WorldWideScience

Sample records for adsorbed unsaturated collector

  1. The hydrophobic character of nonsulfide mineral surfaces as influenced by double-bond reactions of adsorbed unsaturated collector species. Progress report

    Energy Technology Data Exchange (ETDEWEB)

    Miller, J.D.

    1992-06-01

    The primary goal of this research is to improve the flotation efficiency of nonsulfide mineral systems by establishing the fundamental features of collector adsorption reactions and developing appropriate chemical control strategies. In situ real-time FR-IR/IRS measurements, nonequilibrium electrophoresis, vacuum flotation, contact-angle goniometry, and laser Raman spectroscopy have been used to accomplish this goal. These experimental techniques have led to the determination of important information concerning collector adsorption phenomena in each nonsulfide mineral system. For example, the demonstration of polymerization of adsorbed unsaturated surfactant species has added a new dimension to semi-soluble salt flotation chemistry and may have more general utility. Furthermore, refinement of the in situ FT-IR/IRS analysis has been accomplished particularly for the examination of surfactant aggregation phenomena at nonsulfide mineral surfaces. Finally, the significance of the lattice ion hydration theory has been demonstrated by nonequilibrium electrophoretic mobility measurements, and the new results will provide a better basis for the understanding of soluble-salt flotation phenomena.

  2. Design improvements for a collector/generator/adsorber of a solid adsorption solar refrigerator

    Energy Technology Data Exchange (ETDEWEB)

    Ogueke, N.V.; Anyanwu, E.E. [Mechanical Engineering Department, Federal University of Technology, P.M.B. 1526, Owerri (Nigeria)

    2008-11-15

    A study of the effects of different collector design parameters on the performances of a solar powered solid adsorption refrigerator is presented. The refrigerator uses activated carbon/methanol as the adsorbent/refrigerant pair. The study was undertaken using a computer simulation program developed from a transient analysis of the system. The parameters tested are the collector plate emissivity/absorptivity combination, adsorbent packing density, tube spacing, outer tube outside diameter, adsorbent thermal conductivity, heat transfer coefficient at adsorbent/tube interface, and adsorbent tube/collector plate materials combination. Two performance indicators namely, condensate yield and coefficient of performance (COP) were used in the study as figures of merit. A multiple regression technique was used to correlate the performance indicators with the collector parameters through a quadratic relation. Consequently an objective function, suitable for selecting optimal values of the parameters is defined, subject to specified constraints. Selecting the COP as the preferred indicator parameter, optimization was then carried out. Improvements in the ranges of 29-38% for COP and 26-35% for condensate yield were obtained with optimal choices of tube spacing, adsorbent packing density and collector plate/adsorbent tube material combinations. (author)

  3. Unsaturated hydrocarbons adsorbed on low coordinated Pd surface: A periodic DFT study

    Science.gov (United States)

    Belelli, Patricia G.; Ferullo, Ricardo M.; Castellani, Norberto J.

    2010-02-01

    In this work, the adsorption of several unsaturated hydrocarbon molecules on a stepped Pd(4 2 2) surface was studied. Using a periodic method based on the Density Functional Theory (DFT) formalism, different adsorption geometries for ethylene, three butene isomers ( cis/ trans-2-butene and 1-butene), acetylene and 2-butyne were investigated. The results were compared with those obtained for a free defect surface as Pd(1 1 1). The 1-butene is more stable on the free defect surface than on Pd(4 2 2). On the stepped surface, the olefins adsorb tilted towards the step and increases, in almost all the cases, the magnitude of the adsorption energy. Conversely, the 3-fold site is the most stable for the alkynes adsorption on the stepped surface, as it was found on Pd(1 1 1). The analysis of the dipole moment change indicate a charge transfer from the double bond of the olefin to the metallic surface, being higher for the Pd(1 1 1) surface. In case of the alkynes, an important back-donation is produced. Except the alkynes and the 1-butene molecule, the results show the preference of ethylene and cis/ trans-2-butene to be adsorbed on the stepped surface. These observations are related with experimental catalytic results.

  4. Kinetics and isotherm analysis of Tropaeoline 000 adsorption onto unsaturated polyester resin (UPR): a non-carbon adsorbent.

    Science.gov (United States)

    Jain, Rajeev; Sharma, Pooja; Sikarwar, Shalini

    2013-03-01

    The presence of dyes in water is undesirable due to the toxicological impact of their entrance into the food chain. Owing to the recalcitrant nature of dyes to biological oxidation, a tertiary treatment like adsorption is required. In the present study, unsaturated polyester resin (UPR) has been used as a sorbent in the treatment of dye-contaminated water. Different concentrations of Tropaeoline 000 containing water were treated with UPR. The preliminary investigations were carried out by batch adsorption to examine the effects of pH, adsorbate concentration, adsorbent dosage, contact time, and temperature. A plausible mechanism for the ongoing adsorption process and thermodynamic parameters have also been obtained from Langmuir and Freundlich adsorption isotherm models. Thermodynamic parameter showed that the sorption process of Tropaeoline 000 onto activated carbon (AC) and UPR were feasible, spontaneous, and endothermic under studied conditions. The estimated values for (ΔG) are -10.48 × 10(3) and -6.098 × 10(3) kJ mol(-1) over AC and UPR at 303 K (30 °C), indicating towards a spontaneous process. The adsorption process followed pseudo-first-order model. The mass transfer property of the sorption process was studied using Lagergren pseudo-first-order kinetic models. The values of % removal and k (ad) for dye systems were calculated at different temperatures (303-323 K). The mechanism of the adsorption process was determined from the intraparticle diffusion model. PMID:22689095

  5. Magnetic collectors

    International Nuclear Information System (INIS)

    A collector for use in a magnetic separator is formed by isostatically pressing a metal which is resistant to attack by acid about ferromagnetic bodies whereby to encase the bodies in the metal. In one arrangement, as shown, the bodies are encapsulated between inner and outer cylinders. In other arrangements the encapsulating metal is in the form of a tube or planar sheets. The bodies are of Fe or an oxide thereof and the acid-resistant metal parts may be of stainless steel, Au, Pt, Pa or an alloy. The magnetic separator is intended for use in removing particles from liquids during the reprocessing of nuclear fuel materials. (author)

  6. Dissolved Air Flotation of arsenic adsorbent particles

    OpenAIRE

    Santander, M.; Valderrama, L.

    2015-01-01

    The removal of arsenic from synthetic effluent was studied using the adsorbent particle flotation technique (APF) and dissolved air flotation (DAF). A sample of an iron mineral was used as adsorbent particles of arsenic, ferric chloride as coagulant, cationic polyacrylamide (NALCO 9808) as flocculants, and sodium oleate as collector. Adsorption studies to determine the pH influence, contact time, and adsorbent particles concentration on the adsorption of arsenic were carried out along with fl...

  7. Air/liquid collectors

    DEFF Research Database (Denmark)

    Jensen, Søren Østergaard; Olesen, Ole; Kristiansen, Finn Harken

    1997-01-01

    This report determine efficiency equations for combined air/liquid solar collectors by measurements on to different air/liquid collectors. Equations which contain all relevant informations on the solar collectors. A simulation program (Kviksol) has been modified in order to be able to handle this...... kind of collectors. The modified simulation program has been used for the determination of the surplus in performance which solar heating systems with this type of solar collectors for combined preheating of ventilation air and domestic hot water will have. The simulation program and the efficiency...

  8. Pulsed depressed collector

    Energy Technology Data Exchange (ETDEWEB)

    Kemp, Mark A

    2015-11-03

    A high power RF device has an electron beam cavity, a modulator, and a circuit for feed-forward energy recovery from a multi-stage depressed collector to the modulator. The electron beam cavity include a cathode, an anode, and the multi-stage depressed collector, and the modulator is configured to provide pulses to the cathode. Voltages of the electrode stages of the multi-stage depressed collector are allowed to float as determined by fixed impedances seen by the electrode stages. The energy recovery circuit includes a storage capacitor that dynamically biases potentials of the electrode stages of the multi-stage depressed collector and provides recovered energy from the electrode stages of the multi-stage depressed collector to the modulator. The circuit may also include a step-down transformer, where the electrode stages of the multi-stage depressed collector are electrically connected to separate taps on the step-down transformer.

  9. Experimental unsaturated soil mechanics

    OpenAIRE

    Delage, Pierre

    2002-01-01

    In this general report, experimental systems and procedures of investigating the hydro-mechanical behaviour of unsaturated soils are presented. The water retention properties of unsaturated soils are commented and linked to various physical parameters and properties of the soils. Techniques of controlling suction are described together with their adaptation in various laboratory testing devices. Some typical features of the mechanical behaviour of unsaturated soils are presented within an ela...

  10. Collector attachment to lead-activated sphalerite - Experiments and DFT study on pH and solvent effects

    Science.gov (United States)

    Sarvaramini, A.; Larachi, F.; Hart, B.

    2016-03-01

    The interactions of diisobutyl dithiophosphinate with bare (un-activated) and lead-activated sphalerite were studied both experimentally and through DFT simulations. Sphalerite activated by lead in acidic and alkaline conditions showed considerably greater affinity for diisobutyl dithiophosphinate adsorption than bare sphalerite. Experimental observations supported by DFT simulations concur in that attachment of the solvated collector to the activated sphalerite surface is through adsorbed lead cations or lead hydroxides where as for the bare sphalerite, the collector was most stable in its solvated state and not as an adsorbed specie. Accounting for solvation effects by including a swarm of water molecules in DFT simulations was necessary to infer plausible surface interactions between collector, solvent, and bare or lead-activated sphalerite. The experimental data and DFT simulations indicate, affinity of the collector toward surface-adsorbed lead species was predicted to form stable covalent bonds between collector sulfur atoms and lead.

  11. Separation of Co(II) from dilute aqueous solutions by precipitate and adsorbing colloid flotation

    International Nuclear Information System (INIS)

    Ion, precipitate and adsorbing colloid flotation of cobalt(II) have been investigated at different pH values, using N-dodecylpyridinium chloride (DPCl). A strong cationic surfactant, and sodium lauryl sulfate (NaLS), a strong anionic surfactant, as collectors. In case of adsorbing colloid flotation, hydrous manganese dioxide was used as an adsorbent. The precipitate flotation curves experimentally obtained with the two tested collectors were compared with the corresponding theoretical one calculated from the data published for Co(II) hydrolysis. The effects of the collector concentration, ageing of the water-MnO2-Co(II) system, bubbling time period, cobalt(II) concentration and foreign salts on the percent removal of Co(II) by adsorbing colloid flotation using DPCl as collector were determined. Removals approaching 100% could be achieved under the optimum conditions. (author) 44 refs.; 6 figs

  12. Biological sample collector

    Science.gov (United States)

    Murphy, Gloria A.

    2010-09-07

    A biological sample collector is adapted to a collect several biological samples in a plurality of filter wells. A biological sample collector may comprise a manifold plate for mounting a filter plate thereon, the filter plate having a plurality of filter wells therein; a hollow slider for engaging and positioning a tube that slides therethrough; and a slide case within which the hollow slider travels to allow the tube to be aligned with a selected filter well of the plurality of filter wells, wherein when the tube is aligned with the selected filter well, the tube is pushed through the hollow slider and into the selected filter well to sealingly engage the selected filter well and to allow the tube to deposit a biological sample onto a filter in the bottom of the selected filter well. The biological sample collector may be portable.

  13. Miniature, ruggedized data collector

    Science.gov (United States)

    Jackson, Scott; Calcutt, Wade; Knobler, Ron; Jones, Barry; Klug, Robert

    2009-05-01

    McQ has developed a miniaturized, programmable, ruggedized data collector intended for use in weapon testing or data collection exercises that impose severe stresses on devices under test. The recorder is designed to survive these stresses which include acceleration and shock levels up to 100,000 G. The collector acquires and stores up to four channels of signal data to nonvolatile memory for later retrieval by a user. It is small (< 7 in3), light weight (< 1 lb), and can operate from various battery chemistries. A built-in menuing system, accessible via a USB interface, allows the user to configure parameters of the recorder operation, such as channel gain, filtering, and signal offsets, and also to retrieve recorded data for analysis. An overview of the collector, its features, performance, and potential uses, is presented.

  14. Collector/collector guard ring balancing circuit eliminates edge effects

    Science.gov (United States)

    Lieb, D. P.

    1966-01-01

    Circuit in which an emitter is maintained opposite a concentric collector and guard structure is achieved by matching the temperature and potential of the guard with that of the collector over the operating range. This control system is capable of handling up to 100 amperes in the guard circuit and 200 amperes in the collectors circuit.

  15. Flotation and adsorption of quaternary ammonium salts collectors on kaolinite of different particle size

    Institute of Scientific and Technical Information of China (English)

    Jiang Hao; Liu Guorong; Hu Yuehua; Xu Longhua; Yu Yawen; Xie Zhen; Chen Haochuan

    2013-01-01

    The flotation behaviors of decyltrimethylammonium (103C),dodecyltrimethylammonium chloride (DTAC),tetradecyltrimethylammonium chloride (TTAC) and cetyltrimethylammonium chloride (CTAC) on kaolinite of different particle size fraction were studied.The adsorbed amount and adsorption isotherms of collectors on kaolinite were determined for painstaking investigation into the adsorption of quaternary amines at kaolinite-water interface by ultraviolet spectrophotometer methods.The flotation results show that the flotation recovery of kaolinite of different particle fraction increases with an increase in pH when 103C,DTAC,TrAC and CTAC are used as collectors.As the concentration of collectors increases,the flotation recovery increases.Particle size of kaolinite has a strong effect on flotation.The flotation recovery of fine kaolinite decreases with the carbon chain of quaternary ammonium salts collectors increasing,while coarse kaolinite is on the contrary.The adsorbed amount tests and adsorption isotherms show that adsorbed amount increases when the particle size of kaolinite increases or when the carbon chain length of quaternary ammonium salts increases.Within the range of flotation collector concentration,the longer the hydrocarbon chain,the more probable to be absolutely adsorbed by fine kaolinite particles and then the lower the collector concentration in the bulk,which leds to lower flotation recovery.

  16. Solar collector manufacturing activity, 1990

    International Nuclear Information System (INIS)

    The Solar Collector Manufacturing Activity 1990 report prepared by the Energy Information Administration (EIA) presents summary and detailed data provided by domestic manufacturers on shipments of solar thermal collectors and photovoltaic cells and modules. Summary data on solar thermal collector shipments are presented for the period 1974 through 1990. Summary data on photovoltaic cell and module shipments are presented for the period 1982 through 1990. Detailed information for solar thermal collectors and photovoltaic cells and modules are presented for 1990

  17. Research on Flat Solar Collector

    OpenAIRE

    Kavolynas, Antanas

    2005-01-01

    The Thesis analyzes one of the spheres of alternative energy supply – the solar energy. The main objective of the Thesis is to determine the energy rates of the solar collector and its accumulative capacity. The Paper introduces a stand on the solar collector research which consists of a flat solar collector, heat accumulator and auxiliary equipment. The research object of the Thesis is a laboratory flat solar collector and its system. The Thesis analyses the constructions of the solar collec...

  18. The effect of calcium ions and sodium silicate on the adsorption of a model anionic flotation collector on magnetite studied by ATR-FTIR spectroscopy.

    Science.gov (United States)

    Potapova, E; Grahn, M; Holmgren, A; Hedlund, J

    2010-05-01

    Previous studies have shown that agglomeration of the magnetite concentrate after reverse flotation of apatite is negatively affected by the collector species adsorbed on the surface of magnetite. In this work, the effect of ionic strength, calcium ions and sodium silicate on the unwanted adsorption of a model anionic flotation collector on synthetic magnetite was studied in situ using attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR). The amount of collector adsorbed was found to increase with increasing ionic strength at pH 8.5 providing evidence to the contribution of electrostatic forces to the adsorption of the collector. Adding sodium silicate to the system resulted in a threefold decrease in the amount of collector adsorbed compared to when no sodium silicate was added, confirming the depressing activity of sodium silicate on magnetite. Calcium ions were shown to increase the adsorption of both the collector and sodium silicate on magnetite. The depressing effect of sodium silicate on collector adsorption was completely suppressed in the presence of calcium ions under the conditions studied. Furthermore, the amount of collector adsorbed on magnetite from the silicate-collector solution increased 14 times upon addition of calcium ions suggesting that calcium ions in the process water may increase undesired adsorption of the collector on the iron oxide. PMID:20153478

  19. Leaves: Nature's Solar Collectors

    Science.gov (United States)

    Isabelle, Aaron D.; de Groot, Cornelis

    2009-01-01

    One of the most captivating things about plants is the way they capture the Sun's energy, but this can be a difficult topic to cover with elementary students. Therefore, to help students to make a concrete connection to this abstract concept, this series of solar-energy lessons focuses on leaves and how they act as "solar collectors." As students…

  20. Stabilized unsaturated polyesters

    Science.gov (United States)

    Vogl, O.; Borsig, E. (Inventor)

    1985-01-01

    An unsaturated polyester, such as propylene glycolmaleic acid phthalic acid prepolymer dissolved in styrene is interpolymerized with an ultraviolet absorber and/or an antioxidant. The unsaturated chain may be filled with H or lower alkyl such as methyl and tertiary alkyl such as tertiary butyl. A polymer stable to exposure to the outdoors without degradation by ultraviolet radiation, thermal and/or photooxidation is formed.

  1. Parabolic concentrating collector: a tutorial

    Energy Technology Data Exchange (ETDEWEB)

    Truscello, V.C.

    1979-02-15

    A tutorial overview of point-focusing parabolic collectors is presented. Optical and thermal characteristics of such collectors are discussed. Data representing typical achievable collector efficiencies are presented and the importance of balancing collector cost with concentrator quality is argued through the development of a figure of merit for the collector. The impact of receiver temperature on performance is assessed and the general observation made that temperatures much in excess of 1500 to 2000/sup 0/F can actually result in decreased performance. Various types of two-axis tracking collectors are described, including the standard parabolic deep dish, Cassegrainian and Fresnel, as well as two forms of fixed mirrors with articulating receivers. The present DOE program to develop these devices is briefly discussed, as are present and projected costs for these collectors. Pricing information is presented for the only known commercial design available on the open market.

  2. Solar collector array

    Science.gov (United States)

    Hall, John Champlin; Martins, Guy Lawrence

    2015-09-06

    A method and apparatus for efficient manufacture, assembly and production of solar energy. In one aspect, the apparatus may include a number of modular solar receiver assemblies that may be separately manufactured, assembled and individually inserted into a solar collector array housing shaped to receive a plurality of solar receivers. The housing may include optical elements for focusing light onto the individual receivers, and a circuit for electrically connecting the solar receivers.

  3. Dissolved Air Flotation of arsenic adsorbent particles

    Directory of Open Access Journals (Sweden)

    M. Santander

    2015-04-01

    Full Text Available The removal of arsenic from synthetic effluent was studied using the adsorbent particle flotation technique (APF and dissolved air flotation (DAF. A sample of an iron mineral was used as adsorbent particles of arsenic, ferric chloride as coagulant, cationic polyacrylamide (NALCO 9808 as flocculants, and sodium oleate as collector. Adsorption studies to determine the pH influence, contact time, and adsorbent particles concentration on the adsorption of arsenic were carried out along with flotation studies to determine the removal efficiency of adsorbents particles. The results achieved indicate that the adsorption kinetic of arsenic is very rapid and that in range of pH’s from 2 to 7 the adsorption percentages remain constant. The equilibrium conditions were achieved in 60 minutes and about 95% of arsenic was adsorbed when used an adsorbent concentration of 2 g/L and pH 6.3. The maximum adsorption capacity of adsorbent particles was 4.96 mg/g. The mean free energy of adsorption (E was found to be 2.63 kJ/mol, which suggests physisorption. The results of the flotation studies demonstrated that when synthetic effluents with 8.9 mg/L of arsenic were treated under the following experimental conditions; 2 g/L of adsorbent particles, 120 mg/L of Fe(III, 2 mg/L of Nalco 9808, 20 mg/L of sodium oleate, and 40% of recycle ratio in the DAF, it was possible to reach 98% of arsenic removal and 6.3 NTU of residual turbidity in clarified synthetic effluent.

  4. Infiltration in Unsaturated Soils

    DEFF Research Database (Denmark)

    Ghotbi, Abdoul R.; Omidvar, M.; Barari, Amin

    2011-01-01

    An approximate analytical solution has been established for the well known Richards’ equation for unsaturated flow of transports in soils. Despite the importance of Richards’ equation in geotechnical and geoenvironmental applications, most solutions to the problem are generally based on numerical...

  5. Solar energy collector

    Energy Technology Data Exchange (ETDEWEB)

    Knowles, G.W.; Sangesland, O.E.; Vroom, H.J.; Madey, R.W.

    1977-11-22

    A solar energy collector is described for collecting, concentrating, and utilizing solar energy. It includes a target for transferring solar energy into another useable energy form and a reflector positioned to increase the amount of solar energy reaching the target and prevent solar energy from escaping around the target. The target includes a transparent envelope and a heat pipe containing a heat transfer fluid. The heat pipe has an evaporator portion disposed within the transparent envelope and an emergent condenser portion with a flange forming a dry thermal interface with a manifold for conducting heat energy directly from the heat pipe to the manifold.

  6. Solar energy collector

    Energy Technology Data Exchange (ETDEWEB)

    Knowles, G.W.; Sangesland, O.E.; Vroom, H.J.; Madey, R.W.

    1978-10-10

    A solar energy collector for collecting, concentrating, and utilizing solar energy is described including a target for transferring solar energy into another useable energy form and reflector positioned to increase the amount of solar energy reaching the target and prevent solar energy from escaping around the target, the target including in its preferred form a transparent envelope and a heat pipe containing a heat transfer fluid, the heat pipe having an evaporator portion disposed within the transparent envelope and an emergent condenser portion with a flange forming a dry thermal interface with a manifold for conducting heat energy directly from the heat pipe to the manifold.

  7. The CERN antiproton collector

    International Nuclear Information System (INIS)

    The Antiproton Collector is a new ring of much larger acceptance than the present accumulator. It is designed to receive 108 antiprotons per PS cycle. In order to be compatible with the Antiproton Accumulator, the momentum spread and the emittances are reduced from 6% to 0.2% and from 200 π mm mrad to 25 π mm mrad respectively. In addition to the ring itself, the new target area and the modifications to the stochastic systems of the Antiproton Accumulator are described. (orig.)

  8. Combined solar collector

    OpenAIRE

    Voznyak, O.; Shapoval, S.; Pona, O.; Vengryn, I.

    2014-01-01

    In this article was analyzing the efficiency of the combined solar collector for heating buildings. This enhances the efficiency of solar system by increasing the area of the absorption of solar energy. There are describes the results of the research on solar radiation input on a combined solar collector. Проаналізовано ефективність використання комбінованого сонячного колектора для теплопостачання будівель. Він забезпечує підвищення ефективності геліосистеми за рахунок збільшення площі погли...

  9. Solar energy collector system

    Energy Technology Data Exchange (ETDEWEB)

    Dumbeck, R.F.

    1982-04-13

    Simple flat plate reflectors, preferably compound of a panel with a reflector surface layer laminated thereto, are pivoted to move with the position of the sun and concentrate additional energy on a solar energy collector panel. The array can take a tented or triangular end view shape for closing to protect reflective surfaces from hail or sandstorm, etc. Also the surfaces are provided with a periodically operable surface cleaner to assure long term efficiency even when remotely positioned as on roof top. Low cost present day computers are programmed to track the sun over its seasonal variations by means of simple mechanisms pivoting the reflector plates. The system is self-energizing by means of batteries charged by solar panels accompanying the system. Solar energy is storable in a self-contained water tank for use at night, etc. And efficient energy conversion is attained by means of a stainless steel pipe length extending into the stored water and thermally coupled outside the tank to a solar heated higher than 100* C. Silicon oil circulated through the solar collector. Thus, vaporization is avoided and an effective lowcost simplified thermal energy conversion is effected.

  10. Tower-supported solar-energy collector

    Science.gov (United States)

    Selcuk, M. K.

    1977-01-01

    Multiple-collector tower system supports three receiver/concentrators that absorb solar energy reflected from surrounding field of heliostats. System overcomes disadvantages of tower-supported collectors. Booms can be lowered during heavy winds to protect arms and collectors.

  11. Studies of collectors, 9

    International Nuclear Information System (INIS)

    Chelating surfactants bearing hydroxyaminocarbonyl and amino groups (RnAHx) and cotelomer-type surfactants bearing hydroxyaminocarbonyl and pyridyl groups (Ls-VP-Q-Hx) were prepared and applied as flotation collectors for a trace amount of uranium. The uranium in an aqueous solution of pH 4 - 8 and in seawater was floated more effectively by ion flotation using RnAHx or by foam fractionation using Ls-VP-Q-Hx, compared with alkylhydroxamic acid (RnHx) and telomers bearing hydroxyaminocarbonyl groups (Lo-Hx). The effective flotation was concluded to be due to the chelate effects between the two groups on the complex formation and to the HLB of the resulting complex. Furthermore, the uranium recoveries were examined by using a hydroxamic acid polymer (62Hx), a N-methylhydroxamic acid telomer (Ls5.6MHx), and its cotelomer (Ls3.2VP4.5MHx). (author)

  12. LHCb Tag Collector

    CERN Document Server

    Fuente Fernàndez, P; Cousin, N

    2011-01-01

    The LHCb physics software consists of hundreds of packages, each of which is developed by one or more physicists. When the developers have some code changes that they would like released, they commit them to the version control system, and enter the revision number into a database. These changes have to be integrated into a new release of each of the physics analysis applications. Tests are then performed by a nightly build system, which rebuilds various configurations of the whole software stack and executes a suite of run-time functionality tests. A Tag Collector system has been developed using solid standard technologies to cover both the use cases of developers and integration managers. A simple Web interface, based on an AJAX-like technology, is available. Integration with software management and Nightly Build programs is possible via a Python API. Data are stored in a relational database with the help of an ORM (Object-Relational Mapping) library.

  13. Biobriefcase aerosol collector

    Science.gov (United States)

    Bell, Perry M.; Christian, Allen T.; Bailey, Christopher G.; Willis, Ladona; Masquelier, Donald A.; Nasarabadi, Shanavaz L.

    2009-09-22

    A system for sampling air and collecting particles entrained in the air that potentially include bioagents. The system comprises providing a receiving surface, directing a liquid to the receiving surface and producing a liquid surface. Collecting samples of the air and directing the samples of air so that the samples of air with particles entrained in the air impact the liquid surface. The particles potentially including bioagents become captured in the liquid. The air with particles entrained in the air impacts the liquid surface with sufficient velocity to entrain the particles into the liquid but cause minor turbulence. The liquid surface has a surface tension and the collector samples the air and directs the air to the liquid surface so that the air with particles entrained in the air impacts the liquid surface with sufficient velocity to entrain the particles into the liquid, but cause minor turbulence on the surface resulting in insignificant evaporation of the liquid.

  14. [Flotation mechanism on Mycobacterium phlei and adsorption of Pb2+ by collectors].

    Science.gov (United States)

    Zhou, Dong-qin; Wei, De-zhou

    2006-02-01

    The possibility of removal of heavy metals from waste water by adsorption flotation using Mycobacterium phlei as adsorbent was investigated, and the collection mechanism of collectors on adsorbent was analyzed. From the single flotation tests, it shows that cationic collectors have a stronger collecting ability for Mycobacterium phlei than anionic collectors. The adsorptive flotation experiment shows that floatability process occurred within 10 minutes, the recovery of Mycobacterium phlei and the removing rate of Pb2+ are high by using cationic collectors during pH value from 4 to 7. At 45mmol/L of Di-buty lamine as collector, and 4.75 of pH, the recovery of Mycobacterium phlei and the removing rate of Pb2+ are 92 % and 98%. The isoelectric point of Mycobacterium phlei is 3.09 at pH of the solution, which increased when Pb2+ or Di-buty lamine is adsorption by Mycobacterium phlei. The good floatability of Mycobacterium phlei with cationic collectors results from the intense zeta potential on the surface of cell, Adsorptive flotation may have practical applications for the removal of hazardous metals from contaminated water supplies. PMID:16686201

  15. Performance study of unglazed cylindrical solar collector for adsorption refrigeration system

    Science.gov (United States)

    Mahesh, A.; Kaushik, S. C.; Kumaraguru, A. K.

    2013-12-01

    In the present communication, the unglazed cylindrical solar adsorber module is suggested for refrigeration and theoretical models for the heat and mass transfer in the cylindrical adsorber with heat balance equations in the collector components have been developed. It has been found that, both the SCP and COPsolar raises with increasing the evaporation temperature and drop off with the increase of the condensation temperature. The COPsolar increased from 0.15 to 0.52 with the increase of the total solar energy absorbed by the collector while the COPcycle varied in the range of 0.57-0.73. The efficiency of unglazed solar collector varied from 36 to 44 %. The cost of current unglazed adsorption refrigeration system is compared with the glazed system, and it is 33 to 50 % less than the cost of glazed system.

  16. AEROSOL PARTICLE COLLECTOR DESIGN STUDY

    Energy Technology Data Exchange (ETDEWEB)

    Lee, S; Richard Dimenna, R

    2007-09-27

    A computational evaluation of a particle collector design was performed to evaluate the behavior of aerosol particles in a fast flowing gas stream. The objective of the work was to improve the collection efficiency of the device while maintaining a minimum specified air throughput, nominal collector size, and minimal power requirements. The impact of a range of parameters was considered subject to constraints on gas flow rate, overall collector dimensions, and power limitations. Potential improvements were identified, some of which have already been implemented. Other more complex changes were identified and are described here for further consideration. In addition, fruitful areas for further study are proposed.

  17. Shenandoah parabolic dish solar collector

    Energy Technology Data Exchange (ETDEWEB)

    Kinoshita, G.S.

    1985-01-01

    The objectives of the Shenandoah, Georgia, Solar Total Energy System are to design, construct, test, and operate a solar energy system to obtain experience with large-scale hardware systems for future applications. This report describes the initial design and testing activities conducted to select and develop a collector that would serve the need of such a solar total energy system. The parabolic dish was selected as the collector most likely to maximize energy collection as required by this specific site. The fabrication, testing, and installation of the parabolic dish collector incorporating improvements identified during the development testing phase are described.

  18. Design package for concentrating solar collector panels

    Energy Technology Data Exchange (ETDEWEB)

    1978-08-01

    Information used to evaluate the design of the Northrup concentrating collector is presented. Included are the system performance specifications, the applications manual, and the detailed design drawings of the collector. The Northrup concentrating solar collector is a water/glycol/working fluid type, dipped galvanized steel housing, transparent acrylic Fresnel lens cover, copper absorber tube, fiber glass insulation and weighs 98 pounds. The gross collector area is about 29.4/sup 2/ per collector. A collector assembly includes four collector units within a tracking mount array.

  19. ADVANCED HYBRID PARTICULATE COLLECTOR

    Energy Technology Data Exchange (ETDEWEB)

    Stanley J. Miller; Grant L. Schelkoph; Grant E. Dunham

    2000-12-01

    A new concept in particulate control, called an advanced hybrid particulate collector (AHPC), is being developed under funding from the US Department of Energy. The AHPC combines the best features of electrostatic precipitators (ESPs) and baghouses in an entirely novel manner. The AHPC concept combines fabric filtration and electrostatic precipitation in the same housing, providing major synergism between the two methods, both in the particulate collection step and in transfer of dust to the hopper. The AHPC provides ultrahigh collection efficiency, overcoming the problem of excessive fine-particle emissions with conventional ESPs, and solves the problem of reentrainment and recollection of dust in conventional baghouses. Phase I of the development effort consisted of design, construction, and testing of a 5.7-m{sup 3}/min (200-acfm) working AHPC model. Results from both 8-hour parametric tests and 100-hour proof-of-concept tests with two different coals demonstrated excellent operability and greater than 99.99% fine-particle collection efficiency.

  20. SOLAR NANTENNA ELECTROMAGNETIC COLLECTORS

    Energy Technology Data Exchange (ETDEWEB)

    Steven D. Novack; Dale K. Kotter; Dennis Slafer; Patrick Pinhero

    2008-08-01

    This research explores a new efficient approach for producing electricity from the abundant energy of the sun. A nanoantenna electromagnetic collector (NEC) has been designed, prototyped, and tested. Proof of concept has been validated. The device targets mid-infrared wavelengths where conventional photovoltaic (PV) solar cells do not respond but is abundant in solar energy. The initial concept of designing NEC antennas was based on scaling of radio frequency antenna theory. This approach has proven unsuccessful by many due to not fully understanding and accounting for the optical behavior of materials in the THz region. Also until recent years the nanofabrication methods were not available to fabricate the optical antenna elements. We have addressed and overcome both technology barriers. Several factors were critical in successful implementation of NEC including: 1) frequency-dependent modeling of antenna elements, 2) selection of materials with proper THz properties and 3) novel manufacturing methods that enable economical large-scale manufacturing. The work represents an important step toward the ultimate realization of a low-cost device that will collect as well as convert this radiation into electricity, which will lead to a wide spectrum, high conversion efficiency, and low cost solution to complement conventional PVs.

  1. Elastocapillary mist collector

    Science.gov (United States)

    Duprat, Camille; Labbé, Romain; Rewakowicz, Ana

    2015-11-01

    Fibrous media are commonly used to collect droplets from an aerosol. In particular, woven textiles are used to harvest fresh water from fog, and coalescing filters made of non-woven entangled fibers are used to extract oil drops from gas streams. We propose a novel mist collector made of a forest of vertical flexible threads. As the droplets accumulate on the fibers, capillary bridges are formed, leading to the collapse of adjacent fibers thus forming liquid columns. This improve the liquid collection by preventing clogging, enabling high capture and precluding re-entrainment of drops in the gas stream due to the immediate coalescence of incoming droplets, and promoting fast drainage. We find that the collection flow rate is constant and can be adjusted by varying the fibers arrangement and flexibility. We show that there is an optimal situation for which this collection rate, i.e. the global efficiency, is maximal due to an elastocapillary coupling that we further characterize with a model experiment. Specifically, we study the drainage between two flexible fibers. Depending on the geometry and the fiber deformations, several flow regimes are observed. We characterize these regimes, and discuss the consequences on the drainage velocity, and thus the collection efficiency.

  2. Design package for concentrating solar collector panels

    Science.gov (United States)

    1978-01-01

    Information used to evaluate the design of the Northrup concentrating collector is presented. Included are the system performance specifications, the applications manual, and the detailed design drawings of the collector. The collector is a water/glycol/working fluid type, with a dipped galvanized steel housing, transparent acrylic Fresnel lens cover, copper absorber tube, and fiber glass insulation. It weights 98 pounds. A collector assembly includes four collector units within a tracking mount array.

  3. Comparative Adsorption of Saturated and Unsaturated Fatty Acids at the Iron Oxide/Oil Interface.

    Science.gov (United States)

    Wood, Mary H; Casford, M T; Steitz, R; Zarbakhsh, A; Welbourn, R J L; Clarke, Stuart M

    2016-01-19

    A detailed comparison of the adsorption behavior of long straight chain saturated and unsaturated fatty acids at the iron oxide/oil interface has been considered using a combination of surface study techniques. Both depletion isotherms and polarized neutron reflectometry (PNR) show that the extent of adsorption decreases as the number of double bonds in the alkyl chains increases. Sum frequency generation spectroscopic measurements demonstrate that there is also an increase in chain disorder within the adsorbed layer as the unsaturation increases. However, for the unsaturated analogues, a decrease in peak intensity is seen for the double bond peak upon heating, which is thought to arise from isomerization in the surface-bound layer. The PNR study of oleic acid adsorption indicates chemisorbed monolayer adsorption, with a further diffuse reversible adsorbed layer formed at higher concentrations. PMID:26707597

  4. Collector for thermionic energy converter

    International Nuclear Information System (INIS)

    An improved collector is provided for a thermionic energy converter. The collector comprises a p-type layer of a semiconductor material formed on an n-type layer of a semiconductor material. The p-n junction is maintained in a forward biased condition. The electron affinity of the exposed surface of the p-type layer is effectively lowered to a low level near zero by the presence of a work function lowering activator. The dissipation of energy during collection is reduced by the passage of electrons through the p-type layer in the metastable conduction band state. A significant portion of the electron current remains at the potential of the fermi level of the n-type layer rather than dropping to the fermi level of the p-type layer. Less energy is therefore dissipated as heat and a higher net power output is delivered from a thermionic energy converter incorporating the collector

  5. ADVANCED HYBRID PARTICULATE COLLECTOR

    Energy Technology Data Exchange (ETDEWEB)

    Ye Zhuang; Stanley J. Miller; Michelle R. Olderbak; Rich Gebert

    2001-12-01

    A new concept in particulate control, called an advanced hybrid particulate collector (AHPC), is being developed under funding from the U.S. Department of Energy. The AHPC combines the best features of electrostatic precipitators (ESPs) and baghouses in an entirely novel manner. The AHPC concept combines fabric filtration and electrostatic precipitation in the same housing, providing major synergism between the two methods, both in the particulate collection step and in transfer of dust to the hopper. The AHPC provides ultrahigh collection efficiency, overcoming the problem of excessive fine-particle emissions with conventional ESPs, and solves the problem of reentrainment and re-collection of dust in conventional baghouses. Phase I of the development effort consisted of design, construction, and testing of a 5.7-m{sup 3}/min (200-acfm) working AHPC model. Results from both 8-hr parametric tests and 100-hr proof-of-concept tests with two different coals demonstrated excellent operability and greater than 99.99% fine-particle collection efficiency. Since all of the developmental goals of Phase I were met, the approach was scaled up in Phase II to a size of 255 m{sup 3}/min (9000 acfm) (equivalent in size to 2.5 MW) and was installed on a slipstream at the Big Stone Power Plant. For Phase II, the AHPC at Big Stone Power Plant was operated continuously from late July 1999 until mid-December 1999. The Phase II results were highly successful in that ultrahigh particle collection efficiency was achieved, pressure drop was well controlled, and system operability was excellent. For Phase III, the AHPC was modified into a more compact configuration, and components were installed that were closer to what would be used in a full-scale commercial design. The modified AHPC was operated from April to July 2000. While operational results were acceptable during this time, inspection of bags in the summer of 2000 revealed some membrane damage to the fabric that appeared to be

  6. Performance verification of an air solar collector

    Science.gov (United States)

    Miller, D. C.; Romaker, R. F.

    1979-01-01

    Procedures and results of battery of qualification tests performed by independent certification agency on commercial solar collector are presented in report. Reported results were used as basis in judging collector suitable for field installation in residential and commerical buildings.

  7. Analysis of pumping-induced unsaturated regions beneath a perennial river

    Science.gov (United States)

    Su, G.W.; Jasperse, J.; Seymour, D.; Constante, J.; Zhou, Q.

    2007-01-01

    The presence of an unsaturated region beneath a streambed during groundwater pumping near streams can reduce the pumping capacity, change flow paths, and alter the types of biological transformations in the streambed sediments. A three-dimensional, multiphase flow model of two horizontal collector wells along the Russian River near Forestville, California, was developed to investigate the impact of varying the ratio of the aquifer to streambed permeability on (1) the formation of an unsaturated region beneath the stream, (2) the pumping capacity, (3) stream water fluxes through the streambed, and (4) stream water traveltimes to the collector wells. The aquifer to streambed permeability ratio at which the unsaturated region was initially observed ranged from 10 to 100. The size of the unsaturated region beneath the streambed increased as the aquifer to streambed permeability ratio increased. The simulations also indicated that for a particular aquifer permeability, decreasing the streambed permeability by only a factor of 2-3 from the permeability where desaturation initially occurred resulted in reducing the pumping capacity. In some cases, the stream water fluxes increased as the streambed permeability decreased. However, the stream water residence times increased and the fraction of stream water that reached that the wells decreased as the streambed permeability decreased, indicating that a higher streambed flux does not necessarily correlate to greater recharge of stream water around the wells. Copyright 2007 by the American Geophysical Union.

  8. Heat yield and characteristics of solar collectors

    International Nuclear Information System (INIS)

    The test results of the summer 1980 test on solar collectors are summarised. Apart from the 16 collectors tested under contract, two were investigated as a reference serving flat collectors, e.g. for the area of International Energy Agency (IEA), two were evacuated cylindrical collectors. The report allows the comparison of heat power outputs of the different products on the basis of the measured optical and thermal data values. (A.N.K.)

  9. Decontamination of radioactive process waste water by adsorbing colloid flotation

    International Nuclear Information System (INIS)

    Adsorbing colloid flotation was tested to remove 144Ce, 60Co, 65Zn, and 89Sr from radioactive process waste water. Potassium oleate was used as the collector, and Fe(III) hydroxide, Al(III) hydroxide or Co(II) hydroxide as the coprecipitant. Under optimal conditions, removals exceeding 99% could be achieved for 65Zn with any of the tested coprecipitants, for 144Ce with Fe(III) and Co(II) hydroxides and for 60Co with only Co(II) hydroxide. For 89Sr removals of 90% could be achieved only with Fe(III) hydroxide. The adsorbing colloid flotation process was compared with both chemical precipitation and ion exchange. Advantages of adsorbing colloid flotation are discussed. (author)

  10. Molecular Adsorber Coating

    Science.gov (United States)

    Straka, Sharon; Peters, Wanda; Hasegawa, Mark; Hedgeland, Randy; Petro, John; Novo-Gradac, Kevin; Wong, Alfred; Triolo, Jack; Miller, Cory

    2011-01-01

    A document discusses a zeolite-based sprayable molecular adsorber coating that has been developed to alleviate the size and weight issues of current ceramic puck-based technology, while providing a configuration that more projects can use to protect against degradation from outgassed materials within a spacecraft, particularly contamination-sensitive instruments. This coating system demonstrates five times the adsorption capacity of previously developed adsorber coating slurries. The molecular adsorber formulation was developed and refined, and a procedure for spray application was developed. Samples were spray-coated and tested for capacity, thermal optical/radiative properties, coating adhesion, and thermal cycling. Work performed during this study indicates that the molecular adsorber formulation can be applied to aluminum, stainless steel, or other metal substrates that can accept silicate-based coatings. The coating can also function as a thermal- control coating. This adsorber will dramatically reduce the mass and volume restrictions, and is less expensive than the currently used molecular adsorber puck design.

  11. Bondings for tubular solar collectors

    International Nuclear Information System (INIS)

    We studied the following four models of constructing solar collectors: tubes bonded above the absorber plate, tubes bonded under the absorber plate tubes in-line with the absorber plate and bondless tubes in-line with the absorber plate. 2 refs, 6 figs

  12. Theoretical and experimental investigations of Chinese evacuated tubular solar collectors

    DEFF Research Database (Denmark)

    Qin, Lin; Furbo, Simon

    1999-01-01

    Four different marketed Chinese evacuated tubular solar collectors have been investigated both theoretically and experimentally. The advantages of the investigated solar collectors compared to normal flat plate collectors were elucidated.......Four different marketed Chinese evacuated tubular solar collectors have been investigated both theoretically and experimentally. The advantages of the investigated solar collectors compared to normal flat plate collectors were elucidated....

  13. Radiation polymerization of unsaturated polyester

    International Nuclear Information System (INIS)

    Radiation polymerization of unsaturated polyester has been studied, either under electron beams or gamma rays. Addition of reducing agents of dyes will reduce the rate of polymerization. Rate of polymerization is proportional to 1sup(a), where the value of ''a'' is dependent on the composition of the monomer and polymer (1= dose rate). Infrared examinations indicated that for higher dose of irradiation, 8,5 Mrad in the case of unsaturated polyester STRATYL under electron beams, either polymerization or degradation of ester groups can take place. (author)

  14. Optical design for EUV lithography source collector

    Institute of Scientific and Technical Information of China (English)

    Shuqing Zhang; Qi Wang; Dongyuan Zhu; Runshun Li; Chang Liu

    2011-01-01

    @@ Wolter I collector is the best collector for extreme ultraviolet (EUV) lithography, which has a series of nested mirrors.It has high collection efficiency and can obtain more uniform intensity distribution at the intermediate focus (IF).A new design with the calculation sequence from the outer mirror to the inner one on the premise of satisfying the requirements of the collector is introduced.Based on this concept, a computer program is established and the optical parameters of the collector using the program is calculated.The design results indicate that the collector satisfies all the requirements.%Wolter I collector is the best collector for extreme ultraviolet (EUV) lithography, which has a series of nested mirrors. It has high collection efficiency and can obtain more uniform intensity distribution at the intermediate focus (IF). A new design with the calculation sequence from the outer mirror to the inner one on the premise of satisfying the requirements of the collector is introduced. Based on this concept, acomputer program is established and the optical parameters of the collector using the program is calculated.The design results indicate that the collector satisfies all the requirements.

  15. The unsaturated simple ethers of glycerin

    International Nuclear Information System (INIS)

    To the unsaturated simple ethers of glycerin related allyl, vinyl ethers, which can be mono-, di- and three-substitutes. Besides there are known compounds, which contain simultaneously saturate and unsaturated radicals in molecule

  16. Transporting method for adsorbing tower and the adsorbing tower

    International Nuclear Information System (INIS)

    A cylindrical plastic bag is disposed to the upper surface of an adsorbing tower so as to surround a suspending piece. One opening of the bag is sealed, and other opening is secured in a sealed state to a bag holding portion disposed to glove box at a gate for the adsorbing tower box. The adsorbing tower is transported into the glove box, and after the completion of the operation of the adsorbing tower, the adsorbing tower is taken out in a state that the bag is restricted and sealed at a portion below the adsorbing tower. The bag may be made of a vinyl plastic, the bag holding portion may be a short-cylindrical protrusion, and may have an O-ring groove at the outer surface. Even if the adsorbing tower is heavy, the adsorbing tower can be carried out easily in a state where it is sealed gas tightly. (N.H.)

  17. Heat yield and characteristics of solar collectors

    International Nuclear Information System (INIS)

    The results of the EIR collector test series of the summers 1978 and 1979 are presented. In total, there are 37 different collectors available on the Swiss market. The results are compared with those from the IEA (International Energy Agency) of presuggested reference collectors. Test methods are described and also the construction of the test bench. Also, briefly described is a development method for the calculation of gross heat yield from solar collectors. Then the characteristics of the reference collectors in connection with the test periods are considered, and their role in the calculation of results of single collector test series explained. A description of the spectral photometer is given. (A.N.K.)

  18. Hydraulic Properties of Unsaturated Soils

    Science.gov (United States)

    Many agrophysical applications require knowledge of the hydraulic properties of unsaturated soils. These properties reflect the ability of a soil to retain or transmit water and its dissolved constituents. The objective of this work was to develop an entry for the Encyclopedia of Agrophysics that w...

  19. Tubular solid oxide fuel cell current collector

    Science.gov (United States)

    Bischoff, Brian L.; Sutton, Theodore G.; Armstrong, Timothy R.

    2010-07-20

    An internal current collector for use inside a tubular solid oxide fuel cell (TSOFC) electrode comprises a tubular coil spring disposed concentrically within a TSOFC electrode and in firm uniform tangential electrical contact with the electrode inner surface. The current collector maximizes the contact area between the current collector and the electrode. The current collector is made of a metal that is electrically conductive and able to survive under the operational conditions of the fuel cell, i.e., the cathode in air, and the anode in fuel such as hydrogen, CO, CO.sub.2, H.sub.2O or H.sub.2S.

  20. Foldable Frame Supporting Electromagnetic Radiation Collectors

    DEFF Research Database (Denmark)

    2011-01-01

    The present invention relates to flexible frames supporting electromagnetic radiation collectors, such as antennas, antenna reflectors, deflectors or solar collectors, for celestial or terrestrial applications, which can be folded to be stored and/or transported. The method for stowing deforms the...

  1. OUT Success Stories: Transpired Solar Collectors

    International Nuclear Information System (INIS)

    Transpired solar collectors are a reliable, low-cost technology for preheating building ventilation air. With simple payback periods ranging from 3 to 12 years and an estimated 30-year life span, transpired collector systems offer building owners substantial cost savings

  2. Elastic response of unsaturated soils

    OpenAIRE

    Murillo, Carol; Caicedo, Bernardo; Thorel, Luc; Dano, Christophe

    2013-01-01

    The elastic behavior of unsaturated soils subjected to very small strains (smaller than 10−5) was studied in the past years using different experimental devices (mainly resonant columns). The bender elements technique, now extensively used in soil mechanics, offers an efficient alternative to measure elastic properties of soils. Furthermore to enrich the common bender elements testing results providing only shear modulus values, an evolution of the bender elements technique, named bende...

  3. Micromechanics of unsaturated granular media

    OpenAIRE

    CHATEAU, X; Moucheront, P.; Pitois, O.

    2002-01-01

    The homogenization method is used to study the properties of the strength criterion of a granular material in the dry, saturated, and unsaturated situations. Adopting a periodic description of the granular material at the microscopic level, the main features of the up-scaling technique are recalled. Then, a general definition of the strength criterion at the macroscopic scale is given in the framework of yield design homogenization theory. This approach makes it possible to find again classic...

  4. Evaluation of Test Method for Solar Collector Efficiency

    OpenAIRE

    Fan, Jianhua; Shah, Louise Jivan; Furbo, Simon

    2006-01-01

    The test method of the standard EN12975-2 (European Committee for Standardization, 2004) is used by European test laboratories to determine the efficiency of solar collectors. In the test methods the mean solar collector fluid temperature in the solar collector, Tm is determined by the approximated equation where Tin is the inlet temperature to the collector and Tout is the outlet temperature from the collector. The specific heat of the solar collector fluid is in the test method as an approx...

  5. Measurements of 222Rn and220Rn with a large size collector of radon progeny

    International Nuclear Information System (INIS)

    People have paid more attention to radon since 1980s. Radon concentrations in high background radiation areas in the south are higher than others in China, especially 220 Rn concentration is significantly high. Therefore, measurement of 222 Rn and 220 Rn concentration should be carried out there. I will introduce a large size collector of radon progeny and its applications in this paper. The collector is a sheet of polyvinyl chloride fibre with electrostatics of -500V ∼ -700V. Its size (60mm in diameter) is larger than others (26mm in diameter) that work as the same principle. The collector is more effective to adsorb radon progeny than most of others. The equipment of ZnS(Ag) Scintillation Counting System is available for large size collectors to detect radon progeny. Therefore its sensitivity of measurement is high than others. According to the different half life of radon progeny and based on both theory and experiment, a formula for discrimination and calculation of 222 Rn and 220 Rn concentrations was deduced. The 222 Rn and 220 Rn concentrations were surveyed with electrostatic collectors of radon progeny on the campus of commercial school and some other areas in Hainan, southern China. Neither 222 Rn nor 220 Rn concentrations were found significant high. However several faults underground were delineated. The collector is also used to study radon transportation. Results indicate that radon changes regularly with date when it has transported for a certain distance. Velocities of radon migration in the four media are quite different. Radon migrates more quickly in vertical tube than in the horizontal tube

  6. Measurements of 222Rn and 220Rn with a Large Size Collector of Radon Progeny

    Institute of Scientific and Technical Information of China (English)

    Wu Qifan; Jia Wenyi; Fang Fang; Wang Jun; Cheng Jianping; Liu Guilin; Zhu Li

    2003-01-01

    Radon concentrations in high background radiation areas in the south are higher than those of others in China, especially 220Rn concentration is significantly high. Therefore, measurements of 222Rn and 220 Rn concentrations should be carried out there. This paper introduces a large size collector of radon progeny and its applications. The collector is a sheet of polyvinyl chloride fiber with electrostatics of (-500 V) - ( -700 V). Its size (60 mm in diameter) is larger than those of others (26 mm in diameter) that work with the same principle. The collector is more effective to adsorb radon progeny than most of others. The equipment of ZnS(Ag) Scintillation Counting System is available for large size collectors to detect radon progeny. Therefore, its sensitivity of measurement is higher than that of others.According to the different half lives of radon progeny, and based on both theory and experiments, a formula for discrimination and calculation of 222 Rn and 220Rn concentrations is deduced. The 222Rn and 220Rn concentrations were surveyed with electrostatic collectors of radon progeny on the campus of com-mercial school and some other areas in Hainan, southern China. Neither 222Rn nor 220Rn concentration was found significantly high. However, several faults underground were delineated. The collector is also used to study radon transportation. Results indicate that radon changes regularly with date when it has transported for a certain distance. Velocities of radon migration in the four media are quite different.Radon migrates more quickly in vertical tube than in the horizontal tube.

  7. COMPARATIVE FIELD EXPERIMENTAL INVESTIGATIONS OF DIFFERENT FLAT PLATE SOLAR COLLECTORS

    Directory of Open Access Journals (Sweden)

    Guangming Chen

    2015-12-01

    Full Text Available Full-scale traditional metal solar collectors and solar collector specimens fabricated from polymeric materials were investigated in the present study. A polymeric collector is 67.8% lighter than a traditional metal solar collector, and a metal solar collector with transparent plastic covering is 40.3% lighter than a traditional metal solar collector. Honeycomb multichannel plates made from polycarbonate were chosen to create a polymeric solar collector. A test rig for the natural circulation of the working fluid in a solar collector was built for a comparative experimental investigation of various solar collectors operating at ambient conditions. It was shown experimentally that the efficiency of a polymeric collector is 8–15% lower than the efficiency of a traditional collector.

  8. General report of TC 106: Unsaturated soils

    OpenAIRE

    Jommi, C.

    2013-01-01

    This general report summarises the contributions on unsaturated soil mechanics submitted to the Discussion Session of TC106 – Unsaturated soils –at the 18th International Conference on Soil Mechanics and Geotechnical Engineering held in Paris in September 2013. The thirty-five papers collected under the framework of unsaturated soil mechanics cover a broad spectrum of problems and procedures at varying scales. Much attention is devoted to issues related to experimental techniques and procedur...

  9. High performance Mo adsorbent PZC

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    1998-10-01

    We have developed Mo adsorbents for natural Mo(n, {gamma}){sup 99}Mo-{sup 99m}Tc generator. Among them, we called the highest performance adsorbent PZC that could adsorb about 250 mg-Mo/g. In this report, we will show the structure, adsorption mechanism of Mo, and the other useful properties of PZC when you carry out the examination of Mo adsorption and elution of {sup 99m}Tc. (author)

  10. Solar energy collector and storage device

    Energy Technology Data Exchange (ETDEWEB)

    Smith, H.T.

    1979-08-28

    An improved flat plate solar energy collector of integral construction capable of mass production in which metal tubing is eliminated is described. The collector includes a stamped planar tray and a radiant energy absorber plate connected together to form the inlet and outlet fluid header and the innerconnecting channels therebetween. The planar tray and absorber plate are mounted in a molded insulated housing which integrally includes a storage tank. A fluid medium such as water is heated by solar radiation and circulated through the collector to the storage tank by thermal syphon. Elimination of conventional tubing greatly reduces fabrication costs and increases absorption efficiency.

  11. New tool for standardized collector performance calculations

    DEFF Research Database (Denmark)

    Perers, Bengt; Kovacs, Peter; Olsson, Marcus;

    2011-01-01

    A new tool for standardized calculation of solar collector performance has been developed in cooperation between SP Technical Research Institute Sweden, DTU Denmark and SERC Dalarna University. The tool is designed to calculate the annual performance for a number of representative cities in Europe...... on the basis of parameters from collector tests performed according to EN12975, without any intermediate conversions. The main target group for this tool is test institutes and certification bodies that intend to use it for conversion of collector model parameters derived from performance tests, into a more...

  12. Next Generation Solar Collectors for CSP

    Energy Technology Data Exchange (ETDEWEB)

    Molnar, Attila [3M Company, St. Paul, MN (United States); Charles, Ruth [3M Company, St. Paul, MN (United States)

    2014-07-31

    The intent of “Next Generation Solar Collectors for CSP” program was to develop key technology elements for collectors in Phase 1 (Budget Period 1), design these elements in Phase 2 (Budget Period 2) and to deploy and test the final collector in Phase 3 (Budget Period 3). 3M and DOE mutually agreed to terminate the program at the end of Budget Period 1, primarily due to timeline issues. However, significant advancements were achieved in developing a next generation reflective material and panel that has the potential to significantly improve the efficiency of CSP systems.

  13. A new collector for wolframite slime flotation

    Institute of Scientific and Technical Information of China (English)

    田学达; 杨运泉; 张小云; 王淀佐; 李隆峰; 朱建光

    2002-01-01

    With aniline and salicylaldehyde as main materials,a new collector for wolframite slime was synthesized.In a pulp of natural pH value,this collector can collect wolframite effectively.Its selectivity is similar to that of benzyl arsenic acid and better than that of sodium oleate.With this collector,a wolframite rough concentrate with grade 30.12% WO3 and recovery 91.50%,and a concentrate with grade 58.66% WO3 and recovery 85.00% were obtained respectively from a wolframite ore containing 4.08% WO3.

  14. Baghouse and cartridge dust collectors: A comparison

    Energy Technology Data Exchange (ETDEWEB)

    Grafe, T.; Kelley, G. (Torit and Day, Minneapolis, MN (United States))

    1993-09-01

    Increased demands are being placed on air filtration systems. The particular application will determine whether a baghouse or cartridge type is best. Baghouse and cartridge dust collectors both have their place in modern air filtering systems. Baghouses have been in use much longer, but cartridge types offer significant advantages for particular applications. The task facing the site engineer is to match the requirements of the specific application with the inherent characteristics of the dust collector. This article presents basic information about both types of dust collectors that can help provide the best solution to that problem.

  15. Positronium chemistry in porous adsorbents

    International Nuclear Information System (INIS)

    Kinetic studies on the annihilation of orthopositronium in porous adsorbents have been performed using lifetime spectroscopy. The positron source applied was 22Na with 0.2 MBq activity. The adsorbents investigated were silica gels of different particle size and pore structure. The appearance of the long-lived component in the lifetime spectra can be explained by the diffusion of the orthopositronium into the pores affected by the particle size and the pore size of the adsorbent, the coverage on it and the chemical nature of the adsorbate. The long-term aim of the work is to determine and to explain these effects. (author)

  16. Design and performance characteristics of solar adsorption refrigeration system using parabolic trough collector: Experimental and statistical optimization technique

    International Nuclear Information System (INIS)

    Highlights: • The successes of using olive waste/methanol as an adsorbent/adsorbate pair. • The experimental gross cycle coefficient of performance obtained was COPa = 0.75. • Optimization showed expanding adsorbent mass to a certain range increases the COP. • The statistical optimization led to optimum tank volume between 0.2 and 0.3 m3. • Increasing the collector area to a certain range increased the COP. - Abstract: The current work demonstrates a developed model of a solar adsorption refrigeration system with specific requirements and specifications. The recent scheme can be employed as a refrigerator and cooler unit suitable for remote areas. The unit runs through a parabolic trough solar collector (PTC) and uses olive waste as adsorbent with methanol as adsorbate. Cooling production, COP (coefficient of performance, and COPa (cycle gross coefficient of performance) were used to assess the system performance. The system’s design optimum parameters in this study were arrived to through statistical and experimental methods. The lowest temperature attained in the refrigerated space was 4 °C and the equivalent ambient temperature was 27 °C. The temperature started to decrease steadily at 20:30 – when the actual cooling started – until it reached 4 °C at 01:30 in the next day when it rose again. The highest COPa obtained was 0.75

  17. Efficiencies of flat plate solar collectors at different flow rates

    DEFF Research Database (Denmark)

    Chen, Ziqian; Furbo, Simon; Perers, Bengt; Fan, Jianhua; Andersen, Elsa

    2012-01-01

    Two flat plate solar collectors for solar heating plants from Arcon Solvarme A/S are tested in a laboratory test facility for solar collectors at Technical University of Denmark (DTU). The collectors are designed in the same way. However, one collector is equipped with an ETFE foil between the...

  18. Physicochemical controls on absorbed water film thickness in unsaturated geological media

    Energy Technology Data Exchange (ETDEWEB)

    Tokunaga, T.

    2011-06-14

    Adsorbed water films commonly coat mineral surfaces in unsaturated soils and rocks, reducing flow and transport rates. Therefore, it is important to understand how adsorbed film thickness depends on matric potential, surface chemistry, and solution chemistry. Here, the problem of adsorbed water film thickness is examined through combining capillary scaling with the Derjaguin-Landau-Verwey-Overbeek (DLVO) theory. Novel aspects of this analysis include determining capillary influences on film thicknesses, and incorporating solution chemistry-dependent electrostatic potential at air-water interfaces. Capillary analysis of monodisperse packings of spherical grains provided estimated ranges of matric potentials where adsorbed films are stable, and showed that pendular rings within drained porous media retain most of the 'residual' water except under very low matric potentials. Within drained pores, capillary contributions to thinning of adsorbed films on spherical grains are shown to be small, such that DLVO calculations for flat surfaces are suitable approximations. Hamaker constants of common soil minerals were obtained to determine ranges of the dispersion component to matric potential-dependent film thickness. The pressure component associated with electrical double layer forces was estimated using the compression and linear superposition approximations. The pH-dependent electrical double layer pressure component is the dominant contribution to film thicknesses at intermediate values of matric potential, especially in lower ionic strength solutions (< 10 mol m{sup -3}) on surfaces with higher magnitude electrostatic potentials (more negative than - 50 mV). Adsorbed water films are predicted to usually range in thickness from 1 to 20 nm in drained pores and fractures of unsaturated environments.

  19. Tilt assembly for tracking solar collector assembly

    Science.gov (United States)

    Almy, Charles; Peurach, John; Sandler, Reuben

    2012-01-24

    A tilt assembly is used with a solar collector assembly of the type comprising a frame, supporting a solar collector, for movement about a tilt axis by pivoting a drive element between first and second orientations. The tilt assembly comprises a drive element coupler connected to the drive element and a driver, the driver comprising a drive frame, a drive arm and a drive arm driver. The drive arm is mounted to the drive frame for pivotal movement about a drive arm axis. Movement on the drive arm mimics movement of the drive element. Drive element couplers can extend in opposite directions from the outer portion of the drive arm, whereby the assembly can be used between adjacent solar collector assemblies in a row of solar collector assemblies.

  20. Intermittent tracking of flat plate collectors

    International Nuclear Information System (INIS)

    A theoretical analysis of different intervals of intermittent two-axis tracking of the sun, on the amount of annual energy received by flat-plate collectors, has been carried out. The analysis was done for Ipoh, a city near the university at a latitude of 40 34 North in Malaysia. For the analysis, a computer program was developed to calculate the solar insulation according to the interval settings, considering ASHRAE Standard Sky assumption. Both direct and diffused components of solar radiation have been considered. The tracking system was targeted for flat plate collectors where the degree of tracking accuracy would be much lower Hence, the tracking mechanism will be much simpler and lower in costs. Results showed that by a 3-hour intermittent tracking, a flat-plate collector could get as much as 35% more annual energy than a fixed one. The 3-hour interval tracking greatly simplifies the gear mechanism from the motor to the solar collector. (Author)

  1. Study of a new solar adsorption refrigerator powered by a parabolic trough collector

    Energy Technology Data Exchange (ETDEWEB)

    El Fadar, A. [Energetic Laboratory, Sciences Faculty, BP 2121, 93000 Tetouan, Abdelmalek Essaadi University (Morocco); Mimet, A. [Energetic Laboratory, Sciences Faculty, BP 2121, 93000 Tetouan, Abdelmalek Essaadi University (Morocco)], E-mail: mimet@fst.ac.ma; Azzabakh, A. [Energetic Laboratory, Sciences Faculty, BP 2121, 93000 Tetouan, Abdelmalek Essaadi University (Morocco); Perez-Garcia, M. [Dpto. de Fisica Aplicada - Universidad de Almeria (Spain); Castaing, J. [Laboratoire Thermique, Energetique et Procedes (LaTEP), Avenue de l' Universite, BP 1155, 64013 Pau Cedex (France)

    2009-04-15

    This paper presents the study of solar adsorption cooling machine, where the reactor is heated by a parabolic trough collector (PTC) and is coupled with a heat pipe (HP). This reactor contains a porous medium constituted of activated carbon, reacting by adsorption with ammonia. We have developed a model, based on the equilibrium equations of the refrigerant, adsorption isotherms, heat and mass transfer within the adsorbent bed and energy balance in the hybrid system components. From real climatic data, the model computes the performances of the machine. In comparison with other systems powered by flat plate or evacuated tube collectors, the predicted results, have illustrated the ability of the proposed system to achieve a high performance due to high efficiency of PTC, and high flux density of heat pipe.

  2. Movable air solar collector and its efficiency

    International Nuclear Information System (INIS)

    Implementing the guidelines of the Latvian National Programme for Energy in the field of alternative energy, intensive research shall be carried on regarding the use of solar energy, as it can be successfully used not only for the purposes of water heating and production of electrical energy, but also for air warming. The amount of heat necessary for the drying of rough forage and grain drying by active aeration in June, July and August can be obtained using solar radiation. The Latvian Guidelines for the Energy Development 2006-2016 state that the solar radiance in Latvia is of quite low intensity. The total amount of solar energy is 1109 kWh m-2 per year. The period of usage of the solar thermal energy is beginning from the last decade of April, when the intensity of radiation is 120 kWh m-2, until the first decade of September. Within this period (approximately 1800 hours), it is possible to use the solar thermal energy by placing solar collectors. The usage of solar collectors for in drying of agricultural production is topical from the viewpoint of decreasing the consumption of energy used for the drying, as electrical energy and fossil energy resources become more expensive and tend to run out. In the processes that concern drying of agricultural production, efficiently enough solar radiation energy can be used. Due to this reason researching continues and expands in the field of usage of solar energy for the processes of drying and heating. The efficiency factor of the existing solar collectors is not high, but they are of simple design and cheep for production and exploitation. By improving the design of the solar collectors and choosing modern materials that absorb the solar radiation energy, it is possible the decrease the efficiency factor of solar collectors and decrease the production costs. In the scientific laboratory of grain drying and storage of Latvia University of Agriculture, a pilot device movable folding solar collector pilot device suitable

  3. Evaluation of Test Method for Solar Collector Efficiency

    DEFF Research Database (Denmark)

    Fan, Jianhua; Shah, Louise Jivan; Furbo, Simon

    . The power produced by the solar collector during a test period is determined by the product of the specific heat, the mass flow rate and the temperature increase of the solar collector fluid. The solar collector efficiency is in the standard determined by measurements at different temperature levels. Based......The test method of the standard EN12975-2 (European Committee for Standardization, 2004) is used by European test laboratories to determine the efficiency of solar collectors. In the test methods the mean solar collector fluid temperature in the solar collector, Tm is determined by the approximated...... equation where Tin is the inlet temperature to the collector and Tout is the outlet temperature from the collector. The specific heat of the solar collector fluid is in the test method as an approximation determined as a constant equal to the specific heat of the solar collector fluid at the temperature Tm...

  4. Developments of solar collectors in China

    Institute of Scientific and Technical Information of China (English)

    Yin Zhiqiang

    2009-01-01

    China has abundant solar energy resource. Solar thermal collectors, particularly all-glass evacuated tubular collectors, have been studied and developed for 30 years, and solar thermal industry has developed rapidly for 15 years. There are various solar thermal systems, with an operation area of around 108 million m2 in 2007. These systems mainly provide domestic hot water, but some other applications are under extensive study and development as well.

  5. Local Reasoning about a Copying Garbage Collector

    DEFF Research Database (Denmark)

    Torp-Smith, Noah; Birkedal, Lars; Reynolds, John C.

    2008-01-01

    We present a programming language, model, and logic appropriate for implementing and reasoning about a memory management system. We state semantically what is meant by correctness of a copying garbage collector, and employ a variant of the novel separation logics to formally specify partial...... correctness of Cheney’s copying garbage collector in our program logic. Finally, we prove that our implementation of Cheney’s algorithm meets its specification using the logic we have given and auxiliary variables. Udgivelsesdato: 2008...

  6. Modelling the performance of fluorescent solar collectors

    OpenAIRE

    Fang, Liping; Parel, Thomas; Danos, Lefteris; Markvart, Tom

    2011-01-01

    The theoretical power conversion efficiency of a silicon solar cell with a fluorescent solar collector is believed to reach 90% of the maximum efficiency of an ideal silicon solar given by the Shockley-Queisser detailed balance limit, but the practical efficiencies are significantly lower due to several loss mechanisms. This work presents an analytic model which take the non-ideal coupling between the collector and the solar cell mounted at the edge into consideration and it is shown in ...

  7. Light trapping in fluorescent solar collectors

    OpenAIRE

    Soleimani, Nazila

    2012-01-01

    A fluorescent solar collector (FSC) is an optoelectronic waveguide device that can concentrate both diffuse and direct sunlight onto a solar cell which is then converted to electricity. Fluorescent collectors offer the potential to reduce the cost of crystalline silicon (c-Si) solar cells, but so far their effectiveness has been demonstrated only theoretically. The major problems in the device obtaining high practical efficiency are photon transport losses and material instability. This ...

  8. Collector sealants and breathing. Final Report, 25 September 1978-31 December 1979

    Energy Technology Data Exchange (ETDEWEB)

    Mendelsohn, M A; Luck, R M; Yeoman, F A; Navish, Jr, F W

    1980-02-20

    The objectives of this program were: (1) to investigate the pertinent properties of a variety of possible sealants for solar collectors and identify the most promising candidates, and (2) to study the effect of breathing in flat-plate, thermal solar collector units. The study involved two types of sealants, Class PS which includes preformed seals or gaskets and Class SC which includes sealing compounds or caulks. It was the intent of the study to obtain data regarding initial properties of candidate elastomers from manufacturers and from the technical literature and to use those sources to provide data pertaining to endurance of these materials under environmental service conditions. Where necessary, these data were augmented by experimental measurements. Environmental stresses evaluated by these measurements included elevated temperatures, moisture, ultraviolet light, ozone and oxygen, and fungus. The second major area of the work involved a study of the effects of materials used and design on the durability of solar collectors. Factors such as design, fabrication, materials of construction, seals and sealing techniques and absorber plate coatings were observed on actual field units removed from service. Such phenomena as leakage, corrosion and formation of deposits on glazing and absorber plate were noted. An evaluation of the properties of several desiccants was made in order to providemeans to mitigate the deleterious effects of water on collector life. Adsorbents for organic degradation products of sealants were also investigated in order to protect the glazing and absorber plate from deposited coatings. Since adsorbents and desiccants in general tend to take up both water and organic decomposition products, relative affinities of a number of these agents for water and for organic compounds were determined . Results are presented in detail.

  9. Hydrogeophysical investigations of unsaturated flow and transport

    DEFF Research Database (Denmark)

    Haarder, Eline Bojsen

    The objectives of the Phd-study are to investigate unsaturated flow and transport processes using hydrogeophysical methods. Experiments were carried out at three different field sites in Denmark, which are all characterized by thick unsaturated zones that consist almost entirely of sand. Results...

  10. Substrate-adsorbate coupling in CO-adsorbed copper

    CERN Document Server

    Lewis, S P; Lewis, Steven P.; Rappe, Andrew M.

    1996-01-01

    The vibrational properties of carbon monoxide adsorbed to the copper (100) surface are explored within density functional theory. Atoms of the substrate and adsorbate are treated on an equal footing in order to examine the effect of substrate--adsorbate coupling. This coupling is found to have a significant effect on the vibrational modes, particularly the in-plane frustrated translation, which mixes strongly with substrate phonons and broadens into a resonance. The predicted lifetime due to this harmonic decay mechanism is in excellent quantitative agreement with experiment.

  11. Atmospheric Ionic Deposition in Tropical Sites of Central Sulawesi Determined by Ion Exchange Resin Collectors and Bulk Water Collector

    OpenAIRE

    Köhler, S; Jungkunst, H.; Gutzler, C.; Herrera, R.; Gerold, G

    2012-01-01

    In the light of global change, the necessity to monitor atmospheric depositions that have relevant effects on ecosystems is ever increasing particularly for tropical sites. For this study, atmospheric ionic depositions were measured on tropical Central Sulawesi at remote sites with both a conventional bulk water collector system (BWS collector) and with a passive ion exchange resin collector system (IER collector). The principle of IER collector to fix all ionic depositions, i.e. anions and c...

  12. Two new designs of parabolic solar collectors

    Directory of Open Access Journals (Sweden)

    Karimi Sadaghiyani Omid

    2014-01-01

    Full Text Available In this work, two new compound parabolic trough and dish solar collectors are presented with their working principles. First, the curves of mirrors are defined and the mathematical formulation as one analytical method is used to trace the sun rays and recognize the focus point. As a result of the ray tracing, the distribution of heat flux around the inner wall can be reached. Next, the heat fluxes are calculated versus several absorption coefficients. These heat flux distributions around absorber tube are functions of angle in polar coordinate system. Considering, the achieved heat flux distribution are used as a thermal boundary condition. After that, Finite Volume Methods (FVM are applied for simulation of absorber tube. The validation of solving method is done by comparing with Dudley's results at Sandia National Research Laboratory. Also, in order to have a good comparison between LS-2 and two new designed collectors, some of their parameters are considered equal with together. These parameters are consist of: the aperture area, the measures of tube geometry, the thermal properties of absorber tube, the working fluid, the solar radiation intensity and the mass flow rate of LS-2 collector are applied for simulation of the new presented collectors. After the validation of the used numerical models, this method is applied to simulation of the new designed models. Finally, the outlet results of new designed collector are compared with LS-2 classic collector. Obviously, the obtained results from the comparison show the improving of the new designed parabolic collectors efficiency. In the best case-study, the improving of efficiency are about 10% and 20% for linear and convoluted models respectively.

  13. Solar collector design with respect to moisture problems

    DEFF Research Database (Denmark)

    Holck, Ole; Svendsen, Svend; Brunold, Stefan;

    2003-01-01

    Humidity inside the collectors is one factor that can be minimised to keep the most favourable microclimatic condition for the internal materials of the collector. This microclimate inside the collector is an important factor in determining the service lifetime of an absorber coating. During the ...... of the working group Materials in Solar Thermal Collectors of the International Energy Agency-Solar Heating and Cooling Programme....... design of the collector, the location and size of ventilation holes, properties of the insulation materials and dimension of the solar collector box are parameters that have to be taken into account for the optimisation in order to achieve the most favourable microclimate to prevent corrosion.......Simulation of the microclimate in solar thermal collectors can be a valuable tool for optimisation of the collector with respect to ventilation. A computer model has been established for fulfilling this. By using this tool the producers can be advised whether their solar collectors ought to be additionally...

  14. Stability Analysing of Unsaturated Soil Slope

    Institute of Scientific and Technical Information of China (English)

    张士林; 邵龙潭

    2003-01-01

    The stability of unsaturated soil slope has been the hot point recently. Especially, the seeping rainfall makes losing stability of unsaturated soil slope, and causes enormous loss to the producation and safety of other people. The seeping rainfall makes volumetric water content of unsaturated soil slope changing, and the volumetric water content has directly relationship with matric suction. And matric suction also has directly relationship with the stability of unsaturated soil slope. So the change of matric suction influence the stability changing, that is, safety coefficient has decided relationship with volumetric water content. The profile of dangerous volumetric water content curves of unsaturated soil slope has been obtained. If a volumetric water content curve of some unsaturated soil slope belongs to one of these dongerous curves, the unsaturated soil slope could be in danger. So this is called DVWCCP(dangerous volumetric water content curves profile). By monitoring the volumetric water content curves can obtain the stability information of some soil slope to serve producing and safety.

  15. Heat Pumps With Direct Expansion Solar Collectors

    Science.gov (United States)

    Ito, Sadasuke

    In this paper, the studies of heat pump systems using solar collectors as the evaporators, which have been done so far by reserchers, are reviwed. Usually, a solar collector without any cover is preferable to one with ac over because of the necessity of absorbing heat from the ambient air when the intensity of the solar energy on the collector is not enough. The performance of the collector depends on its area and the intensity of the convective heat transfer on the surface. Fins are fixed on the backside of the collector-surface or on the tube in which the refrigerant flows in order to increase the convective heat transfer. For the purpose of using a heat pump efficiently throughout year, a compressor with variable capacity is applied. The solar assisted heat pump can be used for air conditioning at night during the summer. Only a few groups of people have studied cooling by using solar assisted heat pump systems. In Japan, a kind of system for hot water supply has been produced commercially in a company and a kind of system for air conditioning has been installed in buildings commercially by another company.

  16. Asphalt solar collectors: A literature review

    International Nuclear Information System (INIS)

    Highlights: ► Solar energy can be harnessed by asphalt pavements. ► Research on asphalt thermal behavior and asphalt solar collectors is reviewed. ► Asphalt temperature is very sensitive to the variation of absortivity. ► Asphalt solar collector efficiency depends on flow rate and geometrical parameters. -- Abstract: Asphalt pavements subject to solar radiation can reach high temperatures causing not only environmental problems such as the heat island effect on cities but also structural damage due to rutting or hardening as a result of thermal cycles. Asphalt solar collectors are doubly effective active systems: as they solve the previously mentioned problems and, moreover, they can harness energy to be used in different applications. The main findings of the existing research on asphalt solar collectors are gathered together in this review paper. Firstly, the main heat transfer mechanisms involved in the solar energy collection process are identified and the most important parameters and variables are presented. After analyzing the theoretical foundations of the heat transfer process, this review focuses on the types of studies carried out so far on asphalt’s thermal behavior, different methodologies employed by other authors to study asphalt solar collectors and influence of the variables involved in thermal energy harvesting.

  17. MODIFICATION OF CARBONACEOUS ADSORBENTS WITH MANGANESE COMPOUNDS

    OpenAIRE

    Irina Ginsari; Larisa Postolachi; Vasile Rusu; Oleg Petuhov; Tatiana Goreacioc; Tudor Lupascu; Raisa Nastas

    2015-01-01

    Four series of samples containing manganese supported carbonaceous adsorbents were prepared. Obtained results reveal the importance of surface chemistry of carbonaceous adsorbents on the manganese loading.

  18. Decontamination of a radioactive process waste water by adsorbing colloid flotation

    International Nuclear Information System (INIS)

    As a part of a research programme on the treatment of a radioactive process waste water by foam separation techniques, adsorbing colloid flotation was tested to remove 144Ce, 60Co, 65Zn and 89Sr from the waste water. Potassium oleate was used as the collector, and Fe(III) hydroxide, Al(III) hydroxide or Co(II) hydroxide as the coprecipitant. Under the optimal conditions; removals exceeding 99% could be achieved for 65Zn with any of the tested coprecipitants, for 144Ce with Fe(III) and Co(II) hydroxides and for 60Co with only Co(II) hydroxide. For 89Sr removals > 90% could be achieved with only Fe(III) hydroxide. The adsorbing colloid flotation process was compared with both chemical precipitation and ion exchange, and advantages of adsorbing colloid flotation were enumerated. (author)

  19. Analysis of a plastic solar collector

    Energy Technology Data Exchange (ETDEWEB)

    Herce-Vigil, J.L.; Suarez, R. (Universidad Autonoma Metropolitana, Mexico City (Mexico))

    1991-01-01

    The use of solar energy, especially on a large scale, is very often inhibited by the collectors' cost. Thus, a simpler and less expensive collector could be considered as a contribution to development of this field. Since there is no pressure in the system, plastic seems to be a suitable construction material. This study comprises the analysis of heat transfer in a plate collector with a rectangular section built of a co-polymer of polyethylene and polypropylene and applies an analytical model to describe its behaviour. The 2-dimensional geometry offers the maximum area of contact between the fluid and the collecting surface exposed to the sun. Thermal boundary layer development is investigated. (author).

  20. Capture of soft particles on electrostatically heterogeneous collectors: brushy particles.

    Science.gov (United States)

    Wen, Yicun; Guo, Xuhong; Kalasin, Surachate; Santore, Maria M

    2014-03-01

    This work investigated how particle softness can influence the initial adhesive capture of submicrometer colloidal particles from flow onto collecting surfaces. The study focused on the case dominated by potential attractions at the particle periphery (rather than, for instance, steric stabilization, requiring entropically costly deformations to access shorter-range van der Waals attractions.) The particles, "spherical polyelectrolyte brushes" with diameters in the range of 150-200 nm depending on the ionic strength, consisted of a polystyrene core and a corona of grafted poly(acrylic acid) chains, producing a relatively thick (20-40 nm) negative brushy layer. The adhesion of these particles was studied on electrostatically heterogeneous collecting surfaces: negatively charged substrates carrying flat polycationic patches made by irreversibly adsorbing the poly-l-lysine (PLL) polyelectrolyte. Variation in the amount of adsorbed PLL changed the net collector charge from completely negatively charged (repulsive) to positively charged (attractive). Adjustments in ionic strength varied the range of the electrostatic interactions. Comparing capture kinetics of soft brushy particles to those of similarly sized and similarly charged silica particles revealed nearly identical particle capture kinetics over the full range of collecting surface compositions at high ionic strengths. Even though the brushy particles contained an average of 5 vol % PAA in the brushy shell, with the rest being water under these conditions, their capture was indistinguishable from that of similarly charged rigid spheres. The brushy particles were, however, considerably less adherent at low ionic strengths where the brush was more extended, suggesting an influence of particle deformability or reduced interfacial charge. These findings, that the short time adhesion of brushy particles can resemble that of rigid particles, suggest that for bacteria and cell capture, modeling the cells as rigid

  1. Unsaturated medium hydrocarbons pollution evaluation

    International Nuclear Information System (INIS)

    When the so called porous unsaturated medium, that's the vertical subsoil section between both the ground and water-table level, is interested by a hydrocarbons spill, the problem to evaluate the pollution becomes difficult: considering, essentially, the natural coexistence in it of two fluids, air and water, and the interactions between them. This paper reports that the problems tend to increase when a third fluid, the pollutant, immiscible with water, is introduced into the medium: a three-phases flow, which presents several analogies with the flow conditions present in an oil-reservoir, will be established. In such a situation, it would be very useful to handle the matter by the commonly used parameters in the oil reservoirs studies such as: residual saturation, relative permeability, phases mobility, to derive a first semiquantitative estimation of the pollution. The subsoil pollution form hydrocarbons agents is one of the worldwide more diffused causes of contamination: such events are generally referable to two main effects: accidental (oil pipeline breakdowns, e.g.), and continuous (underground tanks breaks, industrial plants leakages, e.g.)

  2. ADVANCED HYBRID PARTICULATE COLLECTOR; FINAL

    International Nuclear Information System (INIS)

    A new concept in particulate control, called an advanced hybrid particulate collector (AHPC), is being developed under funding from the U.S. Department of Energy. The AHPC combines the best features of electrostatic precipitators (ESPs) and baghouses in an entirely novel manner. The AHPC concept combines fabric filtration and electrostatic precipitation in the same housing, providing major synergism between the two methods, both in the particulate collection step and in transfer of dust to the hopper. The AHPC provides ultrahigh collection efficiency, overcoming the problem of excessive fine-particle emissions with conventional ESPs, and solves the problem of reentrainment and re-collection of dust in conventional baghouses. Phase I of the development effort consisted of design, construction, and testing of a 5.7-m(sup 3)/min (200-acfm) working AHPC model. Results from both 8-hr parametric tests and 100-hr proof-of-concept tests with two different coals demonstrated excellent operability and greater than 99.99% fine-particle collection efficiency. Since all of the developmental goals of Phase I were met, the approach was scaled up in Phase II to a size of 255 m(sup 3)/min (9000 acfm) (equivalent in size to 2.5 MW) and was installed on a slipstream at the Big Stone Power Plant. For Phase II, the AHPC at Big Stone Power Plant was operated continuously from late July 1999 until mid-December 1999. The Phase II results were highly successful in that ultrahigh particle collection efficiency was achieved, pressure drop was well controlled, and system operability was excellent. For Phase III, the AHPC was modified into a more compact configuration, and components were installed that were closer to what would be used in a full-scale commercial design. The modified AHPC was operated from April to July 2000. While operational results were acceptable during this time, inspection of bags in the summer of 2000 revealed some membrane damage to the fabric that appeared to be

  3. On Elastoplastic Damage Modelling in Unsaturated Geomaterials

    OpenAIRE

    Le Pense, Solenn; Gatmiri, Behrouz; Pouya, Ahmad

    2012-01-01

    In the context of nuclearwaste disposal, the modelling of the behaviour of host rocks and soils still needs improvement.Unsaturated porous geomaterials exhibit particular behaviourwhen exposed to suction. Their non-linear behaviour may result fromtwo different processes, plasticity which induces irreversible strains and damage which causes a deterioration of their elastic properties. Many elasto-plastic models are now available for unsaturated soils, most of them based on the Barcelona Basic ...

  4. Computer simulation of sulfhydryl collectors and their derivatives

    International Nuclear Information System (INIS)

    Present work is devoted to computer simulation of sulfhydryl collectors and their derivatives. Thus, the short chain carboxylic acids modified by dithio fragments are synthesized. Modified sulfhydryl collectors are synthesized as well. The properties of reagents are studied.

  5. Effects of collector types in sampling of atmospheric depositional fluxes

    International Nuclear Information System (INIS)

    The bulk gross alpha, gross beta and 7Be depositional fluxes were measured in Malaga (36.7 deg. N, 4.5 deg. W), a coastal Mediterranean station in the south of Spain for one whole year. In order to quantify the local variation of deposition rates, we have analysed the monthly results from two deposition collectors: a 'pot 'collector with a continuous water-covered surface and a 'funnel' collector. In general, the alpha and beta depositional fluxes from the funnel collector were approximately two times lower than the pot collector. Whereas for the cosmogenic 7Be, the depositional flux of 7Be from funnel collector was also approximately two times lower than the pot collector. A good correlation of the depositional flux of 7Be has been obtained from both collectors

  6. The Flotation of Kyanite and Sillimanite with Sodium Oleate as the Collector

    Directory of Open Access Journals (Sweden)

    Junxun Jin

    2016-08-01

    Full Text Available Kyanite and sillimanite are two polymorphic minerals with the same formula of Al2SiO5, but different crystal structures. Despite their high economic values, selectively recovering them by flotation is a challenge. In this study, the flotation behaviors of the two minerals with sodium oleate as the collector were examined at different pH conditions. Zeta potential measurement, infrared spectroscopic measurement, chemical speciation and X-ray photoelectron spectroscopy measurement were conducted to identify the underpinning mechanisms. It is found that the flotation behavior of both minerals is different under the same flotation condition. The flotation recovery of sillimanite is much higher than that of kyanite in the presence of the collector sodium oleate. Sodium oleate adsorbs onto the surfaces of kyanite and sillimanite mainly through the chemical interaction of the ionic–molecular dimers with aluminum atoms at pH 8.0. The higher sillimanite flotation recovery between the two minerals is related to the higher electrostatic charge densities of the aluminum atoms in six-fold coordination, which leads to the higher collector adsorption.

  7. Solar Air Collectors: How Much Can You Save?

    Science.gov (United States)

    Newburn, J. D.

    1985-04-01

    A collector efficiency curve is used to determine the output of solar air collectors based on the testing of seven solar collectors sold in Iowa. In this application the solar heater is being used as a space heater for a house. The performance of the solar air heater was analyzed and an 8% savings in energy was achieved over a one year period using two 4 x 8 collectors in a typical house.

  8. PERFORMANCE EVALUATION OF SOLAR COLLECTORS USING A SOLAR SIMULATOR

    OpenAIRE

    M. Norhafana; Ahmad Faris Ismail; Z. A. A. Majid

    2015-01-01

    Solar water heating systems is one of the applications of solar energy. One of the components of a solar water heating system is a solar collector that consists of an absorber. The performance of the solar water heating system depends on the absorber in the solar collector. In countries with unsuitable weather conditions, the indoor testing of solar collectors with the use of a solar simulator is preferred. Thus, this study is conducted to use a multilayered absorber in the solar collector of...

  9. Krypton retention on solid adsorbents

    International Nuclear Information System (INIS)

    Radioactive krypton-85 is released to the atmosphere in the off-gas from nuclear reprocessing plants. Three main methods have been suggested for removal of krypton from off-gas streams: cryogenic distillation; fluorocarbon absorption; and adsorption on solid sorbents. Use of solid adsorbents is the least developed of these methods, but offers the potential advantages of enhanced safety and lower operating costs. An experimental laboratory program was developed that will be used to investigate systematically many solid adsorbents (such as zeolites, i.e., mordenites) for trapping krypton in air. The objective of this investigation is to find an adsorbent that is more economical than silver-exchanged mordenite. Various physical and chemical characteristics such as adsorption isotherms, decontamination factors, co-adsorption, regeneration, and the mechanism and kinetics of noble gas adsorption were used to characterize the adsorbents. In the experimental program, a gas chromatograph using a helium ionization detector was used to measure the krypton in air before and after the adsorbent bed. This method can determine directly decontamination factors greater than 100

  10. Analyze of meteorological data for development of solar collectors

    International Nuclear Information System (INIS)

    The objective of the research was to investigate the increase in heat yield, if the collector is tracking the sun, and to base the purposefulness of providing the collector device with additional equipment for keeping the surface of the collector perpendicular to the sun beams all the day round

  11. Theoretical study on a solar collector loop during stagnation

    DEFF Research Database (Denmark)

    Chen, Ziqian; Dragsted, Janne; Furbo, Simon;

    2010-01-01

    collector loop, the mass of the fluid flowing into the pressurized expansion vessel and the pressures at the top part and at the bottom part of the solar collector loop during stagnation for the solar collector loop are calculated. The theoretically calculated results are compared with experimental results...

  12. Theoretical study on a solar collector loop during stagnation

    DEFF Research Database (Denmark)

    Chen, Ziqian; Dragsted, Janne; Furbo, Simon;

    collector loop, the mass of the fluid flowing into the pressurized expansion vessel and the pressures at the top part and at the bottom part of the solar collector loop during stagnation for the solar collector loop are calculated. The theoretically calculated results are compared with experimental results...

  13. The Adsorption of n-Octanohydroxamate Collector on Cu and Fe Oxide Minerals Investigated by Static Secondary Ion Mass Spectrometry

    Directory of Open Access Journals (Sweden)

    Alan N. Buckley

    2012-12-01

    Full Text Available The feasibility of investigating the adsorption of n-octanohydroxamate collector on copper and iron oxide minerals with static secondary ion mass spectrometry has been assessed. Secondary ion mass spectra were determined for abraded surfaces of air-exposed copper metal, malachite, pseudomalachite and magnetite that had been conditioned in aqueous potassium hydrogen n-octanohydroxamate solution, as well as for the corresponding bulk CuII and FeIII complexes. In each case, the chemical species present at the solid/vacuum interface of a similarly prepared surface were established by X-ray photoelectron spectroscopy. The most abundant positive and negative metal-containing fragment ions identified for the bulk complexes were also found to be diagnostic secondary ions for the collector adsorbed on the oxide surfaces. The relative abundances of those diagnostic ions varied with, and could be rationalised by, the monolayer or multilayer coverage of the adsorbed collector. However, the precise mass values for the diagnostic ions were not able to corroborate the different bonding in the copper and iron hydroxamate systems that had been deduced from photoelectron and vibrational spectra. Parent secondary ions were able to provide supporting information on the co-adsorption of hydroxamic acid at each conditioned surface.

  14. Collector sealants and breathing. Mid-term report, September 25, 1978-May 30, 1979

    Energy Technology Data Exchange (ETDEWEB)

    Mendelsohn, M. A.; Yeoman, F. A.; Luck, R. M.; Navish, Jr, F. W.; Meier, J. F.

    1978-01-01

    The objectives of this program are: (1) to investigate the pertinent properties of a variety of possible sealants for solar collectors and identify the most promising candidates and to study the effect of breathing in flat-plate, thermal solar collector units. The study involves two types of sealants, Class PS which includes performed seals or gaskets and Class SC which includes sealing compounds or caulks. It is the intent of the study to obtain data regarding initial properties of candidate elastomers from manufacturers and from the technical literature and to use those sources to provide data pertaining to endurance of these materials under environmental service conditions. Where necessary, these data are being augmented by experimental measurements. Environmental stresses to be evaluated by these measuremets include elevated temperatures, moisture, ultraviolet light, ozone and oxygen, and fungus. The second major area of the work involves a study of the effects of materials used and design on the durability of solar collectors. Factors such as design, fabrication, materials of construction, seals and sealing techniques and absorber plate coatings were observed on actual field units removed from service. Such phenomena as leakage, corrosion and formation of deposits on glazing and absorber plate were noted. An evaluation of the properties of several desiccants is being made in order to provide means to mitigate the deleterious effects of water on collector life.Absorbents for organic degradation products of sealants are also being investigated in order to protect the glazing and absorber plate from deposited coatings. Since adsorbents and desiccants in general tend to take up both waer and organic decomposition products, relative affinities of a number of these agents for water and for organic compounds are being determined.

  15. Groundwater: Saturated and Unsaturated Zone

    International Nuclear Information System (INIS)

    The interpretation of isotope hydrological data is not straightforward. Many field studies lead to a conclusion that the origin of groundwater and the chemical and isotopic processes in groundwater systems can only be studied successfully, if a composition of isotopic, chemical, geological and hydrogeological data is available for interpretation. Following the previous volumes on isotopic principles, precipitation and surface waters, this volume is dealing with the application of isotope hydrological methods in groundwater studies. It conveys basic knowledge in geohydraulics and hydrogeology required for a consistent interpretation of isotope hydrological data. This volume starts with a brief discussion of the characteristics and behaviour of groundwater as a medium of mass transport for gases, dissolved constituents and colloids. The geohydraulic aspects of groundwater flow under steady-state conditions are described in combination with an explanation of the most important terms related to isotope hydrology (e.g. transit time, turn-over time, mean residence time, water age). Non-steady state flow conditions caused by palaeoclimatic variations and anthropogenic activities such as overexploitation or groundwater mining seriously affect the interpretation of isotope hydrological data. Also water-rock interactions may modify the isotope composition of a carbonate rock environment, especially in high-temperature systems. Environmental isotope techniques are pre-eminently suitable for studying the unsaturated and saturated zone, the latter particularly concerning the stable and radioactive natural isotopes. Stable isotope data preferentially yield information on the origin of groundwater. Radioactive isotopes allow groundwater to be 'dated' in support of geohydraulic investigations. In undisturbed high-temperature systems isotopic geothermometry, i.e. the study of the temperature effect of stable isotopic abundances, is applied for gaining information on water mixing as

  16. An improved dynamic test method for solar collectors

    DEFF Research Database (Denmark)

    Kong, Weiqiang; Wang, Zhifeng; Fan, Jianhua;

    2012-01-01

    for the second-order differential term with 6–9min as the best averaging time interval. The measured and predicted collector power output of the solar collector are compared during a test of 13days continuously both for the ITF method and the QDT method. The maximum and averaging error is 53.87W/m2 and 5.22W/m2...... than the QDT method in predicting the power output of a solar collector.In conclusion, all the results show that the improved transfer function method can accurately and robustly estimate solar collector parameters and predict solar collector thermal performance under dynamic test conditions.......A comprehensive improvement of the mathematical model for the so called transfer function method is presented in this study. This improved transfer function method can estimate the traditional solar collector parameters such as zero loss coefficient and heat loss coefficient. Two new collector...

  17. A tool for standardized collector performance calculations including PVT

    DEFF Research Database (Denmark)

    Perers, Bengt; Kovacs, Peter; Olsson, Marcus;

    2012-01-01

    A tool for standardized calculation of solar collector performance has been developed in cooperation between SP Technical Research Institute of Sweden, DTU Denmark and SERC Dalarna University. The tool is designed to calculate the annual performance of solar collectors at representative locations...... in Europe. The collector parameters used as input in the tool are compiled from tests according to EN12975, without any intermediate conversions. The main target group for this tool is test institutes and certification bodies that are intended to use it for conversion of collector model parameters (derived...... from performance tests) into a more user friendly quantity: the annual energy output. The energy output presented in the tool is expressed as kWh per collector module. A simplified treatment of performance for PVT collectors is added based on the assumption that the thermal part of the PVT collector...

  18. Solar Heating Systems with Evacuated Tubular Solar Collector

    DEFF Research Database (Denmark)

    Qin, Lin; Furbo, Simon

    1998-01-01

    Recently different designed evacuated tubular solar collectors were introduced on the market by different Chinese companies. In the present study, investigations on the performance of four different Chinese evacuated tubular collectors and of solar heating systems using these collectors were...... carried out, employing both laboratory test and theoretical calculations. The collectors were tested in a small solar domestic hot water (SDHW) system in a laboratory test facility under realistic conditions. The yearly thermal performance of solar heating systems with these evacuated tubular collectors......, as well as with normal flat-plate collectors was calculated under Danish weather conditions. It is found that, for small SDHW systems with a combi tank design, an increase of 25% -55% net utilized solar energy can be achieved by using these evacuated tubular collectors instead of normal flat...

  19. Removal of Zn(II) from solutions high ionic strength by adsorbing colloid flotation

    International Nuclear Information System (INIS)

    Removal of zinc(III) from aqueous solutions of relatively high ionic strength was investigated using iron oxyhydroxide and aluminium hydroxide as co precipitant. The main factors affecting the process, such as the type and concentration of collector and inert salt (the ionic strength), the bubbling time, the concentration of both co precipitant and frothier and PH were examined. Removal of >98% were achieved up to 0.4 ionic strength (NaCl) and decreases to about 90% at 0.6 M NaCl on using potassium oleate as a collector, and Aero frothier-77 as a frothier aid. The deleterious effect of the inert salt is more significant with divalent cations or anions than with monovalent ones. The present adsorbing colloid flotation process was applied to concentrate zinc prior to its analysis and to simultaneous removal of heavy metal ions from simulated industrial wastewater for recovery or purification purposes. 8 figs., 3 tabs

  20. Short-Term Solar Collector Power Forecasting

    DEFF Research Database (Denmark)

    Bacher, Peder; Madsen, Henrik; Perers, Bengt

    2011-01-01

    This paper describes a new approach to online forecasting of power output from solar thermal collectors. The method is suited for online forecasting in many applications and in this paper it is applied to predict hourly values of power from a standard single glazed large area flat plate collector......, such as wind power. In such a scenario online forecasting is a vital tool for optimal control and utilization of solar heating systems. The method is a two-step scheme, where first a non-linear model is applied to transform the solar power into a stationary process, which then is forecasted with robust time....... The method is applied for horizons of up to 42 hours. Solar heating systems naturally come with a hot water tank, which can be utilized for energy storage also for other energy sources. Thereby such systems can become an important part of energy systems with a large share of uncontrollable energy sources...

  1. A Self-Biasing Pulsed Depressed Collector

    Energy Technology Data Exchange (ETDEWEB)

    Kemp, Mark A.; Jensen, Aaron; Neilson, Jeff; /SLAC

    2014-05-29

    Depressed collectors have been utilized successfully for many years to improve the electrical efficiency of vacuum electron devices. Increasingly, pulsed, high-peak power accelerator applications are placing a premium on electrical efficiency. As RF systems are responsible for a large percentage of the overall energy usage at accelerator laboratories, methods to improve upon the state-of-the-art in pulsed high-power sources are desired. This paper presents a technique for self-biasing the stages in a multistage depressed collector. With this technique, the energy lost during the rise and fall times of the pulse can be recovered, separate power supplies are not needed, and existing modulators can be retrofitted. Calculations show that significant cost savings can be realized with the implementation of this device in high-power systems. In this paper, the technique is described along with experimental demonstration. (auth)

  2. Behavior of spent fuel under unsaturated conditions

    International Nuclear Information System (INIS)

    To evaluate the performance of spent fuel in the potential repository at Yucca Mountain, Nevada, spent fuel fragments are being exposed to small and intermittent amounts of simulated groundwater under unsaturated conditions. Both the leachate and the visual appearance of the spent fuel have been characterized for 581 days of testing. The amount of Am and Cm measured in the leachates was one to two orders of magnitude greater than that released from spent fuel under saturated conditions. The cause of this difference has not been firmly identified but may be attributable to the presence of large amounts of actinide-containing colloids in the leachate of the unsaturated tests

  3. Assessment of musculoskeletal load in refuse collectors

    Directory of Open Access Journals (Sweden)

    Zbigniew W. Jóźwiak

    2013-08-01

    Full Text Available Background: The aim of this work was to assess the load on the musculoskeletal system and its effects in the collectors of solid refuse. The rationale behind this study was to formulate proposals how to reduce excessive musculoskeletal load in this group of workers. Material and Methods: The study group comprised 15 refuse collectors aged 25 to 50 years. Data about the workplace characteristics and subjective complaints of workers were collected by the free interview and questionnaire. During the survey the photorecording of the workpostures, the distance and velocity by GPS recorders, measurements of forces necessary to move containers, energy expenditure (lung ventilation method, workload estimation using the Firstbeat system and REBA method and stadiometry were done. Results: The distance walked daily by the collectors operating in terms of 2 to 3 in urban areas was about 15 km, and in rural areas about 18 km. The most frequent musculoskeletal complaints concerned the feet (60% subjects, knees, wrists and shoulders (over 40% subjects. After work-shift all examined workers had vertebral column shorter by 10 to 14 mm (11.4 mm mean. Conclusions: The results of our study show that the refuse collectors are subjected to a very high physical load because of the work organization and the way it is performed. To avoid adverse health effects and overload it is necessary to undertake ergonomic interventions, involving training of workers to improve the way of their job performance, active and passive leisure, technical control of the equipment and refuse containers, as well as the renegotiation of contracts with clients, especially those concerning non-standard containers. Med Pr 2013;64(4:507–519

  4. Theoretical study of fluidized solar collector performance

    Energy Technology Data Exchange (ETDEWEB)

    Adulla, S. H; Kassem, M A; El-Refaie, M. F. [Cairo University, Giza (Egypt)

    2000-07-01

    This work presents a proposed novel design aiming to increasing the absorber-to-fluid heat transfer coefficient. This is accomplished by introducing small solid particles inside the collector tubes. When the collector liquid flows, it causes the particles to be fluidized and spread in the tubes. The particles material, size and total number should be turned together with the fluid mass flow rate to keep the bed, or particle dispersion, length within the physical length of collector tubes. Thus, the particles would be confined in the collector only; and not carried over to other parts of the circulation loop. While moving, the particles erode the thermal boundary layer formed on the tube inner surface, hence increasing the heat transfer coefficient. [Spanish] Este articulo presenta un diseno novedoso destinado a aumentar el coeficiente de trasferencia de calor de absorbedor a fluido. Esto se lleva a cabo mediante la introduccion de particulas solidas dentro de los tubos del colector. Cuando fluye el liquido del colector origina que las particulas se fluidicen y se diseminen en los tubos. El material de las particulas, tamano y numero total debera de ser puesto en movimiento junto con el regimen de flujo de masa de fluido para mantener el lecho o la dispersion de particulas por largo tiempo dentro de la longitud fisica de los tubos de colector. De esta manera las particulas seran confinadas solamente en el colector y no seran arrastradas a otras partes del anillo de circulacion. Al moverse, las particulas erosionan la capa de frontera termica formada en la superficie interior del tubo, aumentando por tanto el coeficiente de transmision de calor.

  5. Property Tax Collector Performance and Pay

    OpenAIRE

    Laurie J. Bates; Rexford E. Santerre

    1993-01-01

    The few empirical studies on the relationship between performance and pay in the public sector have been unable to measure adequately public sector output. This paper overcomes the measurement problem by focusing on the pay of the local property tax collector, for whom an output indicator - the property tax collection rate- can be objectively quantified and suggests that higher levels of performance causes an increase amount of pay, ceteris paribus.

  6. Flotation of aluminosilicate minerals using alkylguanidine collectors

    Institute of Scientific and Technical Information of China (English)

    GUAN Feng; ZHONG Hong; LIU Guang-yi; ZHAO Sheng-gui; XIA Liu-yin

    2009-01-01

    The flotation mechanism of aluminosilicate minerals using alkylguanidine collectors was studied through flotation experiments, Zeta potential measurements and FT-IR spectrum analysis. It is shown that kaolinite, illite and pyrophyllite all exhibit good floatability with alkylguanidines as collectors at pH 4-12. The flotation recoveries rise with the increase of the carbon chain length. Isoelectric point(IEP) is determined to be 3.5, 3.0 and 2.3 for kaolinite, illite and pyrophyllite, respectively. However, it is anomalous that the presence of cationic collectors has less influence on the negatively charged mineral surfaces. It is explained by the special structure of guanidine which is one of the strongest bases, having two -NH2 groups. One of them maybe interacts with minerals by electrostatic forces, and the other maybe forms hydrogen bonding with OH- ions on the aluminosilicate surfaces or in the aqueous solution, increasing the density of negative charge on the aluminosilicate surface and leading unpronounced positive charge to increase on the aluminosilicate. By combining the flotation tests, Zeta potential and FTIR measurements above, the interaction mechanism can be concluded. The simultaneous presence of cationic and neutral amine groups makes it possible for SAG cation to bind on three aluminosilicate minerals by both electrostatic attraction and hydrogen bonding. While in acidic medium, the interaction of the alkylguanidines on the aluminosilicate surfaces is mainly by means of electrostatic force and hydrogen bond; in the alkaline medium, it is by the way of electrostatic effect and hydrogen bond.

  7. Modelling flow through unsaturated zones: Sensitivity to unsaturated soil properties

    Indian Academy of Sciences (India)

    K S Hari Prasad; M S Mohan Kumar; M Sekhar

    2001-12-01

    A numerical model to simulate moisture flow through unsaturated zones is developed using the finite element method, and is validated by comparing the model results with those available in the literature. The sensitivities of different processes such as gravity drainage and infiltration to the variations in the unsaturated soil properties are studied by varying the unsaturated parameters and over a wide range. The model is also applied to predict moisture contents during a field internal drainage test.

  8. Protein purification using magnetic adsorbent particles

    DEFF Research Database (Denmark)

    Franzreb, M; Siemann-Herzberg, M.; Hobley, Timothy John;

    2006-01-01

    The application of functionalised magnetic adsorbent particles in combination with magnetic separation techniques has received considerable attention in recent years. The magnetically responsive nature of such adsorbent particles permits their selective manipulation and separation in the presence...

  9. Black Sprayable Molecular Adsorber Coating Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This novel molecular adsorber coating would alleviate the size, weight, and complexity issues of traditional molecular adsorber puck.  A flexible tape version...

  10. REVIEW OF PERFORMANCE AND ANALYSIS ISI FLAT PLATE COLLECTOR WITH MODIFIED FLAT PLATE COLLECTOR

    Directory of Open Access Journals (Sweden)

    MR.Y.Y.NANDURKAR

    2012-03-01

    Full Text Available The market of solar water heater of natural circulation type (thermo-siphon is fast growing in India. Initial cost of the solar water heater system at present is high because of store type design. It is necessary to make the product more popular by reducing the cost. This is possible by reducing area of liquid flat plate collector by increasing tube diameter and reducing riser length. Hence it is essential to make solar water heater in affordable range of the general public class. Present work is based on review of comparative performance and analysis of ISI flat plate collector with modified flat plat collector. The paper will be helpful for those who are working in the area of solar water heating system and their use in domestic areas.

  11. Parameter identification methodology for unsaturated soils

    International Nuclear Information System (INIS)

    The main objective of this paper is to present a direct automatic identification and uncertainty estimation methodology that can be applied satisfactory to obtain the best matching parameters of geotechnical models for unsaturated clay soils. Basically, in geotechnical engineering, the denomination of inverse problem or parametric calibration refers to an iterative process of comparison between the measured data and numerically predicted data both data sets define the objective function obtained from the numerical model, which allows determining the best fitting parameters of the model. This methodology is useful to define soil engineering standards for geotechnical applications, like radioactive waste repositories. In this work we describe the behaviour of a clay soil by means of a three-dimensional elasto-plastic model for unsaturated soils. This constitutive model is within the framework of the global mechanical problem of the unsaturated soils, regarding the volume deformations, pre-consolidation stress and shear states. The influence of suction on the mechanical behaviour of unsaturated soil is taken into account by using a principle of stress that is obtained adding a function of the suction to the net mean stress. (authors)

  12. Waste package performance in unsaturated rock

    International Nuclear Information System (INIS)

    The unsaturated rock and near-atmospheric pressure of the potential nuclear waste repository at Yucca Mountain present new problems of predicting waste package performance. In this paper we present some illustrations of predictions of waste package performance and discuss important data needs. 11 refs., 9 figs., 1 tab

  13. Flow and Transport Through Unsaturated Fractured Rock

    Science.gov (United States)

    Evans, Daniel D.; Nicholson, Thomas J.; Rasmussen, Todd C.

    This monograph is an update and revision of the first edition, Geophysical Monograph 42, on ground-water flow and transport through unsaturated, fractured rock, published by AGU in 1987. The first edition evolved from a special symposium held during the American Geophysical Union fall meetings in San Francisco in December 1986. Invited and contributed papers at that AGU session, as well as panel presentations, focused on conceptualizing, measuring and modeling flow and transport through unsaturated fractured rock. As noted in the preface to the first edition, "the expanded interest in the topic (water flow and contaminant transport through unsaturated fractured rock) was initiated when the U.S. Geological Survey proposed that deep unsaturated zones in arid regions be considered in the site selection for the first high-level, commercially generated radioactive waste repository." Much of the research reported in that first edition was motivated by the U.S. Department of Energy's program to investigate Yucca Mountain at the Nevada Test Site as a possible geologic repository for commercially generated, high-level radioactive waste. As noted in the overview paper of the first edition, "characterization methods and modeling are in their developmental stage with the greatest lack of knowledge being the interaction between fracture and matrix flow and transport properties." Although the first edition of this monograph reflected the state-of-the science, laboratory and field experimental programs were novel and limited and, in general, followed from the principles and methods developed in the soil science community.

  14. A study of the effects of collector and environment parameters on the performance of a solar powered solid adsorption refrigerator

    International Nuclear Information System (INIS)

    Based on the heat and mass transfer model validated by experiment, the performance of the plate solar ice-maker is analyzed systemically with the opinion of two-type characteristic parameters, which includes parametric effects of adsorbent bed of solar ice-maker and outer parameters referring to circumstance. A large number of simulations were undertaken to test the performance of the refrigerator for various collector design parameters and environmental parameters. These works are beneficial to further study the optimization design of a solar cooling system. (Author)

  15. Hydraulic Conductivity Anisotropy of Heterogeneous Unsaturated Soils

    Science.gov (United States)

    Sun, Dongmin; Zhu, Jianting

    2010-05-01

    The effects of saturation degree (or capillary pressure) on hydraulic conductivity anisotropy in unsaturated soils have not been fully understood. This study developed an approach based on a conceptualization of combining the neural network based pedo-transfer function (PTF) results with the thin layer concept to explore the capillary pressure-dependent anisotropy in relation to soil texture and soil bulk density. The main objective is to examine how anisotropy characteristics are related to the relationships between hydraulic parameters and the basic soil attributes such as texture and bulk density. The hydraulic parameters are correlated with the texture and bulk density based on the pedo-transfer function (PTF) results. It is demonstrated that non-monotonic behavior of the unsaturated soil anisotropy in relation to the capillary pressure is only observed when the saturated hydraulic conductivity and the shape parameter are both related to the mean particle diameter. When only one hydraulic parameter is related to the grain diameter or when both are not related to the same attribute simultaneously, the unsaturated soil anisotropy increases monotonically with the increasing capillary pressure head. Therefore, it is suggested that this behavior is mainly due to the coupled dependence of the layer saturated hydraulic conductivities and the shape factors on the texture and bulk density. The correlation between the soil grain diameter and bulk density decreases the anisotropy effects of the unsaturated layered soils. The study illustrates that the inter-relationships of soil texture, bulk density, and hydraulic properties may cause vastly different characteristics of anisotropic unsaturated soils.

  16. Simulation of HPIB propagation in biased charge collector

    International Nuclear Information System (INIS)

    A 2.5D PIC simulation using KARAT code for inner charge propagation within biased charge collector for measuring HPIB is presented. The simulation results indicate that the charges were neutralized but the current non-neutralized in the biased charge collector. The influence of ions collected vs biased voltage of the collector was also simulated. -800 V biased voltage can meet the measurement of 500 keV HPIB, and this is consistent with the experimental results

  17. Calculation of coolant flow in a nuclear reactor pressure collector

    International Nuclear Information System (INIS)

    Effect of output lattice resistance and a relative height of the collector on peculiarities of liquid flow and distribution of coolant flow rate in a distribution collector of a reactor has been investigated. Numerical integration of two-dimensional equations of coolant flow in a model of the distribution collector and in the inlet annular channel ignoring azimuthal perturbations at the inlet has been carried out. The calculations showed that, when increasing the relative height of the collector, the vortex was formed at the inlet of the collector due to the sudden flow rotation at the outlet from the inlet annular channel. The inlet vortex causes decrease of the flow rate at the collector periphery down to inverse stream formation. Application of displacers at the bottom of the collector leads to decreasing flow rate in the center and to levelling flow rate nonuniformity over the whole collector. Perturbation of only radial flow at the inlet leads to formation of vortices with the vertical axis near the center of the collector and to decrease of the rate at the outlet near the vortex region

  18. Stationary reflector-augmented flat-plate collectors

    Energy Technology Data Exchange (ETDEWEB)

    Chiam, H.F.

    1982-07-01

    A general procedure for determining the optimum geometry of a reflector-augmented solar collector which produces a desired pattern of flux-augmentation is described. The example used for illustration is a stationary collector whose winter performance is to be improved. Consideration of both a flat-plat collector with a bottom reflector and one with a top reflector led to distinct differences in their optimum configuration and performance being identified. Since either system can be used to augment winter flux a criterion for selecting the appropriate system is given. This criterion is based on the displacement in collector that from latitude inclination.

  19. Adaptive control of solar energy collector systems

    CERN Document Server

    Lemos, João M; Igreja, José M

    2014-01-01

    This book describes methods for adaptive control of distributed-collector solar fields: plants that collect solar energy and deliver it in thermal form. Controller design methods are presented that can overcome difficulties found in these type of plants:they are distributed-parameter systems, i.e., systems with dynamics that depend on space as well as time;their dynamics is nonlinear, with a bilinear structure;there is a significant level of uncertainty in plant knowledge.Adaptive methods form the focus of the text because of the degree of uncertainty in the knowledge of plant dynamics. Parts

  20. CMS DT Upgrade The Sector Collector Relocation

    CERN Document Server

    Navarro Tobar, Alvaro

    2015-01-01

    The Sector Collector relocation is the first stage of the upgrade program for the Drift Tubes subdetector of the CMS experiment. It was accomplished during Long Shutdown 2013-2014, and consisted in the relocation of the second-level trigger and readout electronics from the experimental to the service cavern, relieving the environmental constraints and improving accessibility for maintenance and upgrade. Extending the electrical links would degrade reliability, so the information is converted to optical with a custom system capable of dealing with the DC-unbalanced data. Initially, present electronics are used, so optical-to-copper conversion has also been installed.

  1. Simulation of a solar collector array consisting of two types of solar collectors, with and without convection barrier

    OpenAIRE

    Bava, Federico; Furbo, Simon; Perers, Bengt

    2015-01-01

    The installed area of solar collectors in solar heating fields is rapidly increasing in Denmark. In this scenario even relatively small performance improvements may lead to a large increase in the overall energy production. Both collectors with and without polymer foil, functioning as convection barrier, can be found on the Danish market. Depending on the temperature level at which the two types of collectors operate, one can perform better than the other. This project aimed to study the beha...

  2. DT results of TFTR's alpha collector

    International Nuclear Information System (INIS)

    An escaping alpha collector probe has been developed for TFTR's DT phase to complement the results of the lost alpha scintillator detectors which have been operating on TFTR since 1988. Measurements of the energy distribution of escaping alphas have been made by measuring the range of alphas implanted into nickel foils located within the alpha collector. Exposed samples have been analyzed for 4 DT plasma discharges at plasma currents of 1.0 and 1.8 MA. The results at 1.0 MA are in good agreement with predictions for first orbit alpha loss at 3.5 MeV. The 1.8 MA results, however, indicate a large anomalous loss of partially thermalized alphas at an energy ∼30% below the birth energy and at a total fluence nearly an order of magnitude above expected first orbit loss. This anomalous loss is not observed with the lost alpha scintillator detectors in DT plasmas but does resemble the anomalous delayed loss seen in DD plasmas. Several potential explanations for this loss process are examined. None of the candidate explanations proposed thus far are fully consistent with the anomalous loss observations

  3. Combined current collector and electrode separator

    Science.gov (United States)

    Gerenser, Robert J.; Littauer, Ernest L.

    1983-01-01

    This relates to reactive metal cells wherein there is a cathode and a consumable anode. It is necessary to separate the cathode from the anode so that an electrolyte may constantly flow over the face of the anode opposing the cathode. It has been found that this separator may also beneficially function as a current collector. The combined current collector and separator includes a peripheral supporting frame of which a portion may function as a bus-bar. A plurality of bars or ribs extend in parallel relation across the opening defined by the supporting frame and are electrically connected to the bus-bar portion. It is preferred that each bar or rib have a pointed or line edge which will engage and slightly bite into the associated anode to maintain the bar or rib in electrical contact with the anode. This abstract forms no part of the specification of this application and is not to be construed as limiting the claims of the application.

  4. Unsaturated Soils and Rainfall Induced Landslides

    OpenAIRE

    2005-01-01

    Seepage and slope stability issues concerning infiltration in unsaturated slopes are investigated and presented. 2-D finite element analyses are used to study the effects of the different hydraulic characteristics of a fine and coarse grain soil. The influence of the saturated coefficient of permeability (ks), the air entry-value (a) and the desaturation coefficient (n) are studied. The results are showing how the changes in negative pore-water pressures in the model slope are controlled by t...

  5. Liquid migration in sheared unsaturated granular media

    OpenAIRE

    Mani, Roman; Kadau, Dirk; Herrmann, Hans J.

    2012-01-01

    We show how liquid migrates in sheared unsaturated granular media using a grain scale model for capillary bridges. Liquid is redistributed to neighboring contacts after rupture of individual capillary bridges leading to redistribution of liquid on large scales. The liquid profile evolution coincides with a recently developed continuum description for liquid migration in shear bands. The velocity profiles which are linked to the migration of liquid as well as the density profiles of wet and dr...

  6. Model of transit time for SiGe HBT Collector junction depletion-layer

    Institute of Scientific and Technical Information of China (English)

    Hu Hui-Yong; Zhang He-Ming; Dai Xian-Ying; Jia Xin-Zhang; Cui Xiao-Ying; Wang Wei; Ou Jian-Feng; Wang Xi-Yuan

    2005-01-01

    The transit time through collector junction depletion-layer is an important parameter that influences AC gain and frequency performance. In SiGe heterojunction bipolar transistor (HBT) collector junction, the depletion-layer width is given in three cases. The models of collector depletion-layer transit time, considering the collector current densities and base extension effect, are established and simulated using MATLAB. The influence of the different collector j unction bias voltage, collector concentration of As or P dopant and collector width on collector junction transit time is quantitatively studied. When the collector junction bias voltage, collector doping concentration and collector width are large, the transit time is quite long. And, from the results of simulations, the influence of the collector depletion-layer transit time on frequency performance is considerable in SiGe HBT with a thin base, so it could not be ignored.

  7. Cycles are strongly Ramsey-unsaturated

    CERN Document Server

    Skokan, Jozef

    2012-01-01

    We call a graph H Ramsey-unsaturated if there is an edge in the complement of H such that the Ramsey number r(H) of H does not change upon adding it to H. This notion was introduced by Balister, Lehel and Schelp who also proved that cycles (except for $C_4$) are Ramsey-unsaturated, and conjectured that, moreover, one may add any chord without changing the Ramsey number of the cycle $C_n$, unless n is even and adding the chord creates an odd cycle. We prove this conjecture for large cycles by showing a stronger statement: If a graph H is obtained by adding a linear number of chords to a cycle $C_n$, then $r(H)=r(C_n)$, as long as the maximum degree of H is bounded, H is either bipartite (for even n) or almost bipartite (for odd n), and n is large. This motivates us to call cycles strongly Ramsey-unsaturated. Our proof uses the regularity method.

  8. Design and performance verification of advanced multistage depressed collectors

    Science.gov (United States)

    Kosmahl, H. G.; Ramins, P.

    1975-01-01

    Design and performance of a small size, 4 stage depressed collector are discussed. The collector and a spent beam refocusing section preceding it are intended for efficiency enhancement of octave bandwidth, high CW power traveling wave tubes for use in ECM.

  9. ANALYSIS AND MODELING OF SOLAR EVAPORATOR-COLLECTOR

    Directory of Open Access Journals (Sweden)

    Zakaria Mohd. Amin

    2015-11-01

    Full Text Available Solar energy is considered a sustainable resource that poses little to no harmful effects on the environment. The performance of a solar system depends to a great extent on the collector used for the conversion of solar radiant energy to thermal energy. A solar evaporator-collector (SEC is basically an unglazed flat plate collector where refrigerants, such as R134a is used as the working fluid. As the operating temperature of the SEC is very low, it utilizes both solar irradiation and ambient energy leading to a much higher efficiency than the conventional collectors. This capability of SECs to utilize ambient energy also enables the system to operate at night. This type of collector can be locally made and is relatively much cheaper than the conventional collector.   At the National University of Singapore, the evaporator-collector was integrated to a heat pump and the performance was investigated for several thermal applications: (i water heating, (ii drying and (iii desalination. A 2-dimensional transient mathematical model of this system was developed and validated by experimental data. The present study provides a comprehensive study of performance. KEYWORDS: heat pump; evaporator-collector.

  10. Carbon-brush collector maintenance on turbine-generators

    Energy Technology Data Exchange (ETDEWEB)

    Maughan, C.V. [Maughan Engineering Consultants, Schenectady, NY (United States)

    2005-07-01

    Carbon-brush collectors are small components in turbine generators that perform the function of transferring current from excitation power sources to the rotating fields of synchronous generators. Collectors operate at 100 to 700 volts DC in a noisy and windy atmosphere and are one of the most frequent causes of generator forced outages. As such, their condition must be monitored regularly through visual inspection. While the inspection and maintenance effort is relatively minor, it is often overlooked or done improperly. The key to reliable collector performance consists of making daily direct observations, recognizing the warning signals of impending failure, and taking timely corrective maintenance action. Dependable brush-to-collector current transfer relies on the following 3 conditions, which must be satisfied simultaneously: collector surface film; brush contact pressure; and continuous brush-to-ring contact. Causes of collector outages include planned outages to resurface the collector, or forced outages due to collector flashover. This paper presented suggestions on how to identify an impending failure, along with guidelines for corrective maintenance to avoid a turbine/generator forced outage. Information was provided on retrofit or fixed brush holders with removable brush holders. A checklist for daily inspection and weekly maintenance was presented along with measures to perform at each shutdown. 1 tab., 12 figs.

  11. Thermal performance of integration of solar collectors and building envelopes

    Institute of Scientific and Technical Information of China (English)

    于国清; 龚小辉; 曹双华

    2009-01-01

    The integration of building with solar collector was studied. The theoretical model of integration of building envelopes and flat plate solar collectors was set up and the thermal performance of integration was studied in winter and summer,and compared to envelopes without solar collectors. The results show that the solar collection efficiency is raised in the integration of building envelopes and solar collectors with the air layer doors closed. This is true whether in winter or summer. The increment is higher as the inlet water temperature increases or the ambient temperature is low. In winter,the heat loss is significantly reduced through integration of the building envelopes and solar collectors with the closed air layer doors. The integration with the open air layer door is worse than that without collectors. In summer,the heat gains of the integration of envelopes and solar collectors are more obviously reduced than envelopes without collectors,the integration with the open air layer door is a little better than the closed one,but the difference is very small.

  12. Preliminary design package for solar collector and solar pump

    Science.gov (United States)

    1978-01-01

    A solar-operated pump using an existing solar collector, for use on solar heating and cooling and hot water systems is described. Preliminary design criteria of the collector and solar-powered pump is given including: design drawings, verification plans, and hazard analysis.

  13. A solar air collector with integrated latent heat thermal storage

    Science.gov (United States)

    Charvat, Pavel; Ostry, Milan; Mauder, Tomas; Klimes, Lubomir

    2012-04-01

    Simulations of the behaviour of a solar air collector with integrated latent heat thermal storage were performed. The model of the collector was created with the use of coupling between TRNSYS 17 and MATLAB. Latent heat storage (Phase Change Material - PCM) was integrated with the solar absorber. The model of the latent heat storage absorber was created in MATLAB and the model of the solar air collector itself was created in TRNSYS with the use of TYPE 56. The model of the latent heat storage absorber allows specification of the PCM properties as well as other parameters. The simulated air collector was the front and back pass collector with the absorber in the middle of the air cavity. Two variants were considered for comparison; the light-weight absorber made of sheet metal and the heat-storage absorber with the PCM. Simulations were performed for the climatic conditions of the Czech Republic (using TMY weather data).

  14. A solar air collector with integrated latent heat thermal storage

    Directory of Open Access Journals (Sweden)

    Klimes Lubomir

    2012-04-01

    Full Text Available Simulations of the behaviour of a solar air collector with integrated latent heat thermal storage were performed. The model of the collector was created with the use of coupling between TRNSYS 17 and MATLAB. Latent heat storage (Phase Change Material - PCM was integrated with the solar absorber. The model of the latent heat storage absorber was created in MATLAB and the model of the solar air collector itself was created in TRNSYS with the use of TYPE 56. The model of the latent heat storage absorber allows specification of the PCM properties as well as other parameters. The simulated air collector was the front and back pass collector with the absorber in the middle of the air cavity. Two variants were considered for comparison; the light-weight absorber made of sheet metal and the heat-storage absorber with the PCM. Simulations were performed for the climatic conditions of the Czech Republic (using TMY weather data.

  15. Test results, Industrial Solar Technology parabolic trough solar collector

    Energy Technology Data Exchange (ETDEWEB)

    Dudley, V.E. [EG and G MSI, Albuquerque, NM (United States); Evans, L.R.; Matthews, C.W. [Sandia National Labs., Albuquerque, NM (United States)

    1995-11-01

    Sandia National Laboratories and Industrial Solar Technology are cost-sharing development of advanced parabolic trough technology. As part of this effort, several configurations of an IST solar collector were tested to determine the collector efficiency and thermal losses with black chrome and black nickel receiver selective coatings, combined with aluminized film and silver film reflectors, using standard Pyrex{reg_sign} and anti-reflective coated Pyrex{reg_sign} glass receiver envelopes. The development effort has been successful, producing an advanced collector with 77% optical efficiency, using silver-film reflectors, a black nickel receiver coating, and a solgel anti-reflective glass receiver envelope. For each receiver configuration, performance equations were empirically derived relating collector efficiency and thermal losses to the operating temperature. Finally, equations were derived showing collector performance as a function of input insolation value, incident angle, and operating temperature.

  16. Mathematical modelling of unglazed solar collectors under extreme operating conditions

    DEFF Research Database (Denmark)

    Bunea, M.; Perers, Bengt; Eicher, S.;

    2015-01-01

    average temperature levels at the evaporator. Simulation of these systems requires a collector model that can take into account operation at very low temperatures (below freezing) and under various weather conditions, particularly operation without solar irradiation.A solar collector mathematical model......Combined heat pumps and solar collectors got a renewed interest on the heating system market worldwide. Connected to the heat pump evaporator, unglazed solar collectors can considerably increase their efficiency, but they also raise the coefficient of performance of the heat pump with higher...... was found due to the condensation phenomenon and up to 40% due to frost under no solar irradiation. This work also points out the influence of the operating conditions on the collector's characteristics.Based on experiments carried out at a test facility, every heat flux on the absorber was separately...

  17. A novel fiber-based adsorbent technology

    Energy Technology Data Exchange (ETDEWEB)

    Reynolds, T.A. [Chemica Technologies, Inc., Bend, OR (United States)

    1997-10-01

    In this Phase I Small Business Innovation Research program, Chemica Technologies, Inc. is developing an economical, robust, fiber-based adsorbent technology for removal of heavy metals from contaminated water. The key innovation is the development of regenerable adsorbent fibers and adsorbent fiber cloths that have high capacity and selectivity for heavy metals and are chemically robust. The process has the potential for widespread use at DOE facilities, mining operations, and the chemical process industry.

  18. Simulation of a solar collector array consisting of two types of solar collectors, with and without convection barrier

    DEFF Research Database (Denmark)

    Bava, Federico; Furbo, Simon; Perers, Bengt

    2015-01-01

    composition of the row. Actual solar collectors available on the Danish market (models HT-SA and HT-A 35-10 manufactured by ARCON Solar A/S) were used for this analysis. To perform the study, a simulation model in TRNSYS was developed based on the Danish solar collector field in Braedstrup. A parametric...

  19. Study of Cylindrical Honeycomb Solar Collector

    Directory of Open Access Journals (Sweden)

    Atish Mozumder

    2014-01-01

    Full Text Available We present the results of our investigation on cylindrical honeycomb solar collector. The honeycomb has been fabricated with transparent cellulose triacetate polymer sheets. Insulation characteristics of the honeycomb were studied by varying the separation between the honeycomb and the absorber plate. The optimal value of the separation was found to be 3.3 mm for which the heat transfer coefficient is 3.06 W m−2 K−1. This supports result of previous similar experiments. Further we test the honeycomb through a field experiment conducted in Delhi (28.6°N, 77°E and found that when the incident angle of the solar radiation is within 20° then the performance of the system with the honeycomb is better than the one without the honeycomb.

  20. Analysis of WWER 1000 collector cracking mechanisms

    Energy Technology Data Exchange (ETDEWEB)

    Matocha, K.; Wozniak, J. [Vitkovice J.S.C., Ostrava (Switzerland)

    1997-12-31

    The presentation reviews the large experimental program, started in 1993 in Vitkovice, where the main aim was: (1) a detailed study of strain and thermal ageing, dissolved oxygen content and temperature on subcritical crack growth in 10NiMo8.5 (10GN2MFA) steel, (2) a detailed study of the effect of high temperature water and tube expansion technology on fracture behaviour of ligaments between holes for heat exchange tubes, and (3) a detailed study of the effect of drilling, tube expansion technology and heat treatment on residual stresses on the surface of holes for heat exchange tubes. The aim of all these investigations was to find a dominant damage mechanism responsible for collector cracking to be able to judge the efficiency of implemented modifications and suggested countermeasures and to answer a very important question whether proper operation conditions (mainly water chemistry) make the operation of steam generators made in Vitcovice safe throughout the planned lifetime. 10 refs.

  1. Filter-adsorber aging assessment

    International Nuclear Information System (INIS)

    An aging assessment of high-efficiency particulate (HEPA) air filters and activated carbon gas adsorption units was performed by the Pacific Northwest Laboratory as part of the U.S. Nuclear Regulatory Commission's (USNRC) Nuclear Plant Aging Research (NPAR) Program. This evaluation of the general process in which characteristics of these two components gradually change with time or use included the compilation of information concerning failure experience, stressors, aging mechanisms and effects, and inspection, surveillance, and monitoring methods (ISMM). Stressors, the agents or stimuli that can produce aging degradation, include heat, radiation, volatile contaminants, and even normal concentrations of aerosol particles and gasses. In an experimental evaluation of degradation in terms of the tensile breaking strength of aged filter media specimens, over forty percent of the samples did not meet specifications for new material. Chemical and physical reactions can gradually embrittle sealants and gaskets as well as filter media. Mechanisms that can lead to impaired adsorber performance are associated with the loss of potentially available active sites as a result of the exposure of the carbon to airborne moisture or volatile organic compounds. Inspection, surveillance, and monitoring methods have been established to observe filter pressure drop buildup, check HEPA filters and adsorbers for bypass, and determine the retention effectiveness of aged carbon. These evaluations of installed filters do not reveal degradation in terms of reduced media strength but that under normal conditions aged media can continue to effectively retain particles. However, this degradation may be important when considering the likelihood of moisture, steam, and higher particle loadings during severe accidents and the fact it is probable that the filters have been in use for an extended period

  2. Long-term ageing tests on glazing materials for solar collectors; Langzeit-Alterungsuntersuchung an Abdeckungsmaterialien fuer thermische Sonnenkollektoren

    Energy Technology Data Exchange (ETDEWEB)

    Ruesch, F.; Brunold, S.; Haeuselmann, T.; Frank, E.; Frei, U.

    2008-02-15

    This report made by the Swiss Institute for Solar Technology at the University of Applied Sciences in Rapperswil, Switzerland, for Swiss Federal Office of Energy (SFOE) takes a look at the results of a project that investigated the long-term behaviour of glazing materials for solar collectors. The locations tested and their associated meteorological data are presented and the tests made concerning the optical characteristics of several different types of glazing are discussed. Soiling and degradation are also looked at. An overview of the solar transmission of the various materials is presented. Details on the various materials such as glass, polymethyl metacrylate (PMMA), polycarbonate (PC), fluorised plastics, unsaturated polyester (UP), polyvinyl chloride (PVC) and polyethylene terephthalate (PET) are presented.

  3. Scanning tunneling microscopy theory for an adsorbate: Application to adenine adsorbed on a graphite surface

    OpenAIRE

    Ou-Yang, Hui; Marcus, R. A.; Källebring, Bruno

    1994-01-01

    An expression is obtained for the current in scanning tunneling microscopy (STM) for a single adsorbate molecule. For this purpose the ``Newns–Anderson'' treatment (a ``discrete state in a continuum'' treatment) is used to obtain wave functions and other properties of the adsorbate/substrate system. The current is expressed in terms of the adsorbate–tip matrix elements, and an effective local density of states of the adsorbate/substrate system, at the adsorbate. As an example, the treatment i...

  4. Ecological applications of the irradiated adsorbents

    International Nuclear Information System (INIS)

    Full text: In our previous works it was shown that after irradiation some adsorbents gain new interesting properties such as increasing (or decreasing) of their adsorption capacity, selectivity in relation to some gases, change of chemical bounds of gas molecules with adsorbent surface as well as other properties. We investigated a lot of adsorbents with semiconducting and dielectric properties. A high temperature superconductor was investigated also. Adsorbents were irradiated by ultraviolet (UV) and gamma - radiation, reactor (n.γ) - radiation, α-particles (E=40-50 MeV), protons ( E=30 MeV), and also He-3 ions (E-29-60 MeV). The following techniques were used: volumetric (manometrical), mass-spectrometer and IR spectroscopic methods, and also method of electronic - paramagnetic resonance (spin paramagnetic resonance) The obtained results allow to speak about creation of new adsorbents for gas purification (clearing) from harmful impurities, gas selection into components, an increasing of adsorbing surface. Thus one more advantage of the irradiated adsorbents is that they have 'memory effect', i.e. they can be used enough long time after irradiation. In laboratory conditions we built the small-sized adsorptive pump on the basis of the irradiated zeolites which are capable to work in autonomous conditions. It was found, that some of adsorbents after irradiation gain (or lose) selectivity in relation to definite gases. So, silica gel, which one in initial state does not adsorb hydrogen, after gamma irradiation it becomes active in relation to hydrogen. Some of rare earths oxides also show selectivity in relation to hydrogen and oxygen depending on a type of irradiation. Thus, it is possible to create different absorbents, depending on a solved problem, using a way or selection of adsorbents, either of radiation type and energy, as a result obtained adsorbents can be used for various ecological purposes

  5. Analysis of Rainfall Infiltration Law in Unsaturated Soil Slope

    OpenAIRE

    Gui-rong Zhang; Ya-jun Qian; Zhang-chun Wang; Bo Zhao

    2014-01-01

    In the study of unsaturated soil slope stability under rainfall infiltration, it is worth continuing to explore how much rainfall infiltrates into the slope in a rain process, and the amount of rainfall infiltrating into slope is the important factor influencing the stability. Therefore, rainfall infiltration capacity is an important issue of unsaturated seepage analysis for slope. On the basis of previous studies, rainfall infiltration law of unsaturated soil slope is analyzed. Considering t...

  6. Complete braided adsorbent for marine testing to demonstrate 3g-U/kg-adsorbent

    Energy Technology Data Exchange (ETDEWEB)

    Janke, Chris [ORNL; Yatsandra, Oyola [ORNL; Mayes, Richard [ORNL; none,; Gill, Gary [PNNL; Li-Jung, Kuo [PNNL; Wood, Jordana [PNNL; Sadananda, Das [ORNL

    2014-04-30

    ORNL has manufactured four braided adsorbents that successfully demonstrated uranium adsorption capacities ranging from 3.0-3.6 g-U/kg-adsorbent in marine testing at PNNL. Four new braided and leno woven fabric adsorbents have also been prepared by ORNL and are currently undergoing marine testing at PNNL.

  7. A theoretical study of adsorbate-adsorbate interactions on Ru(0001)

    DEFF Research Database (Denmark)

    Mortensen, Jens Jørgen; Hammer, Bjørk; Nørskov, Jens Kehlet

    1998-01-01

    Using density functional theory we study the effect of pre-adsorbed atoms on the dissociation of N(2) and the adsorption of N, N(2), and CO on Ru(0001). We have done calculations for pre-adsorbed Na, Cs, and S, and find that alkali atoms adsorbed close to a dissociating N(2) molecule will lower t...

  8. PERFORMANCE EVALUATION OF SOLAR COLLECTORS USING A SOLAR SIMULATOR

    Directory of Open Access Journals (Sweden)

    M. Norhafana

    2015-11-01

    Full Text Available Solar water heating systems is one of the applications of solar energy. One of the components of a solar water heating system is a solar collector that consists of an absorber. The performance of the solar water heating system depends on the absorber in the solar collector. In countries with unsuitable weather conditions, the indoor testing of solar collectors with the use of a solar simulator is preferred. Thus, this study is conducted to use a multilayered absorber in the solar collector of a solar water heating system as well as to evaluate the performance of the solar collector in terms of useful heat of the multilayered absorber using the multidirectional ability of a solar simulator at several values of solar radiation. It is operated at three variables of solar radiation of 400 W/m2, 550 W/m2 and 700 W/m2 and using three different positions of angles at 0º, 45º and 90º. The results show that the multilayer absorber in the solar collector is only able to best adapt at 45° of solar simulator with different values of radiation intensity. At this angle the maximum values of useful heat and temperature difference are achieved. KEYWORDS: solar water heating system; solar collector; multilayered absorber; solar simulator; solar radiation 

  9. Evaluation of heat transfer enhancement in air-heating collectors

    Energy Technology Data Exchange (ETDEWEB)

    Mattox, D. L.

    1979-06-01

    The present research effort was initiated for the purpose of increasing the thermal efficiency of air heating solar collectors through identification and development of optimum design and operation criteria for solar absorber-to-air heat exchangers. Initially this effort took the form of a solar collector systems analysis to evaluate the impact of various techniques for enhancing the heat transfer between the absorber and air stream on overall thermal performance of the entire solar collector. This systems analysis resulted in the selection of solar collector designs providing ducted cooling air on the absorber shaded side as a base line. A transient heat transfer analysis of a complete solar air heating collector was used to demonstrate that an optimum absorber-to-air heat exchanger design could be provided with several interrupted fin configurations. Additional analyses were performed to establish that the maximum solar collector thermal performance to required pumping power was realized for a Reynolds number range of 1000 to 2000. This Reynolds number range was used to establish a theoretical design limit curve for maximum thermal performance versus required pumping power for all interrupted fin designs as published in the open literature. Heat and momentum transfer empirical relationships were defined for scaling the state-of-the-art high conductance fin designs identified from a compact configuration to the less compact designs needed for solar collectors.

  10. Review and selection of unsaturated flow models

    Energy Technology Data Exchange (ETDEWEB)

    Reeves, M.; Baker, N.A.; Duguid, J.O. [INTERA, Inc., Las Vegas, NV (United States)

    1994-04-04

    Since the 1960`s, ground-water flow models have been used for analysis of water resources problems. In the 1970`s, emphasis began to shift to analysis of waste management problems. This shift in emphasis was largely brought about by site selection activities for geologic repositories for disposal of high-level radioactive wastes. Model development during the 1970`s and well into the 1980`s focused primarily on saturated ground-water flow because geologic repositories in salt, basalt, granite, shale, and tuff were envisioned to be below the water table. Selection of the unsaturated zone at Yucca Mountain, Nevada, for potential disposal of waste began to shift model development toward unsaturated flow models. Under the US Department of Energy (DOE), the Civilian Radioactive Waste Management System Management and Operating Contractor (CRWMS M&O) has the responsibility to review, evaluate, and document existing computer models; to conduct performance assessments; and to develop performance assessment models, where necessary. This document describes the CRWMS M&O approach to model review and evaluation (Chapter 2), and the requirements for unsaturated flow models which are the bases for selection from among the current models (Chapter 3). Chapter 4 identifies existing models, and their characteristics. Through a detailed examination of characteristics, Chapter 5 presents the selection of models for testing. Chapter 6 discusses the testing and verification of selected models. Chapters 7 and 8 give conclusions and make recommendations, respectively. Chapter 9 records the major references for each of the models reviewed. Appendix A, a collection of technical reviews for each model, contains a more complete list of references. Finally, Appendix B characterizes the problems used for model testing.

  11. Characterizing unsaturated diffusion in porous tuff gravel

    International Nuclear Information System (INIS)

    Evaluation of solute diffusion in unsaturated porous gravel is very important for investigations of contaminant transport and remediation, risk assessment, and waste disposal (for example, the potential high-level nuclear waste repository at Yucca Mountain, Nevada). For a porous aggregate medium such as granular tuff, the total water content is comprised of surface water and interior water. The surface water component (water film around grains and pendular water between the grain contacts) could serve as a predominant diffusion pathway. To investigate the extent to which surface water films and contact points affect solute diffusion in unsaturated gravel, we examined the configuration of water using x-ray computed tomography in partially saturated gravel, and made quantitative measurements of diffusion at multiple water contents using two different techniques. In the first, diffusion coefficients of potassium chloride in 2-4 mm granular tuff at multiple water contents were calculated from electrical conductivity measurements using the Nernst-Einstein equation. In the second, we used laser ablation with inductively coupled plasma-mass spectrometry to perform micro-scale mapping, allowing the measurement of diffusion coefficients for a mixture of chemical tracers for tuff cubes and tetrahedrons having two contact geometries (cube-cube and cube-tetrahedron). The x-ray computed tomography images show limited contact between grains, and this could hinder the pathways for diffusive transport. Experimental results show the critical role of surface water in controlling transport pathways and hence the magnitude of diffusion. Even with a bulk volumetric water content of 1.5%, the measured solute diffusion coefficient is as low as 1.5 x 10-14 m2/s for tuff gravel. Currently used diffusion models relating diffusion coefficients to total volumetric water content inadequately describe unsaturated diffusion behavior in porous gravel at very low water contents

  12. Hydrocarbons biodegradation in unsaturated porous medium

    International Nuclear Information System (INIS)

    Biological processes are expected to play an important role in the degradation of petroleum hydrocarbons in contaminated soils. However, factors influencing the kinetics of biodegradation are still not well known, especially in the unsaturated zone. To address these biodegradation questions in the unsaturated zone an innovative experimental set up based on a physical column model was developed. This experimental set up appeared to be an excellent tool for elaboration of a structured porous medium, with well defined porous network and adjusted water/oil saturations. Homogeneous repartition of both liquid phases (i.e., aqueous and non aqueous) in the soil pores, which also contain air, was achieved using ceramic membranes placed at the bottom of the soil column. Reproducible interfaces (and connectivity) are developed between gas, and both non mobile water and NAPL phases, depending on the above-defined characteristics of the porous media and on the partial saturations of these three phases (NAPL, water and gas). A respirometric apparatus was coupled to the column. Such experimental set up have been validated with hexadecane in dilution in an HMN phase. This approach allowed detailed information concerning n-hexadecane biodegradation, in aerobic condition, through the profile of the oxygen consumption rate. We have taken benefit of this technique, varying experimental conditions, to determine the main parameters influencing the biodegradation kinetics and compositional evolution of hydrocarbons, under steady state unsaturated conditions and with respect to aerobic metabolism. Impacts of the nitrogen quantity and of three different grain sizes have been examined. Biodegradation of petroleum cut, as diesel cut and middle distillate without aromatic fraction, were, also studied. (author)

  13. Review and selection of unsaturated flow models

    International Nuclear Information System (INIS)

    Since the 1960's, ground-water flow models have been used for analysis of water resources problems. In the 1970's, emphasis began to shift to analysis of waste management problems. This shift in emphasis was largely brought about by site selection activities for geologic repositories for disposal of high-level radioactive wastes. Model development during the 1970's and well into the 1980's focused primarily on saturated ground-water flow because geologic repositories in salt, basalt, granite, shale, and tuff were envisioned to be below the water table. Selection of the unsaturated zone at Yucca Mountain, Nevada, for potential disposal of waste began to shift model development toward unsaturated flow models. Under the US Department of Energy (DOE), the Civilian Radioactive Waste Management System Management and Operating Contractor (CRWMS M ampersand O) has the responsibility to review, evaluate, and document existing computer models; to conduct performance assessments; and to develop performance assessment models, where necessary. This document describes the CRWMS M ampersand O approach to model review and evaluation (Chapter 2), and the requirements for unsaturated flow models which are the bases for selection from among the current models (Chapter 3). Chapter 4 identifies existing models, and their characteristics. Through a detailed examination of characteristics, Chapter 5 presents the selection of models for testing. Chapter 6 discusses the testing and verification of selected models. Chapters 7 and 8 give conclusions and make recommendations, respectively. Chapter 9 records the major references for each of the models reviewed. Appendix A, a collection of technical reviews for each model, contains a more complete list of references. Finally, Appendix B characterizes the problems used for model testing

  14. Fluorescence dynamics of microsphere-adsorbed sunscreens

    Science.gov (United States)

    Krishnan, R.

    2005-03-01

    Sunscreens are generally oily substances which are prepared in organic solvents, emulsions or dispersions with micro- or nanoparticles. These molecules adsorb to and integrate into skin cells. In order to understand the photophysical properties of the sunscreen, we compare steady-state and time-resolved fluorescence in organic solvent of varying dielectric constant ɛ and adsorbed to polystyrene microspheres and dispersed in water. Steady-state fluorescence is highest and average fluorescence lifetime longest in toluene, the solvent of lowest ɛ. However, there is no uniform dependence on ɛ. Sunscreens PABA and padimate-O show complex emission spectra. Microsphere-adsorbed sunscreens exhibit highly non-exponential decay, illustrative of multiple environments of the adsorbed molecule. The heterogeneous fluorescence dynamics likely characterizes sunscreen adsorbed to cells.

  15. NOx adsorber and method of regenerating same

    Science.gov (United States)

    Endicott, Dennis L.; Verkiel, Maarten; Driscoll, James J.

    2007-01-30

    New technologies, such as NOx adsorber catalytic converters, are being used to meet increasingly stringent regulations on undesirable emissions, including NOx emissions. NOx adsorbers must be periodically regenerated, which requires an increased fuel consumption. The present disclosure includes a method of regenerating a NOx adsorber within a NOx adsorber catalytic converter. At least one sensor positioned downstream from the NOx adsorber senses, in the downstream exhaust, at least one of NOx, nitrous oxide and ammonia concentrations a plurality of times during a regeneration phase. The sensor is in communication with an electronic control module that includes a regeneration monitoring algorithm operable to end the regeneration phase when a time rate of change of the at least one of NOx, nitrous oxide and ammonia concentrations is after an expected plateau region begins.

  16. Nanovalved Adsorbents for CH4 Storage.

    Science.gov (United States)

    Song, Zhuonan; Nambo, Apolo; Tate, Kirby L; Bao, Ainan; Zhu, Minqi; Jasinski, Jacek B; Zhou, Shaojun J; Meyer, Howard S; Carreon, Moises A; Li, Shiguang; Yu, Miao

    2016-05-11

    A novel concept of utilizing nanoporous coatings as effective nanovalves on microporous adsorbents was developed for high capacity natural gas storage at low storage pressure. The work reported here for the first time presents the concept of nanovalved adsorbents capable of sealing high pressure CH4 inside the adsorbents and storing it at low pressure. Traditional natural gas storage tanks are thick and heavy, which makes them expensive to manufacture and highly energy-consuming to carry around. Our design uses unique adsorbent pellets with nanoscale pores surrounded by a coating that functions as a valve to help manage the pressure of the gas and facilitate more efficient storage and transportation. We expect this new concept will result in a lighter, more affordable product with increased storage capacity. The nanovalved adsorbent concept demonstrated here can be potentially extended for the storage of other important gas molecules targeted for diverse relevant functional applications. PMID:27124722

  17. Thermal Stress Analysis of 1 MW Gyrotron Collector

    International Nuclear Information System (INIS)

    At the DIII-D tokamak, up to 6 gyrotrons supply ECH power to the plasma. Each gyrotron injects 800 kW for 5 s at the tokamak during normal operation and are designed to generate 1 MW for 10 s pulse lengths. A power of ∼ 2000 kW is absorbed by the collector of each gyrotron from the electron beam. The gyrotrons are manufactured by Communications and Power Industries (CPI). The collectors are 0.6 m diameter cylinders, 60 cm in height. The collector walls are 20.7 mm thick and have 196 coolant holes of 5.3 mm diameter. Each pair of adjacent coolant holes is connected in series to provide 98 cooling paths. The collector material is oxygen free high conductivity copper (OFHC) and the collectors are cooled by water at a design flow rate of 300 gpm. In order to reduce the peak thermal load on the collector walls, the beam is swept over the collector wall at 4 Hz and an amplitude of about 15 cm using an external coil. Sweeping reduces the effective peak heat flux from 1400 W/cm2 to 600 W/cm2. During 2004 and 2005, some of the collectors failed due to stress cracks. In order to investigate reasons for these failures, a nonlinear elastic plastic thermal stress analysis of the collector was undertaken. The thermal stress analysis results indicated that the effective strain for OFHC material under the operating conditions limited the cycle life of the collector due to fatigue, resulting in failures. The desired service life of more than 105 thermal cycles can be obtained by 1) operational changes, such as: increasing the frequency and amplitude of sweeping to reduce the average heat flux, 2) design changes, such as: increasing the height and/or diameter of collector, enhancing the heat transfer coefficient by roughening the coolant channel walls or 3) changing the material of the collector to dispersion strengthened copper such as Glidcop. The analysis and conclusions will be presented. (author)

  18. A solar air collector with integrated latent heat thermal storage

    OpenAIRE

    Klimes Lubomir; Mauder Tomas; Ostry Milan; Charvat Pavel

    2012-01-01

    Simulations of the behaviour of a solar air collector with integrated latent heat thermal storage were performed. The model of the collector was created with the use of coupling between TRNSYS 17 and MATLAB. Latent heat storage (Phase Change Material - PCM) was integrated with the solar absorber. The model of the latent heat storage absorber was created in MATLAB and the model of the solar air collector itself was created in TRNSYS with the use of TYPE 56. The model of the latent heat storage...

  19. Fuzzy Approximate Model for Distributed Thermal Solar Collectors Control

    KAUST Repository

    Elmetennani, Shahrazed

    2014-07-01

    This paper deals with the problem of controlling concentrated solar collectors where the objective consists of making the outlet temperature of the collector tracking a desired reference. The performance of the novel approximate model based on fuzzy theory, which has been introduced by the authors in [1], is evaluated comparing to other methods in the literature. The proposed approximation is a low order state representation derived from the physical distributed model. It reproduces the temperature transfer dynamics through the collectors accurately and allows the simplification of the control design. Simulation results show interesting performance of the proposed controller.

  20. FLOW DISTRIBUTION IN A SOLAR COLLECTOR PANEL WITH HORIZONTAL FINS

    DEFF Research Database (Denmark)

    Fan, Jianhua; Shah, Louise Jivan; Furbo, Simon

    2005-01-01

    The objective of this work is to theoretically and experimentally investigate the flow and temperature distribution in a solar collector panel with an absorber consisting of horizontal fins. Fluid flow and heat transfer in the collector panel are studied by means of computational fluid dynamics...... (CFD) calculations. Further, experimental investigations of a 12.5 m² solar collector panel with 16 parallel connected horizontal fins are carried out. The flow distribution through the absorber is evaluated by means of temperature measurements on the backside of the absorber tubes. The measured...

  1. Garbage Collector Verification for Proof-Carrying Code

    Institute of Scientific and Technical Information of China (English)

    Chun-Xiao Lin; Yi-Yun Chen; Long Li; Bei Hua

    2007-01-01

    We present the verification of the machine-level implementation of a conservative variant of the standard mark-sweep garbage collector in a Hoare-style program logic. The specification of the collector is given on a machine-level memorymodel using separation logic, and is strong enough to preserve the safety property of any common mutator program. Ourverification is fully implemented in the Coq proof assistant and can be packed immediately as foundational proof-carryingcode package. Our work makes important attempt toward building fully certified production-quality garbage collectors.

  2. Calculating the Solar Energy of a Flat Plate Collector

    Directory of Open Access Journals (Sweden)

    Ariane Rosario

    2014-09-01

    Full Text Available The amount of solar energy that could be obtained by a flat plate solar collector of one square meter dimension is calculated in three different locations: Tampa FL, Fairbanks AL, and Pontianak Indonesia, considering the varying sunset time for each day of the year. The results show that if the collectors are placed near the equator, more total energy could be obtained. In fact, by placing a solar collector in Pontianak, Indonesia 12.42% more solar energy can be obtained than by placing it in Tampa and 96.9% more solar energy than Alaska.

  3. Performance of solar collectors under low temperature conditions

    DEFF Research Database (Denmark)

    Bunea, Mircea; Eicher, Sara; Hildbrand, Catherine;

    evaluated and results compared to experimental measurements. A mathematical model is also under development to include, in addition to the condensation phenomena, the frost, the rain and the long-wave radiation gains/losses on the rear of the solar collector. While the potential gain from rain was estimated......The performance of four solar thermal collectors (flat plate, evacuated tube, unglazed with rear insulation and unglazed without rear insulation) was experimentally measured and simulated for temperatures below ambient. The influence of several parameters (e.g. collector inlet temperature, air...

  4. Unsaturated zone flow modeling for GWTT-95

    International Nuclear Information System (INIS)

    Various models of unsaturated flow in fractured tuff have been developed and implemented to assess groundwater travel times at the potential repository at Yucca Mountain, Nevada. Kaplan used one-dimensional models to describe the uncertainty and sensitivity of travel times to various processes at Yucca Mountain. Robey and Arnold et al. used a two-dimensional equivalent continuum model (ECM) with inter- and intra-unit heterogeneity in an attempt to assess fast-flow paths through the unsaturated, fractured tuff at Yucca Mountain (GWTT-94). However, significant flow through the fractures in previous models was not simulated due to the characteristics of the ECM, which requires the matrix to be nearly saturated before flow through the fractures is initiated. In the current study (GWTT-95), four two-dimensional cross-sections at Yucca Mountain are simulated using both the ECM and dual-permeability (DK) models. The properties of both the fracture and matrix domains are geostatistically simulated, yielding completely heterogeneous continua. Then, simulations of flow through the four cross-sections are performed using spatially non-uniform infiltration boundary conditions. Steady-state groundwater travel times from the potential repository to the water table are calculated

  5. Natural Analogs for the Unsaturated Zone

    International Nuclear Information System (INIS)

    The purpose of this Analysis/Model Report (AMR) is to document natural and anthropogenic (human-induced) analog sites and processes that are applicable to flow and transport processes expected to occur at the potential Yucca Mountain repository in order to build increased confidence in modeling processes of Unsaturated Zone (UZ) flow and transport. This AMR was prepared in accordance with ''AMR Development Plan for U0135, Natural Analogs for the UZ'' (CRWMS 1999a). Knowledge from analog sites and processes is used as corroborating information to test and build confidence in flow and transport models of Yucca Mountain, Nevada. This AMR supports the Unsaturated Zone (UZ) Flow and Transport Process Model Report (PMR) and the Yucca Mountain Site Description. The objectives of this AMR are to test and build confidence in the representation of UZ processes in numerical models utilized in the UZ Flow and Transport Model. This is accomplished by: (1) applying data from Boxy Canyon, Idaho in simulations of UZ flow using the same methodologies incorporated in the Yucca Mountain UZ Flow and Transport Model to assess the fracture-matrix interaction conceptual model; (2) Providing a preliminary basis for analysis of radionuclide transport at Pena Blanca, Mexico as an analog of radionuclide transport at Yucca Mountain; and (3) Synthesizing existing information from natural analog studies to provide corroborating evidence for representation of ambient and thermally coupled UZ flow and transport processes in the UZ Model

  6. NaturAnalogs for the Unsaturated Zone

    Energy Technology Data Exchange (ETDEWEB)

    A. Simmons; A. Unger; M. Murrell

    2000-03-08

    The purpose of this Analysis/Model Report (AMR) is to document natural and anthropogenic (human-induced) analog sites and processes that are applicable to flow and transport processes expected to occur at the potential Yucca Mountain repository in order to build increased confidence in modeling processes of Unsaturated Zone (UZ) flow and transport. This AMR was prepared in accordance with ''AMR Development Plan for U0135, Natural Analogs for the UZ'' (CRWMS 1999a). Knowledge from analog sites and processes is used as corroborating information to test and build confidence in flow and transport models of Yucca Mountain, Nevada. This AMR supports the Unsaturated Zone (UZ) Flow and Transport Process Model Report (PMR) and the Yucca Mountain Site Description. The objectives of this AMR are to test and build confidence in the representation of UZ processes in numerical models utilized in the UZ Flow and Transport Model. This is accomplished by: (1) applying data from Boxy Canyon, Idaho in simulations of UZ flow using the same methodologies incorporated in the Yucca Mountain UZ Flow and Transport Model to assess the fracture-matrix interaction conceptual model; (2) Providing a preliminary basis for analysis of radionuclide transport at Pena Blanca, Mexico as an analog of radionuclide transport at Yucca Mountain; and (3) Synthesizing existing information from natural analog studies to provide corroborating evidence for representation of ambient and thermally coupled UZ flow and transport processes in the UZ Model.

  7. Experimental studies to calibrate unsaturated flow models

    International Nuclear Information System (INIS)

    Many aspects of the work related to design and performance assessment of the proposed High Level Nuclear Waste Repository at Yucca Mountain are based upon estimates of moisture migration in the surrounding formations. These estimates are usually made using computer codes that have varying degrees of validation. Since most of the moisture flows are in highly nonhomogeneous media and are unsaturated, the development of experimental data for validating models is a difficult task. Work is described that has been designed to serve as a laboratory calibration of numerical models for unsaturated flow studies. The experiment size is configured large enough that the assumptions applicable to most numerical models should apply, but the size is small enough that the test section can be characterized well and accurately monitored. A large piece of consolidated and fractured medium is used for the main test element. In addition to careful assessment of flows in and out, the moisture content at various locations along the element is monitored. Both electromagnetic and ultrasonic techniques are used in our experiments for the latter estimates. The general experimental method, control system, and data acquisition approach are described

  8. Unsaturated zone flow modeling for GWTT-95

    International Nuclear Information System (INIS)

    In accordance with the Nuclear Regulatory Commission regulation regarding groundwater travel times at geologic repositories, various models of unsaturated flow in fractured tuff have been developed and implemented to assess groundwater travel times at the potential repository at Yucca Mountain, Nevada. Kaplan used one-dimensional models to describe the uncertainty and sensitivity of travel times to various processes at Yucca Mountain. Robey and Arnold et al. used a two-dimensional equivalent continuum model (ECM) with inter- and intra-unit heterogeneity in an attempt to assess fast-flow paths through the unsaturated, fractured tuff at Yucca Mountain (GWTT-94). However, significant flow through the fractures in previous models was not simulated due to the characteristics of the ECM, which requires the matrix to be nearly saturated before flow through the fractures is initiated. In the current study (GWTT-95), four two-dimensional cross-sections at Yucca Mountain are simulated using both the ECM and dual-permeability (DK) models. The properties of both the fracture and matrix domains are geostatistically simulated, yielding completely heterogeneous continua. Then, simulations of flow through the four cross-sections are performed using spatially nonuniform infiltration boundary conditions. Steady-state groundwater travel times from the potential repository to the water table are calculated

  9. Inorganic chemically active adsorbents (ICAAs)

    Energy Technology Data Exchange (ETDEWEB)

    Ally, M.R. [Oak Ridge National Lab., TN (United States); Tavlarides, L.

    1997-10-01

    Oak Ridge National Laboratory (ORNL) researchers are developing a technology that combines metal chelation extraction technology and synthesis chemistry. They begin with a ceramic substrate such as alumina, titanium oxide or silica gel because they provide high surface area, high mechanical strength, and radiolytic stability. One preparation method involves silylation to hydrophobize the surface, followed by chemisorption of a suitable chelation agent using vapor deposition. Another route attaches newly designed chelating agents through covalent bonding by the use of coupling agents. These approaches provide stable and selective, inorganic chemically active adsorbents (ICAAs) tailored for removal of metals. The technology has the following advantages over ion exchange: (1) higher mechanical strength, (2) higher resistance to radiation fields, (3) higher selectivity for the desired metal ion, (4) no cation exchange, (5) reduced or no interference from accompanying anions, (6) faster kinetics, and (7) easy and selective regeneration. Target waste streams include metal-containing groundwater/process wastewater at ORNL`s Y-12 Plant (multiple metals), Savannah River Site (SRS), Rocky Flats (multiple metals), and Hanford; aqueous mixed wastes at Idaho National Engineering Laboratory (INEL); and scrubber water generated at SRS and INEL. Focus Areas that will benefit from this research include Mixed Waste, and Subsurface Contaminants.

  10. Concentrating vanadium compounds with the aid of a perfluorinated collector

    International Nuclear Information System (INIS)

    The authors report the results of experiments on extraction of vanadium compounds from aqueous solutions. A cationic flourine-containing surfactant was used as the collector. Figures show the dependence of the degree of vanadium extraction on the solution pH, and the dependence of the composition of the vanadium-containing precipitate on the amount of collector C /SUB surf/ . It was shown that it is possible in principle to concentrate vanadium compounds from aqueous solutions with the aid of a cationic perflourinated collector. The optimal conditions of vanadium extraction lie in the pH range 2.5-4.5. Interaction of decavanadates with the surfactant may proceed by an ion-exchange mechanism under certain conditions. Maximum metal content in the precipitate corresponds to the stoichiometric consumption of the collector. The hydrophobic precipitate can be seperated from the solution equally effectively by flotation and by filtration

  11. Optical, Energetic and Exergetic Analyses of Parabolic Trough Collectors

    Institute of Scientific and Technical Information of China (English)

    (O)ZT(U)RK Murat; (C)(I)(C)EK BEZ(I)R Nalan; (O)ZEK Nuri

    2007-01-01

    Parabolic trough collectors generate thermal energy from solar energy. Especially, they are very convenient for applications in high temperature solar power systems. To determine the design parameters, parabolic trough collectors must be analysed with optical analysis. In addition, thermodynamics (energy and exergy) analysis in the development of an energy efficient system must be achieved. Solar radiation passes through Earth's atmosphere until it reaches on Earth's surface and is focused from the parabolic trough collector to the tube receiver with a transparent insulated envelope. All of them constitute a complex mechanism. We investigate the geometry of parabolic trough reflector and characteristics of solar radiation to the reflecting surface through Earth's atmosphere, and calculate the collecting total energy in the receiver. The parabolic trough collector,of which design parameters are given, is analysed in regard to the energy and exergy analysis considering the meteorological specification in May, June, July and August in Isparta/Turkey, and the results are presented.

  12. Experimental Evaluation of Gas-Phase Transport and Reactivity of Two Organophosphate Compounds in Unsaturated Porous Media

    Science.gov (United States)

    Rockhold, M.; Johnson, T.; Szecsody, J.; McKinley, J.; Blake, T.; Wietsma, T.; Covert, M.; Oostrom, M.

    2008-12-01

    An experimental study was undertaken to evaluate the feasibility of using organophosphate compounds that can be transported in the gas phase as a source of phosphorus for mineral formation (e.g. apatite) and contaminant sequestration in deep unsaturated zones. Previous work by others with gaseous phosphate compounds utilized triethyl phosphate (TEP) for bioremediation. In the current study we used both TEP and another chemically similar compound, dimethyl methylphosphonate (DMMP) that has a higher saturation vapor pressure. Batch abiotic degradation experiments in aqueous solutions with and without sediment (in both oxic and reducing conditions) indicate that both TEP and DMMP are very recalcitrant. Slow conversion from organic-to inorganic-P forms occurred (compounds also adsorb very strongly to unsaturated sediments from the Hanford Site, to the extent that no breakthrough was observed even after >1000 pore volumes of gas exchange and complete dessication of the sediments. Methanol production was observed during the gas transport experiments, indicating that the lack of observed breakthrough of the original organophosphate compounds was attributable to both adsorption and reaction processes. FTIR reflection spectroscopy and microprobe analyses were performed to identify and quantify adsorbed species and possible mineral formation.

  13. Performance Simulation Comparison for Parabolic Trough Solar Collectors in China

    OpenAIRE

    Jinping Wang; Jun Wang; Xiaolong Bi; Xiang Wang

    2016-01-01

    Parabolic trough systems are the most used concentrated solar power technology. The operating performance and optical efficiency of the parabolic trough solar collectors (PTCs) are different in different regions and different seasons. To determine the optimum design and operation of the parabolic trough solar collector throughout the year, an accurate estimation of the daily performance is needed. In this study, a mathematical model for the optical efficiency of the parabolic trough solar col...

  14. Proceedings of the solar thermal concentrating collector technology symposium

    Energy Technology Data Exchange (ETDEWEB)

    Gupta, B.P.; Kreith, F. (eds.)

    1978-08-01

    The purpose of the symposium was to review the current status of the concentrating collector technology, to disseminate the information gained from experience in operating solar systems, and to highlight the significant areas of technology development that must be vigorously pursued to foster early commercialization of concentrating solar collectors. Separate abstracts were prepared for thirteen invited papers and working group summaries. Two papers were previously abstracted for EDB.

  15. Thermal Evaluation of a Solarus PV-T collector

    OpenAIRE

    Haddi, Jihad

    2013-01-01

    Low concentrator PV-T hybrid systems produce both electricity and thermal energy; this fact increases the overall efficiency of the system and reduces the cost of solar electricity. These systems use concentrators which are optical devices that concentrate sunlight on to solar cells and reduce expensive solar cell area. This thesis work deals with the thermal evaluation of a PV-T collector from Solarus.Firstly the thermal efficiency of the low concentrator collector was characterized for the ...

  16. Thermal efficiency of single-pass solar air collector

    Energy Technology Data Exchange (ETDEWEB)

    Ibrahim, Zamry; Ibarahim, Zahari; Yatim, Baharudin [School of Applied Physics, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor Darul Ehsan (Malaysia); Ruslan, Mohd Hafidz [Solar Energy Research Institute (SERI), Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor Darul Ehsan (Malaysia)

    2013-11-27

    Efficiency of a finned single-pass solar air collector was studied. This paper presents the experimental study to investigate the effect of solar radiation and mass flow rate on efficiency. The fins attached at the back of absorbing plate to improve the thermal efficiency of the system. The results show that the efficiency is increased proportional to solar radiation and mass flow rate. Efficiency of the collector archived steady state when reach to certain value or can be said the maximum performance.

  17. Research On Solar Energy Collector With Cell Polycarbonate Absorber

    OpenAIRE

    Putāns, Henriks; Zagorska, Viktorija; Ziemelis, Imants; Jesko, Zanis

    2015-01-01

    A flat plate solar collector with cell polycarbonate absorber and transparent cover has been made and its experimental investigation carried out. The collector consists of a wooden box, into which, a layer of heat insulation with a mirror film and 4 mm thick cell polycarbonate sheet, as the absorber, are placed. The coherence between collector’s efficiency, heat carrier and ambient air temperature, as well as intensity of the solar radiation and heat power in the experimental investigation ha...

  18. Ventilation and hot water supply solar-heat collector

    OpenAIRE

    Овсянникова, Ирина Михайловна; Немировский, Илья Абрамович; Ганжа, Антон Николаевич

    2014-01-01

    Solar collectors intended for hot water supply needs are widely used today. However, the territorial position of Ukraine prevents their efficient use during the cold period of the year. This reduces their utilization factor and increases the payback period. The use of solar collectors as the recuperators of exhaust air will allow for their efficient operation during the heating season. This becomes possible because the cold air is heated by the indoor waste air heat particularly in the solar ...

  19. Shape Control of Solar Collectors Using Shape Memory Alloy Actuators

    Science.gov (United States)

    Lobitz, D. W.; Grossman, J. W.; Allen, J. J.; Rice, T. M.; Liang, C.; Davidson, F. M.

    1996-01-01

    Solar collectors that are focused on a central receiver are designed with a mechanism for defocusing the collector or disabling it by turning it out of the path of the sun's rays. This is required to avoid damaging the receiver during periods of inoperability. In either of these two cases a fail-safe operation is very desirable where during power outages the collector passively goes to its defocused or deactivated state. This paper is principally concerned with focusing and defocusing the collector in a fail-safe manner using shape memory alloy actuators. Shape memory alloys are well suited to this application in that once calibrated the actuators can be operated in an on/off mode using a minimal amount of electric power. Also, in contrast to other smart materials that were investigated for this application, shape memory alloys are capable of providing enough stroke at the appropriate force levels to focus the collector. Design and analysis details presented, along with comparisons to test data taken from an actual prototype, demonstrate that the collector can be repeatedly focused and defocused within accuracies required by typical solar energy systems. In this paper the design, analysis and testing of a solar collector which is deformed into its desired shape by shape memory alloy actuators is presented. Computations indicate collector shapes much closer to spherical and with smaller focal lengths can be achieved by moving the actuators inward to a radius of approximately 6 inches. This would require actuators with considerably more stroke and some alternate SMA actuators are currently under consideration. Whatever SMA actuator is finally chosen for this application, repeatability and fatigue tests will be required to investigate the long term performance of the actuator.

  20. Possibility of Modeling of Solar Collectors Systems in Latvia

    OpenAIRE

    Šipkovs, P; Migla, L

    2010-01-01

    The aim of the work is to explore suitability of Latvian environment to the usage of solar collectors system. For the attainment of objective monotype house will be modeled, the house will be equipped with the combined solar heat system, which will be placed in different regions. There are diverse amount of sunny days in different regions, as well as diverse average temperature, wherewith the amount of heat differs. For the modeling of building, modeling program model of solar collectors will...

  1. ADVANCED HYBRID PARTICULATE COLLECTOR - PHASE III

    International Nuclear Information System (INIS)

    A new concept in particulate control, called an advanced hybrid particulate collector (AHPC), is being developed under funding from the U.S. Department of Energy. The AHPC combines the best features of electrostatic precipitators (ESPs) and baghouses in a unique configuration. The AHPC concept consists of a combination of fabric filtration and electrostatic precipitation in the same housing, providing major synergism between the two collection methods, both in the particulate collection step and in the transfer of dust to the hopper. The AHPC provides ultrahigh collection efficiency, overcoming the problem of excessive fine-particle emission with conventional ESPs, and it solves the problem of reentrainment and re-collection of dust in conventional baghouses. In Phase II, a 2.5-MW-scale AHPC was designed, constructed, installed, and tested at the Big Stone power plant. For Phase III, further testing of an improved version of the 2.5-MW-scale AHPC at the Big Stone power plant is being conducted to facilitate commercialization of the AHPC technology

  2. Parabolic Trough Solar Collector Initial Trials

    Directory of Open Access Journals (Sweden)

    Ghalya Pikra

    2012-03-01

    Full Text Available This paper discusses initial trials of parabolic trough solar collector (PTSC in Bandung. PTSC model consists of concentrator, absorber and tracking system. Concentrator designs are made with 2m aperture width, 6m length and 0.75m focal distance. The design is equipped with an automatic tracking system which is driven using 12V and 24Watt DC motor with 0.0125rpm rotational speed. Absorber/receiver is designed with evacuated tube type, with 1 inch core diameter and tube made of AISI304 and coated with black oxide, the outer tube is borosilicate glass with a 70 mm diameter and 1.5 m length. Working fluid stored in single type of thermal storage tank, a single phase with 37.7 liter volume. PTSC model testing carried out for 2 hours and 10 minutes produces heat output and input of 11.5 kW and 0.64 kW respectively. 

  3. Performance evaluation for solar collectors in Taiwan

    International Nuclear Information System (INIS)

    In this paper, the global irradiation observed in Taiwan from 1990 to 1999 was used to estimate the optimal tilt angle for solar collectors. The observed data are resolved into diffusion and beam components, and transformed into instantaneous time frames using mathematical models. The energy gain on installing a single-axis tracked panel as compared to a traditional fixed panel is originally analyzed theoretically. In addition to the observation data, both types of radiation will be taken into account for comparison, i.e. both extraterrestrial radiation and global radiation predicted using empirical models. The results show that the yearly optimal angles for six selected stations are about 0.95 and 0.88 times their latitudes for extraterrestrial and predicted radiation, respectively. All of the observed irradiations are less than the predicted values for all times and stations, consequently resulting in a flatter tilt angle, with a few exceptions in summer. Since Taipei has the lowest clearness index, its yearly optimal angle calculated from observed data shows the greatest discrepancy when compared to its latitude. By employing a tracked panel, the yearly gains calculated from the observed data lie between 14.3% and 25.3%, which is significantly less than those from the extraterrestrial and predicted radiations

  4. Analysis of solar collector array systems using thermography

    Energy Technology Data Exchange (ETDEWEB)

    Eden, A.

    1980-01-01

    The use of thermography to analyze large solar collector array systems under dynamic operating conditions is discussed. The research has focused on thermographic techniques and equipment to determine temperature distributions, flow patterns, and air blockages in solar collectors. The results of this extensive study, covering many sites and types of collectors, illustrate the capabilities of infrared analysis as an analysis tool and operation and maintenance procedure when applied to large arrays. Thermographic analysis of most collector systems showed temperature distributions that indicated balanced flow patterns with both the thermographs and the hand-held unit. In three significant cases, blocked or broken collector arrays, which previously had gone undetected, were discovered. Using this analysis, validation studies of large computer codes could examine collector arrays for flow patterns or blockages that could cause disagreement between actual and predicted performance. Initial operation and balancing of large systems could be accomplished without complicated sensor systems not needed for normal operations. Maintenance personnel could quickly check their systems without climbing onto the roof and without complicated sensor systems.

  5. Dual curvature acoustically damped concentrating collector. Final technical report

    Energy Technology Data Exchange (ETDEWEB)

    Smith, G.A.; Rausch, R.A.

    1980-05-01

    A development program was conducted to investigate the design and performance parameters of a novel, dual curvature, concentrating solar collector. The reflector of the solar collector is achieved with a stretched-film reflective surface that approximates a hyperbolic paraboloid and is capable of line-focusing at concentration ratios ranging from 10 to 20X. A prototype collector was designed based on analytical and experimental component trade-off activities as well as economic analyses of solar thermal heating and cooling systems incorporating this type of collector. A prototype collector incorporating six 0.66 x 1.22 m (2 x 4 ft) was fabricated and subjected to a limited thermal efficiency test program. A peak efficiency of 36% at 121/sup 0/C (250/sup 0/F) was achieved based upon the gross aperture area. Commercialization activities were conducted, including estimated production costs of $134.44/m/sup 2/ ($12.49/ft/sup 2/) for the collector assembly (including a local suntracker and controls) and $24.33/m/sup 2/ ($2.26/ft/sup 2/) for the reflector subassembly.

  6. Ray-tracing software comparison for linear focusing solar collectors

    Science.gov (United States)

    Osório, Tiago; Horta, Pedro; Larcher, Marco; Pujol-Nadal, Ramón; Hertel, Julian; van Rooyen, De Wet; Heimsath, Anna; Schneider, Simon; Benitez, Daniel; Frein, Antoine; Denarie, Alice

    2016-05-01

    Ray-Tracing software tools have been widely used in the optical design of solar concentrating collectors. In spite of the ability of these tools to assess the geometrical and material aspects impacting the optical performance of concentrators, their use in combination with experimental measurements in the framework of collector testing procedures as not been implemented, to the date, in none of the current solar collector testing standards. In the latest revision of ISO9806 an effort was made to include linear focusing concentrating collectors but some practical and theoretical difficulties emerged. A Ray-Tracing analysis could provide important contributions to overcome these issues, complementing the experimental results obtained through thermal testing and allowing the achievement of more thorough testing outputs with lower experimental requirements. In order to evaluate different available software tools a comparison study was conducted. Taking as representative technologies for line-focus concentrators the Parabolic Trough Collector and the Linear Fresnel Reflector Collector, two exemplary cases with predefined conditions - geometry, sun model and material properties - were simulated with different software tools. This work was carried out within IEA/SHC Task 49 "Solar Heat Integration in Industrial Processes".

  7. EFFICIENCY AND LIFETIME OF SOLAR COLLECTORS FOR SOLAR HEATING PLANTS

    DEFF Research Database (Denmark)

    The 12.5 m² flat plate solar collector HT, today marketed by Arcon Solvarme A/S, has been used in solar heating plants in Scandinavia since 1983. The collector is designed to operate in a temperature interval between 40°C and 90°C. The efficiency of the collector has been strongly improved since...... it was introduced on the market. The paper will present the increase of the efficiency of the collector due to technical improvements since 1983. Further, measurements from the spring of 2009 of the efficiency of two HT collectors, which have been in operation in the solar heating plant Ottrupgaard, Skørping......, Denmark since 1994 with a constant high flow rate and in the solar heating plant Marstal, Denmark since 1996 with a variable flow rate, will be presented. The efficiencies will be compared to the efficiencies of the collectors when they were first installed in the solar heating plants. The measurements...

  8. EFFICIENCY AND LIFETIME OF SOLAR COLLECTORS FOR SOLAR HEATING PLANTS

    DEFF Research Database (Denmark)

    Fan, Jianhua; Chen, Ziqian; Furbo, Simon;

    2009-01-01

    The 12.5 m² flat plate solar collector HT, today marketed by Arcon Solvarme A/S, has been used in solar heating plants in Scandinavia since 1983. The collector is designed to operate in a temperature interval between 40°C and 90°C. The efficiency of the collector has been strongly improved since...... it was introduced on the market. The paper will present the increase of the efficiency of the collector due to technical improvements since 1983. Further, measurements from the spring of 2009 of the efficiency of two HT collectors, which have been in operation in the solar heating plant Ottrupgaard, Skørping......, Denmark since 1994 with a constant high flow rate and in the solar heating plant Marstal, Denmark since 1996 with a variable flow rate, will be presented. The efficiencies will be compared to the efficiencies of the collectors when they were first installed in the solar heating plants. The measurements...

  9. Arrangement of Multirow Solar Collector Array on Limited Roof Width

    Institute of Scientific and Technical Information of China (English)

    PU Shaoxuan; XIA Chaofeng

    2010-01-01

    At the limited roof north-south(N-S)width of a building,for the array with multirow collectors based on no shading at winter solstice noon and sloped at latitude,this paper studied the shading and the radiant energy striking on solar collector array.Based on Kunming solar radiation data,the annual and monthly solar radiant energy striking on multi-array collectors was analyzed and estimated,from no shading to partial shading by adding 1-3 collector row,at the slopes of 10°,15°,20°,25°,30°,35° and 40°,respectively.The results showed that properly increasing the row number by reducing the slope of collectors was reasonable in order to get more annual radiant energy.Adding 1 row at 10° of slope was economical for Kunming,based on the 5-row array at 25°.And adding collector row by 20% at 10° of slope could increase the radiant energy striking on the array by 19%.

  10. Characterization of adsorbed dicarbonyls of rhodium

    International Nuclear Information System (INIS)

    We have studies the adsorbed states of CO on dispersed RH in Y zeolites by solid-state 13C NMR spectroscopy. The structure of the dicarbonyl form of adsorbed rhodium has been revealed using a Carr-Purcell-Meiboom-Gill multiple pulse sequence. NMR lineshape calculations show that adsorbed Rh(CO)2 species are undergoing a 180 deg. flipping motion about the C2 axis which bisects the C-Rh-C angle. Spectra calculated with this motional model have been compared with published spectra of CO on Rh-Y zeolites. (author). 7 refs.; 3 figs

  11. States of water adsorbed on perindopril crystals

    Science.gov (United States)

    Stepanov, V. A.; Khmelevskaya, V. S.; Bogdanov, N. Yu.; Gorchakov, K. A.

    2011-10-01

    The relationship between the structural state of adsorbed water, the crystal structure of the substances, and the solubility of the perindopril salt C19H32N2O5 · C4H11N in water was studied by IR spectroscopy and X-ray diffractometry. The high-frequency shift of the stretching vibrations of adsorbed water and the solubility depend on the crystal structure of the drug substance. A reversible chemical reaction occurred between the adsorbed water and the perindopril salt.

  12. Demonstration of Three Large Scale Solar Process Heat Applications with Different Solar Thermal Collector Technologies

    OpenAIRE

    Pietruschka Dirk, Fedrizzi Roberto, Orioli Francesco, Söll Robert, Stauss Reiner

    2012-01-01

    The recently started European FP7 Project InSun aims to demonstrate the reliability and efficiency of three different collector technologies suitable for industrial process heat supply in different climatic regions. The technologies demonstrated reach from improved flat-plate collectors for supply temperatures of up to 95 °C in moderate northern Europe climate to tracked concentrating collectors (linear Fresnel collectors and parabolic trough collectors) for supply temperatures betwe...

  13. Solar Thermal Collectors at High Latitudes : Design and performance of non-tracking concentrators

    OpenAIRE

    Adsten, Monika

    2002-01-01

    Solar thermal collectors at high latitudes have been studied, with emphasis on concentrating collectors. A novel design of concentrating collector, the Maximum Reflector Collector (MaReCo), especially designed for high latitudes, has been investigated optically and thermally. The MaReCo is an asymmetrical compound parabolic concentrator with a bi-facial absorber. The collector can be adapted to various installation conditions, for example stand-alone, roof- or wall mounted. MaReCo prototypes ...

  14. Selective Synthesis of Unsaturated N-Acylethanolamines by Lipase-Catalyzed N-Acylation of Ethanolamine with Unsaturated Fatty Acids

    NARCIS (Netherlands)

    Plastina, P.; Vincken, J.P.; Gruppen, H.; Witkamp, R.F.; Gabriele, B.

    2009-01-01

    The selective synthesis of unsaturated N-acylethanolamines 1b-6b by lipase-catalyzed direct condensation between unsaturated fatty acids 1a-6a and ethanolamine is reported. Reactions were carried out in hexane at 40 °C, in the presence of Candida antarctica Lipase B as the catalyst, to give the corr

  15. Gravity-driven fingering in unsaturated fractures

    International Nuclear Information System (INIS)

    Gravity-driven wetting-front instability is known to occur in both porous media and Hele-Shaw cells. A systematic investigative procedure for studying gravity-driven fingering in unsaturated, rough-walled fractures is described. As a first step toward understanding this system, experiments were performed in an analogue fracture consisting of two roughened glass plates held in close contact. Results from preliminary experiments in both initially dry and wet analogue fractures are presented, including measurements taken from individual fingers within a fully unstable flow field. For initially dry fractures, increasing the volume of fluid contained in the front leads to increases in both finger width and velocity. Finger velocity also was observed to increase with gravitational gradient. Once a finger structure develops in an initially dry fracture, the structure persists in subsequent infiltration events. In uniformly wet fractures, fingers are found to be more numerous and thinner and to have higher velocity than fingers formed in initially dry fractures

  16. Coloured solar collectors. Phase II : from laboratory samples to collector prototypes. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Schueler, A.; Roecker, Ch.; Chambrier, E. de; Munari Probst, M.

    2007-07-01

    This illustrated final report for the Swiss Federal Office of Energy (SFOE) deals with the second phase of a project concerning the architectural integration of glazed solar collectors into the facades of buildings for heat production. The factors that limit the integration of photovoltaic panels in facades are discussed. The authors state that, for a convincing demonstration, sufficiently large samples and high quality levels are needed. The sol-gel deposition of the multi-layered coatings on A4-sized glass panes demonstrated in the laboratory by EPFL-LESO are discussed. The coatings produced exhibit a coloured reflection in combination with a high solar transmittance, a homogenous appearance, and are free of visible defects. Film hardening by UV exposure is discussed: This should result in the speeding up of the sol-gel process and thus save energy, thereby significantly reducing costs. Collaboration with industry is discussed in which full-scale glass panes are to be coated with novel multiple layers. The novel glazing is to be integrated into first prototype collectors. The manufacturing and test processes for the prototypes manufactured are discussed in detail.

  17. Analysis of collector-emitter offset voltage of InGaP/GaAs composite collector double heterojunction bipolar transistor

    Science.gov (United States)

    Lew, K. L.; Yoon, S. F.

    2002-04-01

    The Ebers-Moll-like terminal current expressions of a composite collector double heterojunction bipolar transistor (DHBT), which takes the recombination effect into account, have been formulated and an expression for collector-emitter offset voltage [VCE(offset)] has been derived. Factors affecting the VCE(offset) of a composite collector DHBT are investigated and good agreement between the calculated and reported experimental results is shown. Analytical results showed that the transmission coefficient of the base-collector (B-C) junction does not have a considerable effect on the VCE(offset), provided that the B-C junction is of good quality. Thus, despite its asymmetric structure, the VCE(offset) of an optimally designed composite collector DHBT could be as low as that of a conventional DHBT. Hence a composite collector DHBT with low saturation voltage and negligible VCE(offset) is possible if the two conditions: (i) good quality B-C junction, (ii) base transport factor, α≈1, are fulfilled.

  18. New liquid waste control with tannin adsorbent

    International Nuclear Information System (INIS)

    Since 1971, the Mitsubishi Nuclear Fuel Co., Ltd. (MNF) has been fabricating PWR fuels and developing related technology and processes. In the UF6 reconversion lines of MNF, the ammonium diuranate (ADU) process has been operating and the newly developed process of liquid waste treatment was installed last year. The characteristic of this process is to use insoluble tannin adsorbent which has been developed by MNF. The tannin adsorbent is not only an effective means to adsorb heavy metals such as uranium and plutonium but is also easy to incinerate at low temperature. Control of radioactive liquid waste from nuclear facilities is generally implemented by co-precipitation. However, it produces secondary wastes such as noncombustible materials which include radionuclides and it is anticipated that the storage and disposal of those wastes will be at high cost. Those are the reasons why tannin adsorbent has an advantage, and why MNF develops it. (author)

  19. Infiltration Flow Path Distributions in Unsaturated Rocks

    Science.gov (United States)

    Tokunaga, T. K.; Olson, K. R.; Wan, J.

    2004-12-01

    Spatial distributions of infiltration flow paths through rock formations are complex networks that determine flow velocities, control rates of natural geochemical reactions in the subsurface, as well as rates of contaminant transport to underlying groundwater. Despite these important consequences, distributions of infiltration paths and locally fast seepage rates through rocks are not well understood. Laboratory-based studies on fractured rocks cannot easily be conducted on systems large enough to include sufficient fracture network complexity, so that inferences of field-scale flux distributions cannot be reliably made. Field-based studies to date have permitted quantification of only a small fraction of the flow distribution, typically while imposing extremely high fluxes, and therefore have not allowed comprehensive delineation of flow distributions expected under natural recharge. Based on hydraulic scaling considerations, we hypothesize that unsaturated flow path distributions in rock deposits will be similar to those occurring in fractured rock formations under low overall infiltration rates. Talus rock deposits and mine waste rock piles control flow and transport into their respective underlying groundwaters. All of these reasons motivated infiltration experiments in rock packs. Experiments have been conducted on 4 different rock types and system scales ranging from 1 to 46 rock layers. Our experiments showed that infiltration through rocks conforms to no previously reported behavior in soils, and that flow paths do not progressively converge into fewer and fewer flow paths. Instead, a fundamentally different hydraulic structure develops, having an exponential (geometric) flux distribution, with the characteristic scale determined by the characteristic rock size. Although the phenomena are very different, the evolution of flow path distributions and local seepage rate distributions is predictable based on a statistical mechanical model for energy

  20. Properties and selection criteria for adsorbents

    International Nuclear Information System (INIS)

    The paper gives a survey of the most important industrial adsorbents and of their suitability for different purposes. With special consideration of activated carbon, the properties and characteristic data are discussed which are used for assessing adsorbents. These, among other things, are as follows: specific surface area, pore size distribution, adsorption isotherms, hydrophobic properties, catalytic properties, chemical resistance, heat resistance, particle size and hardness. (orig.)

  1. Hydrophobic Porous Material Adsorbs Small Organic Molecules

    Science.gov (United States)

    Sharma, Pramod K.; Hickey, Gregory S.

    1994-01-01

    Composite molecular-sieve material has pore structure designed specifically for preferential adsorption of organic molecules for sizes ranging from 3 to 6 angstrom. Design based on principle that contaminant molecules become strongly bound to surface of adsorbent when size of contaminant molecules is nearly same as that of pores in adsorbent. Material used to remove small organic contaminant molecules from vacuum systems or from enclosed gaseous environments like closed-loop life-support systems.

  2. Membrane Perturbation Induced by Interfacially Adsorbed Peptides

    OpenAIRE

    Zemel, Assaf; Ben-Shaul, Avinoam; May, Sylvio

    2004-01-01

    The structural and energetic characteristics of the interaction between interfacially adsorbed (partially inserted) α-helical, amphipathic peptides and the lipid bilayer substrate are studied using a molecular level theory of lipid chain packing in membranes. The peptides are modeled as “amphipathic cylinders” characterized by a well-defined polar angle. Assuming two-dimensional nematic order of the adsorbed peptides, the membrane perturbation free energy is evaluated using a cell-like model;...

  3. Behavior of macromolecules in adsorbed layers

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    A model for describing the behavior of macromolecules in adsorbed layers is developed by introducing a concept of distribution density of layer thickness U based on stochastic process and probabilistic statistics. The molecular behavior of layers adsorbed on clay particle surfaces is discussed; the random distribution and its statistics of the layer thickness are given by incorporating experimental results with an ionic polyelectrolyte with the molecular weight of 1.08×106 and chain charged density of 0.254.

  4. ADSORBENTS USED IN THE CLEARANCE OF ENDOTOXIN

    Institute of Scientific and Technical Information of China (English)

    YU Mei; LIU Tao; Hou Guanghui; YUAN Zhi

    2003-01-01

    A series of modified poly (methyl methacrylate, PMMA) resins were prepared and compared their adsorption abilities to endotoxin. The results showed that adsorbents, which were grafted with tertiary amine and long spacing arms, had the best adsorption capacities and good blood compatibility, It is hopeful to be used as adsorbent in hemoperfusion for clinical clearance of endotoxin. The influence of original concentration of endotoxin on adsorption and the adsorption mechanism were also investigated.

  5. CISBAT 2007 - Solar collectors (heat and electricity)

    International Nuclear Information System (INIS)

    This is the third part of the proceedings of the 2007 CISBAT conference on Renewables in a changing climate, held in Lausanne, Switzerland. On the subject of Building and urban integration of renewables the following oral contributions are summarised: 'Facade integration of solar thermal collectors: present and future', 'Long term experiences with a versatile PV in roof system', 'Development of a design and performance prediction tool for the ground source heat pump and underground thermal storage system', 'Hygrothermal performance of earth-to-air heat exchanger: long-term data evaluation and short-term simulation' as well as 'The real cost of heating your home: a comparative assessment of home energy systems with external costs'. Poster-sessions on the subject include 'Central solar heating plants with seasonal heat storage', 'Analysis of forced convection for evaporative air flow and heat transfer in PV cooling channels', 'Renewable energy technology in Mali: constraints and options for a sustainable development', 'Effect of duct width in ducted photovoltaic facades', 'Design and actual measurement of a ground source heat pump system using steel foundation piles as ground heat exchangers', 'Development of an integrated water-water heat pump unit for low energy house and its application', 'PV effect in multilayer cells and blending of fullerene/poly (3-hexylthiophene) and phthalocyanine having NIR charge transfer absorption band', 'CdTe photovoltaic systems - an alternative energetic', 'Integration of renewable energy sources in a town, examples in Grenoble', 'A prospective analysis method for the conception of solar integration solutions in buildings' and 'Energy and aesthetic improvements for building integration of cost effective solar energy systems'. Further groups of presentations at the conference are reported on in separate database records. An index of authors completes the proceedings

  6. Sampling efficiency of the Moore egg collector

    Science.gov (United States)

    Worthington, Thomas A.; Brewer, Shannon K.; Grabowski, Timothy B.; Mueller, Julia

    2013-01-01

    Quantitative studies focusing on the collection of semibuoyant fish eggs, which are associated with a pelagic broadcast-spawning reproductive strategy, are often conducted to evaluate reproductive success. Many of the fishes in this reproductive guild have suffered significant reductions in range and abundance. However, the efficiency of the sampling gear used to evaluate reproduction is often unknown and renders interpretation of the data from these studies difficult. Our objective was to assess the efficiency of a modified Moore egg collector (MEC) using field and laboratory trials. Gear efficiency was assessed by releasing a known quantity of gellan beads with a specific gravity similar to that of eggs from representatives of this reproductive guild (e.g., the Arkansas River Shiner Notropis girardi) into an outdoor flume and recording recaptures. We also used field trials to determine how discharge and release location influenced gear efficiency given current methodological approaches. The flume trials indicated that gear efficiency ranged between 0.0% and 9.5% (n = 57) in a simple 1.83-m-wide channel and was positively related to discharge. Efficiency in the field trials was lower, ranging between 0.0% and 3.6%, and was negatively related to bead release distance from the MEC and discharge. The flume trials indicated that the gellan beads were not distributed uniformly across the channel, although aggregation was reduced at higher discharges. This clustering of passively drifting particles should be considered when selecting placement sites for an MEC; further, the use of multiple devices may be warranted in channels with multiple areas of concentrated flow.

  7. Advanced Hybrid Particulate Collector Project Management Plan

    Energy Technology Data Exchange (ETDEWEB)

    Miller, S.J.

    1995-11-01

    As the consumption of energy increases, its impact on ambient air quality has become a significant concern. Recent studies indicate that fine particles from coal combustion cause health problems as well as atmospheric visibility impairment. These problems are further compounded by the concentration of hazardous trace elements such as mercury, cadmium, selenium, and arsenic in fine particles. Therefore, a current need exists to develop superior, but economical, methods to control emissions of fine particles. Since most of the toxic metals present in coal will be in particulate form, a high level of fine- particle collection appears to be the best method of overall air toxics control. However, over 50% of mercury and a portion of selenium emissions are in vapor form and cannot be collected in particulate control devices. Therefore, this project will focus on developing technology not only to provide ultrahigh collection efficiency of particulate air toxic emissions, but also to capture vapor- phase trace metals such as mercury and selenium. Currently, the primary state-of-the-art technologies for particulate control are fabric filters (baghouses) and electrostatic precipitators (ESPs). However, they both have limitations that prevent them from achieving ultrahigh collection of fine particulate matter and vapor-phase trace metals. The objective of this project is to develop a highly reliable advanced hybrid particulate collector (AHPC) that can provide > 99.99 % particulate collection efficiency for all particle sizes between 0.01 and 50 14m, is applicable for use with all U.S. coals, and is cost-0443competitive with existing technologies. Phase I of the project is organized into three tasks: Task I - Project Management, Reporting, and Subcontract Consulting Task 2 - Modeling, Design, and Construction of 200-acfm AHPC Model Task 3 - Experimental Testing and Subcontract Consulting

  8. Photochemistry of Nitrate Adsorbed on Mineral Dust

    Science.gov (United States)

    Gankanda, A.; Grassian, V. H.

    2013-12-01

    Mineral dust particles in the atmosphere are often associated with adsorbed nitrate from heterogeneous reactions with nitrogen oxides including HNO3 and NO2. Although nitrate ion is a well-studied chromophore in natural waters, the photochemistry of adsorbed nitrate on mineral dust particles is yet to be fully explored. In this study, wavelength dependence of the photochemistry of adsorbed nitrate on different model components of mineral dust aerosol has been investigated using transmission FTIR spectroscopy. Al2O3, TiO2 and NaY zeolite were used as model systems to represent non-photoactive oxides, photoactive semiconductor oxides and porous materials respectively, present in mineral dust aerosol. In this study, adsorbed nitrate is irradiated with 254 nm, 310 nm and 350 nm narrow band light. In the irradiation with narrow band light, NO2 is the only detectable gas-phase product formed from nitrate adsorbed on Al2O3 and TiO2. The NO2 yield is highest at 310 nm for both Al2O3 and TiO2. Unlike Al2O3 and TiO2, in zeolite, adsorbed nitrate photolysis to nitrite is observed only at 310 nm during narrow band irradiation. Moreover gas phase products were not detected during nitrate photolysis in zeolite at all three wavelengths. The significance of these differences as related to nitrate photochemistry on different mineral dust components will be highlighted.

  9. Performance of cylindrical plastic solar collectors for air heating

    International Nuclear Information System (INIS)

    Highlights: • The study including the combined convective and radiative heat transfer analysis. • The solar collector is manufactured from LDPE films acting as a black absorber. • Comparisons between the experimental data and the theoretical methods have been made. • The thermal efficiency increases with decreasing the major axes of elliptic shape. • The Nusselt number between the absorber and the heated air is determined. - Abstract: A theoretical and experimental study including the combined convective and radiative heat transfer analysis of a flexible cylindrical type solar air-heater for agriculture crops dehydration as well as heating processes is presented. The solar collector is manufactured from LDPE films acting as a black absorber with a back insulation and double transparent covers sealed together along its edges. The collector is to be blown with a flow of pressurized air. The experiments are carried out with solar collectors of circular shapes having 0.5 m diameter and solar collectors of elliptic shapes having 0.55 m and 0.65 m major axis. Energy balance of the cover, absorber and air yield three simultaneous quadratic algebraic equations in the three unknowns namely, cover, absorber and outlet air temperatures. A computer program is written for calculating the outlet temperature using the Newton–Raphson method and the collector thermal efficiency in terms of its diameter, length, mass flow rate, inlet temperature and solar insolation. Moreover the Nusselt number between the absorber and the heated air is determined experimentally in relation with the Reynolds number. Comparisons between the experimental data and the theoretical methods for the collector efficiency demonstrate a good agreement. In addition of this, the present experimental results of Nusselt number are correlated and compared with a correlation of another authors

  10. Application of fractal theory to unsaturated soil mechanics

    Institute of Scientific and Technical Information of China (English)

    XU Yongfu; TONG Lixin

    2007-01-01

    The mechanical properties of unsaturated soils are a function of the saturation degree or matric suction,and can be obtained based on currently available procedures.However,each procedure has its limitations and consequently,care should be taken in the selection of a proper procedure.The fractal approach seems to be a potentially useful tool to describe hierarchical systems and is suitable to model the structure and hydraulic properties of unsaturated soils.In this paper,the soil-water characteristics,unsaturated hydraulic conductivity function,unsaturated shear strength,swelling deformation and compression were derived from the fractal model for the pore-size distribution,and were expressed by only two independent physical parameters,the fractal dimension and the air entry value.The predictions of the proposed soil-water characteristics,unsaturated hydraulic conductivity,unsaturated shear strength,swelling deformation and compression were in good agreement with published experimental data.Comparisons between the experimental results of unsaturated hydraulic conductivity and the predictions of the both fractal model and the van Genuchten-Mualem model were also performed,and it was found that the predictions of the fractal model were better than that of the van Genuchten-Mualem model.

  11. Insight into the adsorption of PPCPs by porous adsorbents: Effect of the properties of adsorbents and adsorbates.

    Science.gov (United States)

    Zhu, Zengyin; Xie, Jiawen; Zhang, Mancheng; Zhou, Qing; Liu, Fuqiang

    2016-07-01

    Adsorption is an efficient method for removal of pharmaceuticals and personal care products (PPCPs). Magnetic resins are efficient adsorbents for water treatment and exhibit potential for PPCP removal. In this study, the magnetic hypercrosslinked resin Q100 was used for adsorption of PPCPs. The adsorption behavior of this resin was compared with those of two activated carbons, namely, Norit and F400D. Norit exhibited the fastest adsorption kinetics, followed by Q100. Norit featured a honeycomb shape and long-range ordered pore channels, which facilitated the diffusion of PPCPs. Moreover, the large average pore size of Q100 reduced diffusion resistance. The adsorbed amounts of 11 PPCPs on the three adsorbents increased with increasing adsorbate hydrophobicity. For Q100, a significant linear correlation was observed between the adsorption performance for PPCPs and hydrophobicity (logD value) of adsorbates (R(2) = 0.8951); as such, PPCPs with high logD values (>1.69) could be efficiently removed. Compared with those of Norit and F400D, the adsorption performance of Q100 was less affected by humic acid because of the dominant hydrophobic interaction. Furthermore, Q100 showed improved regeneration performance, which renders it promising for PPCP removal in practical applications. PMID:27131811

  12. Atmospheric Ionic Deposition in Tropical Sites of Central Sulawesi Determined by Ion Exchange Resin Collectors and Bulk Water Collector.

    Science.gov (United States)

    Köhler, S; Jungkunst, H F; Gutzler, C; Herrera, R; Gerold, G

    2012-09-01

    In the light of global change, the necessity to monitor atmospheric depositions that have relevant effects on ecosystems is ever increasing particularly for tropical sites. For this study, atmospheric ionic depositions were measured on tropical Central Sulawesi at remote sites with both a conventional bulk water collector system (BWS collector) and with a passive ion exchange resin collector system (IER collector). The principle of IER collector to fix all ionic depositions, i.e. anions and cations, has certain advantages referring to (1) post-deposition transformation processes, (2) low ionic concentrations and (3) low rainfall and associated particulate inputs, e.g. dust or sand. The ionic concentrations to be measured for BWS collectors may easily fall below detection limits under low deposition conditions which are common for tropical sites of low land use intensity. Additionally, BWS collections are not as independent from the amount of rain fallen as are IER collections. For this study, the significant differences between both collectors found for nearly all measured elements were partly correlated to the rainfall pattern, i.e. for calcium, magnesium, potassium and sodium. However, the significant differences were, in most cases, not highly relevant. More relevant differences between the systems were found for aluminium and nitrate (434-484 %). Almost five times higher values for nitrate clarified the advantage of the IER system particularly for low deposition rate which is one particularity of atmospheric ionic deposition in tropical sites of extensive land use. The monthly resolution of the IER data offers new insights into the temporal distribution of annual ionic depositions. Here, it did not follow the tropical rain pattern of a drier season within generally wet conditions. PMID:22865942

  13. Performance analysis of photovoltaic thermal (PVT) water collectors

    International Nuclear Information System (INIS)

    Highlights: • Performances analysis of PVT collector based on energy efficiencies. • New absorber designs of PVT collectors were presented. • Comparison present study with other absorber collector designs was presented. • High efficiencies were obtained for spiral flow absorber. - Abstract: The electrical and thermal performances of photovoltaic thermal (PVT) water collectors were determined under 500–800 W/m2 solar radiation levels. At each solar radiation level, mass flow rates ranging from 0.011 kg/s to 0.041 kg/s were introduced. The PVT collectors were tested with respect to PV efficiency, thermal efficiency, and a combination of both (PVT efficiency). The results show that the spiral flow absorber exhibited the highest performance at a solar radiation level of 800 W/m2 and mass flow rate of 0.041 kg/s. This absorber produced a PVT efficiency of 68.4%, a PV efficiency of 13.8%, and a thermal efficiency of 54.6%. It also produced a primary-energy saving efficiency ranging from 79% to 91% at a mass flow rate of 0.011–0.041 kg/s

  14. Effect of the collector tube profile on Pitot pump performances

    International Nuclear Information System (INIS)

    The pitot pump is composed of the rotating casing with the impeller channel and the pitot tube type collector as the discharge line. The radial impeller feeds water to the rotating casing. The water rotating together with the casing is caught by the stationary pitot tube type collector, and then discharges to the outside. This type pump, as the extra high head pump, is provided mainly for boiler feed systems, and has been designed by trial and error. To optimize the pump profiles, it is desirable to investigate not only performances but also internal flow conditions. This paper discusses experimentally and numerically the relation between the pump performances and the flow conditions in the rotating casing. The moderately larger dimensions of the collector make the pump head and the discharge high with the higher hydraulic efficiency. The flow in the casing is almost the forced vortex type whose velocity is in proportion to the radius but the core velocity is affected with the drag force of the stationary collector. Based upon the above results, the profile of the pitot tube type collector was optimized with the numerical simulation

  15. Commissioning a Megawatt-class Gyrotron with Collector Potential Depression

    Science.gov (United States)

    Lohr, J.; Cengher, M.; Gorelov, Y. A.; Ponce, D.; Prater, R.

    2013-10-01

    A 110 GHz depressed collector gyrotron has been installed on the DIII-D tokamak. The commissioning process rapidly achieved operation at full parameters, 45 A and 94 kV total voltage, with 29 kV depression. Although short pulse, 2 ms, factory testing demonstrated 1.2 MW at 41% electrical efficiency, long pulse testing at DIII-D achieved only 33% efficiency at full power parameters, for pulse lengths up to 10 s. Maximum generated power was ~950 kW, considerably below the 1.2 MW target. During attempts to increase the power at 5 s pulse length, it was noted that the collector cooling water was boiling. This led to the discovery that 14 of the 160 cooling channels in the collector had been blocked by braze material during manufacture of the tube. The locations of blocked channels were identified using infrared imaging of the outside of the collector during rapid changes in the cooling water temperature. Despite these difficulties, the rf beam itself was of very high quality and the stray rf found calorimetrically in the Matching Optics Unit, which couples the Gaussian rf beam to the waveguide, was only 2% of the generated power, about half that of our previous best quality high power beam. Details of the power measurements and collector observations will be presented. Work supported by the US DOE under DE-FC02-04ER54698.

  16. Experimental Study on the Optical Performance of Evacuated Solar Collectors

    International Nuclear Information System (INIS)

    This work has been carried out to find the ideal operating conditions for solar vacuum tube collectors which are widely used at present. Various types of solar collectors including a flat plate one were experimentally tested and examined to determine their thermal efficiencies and operating characteristics. Generally, solar vacuum tubes can be classified into two groups according to their design features. Of these, one is characterized by the insertion of a metallic device(such as a finned heat pipe) in an evacuated glass tube for the collection and transportation of solar energy. The other utilizes double glass tubes where the smaller one is contained inside the bigger one and soldered to each other after the small gap between them is evacuated. Both of these solar collectors are designed to minimize convection heat losses by removing the air which is in direct contact with the absorber surface. The performance of the former type can be readily analyzed by applying the relevant correlations developed for flat plate solar collectors. This has been demonstrated in the present study for the case of a solar collector where a heat pipe is inserted in an evacuated tube

  17. Planar concentrators for flat-plate solar collectors

    Energy Technology Data Exchange (ETDEWEB)

    Chiam, H.F.

    1981-01-01

    A systematic study has been made of the effectiveness of planar specular reflectors for solar energy collectors. Two daily averaged indices of performance were used. One, the area ratio, indicates the amount by which the reflector extends the effective receiver area. The other is the enhancement factor, which is used to compare the energy received by an augmented collector with that by a reference collector at optimum tilt. A reflector can be mounted either above or below a flat-plate collector. Both combinations are evaluated fully, by varying separately the angular position and dimensions of the reflector and of the collector. The principal parameters are identified and the main characteristics summarised as a series of performance curves. These curves provide an easy method for determining optimum reflector geometries. Use of the performance curves may be extended to obtain the configuration of the two reflectors in a trough concentrator. This also allows the single-reflector system to be compared directly with the trough concentrator. Evidence is presented which shows the advantages of an asymmetrical trough configuration over a symmetrical concentrator.

  18. Development of a Small Modular Parabolic trough Collector

    Energy Technology Data Exchange (ETDEWEB)

    Hoffschmidt, B.; Schwarzer, K.; Spate, F.; Kotter, J.; Ebert, M.; Sierck, O.

    2006-07-01

    A small parabolic trough collector is developed with the purpose to achieve a high efficiency at temperatures up to 300 degree Celsius. The collector has an aperture area of 1 m width and 2 m length. Therefore it can be used very easily for roof installations. Tests at the collector test stand of the Solar-Institut Juelich show good results up to 100 degree celsius. The power is about 1 kW. The collector's efficiency is above 50%. Stagnation experiments have shown temperatures around 590 degree celsius at a direct radiation of 730 W/square meters and 7 degree Celsius ambient temperature. The collector consists of a form giving rib construction of stainless steel covered with an aluminum reflector with a reflection coefficient of 95%. A standard vacuum tube (Sidney-principle) 200 cm long is used as absorber. Anti Reflex Glass with a solar transmission of more than 95% is used as cover. The tracking system is consisting of a stepper motor, transmission, sun sensor and electronic steering. (Author)

  19. Novel Fiber-Based Adsorbent Technology; FINAL

    International Nuclear Information System (INIS)

    The overall of this Department of Energy (DOE) Phase II SBIR program was to develop a new class of highly robust fiber-based adsorbents for recovery of heavy metals from aqueous waste-streams. The fiber-based adsorbents,when commercialized,will be used for clean up metals in aqueous waste-streams emanating from DOE facilities,industry,mining,and groundwater-cleanup operations.The amount of toxic waste released by these streams is of great significance.The U.S.Environment Protection Agency (EPA) reports that in 1990 alone,4.8 billion pounds of toxic chemicals were released into the environment.Of this waste,the metals-containing waste was the second largest contributor,representing 569 million pounds. This report presents the results of the Phase II program,which successfully synthesized noval fiber-based adsorbents for the removal of Group 12 metals(i.e.mercury),Group 14 metals (lead),and Group 10 metals(platinum and palladium) from contaminated groundwater and industrial waste streams.These fiber-based adsorbents are ideally suited for the recovery of metal ions from aqueous waste streams presently not treatable due to the degrading nature of corrosive chemicals or radioactive components in the feed stream. The adsorbents developed in this program rely on chemically resistant and robust carbon fibers and fabrics as supports for metal-ion selective ligands.These adsorbents demonstrate loading capacities and selectivities for metal ions exceeding those of conventional ion-exchange resins.The adsorbents were also used to construct filter modules that demonstrate minimal fouling,minimal compaction,chemical and physical robustness,and regeneration of metal loading capacity without loss of performance

  20. MERCURY CONTROL WITH ADVANCED HYBRID PARTICULATE COLLECTOR

    Energy Technology Data Exchange (ETDEWEB)

    Ye Zhuang; Stanley J. Miller

    2005-05-01

    This project was awarded under U.S. Department of Energy (DOE) National Energy Technology Laboratory (NETL) Program Solicitation DE-PS26-00NT40769 and specifically addressed Technical Topical Area 4-Testing Novel and Less Mature Control Technologies on Actual Flue Gas at the Pilot Scale. The project team included the Energy & Environmental Research Center (EERC) as the main contractor; W.L. Gore & Associates, Inc., as a technical and financial partner; and the Big Stone Power Plant operated by Otter Tail Power Company, host for the field-testing portion of the research. Since 1995, DOE has supported development of a new concept in particulate control called the advanced hybrid particulate collector (AHPC). The AHPC has been licensed to W.L. Gore & Associates, Inc., and has been marketed as the Advanced Hybrid{trademark} filter by Gore. The Advanced Hybrid{trademark} filter combines the best features of electrostatic precipitators (ESPs) and baghouses in a unique configuration, providing major synergism between the two collection methods, both in the particulate collection step and in the transfer of dust to the hopper. The Advanced Hybrid{trademark} filter provides ultrahigh collection efficiency, overcoming the problem of excessive fine-particle emissions with conventional ESPs, and it solves the problem of reentrainment and re-collection of dust in conventional baghouses. The Advanced Hybrid{trademark} filter also appears to have unique advantages for mercury control over baghouses or ESPs as an excellent gas--solid contactor. The objective of the project was to demonstrate 90% total mercury control in the Advanced Hybrid{trademark} filter at a lower cost than current mercury control estimates. The approach included bench-scale batch tests, larger-scale pilot testing with real flue gas on a coal-fired combustion system, and field demonstration at the 2.5-MW (9000-acfm) scale at a utility power plant to prove scale-up and demonstrate longer-term mercury control

  1. Development of 12.5 m² Solar Collector Panel for Solar Heating Plants

    DEFF Research Database (Denmark)

    Vejen, Niels Kristian; Furbo, Simon; Shah, Louise Jivan

    2004-01-01

    and large solar heating systems. Based on the theoretical findings a prototype of an improved HT solar collector was built and tested side-by-side with the original HT solar collector. The improved HT collector makes use of a changed insulation material, an absorber with improved absorptance and......Theoretical and experimental investigations have elucidated how different changes in the design of the 12.5 m(2) HT flat-plate solar collector from the Danish company ARCON Solvarme A/S influence the solar collector efficiency and the yearly thermal performance. The collector is designed for medium...

  2. Experimental study on solar-powered adsorption refrigeration cycle with activated alumina and activated carbon as adsorbent

    Directory of Open Access Journals (Sweden)

    Himsar Ambarita

    2016-03-01

    Full Text Available Typical adsorbent applied in solar-powered adsorption refrigeration cycle is activated carbon. It is known that activated alumina shows a higher adsorption capacity when it is tested in the laboratory using a constant radiation heat flux. In this study, solar-powered adsorption refrigeration cycle with generator filled by different adsorbents has been tested by exposing to solar radiation in Medan city of Indonesia. The generator is heated using a flat-plate type solar collector with a dimension of 0.5 m×0.5 m. Four cases experiments of solar-powered adsorption cycle were carried out, they are with generator filled by 100% activated alumina (named as 100AA, by a mixed of 75% activated alumina and 25% activated carbon (75AA, by a mixed of 25% activated alumina and 75% activated carbon (25AA, and filled by 100% activated carbon. Each case was tested for three days. The temperature and pressure history and the performance have been presented and analyzed. The results show that the average COP of 100AA, 75AA, 25AA, and 100AC is 0.054, 0.056, 0.06, and 0.074, respectively. The main conclusion can be drawn is that for Indonesian condition and flat-plate type solar collector the pair of activated carbon and methanol is the better than activated alumina.

  3. Size selective hydrophobic adsorbent for organic molecules

    Science.gov (United States)

    Sharma, Pramod K. (Inventor); Hickey, Gregory S. (Inventor)

    1997-01-01

    The present invention relates to an adsorbent formed by the pyrolysis of a hydrophobic silica with a pore size greater than 5 .ANG., such as SILICALITE.TM., with a molecular sieving polymer precursor such as polyfurfuryl alcohol, polyacrylonitrile, polyvinylidene chloride, phenol-formaldehyde resin, polyvinylidene difluoride and mixtures thereof. Polyfurfuryl alcohol is the most preferred. The adsorbent produced by the pyrolysis has a silicon to carbon mole ratio of between about 10:1 and 1:3, and preferably about 2:1 to 1:2, most preferably 1:1. The pyrolysis is performed as a ramped temperature program between about 100.degree. and 800.degree. C., and preferably between about 100.degree. and 600.degree. C. The present invention also relates to a method for selectively adsorbing organic molecules having a molecular size (mean molecular diameter) of between about 3 and 6 .ANG. comprising contacting a vapor containing the small organic molecules to be adsorbed with the adsorbent composition of the present invention.

  4. Black Molecular Adsorber Coatings for Spaceflight Applications

    Science.gov (United States)

    Abraham, Nithin Susan; Hasegawa, Mark Makoto; Straka, Sharon A.

    2014-01-01

    The molecular adsorber coating is a new technology that was developed to mitigate the risk of on-orbit molecular contamination on spaceflight missions. The application of this coating would be ideal near highly sensitive, interior surfaces and instruments that are negatively impacted by outgassed molecules from materials, such as plastics, adhesives, lubricants, epoxies, and other similar compounds. This current, sprayable paint technology is comprised of inorganic white materials made from highly porous zeolite. In addition to good adhesion performance, thermal stability, and adsorptive capability, the molecular adsorber coating offers favorable thermal control characteristics. However, low reflectivity properties, which are typically offered by black thermal control coatings, are desired for some spaceflight applications. For example, black coatings are used on interior surfaces, in particular, on instrument baffles for optical stray light control. Similarly, they are also used within light paths between optical systems, such as telescopes, to absorb light. Recent efforts have been made to transform the white molecular adsorber coating into a black coating with similar adsorptive properties. This result is achieved by optimizing the current formulation with black pigments, while still maintaining its adsorption capability for outgassing control. Different binder to pigment ratios, coating thicknesses, and spray application techniques were explored to develop a black version of the molecular adsorber coating. During the development process, coating performance and adsorption characteristics were studied. The preliminary work performed on black molecular adsorber coatings thus far is very promising. Continued development and testing is necessary for its use on future contamination sensitive spaceflight missions.

  5. Defluoridization Using a Natural Adsorbent, Strychnos Potatorum

    Directory of Open Access Journals (Sweden)

    S.Rayappan

    2014-10-01

    Full Text Available The study assessed the suitability of low-cost natural adsorbent to effectively remediate fluoride contaminated water. The removal of fluoride from aqueous solution by using Strychnos Potatorum was studied in batch technique. Influence of pH, adsorbent dose, contact time, co ions, speed and initial concentration on the adsorption were investigated. The maximum removal of fluoride ion was obtained at pH 7. The removal of fluoride was expressed with Langmuir and Freundlich isotherm. It was found that the sufficient time for adsorption equilibrium of fluoride ion was 1 hour. The removal of fluoride ions was maximum for the adsorbent dosage of SP is 50mg/50ml. The fluoride adsorption was maximum at 60minutes. The adsorption of F- ion was maximum in the shaking speed of 120 rpm. The presence of interfering ions such as nitrate and carbonate showed positive effect while sulphate and chloride showed little negative effect and phosphate showed high negative effect for the adsorbent. The optimum initial fluoride concentration for SP adsorbent was 1mg/50ml.

  6. Fast separation of isobars on ISOL facility collector

    International Nuclear Information System (INIS)

    Volatility of Rb, Sr, Y, Ba, some rare earth elements, Ra, Ac and Th, implantated in a tantalum collector with 45 keV energy is investigated. The collector heating during 180 s in vacuum results in the separation of implantated elements. Separation coefficients are as follows: sup(α)Sr/Rb=14/1390 K/, sup(α)Y/Sr=28/1680 K/, sup(α)La/Ba=8/1590 K/, sup(α)Sm/Eu=3/1470 K/, sup(α)Gd/Eu=22/1620 K/, sup(α)Tm/Yb=8/1600 K/, sup(α)Lu/Yb=38/1700 K/ and sup(α)Ac/Ra=sup(α)Th/Ra=030/1650 K/. The contributions of diffusion and desorption to the volatility process of implantated elements and prospects for application of the proposed method for separation of isobars on ISOL Facility collector are discussed

  7. Absorber Alignment Measurement Tool for Solar Parabolic Trough Collectors: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Stynes, J. K.; Ihas, B.

    2012-04-01

    As we pursue efforts to lower the capital and installation costs of parabolic trough solar collectors, it is essential to maintain high optical performance. While there are many optical tools available to measure the reflector slope errors of parabolic trough solar collectors, there are few tools to measure the absorber alignment. A new method is presented here to measure the absorber alignment in two dimensions to within 0.5 cm. The absorber alignment is measured using a digital camera and four photogrammetric targets. Physical contact with the receiver absorber or glass is not necessary. The alignment of the absorber is measured along its full length so that sagging of the absorber can be quantified with this technique. The resulting absorber alignment measurement provides critical information required to accurately determine the intercept factor of a collector.

  8. Effect of Body Force on Consolidation in Unsaturated Soils

    Science.gov (United States)

    Chao, N. C.; Lo, W. C.; Lee, J. W.

    2015-12-01

    Soil consolidation is a transient process by which soil volume is decreased due to the coupling between deformation of a porous medium and interstitial fluid flows. The influence of body force has been conventionally ignored in the consolidation theory of poroelasticity for either saturated or unsaturated soils. In the current study, gravity effect is well taken into account in the coupled diffusion equations derived by Lo et al. (2014) for describing one-dimensional consolidation in unsaturated soils, thus leading to additional first-order time-derivative terms. Finite-difference approach is used to solve those equations. Numerical calculations are then conducted with respect to various initial water saturations and soil heights for unsaturated clays as illustrative examples. The result is compared to that typically obtained with neglecting body forces to quantify the impact of gravity on consolidation in unsaturated soils.

  9. An improved Mesri creep model for unsaturated weak intercalated soils

    Institute of Scientific and Technical Information of China (English)

    祝艳波; 余宏明

    2014-01-01

    The weak intercalated soils in redbed soft rocks of Badong formation have obvious creep characters. In order to predict the unsaturated creep behaviors of weak intercalated soils, an unsaturated creep model was established based on the unsaturated creep tests of weak intercalated soils by using GDS triaxial apparatus. The results show that the creep behaviors of intercalated soils are apparent and significantly affected by matric suction. Based on this, an empirical Mesri creep model for intercalated soils under varying matric suctions was built. The fitting results show that the parameters Ed and m of this model are in good power relations with matric suction s and stress level Dr, respectively. An improved Mesri creep model was established involving stress−matric suction−strain−time, which is more precise than the Mesri creep model in predicting the unsaturated creep behaviors of weak intercalated soils.

  10. Synthesis and study of novel silicon-based unsaturated polymers

    Energy Technology Data Exchange (ETDEWEB)

    Lin, J.

    1995-06-19

    Novel unsaturated polymers have been synthesized and studied as precursors to silicon carbide and third order nonlinear optical materials. X ray structures were obtained. Kinetic and mechanistic studies of the unique thermal isomerization of dimethylenedisilacyclobutane to a carbene were conducted.

  11. Process for producing zeolite adsorbent and process for treating radioactive liquid waste with the zeolite adsorbent

    International Nuclear Information System (INIS)

    Zeolite is contacted with an aqueous solution containing at least one of copper, nickel, cobalt, manganese and zinc salts, preferably copper and nickel salts, particularly preferably copper salt, in such a form as sulfate, nitrate, or chloride, thereby adsorbing the metal on the zeolite in its pores by ion exchange, then the zeolite is treated with a water-soluble ferrocyanide compound, for example, potassium ferrocyanide, thereby forming metal ferrocyanide on the zeolite in its pores. Then, the zeolite is subjected to ageing treatment, thereby producing a zeolite adsorbent impregnated with metal ferrocyanide in the pores of zeolite. The adsorbent can selectively recover cesium with a high percent cesium removal from a radioactive liquid waste containing at least radioactive cesium, for example, a radioactive liquid waste containing cesium and such coexisting ions as sodium, magnesium, calcium and carbonate ions at the same time at a high concentration. The zeolite adsorbent has a stable adsorbability for a prolonged time

  12. Wind effects in solar fields with various collector designs

    Science.gov (United States)

    Paetzold, Joachim; Cochard, Steve; Fletcher, David F.; Vassallo, Anthony

    2016-05-01

    Parabolic trough power plants are often located in areas that are subjected to high wind speeds, as an open terrain without any obstructions is beneficial for the plant performance. The wind impacts both the structural requirements and the performance of the plant. The aerodynamic loads from the wind impose strong requirements on the support structure of the reflectors, and they also impact the tracking accuracy. On a thermal level the airflow around the glass envelope of the receiver tube cools its outer surface through forced convection, thereby contributing to the heat loss. Based on previous studies at the level of an individual row of collectors, this study analyses the wind effects in a full-scale solar field of different continuous and staggered trough designs. The airflow around several rows of parabolic trough collectors (PTC) is simulated at full scale in steady state simulations in an atmospheric boundary layer flow using the commercial computational fluid dynamics software ANSYSO® CFX 15.0. The effect of the wake of a collector row on the following collectors is analysed, and the aerodynamic loads are compared between the different geometries. The outermost collectors of a solar field experience the highest wind forces, as the rows in the interior of the solar field are protected from high wind speeds. While the aerodynamic forces in the interior of the solar field are almost independent of the collector shape, the deeper troughs (with large rim angles) tested in this study show a lower heat loss due to forced convection on the outer surface of the receiver tube than the shallower ones (with small rim angles) in most of the solar field.

  13. Liquid metal current collectors for high-speed rotating machinery

    International Nuclear Information System (INIS)

    Recent interest in superconducting motors and generators has created a renewed interest in homopolar machinery. Homopolar machine designs have always been limited by the need for compact, high-current, low-voltage, sliding electrical curent collectors. Conventional graphite-based solid brushes are inadequate for use in homopolar machines. Liquid metals, under certain conditions of relative sliding velocities, electrical currents, and magnetic fields are known to be capable of performing well in homopolar machines. An effort to explore the capabilities and limits of a tongue-and-groove style current collector, utilizing sodium-potassium eutectic alloy (NaK) as the working fluid in high sliding speed operation is reported here. A double current collector generator model with a 14.5-cm maximum rotor diameter, 20,000 rpm rotational capability, and electrical current carrying ability was constructed and operated successfully at a peripheral velocity of 125 m/s. The limiting factor in these experiments was a high-speed fluid-flow instability resulting in the ejection of the working fluid from the operating portions of the collectors. The effects of collector size and geometry, working fluid (NaK or water), and cover gas pressure are reported. Hydrodynamic frictional torque-speed curves are given for the two fluids and for several geometries. Electrical resistances as a function of peripheral velocity at 60 amperes are reported, and the phenomenology of the high-speed fluid-flow instabilities is discussed. The possibility of long-term high-speed operation of current collectors of the tongue-and-groove type, along with experimental and theoretical hydrodynamic friction losses at high peripheral velocities, is considered

  14. Coupled hydromechanical and electromagnetic disturbances in unsaturated porous materials

    OpenAIRE

    Revil, A.; Mahardika, H

    2013-01-01

    A theory of cross-coupled flow equations in unsaturated soils is necessary to predict (1) electroosmotic flow with application to electroremediation and agriculture, (2) the electroseismic and the seismoelectric effects to develop new geophysical methods to characterize the vadose zone, and (3) the streaming current, which can be used to investigate remotely ground water flow in unsaturated conditions in the capillary water regime. To develop such a theory, the cross-coupled generalized Darcy...

  15. Interacting Blends of Novel Unsaturated Polyester Amide Resin with Styrene

    OpenAIRE

    Hasmukh S. Patel; Panchal, Kumar K.

    2004-01-01

    Novel unsaturated poly (ester-amide) resins (UPEAs) were prepared by the reaction between an epoxy resin, namely diglycidyl ether of bisphenol–A (DGEBA) and unsaturated aliphatic bisamic acids using a base catalyst. These UPEAs were then blended with a vinyl monomer namely, Styrene (STY.) to produce a homogeneous resin syrup. The curing of these UPEAs-STY. resin blends was carried out by using benzoyl peroxide (BPO) as a catalyst and was monitored by using a differential scanning calorimeter ...

  16. Influence of lipid chain unsaturation on melittin-induced micellization.

    OpenAIRE

    Monette, M; Lafleur, M

    1996-01-01

    It is well known that melittin, an amphipathic helical peptide, causes the micellization of phosphatidylcholine vesicles. In the present work, we conclude that the extent of micellization is dependent on the level of unsaturation of the lipid acyl chains. We report the results obtained on two systems: dipalmitoylphosphatidylcholine (DPPC), containing 10(mol)% saturated or unsaturated fatty acid (palmitic, oleic, or linoleic), and DPPC, containing 10(mol)% positively charged diacyloxy-3-(trime...

  17. Measurement and Modeling of Solute Diffusion Coefficients in Unsaturated Soils

    OpenAIRE

    Chou, Hsin-Yi

    2010-01-01

    Solute diffusion in unsaturated soils refers to the transport of dissolved constituents in liquid phase from a higher to a lower concentration point. Several empirical and conceptual models were proposed to predict the solute diffusion coefficients in unsaturated soils, but they were not systematically tested and evaluated under the same conditions using soils of different textures. Our experimental data showed that there is no perfect model that can depict the behavior of solute diffusion co...

  18. Compaction interpreted in the framework of unsaturated soil mechanics

    OpenAIRE

    Caicedo, Bernardo; LEROUEIL, Serge; Thorel, Luc; TRISTANCHO, Julian

    2015-01-01

    Compacted materials are fundamentally unsaturated soils whose behaviour can be expansive or collapsible depending upon changes in water content or stresses. Their behaviour is strongly dependent on matric suction, water content, and stress history. This paper presents a methodology for investigating the stress/strain, and suction/water content paths during one dimensional compaction of unsaturated soils. It focuses on anisotropic behaviour. The testing program was carried out in an automated ...

  19. A constitutive model for unsaturated cemented soils under cyclic loading

    OpenAIRE

    Yang, C; Cui, Yu-Jun; Pereira, Jean-Michel; Huang, M.S.

    2008-01-01

    On the basis of plastic bounding surface model, the damage theory for structured soils and unsaturated soil mechanics, an elastoplastic model for unsaturated loessic soils under cyclic loading has been elaborated. Firstly, the description of bond degradation in a damage framework is given, linking the damage of soil's structure to the accumulated strain. The Barcelona Basic Model (BBM) was considered for the suction effects. The elastoplastic model is then integrated into a bounding surface p...

  20. Tracking local control of a parabolic trough collector

    International Nuclear Information System (INIS)

    In the local control, the sun position related to the trough collector is measured by two photo-resistors. The provided electronic signal is then compared with reference levels in order to get a set of B logical signals which form a byte. This byte and the commands issued by a programmable controller are connected to the inputs of o P.R.O.M. memory which is programmed with the logical equations of the control system. The memory output lines give the control command of the parabolic trough collector motor. (Author)

  1. Current collector geometry and mixing in liquid metal electrodes

    Science.gov (United States)

    Ashour, Rakan; Kelley, Douglas

    2015-11-01

    Liquid metal batteries are emerging as an efficient and cost effective technology for large-scale energy storage on electrical grids. In these batteries, critical performance related factors such as the limiting current density and life cycle are strongly influenced by fluid mixing and transport of electrochemical species to and from the electrode-electrolyte interface. In this work, ultrasound velocimetry is used to investigate the role of negative current collector location on the induced velocity, flow pattern, and mixing time in liquid metal electrodes. Ultrasound velocity measurements are obtained at a range of operating current densities. Furthermore, a comparison between velocity profiles produced by current collectors with different sizes is also presented.

  2. On the Adsorption of Some Anionic Collectors on Fluoride Minerals

    DEFF Research Database (Denmark)

    Sørensen, Emil

    1973-01-01

    Test flotations have been carried out in a small apparatus under standardized conditions in order to determine the dependence of the flotation yield on the reagent concentration for certain minerals and anionic collectors. The results suggest that a special adsorption mechanism is operating in th...... case of fluoride minerals, and a theory is presented which involves the joint action of ionic and hydrogen bonds. A precondition is the compatibility of the crystal geometry with the configuration of the polar group of the collector molecules....

  3. Opensource Software for MLR-Modelling of Solar Collectors

    DEFF Research Database (Denmark)

    Bacher, Peder; Perers, Bengt

    2011-01-01

    A first research version is now in operation of a software package for multiple linear regression (MLR) modeling and analysis of solar collectors according to ideas originating all the way from Walletun et. al. (1986), Perers, (1987 and 1993). The tool has been implemented in the free and open...... source program R http://www.r-project.org/. Applications of the software package includes: visual validation, resampling and conversion of data, collector performance testing analysis according to the European Standard EN 12975 (Fischer et al., 2004), statistical validation of results...

  4. Characterization of unsaturated hydraulic conductivity at the Hanford Site

    Energy Technology Data Exchange (ETDEWEB)

    Rockhold, M.L.; Fayler, M.J.; Gee, G.W.

    1988-07-01

    This report details some recent field measurements and compares predicted and measured values of hydraulic conductivities for three locations at the Hanford Site. Measurements from small (6-cm-dia) /open quotes/point/close quotes/ and large (2-m by 2-m) /open quotes/plot/close quotes/ areas utilized inflitration and drainage techniques to obtain in situ data for field-saturated and unsaturated hydraulic conductivity. The Guelph permeameter was used for point sampling, and the unsteady drainage-flux method was used on plots for field-saturated and unsaturated hydraulic conductivity measurements. Steady-state techniques were used to measure unsaturated hydraulic conductivities in small columns in the laboratory for one of the three soils tested to provide a comparison with data obtained from the field. Measured unsaturated hydraulic conductivities and those predicted from particle-size distribution and bulk density data agree within one-half to one and one-half orders of magnitude, depending on soil type. To use a particle-size distribution to estimate water retention characteristics and, subsequently, to predict unsaturated hydraulic conductivities, measurements of water-retention characteristics are necessary to determine a parameter value used in one of the models. No single method for measuring or calculating unsaturated hydraulic conductivities was found appropriate for all Hanford Site soils. Ideally, several methods should be used to take advantage of the strengths of each method, considering the data needs and resources available. 45 refs., 24 figs., 19 tabs.

  5. Characterization of unsaturated hydraulic conductivity at the Hanford Site

    International Nuclear Information System (INIS)

    This report details some recent field measurements and compares predicted and measured values of hydraulic conductivities for three locations at the Hanford Site. Measurements from small (6-cm-dia) /open quotes/point/close quotes/ and large (2-m by 2-m) /open quotes/plot/close quotes/ areas utilized inflitration and drainage techniques to obtain in situ data for field-saturated and unsaturated hydraulic conductivity. The Guelph permeameter was used for point sampling, and the unsteady drainage-flux method was used on plots for field-saturated and unsaturated hydraulic conductivity measurements. Steady-state techniques were used to measure unsaturated hydraulic conductivities in small columns in the laboratory for one of the three soils tested to provide a comparison with data obtained from the field. Measured unsaturated hydraulic conductivities and those predicted from particle-size distribution and bulk density data agree within one-half to one and one-half orders of magnitude, depending on soil type. To use a particle-size distribution to estimate water retention characteristics and, subsequently, to predict unsaturated hydraulic conductivities, measurements of water-retention characteristics are necessary to determine a parameter value used in one of the models. No single method for measuring or calculating unsaturated hydraulic conductivities was found appropriate for all Hanford Site soils. Ideally, several methods should be used to take advantage of the strengths of each method, considering the data needs and resources available. 45 refs., 24 figs., 19 tabs

  6. VALIDATION OF SIMULATION MODELS FOR DIFFERENTLY DESIGNED HEAT-PIPE EVACUATED TUBULAR COLLECTORS

    DEFF Research Database (Denmark)

    Fan, Jianhua; Dragsted, Janne; Furbo, Simon

    2007-01-01

    Differently designed heat-pipe evacuated tubular collectors have been investigated theoretically and experimentally. The theoretical work has included development of two TRNSYS [1] simulation models for heat-pipe evacuated tubular collectors utilizing solar radiation from all directions. One model...... is developed for heat-pipe evacuated tubular collectors with flat fins and one model is developed for heat-pipe evacuated tubular collectors with curved fins. The models are characterized by detailed calculations of the heat transfer processes in the fins, by detailed shadow modeling and by fins with...... selective coating on both sides. The input to the models is thus not a simple collector efficiency expression but the actual collector geometry. In this study, the TRNSYS models are validated with measurements for four differently designed heat-pipe evacuated tubular collectors. The collectors are produced...

  7. The Effect of the Volume Flow rate on the Efficiency of a Solar Collector

    DEFF Research Database (Denmark)

    Fan, Jianhua; Shah, Louise Jivan; Furbo, Simon

    rates. Theoretically, a simplified model of the solar collector panel is built by means of the CFD (Computational Fluid Dynamics) code Fluent, where the geometry of the collector panel except the casing is fully modeled. Both lateral and longitudinal heat conduction in the absorber fins, the heat...... transfer from the absorber to the solar collector fluid and the heat loss from the absorber are considered. Flow and temperature distribution in the collector panel are investigated with buoyancy effect. Measurements are carried out with the solar collector panel. Collector efficiencies are measured for......The flow distribution inside a collector panel with an area of 12.5 m² and with 16 parallel connected horizontal fins and the effect of the flow nonuniformity on the risk of boiling and on the collector efficiency have been theoretically and experimentally investigated for different volume flow...

  8. FLOW DISTRIBUTION IN A SOLAR COLLECTOR PANEL WITH HORIZONTAL ABSORBER STRIPS

    DEFF Research Database (Denmark)

    Fan, Jianhua; Shah, Louise Jivan; Furbo, Simon

    2007-01-01

    The objective of this work is to theoretically and experimentally investigate the flow and temperature distribution in a solar collector panel with an absorber consisting of horizontal strips. Fluid flow and heat transfer in the collector panel are studied by means of computational fluid dynamics...... (CFD) calculations. Further, experimental investigations of a 12.5 m² solar collector panel with 16 parallel connected horizontal fins are carried out. The flow distribution through the absorber is evaluated by means of temperature measurements on the backside of the absorber tubes. The measured...... collector fluid, and by increased collector tilt and inlet temperature, the flow distribution gets worse resulting in a decreased collector efficiency and an increased risk of boiling in the upper part of the collector panel. Keywords: Solar collector; Flow distribution; Computational Fluid Dynamics (CFD...

  9. VALIDATION OF SIMULATION MODELS FOR DIFFERENTLY DESIGNED HEAT-PIPE EVACUATED TUBULAR COLLECTORS

    DEFF Research Database (Denmark)

    Fan, Jianhua; Dragsted, Janne; Furbo, Simon

    Differently designed heat-pipe evacuated tubular collectors have been investigated theoretically and experimentally. The theoretical work has included development of two TRNSYS [1] simulation models for heat-pipe evacuated tubular collectors utilizing solar radiation from all directions. One model...... is developed for heat-pipe evacuated tubular collectors with flat fins and one model is developed for heat-pipe evacuated tubular collectors with curved fins. The models are characterized by detailed calculations of the heat transfer processes in the fins, by detailed shadow modeling and by fins with...... selective coating on both sides. The input to the models is thus not a simple collector efficiency expression but the actual collector geometry. In this study, the TRNSYS models are validated with measurements for four differently designed heat-pipe evacuated tubular collectors. The collectors are produced...

  10. Design and development of high efficiency 140W space TWT with graphite collector

    International Nuclear Information System (INIS)

    4-stage graphite collector assembly has been designed and developed for a 140W Ku-band space TWT to achieve the collector efficiency more than 80%. The UHV compatible, high density, copper impregnated POCO graphite (DFP-1C) was used to fabricate the four collector electrodes of the 4-stage depressed collector. Copper impregnated graphite material is used for the collector electrodes because of its low secondary electron emission coefficient, high thermal and electrical conductivities, easy machining and brazing, low thermal expansion coefficient and low weight. The graphite material was characterized for the UHV compatibility. The collector electrodes were precisely fabricated by careful machining, and technology was developed for brazing of graphite electrodes with high voltage alumina insulators. Complete TWT with four-stage graphite collector was developed and 140W output power at gain more than 55 dB was achieved. The TWT was pumped from both the gun and the collector ends

  11. EVALUATION OF EVACUATED TUBULAR SOLAR COLLECTORS FOR LARGE SDHW SYSTEMS AND COMBINED SPACE HEATING SYSTEMS

    DEFF Research Database (Denmark)

    Qin, Lin; Furbo, Simon

    1999-01-01

    In the present study, detailed investigations on evacuated tubular solar collectors for large solarheating systems have been carried out. Four types of evacuated tubular solar collectors were used in theinvestigation. Based on laboratory tests, simulation models for the collectors were determined....... Based on thesemodels, the thermal performance of large solar domestic hot water (DHW) systems and combined domestichot water and space heating systems with the four evacuated tubular collectors was determined. To make acomparison with traditional flat-plate collectors, similar simulations were also...... carried out for systems with atypical flat-plate collector. The results show that the thermal advantage of evacuated tubular collectors variesgreatly from system to system, and increases with the solar fraction. Furthermore, the higher the operationtemperature of the collector in the system is, the...

  12. Theoretical Insight of Physical Adsorption for a Single Component Adsorbent + Adsorbate System: II. The Henry Region

    KAUST Repository

    Chakraborty, Anutosh

    2009-07-07

    The Henry coefficients of a single component adsorbent + adsorbate system are calculated from experimentally measured adsorption isotherm data, from which the heat of adsorption at zero coverage is evaluated. The first part of the papers relates to the development of thermodynamic property surfaces for a single-component adsorbent + adsorbate system1 (Chakraborty, A.; Saha, B. B.; Ng, K. C.; Koyama, S.; Srinivasan, K. Langmuir 2009, 25, 2204). A thermodynamic framework is presented to capture the relationship between the specific surface area (Ai) and the energy factor, and the surface structural and the surface energy heterogeneity distribution factors are analyzed. Using the outlined approach, the maximum possible amount of adsorbate uptake has been evaluated and compared with experimental data. It is found that the adsorbents with higher specific surface areas tend to possess lower heat of adsorption (ΔH°) at the Henry regime. In this paper, we have established the definitive relation between Ai and ΔH° for (i) carbonaceous materials, metal organic frameworks (MOFs), carbon nanotubes, zeolites + hydrogen, and (ii) activated carbons + methane systems. The proposed theoretical framework of At and AH0 provides valuable guides for researchers in developing advanced porous adsorbents for methane and hydrogen uptake. © 2009 American Chemical Society.

  13. Unsaturated Zone Flow Patterns and Analysis

    Energy Technology Data Exchange (ETDEWEB)

    C. Ahlers

    2001-10-17

    This Analysis/Model Report (AMR) documents the development of an expected-case model for unsaturated zone (UZ) flow and transport that will be described in terms of the representativeness of models of the natural system. The expected-case model will provide an evaluation of the effectiveness of the natural barriers, assess the impact of conservatism in the Total System Performance Assessment (TSPA), and support the development of further models and analyses for public confidence building. The present models used in ''Total System Performance Assessment for the Site Recommendation'' (Civilian Radioactive Waste Management System Management and Operating Contractor (CRWMS M&O) 2000 [1532461]) underestimate the natural-barrier performance because of conservative assumptions and parameters and do not adequately address uncertainty and alternative models. The development of an expected case model for the UZ natural barrier addresses issues regarding flow-pattern analysis and modeling that had previously been treated conservatively. This is in line with the Repository Safety Strategy (RSS) philosophy of treating conservatively those aspects of the UZ flow and transport system that are not important for achieving regulatory dose (CRWMS M&O 2000 [153246], Section 1.1.1). The development of an expected case model for the UZ also provides defense-in-depth in areas requiring further analysis of uncertainty and alternative models. In general, the value of the conservative case is to provide a more easily defensible TSPA for behavior of UZ flow and transport processes at Yucca Mountain. This AMR has been prepared in accordance with the ''Technical Work Plan for Unsaturated Zone (UZ) Flow and Transport Process Model Report'' (Bechtel SAIC Company (BSC) 2001 [155051], Section 1.3 - Work Package 4301213UMG). The work scope is to examine the data and current models of flow and transport in the Yucca Mountain UZ to identify models and analyses

  14. Unsaturated Zone Flow Patterns and Analysis

    International Nuclear Information System (INIS)

    This Analysis/Model Report (AMR) documents the development of an expected-case model for unsaturated zone (UZ) flow and transport that will be described in terms of the representativeness of models of the natural system. The expected-case model will provide an evaluation of the effectiveness of the natural barriers, assess the impact of conservatism in the Total System Performance Assessment (TSPA), and support the development of further models and analyses for public confidence building. The present models used in ''Total System Performance Assessment for the Site Recommendation'' (Civilian Radioactive Waste Management System Management and Operating Contractor (CRWMS M and O) 2000 [1532461]) underestimate the natural-barrier performance because of conservative assumptions and parameters and do not adequately address uncertainty and alternative models. The development of an expected case model for the UZ natural barrier addresses issues regarding flow-pattern analysis and modeling that had previously been treated conservatively. This is in line with the Repository Safety Strategy (RSS) philosophy of treating conservatively those aspects of the UZ flow and transport system that are not important for achieving regulatory dose (CRWMS M and O 2000 [153246], Section 1.1.1). The development of an expected case model for the UZ also provides defense-in-depth in areas requiring further analysis of uncertainty and alternative models. In general, the value of the conservative case is to provide a more easily defensible TSPA for behavior of UZ flow and transport processes at Yucca Mountain. This AMR has been prepared in accordance with the ''Technical Work Plan for Unsaturated Zone (UZ) Flow and Transport Process Model Report'' (Bechtel SAIC Company (BSC) 2001 [155051], Section 1.3 - Work Package 4301213UMG). The work scope is to examine the data and current models of flow and transport in the Yucca Mountain UZ to identify models and analyses where conservatism may be

  15. Computer simulation of flaring the heat-exchange tube in the collectors of steam generators

    International Nuclear Information System (INIS)

    It is considered aspects of the WWER-1000 power reactor heat generator collector deformation processes modeling, which are taken place at heat generator assembling during heat collector tubes fastening by means of explosive method. It is presented description of the numerical solution method of geometrically nonlinear task of the collector and heat exchange tubes elasticity-plasticity deformation. It is considered the calculation examples of strain-stress conditions appearing in the collectors at heat generator manufacturing

  16. Thermal and Electrical Performance Evaluation of PV/T Collectors in UAE

    OpenAIRE

    Kaya, Mustafa

    2013-01-01

    Photovoltaic Thermal/Hybrid collectors are an emerging technology that combines PV and solar thermal collectors by producing heat and electricity simultaneously. In this paper, thermal and electrical performance of PV/T collectors are analyzed and presented for the climate of RAK, UAE. Thermal performance evaluation is done following the collector output model presented in European standard EN 12975-2 and electrical performance evaluation is done by analyzing the effect of water circulation o...

  17. Status of concentrator collector and high-efficiency concentrator cell development

    Energy Technology Data Exchange (ETDEWEB)

    Gee, J.M.

    1990-01-01

    Photovoltaic concentrator collectors are an attractive option for utility-scale photovoltaic power plants. This paper reviews the current status of photovoltaic concentrator collector and cell development. Included in the review is a discussion of the economic motivation for concentrators, a summary of recent concentrator collector and cell development, and a description of a major new program to accelerate development and commercial introduction of concentrator collectors. 21 refs., 1 fig., 3 tabs.

  18. Effect of Adsorbent Diameter on the Performance of Adsorption Refrigeration

    Institute of Scientific and Technical Information of China (English)

    黄宏宇; 何兆红; 袁浩然; 小林敬幸; 赵丹丹; 窪田光宏; 郭华芳

    2014-01-01

    Adsorbents are important components in adsorption refrigeration. The diameter of an adsorbent can af-fect the heat and mass transfer of an adsorber. The effect of particle diameter on effective thermal conductivity was investigated. The heat transfer coefficient of the refrigerant and the void rate of the adsorbent layer can also affect the effective thermal conductivity of adsorbents. The performance of mass transfer in the adsorber is better when pressure drop decreases. Pressure drop decreases with increasing permeability. The permeability of the adsorbent layer can be improved with increasing adsorbent diameter. The effect of adsorbent diameter on refrigeration output power was experimentally studied. Output power initially increases and then decreases with increasing diameter under different cycle time conditions. Output power increases with decreasing cycle time under similar diameters.

  19. Attenuation of Landfill Leachate In Unsaturated Sandstone

    Science.gov (United States)

    Butler, A. P.; Brook, C.; Godley, A.; Lewin, K.; Young, C. P.

    Landfill leachate emanating from old "dilute and disperse" sites represents a potential (and in many cases actual) threat to the integrity of groundwater. Indeed, this concern has been included in EU legislation (80/86/EEC), where key contaminants (e.g. ammonia, various toxic organic compounds and heavy metals) are explicitly highlighted in terms of their impact on groundwater. In the UK, whilst there are a substantial number of unlined landfills sited on major aquifers, many of these are in locations where there is a substantial unsaturated zone. Thus, there exists the opportunity for the modification and attenuation of contaminants prior to it encountering the water table. An understanding of likely changes in leachate content and concentrations at such sites will enable a more comprehensive assessment of the potential risks and liabilities posed by such sites to be evaluated. The Burntstump landfill, situated 8 km north of Nottingham (UK), is sited on an outcrop of Sherwood sandstone. The fine friable sand has been quarried since the 1960s and the excavated volume used to store municipal waste. Filling at the site commenced in the mid 1970s and originally was unlined. In 1978 the first of what was to become a series of boreholes was installed within an area of roughly 5 m radius over one of the original waste cells. Cores of the waste and underlying sandstone were extracted and analysed for a range of physical and chemical parameters. The most recent set of analyses were obtained in 2000. The series of investigations therefore provide an important record of leachate migration and modification through the unsaturated zone for over twenty years. The progression of the leachate front is clearly delineated by the chloride concentration profile with an average velocity of around 1.6 m.yr-1. Combining this value with an average (and reasonably uniform) measured moisture content of about 7% gives a mean inter-granular specific discharge of 110 mm.yr-1. An interesting

  20. Upper airway inflammation and respiratory symptoms in domestic waste collectors

    OpenAIRE

    Wouters, I; Hilhorst, S; Kleppe, P; Doekes, G; Douwes, J; Peretz, C; Heederik, D.

    2002-01-01

    Objectives: To compare respiratory symptoms and upper airway inflammation in domestic waste collectors and controls, and to find the association between measures of upper airway inflammation on the one hand and exposure concentrations of organic dust or respiratory symptoms on the other hand.

  1. EuroTrough collector prototype under testing at PSA

    Energy Technology Data Exchange (ETDEWEB)

    Luepfert, E.; Geyer, M. [German Aerospace Center (DLR), Platforma Solar de Almeria (PSA) (Spain); Schiel, W. [Schlaich Bergermann und Partner (SBP), Stuttgart (Germany); Esteban, A.; Osuna, R. [INABENSA, Div. Taller, Sevilla (Spain); Zarza, E.; Rojas, E. [CIEMAT-PSA, Plataforma Solar de Almeria (Spain); Nava, P. [Flabeg Solar International, Cologne (Germany); Brakmann, G. [Fichtner Solar, Stuttgart (Germany); Kotsaki, E. [CRES, Athens (Greece)

    2001-07-01

    In international project collaboration a parabolic trough collector has been developed for various applications in the 200-400 C temperature range in solar fields up to the hundreds Megawatts range. The design of a new support structure of the collector included concept studies, wind tunnel measurements, finite elements method (FEM) analyses and resulted in a structure with a central framework element. This torque box design has lower weight and less deformation of the collector structure than the other designs considered. It will be possible in future to connect more collector elements on one drive which results in reduced total number of drives and interconnecting pipes, thus reducing the installation cost and thermal losses. In terms of the degree of material usage further weight reduction will be possible. The presented design has a significant potential for cost reduction, the most important goal of the EuroTrough project. The prototype has been set-up and is under testing at PSA (Plataforma Solar de Almeria) for its thermal and mechanical properties. (orig.)

  2. Solar Thermal Power Plants with Parabolic-Trough Collectors

    Science.gov (United States)

    Zarza, E.; Valenzuela, L.; León, J.

    2004-12-01

    Parabolic-trough collectors (PTC) are solar concentrating devices suitable to work in the 150°C- 400°C temperature range. Power plants based on this type of solar collectors are a very efficient way to produce electricity with solar energy. At present, there are eight commercial solar plants (called SEGS-II, III,.. IX) producing electricity with parabolic-trough collectors and their total output power is 340 MW. Though all SEGS plants currently in operation use thermal oil as a heat transfer fluid between the solar field and the power block, direct steam generation (DSG) in the receiver tubes is a promising option to reduce the cost of electricity produced with parabolic- trough power plants. Most of technical uncertainties associated to the DSG technology were studied and solved in the DISS project and it is expected that this new technology will be commercially available in a short term. In Spain, the Royal Decree No. 436/204 (March 12th , 2004) has defined a premium of 0,18€/kWh for the electricity produced by solar thermal power plants, thus promoting the installation of solar thermal power plants up to a limit of 200 MW. Due to the current legal and financial framework defined in Spain, several projects to install commercial solar power plants with parabolic-trough collectors are currently underway.

  3. EUV near normal incidence collector development at SAGEM

    Science.gov (United States)

    Mercier Ythier, R.; Bozec, X.; Geyl, R.; Rinchet, A.; Hecquet, Christophe; Ravet-Krill, Marie-Françoise; Delmotte, Franck; Sassolas, Benoît; Flaminio, Raffaele; Mackowski, Jean-Marie; Michel, Christophe; Montorio, Jean-Luc; Morgado, Nazario; Pinard, Laurent; Roméo, Elodie

    2008-03-01

    Through its participation to European programs, SAGEM has worked on the design and manufacturing of normal incidence collectors for EUV sources. By opposition to grazing incidence, normal incidence collectors are expected to collect more light with a simpler and cheaper design. Designs are presented for the two current types of existing sources: Discharge Produced Plasma (DPP) and Laser Produced Plasma (LPP). Collection efficiency is calculated in both cases. It is shown that these collectors can achieve about 10 % efficiency for DPP sources and 40 % for LPP sources. SAGEM works on the collectors manufacturability are also presented, including polishing, coating and cooling. The feasibility of polishing has been demonstrated with a roughness better than 2 angstroms obtained on several materials (glass, silicon, Silicon Carbide, metals...). SAGEM is currently working with the Institut d'Optique and the Laboratoire des Materiaux Avancés on the design and the process of EUV coatings for large mirrors. Lastly, SAGEM has studied the design and feasibility of an efficient thermal control, based on a liquid cooling through slim channels machined close to the optical surface.

  4. NUMERICAL STUDY ON MIXED CONVECTIVE FLOW IN A SOLAR COLLECTOR

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    In a solar energy heat collector forced convection and free convection will occur concurrently. In this paper, the mixed convective flow was investigated. The dimensionless equation was derived and the results was verified by experiments. The numerical solution shows that error is less than 5% if the effect of free convection is ignored.

  5. Silicon crystal as a low work function collector

    Science.gov (United States)

    Chang, K. H.; Shimada, K.

    1975-01-01

    A test vehicle with a low work function collector which can be incorporated in a thermionic converter was constructed from standard vacuum components including an ultrahigh vacuum ion pump. The collector assembly was fabricated by diffusion bonding a (100) oriented silicon single crystal to a molybdenum block. The silicon surface was treated with cesium and oxygen to produce an NEA-type condition and the results were tested by photoemission and work function measurements. An n-type silicon collector was successfully activated to a work function of 1.0 eV, which was verified by photoemission spectral yield measurements. The stability test of an activated surface at elevated temperatures was conducted in the range from room temperature to 619 K, which was slightly lower than the designed collector temperature of 700 K. The work function measurements clearly demonstrated that the behavior of cesium replenishment on the activated Si surface was similar in nature to that of a metallic surface; that is, the loss of cesium by thermal desorption could be compensated by maintaining an adequate vapor pressure of cesium.

  6. Design of a fraction collector for capillary array electrophoresis

    Czech Academy of Sciences Publication Activity Database

    Minarik, M.; Klepárník, Karel; Gilar, M.; Foret, František; Miller, A. W.; Sosic, Z.; Karger, B. L.

    2002-01-01

    Roč. 23, č. 1 (2002), s. 35-42. ISSN 0173-0835 R&D Projects: GA ČR GA203/00/0772 Institutional research plan: CEZ:AV0Z4031919 Keywords : fraction collector * capillary array electrophoresis * DNA analysis Subject RIV: CB - Analytical Chemistry, Separation Impact factor: 4.325, year: 2002

  7. Certification and verification for calmac flat plate solar collector

    Energy Technology Data Exchange (ETDEWEB)

    1978-01-27

    This document contains information used in the certification and verification of the Calmac Flat Plate Collector. Contained are such items as test procedures and results, information on materials used, Installation, Operation, and Maintenance Manuals, and other information pertaining to the verification and certification.

  8. Inverse Marx modulators for self-biasing klystron depressed collectors

    Energy Technology Data Exchange (ETDEWEB)

    Kemp, Mark A; /SLAC

    2014-07-31

    A novel pulsed depressed collector biasing scheme is proposed. This topology feeds forward energy recovered during one RF pulse for use on the following RF pulse. The presented ''inverse'' Marx charges biasing capacitors in series, and discharges them in parallel. Simulations are shown along with experimental demonstration on a 62kW klystron.

  9. HERION equipment controls the testing of solar collectors

    Energy Technology Data Exchange (ETDEWEB)

    Boeck, H.

    1978-01-01

    A comparative test of solar collectors at the University of Munich is reported. The test bench comprises the total radiation detector, the global radiation detector, and the HERION valves to control the supply loop. Reliable values were obtained by steady-state measurement. Evaluation will be made by a large computer.

  10. Theoretical study of honeycomb structure collector for space heating

    Energy Technology Data Exchange (ETDEWEB)

    Ho, L.J.; Daguenet, M.; LePalec, G.

    1984-01-01

    The authors study a honeycomb structure collector which can be used for space heating by passive solar system. The mathematical model gives the temperature distribution and the efficiency as functions of all the parameters and specially the geometrical parameters. The results show that it is possible to obtain good performances with such a system.

  11. Solar-collector manufacturing activity, July through December, 1981

    Energy Technology Data Exchange (ETDEWEB)

    None

    1982-03-01

    Solar thermal collector and solar cell manufacturing activity is both summarized and tabulated. Data are compared for three survey periods (July through December, 1981; January through June, 1981; and July through December, 1980). Annual totals are also provided for the years 1979 through 1981. Data include total producer shipments, end use, market sector, imports and exports. (LEW)

  12. Preliminary design package for Sunair SEC-601 solar collector

    Energy Technology Data Exchange (ETDEWEB)

    1978-12-01

    This report presents the preliminary design of the Owens-Illinois mode Sunair SEC-601 tubular air solar collector. Information in this package includes the Subsystem Design and Development Approaches, hazard analysis, and detailed drawings available as the Preliminary Design Review.

  13. Thermo-ecological optimization of a solar collector

    International Nuclear Information System (INIS)

    The depletion of non-renewable natural exergy resources (the thermo-ecological cost) has been accepted as the objective function for thermo-ecological optimization. Its general formulation has been cited. A detailed form of the objective function has been formulated for a solar collector producing hot water for household needs. The following design parameters have been accepted as the decision variables: the collector area per unit of the heat demand, the diameter of collector pipes, the distance of the pipe axes in the collector plate. The design parameters of the internal installation (the pipes, the hot water receiver) have not been taken into account, because they are very individual. The accumulation ability of hot water comprising one day has been assumed. The objective function contains the following components: the thermo-ecological cost of copper plate, copper pipes, glass plate, steel box, thermal insulation, heat transfer liquid, electricity for driving the pump of liquid, fuel for the peak boiler. The duration curves of the flux of solar radiation and absorbed heat have been elaborated according to meteorological data and used in the calculations. The objective function for economic optimization may have a similar form, only the cost values would be different

  14. The Dynamics and Structures of Adsorbed Surfaces

    DEFF Research Database (Denmark)

    Nielsen, M; Ellenson, W. D.; McTague, J. P.

    1978-01-01

    Reviews neutron scattering work performed on films of simple gas atoms and molecules adsorbed primarily on graphite surfaces. Exfoliated graphite substrates such as Grafoil were first used in this kind of measurements about five years ago and new results have been reported at an increasing pace. ...

  15. Antiferromagnets Structure in Adsorbed O2 Monolayers

    DEFF Research Database (Denmark)

    Nielsen, Mourits; McTague, J. P.

    1977-01-01

    Neutron diffraction from monolayers of O2 adsorbed on graphite shows structural arrangements similar to the dense planes of bulk O2. At monolayer completion and above, a magnetic superlattice reflection shows well-developed antiferromagnetic order for T ⩽ 10 K. The submonolayer phase also shows...

  16. Organosilicon Ion-Exchange and Complexing Adsorbents

    Institute of Scientific and Technical Information of China (English)

    M. Voronkov; N. Vlasova; Yu. Pozhidaev; L. Belousova

    2005-01-01

    @@ 1Introduction Modification of mineral synthetic or natural substrates by organosilicon G-functionally substituted monomers, copolycondensation of the latter with organic and organosilicon compounds, and hydrolytic polycondensation of these monomers are the most widely used methods of synthesis of organosilicon adsorbents.

  17. Development, testing, and certification of Life Sciences Engineering solar collector. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Caudle, J. M.

    1978-07-01

    Final results for the development of an air flat plate collector for use with solar heating, combined heating and cooling, and hot water systems are summarized. The contract was for final development, testing, and certification of the collector, and for delivery of a 320 ft/sup 2/ collector panel.

  18. Experimental investigation on performance comparison of nanofluid-based direct absorption and flat plate solar collectors

    Directory of Open Access Journals (Sweden)

    Sh. Delfani

    2015-11-01

    Full Text Available In the present work, a prototype of a new type of solar collectors, which called Direct Absorption Solar Collector, was built and its thermal performance is experimentally compared with conventional flat plate solar collector under transient and steady state conditions. Different volume fractions of multi wall carbon nanotubes in water and ethylene glycol mixture (70%:30% in volume were used as working fluid of direct absorption solar collector.The transient comparison show that the efficiency of the direct absorption solar collector becomes about 7% (in average more than that of flat plate solar collector at 72l/hr flowrate. Thesteady state performance tests were performed in different flowrates from 54to 90l/hr,based on the procedure of EN 12975-2 standard.Under similar operating conditions, adirect absorption solar collector using 100ppm carbon nanotube nanofluid has the zero-loss efficiency of 23% higher than that of a flat plate collector;whereas, the zero-loss efficiency of a direct absorption solar collector using the base fluid is 4.4% lower than that of a flat plate collector. Based onthe results, the performance of a direct absorption solar collector using carbon nanotube nanofluidsis better than a flat-plate solar collector.

  19. Design and installation package for the Sunmat Flat Plate Solar Collector

    Energy Technology Data Exchange (ETDEWEB)

    1978-03-01

    The information used in evaluating the design of the Sunmat Liquid Flat Plat Plate Solar Collector developed by Calmac Manufacturing Company is presented. Included in this package are the Subsystem Performance Specification, Installation, Operation and Maintenance Manuals, collector sizing guides, and detailed drawings of the single-glazed collector.

  20. Design and installation package for the Sunmat Flat Plate solar collector

    Science.gov (United States)

    1978-01-01

    The information used in evaluating the design of a liquid flat plate solar collector is reported. Included in this package are subsystem performance specification, installation, operation and maintenance manuals, collector sizing guides, and detailed drawings of the single-glazed collector.

  1. An investigation of the temperature characteristics of solar collectors with vacuum glass tubes

    Energy Technology Data Exchange (ETDEWEB)

    Li, H.M.; Han, J.

    1982-01-01

    Tests are run on solar collectors in accordance with the ASHPAE 93-77 standard. It is proposed that several changes be incorporated into the test conditions and that their number be limited. The derived results demonstrate that the test standards on flat collectors may also be used for collectors manufactured from vacuum glass tubes.

  2. Unsaturated zone investigation at the radioactive waste storage facility site

    Energy Technology Data Exchange (ETDEWEB)

    Skuratovic, Zana; Mazeika, Jonas; Petrosius, Rimantas; Jakimaviciute-Maseliene, Vaidote [Nature Research Centre, Akademijos St. 2, LT-08412, Vilnius (Lithuania); Klizas, Petras; Mokrik, Robert [Vilnius University, M.K. Ciurlionio St. 21/27, LT-03101 Vilnius (Lithuania)

    2014-07-01

    Unsaturated zone is an important part of water circulation cycle and an integral part of many hydrological and hydrogeological factors and processes. The soils of unsaturated zone are regarded as the first natural barrier to a large extent able to limit the spread of contaminants. Nuclear waste disposal site (Maisiagala radioactive waste storage facility site) was analysed in terms of the moisture movement through the unsaturated zone. Extensive data sets of the hydraulic properties, water content and isotope composition have been collected and summarized. The main experimental and observational tasks included the collection of soil samples; determination of the physical properties and the hydraulic conductivity values of soil samples, moisture extraction from the soil sample for isotopic studies; observation of the groundwater dynamics at the Maisiagala piezometer; groundwater sampling for isotopic analysis ({sup 3}H, {sup 18}O/{sup 16}O, {sup 2}H/{sup 1}H ); and monthly precipitation isotopic analysis. Distribution features of globally widespread radionuclide tritium ({sup 3}H) and the water molecule tracer isotopes in precipitation, unsaturated zone soil moisture profiles and groundwater were determined. It was used the well-known unsaturated flow and transport model of HYDRUS-1D (Simunek et al., 2008). In this study, van Genuchten equations for the retention and conductivity estimations have been used. The retention characteristics and van Genuchten model parameters were estimated internally by HYDRUS based on the empirical equations involved in the program. Basic inputs of the tritium transport simulation are the tritium input function and meteorological variables (precipitation and potential evapotranspiration). In order to validate the representativeness of the hydraulic parameters, the model has been used to estimate the tritium distribution in the unsaturated zone, which properly represents the dynamics of the unsaturated zone. The uniformity of the daily

  3. Unsaturated zone investigation at the radioactive waste storage facility site

    International Nuclear Information System (INIS)

    Unsaturated zone is an important part of water circulation cycle and an integral part of many hydrological and hydrogeological factors and processes. The soils of unsaturated zone are regarded as the first natural barrier to a large extent able to limit the spread of contaminants. Nuclear waste disposal site (Maisiagala radioactive waste storage facility site) was analysed in terms of the moisture movement through the unsaturated zone. Extensive data sets of the hydraulic properties, water content and isotope composition have been collected and summarized. The main experimental and observational tasks included the collection of soil samples; determination of the physical properties and the hydraulic conductivity values of soil samples, moisture extraction from the soil sample for isotopic studies; observation of the groundwater dynamics at the Maisiagala piezometer; groundwater sampling for isotopic analysis (3H, 18O/16O, 2H/1H ); and monthly precipitation isotopic analysis. Distribution features of globally widespread radionuclide tritium (3H) and the water molecule tracer isotopes in precipitation, unsaturated zone soil moisture profiles and groundwater were determined. It was used the well-known unsaturated flow and transport model of HYDRUS-1D (Simunek et al., 2008). In this study, van Genuchten equations for the retention and conductivity estimations have been used. The retention characteristics and van Genuchten model parameters were estimated internally by HYDRUS based on the empirical equations involved in the program. Basic inputs of the tritium transport simulation are the tritium input function and meteorological variables (precipitation and potential evapotranspiration). In order to validate the representativeness of the hydraulic parameters, the model has been used to estimate the tritium distribution in the unsaturated zone, which properly represents the dynamics of the unsaturated zone. The uniformity of the daily input in each month should be kept

  4. Study of plutonium adsorption by fibrous adsorbent

    International Nuclear Information System (INIS)

    Japan Atomic Energy Research Institute and Unitika Ltd. have been conducting, under a joint effort, development of an inorganic fibrous adsorbent (FAC), which is capable of adsorbing plutonium (Pu) contained in radioactive liquid waste and which is also able to contribute to reduction of the volume of α-waste by incineration. The fibrous adsorbent constitutes fibrous activated carbon of coal tar pitch derivative and has the following characteristics: (1) It has a large surface area. (2) Carbon constitutes more than 90% in the adsorbent; it is physically and chemically stable as an inorganic adsorbent; it is easy to be incinerated. (3) It is easy to be formed or molded into different shapes such as cartridges, and handling of the material is extremely easy. By using various kinds of Pu solution, we carried out tests and evaluations on the equilibrium adsorption quantity of Pu by the fibrous adsorbent, the adsorption property of the material by flow-through column test and the incineration property of the material in the cold test. The tests show that: (1) adsorption of Pu is the best with 0.8∼0.9 mg-Pu/g-FAC when the concentration of nitric acid is near 1 M; (2) as the concentration of nitric acid is increased, its adsorption capacity becomes poorer; (3) when Pu coexists with Uranium (U), the adsorption capacity becomes slightly inferior; (4) in the flow-through column test, no breakthrough of Pu was observed until the volume of Pu liquid becomes about 3 times larger than the column volume; (5) in the incineration tests in the cold test using a laboratory scale incinerator, no flying of particles or soot was observed; and (6) it is possible to get good incineration at 500 ∼ 600 degrees C. The above results show that, by using the fibrous adsorbent, it became possible to remove Pu from radioactive liquid waste by adsorption, to reduce the volume only to residual ash by incineration, and to reduce substantially the volume of α-waste

  5. The Stability of Unsaturated Soil Slope Affected by Rainfall Seeping

    Institute of Scientific and Technical Information of China (English)

    Zhang Shilin; Wang Guochen; Shao Longtan

    2007-01-01

    Because rainfall seeping makes losing stability of unsaturated soil slope, and arouses great loss to production and human being safety, the stability of unsaturated soil slope has been researched by many scholars recently. This article mainly uses the model for the prediction of shear strength with respect to soil suction, developed by Vanapalli and Fredlund to formulate rainfall seeping how to affect the stability of unsaturated soil slope. Firstly, volumetric water content of unsaturated soil slope changes with rainfall duration, and effective saturation changes with its volumetric water content. Secondly, soil volume weight changes with its volumetric water content. Thirdly, matric suction also changes with its volumetric water content. According to these causes, this article researches how much they make the contribution to the minimum safety coefficient respectively. At last, these factors roundly considered, this article gets the rule of minimum safety coefficient of unsaturated soil slope with rainfall duration that is minimum safety coefficient gradually increasing firstly, then decreasing that is composed of two sectors, first is slowly decreasing, then is fast decreasing after some value.

  6. Repository site data report for unsaturated tuff, Yucca Mountain, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    Tien, P.L.; Updegraff, C.D.; Siegel, M.D.; Wahi, K.K.; Guzowski, R.V.

    1985-11-01

    The US Department of Energy is currently considering the thick sequences of unsaturated, fractured tuff at Yucca Mountain, on the southwestern boundary of the Nevada Test Site, as a possible candidate host rock for a nuclear-waste repository. Yucca Mountain is in one of the most arid areas in the United States. The site is within the south-central part of the Great Basin section of the Basin and Range physiographic province and is located near a number of silicic calderas of Tertiary age. Although localized zones of seismic activity are common throughout the province, and faults are present at Yucca Mountain, the site itself is basically aseismic. No data are available on the composition of ground water in the unsaturated zone at Yucca Mountain. It has been suggested that the composition is bounded by the compositions of water from wells USW-H3, UE25p-1, J-13, and snow or rain. There are relatively few data available from Yucca Mountain on the moisture content and saturation, hydraulic conductivity, and characteristic curves of the unsaturated zone. The available literature on thermomechanical properties of tuff does not always distinguish between data from the saturated zone and data from the unsaturated zone. Geochemical, hydrologic, and thermomechanical data available on the unsaturated tuffs of Yucca Mountain are tabulated in this report. Where the data are very sparse, they have been supplemented by data from the saturated zone or from areas other than Yucca Mountain. 316 refs., 58 figs., 37 tabs.

  7. Repository site data report for unsaturated tuff, Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    The US Department of Energy is currently considering the thick sequences of unsaturated, fractured tuff at Yucca Mountain, on the southwestern boundary of the Nevada Test Site, as a possible candidate host rock for a nuclear-waste repository. Yucca Mountain is in one of the most arid areas in the United States. The site is within the south-central part of the Great Basin section of the Basin and Range physiographic province and is located near a number of silicic calderas of Tertiary age. Although localized zones of seismic activity are common throughout the province, and faults are present at Yucca Mountain, the site itself is basically aseismic. No data are available on the composition of ground water in the unsaturated zone at Yucca Mountain. It has been suggested that the composition is bounded by the compositions of water from wells USW-H3, UE25p-1, J-13, and snow or rain. There are relatively few data available from Yucca Mountain on the moisture content and saturation, hydraulic conductivity, and characteristic curves of the unsaturated zone. The available literature on thermomechanical properties of tuff does not always distinguish between data from the saturated zone and data from the unsaturated zone. Geochemical, hydrologic, and thermomechanical data available on the unsaturated tuffs of Yucca Mountain are tabulated in this report. Where the data are very sparse, they have been supplemented by data from the saturated zone or from areas other than Yucca Mountain. 316 refs., 58 figs., 37 tabs

  8. Performance evaluation of two black nickel and two black chrome solar collectors

    Science.gov (United States)

    Losey, R.

    1977-01-01

    The test program was based on the evaluation of four unique solar collectors described below: (1) black nickel collector surface with a desiccant drying bed, (2) black nickel collector surface without a desiccant drying bed, (3) black chrome collector surface with a dessicant drying bed, and (4) black chrome collector surface without a desiccant drying bed. The test program included three distinct phases: Initial performance evaluation, natural environmental aging, and post-aging performance evaluation. Results of Phase III testing conclusively indicated a higher normalized efficiency for Black Chrome surfaces when compared to Black Nickel.

  9. Development of XZ-1200 ripple-bed iodine adsorber

    International Nuclear Information System (INIS)

    The structure and specifications of XZ-1200 ripple-bed iodine adsorbers are described in detail. The performance of the adsorbers in use in Daya Bay NPP are presented and compared with that of the French ones

  10. Determination Of Adsorption And Paraffin Characterization Of Treatment To Adsorb Vegetable Oil

    International Nuclear Information System (INIS)

    Using vegetable oil repeatedly, beside affect on quality decline of food and the oil itself, it is harmful to human health. Some poisoning and carcinogenic symptom were founded with experiment using animals. According to that fact, the aim of the research is using paraffin and candle to adsorb used vegetable oil and to convert into solid sample, so it can be easily wasted. At first, 2 g of sample was poured into the heated oil, with gently stirrer until it turned cold and harden. Each sample and standard before and after treatment was characterized with Ftir, XRD, and DSc. The result shows that paraffins adsorbs 40 ml used vegetable oil with 2 g sample in proportion. That proportion is lower than the standard which can adsorb 66.67 ml vegetable oil in the same weight sample. The difference of paraffin and standard is caused by physical properties within that two materials, and it can be explained by Ftir, X-Ray Diffraction (XRD) and differential scanning calorimetry (DSc). Based on result of Ftir analysis, standard consented of saturated hydrocarbon compound (alkanes) whereas paraffin consisted of unsaturated hydrocarbon compound (alkenes). Infrared spectrum after treatment showed the changes of compound, O-H and esters group were formed and it shows characterised the adsorption process. The result of DSc analysis showed that crystalline the melting point of standard is 75,3oC and paraffin is 54,17oC. The result of analysis XRD, described that standard and paraffin before treatment are crystalline whereas after treatment are am orf

  11. Modelling plasticity of unsaturated soils in a thermodynamically consistent framework

    CERN Document Server

    Coussy, O

    2010-01-01

    Constitutive equations of unsaturated soils are often derived in a thermodynamically consistent framework through the use a unique 'effective' interstitial pressure. This later is naturally chosen as the space averaged interstitial pressure. However, experimental observations have revealed that two stress state variables were needed to describe the stress-strain-strength behaviour of unsaturated soils. The thermodynamics analysis presented here shows that the most general approach to the behaviour of unsaturated soils actually requires three stress state variables: the suction, which is required to describe the retention properties of the soil and two effective stresses, which are required to describe the soil deformation at water saturation held constant. Actually, it is shown that a simple assumption related to internal deformation leads to the need of a unique effective stress to formulate the stress-strain constitutive equation describing the soil deformation. An elastoplastic framework is then presented ...

  12. 36Cl studies of water movements deep within unsaturated tuffs

    International Nuclear Information System (INIS)

    Measurements of 36Cl in cuttings from a borehole that was drilled 387 m into unsaturated tuffs indicate the possible detection of significant radioactive decay of cosmogenic 36Cl in two of the samples. However, the 36Cl/Cl ratio was found to vary with the amount of pulverization of the cuttings. Work is in progress to separate the 36Cl/Cl data into cosmogenic and in situ components. The cosmogenic component will be used to trace very slow water movements through the unsaturated zone. Bomb pulse 36Cl was observed as deep as 153 m, and this identification is not constrained by the problem with pulverization. This work shows the efficacy of 36Cl measurements for detecting modern water movements deep in the unsaturated zone. 9 refs., 3 tabs

  13. A constitutive model for unsaturated cemented soils under cyclic loading

    CERN Document Server

    Yang, C; Pereira, Jean-Michel; Huang, M S

    2008-01-01

    On the basis of plastic bounding surface model, the damage theory for structured soils and unsaturated soil mechanics, an elastoplastic model for unsaturated loessic soils under cyclic loading has been elaborated. Firstly, the description of bond degradation in a damage framework is given, linking the damage of soil's structure to the accumulated strain. The Barcelona Basic Model (BBM) was considered for the suction effects. The elastoplastic model is then integrated into a bounding surface plasticity framework in order to model strain accumulation along cyclic loading, even under small stress levels. The validation of the proposed model is conducted by comparing its predictions with the experimental results from multi-level cyclic triaxial tests performed on a natural loess sampled beside the Northern French railway for high speed train and about 140 km far from Paris. The comparisons show the capabilities of the model to describe the behaviour of unsaturated cemented soils under cyclic loading.

  14. Revisiting the thermodynamics of hardening plasticity for unsaturated soils

    CERN Document Server

    Coussy, Olivier; Vaunat, Jean; 10.1016/j.compgeo.2009.09.003

    2010-01-01

    A thermodynamically consistent extension of the constitutive equations of saturated soils to unsaturated conditions is often worked out through the use a unique 'effective' interstitial pressure, accounting equivalently for the pressures of the saturating fluids acting separately on the internal solid walls of the pore network. The natural candidate for this effective interstitial pressure is the space averaged interstitial pressure. In contrast experimental observations have revealed that, at least, a pair of stress state variables was needed for a suitable framework to describe stress-strain-strength behaviour of unsaturated soils. The thermodynamics analysis presented here shows that the most general approach to the behaviour of unsaturated soils actually requires three stress state variables: the suction, which is required to describe the invasion of the soil by the liquid water phase through the retention curve; two effective stresses, which are required to describe the soil deformation at water saturati...

  15. Second European Conference on Unsaturated Soils, E-UNSAT 2012

    CERN Document Server

    Jommi, Cristina; D’Onza, Francesca; Unsaturated Soils: Research and Applications

    2012-01-01

    These volumes contain the contributions to the Second European Conference on Unsaturated Soils, E-UNSAT 2012, held in Napoli, Italy, in June 2012. The event is the second of a series of European conferences, and follows the first successful one, organised in Durham, UK, in 2008. The conference series is supported by Technical Committee 106 of the International Society of Soil Mechanics and Geotechnical Engineering on Unsaturated Soils. The published contributions were selected after a careful peer-review process. A collection of more than one hundred papers is included, addressing the three thematic areas experimental, including advances in testing techniques and soil behaviour, modelling, covering theoretical and constitutive issues together with numerical and physical modelling, and engineering, focusing on approaches, case histories and geo-environmental themes. The areas of application of the papers embrace most of the geotechnical problems related to unsaturated soils. Increasing interest in geo-environm...

  16. Parametric effects of glass reaction under unsaturated conditions

    International Nuclear Information System (INIS)

    Eventual liquid water contact of high-level waste glass stored under the unsaturated conditions anticipated at the Yucca Mountain site will be by slow intrusion of water into a breached container/canister assembly. The water flow patterns under these unsaturated conditions will vary, and the Unsaturated Test method has been developed by the YMP to study glass reaction. The results from seven different sets of tests done to investigate the effect of systematically varying parameters, such as glass composition, composition and degree of sensitization of 304L stainless steel, water input volume, and the interval of water contact are discussed. Glass reaction has been monitored over a period of five years, and the parametric effects can result in up to a ten-fold variance in the degree of glass reaction

  17. Optimization of plane plate solar collectors; Otimizacao de coletores solares de placas planas

    Energy Technology Data Exchange (ETDEWEB)

    Gomes, D.G.; Fico Junior, Nide G.C.R. [Centro Tecnico Aeroespacial, Sao Jose dos Campos, SP (Brazil). Inst. Tecnologico de Aeronautica. Div. de Engenharia Aeronautica]. E-mail: nide@aer.ita.cta.br

    2000-07-01

    This work presents a study on the theoretical optimization of the plane plates solar energy collectors performance with the introduction of a step-change on the plate fin profile, resulting in the material economy. A theoretical study of the optimization on the ratio cost factor/efficiency factor of the solar energy collector with four materials, with different plate thickness, used for the fin construction, as follows: copper, aluminium, steel and galvanized steel, as function of the distance among the tube centers. Based on the specifications of the materials and collector dimensions, a second optimization were performed taking into account the ratio cost/collector efficiency resulting from the ste-change introduction related to the collector localization. A collector with optimized dimensions was constructed, and efficiency tests performed in accordance with ASHRAE norm, specific for solar energy collectors. (author)

  18. Comparative test of two large solar collectors for solar field application

    DEFF Research Database (Denmark)

    Bava, Federico; Furbo, Simon

    2014-01-01

    order to decrease convection losses. The efficiencies of the collectors were tested for different flow rates and tilt angles. The effect of the change from laminar to turbulent regime was investigated as well. Numerical models of the two collectors were developed with the software Soleff and their......Two large solar collectors for solar heating plants were tested according to the standard norm EN 12975-2. The two collectors were almost identical, the only difference being a thin FEP (fluorinated ethylene propylene) foil interposed between the absorber and the glass cover in one of them, in....... Additionally, the collector efficiency of both collectors increased at higher flow rates and tilt angles. The models developed in Soleff fit the experimental results with an average error of 1% in case of fully laminar and turbulent flow, so that they are likely to be suitable to simulate the collector...

  19. Zeolites as alcohol adsorbents from aqueous solutions

    Directory of Open Access Journals (Sweden)

    Cekova Blagica

    2006-01-01

    Full Text Available The potential usage of zeolites as adsorbents for the removal of organic molecules from water was investigated in a series of experiments with aqueous solutions of lower alcohols. This could represent a simple solution to the problem of cleaning up industrial wastewater as well as recovering valuable chemicals at relatively low costs. Adsorption isotherms of the Langmuir type were applied, and calculations showed that the amount of propanol adsorbed on silicalite corresponded to approximately 70% of the pore volume. The adsorption process is simple, and recovery of the more concentrated products is easily done by heat treatment and/or at lowered pressures. Adsorption experiments with aqueous acetone showed that silicalite had approximately the same adsorption capacity for acetone as for n-propanol. Heats of adsorption were determined calorimetrically.

  20. Computer simulations of adsorbed liquid crystal films

    Science.gov (United States)

    Wall, Greg D.; Cleaver, Douglas J.

    2003-01-01

    The structures adopted by adsorbed thin films of Gay-Berne particles in the presence of a coexisting vapour phase are investigated by molecular dynamics simulation. The films are adsorbed at a flat substrate which favours planar anchoring, whereas the nematic-vapour interface favours normal alignment. On cooling, a system with a high molecule-substrate interaction strength exhibits substrate-induced planar orientational ordering and considerable stratification is observed in the density profiles. In contrast, a system with weak molecule-substrate coupling adopts a director orientation orthogonal to the substrate plane, owing to the increased influence of the nematic-vapour interface. There are significant differences between the structures adopted at the two interfaces, in contrast with the predictions of density functional treatments of such systems.

  1. Removal of micropollutants from water by nanocomposite membrane adsorbers

    OpenAIRE

    Niedergall, K.; Bach, M.; Hirth, T.; Tovar, G.E.M.; Schiestel, T.

    2014-01-01

    Nanoscaled spheric polymer adsorbers with a variety of chemical surface functionalities were synthesized by miniemulsion polymerization and inverse miniemulsion polymerization. The nanospheres were embedded in polyethersulfone (PES) matrices by a wet-phase inversion process to form nanocomposite membrane adsorbers. The resulting membrane adsorbers were characterized by scanning electron microscopy (SEM), pore size measurements, water flux measurements and various adsorption experiments. The m...

  2. Characterising electrospun nanofibre adsorbents for bioprocessing

    OpenAIRE

    Dods, S. R.

    2016-01-01

    Biopharmaceutical manufacturing is one of largest sectors in the world and purification steps are expensive. Packed-bed resins are widely used, but are limited by diffusion mass transfer. Convective mass transfer media offer improved productivities using high flowrates. Electrospun nanofibres are a non-woven with an open structure and high surface area. Cellulose acetate was electrospun into reproducible adsorbents and activation methodologies were evaluated. Aldehyde activation caused degrad...

  3. Green Adsorbents for Wastewaters: A Critical Review

    Directory of Open Access Journals (Sweden)

    George Z. Kyzas

    2014-01-01

    Full Text Available One of the most serious environmental problems is the existence of hazardous and toxic pollutants in industrial wastewaters. The major hindrance is the simultaneous existence of many/different types of pollutants as (i dyes; (ii heavy metals; (iii phenols; (iv pesticides and (v pharmaceuticals. Adsorption is considered to be one of the most promising techniques for wastewater treatment over the last decades. The economic crisis of the 2000s led researchers to turn their interest in adsorbent materials with lower cost. In this review article, a new term will be introduced, which is called “green adsorption”. Under this term, it is meant the low-cost materials originated from: (i agricultural sources and by-products (fruits, vegetables, foods; (ii agricultural residues and wastes; (iii low-cost sources from which most complex adsorbents will be produced (i.e., activated carbons after pyrolysis of agricultural sources. These “green adsorbents” are expected to be inferior (regarding their adsorption capacity to the super-adsorbents of previous literature (complex materials as modified chitosans, activated carbons, structurally-complex inorganic composite materials etc., but their cost-potential makes them competitive. This review is a critical approach to green adsorption, discussing many different (maybe in some occasions doubtful topics such as: (i adsorption capacity; (ii kinetic modeling (given the ultimate target to scale up the batch experimental data to fixed-bed column calculations for designing/optimizing commercial processes and (iii critical techno-economical data of green adsorption processes in order to scale-up experiments (from lab to industry with economic analysis and perspectives of the use of green adsorbents.

  4. Behavior of macromolecules in adsorbed layers

    Institute of Scientific and Technical Information of China (English)

    牟伯中[1; 姚恒申[2; 罗平亚[3

    2000-01-01

    A model for describing the behavior ot macromoiecuies in aosoroea layers is developed by introducing a concept of distribution density of layer thickness U based on stochastic process and probabilistic statistics. The molecular behavior of layers adsorbed on clay particle surfaces is discussed; the random distribution and its statistics of the layer thickness are given by incorporating experimental results with an ionic polyelectrolyte with the molecular weight of 1.08×106and chain charged density of 0.254.

  5. Indirect interactions of membrane-adsorbed cylinders

    OpenAIRE

    Weikl, Thomas R.

    2003-01-01

    Biological and biomimetic membranes often contain aggregates of embedded or adsorbed macromolecules. In this article, the indirect interactions of cylindrical objects adhering to a planar membrane are considered theoretically. The adhesion of the cylinders causes a local perturbation of the equilibrium membrane shape, which leads to membrane-mediated interactions. For a planar membrane under lateral tension, the interaction is repulsive for a pair of cylinders adhering to the same side of the...

  6. Research and Development of a Low Cost Solar Collector

    Energy Technology Data Exchange (ETDEWEB)

    Ansari, Asif; Philip, Lee; Thouppuarachchi, Chirath

    2012-08-01

    This is a Final Technical Report on the Research and Development completed towards the development of a Low Cost Solar Collector conducted under the DOE cost-sharing award EE-0003591. The objective of this project was to develop a new class of solar concentrators with geometries and manufacturability that could significantly reduce the fully installed cost of the solar collector field for concentrated solar thermal power plants. The goal of the project was to achieve an aggressive cost target of $170/m2, a reduction of up to 50% in the total installed cost of a solar collector field as measured against the current industry benchmark of a conventional parabolic trough. The project plan, and the detailed activities conducted under the scope of the DOE Award project addressed all major drivers that affect solar collector costs. In addition to costs, the study also focused on evaluating technical performance of new collector architectures and compared them to the performance of the industry benchmark parabolic trough. The most notable accomplishment of this DOE award was the delivery of a full-scale integrated design, manufacturing and field installation solution for a new class of solar collector architecture which has been classified as the Bi-Planar Fresnel Collector (BPFC) and may be considered as a viable alternative to the conventional parabolic trough, as well as the conventional Fresnel collectors. This was in part accomplished through the design and development, all the way through fabrication and test validation of a new class of Linear Planar Fresnel Collector architecture. This architecture offers a number of key differentiating features which include a planar light-weight frame geometry with small mass-manufacturable elements utilizing flat mirror sections. The designs shows significant promise in reducing the material costs, fabrication costs, shipping costs, and on-site field installation costs compared to the benchmark parabolic trough, as well as the

  7. Evaluation of tube to collector connection by hydraulic expansion method in PGV-1000 steam generators

    International Nuclear Information System (INIS)

    Research highlights: → The produced residual stresses in the collector body due to hydraulic expansion method have been compared with explosive method. → The residual stresses were obtained using two methods of FEM and strain gauging tests. → The effect of clearance between tube and collector on the residual stresses was investigated. → The contact stresses between the tube and collector interface were modeled and the required connection strength between tube and collector is estimated based on ASME rules and compared with FE results. - Abstract: Investigations on steam generators failure due to cracking in collector ligaments at perforated parts determined that connection process of the tubes to collector could be one of the main breakdown causes. The stability and strength of tube to collector joint is dependent to the geometry of tube and collector, the joining process and the operational conditions. In this research hydraulic expansion method has been considered as connection method of tube to collector. The Finite Element Method (FEM) was used to simulate the hydraulic expansion process and determine stress condition of the joints. The contact stresses between the tube and collector interface were modeled using contact elements of ANSYS program. Furthermore, the effect of clearance between tube and collector on the residual stresses around of joints was investigated. Some specimens from collector and tube materials were tested at various temperatures and their results were used at rate-independent multi-linear Mises plasticity model for FE analysis. Required connection strength between tube and collector is estimated based on ASME rules and compared with FE results. The results show that the residual tensile stresses could be greatly increased by decreasing of initial clearance. The highest value of residual stresses was observed around of collector holes nevertheless it was considerably lesser than obtained residual stresses in explosive method. The

  8. Optimal design of orientation of PV/T collector with reflectors

    International Nuclear Information System (INIS)

    Hybrid conversion of solar radiation implies simultaneous solar radiation conversion into thermal and electrical energy in the PV/Thermal collector. In order to get more thermal and electrical energy, flat solar radiation reflectors have been mounted on PV/T collector. To obtain higher solar radiation intensity on PV/T collector, position of reflectors has been changed and optimal position of reflectors has been determined by both experimental measurements and numerical calculation so as to obtain maximal concentration of solar radiation intensity. The calculated values have been found to be in good agreement with the measured ones, both yielding the optimal position of the flat reflector to be the lowest (5o) in December and the highest (38o) in June. In this paper, the thermal and electrical efficiency of PV/T collector without reflectors and with reflectors in optimal position have been calculated. Using these results, the total efficiency and energy-saving efficiency of PV/T collector have been determined. Energy-saving efficiency for PV/T collector without reflectors is 60.1%, which is above the conventional solar thermal collector, whereas the energy-saving efficiency for PV/T collector with reflectors in optimal position is 46.7%, which is almost equal to the values for conventional solar thermal collector. Though the energy-saving efficiency of PV/T collector decreases slightly with the solar radiation intensity concentration factor, i.e. the thermal and electrical efficiency of PV/T collector with reflectors are lower than those of PV/T collector without reflectors, the total thermal and electrical energy generated by PV/T collector with reflectors in optimal position are significantly higher than total thermal and electrical energy generated by PV/T collector without reflectors.

  9. Leaching from solidified waste forms under saturated and unsaturated conditions

    International Nuclear Information System (INIS)

    The leaching behavior of nitrate ion from a cement based waste form containing low-level radioactive waste was shown to be identical under saturated and unsaturated soil conditions. Only in soils containing less than 2 wt %water did the leach rate decrease. The observation of identical leach rates under saturated and unsaturated conditions is explained by diffusion through the waste form being the limiting step. Diffusion through the soil decreases in very dry soil and the limiting step changes. These laboratory tests were verified by measurements on similar, Portland cement based waste form in a field lysimeter

  10. Process for making unsaturated hydrocarbons using microchannel process technology

    Science.gov (United States)

    Tonkovich, Anna Lee; Yuschak, Thomas; LaPlante, Timothy J.; Rankin, Scott; Perry, Steven T.; Fitzgerald, Sean Patrick; Simmons, Wayne W.; Mazanec, Terry Daymo, Eric

    2011-04-12

    The disclosed invention relates to a process for converting a feed composition comprising one or more hydrocarbons to a product comprising one or more unsaturated hydrocarbons, the process comprising: flowing the feed composition and steam in contact with each other in a microchannel reactor at a temperature in the range from about 200.degree. C. to about 1200.degree. C. to convert the feed composition to the product, the process being characterized by the absence of catalyst for converting the one or more hydrocarbons to one or more unsaturated hydrocarbons. Hydrogen and/or oxygen may be combined with the feed composition and steam.

  11. Phase separation during radiation crosslinking of unsaturated polyester resin

    International Nuclear Information System (INIS)

    Phase separation during radiation-initiated crosslinking of unsaturated polyester resin was studied. Residual reactivity of liquid phases and gels of partially cured samples was determined by DSC. Uncured resin and liquid phases showed double reaction exotherm, gels had a single maximum that corresponded to higher-temperature maximum of liquid parts. The lower-temperature process was attributed to styrene-polyester copolymerization. At higher temperatures, polyester unsaturations that remained unreacted due to microgel formation homopolymerized. FTIR revealed different composition of phases. In thicker samples, reaction heat influenced microgel formation causing delayed appearance of gel and faster increase in conversion

  12. Reaction Behavior of Unsaturated Compounds in Sub- and Supercritical Water

    Institute of Scientific and Technical Information of China (English)

    K. Kobiro

    2005-01-01

    @@ 1Introduction Much attention has been paid on the chemistry of sub- and supercritical water, because of their unique prosperities such as low viscosity, low polarity, and high solubility to organic compounds[1]. Recently, the unique sub- and supercritical water is applied as reaction media and reaction catalysts for organic reactions[2,3].We herein disclose the unique reaction of unsaturated compounds in sub- and supercritical water with specific interaction between unsaturated bond(s) and high-density and high-energy water molecule(s) in sub- and supercritical water.

  13. Impact of Microorganisms on Unsatured Flow within Fractures

    Energy Technology Data Exchange (ETDEWEB)

    Daphne L. Stoner; Robert D. Stedtfeld; Tina L. Tyler; Fred J. White; Timothy R. McJunkin; Randall LaViolette

    2003-09-01

    An experiment is described in which a groundwater bacterium, Sphingomonas sp., influenced the dynamics of unsaturated flow at a fracture intersection. A washed cell suspension increased by three-fold the length of time that water pooled at the fracture intersection. On the other hand, the addition of growth substrates resulted in cell growth and the conversion from intermittent to continuous flow behavior at the fracture intersection. The results suggest that microbial properties and processes need to be included with other important variables for understanding unsaturated flow in fractured geomatrices.

  14. Orbital tomography for highly symmetric adsorbate systems

    Science.gov (United States)

    Stadtmüller, B.; Willenbockel, M.; Reinisch, E. M.; Ules, T.; Bocquet, F. C.; Soubatch, S.; Puschnig, P.; Koller, G.; Ramsey, M. G.; Tautz, F. S.; Kumpf, C.

    2012-10-01

    Orbital tomography is a new and very powerful tool to analyze the angular distribution of a photoemission spectroscopy experiment. It was successfully used for organic adsorbate systems to identify (and consequently deconvolute) the contributions of specific molecular orbitals to the photoemission data. The technique was so far limited to surfaces with low symmetry like fcc(110) oriented surfaces, owing to the small number of rotational domains that occur on such surfaces. In this letter we overcome this limitation and present an orbital tomography study of a 3,4,9,10-perylene-tetra-carboxylic-dianhydride (PTCDA) monolayer film adsorbed on Ag(111). Although this system exhibits twelve differently oriented molecules, the angular resolved photoemission data still allow a meaningful analysis of the different local density of states and reveal different electronic structures for symmetrically inequivalent molecules. We also discuss the precision of the orbital tomography technique in terms of counting statistics and linear regression fitting algorithm. Our results demonstrate that orbital tomography is not limited to low-symmetry surfaces, a finding which makes a broad field of complex adsorbate systems accessible to this powerful technique.

  15. Bilinear reduced order approximate model of parabolic distributed solar collectors

    KAUST Repository

    Elmetennani, Shahrazed

    2015-07-01

    This paper proposes a novel, low dimensional and accurate approximate model for the distributed parabolic solar collector, by means of a modified gaussian interpolation along the spatial domain. The proposed reduced model, taking the form of a low dimensional bilinear state representation, enables the reproduction of the heat transfer dynamics along the collector tube for system analysis. Moreover, presented as a reduced order bilinear state space model, the well established control theory for this class of systems can be applied. The approximation efficiency has been proven by several simulation tests, which have been performed considering parameters of the Acurex field with real external working conditions. Model accuracy has been evaluated by comparison to the analytical solution of the hyperbolic distributed model and its semi discretized approximation highlighting the benefits of using the proposed numerical scheme. Furthermore, model sensitivity to the different parameters of the gaussian interpolation has been studied.

  16. Low work function silicon collector for thermionic converters

    Science.gov (United States)

    Chang, K. H.; Shimada, K.

    1976-01-01

    To improve the efficiency of present thermionic converters, single crystal silicon was investigated as a low work function collector material. The experiments were conducted in a test vehicle which resembled an actual thermionic converter. Work function as low as 1.0eV was obtained with an n-type silicon. The stabilities of the activated surfaces at elevated temperatures were tested by raising the collector temperature up to 829 K. By increasing the Cs arrival rate, it was possible to restore the originally activated low work function of the surface at elevated surface temperatures. These results, plotted in the form of Rasor-Warner curve, show a behavior similar to that of metal electrode except that the minimum work function was much lower with silicon than with metals.

  17. Evaluation of Surface Slope Irregularity in Linear Parabolic Solar Collectors

    Directory of Open Access Journals (Sweden)

    F. Francini

    2012-01-01

    Full Text Available The paper describes a methodology, very simple in its application, for measuring surface irregularities of linear parabolic collectors. This technique was principally developed to be applied in cases where it is difficult to use cumbersome instruments and to facilitate logistic management. The instruments to be employed are a digital camera and a grating. If the reflector surface is defective, the image of the grating, reflected on the solar collector, appears distorted. Analyzing the reflected image, we can obtain the local slope of the defective surface. These profilometric tests are useful to identify and monitor the mirror portions under mechanical stress and to estimate the losses caused by the light rays deflected outside the absorber.

  18. A novel collector RL for flotation of bauxite

    Institute of Scientific and Technical Information of China (English)

    卢毅屏; 张国范; 冯其明; 欧乐明

    2002-01-01

    The flotation properties of single minerals such as diaspore, kaolinite and pyrophllite in bauxites were investigated using RL as collector. The effects of regulators and unavoidable ions on flotation were studied. Based on the results of single minerals flotation, the separation experiments of mixed minerals and bauxite ore were carried out. The results of closed circuit test on the ore show that, using RL as collector, Na2CO3 and (NaPO3)6 as modifiers, the grade of Al2O3 and SiO2 are respectively 70.74% and 6.37% in concentrate (Al/Si 11.11), and the recovery of Al2O3 can reach 90.52%.

  19. Towards high throughput screening of nanoparticle flotation collectors.

    Science.gov (United States)

    Abarca, Carla; Yang, Songtao; Pelton, Robert H

    2015-12-15

    To function as flotation collectors for mineral processing, polymeric nanoparticles require a delicate balance of surface properties to give mineral-specific deposition and colloidal stability in high ionic strength alkaline media, while remaining sufficiently hydrophobic to promote flotation. Combinatorial nanoparticle surface modification, in conjunction with high throughput screening, is a promising approach for nanoparticle development. However, efficient automated screening assays are required to reject ineffective particles without having to undergo time consuming flotation testing. Herein we demonstrate that determining critical coagulation concentrations of sodium carbonate in combination with measuring the advancing water contact angle of nanoparticle-saturated glass surfaces can be used to screen ineffective nanoparticles. Finally, none of our first nanoparticle library based on poly(ethylene glycol) methyl ether methacrylate (PEG-methacrylate) were effective flotation collectors because the nanoparticles were too hydrophilic. PMID:26319325

  20. Water heating solar system using collector with polycarbonate absorber surface

    Energy Technology Data Exchange (ETDEWEB)

    Souza, Luiz Guilherme Meira de; Sodre, Dilton; Cavalcanti, Eduardo Jose Cidade; Souza, Luiz Guilherme Vieira Meira de; Mendes, Jose Ubiragi de Lima [Universidade Federal do Rio Grande do Norte (UFRN), Natal, RN (Brazil)], e-mails: lguilherme@dem.ufrn.br, diltonsodre@ifba.edu.br, ubiragi@ct.ufrn.br

    2010-07-01

    It is presented s solar collector to be used in a heating water for bath system, whose main characteristics are low cost and easy fabrication and assembly processes. The collector absorber surface consists of a polycarbonate plate with an area of 1.5 m{sup 2}. The water inlet and outlet are made of PVC 50mm, and were coupled to a 6mm thick polycarbonate plate using fiberglass resin. A 200 liters thermal reservoir will be used. This reservoir is also alternative. The absorber heating system works under thermo-siphon regimen. Thermal parameters will be evaluated to prove the feasibility of the studied solar heating system to obtain bath water for a four people family. (author)

  1. Owens--Illinois liquid solar collector materials assessment

    Energy Technology Data Exchange (ETDEWEB)

    Nichols, R. L.

    1978-03-01

    The Marshall Space Flight Center (MSFC) was requested by the Energy Research and Development Agency (ERDA) to assess the general suitability of the design and materials and to investigate certain failure modes of the Owens-Illinois (O-I) Sunpak solar energy collector system. The primary problem was the violent fracture of collector tubes, with attendant scattering of glass fragments, under boilout conditions. The data and information generated during the materials analysis segment of this effort are presented. These data were obtained during pressure testing of the individual tubes, performance testing of a complete array of tubes on the MSFC solar simulator apparatus, and in other investigations as noted. The information herein represents only the data directly associated with materials analysis and is not a comprehensive presentation of all the data compiled during the MSFC test program.

  2. Thermal advantage of tracking solar collectors under Danish weather conditions

    DEFF Research Database (Denmark)

    Andersen, Elsa; Dragsted, Janne; Furbo, Simon;

    2010-01-01

    Theoretical investigations have been carried out with the aim to elucidate the thermal advantage of tracking solar collectors for different weather conditions in Kgs. Lyngby, Denmark (55.8°N), and for the weather conditions in Sisimiut, Greenland (66.9°N), just north of the arctic circle....... The investigations are based on calculations with a newly developed program. Measured weather data from a solar radiation measurement station at Technical University of Denmark in Kgs. Lyngby Denmark in the period 1990 to 2002 and the Danish Design Reference Year, DRY data file are used in the investigations....... The weather data used for Sisimiut are based on a Test Reference Year, TRY weather data file. The thermal advantages of different tracking strategies is investigated for two flat plate solar collectors with different efficiencies, operated at different temperature levels. The investigations show...

  3. Building integrated solar thermal collectors for heating & cooling applications

    OpenAIRE

    Buker, Mahmut Sami

    2015-01-01

    International Energy Agency Solar Heating & Cooling (IEA SHC) programme states the fact that space/water heating and cooling demand account for over 75% of the energy consumed in single and multi-family homes. Solar energy technology can meet up to 100% of this demand depending on the size of the system, storage capacity, the heat load and the region’s climate. Solar thermal collectors are particular type of heat extracting devices that convert solar radiation into thermal energy through a...

  4. Thermal performance of evacuated tube heat pipe solar collector

    Science.gov (United States)

    Putra, Nandy; Kristian, M. R.; David, R.; Haliansyah, K.; Ariantara, Bambang

    2016-06-01

    The high fossil energy consumption not only causes the scarcity of energy but also raises problems of global warming. Increasing needs of fossil fuel could be reduced through the utilization of solar energy by using solar collectors. Indonesia has the abundant potential for solar energy, but non-renewable energy sources still dominate energy consumption. With heat pipe as passive heat transfer device, evacuated tube solar collector is expected to heat up water for industrial and home usage without external power supply needed to circulate water inside the solar collector. This research was conducted to determine the performance of heat pipe-based evacuated tube solar collector as solar water heater experimentally. The experiments were carried out using stainless steel screen mesh as a wick material, and water and Al2O3-water 0.1% nanofluid as working fluid, and applying inclination angles of 0°, 15°, 30°, and 45°. To analyze the heat absorbed and transferred by the prototype, water at 30°C was circulated through the condenser. A 150 Watt halogen lamp was used as sun simulator, and the prototype was covered by an insulation box to obtain a steady state condition with a minimum affection of ambient changes. Experimental results show that the usage of Al2O3-water 0.1% nanofluid at 30° inclination angle provides the highest thermal performance, which gives efficiency as high as 0.196 and thermal resistance as low as 5.32 °C/W. The use of nanofluid as working fluid enhances thermal performance due to high thermal conductivity of the working fluid. The increase of the inclination angle plays a role in the drainage of the condensate to the evaporator that leads to higher thermal performance until the optimal inclination angle is reached.

  5. Evaluation of the Megaduct sweat collector for mineral analysis

    International Nuclear Information System (INIS)

    Accurate measurement of sweat mineral loss is important for whole body mineral balance estimates and dietary reference intake formulation. Currently, common localized sweat collection methods such as the pouch and patch techniques may be limited by skin encapsulation and/or hidromeiosis, which may alter sweat mineral concentrations. The design of the newly developed Megaduct sweat collector may avoid these possible limitations. Therefore, the purpose of this study was to evaluate the utility of the Megaduct sweat collector for mineral analysis. Megaduct sweat collectors were affixed to ten volunteers on the final day of a heat acclimation protocol; collection time, sweat volume, and mineral concentrations of calcium, copper, iron, potassium, sodium, and zinc were measured. Megaduct filling required a collection period of 62 ± 3 min due to a small collection surface (22.1 cm2). The mineral content of the sweat was 0.3 ± 0.1 mmol L−1, 1.5 ± 1.5 µmol L−1, 8.5 ± 2.1 mmol L−1, 43.2 ± 15.0 mmol L−1, and 10.1 ± 5.7 µmol L−1 for Ca, Cu, K, Na, and Zn, respectively. The Megaduct sweat collector appears to avoid skin encapsulation and hidromeiosis, and captures sweat with similar mineral concentrations as reported in the literature for pouches. However, the filling time of the Megaduct (>60 min) may not capture possible changes in sweat mineral concentrations that are documented to occur in as little as 15 to 30 min. (paper)

  6. Normalization and extension of single-collector efficiency correlation equation

    OpenAIRE

    Sethi, Rajandrea; Messina, Francesca; Marchisio, Daniele,

    2015-01-01

    The colloidal transport and deposition are important phenomena involved in many engineering problems. In the environmental engineering field the use of micro- and nano-scale zerovalent iron (M-NZVI) is one of the most promising technologies for groundwater remediation. Colloid deposition is normally studied from a micro scale point of view and the results are then implemented in macro scale models that are used to design field-scale applications. The single collector efficiency concept predic...

  7. Preparation of Curled Micro bers by Electrospinning with Tip Collector

    Institute of Scientific and Technical Information of China (English)

    TANG Cheng-Chun; CHEN Jun-Chi; LONG Yun-Ze; YIN Hong-Xing; SUN Bin; ZHANG Hong-Di

    2011-01-01

    We report on curled polyvinylpyrrolidone (PVP) microfibers fabricated by a modified electrospinning with a small nail as the tip collector. PVP (45 wt%) ethanol solution is electrospun under different working voltages ranging from 10 to 15, 20, 30 and 40kV. It is found that with the increase of working voltage, the proportion of the curled fibers increases and the uniformity of the curled fibers improves, as well as the repeat distance of the curled structures reducing. Particularly, some curled fibers develop into helical structures under relatively high voltages. Further analyses indicate that the formation mechanism for the curled polymer fibers can be ascribed to electrical driven bending instability and/or mechanical jet buckling when hitting the collector surface. This modified electrospinning technique may be a cost-effective approach for the mass production of curled microfibers.%@@ We report on curled polyvinylpyrrolidone(PVP) microfibers fabricated by a modified electrospinning with a small nail as the tip collector.PVP(45 wt%) ethanol solution is electrospun under different working voltages ranging from 10 to 15,20,30 and 40kV.It is found that with the increase of working voltage,the proportion of the curled fibers increases and the uniformity of the curled fibers improves,as well as the repeat distance of the curled structures reducing.Particularly,some curled fibers develop into helical structures under relatively high voltages.Further analyses indicate that the formation mechanism for the curled polymer fibers can be ascribed to electrical driven bending instability and/or mechanical jet buckling when hitting the collector surface.This modified electrospinning technique may be a cost-effective approach for the mass production of curled microfibers.

  8. Parabolic-trough solar collectors and their applications

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez-Garcia, A.; Zarza, E.; Valenzuela, L. [CIEMAT-Plataforma Solar de Almeria, Ctra. Senes, km. 4, Tabernas (Almeria) 04200 (Spain); Perez, M. [Departamento de Fisica Aplicada, Universidad de Almeria, Almeria 04120 (Spain)

    2010-09-15

    This paper presents an overview of the parabolic-trough collectors that have been built and marketed during the past century, as well as the prototypes currently under development. It also presents a survey of systems which could incorporate this type of concentrating solar system to supply thermal energy up to 400 C, especially steam power cycles for electricity generation, including examples of each application. (author)

  9. Functionalization of Magnetite Nanoparticles as Oil Spill Collector

    OpenAIRE

    Atta, Ayman M.; Al-Lohedan, Hamad A.; Sami A. Al-Hussain

    2015-01-01

    In the present study, a new magnetic powder based on magnetite can be used as a petroleum crude oil collector. Amidoximes based on rosin as a natural product can be prepared from a reaction between hydroxylamine and rosin/acrylonitrile adducts. The produced rosin amidoximes were used as capping agents for magnetite nanoparticles to prepare hydrophobic coated magnetic powders. A new class of monodisperse hydrophobic magnetite nanoparticles was prepared by a simple and inexpensive co-precipitat...

  10. Operational experiences with solar air collector driven desiccant cooling systems

    Energy Technology Data Exchange (ETDEWEB)

    Eicker, Ursula; Schneider, Dietrich; Schumacher, Juergen [Faculty of Civil Engineering, Building Physics and Economics, University of Applied Sciences Stuttgart, Schellingstrasse 24, D-70174 Stuttgart (Germany); Ge, Tianshu; Dai, Yanjun [Faculty of Civil Engineering, Building Physics and Economics, University of Applied Sciences Stuttgart, Schellingstrasse 24, D-70174 Stuttgart (Germany); Institute of Refrigeration and Cryogenics, Solar Energy Research Center, Shanghai Jiao Tong University, Shanghai 200240 (China)

    2010-12-15

    Component performance and seasonal operational experiences have been analysed for desiccant cooling systems powered by solar air collectors. Measurements during the commissioning phase in Spain (public library) and in Germany (production hall) showed that the dehumidification efficiency of the sorption rotors was 80% and the humidification efficiency of the contact evaporators was 85-86%. Only in a two-stage desiccant system monitored in China (laboratory building), a dehumidification efficiency of 88% was reached. The rotary heat exchangers only had 62-68% measured heat recovery efficiency, which is lower than specified. Seasonal performance monitoring carried out in the German installation showed that average seasonal COP's were close to 1.0, when related to all operation hours. COP's increase if low regeneration temperatures are used with low dehumidification rates, which is often sufficient for moderate German climatic conditions, but much less so in the humid Chinese climate. Electrical COP's for the German system including air distribution were between 1.7 and 4.6 and reach values of 7.4, when only additional pressure drops of the desiccant unit are considered. It could be shown that conventional control strategies lead to high auxiliary energy consumption, for example if fixed heating setpoint temperatures are used. Furthermore the solar air collector energy yield was very low in the German system, as regeneration was only used when all other options such as humidification at high air volume flows did not reduce the room air temperature enough. The studies showed that the measured auxiliary energy consumption could be reduced to near zero, if regeneration temperature setpoints were not fixed to constant values. The solar air collector efficiency was good at about 50% both for the flat plate collectors used in Spain and Germany and the Chinese vacuum tube solution. A cost analysis demonstrated the viability of the concept, if some funding of

  11. Direct steam generation in line-focus solar collectors

    Science.gov (United States)

    May, E. K.; Murphy, L. M.

    1983-01-01

    The performance benefits of the direct (in situ) generation of steam in the receiver tube of a line focus solar collector were assessed. Compared to existing technology using steam flash or unfired boiler systems, the in situ technique could produce 25% more steam at a reduced delivery cost. It is indicated that two phase flow instabilities, if present, can be readily controlled, and that the possibility of freezing is not an impediment to using water in cold climates.

  12. Assessment of existing studies of wind loading on solar collectors

    Energy Technology Data Exchange (ETDEWEB)

    Murphy, L. M.

    1981-02-01

    In developing solar collectors, wind loading is the major structural design consideration. Wind loading investigations have focused on establishing safe bounds for steady state loading and verifying rational but initial and conservative design approaches for the various solar collector concepts. As such, the effort has been very successful, and has contributed greatly to both the recognition and qualitative understanding of many of the physical phenomena involved. Loading coefficients corresponding to mean wind velocities have been derived in these prior studies to measure the expected structural loading on the various solar collectors. Current design and testing procedures for wind loading are discussed. The test results corresponding to numerous wind tests on heliostats, parabolic troughs, parabolic dishes, and field mounted photovoltaic arrays are discussed and the applicability of the findings across the various technologies is assessed. One of the most significant consistencies in the data from all the technologies is the apparent benefit provided by fences and field shielding. Taken in toto, these data show that load reductions of three or possibly more seem feasible, though a more thorough understanding of the phenomena involved must be attained before this benefit can be realized. It is recommended that the required understanding be developed to take advantage of this benefit and that field tests be conducted to correlate with both analyses and tests.

  13. Performance Simulation Comparison for Parabolic Trough Solar Collectors in China

    Directory of Open Access Journals (Sweden)

    Jinping Wang

    2016-01-01

    Full Text Available Parabolic trough systems are the most used concentrated solar power technology. The operating performance and optical efficiency of the parabolic trough solar collectors (PTCs are different in different regions and different seasons. To determine the optimum design and operation of the parabolic trough solar collector throughout the year, an accurate estimation of the daily performance is needed. In this study, a mathematical model for the optical efficiency of the parabolic trough solar collector was established and three typical regions of solar thermal utilization in China were selected. The performance characteristics of cosine effect, shadowing effect, end loss effect, and optical efficiency were calculated and simulated during a whole year in these three areas by using the mathematical model. The simulation results show that the optical efficiency of PTCs changes from 0.4 to 0.8 in a whole year. The highest optical efficiency of PTCs is in June and the lowest is in December. The optical efficiency of PTCs is mainly influenced by the solar incidence angle. The model is validated by comparing the test results in parabolic trough power plant, with relative error range of 1% to about 5%.

  14. Thin-film absorber for a solar collector

    Energy Technology Data Exchange (ETDEWEB)

    Wilhelm, W.G.

    1982-02-09

    This invention pertains to energy absorbers for solar collectors, and more particularly to high performance thin film absorbers. The solar collectors comprising the absorber of this invention overcome several problems seen in current systems, such as excessive hardware, high cost and unreliability. In the preferred form, the apparatus features a substantially rigid planar frame with a thin film window bonded to one planar side of the frame. An absorber in accordance with the present invention is comprised of two thin film layers that are sealed perimetrically. In a preferred embodiment, thin film layers are formed from a metal/plastic laminate. The layers define a fluid-tight planar envelope of large surface area to volume through which a heat transfer fluid flows. The absorber is bonded to the other planar side of the frame. The thin film construction of the absorber assures substantially full envelope wetting and thus good efficiency. The window and absorber films stress the frame adding to the overall strength of the collector.

  15. Hybrid solar collector using nonimaging optics and photovoltaic components

    Science.gov (United States)

    Winston, Roland; Yablonovitch, Eli; Jiang, Lun; Widyolar, Bennett K.; Abdelhamid, Mahmoud; Scranton, Gregg; Cygan, David; Kozlov, Alexandr

    2015-08-01

    The project team of University of California at Merced (UC-M), Gas Technology Institute, and Dr. Eli Yablonovitch of University of California at Berkeley developed a novel hybrid concentrated solar photovoltaic thermal (PV/T) collector using nonimaging optics and world record single-junction Gallium arsenide (GaAs) PV components integrated with particle laden gas as thermal transfer and storage media, to simultaneously generate electricity and high temperature dispatchable heat. The collector transforms a parabolic trough, commonly used in CSP plants, into an integrated spectrum-splitting device. This places a spectrum-sensitive topping element on a secondary reflector that is registered to the thermal collection loop. The secondary reflector transmits higher energy photons for PV topping while diverting the remaining lower energy photons to the thermal media, achieving temperatures of around 400°C even under partial utilization of the solar spectrum. The collector uses the spectral selectivity property of Gallium arsenide (GaAs) cells to maximize the exergy output of the system, resulting in an estimated exergy efficiency of 48%. The thermal media is composed of fine particles of high melting point material in an inert gas that increases heat transfer and effectively stores excess heat in hot particles for later on-demand use.

  16. Solar evacuated tube collector: absorption chiller systems simulation

    Energy Technology Data Exchange (ETDEWEB)

    Leflar, J.A.; Duff, W.S.

    1977-12-01

    A residential air conditioning system incorporating an Arkla Solaire absorption chiller and Corning Glass Works evacuated tube collectors is simulated and the design parameters studied. Mathematical models of the evacuated tube collector and Arkla absorption chiller based on experimental results of the components have been created and incorporated into a complete system simulation. The chiller model includes transient start-up effects and the evacuated tube collector model includes numerous optical effects. A standard Arkla chiller in a humid climate (Washington, D.C.) and an Arkla unit with a modified charge for dry climates (Fort Collins, Colorado) are studied. Design parameters considered include the use of chilled water storage to reduce transient start-up effects of the absorption unit, the effects of removing heat from the solar system for preheating service hot water, the use of a tempering valve to prevent over-firing of the absorption unit in dry climates, and solar storage sizing considerations. The study results and conclusions are used to specify a cooling system design.

  17. Humidification dehumidification desalination system using parabolic trough solar air collector

    International Nuclear Information System (INIS)

    This paper deals with a detailed thermodynamic analysis to assess the performance of an HDH system with an integrated parabolic trough solar collector (PTSC). The HDH system considered is an open air, open water, air heated system that uses a PTSC as an air heater. Two different configurations were considered of the HDH system. In the first configuration, the solar air heater was placed before the humidifier whereas in the second configuration the solar air heater was placed between the humidifier and the dehumidifier. The current study revealed that PTSCs are well suited for air heated HDH systems for high radiation location, such as Dhahran, Saudi Arabia. The comparison between the two HDH configurations demonstrates that the gained output ratio (GOR) of the first configuration is, on average, about 1.5 whereas for the second configuration the GOR increases up to an average value of 4.7. The study demonstrates that the HDH configuration with the air heater placed between the humidifier and the dehumidifier has a better performance and a higher productivity. - Highlights: • Thermodynamic analysis of an HDH system driven by a parabolic trough solar collector was conducted. • The first configuration reveals a GOR of 1.5 while the second configuration reveals a GOR of 4.7. • Effective heating of the HDH system was obtained through parabolic trough solar collector

  18. Grid Collector: Facilitating Efficient Selective Access from DataGrids

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Kesheng; Gu, Junmin; Lauret, Jerome; Poskanzer, Arthur M.; Shoshani, Arie; Sim, Alexander; Zhang, Wei-Ming

    2005-05-17

    The Grid Collector is a system that facilitates the effective analysis and spontaneous exploration of scientific data. It combines an efficient indexing technology with a Grid file management technology to speed up common analysis jobs on high-energy physics data and to enable some previously impractical analysis jobs. To analyze a set of high-energy collision events, one typically specifies the files containing the events of interest, reads all the events in the files, and filters out unwanted ones. Since most analysis jobs filter out significant number of events, a considerable amount of time is wasted by reading the unwanted events. The Grid Collector removes this inefficiency by allowing users to specify more precisely what events are of interest and to read only the selected events. This speeds up most analysis jobs. In existing analysis frameworks, the responsibility of bringing files from tertiary storages or remote sites to local disks falls on the users. This forces most of analysis jobs to be performed at centralized computer facilities where commonly used files are kept on large shared file systems. The Grid Collector automates file management tasks and eliminates the labor-intensive manual file transfers. This makes it much easier to perform analyses that require data files on tertiary storages and remote sites. It also makes more computer resources available for analysis jobs since they are no longer bound to the centralized facilities.

  19. Electrophilic Activation of α,β-Unsaturated Amides: Catalytic Asymmetric Vinylogous Conjugate Addition of Unsaturated γ-Butyrolactones.

    Science.gov (United States)

    Zhang, Ming; Kumagai, Naoya; Shibasaki, Masakatsu

    2016-04-11

    Although catalytic asymmetric conjugate addition reactions have remarkably advanced over the last two decades, the application of less electrophilic α,β-unsaturated carboxylic acid derivatives in this useful reaction manifold remains challenging. Herein, we report that α,β-unsaturated 7-azaindoline amides act as reactive electrophiles to participate in catalytic diastereo- and enantioselective vinylogous conjugate addition of γ-butyrolactones in the presence of a cooperative catalyst comprising of a soft Lewis acid and a Brønsted base. Reactions mostly reached completion with as little as 1 mol % of catalyst loading to give the desired conjugate adducts in a highly stereoselective manner. PMID:26970428

  20. An Integrated Modeling Analysis of Unsaturated Flow Patterns in Fractured Rock

    OpenAIRE

    Wu, Yu-Shu; Lu, Guoping; Zhang, Keni; Pan, Lehua; Bodvarsson, Gudmundur S.

    2008-01-01

    Characterizing percolation patterns in unsaturated zones has posed a greater challenge to numerical modeling investigations than comparable saturated zone studies, because of the heterogeneous nature of unsaturated media as well as the great number of variables impacting unsaturated zone flow. This paper presents an integrated modeling methodology for quantitatively characterizing percolation patterns in the unsaturated zone of Yucca Mountain, Nevada, a proposed underground repository si...

  1. Air heating solar collectors and its applicability for room ventilation and heating

    International Nuclear Information System (INIS)

    This paper describes the results of the investigation the aim of which was to find new air heating solar collector constructions and easily to accessible materials which it is possible to use as absorbers. We tested the inflatable air heating solar collector construction. Inflatable solar collector gives good correlation with air heating degree and radiation (r=0.93). This type of collectors very sensitive to radiation changes, response time is only about 1 minute. Given type of air heating solar collectors is a good efficiency, the efficiency coefficient is Ș =0.63. Absorber materials (seed boxes made by polypropylene, black colored energy drink cans situated on steel-tinplate ) are tested for room heating and ventilating. Stationary air heating solar collectors for room heating are using in case, when sun radiation exceed 300 W/m2 , otherwise it is not effective or ambient air temperature is cooling room air. Collectors is recommended for room ventilation to reduce heat lost in cold weather. The collectors should be well insulated, especially if they are to be used in early spring, when ambient temperatures are low. These researches show air heating solar collectors applicability in room heating and ventilating, agricultural production drying at Latvia weather conditions Key words: solar collector, air heating, temperature, absorber

  2. Solar energy captured by a curved collector designed for architectural integration

    International Nuclear Information System (INIS)

    Highlights: • We present a new prototype of solar collector for architectural integration. • Equations of the solar radiation on a curved surface. • We compare the energy intercepted by the prototype with the energy intercepted by conventional collectors. • The prototype can be competitive compared with conventional collectors. - Abstract: In this paper we present a prototype for a new type of solar thermal collector designed for architectural integration. In this proposal, the conventional geometry of a flat solar thermal collector is changed to a curved geometry, to improve its visual impact when mounted on a building facade or roof. The mathematical equations for the beam and diffuse solar radiation received by a collector with this geometry are developed for two different orientations, horizontal and vertical. The performance of this curved prototype, in terms of solar radiation received, is compared with a conventional tilted-surface collector for different orientations in Madrid (Spain). The comparison is made for typical clear-sky days in winter and summer as well as for an entire year. The results demonstrate that the curved collector only receives between 12% and 25% less radiation than the conventional tilted-surface collectors when oriented horizontally, depending on the azimuth of the curved surface, although these percentages are reduced to approximately 50% when the collector is oriented vertically

  3. Removal of adsorbent particles od copper ions by Jet flotation

    International Nuclear Information System (INIS)

    The present study shows the results obtained on the removal of copper ions from synthetic effluents by using the adsorbent particles flotation technique (APF) in a Jet flotation cell (Jameson type). In a typical experimental run, a mineral with high quartz content was used as adsorbent particles in the adsorption and flotation experiments, to determine optimal pH conditions, adsorbent particles concentration; flotation reagents dosage and air/effluent flow ratio for applying in the Jet cell to maximize the efficiency of copper ions adsorptions and the removal of particles adsorbents containing the absorbed copper ions. The results indicate the at pH>7 and at adsorbent particles concentration of 2 kg.m-3, 99% of copper ions is adsorbed and, when the air/effluent flow ratio applied in the Jet cell is 0,2, 98% of absorbent particles containing the adsorbed copper ions is removed. (Author) 39 refs.

  4. Overall energy, exergy and carbon credit analysis by different type of hybrid photovoltaic thermal air collectors

    International Nuclear Information System (INIS)

    Highlights: ► Comparative study of PVT air collectors. ► CO2 analysis of all type of PVT air collectors. ► Study of thermal energy, exergy gain and exergy efficiency. ► Exergy efficiency of unglazed hybrid PVT tiles air collector is most efficient. - Abstract: In this paper, comparative analysis of different type of photovoltaic thermal (PVT) air collector namely: (i) unglazed hybrid PVT tiles, (ii) glazed hybrid PVT tiles and (iii) conventional hybrid PVT air collectors have been carried out for the composite climate of Srinagar (India). The comparative study has been carried out in terms of overall thermal energy and exergy gain, exergy efficiency and carbon credit earned by different type of hybrid PVT air collectors. It has been observed that overall annual thermal energy and exergy gain of unglazed hybrid PVT tiles air collector is higher by 27% and 29.3% respectively as compared to glazed hybrid PVT tiles air collector and by 61% and 59.8% respectively as compared to conventional hybrid PVT air collector. It has also been observed that overall annual exergy efficiency of unglazed and glazed hybrid PVT tiles air collector is higher by 9.6% and 53.8% respectively as compared to conventional hybrid PVT air collector. On the basis of comparative study, it has been concluded that CO2 emission reduction per annum on the basis of overall thermal energy gain of unglazed and glazed hybrid PVT tiles air collector is higher by 62.3% and 27.7% respectively as compared to conventional hybrid PVT air collector and on the basis of overall exergy gain it is 59.7% and 22.7%.

  5. Bio-olefins from unsaturated fatty acids via tandem catalysis

    Science.gov (United States)

    A new catalytic route to bio-olefins from unsaturated fatty acids will be described. At the heart of the process, the catalyst apparently functions in a tandem mode by both dynamically isomerizing the positions of double bonds in an aliphatic chain and, subsequently, decarboxylating specific isomers...

  6. A Unified Elastoplastic Model of Unsaturated Soils Considering Capillary Hysteresis

    Directory of Open Access Journals (Sweden)

    Tiantian Ma

    2013-01-01

    Full Text Available Unlike its saturated counterparts, the mechanical behavior of an unsaturated soil depends not only upon its stress history but also upon its hydraulic history. In this paper, a soil-water characteristic relationship which is capable of describing the effect of capillary hysteresis is introduced to characterize the influence of hydraulic history on the skeletal deformation. The capillary hysteresis is viewed as a phenomenon associated with the internal structural rearrangements in unsaturated soils, which can be characterized by using a set of internal state variables. It is shown that both capillary hysteresis and plastic deformation can be consistently addressed in a unified theoretical framework. Within this context, a constitutive model of unsaturated soils is developed by generalizing the modified Cam-Clay model. A hardening function is introduced, in which both the matric suction and the degree of saturation are explicitly included as hardening variables, so that the effect of hydraulic history on the mechanical response can be properly addressed. The proposed model is capable of capturing the main features of the unsaturated soil behavior. The new model has a hierarchical structure, and, depending upon application, it can describe the stress-strain relation and the soil-water characteristics in a coupled or uncoupled manner.

  7. Fe-Catalyzed Oxidative Cleavage of Unsaturated Fatty Acids

    NARCIS (Netherlands)

    Spannring, P.

    2013-01-01

    The oxidative cleavage of unsaturated fatty acids into aldehydes or carboxylic acids gives access to valuable products. The products can be used as chemical building blocks, as emulsifiers or in the paint or polymer industry. Ozonolysis is applied industrially to cleave the fatty acid oleic acid int

  8. Numerical methods for fluid flow in unsaturated heterogeneous tuff

    International Nuclear Information System (INIS)

    A numerical approach for modeling unsaturated flow is developed for heterogeneous simulations of fractured tuff generated using a geostatistical method. Cross correlations of hydrologic properties and upscaling of moisture retention curves is discussed. The approach is demonstrated for a study of infiltration at Yucca Mountain

  9. Heuristical Strategies on the Study Theme "The Unsaturated Hydrocarbons -- Alkenes"

    Science.gov (United States)

    Naumescu, Adrienne Kozan; Pasca, Roxana-Diana

    2011-01-01

    The influence of heuristical strategies upon the level of two experimental classes is studied in this paper. The didactic experiment took place at secondary school in Cluj-Napoca, in 2008-2009 school year. The study theme "The Unsaturated Hydrocarbons--Alkenes" has been efficiently learned by using the most active methods: laboratory…

  10. Unsaturated soil hydraulic conductivity: The field infiltrometer method

    Science.gov (United States)

    Theory: Field methods to measure the unsaturated soil hydraulic conductivity assume presence of steady-state water flow. Soil infiltrometers are desired to apply water onto the soil surface at constant negative pressure. Water is applied to the soil from the Marriott device through a porous membrane...

  11. The synthesis of some unsaturated 4-substituted-g-lactones

    Directory of Open Access Journals (Sweden)

    SUREN HUSINEC

    2000-02-01

    Full Text Available The synthesis of conjugated and nonconjugated unsaturated 4-substituted lactones of type 1 and 2 are described. The type 1 lactone was prepared by a two step procedure employing Bredereck's reagent. The type 2 lactone was synthesised by combining the Claisen-Ireland rearrangement and selenolactonisation.

  12. Unsaturated and Saturated Permeabilities of Fiber Reinforcement: Critics and Suggestions

    Directory of Open Access Journals (Sweden)

    Chung Hae ePARK

    2015-04-01

    Full Text Available In general, permeability measurement results show a strong scattering according to the measurement method, the type of test fluid and the fluid injection condition, even though permeability is regarded as a unique property of porous medium. In particular, the discrepancy between the unsaturated and saturated permeabilities for the same fabric has been widely reported. In the literature, relative permeability has been adopted to model the unsaturated flow. This approach has some limits in the modeling of double-scale porosity medium. We address this issue of permeability measurement by rigorously examining the mass conservation condition. Finally, we identify that the pressure gradient is non-linear with positive curvature in the unsaturated flow and a misinterpretation of pressure gradient is the main reason for the difference between the saturated and unsaturated permeabilities of the same fiber reinforcement. We propose to use a fixed value of permeability and to modify the mass conservation equation if there are air voids which are entrapped inside the fiber tow. Finally, we also suggest some guidelines and future perspectives to obtain more consistent permeability measurement results.

  13. Transport of citrate-coated silver nanoparticles in unsaturated sand

    Energy Technology Data Exchange (ETDEWEB)

    Kumahor, Samuel K., E-mail: samuel.kumahor@ufz.de [Department of Soil Physics, Helmholtz Centre for Environmental Research–UFZ, Theodor-Lieser-Strasse 4, 06120 Halle-Saale (Germany); Hron, Pavel, E-mail: pavel.hron@iwr.uni-heidelberg.de [Interdisciplinary Center for Scientific Computing, University of Heidelberg, Im Neuenheimer Feld 368, Raum 422, 69120 Heidelberg (Germany); Metreveli, George, E-mail: metreveli@uni-landau.de [Universität Koblenz-Landau, Institute for Environmental Sciences, Group of Environmental and Soil Chemistry, Fortstr. 7, D-76829 Landau (Germany); Schaumann, Gabriele E., E-mail: schaumann@uni-landau.de [Universität Koblenz-Landau, Institute for Environmental Sciences, Group of Environmental and Soil Chemistry, Fortstr. 7, D-76829 Landau (Germany); Vogel, Hans-Jörg, E-mail: hans-joerg.vogel@ufz.de [Department of Soil Physics, Helmholtz Centre for Environmental Research–UFZ, Theodor-Lieser-Strasse 4, 06120 Halle-Saale (Germany); Institute of Soil Science and Plant Nutrition, Martin-Luther-University Halle-Wittenberg, Von-Seckendorff-Platz 3, 06120 Halle-Saale (Germany)

    2015-12-01

    Chemical factors and physical constraints lead to coupled effects during particle transport in unsaturated porous media. Studies on unsaturated transport as typical for soils are currently scarce. In unsaturated porous media, particle mobility is determined by the existence of an air–water interface in addition to a solid–water interface. To this end, we measured breakthrough curves and retention profiles of citrate-coated Ag nanoparticles in unsaturated sand at two pH values (5 and 9) and three different flow rates corresponding to different water contents with 1 mM KNO{sub 3} as background electrolyte. The classical DLVO theory suggests unfavorable deposition conditions at the air–water and solid–water interfaces. The breakthrough curves indicate modification in curve shapes and retardation of nanoparticles compared to inert solute. Retention profiles show sensitivity to flow rate and pH and this ranged from almost no retention for the highest flow rate at pH = 9 to almost complete retention for the lowest flow rate at pH = 5. Modeling of the breakthrough curves, thus, required coupling two parallel processes: a kinetically controlled attachment process far from equilibrium, responsible for the shape modification, and an equilibrium sorption, responsible for particle retardation. The non-equilibrium process and equilibrium sorption are suggested to relate to the solid–water and air–water interfaces, respectively. This is supported by the DLVO model extended for hydrophobic interactions which suggests reversible attachment, characterized by a secondary minimum (depth 3–5 kT) and a repulsive barrier at the air–water interface. In contrast, the solid–water interface is characterized by a significant repulsive barrier and the absence of a secondary minimum suggesting kinetically controlled and non-equilibrium interaction. This study provides new insights into particle transport in unsaturated porous media and offers a model concept representing the

  14. Transport of citrate-coated silver nanoparticles in unsaturated sand

    International Nuclear Information System (INIS)

    Chemical factors and physical constraints lead to coupled effects during particle transport in unsaturated porous media. Studies on unsaturated transport as typical for soils are currently scarce. In unsaturated porous media, particle mobility is determined by the existence of an air–water interface in addition to a solid–water interface. To this end, we measured breakthrough curves and retention profiles of citrate-coated Ag nanoparticles in unsaturated sand at two pH values (5 and 9) and three different flow rates corresponding to different water contents with 1 mM KNO3 as background electrolyte. The classical DLVO theory suggests unfavorable deposition conditions at the air–water and solid–water interfaces. The breakthrough curves indicate modification in curve shapes and retardation of nanoparticles compared to inert solute. Retention profiles show sensitivity to flow rate and pH and this ranged from almost no retention for the highest flow rate at pH = 9 to almost complete retention for the lowest flow rate at pH = 5. Modeling of the breakthrough curves, thus, required coupling two parallel processes: a kinetically controlled attachment process far from equilibrium, responsible for the shape modification, and an equilibrium sorption, responsible for particle retardation. The non-equilibrium process and equilibrium sorption are suggested to relate to the solid–water and air–water interfaces, respectively. This is supported by the DLVO model extended for hydrophobic interactions which suggests reversible attachment, characterized by a secondary minimum (depth 3–5 kT) and a repulsive barrier at the air–water interface. In contrast, the solid–water interface is characterized by a significant repulsive barrier and the absence of a secondary minimum suggesting kinetically controlled and non-equilibrium interaction. This study provides new insights into particle transport in unsaturated porous media and offers a model concept representing the

  15. Adsorption equilibria and kinetics for phenol and cresol onto polymeric adsorbents: Effects of adsorbents/adsorbates structure and interface

    International Nuclear Information System (INIS)

    Phenol and cresol (o-, m-, and p-) were selected as the adsorbates with different dipole moment (cresol > phenol, methyl being electron-drawing group) and solubility (phenol > cresol, methyl being hydrophobic group). Macropore polymers (NDA-1800 and XAD-4), hypercrosslinked polymers (NDA-100), and chemically modified adsorbents (NDA-150 and NDA-99), were comparatively used to investigate the adsorption properties including equilibria, thermodynamics and kinetics. First, all of the results about equilibria show that the adsorption data fit well to the Freundlich model. The adsorption capacity of NDA-99 and NDA-150 especially for phenol is larger in a certain extent than other three types of polymers. The hydrophobic interaction from large specific surface was mainly occurred, while the polar groups containing oxygen and amine markedly enhance the adsorption process via hydrogen interaction. Furthermore, the adsorption amount for NDA-99 and XAD-4 decrease linearly with the solubility of solutes tested. Then, the negative values of enthalpy demonstrate the predominantly exothermic and physical solid-extraction processes. Finally, the relatively more rapid adsorption process could be found onto NDA-150 than NDA-99, with the reason of the double larger pore size of the former. In conclusion, solubility of solute, together with surface area, pore size and modified groups, extremely exerts influences to the adsorption performances

  16. Flow distribution in a solar collector panel with horizontally inclined absorber strips

    DEFF Research Database (Denmark)

    Fan, Jianhua; Shah, Louise Jivan; Furbo, Simon

    2007-01-01

    The objective of this work is to theoretically and experimentally investigate the flow and temperature distribution in a solar collector panel with an absorber consisting of horizontally inclined strips. Fluid flow and heat transfer in the collector panel are studied by means of computational fluid...... dynamics (CFD) calculations. Further, experimental investigations of a 12.5 m(2) solar collector panel with 16 parallel connected horizontal fins are carried out. The flow distribution through the absorber is evaluated by means of temperature measurements on the backside of the absorber tubes. The measured...... rate, properties of solar collector fluid, solar collector fluid inlet temperature and collector tilt angle are shown. The flow distribution through the absorber fins is uniform if high flow rates are used. By decreased flow rate and decreased content of glycol in the glycol/water mixture used as solar...

  17. Design and development of collector for C-band 250 kW CW Klystron

    International Nuclear Information System (INIS)

    The paper presents the design and development of collector for C-band 250 kW high power klystron. The design criteria for the collector assembly is selection of material, vacuum and high temperature compatibility, proper electron beam dispersion, minimum back scattering of electrons and thermal design for proper cooling at high power dissipation. All these aspects have been discussed for collector development in details. The collector has been designed in TRAK and then beam propagation has been analyzed in MAGIC 2D software. The thermal simulation has been done using ANSYS 11.0 (multi-physics). The outer surface of the collector has been grooved to facilitate its proper cooling. Design results are presented for water cooling with different flow rates and channel dimensions. OFHC copper material is chosen for collector which is suitable for vacuum and hydrogen brazing operations and good thermal properties for efficient cooling.

  18. Cleaning Surface Particle Contamination with Ultrapure Water (UPW) Megasonic Flow on Genesis Array Collectors

    Science.gov (United States)

    Allton, J. H.; Calaway, Michael J.; Hittle, J. D.; Rodriquez, M. C.; Stansbery, E. K.; McNamara, K. M.

    2006-01-01

    The hard landing experienced by the Genesis sample return capsule breached the science canister containing the solar wind collectors. This impact into the damp lakebed contaminated collector surfaces with pulverized collector and spacecraft materials and Utah sediment and brine residue. The gold foil, polished aluminum, and bulk metallic glass remained intact, but the solar wind bulk and regime-specific array collectors were jarred loose from their frames and fractured into greater than 10,000 specimens. After a year of investigation and cleaning experimentation, the Genesis Science Team determined that array collectors had 4 classes of contaminants: particles, molecular film, submicron inorganic particulate ("aerosol"), and pre-launch surface contamination. We discuss here use of megasonically energized ultrapure water (UPW) for removing particulate debris from array collector fragments.

  19. systematic investigations of foam separation of Nickel (l l) from dilute aqueous solutions; separation by adsorbing colloid flotation

    International Nuclear Information System (INIS)

    in the preceding parts we dealt with the application of the foam separation processes: ion and precipitate flotations for the separation of Ni (l l) from dilute aqueous solutions. Adsorbing colloid flotation (ACF), another type that has proved very useful, is the subject of this paper. ACF of Ni(l l) was investigated using Al (OH)3 as a colloidal carrier, cetyl trimethyl ammonium bromide (CTAB) or sodium lauryl sulphate (NaLs) either singly or in combination with gelatin as collectors. the precipitate flotation curve obtained for the carrier Al(OH)3, was compared with the corresponding theoretical one calculated from the data published for Al(I I I) hydrolysis. the effects of the different parameters that can influence the flotation process were determined . removals approaching 100% could be achieved under the optimum conditions. the results obtained were discussed with respect to the chemical state of Ni (l l), the ionization behaviour of the collectors, and properties of the carrier precipitate , and are compared with those results obtained by the ion and precipitate flotation techniques. the developed ACF process was successfully applied to the removal of Ni (l l) from radioactive wastewater

  20. DESIGN AND THERMAL ANALYSIS OF FIXED AND TRACKING FLAT PLATE COLLECTORS

    OpenAIRE

    *Sudarshan T A

    2016-01-01

    This paper focuses on Thermal efficiency analysis of flat plate collectors. The instantaneous efficiency for a collector over a day is calculated. Application of solar energy for domestic and industrial heating purposes has been become very popular. However the effectiveness of presently used fixed flat plate collectors is low due to the moving nature of the energy source. In the present work, an attempt has been made to compare the performance of fixed flat plate water heater with that of he...

  1. Energy, economic and environmental analysis of metal oxides nanofluid for flat-plate solar collector

    International Nuclear Information System (INIS)

    Highlights: • By using nanofluid, smaller and compact solar collector can be produced. • The average value of 220 MJ embodied energy can be saved. • The payback period of using nanofluid solar collector is around 2.4 years. • Around 170 kg less CO2 emissions in average for nanofluid solar collector. • Environmental damage cost is lower with the nanofluid based solar collector. - Abstract: For a solar thermal system, increasing the heat transfer area can increase the output temperature of the system. However, this approach leads to a bigger and bulkier collector. It will then increase the cost and energy needed to manufacture the solar collector. This study is carried out to estimate the potential to design a smaller solar collector that can produce the same desired output temperature. This is possible by using nanofluid as working fluid. By using numerical methods and data from literatures, efficiency, size reduction, cost and embodied energy savings are calculated for various nanofluids. From the study, it was estimated that 10,239 kg, 8625 kg, 8857 kg and 8618 kg total weight for 1000 units of solar collectors can be saved for CuO, SiO2, TiO2 and Al2O3 nanofluid respectively. The average value of 220 MJ embodied energy can be saved for each collector, 2.4 years payback period can be achieved and around 170 kg less CO2 emissions in average can be offset for the nanofluid based solar collector compared to a conventional solar collector. Finally, the environmental damage cost can also be reduced with the nanofluid based solar collector

  2. A Simulated Annealing Algorithm for the Optimization of Multistage Depressed Collector Efficiency

    Science.gov (United States)

    Vaden, Karl R.; Wilson, Jeffrey D.; Bulson, Brian A.

    2002-01-01

    The microwave traveling wave tube amplifier (TWTA) is widely used as a high-power transmitting source for space and airborne communications. One critical factor in designing a TWTA is the overall efficiency. However, overall efficiency is highly dependent upon collector efficiency; so collector design is critical to the performance of a TWTA. Therefore, NASA Glenn Research Center has developed an optimization algorithm based on Simulated Annealing to quickly design highly efficient multi-stage depressed collectors (MDC).

  3. Collector Efficiency in Downward-Type Internal-Recycle Solar Air Heaters with Attached Fins

    OpenAIRE

    Chii-Dong Ho; Ho-Ming Yeh

    2013-01-01

    The internal-recycle operation effect on collector efficiency in downward-type rectangular solar air heaters with attached fins is theoretically investigated. It is found that considerable collector efficiency is obtainable if the collector has attached fins and the operation is carried out with internal recycling. The recycling operation increases the fluid velocity to decrease the heat transfer resistance, compensating for the undesirable effect of decreasing the heat transfer driving force...

  4. Experimental investigation of tri-functional photovoltaic/thermal solar collector

    International Nuclear Information System (INIS)

    Highlights: • A design of tri-functional photovoltaic/thermal solar collector is proposed. • The performance of tri-functional PV/T collector is investigated and compared. • The tri-functional PV/T collector is flexible to different working modes and variable seasons. - Abstract: Photovoltaic/thermal (PV/T) solar collectors can provide electric power and thermal energy simultaneously. Either PV/T water collectors or PV/T air collectors can be left unused in some seasons because of the freezing problem of water and seasonal demand of hot air. In this paper, a novel design of tri-functional PV/T solar collector was proposed. The collector can work in PV/water-heating mode or PV/air-heating mode according to the seasonal requirements. Experiments were conducted in different working modes under variable conditions to evaluate the performance of collector. The results show that the daily thermal efficiency achieved 46.0% with the electrical efficiency of 10.2% in PV/air-heating mode. The temperature increase of air reached 20 °C with the flow rate of 0.033 kg/s on a sunny day. The instantaneously thermal efficiency at zero reduced temperature were 37.4% and 44.3% as the air flow rate was 0.026 kg/s and 0.032 kg/s respectively. In PV/water-heating mode, the thermal efficiency of the collector was 56.6% at zero reduced temperature, and the daily thermal efficiency of the system was around 36.0%. Compared with solar collectors presented by other authors, the tri-functional PV/T collector is able to operate efficiently in various conditions

  5. Large scale test of a novel back-pass non-perforated unglazed solar air collector

    OpenAIRE

    Paya-Marin, Miguel A.; Lim, James B P; Chen, Jian-Fei; Lawson, R. Mark; Gupta, Bhaskar Sen

    2015-01-01

    This paper describes large scale tests conducted on a novel unglazed solar air collector system. The proposed system, referred to as a back-pass solar collector (BPSC), has on-site installation and aesthetic advantages over conventional unglazed transpired solar collectors (UTSC) as it is fully integrated within a standard insulated wall panel. This paper presents the results obtained from monitoring a BPSC wall panel over one year. Measurements of temperature, wind velocity and solar irradia...

  6. Enhancement of Integrated Solar Collector with Spherical Capsules PCM Affected by Additive Aluminum Powder

    OpenAIRE

    Fatah O. Al Ghuol; Sopian, K.; Shahrir Abdullah

    2016-01-01

    This research aims to study, analyze, design, and construct a solar air heater combined with an appropriate phase-change material (PCM) unit. This solar air heater is analogous to a collector integrating a thermal storage unit and a solar thermal collector. In this study, such single-pass solar air heater in amalgamation with PCM was constructed, and several tests were conducted on this device. During the experiments for the solar collector with PCM (spherical capsules), the temperature varie...

  7. FLOW DISTRIBUTION IN A SOLAR COLLECTOR PANEL WITH HORIZONTAL ABSORBER STRIPS

    OpenAIRE

    Fan, Jianhua; Shah, Louise Jivan; Furbo, Simon

    2007-01-01

    The objective of this work is to theoretically and experimentally investigate the flow and temperature distribution in a solar collector panel with an absorber consisting of horizontal strips. Fluid flow and heat transfer in the collector panel are studied by means of computational fluid dynamics (CFD) calculations. Further, experimental investigations of a 12.5 m² solar collector panel with 16 parallel connected horizontal fins are carried out. The flow distribution through the absorber is e...

  8. Development of flat-plate solar collectors for the heating and cooling of buildings: Executive summary

    Science.gov (United States)

    1978-01-01

    An efficient, low cost, flat-plate solar collector was developed. Computer aided mathematical models of the heat process in the collector were used in defining absorber panel configuration; determining insulation thickness; and in selecting the number, spacing, and material of the covers. Prototypes were built and performance tested. Data from simulated operation of the collector are compared with predicted loads from a number of locations to determine the degree of solar utilization.

  9. Mathematical model of heat-mass exchange processes in a flat solar collector SUN 1

    OpenAIRE

    Tunik Aleksandr Aleksandrovich

    2016-01-01

    In a flat solar collector SUN 1 The active development of environmental friendly energy sources alternative to HPPs is currently of great importance in the world. Such alternative energy sources are: water, ground, sun, wind, biofuel, etc. If we have a look at the atlas of solar energy resources on the territory of Russia, we can make a conclusion, that in many regions of our country solar activity level allows using solar collector. Though the analysis of different models of solar collector ...

  10. Isothermal composite adsorbent. Part I: Thermal characterisation

    International Nuclear Information System (INIS)

    Adsorption and desorption are respectively exo and endothermic phenomena leading to significant temperature changes in adsorption columns. Enhanced efficiency of a sorption process could be obtained under isothermal conditions, either for gas storage, purification or separation applications. The heat transfer within the adsorbent beds can be managed in situ, using thermal energy storage material: a phase change materials (PCM) for example. The thermal behaviour of a mixture of activated carbon and PCM during CO2 adsorption has been studied. The thermal characteristics of the involved materials have been determined and experiments carried out to highlight the positive effect of the PCM to reduce the CO2 adsorption heat effects on an activated carbon bed. Calorimetry was the technique used for all the thermal characterisations. It appears that the heat effects induced by CO2 adsorption are reduced by the presence of the PCM together with the adsorbent. The endothermic effect of fusion balances the heat effect of adsorption and significantly reduces the temperature changes

  11. The persistence length of adsorbed dendronized polymers.

    Science.gov (United States)

    Grebikova, Lucie; Kozhuharov, Svilen; Maroni, Plinio; Mikhaylov, Andrey; Dietler, Giovanni; Schlüter, A Dieter; Ullner, Magnus; Borkovec, Michal

    2016-07-21

    The persistence length of cationic dendronized polymers adsorbed onto oppositely charged substrates was studied by atomic force microscopy (AFM) and quantitative image analysis. One can find that a decrease in the ionic strength leads to an increase of the persistence length, but the nature of the substrate and of the generation of the side dendrons influence the persistence length substantially. The strongest effects as the ionic strength is being changed are observed for the fourth generation polymer adsorbed on mica, which is a hydrophilic and highly charged substrate. However, the observed dependence on the ionic strength is much weaker than the one predicted by the Odijk, Skolnik, and Fixman (OSF) theory for semi-flexible chains. Low-generation polymers show a variation with the ionic strength that resembles the one observed for simple and flexible polyelectrolytes in solution. For high-generation polymers, this dependence is weaker. Similar dependencies are found for silica and gold substrates. The observed behavior is probably caused by different extents of screening of the charged groups, which is modified by the polymer generation, and to a lesser extent, the nature of the substrate. For highly ordered pyrolytic graphite (HOPG), which is a hydrophobic and weakly charged substrate, the electrostatic contribution to the persistence length is much smaller. In the latter case, we suspect that specific interactions between the polymer and the substrate also play an important role. PMID:27353115

  12. Dye sequestration using agricultural wastes as adsorbents

    Directory of Open Access Journals (Sweden)

    Kayode Adesina Adegoke

    2015-12-01

    Full Text Available Color is a visible pollutant and the presence of even minute amounts of coloring substance makes it undesirable due to its appearance. The removal of color from dye-bearing effluents is a major problem due to the difficulty in treating such wastewaters by conventional treatment methods. The most commonly used methods for color removal are biological oxidation and chemical precipitation. However, these processes are effective and economic only in the case where the solute concentrations are relatively high. Most industries use dyes and pigments to color their products. The presence of dyes in effluents is a major concern due to its adverse effect on various forms of life. The discharge of dyes in the environment is a matter of concern for both toxicological and esthetical reasons. It is evident from a literature survey of about 283 recently published papers that low-cost adsorbents have demonstrated outstanding removal capabilities for dye removal and the optimal equilibrium time of various dyes with different charcoal adsorbents from agricultural residues is between 4 and 5 h. Maximum adsorptions of acidic dyes were obtained from the solutions with pH 8–10. The challenges and future prospects are discussed to provide a better framework for a safer and cleaner environment.

  13. Optimizing heterosurface adsorbent synthesis for liquid chromatography

    Science.gov (United States)

    Bogoslovskii, S. Yu.; Serdan, A. A.

    2016-03-01

    The structural and geometric parameters of a silica matrix (SM) for the synthesis of heterosurface adsorbents (HAs) are optimized. Modification is performed by shielding the external surfaces of alkyl-modified silica (AS) using human serum albumin and its subsequent crosslinking. The structural and geometric characteristics of the SM, AS, and HA are measured via low-temperature nitrogen adsorption. It is found that the structural characteristics of AS pores with diameters D 9 nm reduces significantly due to adsorption of albumin. It is concluded that silica gel with a maximum pore size distribution close to 5 nm and a minimal proportion of pores with D > 9 nm is optimal for HA synthesis; this allows us to achieve the greatest similarity between the chromatographic retention parameters for HA and AS. The suitability of the synthesized adsorbents for analyzing drugs in biological fluids through direct sample injection is confirmed by chromatography. It was found that the percentage of the protein fraction detected at the outlet of the chromatographic column is 98%.

  14. Investigation of drug-porous adsorbent interactions in drug mixtures with selected porous adsorbents.

    Science.gov (United States)

    Madieh, Shadi; Simone, Michael; Wilson, Wendy; Mehra, Dev; Augsburger, Larry

    2007-04-01

    The adsorption of drugs onto porous substrates may prove to be a convenient method by which to enhance the dissolution rate of certain poorly water-soluble drugs in body fluids. The purpose of this research is to provide a better understanding of the type of interactions occurring between drugs and certain pharmaceutically acceptable porous adsorbents that leads to enhanced drug dissolution rates. The interactions between ibuprofen (acidic drug), acetaminophen (acidic drug), dipyridamole (basic drug), and the porous adsorbents used (calcium silicate and silica gel) were investigated using differential scanning calorimetry (DSC), powder X-ray diffraction (PXRD), and Fourier Transform infrared spectroscopy (FTIR). DSC and PXRD results indicated a significant loss of crystallinity of both ibuprofen and acetaminophen but not dipyridamole. In the case of ibuprofen, FTIR results indicated the ionization of the carboxylic group based on the shift in the FTIR carboxylic band. Dissolution of ibuprofen from its mixtures with porous adsorbents was found to be significantly higher compared to the neat drug, whereas dipyridamole dissolution from its mixtures with porous adsorbents was not significantly different from that of the neat drug. PMID:17221849

  15. Equilibrium molecular theory of two-dimensional adsorbate drops on surfaces of heterogeneous adsorbents

    Science.gov (United States)

    Tovbin, Yu. K.

    2016-08-01

    A molecular statistical theory for calculating the linear tension of small multicomponent droplets in two-dimensional adsorption systems is developed. The theory describes discrete distributions of molecules in space (on a scale comparable to molecular size) and continuous distributions of molecules (at short distances inside cells) in their translational and vibrational motions. Pair intermolecular interaction potentials (the Mie type potential) in several coordination spheres are considered. For simplicity, it is assumed that distinctions in the sizes of mixture components are slight and comparable to the sizes of adsorbent adsorption centers. Expressions for the pressure tensor components inside small droplets on the heterogeneous surface of an adsorbent are obtained, allowing calculations of the thermodynamic characteristics of a vapor-fluid interface, including linear tension. Problems in refining the molecular theory are discussed: describing the properties of small droplets using a coordination model of their structure, considering the effect an adsorbate has on the state of a near-surface adsorbent region, and the surface heterogeneity factor in the conditions for the formation of droplets.

  16. Dynamics and control of a solar collector system for near Earth object deflection *

    Institute of Scientific and Technical Information of China (English)

    Shen-Ping Gong; Jun-Feng Li; Yun-Feng Gao

    2011-01-01

    A solar collector system is a possible method using solar energy to deflect Earth-threatening near-Earth objects. We investigate the dynamics and control of a solar collector system including a main collector (MC) and secondary collector (SC).The MC is used to collect the sunlight to its focal point, where the SC is placed and directs the collected light to an asteroid. Both the relative position and attitude of the two collectors should be accurately controlled to achieve the desired optical path. First,the dynamical equation of the relative motion of the two collectors in the vicinity of the asteroid is modeled. Secondly, the nonlinear sliding-mode method is employed to design a control law to achieve the desired configuration of the two collectors. Finally,the deflection capability of this solar collector system is compared with those of the gravitational tractor and solar sail gravitational tractor. The results show that the solar collector is much more efficient with respect to deflection capability.

  17. Influence of Obstacles with Wing Delta Shape on Flat-Plate Air Solar Collector Efficiency

    Directory of Open Access Journals (Sweden)

    P. Gbaha

    2007-01-01

    Full Text Available We present results of our investigation on flat-plate air solar collector equipped with chicanes wing delta shape fixed on non-selective absorber. The absorber was composed of aluminum plate covered with copper. The transparent cover of collector was realized in polycarbonate. This inexpensive device permitted the optimization of collector efficiency by the wing delta chicanes disposed in strips of 10, 13 and 26. Inclination angles used were 10, 20, 30 and 140°. Collector efficiency increased with increasing of slants of chicanes and also with increasing number of the strips. The best efficiency about 81% was obtained with 26 strips at slant 140°.

  18. Economical judge possibility uses solar collectors to warm service water and heating

    International Nuclear Information System (INIS)

    The sun-heated water has been used from before fossil fuels started to determine the direction of our power consumption. This article is focused on the assessing of the use of solar energy as one of inexhaustible resources that has multiple uses, including hot water service systems. Heating is rendered through solar collectors that permit to transform solar energy to warm water. We divide solar collectors into various groups but in principle they are medium temperature collectors and low temperature collectors. The work is directed also on the solar collector market. In our case the market is just at its initial stage as this technology is little known and costs of collectors are rather high, compared to our conditions, on average, they may grow up to 100,000 Slovac crowns per a family house. Because it is the only investment and the costs of operation are minimum throughout the entire collectors lifetime, from the economic point of view, it is a rather advantageous investment. Solar collectors are used in heating and also in hot service water systems in family houses, where they permit to lower costs for the consumption of many kinds of energies. In the hot service water system, solar collectors permit to lower the consumption by almost 70 %. This way of using the solar energy is very prospective and in future it will be used in various sectors. (authors)

  19. Experimental investigation of the performance of five types of solar collectors

    International Nuclear Information System (INIS)

    Highlights: ► Experimental investigation of five types of solar collector has been carried out. ► Readings were reported every 2 h starting from 8:00 am till 4:00 pm for 2 weeks. ► The overall performance of different types of solar collectors has been determined. ► The maximum water temperatures at the outlet reached 92 °C. ► Evacuated tube solar collector has the highest efficiency. - Abstract: Experimental investigation of overall performance, efficiency and reliability of five types of solar collectors is carried out. The systems involved in this study are blue and black coating-selective copper, copper, and aluminum collectors in addition to evacuated tubes collectors. The experiments were carried out during April under same conditions for all collectors. The sky was almost clear with an ambient temperature in the range 18–26 °C. Readings are collected daily from 8:00 am to 4:00 pm. The solar radiation intensity ranged from 154.0 to 1004.33 W/m2. Considering size of application, cost of appliance, quality and maintenance follow-up, results show that evacuated tube, blue and black coating-selective copper collectors are recommended for medium and large scale applications due to their long life, high efficiency ease of maintenance. Aluminum collectors are recommended for small applications like houses.

  20. Variation of emission-adsorption properties in an operating TEC collector

    Science.gov (United States)

    Koriukin, V. A.; Obrezumov, V. P.; Vybyvanets, V. I.

    A high permeability to cesium has been revealed in tungsten layers transferred from the thermionic energy converter (TEC) emitter to collector. Absorbed cesium reduces the energy of cesium desorption from the collector surface. Collector specimens with tungsten films deposited by the emitter-to-collector mass transfer proceeding in the TEC interelectrode space have been studied, and thermoemission microscopy investigations of the process have been carried out. A relationship has been established between the position of the work function minima in curves e(phi) = f(T/TCS) and the cesium vapor pressure.

  1. Development and Evaluation of a Solar Thermal Collector Designed for Drying Grain

    OpenAIRE

    Muhammad Hanif Khalil; Muhammad Ramzan; Masood Ur Rahman Muhammad; Muhammad Aamir Khan

    2012-01-01

    The present research study is on development and performance evaluation of a solar thermal collector that warms up air as transferring medium of heat for drying of grains. A 6 meter long, 4 meter wide and 0.3 meter thick solar thermal collector was constructed in which a V-corrugated steel sheet was used as absorber and a 6 mm thick glass used as glazing. The collector body was fabricated from plywood. The solar thermal collector is linked with a 4 meter high grain storage bin having a diamet...

  2. Nocturnal cooling : Study of heat transfer from a flat-plate solar collector

    OpenAIRE

    Johansson, Helena

    2008-01-01

    This thesis investigates the possibility of using an unglazed flat-plate solar collector as a cooling radiator. The solar collector will be connected to the condenser of a heat pump and used as cooler during nighttime. Daytime the solar collector will be connected to the evaporator of the heat pump and used as heat source. The two widely differing fields of application make special demands on the solar collector. The task is given by the heat pump manufacturer Thermia and the main objective i...

  3. Hybrid Direct Carbon Fuel Cell Performance with Anode Current Collector Material

    DEFF Research Database (Denmark)

    Deleebeeck, Lisa; Kammer Hansen, Kent

    2015-01-01

    The influence of the current collector on the performance of a hybrid direct carbon fuel cell (HDCFC), consisting of solid oxide fuel cell (SOFC) with a molten carbonate-carbon slurry in contact with the anode, has been investigated using current-voltage curves. Four different anode current...... collectors were studied: Au, Ni, Ag, and Pt. It was shown that the performance of the direct carbon fuel cell (DCFC) is dependent on the current collector materials, Ni and Pt giving the best performance, due to their catalytic activity. Gold is suggested to be the best material as an inert current collector...

  4. Compilation of publication and results from project C2: Modelling of microclimates in collectors

    Energy Technology Data Exchange (ETDEWEB)

    Holck, O. [ed.

    1999-08-01

    It is important to avoid condensation in solar collectors, most of all because wetness of the absorber can damage the selective surface and cause corrosion on the absorber plate. During night time the cover of collectors will cool below ambient temperature due to thermal radiation to the cold sky. In climates where the air during night time becomes saturated with humidity (the relative humidity is 100%), condensation will form on the outside and inside of the collector glazing. If too much condensation takes place on the inside of the glazing, it will start to fall off on to the absorber surface. The intent of the present work is improvement of a existing computer model for calculation of microclimates data in collectors. Calculations with the model give insight in the humidity and temperature for artificial or realistic climatic data. This design tool makes it possible to calculate the effect of ventilation and insulation materials. Results from investigation of ventilation rates together with a model of the moisture inside the collector are built into the computer program. It has been found that modelling of the moisture transfer in backside insulation is essential to determine the humidity in the air gap of the collector. The objective is to develop guidelines for solar collector design to achieve the most favourable microclimates condition for materials. As a tool the computer model will be useful to fulfil this. Guidelines for collectors will be essential for manufactures to improve the long-term durability of solar collectors. (au)

  5. Effect of Glass Thickness on Performance of Flat Plate Solar Collectors for Fruits Drying

    Directory of Open Access Journals (Sweden)

    Ramadhani Bakari

    2014-01-01

    Full Text Available This study aimed at investigating the effect of thickness of glazing material on the performance of flat plate solar collectors. Performance of solar collector is affected by glaze transmittance, absorptance, and reflectance which results into major heat losses in the system. Four solar collector models with different glass thicknesses were designed, constructed, and experimentally tested for their performances. Collectors were both oriented to northsouth direction and tilted to an angle of 10° with the ground toward north direction. The area of each collector model was 0.72 m2 with a depth of 0.15 m. Low iron (extra clear glass of thicknesses 3 mm, 4 mm, 5 mm, and 6 mm was used as glazing materials. As a control, all collector performances were analysed and compared using a glass of 5 mm thickness and then with glass of different thickness. The results showed that change in glass thickness results into variation in collector efficiency. Collector with 4 mm glass thick gave the best efficiency of 35.4% compared to 27.8% for 6 mm glass thick. However, the use of glass of 4 mm thick needs precautions in handling and during placement to the collector to avoid extra costs due to breakage.

  6. Final report on MSFC assessment of Owens--Illinois SUNPAK collector problems

    Energy Technology Data Exchange (ETDEWEB)

    Wiesenmaier, B. L.

    1978-07-01

    Marshall Space Flight Center (MSFC) conducted an in-depth assessment of problems encountered with the Owens-Illinois SUNPAK liquid evacuated tube solar collector installed in several ERDA solar system demonstration sites. The assessment included analysis and independent tests of the collector in the MSFC Solar Simulator where the system failure conditions were duplicated. The assessment showed the basic design of the SUNPAK collector to be sound; however, material limitations dictate that near-term applications constraints be recognized by system designers. Subsequent retrofit activity by Owens-Illinois appears to have been effective in demonstrating the integrity of the SUNPAK collector.

  7. Solar-collector studies for solar-heating and -cooling applications. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Liers, H. S.; Yenamandra, N.; Brittle, P. N.; Raymond, M.; Edelman, D. G.

    1979-01-01

    Mirror and lens solar concentrator collectors suitable for space heating, cooling, and hot water applications were surveyed. The scope of the survey includes identification, analysis and comparison for all concentrating collector types for which prototypes and/or market models are or have been built for less than 10X concentration. The survey includes greater than 10X concentration ratios for manufacturers marketing such collectors for space heating and/or cooling applications. Collectors in the conceptual stage are noted and their attributes and disadvantages identified.

  8. Immobilization of Radioactive Wastes in Modified Composites of Unsaturated Polyester Polymer

    International Nuclear Information System (INIS)

    Composite grouts of unsaturated polyester filled with white sand or kaolina clay have been prepared, tested and discussed. The ratio of filler materials to unsaturated polyester was studied. The compressive strength values of the prepared composites were determined and compared with the unsaturated polyester. It is found that the compressive strength value of the unsaturated polyester with fillers had higher values than the acceptable regulation requirement for compressive strength (400 kg/cm2). Also, the thermal degradation behavior of unsaturated polyester, unsaturated polyester with fillers was reported using differential thermal analysis (DTA) and thermogravimetric analysis (TGA) techniques in nitrogen atmosphere. The addition of either sand or clay greatly enhances the thermal stability of the unsaturated polyester and the decomposition temperature was measured at different heating rates to calculate the activation energies of the prepared composites. The calculated activation energies were found to be 273, 413 and 318 kJ/mol according to Benett model and 315, 457 and 349 kJ/mol according to Kissinger model for unsaturated polyester, unsaturated polyester/white sand and unsaturated polyester/clay, respectively. The leaching results of both 137Cs and 60Co immobilized on the surfaces of fillers and mixed with unsaturated polyester as final composites were studied using different leachants. Determination of the cumulative leach fraction (CLF) by applying a simplified mathematical model for analyzing the migration of ions over the studied experimental period had been developed

  9. Interplay of adsorbate-adsorbate and adsorbate-substrate interactions in self-assembled molecular surface nanostructures

    DEFF Research Database (Denmark)

    Schnadt, Joachim; Xu, Wei; Vang, Ronnie Thorbjørn;

    2010-01-01

    The adsorption of 2,6-naphthalenedicarboxylic acid (NDCA) molecules on the Ag(110), Cu(110), and Ag(111) surfaces at room temperature has been studied by means of scanning tunnelling microscopy (STM). Further supporting results were obtained using X-ray photoelectron spectroscopy (XPS) and soft X......-ray absorption spectroscopy (XAS). On the Ag(110) support, which had an average terrace width of only 15 nm, the NDCA molecules form extended one-dimensional (1-D) assemblies, which are oriented perpendicular to the step edges and have lengths of several hundred nanometres. This shows that the assemblies have a......-edge crossing is not observed when the molecules are adsorbed on the isotropic Ag(111) or more reactive Cu(110) surfaces. On Ag(111), similar 1-D assemblies are formed to those on Ag(110), but they are oriented along the step edges. On Cu(110), the carboxylic groups of NDCA are deprotonated and form covalent...

  10. Assessment center energy collector system of crude Puerto Escondido

    International Nuclear Information System (INIS)

    In this paper the results of the evaluation of the energy system Collector Crude Center of Puerto Escondido in the first half of 2014. By implementing the overall strategy presented Process Analysis developed and implemented an energy assessment procedure allowed characterize current plant conditions, and raise a number of measures and recommendations that lead to improved energy use and reduced environmental impact. It also presents the computational tools used for both process simulation (Hysys v 3.2) as for technical analysis - economic and environmental (Microsoft Excel). (full text)

  11. Fuzzy Universal Model Approximator for Distributed Solar Collector Field Control

    KAUST Repository

    Elmetennani, Shahrazed

    2014-07-01

    This paper deals with the control of concentrating parabolic solar collectors by forcing the outlet oil temperature to track a set reference. A fuzzy universal approximate model is introduced in order to accurately reproduce the behavior of the system dynamics. The proposed model is a low order state space representation derived from the partial differential equation describing the oil temperature evolution using fuzzy transform theory. The resulting set of ordinary differential equations simplifies the system analysis and the control law design and is suitable for real time control implementation. Simulation results show good performance of the proposed model.

  12. Lower end fitting debris collector and end cap spacer grid

    International Nuclear Information System (INIS)

    This patent describes a nuclear reactor having fuel assemblies including an upper end fitting and spaced nuclear fuel rod spacer grids for supporting and spacing a plurality of elongated nuclear fuel rods. Each includes a hollow active portion of nuclear fuel filled cladding intermediate the rod ends and tapering end cap of solid material with a circumferential groove on the rod end which first encounters reactor coolant flow, a lower end filtering debris collector and end cap spacer grid for capturing and retaining deleterious debris carried by reactor coolant before it enters the active region of a fuel assembly and creates fuel rod cladding damage

  13. Fabrication of a focusing soft X-ray collector payload

    Science.gov (United States)

    Davis, J. M.; Decaprio, A. R.; Manko, H.; Ting, J. W. S.

    1976-01-01

    A large area X-ray focusing collector with arc minute resolution and a position sensitive detector capable of operating in the soft X-ray region was developed for use on sounding rockets in studying stellar X-ray sources. The focusing payload consists of the following components, which are described: (1) a crossed paraboloid mirror assembly; (2) an aspect camera and star tracker; (3) a focal plane assembly containing an imaging proportional counter and its preamplifiers, high voltage power supplies and gas system; (4) a fiducial system; and (5) housekeeping, data handling, instrumentation and telemetry electronics. The design, tests, and operation are described.

  14. Theoretical Study of the Compound Parabolic Trough Solar Collector

    Directory of Open Access Journals (Sweden)

    Dr. Subhi S. Mahammed

    2012-06-01

    Full Text Available Theoretical design of compound parabolic trough solar collector (CPC without tracking is presented in this work. The thermal efficiency is obtained by using FORTRAN 90 program. The thermal efficiency is between (60-67% at mass flow rate between (0.02-0.03 kg/s at concentration ratio of (3.8 without need to tracking system.The total and diffused radiation is calculated for Tikrit city by using theoretical equations. Good agreement between present work and the previous work.

  15. In situ built-up air collector with glass cover

    DEFF Research Database (Denmark)

    Kristiansen, Finn Harken; Engelmark, Jesper

    1998-01-01

    with a cover of glass where the horizontal joints were made by means of different methods and materials. As a general principle a water-damming border at the horizontal glass joints was avoided. The test box was built as a solar collector with 14 different horizontal joints between the glasses. The box...... jointing profile. The prototypes were built in the test area of Department of Buildings and Energy. One of the prototypes has the airflow behind the absorber, which is an aluminium plate painted black, whereas the other has the airflow in front of the absorber. Here the black top side of the insulation...

  16. The adsorption of water isotopomers on carbon adsorbents

    International Nuclear Information System (INIS)

    Adsorption isotherms in the range 50-80 Deg C were measured by gas chromatography, and isosteric adsorption heats of isotopomers of water were calculated in the range of low fillings at two activated carbons (Norit and FAS) with close volume of micropores (0.38 and 0.37 cm3/g), but various surface chemistry (AC Norit with hydrophilic surface and AC FAS with hydrophobic one). Adsorption of H2O and D2O at AC Norit exceeds adsorption at AC FAS at all equilibrium pressures. Adsorption isotherms of H2O and D2O at every adsorbents are close, but some excess of isotherms and adsorption heats of D2O as compared with H2O ones observes. It is connected with the differences in adsorbate-adsorbent and adsorbate-adsorbate interactions as well as with the structure of molecules of adsorbates

  17. Adsorbent Alkali Conditioning for Uranium Adsorption from Seawater. Adsorbent Performance and Technology Cost Evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Tsouris, Costas [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Mayes, Richard T. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Janke, Christopher James [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Dai, Sheng [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Das, S. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Liao, W. -P. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Kuo, Li-Jung [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Wood, Jordana [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Gill, Gary [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Byers, Maggie Flicker [Univ. of Texas, Austin, TX (United States); Schneider, Eric [Univ. of Texas, Austin, TX (United States)

    2015-09-30

    The Fuel Resources program of the Fuel Cycle Research and Development program of the Office of Nuclear Energy (NE) is focused on identifying and implementing actions to assure that nuclear fuel resources are available in the United States. An immense source of uranium is seawater, which contains an estimated amount of 4.5 billion tonnes of dissolved uranium. This unconventional resource can provide a price cap and ensure centuries of uranium supply for future nuclear energy production. NE initiated a multidisciplinary program with participants from national laboratories, universities, and research institutes to enable technical breakthroughs related to uranium recovery from seawater. The goal is to develop advanced adsorbents to reduce the seawater uranium recovery technology cost and uncertainties. Under this program, Oak Ridge National Laboratory (ORNL) has developed a new amidoxime-based adsorbent of high surface area, which tripled the uranium capacity of leading Japanese adsorbents. Parallel efforts have been focused on the optimization of the physicochemical and operating parameters used during the preparation of the adsorbent for deployment. A set of parameters that need to be optimized are related to the conditioning of the adsorbent with alkali solution, which is necessary prior to adsorbent deployment. Previous work indicated that alkali-conditioning parameters significantly affect the adsorbent performance. Initiated in 2014, this study had as a goal to determine optimal parameters such as base type and concentration, temperature, and duration of conditioning that maximize the uranium adsorption performance of amidoxime functionalized adsorbent, while keeping the cost of uranium production low. After base-treatment at various conditions, samples of adsorbent developed at ORNL were tested in this study with batch simulated seawater solution of 8-ppm uranium concentration, batch seawater spiked with uranium nitrate at 75-100 ppb uranium, and continuous

  18. Optimizing Conditions to Cholesterol Adsorbed with Carboxymethyl Chitosan

    OpenAIRE

    Mardiyah Kurniasih; Dwi Kartika; Riyanti Riyanti

    2016-01-01

    A research on optimizing conditions to cholesterol adsorbed have been performed. Optimization was performed by varying: contact time, adsorbent weight and temperature of the system's. A full factorial experimental design was used in this study. Characterization performed on the synthesized chitosan and carboxymethyl chitosan including FTIR, water content, ash content, solubility, porosity, and swelling effect. The results showed that carboxymethyl chitosan able to adsorb cholesterol under con...

  19. Separation and Recovery of Tetramethyl Ammonium Hydroxide with Zeolitic Adsorbents

    OpenAIRE

    S. Nishihama; Takatori, K.; K. Yoshizuka

    2010-01-01

    Separation and recovery of tetramethyl ammonium hydroxide (TMAH) has been investigated, employing several zeolites as adsorbents. Zeolite X, prepared by using TMAH as a structure directing agent, possesses highest adsorption ability among the adsorbents investigated in the present work, which corresponds to the specific surface area and pore volume of the zeolite. The adsorption amount of TMAH with the zeolitic adsorbents increases with increase in pH value in the aqueous solution, indicating...

  20. Multiple tracing experiments in unsaturated fractured clayey till

    DEFF Research Database (Denmark)

    Mortensen, Annette Pia; Jensen, Karsten Høgh; Nilsson, B.; Juhler, R.K.

    2004-01-01

    two halogen anions ( Cl- and Br-), two fluorobenzoic acids (FBA) ( 2,3-DFBA and 2,6-DFBA), two fluorescent dyes (uranine and sulforhodamine B), and one colloidal tracer (0.5-mum mlatex particles). At high flow rates, the obtained tracer breakthrough showed a traditional asymmetrical behavior where a......Current monitoring and sampling techniques in unsaturated fractured clay often fail to characterize fast preferential flow. To circumvent these problems, an isolated block ( 3.5 by 3.5 by 3.3 m) of unsaturated fractured clayey till was used for multiple tracing experiments. The setup allowed full...... control of the water balance in the block. Experiments at three different steady-state flow rates were performed. Multiple tracers with different diffusion coefficients were applied in each experiment to evaluate the influence of diffusive exchange between fractures and the matrix. The tracers included...

  1. Alteration of spent fuel matrix under unsaturated water conditions

    International Nuclear Information System (INIS)

    Drip tests which simulate the unsaturated conditions expected in the potential repository at Yucca Mountain are in progress to evaluate the long-term performance of spent fuel. This paper examines the corrosion behavior of the spent fuel matrix under conditions in which water is introduced at a rate of 1.5 mL every 7 days. Our recent results suggest a rapid reaction rate of the spent fuel matrix, the formation of alteration products that are similar to the sequence found in ore deposits in uranium mines, and the presence of colloidal species in the leachate. These results are compared to results from two models developed for a potential repository in an unsaturated zone

  2. Inference of moisture content in unsaturated media using ultrasonics

    International Nuclear Information System (INIS)

    This study focuses on the ability of commercial ultrasonics equipment to determine the moisture content in unsaturated media. We are interested in the possible application of this technology to laboratory measurements for validating numerical techniques that simulate unsaturated flows in fractured media. To satisfy the objectives of our work, experiments were performed on two of the limiting extremes of media types. In one, tests were made on moistened sand. In the other, fractured media were experimentally simulated with a stack of ceramic tiles with gaps filled or not filled with water. For the sand system, it is concluded that this approach will be sensitive to moisture content, but only near saturated conditions. The approach was more deterministic in the fractured simulant. It appears that ultrasonics will be more sensitive to moisture content in systems where the amount of granular materials is small compared to consolidated media

  3. Numerical modelling of unsaturated flow in multilayer soil covers

    International Nuclear Information System (INIS)

    When dealing with the closure of waste disposal sites, multilayer soil cover systems with various type of soils are often use to secure the area and to control fluid motion. The hydraulic conditions in the cover, which usually involve different grain size materials and unsaturated flows are quite difficult to evaluate because of the non-linearity of the constitutive laws involved. This paper presents the results of a numerical study of unsaturated flow conditions in systems that comprise 2 (silt over sand) and 3 (sand -silt -sand) distinct layers and a simulation of the flow conditions using a commercially available finite-element code (SEEP/W). Five and two different cases were modelled with the 2 and 3 layers systems, respectively. The results demonstrate the importance of using materials with very different hydraulic properties. The laboratory and field works are briefly described. (J.S.). 51 refs., 12 figs., 1 tab

  4. Electrokinetic remediation of anionic contamination from unsaturated soil: Field application

    International Nuclear Information System (INIS)

    Electrokinetic remediation is an in situ technique under development at Sandia National Laboratories for removal of ionic contaminants from soil. While to date most other studies of this technique have focused on saturated soils, usually clays, the work at Sandia has been to extend the process to unsaturated sandy soils typical of arid regions. The impetus for this study is a chromate plume located beneath an old Sandia chemical waste landfill. Working in unsaturated soils is complicated by moisture control requirements, both to prevent undesired hydraulic transport of contamination outside the treatment zone and to optimize soil properties for efficient electrokinetic remediation. Two field tests will be discussed. First, a field test in clean soil is in progress to demonstrate moisture control with the Sandia electrode system. The second field demonstration, planned to begin the Fall of 1995, involves chromate removal from a in a chemical waste landfill

  5. The constructive use of heat in an unsaturated tuff repository

    International Nuclear Information System (INIS)

    By designing the engineered barrier system in an unsaturated tuff repository to constructively use heat, the waste containers can be kept dry for hundreds of years. Without water, the aqueous processes that release and transport radionuclides do not operate. In the plans of most international programs, waste is cooled prior to disposal in granite or salt. For these rocks there are technical issues favoring reduced heat. Recently, it has been suggested that the US Program adopt a strategy of cooling nuclear waste prior to disposal. This paper reviews technical issues associated with the role of heat in an unsaturated tuff repository and concludes that the overall effect of heat in such a setting appears to be beneficial to waste isolation

  6. Unsaturated zone transport modeling of the Greater Confinement Disposal Site

    International Nuclear Information System (INIS)

    Unsaturated zone transport modeling is being conducted as part of the performance assessment of the Greater Confinement Disposal (GCD) facility which is located on the Nevada Test Site. This performance assessment is based on an iterative process of modeling and data collection to assess the likelihood the site will meet the US Environmental Protection Agency's containment, individual protection and groundwater protection requirements for the disposal of transuranic wastes, high-level wastes and spent fuel. The current iteration of the performance assessment evaluates the potential impact of future events on the transport system. The future events included in this analysis are subsidence, bioturbation, erosion, climate change, irrigated farming and drilling. This paper presents the unsaturated transport model, how it fits into the performance assessment and how the future events are incorporated in the model

  7. On Unsaturated Soil Mechanics - Personal Views on Current Research

    Science.gov (United States)

    Pande, G. N.; Pietruszczak, S.

    2015-09-01

    This paper presents the authors' personal views on current research being conducted by various research groups around the world in the broad area of mechanics of unsaturated geomaterials in general and soils in particular. The topic is of interest to a wide spectrum of scientists and engineers working in diverse areas such as geology and geophysics, powder technology, agricultural, petroleum, chemical, geotechnical, civil, environmental and nuclear engineering. Even if we restrict ourselves to civil, geotechnical and environmental engineering, it is noted that a plethora of hypotheses as well as a number of empirical and semi-empirical relations have been introduced for describing the mechanics of unsaturated porous media. However, many of these proposed advances as well as methods of testing may lack sound theoretical basis.

  8. WGS-Adsorbent Reaction Studies at Laboratory Scale

    International Nuclear Information System (INIS)

    This document reports the most significant results obtained during the experimental work performed under task WGS adsorbent experimental studies within CAPHIGAS project (National Research Plan 2008-2011, ref: ENE2009-08002). The behavior of the binary adsorbent-catalyst system which will be used in the hybrid system is described in this document. Main results reported here were used during the design and development of the hybrid system adsorbent catalyst- membrane proposed in the CAPHIGAS project. The influence of main operating parameters and the optimized volume ratio adsorbent-catalyst are also presented in this report. (Author)

  9. Polymer tensiometers to characterize unsaturated zone processes in dry soils

    OpenAIRE

    Ploeg, van der, D.T.E.

    2008-01-01

    More frequent and intense droughts due to global climate change, together with an increasing agricultural water use emphasize the importance of understanding root water uptake by plants under water-stressed conditions. Root water uptake is driven by potential gradients between water in the soil and in the root. In unsaturated soil, the soil water matric potential is often the largest component of the total soil water potential. Tensiometers are commonly used to measure the pressure-equivalent...

  10. On Unsaturated Soil Mechanics – Personal Views on Current Research

    OpenAIRE

    Pande G.N.; Pietruszczak S.

    2015-01-01

    This paper presents the authors’ personal views on current research being conducted by various research groups around the world in the broad area of mechanics of unsaturated geomaterials in general and soils in particular. The topic is of interest to a wide spectrum of scientists and engineers working in diverse areas such as geology and geophysics, powder technology, agricultural, petroleum, chemical, geotechnical, civil, environmental and nuclear engineering. Even if we restrict ourselves t...

  11. Fe-Catalyzed Oxidative Cleavage of Unsaturated Fatty Acids

    OpenAIRE

    Spannring, P.

    2013-01-01

    The oxidative cleavage of unsaturated fatty acids into aldehydes or carboxylic acids gives access to valuable products. The products can be used as chemical building blocks, as emulsifiers or in the paint or polymer industry. Ozonolysis is applied industrially to cleave the fatty acid oleic acid into the aldehydes nonanal and 9-oxo-nonanoic acid or into pelargonic and azelaic acid. Considerable hazards, including explosion risks, are associated with the use of ozone, and alternative processes...

  12. Modeling Unsaturated Flow and Transport using Zones: Aliasing Errors

    Science.gov (United States)

    Schafer, A. L.; Holt, R. M.

    2001-12-01

    It is difficult and costly to accurately determine the spatial statistics of unsaturated hydraulic properties, whereas it is often easier to define hydraulic property zones. When heterogeneous hydraulic property fields are subdivided into zones, however, flow and transport predictions show aliasing errors that alter predicted concentrations and breakthrough curves. The amount of error varies with the number of zones, the character of the heterogeneity, and boundary and initial conditions. The objective of this work is to determine the number of zones required to preserve critical transport behavior during numerical simulation of flow and transport. For this exercise, we consider unsaturated flow and non-reactive transport only. We assume that Richard?s Equation is valid and that the Gardner-Russo parametric model exactly describes unsaturated constitutive relationships. Correlated random parameter fields are generated and unsaturated flow and transport through these fields is simulated. The fields are then zoned using quantiles (0.25, 0.1, 0.05, and 0.025), appropriate zonal averages are determined, and flow and transport is simulated through the zoned fields. Aliasing errors are assessed by comparing the first, second and third moments of concentration for the full and zoned fields. The number of zones is varied to elucidate the character of aliasing error. The style of heterogeneity is varied to reflect geologically relevant end members (statistically isotropic vs. perfectly layered fields). Simulations are repeated under unit gradient conditions at mean tensions of 10, 100, and 1000 cm. Aliasing errors will tend to be smallest in layered systems with flow perpendicular to layering, because zonal averaging does not obscure fast paths. In statistically isotropic systems, fast paths are reduced as the coarseness of the zones increases. At higher tensions, finer zones are required to preserve transport behavior.

  13. Simulation of Water Movement through Unsaturated Infiltration- Redistribution System

    OpenAIRE

    T Bunsri; Sivakumar, M.; D Hagare

    2009-01-01

    This paper deals with the movement of water in a natural unsaturated zone, focusing on infiltration-redistribution system. Infiltration refers to the downward movement of water due to the gravitational force and redistribution defines the upward movement of water due to the capillary rise. Under natural conditions, the movement of water through an infiltrationredistribution depended upon the relations among water content, hydraulic conductivity and tension of soil pore. Various...

  14. Do Karstic Unsaturated Zones Have the Fastest Preferential Flow?

    Science.gov (United States)

    Nimmo, J. R.; Perkins, K. S.

    2013-12-01

    There is strong evidence that unsaturated-zone travel times for preferential flow, unlike those for diffuse flow, mostly fall within a relatively small range, even for a wide variety of media and conditions [Nimmo, 2007, Water Resources Research]. We have calculated travel times for preferential flow observations published in the last seven years, finding a range of travel velocities with a greater maximum than was previously recognized. The instances of faster transport, however, are predominantly for karst or other materials in which water flow may strongly influence the creation and development of preferential flow paths. These findings motivate a hypothesis: in media where the matrix is soluble, erodible, or otherwise vulnerable to enlargement by flowing water, this flow acts to reduce flow impediments within a macropore network. This might be thought of as a sculpting process in which water carves its conduit into a smoother, larger, less constrictive shape, as discussed in connection with soil pipes [Jones, 2010, Hydrological Processes]. Known developmental processes of karst and epikarst are consistent with this hypothesis. Its acceptance would open doors to expanded use of optimality and thermodynamic principles to understand and predict preferential flow. It also could lead to new modes of hydraulic characterization of subsurface media with regard to unsaturated flow, which are much needed as the difficulty of measuring hydraulic properties of the unsaturated zone is a major barrier to the advance of hydrologic science. In practical terms, a new guideline may be justified: in unsaturated karst or other materials in which flowing water may enhance flowpaths, preferential transport rates in general may be several times faster than through media without such pore-developmental processes.

  15. Artificial recharge through a thick, heterogeneous unsaturated zone

    Science.gov (United States)

    Izbicki, J.A.; Flint, A.L.; Stamos, C.L.

    2008-01-01

    Thick, heterogeneous unsaturated zones away from large streams in desert areas have not previously been considered suitable for artificial recharge from ponds. To test the potential for recharge in these settings, 1.3 ?? 10 6 m3 of water was infiltrated through a 0.36-ha pond along Oro Grande Wash near Victorville, California, between October 2002 and January 2006. The pond overlies a regional pumping depression 117 m below land surface and is located where thickness and permeability of unsaturated deposits allowed infiltration and saturated alluvial deposits were sufficiently permeable to allow recovery of water. Because large changes in water levels caused by nearby pumping would obscure arrival of water at the water table, downward movement of water was measured using sensors in the unsaturated zone. The downward rate of water movement was initially as high as 6 m/d and decreased with depth to 0.07 m/d; the initial time to reach the water table was 3 years. After the unsaturated zone was wetted, water reached the water table in 1 year. Soluble salts and nitrate moved readily with the infiltrated water, whereas arsenic and chromium were less mobile. Numerical simulations done using the computer program TOUGH2 duplicated the downward rate of water movement, accumulation of water on perched zones, and its arrival at the water table. Assuming 10 ?? 10 6 m3 of recharge annually for 20 years, a regional ground water flow model predicted water level rises of 30 m beneath the ponds, and rises exceeding 3 m in most wells serving the nearby urban area.

  16. CFD simulation of particle entrapment of steam generator sludge collector/loose parts weir

    International Nuclear Information System (INIS)

    A computational fluid dynamics (CFD) study was performed to explore the performance and interaction of two components designed for Pressurized Water Reactor (PWR) recirculating steam generators: the sludge collector and the loose parts weir. The sludge collector is a passive device located in the upper internals region of a PWR steam generator. The sludge collector's function is to trap sludge, particulates suspended in the secondary side recirculating flow and minimize its deposition on the tube bundle, where it increases susceptibility to tube degradation. The loose parts weir is a separate passive device placed around the sludge collector, which is expected to act as a barrier to prevent any loose parts in the upper internals region from reaching the tube bundle. Loose parts in the steam generator, if not captured, can reach the tube bundle and cause tube wall damage. The loose parts weir is considered for installation in combination with the sludge collector for both new and existing steam generators. Previously, the configuration of the sludge collector was determined based on testing and analysis. Inclusion of the loose parts weir significantly alters the flow field of the sludge collector and thus its overall performance. The purpose of this investigation is to verify the performance of the sludge collector and loose parts weir. A CFD study was performed to evaluate the interaction between the sludge collector and a loose parts weir within the steam generator, which provides insight into the flow redistribution. Models were developed for the sludge collector with and without the loose parts weir using commercial CFD software. Results including the velocity and pressure profile in the steam generator upper internals, as well as fluid mass flow passing through the sludge collector, are presented and discussed for various configurations of the sludge collector and loose parts weir. Sludge particle collection rates are estimated using an empirical correlation

  17. Theoretical Insight of Physical Adsorption for a Single-Component Adsorbent + Adsorbate System: I. Thermodynamic Property Surfaces

    KAUST Repository

    Chakraborty, Anutosh

    2009-02-17

    Thermodynamic property surfaces for a single-component adsorbent + adsorbate system are derived and developed from the viewpoint of classical thermodynamics, thermodynamic requirements of chemical equilibrium, Gibbs law, and Maxwell relations. They enable us to compute the entropy and enthalpy of the adsorbed phase, the isosteric heat of adsorption, specific heat capacity, and the adsorbed phase volume thoroughly. These equations are very simple and easy to handle for calculating the energetic performances of any adsorption system. We have shown here that the derived thermodynamic formulations fill up the information gap with respect to the state of adsorbed phase to dispel the confusion as to what is the actual state of the adsorbed phase. We have also discussed and established the temperature-entropy diagrams of (i) CaCl 2-in-silica gel + water system for cooling applications, and (ii) activated carbon (Maxsorb III) + methane system for gas storage. © Copyright 2009 American Chemical Society.

  18. Measuring induced and natural variation in isotope ratios using single-collector and multi-collector ICPMS

    International Nuclear Information System (INIS)

    Full text: The capability of providing isotopic information on the target elements is an important asset of ICPMS. In this presentation, the isotope ratio capabilities of various types of instrumentation (equipped with a quadrupole filter, a time-of-flight analyzer or a double-focusing sector field mass spectrometer and, in the latter case, outfitted with either a single detector or a multi-collector array) will be reviewed. Next, applications from either the author's lab or described in the literature will be deployed for illustrating the many circumstances in which isotope ratio analysis provides information, not accessible using elemental assay. (author)

  19. One-dimensional consolidation in unsaturated soils under cyclic loading

    Science.gov (United States)

    Lo, Wei-Cheng; Sposito, Garrison; Lee, Jhe-Wei; Chu, Hsiuhua

    2016-05-01

    The one-dimensional consolidation model of poroelasticity of Lo et al. (2014) for an unsaturated soil under constant loading is generalized to include an arbitrary time-dependent loading. A closed-form solution for the pore water and air pressures along with the total settlement is derived by employing a Fourier series representation in the spatial domain and a Laplace transformation in the time domain. This solution is illustrated for the important example of a fully-permeable soil cylinder with an undrained initial condition acted upon by a periodic stress. Our results indicate that, in terms of a dimensionless time scale, the transient solution decays to zero most slowly in a water-saturated soil, whereas for an unsaturated soil, the time for the transient solution to die out is inversely proportional to the initial water saturation. The generalization presented here shows that the diffusion time scale for pore water in an unsaturated soil is orders of magnitude greater than that in a water-saturated soil, mainly because of the much smaller hydraulic conductivity of the former.

  20. Carbon dioxide retention and carbon exchange on unsaturated Quaternary sediments

    Science.gov (United States)

    Striegl, R.G.; Armstrong, D.E.

    1990-01-01

    Retention of CO2 on three air-dried and partly water-saturated glacial and eolian sediments was measured at 20??C for a range in, PCO2 that commonly occurs in unsaturated zones. Ratios of the relative losses of CO2 and 14CO2 from a surrogate atmosphere overlying the sediments were 1:1 for the dry condition. For the wet condition, those relative losses were generally {precedes above single-line equals sign} 1:2, indicating bicarbonateion formation and C-isotope exchange. Mass losses of CO2 per surface area of sediment were similar for dry and wet conditions; however, CO2 losses for the wet condition were 8 to 17 times greater than losses predicted by calcite equilibria. Occurrence of this comparatively large reservoir of immobile, exchangeable C in unsaturated zones can cause alteration of the C-isotope composition of soil CO2 and of dissolved inorganic C in interstitial water, and needs to be considered when modeling 14CO2 movement in the unsaturated zone or when interpreting radiocarbon ages of infiltrating water. ?? 1990.

  1. Analytical solution to one-dimensional consolidation in unsaturated soils

    Institute of Scientific and Technical Information of China (English)

    QIN Ai-fang; CHEN Guang-jing; TAN Yong-wei; SUN Dean

    2008-01-01

    This paper presents an analytical solution of the one-dimensional consolidation in unsaturated soil with a finite thickness under vertical loading and confinements in the lateral directions. The boundary contains the top surface permeable to water and air and the bottom impermeable to water and air. The analytical solution is for Fredlund's one-dimensionai consolidation equation in unsaturated soils. The transfer relationship between the state vectors at top surface and any depth is obtained by using the Laplace transform and Cayley-Hamilton mathematical methods to the governing equations of water and air, Darcy's law and Fick's law. Excess pore-air pressure, excess pore-water pressure and settlement in the Laplace-transformed domain are obtained by using the Laplace transform with the initial conditions and boundary conditions. By performing inverse Laplace transforms, the analytical solutions are obtained in the time domain. A typical example illustrates the consolidation characteristics of unsaturated soft from analytical results. Finally, comparisons between the analytical solutions and results of the finite difference method indicate that the analytical solution is correct.

  2. The unsaturated hydraulic characteristics of the Bandelier Tuff

    Energy Technology Data Exchange (ETDEWEB)

    Rogers, D.B.; Gallaher, B.M.

    1995-09-01

    This report summarizes the physical and, unsaturated hydraulic properties of the Bandelier Tuff determined from laboratory measurements made on core samples collected at Los Alamos National Laboratory. We fit new van Genuchten-type moisture retention curves to this data, which was categorized according to member of the Bandelier Tuff and subunit of the Tshirege Member. Reasonable consistency was observed for hydraulic properties and retention curves within lithologic units, while distinct differences were observed for those properties between units. With the moisture retention data, we constructed vertical profiles of in situ matric suction and hydraulic head. These profiles give an indication of the likely direction of liquid water movement within the unsaturated zone and allow comparison of core-scale and field-scale estimates of water flow and solute transport parameters. Our core-derived transport velocities are much smaller than values estimated from tritium, Cl, and NO{sub 3} contamination found recently in boreholes. The contaminant tracer-derived transport velocities from Los Alamos Canyon are greater than corederived values found for the Otowi Member, and for Mortandad Canyon, greater than core-derived values for that borehole. The significant difference found for Mortandad Canyon suggests that fracture or other fast-path transport may be important there. The relatively small difference between observed and predicted velocities at Los Alamos Canyon may mean that vadose zone transport there occurs by unsaturated matrix flow.

  3. Characterization of unsaturated hydraulic parameters for homogeneous and heterogeneous soils

    Energy Technology Data Exchange (ETDEWEB)

    Wildenschild, Dorthe

    1997-09-01

    Application of numerical models for predicting future spreading of contaminants into ground water aquifers is dependent on appropriate characterization of the soil hydraulic properties controlling flow and transport in the unsaturated zone. This thesis reviews the current knowledge on two aspects of characterization of unsaturated hydraulic parameters; estimation of the basic hydraulic parameters for homogeneous soils and statistical representation of heterogeneity for spatially variable soils. The retention characteristic is traditionally measured using steady-state procedures, but new ideas based on dynamic techniques have been developed that reduce experimental efforts and that produce retention curves which compare to those measured by traditional techniques. The unsaturated hydraulic conductivity is difficult to establish by steady-state procedures, and extensive research efforts have been focused on alternative methods that are based on inverse estimation. The inverse methods have commonly been associated with problems of numerical instability and ill-posedness of the parameter estimates, but recent investigations have shown that the uniqueness of parameter estimates can be improved by including additional, independent information on, for instance, the retention characteristic. Also, uniqueness may be improved by careful selection of experimental conditions are parametric functions. (au) 234 refs.

  4. Collapsibility and Volume Change Behavior of Unsaturated Residual Soil

    Directory of Open Access Journals (Sweden)

    Azalan A. Aziz

    2006-01-01

    Full Text Available Residual soils occur in most countries of the world but the greater areas and depths are normally found in tropical humid areas. In these places, the soil forming processes are still very active and the weathering development is much faster than the erosive factor. Most residual soil exhibit high suctions for most of the year. The absence of positive pore water pressure except immediately after rain, makes conventional soil mechanics for saturated soil not so relevant. Ignorance or lack of understanding of the geotechnical behavior of soil in the partially or unsaturated state has caused a lot of damages to infrastructures, buildings and other structures. For instance, the collapsibility and volume change of partially saturated soils in connection with the drying or wetting causes a lot of damage in foundation, roads and other structures. It is also observed that many shallow slope failures involve a slumping (collapse type of failure. As such, the development of extended soil mechanics, which embraces the soil in the unsaturated state or subjected to soil suction, is essential. This study examines the collapsibility and volume change behavior specifically of an unsaturated residual soil under various levels of applied matric suction (ua-uw and net mean stress (σ-ua in a predetermined stress path. The volume change of the soil is found to be sensitive to both the applied matric suction and net mean stress. The soil is found to exhibit a collapsibility behavior upon a reduction in applied matric suction at constant net mean stress.

  5. The geometry of nonwetting liquids in the unsaturated zone

    International Nuclear Information System (INIS)

    In hydrophilic aquifer material, gasoline, immiscible solvents, and similar nonaqueous phase liquids (NAPL) form a separate nonwetting phase. If such a nonwetting liquid is spilled onto soil, it will percolate into the soil and migrate downward and laterally under the influence of gravity and capillary forces. As the nonwetting liquid drains from a portion of soil, some of this liquid is retained by capillary forces. Although current models predict that the retained nonwetting liquid is immobile a growing body of evidence indicates that it may be displaced by percolating water. A theory is developed to describe the geometry of nonwetting or nonaqueous phase liquids in moist unsaturated media. This theory predicts that liquids with positive values of the classical two-dimensional spreading coefficient form pendular rings. Liquids with negative values form pendular rings in regions of high-water tension or in regions of relatively high concentration of the nonwetting fluid, but they form insular lenses in regions of low-water tension or regions of low concentration of the nonwetting fluid. A three-dimensional spreading coefficient was developed to predict this behavior. Infiltrating water can cause transitions by breaking the pendular rings of nonwetting liquids in the unsaturated zone, and forming larger blobs as these rings coalesce. These blobs may drain downward due to gravity. These conditions may contribute to the mobility of nonwetting liquids due to percolation of water through the unsaturated zone

  6. Role of unsaturated soil in a waste containment system

    Energy Technology Data Exchange (ETDEWEB)

    Lim, P.C.; Tay, J.H. [Nanyang Technological Univ. (Singapore)

    1996-12-31

    The role of the unsaturated properties of sand as a drainage layer in a composite liner system for landfills is investigated. The effect of the unsaturated properties of coarse-grained soil on contaminant migration was evaluated by means of a series of simulations using a one-dimensional model of a two- and a three-layer soil liner system for advection and diffusion, respectively. The results showed that under seepage conditions, the effect of an unsaturated sand layer on the advancement of the concentration front was quite insignificant. The arrival time of the C/C{sub o} = 0.5 concentration front increased from 651 days for the case with no sand layer to approximately 951 days for the case with a 1.0-m sand layer. A steady-state flow condition was ultimately established in the sand, and this fact suggests that the capillary action might not be effective. For diffusion, the arrival time of the concentration front increased nonlinearly with a decrease in the degree of saturation and linearly with increasing depths of the sand layer. At a residual degree of saturation, the arrival times of the C/C{sub o} = 0.01 and 0.5 concentration front at the base of the 1-m sand layer were 26.9 and 877.4 years as compared to 1.52 and 2.62 years by advection, respectively. 17 refs., 11 figs.

  7. Unsaturated Zone Flow Changes After Wildfire: A Virtual Experiment Perspective

    Science.gov (United States)

    Ebel, B. A.

    2013-12-01

    Wildfire is a frequent disturbance event in the Western U.S. and other regions worldwide. It is well known that wildfire impacts the hydrologic cycle, yet the accompanying changes in unsaturated zone flow are poorly understood. This effort uses unsaturated zone flow simulation for well characterized experimental plots covering north- and south-facing slope aspects for plots both affected and unaffected by wildfire to improve understanding. Comparisons to observed soil-water content and matric potential data establish 'foundation simulations' that lay the groundwork for virtual experiments testing hypotheses developed from interpretation of field and laboratory data. The virtual experiments with the numerical model then extend understanding beyond what could be gleaned from data alone. Unsaturated zone flow is simulated with Hydrus-1D and the field site for this work is within the area affected by the 2010 Fourmile Canyon Fire near Boulder, CO USA. Preliminary work shows that loss of transpiration because of vegetation combustion/mortality caused soils to be wetter at depths greater than 5 cm on both north- and south-facing slopes. Loss of interception by the tree canopy also contributes to wetter subsurface conditions on north-facing slopes. On south-facing slopes, at depths less than 3 cm, the soil was drier after wildfire because of decreases in soil-water retention, confirming hypotheses from field and laboratory measurements.

  8. Linear transport models for adsorbing solutes

    Science.gov (United States)

    Roth, K.; Jury, W. A.

    1993-04-01

    A unified linear theory for the transport of adsorbing solutes through soils is presented and applied to analyze movement of napropamide through undisturbed soil columns. The transport characteristics of the soil are expressed in terms of the travel time distribution of the mobile phase which is then used to incorporate local interaction processes. This approach permits the analysis of all linear transport processes, not only the small subset for which a differential description is known. From a practical point of view, it allows the direct use of measured concentrations or fluxes of conservative solutes to characterize the mobile phase without first subjecting them to any model. For complicated flow regimes, this may vastly improve the identification of models and estimation of their parameters for the local adsorption processes.

  9. Nanopatterned monolayers of an adsorbed chromophore

    Energy Technology Data Exchange (ETDEWEB)

    Frederich, N; Nysten, B; Jonas, A M [Unite de Physique et de Chimie des hauts Polymeres, Universite Catholique de Louvain, Croix du Sud 1, B-1348 Louvain-la-Neuve (Belgium); Duwez, A-S [NanoChemistry and Molecular Systems, Department of Chemistry, University of Liege, B6a Sart-Tilman, B-4000 Liege (Belgium); Muls, B; Habib-Jiwan, J-L [Unite de Chimie des Materiaux Organiques et Inorganiques, Universite Catholique de Louvain, Place Louis Pasteur 1, B-1348 Louvain-la-Neuve (Belgium); Hofkens, J [Department of Chemistry, Katholieke Universiteit Leuven, Celestijnenlaan 200F, 3001 Heverlee (Belgium)

    2008-08-20

    A simple lift-off process was developed to rapidly fabricate nanopatterned photofunctional surfaces. Dye molecules of a perylene derivative (PDID) were adsorbed irreversibly on clean silicon through the holes of an electron-beam lithographied polymer mask. The subsequent removal of the mask in a proper solvent results in PDID nanosized regions of width as small as 30 nm for stripes and of diameter as small as 120 nm for dots. Numerical analyses of atomic force microscopy and laser-scanning confocal microscopy images show that the dye molecules are confined to the regions defined by the lithographic process, with the integrated fluorescence intensity being essentially proportional to the size of the nanofeatures. This demonstrates that a simple organic lift-off process compatible with clean-room technology, and not involving any chemical step, is able to produce photofunctional nanopatterned surfaces, even though the dye is not chemically bonded to the silicon surface.

  10. In vitro hydroxyapatite adsorbed salivary proteins

    International Nuclear Information System (INIS)

    In spite of the present knowledge about saliva components and their respective functions, the mechanism(s) of pellicle and dental plaque formation have hitherto remained obscure. This has prompted recent efforts on in vitro studies using hydroxyapatite (HA) as an enamel model. In the present study salivary proteins adsorbed to HA were extracted with TFA and EDTA and resolved by 2D electrophoresis over a pH range between 3 and 10, digested, and then analysed by MALDI-TOF/TOF mass spectrometry and tandem mass spectrometry. Nineteen different proteins were identified using automated MS and MS/MS data acquisition. Among them, cystatins, amylase, carbonic anhydrase, and calgranulin B, were identified

  11. The use of spider webs as passive bioaerosol collectors

    Science.gov (United States)

    Mattei, Daniel I.; Bleckmann, Charles A.; Bunker, David J.; Maxis, Ike

    2009-05-01

    Spider webs were shown to be effective collectors of bioaerosols and airborne microorganisms. Spider webs were collected and analyzed for microbial content using two general microbial culture mediums. To be considered suitable passive collectors, webs had to satisfy three basic conditions; (1) collection of microorganisms without discrimination based on species or size, (2) collection under variable environmental conditions, and (3) saturation avoidance in the presence of strong microbial launching sources. Samples were collected from four locations near Wright-Patterson Air Force Base, OH, a waste water treatment facility, a commercial garden center, a secluded state park area, and a parking garage located within a medium size metropolitan area. These four locations provided appropriately varied environmental and physical conditions to test the collection parameters previously stated. A simple collection methodology was devised; microscopy cover glass slides were used as collection instruments. The methodology assured sterility during collection and permitted in situ microbial growth, observation, and enumeration. Microbial growth, both bacteria and fungi, were recovered from all collected spider web samples.

  12. Functionalization of Magnetite Nanoparticles as Oil Spill Collector

    Directory of Open Access Journals (Sweden)

    Ayman M. Atta

    2015-03-01

    Full Text Available In the present study, a new magnetic powder based on magnetite can be used as a petroleum crude oil collector. Amidoximes based on rosin as a natural product can be prepared from a reaction between hydroxylamine and rosin/acrylonitrile adducts. The produced rosin amidoximes were used as capping agents for magnetite nanoparticles to prepare hydrophobic coated magnetic powders. A new class of monodisperse hydrophobic magnetite nanoparticles was prepared by a simple and inexpensive co-precipitation method. Iron ions and iodine were prepared by the reaction between ferric chloride and potassium iodide. The structure and morphology of magnetite capped with rosin amidoxime were characterized by Fourier transform infrared spectroscopy (FTIR, X-ray diffraction (XRD, transmission electron microscopy (TEM, zeta potential, thermogravimetric analysis (TGA and dynamic light scattering (DLS. The magnetic properties were determined from vibrating sample magnetometer (VSM analyses. These prepared magnetite nanoparticles were tested as bioactive nanosystems and their antimicrobial effects were investigated. The prepared nanomaterials were examined as a crude oil collector using magnetic fields. The results show promising data for the separation of the petroleum crude oil from aqueous solution in environmental pollution cleanup.

  13. Functionalization of magnetite nanoparticles as oil spill collector.

    Science.gov (United States)

    Atta, Ayman M; Al-Lohedan, Hamad A; Al-Hussain, Sami A

    2015-01-01

    In the present study, a new magnetic powder based on magnetite can be used as a petroleum crude oil collector. Amidoximes based on rosin as a natural product can be prepared from a reaction between hydroxylamine and rosin/acrylonitrile adducts. The produced rosin amidoximes were used as capping agents for magnetite nanoparticles to prepare hydrophobic coated magnetic powders. A new class of monodisperse hydrophobic magnetite nanoparticles was prepared by a simple and inexpensive co-precipitation method. Iron ions and iodine were prepared by the reaction between ferric chloride and potassium iodide. The structure and morphology of magnetite capped with rosin amidoxime were characterized by Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), transmission electron microscopy (TEM), zeta potential, thermogravimetric analysis (TGA) and dynamic light scattering (DLS). The magnetic properties were determined from vibrating sample magnetometer (VSM) analyses. These prepared magnetite nanoparticles were tested as bioactive nanosystems and their antimicrobial effects were investigated. The prepared nanomaterials were examined as a crude oil collector using magnetic fields. The results show promising data for the separation of the petroleum crude oil from aqueous solution in environmental pollution cleanup. PMID:25822876

  14. Slope Error Measurement Tool for Solar Parabolic Trough Collectors: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Stynes, J. K.; Ihas, B.

    2012-04-01

    The National Renewable Energy Laboratory (NREL) has developed an optical measurement tool for parabolic solar collectors that measures the combined errors due to absorber misalignment and reflector slope error. The combined absorber alignment and reflector slope errors are measured using a digital camera to photograph the reflected image of the absorber in the collector. Previous work using the image of the reflection of the absorber finds the reflector slope errors from the reflection of the absorber and an independent measurement of the absorber location. The accuracy of the reflector slope error measurement is thus dependent on the accuracy of the absorber location measurement. By measuring the combined reflector-absorber errors, the uncertainty in the absorber location measurement is eliminated. The related performance merit, the intercept factor, depends on the combined effects of the absorber alignment and reflector slope errors. Measuring the combined effect provides a simpler measurement and a more accurate input to the intercept factor estimate. The minimal equipment and setup required for this measurement technique make it ideal for field measurements.

  15. Central inertial collector - a novel device for controlling coolant activity

    International Nuclear Information System (INIS)

    During the construction phase of the early AGRs it was predicted that active oxide would spall from the fuel can surfaces as small particles and deposit elsewhere in the primary circuit such as boilers where they might give dose rates leading to problems of man access. An investigation of existing methods of particle removal devices showed them to have excessively high pressure drops; a new device, the Central Inertial Collector, was developed. In operation the collector is placed immediately downstream (i.e. above) the fuel in the fuel channel. The coolant carrying the spalled oxide particles passes through an orifice and beyond that orifice the particles, by virtue of their inertia, are no longer uniformly distributed across the channel diameter. These regions of high particle concentration are guided out of the main gas flow and, because the fraction of flow taken is small, a higher pressure loss clean-up device is used to remove the particles from this reduced gas volume without imposing a similar high pressure drop on the total gas flow. Overall shaping is such that only smooth bends are imposed upon the main gas flow and, by combining this with careful design to reduce eddy formation, the overall pressure drop is minimised. By carefully selecting suitable channels and utilising the recirculating nature of the primary circuit with a single pass collection efficiency lower than that of the CIC, it is possible to achieve significant circuit clean-up with no power output penalty imposed upon the reactor. (author)

  16. Natural convection characteristics of flat plate collectors. Progress report

    Energy Technology Data Exchange (ETDEWEB)

    Randall, K.R.; Wl-Wakil, M.M.; Mitchell, J.W.

    1977-09-01

    The results of an experimental investigation into the convective heat losses in large aspect ratio flat-plate solar collectors are described. An experimental study has been undertaken on a specially designed test cell using a 3 inch Mach-Zehnder interferometer. Air at atmospheric pressure was used as the heat-transfer fluid. The experimental results include interferograms which show the thermal boundary layer formations and the temperature profiles. Local temperature profiles have been analyzed through the use of an optical comparator to determine local Nusselt number profiles, which have, in turn, been integrated to give average heat-transfer results. Angles of inclination from the horizontal of 45, 60, 75 and 90 degrees have been investigated. Aspect ratios from 9 to 36 were examined over a Rayleigh number range of 4,000 to 310,000. Finally, heat-transfer correlations have been developed for the prediction of local Nusselt numbers in the starting and departure corners and for the average heat-transfer results as a function of collector tilt angle.

  17. Unsaturation ratios of novel tri-unsaturated alkenones from Northeastern Alaska: insights from water column calibration and sediments

    Science.gov (United States)

    Longo, W. M.; Dillon, J.; Giblin, A.; Huang, Y.

    2013-12-01

    Long chain alkenones (LCAs) are a class of C35 - C40 unsaturated ketones that have been established as important biomarkers for reconstructing sea surface temperature (SST), surface ocean primary productivity, salinity and pCO2. LCAs have also been investigated in lacustrine settings and a considerable number of studies have demonstrated that LCAs are widespread in lakes with varied properties. Furthermore, unsaturation ratios of LCAs in several lakes are well correlated with in situ and overlying temperature and have been used to reconstruct water and air temperature from sedimentary records. The paleoclimate community has been slow to adopt lacustrine alkenone paleothermometry, however, because variable and complex LCA distributions resulting from diverse haptophyte precursors often complicate our interpretation of LCA records. Here, we demonstrate that the improved separation of LCAs and alkenoates using an unconventional gas chromatographic (GC) stationary phase resolves complex LCAs from a variety of samples and we apply this new technique to lakes from Northeastern Alaska (NE AK). Analyses of LCAs using the stationary phase [poly(trifluoropropylmethylsiloxane)] revealed that NE AK lakes host a novel distribution of 16 LCAs, including the C37Me, C38Et, C38Me, C39Et homologs. Within each homologous group of LCAs, we identified a previously unresolved tri-unsaturated isomeric LCA, featuring different double bond positioning than the tri-unsaturated LCAs commonly observed in marine sediments. In addition to providing characterizations of these compounds, our investigation takes advantage of the improved GC separation to evaluate unsaturation ratios with the normal and isomeric C37, C38Et and C38Me LCAs. We find that several unsaturation ratios are well correlated with in situ lake water temperature and, furthermore, that the slopes of these correlations are not affected by the GC stationary phase used. The application of various unsaturation ratios to lacustrine

  18. Results of IEA SHC Task 45: Large Scale Solar Heating and Cooling Systems. Subtask A: “Collectors and Collector Loop”

    DEFF Research Database (Denmark)

    Bava, Federico; Nielsen, Jan Erik; Knabl, Samuel;

    2016-01-01

    The IEA SHC Task 45 Large Scale Solar Heating and Cooling Systems, carried out between January 2011 and December 2014, had the main objective to assist in the development of a strong and sustainable market of large solar heating systems by focusing on high performance and reliability of systems....... Within this project, subtask A had the more specific objectives of investigating ways to evaluate the influence that different operating conditions can have on the collector performance, assure proper and safe installation of large solar collector fields, and guarantee their performance and yearly energy...... output. The results of the different investigations are presented, with a particular focus on how different parameters such as tilt, flow rate and fluid type, can affect the collector efficiency. Other presented results include methods to guarantee and check the thermal performance of a solar collector...

  19. Understanding Trends in Catalytic Activity: The Effect of Adsorbate-Adsorbate Interactions for CO Oxidation Over Transition Metals

    DEFF Research Database (Denmark)

    Grabow, Lars; Larsen, Britt Hvolbæk; Nørskov, Jens Kehlet

    2010-01-01

    Using high temperature CO oxidation as the example, trends in the reactivity of transition metals are discussed on the basis of density functional theory (DFT) calculations. Volcano type relations between the catalytic rate and adsorption energies of important intermediates are introduced and the...... effect of adsorbate-adsorbate interaction on the trends is discussed. We find that adsorbate-adsorbate interactions significantly increase the activity of strong binding metals (left side of the volcano) but the interactions do not change the relative activity of different metals and have a very small...... influence on the position of the top of the volcano, that is, on which metal is the best catalyst....

  20. Thermodynamic study of fatty acids adsorption on different adsorbents

    International Nuclear Information System (INIS)

    This work has as objective the study about the adsorption behavior of fatty acids (acetic, propionic, and butyric) on activated carbon and on modified and unmodified montmorillonite clays as a function of temperature and initial concentration of the adsorbate, through adsorption isotherms and their thermodynamic parameters (ΔG, ΔH, and ΔS). The activated carbon presented a higher adsorption capacity due to its relatively large surface area, compared to others adsorbents. The polar characteristic of fatty acids decreased with the increase in the length of non-polar hydrocarbon chain, improving the affinity between the activated carbon (non-polar adsorbent) and the acids. The adsorption capacity of modified montmorillonite (polar adsorbent) was favored due to the presence of the organic cation among its layers, which make the surface more hydrophobic and organophilic when compared to the unmodified montmorillonite surface. The amount of fatty acids adsorbed in the adsorbents surface increased with the concentration, at constant temperature, and decreased with the increase of temperature, at constant concentration. The amount of fatty acids adsorbed in the three adsorbents was related to the surface area and polarity of the adsorbent, concentration and solubility of the adsorbate and temperature of the solution. The negative values of ΔG and ΔH showed that the adsorption on activated carbon and on modified and unmodified montmorillonite clays was a spontaneous and an exothermic process. The decrease in the values of ΔG, with the increase of temperature, demonstrated that the adsorption was benefited by the high temperature and the positive values of ΔS showed that the fatty acids molecules were in a more randomic condition in the adsorbed state than in solution. The experimental results obtained at the temperatures of (298, 303, 313, and 323) K showed that experimental data were well represented by the Langmuir and Freundlich isotherms models

  1. NOx Removal and Effect of Adsorbate-Adsorbate Interactions

    DEFF Research Database (Denmark)

    Khan, Tuhin Suvra

    industrial chemical processes, nano-science and nano-technology, in general any process where a solid surface interacts with any surrounding liquid or gas-phase species. Computational approaches play an increasingly important role in modern surface science, and density functional theory (DFT) in particular......-standing dream of an environmentally sustainable energy sector is to be fulfilled, heterogeneous catalysts aiding production, storage, and use of energy from sustainable sources, e.g. sunlight, wind, and biomass, are expected to be essential. New catalysts improving the efficiency of existing chemical processes...... have analyzed these challenges systematically and have developed some new methods and models to counter those challenges and obtain some general understanding of the catalytic process. I have developed an adsorbate-adsorbate interaction model to include the coverage dependency of the adsorption energy...

  2. METAL-POLYMER SOLAR COLLECTORS WITH MULTICHANNEL ABSORBER FOR MULTIFUNCTIONAL MULTIPURPOSE ENERGY SYSTEMS

    Directory of Open Access Journals (Sweden)

    Doroshenko A.

    2012-08-01

    Full Text Available New modification of liquid-metal-polymer solar collector for solar heating and for creation of multifunctional energy systems on its basis, particularly solar refrigeration systems was developed. A comparative study of several modifications of polymer collectors involving data of a set of foreign researchers was made and high efficiency of the new elaboration was proven.

  3. Evaluation of the flat-plate solar collector system for electric power generation

    Science.gov (United States)

    Athey, R. E.

    1976-01-01

    This evaluation of the flat-plate collector system was designed to determine the number of flat-plate collectors required to generate a given amount of electricity with optimum efficiency. Variable parameters are the temperature of the heat-transport fluid, both to and from the collector field. In the analysis, the efficiency of the flat-plate collectors was coupled to the efficiency of the thermal cycle to calculate optimal overall system efficiencies. Overall system efficiencies for the system are on the order of 3.5 per cent or less. Over two million 4 ft-by-4 ft collectors would be required to produce 100,000 kW(e). Based on the results, it can be shown that the limiting factor in the use of the flat-plate collector system for electric power generation is the efficiency of the collectors. An increase in the overall system efficiency can occur only if the collector efficiency can be increased at higher surface temperatures.

  4. METAL-POLYMER SOLAR COLLECTORS WITH MULTICHANNEL ABSORBER FOR MULTIFUNCTIONAL MULTIPURPOSE ENERGY SYSTEMS

    OpenAIRE

    Doroshenko A.; Danko V.; Turbovets Y.

    2012-01-01

    New modification of liquid-metal-polymer solar collector for solar heating and for creation of multifunctional energy systems on its basis, particularly solar refrigeration systems was developed. A comparative study of several modifications of polymer collectors involving data of a set of foreign researchers was made and high efficiency of the new elaboration was proven.

  5. A Didactic Experiment and Model of a Flat-Plate Solar Collector

    Science.gov (United States)

    Gallitto, Aurelio Agliolo; Fiordilino, Emilio

    2011-01-01

    We report on an experiment performed with a home-made flat-plate solar collector, carried out together with high-school students. To explain the experimental results, we propose a model that describes the heating process of the solar collector. The model accounts quantitatively for the experimental data. We suggest that solar-energy topics should…

  6. Development and Evaluation of a Solar Thermal Collector Designed for Drying Grain

    Directory of Open Access Journals (Sweden)

    Muhammad Hanif Khalil

    2012-01-01

    Full Text Available The present research study is on development and performance evaluation of a solar thermal collector that warms up air as transferring medium of heat for drying of grains. A 6 meter long, 4 meter wide and 0.3 meter thick solar thermal collector was constructed in which a V-corrugated steel sheet was used as absorber and a 6 mm thick glass used as glazing. The collector body was fabricated from plywood. The solar thermal collector is linked with a 4 meter high grain storage bin having a diameter of 2 meter. Performance of this collector was evaluated from November 2011 to January 2012 at seven different convective flow rates of air (7.5, 14.16, 28.30, 56.6, 112.2, 168.5 and 224.4 kg.h-1. The statistical analysis showed that increase in mass flow rate significantly (P > 0.003 increases the performance of the solar collector. Also there was decrease in performance by the change of months of year. The efficiency was 10% higher in November 2011 as compared to January 2012. It was concluded that for drying of grains the solar thermal collector must be operated at high mass flow rates of air from 9:00 am to 4:00 pm to get maximum performance from the solar thermal collector used for grain drying.

  7. An Experimental Study of the Effect of Vortex Shedding on Solar Collector Performance

    Directory of Open Access Journals (Sweden)

    Alaulddin Abdulqader Kadim

    2015-07-01

    Full Text Available In this work, the effect of vortex shedding on the solar collector performance of the parabolic trough solar collector (PTSC was estimated experimentally. The effect of structure oscillations due to wind vortex shedding on solar collector performance degradation was estimated. The performance of PTSC is evaluated by using the useful heat gain and the thermal instantaneous efficiency. Experimental work to simulate the vortex shedding excitation was done. The useful heat gain and the thermal efficiency of the parabolic trough collector were calculated from experimental measurements with and without vortex loading. The prototype of the collector was fabricated for this purpose. The effect of vortex shedding at different operation conditions was examined. The variation of angles of attack and wind velocity leads to different values of vortex loading coefficients and shedding frequencies. The relation between the dynamic characteristics and solar collector performance was evaluated. The finite element method was used to estimate the dynamic characteristic of the solar collector in addition to experimental work to evaluate the relation between the dynamic behavior of the collector and its performance.

  8. Design and performance verification of advanced multistage depressed collectors. [traveling wave tubes for ECM

    Science.gov (United States)

    Kosmahl, H.; Ramins, P.

    1975-01-01

    Design and performance of a small size, 4-stage depressed collector are discussed. The collector and a spent beam refocusing section preceding it are intended for efficiency enhancement of octave bandwidth, high CW power traveling wave tubes for use in ECM.

  9. Parametric studies of an active solar water heating system with various types of PVT collectors

    Indian Academy of Sciences (India)

    Roonak Daghigh; Mohd Hafidz Ruslan; Kamaruzzaman Sopian

    2015-10-01

    This study simulated active photovoltaic thermal solar collectors (PV/T) for hot water production using TRNSYS. The PV/T collectors consist of the amorphous, monocrystalline and polycrystalline. The long-term performances for the glazed and unglazed PV/T collectors were also evaluated. In this simulation, the design parameters used were collector area of 4 m2, collector slope angle of 15 degree and mass flow rate to the collector area ratio of 8–20 kg/hm2. In addition the tank height between 0.9 m to 1.1 m for unglazed PV/T collectors and 0.9 m to 1 m for glazed collectors, as well as the storage tank volume between 200 and 300 L has been used. The climate parameters used were solar radiation levels range of 4–4.9 kWh/m2, the mean ambient temperature in the range of 25–28°C. The results of the simulation indicated that there was an increase in solar fraction and electrical power output of the active PV/T hot water system.

  10. Preliminary design review package on air flat plate collector for solar heating and cooling system

    Science.gov (United States)

    1977-01-01

    Guidelines to be used in the development and fabrication of a prototype air flat plate collector subsystem containing 320 square feet (10-4 ft x 8 ft panels) of collector area are presented. Topics discussed include: (1) verification plan; (2) thermal analysis; (3) safety hazard analysis; (4) drawing list; (5) special handling, installation and maintenance tools; (6) structural analysis; and (7) selected drawings.

  11. Models of the heat dynamics of solar collectors for performance testing

    DEFF Research Database (Denmark)

    Bacher, Peder; Madsen, Henrik; Perers, Bengt

    2011-01-01

    ) and modelling of the heat dynamics of buildings (Madsen and Holst, 1995). Measurements obtained at a test site in Denmark during the spring 2010 are used for the modelling. The tested collector is a single glazed large area flat plate collector with selective absorber and Teflon anti convection layer...

  12. Emotion, desire and reverie in the consumption practices from the recyclable material collectors

    Directory of Open Access Journals (Sweden)

    Josilene Barbosa do Nascimento

    2014-08-01

    imagination. Thus, pointing out how works the self delusion of the collectors, characteristic of modern consumption, as we watch for the excitement and the individual values governing their consumption practices as pointing work. In this sense, the collectors consume to satiate subjectively established wills: it is the emotional consumption.

  13. 78 FR 38452 - Price for the 2013 Girl Scouts of the USA Young Collector Set

    Science.gov (United States)

    2013-06-26

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF THE TREASURY United States Mint Price for the 2013 Girl Scouts of the USA Young Collector Set AGENCY: United States... of $54.95 for the 2013 Girl Scouts of the USA Young Collector Set. FOR FURTHER INFORMATION...

  14. Application of bifunctional magnetic adsorbent to adsorb metal cations and anionic dyes in aqueous solution

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Ya-Fen [Department of Chemical and Materials Engineering, National I-Lan University, I-Lan 260, Taiwan (China); Chen, Hua-Wei [Department of Cosmetic Application and Management, St. Mary' s Medicine Nursing and Management College, I-Lan, Taiwan (China); Chien, Poh-Sun [Department of Environmental Engineering, National I-Lan University, 1, Sec. 1, Shen-Lung Road, I-Lan, 260, Taiwan (China); Chiou, Chyow-San, E-mail: cschiou@niu.edu.tw [Department of Environmental Engineering, National I-Lan University, 1, Sec. 1, Shen-Lung Road, I-Lan, 260, Taiwan (China); Liu, Cheng-Chung [Department of Environmental Engineering, National I-Lan University, 1, Sec. 1, Shen-Lung Road, I-Lan, 260, Taiwan (China)

    2011-01-30

    A magnetic adsorbent, amine-functionalized silica magnetite (NH{sub 2}/SiO{sub 2}/Fe{sub 3}O{sub 4}), has been synthesized to behave as an anionic or cationic adsorbent by adjusting the pH value of the aqueous solution to make amino groups protonic or neutral. NH{sub 2}/SiO{sub 2}/Fe{sub 3}O{sub 4} were used to adsorb copper ions (metal cation) and Reactive Black 5 (RB5, anionic dye) in an aqueous solution in a batch system, and the maximum adsorption were found to occur at pH 5.5 and 3.0, respectively. The adsorption equilibrium data were all fitted the Langmuir isotherm equation reasonably well, with a maximum adsorption capacity of 10.41 mg g{sup -1} for copper ions and of 217 mg g{sup -1} for RB5. A pseudo-second-order model also could best describe the adsorption kinetics, and the derived activation energy for copper ions and RB5 were 26.92 kJ mol{sup -1} and 12.06 kJ mol{sup -1}, respectively. The optimum conditions to desorb cationic and anionic adsorbates from NH{sub 2}/SiO{sub 2}/Fe{sub 3}O{sub 4} were provided by a solution with 0.1 M HNO{sub 3} for copper ions and with 0.05 M NaOH for RB5.

  15. Review of state-of-the-art of solar collector corrosion processes. Task 1 of solar collector studies for solar heating and cooling applications. Final technical progress report

    Energy Technology Data Exchange (ETDEWEB)

    Clifford, J E; Diegle, R B

    1980-04-11

    The state-of-the-art of solar collector corrosion processes is reviewed, and Task 1 of a current research program on use of aqueous heat transfer fluids for solar heating and cooling is summarized. The review of available published literature has indicated that lack of quantitative information exists relative to collector corrosion at the present time, particularly for the higher temperature applications of solar heating and cooling compared to domestic water heating. Solar collector systems are reviewed from the corrosion/service life viewpoint, with emphasis on various applications, collector design, heat transfer fluids, and freeze protection methods. Available information (mostly qualitative) on collector corrosion technology is reviewed to indicate potential corrosion problem areas and corrosion prevention practices. Sources of limited quantitative data that are reviewed are current solar applications, research programs on collector corrosion, and pertinent experience in related applications of automotive cooling and non-solar heating and cooling. A data bank was developed to catalog corrosion information. Appendix A of this report is a bibliography of the data bank, with abstracts reproduced from presently available literature accessions (about 220). This report is presented as a descriptive summary of information that is contained in the data bank.

  16. Performance characteristics curves of the double-pass solar collector with porous media

    International Nuclear Information System (INIS)

    This paper presents the thermal performance characteristics curves of the double-pass solar collector with and without porous media in the second channel. The performance parameters presented by the FRUL, FR(τα) values and the collector time constant. The double-pass solar collector has a width of 120 cm and a length of 240 cm. Both the upper and lower channels can be varied from a minimum depth of 3.5 cm to a maximum depth 10. 5 cm. Steel wool is introduced in the second channel as the porous media. The performance testing has been conducted indoor using a solar simulator made from 45 halogen lamps suspended on the top of the collector. Heaters are used to heat the incoming air into the collector. The mass flow rate are varied and performance curves and parameters are obtained. (Author)

  17. Influence of reflectance from flat aluminum concentrators on energy efficiency of PV/Thermal collector

    International Nuclear Information System (INIS)

    In this paper the results of the influence of reflectance from flat plate solar radiation concentrators made of Al sheet and Al foil on energy efficiency of PV/Thermal collector are presented. The total reflectance from concentrators made of Al sheet and Al foil is almost the same, but specular reflectance which is bigger in concentrators made of Al foil results in increase of solar radiation intensity concentration factor. With the increase of solar radiation intensity concentration factor, total daily thermal and electrical energy generated by PV/Thermal collector with concentrators increase. In this work also optimal position of solar radiation concentrators made of Al sheet and Al foil and appropriate thermal and electrical efficiency of PV/Thermal collector have been determined. Total energy generated by PV/Thermal collector with concentrators made of Al foil in optimal position is higher than total energy generated by PV/Thermal collector with concentrators made of Al sheet.

  18. Influences of the Twisted Strips Insertion on the Performance of Flat Plate Water Solar Collector

    Directory of Open Access Journals (Sweden)

    Jafar M. Hassan

    2015-09-01

    Full Text Available In order to enhance the efficiency of flat plate solar water collectors without changing in its original shape and with low additional cost, twisted strips are inserted inside its riser pipes. Three flat plate collectors are used for test. Family of twisted strips are inserted inside each collector risers with different twisted ratios (TR=3,4,5. The collectors are connected in parallel mode (Z-Configuration and are exposed to the same conditions (solar radiation and ambient temperature .The experimental results show that, the highest heat transfer rate occurs at twisted ratio (3 .Consequently, for the same twisted ratio the daily efficiencies for the solar collector at different flow rate used (60,100 and 150 ℓ /hr. were 49 %, 57% and 63% respectively.

  19. Modeling Heat Flow In a Calorimeter Equipped With a Textured Solar Collector

    Science.gov (United States)

    Jaworske, Donald A.; Allen, Bradley J.

    2001-01-01

    Heat engines are being considered for generating electric power for minisatellite applications, particularly for those missions in high radiation threat orbits. To achieve this objective, solar energy must be collected and transported to the hot side of the heat engine. A solar collector is needed having the combined properties of high solar absorptance, low infrared emittance, and high thermal conductivity. To test candidate solar collector concepts, a simple calorimeter was designed, manufactured, and installed in a bench top vacuum chamber to measure heat flow. In addition, a finite element analysis model of the collector/calorimeter combination was made to model this heat flow. The model was tuned based on observations from the as-manufactured collector/calorimeter combination. In addition, the model was exercised to examine other collector concepts, properties, and scale up issues.

  20. Solar powered adsorption refrigerator with CPC collection system: Collector design and experimental test

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez, Manuel I.; Rodriguez, Luis R. [Departamento de Fisica, Universidad de Burgos, Avda. Cantabria s/n, 09006 Burgos (Spain)

    2007-09-15

    Solar adsorption cooling systems are usually based on the flat plate collector, whereas little attention has been paid to concentrating collectors. Compound parabolic concentrators (CPC) are a versatile class of solar collectors that can be adapted to a large variety of applications and geometries. This work presents a CPC collector whose tubular receiver contains the sorption bed and where only a portion of the receiver is exposed to sunlight. Geometric characteristics of the proposed CPC, such as the profile, the length and the height of the reflective sheet are given. A prototype of a solar adsorption chiller using this type of collector and the activated carbon-methanol working pair is described, and typical experimental results are reported. In particular, the measured solar COP ranges from 0.078 to 0.096. (author)

  1. Attaching solar collectors to a structural framework utilizing a flexible clip

    Energy Technology Data Exchange (ETDEWEB)

    Kruse, John S

    2014-03-25

    Methods and apparatuses described herein provide for the attachment of solar collectors to a structural framework in a solar array assembly. A flexible clip is attached to either end of each solar collector and utilized to attach the solar collector to the structural framework. The solar collectors are positioned to allow a member of the framework to engage a pair of flexible clips attached to adjacent solar collectors during assembly of the solar array. Each flexible clip may have multiple frame-engaging portions, each with a flange on one end to cause the flexible clip to deflect inward when engaged by the framework member during assembly and to guide each of the frame-engaging portions into contact with a surface of the framework member for attachment.

  2. Single bank NOx adsorber for heavy duty diesel engines

    NARCIS (Netherlands)

    Genderen, M. van; Aken, M.G. van

    2003-01-01

    In a NOx adsorber programme the feasibility for applying this technology to heavy duty diesel engines was investigated. After modelling and simulations for realising best λ < 1 engine conditions a platform was build which was used to obtain good NOx adsorber regeneration settings in a number of stea

  3. Sulfometuron incorporation in cationic micelles adsorbed on montmorillonite.

    Science.gov (United States)

    Mishael, Yael Golda; Undabeytia, Tomas; Rytwo, Giora; Papahadjopoulos-Sternberg, Brigitte; Rubin, Baruch; Nir, Shlomo

    2002-05-01

    The aim of this study was to understand the interactions between alkylammonium cations present as monomers and micelles and a clay mineral, montmorillonite, to develop slow release formulations of anionic herbicides, such as sulfometuron (SFM) whose leaching in soils is an environmental and economic problem. In the proposed formulation the herbicide is incorporated in positively charged micelles of quaternary amine cations, which in turn adsorb on the negatively charged clay. The adsorption of hexadecyltrimethylammonium (HDTMA) and octadecyltrimethylammonium (ODTMA) on montmorillonite was studied above and below their critical micelle concentrations (CMC). At concentrations above the CMC, the loading exceeded the clay's cation exchange capacity (CEC) and indicated higher affinity of the cation with the longer alkyl chain. An adsorption model could adequately simulate adsorption at concentrations below the CMC, and yield fair predictions for the effect of ionic strength. The model indicated that above the CMC adsorbed micelles contributed significantly to the amount of ODTMA adsorbed. Evidence for adsorption of ODTMA micelles on montmorillonite was provided by X-ray diffraction, freeze-fracture electron microscopy, and dialysis bag measurements. SFM was not adsorbed directly on the clay mineral, and adsorbed at low levels, when the organic cation was adsorbed as monomers. In contrast, a large fraction of SFM adsorbed on the clay mineral when incorporated in micelles that adsorbed on the clay. PMID:11982411

  4. A nuclear standard high-efficiency adsorber for iodine

    International Nuclear Information System (INIS)

    The structure of a nuclear standard high-efficiency adsorber, adsorbent and its performance are introduced. The performance and structure were compared with the same kind product of other firms. The results show that the leakage rate is less than 0.005%

  5. Selective sorption of perfluorooctane sulfonate on molecularly imprinted polymer adsorbents

    Institute of Scientific and Technical Information of China (English)

    Shubo DENG; Danmeng SHUAI; Qiang YU; Jun HUANG; Gang YU

    2009-01-01

    Perfluorooctane sulfonate (PFOS), as a potential persistent organic pollutant, has been widely detected in water environments, and has become a great concern in recent years. PFOS is very stable and difficult to decompose using conventional techniques. Sorption may be an attractive method to remove it from water. In this study, the molecularly imprinted polymer (MIP) adsorbents were prepared through the polymerization of 4-vinylpyridine under different preparation conditions in order to remove perfluorooctane sulfonate (PFOS) from water. The MIP adsorbents using perfluorooctanoic acid (PFOA) as the template had good imprinting effects and could selectively remove PFOS from aqueous solution. The sorption behaviors including sorption kinetics,isotherms, and effect of pH, salt, and competitive anions were investigated. Experimental results showed that the sorption of PFOS On the MIP adsorbents was very fast, pH-dependent, and highly selective. The achieved fast sorption equilibrium within 1 h was attributed to the surface sorption on the fine adsorbents. The sorption isotherms showed that the sorption selectivity of PFOS on the MIP adsorbents decreased at high PFOS concentrations, which may be due to the double-layer sorption and the formation of PFOS micelles on the sorbent surface. The sorption of PFOS on the MIP adsorbents was mainly dominated by the electrostatic interaction between the protonated vinylpyridine on the adsorbent surface and the anionic PFOS. The prepared MIP adsorbents can potentially be applied in water and wastewater treatment for selective removal of PFOS.

  6. Synthesis and properties of porous zeolite aluminosilicate adsorbents

    International Nuclear Information System (INIS)

    Environmentally safe non-energy-intensive methods of the synthesis have been developed and the properties of solid inorganic nanostructured zeolite-like adsorbents of a broad spectrum have been studied. The sorption capacities of the adsorbents with respect to various components of water pollution have been determined

  7. Microbial dispersal in unsaturated porous media: Characteristics of motile bacterial cell motions in unsaturated angular pore networks

    Science.gov (United States)

    Ebrahimi, Ali N.; Or, Dani

    2014-09-01

    The dispersal rates of self-propelled microorganisms affect their spatial interactions and the ecological functioning of microbial communities. Microbial dispersal rates affect risk of contamination of water resources by soil-borne pathogens, the inoculation of plant roots, or the rates of spoilage of food products. In contrast with the wealth of information on microbial dispersal in water replete systems, very little is known about their dispersal rates in unsaturated porous media. The fragmented aqueous phase occupying complex soil pore spaces suppress motility and limits dispersal ranges in unsaturated soil. The primary objective of this study was to systematically evaluate key factors that shape microbial dispersal in model unsaturated porous media to quantify effects of saturation, pore space geometry, and chemotaxis on characteristics of principles that govern motile microbial dispersion in unsaturated soil. We constructed a novel 3-D angular pore network model (PNM) to mimic aqueous pathways in soil for different hydration conditions; within the PNM, we employed an individual-based model that considers physiological and biophysical properties of motile and chemotactic bacteria. The effects of hydration conditions on first passage times in different pore networks were studied showing that fragmentation of aquatic habitats under dry conditions sharply suppresses nutrient transport and microbial dispersal rates in good agreement with limited experimental data. Chemotactically biased mean travel speed of microbial cells across 9 mm saturated PNM was ˜3 mm/h decreasing exponentially to 0.45 mm/h for the PNM at matric potential of -15 kPa (for -35 kPa, dispersal practically ceases and the mean travel time to traverse the 9 mm PNM exceeds 1 year). Results indicate that chemotaxis enhances dispersal rates by orders of magnitude relative to random (diffusive) motions. Model predictions considering microbial cell sizes relative to available liquid pathways sizes were

  8. Normalization and extension of single-collector efficiency correlation equation

    Science.gov (United States)

    Messina, Francesca; Marchisio, Daniele; Sethi, Rajandrea

    2015-04-01

    The colloidal transport and deposition are important phenomena involved in many engineering problems. In the environmental engineering field the use of micro- and nano-scale zerovalent iron (M-NZVI) is one of the most promising technologies for groundwater remediation. Colloid deposition is normally studied from a micro scale point of view and the results are then implemented in macro scale models that are used to design field-scale applications. The single collector efficiency concept predicts particles deposition onto a single grain of a complex porous medium in terms of probability that an approaching particle would be retained on the solid grain. In literature, many different approaches and equations exist to predict it, but most of them fail under specific conditions (e.g. very small or very big particle size and very low fluid velocity) because they predict efficiency values exceeding unity. By analysing particle fluxes and deposition mechanisms and performing a mass balance on the entire domain, the traditional definition of efficiency was reformulated and a novel total flux normalized correlation equation is proposed for predicting single-collector efficiency under a broad range of parameters. It has been formulated starting from a combination of Eulerian and Lagrangian numerical simulations, performed under Smoluchowski-Levich conditions, in a geometry which consists of a sphere enveloped by a control volume. In order to guarantee the independence of each term, the correlation equation is derived through a rigorous hierarchical parameter estimation process, accounting for single and mutual interacting transport mechanisms. The correlation equation provides efficiency values lower than one over a wide range of parameters and is valid both for point and finite-size particles. A reduced form is also proposed by elimination of the less relevant terms. References 1. Yao, K. M.; Habibian, M. M.; Omelia, C. R., Water and Waste Water Filtration - Concepts and

  9. High current and voltage effects in heterojunction bipolar transistor collectors

    International Nuclear Information System (INIS)

    The influence of temperature on speed and power applications is important in heterojunction bipolar transistors with the need for high current drive capability, high cutoff frequency and high voltage handling capability. At high current density, the onset of the Kirk effect is often the main power constraint in the bipolar transistor. An analytical model that accurately describes the physics behind the parasitic electron barrier formation in double heterojunction bipolar transistors in the Si/SiGe, GalnP/GaAs and InP/GaAsSb materials systems at the onset of the Kirk effect is presented. A new lateral current spreading effect due to the electron barrier dependence on collector current density is also discussed. The electron saturation velocity in Ga0.52In0.48P has also been measured as a function of temperature, utilising the Kirk effect in double heterojunction bipolar transistors. An AIGaAs base was used to eliminate the conduction band spike and measurements were carefully performed using pulse biasing to minimise device self-heating. Voltage drops across the base and collector series resistances were also taken into account. The measured room temperature saturation velocity of 5.0 x 106 cm/s decreased rapidly to 2.9 x 106 cm/s at 200 deg C. These results are particularly important for the prediction of frequency performance of Ga0.52In0.48P/(Al)GaAs/Ga0.52In0.48P DHBTs. Avalanche multiplication and hence impact ionisation coefficients for In0.53Ga0.47As have been determined from photomultiplication measurements over the temperature range of 20 - 400 K for a series of p-i-n/n-i-p diodes. Negative temperature dependence is observed in both the electron and hole multiplication of In0.53Ga0.47As at electric fields over 200 kV/cm, contrary to the temperature dependence of collector multiplication previously observed in InP/In0.53Ga0.47As heterojunction bipolar transistors. The results also showed that the breakdown voltage for In0.53Ga0.47As is comparable to GaAs at

  10. Ionogenic adsorbents based on local raw materials for radiation protection

    International Nuclear Information System (INIS)

    The successful management of uranium wastes and creating the conditions for effective rehabilitation activities require special adsorbents capable of holding on the surface complexes, including radioactive elements. Currently tested and have shown promising synthetic adsorbents based pitted apricot fruits and other fruit plants. This report presents data for the establishment of ionic type available adsorbents based on Tajikistan coal. As the base for the creation of this type of adsorbent were taken the coal of the 'Ziddi' deposits. As follows from our data on the chemical composition, the studied coals contain more than 20% of the ash. According to the available literature theses ashes contains various minerals compositions that can form the adsorbent's active surface. Thus, the model for this type of activated carbon can serve as a mixture of zeolite, ion exchange resins and activated carbon itself.

  11. Kinetic Study of Lead Adsorption to Composite Biopolymer Adsorbent.

    Science.gov (United States)

    Seki; Suzuki

    1999-03-15

    A kinetic study of lead adsorption to composite biopolymer adsorbents was carried out. Spherical and membranous adsorbents containing two biopolymers, humic acid and alginic acid, were used for lead adsorption in dilute acidic solutions. The shrinking core model derived by M. G. Rao and A. K. Gupta (Chem. Eng. J. 24, 181, 1982) was applied to describe the rate process of lead adsorption to spherical adsorbents (average radii of 0.12, 0.15, and 0.16 cm). Furthermore, the shrinking core model was modified and adapted for description of the rate process of lead adsorption to membranous adsorbent (average thickness of 0.0216 cm). The adsorption rate process for the both cases was well described and average apparent lead diffusion coefficients of about 6 x 10(-6) and 7 x 10(-6) cm2 s-1 were found for the spherical and membranous adsorbents, respectively. Copyright 1999 Academic Press. PMID:10049553

  12. Structure and properties of water film adsorbed on mica surfaces

    Science.gov (United States)

    Zhao, Gutian; Tan, Qiyan; Xiang, Li; Cai, Di; Zeng, Hongbo; Yi, Hong; Ni, Zhonghua; Chen, Yunfei

    2015-09-01

    The structure profiles and physical properties of the adsorbed water film on a mica surface under conditions with different degrees of relative humidity are investigated by a surface force apparatus. The first layer of the adsorbed water film shows ice-like properties, including a lattice constant similar with ice crystal, a high bearing capacity that can support normal pressure as high as 4 MPa, a creep behavior under the action of even a small normal load, and a character of hydrogen bond. Adjacent to the first layer of the adsorbed water film, the water molecules in the outer layer are liquid-like that can flow freely under the action of external loads. Experimental results demonstrate that the adsorbed water layer makes the mica surface change from hydrophilic to weak hydrophobic. The weak hydrophobic surface may induce the latter adsorbed water molecules to form water islands on a mica sheet.

  13. Adsorption of Fluoride Ion by Inorganic Cerium Based Adsorbent

    Institute of Scientific and Technical Information of China (English)

    Jiao Zhongzhi(焦中志); Chen Zhonglin; Yang Min; Zhang Yu; Li Guibai

    2004-01-01

    Excess of fluoride in drinking water is harmful to human health, the concentration of F- ions must be maintained in the range of 0.5 to 1.5 mg/L. An inorganic cerium based adsorbent (CTA) is developed on the basis of research of adsorption of fluoride on cerium oxide hydrate. Some adsorption of fluoride by CTA adsorbent experiments were carried out, and results showed that CTA adsorbent has a quick adsorption speed and a large adsorption capacity. Adsorption follows Freundlich isotherm, and low pH value helps fluoride removal. Some physical-chemical characteristics of CTA adsorbent were experimented, fluoride removal mechanism was explored, and results showed that hydroxyl group of CTA adsorbent played an important role in the fluoride removal.

  14. Collector Failures on 350 MHz, 1.2 MW CW Klystrons at the Low Energy Demonstration Accelerator (LEDA)

    OpenAIRE

    Rees, D.; Roybal, W.; Bradley, J.

    2000-01-01

    We are currently operating the front end of the accelerator production of tritium (APT) accelerator, a 7 MeV radio frequency quadrapole (RFQ) using three, 1.2 MW CW klystrons. These klystrons are required and designed to dissipate the full beam power in the collector. The klystrons have less than 1500 operational hours. One collector has failed and all collectors are damaged. This paper will discuss the damage and the difficulties in diagnosing the cause. The collector did not critically fail...

  15. Milestone Report - Complete New Adsorbent Materials for Marine Testing to Demonstrate 4.5 g-U/kg Adsorbent

    Energy Technology Data Exchange (ETDEWEB)

    Janke, Christopher James [ORNL; Das, Sadananda [ORNL; Oyola, Yatsandra [ORNL; Mayes, Richard T. [ORNL; Saito, Tomonori [ORNL; Brown, Suree [ORNL; Gill, Gary [PNNL; Kuo, Li-Jung [PNNL; Wood, Jordana [PNNL

    2014-08-01

    This report describes work on the successful completion of Milestone M2FT-14OR03100115 (8/20/2014) entitled, “Complete new adsorbent materials for marine testing to demonstrate 4.5 g-U/kg adsorbent”. This effort is part of the Seawater Uranium Recovery Program, sponsored by the U.S. Department of Energy, Office of Nuclear Energy, and involved the development of new adsorbent materials at the Oak Ridge National Laboratory (ORNL) and marine testing at the Pacific Northwest National Laboratory (PNNL). ORNL has recently developed two new families of fiber adsorbents that have demonstrated uranium adsorption capacities greater than 4.5 g-U/kg adsorbent after marine testing at PNNL. One adsorbent was synthesized by radiation-induced graft polymerization of itaconic acid and acrylonitrile onto high surface area polyethylene fibers followed by amidoximation and base conditioning. This fiber showed a capacity of 4.6 g-U/kg adsorbent in marine testing at PNNL. The second adsorbent was prepared by atom-transfer radical polymerization of t-butyl acrylate and acrylonitrile onto halide-functionalized round fibers followed by amidoximation and base hydrolysis. This fiber demonstrated uranium adsorption capacity of 5.4 g-U/kg adsorbent in marine testing at PNNL.

  16. Characterization of Cable Gun Plasma with a Charge Collector Array

    Institute of Scientific and Technical Information of China (English)

    陈玉兰; 曾正中; 孙凤举; 蒯斌; 邱爱慈; 尹佳辉; 丛培天; 梁天学

    2003-01-01

    The density, drift velocity and reproducibility of the plasma produced by a cableplasma gun array have been measured with a charge collector array. The plasma is used to prefilla coaxial plasma-opening switch with a conducting time approaching 0.4μs. The reproducibilityof the plasma source in subsequent shots is better than 5%. Near the gun nozzle and the oppositeelectrode, the plasma density amounts to 1015cm-3, which is 2 times to 3 times that in the gapbetween the two coaxial electrodes. A plasma drift velocity of about 2.4 cm/μs is observed fromthe time of flight of the charged particles. Both plasma density and drift velocity increase almostlinearly with the rise in charge voltage.

  17. Magnetically confined plasma solar collector. [satellite based system in space

    Science.gov (United States)

    Walters, C. T.; Wolken, G., Jr.; Purvis, G. D., III

    1978-01-01

    The possibility of using a plasma medium for collecting solar energy in space is examined on the basis of a concept involving an orbiting magnetic bottle in which a solar-energy-absorbing plasma is confined. A basic system uses monatomic cesium as working fluid. Cesium evaporates from a source and flows into the useful volume of a magnetic bottle where it is photoionized by solar radiation. Ions and electrons lost through the loss cones are processed by a recovery system, which might be a combination of electromagnetic devices and heat engines. This study concentrates on the plasma production processes and size requirements, estimates of the magnetic field required to confine the plasma, and an estimate of the system parameters for a 10 GW solar collector using cesium.

  18. Characterization of cable gun plasma with a charge collector array

    International Nuclear Information System (INIS)

    The density, drift velocity and reproducibility of the plasma produced by a cable plasma gun array have been measured with a charge collector array. The plasma is used to prefill a coaxial plasma-opening switch with a conducting time approaching 0.4 μs. The reproducibility of the plasma source in subsequent shots is better than 5%. Near the gun nozzle and the opposite electrode, the plasma density amounts to 1015 cm-3, which is 2 times to 3 times that in the gap between the two coaxial electrodes. A plasma drift velocity of about 2.4 cm/μs is observed from the time of flight of the charged particles. Both plasma density and drift velocity increase almost linearly with the rise in charge voltage

  19. Introducing CFD in the optical simulation of linear Fresnel collectors

    Science.gov (United States)

    Moghimi, M. A.; Rungasamy, A.; Craig, K. J.; Meyer, J. P.

    2016-05-01

    This paper seeks to determine whether the Finite Volume method within a commercially available Computational Fluid Dynamics (CFD) solver (ANSYS Fluent) can model radiation with comparable accuracy to a Monte Carlo ray-tracing software package (SolTrace). A detailed investigation was performed into modeling techniques that can be used to significantly reduce the optical errors traditionally associated with CFD modeling of radiation false scattering and ray effect using a simple optical test case. The strategies formulated in the first part of this paper were used to model a variety of Linear Fresnel Collector Concentrating Solar Power Plants. This paper shows that commercial CFD packages yield accurate results for line focusing concentrating solar applications and simple geometries, validating its use in an integrated environment where both optical and thermal performance of these plants can be simulated and optimized.

  20. Method of forming oxide coatings. [for solar collector heating panels

    Science.gov (United States)

    Mcdonald, G. E. (Inventor)

    1983-01-01

    This invention is concerned with an improved plating process for covering a substrate with a black metal oxide film. The invention is particularly directed to making a heating panel for a solar collector. A compound is electrodeposited from an aqueous solution containing cobalt metal salts onto a metal substrate. This compound is converted during plating into a black, highly absorbing oxide coating which contains hydrated oxides. This is achieved by the inclusion of an oxidizing agent in the plating bath. The inclusion of an oxidizing agent in the plating bath is contrary to standard electroplating practice. The hydrated oxides are converted to oxides by treatment in a hot bath, such as boiling water. An oxidizing agent may be added to the hot liquid treating bath.