficiency of H2SO4 treated potato peel (APP) increases considerably high from 75 to 100 % with increase in adsorbent dose, whereas the removal efficiency of H2SO4 treated neem bark (ANB) is found to be 98 % after adding the first dose only. The monolayer sorption behaviour of HCHO treated potato peel (PP) and APP is well defined by Langmuir, whereas the chemisorptions behaviour of HCHO treated neem bark (NB) and ANB is suggested by Temkin's isotherm model. The maximum adsorption capacity measured is highest in ANB followed by NB, PP and APP with the values of 1000, 90, 47.62 and 40.0 mg/g, respectively. The pseudo-second-order kinetic model fitted well with the observed data of all the four adsorbents. The results obtained reveal that NB and ANB both are good adsorbents compared to PP and APP.

  4. Scandium-Triflate/Metal-Organic Frameworks: Remarkable Adsorbents for Desulfurization and Denitrogenation.

    Science.gov (United States)

    Khan, Nazmul Abedin; Jhung, Sung Hwa

    2015-12-01

    Scandium-triflate (Sc(OTf)3) was introduced for the first time on metal-organic frameworks (MOFs), to utilize acidic Sc(OTf)3 for adsorptive desulfurization and denitrogenation of fuel containing benzothiophene (BT), dibenzothiophene (DBT), quinoline (QUI), and indole (IND). A remarkable improvement in the adsorption capacity (about 65% based on the weight of adsorbents; 90% based on the surface area of the adsorbents) was observed with the Sc(OTf)3/MOFs as compared to the virgin MOFs for the adsorption of BT from liquid fuel. The basic QUI was also adsorbed preferentially onto the acidic Sc(OTf)3/MOFs. However, nonsupported Sc(OTf)3 showed negligible adsorption capacities. The improved adsorptive performance for BT, DBT, and QUI might be derived from acid-base interactions between the acidic Sc(OTf)3 and basic adsorbates. On the other hand, the Sc(OTf)3, loaded on MOFs, reduced the adsorption capacity for neutral IND due to lack of interaction between the neutral adsorbate and acidic adsorbent and the reduced porosities of the modified adsorbents. The reusability of the adsorbents was found satisfactory up to the fourth run. On the basis of the result, it is suggested that metal-triflates, such as Sc(OTf)3, can be prospective materials for adsorptive desulfurization/denitrogenation of fuels when supported on porous materials such as MOFs. PMID:26575418

  5. Adsorption behavior of Am with gamma irradiated Thiacalix[4]arene impregnated silica adsorbent

    International Nuclear Information System (INIS)

    Thiacalix[4]arene impregnated silica adsorbent which is called CAPS-SO2-adsorbent in this paper shows the excellent separative performance of trivalent actinoids, such as Am from the high-level radioactive liquid waste (HLLW) in weak-acid solution. The chemical stability of the adsorbent was investigated under strong irradiation conditions. The amount of dissolved CAPS-SO2 was only 1% by gamma-ray irradiation at a total dose of 1 MGy. The value of distribution coefficient of Am (KdAm) at pH 4 by the adsorbent was constant even the high irradiation dose. Moreover, the separation factor of Am to lanthanoids is kept a high value. It was also found that the value of KdAm by the irradiated CAPS-SO2-adsorbent increases at pH 2

  6. Preparation of ferric-activated sludge-based adsorbent from biological sludge for tetracycline removal.

    Science.gov (United States)

    Yang, Xin; Xu, Guoren; Yu, Huarong; Zhang, Zhao

    2016-07-01

    Ferric activation was novelly used to produce sludge-based adsorbent (SBA) from biological sludge through pyrolysis, and the adsorbents were applied to remove tetracycline from aqueous solution. The pyrolysis temperature and mass ratio (activator/dried sludge) greatly influenced the surface area and pore characteristics of SBA. Ferric activation could promote the porous structure development of adsorbents, and the optimum preparation conditions were pyrolysis temperature 750°C and mass ratio (activator/dried sludge) 0.5. In batch experiments, ferric-activated SBA showed a higher adsorption capacity for tetracycline than non-activated SBA, because the enhanced mesoporous structure favored the diffusion of tetracycline into the pores, the iron oxides and oxygen-containing functional groups in the adsorbents captured tetracycline by surface complexation. The results indicate that ferric activation is an effective approach for preparing adsorbents from biological sludge to remove tetracycline, providing a potential option for waste resource recovery. PMID:27038265

  7. Polydopamine meets porous membrane: A versatile platform for facile preparation of membrane adsorbers.

    Science.gov (United States)

    Fan, Jinxin; Luo, Jianquan; Chen, Xiangrong; Wan, Yinhua

    2016-05-27

    Polydopamine, as an intermediate layer coated on PES membrane, was applied to fabricate various membrane adsorbers. Anion-exchange, hydrophobic interaction and affinity membrane adsorbers prepared by this facile method exhibited a high selectivity in fractionation of IgG (immunoglobulin)/HSA (human serum albumin) mixture. The anion-exchange membrane adsorber containing polyethylenimine (PEI) improved the HSA purity from 17.7% to 96.7%; The hydrophobic interaction membrane adsorber with Dodecyl mercaptan (DDM) as ligand obtained an IgG purity of 94.6%; Histidine attached affinity membrane chromatography achieved nearly a 100% purity of IgG. The present work indicated that the polydopamine layer not only activated membrane surface to attach various adsorptive ligands under the mild condition, but also reduced non-specific adsorption. Due to the versatile conjunction function, this facile mussel-inspired coating is also promising for the preparation of diverse membrane adsorbers. PMID:27131962

  8. Electric field cancellation on quartz by Rb adsorbate-induced negative electron affinity

    Science.gov (United States)

    Shaffer, James

    2016-05-01

    We investigate the (0001) surface of single crystal quartz with a submonolayer of Rb adsorbates. Using Rydberg atom electromagnetically induced transparency, we investigate the electric fields resulting from Rb adsorbed on the quartz surface, and measure the activation energy of the Rb adsorbates. We show that the adsorbed Rb induces a negative electron affinity (NEA) on the quartz surface. The NEA surface allows low energy electrons to bind to the surface and cancel the electric field from the Rb adsorbates. Our results are important for integrating Rydberg atoms into hybrid quantum systems and the fundamental study of atom-surface interactions, as well as applications for electrons bound to a 2D surface. This work was supported by the DARPA Quasar program by a Grant through ARO (60181-PH-DRP) and the AFOSR (FA9550-12-1-0282),.

  9. Preparation and characterization of a novel adsorbent from Moringa oleifera leaf

    Science.gov (United States)

    Bello, Olugbenga Solomon; Adegoke, Kayode Adesina; Akinyunni, Opeyemi Omowumi

    2015-10-01

    A new and novel adsorbent was obtained by impregnation of Moringa oleifera leaf in H2SO4 and NaOH, respectively. Prepared adsorbents were characterized using elemental analysis, FT-IR, SEM, TGA and EDX analyses, respectively. The effects of operational parameters, such as pH, moisture content, ash content, porosity and iodine number on these adsorbents were investigated and compared with those of commercial activated carbon (CAC). EDX results of acid activated M. oleifera leaf have the highest percentage of carbon by weight (69.40 %) and (76.11 %) by atom, respectively. Proximate analysis showed that the fixed carbon content of acid activated M. oleifera leaf (69.14 ± 0.01) was the highest of all adsorbents studied. Conclusively, the present investigation shows that acid activated M. oleifera leaf is a good alternative adsorbent that could be used in lieu of CAC for recovery of dyes and heavy metal from aqueous solutions and other separation techniques.

  10. Poly(ethylene oxide) Mushrooms Adsorbed at Silica-Ionic Liquid Interfaces Reduce Friction.

    Science.gov (United States)

    Sweeney, James; Webber, Grant B; Atkin, Rob

    2016-03-01

    The adsorbed layer conformation and lubricity of 35, 100, and 300 kDa PEO adsorbed to ionic liquid (IL)-silica interfaces from 0.01 wt % solutions have been investigated using colloid probe atomic force microscopy. The ILs used were propylammonium nitrate (PAN) and 1-butyl-3-methylimidazolium tetrafluoroborate ([BMIM][BF4]), which are protic and aprotic ILs, respectively. Normal force curves reveal steric interactions consistent with adsorbed polymer layers which are best fit using the mushroom model. Friction measurements show that the adsorbed polymer layer markedly reduces friction compared to surfaces sliding in the pure ILs and that lubricity increases with polymer length. When polymer is adsorbed to the sliding surfaces, friction is controlled by the creation and disruption of intermolecular interactions between entangled chains and the dragging of polymer chains through the interpenetration region. These experiments show that added polymer can reduce friction while maintaining the useful properties of ILs as lubricants. PMID:26844589

  11. Effective thermal conductivity of expanded graphite-CaCl2 composite adsorbent for chemical adsorption chillers

    International Nuclear Information System (INIS)

    This paper presents experimental data on the thermal conductivity for three types of adsorbent, namely, pure CaCl2 powder, simple composite adsorbent and consolidated composite adsorbent. The thermal conductivities were measured by the 'hot wire method' at a fixed pressure and temperature under an ammonia atmosphere. Effective thermal conductivities of the expanded graphite-CaCl2 . nNH3 (n = 2, 4, 8) consolidated composite adsorbent are in the range of 7.05-9.2 W m-1 K-1, which are significant higher values than those of the powders bed of 0.3-0.4 W m-1 K-1. The obtained results show that the composite adsorbent thermal conductivity λ has a strong dependence on the bulk density, the weight fraction of expanded graphite and the ammoniated state of CaCl2

  12. The dynamic adsorption of Xe on a fixed bed adsorber at 77 K

    CERN Document Server

    Long, Bin; Wang, Qun- Shu; Feng, Shu- Juan; Zhou, Guo- Qing; Feng, Tian- Cheng; Tian, Yan- Jie; Ma, Huai- Cheng

    2016-01-01

    During the design of fixed bed adsorbers, it is vital to understand the dynamic adsorption properties of the system. Because temperature is one of the most important factors affecting adsorbent performance, such that the dynamic adsorption coefficients tend to increase as the temperature decreases, the dynamic adsorption characteristics of Xe on a fixed bed adsorber at 77 K were studied in the present work to minimize the volume of fixed bed adsorber, employing a variety of adsorbents under different operational conditions. The results show that the adsorption performance of carbon molecular sieve is superior to that of activated carbon. And both operational conditions and the presence of gaseous impurities were found to affect adsorption properties.

  13. Chirality transfer from gold nanocluster to adsorbate evidenced by vibrational circular dichroism

    Science.gov (United States)

    Dolamic, Igor; Varnholt, Birte; Bürgi, Thomas

    2015-05-01

    The transfer of chirality from one set of molecules to another is fundamental for applications in chiral technology and has likely played a crucial role for establishing homochirality on earth. Here we show that an intrinsically chiral gold cluster can transfer its handedness to an achiral molecule adsorbed on its surface. Solutions of chiral Au38(2-PET)24 (2-PET=2-phenylethylthiolate) cluster enantiomers show strong vibrational circular dichroism (VCD) signals in vibrations of the achiral adsorbate. Density functional theory (DFT) calculations reveal that 2-PET molecules adopt a chiral conformation. Chirality transfer from the cluster to the achiral adsorbate is responsible for the preference of one of the two mirror images. Intermolecular interactions between the adsorbed molecules on the crowded cluster surface seem to play a dominant role for the phenomena. Such chirality transfer from metals to adsorbates likely plays an important role in heterogeneous enantioselective catalysis.

  14. Removing Cd2+ by Composite Adsorbent Nano-Fe3O4/Bacterial Cellulose

    Institute of Scientific and Technical Information of China (English)

    LU Min; GUAN Xiao-hui; WEI De-zhou

    2011-01-01

    A new composite adsorbent,nano-Fe3O4/bacterial cellulose(BC),was prepared through blending method.The process of adsorbing Cd2+ including its isotherm and kinetics measured was studied.The results show that the adsorption efficiency is improved because of huge surface area and surface coordination of nano-Fe3O4 particles.Its adsorption capacity is 27.97 mg/g and the maximum of Cd2+ removal is 74%.The adsorption kinetics can be described by pseudo-second rate model and the adsorption equilibrium by Langmuir type.The superparamagnetism of nano-Fe3O4 particles can help to solve the difficult separation of single BC adsorbent and lead to the quick separation of composite adsorbent from the liquid if a magnetic field was applied.Cd2+ can be desorbed effectively by EDTA and HCl from the composite adsorbent,which can make it be reused.

  15. Removal of murexide (dye) from aqueous media using rice husk as an adsorbent

    International Nuclear Information System (INIS)

    The use of low-cost and eco friendly adsorbent was investigated as an ideal alternative to the current expensive methods of removing dyes from wastewater. Rice husk was used as an adsorbent for the removal of Murexide from aqueous solutions. The rate of adsorption was investigated under various parameters such as size of adsorbent, contact time of solution with adsorbent, temperature, pH, adsorbent dose and stirring speed for the removal of this dye. Langmuir isotherm was also applied to evaluate maximum adsorption capacity of rice husk for Murexide. On the basis of results obtained, it is proposed that rice husk can be effectively used for the elimination of Murexide from waste water. (author)

  16. Development of carbon dioxide adsorbent from rice husk char

    Science.gov (United States)

    Abang, S.; Janaun, J.; Anisuzzaman, S. M.; Ikhwan, F. S.

    2016-06-01

    This study was mainly concerned about the development of carbon dioxide (CO2) adsorbent from rice husk (RH). Several chemical treatments were used to produce activated rice husk char (RHAC) from RH. Initially the RH was refluxed with 3M of sodium hydroxide (NaOH) solution, activation followed by using 0.5M of zinc chloride (ZnCl2) solution and finally acidic treatment by using 0.1M of hydrochloric acid (HCl). Then, the RHAC was functionalized by using 3-chloropropylamine hydrochloride (3-CPA) and noted as RHN. RHN samples were characterized with scanning electron microscopy (SEM), mercury intrusion porosimetry (MIP), fourier transform infrared spectroscopy (FTIR). Based on the SEM, the RHN sample had a large pore diameter compared to RH sample after being treated. Based on MIP data, the average pore diameter between RH and RHAC samples were increased significantly from 0.928 microns to 1.017 microns. The RHN sample also had higher total porosity (%) compared to RHAC and RH (58.45%, 47.82% and 45.57% respectively). The total specific surface area of the sample was much increasing from RHO to RHAC (29.17 m2/g and 62.94 m2/g respectively) and slightly being decreasing from RHAC to RHN (58.88 m2/g). FTIR result showed the present of weak band at 1587 cm-1 which demonstrating of the amine group present on the sample. The CO2 capture result showed that the decreasing of operating temperature can increase the breakthrough time of CO2 capture. On the contrary decreasing of CO2 gas flow rate can increase the breakthrough time of CO2 capture. The highest total amount of CO2 adsorbed was 25338.57 mg of CO2/g of RHN sample by using 100 mL/min of gas flow rate at 30oC. Based on adsorption isotherm analysis, the Freundlich isotherm was the best isotherm to describe the CO2 adsorption on the sample.

  17. Extra adsorption and adsorbate superlattice formation in metal-organic frameworks

    Science.gov (United States)

    Sung Cho, Hae; Deng, Hexiang; Miyasaka, Keiichi; Dong, Zhiyue; Cho, Minhyung; Neimark, Alexander V.; Ku Kang, Jeung; Yaghi, Omar M.; Terasaki, Osamu

    2015-11-01

    Metal-organic frameworks (MOFs) have a high internal surface area and widely tunable composition, which make them useful for applications involving adsorption, such as hydrogen, methane or carbon dioxide storage. The selectivity and uptake capacity of the adsorption process are determined by interactions involving the adsorbates and their porous host materials. But, although the interactions of adsorbate molecules with the internal MOF surface and also amongst themselves within individual pores have been extensively studied, adsorbate-adsorbate interactions across pore walls have not been explored. Here we show that local strain in the MOF, induced by pore filling, can give rise to collective and long-range adsorbate-adsorbate interactions and the formation of adsorbate superlattices that extend beyond an original MOF unit cell. Specifically, we use in situ small-angle X-ray scattering to track and map the distribution and ordering of adsorbate molecules in five members of the mesoporous MOF-74 series along entire adsorption-desorption isotherms. We find in all cases that the capillary condensation that fills the pores gives rise to the formation of ‘extra adsorption domains’—that is, domains spanning several neighbouring pores, which have a higher adsorbate density than non-domain pores. In the case of one MOF, IRMOF-74-V-hex, these domains form a superlattice structure that is difficult to reconcile with the prevailing view of pore-filling as a stochastic process. The visualization of the adsorption process provided by our data, with clear evidence for initial adsorbate aggregation in distinct domains and ordering before an even distribution is finally reached, should help to improve our understanding of this process and may thereby improve our ability to exploit it practically.

  18. Reconstruction of adsorption potential in Polanyi-based models and application to various adsorbents.

    Science.gov (United States)

    Pan, Bingjun; Zhang, Huichun

    2014-06-17

    The equilibrium Polanyi adsorption potential was reconstructed as ε = -RT ln(Ca(or H)/δ) to correlate the characteristic energy (E) of Polanyi-based models (qe = f[ε/E]) with the properties or structures of absorbates, where qe is the equilibriumn adsorption capacity, Ca(or H) is the converted concentration from the equilibrium aqueous concentration at the same activity and corresponds to the adsorption from the gas or n-hexadecane (HD) phase by the water-wet adsorbent, and "δ" is an arbitrary divisor to converge the model fitting. Subsequently, the modified Dubinin-Astakhov model based on the reconstructed ε was applied to aqueous adsorption on activated carbon, black carbon, multiwalled carbon nanotubes, and polymeric resin. The fitting results yielded intrinsic characteristic energies Ea, derived from aqueous-to-gas phase conversion, or EH, derived from aqueous-to-HD phase conversion, which reflect the contributions of the overall or specific adsorbate-adsorbent interactions to the adsorption. Effects of the adsorbate and adsorbent properties on Ea or EH then emerge that are unrevealed by the original characteristic energy (Eo), i.e., adsorbates with tendency to form stronger interactions with an adsorbent have larger Ea and EH. Additionally, comparison of Ea and EH allows quantitative analysis of the contributions of nonspecific interactions, that is, a significant relationship was established between the nonspecific interactions and Abraham's descriptors for the adsorption of all 32 solutes on the four different adsorbents: (Ea - EH) = 24.7 × V + 9.7 × S - 19.3 (R(2) = 0.97), where V is McGowan's characteristic volume for adsorbates, and S reflects the adsorbate's polarity/polarizability. PMID:24815932

  19. Tunable magnetism in metal adsorbed fluorinated nanoporous graphene.

    Science.gov (United States)

    Kumar, Pankaj; Sharma, Vinit; Reboredo, Fernando A; Yang, Li-Ming; Pushpa, Raghani

    2016-01-01

    Developing nanostructures with tunable magnetic states is crucial for designing novel data storage and quantum information devices. Using density functional theory, we investigate the thermodynamic stability and magnetic properties of tungsten adsorbed tri-vacancy fluorinated (TVF) graphene. We demonstrate a strong structure-property relationship and its response to external stimuli via defect engineering in graphene-based materials. Complex interplay between defect states and the chemisorbed atom results in a large magnetic moment of 7 μB along with high in-plane magneto-crystalline anisotropy energy (MAE) of 17 meV. Under the influence of electric field, spin crossover effect accompanied by a change in the MAE is observed. The ascribed change in spin-configuration is caused by the modification of exchange coupling between defect states and a change in the occupation of d-orbitals of the metal complex. Our predictions open a promising way towards controlling the magnetic properties in graphene based spintronic and non-volatile memory devices. PMID:27554975

  20. Dietary bioavailability of Cu adsorbed to colloidal hydrous ferric oxide

    Science.gov (United States)

    Cain, Daniel J.; Croteau, Marie-Noële; Fuller, Christopher C.

    2013-01-01

    The dietary bioavailability of copper (Cu) adsorbed to synthetic colloidal hydrous ferric oxide (HFO) was evaluated from the assimilation of 65Cu by two benthic grazers, a gastropod and a larval mayfly. HFO was synthesized, labeled with 65Cu to achieve a Cu/Fe ratio comparable to that determined in naturally formed HFO, and then aged. The labeled colloids were mixed with a food source (the diatom Nitzschia palea) to yield dietary 65Cu concentrations ranging from 211 to 2204 nmol/g (dry weight). Animals were pulse fed the contaminated diet and assimilation of 65Cu from HFO was determined following 1–3 days of depuration. Mass transfer of 65Cu from HFO to the diatom was less than 1%, indicating that HFO was the source of 65Cu to the grazers. Estimates of assimilation efficiency indicated that the majority of Cu ingested as HFO was assimilated (values >70%), implying that colloidal HFO potentially represents a source of dietary Cu to benthic grazers, especially where there is active formation and infiltration of these particles into benthic substrates.

  1. Photoelectron diffraction studies of small adsorbates on single crystal surfaces

    CERN Document Server

    Pascal, M

    2002-01-01

    The structural determination of small molecules adsorbed on single crystal surfaces has been investigated using scanned energy mode photoelectron diffraction (PhD). The experimental PhD data were compared to theoretical models using a simulation program based on multiple scattering calculations. Three adsorption systems have been examined on Ag(110), Cu(110) and Cu(111) crystals. The structure of the (2x1)-O adsorption phase on Ag(110) revealed that the O atoms occupied the long bridge site and are almost co-planar with the top layer of Ag atoms. The best agreement between multiple scattering theory and experiment has been obtained for a missing-row (or equivalently an 'added- row') reconstruction. Alternative buckled-row and unreconstructed surface models can be excluded. The adsorption of the benzoate species on Cu(110) has been found to occur via the carboxylate group. The molecules occupy short bridge sites with the O atoms being slightly displaced from atop sites and are aligned along the close-packed a...

  2. Adsorbed Methane Film Properties in Nanoporous Carbon Monoliths

    Science.gov (United States)

    Soo, Yuchoong; Chada, Nagaraju; Beckner, Matthew; Romanos, Jimmy; Burress, Jacob; Pfeifer, Peter

    2013-03-01

    Carbon briquetting can increase methane storage capacity by reducing the useless void volume resulting in a better packing density. It is a robust and efficient space-filling form for an adsorbed natural gas vehicle storage tank. To optimize methane storage capacity, we studied three fabrication process parameters: carbon-to-binder ratio, compaction temperature, and pyrolysis temperature. We found that carbon-to-binder ratio and pyrolysis temperature both have large influences on monolith uptakes. We have been able to optimize these parameters for high methane storage. All monolith uptakes (up to 260 bar) were measured by a custom-built, volumetric, reservoir-type instrument. The saturated film density and the film thickness was determined using linear extrapolation on the high pressure excess adsorption isotherms. The saturated film density was also determined using the monolayer Ono-Kondo model. Film densities ranged from ca. 0.32 g/cm3 - 0.37 g/cm3.The Ono-Kondo model also determines the binding energy of methane. Binding energies were also determined from isosteric heats calculated from the Clausius-Clapeyron equation and compared with the Ono-Kondo model method. Binding energies from Ono-Kondo were ca. 7.8 kJ/mol - 10 kJ/mol. Work funded by California Energy Commission Contract #500-08-022.

  3. Raman fingerprint of doping due to metal adsorbates on graphene.

    Science.gov (United States)

    Iqbal, M W; Singh, Arun Kumar; Iqbal, M Z; Eom, Jonghwa

    2012-08-22

    The properties of single-layer graphene are strongly affected by metal adsorbates and clusters on graphene. Here, we study the effect of a thin layer of chromium (Cr) and titanium (Ti) metals on chemical vapor deposition (CVD)-grown graphene by using Raman spectroscopy and transport measurements. The Raman spectra and transport measurements show that both Cr and Ti metals affect the structure as well as the electronic properties of the CVD-grown graphene. The shift of peak frequencies, intensities and widths of the Raman bands are analyzed after the deposition of metal films of different thickness on CVD-grown graphene. The shifts in G and 2D peak positions indicate the doping effect of graphene by Cr and Ti metals. While p-type doping was observed for Cr-coated graphene, n-type doping was observed for Ti-coated graphene. The doping effect is also confirmed by measuring the gate voltage dependent resistivity of graphene. We have also found that annealing in Ar atmosphere induces a p-type doping effect on Cr- or Ti-coated CVD-grown graphene. PMID:22814217

  4. Raman fingerprint of doping due to metal adsorbates on graphene

    International Nuclear Information System (INIS)

    The properties of single-layer graphene are strongly affected by metal adsorbates and clusters on graphene. Here, we study the effect of a thin layer of chromium (Cr) and titanium (Ti) metals on chemical vapor deposition (CVD)-grown graphene by using Raman spectroscopy and transport measurements. The Raman spectra and transport measurements show that both Cr and Ti metals affect the structure as well as the electronic properties of the CVD-grown graphene. The shift of peak frequencies, intensities and widths of the Raman bands are analyzed after the deposition of metal films of different thickness on CVD-grown graphene. The shifts in G and 2D peak positions indicate the doping effect of graphene by Cr and Ti metals. While p-type doping was observed for Cr-coated graphene, n-type doping was observed for Ti-coated graphene. The doping effect is also confirmed by measuring the gate voltage dependent resistivity of graphene. We have also found that annealing in Ar atmosphere induces a p-type doping effect on Cr- or Ti-coated CVD-grown graphene. (paper)

  5. Experimental study on extraction chromatography using CMPO adsorbent. 3

    International Nuclear Information System (INIS)

    In order to adapt TRUEX process or SETFICS process to extraction chromatography, a sequence of separation examination was carried out following as a flow sheet of MA recovery process, which includes CMPO providing column and CMPO recovery column. The proposed process consists of two separation columns packed with CMPO adsorbent, pre-column maintaining the ability of separation column and recovery column for removal of CMPO extractant. The 1st separation column is for the recovery of MA, heavy RE, Zr and Mo from the HLLW and the 2nd one for the removal of the Zr and Mo from the effluent of the 1st column, recovering the MA and the heavy RE as a nitrate. Finally, eluted CMPO extractant was recovered by SiO2-P column and MA and heavy RE were obtained as a nitric acid solution product. The expected separation performance for the main elements was achieved and the proposed process is principally applicable. Furthermore, there was no effect on the separation behavior using a pre-column and 91.8% of CMPO extractant was removed from effluent through a recovery column. In addition, the process has the advantages such as 'salt-free' and it's possible to separate Zr-Mo and Pd from HLLW. (author)

  6. Effects of ambient conditions on adsorbed surfactant and polymer monolayers

    International Nuclear Information System (INIS)

    The physical properties of surfactant-coated and polyelectrolyte-coated surfaces in adhesive contact in air have been studied using the surface forces apparatus technique. Various physisorbed monolayers with different head groups and chains (or polymer segments) were prepared both by adsorption form solution (self-assembly) and by the Langmuir-Blodgett deposition technique. The results show that many monolayer properties depend on the atmospheric conditions such as the relative humidity or presence of organic vapors and that these properties can further change when two monolayer-coated surfaces are brought into contact. These properties include monolayer composition and structure, thickness and compressibility, fluidity and phase state (i.e., whether solid, gel, or liquid), and the adhesion between two monolayer-coated surfaces. In addition, we find that both out-of-plane and in-plane (lateral) phase transitions can be induced in certain adsorbed monolayers when they are subjected to a compressive stress. The results provide new insights into molecular ordering and dynamics in physisorbed monolayers and how monolayers are affected when they are exposed to vapors or when they interact with other surfaces. 18 refs., 13 figs., 4 tabs

  7. Adsorbent Potential of Tea Waste to Control Cadmium Toxicity on

    Directory of Open Access Journals (Sweden)

    R. Perveen

    2012-03-01

    Full Text Available The disposal of industrial wastage without proper treatment is responsible for the lowering of crop productivity with the accumulation of essential and non essential trace metals in the land. The present research was designed to evaluate Cadmium toxicity on plant growth and to describe the remedial effect of tea wastage against Cd(II toxicity with reference to the growth of wheat (Triticum aestivum L.Application of Cd2+ decreased the wheat seedling growth along with alleviated concentration. It was dose-dependent, and significant at higher concentration of CdCl2. The result showed the inhibitory effect of Cd2+ ion on plant growth which includes reduction in shoot and root length, plant fresh and dry biomass and soluble carbohydrate and significant increase in total phenol contents as defense biomolecule against external stress. Adsorption is a promising alternative method to treat industrial effluents. Mainly because of its low cost and high metal binding capacity tea waste is one of the low cost and easily available adsorbent having strong adsorptivity towards heavy metals. The consumed tea leaves were found to be able to remove substantial amounts of Cd+2ions from aqueous solution. Thus it can be inferred that the addition of tea waste at appropriate rate may be useful approach to enhance the plant growth and to immobilize Cd2+ by depressing its bioavailability.

  8. Nuclear relaxation of deuterium--tritium adsorbed onto silica aerogel

    International Nuclear Information System (INIS)

    The longitudinal nuclear relaxation times of tritons in equilibrium deuterium--tritium (eD--T, actually D2--DT--T2 ) adsorbed onto amorphous silica aerogel has been measured from 4.2 to 23 K from 0.5 to 6.2 monolayers of coverage. Below 7 K, the relaxation time dramatically increases with decreasing temperature, especially for low coverages. A value of 16 s for 0.5 monolayer at 4.2 K may be compared with the usual electric quadrupole--quadrupole (EQQ) determined relaxation time of 0.1 s. It is shown that absorption of 10% of the tritium beta particle energy occurs in aerogel fully loaded with D--T. This decreases the concentration of J=1 T2 and increases the nuclear relaxation time. Similar energy absorption calculations in the thin layers shows that long relaxation times are expected, and that the measured values must be caused by spin--lattice relaxation with the aerogel surface. Both (temperature)-7 and exponential mechanisms are considered with no final decision being possible. Electric field gradients from the aerogel walls are considered the likely relaxation mechanism. These findings suggest that a long triton relaxation time may be achievable in ultrapure DT in the silica aerogel. Such a result would be of considerable importance to nuclear polarized inertial confinement fusion targets

  9. Surface geometry of tryptophan adsorbed on gold colloidal nanoparticles

    Science.gov (United States)

    Hussain, Shafqat; Pang, Yoonsoo

    2015-09-01

    Two distinct surface-enhanced Raman (SER) spectra of tryptophan depending on the surface adsorption geometry were obtained by using colloidal gold nanoparticles reduced by borohydride and citrate ions. According to the vibrational assignments based on DFT simulations, the SER spectra of tryptamine and 3-indolepropionic acid, and the pH dependence of tryptophan SER spectrum, we found that some indole ring vibrations are very sensitive to the surface adsorption geometry of the molecules. With citrate-reduced gold colloids, tryptophan and related molecules mainly adsorb via the protonated amine group while maintaining a perpendicular geometry of the indole ring to the surface. However, a flat geometry of the indole ring to the surface is preferred on the borohydride-reduced gold colloids where the surface adsorption occurs mainly through the indole ring π electrons. By comparing our results with previous reports on the SER spectra of tryptophan on various silver and gold surfaces, we propose a general adsorption model of tryptophan on metal nanosurfaces.

  10. Adsorbate-induced faceting of Ir and Re surfaces

    International Nuclear Information System (INIS)

    Since high-index clean metal surfaces typically have lower surface atom densities and higher surface free energies compared to the close-packed surfaces of the same metal they can be used as the basis for surface reconstruction and facet formation experiments. In this context the group of T.E. Madey at Rutgers University found recently that on Ir(210) and Re(11 anti 21) surfaces strongly interacting adsorbates are able to induce the formation of well defined nanostructures after annealing the system at elevated temperatures. Using density functional theory calculations with the PBE functional and ab initio atomistic thermodynamics we studied the adsorption of oxygen and nitrogen on the different surface orientations, which are involved in the nanostructures on Ir(210) and Re(11 anti 21). Constructing the corresponding (p, T)-surface phase diagrams, we find that at experimental pressure conditions (pO2=5 .10-10 atm) above 1100 K for Ir and above 1200 K for Re the planar surfaces are stable, while lowering the temperature stabilizes the nanofacets found experimentally. While on Ir(210) most nanoscale pyramids consist of smooth and unreconstructed planes, some (110) faces show a stepped double-missing row superstructure, which is only stable at higher temperatures (1000 K< T<1100 K). Interestingly, we find that this superstructure only appears at the faceted surface, but turns out to be unstable on a Ir(110) substrate

  11. Utilization of Rice Husk as Pb Adsorbent in Blood Cockles

    Science.gov (United States)

    Rohaeti, Eti; Permata Sari, Wenny; Batubara, Irmanida

    2016-01-01

    Water pollution by lead affects blood cockles, a potential source of food. The aim of this research is to compare rice husk (RH) and rice husk carbon (RHC) in reducing the concentration of lead in blood cockles. RH and RHC were activated with NaOH 1 M, and then the optimal conditions and maximum capacity were determined. This research showed that RH and RHC had maximum adsorbancy capacities of 28.7326 mg/g and 51.5464 mg/g at optimal condition. The optimal adsorption condition for RH in 100 ml Pb solution is 0.32 gram, pH 5, for 4 hours. The optimal adsorption condition for RHC in 100 ml Pb solution is 0.20 gram, pH 5, for 2 hours. Lead content in blood cockles from the north waters of Jakarta (1.9658 mg/kg) is beyond the threshold limit. Lead adsorption by RH and RHC could reduce lead content in blood cockles by about 40% and 31%, respectively.

  12. Electronic and magnetic properties of nonmetal atoms adsorbed ReS2 monolayers

    International Nuclear Information System (INIS)

    The stable configurations and electronic and magnetic properties of nonmetal atoms (H, N, P, O, S, F, and Cl) adsorbed ReS2 monolayers have been investigated by first-principles calculations. It is found that H, O, S, F, and Cl prefer to occupy the peak sites of S atoms, while both N and P atoms favor the valley sites of S atoms. The ReS2 sheet exhibits a good adsorption capability to nonmetal atoms. The reconstruction of the surface is pronounced in N- and P-adsorbed ReS2 monolayers. In H-adsorbed case, the Fermi level is pulled into the conduction band, which results in the semiconductor-metal transition. The same magnetic moment of 1μB is found in the N-, P-, F-, and Cl-adsorbed ReS2 monolayers, while the mechanisms of forming magnetic moment for N (P)- and F (Cl)-adsorbed cases are different. In addition, the spatial extensions of spin density in P-, F-, and Cl-adsorbed cases are larger than that in N-adsorbed case, which is more suitable to achieve long-range magnetic coupling interaction at low defect concentrations. Our results provide insight for achieving metal-free magnetism and a tunable band gap for various electronic and spintronic devices based on ReS2

  13. Synthesis of magnetic ordered mesoporous carbon (Fe-OMC) adsorbent and its evaluation for fuel desulfurization

    Energy Technology Data Exchange (ETDEWEB)

    Farzin Nejad, N., E-mail: Farzinnejadn@ripi.ir [Petroleum Refining Technology Development Division, Research Institute of Petroleum Industry, Tehran 14857-33111 (Iran, Islamic Republic of); Shams, E.; Amini, M.K. [Department of Chemistry, University of Isfahan, Isfahan 81746-73441 (Iran, Islamic Republic of)

    2015-09-15

    In this work, magnetic ordered mesoporous carbon adsorbent was synthesized using soft templating method to adsorb sulfur from model oil (dibenzothiophene in n-hexane). Through this research, pluronic F-127, resorcinol-formaldehyde and hydrated iron nitrate were respectively used as soft template, carbon source and iron source. The adsorbent was characterized by X-ray diffraction, nitrogen adsorption–desorption isotherm and transmission electron microscopy. Nitrogen adsorption–desorption measurement revealed the high surface area (810 m{sup 2} g{sup −1}), maxima pore size of 3.3 nm and large pore volume (1.01 cm{sup 3} g{sup −1}) of the synthesized sample. The adsorbent showed a maximum adsorption capacity of 111 mg dibenzothiophene g{sup −1} of adsorbent. Sorption process was described by the pseudo-second-order rate equation and could be better fitted by the Freundlich model, showing the heterogeneous feature of the adsorption process. In addition, the adsorption capacity of regenerated adsorbent was 78.6% of the initial level, after five regeneration cycles. - Highlights: • Adsorptive desulfurization of model oil with magnetic ordered mesoporous carbon adsorbent, Fe-OMC, was studied. • Maximum adsorption capacity (q{sub max}) of Fe-OMC for DBT was found to be 111.1 mg g{sup −1}. • Freundlich isotherm best represents the equilibrium adsorption data. • Rate of DBT adsorption process onto Fe-OMC is controlled by at least two steps.

  14. Towards Understanding KOH Conditioning of Amidoxime-based Polymer Adsorbents for Sequestering Uranium from Seawater

    Energy Technology Data Exchange (ETDEWEB)

    Pan, Horng-Bin; Kuo, Li-Jung; Wood, Jordana R.; Strivens, Jonathan E.; Gill, Gary A.; Janke, C.; Wai, Chien M.

    2015-11-16

    Conditioning of polymer fiber adsorbents grafted with amidoxime and carboxylic acid groups is necessary to make the materials hydrophilic for sequestering uranium from seawater. Spectroscopic techniques were employed to study the effectiveness of the traditional KOH conditioning method (2.5% KOH at 80 oC) on recently developed high-surface-area amidoxime-based polymer fiber adsorbents developed at Oak Ridge National Laboratory. FTIR spectra reveal that the KOH conditioning process removes the proton from the carboxylic acids and also converts the amidoxime groups to carboxylate groups in the adsorbent. With prolonged KOH treatment (>1 hr) at 80 oC, physical damage to the adsorbent material occurs which can lead to a significant reduction in the adsorbent’s uranium adsorption capability in real seawater during extended exposure times (>21 days). The physical damage to the adsorbent can be minimized by lowering KOH conditioning temperature. For the high-surface-area amidoxime-based adsorbents, 20 min of conditioning in 2.5% KOH at 80 oC or 1 hr of conditioning in 2.5% KOH at 60 oC appears sufficient to achieve de-protonation of the carboxylic acid with minimal harmful effects to the adsorbent material. The use of NaOH instead of KOH can also reduce the cost of the base treatment process required for conditioning the amidoxime-based sorbents with minimal loss of adsorption capacity (≤ 7%).

  15. Waste Material Adsorbents for Zinc Removal from Wastewater: A Comprehensive Review

    Directory of Open Access Journals (Sweden)

    Haider M. Zwain

    2014-01-01

    Full Text Available This review examines a variety of adsorbents and discusses mechanisms, modification methods, recovery and regeneration, and commercial applications. A summary of available researches has been composed by a wide range of potentially low-cost modified adsorbents including activated carbon, natural source adsorbents (clay, bentonite, zeolite, etc., biosorbents (black gram husk, sugar-beet pectin gels, citrus peels, banana and orange peels, carrot residues, cassava waste, algae, algal, marine green macroalgae, etc., and byproduct adsorbents (sawdust, lignin, rice husk, rice husk ash, coal fly ash, etc.. From the literature survey, different adsorbents were compared in terms of Zn2+ adsorption capacity; also Zn2+ adsorption capacity was compared with other metals adsorption. Thus, some of the highest adsorption capacities reported for Zn2+ are 168 mg/g powdered waste sludge, 128.8 mg/g dried marine green macroalgae, 73.2 mg/g lignin, 55.82 mg/g cassava waste, and 52.91 mg/g bentonite. Furthermore, modification of adsorbents can improve adsorption capacity. Regeneration cost is important, but if consumption of virgin adsorbent is reduced, then multiple economic, industrial, and environmental benefits can be gained. Finally, the main drawback of the already published Zn2+ adsorption researches is that their use is still in the laboratory stage mostly without scale-up, pilot studies, or commercialization.

  16. Synthesis of magnetic ordered mesoporous carbon (Fe-OMC) adsorbent and its evaluation for fuel desulfurization

    International Nuclear Information System (INIS)

    In this work, magnetic ordered mesoporous carbon adsorbent was synthesized using soft templating method to adsorb sulfur from model oil (dibenzothiophene in n-hexane). Through this research, pluronic F-127, resorcinol-formaldehyde and hydrated iron nitrate were respectively used as soft template, carbon source and iron source. The adsorbent was characterized by X-ray diffraction, nitrogen adsorption–desorption isotherm and transmission electron microscopy. Nitrogen adsorption–desorption measurement revealed the high surface area (810 m2 g−1), maxima pore size of 3.3 nm and large pore volume (1.01 cm3 g−1) of the synthesized sample. The adsorbent showed a maximum adsorption capacity of 111 mg dibenzothiophene g−1 of adsorbent. Sorption process was described by the pseudo-second-order rate equation and could be better fitted by the Freundlich model, showing the heterogeneous feature of the adsorption process. In addition, the adsorption capacity of regenerated adsorbent was 78.6% of the initial level, after five regeneration cycles. - Highlights: • Adsorptive desulfurization of model oil with magnetic ordered mesoporous carbon adsorbent, Fe-OMC, was studied. • Maximum adsorption capacity (qmax) of Fe-OMC for DBT was found to be 111.1 mg g−1. • Freundlich isotherm best represents the equilibrium adsorption data. • Rate of DBT adsorption process onto Fe-OMC is controlled by at least two steps

  17. Design improvements for a collector/generator/adsorber of a solid adsorption solar refrigerator

    Energy Technology Data Exchange (ETDEWEB)

    Ogueke, N.V.; Anyanwu, E.E. [Mechanical Engineering Department, Federal University of Technology, P.M.B. 1526, Owerri (Nigeria)

    2008-11-15

    A study of the effects of different collector design parameters on the performances of a solar powered solid adsorption refrigerator is presented. The refrigerator uses activated carbon/methanol as the adsorbent/refrigerant pair. The study was undertaken using a computer simulation program developed from a transient analysis of the system. The parameters tested are the collector plate emissivity/absorptivity combination, adsorbent packing density, tube spacing, outer tube outside diameter, adsorbent thermal conductivity, heat transfer coefficient at adsorbent/tube interface, and adsorbent tube/collector plate materials combination. Two performance indicators namely, condensate yield and coefficient of performance (COP) were used in the study as figures of merit. A multiple regression technique was used to correlate the performance indicators with the collector parameters through a quadratic relation. Consequently an objective function, suitable for selecting optimal values of the parameters is defined, subject to specified constraints. Selecting the COP as the preferred indicator parameter, optimization was then carried out. Improvements in the ranges of 29-38% for COP and 26-35% for condensate yield were obtained with optimal choices of tube spacing, adsorbent packing density and collector plate/adsorbent tube material combinations. (author)

  18. Performance evaluation of low cost adsorbents in reduction of COD in sugar industrial effluent

    International Nuclear Information System (INIS)

    Studies on reduction of chemical oxygen demand (COD) in effluent from sugar industry have been carried out by employing different absorbents optimizing various parameters, such as initial concentration of adsorbate, pH, adsorbent dosage and contact time. Experimental studies were carried out in batches using metakaolin, tamarind nut carbon and dates nut carbon as adsorbents by keeping initial adsorbent dosage at 1 g l-1, agitation time over a range of 30-240 min, adsorbent dosage at 100-800 mg l-1 by varying the pH range from 4 to 10. Characterization of there adsorbents were done using techniques such as Fourier transforms infra red spectroscopy (FTIR), X-ray diffraction (XRD) and scanning electron microscope (SEM). The experimental adsorption data fitted well to Langmuir and Freundlich adsorption isotherms. The isotherms of the adsorbents indicate appreciable adsorption capacity. Higher COD removal was observed at neutral pH conditions. Studies reveal that maximum reduction efficiency of COD takes place using metakaolin as an absorbent at a dosage of 500 mg l-1 in a contact time of 180 min at pH 7 and it could be used as an efficient absorbent for treating sugar industrial effluent.

  19. The Recovery of Used Palm Cooking Oil Using Bagasse as Adsorbent

    Directory of Open Access Journals (Sweden)

    Rizki Wannahari

    2012-01-01

    Full Text Available Problem statement: The use and reduce cooking oil is a common phenomena in our society. While some of this cooking oil is further refine most of it however and not subject to any filtration in the refining process medium such as carbon active, silica are commonly use. Approach: The used of bagasse as adsorbent is not common. This is odd especially when structural component of bagasse which is made up of carbon material is suitable as adsorbent and the fact that, adsorbent bagasse further reduce solid waste disposal and hence reducing one source of environmental pollution. Results: This study was undertaken to explore the possibility of using bagasse as adsorbent. Specifically, bagasse is being experimented to reduce the harmful content such as Free Fatty Acid (FFA and color density in used cooking oil. The variation of adsorbent weight and contact time are used in this research as parameters to determine the effective time and the amount of adsorbent that should be used in the oil refining process. From the experiment conducted, it can be established that bagasse when use as an adsorbent can reduce FFA to 82.14% which is lower the harmful limit. Conclusion/Recommendations: This result is obtained when using 7.5 gr of bagasse for 60 m contact time. Similarly, the color of oil is reduced to 75.67% which is significant and this is base on 10 gr of bagasse with 60 m of contact time.

  20. Performance of adsorbent-embedded heat exchangers using binder-coating method

    KAUST Repository

    Li, Ang

    2016-01-01

    The performance of adsorption (AD) chillers or desalination cycles is dictated by the rates of heat and mass transfer of adsorbate in adsorbent-packed beds. Conventional granular-adsorbent, packed in fin-tube heat exchangers, suffered from poor heat transfer in heating (desorption) or cooling (adsorption) processes of the batch-operated cycles, with undesirable performance parameters such as higher footprint of plants, low coefficient of performance (COP) of AD cycles and higher capital cost of the machines. The motivation of present work is to mitigate the heat and mass "bottlenecks" of fin-tube heat exchangers by using a powdered-adsorbent cum binder coated onto the fin surfaces of exchangers. Suitable adsorbent-binder pairs have been identified for the silica gel adsorbent with pore surface areas up to 680 m2/g and pore diameters less than 6 nm. The parent silica gel remains largely unaffected despite being pulverized into fine particles of 100 μm, and yet maintaining its water uptake characteristics. The paper presents an experimental study on the selection and testing processes to achieve high efficacy of adsorbent-binder coated exchangers. The test results indicate 3.4-4.6 folds improvement in heat transfer rates over the conventional granular-packed method, resulting a faster rate of water uptake by 1.5-2 times on the suitable silica gel type. © 2015 Elsevier Ltd. All rights reserved.

  1. Adsorptive Removal of Dye from Industrial Effluents Using Natural Iraqi Palygorskite Clay as Low-Cost Adsorbent

    OpenAIRE

    Dakhil Nasir Taha; Isra'a Sadi Samaka; Luma Ahmed Mohammed

    2013-01-01

    Palygorskite clay has been investigated as low cost and ecofriendly adsorbent for the removal Basic Red 2(BR-2) from aqueous solution. Batch adsorption studies are carried out by observing effect of amount of adsorbent dose, contact time, pH, initial concentration of ( BR-2) and particle size of adsorbent on the adsorption capacity of the adsorbent were studied. Adsorption data fits the Langmuir and Freundlich adsorption isotherms. The calculated value of the Langmuir parameter for adsorption...

  2. A WATER-COMPATIBLE PHENOLIC HYDROXYL MODIFIED POLYSTYRENE AS AN ADSORBENT FOR ADSORBING PHENOLIC COMPOUNDS FROM AQUEOUS SOLUTIONS

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    A water-compatible phenolic hydroxyl modified polystyrene adsorbent (AM-1) foradsorbing and removing phenolic compounds from aqueous solutions was prepared by covalent bonding of phenolic hydroxyl groups to the surface of porous polystyrene-divinylbenzene beads, this resin can be used directly without wetting process. A comparison of the sorption properties of the new resin and Amberlite XAD-4 toward four phenolic compounds, phenol, p-cresol, p-chlorophenol,and p-nitrophenol was made. The capacities of equilibrium adsorption of AM-l for all four phenolic compounds increased around 20% over that of Amberlite XAD-4, which may be contributed to phenol hydroxyl group on the surface and the unusual pore distributior. At their dilute solution, the equilibrium adsorption capacities of AM-1 for phenol increased about 62% over that of Amberlite X4D-4, while equilibrium adsorption capacities of the other three phenolic compounds increased 4-35%, suggesting an advantage of AM-I over Amberlite XAD-4 in the collection of phenol.Freundlich isotherm equations and isosteric adsorption enthalpies for the four phenolic compounds indicate a physical adsorption process on the Amberlite XAD-4 and AM-I resins. Column studies for phenol show that AM-1 resin has excellent adsorption and desorption performance.

  3. Poorly crystalline hydroxyapatite: A novel adsorbent for enhanced fulvic acid removal from aqueous solution

    Science.gov (United States)

    Wei, Wei; Yang, Lei; Zhong, Wenhui; Cui, Jing; Wei, Zhenggui

    2015-03-01

    In this study, poorly crystalline hydroxyapatite (HAP) was developed as an efficient adsorbent for the removal of fulvic acid (FA) from aqueous solution. Surface functionality, crystallinity, and morphology of the synthetic adsorbent were studied by Fourier-transformation infrared (FT-IR) spectroscopy, powder X-ray diffraction (XRD) and transmission electron microscopy (TEM). The effects of various parameters such as crystallinity of adsorbent, contact time, adsorbent dosage, pH, initial adsorbate concentration, temperature, ionic strength and the presence of alkaline earth metal ions on FA adsorption were investigated. Results indicated that the nanosized HAP calcined at lower temperature was poorly crystalline (Xc = 0.23) and had better adsorption capacity for FA than those (Xc = 0.52, 0.86) calcined at higher temperature. FA removal was increased with increases of adsorbent dosage, temperature, ionic strength and the presence of alkali earth metal ions, but decreased as the pH increased. Kinetic studies showed that pseudo-second-order kinetic model better described the adsorption process. Equilibrium data were best described by Sips models, and the estimated maximum adsorption capacity of poorly crystalline HAP was 90.20 mg/g at 318 K, displaying higher efficiency for FA removal than previously reported adsorbents. FT-IR results revealed that FA adsorption over the adsorbent could be attributed to the surface complexation between the oxygen atom of functional groups of FA and calcium ions of HAP. Regeneration studies indicated that HAP could be recyclable for a long term. Findings of the present work highlight the potential for using poorly crystalline HAP nanoparticles as an effective and recyclable adsorbent for FA removal from aqueous solution.

  4. Titanium-incorporated organic–inorganic hybrid adsorbent for improved CO{sub 2} adsorption performance

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Xiaoyun; Qin, Hongyan; Zhang, Sisi; Wu, Wei, E-mail: wuweiupc@upc.edu.cn

    2015-02-15

    Highlights: • Titanium-incorporated organic–inorganic hybrid adsorbent was prepared. • The incorporation of Ti to the adsorbent showed significant effect. • The sorbent shows high CO{sub 2} capture capacity both in pure and diluted CO{sub 2} at RT. • The sorbent exhibits a high recycling stability after 15 cycling runs. - Abstract: The CO{sub 2} adsorption performance of acrylonitrile (AN)–tetraethylenepentamine (TEPA) adduct (hereafter referred to as TN) impregnated adsorbent was greatly enhanced by introduction of Titanium atom into the silica matrix. The adsorbents were characterized by X-ray fluorescence spectrometry (XRF), X-ray diffraction (XRD), transmission electron microscopy (TEM), N{sub 2} adsorption/desorption, UV–vis spectroscopy, Fourier transform infrared (FTIR) spectroscopy. The adsorption experiments together with the physicochemical characterization demonstrated that these adsorbents containing an optimal amount of Titanium (Ti/Si ≈ 0.1) remarkably reinforced the CO{sub 2} adsorption capacity and recycling stability. The highest CO{sub 2} uptakes reached 4.65 and 1.80 mmol CO{sub 2}/g adsorbent at 25 °C under 90% CO{sub 2} (CO{sub 2}/N{sub 2}, 90:10 V/V) and 1% CO{sub 2} (CO{sub 2}/N{sub 2}, 1:99 V/V) conditions for sample Ti(0.1)-DMS-TN, respectively. Repeated adsorption/desorption cycles revealed that the Ti-incorporated adsorbent showed only a tiny decrease in adsorption capacity (1.778 mmol CO{sub 2}/g adsorbent after 15 cycles, decreased by 0.95%), significantly enhanced the adsorbent recycling stability.

  5. Numerical Study on the Contribution of Convective Mass Transfer Inside High-Porosity Adsorbents in the VOC Adsorption Process

    DEFF Research Database (Denmark)

    Zhang, Ge; He, Wenna; Fang, Lei;

    2013-01-01

    The transfer mechanism of volatile organic compounds (VOCs) being trapped inside the various types of adsorbents is usually regarded as mere diffusion. This paper investigated the contribution of convective mass transfer inside the adsorbents used for VOC air-cleaning. The adsorbents are typicall...

  6. Silica nanoparticles surface-modified with thiacalixarenes selectively adsorb oligonucleotides and proteins

    Energy Technology Data Exchange (ETDEWEB)

    Yuskova, Elena A. [Kazan (Volga Region) Federal University, Department of Chemistry, A. M. Butlerov Chemical Institute (Russian Federation); Ignacio-de Leon, Patricia Anne A.; Khabibullin, Amir [University of Utah, Department of Chemistry (United States); Stoikov, Ivan I., E-mail: ivan.stoikov@mail.ru [Kazan (Volga Region) Federal University, Department of Chemistry, A. M. Butlerov Chemical Institute (Russian Federation); Zharov, Ilya, E-mail: i.zharov@utah.edu [University of Utah, Department of Chemistry (United States)

    2013-10-15

    We prepared silica nanospheres 360 nm in diameter surface-modified with p-tert-butylthiacalix[4]arenes containing amine, carboxyl, and guanidinium groups. We found that these silica nanoparticles selectively adsorb model oligonucleotides and proteins. The particles modified with the macrocycle containing guanidinium fragments selectively adsorbed long-chain oligonucleotides and those modified with the macrocycle containing amine groups adsorbed BSA and hemoglobin with pH-dependent selectivity. We compared this behavior with that of silica nanoparticles carrying amine and carboxyl groups, and concluded that both electrostatic interactions and specific binding are responsible for the observed selectivity.

  7. Preparation and Characterization of a Novel Spherical Cellulose Adsorbent for Reduction Adsorption of Trichloroacetic Acid

    Institute of Scientific and Technical Information of China (English)

    LIN Chun-Xiang; TIAN Chen; LIU Yi-Fan; CHENG Yang-Jian; LIN Zhang; LIU Ming-Hua

    2014-01-01

    A novel spherical cellulose adsorbent has been prepared by homogeneous graft polymerization of N,N'-methylenebisacrylamide (MBA) onto cellulose in an ionic liquid,1-N-butyl-3-methylimidazolium chloride (BMIMC1),which was then partially amine methylated through Marmich reaction to get bifunctionalized materials containing both amide and sulphinate moities.Factors affecting the attachment of functional groups were investigated.The adsorbent was characterized by Elemental Analysis (EA),Fourier Transform Infrared Spectroscopy (FTIR) and Scanning Electron Microscope (SEM).Cellulose adsorbent was then tested for its potential applications in the reduction adsorption of trichloroacetic acid (TCAA) from aqueous solutions.

  8. Purification of Sardine Oil Using Adsorbent (Active Filter) of Scallop Shells, Carp Scales and Attapulgite

    OpenAIRE

    Sugeng Heri Suseno; Yosephina M.J. Batafor; Nurjanah; Ayu Fitri Izaki

    2014-01-01

    Fish oil especially from sardine has contain great omega 3, but it needs purification because has poor quality. Fish oil purification can be done by using various types of adsorbents. One of them are scallop shells and carp scales. The purpose of this study is to choose the best type of active filter (adsorbent) to improve the quality of fish oil. Sardine oil is purified using an active filter (adsorbent) of carp scales, scallop shells and attapulgite. The result this study show that the best...

  9. Cryopumping hydrogen isotope mixtures in MFTF-B with and without argon adsorbent

    International Nuclear Information System (INIS)

    Mixtures of hydrogen isotopes, primarily deuterium (D2), protium-deuterium (HD), and protium (H2) must be pumped by the vacuum system in the Mirror Fusion Test Facility at Lawrence Livermore National Laboratory. In this study, we used argon as an adsorbent for cryopumping these isotopes at 4.2 K and found that deuterium will displace already adsorbed protium. Thus, when we pump mixtures of the two, sufficient argon must be supplied to adsorb both species. We also found that without argon, deuterium will cryptrap protium in accord with Raoult's law

  10. Removal of Indigo Carmine Dye from Aqueous Solution Using Magnesium Hydroxide as an Adsorbent

    OpenAIRE

    Thimmasandra Narayan Ramesh; Vani Pavagada Sreenivasa

    2015-01-01

    Magnesium hydroxide is used as an adsorbent for the removal of indigo carmine dye from aqueous solution. We have investigated the effectiveness of removal of indigo carmine dye from aqueous solutions at pH 6-7 and 12-13 using magnesium hydroxide thereby varying the dose of the adsorbent, concentration of the dye, duration, and temperature. Structural transformations of adsorbent during the adsorption process at different pH values are monitored using powder X-ray diffraction and infrared spec...

  11. Pyrolyzed feather fibers for adsorbent and high temperature applications

    Science.gov (United States)

    Senoz, Erman

    Chicken feather fibers (CFF) are problematic and costly for the poultry industry in terms of managing maintenance and disposal. Considering their great availability, low cost, and unique protein structure, CFF can be an environmentally friendly and bio-renewable candidate to replace petroleum products. CFF's low degradation and melting temperature render them useless at high temperatures. Pyrolysis methods were developed for CFF by using two temperature steps to convert them into high temperature resistant and adsorbent fibers while retaining their original physical appearance and affine dimensions. An intermolecular crosslinking mechanism in the first step of pyrolysis at 215 ºC for 24 h provided an intact fibrous structure with no subsequent melting. The evidence obtained from the thermal, bulk, and surface analysis techniques was indication of the simultaneous side chain degradation, polypeptide backbone scission, disulfide bond cleavage, and isopeptide crosslinking. The variation in the reaction kinetics of disulfide bond cleavage and isopeptide crosslinking played an important role in the melting transition. Consequently, long-lasting heat treatments below the melting point provided sufficient crosslinks in the protein matrix to keep the fibrous structure intact. Water-insoluble and crosslinked CFF reinforced the triglyceride-fatty acid based composites by providing a 15 fold increase in storage and tensile modulus at room temperature. These thermally stable fibers can be used instead of CFF in composites which may require high temperature compounding and molding processes. The second step of pyrolysis at 400--450 ºC for 1 h resulted in microporous fibers with a micropore volume of ˜0.18 cm3/g STP and with a narrower pore size distribution than commercial activated carbons through thermal degradation. Nearly all accessible pores in the microporous pyrolyzed chicken feather fibers (PCFF) had diameters less than 1 nm and therefore, showed a potential to be

  12. Synthesis of highly effective adsorbents from natural raw materials (zeolites)

    International Nuclear Information System (INIS)

    Natural raw materials bentonite, silica tuff and diatomaceous earth from Macedonia were used in synthesis of zeolites type A, ZSM-5 and multilayer silicate magadiite-adsorbents. The bentonite was subject to pretreatment with acids (HCl and H2SO4 - 5, 10, 15 and W%) or NaOH, and used in synthesis of zeolite type A having molar ratio of: 2Na2O : Al2O3 : 2SiO2 : 100H2O. Silicate tuff was applied (without any pretreatment, in a two stage reaction) in a high temperature synthesis, using butylamine as an organic 'template' component in order to get high silica zeolite type ZSM-5 having molar ratio of: 59.37SiO2 : Al2O3 : 3.84Na2O : 1.90R2O : 2025.10H2O. Multilayer silicate magadiite MS-H was synthesized from natural raw material diatomaceous earth. The product with a molar ratio of: 8SiO2 : Na2O : 75H2O showed the best characteristics. The proposed method of alkaline pretreatment is a new one and it is acceptable from the economy point of view due to low energy consumption. The conclusion shows that the final result of the synthesis was not perfect, i.e. it has 70% of zeolite ZSM-5 and the rest were some amorphous phases. This product is suitable for industrial application in catalytic processes due to the fact that commercial catalyst contain typically 20 to 50% of zeolite type ZSM-5. On the other hand, the magadiite being multilayer silicate with no aluminium inside, is well suited as a carrier due to its ability of intercalation. The experimental results indicate that natural raw materials from Macedonia could be used for synthesis of synthetical silicates with high qualities and acceptable overall costs, specially when alkaline pretreatment is used. 14 refs., 4 tabs., 11 figs

  13. Microfungal alkylation and volatilization of selenium adsorbed by goethite.

    Science.gov (United States)

    Peitzsch, Mirko; Kremer, Daniel; Kersten, Michael

    2010-01-01

    Selenium adsorbed in the oxyanionic form by Fe-oxides like goethite is considered of benefit for long-term stabilization of (79)Se under near field conditions of radionuclide waste disposal sites. However, microbe-mediated volatilization of the uranium fission product (79)Se has not yet been considered for risk assessment based on the use of the water-solid distribution coefficient K(D). We have performed incubation experiments in a ternary system selenium-microbe-goethite and show that mycobiota including the common black microfungi genera Alternaria alternata are capable of volatilizing the Se even if immobilized by goethite. The microfungi were incubated in a standardized nutrient broth suspension with 10 g L(-1) of the oxide target under defined conditions. Volatile organic selenium (VOSe) species formed in the head space of the culture flasks were sampled and measured directly by a cryotrapping cryofocusing gas chromatographic system coupled with ICP-MS detection (CT-CF-GC-ICP-MS). Alkylated VOSe species were found at the tens to hundreds ng m(-3) levels dominated by dimethyl selenide (DMSe) and dimethyl diselenide (DMDSe). The total amount of DMSe released into the 80-mL headspace volume within the 21 days of incubation was up to 1.12 +/- 0.17 nmol and 0.48 +/- 0.12 nmol for systems without and with goethite amendment, respectively. Alkylation rates of up to 0.1 mumol Se per day and g biomass cannot be neglected as a potential fission product mobilization pathway, unless the inherent radioactivity is proven to prevent any such microbial activity on the long-term. Otherwise it may lead to an onsite accumulation of (79)Se through evapoconcentration in the enclosed underground caverns. PMID:20039743

  14. Aspects of the physical state of smectite-adsorbed water

    International Nuclear Information System (INIS)

    The hydration of Na montmorillonite is currently explained in two ways, which are related to different crystal structure version of this mineral. Wetting of the Edelman/Favejee structure takes place through formation of an ice-like hydrogen-bonded water lattice that grows from assumed, protruding hydroxyls in the basal planes, yielding interlamellar water of a density well below 1 g/cm/sub3/. The hydration of the conventional Hofmann/Endell/Wilm structure instead implies that interlamellar cations hydrate and that the spatial arrangement of the water therefore depends on the location of positive clay lattice charge. The molecular arrangement may thus vary and yield a density of the interlamellar water that may be lower, equal to, or higher than that of free water. The amount of interlamellar water depends on the microstructure of the clay. At bulk densities exceeding 1.6-1.8 t/m/sup3/ it constitutes 40-80 percent of the total porewater content, while at densities lower than about 1.3 t/m/sup3/ this percentage drops to less than 5. One way of finding out which of the two hydrate models that is valid at room temperature would be to determine the density of interlamellar water. Reinterpretation of published data and the outcome of recent experiments using dilatometer technique all point to an average density of such water of slightly more than 0.9 g/cm/sup3/, which suggests that ice-like water lattices are formed in the interlamellar space when Li and Na are adsorbed cations. External surfaces of stacks of montmorillonite flakes are conclude to have negligible ordering influence in the porewater, which therefore has a density on the same order as free water. (authors)

  15. Dissolution improvement of nebivolol hydrochloride using solid dispersion adsorbate technique

    Directory of Open Access Journals (Sweden)

    Harsh Shah

    2015-01-01

    Full Text Available Nebivolol hydrochloride is unique antihypertensive drug, which gets completely absorbed upon oral administration, with t max 1.5-4 h. The poor aqueous solubility leads to slow rate of absorption. An attempt has been made to enhance dissolution of nebivolol (NB using solid dispersion (SD and SD adsorbate (SDA techniques. Various hydrophilic excipients such as polyethylene glycol 6000 (PEG, gelucire 50/13 (GL, and neusilin US2 (NUS at different ratios were used. The prepared SDA of NB was characterized for % drug yield and other physical characteristics and in vitro drug dissolution studies in 0.1N HCl (pH 1.2. The formulation optimized on the basis of in vitro drug dissolution and % drug content was also characterized by the Fourier transform infrared (FTIR spectroscopy; differential scanning calorimetry (DSC, X-ray powder diffractometry analysis (XRD. The FTIR study indicated no interaction between the drug and polymer. DSC thermograms showed the significant change in melting peak of the NB when prepared as SDA suggesting the change in crystallinity of NB. The data from the XRD showed that the drug was still detectable in its solid state in the SDA of PEG and disappeared in case of higher ratio of GL. An increased dissolution rate of NB at pH 1.2 was observed when the drug was dispersed in these carriers in the form of physical mixtures (PMs, SDs by solvent evaporation methods (SMs, SDs by fusion method and SDAs by fusion method. NB released faster from the SDAs than from the pure crystalline drug, the PMs, the SMs, or the SDs. Thus, this study was proved as a promising approach for the improvement of dissolution rate and solubility of NB.

  16. Recovery of Th(IV) from aqueous solution by reassembled collagen-tannin fiber adsorbent

    International Nuclear Information System (INIS)

    A novel adsorbent, collagen immobilized tannin adsorbent (CITA), was prepared and its adsorption behaviors to Th(IV) were investigated. CITA was n fibrous state due to the reassembly of collagen molecules by the inducement of tannin. This adsorbent loaded a greater amount of tannin and exhibited higher adsorption capacity to Th(IV) than the tannin immobilized adsorbent prepared from collagen fiber. The adsorption of CITA to Th(IV) is mainly attributed to surface complexation, which is a pH- rather than an ionic strength-dependent process. The adsorption kinetics and isotherms were described by pseudo-second-order rate model and Freundlich equation, respectively. Column adsorption studies indicated that CITA is available for effectively recovering Th(IV) from aqueous solution. (author)

  17. AMMONIA AND COD REMOVAL FROM SYNTHETIC LEACHATE USING RICE HUSK COMPOSITE ADSORBENT

    Directory of Open Access Journals (Sweden)

    Azhar Abdul Halim

    2011-06-01

    Full Text Available Ammonia and chemical oxygen demand (COD were the most two problematic parameters in the landfill leachate. In this study, a new composite adsorbent derived from rice husk ash waste is evaluated with respect to its ability to remove these contaminants from synthetic leachate. Results indicate that the new composite adsorbent is able to adsorb both ammonia and COD. It has a higher adsorption capacity for ammonia (Q = 2.2578 mg/g and an almost equal adsorption capacity for COD (Q = 2.8893 when compared with commercially activated carbon. The adsorption kinetics of this new product for ammonia and COD were primarily represented by the pseudo second-order mechanism. The overall adsorption rate of the ammonia and COD adsorption processes appears to be determined by chemisorption process. The regenerated composite adsorbent indicated higher adsorption capacities of ammonia and COD, i.e. 12.9366 mg/g and 3.1162 mg/g, respectively.

  18. Adsorption and Desorption of Carbon Dioxide and Water Mixtures on Synthetic Hydrophobic Carbonaceous Adsorbents

    Science.gov (United States)

    Finn, John E.; Harper, Lynn D. (Technical Monitor)

    1994-01-01

    Several synthetic carbonaceous adsorbents produced through pyrolysis of polymeric materials are available commercially. Some appear to have advantages over activated carbon for certain adsorption applications. In particular, they can have tailored hydrophobicities that are significantly greater than that of activated carbon, while moderately high surfaces areas are retained. These sorbents are being investigated for possible use in removing trace contaminants and excess carbon dioxide from air in closed habitats, plant growth chambers, and other applications involving purification of humid gas streams. We have analyzed the characteristics of a few of these adsorbents through adsorption and desorption experiments and standard characterization techniques. This paper presents pure and multicomponent adsorption data collected for carbon dioxide and water on two synthetic carbonaceous adsorbents having different hydrophobicities and capillary condensation characteristics. The observations are interpreted through consideration of the pore structure and surface chemistry of the solids and interactions between adsorbed carbon dioxide, water, and the solvent gas.

  19. ADSORPTION OF PHENOLIC COMPOUNDS ONTO THE SPHERICAL MACROPOROUS ADSORBENT BASED ON UREA—FORMALDEHYDE CONDENSED POLYMER

    Institute of Scientific and Technical Information of China (English)

    XuMingcheng; XUMancai; 等

    2000-01-01

    Adsorption of phenol,catechol and resorcinol,which vary in their ability to interact with the adsorbent through hydrogen bond,were used to investigate the adsorption mechanistic interaction.The adsorption enthalpies of the above mentioned compound onto the adsorbent were calculated and thermodynamic analysis was carried out.The results showed the adsorbent with the lowest adsorption enthalpies for the sorbate such as catechol with intermolecular hydrogen bond also display the lowest adsorption affinity.On the other hand,the more of the groups available for hydrogen bond interaction,the higher of the adsorption affinity.These observations support the contention that phenol adsorption is driven predominantly by specific interaction of the solute with active sites on the surface of the adsorbent.

  20. Carbon-mineral adsorbents prepared by pyrolysis of waste materials in the presence of tetrachloromethane.

    Science.gov (United States)

    Leboda, Roman; Charmas, Barbara; Skubiszewska-Zieba, Jadwiga; Chodorowski, Stanislaw; Oleszczuk, Patryk; Gun'ko, Vladimir M; Pokrovskiy, Valery A

    2005-04-01

    Natural bentonite spent in the process of plant oil bleaching was used as an initial material for preparation of carbon-mineral adsorbents. The spent bleaching earth was treated using four procedures: T (thermal treatment); H (hydrothermal treatment); C (thermal treatment with addition of CCl4 vapor); M (modification of porous structure). Raw bentonite, RB (raw bleaching earth), and carbon materials prepared using plant oil were compared. The physicochemical characteristics of the adsorbents were determined using different methods: nitrogen adsorption/desorption, XRD, TEM, and MS-TPD. Carbon-mineral adsorbents contain from 5.23 to 19.92% C (w/w) and carbon adsorbents include from 84.2 to 91.18% C (w/w). Parallel processes of organic substance carbonization, porous structure modification, sublimation or evaporation of metal chlorides, and removal of hydrogen chloride take place during pyrolysis of waste mineral materials in the CCl4 atmosphere. PMID:15752782

  1. Separation of Co(II) from dilute aqueous solutions by precipitate and adsorbing colloid flotation

    International Nuclear Information System (INIS)

    Ion, precipitate and adsorbing colloid flotation of cobalt(II) have been investigated at different pH values, using N-dodecylpyridinium chloride (DPCl). A strong cationic surfactant, and sodium lauryl sulfate (NaLS), a strong anionic surfactant, as collectors. In case of adsorbing colloid flotation, hydrous manganese dioxide was used as an adsorbent. The precipitate flotation curves experimentally obtained with the two tested collectors were compared with the corresponding theoretical one calculated from the data published for Co(II) hydrolysis. The effects of the collector concentration, ageing of the water-MnO2-Co(II) system, bubbling time period, cobalt(II) concentration and foreign salts on the percent removal of Co(II) by adsorbing colloid flotation using DPCl as collector were determined. Removals approaching 100% could be achieved under the optimum conditions. (author) 44 refs.; 6 figs

  2. Single walled carbon nanotubes functionally adsorbed to biopolymers for use as chemical sensors

    Science.gov (United States)

    Johnson, Jr., Alan T.; Gelperin, Alan; Staii, Cristian

    2011-07-12

    Chemical field effect sensors comprising nanotube field effect devices having biopolymers such as single stranded DNA functionally adsorbed to the nanotubes are provided. Also included are arrays comprising the sensors and methods of using the devices to detect volatile compounds.

  3. Magnetic susceptibility of oxygen adsorbed on the surface of spherical and fibrous activated carbon.

    Directory of Open Access Journals (Sweden)

    Kiyoshi Kawamura

    2009-02-01

    Full Text Available The magnetic susceptibilities of oxygen adsorbed on the surface of bead-shaped activated carbon and activated carbon fibers were evaluated as a function of temperature between 4.2 K and 300 K, and found to exhibit a sharp peak at around 50 K. This implies that the adsorbed oxygen molecules form an antiferromagnetic state. The relation between the susceptibility and the adsorbed mass suggest that the thickness of the adsorbed oxygen is thin enough to consider a two-dimensional structure for bead–shaped activated carbon and carbon fibers across the fiber axis but thick enough to regard it as three-dimensional along the fiber axis. The result is discussed with reference to the study on one-dimensional oxygen array.

  4. Synthesis and uranium adsorption performance of a novel modified lignin-based adsorbent

    International Nuclear Information System (INIS)

    The modified lignin-based adsorbent containing the strong-base and weak-base group, was prepared by two-step chemical modification of acid-precipitation lignin, which is low-cost, and abundant renewable natural polymers: (1) introduced weak-base group by mannich reaction; (2)introduced strong-base group by O-alkylatio reaction.The adsorbent was characterized by Fourier Transform Infrared Spectroscopy (FT-IR) and Elementary Analysis(EA), which demonstrated amino group was successfully introduced into the lignin. In order to assess the possibility of adsorption effect, the adsorption experiments of uranium on lignin-based adsorbent, were carried out in the static mode at room temperature. The removal rate of uranium of the wastewatere could reach 93%, under such conditions as pH value 2, uranium concentration 6 mg/L, and adsorbent dosage 10 g/L, etc. (authors)

  5. Synthesis and uranium adsorption performance of a novel modified lignin-based adsorbent

    International Nuclear Information System (INIS)

    The modified lignin-based adsorbent containing the strong-base and weak-base group, was prepared by two-step chemical modification of acid-precipitation lignin, which is a low-cost and abundant renewable natural polymer: 1) weak-base group introduced by Mannich reaction; 2) strong-base group introduced by O-alkylation reaction. The adsorbent was characterized by Fourier transform infrared spectroscopy (FT-IR) and elementary analysis (EA), which demonstrated amino group was successfully introduced into the lignin. In order to assess the adsorption effect, the uranium adsorption experiments of lignin-based adsorbent were carried out in the static mode at room temperature. The removal rate of uranium from the wastewater could reach 93% under such conditions as pH value 2, uranium concentration 6 mg/L, adsorbent dosage 10 g/L etc. (authors)

  6. Determination of adsorbed protein concentration in aluminum hydroxide suspensions by near-infrared transmittance Spectroscopy

    DEFF Research Database (Denmark)

    Lai, Xuxin; Zheng, Yiwu; Jacobsen, Susanne;

    2008-01-01

    Analysis of aluminum hydroxide based vaccines is difficult after antigen adsorption. Adsorbed protein is often assessed by measuring residual unadsorbed protein for quality control. A new method for the direct determination of adsorbed protein concentration in suspension using near-infrared (NIR......) transmittance spectroscopy is proposed here. A simple adsorption system using albumin from bovine serum (BSA) and aluminum hydroxide as a model system is employed. The results show that the NIR absorbance at 700-1300 nm is correlated to the adsorbed BSA concentration, measured by the ultraviolet (UV) method......, using the partial least square regression (PLSR) method to construct a calibration model. The linear concentration range of adsorbed BSA is from 0 to 1.75 mg/mL by using 10 mm path length cuvettes. The influence of the sedimentation in suspension, different buffers, and different aluminum hydroxide...

  7. Superparamagnetic adsorbents for high-gradient magnetic fishing of lectins out of legume extracts

    DEFF Research Database (Denmark)

    Heebøll-Nielsen, Anders; Dalkiær, M.; Hubbuch, Jürgen;

    2004-01-01

    This work presents the development, testing, and application in high-gradient magnetic fishing of superparamagnetic supports for adsorption of lectins. Various approaches were examined to produce affinity, mixed mode, and hydrophobic charge induction type adsorbents. In clean monocomponent system...

  8. Inorganic ion exchangers and adsorbents for chemical processing in the nuclear fuel cycle

    International Nuclear Information System (INIS)

    The application of inorganic ion exchangers and adsorbents to both waste treatment and the recovery of fission products and actinides were of primary concern at this meeting. The meeting covered the two major fields of fundamental studies and industrial applications

  9. Prussian blue caged in spongiform adsorbents using diatomite and carbon nanotubes for elimination of cesium.

    Science.gov (United States)

    Hu, Baiyang; Fugetsu, Bunshi; Yu, Hongwen; Abe, Yoshiteru

    2012-05-30

    We developed a spongiform adsorbent that contains Prussian blue, which showed a high capacity for eliminating cesium. An in situ synthesizing approach was used to synthesize Prussian blue inside diatomite cavities. Highly dispersed carbon nanotubes (CNTs) were used to form CNT networks that coated the diatomite to seal in the Prussian blue particles. These ternary (CNT/diatomite/Prussian-blue) composites were mixed with polyurethane (PU) prepolymers to produce a quaternary (PU/CNT/diatomite/Prussian-blue), spongiform adsorbent with an in situ foaming procedure. Prussian blue was permanently immobilized in the cell walls of the spongiform matrix and preferentially adsorbed cesium with a theoretical capacity of 167 mg/g cesium. Cesium was absorbed primarily by an ion-exchange mechanism, and the absorption was accomplished by self-uptake of radioactive water by the quaternary spongiform adsorbent. PMID:22464752

  10. A novel aminated polymeric adsorbent for removing refractory dissolved organic matter from landfill leachate treatment plant

    Institute of Scientific and Technical Information of China (English)

    ZHANG Long; LI Aimin; WANG Jinnan; LU Yufei; ZHOU Youdong

    2009-01-01

    Refractory dissolved organic matter (DOM) from landfill leachate treatment plant was with high dissolved organic carbon (DOC) content.An aminated polymeric adsorbent NDA-8 with tertiary amino groups and sufficient mesopore was synthesized, which exhibited high adsorption capacity to the DOM (raw water after coagulation).Resin NDA-8 performed better in the uptake of the DOM than resin DAX-8 and A100.Electrostatic attraction was considered as the decisive interaction between the adsorbent and adsorbate.Special attention was paid to the correlation between porous structure and adsorption capacity.The mesopore of NDA-8 played a crucial role during uptake of the DOM.In general, resin in chloride form performed a higher removal rate of DOC.According to the column adsorption test, total adsorption capacity of NDA-8 was calculated to 52.28 mg DOC/mL wet resin.0.2 mol/L sodium hydroxide solution could regenerate the adsorbent efficiently.

  11. Removal of radium from aqueous solutions using adsorbent produced from coconut coir pith

    International Nuclear Information System (INIS)

    A study was conducted to evaluate the potential use of the coconut coir pith as an adsorbent for the removal of radium from aqueous solutions. Experiments to establish adsorptions as a function of pH and contact time were carried out. The results showed that radium adsorption are dependent upon pH and contact time of coconut coir pith with aqueous solutions. 70-80% of radium were adsorbed in the neutral to alkaline pH range. The amount of radium adsorbed also increased with contact time, reaching an optimum after 250 min. Thus, it can be concluded that the coconut coir pith has the potential to be used as an adsorbent in radium removal from aqueous solutions. (Author)

  12. Graphene oxide/chitin nanofibril composite foams as column adsorbents for aqueous pollutants.

    Science.gov (United States)

    Ma, Zhongshi; Liu, Dagang; Zhu, Yi; Li, Zehui; Li, Zhenxuan; Tian, Huafeng; Liu, Haiqing

    2016-06-25

    A novel graphene oxide/chitin nanofibrils (GO-CNF) composite foam as a column adsorbent was prepared for aqueous contaminant disposal. The structures, morphologies and properties of composite foams supported by nanofibrils were characterized. As a special case, the adsorption of methylene blue (MB) on GO-CNF was investigated regarding the static adsorption and column adsorption-desorption tests. Results from equilibrium adsorption isotherms indicated that the adsorption behavior was well-fitted to Langmuir model. The composite foams reinforced by CNF were dimensionally stable during the column adsorption process and could be reused after elution. The removal efficiency of MB was still nearly 90% after 3 cycles. Furthermore, other inorganic or organic pollutants adsorbed by composite foams were also explored. Therefore, this novel composite foam with remarkable properties such as dimensional stability, universal adsorbent for cationic pollutants, high adsorption capacity, and ease of regeneration was a desirable adsorbent in the future practical application of water pollutant treatment. PMID:27083813

  13. Evaluation of optimal silver amount for the removal of methyl iodide on silver-impregnated adsorbents

    International Nuclear Information System (INIS)

    The adsorption characteristics of methyl iodide generated from the simulated off-gas stream on various adsorbents such as silver-impregnated zeolite (AgX), zeocarbon and activated carbon were investigated. An extensive evaluation was made on the optimal silver impregnation amount for the removal of methyl iodide at temperatures up to 300 deg. C. The degree of adsorption efficiency of methyl iodide on silver-impregnated adsorbent is strongly dependent on impregnation amount and process temperature. A quantitative comparison of adsorption efficiencies on three adsorbents in a fixed bed was investigated. The influence of temperature, methyl iodide concentration and silver impregnation amount on the adsorption efficiency is closely related to the pore characteristics of adsorbents. It shows that the effective impregnation ratio was about 10wt%, based on the degree of silver utilization for the removal of methyl iodide. The practical applicability of silver-impregnated zeolite for the removal of radioiodine generated from the DUPIC process was consequently proposed. (author)

  14. Physical and lithium-adsorptive properties of manganese oxide adsorbent granulated with polyvinyl chloride (PVC)

    International Nuclear Information System (INIS)

    The granulation of powdered manganese-oxide adsorbent was carried out with PVC as a binder. A strength test on the basis of shaking method showed that the breakage of the granulated adsorbent was less than 1% when the PVC content was above 20%. The lithium adsorptive properties of the granulated adsorbent was investigated by both a batch and column methods. It showed a high selectivity for lithium in sea water. The added PVC had a slight influence on the lithium adsorptivity. The lithium uptake by the adsorbent (particle diameter, 2.0-2.8 mm) reached 4.5 mg·g-1 after the column operation for 50 days at 15-22 degC. The granule had a sufficient stability after the adsorption experiment. (author)

  15. Removal and recycle of phosphate from treated water of sewage plants with zirconium ferrite adsorbent by high gradient magnetic separation

    Energy Technology Data Exchange (ETDEWEB)

    Ito, D; Nishimura, K; Miura, O [Graduate School of Science and Engineering, Tokyo Metropolitan University, Hachioji, Tokyo, 192-0397 (Japan)], E-mail: dai@eei.metro-u.ac.jp

    2009-03-01

    Zirconium ferrite particles are good adsorbent for phosphate ions. Magnetic separation characteristics for removal of phosphate from treated water of sewage plants with the adsorbent have been studied to prevent eutrophication of semi-enclosed bay, e.g. the bay of Tokyo. Based on the adsorption for the phosphate ions and ferromagnetic properties of the zirconium ferrite adsorbent, high gradient magnetic separation characteristics with using superconducting magnet was discussed. Very rapid magnetic filtration velocity, i.e. 1m/s, and regeneration properties of the adsorbent indicate that the zirconium ferrite is the excellent adsorbent for phosphorus removal and recycle from treated water of large scale sewage plants.

  16. PURIFICATION OF GINKGO LEAVES EXTRACT WITH MACROPOROUS ADSORBENT BASED ON UREA—FORMALDEHYDE CONDENSED POLYMERS

    Institute of Scientific and Technical Information of China (English)

    XUMingcheng; XUMancai; 等

    2000-01-01

    The relationship between the adsorption properties for the active components of ginkgo leaves and the structure of the adsorbents based on urea-formaldehyde condensed polymers was investigated.The results revealed that these adsorbents showed very high adsorpton selectivity for both flavonol glycosides and terpene lactones contained in ginkgo leaves.Thus,an adsorption separation procedure for purification of ginkgo leaves extracts was developed.

  17. Uses of -Fe2O3 and fly ash as solid adsorbents

    Indian Academy of Sciences (India)

    J Shakhapure; H Vijayanand; S Basavaraja; V Hiremath; A Venkataraman

    2005-12-01

    Solid adsorbents have shown great promise for control of particulate and non-particulate matter and as gas sensing devices in recent times. In the present study, adsorption of environmental toxic pollutant such as lead ions on solid adsorbents viz. -Fe2O3 and fly ash, are reported. Considerable adsorption was observed on fly ash when compared to -Fe2O3 surface. These studies are characterized by employing solid state and solution studies.

  18. Deexcitation of metastable He-atoms interacting with clean and adsorbate covered metal surfaces

    International Nuclear Information System (INIS)

    Metastable, electronically excited He-atoms impinging at clean or adsorbate covered metal surfaces are deexcited with a high probability causing electron emission. The deexcitation either proceeds via a combined resonance-ionization + Auger neutralization or a Auger-deexcitation (Penning-ionization) mechanism. It is shown that the latter mechanism dominates at geometrically shielded (adsorbate covered) or electronically shielded (low work function) surfaces. (orig.)

  19. MAJOR PRODUCTS IN THE PHOTOCHEMISTRY OF PERYLENE ADSORBED IN MODELS OF ATMOSPHERIC PARTICULATE MATTER

    OpenAIRE

    Sotero, Pura; Arce, Rafael

    2008-01-01

    The photodegradation of adsorbed perylene is strongly influenced by the environment in which it is found as demonstrated by the nature of the photoproducts characterized on the adsorbed state in comparison to its photochemical behavior in solution. The separation, characterization, and identification of the products were carried out using HPLC equipped with UV-Vis diode array and MS detection. Two of the products were identified as 1,12-perylenedione and 3,10-perylenedione. Three additional p...

  20. Auger electron spectroscopy as a tool for measuring intramolecular charges of adsorbed molecules

    Science.gov (United States)

    Magkoev, T. T.

    1993-10-01

    A way for the determination of the values of intramolecular charges of adsorbed molecules of some binary dielectrics, based on Auger electron spectroscopy (AES), is proposed. These values can be obtained from the coverage dependences of the ratios of intensities of anion KL 23L 23 and KL 1L 1 Auger transitions, which are sensitive to the amount of charge at the 2p-orbitals. As an example, MgO adsorbed on Mo(110) is presented.

  1. Narrow-pore zeolites and zeolite-like adsorbents for CO2 separation

    OpenAIRE

    Cheung, Ocean

    2014-01-01

    A range of porous solid adsorbents were synthesised and their ability to separate and capture carbon dioxide (CO2) from gas mixtures was examined. CO2 separation from flue gas – a type of exhaust gas from fossil fuel combustion that consists of CO2 mixed with mainly nitrogen and biogas (consists of CO2 mixed with mainly methane) were explicitly considered. The selected adsorbents were chosen partly due to their narrow pore sizes. Narrow pores can differentiate gas molecules of different sizes...

  2. Quantification of adsorbed human serum albumin : a comparison between radioimmunoassay and simple null ellipsometry

    OpenAIRE

    Benesch, Johan; Askendal, A.; Tengvall, P.

    2000-01-01

    Radioimmunoassay (RIA) and null ellipsometry are two common methods to quantify adsorbed proteins. However, the accuracy of null ellipsometry with a constant protein refractive index (n 1.465, k 0) at l 632.8 nm has this far not been explored. The present study compared the methods, and the degree of agreement between the simplified single wavelength null ellipsometry and RIA to quantify adsorbed proteins was explored on different surfaces. The quantification methods agreed well w...

  3. A novel approach for arsenic adsorbents regeneration using MgO

    OpenAIRE

    Tresintsi, Sofia; Simeonidis, Konstantinos; Katsikini, Maria; Paloura, Eleni; Bantsis, Georgios; Mitrakas, Manassis

    2014-01-01

    An integrated procedure for the regeneration of iron oxy-hydroxide arsenic adsorbents by granulated MgO is proposed in this study. A continuous recirculation configuration, with a NaOH solution flowing sequentially through the saturated adsorbent (leaching step) and the MgO (adsorption step) column beds, was optimized by utilizing the high arsenic adsorption efficiency of MgO at strong alkaline environments. Experimental results indicated that the total amount of leached arsenic was captured ...

  4. Evaluation of commercial chromatographic adsorbents for the direct capture of polyclonal rabbit antibodies from clarified antiserum

    DEFF Research Database (Denmark)

    Bak, Hanne; Thomas, O.R.T.

    2007-01-01

    We have carried out a rigorous evaluation of eight commercially available packed bed chromatography adsorbents for direct capture and purification of immumoglobulins from clarified rabbit antiserum. Three of these materials featured rProtein A (rProtein A Sepharose Fast Flow, Mabselect, Prosep rProtein...... evaluated on the basis of dynamic binding capacity, recovery, and purity) were obtained, which allowed clear recommendations concerning the choice of adsorbents best suited for antibody capture from rabbit antisera, to be made....

  5. Metal Adsorbent Prepared from Poly(Methyl Acrylate)-Grafted Cassava Starch via Gamma Irradiation

    International Nuclear Information System (INIS)

    Metal adsorbent containing hydroxamic acid groups was successfully synthesized by radiation-induced graft copolymerization of methyl acrylate (MA) onto cassava starch. The optimum conditions for grafting were studied in terms of % degree of grafting (Dg). Conversion of the ester groups present in poly(methyl acrylate)-grafted-cassava starch copolymer into hydroxamic acid was carried out by treatment with hydroxylamine (HA) in the presence of alkaline solution. The maximum percentage conversion of the ester groups of the grafted copolymer, %Dg = 191 (7.63 mmol/g of MA), into the hydroxamic groups was 70% (5.35 mmol/g of MA) at the optimum conditions: in a mixture solution of 20% HA (w/v) and methanol solution (methanol:H2O = 5:1) 300 mL, pH 13, reaction time 2 h, and 20 g of grafted copolymer. The adsorbent was characterized by FTIR, TGA, and DSC. The presence of electron donating groups in adsorbent containing hydroxamic acid groups gives the ability to form polycomplexes with metal ions. The ability of the adsorbent to adsorb various metals was investigated in order to evaluate the possibility of its use in metal adsorption. The adsorbent exhibited a remarkable % adsorption for Cd2+, Al3+, UO22+, V5+ and Pb2+ at pH 3, 4, 5, 4, and 3, respectively. The adsorbent of 191%Dg had total adsorption capacities of 2.6, 1.46, 1.36, 1.15, and 1.6 mmol/g adsorbent for Cd2+, Al3+, UO22+, V5+ and Pb2+, respectively, in the batch mode adsorption. (author)

  6. Separation and Purification of Thrombin-like Enzymes by Affinity Adsorbents

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    An affinity adsorbent, benzamidineSepharose 4B, was used to separate and purify thrombinlike enzymes. The paminobenzamidine as a specific ligand was coupled to the matrix-Sepharose 4B. The recombinant thrombinlike enzyme-defibrase was used as a model in order to evaluate the efficiency of this biospecific affinity adsorbent. The homogeneity of the enzyme preparation was comfirmed as one band on sodium dodecyl sulfatepolyacrylamide gel electrophoresis.

  7. Adsorption Kinetics for the Removal of Hazardous Dye Congo Red by Biowaste Materials as Adsorbents

    OpenAIRE

    Sumanjit Kaur; Seema Rani; Rakesh Kumar Mahajan

    2013-01-01

    The present work aims to investigate the removal of dye congo red from aqueous solutions by two low-cost biowaste adsorbents such as ground nut shells charcoal (GNC) and eichhornia charcoal (EC) under various experimental conditions. The effect of contact time, ionic strength, temperature, pH, dye concentration, and adsorbent dose on the removal of dye was studied. The kinetic experimental data were fitted to pseudo-first order, pseudo-second order, intraparticle diffusion, Elovich model, and...

  8. Application of chemically modified beach sand as low cost efficient adsorbent for dye removal

    OpenAIRE

    Reza Ansari; Ali Mohammad-khah; Mansoureh Nazmi

    2013-01-01

    In the current work, beach sand (BS) and beach sand coated with polyaniline (BS/Pani) were used as an efficient green adsorbent for dye removal from aqueous solutions. Methylene blue (MB) was chosen as a test probe for the evaluation of the selected adsorbents for dye removal efficiency. The adsorption experiments were carried out in batch system and the effect of some important empirical parameters affecting adsorption processes were then investigated. The experimental data were also analyze...

  9. VALORIZATION AND BIODECOLORIZATION OF DYE ADSORBED ON LIGNOCELLULOSICS USING WHITE ROT FUNGI

    OpenAIRE

    Nesrin Ozmen,; Ozfer Yesilada

    2012-01-01

    Biosorption of dyes by lignocelluloses may be an effective method for removing dyes from textile effluents. However, the resulting dye-adsorbed lignocellulosic materials may constitute another pollution problem. An integrated method can solve this problem. Here, various lignocelluloses were tested for their Astrazon Black and Astrazon Blue dyes removal activities. The dye adsorbed after 30 min contact time was 90% (45 mg/L), 70% (35 mg/L), and 98% (49 mg/L) for wheat bran, pine cone, and cott...

  10. Geometric and electronic structures of potassium-adsorbed rubrene complexes

    Science.gov (United States)

    Li, Tsung-Lung; Lu, Wen-Cai

    2015-06-01

    The geometric and electronic structures of potassium-adsorbed rubrene complexes are studied in this article. It is found that the potassium-rubrene (K1RUB) complexes inherit the main symmetry characteristics from their pristine counterparts and are thus classified into D2- and C2h-like complexes according to the relative orientations of the four phenyl side groups. The geometric structures of K1RUB are governed by two general effects on the total energy: Deformation of the carbon frame of the pristine rubrene increases the total energy, while proximity of the potassium ion to the phenyl ligands decreases the energy. Under these general rules, the structures of D2- and C2h-like K1RUB, however, exhibit their respective peculiarities. These peculiarities can be illustrated by their energy profiles of equilibrium structures. For the potassium adsorption-sites, the D2-like complexes show minimum-energy basins, whereas the C2h-like ones have single-point minimum-energies. If the potassium atom ever has the energy to diffuse from the minimum-energy site, the potassium diffusion path on the D2-like complexes is most likely along the backbone in contrast to the C2h-like ones. Although the electronic structures of the minimum-energy structures of D2- and C2h-like K1RUB are very alike, decompositions of their total spectra reveal insights into the electronic structures. First, the spectral shapes are mainly determined by the facts that, in comparison with the backbone carbons, the phenyl carbons have more uniform chemical environments and far less contributions to the electronic structures around the valence-band edge. Second, the electron dissociated from the potassium atom mainly remains on the backbone and has little effects on the electronic structures of the phenyl groups. Third, the two phenyls on the same side of the backbone as the potassium atom have more similar chemical environments than the other two on the opposite side, which leads to the largely enhanced

  11. Geometric and electronic structures of potassium-adsorbed rubrene complexes

    Energy Technology Data Exchange (ETDEWEB)

    Li, Tsung-Lung, E-mail: quantum@mail.ncyu.edu.tw [Department of Electrophysics, National Chia-Yi University, Chiayi 60004, Taiwan (China); Lu, Wen-Cai, E-mail: wencailu@jlu.edu.cn [Laboratory of Fiber Materials and Modern Textile and Growing Base for State Key Laboratory, College of Physics, Qingdao University, Qingdao, Shandong 266071 (China); State Key Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry, Jilin University, Changchun, Jilin 130021 (China)

    2015-06-28

    The geometric and electronic structures of potassium-adsorbed rubrene complexes are studied in this article. It is found that the potassium-rubrene (K{sub 1}RUB) complexes inherit the main symmetry characteristics from their pristine counterparts and are thus classified into D{sub 2}- and C{sub 2h}-like complexes according to the relative orientations of the four phenyl side groups. The geometric structures of K{sub 1}RUB are governed by two general effects on the total energy: Deformation of the carbon frame of the pristine rubrene increases the total energy, while proximity of the potassium ion to the phenyl ligands decreases the energy. Under these general rules, the structures of D{sub 2}- and C{sub 2h}-like K{sub 1}RUB, however, exhibit their respective peculiarities. These peculiarities can be illustrated by their energy profiles of equilibrium structures. For the potassium adsorption-sites, the D{sub 2}-like complexes show minimum-energy basins, whereas the C{sub 2h}-like ones have single-point minimum-energies. If the potassium atom ever has the energy to diffuse from the minimum-energy site, the potassium diffusion path on the D{sub 2}-like complexes is most likely along the backbone in contrast to the C{sub 2h}-like ones. Although the electronic structures of the minimum-energy structures of D{sub 2}- and C{sub 2h}-like K{sub 1}RUB are very alike, decompositions of their total spectra reveal insights into the electronic structures. First, the spectral shapes are mainly determined by the facts that, in comparison with the backbone carbons, the phenyl carbons have more uniform chemical environments and far less contributions to the electronic structures around the valence-band edge. Second, the electron dissociated from the potassium atom mainly remains on the backbone and has little effects on the electronic structures of the phenyl groups. Third, the two phenyls on the same side of the backbone as the potassium atom have more similar chemical environments

  12. Geometric and electronic structures of potassium-adsorbed rubrene complexes

    International Nuclear Information System (INIS)

    The geometric and electronic structures of potassium-adsorbed rubrene complexes are studied in this article. It is found that the potassium-rubrene (K1RUB) complexes inherit the main symmetry characteristics from their pristine counterparts and are thus classified into D2- and C2h-like complexes according to the relative orientations of the four phenyl side groups. The geometric structures of K1RUB are governed by two general effects on the total energy: Deformation of the carbon frame of the pristine rubrene increases the total energy, while proximity of the potassium ion to the phenyl ligands decreases the energy. Under these general rules, the structures of D2- and C2h-like K1RUB, however, exhibit their respective peculiarities. These peculiarities can be illustrated by their energy profiles of equilibrium structures. For the potassium adsorption-sites, the D2-like complexes show minimum-energy basins, whereas the C2h-like ones have single-point minimum-energies. If the potassium atom ever has the energy to diffuse from the minimum-energy site, the potassium diffusion path on the D2-like complexes is most likely along the backbone in contrast to the C2h-like ones. Although the electronic structures of the minimum-energy structures of D2- and C2h-like K1RUB are very alike, decompositions of their total spectra reveal insights into the electronic structures. First, the spectral shapes are mainly determined by the facts that, in comparison with the backbone carbons, the phenyl carbons have more uniform chemical environments and far less contributions to the electronic structures around the valence-band edge. Second, the electron dissociated from the potassium atom mainly remains on the backbone and has little effects on the electronic structures of the phenyl groups. Third, the two phenyls on the same side of the backbone as the potassium atom have more similar chemical environments than the other two on the opposite side, which leads to the largely enhanced

  13. Photophysics of Auramine O adsorbed on solid clays

    International Nuclear Information System (INIS)

    The dye loading effect on the photophysical behavior of Auramine O adsorbed onto solid clays was studied. When the dye concentration is increased, solid samples of Auramine O incorporated in SYn-1, SAz-1 and SWy-1 clays show an enhancement of the β-band in the UV–vis-DR spectra and the band at 450 nm shifts to the blue. This behavior can be attributed to the formation of H-type dye aggregates. For SYn-1 and SAz-1 clays, which show higher charge density, the formation of H-aggregates of the dye is favored. The fluorescence intensity and lifetime values of AuO decrease with the increasing of dye loading in these clays, since H aggregates do not exhibit fluorescence. The basal spacing of SAz-1 and SYn-1 containing 5% of AuO remains the same as that for pure SAz-1 and SYn-1. The adsorption of the dye predominantly occurs on the external surface of the SAz-1 and SYn-1 clays. On the other hand, for SWy-1 clay, UV–vis results suggest the presence of H- and J- aggregates. The fluorescence emission and lifetimes increase with the AuO concentration. XRD measurements confirm the penetration of the Auramine O into interlayer regions of the SWy-1 clay. When the Auramine is in the interlamellar regions of clay, the rotation of its phenyl rings is restricted, diminishing the internal conversion rate, therefore increasing the emission. The adsorption of the dye occurs on the external surface and in the interlamellar layers of SWy-1. - Highlights: • AuO incorporated in SYn-1, SAz-1 and SWy-1 shows formation of H-aggregates. • The formation of H-aggregates of the dye is favored in SYn-1 and SAz-1 clays. • Adsorption of the dye occurs on the external surface of SAz-1 and SYn-1. • Auramine O penetrates into the interlayer regions of the SWy-1. • Fluorescence emission increases for AuO in the interlayer regions

  14. Mineral Adsorbents for Removal of Metals in Urban Runoff

    Science.gov (United States)

    Bjorklund, Karin; Li, Loretta

    2014-05-01

    The aim of this research was to determine the capacity of four different soil minerals to adsorb metals frequently detected in urban runoff. These are low-cost, natural and commercially available soil minerals. Contaminated surface runoff from urban areas is a major cause of concern for water quality and aquatic ecosystems worldwide. Pollution in urban areas is generated by a wide array of non-point sources, including vehicular transportation and building materials. Some of the most frequently detected pollutants in urban runoff are metals. Exhaust gases, tire wear and brake linings are major sources of such metals as Pb, Zn and Cu, while impregnated wood, plastics and galvanized surfaces may release As, Cd, Cr and Zn. Many metals have toxic effects on aquatic plants and animals, depending on metal speciation and bioavailability. The removal efficiency of pollutants in stormwater depends on treatment practices and on the properties the pollutant. The distribution of metals in urban runoff has shown, for example, that Pb is predominantly particle-associated, whereas Zn and Cd are present mainly in dissolved form. Many metals are also attached to colloids, which may act as carriers for contaminants, thereby facilitating their transport through conventional water treatment processes. Filtration of stormwater is one of the most promising techniques for removal of particulates, colloidal and truly dissolved pollutants, provided that effective filtration and adsorption media are used. Filtration and infiltration are used in a wide array of stormwater treatment methods e.g. porous paving, infiltration drains and rain gardens. Several soil minerals were investigated for their potential as stormwater filter materials. Laboratory batch tests were conducted to determine the adsorption capacity of these minerals. A synthetic stormwater was tested, with spiked concentrations corresponding to levels reported in urban runoff, ranging from 50-1,500 µg/L for Zn; 5-250 µg/L for Cu

  15. Removal of adsorbent particles od copper ions by Jet flotation; Remocion de particulas adsorbentes de iones cobre por flotacion Jet

    Energy Technology Data Exchange (ETDEWEB)

    Santander, M.; Tapia, P.; Pavez, O.; Valderrama, L.; Guzman, D.

    2009-07-01

    The present study shows the results obtained on the removal of copper ions from synthetic effluents by using the adsorbent particles flotation technique (APF) in a Jet flotation cell (Jameson type). In a typical experimental run, a mineral with high quartz content was used as adsorbent particles in the adsorption and flotation experiments, to determine optimal pH conditions, adsorbent particles concentration; flotation reagents dosage and air/effluent flow ratio for applying in the Jet cell to maximize the efficiency of copper ions adsorptions and the removal of particles adsorbents containing the absorbed copper ions. The results indicate the at pH>7 and at adsorbent particles concentration of 2 kg.m{sup -}3, 99% of copper ions is adsorbed and, when the air/effluent flow ratio applied in the Jet cell is 0,2, 98% of absorbent particles containing the adsorbed copper ions is removed. (Author) 39 refs.

  16. Desorption of uranium from titanium-activated carbon composite adsorbent with acidic eluent, (1)

    International Nuclear Information System (INIS)

    An investigation was carried out on the desorption of uranium from titanium-activated carbon composite adsorbent with acidic eluent by the batch process. The rate of desorption of uranium with acidic eluent depended on temperature, showing an increase as the temperature was raised. But the rate of desorption with acidic eluent was less dependent on temperature than that obtained when mixed eluent of sodium carbonate-sodium hydrogencarbonate was used. The difference of the rate of desorption of uranium in the range of concentration from 0.3 to 0.5N was not found, and the rate of desorption with sulfuric acid was slightly higher than that obtained when hydrochloric acid was used. The amount of dissolved titanium decreased as the ratio of adsorbent to eluent (RAE) was increased. At RAE of 10%, the percentage of dissolved titanium (DTI) was below 0.38% with sulfuric acid, below 0.7% with hydrochloric acid. These values were found to be higher than the ones with the carbonate eluent. The elements except uranium, which were adsorbed on the adsorbent, were eluted simultaneously with acidic eluent. The regeneration of the adsorbent after desorption, therefore, was found to be unnecessary. In a repeated test of adsorption-desorption treatment up to five times, the percentage of uranium adsorbed from natural sea water was approximately constant of 85%. From these results, the application of column process to the desorption of uranium with acidic eluent at room temperature was proposed to be feasible. (author)

  17. 2-chlorophenol sorption from aqueous solution using granular activated carbon and polymeric adsorbents

    Science.gov (United States)

    Ghatbandhe, A. S.; Jahagirdar, H. G.; Yenkie, M. K. N.; Deosarkar, S. D.

    2013-08-01

    Adsorption equilibrium and kinetics of 2-chlorophenol (2-CP) one of the chlorophenols (CPs) onto bituminous coal based Filtrasorb-400 grade granular activated carbon and three different types of polymeric adsorbents were studied in aqueous solution in a batch system. Langmuir isotherm models were applied to experimental equilibrium data of 2-CP adsorption. Equilibrium data fitted very well to the Langmuir equilibrium models of 2-CP. Adsorbent monolayer capacity Q Langmuir constant b and adsorption rate constants k a were evaluated. 2-CP adsorption using GAC is very rapid in the first hour of contact where 70-80% of the adsorbate is removed by GAC followed by a slow approach to equilibrium. Whereas in case of polymeric adsorbents 60-65% of the adsorbate is removed in the first 30 min which is then followed by a slow approach to equilibrium. The order of adsorption of 2-CP on different adsorbents used in the study is found to be in following order: F-400 > XAD-1180 > XAD-4 > XAD-7HP.

  18. Retention of radium from thermal waters on sand filters and adsorbents

    Energy Technology Data Exchange (ETDEWEB)

    Elejalde, C. [Dpto. de Ingenieria Nuclear y Mecanica de Fluidos, Escuela Tecnica Superior de Ingenieria, Alameda de Urquijo s/n, 48013 Bilbao (Spain)]. E-mail: inpelsac@bi.ehu.es; Herranz, M. [Dpto. de Ingenieria Nuclear y Mecanica de Fluidos, Escuela Tecnica Superior de Ingenieria, Alameda de Urquijo s/n, 48013 Bilbao (Spain); Idoeta, R. [Dpto. de Ingenieria Nuclear y Mecanica de Fluidos, Escuela Tecnica Superior de Ingenieria, Alameda de Urquijo s/n, 48013 Bilbao (Spain); Legarda, F. [Dpto. de Ingenieria Nuclear y Mecanica de Fluidos, Escuela Tecnica Superior de Ingenieria, Alameda de Urquijo s/n, 48013 Bilbao (Spain); Romero, F. [Dpto. de Ingenieria Quimica y del Medio Ambiente, Escuela Tecnica Superior de Ingenieria, Alameda de Urquijo s/n, 48013 Bilbao (Spain); Baeza, A. [Dpto. de Fisica, Facultad de Veterinaria, Universidad de Extremadura, Avda. Universidad s/n, 10071 Caceres (Spain)

    2007-06-18

    This study was focussed on laboratory experiences of retention of radium from one thermal water on sand filters and adsorbents, trying to find an easy method for the elimination in drinkable waters polluted with this natural radio-nuclide. A thermal water from Cantabria (Spain) was selected for this work. Retention experiences were made with columns of 35 mm of diameter containing 15 cm layers of washed river sand or 4 cm layers of zeolite A3, passing known volumes of thermal water at flows between 4 and 40 ml/min with control of the retained radium by determining the amount in the water after the treatment. The statistical analysis of data suggests that retention depends on the flow and the volume passed through the columns. As additional adsorbents were used kaolin and a clay rich in illite. Jar-test experiences were made agitating known weights of adsorbents with the selected thermal water, with addition of flocculants and determination of radium in filtrated water after the treatment. Data suggest that retention is related to the weight of adsorbent used, but important quantities of radium seem remain in solution for higher amounts of adsorbents, according to the statistical treatment of data. The elution of retained radium from columns or adsorbents, previously used in experiences, should be the aim of a future research.

  19. Direct observation of the photodegradation of anthracene and pyrene adsorbed onto mangrove leaves.

    Directory of Open Access Journals (Sweden)

    Ping Wang

    Full Text Available An established synchronous fluorimetry method was used for in situ investigation of the photodegradation of pyrene (PYR and anthracene (ANT adsorbed onto fresh leaves of the seedlings of two mangrove species, Aegiceras corniculatum (L. Blanco (Ac and Kandelia obovata (Ko in multicomponent mixtures (mixture of the ANT and PYR. Experimental results indicated that photodegradation was the main transformation pathway for both ANT and PYR in multicomponent mixtures. The amount of the PAHs volatilizing from the leaf surfaces and entering the inner leaf tissues was negligible. Over a certain period of irradiation time, the photodegradation of both PYR and ANT adsorbed onto the leaves of Ac and Ko followed first-order kinetics, with faster rates being observed on Ac leaves. In addition, the photodegradation rate of PYR on the leaves of the mangrove species in multicomponent mixtures was much slower than that of adsorbed ANT. Compared with the PAHs adsorbed as single component, the photodegradation rate of ANT adsorbed in multicomponent mixtures was slower, while that of PYR was faster. Moreover, the photodegradation of PYR and ANT dissolved in water in multicomponent mixtures was investigated for comparison. The photodegradation rate on leaves was much slower than in water. Therefore, the physical-chemical properties of the substrate may strongly influence the photodegradation rate of adsorbed PAHs.

  20. Effect of γ-ray irradiation on adsorbents used in organic waste treatment

    International Nuclear Information System (INIS)

    Radioactive organic liquids (ROLs) are waste that require specific treatment. The Arvia process, developed by Arvia Technology Ltd., combines adsorption of organic material with electrochemical oxidation. This work focuses on the effect of γ-rays on the performance of adsorbents used in the Arvia process. Adsorbents used in this experimental study were provided by Arvia Technology Ltd. Specifically, Nyex 1000, a flake like carbon-based adsorbent, and Nyex 2105, a carbon-based adsorbent with a granular morphology. The γ-ray irradiation experiments were carried out using a Co-60 irradiator. The impact of irradiation on the microstructure, the adsorption capacity and the leaching of the 2 adsorbents were studied. The results show that no significant changes were detected in terms of structure, adsorption capacity and leaching of ions. The results of this paper are promising for the use of Nyex 1000 and Nyex 2105 as adsorbents in electrochemical waste treatment processes which involve high levels of γ-rays. The article is followed by the slides of the presentation

  1. Thermal conductivities study of new types of compound adsorbents used in solar adsorption refrigeration

    International Nuclear Information System (INIS)

    In this paper, the thermal probe is firstly introduced and used in adsorption refrigeration to measure the working pair's thermal conductivities. Different types of compound adsorbents were prepared, and the thermal conductivities of all the types were measured with different adsorption capacities. Experimental results demonstrate that: with the same adsorption capacity, the conductivities of the compound adsorbents increase with the quantity of sodium silicate (Na2SiO3) content. The conductivities of the compound adsorbents increase sharply when the sodium silicate content is between 0% and 7.5% and increase slowly when the content is 7.5-20%. For 13x zeolite and compound adsorbents Z3 and Z4, their thermal conductivities increase as a quadratic polynomial with their adsorption capacities. The conductivities increase more than 158.2% when the adsorption capacities increase from 0% to 25%. The thermal conductivities of compound adsorbent Z3 and Z4 are 0.183 and 0.199 W (m K)-1, respectively, and increase about 65.4% and 80.1%, respectively, compared with the 13x zeolite. With these test results, the compound adsorbent Z4 is used for making an adsorption bed, and the experimental coefficient of performance (COP) of the solar cooling tube is about 0.26.

  2. POTENTIAL USE OF WOOL WASTE AS ADSORBENT FOR THE REMOVAL OF ACID DYES FROM WASTEWATER

    Directory of Open Access Journals (Sweden)

    BUCIŞCANU Ingrid

    2016-05-01

    Full Text Available At present, great amounts of raw wool are treated as waste and raise disposal problems. In the sustainable development context , wool is regarded as a biodegradable renewable resource and due to its complex chemical composition and fiber morphology, can find different useful applications. It is the aim of this paper to investigate the potential use of raw wool waste as a non-conventional adsorbent for Acid Red 337(AcR ,currently used for leather and wool dyeing. Two wool-based adsorbents were prepared, namely scoured coarse wool (Wool-S and wool activated with alcoholic solution of sodium hydroxide (Wool-A. Adsorbent dosage, dye concentration, pH and treatment time were factors taken in consideration for the assessment of the sorbate-adsorbent interaction. The removal efficiency (R % is mainly dependent on the solution pH and on the activation treatment applied to wool: at pH 3, the removal efficiency reaches the highest values of 42% on Wool-S and 99% on Wool-A. The adsorption rate is slow and needs almost 6 h to reach equilibrium. The experimental data best fitted the Langmuir equilibrium adsorption model, which proves that the adsorbent possess surface active sites to which the dye sorbate binds in monomolecular layer. Raw wool waste is a potential cheap, biodegradable and effective adsorbent for colored wastewater treatment.

  3. Application of nanoporous silicas as adsorbents for chlorinated aromatic compounds. A comparative study

    International Nuclear Information System (INIS)

    The removal of two selected environmental pollutants such as 2,4-dichlorophenoxyacetic acid (2,4-D) and Triclosan (TC) was examined by adsorption experiments on the modified SBA-15 and MCF mesoporous silicas. Mesoporous adsorbents were modified by a grafting process with (3-aminopropyl)triethoxysilane (APTES) and 1-[3-(trimethoxysilyl)propyl]urea (TMSPU). Mesoporous materials were synthesized and characterized by N2 adsorption–desorption experiment, transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FT-IR), elemental analysis and adsorption studies. The results show that both APTES-functionalized SBA-15 and MCF nanoporous carriers are potentially good adsorbents for the removal of 2,4-D in a wide range of concentrations from 0.1 to 4 mg/cm3. Maximum adsorption capacity of as-modified adsorbents for 2,4-D estimated from the Langmuir model was ∼ 280 mg/g. The ionic interaction between the adsorbent and 2,4-D seems to play a key role in the adsorption process of the pollutant on APTES-modified siliceous matrices. The efficiency of TC sorption onto all prepared mesoporous adsorbents was significantly lower as compared to the entrapment of 2,4-D. Experimental data were best fitted by the Langmuir isotherm model. The results of this study suggest that mesoporous silica-based materials are promising adsorbents for the removal of selected organic pollutants. - Graphical abstract: Adsorption of 2,4-dichlorophenoxyacetic acid and Triclosan inside 3-amino-functionalized mesoporous channel.

  4. Hydroxyapatite–gelatin nanocomposite as a novel adsorbent for nitrobenzene removal from aqueous solution

    Energy Technology Data Exchange (ETDEWEB)

    Wei, Wei [Department of Environmental Science and Engineering, Nanjing Normal University, Nanjing 210023 (China); Sun, Rong [College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095 (China); Jin, Zhu; Cui, Jing [Department of Environmental Science and Engineering, Nanjing Normal University, Nanjing 210023 (China); Wei, Zhenggui, E-mail: weizhenggui@gmail.com [Department of Environmental Science and Engineering, Nanjing Normal University, Nanjing 210023 (China)

    2014-02-15

    A novel adsorbent of hydroxyapatite–gelatin (HAP–GEL) nanocomposite was developed for nitrobenzene removal from aqueous solution. The adsorbent was characterized and its performance in nitrobenzene removal was evaluated. The effects of contact time, adsorbent dosage, temperature, pH, ionic strength, humic acid, and the presence of solvent on nitrobenzene adsorption, as well as the thermodynamic parameters for adsorption equilibrium were also investigated. Results showed that HAP–GEL nanocomposite possessed good adsorption ability to nitrobenzene. The adsorption process was fast, and it reached a steady state after only 1 min. Nitrobenzene removal was increased with an increasing amount of adsorbent dosage but decreased as the temperature and pH increased. Meanwhile the amount of nitrobenzene adsorbed decreased with an increase of ionic strength from 0.01 to 1.0 mol/L and humic acid from 10 to 50 mg/L. The adsorption isotherm studies showed that both Langmuir and Freundlich models could fit the experimental data well, and the maximum adsorption capacity was estimated to be 42.373 mg/g. The thermodynamic parameters suggested that the adsorption of nitrobenzene on HAP–GEL nanocomposite was physisorption, spontaneous and exothermic in nature. Findings of this study demonstrated the potential utility of the HAP–GEL nanocomposite as an effective adsorbent for nitrobenzene removal from aqueous solution.

  5. Production of adsorbent from palm shell for radioactive iodine scrubbing process

    International Nuclear Information System (INIS)

    The biggest biomass source in Malaysia comes from oil palm industry. According to the statistic of year 2004, Malaysia produced 40 million tones per year of biomass which 30 million tones of biomass originated from the oil palm industries. Therefore, the biomass waste such as palm kernel shell can be used to produce granular adsorbent for radioactive materials. For that reason, a newly system, called Rocking Kiln - Fluidized Bed (RK - FB) was developed to utilize large amount of the biomass to produce high value added product. Charcoal or chemically produced activated carbon could be produced by using the kiln. Washing process was introduced to remove particles, minerals and volatile matters from charcoal produced and then would create more surface area in the adsorbent by creating more active sites. In this research, the adsorbent produced was used to scrub iodine 131. In nuclear power reactor, iodine isotope 131 is produced during nuclear fission, and this elementary radioactive iodine may pollute exhaust air streams that could cause thyroid cancer. For removal of radioactive iodine, normally a potassium iodide - impregnated activated carbon (KI - AC) is used. Thus, a process will be developed to produce KI - AC and this product will be used to calculate the efficiency to remove the radioactive iodine 131.The results obtain show that adsorbent produced has a high potential to be used in radioactive adsorbing and likely more economics. This paper will elaborate further the experimental set-up of in Kiln - Fluidized Bed (RK - FB), adsorbent quality and radioactive scrubbing process. (author)

  6. [Preparation of adsorbent made from sewage sludge and its spectrum properties].

    Science.gov (United States)

    Yu, Lan-Lan; Zhong, Qin; Feng, Lan-Lan

    2006-05-01

    Biochemical sludges of sewage and petrochemistry and surplus sludge were taken as raw materials to prepare adsorbents for flue gas desulfurization by pyrolysis. To compare with active carbon, the abilities of adsorbents made from different sludges were studied by SEM, X-ray diffraction diagram, TG and DTA, pore characteristics and elements analysis, and the adsorption mechanisms of systems of SO2 -O2-N2 and SO2-O2-H2O(g)-N2 were studied by FTIR. Results indicated that the desulfurization performance of adsorbent made from surplus sludge was better, subsequent was petrochemical sludge, and the adsorbent made from biochemical sludge of sewage was worse. The desulfurization efficiency of adsorbent made from surplus sludge was slightly lower than active carbon. In the system of SO2-O2-N2, physical adsorption was primary, but in the condition of water, chemical adsorption was primary, where catalysis and oxidation of SO2 took place in sludge-derived adsorbent. In adsorption process, the adsorption depends on micropore structure. PMID:16883862

  7. Sulfur removal from fuel using zeolites/polyimide mixed matrix membrane adsorbents.

    Science.gov (United States)

    Lin, Ligang; Wang, Andong; Dong, Meimei; Zhang, Yuzhong; He, Benqiao; Li, Hong

    2012-02-15

    A novel membrane adsorption process was proposed for the sulfur removal from fuels. The mixed matrix membranes (MMMs) adsorbents composed of polyimide (PI) and various Y zeolites were prepared. By the detailed characterization of FT-IR, morphology, thermal and mechanical properties of MMMs adsorbents, combining the adsorption and desorption behavior research, the process-structure-function relationship was discussed. Field-emission scanning electron microscope (FESEM) images show that the functional particles are incorporated into the three-dimensional network structure. MMMs adsorbents with 40% of zeolites content possess better physical properties, which was confirmed by mechanical strength and thermo stability analysis. Influence factors including post-treatment, content of incorporated zeolites, adsorption time, temperature, initial sulfur concentration as well as sulfur species on the adsorption performance of MMMs adsorbents have been evaluated. At 4 wt.% zeolites content, adsorption capacity for NaY/PI, AgY/PI and CeY/PI MMMs adsorbents come to 2.0, 7.5 and 7.9 mg S/g, respectively. And the regeneration results suggest that the corresponding spent membranes can recover about 98%, 90% and 70% of the desulfurization capacity, respectively. The distinct adsorption and desorption behavior of MMMs adsorbents with various functional zeolites was markedly related with their various binding force and binding mode with sulfur compounds. PMID:22195522

  8. Synthesis of magnetic ordered mesoporous carbon (Fe-OMC) adsorbent and its evaluation for fuel desulfurization

    Science.gov (United States)

    Farzin Nejad, N.; Shams, E.; Amini, M. K.

    2015-09-01

    In this work, magnetic ordered mesoporous carbon adsorbent was synthesized using soft templating method to adsorb sulfur from model oil (dibenzothiophene in n-hexane). Through this research, pluronic F-127, resorcinol-formaldehyde and hydrated iron nitrate were respectively used as soft template, carbon source and iron source. The adsorbent was characterized by X-ray diffraction, nitrogen adsorption-desorption isotherm and transmission electron microscopy. Nitrogen adsorption-desorption measurement revealed the high surface area (810 m2 g-1), maxima pore size of 3.3 nm and large pore volume (1.01 cm3 g-1) of the synthesized sample. The adsorbent showed a maximum adsorption capacity of 111 mg dibenzothiophene g-1 of adsorbent. Sorption process was described by the pseudo-second-order rate equation and could be better fitted by the Freundlich model, showing the heterogeneous feature of the adsorption process. In addition, the adsorption capacity of regenerated adsorbent was 78.6% of the initial level, after five regeneration cycles.

  9. Preparation of metal adsorbent from poly(methyl acrylate)-grafted-cassava starch via gamma irradiation

    International Nuclear Information System (INIS)

    Metal adsorbent containing hydroxamic acid groups was successfully synthesized by radiation-induced graft copolymerization of methyl acrylate (MA) onto cassava starch. The optimum conditions for grafting were studied in terms of % degree of grafting (Dg). Conversion of the ester groups present in poly(methyl acrylate)-grafted-cassava starch copolymer into hydroxamic acid was carried out by treatment with hydroxylamine (HA) in the presence of alkaline solution. The maximum percentage conversion of the ester groups of the grafted copolymer, % Dg=191 (7.63 mmol/g of MA), into the hydroxamic groups was 70% (5.35 mmol/g of MA) at the optimum condition. The adsorbent of 191%Dg had total adsorption capacities of 2.6, 1.46, 1.36, 1.15 and 1.6 mmol/g-adsorbent for Cd2+, Al3+, UO22+, V5+ and Pb2+, respectively, in the batch mode adsorption. - Highlights: ► Adsorbent containing hydroxamic acid group was prepared by radiation-induced grafting. ► The adsorbent exhibited a remarkable % adsorption for Cd2+, Al3+, UO22+, V5+ and Pb2+. ► The selectivity of adsorbent towards metal ions used is in this order: Cd2+>Pb2+> Al3+> UO22+ > V5+.

  10. Excitation energy migration in yellow fluorescent protein (citrine) layers adsorbed on modified gold surfaces

    Science.gov (United States)

    Yusoff, Hanis Mohd; Rzeźnicka, Izabela I.; Hoshi, Hirotaka; Kajimoto, Shinji; Horimoto, Noriko Nishizawa; Sogawa, Kazuhiro; Fukumura, Hiroshi

    2013-09-01

    The nature of functional proteins adsorbed on solid surfaces is interesting from the perspective of developing of bioelectronics and biomaterials. Here we present evidence that citrine (one of yellow fluorescent protein variants) adsorbed on modified gold surfaces would not undergo denaturation and energy transfer among the adsorbed citrine molecules would occur. Gold substrates were chemically modified with 3-mercaptopropionic acid and tert-butyl mercaptan for the preparation of hydrophilic and hydrophobic surfaces, respectively. A pure solution of citrine was dropped and dried on the modified gold substrates and their surface morphology was studied with scanning tunnelling microscopy (STM). The obtained STM images showed multilayers of citrine adsorbed on the modified surfaces. On hydrophobic surfaces, citrine was adsorbed more randomly, formed various non-uniform aggregates, while on hydrophilic surfaces, citrine appeared more aligned and isolated uniform protein clusters were observed. Fluorescence lifetime and anisotropy decay of these dried citrine layers were also measured using the time correlated single photon counting method. Fluorescence anisotropy of citrine on the hydrophobic surface decayed faster than citrine on the hydrophilic surface. From these results we concluded that fluorescence energy migration occurred faster among citrine molecules which were randomly adsorbed on the hydrophobic surface to compare with the hydrophilic surface.

  11. Adsorbate modification of the structural, electronic, and magnetic properties of ferromagnetic fcc {110} surfaces

    Science.gov (United States)

    Gunn, D. S. D.; Jenkins, Stephen J.

    2011-03-01

    We identify trends in structural, electronic, and magnetic modifications that occur on ferromagnetic {110} surfaces upon varying either the substrate material or the adsorbate species. First, we have modeled the adsorption of several first-row p-block elements on the surface of fcc Co{110} at two coverages [0.5 and 1.0 monolayer (ML)]. All adsorbates were found to expand the distance between the first and second substrate layers and to contract the distance between the second and third layers. The energetic location of a characteristic trough in the density-of-d-states difference plot correlates with the direction of the adsorbate magnetic coupling to the surface, and a trend of antiferromagnetic to ferromagnetic coupling to the surface was observed across the elements from boron to fluorine. A high fluorine adatom coverage (1.0 ML) was found to enhance the surface spin magnetic moment by 11%. Second, we also calculate and contrast adsorption of 0.5 and 1.0 ML of carbon, nitrogen, and oxygen adatoms on fcc iron, cobalt, and nickel {110} surfaces and compare the structural, electronic, and magnetic properties of these systems. Carbon and nitrogen are found to couple antiferromagnetically, and oxygen ferromagnetically, to all surfaces. It was found that antiferromagnetically coupled adsorbates retained their largest spin moment values on iron, whereas ferromagnetically coupled adsorbates possessed their lowest moments on this surface. The strongly localized influence of these adsorbates is clearly illustrated in partial density-of-states plots for the surface atoms.

  12. Multiple sample setup for testing the hydrothermal stability of adsorbents in thermal energy storage applications

    International Nuclear Information System (INIS)

    Thermal energy storage based on adsorption and desorption of water on an adsorbent can achieve high energy storage densities. Many adsorbents lose adsorption capacity when operated under unfavourable hydrothermal conditions during adsorption and desorption. The stability of an adsorbent against stressing hydrothermal conditions is a key issue for its usability in adsorption thermal energy storage. We built an experimental setup that simultaneously controls the hydrothermal conditions of 16 samples arranged in a matrix of four temperatures and four water vapour pressures. This setup allows the testing of potential adsorbents between temperatures of 50 °C and 350 °C and water vapour pressures of up to 32 kPa. A measurement procedure that allows the detection of the hydrothermal stability of an adsorbent after defined time spans has been designed. We verified the functionality of the multiple sample measurements with a microporous adsorbent, a zeolite NaMSX. The hydrothermal stability of this zeolite is tested by water uptake measurements. A standard deviation lower than 1% of the 16 samples for detecting the hydrothermal stability enables setting different conditions in each sample cell. Further, we compared the water uptake measurements by measuring their adsorption isotherms with the volumetric device BELSORP Aqua 3 from Bel Japan. (paper)

  13. The preparation of composite fiber adsorbents for separation of uranium from seawater by spinning(1)

    International Nuclear Information System (INIS)

    Amidoximated composite fiber adsorbents were prepared for separation of uranium from seawater and characterized by various instrumental techniques, such as IR spectroscopy, CHN elemental analyzer and SEM. The swelling ratios and yields of the AN-TEGMA and AN-TEGMA-DVB copolymers were decreased with an increase in crosslinking agents, such as DVB and TEGMA composition. The yield of 85-92% and 82-88% of AN-TEGMA and AN-TEGMA-DVB copolymers respectively were found. The porosity was also decreased with increase in crosslinking compositions, and it was found that the AN-TEGMA-DVB porosity copolymers were smaller than the value of AN-TEGMA copolymer. We investigated that the adsorbent with the composite fiber adsorbents were well dispersed on the surface of its by SEM. The optimum contents of containing adsorbent in the copolymer was 40 weight percent. The capacity of uranyl ion through the composite fiber adsorbent containing the amidoxime group was maximized a pH level of 8. Also, it was found that the synthesized composite fiber adsorbent was good material, due to a pH level of 8.3 of seawater, for separation of uranyl ion from seawater. (author)

  14. Retention of radium from thermal waters on sand filters and adsorbents

    International Nuclear Information System (INIS)

    This study was focussed on laboratory experiences of retention of radium from one thermal water on sand filters and adsorbents, trying to find an easy method for the elimination in drinkable waters polluted with this natural radio-nuclide. A thermal water from Cantabria (Spain) was selected for this work. Retention experiences were made with columns of 35 mm of diameter containing 15 cm layers of washed river sand or 4 cm layers of zeolite A3, passing known volumes of thermal water at flows between 4 and 40 ml/min with control of the retained radium by determining the amount in the water after the treatment. The statistical analysis of data suggests that retention depends on the flow and the volume passed through the columns. As additional adsorbents were used kaolin and a clay rich in illite. Jar-test experiences were made agitating known weights of adsorbents with the selected thermal water, with addition of flocculants and determination of radium in filtrated water after the treatment. Data suggest that retention is related to the weight of adsorbent used, but important quantities of radium seem remain in solution for higher amounts of adsorbents, according to the statistical treatment of data. The elution of retained radium from columns or adsorbents, previously used in experiences, should be the aim of a future research

  15. Role of air bubbles overlooked in the adsorption of perfluorooctanesulfonate on hydrophobic carbonaceous adsorbents.

    Science.gov (United States)

    Meng, Pingping; Deng, Shubo; Lu, Xinyu; Du, Ziwen; Wang, Bin; Huang, Jun; Wang, Yujue; Yu, Gang; Xing, Baoshan

    2014-12-01

    Hydrophobic interaction has been considered to be responsible for adsorption of perfluorooctanesulfonate (PFOS) on the surface of hydrophobic adsorbents, but the long C-F chain in PFOS is not only hydrophobic but also oleophobic. In this study, for the first time we propose that air bubbles on the surface of hydrophobic carbonaceous adsorbents play an important role in the adsorption of PFOS. The level of adsorption of PFOS on carbon nanotubes (CNTs), graphite (GI), graphene (GE), and powdered activated carbon (PAC) decreases after vacuum degassing. Vacuum degassing time and pressure significantly affect the removal of PFOS by these adsorbents. After vacuum degassing at 0.01 atm for 36 h, the extent of removal of PFOS by the pristine CNTs and GI decreases 79% and 74%, respectively, indicating the main contribution of air bubbles to PFOS adsorption. When the degassed solution is recontacted with air during the adsorption process, the removal of PFOS recovers to the value obtained without vacuum degassing, further verifying the key role of air bubbles in PFOS adsorption. By theoretical calculation, the distribution of PFOS in air bubbles on the adsorbent surfaces is discussed, and a new schematic sorption model of PFOS on carbonaceous adsorbents in the presence of air bubbles is proposed. The accumulation of PFOS at the interface of air bubbles on the adsorbents is primarily responsible for its adsorption, providing a new mechanistic insight into the transport, fate, and removal of PFOS. PMID:25365738

  16. Adsorption capacities of activated carbons for geosmin and 2-methylisoborneol vary with activated carbon particle size: Effects of adsorbent and adsorbate characteristics.

    Science.gov (United States)

    Matsui, Yoshihiko; Nakao, Soichi; Sakamoto, Asuka; Taniguchi, Takuma; Pan, Long; Matsushita, Taku; Shirasaki, Nobutaka

    2015-11-15

    The adsorption capacities of nine activated carbons for geosmin and 2-methylisoborneol (MIB) were evaluated. For some carbons, adsorption capacity substantially increased when carbon particle diameter was decreased from a few tens of micrometers to a few micrometers, whereas for other carbons, the increase of adsorption capacity was small for MIB and moderate for geosmin. An increase of adsorption capacity was observed for other hydrophobic adsorbates besides geosmin and MIB, but not for hydrophilic adsorbates. The parameter values of a shell adsorption model describing the increase of adsorption capacity were negatively correlated with the oxygen content of the carbon among other characteristics. Low oxygen content indicated low hydrophilicity. The increase of adsorption capacity was related to the hydrophobic properties of both adsorbates and activated carbons. For adsorptive removal of hydrophobic micropollutants such as geosmin, it is therefore recommended that less-hydrophilic activated carbons, such as coconut-shell-based carbons, be microground to a particle diameter of a few micrometers to enhance their equilibrium adsorption capacity. In contrast, adsorption by hydrophilic carbons or adsorption of hydrophilic adsorbates occur in the inner pores, and therefore adsorption capacity is unchanged by particle size reduction. PMID:26302219

  17. Promotion of CO oxidation on PdO(101) by adsorbed H2O

    Science.gov (United States)

    Choi, Juhee; Pan, Li; Mehar, Vikram; Zhang, Feng; Asthagiri, Aravind; Weaver, Jason F.

    2016-08-01

    We investigated the influence of adsorbed H2O on the oxidation of CO on PdO(101) using temperature programmed reaction spectroscopy (TPRS), reflection absorption infrared spectroscopy (RAIRS) and density functional theory (DFT) calculations. We find that water inhibits CO adsorption on PdO(101) by site blocking, but also provides a more facile pathway for CO oxidation compared with the bare oxide surface. In the presence of adsorbed H2O, the oxidation of CO on PdO(101) produces a CO2 TPRS peak that is centered at a temperature ~ 50 K lower than the main CO2 TPRS peak arising from CO oxidation on clean PdO(101) (~ 330 vs. 380 K). RAIRS shows that CO continues to adsorb on atop-Pd sites of PdO(101) when H2O is co-adsorbed, and provides no evidence of other reactive intermediates. DFT calculations predict that the CO oxidation mechanism follows the same steps for CO adsorbed on PdO(101) with and without co-adsorbed H2O, wherein an atop-CO species recombines with an oxygen atom from the oxide surface lattice. According to DFT, hydrogen bonding interactions with adsorbed H2O species stabilize the carboxyl-like transition structure and intermediate that result from the initial recombination of CO and O on the PdO(101) surface. This stabilization lowers the energy barrier for CO oxidation on PdO(101) by ~ 10 kJ/mol, in good agreement with our experimental estimate.

  18. Comparison of Fixed and Fluidized Beds Adsorber with Economic, Engineering, and Environmental approach

    Directory of Open Access Journals (Sweden)

    SEDIGHEH ATRKAR-ROSHAN

    2015-10-01

    Full Text Available Release  Volatile  organic  compounds  (VOCs  as  environmental  and  occupational  pollutant  cause  macro perspective affect such as climate change, humans and economic consequences. Although fixed bed absorber is widely used as a controlling method because of its economically and availability, but these absorbers are facing some issue like high pressure drop, non-uniform distribution of fluid, channeling and blocking. Fixed and fluidized beds adsorbent was compared from three economic, environmental and engineering perspectives using Multi Criteria Decision Making analysis (MCDA technique. An annular fluidized bed adsorber was designed and charged with 50-100 µm (100-140 ASTM mesh activated carbon (AC particles. Effects of factors like flow rate, particle size, inlet concentration and adsorption capacity of VOCs was investigated under steady state. In the flow rate less than 0.25(Lit.min-1, inlet gas slowly passes through the void spaces of the bed’s particles. By increasing the inlet flow from 0.3(Lit/min-1, bubbles start to form in the bed and the bed pressure drop decrease. The pressure drop of 6 (g of AC in minimum fluidization velocity was 20(KN.m-2. However, the pressure drop of 10 and 20(g of AC were 150 and 420(KN.m-2 respectively. “maximin” technique used for comparison of two beds indicated that minimum score of pack bed absorber are 0.37 while the minimum score of fluidized bed adsorber are 0.5. It indicated when the adsorbent particles are smaller, fluidized bed adsorber are more suitable to use. In addition, using MCDA technique indicated that annular fluidized bed adsorber could considered as an alternative of fixed beds adsorber.

  19. Tailoring fly ash activated with bentonite as adsorbent for complex wastewater treatment

    Energy Technology Data Exchange (ETDEWEB)

    Visa, Maria, E-mail: maria.visa@unitbv.ro [Transilvania University of Brasov, Department Renewable Energy Systems and Recycling, Eroilor 29, 500036 Brasov (Romania)

    2012-12-15

    Highlights: Black-Right-Pointing-Pointer The spent adsorbent annealed at 500 Degree-Sign C can be a suggestion for padding in stone blocks. Black-Right-Pointing-Pointer The cations can be adsorbent by the silanol group (Si-OH) of the layers from bentonite Black-Right-Pointing-Pointer Copper has a higher affinity for the active sites on adsorbent FAw + B than cadmium. Black-Right-Pointing-Pointer This substrate can be recommended for simultaneous removal of heavy metals and MB. Black-Right-Pointing-Pointer FAw + B is recommended for wastewater treatment resulted in the dyes finishing industry. - Abstract: Used as adsorbent, alkali fly ash represents a low cost solution for advanced wastewater treatment. The alkali treatment raises sustainability issues therefore, in this research we aim to replace alkali fly ash with washed fly ash (FAw). For improving the adsorption capacity of washed fly ash, bentonite powder (B) was added, as a natural adsorbent with a composition almost identical to the fly ash. The new adsorbent was characterized by AFM, XRD, FTIR, SEM, EDS and the surface energy was evaluated by contact angle measurements. For understanding the complex adsorption process on this mixed substrate, preliminary tests were developed on synthetic wastewaters containing a single pollutant system (heavy metal), binary (two-heavy metals) and ternary (dye and two heavy metals) systems. Experiments were done on synthetic wastewaters containing methylene blue, cadmium and copper, using FAw, B and their powder mixtures. The pseudo-second order kinetics could well model all the processes, indicating a good adsorbent material which can be used for the pollutants removal from wastewater. After adsorption the substrates loaded with pollutants, annealed at 500 Degree-Sign C can be reused for padding in stone blocks.

  20. Study on the immobilisation of radionuclides by adsorption with specific adsorbers from waters

    International Nuclear Information System (INIS)

    The presence of uranium and thorium and other actinides in the environment is due to many factors, and mainly to the nuclear power production. Significant amounts of radionuclides are released in fresh waters owing to mining and ore processing and from waste dumps. Leaching, migration, and re-circuit processes constitute a permanent source of environmental pollution. It seemed worth wile to investigate on specific adsorbers, able to concentrate different radionuclides from natural waters flowing in the vicinity of pollution sources. The adsorbers can work better than the natural organic-inorganic matters, which cause concentration and remotion of some ions from natural waters. An useful adsorber should be easily prepared and not expensive; its adsorption capacity should be high and it should provide good concentration factors. For this purpose some phosphate and an organic compound, i.e. benzilic acid, was set because of their great ability to give salts with many ions in different conditions. Magnesium-ammonium and aluminium phosphate, and benzilic acid partially salted by d-glucose ammine were adsorbed either on cellulose or on active charcoal in order to obtain an high specific surface, which in turn speed up the adsorption process. The support material itself may cause the adsorption of some hydrolysed species, mainly occurring for actinides at the pH of natural waters. The adsorbers prepared on charcoal showed a better adsorption ability probably owing to a greater active surface. Among the prepared adsorbers the aluminium phosphate exhibited the best functionality. The adsorbers were tested using natural waters samples. (authors)

  1. Tailoring fly ash activated with bentonite as adsorbent for complex wastewater treatment

    International Nuclear Information System (INIS)

    Highlights: ► The spent adsorbent annealed at 500 °C can be a suggestion for padding in stone blocks. ► The cations can be adsorbent by the silanol group (Si-OH) of the layers from bentonite ► Copper has a higher affinity for the active sites on adsorbent FAw + B than cadmium. ► This substrate can be recommended for simultaneous removal of heavy metals and MB. ► FAw + B is recommended for wastewater treatment resulted in the dyes finishing industry. - Abstract: Used as adsorbent, alkali fly ash represents a low cost solution for advanced wastewater treatment. The alkali treatment raises sustainability issues therefore, in this research we aim to replace alkali fly ash with washed fly ash (FAw). For improving the adsorption capacity of washed fly ash, bentonite powder (B) was added, as a natural adsorbent with a composition almost identical to the fly ash. The new adsorbent was characterized by AFM, XRD, FTIR, SEM, EDS and the surface energy was evaluated by contact angle measurements. For understanding the complex adsorption process on this mixed substrate, preliminary tests were developed on synthetic wastewaters containing a single pollutant system (heavy metal), binary (two-heavy metals) and ternary (dye and two heavy metals) systems. Experiments were done on synthetic wastewaters containing methylene blue, cadmium and copper, using FAw, B and their powder mixtures. The pseudo-second order kinetics could well model all the processes, indicating a good adsorbent material which can be used for the pollutants removal from wastewater. After adsorption the substrates loaded with pollutants, annealed at 500 °C can be reused for padding in stone blocks.

  2. Recycling of spent adsorbents for oxyanions and heavy metal ions in the production of ceramics.

    Science.gov (United States)

    Verbinnen, Bram; Block, Chantal; Van Caneghem, Jo; Vandecasteele, Carlo

    2015-11-01

    Spent adsorbents for oxyanion forming elements and heavy metals are classified as hazardous materials and they are typically treated by stabilization/solidification before landfilling. The use of lime or cement for stabilization/solidification entails a high environmental impact and landfilling costs are high. This paper shows that mixing spent adsorbents in the raw material for the production of ceramic materials is a valuable alternative to stabilize oxyanion forming elements and heavy metals. The produced ceramics can be used as construction material, avoiding the high economic and environmental impact of stabilization/solidification followed by landfilling. To study the stabilization of oxyanion forming elements and heavy metals during the production process, two series of experiments were performed. In the first series of experiments, the main pollutant, Mo was adsorbed onto iron-based adsorbents, which were then mixed with industrial sludge (3 w/w%) and heated at 1100°C for 30 min. Mo was chosen, as this element is easily adsorbed onto iron-based adsorbents and it is the element that is the most difficult to stabilize (i.e. the highest temperatures need to be reached before the concentrations in the leachate are reduced). Leaching concentration from the 97/3 sludge/adsorbent mixture before heating ranged between 85 and 154 mg/kg; after the heating process they were reduced to 0.42-1.48 mg/kg. Mo was actually stabilized, as the total Mo concentration after addition was not affected by the heat treatment. In the second series of experiments, the sludge was spiked with other heavy metals and oxyanion forming elements (Cr, Ni, Cu, Zn, As, Cd and Pb) in concentrations 5 times higher than the initial concentrations; after heat treatment the leachate concentrations were below the regulatory limit values. The incorporation of spent adsorbents in ceramic materials is a valuable and sustainable alternative to the existing treatment methods, saving raw materials in the

  3. Poorly crystalline hydroxyapatite: A novel adsorbent for enhanced fulvic acid removal from aqueous solution

    Energy Technology Data Exchange (ETDEWEB)

    Wei, Wei [Department of Environmental Science and Engineering, Nanjing Normal University, Nanjing 210023 (China); Jiangsu Provincial Key Laboratory of Materials Cycling and Pollution Control, Nanjing Normal University, Nanjing 210023 (China); Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application, Nanjing Normal University, Nanjing 210023 (China); Yang, Lei; Zhong, Wenhui; Cui, Jing [Department of Environmental Science and Engineering, Nanjing Normal University, Nanjing 210023 (China); Wei, Zhenggui, E-mail: weizhenggui@gmail.com [Department of Environmental Science and Engineering, Nanjing Normal University, Nanjing 210023 (China); Jiangsu Provincial Key Laboratory of Materials Cycling and Pollution Control, Nanjing Normal University, Nanjing 210023 (China); Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application, Nanjing Normal University, Nanjing 210023 (China)

    2015-03-30

    Graphical abstract: - Highlights: • Poorly crystalline HAP was firstly used for FA removal from aqueous solution. • The maximum adsorption capacity was determined to be 90.20 mg/g at 318 K. • Adsorption kinetics, isotherms and thermodynamic have been studied in detail. • Adsorption mechanism involved surface complexation, electrostatic interaction and hydrogen bonding. - Abstract: In this study, poorly crystalline hydroxyapatite (HAP) was developed as an efficient adsorbent for the removal of fulvic acid (FA) from aqueous solution. Surface functionality, crystallinity, and morphology of the synthetic adsorbent were studied by Fourier-transformation infrared (FT-IR) spectroscopy, powder X-ray diffraction (XRD) and transmission electron microscopy (TEM). The effects of various parameters such as crystallinity of adsorbent, contact time, adsorbent dosage, pH, initial adsorbate concentration, temperature, ionic strength and the presence of alkaline earth metal ions on FA adsorption were investigated. Results indicated that the nanosized HAP calcined at lower temperature was poorly crystalline (X{sub c} = 0.23) and had better adsorption capacity for FA than those (X{sub c} = 0.52, 0.86) calcined at higher temperature. FA removal was increased with increases of adsorbent dosage, temperature, ionic strength and the presence of alkali earth metal ions, but decreased as the pH increased. Kinetic studies showed that pseudo-second-order kinetic model better described the adsorption process. Equilibrium data were best described by Sips models, and the estimated maximum adsorption capacity of poorly crystalline HAP was 90.20 mg/g at 318 K, displaying higher efficiency for FA removal than previously reported adsorbents. FT-IR results revealed that FA adsorption over the adsorbent could be attributed to the surface complexation between the oxygen atom of functional groups of FA and calcium ions of HAP. Regeneration studies indicated that HAP could be recyclable for a long

  4. Lead Removal from Aqueous Solutions Using Novel Gel Adsorbent Synthesized from Natural Condensed Tannin

    Institute of Scientific and Technical Information of China (English)

    占新民; 赵璇; AKANEMiyazaki; YOSHIONakano

    2003-01-01

    Lead has caused serious environmental pollution due to its toxicity, accumulation in food chains and persistence in nature. In this paper, removal of lead from aqueous solutions is investigated using a novel gel adsorbent synthesized from natural condensed tannin. The novel adsorbent performs in aqueous solutions as a weak base with valid basic groups of 1.2mmol·g-1 tannin gel particles and therefore results in the elevation of pH value of aqueous solutions. Even when initial pH is 3.6, final pH at equilibrium can climb up to 6.5 that is above the pH value for Pb(OH)2 precipitation formation and then lead can be removed from wastewater by this so-called surface precipitation. The adsorption isotherm can be expressed by the Langmuir equation and the maximum capacity for adsorption of Pb is up to 92mg·g-l(based on dry adsorbent) when initial pH value is 3.6. Hence, the adsorbent does offer favorable properties in lead removal with respect to its high adsorption capacity at low initial pH value,which is advantageous to lead removal from acidic wastewater. A model is put forward to describe the individual adsorption phenomenon of the tannin gel adsorbent.

  5. VALORIZATION AND BIODECOLORIZATION OF DYE ADSORBED ON LIGNOCELLULOSICS USING WHITE ROT FUNGI

    Directory of Open Access Journals (Sweden)

    Nesrin Ozmen,

    2012-02-01

    Full Text Available Biosorption of dyes by lignocelluloses may be an effective method for removing dyes from textile effluents. However, the resulting dye-adsorbed lignocellulosic materials may constitute another pollution problem. An integrated method can solve this problem. Here, various lignocelluloses were tested for their Astrazon Black and Astrazon Blue dyes removal activities. The dye adsorbed after 30 min contact time was 90% (45 mg/L, 70% (35 mg/L, and 98% (49 mg/L for wheat bran, pine cone, and cotton stalk, respectively. These dye-adsorbed lignocellulosic wastes then were used as solid substrates to produce laccase enzyme with Funalia trogii and Trametes versicolor under solid state fermentation (SSF. Among the lignocellulosic substrates, the dye-adsorbed wheat bran served as the best solid substrate for laccase production under SSF. Therefore, it was also tested as a solid source for laccase production under submerged fermentation. During solid state fermentation, these two fungi were able to highly decolorize these dyes. While F. trogii decolorized 80% of Astrazon Black dye adsorbed onto wheat bran, T. versicolor decolorized 86%. On the other hand, the decolorization values for Astrazon Blue dye were 69% and 84%, respectively.

  6. INFLUENCE OF ADSORBED AND DISSOLVED CARBOXYMETHYL CELLULOSE ON FIBRE SUSPENSION DISPERSING, DEWATERABILITY, AND FINES RETENTION

    Directory of Open Access Journals (Sweden)

    Henrikki Liimatainen

    2009-02-01

    Full Text Available The effect of adsorbed and soluble carboxymethyl cellulose (CMC on dispersing, dewaterability, and fines retention of pulp fibre suspensions was investigated. CMC was added to a suspension in the presence of electrolytes, causing its adsorption to the fibre surfaces, or to a suspension without electrolytes, so that it stayed in the liquid phase. Both the CMC adsorbed on fibre surfaces and that in the liquid phase were able to disperse the fibre suspension due to the ability of CMC to reduce fibre-to-fibre friction in both phases. Adsorbed CMC promoted the formation of a water-rich microfibrillar gel on the fibre surfaces through the spreading out of microfibrils, leading to a decrease in friction at the fibre-fibre contact points and to the increased dispersion of fibres. CMC in the liquid phase of the suspension was in turn thought to prevent fibre-to-fibre contacts due to the large physical size of the CMC molecules. CMC in both phases had detrimental effects on dewatering of the pulp suspension, but adsorbed CMC caused more plugging of the filter cake, and this was attributed to its ability to disperse fibre fines, in particular. Thus, adsorbed CMC also reduced fines retention considerably more than did CMC in the liquid phase of a suspension.

  7. Transport of significant metals recovered in real sea experiment of adsorbents

    Energy Technology Data Exchange (ETDEWEB)

    Takeda, Hayato; Tamada, Masao; Kasai, Noboru; Katakai, Akio; Hasegawa, Shin; Seko, Noriaki; Sugo, Takanobu [Japan Atomic Energy Research Inst., Takasaki, Gunma (Japan). Takasaki Radiation Chemistry Research Establishment; Onuma, Kenji [Mitsubishi Materials Corp., Tokyo (Japan); Kawabata, Yukiya [Ebara Research Co., Ltd., Fujisawa, Kanagawa (Japan)

    2001-10-01

    Real sea experiment for the recovery of significant metals such as uranium and vanadium which dissolved in seawater with extremely low concentration has been carried out at the offing of Mutsu establishment to evaluate the adsorption performance of adsorbent synthesized by radiation-induced graft-polymerization. The significant metals of uranium and vanadium eluted from the adsorbent which was soaked in the real sea were adsorbed onto the conventional chelate resin. The chelate resin which adsorbed the metals was packed in a plastic (PVC) column and further put in a cylindrical stainless transport container. This container was transported to the facility for separation and purification by a truck for the exclusive loading. Then the recovers metals were purified there. The recovered metals contained the uranium of 150g (1.92 MBq) and less in one recovery experiment. The maximum concentration is 60 Bq/g when the uranium is adsorbed on the chelate resin. Transport of recovered metals can be treated as general substance since these amount and concentration are out of legal control. However, the recovered metals were transported in conformity to L type Transport as a voluntary regulation. Though there is no requirements of structural strength for L type package legally, the structural strength of container was designed on that of IP-2 type which is higher transport grade than L type to take its safety measure. Its strength analysis proved the safety under general transport process. The transport was based on the plan made in advance. (author)

  8. Fiber-based adsorbents having high adsorption capacities for recovering dissolved metals and methods thereof

    Energy Technology Data Exchange (ETDEWEB)

    Janke, Christopher J.; Dai, Sheng; Oyola, Yatsandra

    2016-09-06

    A fiber-based adsorbent and a related method of manufacture are provided. The fiber-based adsorbent includes polymer fibers with grafted side chains and an increased surface area per unit weight over known fibers to increase the adsorption of dissolved metals, for example uranium, from aqueous solutions. The polymer fibers include a circular morphology in some embodiments, having a mean diameter of less than 15 microns, optionally less than about 1 micron. In other embodiments, the polymer fibers include a non-circular morphology, optionally defining multiple gear-shaped, winged-shaped or lobe-shaped projections along the length of the polymer fibers. A method for forming the fiber-based adsorbents includes irradiating high surface area polymer fibers, grafting with polymerizable reactive monomers, reacting the grafted fibers with hydroxylamine, and conditioning with an alkaline solution. High surface area fiber-based adsorbents formed according to the present method demonstrated a significantly improved uranium adsorption capacity per unit weight over existing adsorbents.

  9. Many-body dispersion effects in the binding of adsorbates on metal surfaces

    Science.gov (United States)

    Maurer, Reinhard J.; Ruiz, Victor G.; Tkatchenko, Alexandre

    2015-09-01

    A correct description of electronic exchange and correlation effects for molecules in contact with extended (metal) surfaces is a challenging task for first-principles modeling. In this work, we demonstrate the importance of collective van der Waals dispersion effects beyond the pairwise approximation for organic-inorganic systems on the example of atoms, molecules, and nanostructures adsorbed on metals. We use the recently developed many-body dispersion (MBD) approach in the context of density-functional theory [Tkatchenko et al., Phys. Rev. Lett. 108, 236402 (2012) and Ambrosetti et al., J. Chem. Phys. 140, 18A508 (2014)] and assess its ability to correctly describe the binding of adsorbates on metal surfaces. We briefly review the MBD method and highlight its similarities to quantum-chemical approaches to electron correlation in a quasiparticle picture. In particular, we study the binding properties of xenon, 3,4,9,10-perylene-tetracarboxylic acid, and a graphene sheet adsorbed on the Ag(111) surface. Accounting for MBD effects, we are able to describe changes in the anisotropic polarizability tensor, improve the description of adsorbate vibrations, and correctly capture the adsorbate-surface interaction screening. Comparison to other methods and experiment reveals that inclusion of MBD effects improves adsorption energies and geometries, by reducing the overbinding typically found in pairwise additive dispersion-correction approaches.

  10. Redox properties of cobalt tetraphenyl porphyrin adsorbed on semi-conductor oxides studied by photoacoustic spectroscopy

    International Nuclear Information System (INIS)

    Photoacoustic spectroscopy has allowed to show that physisorbed Co/sup II/TPP is ground state monooxidized into (Co/sup II/TPP)/sup +/ when adsorbed on Nb/sub 2/O/sub 5/, TiO/sub 2/, SrTiO/sub 3/, ZnO, SnO/sub 2/. A double oxidation is observed when the porphyrin is adsorbed on WO/sub 3/. On the contrary when it is adsorbed on ZrO/sub 2/ and SiO/sub 2/, oxidation only occurs if the porphyrin has been driven by irradiation in its excited state. It remains in the reduced form when adsorbed on Ta/sub 2/O/sub 5/. This behavior has been correlated with the band positions of these various oxides and has allowed to roughly position the oxidation potential of CoTPP in adsorbed state --0.8 V higher than in solution (0.5 V/SCE or 5.3 V/vacuum) that is 4.5 V/vacuum

  11. Type of adsorbent and column height in adsorption process of used cooking oil

    Science.gov (United States)

    Hasnelly, Hervelly, Taufik, Yusman; Melany, Ivo Nila

    2015-12-01

    The purpose of this research was to find out the best adsorbent and column height that can adsorb color and soluble impurities substances in used cooking oil. This research was meant for knowledge development of refined cooking oil technology. The used of this research was giving out information on the recycling process of used cooking oil. Research design used 2 × 2 factorial pattern in randomized group design with 6 repetitions. The first factor is adsorbent type (J) that consist of activated carbon (J1) and Zeolit (J2). The second factor is column height (K) with variations of 15 cm (k1) and 20 cm (k2). Chemical analysis parameter are free fatty acid, water content and saponification value. Physical parameter measurement was done on color with Hunter Lab system analysis and viscosity using viscometer method. Chemical analysis result of preliminary research on used cooking oil showed water content of 1,9%, free fatty acid 1,58%, saponification value 130,79 mg KOH/g oil, viscosity 0,6 d Pas and color with L value of -27,60, a value 1,04 and b value 1,54. Result on main research showed that adsorbent type only gave effect on water content whereas column height and its interaction was not gave significant effect on water content. Interaction between adsorbent type (J) and column height (K) gave significant effect to free fatty acid, saponification value, viscosity and color for L, a and b value of recycled cooking oil.

  12. [Ability of typical greenery shrubs of Beijing to adsorb and arrest PM2.5 ].

    Science.gov (United States)

    Liang, Dan; Wang, Bin; Wang, Yun-qi; Zhang, Hui-lan; Yang, Song-nan; Li, Ang

    2014-09-01

    Four typical types of green shrubs of Beijing (Euonymus japonicus, Buxus microphylla, Berberis thunbergii cv. atropurpurea, Taxus cuspidate cv. nana) were selected to study their capacities in adsorbing and arresting PM2.5 using both field observations and air chamber simulations. Concurrently, in order to analyze the pollution characteristics of Beijing in winter and spring, the PM2.5 concentrations of December 2012 to May 2013 were collected. Experimental results showed that: From the gas chamber experiments, the ability to adsorb and arrest PM2.5 was in the order of Berberis thunbergii cv. atropurpurea > Buxus microphylla > Taxus cuspidate cv. nana > Euonymus japonicus, mainly due to the differences in leaf characteristics; Outside measurement results showed that the ability to adsorb and arrest PM2.5 was ranked as Buxus microphylla > Berberis thunbergii cv. atropurpurea > Taxus cuspidate cv. nana > Euonymus japonicus. Chamber simulation and outdoor observation showed that Buxus microphylla and Berberis thunbergii cv. atropurpurea had strong ability to adsorb and arrest PM2.5; Meanwhile, the slight differences between the chamber simulation and outdoor observation results might be related to plant structure. Compared to tree species, the planting condition of shrub species was loose, and it greened quickly; By analyzing the Beijing PM2.5 concentration values in winter and spring, it was found that the PM2.5 concentration was particularly high in the winter of Beijing, and evergreen shrubs maintained the ability to adsorb and arrest PM2.5. PMID:25518685

  13. Prussian blue caged in spongiform adsorbents using diatomite and carbon nanotubes for elimination of cesium

    International Nuclear Information System (INIS)

    Highlights: ► Prussian blue was sealed in cavities of diatomite using carbon nanotubes. ► The caged Prussian blue after being permanently immobilized in polyurethane spongy showed a 167 mg/g capability for absorbing cesium. ► Cesium elimination was accomplished by simply adding the Prussian-blue based spongiform adsorbent to radioactive water. - Abstract: We developed a spongiform adsorbent that contains Prussian blue, which showed a high capacity for eliminating cesium. An in situ synthesizing approach was used to synthesize Prussian blue inside diatomite cavities. Highly dispersed carbon nanotubes (CNTs) were used to form CNT networks that coated the diatomite to seal in the Prussian blue particles. These ternary (CNT/diatomite/Prussian-blue) composites were mixed with polyurethane (PU) prepolymers to produce a quaternary (PU/CNT/diatomite/Prussian-blue), spongiform adsorbent with an in situ foaming procedure. Prussian blue was permanently immobilized in the cell walls of the spongiform matrix and preferentially adsorbed cesium with a theoretical capacity of 167 mg/g cesium. Cesium was absorbed primarily by an ion-exchange mechanism, and the absorption was accomplished by self-uptake of radioactive water by the quaternary spongiform adsorbent.

  14. Prussian blue caged in spongiform adsorbents using diatomite and carbon nanotubes for elimination of cesium

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Baiyang [Graduate School of Environmental Science, Hokkaido University, Sapporo 060-0810 (Japan); Fugetsu, Bunshi, E-mail: hu@ees.hokudai.ac.jp [Graduate School of Environmental Science, Hokkaido University, Sapporo 060-0810 (Japan); Yu, Hongwen [Graduate School of Environmental Science, Hokkaido University, Sapporo 060-0810 (Japan); Abe, Yoshiteru [Kyoei Engineering Corporation, Niigata 959-1961 (Japan)

    2012-05-30

    Highlights: Black-Right-Pointing-Pointer Prussian blue was sealed in cavities of diatomite using carbon nanotubes. Black-Right-Pointing-Pointer The caged Prussian blue after being permanently immobilized in polyurethane spongy showed a 167 mg/g capability for absorbing cesium. Black-Right-Pointing-Pointer Cesium elimination was accomplished by simply adding the Prussian-blue based spongiform adsorbent to radioactive water. - Abstract: We developed a spongiform adsorbent that contains Prussian blue, which showed a high capacity for eliminating cesium. An in situ synthesizing approach was used to synthesize Prussian blue inside diatomite cavities. Highly dispersed carbon nanotubes (CNTs) were used to form CNT networks that coated the diatomite to seal in the Prussian blue particles. These ternary (CNT/diatomite/Prussian-blue) composites were mixed with polyurethane (PU) prepolymers to produce a quaternary (PU/CNT/diatomite/Prussian-blue), spongiform adsorbent with an in situ foaming procedure. Prussian blue was permanently immobilized in the cell walls of the spongiform matrix and preferentially adsorbed cesium with a theoretical capacity of 167 mg/g cesium. Cesium was absorbed primarily by an ion-exchange mechanism, and the absorption was accomplished by self-uptake of radioactive water by the quaternary spongiform adsorbent.

  15. Improvement of cesium leaching resistance of solidified borate wastes with copper-ferrocyanide-vermiculite adsorbent

    International Nuclear Information System (INIS)

    Removal of cesium from deionized water, sea water, and lime water with copper ferrocyanide (CFC) and porous media including silica gel, bentonite, vermiculite, and zeolite were investigated; CFC and vermiculite were incorporated to prepare a compound adsorbent which was used to improve the Cs-leaching resistance of solidified borate wastes. It was shown that the Cs-removal efficiency by CFC is largely affected by pHs of the solutions, good cesium removal occurs in pHs ranged from 3 to 12 and the best from 7 to 10; the effect of Cs concentration is significantly only from lime water for Cs > 10-6 M at high pH and is insignificant from other solutions. Vermiculite and zeolite were shown to have better removal efficiency than silica gel and bentonite, and vermiculite was chosen to incorporate with CFC to make compound adsorbents because of its good compatibility with CFC. Compound adsorbents with different CFC contents were used as additives in the solidification of borate radwaste for improving the cesium leaching resistance of waste forms. Experimental results showed that the measured, cesium leaching index following ANSI/ANS 16.1, was increased from 7.96 to 9.76 by adding 0.25% of a compound adsorbent containing 20% CFC and 80% vermiculite, which indicated that the CFC-vermiculite compound adsorbent is very useful for improving cesium leaching resistance of the solidified borate radwastes

  16. Physico-chemical properties of biodiesel manufactured from waste frying oil using domestic adsorbents

    Science.gov (United States)

    Ismail, Samir Abd-elmonem A.; Ali, Rehab Farouk M.

    2015-06-01

    We have evaluated the efficiency of sugar cane bagasse ash (SCBA), date palm seed carbon (DPSC), and rice husk ash (RHA) as natural adsorbents and compared them with the synthetic adsorbent Magnesol XL for improving the quality of waste frying oil (WFO) and for the impact on the physicochemical properties of the obtained biodiesel. We measured moisture content, refractive index (RI), density, acid value (AV), iodine value (IV), peroxide value (PV), and saponification value (SV), as well as fatty acid profile. Purification treatments with various levels of adsorbents caused significant (P ≤ 0.05) decreases in free fatty acids (FFAs), PVs, and IVs. The highest yields (86.45 and 87.80%) were observed for biodiesel samples produced from WFO treated with 2% Magnesol and 3% of RHA, respectively, followed by samples treated with 2 and 3% of DPSC or RHA. Pre-treatments caused a significant decrease in the content of C 18:2 linoleic acids, consistent with a significant increase in the content of monounsaturated and saturated fatty acids (MUFA) in the treated samples. The highest oxidation value (COX) (1.30) was observed for biodiesel samples produced from WFO without purification treatments. However, the lowest values (0.44-0.73) were observed for biodiesel samples produced from WFO treated with different levels of adsorbents. Our results indicate that pre-treatments with different levels of adsorbents regenerated the quality of WFO and improved the quality of the obtained biodiesel.

  17. Synthesis of novel aminated cellulose microsphere adsorbent for efficient Cr(VI) removal

    Science.gov (United States)

    Yu, Tianlin; Liu, Siqi; Xu, Min; Peng, Jing; Li, Jiuqiang; Zhai, Maolin

    2016-08-01

    A novel aminated cellulose microsphere adsorbent (CVN) was successfully prepared by radiation-induced graft polymerization of vinylbenzyl chloride (VBC) onto cellulose microsphere (CMS), followed by amination. Micro-FTIR, XPS and SEM confirmed the structure of CVN. The adsorption behavior of Cr(VI) onto CVN from solution was well fitted by the pseudo-second order kinetic model. The isothermal adsorption of Cr(VI) was observed at pH 4.68 with adsorption capacity of 129 mg/g in accordance with Langmuir thermal model, and the removal of Cr(VI) from solution could be 91% at a low amount (20 mg) of adsorbent. The best pH for adsorption of Cr(VI) was nearly 3.08, and with the increasing of temperature, the adsorption capacity of Cr(VI) increased. XPS analysis confirmed the adsorption mechanism of Cr(VI) was ion-exchange mechanism, while common co-ions such as Na+, Mg2+, Cu2+, Ca2+, Zn2+, Ni2+, Cl-, NO3- has no significant effect on the adsorption capacity of Cr(VI), and the Cr(VI) removal of 80% still could be obtained compared with that of fresh CVN adsorbent. Finally, spent CVN could be regenerated under 2 mol/L NaCl. The work indicated that aminated cellulose adsorbent could be prepared successfully by radiation-induced grafting and amination and CVN is a promising bio-adsorbent in the removing Cr(VI) from waste water.

  18. Epoxide-functionalization of polyethyleneimine for synthesis of stable carbon dioxide adsorbent in temperature swing adsorption.

    Science.gov (United States)

    Choi, Woosung; Min, Kyungmin; Kim, Chaehoon; Ko, Young Soo; Jeon, Jae Wan; Seo, Hwimin; Park, Yong-Ki; Choi, Minkee

    2016-01-01

    Amine-containing adsorbents have been extensively investigated for post-combustion carbon dioxide capture due to their ability to chemisorb low-concentration carbon dioxide from a wet flue gas. However, earlier studies have focused primarily on the carbon dioxide uptake of adsorbents, and have not demonstrated effective adsorbent regeneration and long-term stability under such conditions. Here, we report the versatile and scalable synthesis of a functionalized-polyethyleneimine (PEI)/silica adsorbent which simultaneously exhibits a large working capacity (2.2 mmol g(-1)) and long-term stability in a practical temperature swing adsorption process (regeneration under 100% carbon dioxide at 120 °C), enabling the separation of concentrated carbon dioxide. We demonstrate that the functionalization of PEI with 1,2-epoxybutane reduces the heat of adsorption and facilitates carbon dioxide desorption (>99%) during regeneration compared with unmodified PEI (76%). Moreover, the functionalization significantly improves long-term adsorbent stability over repeated temperature swing adsorption cycles due to the suppression of urea formation and oxidative amine degradation. PMID:27572662

  19. Visualization and Measurement of Adsorption/Desorption Process of Ethanol in Activated Carbon Adsorber

    Science.gov (United States)

    Asano, Hitoshi; Murata, Kenta; Takenaka, Nobuyuki; Saito, Yasushi

    Adsorption refrigerator is one of the efficient tools for waste heat recovery, because the system is driven by heat at relative low temperature. However, the coefficient of performance is low due to its batch operation and the heat capacity of the adsorber. In order to improve the performance, it is important to optimize the configuration to minimize the amount of driving heat, and to clarify adsorption/desorption phenomena in transient conditions. Neutron radiography was applied to visualize and measure the adsorption amount distribution in an adsorber. The visualization experiments had been performed at the neutron radiography facility of E-2 port of Kyoto University Research Reactor. Activated carbon and ethanol were used as the adsorbent and refrigerant. From the acquired radiographs, adsorption amount was quantitatively measured by applying the umbra method using a checkered neutron absorber with boron powder. Then, transient adsorption and desorption processes of a rectangular adsorber with 84 mm in width, 50 mm in height and 20 mm in depth were visualized. As the result, the effect of fins in the adsorbent layer on the adsorption amount distribution was clearly visualized.

  20. Enhancement of mass transfer by ultrasound: Application to adsorbent regeneration and food drying/dehydration.

    Science.gov (United States)

    Yao, Ye

    2016-07-01

    The physical mechanisms of heat and mass transfer enhancement by ultrasound have been identified by people. Basically, the effect of 'cavitation' induced by ultrasound is the main reason for the enhancement of heat and mass transfer in a liquid environment, and the acoustic streaming and vibration are the main reasons for that in a gaseous environment. The adsorbent regeneration and food drying/dehydration are typical heat and mass transfer process, and the intensification of the two processes by ultrasound is of complete feasibility. This paper makes an overview on recent studies regarding applications of power ultrasound to adsorbent regeneration and food drying/dehydration. The concerned adsorbents include desiccant materials (typically like silica gel) for air dehumidification and other ones (typically active carbon and polymeric resin) for water treatment. The applications of ultrasound in the regeneration of these adsorbents have been proved to be energy saving. The concerned foods are mostly fruits and vegetables. Although the ultrasonic treatment may cause food degradation or nutrient loss, it can greatly reduce the food processing time and decrease drying temperature. From the literature, it can be seen that the ultrasonic conditions (i.e., acoustic frequency and power levels) are always focused on during the study of ultrasonic applications. The increasing number of relevant studies argues that ultrasound is a very promising technology applied to the adsorbent regeneration and food drying/dehydration. PMID:26964979

  1. Many-body dispersion effects in the binding of adsorbates on metal surfaces.

    Science.gov (United States)

    Maurer, Reinhard J; Ruiz, Victor G; Tkatchenko, Alexandre

    2015-09-14

    A correct description of electronic exchange and correlation effects for molecules in contact with extended (metal) surfaces is a challenging task for first-principles modeling. In this work, we demonstrate the importance of collective van der Waals dispersion effects beyond the pairwise approximation for organic-inorganic systems on the example of atoms, molecules, and nanostructures adsorbed on metals. We use the recently developed many-body dispersion (MBD) approach in the context of density-functional theory [Tkatchenko et al., Phys. Rev. Lett. 108, 236402 (2012) and Ambrosetti et al., J. Chem. Phys. 140, 18A508 (2014)] and assess its ability to correctly describe the binding of adsorbates on metal surfaces. We briefly review the MBD method and highlight its similarities to quantum-chemical approaches to electron correlation in a quasiparticle picture. In particular, we study the binding properties of xenon, 3,4,9,10-perylene-tetracarboxylic acid, and a graphene sheet adsorbed on the Ag(111) surface. Accounting for MBD effects, we are able to describe changes in the anisotropic polarizability tensor, improve the description of adsorbate vibrations, and correctly capture the adsorbate-surface interaction screening. Comparison to other methods and experiment reveals that inclusion of MBD effects improves adsorption energies and geometries, by reducing the overbinding typically found in pairwise additive dispersion-correction approaches. PMID:26374001

  2. Single stage batch adsorber design for efficient Eosin yellow removal by polyaniline coated ligno-cellulose.

    Science.gov (United States)

    Debnath, Sushanta; Ballav, Niladri; Maity, Arjun; Pillay, Kriveshini

    2015-01-01

    Polyaniline-coated lignin-based adsorbent (PLC) was synthesized and used for uptake of reactive dye eosin yellow (EY) from aqueous solution. The adsorption capability of the adsorbent was found to be more effective than the unmodified adsorbent (LC). In particular, the adsorption capability of the PLC was effective over a wider pH range. This could be owing to its higher point of zero charge, which is more favorable for the uptake of the anionic dye. Adsorption isotherm models suggested a monolayer adsorption was predominant. The mean free energy of adsorption (E(DR)) was found to have values between 8 and 16 kJ mol(-1) which suggests that an electrostatic mechanism of adsorption predominated over other underlying mechanisms. The adsorption process was also found to be spontaneous, with increasing negative free energy values observed at higher temperatures. Chemisorption process was supported by the changes in enthalpy above 40 kJ mol(-1) and by the results of desorption studies. This new adsorbent was also reusable and regenerable over four successive adsorption-desorption cycles. The single stage adsorber design revealed that PLC can be applicable as an effective biosorbent for the treatment of industrial effluents containing EY dye. PMID:25256550

  3. Transport of significant metals recovered in real sea experiment of adsorbents

    International Nuclear Information System (INIS)

    Real sea experiment for the recovery of significant metals such as uranium and vanadium which dissolved in seawater with extremely low concentration has been carried out at the offing of Mutsu establishment to evaluate the adsorption performance of adsorbent synthesized by radiation-induced graft-polymerization. The significant metals of uranium and vanadium eluted from the adsorbent which was soaked in the real sea were adsorbed onto the conventional chelate resin. The chelate resin which adsorbed the metals was packed in a plastic (PVC) column and further put in a cylindrical stainless transport container. This container was transported to the facility for separation and purification by a truck for the exclusive loading. Then the recovers metals were purified there. The recovered metals contained the uranium of 150g (1.92 MBq) and less in one recovery experiment. The maximum concentration is 60 Bq/g when the uranium is adsorbed on the chelate resin. Transport of recovered metals can be treated as general substance since these amount and concentration are out of legal control. However, the recovered metals were transported in conformity to L type Transport as a voluntary regulation. Though there is no requirements of structural strength for L type package legally, the structural strength of container was designed on that of IP-2 type which is higher transport grade than L type to take its safety measure. Its strength analysis proved the safety under general transport process. The transport was based on the plan made in advance. (author)

  4. ADSORPTION OF Cr(VI FROM AQUEOUS SOLUTION USING CARBON-MICROSILICA COMPOSITE ADSORBENT

    Directory of Open Access Journals (Sweden)

    DEYI ZHANG

    2012-03-01

    Full Text Available In this work, Microsilica, one kind of industry solid waste material, was utilized firstly to prepare a carbon-Microsilica composite adsorbent from a partial carbonization, mixture and sulfoxidation process and was proposed for the removal of Cr(VI from solutions. The surface chemistry characteristics of the prepared adsorbent were analysis by XPS and FT-IR. The characterization results indicated that an abundant of oxygen functional groups, such as hydroxyl, carboxyl and sulfonic groups, were introduced into the surface of the prepared composite adsorbent. Meanwhile, the adsorption characteristics of Cr(VI onto the adsorbent in aqueous solutions was studied as a function of solution pH, ionic strength, contact time, and temperature. The results showed that Cr(VI adsorption onto the adsorbent is strongly dependent on pH and, to a lesser extent, ionic strength. Kinetics data were found to follow the pseudo-second-order kinetic model while the adsorption data corresponded to L-shape adsorption isotherm which corresponds to the classification of Giles. Activation thermodynamic parameters, such as activation enthalpy (ΔH*, activation entropy (ΔS*, activation Gibbs free energy (ΔG* and activation energy (E, have been evaluated and the possible adsorption mechanism also was suggested.

  5. PVDF membranes containing hybrid nanoparticles for adsorbing cationic dyes: physical insights and mechanism

    Science.gov (United States)

    Sharma, Maya; Madras, Giridhar; Bose, Suryasarathi

    2016-07-01

    In this study, Fe (iron) and Ag (silver) based adsorbents were synthesized using solution combustion and in situ reduction techniques. The synthesized adsorbents were comprehensively characterized by different techniques including electron microscopy, BET, XRD, Zeta potential etc. Three chlorinated cationic dyes used were malachite green, methyl violet and pyronin Y. These dyes were adsorbed on various synthesized adsorbents [iron III oxide (Fe2O3)], iron III oxide decorated silver nanoparticles by combustion synthesis technique [Fe2O3–Ag(C)] and iron III oxide decorated silver nanoparticles using in situ reduction, [Fe2O3–Ag (S)]. The isotherm and the adsorption kinetics have been studied systematically. The kinetic data can be explained by the pseudo second order model and the adsorption equilibrium followed Langmuir isotherm. The equilibrium and kinetics results suggest that Fe2O3–Ag(S) nanoparticles showed the maximum adsorption among all the adsorbents. Hence, Polyvinylidene fluoride based membranes containing Fe2O3–Ag(S) nanoparticles were prepared via phase inversion (precipitation immersion using DMF/water) technique. The adsorption kinetics were studied in detail and it was observed that the composite membrane showed synergistic improvement in dye adsorption. Such membranes can be used for water purification.

  6. Removal of cationic dyes from aqueous solution using magnetic multi-wall carbon nanotube nanocomposite as adsorbent

    International Nuclear Information System (INIS)

    A magnetic multi-wall carbon nanotube (MMWCNT) nanocomposite was synthesized and was used as an adsorbent for removal of cationic dyes from aqueous solutions. The MMWCNT nanocomposite was composed of commercial multi-wall carbon nanotubes and iron oxide nanoparticles. The properties of this magnetic adsorbent were characterized by scanning electron microscopy, X-ray diffraction and BET surface area measurements. Adsorption characteristics of the MMWCNT nanocomposite adsorbent were examined using methylene blue, neutral red and brilliant cresyl blue as adsorbates. Experiments were carried out to investigate adsorption kinetics, adsorption capacity of the adsorbent and the effect of adsorption dosage and solution pH values on the removal of cationic dyes. Kinetic data were well fitted by a pseudo second-order model. Freundlich model was used to study the adsorption isotherms. The prepared MMWCNT adsorbent displayed the main advantage of separation convenience compared to the present adsorption treatment.

  7. Adsorbent filled membranes for gas separation. Part 1. Improvement of the gas separation properties of polymeric membranes by incorporation of microporous adsorbents

    OpenAIRE

    Duval, J.-M.; Folkers, B.; Mulder, M.H.V.; Desgrandchamps, G.; Smolders, C.A.

    1993-01-01

    The effect of the introduction of specific adsorbents on the gas separation properties of polymeric membranes has been studied. For this purpose both carbon molecular sieves and zeolites are considered. The results show that zeolites such as silicate-1, 13X and KY improve to a large extent the separation properties of poorly selective rubbery polymers towards a mixture of carbon dioxide/methane. Some of the filled rubbery polymers achieve intrinsic separation properties comparable to cellulos...

  8. Removal of lead from aqueous solutions by condensed tannin gel adsorbent

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    Lead has caused serious environmental pollution due toits toxicity, accumulation in food chains and persistence innature. In this paper, lead removal from aqueous solutions wasinvestigated using condensed tannin gel adsorbent synthesized froma natural tannin compound. It is found that the adsorption isstrongly affected by pH values of aqueous solutions. Within pHrange of 3.5-6, when initial lead concentration is 100 mg/L,removal efficiency is more than 90%. Adsorption equilibrium isreached within 150 minutes. The adsorption isotherm fits well withthe Langmuir equation, by which the saturated adsorption uptake of190 mg Pb2+/g dry tannin gel adsorbent is obtained. By means of thermodynamics analysis, it is revealed that the process isexothermic and the adsorption heat is up to 38.4 kJ/mol. Withrespect to high efficiency, moderate pH requirement and minimizedsecond pollution, the tannin gel adsorbent exhibits a promisingpotential in the removal of lead from wastewater.

  9. Application of insoluble tannin adsorbent to alpha aqueous waste treatment in NUCEF

    International Nuclear Information System (INIS)

    The use of insoluble tannin adsorbent has been investigated as a means to reduce the volume of aqueous waste contaminated with americium. This work is aimed at reducing the volume of TRU waste generated within NUCEF where experiments related to back end of the nuclear fuel cycle are performed. Insoluble tannin adsorbent is a gelled material consisting of C, H and O which can be easily incinerated. The distribution coefficient and adsorption capacity of americium in insoluble tannin have been investigated and found to be 1000 ml/g in 0.02 M HNO3 and 0.013 mmol/g-dried tannin, respectively. The prospect of applying the adsorbent to the treatment of aqueous waste contaminated with americium appears promising. (author)

  10. Hard coal as a potential low-cost adsorbent for removal of 4-chlorophenol from water.

    Science.gov (United States)

    Kuśmierek, Krzysztof; Zarębska, Katarzyna; Świątkowski, Andrzej

    2016-01-01

    The potential use of raw hard coals as low-cost adsorbents for the removal of 4-chlorophenol (4-CP) from aqueous solutions was examined. The effect of experimental parameters such as the pH and salt presence was evaluated. The kinetic studies showed the equilibrium time was found to be 2 h for all of the adsorbents and that the adsorption process followed the pseudo-second order kinetic model. The adsorption isotherms of the 4-CP on the hard coals were fitted to the Langmuir, Freundlich, Langmuir-Freundlich, Sips and Redlich-Peterson equations. Based on the results obtained, hard coals appear to be a promising adsorbent for the removal of some hazardous water pollutants, like 4-CP and related compounds. PMID:27120657

  11. Effect of Aluminum Source on Adsorption Performance of Lithium Orthosilicate Based Adsorbents from Kaolin Clay

    Institute of Scientific and Technical Information of China (English)

    XIE Hongyan; DING Tong; LI Yulong; MA Zhi; CHEN Weiqiang

    2015-01-01

    A novel lithium orthosilicate based adsorbent doping with halloysite nanotubes (HNTs) was synthesized with Kaolin clay and SiO2 by an impregnation-precipitation method. The samples were characterized by X-ray diffraction and scanning electron microscopy, nitrogen adsorption-desorption isotherm analysis and thermo-gravimetry, respectively. The results indicate that the reactivity of Li4SiO4 for CO2 absorption can be enhanced by doping alumina. Different alu-minum sources result in different degrees of the CO2 adsorption performance. It is also found that the CO2 capture amount of the adsorbent doping with Halloysite nanotubes is 15.25wt.% at 560℃, which is better than that of the ad-sorbent doping withγ-Al2O3(i.e., 10.88wt.%).

  12. Sacrificial adsorbate for surfactants utilized in chemical floods of enhanced oil recovery operations

    Science.gov (United States)

    Johnson, Jr., James S.; Westmoreland, Clyde G.

    1982-01-01

    The present invention is directed to a sacrificial or competitive adsorbate for surfactants contained in chemical flooding emulsions for enhanced oil recovery operations. The adsorbate to be utilized in the method of the present invention is a caustic effluent from the bleach stage or the weak black liquor from the digesters and pulp washers of the kraft pulping process. This effluent or weak black liquor is injected into an oil-bearing subterranean earth formation prior to or concurrent with the chemical flood emulsion and is adsorbed on the active mineral surfaces of the formation matrix so as to effectively reduce adsorption of surfactant in the chemical flood. Alternatively, the effluent or liquor can be injected into the subterranean earth formation subsequent to a chemical flood to displace the surfactant from the mineral surfaces for the recovery thereof.

  13. Ultrasound aided in situ transesterification of crude palm oil adsorbed on spent bleaching clay

    International Nuclear Information System (INIS)

    Research highlights: → Crude palm oil adsorbed on spent bleaching clay converted to biodiesel. → Ultrasound dislodges adsorbed oil from spent bleaching clay into reaction mixture. → Co-solvents promotes miscibility of the reactants. -- Abstract: Adsorbed crude palm oil on spent bleaching clay (SBC) was in situ transesterified to methyl esters (biodiesel) by the aid of ultrasound and organic co-solvents (petroleum ether (PE) or ethyl methyl ketone (EMK)). The SBC under study was found to contain 24.2-27.0% of crude oil with free fatty acids (FFA) of 3.01% and moisture content of 0.29%. The optimized reaction conditions were as follows: methanol to oil molar ratio of 150:1; catalyst (KOH), 20%; reaction temperature, 60 ± 2 oC; reaction time, 2 h. Using PE as a co-solvent, highest conversion of 75.2% was achieved while 60% was recorded with EMK.

  14. Preparation of Ammonia Adsorbent by Carbonizing and Activating Mixture of Biomass Material and Hygroscopic Salt

    Institute of Scientific and Technical Information of China (English)

    LONG Zhen; BU Xianbiao; LU Zhenneng; LI Huashan; MA Weibin

    2015-01-01

    We put forward a new and ingenious method for the preparation of a new adsorbent by soaking, carbonizing and activating the mixture of hygroscopic salt and biomass material. The new adsorbent has high porosity, uniform distribution and high content of CaCl2, and exhibits high adsorption performance. The ammonia uptake and specific cooling power (SCP) at 5 min adsorption time can reach as high as 0.19 g•g-1 and 793.9 W•kg-1, respectively. The concept of utilizing the biomass materials and hygroscopic salts as raw materials for the preparation of adsorbents is of practical interest with respect to the potential quantity of biomass materials around the world, indicating that there would be a new market for biomass materials.

  15. The pressure exerted by adsorbing directed lattice paths and staircase polygons

    International Nuclear Information System (INIS)

    A directed path in the vicinity of a hard wall exerts pressure on the wall because of loss of entropy. The pressure at a particular point may be estimated by estimating the loss of entropy if the point is excluded from the path. In this paper we determine asymptotic expressions for the pressure on the X-axis in models of adsorbing directed paths in the first quadrant. Our models show that the pressure vanishes in the limit of long paths in the desorbed phase, but there is a non-zero pressure in the adsorbed phase. We determine asymptotic approximations of the pressure for finite length Dyck paths and directed paths, as well as for a model of adsorbing staircase polygons with both ends grafted to the X-axis. (paper)

  16. Decontamination of a radioactive process waste water by adsorbing colloid flotation

    International Nuclear Information System (INIS)

    As a part of a research programme on the treatment of a radioactive process waste water by foam separation techniques, adsorbing colloid flotation was tested to remove 144Ce, 60Co, 65Zn and 89Sr from the waste water. Potassium oleate was used as the collector, and Fe(III) hydroxide, Al(III) hydroxide or Co(II) hydroxide as the coprecipitant. Under the optimal conditions; removals exceeding 99% could be achieved for 65Zn with any of the tested coprecipitants, for 144Ce with Fe(III) and Co(II) hydroxides and for 60Co with only Co(II) hydroxide. For 89Sr removals > 90% could be achieved with only Fe(III) hydroxide. The adsorbing colloid flotation process was compared with both chemical precipitation and ion exchange, and advantages of adsorbing colloid flotation were enumerated. (author)

  17. Development of Highly Efficient Grafting Technique and Synthesis of Natural Polymer-Based Graft Adsorbent

    International Nuclear Information System (INIS)

    In the framework of the CRP, Japan has focused on the development of fibrous adsorbents for removal of toxic metal ions and recovery of significant metal ions from industrial wastewater and streaming water. Graft polymerization was carried out by using gamma irradiation facility and electron beam accelerator. Emulsion grafting is a novel topic for synthesis of metal ion adsorbents which are prepared from fibrous trunk polymers such as polyethylene fibre and biodegradable nonwoven fabrics. The emulsion grafting, where monomer micelles are dispersed in water in the presence of surfactant, is a highly efficient and economic grafting technique as compared to general organic solvent system. The resultant cotton-based adsorbent has high adsorption efficiency and high adsorption capacity for Hg, besides, it is biodegradable. Polylactic acid can also be used as a trunk material for the grafting. (author)

  18. On-surface magnetochemistry: controlling spins in adsorbed molecules by a chemical switch

    International Nuclear Information System (INIS)

    Full text: We are interested in controlling the magnetic properties of paramagnetic molecules adsorbed on ferromagnetic substrates. The transition-metal ions in the surface-adsorbed porphyrins / phthalocyanines have a free top site for an additional ligand to bind and to control the magnetic properties of the on-surface complex. We show switching-off, tuning and switching-on the magnetic moments in the adsorbed complexes. Because of the interaction with the surface, the exact outcome of those reactions can be different. The axial-ligand allows to modify this interaction and can thus be used to control the exchange-interaction with the substrate. We combine element specific x-ray magnetic circular dichroism (XMCD) with STM and DFT+U. (author)

  19. Preparation of metal adsorbent from poly(methyl acrylate)-grafted-cassava starch via gamma irradiation

    Science.gov (United States)

    Suwanmala, Phiriyatorn; Hemvichian, Kasinee; Hoshina, Hiroyuki; Srinuttrakul, Wannee; Seko, Noriaki

    2012-08-01

    Metal adsorbent containing hydroxamic acid groups was successfully synthesized by radiation-induced graft copolymerization of methyl acrylate (MA) onto cassava starch. The optimum conditions for grafting were studied in terms of % degree of grafting (Dg). Conversion of the ester groups present in poly(methyl acrylate)-grafted-cassava starch copolymer into hydroxamic acid was carried out by treatment with hydroxylamine (HA) in the presence of alkaline solution. The maximum percentage conversion of the ester groups of the grafted copolymer, % Dg=191 (7.63 mmol/g of MA), into the hydroxamic groups was 70% (5.35 mmol/g of MA) at the optimum condition. The adsorbent of 191%Dg had total adsorption capacities of 2.6, 1.46, 1.36, 1.15 and 1.6 mmol/g-adsorbent for Cd2+, Al3+, UO22+, V5+ and Pb2+, respectively, in the batch mode adsorption.

  20. Citrus paradisi: An Effective bio-adsorbent for Arsenic (V Remediation

    Directory of Open Access Journals (Sweden)

    Mazhar I. Khaskheli

    2014-06-01

    Full Text Available In the present study As (V was removed by citrus paradisi (grape fruit peel. Kinetics of the adsorption reaction was analyzed by the Pseudo second order and Morris-weber equations. Freundlich and Langmuir isotherm models were utilized for understanding of the relationship between the arsenic ions and citrus paradisi peel adsorbent. The maximum measured uptake capacity of citrus paradisi was 37.76 mg.g-1 at pH 4. FT-IR characterization of unloaded and As (V loaded citrus paradisi peel adsorbent showed the participation of carbonyl (CO and hydroxyl (OH groups in adsorption process. The proposed citrus paradisi peel adsorbent with optimized parameters was used for the removal of arsenic from arsenic contaminated real water samples.

  1. Citrus paradisi: an effective bio-adsorbent for arsenic (v) remediation

    International Nuclear Information System (INIS)

    In the present study As(V) was removed by citrus paradise (grape fruit) peel. Kinetics of the adsorption reaction was analyzed by the Pseudo second order and Morris-weber equations. Freundlich and Langmuir isotherm models were utilized for understanding of the relationship between the arsenic ions and citrus paradise peel adsorbent. The maximum measured uptake capacity of citrus paradise was 37.76 mg.g/sup -1/ at pH 4. FT-IR characterization of unloaded and As (V) loaded citrus paradisi peel adsorbent showed the participation of carbonyl (CO) and hydroxyl (OH) groups in adsorption process. The proposed citrus paradis peel adsorbent with optimized parameters was used for the removal of arsenic from arsenic contaminated real water samples. (author)

  2. Melatonin Nanoparticles Adsorbed to Polyethylene Glycol Microspheres as Activators of Human Colostrum Macrophages

    International Nuclear Information System (INIS)

    The effectiveness of hormones associated with polymeric matrices has amplified the possibility of obtaining new drugs to activate the immune system. Melatonin has been reported as an important immunomodulatory agent that can improve many cell activation processes. It is possible that the association of melatonin with polymers could influence its effects on cellular function. Thus, this study verified the adsorption of the hormone melatonin to polyethylene glycol (PEG) microspheres and analyzed its ability to modulate the functional activity of human colostrum phagocytes. Fluorescence microscopy and flow cytometry analyses revealed that melatonin was able to adsorb to the PEG microspheres. This system increased the release of superoxide and intracellular calcium. There was an increase of phagocytic and microbicidal activity by colostrum phagocytes when in the presence of melatonin adsorbed to PEG microspheres. The modified delivery of melatonin adsorbed to PEG microspheres may be an additional mechanism for its microbicidal activity and represents an important potential treatment for gastrointestinal infections of newborns.

  3. Radiation-induced reactions in D, L-α-alanine adsorbed in solid surfaces

    International Nuclear Information System (INIS)

    The aim of this work is to study the behavior under irradiation of D, L and D-L α-alanine adsorbed in solid surfaces, as possible phase in the chemical evolution that may have occurred on the primitive Earth or in extraterrestrial environments and to evaluate the contribution of solids (a clay mineral) as shields for the adsorbed amino acids against a external energy source. The results show that α-alanine is adsorbed in the surfaces as function of pH and its yield of decomposition in mineral suspension is lower than the system without the solid surface. These results show the importance of nuclear techniques in these types of studies. (author)

  4. Removal of Indigo Carmine Dye from Aqueous Solution Using Magnesium Hydroxide as an Adsorbent

    Directory of Open Access Journals (Sweden)

    Thimmasandra Narayan Ramesh

    2015-01-01

    Full Text Available Magnesium hydroxide is used as an adsorbent for the removal of indigo carmine dye from aqueous solution. We have investigated the effectiveness of removal of indigo carmine dye from aqueous solutions at pH 6-7 and 12-13 using magnesium hydroxide thereby varying the dose of the adsorbent, concentration of the dye, duration, and temperature. Structural transformations of adsorbent during the adsorption process at different pH values are monitored using powder X-ray diffraction and infrared spectroscopy. Different types of adsorption isotherm models were evaluated and it was found that Langmuir isotherm fits well at both pH values (6-7 and 12-13. Adsorption of indigo carmine onto magnesium hydroxide at pH 6-7/pH 12-13 follows pseudo-second order rate kinetics.

  5. Ultrasound aided in situ transesterification of crude palm oil adsorbed on spent bleaching clay

    Energy Technology Data Exchange (ETDEWEB)

    Boey, Peng-Lim [School of Chemical Sciences, Universiti Sains Malaysia, 11800 Minden, Penang (Malaysia); Ganesan, Shangeetha, E-mail: shangeetha.ganesan@gmail.co [School of Chemical Sciences, Universiti Sains Malaysia, 11800 Minden, Penang (Malaysia); Maniam, Gaanty Pragas [School of Chemical Sciences, Universiti Sains Malaysia, 11800 Minden, Penang (Malaysia); Ali, Dafaalla Mohamed Hag [School of Chemical Sciences, Universiti Sains Malaysia, 11800 Minden, Penang (Malaysia); Chemistry Department, Sudan University of Science and Technology, P.O. Box 407, Khartoum (Sudan)

    2011-05-15

    Research highlights: {yields} Crude palm oil adsorbed on spent bleaching clay converted to biodiesel. {yields} Ultrasound dislodges adsorbed oil from spent bleaching clay into reaction mixture. {yields} Co-solvents promotes miscibility of the reactants. -- Abstract: Adsorbed crude palm oil on spent bleaching clay (SBC) was in situ transesterified to methyl esters (biodiesel) by the aid of ultrasound and organic co-solvents (petroleum ether (PE) or ethyl methyl ketone (EMK)). The SBC under study was found to contain 24.2-27.0% of crude oil with free fatty acids (FFA) of 3.01% and moisture content of 0.29%. The optimized reaction conditions were as follows: methanol to oil molar ratio of 150:1; catalyst (KOH), 20%; reaction temperature, 60 {+-} 2 {sup o}C; reaction time, 2 h. Using PE as a co-solvent, highest conversion of 75.2% was achieved while 60% was recorded with EMK.

  6. Removal of basic dye from aqueous solutions using nano scale zero valent iron (NZVI) as adsorbent

    International Nuclear Information System (INIS)

    Nano scale zero valent iron (NZVI) was synthesized and tested for the purification of waste water contaminated by the organic pollutants. In the present study removal of basic blue 3 dye was investigated by NZVI adsorbent. NZVI adsorbent was prepared in the presence of N/sub 2/ gas atmosphere by sodium boro- hydrate (NaHB/sub 4/) reduction method. The particle size of the prepared adsorbent was approximately in the range of 1 x 10/sup -2/nm to 2 x 10/sup -2/nm. The adsorption of basic blue 3 dyes was confirmed with various parameters such as ionic strength, contact time and initial dye concentrations. The experiments were carried out in a batch mode technique. The surface morphology was studied by SEM analysis technique. (author)

  7. Tuberose sticks as an adsorbent in the removal of methylene blue from aqueous solution

    International Nuclear Information System (INIS)

    The use of low-cost and ecofriendly adsorbents has been investigated as an ideal alternative to the current expensive methods of removing dyes from wastewater. Methylene Blue was used as model compound. The effects of contact time, initial dye concentration (20, 30, 40, 50 mg/L), pH and adsorbent dosages have been studied at 25 C. The equilibrium time was found to be 30 min for all the dye concentrations. A maximum removal of 80% was obtained at pH 11.0 for an adsorbent dose 50 mg/50 mL of 40 mg/L dye concentration. Adsorption increased with increase in pH. Maximum desorption of 50% was achieved in water medium at pH 2.0. (author)

  8. Adsorption of cyclic hydrocarbons on Pt and the interaction of the adsorbed species with hydrogen

    International Nuclear Information System (INIS)

    The adsorption of six-membered hydrocarbon cycles and cyclopentane and the interaction of hydrogen with the adsorbed layer on polycrystalline Pt-foil have been studied. The work function change (Δφ) was followed by a Kelvin probe and the C/Pt peak ratio was determined by Auger electron spectroscopy. Combining these two techniques made it possible to distinguish between chemisorption via σ-bonds and π-complex formation. Benzene and toluene adsorbed first as π-complex while cyclohexane showed initially a partial aromatization and a π-complex-like bonding to the surface. Excess hydrocarbon or addition of hydrogen transformed the π-complex into σ-bonded species. Cyclopentane adsorbed via σ-bonds and showed no significant hydrogen effect

  9. Synthesis and uranium adsorption performance of a novel modified lign in-based adsorbent

    International Nuclear Information System (INIS)

    A novel modified lignin-based adsorbent containing the strong-base and weak-base group was prepared by two-steps chemical modification method using acid-precipitation lignin, which is low-cost and abundant renewable natural polymers: (1) introduced weak-base group by Mannich reaction; (2)introduced strong-base group by O-alkylation reaction. The adsorbent was characterized by Fourier Transform Infrared Spectroscopy (FT-IR) and Elementary Analysis (EA). The results indicated that two kinds of amino group were successfully introduced into the lignin structure. In order to assess its adsorption effect for uranyl, the adsorption experiments were carried out in the static mode at room temperature using a low-concentration uranium aqueous solution. The removal rate of uranium could reach 93%, under such conditions as pH value 2, uranium concentration 1-10 mg/L, and adsorbent dosage 10 g/L etc. (authors)

  10. WGS-Adsorbent Reaction Studies at Laboratory Scale; Estudios de la Reaccion WGS-Adsorbente a Escala de Laboratorio

    Energy Technology Data Exchange (ETDEWEB)

    Marano, M.; Torreiro, Y.

    2014-02-01

    This document reports the most significant results obtained during the experimental work performed under task WGS-adsorbent experimental studies within CAPHIGAS project (National Research Plan 2008-2011, ref: ENE2009-08002). The behavior of the binary adsorbent-catalyst system which will be used in the hybrid system is described in this document. Main results reported here were used during the design and development of the hybrid system adsorbent catalyst- membrane proposed in the CAPHIGAS project. The influence of main operating parameters and the optimized volume ratio adsorbent-catalyst are also presented in this report. (Author)

  11. To-date spacecraft applications and demonstration testing results, and future product development for new molecular adsorber technologies

    Science.gov (United States)

    Thomson, Shaun; Hansen, Patricia; Straka, Sharon; Chen, Philip; Triolo, Jack; Bettini, Ron; Carosso, Paolo; Carosso, Nancy

    1997-01-01

    The use of molecular adsorbers, in order to aid in the reduction of the spacecraft contamination levels, is discussed. Molecular adsorbers are characterized by an extremely large surface area, molecularly-porous substructure, and processing charged sites capable of retaining molecular contaminant species. Molecular adsorbers were applied on two Hubble Space Telescope servicing missions, as well as on the tropical rainfall measuring mission. The use of molecular adsorbers carries the potential for low cost, easy fabrication and integration of reliable means for reducing the contamination level around spacecraft.

  12. Development of adsorbent for C-14 Gas trapping and characteristics evaluation

    International Nuclear Information System (INIS)

    Desorption characteristics of C-14 adsorbed on spent resin as H14CO3 ion type by applying various stripping solutions were analyzed, and some experiments for gasification of C-14 to CO2 gas with were also performed. Based on these results, the process concept for spent resin treatment was suggested. Real spent resin was prepared from sampling in storage tank in site 1 of Wolseung Nuclear Power Plant. Desorption characteristics of C-14 and cations of Cs, Co from spent IRN-150 resin was evaluated. Desorption efficiency of C-14 from spent resin by using H3PO4 desorption solution was over 96% regardless of C-14 amount on initial spent resin when comparing a activity of C-14 on initial spent resin. Also, desorption percent of cation of Cs, Co from anion ion-exchange resin (IRN-77) showed that Co-60 was below 1%, Cs-134, 137 was in a range of 2 ∼ 5%. Fundamental studies include an development of adsorbent manufacturing technology and its performance evaluation for C-14 gas trapping, the adsorption process by adopting gas circulation method was suggested for the design of 14CO2 gas treatment system generated from spent resin treatment process. In order to predict adsorbent performance of CO2 trapping, modelling was carried out to verify the breakthrough curves of CO2 trapping by using soda lime adsorbent. The effect of humidity on CO2 trapping by using soda lime adsorbent was modelled via chemical reaction in porous media. Assessment of the state-of-the-arts on the solidification of the used adsorbent showed that the cement matrix would be the best-available binder from the view points of the matrix compatibility, properties of the final waste form, simplicity of the process and relatively low cost

  13. Ion Transport across a Polyelectrolyte-Adsorbed Cellulose Triacetate Membrane in the Multicomponent Ionic Systems.

    Science.gov (United States)

    Murata; Tanioka

    1999-01-15

    The effects of polyelectrolyte adsorption by cellulose triacetate (CTA) membrane on ionic transport are investigated in two systems: the three-ionic-component system and the multicomponent-ionic system. In the three-ionic-component system, the permeabilities of two anions are affected by the competitive ion. Especially in the case of the albumin-adsorbed CTA membrane, there exists much greater specificity for the permeability of SO2-4 than in the case of the lysozyme-adsorbed membrane. On the other hand, in the case of the PAS-H(10L)(polydiallyldimethylammonium chloride)-adsorbed membrane, the permeability coefficient of HPO2-4 increases, though there exists the effect of a competitive ion. In a multicomponent-ionic system, the logarithmic permeability coefficient ratios (rP) of each ion in an adsorbed membrane to that in a nonadsorbed membrane decreased by PAS-H(10L) adsorption for all cations. The rP of bivalent cations decreased more than those of univalent cations because of the rejection from the positively charged adsorbed layer. On the other hand, the permeabilities slightly increase because of the attraction from the PAS-H(10L)-adsorbed layer when competitive anions exist among them. Furthermore, the increase in the HPO2-4 permeability is confirmed by PAS-H(10L)-adsorption on a CTA membrane for a case very similar to the actual anion multicomponent system. These are the most important results in the application for an approach to phosphate extraction from blood across an artificial kidney membrane. Copyright 1999 Academic Press. PMID:9885263

  14. Sulfur removal from fuel using zeolites/polyimide mixed matrix membrane adsorbents

    International Nuclear Information System (INIS)

    Graphical abstract: Membrane adsorption process is proposed for sulfur removal. Three-dimensional network structure is key to fulfill adsorption function of MMMs, which adsorption/desorption behavior is markedly related with binding force with sulfur molecules. Highlights: ► Membrane adsorption process is proposed for sulfur removal. ► Three-dimensional network structure of MMMs is key to fulfill adsorption function. ► Adsorption/desorption behavior is markedly related with binding force. - Abstract: A novel membrane adsorption process was proposed for the sulfur removal from fuels. The mixed matrix membranes (MMMs) adsorbents composed of polyimide (PI) and various Y zeolites were prepared. By the detailed characterization of FT-IR, morphology, thermal and mechanical properties of MMMs adsorbents, combining the adsorption and desorption behavior research, the process–structure–function relationship was discussed. Field-emission scanning electron microscope (FESEM) images show that the functional particles are incorporated into the three-dimensional network structure. MMMs adsorbents with 40% of zeolites content possess better physical properties, which was confirmed by mechanical strength and thermo stability analysis. Influence factors including post-treatment, content of incorporated zeolites, adsorption time, temperature, initial sulfur concentration as well as sulfur species on the adsorption performance of MMMs adsorbents have been evaluated. At 4 wt.% zeolites content, adsorption capacity for NaY/PI, AgY/PI and CeY/PI MMMs adsorbents come to 2.0, 7.5 and 7.9 mg S/g, respectively. And the regeneration results suggest that the corresponding spent membranes can recover about 98%, 90% and 70% of the desulfurization capacity, respectively. The distinct adsorption and desorption behavior of MMMs adsorbents with various functional zeolites was markedly related with their various binding force and binding mode with sulfur compounds.

  15. Application of nanoporous silicas as adsorbents for chlorinated aromatic compounds. A comparative study

    Energy Technology Data Exchange (ETDEWEB)

    Moritz, Michał, E-mail: michal.moritz@put.poznan.pl [Poznan University of Technology, Faculty of Chemical Technology, Institute of Chemistry and Technical Electrochemistry, Piotrowo 3, 60-965 Poznań (Poland); Adam Mickiewicz University, Faculty of Chemistry, Umultowska 89b, 61-614 Poznań (Poland); Geszke-Moritz, Małgorzata, E-mail: Malgorzata.Geszke-Moritz@amu.edu.pl [NanoBioMedical Centre, Adam Mickiewicz University, Umultowska 85, 61-614 Poznań (Poland)

    2014-08-01

    The removal of two selected environmental pollutants such as 2,4-dichlorophenoxyacetic acid (2,4-D) and Triclosan (TC) was examined by adsorption experiments on the modified SBA-15 and MCF mesoporous silicas. Mesoporous adsorbents were modified by a grafting process with (3-aminopropyl)triethoxysilane (APTES) and 1-[3-(trimethoxysilyl)propyl]urea (TMSPU). Mesoporous materials were synthesized and characterized by N{sub 2} adsorption–desorption experiment, transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FT-IR), elemental analysis and adsorption studies. The results show that both APTES-functionalized SBA-15 and MCF nanoporous carriers are potentially good adsorbents for the removal of 2,4-D in a wide range of concentrations from 0.1 to 4 mg/cm{sup 3}. Maximum adsorption capacity of as-modified adsorbents for 2,4-D estimated from the Langmuir model was ∼ 280 mg/g. The ionic interaction between the adsorbent and 2,4-D seems to play a key role in the adsorption process of the pollutant on APTES-modified siliceous matrices. The efficiency of TC sorption onto all prepared mesoporous adsorbents was significantly lower as compared to the entrapment of 2,4-D. Experimental data were best fitted by the Langmuir isotherm model. The results of this study suggest that mesoporous silica-based materials are promising adsorbents for the removal of selected organic pollutants. - Graphical abstract: Adsorption of 2,4-dichlorophenoxyacetic acid and Triclosan inside 3-amino-functionalized mesoporous channel.

  16. pH Dependence of Adsorbed Fibrinogen Conformation and Its Effect on Platelet Adhesion.

    Science.gov (United States)

    Hu, Yu; Jin, Jing; Liang, Haojun; Ji, Xiangling; Yin, Jinghua; Jiang, Wei

    2016-04-26

    Quartz crystal microbalance with dissipation (QCM-D) and dual polarization interferometry (DPI) were used to investigate fibrinogen (Fib) adsorption behavior on different surfaces by changing the pH value. Moreover, integrin adhesion to the adsorbed Fibs was studied using DPI. Qualitative and quantitative studies of platelet adhesion to the adsorbed Fibs were performed using scanning electron microscopy (SEM), confocal laser scanning microscope (CLSM), and released lactate dehydrogenase (LDH) assay. Experimental results indicated that the conformation and orientation of the absorbed Fibs depended on surface property and pH cycling. For the hydrophilic surface, Fibs adsorbed at pH 7.4 and presented a αC-hidden orientation. As a result, no integrin adhesion was observed, and a small number of platelets were adhered because the αC-domains were hidden under the Fib molecule. By changing the rinsing solution pH from 7.4 to 3.2 and then back to 7.4, the adsorbed Fib orientation became αC-exposed via the transformation of Fib conformation during pH cycling. Therefore, integrin adhesion was more likely to occur, and more platelets were adhered and activated. For the hydrophobic surface, the adsorbed Fibs became more spread and stretched due to the strong interaction between the Fibs and surface. αC-exposed orientation remained unchanged when the rinsing solution pH changed from 7.4 to 3.2 and then back to 7.4. Therefore, a large number of integrins and platelets were adhered to the adsorbed Fibs, and almost all of the adhered platelets were activated. PMID:27035056

  17. Interaction between adsorbed hydrogen and potassium on a carbon nanocone containing material as studied by photoemission

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Xiaofeng [Nesna University College, 8700 Nesna (Norway); Raaen, Steinar, E-mail: sraaen@ntnu.no [Physics Department, Norwegian University of Science and Technology, 7491 Trondheim (Norway)

    2015-09-14

    Hydrogen adsorption on a potassium doped carbon nanocone containing material was studied by photoelectron spectroscopy and work function measurement. The valence band spectra indicate that there is charge transfer from potassium to carbon. Upon deposition on carbon potassium is in its ionic state for lower doping and shows both ionic and metallic behavior at higher doping. Adsorption of hydrogen facilitates diffusion of potassium on the carbon material as seen by changes in the K{sub 2p} core level spectrum. Variations in the measured sample work function indicate that hydrogen initially adsorb on the K dopants and subsequently adsorb on the carbon cone containing material.

  18. Attachment of Sendai virus particles to cell membranes: dissociation of adsorbed virus particles with dithiothreitol.

    OpenAIRE

    Chejanovsky, N; Beigel, M; Loyter, A

    1984-01-01

    Sendai virus particles bind to human erythrocytes at 4 degrees C and fuse with them at 37 degrees C. The present work describes a new method by which adsorbed virus particles can be removed from human erythrocytes, allowing quantitative determination of the number of virus particles which can bind and fuse with human erythrocyte membranes. Through the use of 125I-labeled Sendai virus particles, it is shown that incubation with 50 mM dithiothreitol removed about 90 to 95% of adsorbed virus par...

  19. Use of Low-cost Adsorbents to Chlorophenols and Organic Matter Removal of Petrochemical Wastewater

    Directory of Open Access Journals (Sweden)

    Aretha Moreira de Oliveira

    2013-11-01

    Full Text Available The removal of 2,4 diclorophenol (2,4-DCF and 2,4,6 trichlorophenol (2,4,6 TCF present in  petrochemical wastewater was evaluated using low-cost adsorbents, such as chitin, chitosan and coconut shells. Batch studies showed that the absorption efficiency for 2,4 DCF and 2,4,6 TCF follow the order: chitosan > chitin > coconut shells. Langmuir and Freundlich models have been applied to experimental isotherms data, to better understand the adsorption mechanisms. Petrochemical wastewater treatment with fixed bed column system using chitinous adsorbents showed a removal of COD (75% , TOG (90% and turbidity (74-89%.

  20. Ameliorating Hemorheology by Direct Hemoperfusion with a Polymyxin B-immobilized Adsorbent

    Institute of Scientific and Technical Information of China (English)

    Li Yuan; Wang Xiang; Gao Wei; Cai Shaoxi

    2004-01-01

    Direct hemoperfusion (DHP) with an adsorbent column using polymyxin B-immobilized polystyrene beads has been used to investigate the changes of hemorheology in rabbits with endotoxemia. We measured whole blood viscosity and hemotocrit before and after DHP with polymyxin B-immobilized polystyrene beads. Reduction in blood endotoxin concentration by DHP therapy positively correlated with improvement in hemorheological indexs. Our findings indicate that the amelioration in hemorheology was related directly to endotoxin removal by the adsorbent column with polymyxin B-immobilize polystyrene beads. So DHP with polymyxin B-immobilized polystyrene beads seems to be an important therapeutic strategy for endotoxemia.

  1. Rotational Spectromicroscopy: Imaging the Orbital Interaction between Molecular Hydrogen and an Adsorbed Molecule

    Science.gov (United States)

    Li, Shaowei; Yuan, Dingwang; Yu, Arthur; Czap, Gregory; Wu, Ruqian; Ho, W.

    2015-05-01

    A hydrogen molecule can diffuse freely on the surface and be trapped above an adsorbed molecule within the junction of a scanning tunneling microscope. The trapped dihydrogen exhibits the properties of a free rotor. Here we show that the intermolecular interaction between dihydrogen and Mg-porphyrin (MgP) can be visualized by imaging j =0 to 2 rotational excitation of dihydrogen. The interaction leads to a weakened H-H bond and modest electron donation from the dihydrogen to the lowest unoccupied molecular orbital of MgP, a process similarly observed for the interaction between dihydrogen and an adsorbed Au atom.

  2. Controlled uniform coating from the interplay of Marangoni flows and surface-adsorbed macromolecules

    CERN Document Server

    Kim, Hyoungsoo; Um, Eujin; Jacobi, Ian; Button, Ernie; Stone, Howard A

    2016-01-01

    Surface coatings and patterning technologies are essential for various physicochemical applications. In this Letter, we describe key parameters to achieve uniform particle coatings in binary solutions: First, multiple sequential Marangoni flows, set by solute and surfactant simultaneously, prevent non-uniform particle distributions and continuously mix suspended materials during droplet evaporation. Second, we show the importance of particle-surface interactions that can be established by surface-adsorbed macromolecules. To achieve a uniform deposit in a binary mixture a small concentration of surfactant and surface-adsorbed polymer (0.05 wt% each) is sufficient, which offers a new physicochemical avenue for control of coatings.

  3. On stabilization of free radicals under γ-irradiation of molecules adsorbed by zeolites

    International Nuclear Information System (INIS)

    Investigated are ESR spectra and stability of free radicals forming as a result of γ-irradiation at -196 deg of triethylbenzol, diethyl spirit of dimethylmalon acid and tret butylbenzol, sorbed by NaX and CaX zeolites at room and increased temperatures. Anomalously high stability is characteristic only of radicals formed of γ-irradiated molecules, traversing close to the diameter of zeolite entry windows. The obtained data testifies to the effect that radiospectroscopy in combination with radiation effect on the adsorbed substances can successfully be used as the most sensitive method for porous structure characteristic of mineral adsorbents, in particular, for direct investigation of activized physical adsorption processes

  4. Stability of alanine in a high radiation field, adsorbed onto solid surfaces

    International Nuclear Information System (INIS)

    The aim of this work was to study the stability of alanine in a high radiation field, in the presence of a mineral surface, as a possible phase for chemical evolution processes that might have occurred on the primitive Earth or in extraterrestrial environments. For these purposes, the behavior of d-, l- and dl-alanine adsorbed onto solid surfaces (olivine, Allende meteorite and a clay mineral) under irradiation was studied. The results showed that alanine was adsorbed onto the surfaces as a function of pH, and its yield of decomposition by gamma radiation in mineral suspension was lower than that obtained by irradiating the system without the solid surface. (author)

  5. M4FT-15OR03100415 - Update on COF-based Adsorbent Survey

    Energy Technology Data Exchange (ETDEWEB)

    Mayes, Richard T. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Dai, Sheng [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-02-01

    This letter report provides an update on activities focused on generating nanoporous adsorbents involving covalent organic frameworks (COF) and zeolitic imidazolium frameworks (ZIF). The adsorbents have been generated and screened in a uranyl-spiked brine (6 ppm U) to understand uranyl-binding behavior. Porous organic polymers (POP) also qualify under this title and are similar to the COF PPN-6 that is discussed herein. Seven COF/POP and one 1 ZIF were synthesized and screened for uranyl adsorption. Seawater screening is on-going via batch testing while flow screening systems are being developed at PNNL.

  6. Interaction between adsorbed hydrogen and potassium on a carbon nanocone containing material as studied by photoemission

    International Nuclear Information System (INIS)

    Hydrogen adsorption on a potassium doped carbon nanocone containing material was studied by photoelectron spectroscopy and work function measurement. The valence band spectra indicate that there is charge transfer from potassium to carbon. Upon deposition on carbon potassium is in its ionic state for lower doping and shows both ionic and metallic behavior at higher doping. Adsorption of hydrogen facilitates diffusion of potassium on the carbon material as seen by changes in the K2p core level spectrum. Variations in the measured sample work function indicate that hydrogen initially adsorb on the K dopants and subsequently adsorb on the carbon cone containing material

  7. Removal of radionuclides from acid mine waters by retention on adsorbing materials

    International Nuclear Information System (INIS)

    This study proposes a method for decontamination of acid drainage water from a uranium mine, as an alternative process to lime treatment. The research embodied the recovery of uranium with an ion-exchange resin, treatment of effluent resin with lime, or with inorganic adsorbents and biosorbents. The uranium decontamination level using the resin process was 94% and allowed the recovery of this element as a commercial product. Among the inorganic adsorbents studied, phosphogypsum was effective for 226Ra, 228Ra, and 210Pb removal. Among the biosorbents, Sargassum sp. was superior in relation to its specific capacity to accumulate and remove 226Ra. (author)

  8. Determination of the coefficient of iodine absorption carbon materials adsorber ventilation NPP using stable isotopes

    International Nuclear Information System (INIS)

    Submitted by nuclear-physical methods of determining the coefficient of absorption of iodine carbon materials using stable isotopes of iodine. Designed and created by pumping and measuring iodine content units. The processes of dynamic sorption of iodine on industrial carbon adsorbents studied the possibility of determining the iodine content of nuclear-physical methods and presents the metrological characteristics x-ray method. Application methods allow for the certification of carbon adsorbents gas cleaning systems and improve the safety of nuclear power plant operation

  9. Electronically driven adsorbate excitation mechanism in femtosecond-pulse laser desorption

    DEFF Research Database (Denmark)

    Brandbyge, Mads; Hedegård, Per; Heinz, T. F.;

    1995-01-01

    a systematic theoretical treatment of this coupling process in the language of an electronic friction, which generates Langevin noise in the adsorbate center-of-mass degrees of freedom, while the electronic degrees of freedom are at a high temperature. Starting from an influence-functional path...... electronic excitation energies the friction becomes strongly temperature dependent due to dominance by virtual excitations between different adsorbate potential energy surfaces. The former regime is related to the electronic friction model for the desorption process, and the latter to the desorption induced...

  10. Rotational Spectromicroscopy: Imaging the Orbital Interaction between Molecular Hydrogen and an Adsorbed Molecule.

    Science.gov (United States)

    Li, Shaowei; Yuan, Dingwang; Yu, Arthur; Czap, Gregory; Wu, Ruqian; Ho, W

    2015-05-22

    A hydrogen molecule can diffuse freely on the surface and be trapped above an adsorbed molecule within the junction of a scanning tunneling microscope. The trapped dihydrogen exhibits the properties of a free rotor. Here we show that the intermolecular interaction between dihydrogen and Mg-porphyrin (MgP) can be visualized by imaging j=0 to 2 rotational excitation of dihydrogen. The interaction leads to a weakened H-H bond and modest electron donation from the dihydrogen to the lowest unoccupied molecular orbital of MgP, a process similarly observed for the interaction between dihydrogen and an adsorbed Au atom. PMID:26047242

  11. Charge-transfer photodissociation of adsorbed molecules via electron image states

    CERN Document Server

    Jensen, E T

    2007-01-01

    The 248nm and 193nm photodissociation of submonolayer quantities of CH$_3$Br and CH$_3$I adsorbed on thin layers of n-hexane indicate that the dissociation is caused by dissociative electron attachment from sub-vacuum level photoelectrons created in the copper substrate. The characteristics of this photodissociation-- translation energy distributions and coverage dependences show that the dissociation is mediated by an image potential state which temporarily traps the photoelectrons near the n-hexane--vacuum interface, and then the charge transfers from this image state to the affinity level of a co-adsorbed halomethane which then dissociates.

  12. Electrochemical behavior of LiFePO4 cathode materials in the presence of anion adsorbents

    International Nuclear Information System (INIS)

    The poor rate capability is a major problem of olivine-structured lithium iron phosphate (LFP) cathode material in lithium-ion batteries due to its low electric conductivity and sluggish lithium diffusion. Other than the custom strategies to solve this problem like carbon coating and nano-size treatment, we simply mixed LFP with some anion adsorbents, which can store anions from the electrolytes swiftly. The effect of anion adsorbents on the performance of LFP composite electrode has been investigated by cyclic voltammetric tests and the corresponding apparent lithium diffusion coefficients have been measured

  13. An in-situ RBS system for measuring nuclides adsorbed at the liquid-solid interface

    Energy Technology Data Exchange (ETDEWEB)

    Morita, K.; Yuhara, J.; Ishigami, R. [Nagoya Univ. (Japan). School of Engineering] [and others

    1997-03-01

    An in-situ RBS system has been developed in which heavier nuclides adsorbed at the inner surface of a thin lighter window specimen of liquid container in order to determine the rate constants for their sorption and release at the interface. The testing of a thin silicon window of the sample assembly, in which Xe gas of one atmosphere was enclosed, against the bombardment of the probing ion beam has been performed. A desorption behavior of a lead layer adsorbed at the SiO{sub 2} layer of silicon window surface into deionized water has been measured as a preliminary experiment. (author)

  14. Controlled Uniform Coating from the Interplay of Marangoni Flows and Surface-Adsorbed Macromolecules

    Science.gov (United States)

    Kim, Hyoungsoo; Boulogne, François; Um, Eujin; Jacobi, Ian; Button, Ernie; Stone, Howard A.

    2016-03-01

    Surface coatings and patterning technologies are essential for various physicochemical applications. In this Letter, we describe key parameters to achieve uniform particle coatings from binary solutions. First, multiple sequential Marangoni flows, set by solute and surfactant simultaneously, prevent nonuniform particle distributions and continuously mix suspended materials during droplet evaporation. Second, we show the importance of particle-surface interactions that can be established by surface-adsorbed macromolecules. To achieve a uniform deposit in a binary mixture, a small concentration of surfactant and surface-adsorbed polymer (0.05 wt% each) is sufficient, which offers a new physicochemical avenue for control of coatings.

  15. Local field distribution and configuration of CO molecules adsorbed on the nanostructure platinum surface

    Institute of Scientific and Technical Information of China (English)

    Huang Xiao-Jing; He Su-Zhen; Wu Chen-Xu

    2006-01-01

    This paper shows that the local electric field distribution near the nanostructure metallic surface is obtained by solving the Laplace equation, and furthermore, the configuration of CO molecules adsorbed on a Pt nanoparticle surface is obtained by using Monte Carlo simulation. It is found that the uneven local electric field distribution induced by the nanostructure surface can influence the configuration of carbon monoxide (CO) molecules by a force, which drags the adsorbates to the poles of the nanoparticles. This result, together with our results obtained before, may explain the experimental results that the nanostructure metallic surface can lead to abnormal phenomena such as anti-absorption infrared effects.

  16. Structure analysis of adsorbed star-like polymers with GISAS and SFM

    CERN Document Server

    Wolkenhauer, M; Wunnicke, O; Stamm, M; Roovers, J; Krosigk, G V; Cubitt, R

    2002-01-01

    The lateral structures of dried adsorbed binary mixtures of star polymers were investigated. Blends of protonated and deuterated polybutadiene stars were prepared from cyclohexane solutions and adsorbed onto silicon substrates. The number of arms and the molecular weight of the arms was varied. With grazing incidence small angle scattering techniques (GISAS) and scanning force microscopy (SFM), different dominant in-plane length scales were determined. The morphology of these structures is dominated by blob-like structures created from single stars or agglomerates of star polymers. (orig.)

  17. Cooperative effects in a physically adsorbed monolayer of two-level atoms

    International Nuclear Information System (INIS)

    We discuss the possibility of optical instability in a monolayer of two-level atoms physically adsorbed on a flat metallic surface. Taking into account the feedback mechanism and the local field correction we find the necessary and the sufficient conditions for the onset of bistability and we also obtain the resonance fluorescence spectrum and the rate of absorption from a probe field by an atom of the monolayer. Finally, we give a possible explanation in terms of cooperative interaction for the large decay rate found experimentally monolayers of low excited physically adsorbed atoms. (author). 19 refs

  18. Electronic Structure Calculation of Adsorbate Gas Molecules on an Armchair Graphene Nanoribbon

    OpenAIRE

    Khadije Imani; Gholamhossein Jafari; Mohammad Reza Abolhasani

    2012-01-01

    By using the first-principle methods, we have investigated the adsorption of the CO, CO2, NO, and NH3 molecules on an armchair graphene nanoribbon (AGNR). The optimal adsorption positions and orientations of these molecules on AGNR are determined. The adsorption energies, the charge transfer, and the density of states (DOS) are obtained. The NO, CO, and CO2 adsorbed molecules act as an acceptor, and the NH3 adsorbed molecule acts as a donor. The NO and CO molecules contributed with localized ...

  19. Mechanism and Removal Efficiency of C.I. Acid Blake 1 by Pumice Stone Adsorbent

    OpenAIRE

    Norouzi, M; M. Zarrabi; M Noori Sepehr; M.R Samarghandi; F Amraie

    2011-01-01

    "n "n "nBackgrounds and Objectives: Treatment of colored wastewater is one of the important challenges of environmental engineers. Adsorption process is a key option for removal of organic matter from wastewater. The aim of present work was to investigate pumice stone as an adsorbent for removal of Acid Black 1 from aqueous solution."nMaterials and Methods: Removal of Acid Black 1 by pumice stone was investigated. Acid Hyrdo Chloric(HCL) 1 N was used to increse adsorbent porosity. Various par...

  20. Molecular adsorbates under high pressure: a study using surface-enhanced Raman scattering spectroscopy

    International Nuclear Information System (INIS)

    Molecules adsorbed on metal surfaces were studied in a diamond anvil cell with Ar pressure-transmission medium up to several GPa pressure using Raman spectroscopy. The problem with studying molecules on surfaces is the small number density. This problem was overcome using photonic substrates to amplify the Raman intensity by factors of 106 in the case of self-assembled monolayers on Ag-coated nanoarrays, where the probed region contained ∼109 molecules, and >109 in the case of the dye Rhodamine 6G on Ag nanoaggregates, where <106 molecules were probed. Pressure effects on the adsorbate vibrations and on the underlying nanostructures are discussed.

  1. 扩张床吸附剂:制备及功能化%Adsorbents for Expanded Bed Adsorption: Preparation and Functionalization

    Institute of Scientific and Technical Information of China (English)

    赵珺; 姚善泾; 林东强

    2009-01-01

    Expanded bed adsorption (EBA), a promising and practical separation technique, has been widely stud-ied in the past two decades. The development of adsorbents for EBA process is a challenging course, with the spe-cial design and preparation according to the target molecules and specific expanded bed systems. Many types of supporting matrices for expanded bed adsorbents have been developed, and their preparation methods are being consummated gradually. These matrices are activated and then coupled with ligands to form functionalized adsorb-ents, including ion-exchange adsorbents, affinity adsorbents, mixed mode adsorbents, hydrophobic charge induction chromatography adsorbents and others. In this review, the preparation of the matrices for EBA process is summa-rized, and the coupling of ligands to the matrices to prepare functionalized adsorbents is discussed as well.

  2. Adsorption characteristics of water vapor on gear-pellet and honeycomb-pellet types of adsorbents containing A-type zeolite

    International Nuclear Information System (INIS)

    It is necessary to recover or process tritiated species that are extensively coexistent in nuclear fusion installations. A conventional way to recover tritium release to atmosphere is catalytic oxidation of tritiated species and adsorption of tritiated water vapor on adsorbents with high surface areas. Therefore, new adsorbents with low pressure loss and high surface areas need to be developed and utilized for such large-scale adsorption systems. In this study, attention was focused on new adsorbents, which are gear-type pellet MS5A adsorbent, gear-type pellet MS4A adsorbent and honeycomb-type pellet MS5A adsorbent. The adsorption characteristics of the new adsorbent were comparatively studied with conventional type of adsorbents (pellet-type MS5A adsorbent and pebble-type MS5A adsorbent), in terms of adsorption capacity, pressure loss and adsorption rate. It was found that the adsorption capacity of water vapor on the gear-type adsorbents is higher than that on a honeycomb-type adsorbent. The experimental breakthrough curves indicate that the adsorption rates of water vapor on gear-type and honeycomb-type adsorbents are smaller than that on conventional type adsorbents. Various adsorption models were also tested to correlate the experimental isotherms. It was found that the Langmuir-Freundlich model could properly correlate the experimental adsorption isotherms

  3. Mercury removal from solution by superconducting magnetic separation with nanostructured magnetic adsorbents

    Science.gov (United States)

    Okamoto, T.; Tachibana, S.; Miura, O.; Takeuchi, M.

    2011-11-01

    Recently, mercury Hg concentration in human blood increases due to expanding the global mercury contamination. Excess mercury bioaccumulation poses a significant health risk. In order to decrease mercury concentration in the environment and human blood, we have developed two different kinds of nanostructured magnetic adsorbents for mercury to apply them to superconducting magnetic separation instead of conventional filtration. One is magnetic beads (MBs) which have nanosize magnetite particles in the core and a lot of SH radicals on the surface to adsorb Hg ions effectively. MBs were developed mainly to remove mercury from human blood. The maximum amount of the adsorption for MBs is 6.3 mg/g in the solution in less than a minute. Dithiothreitol can easily remove mercury adsorbed to MBs, hence MBs can be reusable. The other is nanostructured magnetic activated carbon (MAC) which is activated carbon with mesopores and nanosize magnetite. The maximum amount of the adsorption for MAC is 38.3 mg/g in the solution. By heat-treatment mercury can be easily removed from MAC. We have studied superconducting magnetic separation using each adsorbent for mercury removal from solution.

  4. Mercury removal from solution by superconducting magnetic separation with nanostructured magnetic adsorbents

    Energy Technology Data Exchange (ETDEWEB)

    Okamoto, T., E-mail: okamoto-takayuki@ed.tmu.ac.jp [Graduate School of Science and Engineering, Tokyo Metropolitan University, 1-1 Minami-Osawa, Hachioji, Tokyo 192-0397 (Japan); Tachibana, S.; Miura, O. [Graduate School of Science and Engineering, Tokyo Metropolitan University, 1-1 Minami-Osawa, Hachioji, Tokyo 192-0397 (Japan); Takeuchi, M. [Komazawa Jin Clinic, 1-19-8 Komazawa, Setagayaku, Tokyo 154-0012 (Japan)

    2011-11-15

    Recently, mercury Hg concentration in human blood increases due to expanding the global mercury contamination. Excess mercury bioaccumulation poses a significant health risk. In order to decrease mercury concentration in the environment and human blood, we have developed two different kinds of nanostructured magnetic adsorbents for mercury to apply them to superconducting magnetic separation instead of conventional filtration. One is magnetic beads (MBs) which have nanosize magnetite particles in the core and a lot of SH radicals on the surface to adsorb Hg ions effectively. MBs were developed mainly to remove mercury from human blood. The maximum amount of the adsorption for MBs is 6.3 mg/g in the solution in less than a minute. Dithiothreitol can easily remove mercury adsorbed to MBs, hence MBs can be reusable. The other is nanostructured magnetic activated carbon (MAC) which is activated carbon with mesopores and nanosize magnetite. The maximum amount of the adsorption for MAC is 38.3 mg/g in the solution. By heat-treatment mercury can be easily removed from MAC. We have studied superconducting magnetic separation using each adsorbent for mercury removal from solution.

  5. Copper ions removal from water using functionalized carbon nanotubes–mullite composite as adsorbent

    International Nuclear Information System (INIS)

    Highlights: • CNTs–mullite composite was prepared via chemical vapor deposition (CVD) method. • The prepared composite was modified with concentrated nitric acid and chitosan. • The modified CNTs–mullite composites were used as novel adsorbents. • Copper ion removal from water by the prepared adsorbents was performed. • Langmuir and Freundlich isotherms and two kinetic models were applied to fit the experimental data. - Abstract: Carbon nanotubes–mullite composite was synthesized by direct growth of carbon nanotubes on mullite particles via chemical vapor deposition method using cyclohexanol and ferrocene as carbon precursor and catalyst, respectively. The carbon nanotubes–mullite composite was oxidized with concentrated nitric acid and functionalized with chitosan and then used as a novel adsorbent for copper ions removal from water. The results demonstrated that modification with concentrated nitric acid and chitosan improves copper ions adsorption capacity of the prepared composite, significantly. Langmuir and Freundlich isotherms and two kinetic models were applied to fit the experimental data. The carbon nanotubes growth on mullite particles to form the carbon nanotubes–mullite composite with further modification is an inherently safe approach for many promising environmental applications to avoid some concerns regarding environment, health and safety. It was found that the modified carbon nanotubes–mullite composite can be considered as an excellent adsorbent for copper ions removal from water

  6. Heat capacity measurements of atoms and molecules adsorbed on evaporated metal films

    International Nuclear Information System (INIS)

    Investigations of the properties of absorbed monolayers have received great experimental and theoretical attention recently, both because of the importance of surface processes in practical applications such as catalysis, and the importance of such systems to the understanding of the fundamentals of thermodynamics in two dimensions. We have adapted the composite bolometer technology to the construction of microcalorimeters. For these calorimeters, the adsorption substrate is an evaporated film deposited on one surface of an optically polished sapphire wafer. This approach has allowed us to make the first measurements of the heat capacity of submonolayer films of 4He adsorbed on metallic films. In contrast to measurements of 4He adsorbed on all other insulating substrates, we have shown that 4He on silver films occupies a two-dimensional gas phase over a broad range of coverages and temperatures. Our apparatus has been used to study the heat capacity of Indium flakes. CO multilayers, 4He adsorbed on sapphire and on Ag films and H2 adsorbed on Ag films. The results are compared with appropriate theories. 68 refs., 19 figs

  7. Copper ions removal from water using functionalized carbon nanotubes–mullite composite as adsorbent

    Energy Technology Data Exchange (ETDEWEB)

    Tofighy, Maryam Ahmadzadeh; Mohammadi, Toraj, E-mail: torajmohammadi@iust.ac.ir

    2015-08-15

    Highlights: • CNTs–mullite composite was prepared via chemical vapor deposition (CVD) method. • The prepared composite was modified with concentrated nitric acid and chitosan. • The modified CNTs–mullite composites were used as novel adsorbents. • Copper ion removal from water by the prepared adsorbents was performed. • Langmuir and Freundlich isotherms and two kinetic models were applied to fit the experimental data. - Abstract: Carbon nanotubes–mullite composite was synthesized by direct growth of carbon nanotubes on mullite particles via chemical vapor deposition method using cyclohexanol and ferrocene as carbon precursor and catalyst, respectively. The carbon nanotubes–mullite composite was oxidized with concentrated nitric acid and functionalized with chitosan and then used as a novel adsorbent for copper ions removal from water. The results demonstrated that modification with concentrated nitric acid and chitosan improves copper ions adsorption capacity of the prepared composite, significantly. Langmuir and Freundlich isotherms and two kinetic models were applied to fit the experimental data. The carbon nanotubes growth on mullite particles to form the carbon nanotubes–mullite composite with further modification is an inherently safe approach for many promising environmental applications to avoid some concerns regarding environment, health and safety. It was found that the modified carbon nanotubes–mullite composite can be considered as an excellent adsorbent for copper ions removal from water.

  8. Extracorporeal albumin dialysis with the molecular adsorbent recirculating system in acute-on-chronic liver failure

    DEFF Research Database (Denmark)

    Bañares, Rafael; Nevens, Frederik; Larsen, Fin Stolze;

    2013-01-01

    Acute-on-chronic liver failure (ACLF) is a frequent cause of death in cirrhosis. Albumin dialysis with the molecular adsorbent recirculating system (MARS) decreases retained substances and improves hemodynamics and hepatic encephalopathy (HE). However, its survival impact is unknown. In all, 189...

  9. Role(s) of adsorbed water in the surface chemistry of environmental interfaces.

    Science.gov (United States)

    Rubasinghege, Gayan; Grassian, Vicki H

    2013-04-18

    The chemistry of environmental interfaces such as oxide and carbonate surfaces under ambient conditions of temperature and relative humidity is of great interest from many perspectives including heterogeneous atmospheric chemistry, heterogeneous catalysis, photocatalysis, sensor technology, corrosion science, and cultural heritage science. As discussed here, adsorbed water plays important roles in the reaction chemistry of oxide and carbonate surfaces with indoor and outdoor pollutant molecules including nitrogen oxides, sulfur dioxide, carbon dioxide, ozone and organic acids. Mechanisms of these reactions are just beginning to be unraveled and found to depend on the details of the reaction mechanism as well as the coverage of water on the surface. As discussed here, adsorbed water can: (i) alter reaction pathways and surface speciation relative to the dry surface; (ii) hydrolyze reactants, intermediates and products; (iii) enhance surface reactivity by providing a medium for ionic dissociation; (iv) inhibit surface reactivity by blocking sites; (v) solvate ions; (vi) enhance ion mobility on surfaces and (vii) alter the stability of surface adsorbed species. In this feature article, drawing on research that has been going on for over a decade on the reaction chemistry of oxide and carbonate surfaces under ambient conditions of temperature and relative humidity, a number of specific examples showing the multi-faceted roles of adsorbed water are presented. PMID:23417201

  10. Adsorbates on cobalt and platinum single crystal surfaces studied by STM

    Energy Technology Data Exchange (ETDEWEB)

    Venvik, Hilde Johnsen

    1998-12-31

    This thesis on surface physics may contribute to the understanding of catalysts and so be of interest to companies working on oil and natural gas refining. The thesis deals with room temperature experimental investigations of adsorbates of CO and C{sub 2}H{sub 4} gases on Co and Pt single crystal surfaces. 252 refs., 51 figs., 1 table

  11. From MDF and PB wastes to adsorbents for the removal of pollutants

    Science.gov (United States)

    Gomes, J. A. F. L.; Azaruja, B. A.; Mourão, P. A. M.

    2016-09-01

    The production of activated carbons in powder and monolith forms, by physical activation with CO2, with specific surface areas between 804 and 1469 m2 g-1, porous volume between 0.33 and 0.59 cm3 g-1, with basic nature (PZC ∼ 9.6-10.6) was achieved in our lab, from medium density fibreboard (MDF) and particleboard (PB), engineered wood composites wastes. These highly porous adsorbents were applied in kinetic and equilibrium adsorption studies, in batch and dynamic modes, in powder and monolith forms, of specific adsorptives, considered pollutants, namely phenol (P), p-nitrophenol (PNP) and neutral red (NR). In batch the maximum adsorbed amount was 267, 162 and 92 mg g-1, for PNP, P and NR, respectively. The application of different kinetic models (pseudo-first order, pseudo-second order and intraparticle diffusion model) leads to a better knowledge of the adsorption mechanisms of those adsorptives. The results obtained in the kinetic and equilibrium tests show that the combination of the structural features and the surface chemistry nature of the adsorbents, with the adsorptives properties, establish the kinetic performance, the type and amount adsorbed for each system. This work confirms the potential of these types of wastes in the production of activated carbons and its application in adsorption from liquid phase.

  12. Synthesis of Mesoporous Adsorbent and its Application for Heavy Metal Ions Removal from Aqueous Solution

    International Nuclear Information System (INIS)

    The mesoporous silicas were synthesized via the evaporation-induced self-assembly (EISA) in the experiment. Cetyltrimethyl ammonium bromide (CTAB) was used as the template, and the silicon source was tetraethoxyorthosilicate (TEOS). The mesoporous silicas were characterized by nitrogen adsorption-desorption analysis, FTIR, TEM and SEM. The mesoporous silicas (adsorbent) exhibited higher pore diameter (centered at 5.57 nm), BET surface area (457.3 m2·g-1) and pore volume (0.563 cm2·g-1). The mesoporous silicas were used as the adsorbent to remove the heavy metal ions from aqueous solution. The following order of equilibrium adsorption capacity for Cu2+, Co2+, Ag+ and As3+ on adsorbent was: Ag+>Cu2+>Co2+>As3+. Analysis of adsorption kinetics showed that Cu2+, Co2+, Ag+ and As3+ adsorption fit the pseudo-second-order nonlinear model significantly. The removal rate for heavy metal ions was high, and the adsorbent can be regenerated by acid treatment without altering its properties.

  13. Many-body dispersion effects in the binding of adsorbates on metal surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Maurer, Reinhard J. [Department of Chemistry, Yale University, New Haven, Connecticut 06520 (United States); Ruiz, Victor G.; Tkatchenko, Alexandre [Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, D-14195 Berlin (Germany)

    2015-09-14

    A correct description of electronic exchange and correlation effects for molecules in contact with extended (metal) surfaces is a challenging task for first-principles modeling. In this work, we demonstrate the importance of collective van der Waals dispersion effects beyond the pairwise approximation for organic–inorganic systems on the example of atoms, molecules, and nanostructures adsorbed on metals. We use the recently developed many-body dispersion (MBD) approach in the context of density-functional theory [Tkatchenko et al., Phys. Rev. Lett. 108, 236402 (2012) and Ambrosetti et al., J. Chem. Phys. 140, 18A508 (2014)] and assess its ability to correctly describe the binding of adsorbates on metal surfaces. We briefly review the MBD method and highlight its similarities to quantum-chemical approaches to electron correlation in a quasiparticle picture. In particular, we study the binding properties of xenon, 3,4,9,10-perylene-tetracarboxylic acid, and a graphene sheet adsorbed on the Ag(111) surface. Accounting for MBD effects, we are able to describe changes in the anisotropic polarizability tensor, improve the description of adsorbate vibrations, and correctly capture the adsorbate–surface interaction screening. Comparison to other methods and experiment reveals that inclusion of MBD effects improves adsorption energies and geometries, by reducing the overbinding typically found in pairwise additive dispersion-correction approaches.

  14. The chemistry of copper-containing sulfur adsorbents in the presence of mercaptans

    Energy Technology Data Exchange (ETDEWEB)

    Turbeville, Wayne; Yap, Nora [Sued-Chemie Inc., 1600 W. Hill St., Louisville, KY 40210 (United States)

    2006-09-15

    A brief review of the chemistry of copper and thiols is given and a contrast is made to the behavior of copper-containing adsorbents used for the desulfurization of liquid hydrocarbon streams that are routinely treated in refinery processes. A study was made of the chemistry between copper adsorbents and model liquid feed streams containing mercaptans. It was found that sulfur capacity can be quite high, greater than 8% by weight, and is dependent on the dispersion of the copper oxide on the adsorbent. In addition, it is shown that bulk copper is involved in the adsorption of mercaptans, as there is significantly more sulfur than there is copper on the surface. At a temperature of approximately 150{sup o}C, very well formed lamellar crystals of copper(I) thiolate are formed, which indicates that the copper migrates from the surface of the catalyst to expose bulk copper for further reaction. When the temperature is raised to 190{sup o}C, there is evidence that the copper(I) butanethiolate decomposes to copper(I) sulfide. Reaction mechanisms are proposed for the process of desulfurization of liquid hydrocarbon streams containing mercaptans when using a copper-containing adsorbent. (author)

  15. Charcoal and activated carbon as adsorbate of phytotoxic compounds - a comparative study.

    NARCIS (Netherlands)

    Hille, M.G.; Ouden, den J.

    2005-01-01

    This study compares the potential of natural charcoal from Scots pine (Pinus sylvestris L.) and activated carbon to improve germination under the hypothesis that natural charcoal adsorbs phytotoxins produced by dwarf-shrubs, but due to it's chemical properties to a lesser extent than activated carbo

  16. X-Ray photoelectron spectroscopic investigation of phenosafranine adsorbed onto micro and mesoporous materials

    Indian Academy of Sciences (India)

    S Easwaramoorthi; K Ananthanarayanan; B Sreedhar; P Natarajan

    2009-09-01

    The phenosafranine adsorbed onto the micro and mesoporous materials prepared by ion exchange method and interaction of the dye with host materials were studied by X-ray photoelectron spectroscopy to elucidate the influence of the host matrix on the binding energy of N 1s orbital. Core level N 1s X-ray photoelectron spectroscopy reveals the interaction between the dye and the solid surface through the hydrogen bonding between the hydrogen atoms of primary amino groups in dye molecule and the oxygen atom of surface hydroxyl groups. The strength of the hydrogen bonding depends on the nature of the solid surface. In the dye adsorbed onto the micro and mesoporous materials the interaction between adsorbed phenosafranine and the surfaces of the porous materials are found to modify the optical spectra and the excited state dynamics of the confined phenosafranine molecules. The change in photophysical properties of phenosafranine adsorbed on to the host materials on dehydration at elevated temperatures is attributed to the modification of host surface during dehydration process.

  17. Extraction chromatographic recovery of americium from acidic raffinate solutions using CMPO adsorbed on Chromosorb-102

    International Nuclear Information System (INIS)

    Microgram amounts of americium have been separated and purified from large amounts of uranium present in effluent solutions resulting from the anion-exchange columns during the purification and recovery of plutonium by using TBP extraction followed by extraction chromatography using CMPO adsorbed on Chromosorb-102. (author). 4 refs., 1 tab

  18. Removal of hydrogen sulfide from biogas on sludge-derived adsorbents

    Energy Technology Data Exchange (ETDEWEB)

    Weixin Yuan; Teresa J. Bandosz [City College of The City University of New York, New York, NY (United States). Department of Chemistry

    2007-12-15

    Desulfurization adsorbents were prepared from the mixtures of sewage sludge and metal sludge of various compositions and individual sludges by pyrolyses at 650, 800 and 950{sup o}C. The resulting materials were used as adsorbents of hydrogen sulfide from simulated digester gas mixture. The adsorbents before and after H{sub 2}S removal were characterized using adsorption of nitrogen, elemental analysis, pH measurements, and thermal analysis. The behavior of materials as desulfurization media does not depend strongly on the humidification pretreatment. The pyrolysis temperature and composition of the mixture play a role in the development of final properties of adsorbents. When the content of sewage sludge is high the strong synergetic effect is noticed after high temperature of pyrolysis. Such factors as development of mesoporosity and new catalytic phases formed as a result of solid-state reactions contribute to this behavior. The removal of hydrogen sulfide on the materials obtained is complex due to the competition between H{sub 2}S and CO{sub 2} for adsorption centers and deactivation of those centers by CO{sub 2}/H{sub 2}CO{sub 3}. 38 refs., 12 figs., 6 tabs.

  19. Fluoride removal from aqueous solution by Al(III)-Zr(IV) binary oxide adsorbent

    Science.gov (United States)

    Zhu, Jiuya; Lin, Xiaoyan; Wu, Pengwei; Zhou, Qiusheng; Luo, Xuegang

    2015-12-01

    In this study, a novel binary oxide adsorbent of Al2O3-ZrO2 was prepared via coprecipitation followed by calcination method, and the calcination temperatures were investigated. The adsorbent was characterized by XRD, EDX and XPS. The batch adsorption experiments were carried out at different parameters, such as solution pH, adsorbent dose, contact time, initial fluoride concentration and adsorption temperature, to evaluate the fluoride removal performance. The results showed that the adsorption isotherm was better described by the linear Langmuir model, and a maximum adsorption capacity was 114.54 mg/g. The adsorption kinetics was well fitted by the linear pseudo-second-order, and the correlation coefficient value (R2) was 0.997. The thermodynamic parameters of ΔH0, ΔS0 and ΔG0 were calculated, which showed that the fluoride adsorption process was spontaneous and exothermic. And the possible adsorption mechanism of the adsorbent for fluoride could involve the ligand-exchange and ion-exchange based on the results in the study.

  20. Sorption of U(VI) on natural sepiolite and sepiolite-agar agar composite adsorbent

    International Nuclear Information System (INIS)

    Adsorption of uranium (VI) ions onto clay minerals is one of the significant reactions affecting the transport of uranium in the environment. The use of composite adsorbents for the removal of metal ions and radionuclide from industrial wastes has attracted great interest to researchers in recent years[1]. In this study, natural sepiolite type clay and an organic compound, agar agar, were chosen as the adsorbent material. Composite adsorbent was prepared from sepiolite and agar agar. Adsorption of uranium (VI) on this composite and on natural sepiolite adsorbent was investigated. Thermodynamic investigations were carried out to get more information about the adsorption of uranium. Adsorption of U (VI) has been studied as a function of solution pH, time, temperature and initial concentration of uranium on natural sepiolite and agar agar composite. The maximum sorption yield of U (VI) on composite and on sepiolite from batch experiments is calculated approximately 89% and 76% respectively in the optimum experimental adsorption condition. The adsorption data were fitted to Freundlich and Dubinin-Radushkevich (D-R) adsorption isotherms. Using the experimental data obtained different temperatures, thermodynamic constants ΔHdegree, ΔSdegree and ΔGdegree were calculated. The results show that the adsorption process on natural sepiolite and sepiolite-agar agar composite are both egzothermic natures. [1] S. M. Hasany, M. M. Saeed, M. Ahmed, J. Radioanal. Nucl. Chem. Vol. 252 (3), 477-484 (2002)