WorldWideScience

Sample records for adsorbed unsaturated collector

  1. Solar Collectors

    Science.gov (United States)

    1980-01-01

    Solar Energy's solar panels are collectors for a solar energy system which provides heating for a drive-in bank in Akron, OH. Collectors were designed and manufactured by Solar Energy Products, a firm established by three former NASA employees. Company President, Frank Rom, an example of a personnel-type technology transfer, was a Research Director at Lewis Research Center, which conducts extensive solar heating and cooling research, including development and testing of high-efficiency flat-plate collectors. Rom acquired solar energy expertise which helped the company develop two types of collectors, one for use in domestic/commercial heating systems and the other for drying grain.

  2. Simple, economical solar collector

    Science.gov (United States)

    Anthony, K.

    1979-01-01

    Hot air solar collector designed for economy and simplicity is assembled from only three parts: (1) molded urethane foam body, (2) flat sheet metal collector panel and (3) transparent cover. Large arrays may be assembled by inserting male fittings of each collector into female fitting of adjacent collector.

  3. High performance collectors

    Science.gov (United States)

    Ogawa, H.; Hozumi, S.; Mitsumata, T.; Yoshino, K.; Aso, S.; Ebisu, K.

    1983-04-01

    Materials and structures used for flat plate solar collectors and evacuated tubular collectors were examined relative to their overall performance to project effectiveness for building heating and cooling and the feasibility of use for generating industrial process heat. Thermal efficiencies were calculated for black paint single glazed, selective surface single glazed, and selective surface double glazed flat plate collectors. The efficiencies of a single tube and central tube accompanied by two side tube collectors were also studied. Techniques for extending the lifetimes of the collectors were defined. The selective surface collectors proved to have a performance superior to other collectors in terms of the average annual energy delivered. Addition of a black chrome-coated fin system to the evacuated collectors produced significant collection efficiency increases.

  4. Air/liquid collectors

    DEFF Research Database (Denmark)

    Jensen, Søren Østergaard; Olesen, Ole; Kristiansen, Finn Harken

    1997-01-01

    This report determine efficiency equations for combined air/liquid solar collectors by measurements on to different air/liquid collectors. Equations which contain all relevant informations on the solar collectors. A simulation program (Kviksol) has been modified in order to be able to handle...

  5. Connectable solar air collectors

    Energy Technology Data Exchange (ETDEWEB)

    Oestergaard Jensen, S.; Bosanac, M.

    2002-02-01

    The project has proved that it is possible to manufacture solar air collector panels, which in an easy way can be connected into large collector arrays with integrated ducting without loss of efficiency. The developed connectable solar air collectors are based on the use of matrix absorbers in the form of perforated metal sheets. Three interconnected solar air collectors of the above type - each with an transparent area of approx. 3 m{sup 2} - was tested and compared with parallel tests on two single solar air collectors also with a transparent area of approx. 3 m{sup 2} One of the single solar air collectors has an identical absorber as the connectable solar air collectors while the absorber of the other single solar air collector was a fibre cloth. The efficiency of the three solar air collectors proved to be almost identical in the investigated range of mass flow rates and temperature differences. The solar air collectors further proved to be very efficient - as efficient as the second most efficient solar air collectors tested in the IEA task 19 project Solar Air Systems. Some problems remain although to be solved: the pressure drop across especially the connectable solar air collectors is too high - mainly across the inlets of the solar air collectors. It should, however, be possible to considerably reduce the pressure losses with a more aerodynamic design of the inlet and outlet of the solar air collectors; The connectable solar air collectors are easy connectable but the air tightness of the connections in the present form is not good enough. As leakage leads to lower efficiencies focus should be put on making the connections more air tight without loosing the easiness in connecting the solar air collectors. As a spin off of the project a simple and easy way to determine the efficiency of solar, air collectors for pre-heating of fresh air has been validated. The simple method of determining the efficiency has with success been compared with an advance method

  6. Experimental unsaturated soil mechanics

    CERN Document Server

    Delage, Pierre

    2008-01-01

    In this general report, experimental systems and procedures of investigating the hydro-mechanical behaviour of unsaturated soils are presented. The water retention properties of unsaturated soils are commented and linked to various physical parameters and properties of the soils. Techniques of controlling suction are described together with their adaptation in various laboratory testing devices. Some typical features of the mechanical behaviour of unsaturated soils are presented within an elasto-plastic framework. An attempt to describe the numerous and significant recent advances in the investigation of the behaviour of unsaturated soils, including the contributions to this Conference, is proposed.

  7. Solar thermal collectors

    Science.gov (United States)

    Aranovitch, E.

    Thermal processes in solar flat plate collectors are described and evaluated analytically, and numerical models are presented for evaluating the performance of various designs. A flat plate collector consists of a black absorber plate which transfers absorbed heat to a fluid, a cover which limits thermal losses, and insulation to prevent backlosses. Calculated efficiencies for the collectors depend on the radiation absorbed, as well as IR losses due to natural convection, conduction, and radiation out of the collector. Formulations for the global emittance and heat transfer, as well as losses and their dependence on the Nusselt number and Grashof number are defined. Consideration is given to radiation transmission through transparent covers and Fresnel reflections at interfaces in the cover material. Finally, the performance coefficients for double-glazed and selective surface flat plate collectors are examined.

  8. City sewer collectors biocorrosion

    Science.gov (United States)

    Ksiażek, Mariusz

    2014-12-01

    This paper presents the biocorrosion of city sewer collectors impregnated with special polymer sulphur binders, polymerized sulphur, which is applied as the industrial waste material. The city sewer collectors are settled with a colony of soil bacteria which have corrosive effects on its structure. Chemoautotrophic nitrifying bacteria utilize the residues of halites (carbamide) which migrate in the city sewer collectors, due to the damaged dampproofing of the roadway and produce nitrogen salts. Chemoorganotrophic bacteria utilize the traces of organic substrates and produce a number of organic acids (formic, acetic, propionic, citric, oxalic and other). The activity of microorganisms so enables the origination of primary and secondary salts which affect physical properties of concretes in city sewer collectors unfavourably.

  9. Horizontally mounted solar collector

    Science.gov (United States)

    Black, D. H. (Inventor)

    1979-01-01

    Solar energy is collected by using a vertical deflector assembly, a stationary reflector and a horizontally mounted solar collector. The deflector assembly contains a plurality of vanes which change the direction of the solar energy to the vertical, while constantly keeping the same side of the deflector facing the sun. The vertical rays are then reflected off the stationary reflector and are then absorbed by the collector.

  10. Miniature, ruggedized data collector

    Science.gov (United States)

    Jackson, Scott; Calcutt, Wade; Knobler, Ron; Jones, Barry; Klug, Robert

    2009-05-01

    McQ has developed a miniaturized, programmable, ruggedized data collector intended for use in weapon testing or data collection exercises that impose severe stresses on devices under test. The recorder is designed to survive these stresses which include acceleration and shock levels up to 100,000 G. The collector acquires and stores up to four channels of signal data to nonvolatile memory for later retrieval by a user. It is small (< 7 in3), light weight (< 1 lb), and can operate from various battery chemistries. A built-in menuing system, accessible via a USB interface, allows the user to configure parameters of the recorder operation, such as channel gain, filtering, and signal offsets, and also to retrieve recorded data for analysis. An overview of the collector, its features, performance, and potential uses, is presented.

  11. Biological sample collector

    Science.gov (United States)

    Murphy, Gloria A.

    2010-09-07

    A biological sample collector is adapted to a collect several biological samples in a plurality of filter wells. A biological sample collector may comprise a manifold plate for mounting a filter plate thereon, the filter plate having a plurality of filter wells therein; a hollow slider for engaging and positioning a tube that slides therethrough; and a slide case within which the hollow slider travels to allow the tube to be aligned with a selected filter well of the plurality of filter wells, wherein when the tube is aligned with the selected filter well, the tube is pushed through the hollow slider and into the selected filter well to sealingly engage the selected filter well and to allow the tube to deposit a biological sample onto a filter in the bottom of the selected filter well. The biological sample collector may be portable.

  12. A solar energy collector

    Energy Technology Data Exchange (ETDEWEB)

    Vasil' yev, L.L.; Avakyan, Yu.V.; Bogdanov, V.M.; Gagiyan, L.A.; Grakovich, L.P.; Karapetyan, G.S.; Morgun, V.A.

    1984-01-01

    A collector whose primary component is a heating pipe is proposed. The evaporation zone located in the lower half of the heating pipe has an external absorption coating. Chambers that open upward and contain the evaporating fluid are mounted within this region along the top. In order to improve operational reliability of the collector, these chambers are mounted on one coated wall; the area of projection of each of the chambers onto the horizontal plane is greater than the area of the projection of each of the chambers placed above it. The coating may be in the form of photocells; a filter is mounted on the chamber side inside the evaporation zone. The evaporation zone may take the form of a cylinder with a segmented base; the photocells are mounted on a flat section of the lateral surface. The collector may be used to cool the photocells.

  13. Flotation and adsorption of quaternary ammonium salts collectors on kaolinite of different particle size

    Institute of Scientific and Technical Information of China (English)

    Jiang Hao; Liu Guorong; Hu Yuehua; Xu Longhua; Yu Yawen; Xie Zhen; Chen Haochuan

    2013-01-01

    The flotation behaviors of decyltrimethylammonium (103C),dodecyltrimethylammonium chloride (DTAC),tetradecyltrimethylammonium chloride (TTAC) and cetyltrimethylammonium chloride (CTAC) on kaolinite of different particle size fraction were studied.The adsorbed amount and adsorption isotherms of collectors on kaolinite were determined for painstaking investigation into the adsorption of quaternary amines at kaolinite-water interface by ultraviolet spectrophotometer methods.The flotation results show that the flotation recovery of kaolinite of different particle fraction increases with an increase in pH when 103C,DTAC,TrAC and CTAC are used as collectors.As the concentration of collectors increases,the flotation recovery increases.Particle size of kaolinite has a strong effect on flotation.The flotation recovery of fine kaolinite decreases with the carbon chain of quaternary ammonium salts collectors increasing,while coarse kaolinite is on the contrary.The adsorbed amount tests and adsorption isotherms show that adsorbed amount increases when the particle size of kaolinite increases or when the carbon chain length of quaternary ammonium salts increases.Within the range of flotation collector concentration,the longer the hydrocarbon chain,the more probable to be absolutely adsorbed by fine kaolinite particles and then the lower the collector concentration in the bulk,which leds to lower flotation recovery.

  14. Studies efficiency solar air collector

    OpenAIRE

    YORKIN SODIKOVICH ABBASOV; MIRSOLI ODILJANOVICH UZBEKOV

    2016-01-01

    The article presents an analysis of the existing solar air collectors. A description of the design and the results of experimental studies on the effectiveness of the solar air collector with an absorber of from metal shavings.

  15. Black Liquid Solar Collector Demonstrator.

    Science.gov (United States)

    Weichman, F. L.; Austen, D. J.

    1979-01-01

    Describes the details of constructing, and use of, a solar collector. Uses a black liquid to absorb the energy, the thermosyphon effect to drive the liquid through the collector, and a floodlamp as a surrogate sun. (GA)

  16. Leaves: Nature's Solar Collectors

    Science.gov (United States)

    Isabelle, Aaron D.; de Groot, Cornelis

    2009-01-01

    One of the most captivating things about plants is the way they capture the Sun's energy, but this can be a difficult topic to cover with elementary students. Therefore, to help students to make a concrete connection to this abstract concept, this series of solar-energy lessons focuses on leaves and how they act as "solar collectors." As students…

  17. The Olympic Collectors

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Products bearing Beijing Olympics images are big business for China’s dedicated collectors As every December over last few years,retired teacher Li Mi in Beijing started to collect thick stacks of postcards sent by her former students from her mailbox in the weeks running up to the New Year.

  18. Infiltration in Unsaturated Soils

    DEFF Research Database (Denmark)

    Ghotbi, Abdoul R.; Omidvar, M.; Barari, Amin

    2011-01-01

    An approximate analytical solution has been established for the well known Richards’ equation for unsaturated flow of transports in soils. Despite the importance of Richards’ equation in geotechnical and geoenvironmental applications, most solutions to the problem are generally based on numerical...

  19. A solar energy collector

    Energy Technology Data Exchange (ETDEWEB)

    Vasilyev, L.L.; Avakyan, Yu V.; Dabagyan, T.N.; Grakovich, L.P.; Khustalev, D.K.; Morgun, V.A.; Vartanyan, A.V.

    1984-01-01

    During collector operation, solar emission is absorbed by the evaporator section of the heating tube; the degree of blackness of the forward wall of the section is increased significantly by the use of corrugations in this section. Boiling of the working fluid in the longitudinal slotted channels is accompanied by outbursts of the steam fluid mixture in the direction of the forward wall, resulting in wetting of the longitudinal corrugation on this wall. In this solar collector, there is a continuous flow of the working fluid onto the internal surface of the leading wall of the evaporation section of the heat tube; the working fluid evaporation process is accelerated by the spraying resulting from the popping of vapor bubbles.

  20. Collector attachment to lead-activated sphalerite – Experiments and DFT study on pH and solvent effects

    Energy Technology Data Exchange (ETDEWEB)

    Sarvaramini, A. [Department of Chemical Engineering, Université Laval, 1065 Avenue de la médecine, Québec, Québec G1V 0A6 (Canada); Larachi, F., E-mail: faical.larachi@gch.ulaval.ca [Department of Chemical Engineering, Université Laval, 1065 Avenue de la médecine, Québec, Québec G1V 0A6 (Canada); Hart, B. [Department of Earth Sciences, Surface Science Western, The University of Western Ontario, 999 Collip Circle, P.O. Box 12, London, Ontario N6G 0J3 (Canada)

    2016-03-30

    Graphical abstract: - Highlights: • DFT and experimental study of collector interactions with Pb-activated sphalerite. • Sphalerite activation in acidic media due to surface adsorption of Pb cations. • Substitution of surface zinc atoms by Pb not supported from experiments and DFT. • Collector adsorption on activated sphalerite hindered in solvated aqueous media. • Collector adsorption on surface deposited Pb(OH){sub 2} energetically favorable. - Abstract: The interactions of diisobutyl dithiophosphinate with bare (un-activated) and lead-activated sphalerite were studied both experimentally and through DFT simulations. Sphalerite activated by lead in acidic and alkaline conditions showed considerably greater affinity for diisobutyl dithiophosphinate adsorption than bare sphalerite. Experimental observations supported by DFT simulations concur in that attachment of the solvated collector to the activated sphalerite surface is through adsorbed lead cations or lead hydroxides where as for the bare sphalerite, the collector was most stable in its solvated state and not as an adsorbed specie. Accounting for solvation effects by including a swarm of water molecules in DFT simulations was necessary to infer plausible surface interactions between collector, solvent, and bare or lead-activated sphalerite. The experimental data and DFT simulations indicate, affinity of the collector toward surface-adsorbed lead species was predicted to form stable covalent bonds between collector sulfur atoms and lead.

  1. Solar collector array

    Energy Technology Data Exchange (ETDEWEB)

    Hall, John Champlin; Martins, Guy Lawrence

    2015-09-06

    A method and apparatus for efficient manufacture, assembly and production of solar energy. In one aspect, the apparatus may include a number of modular solar receiver assemblies that may be separately manufactured, assembled and individually inserted into a solar collector array housing shaped to receive a plurality of solar receivers. The housing may include optical elements for focusing light onto the individual receivers, and a circuit for electrically connecting the solar receivers.

  2. Dissolved Air Flotation of arsenic adsorbent particles

    Directory of Open Access Journals (Sweden)

    M. Santander

    2015-04-01

    Full Text Available The removal of arsenic from synthetic effluent was studied using the adsorbent particle flotation technique (APF and dissolved air flotation (DAF. A sample of an iron mineral was used as adsorbent particles of arsenic, ferric chloride as coagulant, cationic polyacrylamide (NALCO 9808 as flocculants, and sodium oleate as collector. Adsorption studies to determine the pH influence, contact time, and adsorbent particles concentration on the adsorption of arsenic were carried out along with flotation studies to determine the removal efficiency of adsorbents particles. The results achieved indicate that the adsorption kinetic of arsenic is very rapid and that in range of pH’s from 2 to 7 the adsorption percentages remain constant. The equilibrium conditions were achieved in 60 minutes and about 95% of arsenic was adsorbed when used an adsorbent concentration of 2 g/L and pH 6.3. The maximum adsorption capacity of adsorbent particles was 4.96 mg/g. The mean free energy of adsorption (E was found to be 2.63 kJ/mol, which suggests physisorption. The results of the flotation studies demonstrated that when synthetic effluents with 8.9 mg/L of arsenic were treated under the following experimental conditions; 2 g/L of adsorbent particles, 120 mg/L of Fe(III, 2 mg/L of Nalco 9808, 20 mg/L of sodium oleate, and 40% of recycle ratio in the DAF, it was possible to reach 98% of arsenic removal and 6.3 NTU of residual turbidity in clarified synthetic effluent.

  3. Combined solar collector

    OpenAIRE

    Voznyak, O.; Shapoval, S.; Pona, O.; Vengryn, I.

    2014-01-01

    In this article was analyzing the efficiency of the combined solar collector for heating buildings. This enhances the efficiency of solar system by increasing the area of the absorption of solar energy. There are describes the results of the research on solar radiation input on a combined solar collector. Проаналізовано ефективність використання комбінованого сонячного колектора для теплопостачання будівель. Він забезпечує підвищення ефективності геліосистеми за рахунок збільшення площі погли...

  4. High-performance solar collector

    Science.gov (United States)

    Beekley, D. C.; Mather, G. R., Jr.

    1979-01-01

    Evacuated all-glass concentric tube collector using air or liquid transfer mediums is very efficient at high temperatures. Collector can directly drive existing heating systems that are presently driven by fossil fuel with relative ease of conversion and less expense than installation of complete solar heating systems.

  5. Collector-Output Analysis Program

    Science.gov (United States)

    Glandorf, D. R.; Phillips, Robert F., II

    1986-01-01

    Collector-Output Analysis Program (COAP) programmer's aid for analyzing output produced by UNIVAC collector (MAP processor). COAP developed to aid in design of segmentation structures for programs with large memory requirements and numerous elements but of value in understanding relationships among components of any program. Crossreference indexes and supplemental information produced. COAP written in FORTRAN 77.

  6. Fin-tube solar collectors

    Science.gov (United States)

    1980-01-01

    Report presents test procedures and results of thermal-performance evaluation of seven commercial fin tube (liquid) solar collector-absorber plates. Tests were conducted indoors at Marshall Space Flight Center Solar simulator. Results are graphically shown along with supporting test data and summary, indicating efficiency as function of collector inlet temperature.

  7. LHCb Tag Collector

    CERN Document Server

    Fuente Fernàndez, P; Cousin, N

    2011-01-01

    The LHCb physics software consists of hundreds of packages, each of which is developed by one or more physicists. When the developers have some code changes that they would like released, they commit them to the version control system, and enter the revision number into a database. These changes have to be integrated into a new release of each of the physics analysis applications. Tests are then performed by a nightly build system, which rebuilds various configurations of the whole software stack and executes a suite of run-time functionality tests. A Tag Collector system has been developed using solid standard technologies to cover both the use cases of developers and integration managers. A simple Web interface, based on an AJAX-like technology, is available. Integration with software management and Nightly Build programs is possible via a Python API. Data are stored in a relational database with the help of an ORM (Object-Relational Mapping) library.

  8. Performance study of unglazed cylindrical solar collector for adsorption refrigeration system

    Science.gov (United States)

    Mahesh, A.; Kaushik, S. C.; Kumaraguru, A. K.

    2013-12-01

    In the present communication, the unglazed cylindrical solar adsorber module is suggested for refrigeration and theoretical models for the heat and mass transfer in the cylindrical adsorber with heat balance equations in the collector components have been developed. It has been found that, both the SCP and COPsolar raises with increasing the evaporation temperature and drop off with the increase of the condensation temperature. The COPsolar increased from 0.15 to 0.52 with the increase of the total solar energy absorbed by the collector while the COPcycle varied in the range of 0.57-0.73. The efficiency of unglazed solar collector varied from 36 to 44 %. The cost of current unglazed adsorption refrigeration system is compared with the glazed system, and it is 33 to 50 % less than the cost of glazed system.

  9. Shenandoah parabolic dish solar collector

    Energy Technology Data Exchange (ETDEWEB)

    Kinoshita, G.S.

    1985-01-01

    The objectives of the Shenandoah, Georgia, Solar Total Energy System are to design, construct, test, and operate a solar energy system to obtain experience with large-scale hardware systems for future applications. This report describes the initial design and testing activities conducted to select and develop a collector that would serve the need of such a solar total energy system. The parabolic dish was selected as the collector most likely to maximize energy collection as required by this specific site. The fabrication, testing, and installation of the parabolic dish collector incorporating improvements identified during the development testing phase are described.

  10. AEROSOL PARTICLE COLLECTOR DESIGN STUDY

    Energy Technology Data Exchange (ETDEWEB)

    Lee, S; Richard Dimenna, R

    2007-09-27

    A computational evaluation of a particle collector design was performed to evaluate the behavior of aerosol particles in a fast flowing gas stream. The objective of the work was to improve the collection efficiency of the device while maintaining a minimum specified air throughput, nominal collector size, and minimal power requirements. The impact of a range of parameters was considered subject to constraints on gas flow rate, overall collector dimensions, and power limitations. Potential improvements were identified, some of which have already been implemented. Other more complex changes were identified and are described here for further consideration. In addition, fruitful areas for further study are proposed.

  11. Accelerated Testing of Solar Collector Durability

    DEFF Research Database (Denmark)

    Svendsen, Sv Aa Højgaard

    1996-01-01

    A climatic simulator has been build to test the reliability and durability of solar collectors. In the climatic simulator the collector is expåosed to extreme climatic conditions and temperature variations in an accelerated way and during this process the function of the collector is tested...... and the microclimate in the collector box is measured....

  12. Solar collector manufacturing activity, 1992

    Energy Technology Data Exchange (ETDEWEB)

    1993-11-09

    This report presents data provided by US-based manufacturers and importers of solar collectors. Summary data on solar thermal collector shipments are presented for the years 1974 through 1992. Summary data on photovoltaic cell and module shipments are presented for the years 1982 through 1992. Detailed information for solar thermal collectors and photovoltaic cells and modules are presented for 1992. Appendix A describes the survey methodology. Appendix B contains the 1992 survey forms and instructions. Appendices C and D list the companies that responded to the 1992 surveys and granted permission for their names and addresses to appear in the report. Appendix E provides selected tables from this report with data shown in the International System of Units (SI) metric units. Appendix F provides an estimate of installed capacity and energy production from solar collectors for 1992.

  13. Modelling of Microclimate in collectors

    DEFF Research Database (Denmark)

    Holck, Ole

    1996-01-01

    Abstract It is important to avoid condensation in solar collectors, most of all because wetness of the absorber can damage the selective surface and cause corrosion on the absorber plate. During night time the cover of collectors will cool below ambient temperature due to thermal radiation...... to the cold sky. In climates where the air during night time becomes saturated with humidity (the relative humidity is 100%), condensation will form on the outside and inside of the collector glazing. If too much condensation takes place on the inside of the glazing, it will start to fall off...... on to the absorber surface. It is important to characterize microclimatic conditions in the collector, and at the Department of Buildings and Energy work is carried out with the improvement of a computer model. As a tool the computer model will be useful in developing guidelines to achieve the most favourable...

  14. Manifold Insulation for Solar Collectors

    Science.gov (United States)

    1982-01-01

    Results of computer analysis of effects of various manifold insulation detailed in 23-page report show that if fluid is distributed to and gathered from array of solar collectors by external rather than internal manifold, effectiveness of manifold insulation has major influence on efficiency. Report describes required input data and presents equations that govern computer model. Provides graphs comparing collector efficiencies for representative manifold sizes and insulations.

  15. Solar radiation on a catenary collector

    Science.gov (United States)

    Crutchik, M.; Appelbaum, J.

    1992-01-01

    A tent-shaped structure with a flexible photovoltaic blanket acting as a catenary collector is presented. The shadow cast by one side of the collector produces a shadow on the other side of the collector. This self-shading effect is analyzed. The direct beam, the diffuse, and the albedo radiation on the collector are determined. An example is given for the insolation on the collector operating on Viking Lander 1 (VL1).

  16. SOLAR NANTENNA ELECTROMAGNETIC COLLECTORS

    Energy Technology Data Exchange (ETDEWEB)

    Steven D. Novack; Dale K. Kotter; Dennis Slafer; Patrick Pinhero

    2008-08-01

    This research explores a new efficient approach for producing electricity from the abundant energy of the sun. A nanoantenna electromagnetic collector (NEC) has been designed, prototyped, and tested. Proof of concept has been validated. The device targets mid-infrared wavelengths where conventional photovoltaic (PV) solar cells do not respond but is abundant in solar energy. The initial concept of designing NEC antennas was based on scaling of radio frequency antenna theory. This approach has proven unsuccessful by many due to not fully understanding and accounting for the optical behavior of materials in the THz region. Also until recent years the nanofabrication methods were not available to fabricate the optical antenna elements. We have addressed and overcome both technology barriers. Several factors were critical in successful implementation of NEC including: 1) frequency-dependent modeling of antenna elements, 2) selection of materials with proper THz properties and 3) novel manufacturing methods that enable economical large-scale manufacturing. The work represents an important step toward the ultimate realization of a low-cost device that will collect as well as convert this radiation into electricity, which will lead to a wide spectrum, high conversion efficiency, and low cost solution to complement conventional PVs.

  17. Modeling adsorption: Investigating adsorbate and adsorbent properties

    Science.gov (United States)

    Webster, Charles Edwin

    1999-12-01

    Surface catalyzed reactions play a major role in current chemical production technology. Currently, 90% of all chemicals are produced by heterogeneously catalyzed reactions. Most of these catalyzed reactions involve adsorption, concentrating the substrate(s) (the adsorbate) on the surface of the solid (the adsorbent). Pore volumes, accessible surface areas, and the thermodynamics of adsorption are essential in the understanding of solid surface characteristics fundamental to catalyst and adsorbent screening and selection. Molecular properties such as molecular volumes and projected molecular areas are needed in order to convert moles adsorbed to surface volumes and areas. Generally, these molecular properties have been estimated from bulk properties, but many assumptions are required. As a result, different literature values are employed for these essential molecular properties. Calculated molar volumes and excluded molecular areas are determined and tabulated for a variety of molecules. Molecular dimensions of molecules are important in the understanding of molecular exclusion as well as size and shape selectivity, diffusion, and adsorbent selection. Molecular dimensions can also be used in the determination of the effective catalytic pore size of a catalyst. Adsorption isotherms, on zeolites, (crystalline mineral oxides) and amorphous solids, can be analyzed with the Multiple Equilibrium Analysis (MEA) description of adsorption. The MEA produces equilibrium constants (Ki), capacities (ni), and thermodynamic parameters (enthalpies, ΔHi, and entropies, ΔSi) of adsorption for each process. Pore volumes and accessible surface areas are calculated from the process capacities. Adsorption isotherms can also be predicted for existing and new adsorbate-adsorbent systems with the MEA. The results show that MEA has the potential of becoming a standard characterization method for microporous solids that will lead to an increased understanding of their behavior in gas

  18. Sulfur the archetypal catalyst poison? The sulfur-induced promotion of the bonding of unsaturated hydrocarbons on Cu(111).

    Science.gov (United States)

    Rousseau, G B D; Bovet, N; Kadodwala, M

    2006-11-02

    We have shown using a combination of temperature-programmed desorption and UV photoelectron spectroscopy that the presence of preadsorbed atomic sulfur promotes the bonding of cyclic unsaturated hydrocarbons (benzene and cyclohexene) to Cu(111). This promoting behavior of sulfur can be rationalized in terms of the ability of adsorbed sulfur to influence the balance between charge donation from the adsorbate to metal, and back-donation from the metal to adsorbate. The effects of sulfur on Cu(111) are dramatically different from those observed in previous studies on Pt(111), which found that it caused a downward shift in the desorption temperature of adsorbed benzene, through purely steric effects.

  19. The multiple layer solar collector

    Science.gov (United States)

    Kenna, J. P.

    1983-01-01

    An analytical model is developed for obtaining numerical solutions for differential equations describing the performance of separate layers in a multiple layer solar collector. The configurations comprises heat transfer fluid entering at the top of the collector and travelling down through several layers. A black absorber plate prevents reemission of thermal radiation. The overall performance is shown to depend on the number of layers, the heat transfer coefficient across each layer, and the absorption properties of the working fluid. It is found that the multiple layer system has a performance inferior to that of flat plate selective surface collectors. Air gaps insulating adjacent layers do not raise the efficiency enough to overcome the relative deficiency.

  20. Aid To Solar Collector Development

    Science.gov (United States)

    1979-01-01

    Solar heating and cooling systems employ coatings to increase efficiency. Designers want a coating which absorbs solar heat to the maximum extent possible with minimal emittance of infrared radiation, which occurs when the collector plate gets hot. The coating is important because too much coating causes energy loss by emittance, too little reduces the collector's ability to absorb heat. NASA's Lewis Research Center, which conducts solar energy research, saw a need for a simple means of testing coating samples for emittance. Such equipment is available to research laboratories, but it is complex and expensive

  1. Large-scale solar thermal collector concepts

    Science.gov (United States)

    Brantley, L. W., Jr.

    1975-01-01

    Thermal collector could be used ultimately to power steamplant to produce electricity. Collector would consist of two major subsystems: (1) series of segmented tracking mirrors with two axes of rotation and (2) absorber mounted on centrally located tower.

  2. ADVANCED HYBRID PARTICULATE COLLECTOR

    Energy Technology Data Exchange (ETDEWEB)

    Ye Zhuang; Stanley J. Miller; Michelle R. Olderbak; Rich Gebert

    2001-12-01

    A new concept in particulate control, called an advanced hybrid particulate collector (AHPC), is being developed under funding from the U.S. Department of Energy. The AHPC combines the best features of electrostatic precipitators (ESPs) and baghouses in an entirely novel manner. The AHPC concept combines fabric filtration and electrostatic precipitation in the same housing, providing major synergism between the two methods, both in the particulate collection step and in transfer of dust to the hopper. The AHPC provides ultrahigh collection efficiency, overcoming the problem of excessive fine-particle emissions with conventional ESPs, and solves the problem of reentrainment and re-collection of dust in conventional baghouses. Phase I of the development effort consisted of design, construction, and testing of a 5.7-m{sup 3}/min (200-acfm) working AHPC model. Results from both 8-hr parametric tests and 100-hr proof-of-concept tests with two different coals demonstrated excellent operability and greater than 99.99% fine-particle collection efficiency. Since all of the developmental goals of Phase I were met, the approach was scaled up in Phase II to a size of 255 m{sup 3}/min (9000 acfm) (equivalent in size to 2.5 MW) and was installed on a slipstream at the Big Stone Power Plant. For Phase II, the AHPC at Big Stone Power Plant was operated continuously from late July 1999 until mid-December 1999. The Phase II results were highly successful in that ultrahigh particle collection efficiency was achieved, pressure drop was well controlled, and system operability was excellent. For Phase III, the AHPC was modified into a more compact configuration, and components were installed that were closer to what would be used in a full-scale commercial design. The modified AHPC was operated from April to July 2000. While operational results were acceptable during this time, inspection of bags in the summer of 2000 revealed some membrane damage to the fabric that appeared to be

  3. Theoretical and experimental investigations of Chinese evacuated tubular solar collectors

    DEFF Research Database (Denmark)

    Qin, Lin; Furbo, Simon

    1999-01-01

    Four different marketed Chinese evacuated tubular solar collectors have been investigated both theoretically and experimentally. The advantages of the investigated solar collectors compared to normal flat plate collectors were elucidated.......Four different marketed Chinese evacuated tubular solar collectors have been investigated both theoretically and experimentally. The advantages of the investigated solar collectors compared to normal flat plate collectors were elucidated....

  4. Desiccant cooling using unglazed transpired solar collectors

    Science.gov (United States)

    Pesaran, A. A.; Wipke, K.

    1992-05-01

    The use of unglazed solar collectors for desiccant regeneration in a solid desiccant cooling cycle was investigated because these collectors are lower in cost than conventional glazed flat-plate collectors. Using computer models, the performance of a desiccant cooling ventilation cycle integrated with either unglazed transpired collectors or conventional glazed flat-plate collectors was obtained. We found that the thermal performance of the unglazed system was lower than the thermal performance of the glazed system because the unglazed system could not take advantage of the heat of adsorption released during the dehumidification process. For a 3-ton cooling system, although the area required for the unglazed collector was 69 percent more than that required for the glazed collector, the cost of the unglazed collector array was 44 percent less than the cost of the glazed collector array. The simple payback period of the unglazed system was half of the payback period of the glazed collector when compared to an equivalent gas-fired system. Although the use of unglazed transpired collectors makes economic sense, some practical considerations may limit their use in desiccant regeneration.

  5. Recommendations for European solar collector test methods (Liquid heating collectors)

    Science.gov (United States)

    Derrick, A.; Gillett, W. B.

    Standardized testing formats, equipment, conditions, and tests defined as part of the solar flat plate collector testing program performed by the Commission of the European Communities are detailed. The work is a product of efforts at 20 laboratories, and alternative methods have been characterized for tailoring tests to particular locations and climatic conditions. The testing methods are intended for collectors using a liquid as the heat transfer medium. Procedures have been defined for examining steady state and transient performance, heat loss, thermal capacity, pressure drop, and anemometry. Instrumentation types and accuracies have been defined, and a standardized format for presentation of results has been developed. The tests are tailored for determining the durability of the flat plate systems under simulated solar radiation conditions.

  6. Automated Verification of Practical Garbage Collectors

    CERN Document Server

    Hawblitzel, Chris

    2010-01-01

    Garbage collectors are notoriously hard to verify, due to their low-level interaction with the underlying system and the general difficulty in reasoning about reachability in graphs. Several papers have presented verified collectors, but either the proofs were hand-written or the collectors were too simplistic to use on practical applications. In this work, we present two mechanically verified garbage collectors, both practical enough to use for real-world C# benchmarks. The collectors and their associated allocators consist of x86 assembly language instructions and macro instructions, annotated with preconditions, postconditions, invariants, and assertions. We used the Boogie verification generator and the Z3 automated theorem prover to verify this assembly language code mechanically. We provide measurements comparing the performance of the verified collector with that of the standard Bartok collectors on off-the-shelf C# benchmarks, demonstrating their competitiveness.

  7. Investigations on efficiencies of HT solar collectors for different flow rates and collector tilts

    DEFF Research Database (Denmark)

    Chen, Ziqian; Perers, Bengt; Furbo, Simon;

    2013-01-01

    Two HT solar collectors for solar heating plants from Arcon Solvarme A/S are tested in a laboratory test facility for solar collectors at Technical University of Denmark (DTU). The collectors are designed in the same way. However, one solar collector is equipped with an ETFE foil between...... the absorber and the cover glass and the other is without ETFE foil. The efficiencies for the collectors are tested at different flow rates and tilt. On the basis of the measured efficiencies, the efficiencies for the collectors as functions of flow rates are obtained. The calculated efficiencies are in good...... agreement with the measured efficiencies....

  8. Optical design for EUV lithography source collector

    Institute of Scientific and Technical Information of China (English)

    Shuqing Zhang; Qi Wang; Dongyuan Zhu; Runshun Li; Chang Liu

    2011-01-01

    @@ Wolter I collector is the best collector for extreme ultraviolet (EUV) lithography, which has a series of nested mirrors.It has high collection efficiency and can obtain more uniform intensity distribution at the intermediate focus (IF).A new design with the calculation sequence from the outer mirror to the inner one on the premise of satisfying the requirements of the collector is introduced.Based on this concept, a computer program is established and the optical parameters of the collector using the program is calculated.The design results indicate that the collector satisfies all the requirements.%Wolter I collector is the best collector for extreme ultraviolet (EUV) lithography, which has a series of nested mirrors. It has high collection efficiency and can obtain more uniform intensity distribution at the intermediate focus (IF). A new design with the calculation sequence from the outer mirror to the inner one on the premise of satisfying the requirements of the collector is introduced. Based on this concept, acomputer program is established and the optical parameters of the collector using the program is calculated.The design results indicate that the collector satisfies all the requirements.

  9. Regenerative adsorbent heat pump

    Science.gov (United States)

    Jones, Jack A. (Inventor)

    1991-01-01

    A regenerative adsorbent heat pump process and system is provided which can regenerate a high percentage of the sensible heat of the system and at least a portion of the heat of adsorption. A series of at least four compressors containing an adsorbent is provided. A large amount of heat is transferred from compressor to compressor so that heat is regenerated. The process and system are useful for air conditioning rooms, providing room heat in the winter or for hot water heating throughout the year, and, in general, for pumping heat from a lower temperature to a higher temperature.

  10. Process for the synthesis of unsaturated alcohols

    Energy Technology Data Exchange (ETDEWEB)

    Maughon, Bob R.; Burdett, Kenneth A.; Lysenko, Zenon

    2007-02-13

    A process of preparing an unsaturated alcohol (olefin alcohol), such as, a homo-allylic mono-alcohol or homo-allylic polyol, involving protecting a hydroxy-substituted unsaturated fatty acid or fatty acid ester, such as methyl ricinoleate, derived from a seed oil, to form a hydroxy-protected unsaturated fatty acid or fatty acid ester; homo-metathesizing or cross-metathesizing the hydroxy-protected unsaturated fatty acid or fatty acid ester to produce a product mixture containing a hydroxy-protected unsaturated metathesis product; and deprotecting the hydroxy-protected unsaturated metathesis product under conditions sufficient to prepare the unsaturated alcohol. Preferably, methyl ricinoleate is converted by cross-metathesis or homo-metathesis into the homo-allylic mono-alcohol 1-decene-4-ol or the homo-allylic polyol 9-octadecene-7,12-diol, respectively.

  11. Investigating the collector efficiency of silver nanofluids based direct absorption solar collectors

    OpenAIRE

    Chen, M.; He, Y.; J. Zhu; Wen, D

    2016-01-01

    A one-dimensional transient heat transfer analysis was carried out to analyze the effects of the Nanoparticle (NP) volume fraction, collector height, irradiation time, solar flux, and NP material on the collector efficiency. The numerical results were compared with the experimental results obtained by silver nanofluids to validate the model, and good agreement was obtained. The numerical results show that the collector efficiency increases as the collector height and NP volume fraction increa...

  12. Solar thermal collectors using planar reflector

    Science.gov (United States)

    Espy, P. N.

    1978-01-01

    Specular reflectors have been used successfully with flat-plate collectors to achieve exceptionally high operating temperatures and high delivered energy per unit collector area. Optimal orientation of collectors and reflectors can result in even higher performance with an improved relationship between energy demand and supply. This paper reports on a study providing first order optimization of collector-reflector arrays in which single- and multiple-faceted reflectors in fixed or singly adjustable configurations provide delivered energy maxima in either summer or winter.

  13. Fog collectors and collection techniques

    Science.gov (United States)

    Höhler, I.; Suau, C.

    2010-07-01

    The earth sciences taught that due to the occurrence of water in three phases: gas, liquid and solid, solar energy keeps the hydrological cycle going, shaping the earth surface while regulating the climate and thus allowing smart technologies to interfere in the natural process by rerouting water and employing its yield for natural and human environments’ subsistence. This is the case of traditional fog collectors implemented by several researchers along the Atacama Desert since late ’50s such as vertical tensile mesh or macro-diamonds structures. Nevertheless, these basic prototypes require to be upgraded, mainly through new shapes, fabrics and frameworks’ types by following the principles of lightness, transformability, portability and polyvalence. The vertical canvas of conventional fog collectors contain too much stressed at each joints and as result it became vulnerable. Our study constitutes a research by design of two fog-trap devices along the Atacama Desert. Different climatic factors influence the efficiency of fog harvesting. In order to increase yield of collected fog water, we need to establish suitable placements that contain high rates of fog’s accumulation. As important as the location is also the building reliability of these collectors that will be installed. Their frames and skins have to be adjustable to the wind direction and resistant against strong winds and rust. Its fabric need to be more hydrophobic, elastic and with light colours to ease dripping/drainage and avoid ultra-violet deterioration. In addition, meshes should be well-tensed and frames well-embraced too. In doing so we have conceived two fog collectors: DropNet© (Höhler) and FogHive© (Suau). These designs explore climatic design parameters combined with the agile structural principles of Tensegrity and Geodesic widely developed by Bucky Fuller and Frei Otto. The research methods mainly consisted of literature review; fieldwork; comparative analysis of existing fog

  14. Automated solar collector installation design

    Energy Technology Data Exchange (ETDEWEB)

    Wayne, Gary; Frumkin, Alexander; Zaydman, Michael; Lehman, Scott; Brenner, Jules

    2014-08-26

    Embodiments may include systems and methods to create and edit a representation of a worksite, to create various data objects, to classify such objects as various types of pre-defined "features" with attendant properties and layout constraints. As part of or in addition to classification, an embodiment may include systems and methods to create, associate, and edit intrinsic and extrinsic properties to these objects. A design engine may apply of design rules to the features described above to generate one or more solar collectors installation design alternatives, including generation of on-screen and/or paper representations of the physical layout or arrangement of the one or more design alternatives.

  15. Optimization of dish solar collectors

    Science.gov (United States)

    Jaffe, L. D.

    1983-01-01

    Methods for optimizing parabolic dish solar collectors and the consequent effects of various optical, thermal, mechanical, and cost variables are examined. The most important performance optimization is adjusting the receiver aperture to maximize collector efficiency. Other parameters that can be adjusted to optimize efficiency include focal length, and, if a heat engine is used, the receiver temperature. The efficiency maxima associated with focal length and receiver temperature are relatively broad; it may, accordingly, be desirable to design somewhat away from the maxima. Performance optimization is sensitive to the slope and specularity errors of the concentrator. Other optical and thermal variables affecting optimization are the reflectance and blocking factor of the concentrator, the absorptance and losses of the receiver, and, if a heat engine is used, the shape of the engine efficiency versus temperature curve. Performance may sometimes be improved by use of an additional optical element (a secondary concentrator) or a receiver window if the errors of the primary concentrator are large or the receiver temperature is high. Previously announced in STAR as N83-19224

  16. Evaluation of Test Method for Solar Collector Efficiency

    OpenAIRE

    Fan, Jianhua; Shah, Louise Jivan; Furbo, Simon

    2006-01-01

    The test method of the standard EN12975-2 (European Committee for Standardization, 2004) is used by European test laboratories to determine the efficiency of solar collectors. In the test methods the mean solar collector fluid temperature in the solar collector, Tm is determined by the approximated equation where Tin is the inlet temperature to the collector and Tout is the outlet temperature from the collector. The specific heat of the solar collector fluid is in the test method as an approx...

  17. Weathering of a liquid solar collector

    Science.gov (United States)

    1980-01-01

    Commercially available flate plate hot water solar collector is characterized in report that presents 10 month weathering study of system. Collector efficiency was calculated and plotted from measurements of fluid temperature and flow rate, ambient temperature and solar flux. Windspeed and wind direction were also measured during tests.

  18. Pioneer CESA Guidance Project: Data Collectors Guide.

    Science.gov (United States)

    Bryant, Brenda; Andrews, Theodore

    The purpose of this guide is to assist trained data collectors in the use of the "Performance-Based Counselor Certification Model for the State of Georgia." The guidelines are intended to clarify the process rather than to limit the data collector to a confining set of definitions. In addition, the guide discusses specific school…

  19. Design review of a liquid solar collector

    Science.gov (United States)

    Wiesewmaier, B. L.

    1979-01-01

    Report documents procedures, results, and recommendations for in-depth analysis of problems with liquid-filled version of concentric-tube solar collector. Problems are related to loss of vacuum and/or violent fracture of collector elements, fluid leakage, freezing, flow anomalies, manifold damage, and other component failures.

  20. Combined solar collector and energy storage system

    Science.gov (United States)

    Jensen, R. N. (Inventor)

    1980-01-01

    A combined solar energy collector, fluid chiller and energy storage system is disclosed. A movable interior insulated panel in a storage tank is positionable flush against the storage tank wall to insulate the tank for energy storage. The movable interior insulated panel is alternately positionable to form a solar collector or fluid chiller through which the fluid flows by natural circulation.

  1. Cleaner for Solar-Collector Covers

    Science.gov (United States)

    Frickland, P. O.; Cleland, E. L.

    1983-01-01

    Simple self-contained cleaning system proposed for solar collectors or solar-collector protective domes. Perforated transparent plastic cap attached to top of protective dome in heliostat solar-energy collection system distributes cleaning fluid over surface of dome without blocking significant fraction of solar radiation.

  2. Foldable Frame Supporting Electromagnetic Radiation Collectors

    DEFF Research Database (Denmark)

    2011-01-01

    The present invention relates to flexible frames supporting electromagnetic radiation collectors, such as antennas, antenna reflectors, deflectors or solar collectors, for celestial or terrestrial applications, which can be folded to be stored and/or transported. The method for stowing deforms...

  3. Electrostatic particle collector with improved features for installing and/or removing its collector plates

    Energy Technology Data Exchange (ETDEWEB)

    Siegfried, Matthew J.; Radford, Daniel R.; Huffman, Russell K.

    2017-04-04

    An electrostatic particle collector may generally include a housing having sidewalls extending lengthwise between a first end and a second end. The housing may define a plate slot that extends heightwise within the housing between a top end and a bottom end. The housing may further include a plate access window that provides access to the bottom end of the plate slot. The collector may also include a collector plate configured to be installed within the plate slot that extends heightwise between a top edge and a bottom edge. Additionally, when the collector plate is installed within the plate slot, the bottom edge of the collector plate may be accessible from an exterior of the housing via the plate access window so as to allow the bottom edge of the collector plate to be moved relative to the housing to facilitate removal of the collector plate from the housing.

  4. Synthetic fiber air collectors for agricultural uses

    Energy Technology Data Exchange (ETDEWEB)

    Schulz, H.

    Details are given on an innovative air collector system made of porous black synthetic fibers to take in air and absorb solar radiation to heat it. Synthetic fiber collectors are unexpensive, they are characterized by their efficient heat transfers, good working properties, and wind resistance. Excessive heating, condensates, and dusts are avoided using them. Schematic sketches facilitate access to the fibrous structure, uses, design and construction of solar air collectors made of Nicolon fibers. Temperature and collector capacity measuring results are shown in a diagram. Details are given on a small-scale solar drier drying herbs (solar collector system with a 36 m/sup 2/ fibrous absorber surface) as well as on experiences gained in the operation of more than 20 solar driers of the kind described. (HWJ).

  5. Ion Diffusion Within Water Films in Unsaturated Porous Media.

    Science.gov (United States)

    Tokunaga, Tetsu K; Finsterle, Stefan; Kim, Yongman; Wan, Jiamin; Lanzirotti, Antonio; Newville, Matthew

    2017-04-05

    Diffusion is important in controlling local solute transport and reactions in unsaturated soils and geologic formations. Although it is commonly assumed that thinning of water films controls solute diffusion at low water contents, transport under these conditions is not well understood. We conducted experiments in quartz sands at low volumetric water contents (θ) to quantify ion diffusion within adsorbed films. At the lowest water contents, we employed fixed relative humidities to control water films at nm thicknesses. Diffusion profiles for Rb(+) and Br(-) in unsaturated sand packs were measured with a synchrotron X-ray microprobe, and inverse modeling was used to determine effective diffusion coefficients, De, as low as ∼9 × 10(-15) m(2) s(-1) at θ = 1.0 × 10(-4) m(3) m(-3), where the film thickness = 0.9 nm. Given that the diffusion coefficients (Do) of Rb(+) and Br(-) in bulk water (30 °C) are both ∼2.4 × 10(-9) m(2) s(-1), we found the impedance factor f = De/(θDo) is equal to 0.03 ± 0.02 at this very low saturation, in agreement with the predicted influence of interface tortuosity (τa) for diffusion along grain surfaces. Thus, reduced cross-sectional area (θ) and tortuosity largely accounted for the more than 5 orders of magnitude decrease in De relative to Do as desaturation progressed down to nanoscale films.

  6. Measurements of 222Rn and 220Rn with a Large Size Collector of Radon Progeny

    Institute of Scientific and Technical Information of China (English)

    Wu Qifan; Jia Wenyi; Fang Fang; Wang Jun; Cheng Jianping; Liu Guilin; Zhu Li

    2003-01-01

    Radon concentrations in high background radiation areas in the south are higher than those of others in China, especially 220Rn concentration is significantly high. Therefore, measurements of 222Rn and 220 Rn concentrations should be carried out there. This paper introduces a large size collector of radon progeny and its applications. The collector is a sheet of polyvinyl chloride fiber with electrostatics of (-500 V) - ( -700 V). Its size (60 mm in diameter) is larger than those of others (26 mm in diameter) that work with the same principle. The collector is more effective to adsorb radon progeny than most of others. The equipment of ZnS(Ag) Scintillation Counting System is available for large size collectors to detect radon progeny. Therefore, its sensitivity of measurement is higher than that of others.According to the different half lives of radon progeny, and based on both theory and experiments, a formula for discrimination and calculation of 222 Rn and 220Rn concentrations is deduced. The 222Rn and 220Rn concentrations were surveyed with electrostatic collectors of radon progeny on the campus of com-mercial school and some other areas in Hainan, southern China. Neither 222Rn nor 220Rn concentration was found significantly high. However, several faults underground were delineated. The collector is also used to study radon transportation. Results indicate that radon changes regularly with date when it has transported for a certain distance. Velocities of radon migration in the four media are quite different.Radon migrates more quickly in vertical tube than in the horizontal tube.

  7. COMPARATIVE FIELD EXPERIMENTAL INVESTIGATIONS OF DIFFERENT FLAT PLATE SOLAR COLLECTORS

    Directory of Open Access Journals (Sweden)

    Guangming Chen

    2015-12-01

    Full Text Available Full-scale traditional metal solar collectors and solar collector specimens fabricated from polymeric materials were investigated in the present study. A polymeric collector is 67.8% lighter than a traditional metal solar collector, and a metal solar collector with transparent plastic covering is 40.3% lighter than a traditional metal solar collector. Honeycomb multichannel plates made from polycarbonate were chosen to create a polymeric solar collector. A test rig for the natural circulation of the working fluid in a solar collector was built for a comparative experimental investigation of various solar collectors operating at ambient conditions. It was shown experimentally that the efficiency of a polymeric collector is 8–15% lower than the efficiency of a traditional collector.

  8. Dynamic model of heat and mass transfer in rectangular adsorber of a solar adsorption machine

    Science.gov (United States)

    Chekirou, W.; Boukheit, N.; Karaali, A.

    2016-10-01

    This paper presents the study of a rectangular adsorber of solar adsorption cooling machine. The modeling and the analysis of the adsorber are the key point of such studies; because of the complex coupled heat and mass transfer phenomena that occur during the working cycle. The adsorber is heated by solar energy and contains a porous medium constituted of activated carbon AC-35 reacting by adsorption with methanol. To study the solar collector type effect on system's performances, the used model takes into account the variation of ambient temperature and solar intensity along a simulated day, corresponding to a total daily insolation of 26.12 MJ/m2 with ambient temperature average of 27.7 °C, which is useful to know the daily thermal behavior of the rectangular adsorber.

  9. General report of TC 106: Unsaturated soils

    NARCIS (Netherlands)

    Jommi, C.

    2013-01-01

    This general report summarises the contributions on unsaturated soil mechanics submitted to the Discussion Session of TC106 – Unsaturated soils –at the 18th International Conference on Soil Mechanics and Geotechnical Engineering held in Paris in September 2013. The thirty-five papers collected under

  10. Next Generation Solar Collectors for CSP

    Energy Technology Data Exchange (ETDEWEB)

    Molnar, Attila [3M Company, St. Paul, MN (United States); Charles, Ruth [3M Company, St. Paul, MN (United States)

    2014-07-31

    The intent of “Next Generation Solar Collectors for CSP” program was to develop key technology elements for collectors in Phase 1 (Budget Period 1), design these elements in Phase 2 (Budget Period 2) and to deploy and test the final collector in Phase 3 (Budget Period 3). 3M and DOE mutually agreed to terminate the program at the end of Budget Period 1, primarily due to timeline issues. However, significant advancements were achieved in developing a next generation reflective material and panel that has the potential to significantly improve the efficiency of CSP systems.

  11. A mobile apparatus for solar collector testing

    Science.gov (United States)

    Hotchkiss, G. B.; Simon, F. F.; Burmeister, L. C.

    1979-01-01

    The design, construction, and operation of a mobile apparatus for solar collector testing (MASCOT) is described. The MASCOT is a self-contained test unit costing about $10,000 whose only external requirement for operation is electrical power and which is capable of testing two water-cooled flat-plate solar collectors simultaneously. The MASCOT is small enough and light enough to be transported to any geographical site for outdoor tests at the location of collector usage. It has been used in both indoor solar simulator tests and outdoor tests.

  12. Acoustic behaviors of unsaturated soils

    Science.gov (United States)

    Lu, Z.

    2011-12-01

    Soils are unconsolidated granular materials, consisting of solid particles, water and air. Their mechanical and dynamic behaviors are determined by the discrete nature of the media as well as external and inter-particle forces. For unsaturated soils, two factors significantly affect soils acoustic/seismic responses: external pressure and internal water potential/matric suction. In triaxial cell tests, unsaturated soils were subjected to predefined stress paths to undergo stages of normal consolidation, unload-reload cycles, and failure. The stress deformation curve and stress-P-wave velocity were measured and compared. The study revealed that soil's dynamic response to external pressure are similar to those of the load-deformation behaviors and demonstrated that acoustic velocity can be used to monitor the state of stress of soils. In a long term field soil survey, the P-wave velocities were found to be correlated with water potential as expressed as a power-law relationship. The above phenomena can be understood by using the Terzaghi' s the principle of effective stress. The measured results were in good agreement with Brutsaert theory. The effective stress concept can also be applied to explain the observations in a soil pipe flow study in which soil internal erosion processes were monitored and interpreted by the temporal evolution of the P-wave velocity. In addition to above linear acoustic behaviors, soils, like other earth materials, exhibit astonishing non-classical nonlinear behaviors such as end-point memory, hysteresis, strain -dependent shear modulus, resonant frequency shift, and phase shift, harmonics generation, etc. A nonlinear acoustic study of a soil as a function of water content showed that the nonlinear acoustic parameter are much sensitive to the variations of soil water content than that of the acoustic velocity.

  13. Performance after weathering of a liquid solar collector

    Science.gov (United States)

    1979-01-01

    Results from retesting of liquid solar collector described in "Performance evaluation of liquid collector" (M-FS-23931), after long term exposure to natural weathering indicate no detectable degradation in collector performance and no visable deterioration in appearance of collector. Supporting data and pretest/post test efficiency comparison are included.

  14. High performance Mo adsorbent PZC

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    1998-10-01

    We have developed Mo adsorbents for natural Mo(n, {gamma}){sup 99}Mo-{sup 99m}Tc generator. Among them, we called the highest performance adsorbent PZC that could adsorb about 250 mg-Mo/g. In this report, we will show the structure, adsorption mechanism of Mo, and the other useful properties of PZC when you carry out the examination of Mo adsorption and elution of {sup 99m}Tc. (author)

  15. MATHEMATICAL MODELLING AND PERFORMANCE ANALYSIS OF DIFFERENT SOLAR AIR COLLECTORS

    Directory of Open Access Journals (Sweden)

    M. A. Karim

    2015-11-01

    Full Text Available The purpose of using solar air collectors is to raise the atmospheric air temperature to a temperature which can be used for various low and medium temperature applications. Collector, absorber and airflow arrangement are the most important components in the solar air collector. The performance of the collector depends on its heat loss and the absorber area that is in contact with the airflow. This study involves the theoretical simulation of the effect of mass flow rate on the performance, for flat plate and v-groove collectors that are in single and double pass configurations. Results show that the v-groove double pass air collector has the highest efficiency value of 56% at . The performance is greater than flat plate double pass collector, which has an efficiency of 54% under the same operating conditions. KEYWORDS: solar air collector; flat plate collector (fpc; v-groove collector; efficiency; single pass; double pass

  16. A Long Term Test of Differently Designed Evacuated Tubular Collectors

    DEFF Research Database (Denmark)

    Fan, Jianhua; Dragsted, Janne; Furbo, Simon

    2008-01-01

    carried out with different mean solar collector fluid temperatures and in different seasons of the year. The results of the measurements are presented in this paper. The influence of the mean solar collector fluid temperature on the thermal performance of the different collector designs will be discussed......During three years seven differently designed evacuated tubular collectors (ETCs) utilizing solar radiation from all directions have been investigated experimentally. The evacuated tubular solar collectors investigated include one SLL all-glass ETC from Tshinghua Solar Co. Ltd, four heat pipe ETCs...... of the inlet fluid to the collectors have been the same for all collectors. The volume flow rate through each of the collectors is adjusted so that the mean solar collector fluid temperature has been the same for all collectors. Thus a direct performance comparison is possible. The side-by-side tests were...

  17. Improved Large Aperture Collector Manufacturing

    Energy Technology Data Exchange (ETDEWEB)

    O' Rourke, Deven [Abengoa Solar LLC, Lakewood, CO (United States); Farr, Adrian [Abengoa Solar LLC, Lakewood, CO (United States)

    2015-12-01

    The parabolic trough is the most established CSP technology and carries a long history of design experimentation dating back to the 1970’s. This has led to relatively standardized collector architectures, a maturing global supply chain, and a fairly uniform cost reduction strategy. Abengoa has deployed more than 1,500MWe of CSP troughs across several countries and has built and tested full-scale prototypes of many R&D concepts. The latest trough R&D efforts involved efforts to internalize non-CSP industry experience including a preliminary DFMA principles review done with Boothroyd Dewhurst, a construction literature review by the Arizona State University School of Construction Management, and two more focused manufacturing engineering subcontracts done by Ricardo Inc. and the nonprofit Edison Welding Institute. The first two studies highlighted strong opportunities in lowering part count, standardizing components and fasteners, developing modular designs to support prefabrication and automation, and devising simple, error-proof manual assembly methods. These principles have delivered major new cost savings in otherwise “mature” products in analogous industries like automotive, truck trailer manufacture, metal building fabrication, and shipbuilding. For this reason, they were core in the design development of the SpaceTube® collector, and arguably key to its early successes. The latter two studies were applied specifically to the first-generation SpaceTube® design and were important in setting the direction of the present SolarMat project. These studies developed a methodology to analyze the costs of manufacture and assembly, and identify new tooling concepts for more efficient manufacture. Among the main opportunities identified in these studies were the automated mirror arm manufacturing concept and the need for a less infrastructure-intensive assembly line, both of which now form central pillars of the SolarMat project strategy. These new designs will be

  18. Processing on high efficiency solar collector coatings

    Science.gov (United States)

    Roberts, M.

    1977-01-01

    Wavelength selective coatings for solar collectors are considered. Substrates with good infrared reflectivity were examined along with their susceptibility to physical and environmental damage. Improvements of reflective surfaces were accomplished through buffing, chemical polishing and other surface processing methods.

  19. Concentrating solar collector-performance tests

    Science.gov (United States)

    1979-01-01

    Report summarizes test results from evaluation of concentrating solar collector thermal performance, from transient behavior, and incident-of-angle behavior. Tests were conducted using National Bureau of Standards recommedations and specifications.

  20. Collector/Receiver Characterization (Fact Sheet)

    Energy Technology Data Exchange (ETDEWEB)

    2010-08-01

    Fact sheet describing NREL CSP Program capabilities for collector/receiver characterization: determining optical efficiency, measuring heat loss, developing and testing concentrators, concentrating the sun's power, and optically characterizing CSP plants.

  1. Performance of a solar-thermal collector

    Science.gov (United States)

    Higa, W. H.

    1975-01-01

    Possible means of achieving the technology required for field application of solar thermal power systems are discussed. Simplifications in construction techniques as well as in measurement techniques for parabolic trough collectors are described. Actual measurement data is also given.

  2. A self-tractable solar collector

    Science.gov (United States)

    Abdulhadi, M.; Ghorayeb, F.

    2006-06-01

    An analytical experimental investigation into the thermal performance of a tubeless hemispherical (a spherical cap) solar collector for use in heating and cooling purposes is presented. The receiver plate surface temperature was estimated at the prevailing steady-state conditions from the energy balance equation on the absorber plate. From the experimental analytical investigation, the present collector was found to be much more efficient than a flat-plate collector. Fluid outlet temperatures over 95°C could be provided on mid clear shining sunny days. Remembering the easiness of building a complex of such a collector, it follows that plenty of residential and industrial implementations, mostly in heating and cooling refrigeration absorption cycles, could be undertaken.

  3. Stability Analysing of Unsaturated Soil Slope

    Institute of Scientific and Technical Information of China (English)

    张士林; 邵龙潭

    2003-01-01

    The stability of unsaturated soil slope has been the hot point recently. Especially, the seeping rainfall makes losing stability of unsaturated soil slope, and causes enormous loss to the producation and safety of other people. The seeping rainfall makes volumetric water content of unsaturated soil slope changing, and the volumetric water content has directly relationship with matric suction. And matric suction also has directly relationship with the stability of unsaturated soil slope. So the change of matric suction influence the stability changing, that is, safety coefficient has decided relationship with volumetric water content. The profile of dangerous volumetric water content curves of unsaturated soil slope has been obtained. If a volumetric water content curve of some unsaturated soil slope belongs to one of these dongerous curves, the unsaturated soil slope could be in danger. So this is called DVWCCP(dangerous volumetric water content curves profile). By monitoring the volumetric water content curves can obtain the stability information of some soil slope to serve producing and safety.

  4. Effects of High Temperature on Collector Coatings

    Science.gov (United States)

    Lowery, J. R.

    1982-01-01

    Report reveals electroplated black chrome is good coating for concentrating collectors in which temperatures are in the 650 degrees-800 degrees F (340 degrees - 430 degrees C) range. Black chrome thermal emittance is low and solar-absorption properties are not seriously degraded at high temperatures. Black coatings are used to increase absorption of solar energy by base metal while decreasing emission of infrared energy. Coatings are intended to improve efficiency of solar collectors.

  5. Qualification test and analysis report: Solar collectors

    Science.gov (United States)

    1978-01-01

    Test results show that the Owens-Illinois Sunpak TM Model SEC 601 air-cooled collector meets the national standards and codes as defined in the Subsystem Peformance Specification and Verification Plan of NASA/MSFC, dated October 28, 1976. The program calls for the development, fabrication, qualification and delivery of an air-cooled solar collector for solar heating, combined heating and cooling, and/or hot water systems.

  6. Developments of solar collectors in China

    Institute of Scientific and Technical Information of China (English)

    Yin Zhiqiang

    2009-01-01

    China has abundant solar energy resource. Solar thermal collectors, particularly all-glass evacuated tubular collectors, have been studied and developed for 30 years, and solar thermal industry has developed rapidly for 15 years. There are various solar thermal systems, with an operation area of around 108 million m2 in 2007. These systems mainly provide domestic hot water, but some other applications are under extensive study and development as well.

  7. Simulation Application for Optimization of Solar Collector Array

    OpenAIRE

    Igor Shesho*,; Done Tashevsk

    2014-01-01

    Solar systems offer a comparatively low output density , so increasing the output always means a corresponding increase in the size of the collector area. Thus collector arrays are occasionally constructed (i.e. with different azimuth angles and/or slopes, which be imposed by the location and structure available to mount the collector. In this paper is developed simulation application for optimization for the solar collector array position and number of collectors in regard of...

  8. Collector sealants and breathing. Final Report, 25 September 1978-31 December 1979

    Energy Technology Data Exchange (ETDEWEB)

    Mendelsohn, M A; Luck, R M; Yeoman, F A; Navish, Jr, F W

    1980-02-20

    The objectives of this program were: (1) to investigate the pertinent properties of a variety of possible sealants for solar collectors and identify the most promising candidates, and (2) to study the effect of breathing in flat-plate, thermal solar collector units. The study involved two types of sealants, Class PS which includes preformed seals or gaskets and Class SC which includes sealing compounds or caulks. It was the intent of the study to obtain data regarding initial properties of candidate elastomers from manufacturers and from the technical literature and to use those sources to provide data pertaining to endurance of these materials under environmental service conditions. Where necessary, these data were augmented by experimental measurements. Environmental stresses evaluated by these measurements included elevated temperatures, moisture, ultraviolet light, ozone and oxygen, and fungus. The second major area of the work involved a study of the effects of materials used and design on the durability of solar collectors. Factors such as design, fabrication, materials of construction, seals and sealing techniques and absorber plate coatings were observed on actual field units removed from service. Such phenomena as leakage, corrosion and formation of deposits on glazing and absorber plate were noted. An evaluation of the properties of several desiccants was made in order to providemeans to mitigate the deleterious effects of water on collector life. Adsorbents for organic degradation products of sealants were also investigated in order to protect the glazing and absorber plate from deposited coatings. Since adsorbents and desiccants in general tend to take up both water and organic decomposition products, relative affinities of a number of these agents for water and for organic compounds were determined . Results are presented in detail.

  9. High temperature flat plate solar collector

    Energy Technology Data Exchange (ETDEWEB)

    Hozumi, S.; Aso, S.; Ebisu, K.; Uchino, H.

    1981-04-01

    Improvements in the efficiency of collectors are of great importance for extending the utilization of solar energy for heating and cooling in homes. A highly efficient collector makes the system size small and decreases the system cost effectively. From the view of the amount of energy collected, the efficient collector has a multiple effect, not only because of the high increase in instantaneous efficiency, but also because of the large usable intensity range of the insolation. On the basis of a functional analysis for a flat collector, the materials and parameters were selected and optimized, and a new high temperature flat collector was designed. The collector has 2 panes. The first pane is low iron glass and the second pane is a thin film of fluorinated ethylene-propylene copolymer. The overall solar transmittance for the two panes is 0.89. The collecting panel and its water paths were formed by means of welding and hydraulic expansion. The selective absorbing surface consists of colored stainless steel whose absorption characteristic is 0.89 and emission characteristic is 0.16. The thermal insulator preventing backward heatloss consists of double layers of urethane foam and glass wool. Furthermore, the sustained method for the second pane is contrived so as to prevent water condensation on the panes and excessive elevation of the absorber temperature during no load heating.

  10. Electrokinetic remediation of unsaturated soils

    Energy Technology Data Exchange (ETDEWEB)

    Lindgren, E.R.; Kozak, M.W. (Sandia National Labs., Albuquerque, NM (United States)); Mattson, E.D. (SAT-UNSAT, Inc., Albuquerque, NM (United States))

    1992-01-01

    Heavy-metal contamination of soil and groundwater is a widespread problem in the DOE weapons complex, and for the nation as a whole electrokinetic remediation is one possible technique for in situ removal of such contaminants from unsaturated soils. Large spills and leaks can contaminate both the soil above the water table as well as the aquifer itself. Electrodes are implanted in the soil, and a direct current is imposed between the electrodes. The application of direct current leads to a number of effects: ionic species and charged particles in the soil water will migrate to the oppositely charged electrode (electromigration and electrophoresis), and concomitant with this migration, a bulk flow of water is induced, usually toward the cathode (electroosmosis). The combination of these phenomena leads to a movement of contaminants toward the electrodes. The direction of contaminant movement will be determined by a number of factors, among which are type and concentration of contaminant, soil type and structure, interfacial chemistry of the soil-water system, and the current density in the soil pore water. Contaminants arriving at the electrodes may potentially be removed from the soil by one of several methods, such as electroplating or adsorption onto the electrode, precipitation or co-precipitation at the electrode, pumping of water near the electrode, or complexing with ion-exchange resins. Experimental results are described on the removal of sodium dichromate and food dye from soil.

  11. Coordinate unsaturation with fluorinated ligands

    Energy Technology Data Exchange (ETDEWEB)

    Rack, J.L.; Hurlburt, P.K.; Anderson, O.P.; Strauss, S.H. [Colorado State Univ., Ft. Collins, CO (United States)

    1993-12-31

    The preparation and characterization of Zn(OTeF{sub 5}){sub 2} has resulted in a model compound with which to explore the concept of coordinative unsaturation. The coordination of solvents of varying donicity and dielectric constant to the Zn(II) ions in Zn(OTeF{sub 5}){sub 2} was studied by vapor phase monometry, NMR and IR spectroscopy, conductimetry, and X-Ray crystallography. The structures of [Zn(C{sub 6}H{sub 5}NO{sub 2}){sub 2}(OTeF{sub 5})2]2 and Zn(C{sub 6}H{sub 5}NO{sub 2}){sub 3}(OTEF{sub 5}){sub 2} demonstrate the electronic flexibility of some weakly coordinating solvents in that nitrobenzene can function as either an {eta}{sup 1}O or {eta}{sup 2}O,O`-ligand. The dependence of the number of bound solvent molecules and the degree of OTeF{sub 5}{minus} dissociation on solvent donor number and dielectric constant will be presented.

  12. On Elastoplastic Damage Modelling in Unsaturated Geomaterials

    OpenAIRE

    Le Pense, Solenn; Gatmiri, Behrouz; Pouya, Ahmad

    2012-01-01

    International audience; In the context of nuclearwaste disposal, the modelling of the behaviour of host rocks and soils still needs improvement.Unsaturated porous geomaterials exhibit particular behaviourwhen exposed to suction. Their non-linear behaviour may result fromtwo different processes, plasticity which induces irreversible strains and damage which causes a deterioration of their elastic properties. Many elasto-plastic models are now available for unsaturated soils, most of them based...

  13. Two new designs of parabolic solar collectors

    Directory of Open Access Journals (Sweden)

    Karimi Sadaghiyani Omid

    2014-01-01

    Full Text Available In this work, two new compound parabolic trough and dish solar collectors are presented with their working principles. First, the curves of mirrors are defined and the mathematical formulation as one analytical method is used to trace the sun rays and recognize the focus point. As a result of the ray tracing, the distribution of heat flux around the inner wall can be reached. Next, the heat fluxes are calculated versus several absorption coefficients. These heat flux distributions around absorber tube are functions of angle in polar coordinate system. Considering, the achieved heat flux distribution are used as a thermal boundary condition. After that, Finite Volume Methods (FVM are applied for simulation of absorber tube. The validation of solving method is done by comparing with Dudley's results at Sandia National Research Laboratory. Also, in order to have a good comparison between LS-2 and two new designed collectors, some of their parameters are considered equal with together. These parameters are consist of: the aperture area, the measures of tube geometry, the thermal properties of absorber tube, the working fluid, the solar radiation intensity and the mass flow rate of LS-2 collector are applied for simulation of the new presented collectors. After the validation of the used numerical models, this method is applied to simulation of the new designed models. Finally, the outlet results of new designed collector are compared with LS-2 classic collector. Obviously, the obtained results from the comparison show the improving of the new designed parabolic collectors efficiency. In the best case-study, the improving of efficiency are about 10% and 20% for linear and convoluted models respectively.

  14. Step tracking program for concentrator solar collectors

    Science.gov (United States)

    Ciobanu, D.; Jaliu, C.

    2016-08-01

    The increasing living standards in developed countries lead to increased energy consumption. The fossil fuel consumption and greenhouse gas effect that accompany the energy production can be reduced by using renewable energy. For instance, the solar thermal systems can be used in temperate climates to provide heating during the transient period or cooling during the warmer months. Most used solar thermal systems contain flat plate solar collectors. In order to provide the necessary energy for the house cooling system, the cooling machine uses a working fluid with a high temperature, which can be supplied by dish concentrator collectors. These collectors are continuously rotated towards sun by biaxial tracking systems, process that increases the consumed power. An algorithm for a step tracking program to be used in the orientation of parabolic dish concentrator collectors is proposed in the paper to reduce the consumed power due to actuation. The algorithm is exemplified on a case study: a dish concentrator collector to be implemented in Brasov, Romania, a location with the turbidity factor TR equal to 3. The size of the system is imposed by the environment, the diameter of the dish reflector being of 3 meters. By applying the proposed algorithm, 60 sub-programs are obtained for the step orientation of the parabolic dish collector over the year. Based on the results of the numerical simulations for the step orientation, the efficiency of the direct solar radiation capture on the receptor is up to 99%, while the energy consumption is reduced by almost 80% compared to the continuous actuation of the concentrator solar collector.

  15. Sener Parabolic trough Collector Design and Testing

    Energy Technology Data Exchange (ETDEWEB)

    Castaneda, N.; Vazquez, J.; Domingo, M.

    2006-07-01

    Parabolic trough technology is nowadays the most extended solar system for electricity production or steam generation for industrial processes. It is basically composed of a collector field which converts solar irradiation into thermal energy- and a conventional thermal-toelectric conversion Rankine cycle. In these plants, a storage system can be implemented in order to increase plant production. Collector field represents more than half the total plant cost. Therefore, SENER has made an effort to improve current state of the art of parabolic trough collector (PTC from now on) design in order to reduce plant costs. Main characteristic of SENER design lies on the use of a torque tube as the central body of the collector. This tube is made of steel sheet, with a thickness depending on wind load requirements on the collector. This concept is very cost-effective, since the man-power needed to manufacture the tube has been minimized. Continuous cylindrical shape of the torque tube provides a high torsional stiffness, which is one of the main parameters affecting collector optical efficiency. Cantilever arms connect the mirrors to the central torque tube. These components are usually made of welded tube profiles. In SENER's new design, these cantilever arms are made using metal sheet stamping techniques (SENER patent), thus reducing manufacturing and mounting costs. SENER PTC module (called SENERTROUGH) is 12 meters long and has an aperture width of 5,76 m. HCE and curved mirrors existing in the market - as well as new products from different manufacturers - can be easily attached to collector structure. Two prototype modules of SENERTROUGH have been mounted and tested at the CIEMAT-PSA facilities. Several performance tests were performed in order to assure the validity of the concept. (Author)

  16. Evaluation of Test Method for Solar Collector Efficiency

    DEFF Research Database (Denmark)

    Fan, Jianhua; Shah, Louise Jivan; Furbo, Simon

    /S. The solar collector panel investigated has 16 parallel connected horizontal absorber fins. CFD (Computational Fluid Dynamics) simulations, calculations with a solar collector simulation program SOLEFF (Rasmussen and Svendsen, 1996) and thermal experiments are carried out in the investigation......The test method of the standard EN12975-2 (European Committee for Standardization, 2004) is used by European test laboratories to determine the efficiency of solar collectors. In the test methods the mean solar collector fluid temperature in the solar collector, Tm is determined by the approximated...... equation where Tin is the inlet temperature to the collector and Tout is the outlet temperature from the collector. The specific heat of the solar collector fluid is in the test method as an approximation determined as a constant equal to the specific heat of the solar collector fluid at the temperature Tm...

  17. Substrate-adsorbate coupling in CO-adsorbed copper

    CERN Document Server

    Lewis, S P; Lewis, Steven P.; Rappe, Andrew M.

    1996-01-01

    The vibrational properties of carbon monoxide adsorbed to the copper (100) surface are explored within density functional theory. Atoms of the substrate and adsorbate are treated on an equal footing in order to examine the effect of substrate--adsorbate coupling. This coupling is found to have a significant effect on the vibrational modes, particularly the in-plane frustrated translation, which mixes strongly with substrate phonons and broadens into a resonance. The predicted lifetime due to this harmonic decay mechanism is in excellent quantitative agreement with experiment.

  18. Adsorbed Water Illustration

    Science.gov (United States)

    2008-01-01

    The Thermal and Electrical Conductivity Probe on NASA's Phoenix Mars Lander detected small and variable amounts of water in the Martian soil. In this schematic illustration, water molecules are represented in red and white; soil minerals are represented in green and blue. The water, neither liquid, vapor, nor solid, adheres in very thin films of molecules to the surfaces of soil minerals. The left half illustrates an interpretation of less water being adsorbed onto the soil-particle surface during a period when the tilt, or obliquity, of Mars' rotation axis is small, as it is in the present. The right half illustrates a thicker film of water during a time when the obliquity is greater, as it is during cycles on time scales of hundreds of thousands of years. As the humidity of the atmosphere increases, more water accumulates on mineral surfaces. Thicker films behave increasingly like liquid water. The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  19. Efficiencies of flat plate solar collectors at different flow rates

    DEFF Research Database (Denmark)

    Chen, Ziqian; Furbo, Simon; Perers, Bengt;

    2012-01-01

    Two flat plate solar collectors for solar heating plants from Arcon Solvarme A/S are tested in a laboratory test facility for solar collectors at Technical University of Denmark (DTU). The collectors are designed in the same way. However, one collector is equipped with an ETFE foil between...... the absorber and the cover glass and the other is without ETFE foil. The efficiencies for the collectors are tested at different flow rates. On the basis of the measured efficiencies, the efficiencies for the collectors as functions of flow rate are obtained. The calculated efficiencies are in good agreement...

  20. Optimum solar collector fluid flow rates

    DEFF Research Database (Denmark)

    Furbo, Simon; Shah, Louise Jivan

    1996-01-01

    the energy consumption of a normal ciculation pump in the solar heating system.Calculations showed that the highest thermal performances for small SDHW systems based on mantle tanks with constant volume flow rates in the solar collector loops are achieved if the flow rate is situated in the interval from 0...... to the temperature difference between the solar collector and the bottom of the mantle - an increase of about 1% of the thermal performance is possible.Finally, calculations showed that the highest thermal performance for large SDHW systems with constant volume flow rates in the solar collector loops are achieved....... The flow rate is increasing for increasing temperature.The flow rate at the high temperature level is typically 70 % greater than the flow rate at the low temperature level.Further, the energy consumption for the electronically controlled pump in a solar heating system will be somewhat smaller than...

  1. Materials for luminescent greenhouse solar collectors.

    Science.gov (United States)

    Levitt, J A; Weber, W H

    1977-10-01

    Luminescent greenhouse solar collectors are potentially useful for concentrating sunlight onto photovoltaic power cells. Measurements of the performance of small-scale collectors made of two commercially available materials (Owens-Illinois ED2 neodymium-doped laser glass and rhodamine 6G-doped plastic) are presented. The results are encouraging, but they indicate a need for further spectral sensitization and for reduced matrix loss coefficient. The measurements with monochromatic illumination agree with the predictions of a mathematical model developed to take account of reemission following the absorption of luminescence. Under solar illumination, the model predicts photon flux concentrations of about 15 for optimized full-scale collectors made of the materials studied and concentrations of 110 for reasonably improved glass.

  2. Unsaturated Zone Flow Model Expert Elicitation Project

    Energy Technology Data Exchange (ETDEWEB)

    Coppersmith, K. J.

    1997-05-30

    This report presents results of the Unsaturated Zone Flow Model Expert Elicitation (UZFMEE) project at Yucca Mountain, Nevada. This project was sponsored by the US Department of Energy (DOE) and managed by Geomatrix Consultants, Inc. (Geomatrix), for TRW Environmental Safety Systems, Inc. The objective of this project was to identify and assess the uncertainties associated with certain key components of the unsaturated zone flow system at Yucca Mountain. This assessment reviewed the data inputs, modeling approaches, and results of the unsaturated zone flow model (termed the ''UZ site-scale model'') being developed by Lawrence Berkeley National Laboratory (LBNL) and the US Geological Survey (USGS). In addition to data input and modeling issues, the assessment focused on percolation flux (volumetric flow rate per unit cross-sectional area) at the potential repository horizon. An understanding of unsaturated zone processes is critical to evaluating the performance of the potential high-level nuclear waste repository at Yucca Mountain. A major goal of the project was to capture the uncertainties involved in assessing the unsaturated flow processes, including uncertainty in both the models used to represent physical controls on unsaturated zone flow and the parameter values used in the models. To ensure that the analysis included a wide range of perspectives, multiple individual judgments were elicited from members of an expert panel. The panel members, who were experts from within and outside the Yucca Mountain project, represented a range of experience and expertise. A deliberate process was followed in facilitating interactions among the experts, in training them to express their uncertainties, and in eliciting their interpretations. The resulting assessments and probability distributions, therefore, provide a reasonable aggregate representation of the knowledge and uncertainties about key issues regarding the unsaturated zone at the Yucca

  3. Solar Heating Systems with Evacuated Tubular Solar Collector

    DEFF Research Database (Denmark)

    Qin, Lin; Furbo, Simon

    1998-01-01

    , as well as with normal flat-plate collectors was calculated under Danish weather conditions. It is found that, for small SDHW systems with a combi tank design, an increase of 25% -55% net utilized solar energy can be achieved by using these evacuated tubular collectors instead of normal flat......-plate collectors. For solar heating plants, the yearly energy output from these evacuated tubular collectors is about 40%-90% higher than the output from typical flat-plate collectors at an operation temperature of about 50°C.......Recently different designed evacuated tubular solar collectors were introduced on the market by different Chinese companies. In the present study, investigations on the performance of four different Chinese evacuated tubular collectors and of solar heating systems using these collectors were...

  4. Behavior of a solar collector loop during stagnation

    DEFF Research Database (Denmark)

    Chen, Ziqian; Dragsted, Janne; Furbo, Simon;

    2015-01-01

    A mathematical model simulating the emptying behavior of a pressurized solar collector loop with solar collectors with a good emptying behavior is developed and validated with measured data. The calculated results are in good agreement with the measured results. The developed simulation model...... is therefore suitable to determine the behavior of a solar collector loop during stagnation. A volume ratio R, which is the ratio of the volume of the vapour in the upper pipes of the solar collector loop during stagnation and the fluid content of solar collectors, is introduced to determine the mass...... of the collector fluid pushed into the expansion vessel during stagnation, Min. A correlation function for the mass Min and the volume ratio R for solar collector loops is obtained. The function can be used to determine a suitable size of expansion vessels for solar collector loops....

  5. Indoor thermal performance evaluation of Daystar solar collector

    Science.gov (United States)

    Shih, K., Sr.

    1977-01-01

    The test procedures used and results obtained from a test program to obtain thermal performance data on a Daystar Model 21B, S/N 02210, Unit 2, liquid solar collector under simulated conditions are described. The test article is a flat plate solar collector using liquid as a heat transfer medium. The absorber plate is copper and coated with black paint. Between the tempered low iron glass and absorber plate is a polycarbonate trap used to suppress convective heat loss. The collector incorporates a convector heat dump panel to limit temperature excursions during stagnation. The following tests were conducted: (1) collector thermal efficiency; (2) collector time constant; (3) collector incident angle modifier; (4) collector heat loss coefficient; and (5) collector stagnation.

  6. Solar Air Collectors: How Much Can You Save?

    Science.gov (United States)

    Newburn, J. D.

    1985-04-01

    A collector efficiency curve is used to determine the output of solar air collectors based on the testing of seven solar collectors sold in Iowa. In this application the solar heater is being used as a space heater for a house. The performance of the solar air heater was analyzed and an 8% savings in energy was achieved over a one year period using two 4 x 8 collectors in a typical house.

  7. Experimental investigation of efficiency of a novel conical solar collector

    OpenAIRE

    MORAVEJ, M

    2015-01-01

    One of the methods to improvement of solar-to-thermal energy conversion is the design of geometry in solar collectors. In this paper, the new solar collector which is called solar conical collector has been designed and tested. The efficiency of solar conical collector was experimentally investigated by use of ASHRAE standard. Experiments were performed with water as a working fluid in the outdoor condition of Ahvaz city in the south of Iran. The results show that the average efficiency of a ...

  8. A tool for standardized collector performance calculations including PVT

    DEFF Research Database (Denmark)

    Perers, Bengt; Kovacs, Peter; Olsson, Marcus

    2012-01-01

    A tool for standardized calculation of solar collector performance has been developed in cooperation between SP Technical Research Institute of Sweden, DTU Denmark and SERC Dalarna University. The tool is designed to calculate the annual performance of solar collectors at representative locations...... can be tested and modeled as a thermal collector, when the PV electric part is active with an MPP tracker in operation. The thermal collector parameters from this operation mode are used for the PVT calculations....

  9. Electrokinetic extraction of chromate from unsaturated soils

    Energy Technology Data Exchange (ETDEWEB)

    Mattson, E.D. [SAT-UNSAT, Inc., Albuquerque, NM (United States); Lindgren, E.R. [Sandia National Labs., Albuquerque, NM (United States)

    1993-11-01

    Heavy-metal contamination of soil and groundwater is a widespread problem in industrial nations. Remediation by excavation of such sites may not be cost effective or politically acceptable. Electrokinetic remediation is one possible remediation technique for in situ removal of such contaminants from unsaturated soils. Previous papers discussing the work performed by researchers at Sandia National Laboratories (SNL) and Sat-Unsat, Inc. (SUI) (Lindgren et al., 1991, 1992, 1993) focused on the transport of contaminants and dyes by electrokinetics in unsaturated soils. These experiments were conducted with graphite electrodes with no extraction system. As the contaminants migrated through the soil, they increased in concentration at the electrode creating a diffusion flux in the opposite direction. This paper discusses a technique to remove the contaminants from unsaturated soils once they have reached an electrode.

  10. Measurement and modeling of unsaturated hydraulic conductivity

    Science.gov (United States)

    Perkins, Kim S.; Elango, Lakshmanan

    2011-01-01

    The unsaturated zone plays an extremely important hydrologic role that influences water quality and quantity, ecosystem function and health, the connection between atmospheric and terrestrial processes, nutrient cycling, soil development, and natural hazards such as flooding and landslides. Unsaturated hydraulic conductivity is one of the main properties considered to govern flow; however it is very difficult to measure accurately. Knowledge of the highly nonlinear relationship between unsaturated hydraulic conductivity (K) and volumetric water content is required for widely-used models of water flow and solute transport processes in the unsaturated zone. Measurement of unsaturated hydraulic conductivity of sediments is costly and time consuming, therefore use of models that estimate this property from more easily measured bulk-physical properties is common. In hydrologic studies, calculations based on property-transfer models informed by hydraulic property databases are often used in lieu of measured data from the site of interest. Reliance on database-informed predicted values with the use of neural networks has become increasingly common. Hydraulic properties predicted using databases may be adequate in some applications, but not others. This chapter will discuss, by way of examples, various techniques used to measure and model hydraulic conductivity as a function of water content, K. The parameters that describe the K curve obtained by different methods are used directly in Richards’ equation-based numerical models, which have some degree of sensitivity to those parameters. This chapter will explore the complications of using laboratory measured or estimated properties for field scale investigations to shed light on how adequately the processes are represented. Additionally, some more recent concepts for representing unsaturated-zone flow processes will be discussed.

  11. Local Reasoning about a Copying Garbage Collector

    DEFF Research Database (Denmark)

    Torp-Smith, Noah; Birkedal, Lars; Reynolds, John C.

    2008-01-01

    We present a programming language, model, and logic appropriate for implementing and reasoning about a memory management system. We state semantically what is meant by correctness of a copying garbage collector, and employ a variant of the novel separation logics to formally specify partial...

  12. A test program for solar collectors

    Science.gov (United States)

    1980-01-01

    Rigorous environmental and performance tests qualify solar collector for use in residential solar-energy systems. Testing over 7 month period examined pressurized effects, wind and snow loading, hail damage, solar and thermal degradation, effects of pollutants, efficiency, and outgassing. Test procedures and results are summarized in tables, graphs, and text.

  13. Selective optical coatings for solar collectors

    Science.gov (United States)

    Lowery, J. R.

    1980-01-01

    For best performance, energy-absorbing surface of solar collector should be characterized by high ratio of solar absorptance to thermal emitance. Report on optical characteristics of several chemical treatments and electrodeposited coatings for metal solar-absorbing surfaces should interest designers and users of solar-energy systems. Moisture resistance of some coatings is also reported.

  14. Natural-oxide solar-collector coatings

    Science.gov (United States)

    Krupnick, A. C.; Roberts, M. L.; Sharpe, M. H.

    1979-01-01

    Optically selective coatings for solar collectors are produced by thermally treating stainless steel in furnace after series of cleaning and soaking operations. Coatings have withstood 18-month exposure tests at 100 percent relative humidity and temperatures of 95 F. Room temperature coatings are valuable as they are inexpensive to produce, highly production oriented, and environmentally stable.

  15. New tool for standardized collector performance calculations

    DEFF Research Database (Denmark)

    Perers, Bengt; Kovacs, Peter; Olsson, Marcus;

    2011-01-01

    A new tool for standardized calculation of solar collector performance has been developed in cooperation between SP Technical Research Institute Sweden, DTU Denmark and SERC Dalarna University. The tool is designed to calculate the annual performance for a number of representative cities in Europe...

  16. Performance evaluation of a liquid solar collector

    Science.gov (United States)

    1979-01-01

    Report describes thermal performance and structural-load tests on commercial single glazed flat-plate solar collector with gross area of 63.5 sq ft that uses water as heat-transfer medium. Report documents test instrumentation and procedures and presents data as tables and graphs. Results are analyzed by standard data-reduction methods.

  17. Hybrid thermoelectric solar collector design and analysis

    Science.gov (United States)

    Roberts, A. S., Jr.; Shaheen, K. E.

    1982-01-01

    A flat-plate solar collector is conceived where energy cascades through thermoelectric power modules generating direct-current electricity. The intent of this work was to choose a collector configuration and to perform a steady-state thermal performance assessment. A set of energy balance equations were written and solved numerically for the purpose of optimizing collector thermal and electrical performance. The collector design involves finned columns of thermoelectric modules imbedded in the absorber plate (hot junction) over a parallel array of vertical tubes. The thermoelectric power output is limited by the small hot-junction/cold-junction temperature difference which can be maintained under steady-state conditions. The electric power per unit tube pass area is found to have a maximum as a function of a geometric parameter, while electric power is maximized with respect to an electric resistance ratio. Although the electric power efficiency is small, results indicate that there is sufficient electric power production to drive a coolant circulator, suggesting the potential for a stand-alone system.

  18. Performance evaluation of an air solar collector

    Science.gov (United States)

    1979-01-01

    Indoor tests on signal-glazed flat-plate collector are described in report. Marhsall Space Flight Center solar simulator is used to make tests. Test included evaluations on thermal performance under various combinations of flow rate, incident flux, inlet temperature, and wind speed. Results are presented in graph/table form.

  19. Fully undrained cyclic loading simulation on unsaturated soils using an elastoplastic model for unsaturated soils

    Directory of Open Access Journals (Sweden)

    Komolvilas Veerayut

    2016-01-01

    Full Text Available Several researchers have reported that Bishop’s mean effective stress decreases in unsaturated soils under fully undrained cyclic loading conditions, and unsaturated soils are finally liquefied in a similar manner as saturated soils. This paper presents a series of simulations of such fully undrained cyclic loading on unsaturated soils using an elastoplastic model of the unsaturated soil. This model is formulated using the Bishop’s effective stress tensor incorporating the following concepts: the volumetric movement of the state boundary surface containing the normal consolidation line and the critical state line due to the variation in the degree of saturation, a soil water characteristic curve model considering the effect of specific volume and hysteresis, the subloading surface model, and Boyle’s law. Comparisons between the simulation results and the experimental ones show that the model agreed well with the unsaturated soil behavior under cyclic loading. Finally, the typical cyclic behavior of unsaturated soils under fully undrained conditions, such as the mechanism of liquefaction of unsaturated soils, the compression behavior, and an increase in the degree of saturation, are described through the proposed simulation results.

  20. Measurements of {sup 222}Rn and{sup 220}Rn with a large size collector of radon progeny

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Qifan; Cheng, Jianping; Liu, Guilin; Zhu, Li [Tsinghua Univ., Beijing (China); Ja, Wenyi; Fang, Fang [Chengdu Univ. of Technology, Chengdu (China)

    2002-07-01

    People have paid more attention to radon since 1980s. Radon concentrations in high background radiation areas in the south are higher than others in China, especially {sup 220} Rn concentration is significantly high. Therefore, measurement of {sup 222} Rn and {sup 220} Rn concentration should be carried out there. I will introduce a large size collector of radon progeny and its applications in this paper. The collector is a sheet of polyvinyl chloride fibre with electrostatics of -500V {approx} -700V. Its size (60mm in diameter) is larger than others (26mm in diameter) that work as the same principle. The collector is more effective to adsorb radon progeny than most of others. The equipment of ZnS(Ag) Scintillation Counting System is available for large size collectors to detect radon progeny. Therefore its sensitivity of measurement is high than others. According to the different half life of radon progeny and based on both theory and experiment, a formula for discrimination and calculation of {sup 222} Rn and {sup 220} Rn concentrations was deduced. The {sup 222} Rn and {sup 220} Rn concentrations were surveyed with electrostatic collectors of radon progeny on the campus of commercial school and some other areas in Hainan, southern China. Neither {sup 222} Rn nor {sup 220} Rn concentrations were found significant high. However several faults underground were delineated. The collector is also used to study radon transportation. Results indicate that radon changes regularly with date when it has transported for a certain distance. Velocities of radon migration in the four media are quite different. Radon migrates more quickly in vertical tube than in the horizontal tube.

  1. Colored solar collectors - Annual report 2006

    Energy Technology Data Exchange (ETDEWEB)

    Schueler, A.; Chambrier, E. De; Roecker, Ch.; Scartezzini, J.-L.

    2007-12-15

    The architectural integration of thermal solar collectors into buildings is often limited by their black color, and the visibility of tubes and corrugations of the absorber sheets. A certain freedom in color choice would be desirable, but the colored appearance should not cause an excessive degradation of the collector efficiency. Multilayered thin film interference filters on the collector glazing can produce a colored reflection, hiding the corrugated metal sheet, while transmitting the non-reflected radiation entirely to the absorber. These interference filters are designed and optimized by numerical simulation, and are manufactured by sol-gel dip-coating or magnetron sputtering. The novel colored glazed solar collectors will be ideally suited for architectural integration into buildings, e.g. as solar active glass facades. Due to the tunability of the refractive index, nanostructured materials such as SiO{sub 2}:TiO{sub 2} composites and porous SiO{sub 2} are very useful for application in multilayer interference stacks. Novel quaternary Mg-F-Si-O films exhibit a surprisingly low refractive index and are therefore promising candidates for highly transparent coatings on solar collector glazing. The nanostructure of these thin films is studied by transmission electron microscopy, while the optical constants are measured precisely by ellipsometry. For a convincing demonstration, sufficiently large samples of high quality are imperatively needed. The fabrication of nanocomposite SiO{sub 2}:TiO{sub 2} films has been demonstrated by sol-gel dip-coating of A4-sized glass panes. The produced coatings exhibit a colored reflection in combination with a high solar transmittance, a homogenous appearance, and are free of visible defects. Film hardening by UV exposure will result in speeding up the sol-gel process and saving energy, thereby reducing costs significantly. The infrastructure for UV-curing has been established. A UV C radiation source can now be attached to the

  2. The Adsorption of n-Octanohydroxamate Collector on Cu and Fe Oxide Minerals Investigated by Static Secondary Ion Mass Spectrometry

    Directory of Open Access Journals (Sweden)

    Alan N. Buckley

    2012-12-01

    Full Text Available The feasibility of investigating the adsorption of n-octanohydroxamate collector on copper and iron oxide minerals with static secondary ion mass spectrometry has been assessed. Secondary ion mass spectra were determined for abraded surfaces of air-exposed copper metal, malachite, pseudomalachite and magnetite that had been conditioned in aqueous potassium hydrogen n-octanohydroxamate solution, as well as for the corresponding bulk CuII and FeIII complexes. In each case, the chemical species present at the solid/vacuum interface of a similarly prepared surface were established by X-ray photoelectron spectroscopy. The most abundant positive and negative metal-containing fragment ions identified for the bulk complexes were also found to be diagnostic secondary ions for the collector adsorbed on the oxide surfaces. The relative abundances of those diagnostic ions varied with, and could be rationalised by, the monolayer or multilayer coverage of the adsorbed collector. However, the precise mass values for the diagnostic ions were not able to corroborate the different bonding in the copper and iron hydroxamate systems that had been deduced from photoelectron and vibrational spectra. Parent secondary ions were able to provide supporting information on the co-adsorption of hydroxamic acid at each conditioned surface.

  3. Standardized performance tests of collectors of solar thermal energy - A flat-plate copper collector with parallel mylar striping

    Science.gov (United States)

    Johnson, S. M.

    1976-01-01

    Basic test results are reported for a flat plate solar collector whose performance was determined in a solar simulator. The collector was tested over ranges of inlet temperatures, fluxes and one coolant flow rate. Collector efficiency is correlated in terms of inlet temperature and flux level.

  4. Standardized performance tests of collectors of solar thermal energy: An evacuated flatplate copper collector with a serpentine flow distribution

    Science.gov (United States)

    Johnson, S. M.

    1976-01-01

    Basic test results are given for a flat plate solar collector whose performance was determined in the NASA-Lewis solar simulator. The collector was tested over ranges of inlet temperatures, fluxes and one coolant flow rate. Collector efficiency is correlated in terms of inlet temperature and flux level.

  5. Modelling flow through unsaturated zones: Sensitivity to unsaturated soil properties

    Indian Academy of Sciences (India)

    K S Hari Prasad; M S Mohan Kumar; M Sekhar

    2001-12-01

    A numerical model to simulate moisture flow through unsaturated zones is developed using the finite element method, and is validated by comparing the model results with those available in the literature. The sensitivities of different processes such as gravity drainage and infiltration to the variations in the unsaturated soil properties are studied by varying the unsaturated parameters and over a wide range. The model is also applied to predict moisture contents during a field internal drainage test.

  6. Adsorption of N-tallow 1,3-propanediamine-dioleate collector on albite and quartz minerals, and selective flotation of albite from greek stefania feldspar ore.

    Science.gov (United States)

    Vidyadhar, A; Hanumantha Rao, K; Forssberg, K S E

    2002-04-01

    The adsorption behavior of tallow 1,3-propanediamine-dioleate (Duomeen TDO) collector on albite and quartz minerals is assessed through Hallimond flotation, zeta potential, and diffuse reflectance FTIR investigations, together with the species distribution of the collector. The collector performance on albite separation from a natural feldspar material is evaluated in bench scale flotation tests. The Hallimond flotation responses of the minerals as a function of pH and collector concentration indicate that albite can be selectively floated from quartz at pH 2 where the doubly positively charged collector species adsorb on albite but not on quartz. However, the zeta potential and infrared spectra reveal that the adsorption behavior of the collector is similar on both minerals. The discrepancy in the flotation and adsorption results is attributed to the coarse and fine particle size fractions, and the shorter and longer equilibration periods employed in these studies respectively. The comparable adsorption on fine particles of albite and quartz at pH 2 is explained by the interaction of ammonium ions on silanol groups by hydrogen bonding as well as electrostatic interactions. The changes in zeta potentials are in good agreement with the formation of ionic species and free molecular forms of the collector. The IR spectra show the coexistence of neutral oleic acid together with charged amine species at low pH values in accordance with the species distribution diagram. Selective flotation of albite is accomplished from a natural feldspar material with tallow diamine-dioleate collector at pH 2 using sulfuric acid, only when the feed is deslimed prior to the bench scale flotation tests. An albite recovery exceeding 85% is achieved from a feed material containing about 50% albite.

  7. Collector sealants and breathing. Mid-term report, September 25, 1978-May 30, 1979

    Energy Technology Data Exchange (ETDEWEB)

    Mendelsohn, M. A.; Yeoman, F. A.; Luck, R. M.; Navish, Jr, F. W.; Meier, J. F.

    1978-01-01

    The objectives of this program are: (1) to investigate the pertinent properties of a variety of possible sealants for solar collectors and identify the most promising candidates and to study the effect of breathing in flat-plate, thermal solar collector units. The study involves two types of sealants, Class PS which includes performed seals or gaskets and Class SC which includes sealing compounds or caulks. It is the intent of the study to obtain data regarding initial properties of candidate elastomers from manufacturers and from the technical literature and to use those sources to provide data pertaining to endurance of these materials under environmental service conditions. Where necessary, these data are being augmented by experimental measurements. Environmental stresses to be evaluated by these measuremets include elevated temperatures, moisture, ultraviolet light, ozone and oxygen, and fungus. The second major area of the work involves a study of the effects of materials used and design on the durability of solar collectors. Factors such as design, fabrication, materials of construction, seals and sealing techniques and absorber plate coatings were observed on actual field units removed from service. Such phenomena as leakage, corrosion and formation of deposits on glazing and absorber plate were noted. An evaluation of the properties of several desiccants is being made in order to provide means to mitigate the deleterious effects of water on collector life.Absorbents for organic degradation products of sealants are also being investigated in order to protect the glazing and absorber plate from deposited coatings. Since adsorbents and desiccants in general tend to take up both waer and organic decomposition products, relative affinities of a number of these agents for water and for organic compounds are being determined.

  8. Outdoor performance results for NBS Round Robin collector no. 1

    Science.gov (United States)

    Miller, D. R.

    1976-01-01

    The efficiency of a PPG flat-plate solar collector was evaluated utilizing an outdoor solar collector test facility at the NASA-Lewis Research Center, as part of the National Bureau of Standards 'round robin' collector test program. The correlation equation for collector thermal efficiency Eta curve fit of the data was: Eta = 0.666 - 1.003(Btu/hr-sq ft-F) Theta, where the parameter Theta is the difference between the average fluid temperature and the ambient temperature, all divided by the total flux impinging on the collector.

  9. THEORETICAL STUDY OF SOLAR COLLECTOR WITH MINI PARABOLIC CONCENTRATOR

    Directory of Open Access Journals (Sweden)

    I TABET

    2013-12-01

    Full Text Available In this paper, numerical modeling and simulation of the thermal behavior of a solar collector vacuum tube with a concentration has been done, the value of adding a system of concentration at the back of the collector and try to increase the amount of solar radiation incident on the collector  in order to obtain high temperatures compared to traditional flat plate collector  and improved their energy performance, this type of collector  being integrated into buildings for domestic hot water, air conditioning and for cooling.

  10. Thermal performance of honeywell double covered liquid solar collector

    Science.gov (United States)

    Losey, R.

    1977-01-01

    The test procedures and results obtained during an evaluation test program to determine the outdoor performance characteristics of the Honeywell liquid solar collector are presented. The program was based on the thermal evaluation of a Honeywell double covered liquid solar collection. Initial plans included the simultaneous testing of a single covered Honeywell collector. During the initial testing, the single covered collector failed due to leakage; thus, testing continued on the double covered collector only. To better define the operating characteristics of the collector, several additional data points were obtained beyond those requested.

  11. Performance correlations of five solar collectors tested simultaneously outdoors

    Science.gov (United States)

    Miller, D. R.

    1976-01-01

    Collector thermal efficiency, and efficiency degradation with time were measured for 5 flat-plate solar collectors tested simultaneously in an outdoor solar collector test facility. Results indicate that by using collector performance parameters which account for diffuse insolation, outdoor data recorded on 'cloudy' days can be used as a measure of performance, as long as the ratio of direct to total insolation exceeds approximately 0.6. These outdoor results also show good agreement with thermal efficiency data obtained indoors in a solar simulator. Significant efficiency degradation occurred on only one of the five collectors exposed to outdoor conditions for a period of one to two years.

  12. The Effect of Surface Roughness on Fluid Configuration and Solute Transport in Unsaturated Porous Media

    Science.gov (United States)

    Kibbey, T. C.

    2013-12-01

    When describing the configuration of water in unsaturated media, a distinction is often made between water that is held by capillary forces between grains (capillary water), and water associated with adsorbed films on solid surfaces (film water). The objective of this work was to better understand the nature of the water associated with solid surfaces, with emphasis on understanding the configuration of water on rough natural surfaces. Stereoscopic SEM was used to determine elevation maps on a range of different natural solid surfaces. A computational technique was then developed to calculate the configuration of water on the surfaces as a function of capillary pressure. Calculations of fluid configurations show that, except at extremely high capillary pressures, fluid configuration is dominated by bridging of surface roughness features, even for extremely smooth surfaces. Results suggest that true adsorbed films are likely extremely rare in the environment except under near-dry, ultra-high capillary pressure conditions. This result has significant implications for understanding fate and transport within the unsaturated zone. Preliminary simulations exploring the impact on transport will be discussed.

  13. Membrane adsorber for endotoxin removal

    Directory of Open Access Journals (Sweden)

    Karina Moita de Almeida

    Full Text Available ABSTRACT The surface of flat-sheet nylon membranes was modified using bisoxirane as the spacer and polyvinyl alcohol as the coating polymer. The amino acid histidine was explored as a ligand for endotoxins, aiming at its application for endotoxin removal from aqueous solutions. Characterization of the membrane adsorber, analysis of the depyrogenation procedures and the evaluation of endotoxin removal efficiency in static mode are discussed. Ligand density of the membranes was around 7 mg/g dry membrane, allowing removal of up to 65% of the endotoxins. The performance of the membrane adsorber prepared using nylon coated with polyvinyl alcohol and containing histidine as the ligand proved superior to other membrane adsorbers reported in the literature. The lack of endotoxin adsorption on nylon membranes without histidine confirmed that endotoxin removal was due to the presence of the ligand at the membrane surface. Modified membranes were highly stable, exhibiting a lifespan of approximately thirty months.

  14. An improved dynamic test method for solar collectors

    DEFF Research Database (Denmark)

    Kong, Weiqiang; Wang, Zhifeng; Fan, Jianhua

    2012-01-01

    for the second-order differential term with 6–9min as the best averaging time interval. The measured and predicted collector power output of the solar collector are compared during a test of 13days continuously both for the ITF method and the QDT method. The maximum and averaging error is 53.87W/m2 and 5.22W/m2...... than the QDT method in predicting the power output of a solar collector.In conclusion, all the results show that the improved transfer function method can accurately and robustly estimate solar collector parameters and predict solar collector thermal performance under dynamic test conditions.......A comprehensive improvement of the mathematical model for the so called transfer function method is presented in this study. This improved transfer function method can estimate the traditional solar collector parameters such as zero loss coefficient and heat loss coefficient. Two new collector...

  15. Theoretical study on a solar collector loop during stagnation

    DEFF Research Database (Denmark)

    Chen, Ziqian; Dragsted, Janne; Furbo, Simon;

    2010-01-01

    A mathematical model simulating the stagnation behavior of a pressurized solar collector loop with solar collectors with a good emptying behavior is developed. Based on the pre-pressure of the expansion vessel, the system filling pressure of the solar collector loop and the design of the solar...... collector loop, the mass of the fluid flowing into the pressurized expansion vessel and the pressures at the top part and at the bottom part of the solar collector loop during stagnation for the solar collector loop are calculated. The theoretically calculated results are compared with experimental results....... There is a good agreement between calculations and measurements. The developed simulation model is therefore suitable to determine the behavior of solar collector loops during stagnation....

  16. Theoretical study on a solar collector loop during stagnation

    DEFF Research Database (Denmark)

    Chen, Ziqian; Dragsted, Janne; Furbo, Simon;

    A mathematical model simulating the stagnation behavior of a pressurized solar collector loop with solar collectors with a good emptying behavior is developed. Based on the pre-pressure of the expansion vessel, the system filling pressure of the solar collector loop and the design of the solar...... collector loop, the mass of the fluid flowing into the pressurized expansion vessel and the pressures at the top part and at the bottom part of the solar collector loop during stagnation for the solar collector loop are calculated. The theoretically calculated results are compared with experimental results....... There is a good agreement between calculations and measurements. The developed simulation model is therefore suitable to determine the behavior of solar collector loops during stagnation....

  17. Improvement of flat plate collectors for solar energy conversion

    Science.gov (United States)

    Boeck, H.; Hallermayer, R.; Schoelkopf, W.; Sizman, R.

    1984-03-01

    Selective absorption for thermal conversion of radiative energy was investigated. Improvement and operation of various measuring devices for absorption and emission are presented. Selective coatings were produced by vapor deposition and galvanic treatment. Calculations of the transmittance of turbular collector fields are presented. Operational Characteristics of Collector were examined. A collector test field with simultaneous recording of data from 24 collectors or uncovered absorbers was built and connected to a high performance microprocessor system. The transient behavior of collectors by variation of the irradiation and the collector inlet temperature were investigated. A mechanism for stratification of hot water of fluctuating inlet temperature in a storage tank was studied. The operating conditions of a heat pump installed in the collector test plant are investigated. A large domestic hot water system is equipped with temperature sensors and flowmeters for computer recording.

  18. Hydraulic Conductivity Anisotropy of Heterogeneous Unsaturated Soils

    Science.gov (United States)

    Sun, Dongmin; Zhu, Jianting

    2010-05-01

    The effects of saturation degree (or capillary pressure) on hydraulic conductivity anisotropy in unsaturated soils have not been fully understood. This study developed an approach based on a conceptualization of combining the neural network based pedo-transfer function (PTF) results with the thin layer concept to explore the capillary pressure-dependent anisotropy in relation to soil texture and soil bulk density. The main objective is to examine how anisotropy characteristics are related to the relationships between hydraulic parameters and the basic soil attributes such as texture and bulk density. The hydraulic parameters are correlated with the texture and bulk density based on the pedo-transfer function (PTF) results. It is demonstrated that non-monotonic behavior of the unsaturated soil anisotropy in relation to the capillary pressure is only observed when the saturated hydraulic conductivity and the shape parameter are both related to the mean particle diameter. When only one hydraulic parameter is related to the grain diameter or when both are not related to the same attribute simultaneously, the unsaturated soil anisotropy increases monotonically with the increasing capillary pressure head. Therefore, it is suggested that this behavior is mainly due to the coupled dependence of the layer saturated hydraulic conductivities and the shape factors on the texture and bulk density. The correlation between the soil grain diameter and bulk density decreases the anisotropy effects of the unsaturated layered soils. The study illustrates that the inter-relationships of soil texture, bulk density, and hydraulic properties may cause vastly different characteristics of anisotropic unsaturated soils.

  19. Simulation of a solar collector array consisting of two types of solar collectors, with and without convection barrier

    DEFF Research Database (Denmark)

    Bava, Federico; Furbo, Simon; Perers, Bengt

    2015-01-01

    The installed area of solar collectors in solar heating fields is rapidly increasing in Denmark. In this scenario even relatively small performance improvements may lead to a large increase in the overall energy production. Both collectors with and without polymer foil, functioning as convection...... barrier, can be found on the Danish market. Depending on the temperature level at which the two types of collectors operate, one can perform better than the other. This project aimed to study the behavior of a 14 solar collector row made of these two different kinds of collectors, in order to optimize...... the composition of the row. Actual solar collectors available on the Danish market (models HT-SA and HT-A 35-10 manufactured by ARCON Solar A/S) were used for this analysis. To perform the study, a simulation model in TRNSYS was developed based on the Danish solar collector field in Braedstrup. A parametric...

  20. Short-Term Solar Collector Power Forecasting

    DEFF Research Database (Denmark)

    Bacher, Peder; Madsen, Henrik; Perers, Bengt

    2011-01-01

    This paper describes a new approach to online forecasting of power output from solar thermal collectors. The method is suited for online forecasting in many applications and in this paper it is applied to predict hourly values of power from a standard single glazed large area flat plate collector....... The method is applied for horizons of up to 42 hours. Solar heating systems naturally come with a hot water tank, which can be utilized for energy storage also for other energy sources. Thereby such systems can become an important part of energy systems with a large share of uncontrollable energy sources......, such as wind power. In such a scenario online forecasting is a vital tool for optimal control and utilization of solar heating systems. The method is a two-step scheme, where first a non-linear model is applied to transform the solar power into a stationary process, which then is forecasted with robust time...

  1. A Self-Biasing Pulsed Depressed Collector

    Energy Technology Data Exchange (ETDEWEB)

    Kemp, Mark A.; Jensen, Aaron; Neilson, Jeff; /SLAC

    2014-05-29

    Depressed collectors have been utilized successfully for many years to improve the electrical efficiency of vacuum electron devices. Increasingly, pulsed, high-peak power accelerator applications are placing a premium on electrical efficiency. As RF systems are responsible for a large percentage of the overall energy usage at accelerator laboratories, methods to improve upon the state-of-the-art in pulsed high-power sources are desired. This paper presents a technique for self-biasing the stages in a multistage depressed collector. With this technique, the energy lost during the rise and fall times of the pulse can be recovered, separate power supplies are not needed, and existing modulators can be retrofitted. Calculations show that significant cost savings can be realized with the implementation of this device in high-power systems. In this paper, the technique is described along with experimental demonstration. (auth)

  2. Protection of solar collector materials from UV

    Science.gov (United States)

    Castle, J. G., Jr.; Gause, R. L.; Whitaker, A.

    1978-01-01

    Certain plastic films, such as KAPTON, are known to be stable with excellent long-term aging characteristics under intense uv radiation. Our recent measurements of the optical transmission spectra of KAPTON films show an absorption edge in the blue and are interpreted in terms of an electronic excitation mechanism. The application of this type of film as covering for solar collectors is discussed in regard to the protection this strong uv absorption offers to the materials underneath.

  3. Assessment of musculoskeletal load in refuse collectors

    Directory of Open Access Journals (Sweden)

    Zbigniew W. Jóźwiak

    2013-08-01

    Full Text Available Background: The aim of this work was to assess the load on the musculoskeletal system and its effects in the collectors of solid refuse. The rationale behind this study was to formulate proposals how to reduce excessive musculoskeletal load in this group of workers. Material and Methods: The study group comprised 15 refuse collectors aged 25 to 50 years. Data about the workplace characteristics and subjective complaints of workers were collected by the free interview and questionnaire. During the survey the photorecording of the workpostures, the distance and velocity by GPS recorders, measurements of forces necessary to move containers, energy expenditure (lung ventilation method, workload estimation using the Firstbeat system and REBA method and stadiometry were done. Results: The distance walked daily by the collectors operating in terms of 2 to 3 in urban areas was about 15 km, and in rural areas about 18 km. The most frequent musculoskeletal complaints concerned the feet (60% subjects, knees, wrists and shoulders (over 40% subjects. After work-shift all examined workers had vertebral column shorter by 10 to 14 mm (11.4 mm mean. Conclusions: The results of our study show that the refuse collectors are subjected to a very high physical load because of the work organization and the way it is performed. To avoid adverse health effects and overload it is necessary to undertake ergonomic interventions, involving training of workers to improve the way of their job performance, active and passive leisure, technical control of the equipment and refuse containers, as well as the renegotiation of contracts with clients, especially those concerning non-standard containers. Med Pr 2013;64(4:507–519

  4. Theoretical study of fluidized solar collector performance

    Energy Technology Data Exchange (ETDEWEB)

    Adulla, S. H; Kassem, M A; El-Refaie, M. F. [Cairo University, Giza (Egypt)

    2000-07-01

    This work presents a proposed novel design aiming to increasing the absorber-to-fluid heat transfer coefficient. This is accomplished by introducing small solid particles inside the collector tubes. When the collector liquid flows, it causes the particles to be fluidized and spread in the tubes. The particles material, size and total number should be turned together with the fluid mass flow rate to keep the bed, or particle dispersion, length within the physical length of collector tubes. Thus, the particles would be confined in the collector only; and not carried over to other parts of the circulation loop. While moving, the particles erode the thermal boundary layer formed on the tube inner surface, hence increasing the heat transfer coefficient. [Spanish] Este articulo presenta un diseno novedoso destinado a aumentar el coeficiente de trasferencia de calor de absorbedor a fluido. Esto se lleva a cabo mediante la introduccion de particulas solidas dentro de los tubos del colector. Cuando fluye el liquido del colector origina que las particulas se fluidicen y se diseminen en los tubos. El material de las particulas, tamano y numero total debera de ser puesto en movimiento junto con el regimen de flujo de masa de fluido para mantener el lecho o la dispersion de particulas por largo tiempo dentro de la longitud fisica de los tubos de colector. De esta manera las particulas seran confinadas solamente en el colector y no seran arrastradas a otras partes del anillo de circulacion. Al moverse, las particulas erosionan la capa de frontera termica formada en la superficie interior del tubo, aumentando por tanto el coeficiente de transmision de calor.

  5. High performance flat plate solar collector

    Science.gov (United States)

    Lansing, F. L.; Reynolds, R.

    1976-01-01

    The potential use of porous construction is presented to achieve efficient heat removal from a power producing solid and is applied to solar air heaters. Analytical solutions are given for the temperature distribution within a gas-cooled porous flat plate having its surface exposed to the sun's energy. The extracted thermal energy is calculated for two different types of plate transparency. Results show the great improvement in performance obtained with porous flat plate collectors as compared with analogous nonporous types.

  6. Numerical Investigation of Nanofluid-based Solar Collectors

    Science.gov (United States)

    Karami, M.; Raisee, M.; Delfani, S.

    2014-08-01

    Solar thermal collectors are applicable in the water heating or space conditioning systems. Due to the low efficiency of the conventional collectors, some suggestions have been presented for improvement in the collector efficiency. Adding nanoparticles to the working fluid in direct absorption solar collector, which has been recently proposed, leads to improvement in the working fluid thermal and optical properties such as thermal conductivity and absorption coefficient. This results certainly in collector efficiency enhancement. In this paper, the radiative transfer and energy equations are numerically solved. Due to laminar and fully developed flow in the collector, the velocity profile is assumed to be parabolic. As can be observed from the results, outlet temperature of collector is lower than that obtained using uniform velocity profile. Furthermore, a suspension of carbon nanohorns in the water is used as the working fluid in the model and its effect on the collector efficiency is investigated. It was found that the presence of carbon nanohorns increases the collector efficiency by about 17% compared to a conventional flat-plate collector. In comparison with the mixture of water and aluminium nanoparticles, a quite similar efficiency is obtained using very lower concentration of carbon nanohorns in the water.

  7. REVIEW OF PERFORMANCE AND ANALYSIS ISI FLAT PLATE COLLECTOR WITH MODIFIED FLAT PLATE COLLECTOR

    Directory of Open Access Journals (Sweden)

    MR.Y.Y.NANDURKAR

    2012-03-01

    Full Text Available The market of solar water heater of natural circulation type (thermo-siphon is fast growing in India. Initial cost of the solar water heater system at present is high because of store type design. It is necessary to make the product more popular by reducing the cost. This is possible by reducing area of liquid flat plate collector by increasing tube diameter and reducing riser length. Hence it is essential to make solar water heater in affordable range of the general public class. Present work is based on review of comparative performance and analysis of ISI flat plate collector with modified flat plat collector. The paper will be helpful for those who are working in the area of solar water heating system and their use in domestic areas.

  8. Black Sprayable Molecular Adsorber Coating Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This novel molecular adsorber coating would alleviate the size, weight, and complexity issues of traditional molecular adsorber puck.  A flexible tape version...

  9. Solar collector design with respect to moisture problems

    DEFF Research Database (Denmark)

    Holck, Ole; Svendsen, Svend; Brunold, Stefan;

    2003-01-01

    .Simulation of the microclimate in solar thermal collectors can be a valuable tool for optimisation of the collector with respect to ventilation. A computer model has been established for fulfilling this. By using this tool the producers can be advised whether their solar collectors ought to be additionally tightened, or whether...... group Materials in Solar Thermal Collectors of the International Energy Agency-Solar Heating and Cooling Programme....... the design of the collector, the location and size of ventilation holes, properties of the insulation materials and dimension of the solar collector box are parameters that have to be taken into account for the optimisation in order to achieve the most favourable microclimate to prevent corrosion...

  10. Increasing thermal efficiency of solar flat plate collectors

    Science.gov (United States)

    Pona, J.

    A study of methods to increase the efficiency of heat transfer in flat plate solar collectors is presented. In order to increase the heat transfer from the absorber plate to the working fluid inside the tubes, turbulent flow was induced by installing baffles within the tubes. The installation of the baffles resulted in a 7 to 12% increase in collector efficiency. Experiments were run on both 1 sq ft and 2 sq ft collectors each fitted with either slotted baffles or tubular baffles. A computer program was run comparing the baffled collector to the standard collector. The results obtained from the computer show that the baffled collectors have a 2.7% increase in life cycle cost (LCC) savings and a 3.6% increase in net cash flow for use in domestic hot water systems, and even greater increases when used in solar heating systems.

  11. Mathematical Modeling of Dual Intake Transparent Transpired Solar Collector

    OpenAIRE

    Thomas Semenou; Rousse, Daniel R.; Brice Le Lostec; Hervé F. Nouanegue; Pierre-Luc Paradis

    2015-01-01

    Nowadays, in several types of commercial or institutional buildings, a significant rise of transpired solar collectors used to preheat the fresh air of the building can be observed. Nevertheless, when the air mass flow rate is low, the collector efficiency collapses and a large amount of energy remains unused. This paper presents a simple yet effective mathematical model of a transparent transpired solar collector (TTC) with dual intake in order to remove stagnation problems in the plenum and...

  12. High Performance Flat Plate Solar Thermal Collector Evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Rockenbaugh, Caleb [National Renewable Energy Lab. (NREL), Golden, CO (United States); Dean, Jesse [National Renewable Energy Lab. (NREL), Golden, CO (United States); Lovullo, David [National Renewable Energy Lab. (NREL), Golden, CO (United States); Lisell, Lars [National Renewable Energy Lab. (NREL), Golden, CO (United States); Barker, Greg [National Renewable Energy Lab. (NREL), Golden, CO (United States); Hanckock, Ed [National Renewable Energy Lab. (NREL), Golden, CO (United States); Norton, Paul [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2016-09-01

    This report was prepared for the General Services Administration by the National Renewable Energy Laboratory. The Honeycomb Solar Thermal Collector (HSTC) is a flat plate solar thermal collector that shows promising high efficiencies over a wide range of climate zones. The technical objectives of this study are to: 1) verify collector performance, 2) compare that performance to other market-available collectors, 3) verify overheat protection, and 4) analyze the economic performance of the HSTC both at the demonstration sites and across a matrix of climate zones and utility markets.

  13. Simulation Application for Optimization of Solar Collector Array

    Directory of Open Access Journals (Sweden)

    Igor Shesho*,

    2014-01-01

    Full Text Available Solar systems offer a comparatively low output density , so increasing the output always means a corresponding increase in the size of the collector area. Thus collector arrays are occasionally constructed (i.e. with different azimuth angles and/or slopes, which be imposed by the location and structure available to mount the collector. In this paper is developed simulation application for optimization for the solar collector array position and number of collectors in regard of maximum annual energy gain and thermal efficiency. It is analyzed solar collector array which has parallel and serial connected solar collectors with different tilt, orientation and thermal characteristics. Measurements are performed for determine the thermal performance of the system. Using the programming language INSEL it is developed simulation program for the analyzed system where optimization is done through parametric runs in the simulation program. Accent is given on the SE orientated collectors regarding their tilt and number, comparing two solutions-scenarios and the current system set situation of the in means of efficiency and total annual energy gain. The first scenario envisages a change of angle from 35 to 25 solar panels on the SE orientation, while the second scenario envisages retaining the existing angle of 35 and adding additional solar collector. Scenario 1 accounts for more than 13% energy gain on annual basis while Scenario 2 has 2% bigger thermal efficiency.

  14. EFFICIENCY AND LIFETIME OF SOLAR COLLECTORS FOR SOLAR HEATING PLANTS

    OpenAIRE

    Fan, Jianhua; Chen, Ziqian; Furbo, Simon; Perers, Bengt; Karlsson, Björn

    2009-01-01

    The 12.5 m² flat plate solar collector HT, today marketed by Arcon Solvarme A/S, has been used in solar heating plants in Scandinavia since 1983. The collector is designed to operate in a temperature interval between 40°C and 90°C. The efficiency of the collector has been strongly improved since it was introduced on the market. The paper will present the increase of the efficiency of the collector due to technical improvements since 1983. Further, measurements from the spring of 2009 of the e...

  15. Performance test procedures for thermal collectors - Outdoor testing

    Science.gov (United States)

    Gillett, W. B.

    A review of outdoor solar collector test methods is presented, based largely on the CEC Recommendations for European Solar Collector Test Methods. Test facility design and instrumentation are discussed, with reference to their influence on measured collector efficiencies. Steady state outdoor testing, mixed indoor/outdoor testing and transient testing are reviewed, and it is concluded that although the testing of simple flat plate water heaters is fairly well understood, more work is now required to develop test methods for the new high performance collectors which are coming onto the market.

  16. Study on the Effect of the Curvature of Solar Collector on Wind Loading Coefficients and Dynamic Response of Solar Collector

    Directory of Open Access Journals (Sweden)

    Khalid Hameed Hussein

    2013-01-01

    Full Text Available In the current research, the work concentrated on studying the effect of curvature of solar parabolic trough solar collector on wind loading coefficients and dynamic response of solar collector. The response of collector to the aerodynamic loading was estimated numerically and experimentally. The curvature of most public parabolic trough solar collectors was investigated and compared. The dynamic response of solar collector due to wind loading was investigated by using numerical solution of fluid-structure interaction concept. The experimental work was done to verify the numerical results and shows good agreement with numerical results. The numerical results were obtained by using finite element software package (ANSYS 14. It was found that the change in collector curvature (focal length lead to remarkable changes in wind loading coefficients (drag, lift, and moment, dynamic response (displacement and natural frequencies but does not affect the first mode shape.

  17. Adaptive control of solar energy collector systems

    CERN Document Server

    Lemos, João M; Igreja, José M

    2014-01-01

    This book describes methods for adaptive control of distributed-collector solar fields: plants that collect solar energy and deliver it in thermal form. Controller design methods are presented that can overcome difficulties found in these type of plants:they are distributed-parameter systems, i.e., systems with dynamics that depend on space as well as time;their dynamics is nonlinear, with a bilinear structure;there is a significant level of uncertainty in plant knowledge.Adaptive methods form the focus of the text because of the degree of uncertainty in the knowledge of plant dynamics. Parts

  18. Mobile Information Collectors' Trajectory Data Warehouse Design

    CERN Document Server

    oueslati, wided

    2010-01-01

    To analyze complex phenomena which involve moving objects, Trajectory Data Warehouse (TDW) seems to be an answer for many recent decision problems related to various professions (physicians, commercial representatives, transporters, ecologists ...) concerned with mobility. This work aims to make trajectories as a first class concept in the trajectory data conceptual model and to design a TDW, in which data resulting from mobile information collectors' trajectory are gathered. These data will be analyzed, according to trajectory characteristics, for decision making purposes, such as new products commercialization, new commerce implementation, etc.

  19. CMS DT Upgrade The Sector Collector Relocation

    CERN Document Server

    Navarro Tobar, Alvaro

    2015-01-01

    The Sector Collector relocation is the first stage of the upgrade program for the Drift Tubes subdetector of the CMS experiment. It was accomplished during Long Shutdown 2013-2014, and consisted in the relocation of the second-level trigger and readout electronics from the experimental to the service cavern, relieving the environmental constraints and improving accessibility for maintenance and upgrade. Extending the electrical links would degrade reliability, so the information is converted to optical with a custom system capable of dealing with the DC-unbalanced data. Initially, present electronics are used, so optical-to-copper conversion has also been installed.

  20. New concepts for solar collectors in 2030

    Energy Technology Data Exchange (ETDEWEB)

    Bakker, M.; Van Helden, W. [ECN Efficiency and Infrastructure, Petten (Netherlands); Nijs, J.; Reinders, A. [University of Twente, Faculty of CTW, Department of Design, Production and Management, Enschede (Netherlands)

    2009-01-15

    In 2030, solar energy is expected to cover the full energy demand of newly built houses. In addition, increasing standards for quality of living require that newly built houses offer increased comfort, while still being affordable. Current collector technology will not be able to meet all these requirements; hence, new collector concepts are required. This paper develops new concepts for the capture, conversion, and storage of solar energy with a focus on future integration in newly built houses. Industrial design engineering was used in the concept development, including an analysis of the field as well as a series of workshops. Out of several concepts, two were selected and elaborated. The first concept (aimed at 2015) is based on a passive house, and is able to fully provide the domestic energy use of both the user and the building itself. The second concept (aimed at 2030) integrates energy production, energy storage, building insulation, and an indoor climate system in durable, modular construction elements; the total energy production of this concept exceeds the total domestic energy use. This paper illustrates the concept development process and its results.

  1. MINICHANNEL-TUBE SOLAR THERMAL COLLECTORS FOR LOW TO MEDIUM TEMPERATURE APPLICATIONS

    OpenAIRE

    Duong, Thuc

    2015-01-01

    Novel minichannel-tube solar thermal collectors for low to medium temperature applications are introduced. Two types of minichannel solar thermal collectors are analyzed experimentally: aluminum minichannel solar collector for low temperature applications, and copper minichannel solar collector for low to medium temperature applications.The aluminum minichannel solar collector has been tested for over a year alongside a conventional copper flat-plate solar collector of similar dimensions as t...

  2. Review and selection of unsaturated flow models

    Energy Technology Data Exchange (ETDEWEB)

    Reeves, M.; Baker, N.A.; Duguid, J.O. [INTERA, Inc., Las Vegas, NV (United States)

    1994-04-04

    Since the 1960`s, ground-water flow models have been used for analysis of water resources problems. In the 1970`s, emphasis began to shift to analysis of waste management problems. This shift in emphasis was largely brought about by site selection activities for geologic repositories for disposal of high-level radioactive wastes. Model development during the 1970`s and well into the 1980`s focused primarily on saturated ground-water flow because geologic repositories in salt, basalt, granite, shale, and tuff were envisioned to be below the water table. Selection of the unsaturated zone at Yucca Mountain, Nevada, for potential disposal of waste began to shift model development toward unsaturated flow models. Under the US Department of Energy (DOE), the Civilian Radioactive Waste Management System Management and Operating Contractor (CRWMS M&O) has the responsibility to review, evaluate, and document existing computer models; to conduct performance assessments; and to develop performance assessment models, where necessary. This document describes the CRWMS M&O approach to model review and evaluation (Chapter 2), and the requirements for unsaturated flow models which are the bases for selection from among the current models (Chapter 3). Chapter 4 identifies existing models, and their characteristics. Through a detailed examination of characteristics, Chapter 5 presents the selection of models for testing. Chapter 6 discusses the testing and verification of selected models. Chapters 7 and 8 give conclusions and make recommendations, respectively. Chapter 9 records the major references for each of the models reviewed. Appendix A, a collection of technical reviews for each model, contains a more complete list of references. Finally, Appendix B characterizes the problems used for model testing.

  3. Thermal performance of integration of solar collectors and building envelopes

    Institute of Scientific and Technical Information of China (English)

    于国清; 龚小辉; 曹双华

    2009-01-01

    The integration of building with solar collector was studied. The theoretical model of integration of building envelopes and flat plate solar collectors was set up and the thermal performance of integration was studied in winter and summer,and compared to envelopes without solar collectors. The results show that the solar collection efficiency is raised in the integration of building envelopes and solar collectors with the air layer doors closed. This is true whether in winter or summer. The increment is higher as the inlet water temperature increases or the ambient temperature is low. In winter,the heat loss is significantly reduced through integration of the building envelopes and solar collectors with the closed air layer doors. The integration with the open air layer door is worse than that without collectors. In summer,the heat gains of the integration of envelopes and solar collectors are more obviously reduced than envelopes without collectors,the integration with the open air layer door is a little better than the closed one,but the difference is very small.

  4. Performance of a solar collector with antireflection treated glass cover

    DEFF Research Database (Denmark)

    Duer, Karsten

    1999-01-01

    process in order to improve the solar transmittance for the glass samples. A standard flat plate solar collector has been tested in the indoor solar simulator. The purpose of the tests was to evaluate the improvement in collector performance that can be expected by replacing the standard cover...

  5. ANALYSIS AND MODELING OF SOLAR EVAPORATOR-COLLECTOR

    Directory of Open Access Journals (Sweden)

    Zakaria Mohd. Amin

    2015-11-01

    Full Text Available Solar energy is considered a sustainable resource that poses little to no harmful effects on the environment. The performance of a solar system depends to a great extent on the collector used for the conversion of solar radiant energy to thermal energy. A solar evaporator-collector (SEC is basically an unglazed flat plate collector where refrigerants, such as R134a is used as the working fluid. As the operating temperature of the SEC is very low, it utilizes both solar irradiation and ambient energy leading to a much higher efficiency than the conventional collectors. This capability of SECs to utilize ambient energy also enables the system to operate at night. This type of collector can be locally made and is relatively much cheaper than the conventional collector.   At the National University of Singapore, the evaporator-collector was integrated to a heat pump and the performance was investigated for several thermal applications: (i water heating, (ii drying and (iii desalination. A 2-dimensional transient mathematical model of this system was developed and validated by experimental data. The present study provides a comprehensive study of performance. KEYWORDS: heat pump; evaporator-collector.

  6. Yearly average performance of the principal solar collector types

    Energy Technology Data Exchange (ETDEWEB)

    Rabl, A.

    1981-01-01

    The results of hour-by-hour simulations for 26 meteorological stations are used to derive universal correlations for the yearly total energy that can be delivered by the principal solar collector types: flat plate, evacuated tubes, CPC, single- and dual-axis tracking collectors, and central receiver. The correlations are first- and second-order polynomials in yearly average insolation, latitude, and threshold (= heat loss/optical efficiency). With these correlations, the yearly collectible energy can be found by multiplying the coordinates of a single graph by the collector parameters, which reproduces the results of hour-by-hour simulations with an accuracy (rms error) of 2% for flat plates and 2% to 4% for concentrators. This method can be applied to collectors that operate year-around in such a way that no collected energy is discarded, including photovoltaic systems, solar-augmented industrial process heat systems, and solar thermal power systems. The method is also recommended for rating collectors of different type or manufacturer by yearly average performance, evaluating the effects of collector degradation, the benefits of collector cleaning, and the gains from collector improvements (due to enhanced optical efficiency or decreased heat loss per absorber surface). For most of these applications, the method is accurate enough to replace a system simulation.

  7. Thermal performances of vertical hybrid PV/T air collector

    Science.gov (United States)

    Tabet, I.; Touafek, K.; Bellel, N.; Khelifa, A.

    2016-11-01

    In this work, numerical analyses and the experimental validation of the thermal behavior of a vertical photovoltaic thermal air collector are investigated. The thermal model is developed using the energy balance equations of the PV/T air collector. Experimental tests are conducted to validate our mathematical model. The tests are performed in the southern Algerian region (Ghardaïa) under clear sky conditions. The prototype of the PV/T air collector is vertically erected and south oriented. The absorber upper plate temperature, glass cover temperature, air temperature in the inlet and outlet of the collector, ambient temperature, wind speed, and solar radiation are measured. The efficiency of the collector increases with increase in mass flow of air, but the increase in mass flow of air reduces the temperature of the system. The increase in efficiency of the PV/T air collector is due to the increase in the number of fins added. In the experiments, the air temperature difference between the inlet and the outlet of the PV/T air collector reaches 10 ° C on November 21, 2014, the interval time is between 10:00 and 14:00, and the temperature of the upper plate reaches 45 ° C at noon. The mathematical model describing the dynamic behavior of the typical PV/T air collector is evaluated by calculating the root mean square error and mean absolute percentage error. A good agreement between the experiment and the simulation results is obtained.

  8. Thermal performance of a hot-air solar collector

    Science.gov (United States)

    1978-01-01

    Report contains procedures and results of thermal-performance tests on double-glazed air solar collector. Four types of tests were carried out including thermal-efficiency and stagnation tests, collector time-constant tests to assess effects of transients, and incident-angle modifier tests. Data are presented in tables and as graphs and are discussed and analyzed.

  9. Test results, Industrial Solar Technology parabolic trough solar collector

    Energy Technology Data Exchange (ETDEWEB)

    Dudley, V.E. [EG and G MSI, Albuquerque, NM (United States); Evans, L.R.; Matthews, C.W. [Sandia National Labs., Albuquerque, NM (United States)

    1995-11-01

    Sandia National Laboratories and Industrial Solar Technology are cost-sharing development of advanced parabolic trough technology. As part of this effort, several configurations of an IST solar collector were tested to determine the collector efficiency and thermal losses with black chrome and black nickel receiver selective coatings, combined with aluminized film and silver film reflectors, using standard Pyrex{reg_sign} and anti-reflective coated Pyrex{reg_sign} glass receiver envelopes. The development effort has been successful, producing an advanced collector with 77% optical efficiency, using silver-film reflectors, a black nickel receiver coating, and a solgel anti-reflective glass receiver envelope. For each receiver configuration, performance equations were empirically derived relating collector efficiency and thermal losses to the operating temperature. Finally, equations were derived showing collector performance as a function of input insolation value, incident angle, and operating temperature.

  10. In situ built-up air collector with glass cover

    DEFF Research Database (Denmark)

    Kristiansen, Finn Harken; Engelmark, Jesper

    1998-01-01

    as an absorber. Efficiency and aair pressure drop were measured. The efficiency of the two air solar collectors was almost similar and at the same level as other corresponding air solar collectors. The air pressure drop was somewhat larger in the case of the solar collector where the air flows behind...... with a cover of glass where the horizontal joints were made by means of different methods and materials. As a general principle a water-damming border at the horizontal glass joints was avoided. The test box was built as a solar collector with 14 different horizontal joints between the glasses. The box...... the absorber. This is due to the narrower air gap behind the absorber. Condensation has been observed in both the solar collectors, this has not been investigated more explicitly,...

  11. A solar air collector with integrated latent heat thermal storage

    Science.gov (United States)

    Charvat, Pavel; Ostry, Milan; Mauder, Tomas; Klimes, Lubomir

    2012-04-01

    Simulations of the behaviour of a solar air collector with integrated latent heat thermal storage were performed. The model of the collector was created with the use of coupling between TRNSYS 17 and MATLAB. Latent heat storage (Phase Change Material - PCM) was integrated with the solar absorber. The model of the latent heat storage absorber was created in MATLAB and the model of the solar air collector itself was created in TRNSYS with the use of TYPE 56. The model of the latent heat storage absorber allows specification of the PCM properties as well as other parameters. The simulated air collector was the front and back pass collector with the absorber in the middle of the air cavity. Two variants were considered for comparison; the light-weight absorber made of sheet metal and the heat-storage absorber with the PCM. Simulations were performed for the climatic conditions of the Czech Republic (using TMY weather data).

  12. A solar air collector with integrated latent heat thermal storage

    Directory of Open Access Journals (Sweden)

    Klimes Lubomir

    2012-04-01

    Full Text Available Simulations of the behaviour of a solar air collector with integrated latent heat thermal storage were performed. The model of the collector was created with the use of coupling between TRNSYS 17 and MATLAB. Latent heat storage (Phase Change Material - PCM was integrated with the solar absorber. The model of the latent heat storage absorber was created in MATLAB and the model of the solar air collector itself was created in TRNSYS with the use of TYPE 56. The model of the latent heat storage absorber allows specification of the PCM properties as well as other parameters. The simulated air collector was the front and back pass collector with the absorber in the middle of the air cavity. Two variants were considered for comparison; the light-weight absorber made of sheet metal and the heat-storage absorber with the PCM. Simulations were performed for the climatic conditions of the Czech Republic (using TMY weather data.

  13. Mathematical modelling of unglazed solar collectors under extreme operating conditions

    DEFF Research Database (Denmark)

    Bunea, M.; Perers, Bengt; Eicher, S.

    2015-01-01

    average temperature levels at the evaporator. Simulation of these systems requires a collector model that can take into account operation at very low temperatures (below freezing) and under various weather conditions, particularly operation without solar irradiation.A solar collector mathematical model......Combined heat pumps and solar collectors got a renewed interest on the heating system market worldwide. Connected to the heat pump evaporator, unglazed solar collectors can considerably increase their efficiency, but they also raise the coefficient of performance of the heat pump with higher...... was found due to the condensation phenomenon and up to 40% due to frost under no solar irradiation. This work also points out the influence of the operating conditions on the collector's characteristics.Based on experiments carried out at a test facility, every heat flux on the absorber was separately...

  14. Unsaturated zone flow modeling for GWTT-95

    Energy Technology Data Exchange (ETDEWEB)

    Ho, C.K.; Altman, S.J.; McKenna, S.A.; Arnold, B.W. [Sandia National Labs., Albuqureque, NM (United States)

    1996-12-01

    Various models of unsaturated flow in fractured tuff have been developed and implemented to assess groundwater travel times at the potential repository at Yucca Mountain, Nevada. Kaplan used one-dimensional models to describe the uncertainty and sensitivity of travel times to various processes at Yucca Mountain. Robey and Arnold et al. used a two-dimensional equivalent continuum model (ECM) with inter- and intra-unit heterogeneity in an attempt to assess fast-flow paths through the unsaturated, fractured tuff at Yucca Mountain (GWTT-94). However, significant flow through the fractures in previous models was not simulated due to the characteristics of the ECM, which requires the matrix to be nearly saturated before flow through the fractures is initiated. In the current study (GWTT-95), four two-dimensional cross-sections at Yucca Mountain are simulated using both the ECM and dual-permeability (DK) models. The properties of both the fracture and matrix domains are geostatistically simulated, yielding completely heterogeneous continua. Then, simulations of flow through the four cross-sections are performed using spatially non-uniform infiltration boundary conditions. Steady-state groundwater travel times from the potential repository to the water table are calculated.

  15. Unsaturated zone flow modeling for GWTT-95

    Energy Technology Data Exchange (ETDEWEB)

    Ho, C.K.; Altman, S.J.; McKenna, S.A.; Arnold, B.W.

    1995-12-31

    In accordance with the Nuclear Regulatory Commission regulation regarding groundwater travel times at geologic repositories, various models of unsaturated flow in fractured tuff have been developed and implemented to assess groundwater travel times at the potential repository at Yucca Mountain, Nevada. Kaplan used one-dimensional models to describe the uncertainty and sensitivity of travel times to various processes at Yucca Mountain. Robey and Arnold et al. used a two-dimensional equivalent continuum model (ECM) with inter- and intra-unit heterogeneity in an attempt to assess fast-flow paths through the unsaturated, fractured tuff at Yucca Mountain (GWTT-94). However, significant flow through the fractures in previous models was not simulated due to the characteristics of the ECM, which requires the matrix to be nearly saturated before flow through the fractures is initiated. In the current study (GWTT-95), four two-dimensional cross-sections at Yucca Mountain are simulated using both the ECM and dual-permeability (DK) models. The properties of both the fracture and matrix domains are geostatistically simulated, yielding completely heterogeneous continua. Then, simulations of flow through the four cross-sections are performed using spatially nonuniform infiltration boundary conditions. Steady-state groundwater travel times from the potential repository to the water table are calculated.

  16. NaturAnalogs for the Unsaturated Zone

    Energy Technology Data Exchange (ETDEWEB)

    A. Simmons; A. Unger; M. Murrell

    2000-03-08

    The purpose of this Analysis/Model Report (AMR) is to document natural and anthropogenic (human-induced) analog sites and processes that are applicable to flow and transport processes expected to occur at the potential Yucca Mountain repository in order to build increased confidence in modeling processes of Unsaturated Zone (UZ) flow and transport. This AMR was prepared in accordance with ''AMR Development Plan for U0135, Natural Analogs for the UZ'' (CRWMS 1999a). Knowledge from analog sites and processes is used as corroborating information to test and build confidence in flow and transport models of Yucca Mountain, Nevada. This AMR supports the Unsaturated Zone (UZ) Flow and Transport Process Model Report (PMR) and the Yucca Mountain Site Description. The objectives of this AMR are to test and build confidence in the representation of UZ processes in numerical models utilized in the UZ Flow and Transport Model. This is accomplished by: (1) applying data from Boxy Canyon, Idaho in simulations of UZ flow using the same methodologies incorporated in the Yucca Mountain UZ Flow and Transport Model to assess the fracture-matrix interaction conceptual model; (2) Providing a preliminary basis for analysis of radionuclide transport at Pena Blanca, Mexico as an analog of radionuclide transport at Yucca Mountain; and (3) Synthesizing existing information from natural analog studies to provide corroborating evidence for representation of ambient and thermally coupled UZ flow and transport processes in the UZ Model.

  17. Simulation of a solar collector array consisting of two types of solar collectors, with and without convection barrier

    DEFF Research Database (Denmark)

    Bava, Federico; Furbo, Simon; Perers, Bengt

    2015-01-01

    The installed area of solar collectors in solar heating fields is rapidly increasing in Denmark. In this scenario even relatively small performance improvements may lead to a large increase in the overall energy production. Both collectors with and without polymer foil, functioning as convection...... analysis was carried out by modifying the composition of the row, in order to find both the energy and economy optimum....... barrier, can be found on the Danish market. Depending on the temperature level at which the two types of collectors operate, one can perform better than the other. This project aimed to study the behavior of a 14 solar collector row made of these two different kinds of collectors, in order to optimize...

  18. Long-term ageing tests on glazing materials for solar collectors; Langzeit-Alterungsuntersuchung an Abdeckungsmaterialien fuer thermische Sonnenkollektoren

    Energy Technology Data Exchange (ETDEWEB)

    Ruesch, F.; Brunold, S.; Haeuselmann, T.; Frank, E.; Frei, U.

    2008-02-15

    This report made by the Swiss Institute for Solar Technology at the University of Applied Sciences in Rapperswil, Switzerland, for Swiss Federal Office of Energy (SFOE) takes a look at the results of a project that investigated the long-term behaviour of glazing materials for solar collectors. The locations tested and their associated meteorological data are presented and the tests made concerning the optical characteristics of several different types of glazing are discussed. Soiling and degradation are also looked at. An overview of the solar transmission of the various materials is presented. Details on the various materials such as glass, polymethyl metacrylate (PMMA), polycarbonate (PC), fluorised plastics, unsaturated polyester (UP), polyvinyl chloride (PVC) and polyethylene terephthalate (PET) are presented.

  19. A novel fiber-based adsorbent technology

    Energy Technology Data Exchange (ETDEWEB)

    Reynolds, T.A. [Chemica Technologies, Inc., Bend, OR (United States)

    1997-10-01

    In this Phase I Small Business Innovation Research program, Chemica Technologies, Inc. is developing an economical, robust, fiber-based adsorbent technology for removal of heavy metals from contaminated water. The key innovation is the development of regenerable adsorbent fibers and adsorbent fiber cloths that have high capacity and selectivity for heavy metals and are chemically robust. The process has the potential for widespread use at DOE facilities, mining operations, and the chemical process industry.

  20. Genesis Solar Wind Array Collector Cataloging Status

    Science.gov (United States)

    Burkett, P.J.; Rodriguez, M.C.; Calaway, M.C.; Allton, J.H.

    2009-01-01

    Genesis solar wind array collectors were fractured upon landing hard in Utah in 2004. The fragments were retrieved from the damaged canister, imaged, repackaged and shipped to the Johnson Space Center curatorial facility [1]. As of January 2009, the collection consists of 3460 samples. Of these, 442 are comprised into "multiple" sample groupings, either affixed to adhesive paper (177) or collected in jars (17), culture trays (87), or sets of polystyrene vials (161). A focused characterization task was initiated in May 2008 to document the largest samples in the collection. The task consisted of two goals: to document sapphire based fragments greater than 2 cm in one dimension, and to document silicon based fragments greater than 1 cm in one direction.

  1. Use of membrane collectors in electrostatic precipitators.

    Science.gov (United States)

    Bayless, D J; Pasic, H; Alam, M K; Shi, L; Haynes, B; Cochran, J; Khan, W

    2001-10-01

    Membrane collection surfaces, developed and patented by researchers at Ohio University, were used to replace steel plates in a dry electrostatic precipitator (ESP). Such replacement facilitates tension-based rapping, which shears the adhered particle layer from the collector surface more effectively than hammer-based rapping. Tests were performed to measure the collection efficiency of the membranes and to quantify the potential improvements of this novel cleaning technique with respect to re-entrainment. Results indicate that even semiconductor materials (e.g., carbon fibers) collect ash nearly as efficiently as steel plates, potentially indicating that collection surface resistivity is primarily dictated by the accumulated ash layer and not by the underlying plate conductivity. In addition, virtually all sheared particles separated from the collecting membranes fell within the boundary layer of the membrane, indicating extremely low potential for re-entrainment.

  2. DRYING WITH SOLAR COLLECTOR BY HEAT PIPE

    Directory of Open Access Journals (Sweden)

    Hikmet DOĞAN

    1999-01-01

    Full Text Available In this research, heating pipe was used in the solar collector in order to take better advantage of the solar energy. The energy obtained from the sun was transferred to the drying air by means of heating pipes and this hot air was blown on the material to be dried. The water on the material to be dried vaporised with the effect of the hot air and drying took place. Because drying took place in the shade, distant from the direct radiation effects of the sun, some of the disadvantages seen in drying outside, under the sun were eliminated. Additionally, it was observed that it took less time to dry in this method than it takes to dry under the open sun.

  3. Analysis of WWER 1000 collector cracking mechanisms

    Energy Technology Data Exchange (ETDEWEB)

    Matocha, K.; Wozniak, J. [Vitkovice J.S.C., Ostrava (Switzerland)

    1997-12-31

    The presentation reviews the large experimental program, started in 1993 in Vitkovice, where the main aim was: (1) a detailed study of strain and thermal ageing, dissolved oxygen content and temperature on subcritical crack growth in 10NiMo8.5 (10GN2MFA) steel, (2) a detailed study of the effect of high temperature water and tube expansion technology on fracture behaviour of ligaments between holes for heat exchange tubes, and (3) a detailed study of the effect of drilling, tube expansion technology and heat treatment on residual stresses on the surface of holes for heat exchange tubes. The aim of all these investigations was to find a dominant damage mechanism responsible for collector cracking to be able to judge the efficiency of implemented modifications and suggested countermeasures and to answer a very important question whether proper operation conditions (mainly water chemistry) make the operation of steam generators made in Vitcovice safe throughout the planned lifetime. 10 refs.

  4. Alignment method for solar collector arrays

    Science.gov (United States)

    Driver, Jr., Richard B

    2012-10-23

    The present invention is directed to an improved method for establishing camera fixture location for aligning mirrors on a solar collector array (SCA) comprising multiple mirror modules. The method aligns the mirrors on a module by comparing the location of the receiver image in photographs with the predicted theoretical receiver image location. To accurately align an entire SCA, a common reference is used for all of the individual module images within the SCA. The improved method can use relative pixel location information in digital photographs along with alignment fixture inclinometer data to calculate relative locations of the fixture between modules. The absolute locations are determined by minimizing alignment asymmetry for the SCA. The method inherently aligns all of the mirrors in an SCA to the receiver, even with receiver position and module-to-module alignment errors.

  5. Antireflection Pyrex envelopes for parabolic solar collectors

    Science.gov (United States)

    McCollister, H. L.; Pettit, R. B.

    1983-11-01

    Antireflective (AR) coatings, applied to the glass envelopes used in parabolic trough solar collectors around the receiver tube in order to reduce thermal losses, can increase solar transmittance by 7 percent. An AR surface has been formed on Pyrex by first heat treating the glass to cause a compositional phase separation, removing a surface layer after heat treatment through the use of a preetching solution, and finally etching in a solution that contains hydrofluorosilic and ammonium bifluoride acids. AR-coated samples with solar transmittance values of more than 0.97, by comparison to an untreated sample value of 0.91, have been obtained for the 560-630 C range of heat treatment temperatures. Optimum values have also been determined for the other processing parameters.

  6. Study of Cylindrical Honeycomb Solar Collector

    Directory of Open Access Journals (Sweden)

    Atish Mozumder

    2014-01-01

    Full Text Available We present the results of our investigation on cylindrical honeycomb solar collector. The honeycomb has been fabricated with transparent cellulose triacetate polymer sheets. Insulation characteristics of the honeycomb were studied by varying the separation between the honeycomb and the absorber plate. The optimal value of the separation was found to be 3.3 mm for which the heat transfer coefficient is 3.06 W m−2 K−1. This supports result of previous similar experiments. Further we test the honeycomb through a field experiment conducted in Delhi (28.6°N, 77°E and found that when the incident angle of the solar radiation is within 20° then the performance of the system with the honeycomb is better than the one without the honeycomb.

  7. Molecularly Imprinted Filtering Adsorbents for Odor Sensing

    Directory of Open Access Journals (Sweden)

    Sho Shinohara

    2016-11-01

    Full Text Available Versatile odor sensors that can discriminate among huge numbers of environmental odorants are desired in many fields, including robotics, environmental monitoring, and food production. However, odor sensors comparable to an animal’s nose have not yet been developed. An animal’s olfactory system recognizes odor clusters with specific molecular properties and uses this combinatorial information in odor discrimination. This suggests that measurement and clustering of odor molecular properties (e.g., polarity, size using an artificial sensor is a promising approach to odor sensing. Here, adsorbents composed of composite materials with molecular recognition properties were developed for odor sensing. The selectivity of the sensor depends on the adsorbent materials, so specific polymeric materials with particular solubility parameters were chosen to adsorb odorants with various properties. The adsorption properties of the adsorbents could be modified by mixing adsorbent materials. Moreover, a novel molecularly imprinted filtering adsorbent (MIFA, composed of an adsorbent substrate covered with a molecularly imprinted polymer (MIP layer, was developed to improve the odor molecular recognition ability. The combination of the adsorbent and MIP layer provided a higher specificity toward target molecules. The MIFA thus provides a useful technique for the design and control of adsorbents with adsorption properties specific to particular odor molecules.

  8. Evaluation of heat transfer enhancement in air-heating collectors

    Energy Technology Data Exchange (ETDEWEB)

    Mattox, D. L.

    1979-06-01

    The present research effort was initiated for the purpose of increasing the thermal efficiency of air heating solar collectors through identification and development of optimum design and operation criteria for solar absorber-to-air heat exchangers. Initially this effort took the form of a solar collector systems analysis to evaluate the impact of various techniques for enhancing the heat transfer between the absorber and air stream on overall thermal performance of the entire solar collector. This systems analysis resulted in the selection of solar collector designs providing ducted cooling air on the absorber shaded side as a base line. A transient heat transfer analysis of a complete solar air heating collector was used to demonstrate that an optimum absorber-to-air heat exchanger design could be provided with several interrupted fin configurations. Additional analyses were performed to establish that the maximum solar collector thermal performance to required pumping power was realized for a Reynolds number range of 1000 to 2000. This Reynolds number range was used to establish a theoretical design limit curve for maximum thermal performance versus required pumping power for all interrupted fin designs as published in the open literature. Heat and momentum transfer empirical relationships were defined for scaling the state-of-the-art high conductance fin designs identified from a compact configuration to the less compact designs needed for solar collectors.

  9. PERFORMANCE EVALUATION OF SOLAR COLLECTORS USING A SOLAR SIMULATOR

    Directory of Open Access Journals (Sweden)

    M. Norhafana

    2015-11-01

    Full Text Available Solar water heating systems is one of the applications of solar energy. One of the components of a solar water heating system is a solar collector that consists of an absorber. The performance of the solar water heating system depends on the absorber in the solar collector. In countries with unsuitable weather conditions, the indoor testing of solar collectors with the use of a solar simulator is preferred. Thus, this study is conducted to use a multilayered absorber in the solar collector of a solar water heating system as well as to evaluate the performance of the solar collector in terms of useful heat of the multilayered absorber using the multidirectional ability of a solar simulator at several values of solar radiation. It is operated at three variables of solar radiation of 400 W/m2, 550 W/m2 and 700 W/m2 and using three different positions of angles at 0º, 45º and 90º. The results show that the multilayer absorber in the solar collector is only able to best adapt at 45° of solar simulator with different values of radiation intensity. At this angle the maximum values of useful heat and temperature difference are achieved. KEYWORDS: solar water heating system; solar collector; multilayered absorber; solar simulator; solar radiation 

  10. A high performance porous flat-plate solar collector

    Science.gov (United States)

    Lansing, F. L.; Clarke, V.; Reynolds, R.

    1979-01-01

    A solar collector employing a porous matrix as a solar absorber and heat exchanger is presented and its application in solar air heaters is discussed. The collector is composed of a metallic matrix with a porous surface which acts as a large set of cavity radiators; cold air flows through the matrix plate and exchanges heat with the thermally stratified layers of the matrix. A steady-state thermal analysis of the collector is used to determine collector temperature distributions for the cases of an opaque surface matrix with total absorption of solar energy at the surface, and a diathermanous matrix with successive solar energy absorption at each depth. The theoretical performance of the porous flat plate collector is shown to exceed greatly that of a solid flat plate collector using air as the working medium for any given set of operational conditions. An experimental collector constructed using commercially available, low cost steel wool as the matrix has been found to have thermal efficiencies from 73 to 86%.

  11. Transient Point Infiltration In The Unsaturated Zone

    Science.gov (United States)

    Buecker-Gittel, M.; Mohrlok, U.

    The risk assessment of leaking sewer pipes gets more and more important due to urban groundwater management and environmental as well as health safety. This requires the quantification and balancing of transport and transformation processes based on the water flow in the unsaturated zone. The water flow from a single sewer leakage could be described as a point infiltration with time varying hydraulic conditions externally and internally. External variations are caused by the discharge in the sewer pipe as well as the state of the leakage itself. Internal variations are the results of microbiological clogging effects associated with the transformation processes. Technical as well as small scale laboratory experiments were conducted in order to investigate the water transport from an transient point infiltration. From the technical scale experiment there was evidence that the water flow takes place under transient conditions when sewage infiltrates into an unsaturated soil. Whereas the small scale experiments investigated the hydraulics of the water transport and the associated so- lute and particle transport in unsaturated soils in detail. The small scale experiment was a two-dimensional representation of such a point infiltration source where the distributed water transport could be measured by several tensiometers in the soil as well as by a selective measurement of the discharge at the bottom of the experimental setup. Several series of experiments were conducted varying the boundary and initial con- ditions in order to derive the important parameters controlling the infiltration of pure water from the point source. The results showed that there is a significant difference between the infiltration rate in the point source and the discharge rate at the bottom, that could be explained by storage processes due to an outflow resistance at the bottom. This effect is overlayn by a decreasing water content decreases over time correlated with a decreasing infiltration

  12. Experimental studies of a matrix-tubular solar air collector

    Energy Technology Data Exchange (ETDEWEB)

    Plesca, M.; Varlan, P. [Moldova Technical Univ., Chisinau (Moldova, Republic of). Dept. of Heat and Gas Supply and Ventilation

    2009-06-15

    The most common types of solar air collectors (SAC) are contact-type and matrix-type collectors, with the latter being more efficient. This paper described the design and testing of a matrix-tubular flat solar air collector in the city of Chisinau, Moldova, where the outdoor climatic radiation, heat, and humidity characteristics are favorable for the efficient use of solar energy for building heating and drying applications. The amount of solar energy absorbed by a solar energy air collector depends on the level of insulation and orientation of the solar collector; the absorbance of the absorber surface; and the transmittance of the cover material. This study examined the heat transfer, efficiency, and pressure drop using copper tubes inserted perpendicular to the plane of the absorber plate. The SAC consists of a glazed insulated case, an absorber, and ducting for cold air delivery and hot air discharge. Copper tubes are inserted perpendicular to the plane of the absorber. The absorber is installed in the body of the SAC in such a way that it divides it into an upper channel and lower channel. The channel bottom is lined with aluminium foil that reflects solar radiation coming through the tubes and decreases heat loss in the solar collector. Copper tubes increase the heat exchange surface, create air turbulence and intensify heat transfer. This increases the efficiency of the solar collector. The pressure drop of the matrix-tubular solar air collector is 40 per cent lower than that of the matrix-plate collectors. 11 refs., 2 tabs., 6 figs.

  13. Calculating the Solar Energy of a Flat Plate Collector

    Directory of Open Access Journals (Sweden)

    Ariane Rosario

    2014-09-01

    Full Text Available The amount of solar energy that could be obtained by a flat plate solar collector of one square meter dimension is calculated in three different locations: Tampa FL, Fairbanks AL, and Pontianak Indonesia, considering the varying sunset time for each day of the year. The results show that if the collectors are placed near the equator, more total energy could be obtained. In fact, by placing a solar collector in Pontianak, Indonesia 12.42% more solar energy can be obtained than by placing it in Tampa and 96.9% more solar energy than Alaska.

  14. Analysis of a high-performance tubular solar collector

    Science.gov (United States)

    Lansing, F. L.; Yung, C. S.

    1981-01-01

    This article analyzes the thermal performance of a new vacuum tube solar collector. The assumptions and mathematical modeling are presented. The problem is reduced to the formulation of two simultaneous linear differential equations characterizing the collector thermal behavior. After applying the boundary conditions, a general solution is obtained which is found similar to the general Hottel, Whillier and Bliss form, but with a complex flow factor. The details of the two-dimensional thermal model of the solar collector at steady state is also presented to include the computer simulation and the performance parameterization. Comparison of the simulated performance with the manufacturer's test data showed good agreement at wide ranges of operating conditions.

  15. Optical fiber sensor for tracking line-focus solar collectors.

    Science.gov (United States)

    Wiczer, J J

    1982-08-01

    Currently there is a need to provide an alignment monitor feedback signal to the tracking mechanism of line-focus trough-type concentrating solar collectors. We report here on the novel use of an optical fiber as a distributed integrating sensor to generate such a signal. Experiments have shown that 3.0 m of optical fiber exposed to concentrated sunlight equal to ~40 suns in intensity will generate 1 microA of signal current in a silicon photodiode. These data were measured in an experimental line-focus solar collector using solar flux conditions common to this type of collector.

  16. Performance of solar collectors under low temperature conditions

    DEFF Research Database (Denmark)

    Bunea, Mircea; Eicher, Sara; Hildbrand, Catherine;

    temperature, condensation) is investigated under different operating conditions (day and night). Under some conditions condensation might occur and heat gains could represent up to 55% of the total unglazed collector energy by night. Two TRNSYS collector models including condensation heat gains are also...... evaluated and results compared to experimental measurements. A mathematical model is also under development to include, in addition to the condensation phenomena, the frost, the rain and the long-wave radiation gains/losses on the rear of the solar collector. While the potential gain from rain was estimated...

  17. A solar air collector with integrated latent heat thermal storage

    OpenAIRE

    Klimes Lubomir; Mauder Tomas; Ostry Milan; Charvat Pavel

    2012-01-01

    Simulations of the behaviour of a solar air collector with integrated latent heat thermal storage were performed. The model of the collector was created with the use of coupling between TRNSYS 17 and MATLAB. Latent heat storage (Phase Change Material - PCM) was integrated with the solar absorber. The model of the latent heat storage absorber was created in MATLAB and the model of the solar air collector itself was created in TRNSYS with the use of TYPE 56. The model of the latent heat storage...

  18. Ray tracing study for non-imaging daylight collectors

    Energy Technology Data Exchange (ETDEWEB)

    Wittkopf, Stephen [Solar Energy Research Institute of Singapore (SERIS), National University of Singapore (NUS), 7 Engineering Drive 1, Block E3A, 06-01, Singapore 117574 (Singapore); Solar Energy and Building Physics Laboratory (LESO), Swiss Federal Institute of Technology Lausanne (EPFL) (Switzerland); Oliver Grobe, Lars; Geisler-Moroder, David [Solar Energy Research Institute of Singapore (SERIS), National University of Singapore (NUS), 7 Engineering Drive 1, Block E3A, 06-01, Singapore 117574 (Singapore); Compagnon, Raphael [College of Engineering and Architecture of Fribourg (EIA-FR), University of Applied Sciences of Western Switzerland (HES-SO) (Switzerland); Kaempf, Jerome; Linhart, Friedrich; Scartezzini, Jean-Louis [Solar Energy and Building Physics Laboratory (LESO), Swiss Federal Institute of Technology Lausanne (EPFL) (Switzerland)

    2010-06-15

    This paper presents a novel method to study how well non-imaging daylight collectors pipe diffuse daylight into long horizontal funnels for illuminating deep buildings. Forward ray tracing is used to derive luminous intensity distributions curves (LIDC) of such collectors centered in an arc-shaped light source representing daylight. New photometric characteristics such as 2D flux, angular spread and horizontal offset are introduced as a function of such LIDC. They are applied for quantifying and thus comparing different collector contours. (author)

  19. FLOW DISTRIBUTION IN A SOLAR COLLECTOR PANEL WITH HORIZONTAL FINS

    DEFF Research Database (Denmark)

    Fan, Jianhua; Shah, Louise Jivan; Furbo, Simon

    2005-01-01

    (CFD) calculations. Further, experimental investigations of a 12.5 m² solar collector panel with 16 parallel connected horizontal fins are carried out. The flow distribution through the absorber is evaluated by means of temperature measurements on the backside of the absorber tubes. The measured......The objective of this work is to theoretically and experimentally investigate the flow and temperature distribution in a solar collector panel with an absorber consisting of horizontal fins. Fluid flow and heat transfer in the collector panel are studied by means of computational fluid dynamics...

  20. Fuzzy Approximate Model for Distributed Thermal Solar Collectors Control

    KAUST Repository

    Elmetennani, Shahrazed

    2014-07-01

    This paper deals with the problem of controlling concentrated solar collectors where the objective consists of making the outlet temperature of the collector tracking a desired reference. The performance of the novel approximate model based on fuzzy theory, which has been introduced by the authors in [1], is evaluated comparing to other methods in the literature. The proposed approximation is a low order state representation derived from the physical distributed model. It reproduces the temperature transfer dynamics through the collectors accurately and allows the simplification of the control design. Simulation results show interesting performance of the proposed controller.

  1. Radioactive waste disposal in thick unsaturated zones.

    Science.gov (United States)

    Winogard, I J

    1981-06-26

    Portions of the Great Basin are undergoing crustal extension and have unsaturated zones as much as 600 meters thick. These areas contain multiple natural barriers capable of isolating solidified toxic wastes from the biosphere for tens of thousands to perhaps hundreds of thousands of years. An example of the potential utilization of such arid zone environments for toxic waste isolatic is the burial of transuranic radioactive wastes at relatively shallow depths (15 to 100 meters) in Sedan Crater, Yucca Flat, Nevada. The volume of this man-made crater is several times that of the projected volume of such wastes to the year 2000. Disposal in Sedan Crater could be accomplished at a savings on the order of $0.5 billion, in comparison with current schemes for burial of such wastes in mined repositories at depths of 600 to 900 meters, and with an apparently equal likelihood of waste isolation from the biosphere.

  2. Geotechnical Centrifuge Studies of Unsaturated Transport

    Science.gov (United States)

    Smith, R. W.; Mattson, E. D.; Palmer, C. D.

    2007-12-01

    Improved understanding of contaminant migration in heterogeneous, variably saturated porous media is required to better define the long-term stewardship requirements for U.S. Department of Energy (DOE) lands and to assist in the design of effective vadose-zone barriers to contaminant migrations. A geotechnical centrifuge provides an experimental approach to explore vadose zone transport over a wide range of relevant conditions in time frames not possible for conventional bench-top experiments. Our research to date resulted in the design, construction, and testing of in-flight experimental apparatus allowing the replication of traditional bench top unsaturated transport experiments using the 2-meter radius geotechnical centrifuge capabilities at the Idaho National Laboratory. Additionally we conducted a series of unsaturated 1-dimenstional column experiments using conservative tracers to evaluate the effects of increased centrifugal acceleration on derived transport properties and assessing the scaling relationships for these properties. Our experimental results indicated that breakthrough times for a conservative tracer decreased significantly and systematically as a function of increased centrifugal acceleration. Differences between these experimental results and estimates based on predictive scaling rules are due to slight moisture content differences between experiments at different centrifugal accelerations. In contrast, dispersion coefficients varied systemically with centrifugal acceleration in accordance with predictive scaling rules. The results we obtained in this study indicate that the centrifuge technique is a viable experimental method for the study of subsurface processes where gravitational acceleration is important. The geotechnical centrifuge allows experiments to be completed more quickly than tests conducted at 1-gravity and can be used to experimentally address important scaling issues, and permits experiments under a range of conditions that

  3. Complete braided adsorbent for marine testing to demonstrate 3g-U/kg-adsorbent

    Energy Technology Data Exchange (ETDEWEB)

    Janke, Chris [ORNL; Yatsandra, Oyola [ORNL; Mayes, Richard [ORNL; none,; Gill, Gary [PNNL; Li-Jung, Kuo [PNNL; Wood, Jordana [PNNL; Sadananda, Das [ORNL

    2014-04-30

    ORNL has manufactured four braided adsorbents that successfully demonstrated uranium adsorption capacities ranging from 3.0-3.6 g-U/kg-adsorbent in marine testing at PNNL. Four new braided and leno woven fabric adsorbents have also been prepared by ORNL and are currently undergoing marine testing at PNNL.

  4. Owens-Illinois subsystem design package for the SEC-601 air-cooled solar collector

    Science.gov (United States)

    1979-01-01

    The subsystem design of the SEC-601 solar collector was evaluated. The collector is of modular design and is approximately 12 feet three inches wide and eight feet seven inches tall. It contains 72 collector tube elements and weighs approximately 300 pounds. Included in this report are the subsystem performance specifications and the assembly and installation drawings of the solar collectors and manifold.

  5. Measurements and Calculations of the Effects of Distortions in the Collector Surface on Efficiencies of Umbrella-Type Solar Collectors

    Science.gov (United States)

    Bond, Victor R.

    1961-01-01

    The meridional tensions along the ribs in a Mylar-covered umbrella-type solar collector produce a distortion in the reflecting surface that is detrimental to the image in the focal plane. The investigation reported herein was made to obtain measured and calculated geometric efficiencies of umbrella-type collectors as affected by these surface distortions. These studies show that if the tension transverse to the ribs is increased relative to the meridional tensions, the distortion is reduced and higher efficiencies can be attained, and if the transverse tension is small, the number of ribs in the collector must be increased for higher efficiencies.

  6. Status of the NASA-Lewis flat-plate collector tests with a solar simulator

    Science.gov (United States)

    Simon, F. F.

    1974-01-01

    Simulator test results of 15 collector types are reported. Collectors are given performance ratings according to their use for pool heating, hot water, absorption A/C or heating and solar Rankine machines. Collectors found to be good performers in the above categories, except for pool heating, were a black nickel coated, 2 glass collector, and a black paint 2 glass collector containing a mylar honeycomb. For pool heating, a black paint, one glass collector was found to be the best performer. Collector performance parameters of 5 collector types were determined to aid in explaining the factors that govern performance. The two factors that had the greatest effect on collector performance were the collector heat loss and the coating absorptivity.

  7. Ozonolysis of surface adsorbed methoxyphenols: kinetics of aromatic ring cleavage vs. alkene side-chain oxidation

    Directory of Open Access Journals (Sweden)

    E. M. O'Neill

    2013-07-01

    Full Text Available Lignin pyrolysis products, which include a variety of substituted methoxyphenols, constitute a major component of organics released by biomass combustion and may play a central role in the formation of atmospheric brown carbon. Understanding the atmospheric fate of these compounds upon exposure to trace gases is therefore critical to predicting the chemical and physical properties of biomass burning aerosol. We used diffuse reflectance infrared spectroscopy to monitor the heterogeneous ozonolysis of 4-propylguaiacol, eugenol, and isoeugenol adsorbed on NaCl and α-Al2O3 substrates. Adsorption of gaseous methoxyphenols onto these substrates produced near monolayer surface concentrations of 3 × 1018 molecules m-2. The subsequent dark heterogeneous ozonolysis of adsorbed 4-propylguaiacol cleaved the aromatic ring between the methoxy and phenol groups with the product conclusively identified by GC-MS and 1H-NMR. Kinetic analysis of eugenol and isoeugenol dark ozonolysis also suggested the formation of ring-cleaved products, although ozonolysis of the unsaturated substituent groups forming carboxylic acids and aldehydes was an order of magnitude faster. Average uptake coefficients for NaCl-adsorbed methoxyphenols were γ = 2.3 (±0.8 × 10-7 and 2 (±1 × 10-6 for ozonolysis of the aromatic ring and the unsaturated side chain, respectively, and reactions on α-Al2O3 were approximately two times slower. UV-visible radiation (λ>300 nm enhanced eugenol ozonolysis of the aromatic ring by a factor of 4(±1 but had no effect on ozonolysis of the alkene side-chain.

  8. Validation of CFD simulation for flat plate solar energy collector

    Energy Technology Data Exchange (ETDEWEB)

    Selmi, Mohamed; Al-Khawaja, Mohammed J.; Marafia, Abdulhamid [Department of Mechanical Engineering, University of Qatar, P.O. Box 2713, Doha, State of Qatar (Qatar)

    2008-03-15

    The problem of flat plate solar energy collector with water flow is simulated and analyzed using computational fluid dynamics (CFD) software. The considered case includes the CFD modeling of solar irradiation and the modes of mixed convection and radiation heat transfer between tube surface, glass cover, side walls, and insulating base of the collector as well as the mixed convective heat transfer in the circulating water inside the tube and conduction between the base and tube material. The collector performance, after obtaining 3-D temperature distribution over the volume of the body of the collector, was studied with and without circulating water flow. An experimental model was built and experiments were performed to validate the CFD model. The outlet temperature of water is compared with experimental results and there is a good agreement. (author)

  9. Investigation of a hybrid PVT air collector system

    Science.gov (United States)

    Haddad, S.; Touafek, K.; Mordjaoui, M.; Khelifa, A.; Tabet, I.

    2017-02-01

    The photovoltaic thermal hybrid (PVT) collectors, which simultaneously produce electricity and heat, are an alternative to photovoltaic modules and thermal collectors installed separately. Indeed, the heat extracted from the solar cell is used to heat water or air, thereby cooling the cell, and thus increasing its energy efficiency. This paper deals with a hybrid PVT air collector in which a new design has been proposed and tested. Its principle is based on the return of the preheating air to a second heating. The air thus passes twice under the solar cells before being evacuated to the outside of the collector (for space heating). The system is modular and expandable to cover large spaces to be heated. The experimental results of this novel design are presented and discussed under both normal and forced circulation. This technique of air return shows favorable results in terms of the quality of the heated air and electric power generation.

  10. Glycol/water evacuated-tube solar collector

    Science.gov (United States)

    1980-01-01

    Report describes performance of 8 tube and 10 tube commercially produced solar collectors. Tests include thermal efficiency, time constant for temperature drop after solar flux is cut, change in efficiency with Sun angle, and temperature rise if circulation is stopped.

  11. Indoor tests of the concentric-tube solar collector

    Science.gov (United States)

    1980-01-01

    Report describes performance tests on 12-tube, liquid-filled collector. Thermal efficiency, change in efficiency with sun position, and time constant for temperature drop after solar flux is cut are described.

  12. Theoretical flow investigations of an all glass evacuated tubular collector

    DEFF Research Database (Denmark)

    Shah, Louise Jivan; Furbo, Simon

    2007-01-01

    the highest efficiency, the optimal inlet flow rate was around 0.4-1 kg/min, the flow structures in the glass tubes were relatively uninfluenced by the inlet flow rate, Generally, the results showed only small variations in the efficiencies. This indicates that the collector design is well working for most......Heat transfer and flow structures inside all glass evacuated tubular collectors for different operating conditions are investigated by means of computational fluid dynamics. The investigations are based on a collector design with horizontal tubes connected to a vertical 14 manifold channel. Three...... different tube lengths varying from 0.59 in to 1.47 in have been modelled with five different inlet mass flow rates varying from 0.05 kg/min to 10 kg/min with a constant inlet temperature of 333 K. Under these operating conditions the results showed that: the collector with the shortest tube length achieved...

  13. Development of high efficiency collector plates. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Santala, T.; Sabol, R.

    1976-02-01

    Composite metal technology was used to manufacture intermetallic compound (IC) absorption surfaces and to combine them integrally with composite metal tube-in-sheet collector plates. Five material systems in which Al was one component metal and Fe, Cr, or Ni and their alloy was the other pair, were evaluated. All intermetallic compounds had high solar absorptance ..cap alpha.. approx. = 0.9. The AlNi was most promising and ..cap alpha.. > or = 0.95 and epsilon approx. = 0.3 were obtained over a broad range of compounding conditions. After eight months exposure in a flat plate collector enclosure the characteristic properties of AlNi surfaces remained virtually unchanged. Only LCS/Cu composite metal tube-in-sheet collector plates could be manufactured successfully. The technical difficulties associated with integrating the intermetallic compound and tube-in-sheet technologies make the manufacturing of composite metal collector plates at the time being economically unfeasible.

  14. The JPL parabolic dish project. [solar collectors technology development

    Science.gov (United States)

    Truscello, V. C.; Williams, A. N.

    1980-01-01

    The parabolic dish solar collector is a highly versatile concentrating collector system that can produce heat for many thermal processes and electricity by coupling the collector to a suitable heat engine. This paper discusses a project for the development of these collector systems and summarizes contracts with industry for developing the dish subsystems which include concentrator, receiver, and heat engine. An early market for dishes is the dispersed small community market which depends heavily on oil to operate diesel or steam turbine plants in order to generate electricity. The present contracts with industry for conducting engineering experiments using the developed dish hardware to demonstrate the technology in these early opportunity markets is also discussed.

  15. Mathematical Modeling of Dual Intake Transparent Transpired Solar Collector

    Directory of Open Access Journals (Sweden)

    Thomas Semenou

    2015-01-01

    Full Text Available Nowadays, in several types of commercial or institutional buildings, a significant rise of transpired solar collectors used to preheat the fresh air of the building can be observed. Nevertheless, when the air mass flow rate is low, the collector efficiency collapses and a large amount of energy remains unused. This paper presents a simple yet effective mathematical model of a transparent transpired solar collector (TTC with dual intake in order to remove stagnation problems in the plenum and ensure a better thermal efficiency and more heat recovery. A thermal model and a pressure loss model were developed. Then, the combined model was validated with experimental data from the Solar Rating and Certification Corporation (SRCC. The results show that the collector efficiency can be up to 70% and even 80% regardless of operating conditions. The temperature gain is able to reach 20°K when the solar irradiation is high.

  16. Outdoor thermal efficiency evaluation of the Ying solar collector

    Science.gov (United States)

    1978-01-01

    The test procedure used and the test results obtained during an evaluation test program to obtain thermal efficiency performance data are presented. The flat plate collector used water/prestone antifreeze solution as the working fluid.

  17. Thermal Performance of an Annealed Pyrolytic Graphite Solar Collector

    Science.gov (United States)

    Jaworske, Donald A.; Hornacek, Jennifer

    2002-01-01

    A solar collector having the combined properties of high solar absorptance, low infrared emittance, and high thermal conductivity is needed for applications where solar energy is to be absorbed and transported for use in minisatellites. Such a solar collector may be used with a low temperature differential heat engine to provide power or with a thermal bus for thermal switching applications. One concept being considered for the solar collector is an Al2O3 cermet coating applied to a thermal conductivity enhanced polished aluminum substrate. The cermet coating provides high solar absorptance and the polished aluminum provides low infrared emittance. Annealed pyrolytic graphite embedded in the aluminum substrate provides enhanced thermal conductivity. The as-measured thermal performance of an annealed pyrolytic graphite thermal conductivity enhanced polished aluminum solar collector, coated with a cermet coating, will be presented.

  18. Weathering of a liquid-filled solar collector

    Science.gov (United States)

    1979-01-01

    Report describes procedures and results of tests for effects of weathering on flat-plate liquid solar collector. Thermal performance was measured before and after natural weathering for 15-1/2 months by using Marshall Space Flight solar simulator.

  19. Optical, Energetic and Exergetic Analyses of Parabolic Trough Collectors

    Institute of Scientific and Technical Information of China (English)

    (O)ZT(U)RK Murat; (C)(I)(C)EK BEZ(I)R Nalan; (O)ZEK Nuri

    2007-01-01

    Parabolic trough collectors generate thermal energy from solar energy. Especially, they are very convenient for applications in high temperature solar power systems. To determine the design parameters, parabolic trough collectors must be analysed with optical analysis. In addition, thermodynamics (energy and exergy) analysis in the development of an energy efficient system must be achieved. Solar radiation passes through Earth's atmosphere until it reaches on Earth's surface and is focused from the parabolic trough collector to the tube receiver with a transparent insulated envelope. All of them constitute a complex mechanism. We investigate the geometry of parabolic trough reflector and characteristics of solar radiation to the reflecting surface through Earth's atmosphere, and calculate the collecting total energy in the receiver. The parabolic trough collector,of which design parameters are given, is analysed in regard to the energy and exergy analysis considering the meteorological specification in May, June, July and August in Isparta/Turkey, and the results are presented.

  20. Low-cost EUV collector development: design, process, and fabrication

    Science.gov (United States)

    Venables, Ranju D.; Goldstein, Michael; Engelhaupt, Darell; Lee, Sang H.; Panning, Eric M.

    2007-03-01

    Cost of ownership (COO) is an area of concern that may limit the adoption and usage of Extreme Ultraviolet Lithography (EUVL). One of the key optical components that contribute to the COO budget is the collector. The collectors being fabricated today are based on existing x-ray optic design and fabrication processes. The main contributors to collector COO are fabrication cost and lifetime. We present experimental data and optical modeling to demonstrate a roadmap for optimized efficiency and a possible approach for significant reduction in collector COO. Current state of the art collectors are based on a Wolter type-1 design and have been adapted from x-ray telescopes. It uses a long format that is suitable for imaging distant light sources such as stars. As applied to industrial equipment and very bright nearby sources, however, a Wolter collector tends to be expensive and requires significant debris shielding and integrated cooling solutions due to the source proximity and length of the collector shells. Three collector concepts are discussed in this work. The elliptical collector that has been used as a test bed to demonstrate alternative cost effective fabrication method has been optimized for collection efficiency. However, this fabrication method can be applied to other optical designs as well. The number of shells and their design may be modified to increase the collection efficiency and to accommodate different EUV sources The fabrication process used in this work starts with a glass mandrel, which is elliptical on the inside. A seed layer is coated on the inside of the glass mandrel, which is then followed by electroplating nickel. The inside/exposed surface of the electroformed nickel is then polished to meet the figure and finish requirements for the particular shell and finally coated with Ru or a multilayer film depending on the angle of incidence of EUV light. Finally the collector shell is released from the inside surface of the mandrel. There are

  1. Application of fractal theory to unsaturated soil mechanics

    Institute of Scientific and Technical Information of China (English)

    XU Yongfu; TONG Lixin

    2007-01-01

    The mechanical properties of unsaturated soils are a function of the saturation degree or matric suction,and can be obtained based on currently available procedures.However,each procedure has its limitations and consequently,care should be taken in the selection of a proper procedure.The fractal approach seems to be a potentially useful tool to describe hierarchical systems and is suitable to model the structure and hydraulic properties of unsaturated soils.In this paper,the soil-water characteristics,unsaturated hydraulic conductivity function,unsaturated shear strength,swelling deformation and compression were derived from the fractal model for the pore-size distribution,and were expressed by only two independent physical parameters,the fractal dimension and the air entry value.The predictions of the proposed soil-water characteristics,unsaturated hydraulic conductivity,unsaturated shear strength,swelling deformation and compression were in good agreement with published experimental data.Comparisons between the experimental results of unsaturated hydraulic conductivity and the predictions of the both fractal model and the van Genuchten-Mualem model were also performed,and it was found that the predictions of the fractal model were better than that of the van Genuchten-Mualem model.

  2. Ideology, governance and consequences from a collector's point of view

    Directory of Open Access Journals (Sweden)

    Wayne G. Sayles

    2013-03-01

    Full Text Available This article is a condensed version of the background paper created for an Ancient Coin Collectors Guild (ACCG presentation at the 2010 CBA, Tyne and Wear Archives and Museums, and Newcastle University conference in Newcastle, England. It presents a view shared by many American collectors and independent scholars. The ACCG, a member of the International Numismatic Council, is a registered non-profit organisation within the United States but enjoys the active support of members worldwide.

  3. Proceedings of the solar thermal concentrating collector technology symposium

    Energy Technology Data Exchange (ETDEWEB)

    Gupta, B.P.; Kreith, F. (eds.)

    1978-08-01

    The purpose of the symposium was to review the current status of the concentrating collector technology, to disseminate the information gained from experience in operating solar systems, and to highlight the significant areas of technology development that must be vigorously pursued to foster early commercialization of concentrating solar collectors. Separate abstracts were prepared for thirteen invited papers and working group summaries. Two papers were previously abstracted for EDB.

  4. Shape Control of Solar Collectors Using Shape Memory Alloy Actuators

    Science.gov (United States)

    Lobitz, D. W.; Grossman, J. W.; Allen, J. J.; Rice, T. M.; Liang, C.; Davidson, F. M.

    1996-01-01

    Solar collectors that are focused on a central receiver are designed with a mechanism for defocusing the collector or disabling it by turning it out of the path of the sun's rays. This is required to avoid damaging the receiver during periods of inoperability. In either of these two cases a fail-safe operation is very desirable where during power outages the collector passively goes to its defocused or deactivated state. This paper is principally concerned with focusing and defocusing the collector in a fail-safe manner using shape memory alloy actuators. Shape memory alloys are well suited to this application in that once calibrated the actuators can be operated in an on/off mode using a minimal amount of electric power. Also, in contrast to other smart materials that were investigated for this application, shape memory alloys are capable of providing enough stroke at the appropriate force levels to focus the collector. Design and analysis details presented, along with comparisons to test data taken from an actual prototype, demonstrate that the collector can be repeatedly focused and defocused within accuracies required by typical solar energy systems. In this paper the design, analysis and testing of a solar collector which is deformed into its desired shape by shape memory alloy actuators is presented. Computations indicate collector shapes much closer to spherical and with smaller focal lengths can be achieved by moving the actuators inward to a radius of approximately 6 inches. This would require actuators with considerably more stroke and some alternate SMA actuators are currently under consideration. Whatever SMA actuator is finally chosen for this application, repeatability and fatigue tests will be required to investigate the long term performance of the actuator.

  5. Characteristics of collector formation during the rift developmental stage

    Energy Technology Data Exchange (ETDEWEB)

    Demidovich, L.A.

    1977-01-01

    An explanation is given for characteristics of the formation of collector properties in terrigenous and carbonate rock of the Devonian in the rift stage of the Pripyat downwarp development. An interconnection was noted between the paleostructural factor, lithogenesis, and the physical parameters of rocks. A forecast is made of collectors and for future oil and gas operations on the basis of an analysis of these data.

  6. Stabilization of coordinatively unsaturated Ir4 clusters with bulky ligands: a comparative study of chemical and mechanical effects.

    Science.gov (United States)

    Okrut, Alexander; Gazit, Oz; de Silva, Namal; Nichiporuk, Rita; Solovyov, Andrew; Katz, Alexander

    2012-02-21

    The synthesis and characterization of new cluster compounds represented by the series Ir(4)(CO)(12-x)L(x) (L = tert-butyl-calix[4]-arene(OPr)(3)(OCH(2)PPh(2)); x = 2 and 3) is reported using ESI mass spectrometry, NMR spectroscopy, IR spectroscopy and single-crystal X-ray diffraction. Thermally driven decarbonylation of the cluster compound series represented by x = 1-3 according to the formula above is followed via FTIR and NMR spectroscopies, and dynamic light scattering in toluene solution. The propensity of these clusters to decarbonylate in solution is shown to be directly correlated with number density of adsorbed calixarene phosphine ligands and controlled via Pauli repulsion between metal d and CO 5σ orbitals. The tendency for cluster aggregation unintuitively follows a trend that is exactly opposite to the cluster's propensity to decarbonylate. No cluster aggregation is observed for clusters consisting of x = 3, even after extensive decarbonylation via loss of all bridging CO ligands and coordinative unsaturation. Some of the CO lost during thermal treatment via decarbonylation can be rebound to the coordinatively unsaturated cluster consisting of x = 3. In contrast, the clusters consisting of x = 1 and x = 2 both aggregate into large nanoparticles when treated under identical conditions. Clusters in which the calixarene phosphine ligand is replaced with a sterically less demanding PPh(2)Me ligand 6 lead to significantly less coordinative unsaturation upon thermal treatment. Altogether, these data support a mechanical model of accessibility in coordinatively unsaturated metal clusters in solution, which hinges on having at least three sterically bulky organic ligands per Ir(4) core.

  7. Inorganic chemically active adsorbents (ICAAs)

    Energy Technology Data Exchange (ETDEWEB)

    Ally, M.R. [Oak Ridge National Lab., TN (United States); Tavlarides, L.

    1997-10-01

    Oak Ridge National Laboratory (ORNL) researchers are developing a technology that combines metal chelation extraction technology and synthesis chemistry. They begin with a ceramic substrate such as alumina, titanium oxide or silica gel because they provide high surface area, high mechanical strength, and radiolytic stability. One preparation method involves silylation to hydrophobize the surface, followed by chemisorption of a suitable chelation agent using vapor deposition. Another route attaches newly designed chelating agents through covalent bonding by the use of coupling agents. These approaches provide stable and selective, inorganic chemically active adsorbents (ICAAs) tailored for removal of metals. The technology has the following advantages over ion exchange: (1) higher mechanical strength, (2) higher resistance to radiation fields, (3) higher selectivity for the desired metal ion, (4) no cation exchange, (5) reduced or no interference from accompanying anions, (6) faster kinetics, and (7) easy and selective regeneration. Target waste streams include metal-containing groundwater/process wastewater at ORNL`s Y-12 Plant (multiple metals), Savannah River Site (SRS), Rocky Flats (multiple metals), and Hanford; aqueous mixed wastes at Idaho National Engineering Laboratory (INEL); and scrubber water generated at SRS and INEL. Focus Areas that will benefit from this research include Mixed Waste, and Subsurface Contaminants.

  8. EFFICIENCY AND LIFETIME OF SOLAR COLLECTORS FOR SOLAR HEATING PLANTS

    DEFF Research Database (Denmark)

    The 12.5 m² flat plate solar collector HT, today marketed by Arcon Solvarme A/S, has been used in solar heating plants in Scandinavia since 1983. The collector is designed to operate in a temperature interval between 40°C and 90°C. The efficiency of the collector has been strongly improved since...... it was introduced on the market. The paper will present the increase of the efficiency of the collector due to technical improvements since 1983. Further, measurements from the spring of 2009 of the efficiency of two HT collectors, which have been in operation in the solar heating plant Ottrupgaard, Skørping......, Denmark since 1994 with a constant high flow rate and in the solar heating plant Marstal, Denmark since 1996 with a variable flow rate, will be presented. The efficiencies will be compared to the efficiencies of the collectors when they were first installed in the solar heating plants. The measurements...

  9. EFFICIENCY AND LIFETIME OF SOLAR COLLECTORS FOR SOLAR HEATING PLANTS

    DEFF Research Database (Denmark)

    Fan, Jianhua; Chen, Ziqian; Furbo, Simon;

    2009-01-01

    The 12.5 m² flat plate solar collector HT, today marketed by Arcon Solvarme A/S, has been used in solar heating plants in Scandinavia since 1983. The collector is designed to operate in a temperature interval between 40°C and 90°C. The efficiency of the collector has been strongly improved since...... it was introduced on the market. The paper will present the increase of the efficiency of the collector due to technical improvements since 1983. Further, measurements from the spring of 2009 of the efficiency of two HT collectors, which have been in operation in the solar heating plant Ottrupgaard, Skørping......, Denmark since 1994 with a constant high flow rate and in the solar heating plant Marstal, Denmark since 1996 with a variable flow rate, will be presented. The efficiencies will be compared to the efficiencies of the collectors when they were first installed in the solar heating plants. The measurements...

  10. Dual curvature acoustically damped concentrating collector. Final technical report

    Energy Technology Data Exchange (ETDEWEB)

    Smith, G.A.; Rausch, R.A.

    1980-05-01

    A development program was conducted to investigate the design and performance parameters of a novel, dual curvature, concentrating solar collector. The reflector of the solar collector is achieved with a stretched-film reflective surface that approximates a hyperbolic paraboloid and is capable of line-focusing at concentration ratios ranging from 10 to 20X. A prototype collector was designed based on analytical and experimental component trade-off activities as well as economic analyses of solar thermal heating and cooling systems incorporating this type of collector. A prototype collector incorporating six 0.66 x 1.22 m (2 x 4 ft) was fabricated and subjected to a limited thermal efficiency test program. A peak efficiency of 36% at 121/sup 0/C (250/sup 0/F) was achieved based upon the gross aperture area. Commercialization activities were conducted, including estimated production costs of $134.44/m/sup 2/ ($12.49/ft/sup 2/) for the collector assembly (including a local suntracker and controls) and $24.33/m/sup 2/ ($2.26/ft/sup 2/) for the reflector subassembly.

  11. Ray-tracing software comparison for linear focusing solar collectors

    Science.gov (United States)

    Osório, Tiago; Horta, Pedro; Larcher, Marco; Pujol-Nadal, Ramón; Hertel, Julian; van Rooyen, De Wet; Heimsath, Anna; Schneider, Simon; Benitez, Daniel; Frein, Antoine; Denarie, Alice

    2016-05-01

    Ray-Tracing software tools have been widely used in the optical design of solar concentrating collectors. In spite of the ability of these tools to assess the geometrical and material aspects impacting the optical performance of concentrators, their use in combination with experimental measurements in the framework of collector testing procedures as not been implemented, to the date, in none of the current solar collector testing standards. In the latest revision of ISO9806 an effort was made to include linear focusing concentrating collectors but some practical and theoretical difficulties emerged. A Ray-Tracing analysis could provide important contributions to overcome these issues, complementing the experimental results obtained through thermal testing and allowing the achievement of more thorough testing outputs with lower experimental requirements. In order to evaluate different available software tools a comparison study was conducted. Taking as representative technologies for line-focus concentrators the Parabolic Trough Collector and the Linear Fresnel Reflector Collector, two exemplary cases with predefined conditions - geometry, sun model and material properties - were simulated with different software tools. This work was carried out within IEA/SHC Task 49 "Solar Heat Integration in Industrial Processes".

  12. Arrangement of Multirow Solar Collector Array on Limited Roof Width

    Institute of Scientific and Technical Information of China (English)

    PU Shaoxuan; XIA Chaofeng

    2010-01-01

    At the limited roof north-south(N-S)width of a building,for the array with multirow collectors based on no shading at winter solstice noon and sloped at latitude,this paper studied the shading and the radiant energy striking on solar collector array.Based on Kunming solar radiation data,the annual and monthly solar radiant energy striking on multi-array collectors was analyzed and estimated,from no shading to partial shading by adding 1-3 collector row,at the slopes of 10°,15°,20°,25°,30°,35° and 40°,respectively.The results showed that properly increasing the row number by reducing the slope of collectors was reasonable in order to get more annual radiant energy.Adding 1 row at 10° of slope was economical for Kunming,based on the 5-row array at 25°.And adding collector row by 20% at 10° of slope could increase the radiant energy striking on the array by 19%.

  13. Standarized performance tests of collectors of solar thermal energy: A steel flat-plate collector with two transparent covers and a proprietary coating

    Science.gov (United States)

    1976-01-01

    Basic test results of a flat-plate solar collector whose performance was determined in the NASA-Lewis solar simulator are given. The collector was tested over ranges of inlet temperature and flux level.

  14. Parabolic Trough Solar Collector Initial Trials

    Directory of Open Access Journals (Sweden)

    Ghalya Pikra

    2012-03-01

    Full Text Available This paper discusses initial trials of parabolic trough solar collector (PTSC in Bandung. PTSC model consists of concentrator, absorber and tracking system. Concentrator designs are made with 2m aperture width, 6m length and 0.75m focal distance. The design is equipped with an automatic tracking system which is driven using 12V and 24Watt DC motor with 0.0125rpm rotational speed. Absorber/receiver is designed with evacuated tube type, with 1 inch core diameter and tube made of AISI304 and coated with black oxide, the outer tube is borosilicate glass with a 70 mm diameter and 1.5 m length. Working fluid stored in single type of thermal storage tank, a single phase with 37.7 liter volume. PTSC model testing carried out for 2 hours and 10 minutes produces heat output and input of 11.5 kW and 0.64 kW respectively. 

  15. Removal of methylene blue from its aqueous solution by froth flotation: hydrophobic silica nanoparticle as a collector

    Science.gov (United States)

    Hu, Nan; Liu, Wei; Ding, Linlin; Wu, Zhaoliang; Yin, Hao; Huang, Di; Li, Hongzhen; Jin, Lixue; Zheng, Huijie

    2017-02-01

    Dye pollution has been a severe problem faced by worldwide environmentalists. The use of nanoparticles as adsorbents has attracted widespread interests for effectively removing dyes, while the separation of them from an aqueous solution is a difficult and important subject. For achieving the simultaneous removal of methylene blue (MB) and nanoadsorbents, this work utilized a commercial hydrophobic silica nanoparticle (SNP) (200.0 ± 10.0 nm in average particle size) as a collector and then developed a novel froth flotation technology without using any surfactants. Under the suitable conditions of anhydrous ethanol dosage of 8 mL, pH of 9.0, SNP concentration of 600 mg/L, and flotation column height of 600 mm, the removal efficiencies of MB and SNPs and the volume ratio reached 91.1 ± 4.6%, 93.9 ± 4.7%, and 10.5 ± 0.5, respectively. Subsequently, the recovered MB-adsorbed SNPs in the foamate were separated by free setting due to their high concentration and massive agglomeration. After free setting, MB could be effectively separated from the recovered MB-adsorbed SNPs by using ethanol at pH 2.0 and repeating five cycles of washing-centrifugation. Additionally, the regenerated SNPs could be reused for removing MB up to five times. Overall, this work had a significant meaning for the treatment of dye-contaminated wastewaters.

  16. Standardized performance tests of collectors of solar thermal energy-a flat-plate collector with a single-tube serpentine flow distribution

    Science.gov (United States)

    Johnson, S.

    1976-01-01

    This preliminary data report gives basic test results of a flat-plate solar collector whose performance was determined in the NASA-Lewis solar simulator. The collector was tested over ranges of inlet temperatures, fluxes and coolant flow rates. Collector efficienty is correlated in terms of inlet temperature and flux level.

  17. Coloured solar collectors. Phase II : from laboratory samples to collector prototypes. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Schueler, A.; Roecker, Ch.; Chambrier, E. de; Munari Probst, M.

    2007-07-01

    This illustrated final report for the Swiss Federal Office of Energy (SFOE) deals with the second phase of a project concerning the architectural integration of glazed solar collectors into the facades of buildings for heat production. The factors that limit the integration of photovoltaic panels in facades are discussed. The authors state that, for a convincing demonstration, sufficiently large samples and high quality levels are needed. The sol-gel deposition of the multi-layered coatings on A4-sized glass panes demonstrated in the laboratory by EPFL-LESO are discussed. The coatings produced exhibit a coloured reflection in combination with a high solar transmittance, a homogenous appearance, and are free of visible defects. Film hardening by UV exposure is discussed: This should result in the speeding up of the sol-gel process and thus save energy, thereby significantly reducing costs. Collaboration with industry is discussed in which full-scale glass panes are to be coated with novel multiple layers. The novel glazing is to be integrated into first prototype collectors. The manufacturing and test processes for the prototypes manufactured are discussed in detail.

  18. Thermal conductivity of unsaturated clay-rocks

    Directory of Open Access Journals (Sweden)

    D. Jougnot

    2010-01-01

    Full Text Available The parameters used to describe the electrical conductivity of a porous material can be used to describe also its thermal conductivity. A new relationship is developed to connect the thermal conductivity of an unsaturated porous material to the thermal conductivity of the different phases of the composite, and two electrical parameters called the first and second Archie's exponents. A good agreement is obtained between the new model and thermal conductivity measurements performed using packs of glass beads and core samples of the Callovo-Oxfordian clay-rocks at different saturations of the water phase. We showed that the three model parameters optimised to fit the new model against experimental data (namely the thermal conductivity of the solid phase and the two Archie's exponents are consistent with independent estimates. We also observed that the anisotropy of the effective thermal conductivity of the Callovo-Oxfordian clay-rock was mainly due to the anisotropy of the thermal conductivity of the solid phase.

  19. Unsaturated fatty acids, desaturases, and human health.

    Science.gov (United States)

    Lee, Hyungjae; Park, Woo Jung

    2014-02-01

    With the increasing concern for health and nutrition, dietary fat has attracted considerable attention. The composition of fatty acids in a diet is important since they are associated with major diseases, such as cancers, diabetes, and cardiovascular disease. The biosynthesis of unsaturated fatty acids (UFA) requires the expression of dietary fat-associated genes, such as SCD, FADS1, FADS2, and FADS3, which encode a variety of desaturases, to catalyze the addition of a double bond in a fatty acid chain. Recent studies using new molecular techniques and genomics, as well as clinical trials have shown that these genes and UFA are closely related to physiological conditions and chronic diseases; it was found that the existence of alternative transcripts of the desaturase genes and desaturase isoforms might affect human health and lipid metabolism in different ways. In this review, we provide an overview of UFA and desaturases associated with human health and nutrition. Moreover, recent findings of UFA, desaturases, and their associated genes in human systems are discussed. Consequently, this review may help elucidate the complicated physiology of UFA in human health and diseases.

  20. Boundary integral methods for unsaturated flow

    Energy Technology Data Exchange (ETDEWEB)

    Martinez, M.J.; McTigue, D.F.

    1990-12-31

    Many large simulations may be required to assess the performance of Yucca Mountain as a possible site for the nations first high level nuclear waste repository. A boundary integral equation method (BIEM) is described for numerical analysis of quasilinear steady unsaturated flow in homogeneous material. The applicability of the exponential model for the dependence of hydraulic conductivity on pressure head is discussed briefly. This constitutive assumption is at the heart of the quasilinear transformation. Materials which display a wide distribution in pore-size are described reasonably well by the exponential. For materials with a narrow range in pore-size, the exponential is suitable over more limited ranges in pressure head. The numerical implementation of the BIEM is used to investigate the infiltration from a strip source to a water table. The net infiltration of moisture into a finite-depth layer is well-described by results for a semi-infinite layer if {alpha}D > 4, where {alpha} is the sorptive number and D is the depth to the water table. the distribution of moisture exhibits a similar dependence on {alpha}D. 11 refs., 4 figs.,

  1. Attenuation of Landfill Leachate In Unsaturated Sandstone

    Science.gov (United States)

    Butler, A. P.; Brook, C.; Godley, A.; Lewin, K.; Young, C. P.

    Landfill leachate emanating from old "dilute and disperse" sites represents a potential (and in many cases actual) threat to the integrity of groundwater. Indeed, this concern has been included in EU legislation (80/86/EEC), where key contaminants (e.g. ammonia, various toxic organic compounds and heavy metals) are explicitly highlighted in terms of their impact on groundwater. In the UK, whilst there are a substantial number of unlined landfills sited on major aquifers, many of these are in locations where there is a substantial unsaturated zone. Thus, there exists the opportunity for the modification and attenuation of contaminants prior to it encountering the water table. An understanding of likely changes in leachate content and concentrations at such sites will enable a more comprehensive assessment of the potential risks and liabilities posed by such sites to be evaluated. The Burntstump landfill, situated 8 km north of Nottingham (UK), is sited on an outcrop of Sherwood sandstone. The fine friable sand has been quarried since the 1960s and the excavated volume used to store municipal waste. Filling at the site commenced in the mid 1970s and originally was unlined. In 1978 the first of what was to become a series of boreholes was installed within an area of roughly 5 m radius over one of the original waste cells. Cores of the waste and underlying sandstone were extracted and analysed for a range of physical and chemical parameters. The most recent set of analyses were obtained in 2000. The series of investigations therefore provide an important record of leachate migration and modification through the unsaturated zone for over twenty years. The progression of the leachate front is clearly delineated by the chloride concentration profile with an average velocity of around 1.6 m.yr-1. Combining this value with an average (and reasonably uniform) measured moisture content of about 7% gives a mean inter-granular specific discharge of 110 mm.yr-1. An interesting

  2. Antineoplastic unsaturated fatty acids from Fijian macroalgae.

    Science.gov (United States)

    Jiang, Ren-Wang; Hay, Mark E; Fairchild, Craig R; Prudhomme, Jacques; Roch, Karine Le; Aalbersberg, William; Kubanek, Julia

    2008-10-01

    Phytochemical analysis of Fijian populations of the green alga Tydemania expeditionis led to the isolation of two unsaturated fatty acids, 3(zeta)-hydroxy-octadeca-4(E),6(Z),15(Z)-trienoic acid (1) and 3(zeta)-hydroxy-hexadeca-4(E),6(Z)-dienoic acid (2), along with the known 3(zeta)-hydroxy-octadeca-4(E),6(Z)-dienoic acid (4). Investigations of the red alga Hydrolithon reinboldii led to identification of a glycolipid, lithonoside (3), and five known compounds, 15-tricosenoic acid, hexacosa-5,9-dienoic methyl ester, beta-sitosterol, 10(S)-hydroxypheophytin A, and 10(R)-hydroxypheophytin A. The structures of 1-3 were elucidated by spectroscopic methods (1D and 2D NMR spectroscopy and ESI-MS). Compounds 1, 2, and 4, containing conjugated double bonds, demonstrated moderate inhibitory activity against a panel of tumor cell lines (including breast, colon, lung, prostate and ovarian cells) with IC(50) values ranging from 1.3 to 14.4 microM. The similar cell selectivity patterns of these three compounds suggest that they might act by a common, but unknown, mechanism of action.

  3. Synthesis and study of novel silicon-based unsaturated polymers

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Jibing [Iowa State Univ., Ames, IA (United States)

    1995-06-19

    Novel unsaturated polymers have been synthesized and studied as precursors to silicon carbide and third order nonlinear optical materials. X ray structures were obtained. Kinetic and mechanistic studies of the unique thermal isomerization of dimethylenedisilacyclobutane to a carbene were conducted.

  4. Nitrosonium (NO+) catalyzed Michael addition of indoles to unsaturated enones

    Institute of Scientific and Technical Information of China (English)

    Guai Li Wu; Long Min Wu

    2008-01-01

    An efficient Michael addition of indoles to unsaturated enones, such as chalcones and β-nitrostyrenes, was achieved in thepresence of a catalytic amount of nitrosoninm tetrafluoroborate in ethyl ether.

  5. A constitutive model for unsaturated cemented soils under cyclic loading

    OpenAIRE

    2008-01-01

    International audience; On the basis of plastic bounding surface model, the damage theory for structured soils and unsaturated soil mechanics, an elastoplastic model for unsaturated loessic soils under cyclic loading has been elaborated. Firstly, the description of bond degradation in a damage framework is given, linking the damage of soil's structure to the accumulated strain. The Barcelona Basic Model (BBM) was considered for the suction effects. The elastoplastic model is then integrated i...

  6. A fully coupled thermo-mechanical model for unsaturated soil

    OpenAIRE

    2007-01-01

    This paper addresses a new, unified thermomechanical constitutive model for unsaturated soils through a coupled study. In the context of elastoplasticity and the critical state theory, the model uses the concepts of multi-mechanism and bounding surface theory. This advanced constitutive approach involves thermo-plasticity of saturated and unsaturated soils. Bishop’s effective stress framework is adopted to represent the stress state in the soil. This stress is linked to the water retention...

  7. Advanced Hybrid Particulate Collector Project Management Plan

    Energy Technology Data Exchange (ETDEWEB)

    Miller, S.J.

    1995-11-01

    As the consumption of energy increases, its impact on ambient air quality has become a significant concern. Recent studies indicate that fine particles from coal combustion cause health problems as well as atmospheric visibility impairment. These problems are further compounded by the concentration of hazardous trace elements such as mercury, cadmium, selenium, and arsenic in fine particles. Therefore, a current need exists to develop superior, but economical, methods to control emissions of fine particles. Since most of the toxic metals present in coal will be in particulate form, a high level of fine- particle collection appears to be the best method of overall air toxics control. However, over 50% of mercury and a portion of selenium emissions are in vapor form and cannot be collected in particulate control devices. Therefore, this project will focus on developing technology not only to provide ultrahigh collection efficiency of particulate air toxic emissions, but also to capture vapor- phase trace metals such as mercury and selenium. Currently, the primary state-of-the-art technologies for particulate control are fabric filters (baghouses) and electrostatic precipitators (ESPs). However, they both have limitations that prevent them from achieving ultrahigh collection of fine particulate matter and vapor-phase trace metals. The objective of this project is to develop a highly reliable advanced hybrid particulate collector (AHPC) that can provide > 99.99 % particulate collection efficiency for all particle sizes between 0.01 and 50 14m, is applicable for use with all U.S. coals, and is cost-0443competitive with existing technologies. Phase I of the project is organized into three tasks: Task I - Project Management, Reporting, and Subcontract Consulting Task 2 - Modeling, Design, and Construction of 200-acfm AHPC Model Task 3 - Experimental Testing and Subcontract Consulting

  8. Sampling efficiency of the Moore egg collector

    Science.gov (United States)

    Worthington, Thomas A.; Brewer, Shannon K.; Grabowski, Timothy B.; Mueller, Julia

    2013-01-01

    Quantitative studies focusing on the collection of semibuoyant fish eggs, which are associated with a pelagic broadcast-spawning reproductive strategy, are often conducted to evaluate reproductive success. Many of the fishes in this reproductive guild have suffered significant reductions in range and abundance. However, the efficiency of the sampling gear used to evaluate reproduction is often unknown and renders interpretation of the data from these studies difficult. Our objective was to assess the efficiency of a modified Moore egg collector (MEC) using field and laboratory trials. Gear efficiency was assessed by releasing a known quantity of gellan beads with a specific gravity similar to that of eggs from representatives of this reproductive guild (e.g., the Arkansas River Shiner Notropis girardi) into an outdoor flume and recording recaptures. We also used field trials to determine how discharge and release location influenced gear efficiency given current methodological approaches. The flume trials indicated that gear efficiency ranged between 0.0% and 9.5% (n = 57) in a simple 1.83-m-wide channel and was positively related to discharge. Efficiency in the field trials was lower, ranging between 0.0% and 3.6%, and was negatively related to bead release distance from the MEC and discharge. The flume trials indicated that the gellan beads were not distributed uniformly across the channel, although aggregation was reduced at higher discharges. This clustering of passively drifting particles should be considered when selecting placement sites for an MEC; further, the use of multiple devices may be warranted in channels with multiple areas of concentrated flow.

  9. Collector optic cleaning by in-situ hydrogen plasma

    Science.gov (United States)

    Elg, Daniel T.; Panici, Gianluca A.; Srivastava, Shailendra N.; Ruzic, D. N.

    2015-03-01

    Extreme ultraviolet (EUV) lithography sources produce EUV photons by means of a hot, dense, highly-ionized Sn plasma. This plasma expels high-energy Sn ions and neutrals, which deposit on the collector optic used to focus the EUV light. This Sn deposition lowers the reflectivity of the collector optic, necessitating downtime for collector cleaning and replacement. A method is being developed to clean the collector with an in-situ hydrogen plasma, which provides hydrogen radicals that etch the Sn by forming gaseous SnH4. This method has the potential to significantly reduce collector-related source downtime. EUV reflectivity restoration and Sn cleaning have been demonstrated on multilayer mirror samples attached to a Sn-coated 300mm-diameter steel dummy collector driven at 300W RF power with 500sccm H2 and a pressure of 260mTorr. Use of the in-situ cleaning method is also being studied at industriallyapplicable high pressure (1.3 Torr). Plasma creation across the dummy collector surface has been demonstrated at 1.3 Torr with 1000sccm H2 flow, and etch rates have been measured. Additionally, etching has been demonstrated at higher flow rates up to 3200sccm. A catalytic probe has been used to measure radical density at various pressures and flows. The results lend further credence to the hypothesis that Sn removal is limited not by radical creation but by the removal of SnH4 from the plasma. Additionally, further progress has been made in an attempt to model the physical processes behind Sn removal.

  10. Evaluation of flat-plate collector efficiency under controlled conditions in a solar simulator

    Science.gov (United States)

    Johnson, S. M.; Simon, F. F.

    1976-01-01

    The measured thermal efficiencies of 35 collectors tested with a solar simulator, along with the correlation equations used to generalize the data, are presented in this report. The single correlation used is shown to apply to all the different types of collectors tested, including one with black paint and one cover, one with a selective surface coating and two covers, and an evacuated-tube collector. The test and correlation technique is also modified by using a shield so that collectors larger than the simulator test area can also be tested. This technique was verified experimentally for a shielded collector for which the collector shielded area was 31% of the solar simulator radiation area. A table lists all the collectors tested, the collector areas, and the experimental constants used to correlate the data for each collector.

  11. The Effect of the Volume Flow rate on the Efficiency of a Solar Collector

    DEFF Research Database (Denmark)

    Fan, Jianhua; Shah, Louise Jivan; Furbo, Simon

    transfer from the absorber to the solar collector fluid and the heat loss from the absorber are considered. Flow and temperature distribution in the collector panel are investigated with buoyancy effect. Measurements are carried out with the solar collector panel. Collector efficiencies are measured...... in the collector. The collector efficiencies are calculated by means of CFD calculations and efficiency expressions are determined based on the results of the calculations. The influence of flow nonuniformity on the efficiencies of the solar collector is elucidated for different volume flow rates and weather......The flow distribution inside a collector panel with an area of 12.5 m² and with 16 parallel connected horizontal fins and the effect of the flow nonuniformity on the risk of boiling and on the collector efficiency have been theoretically and experimentally investigated for different volume flow...

  12. Comparison of Electrical and Thermal Performances of Glazed and Unglazed PVT Collectors

    Directory of Open Access Journals (Sweden)

    Jin-Hee Kim

    2012-01-01

    Full Text Available Photovoltaic-thermal (PVT collectors combine photovoltaic modules and solar thermal collectors, forming a single device that receives solar radiation and produces electricity and heat simultaneously. PVT collectors can produce more energy per unit surface area than side-by-side PV modules and solar thermal collectors. There are two types of liquid-type flat-plate PVT collectors, depending on the existence of glass cover over PV module: glass-covered (glazed PVT collectors, which produce relatively more thermal energy but have lower electrical yield, and uncovered (unglazed PVT collectors, which have relatively lower thermal energy with somewhat higher electrical performance. In this paper, the experimental performance of two types of liquid-type PVT collectors, glazed and unglazed, was analyzed. The electrical and thermal performances of the PVT collectors were measured in outdoor conditions, and the results were compared. The results show that the thermal efficiency of the glazed PVT collector is higher than that of the unglazed PVT collector, but the unglazed collector had higher electrical efficiency than the glazed collector. The overall energy performance of the collectors was compared by combining the values of the average thermal and electrical efficiency.

  13. Lipid domains in bicelles containing unsaturated lipids and cholesterol.

    Science.gov (United States)

    Cho, Hyo Soon; Dominick, Johnna L; Spence, Megan M

    2010-07-22

    We have created a stable bicelle system capable of forming micrometer-scale lipid domains that orient in a magnetic field, suitable for structural biology determination in solid-state NMR. The bicelles consisted of a mixture of cholesterol, saturated lipid (DMPC), and unsaturated lipid (POPC), a mixture commonly used to create domains in model membranes, along with a short chain lipid (DHPC) that allows formation of the bicelle phase. While maintaining a constant molar ratio of long to short chain lipids, q = ([POPC]+[DMPC])/[DHPC] = 3, we varied the concentrations of the unsaturated lipid, POPC, and cholesterol to observe the effects of the components on bicelle stability. Using (31)P solid-state NMR, we observed that unsaturated lipids (POPC) greatly destabilized the alignment of the membranes in the magnetic field, while cholesterol stabilized their alignment. By combining cholesterol and unsaturated lipids in the bicelles, we created membranes aligning uniformly in the magnetic field, despite very high concentrations of unsaturated lipids. These bicelles, with high concentrations of both cholesterol and unsaturated lipid, showed similar phase behavior to bicelles commonly used in structural biology, but aligned over a wider temperature range (291-314 K). Domains were observed by measuring time-dependent diffusion constants reflecting restricted diffusion of the lipids within micrometer-scale regions of the bicelles. Micron-scale domains have never been observed in POPC/DMPC/cholesterol vesicles, implying that bilayers in bicelles show different phase behavior than their counterparts in vesicles, and that bilayers in bicelles favor domain formation.

  14. Chitin Adsorbents for Toxic Metals: A Review

    Directory of Open Access Journals (Sweden)

    Ioannis Anastopoulos

    2017-01-01

    Full Text Available Wastewater treatment is still a critical issue all over the world. Among examined methods for the decontamination of wastewaters, adsorption is a promising, cheap, environmentally friendly and efficient procedure. There are various types of adsorbents that have been used to remove different pollutants such as agricultural waste, compost, nanomaterials, algae, etc., Chitin (poly-β-(1,4-N-acetyl-d-glucosamine is the second most abundant natural biopolymer and it has attracted scientific attention as an inexpensive adsorbent for toxic metals. This review article provides information about the use of chitin as an adsorbent. A list of chitin adsorbents with maximum adsorption capacity and the best isotherm and kinetic fitting models are provided. Moreover, thermodynamic studies, regeneration studies, the mechanism of adsorption and the experimental conditions are also discussed in depth.

  15. IR investigations of surfaces and adsorbates

    CERN Document Server

    Gwyn, W

    2001-01-01

    Synchrotron infrared reflection-absorption measurements on single crystal metal surfaces with adsorbates have led to the determination of many key parameters related to the bonding vibrational modes and the dynamics of adsorbates. In particular, energy couplings between electrons and adsorbate motion have been shown to be a dominant mechanism on metal surfaces. Excellent agreement has been obtained with calculations for many of the observations, and the synergy between theory and experiment has led to a deeper understanding of the roles of electrons and phonons in determining the properties of interfaces and their roles in phenomena as diverse as friction, lubrication, catalysis and adhesion. Nonetheless, as the experiments are pushed harder, to describe such effects as co-adsorbed systems, disagreements continue to challenge the theory and our comprehension also is still evolving.

  16. Behavior of macromolecules in adsorbed layers

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    A model for describing the behavior of macromolecules in adsorbed layers is developed by introducing a concept of distribution density of layer thickness U based on stochastic process and probabilistic statistics. The molecular behavior of layers adsorbed on clay particle surfaces is discussed; the random distribution and its statistics of the layer thickness are given by incorporating experimental results with an ionic polyelectrolyte with the molecular weight of 1.08×106 and chain charged density of 0.254.

  17. Mesoporous Silica: A Suitable Adsorbent for Amines

    Directory of Open Access Journals (Sweden)

    Abdollahzadeh-Ghom Sara

    2009-01-01

    Full Text Available Abstract Mesoporous silica with KIT-6 structure was investigated as a preconcentrating material in chromatographic systems for ammonia and trimethylamine. Its adsorption capacity was compared to that of existing commercial materials, showing its increased adsorption power. In addition, KIT-6 mesoporous silica efficiently adsorbs both gases, while none of the employed commercial adsorbents did. This means that KIT-6 Mesoporous silica may be a good choice for integrated chromatography/gas sensing micro-devices.

  18. ADSORBENTS USED IN THE CLEARANCE OF ENDOTOXIN

    Institute of Scientific and Technical Information of China (English)

    YU Mei; LIU Tao; Hou Guanghui; YUAN Zhi

    2003-01-01

    A series of modified poly (methyl methacrylate, PMMA) resins were prepared and compared their adsorption abilities to endotoxin. The results showed that adsorbents, which were grafted with tertiary amine and long spacing arms, had the best adsorption capacities and good blood compatibility, It is hopeful to be used as adsorbent in hemoperfusion for clinical clearance of endotoxin. The influence of original concentration of endotoxin on adsorption and the adsorption mechanism were also investigated.

  19. Hydrophobic Porous Material Adsorbs Small Organic Molecules

    Science.gov (United States)

    Sharma, Pramod K.; Hickey, Gregory S.

    1994-01-01

    Composite molecular-sieve material has pore structure designed specifically for preferential adsorption of organic molecules for sizes ranging from 3 to 6 angstrom. Design based on principle that contaminant molecules become strongly bound to surface of adsorbent when size of contaminant molecules is nearly same as that of pores in adsorbent. Material used to remove small organic contaminant molecules from vacuum systems or from enclosed gaseous environments like closed-loop life-support systems.

  20. The Dynamics and Structures of Adsorbed Surfaces

    DEFF Research Database (Denmark)

    Nielsen, M; Ellenson, W. D.; McTague, J. P.

    1978-01-01

    of molecules such as NH3 or the internal modes of adsorbed molecules such as C4H10. Neutron scattering measurements where substrates other than graphite products are used as the adsorbents will not be reviewed here. However, the power of the technique will be demonstrated in an example of H2 physisorbed...... to activated alumina and in an example where hydrogen is chemisorbed to Raney nickel...

  1. Research and Development of a Low Cost Solar Collector

    Energy Technology Data Exchange (ETDEWEB)

    Ansari, Asif; Philip, Lee; Thouppuarachchi, Chirath

    2012-08-01

    This is a Final Technical Report on the Research and Development completed towards the development of a Low Cost Solar Collector conducted under the DOE cost-sharing award EE-0003591. The objective of this project was to develop a new class of solar concentrators with geometries and manufacturability that could significantly reduce the fully installed cost of the solar collector field for concentrated solar thermal power plants. The goal of the project was to achieve an aggressive cost target of $170/m2, a reduction of up to 50% in the total installed cost of a solar collector field as measured against the current industry benchmark of a conventional parabolic trough. The project plan, and the detailed activities conducted under the scope of the DOE Award project addressed all major drivers that affect solar collector costs. In addition to costs, the study also focused on evaluating technical performance of new collector architectures and compared them to the performance of the industry benchmark parabolic trough. The most notable accomplishment of this DOE award was the delivery of a full-scale integrated design, manufacturing and field installation solution for a new class of solar collector architecture which has been classified as the Bi-Planar Fresnel Collector (BPFC) and may be considered as a viable alternative to the conventional parabolic trough, as well as the conventional Fresnel collectors. This was in part accomplished through the design and development, all the way through fabrication and test validation of a new class of Linear Planar Fresnel Collector architecture. This architecture offers a number of key differentiating features which include a planar light-weight frame geometry with small mass-manufacturable elements utilizing flat mirror sections. The designs shows significant promise in reducing the material costs, fabrication costs, shipping costs, and on-site field installation costs compared to the benchmark parabolic trough, as well as the

  2. Atmospheric Ionic Deposition in Tropical Sites of Central Sulawesi Determined by Ion Exchange Resin Collectors and Bulk Water Collector.

    Science.gov (United States)

    Köhler, S; Jungkunst, H F; Gutzler, C; Herrera, R; Gerold, G

    2012-09-01

    In the light of global change, the necessity to monitor atmospheric depositions that have relevant effects on ecosystems is ever increasing particularly for tropical sites. For this study, atmospheric ionic depositions were measured on tropical Central Sulawesi at remote sites with both a conventional bulk water collector system (BWS collector) and with a passive ion exchange resin collector system (IER collector). The principle of IER collector to fix all ionic depositions, i.e. anions and cations, has certain advantages referring to (1) post-deposition transformation processes, (2) low ionic concentrations and (3) low rainfall and associated particulate inputs, e.g. dust or sand. The ionic concentrations to be measured for BWS collectors may easily fall below detection limits under low deposition conditions which are common for tropical sites of low land use intensity. Additionally, BWS collections are not as independent from the amount of rain fallen as are IER collections. For this study, the significant differences between both collectors found for nearly all measured elements were partly correlated to the rainfall pattern, i.e. for calcium, magnesium, potassium and sodium. However, the significant differences were, in most cases, not highly relevant. More relevant differences between the systems were found for aluminium and nitrate (434-484 %). Almost five times higher values for nitrate clarified the advantage of the IER system particularly for low deposition rate which is one particularity of atmospheric ionic deposition in tropical sites of extensive land use. The monthly resolution of the IER data offers new insights into the temporal distribution of annual ionic depositions. Here, it did not follow the tropical rain pattern of a drier season within generally wet conditions.

  3. A new collector used for flotation of oxide minerals

    Institute of Scientific and Technical Information of China (English)

    LIU Wen-gang; WEI De-zhou; WANG Ben-ying; FANG Ping; WANG Xiao-hui; CUI Bao-yu

    2009-01-01

    A surfactant containing a mixed aliphatic structure, with a hydrocarbon chain and a diamine group, has proven to be collector for the flotation of quartz, calamine and calcite. And research about its collecting capability was carried out in laboratory. The test results show that the flotation recovery ascends sharply with increasing the concentration of collector. When the concentration of collector reaches 1.83×10~(-4)mol/L, the flotation recoveries of quartz, calamine and calcite get their maximum of 97.64%, 91.04% and 95.99%, respectively. The flotation recoveries of quartz, calamine and calcite rise sharply with the rise of pH. And in a wide range of pH, their flotation recoveries all exceed 90%. And in the whole flotation experiment, the flotation recovery of hematite rises with the increase of collector concentration and pH, while the maximal recovery is not more than 55%. Compared with dodecylamine, the N-dodecylethylenediamine has strong capability to quartz and calamine, while the flotation recoveries of calcite are closely. Hydrogen binding adsorption and electrostatic adsorption occur between the collector and the surface of quartz.

  4. Evaluation of initial collector field performance at the Langley Solar Building Test Facility

    Science.gov (United States)

    Boyle, R. J.; Knoll, R. H.; Jensen, R. N.

    1977-01-01

    The thermal performance of the solar collector field for the NASA Langley Solar Building Test Facility is given for October 1976 through January 1977. An 1180 square meter solar collector field with seven collector designs helped to provide hot water for the building heating system and absorption air conditioner. The collectors were arranged in 12 rows with nominally 51 collectors per row. Heat transfer rates for each row are calculated and recorded along with sensor, insolation, and weather data every 5 minutes using a mini-computer. The agreement between the experimental and predicted collector efficiencies was generally within five percentage points.

  5. MERCURY CONTROL WITH ADVANCED HYBRID PARTICULATE COLLECTOR

    Energy Technology Data Exchange (ETDEWEB)

    Ye Zhuang; Stanley J. Miller

    2005-05-01

    This project was awarded under U.S. Department of Energy (DOE) National Energy Technology Laboratory (NETL) Program Solicitation DE-PS26-00NT40769 and specifically addressed Technical Topical Area 4-Testing Novel and Less Mature Control Technologies on Actual Flue Gas at the Pilot Scale. The project team included the Energy & Environmental Research Center (EERC) as the main contractor; W.L. Gore & Associates, Inc., as a technical and financial partner; and the Big Stone Power Plant operated by Otter Tail Power Company, host for the field-testing portion of the research. Since 1995, DOE has supported development of a new concept in particulate control called the advanced hybrid particulate collector (AHPC). The AHPC has been licensed to W.L. Gore & Associates, Inc., and has been marketed as the Advanced Hybrid{trademark} filter by Gore. The Advanced Hybrid{trademark} filter combines the best features of electrostatic precipitators (ESPs) and baghouses in a unique configuration, providing major synergism between the two collection methods, both in the particulate collection step and in the transfer of dust to the hopper. The Advanced Hybrid{trademark} filter provides ultrahigh collection efficiency, overcoming the problem of excessive fine-particle emissions with conventional ESPs, and it solves the problem of reentrainment and re-collection of dust in conventional baghouses. The Advanced Hybrid{trademark} filter also appears to have unique advantages for mercury control over baghouses or ESPs as an excellent gas--solid contactor. The objective of the project was to demonstrate 90% total mercury control in the Advanced Hybrid{trademark} filter at a lower cost than current mercury control estimates. The approach included bench-scale batch tests, larger-scale pilot testing with real flue gas on a coal-fired combustion system, and field demonstration at the 2.5-MW (9000-acfm) scale at a utility power plant to prove scale-up and demonstrate longer-term mercury control

  6. Experimental study on solar-powered adsorption refrigeration cycle with activated alumina and activated carbon as adsorbent

    Directory of Open Access Journals (Sweden)

    Himsar Ambarita

    2016-03-01

    Full Text Available Typical adsorbent applied in solar-powered adsorption refrigeration cycle is activated carbon. It is known that activated alumina shows a higher adsorption capacity when it is tested in the laboratory using a constant radiation heat flux. In this study, solar-powered adsorption refrigeration cycle with generator filled by different adsorbents has been tested by exposing to solar radiation in Medan city of Indonesia. The generator is heated using a flat-plate type solar collector with a dimension of 0.5 m×0.5 m. Four cases experiments of solar-powered adsorption cycle were carried out, they are with generator filled by 100% activated alumina (named as 100AA, by a mixed of 75% activated alumina and 25% activated carbon (75AA, by a mixed of 25% activated alumina and 75% activated carbon (25AA, and filled by 100% activated carbon. Each case was tested for three days. The temperature and pressure history and the performance have been presented and analyzed. The results show that the average COP of 100AA, 75AA, 25AA, and 100AC is 0.054, 0.056, 0.06, and 0.074, respectively. The main conclusion can be drawn is that for Indonesian condition and flat-plate type solar collector the pair of activated carbon and methanol is the better than activated alumina.

  7. Unsaturated zone investigation at the radioactive waste storage facility site

    Energy Technology Data Exchange (ETDEWEB)

    Skuratovic, Zana; Mazeika, Jonas; Petrosius, Rimantas; Jakimaviciute-Maseliene, Vaidote [Nature Research Centre, Akademijos St. 2, LT-08412, Vilnius (Lithuania); Klizas, Petras; Mokrik, Robert [Vilnius University, M.K. Ciurlionio St. 21/27, LT-03101 Vilnius (Lithuania)

    2014-07-01

    Unsaturated zone is an important part of water circulation cycle and an integral part of many hydrological and hydrogeological factors and processes. The soils of unsaturated zone are regarded as the first natural barrier to a large extent able to limit the spread of contaminants. Nuclear waste disposal site (Maisiagala radioactive waste storage facility site) was analysed in terms of the moisture movement through the unsaturated zone. Extensive data sets of the hydraulic properties, water content and isotope composition have been collected and summarized. The main experimental and observational tasks included the collection of soil samples; determination of the physical properties and the hydraulic conductivity values of soil samples, moisture extraction from the soil sample for isotopic studies; observation of the groundwater dynamics at the Maisiagala piezometer; groundwater sampling for isotopic analysis ({sup 3}H, {sup 18}O/{sup 16}O, {sup 2}H/{sup 1}H ); and monthly precipitation isotopic analysis. Distribution features of globally widespread radionuclide tritium ({sup 3}H) and the water molecule tracer isotopes in precipitation, unsaturated zone soil moisture profiles and groundwater were determined. It was used the well-known unsaturated flow and transport model of HYDRUS-1D (Simunek et al., 2008). In this study, van Genuchten equations for the retention and conductivity estimations have been used. The retention characteristics and van Genuchten model parameters were estimated internally by HYDRUS based on the empirical equations involved in the program. Basic inputs of the tritium transport simulation are the tritium input function and meteorological variables (precipitation and potential evapotranspiration). In order to validate the representativeness of the hydraulic parameters, the model has been used to estimate the tritium distribution in the unsaturated zone, which properly represents the dynamics of the unsaturated zone. The uniformity of the daily

  8. Absorber Alignment Measurement Tool for Solar Parabolic Trough Collectors: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Stynes, J. K.; Ihas, B.

    2012-04-01

    As we pursue efforts to lower the capital and installation costs of parabolic trough solar collectors, it is essential to maintain high optical performance. While there are many optical tools available to measure the reflector slope errors of parabolic trough solar collectors, there are few tools to measure the absorber alignment. A new method is presented here to measure the absorber alignment in two dimensions to within 0.5 cm. The absorber alignment is measured using a digital camera and four photogrammetric targets. Physical contact with the receiver absorber or glass is not necessary. The alignment of the absorber is measured along its full length so that sagging of the absorber can be quantified with this technique. The resulting absorber alignment measurement provides critical information required to accurately determine the intercept factor of a collector.

  9. Application of activated charcoal radon collectors in high humidity environments

    Energy Technology Data Exchange (ETDEWEB)

    Iimoto, Takeshi E-mail: iimoto@rcnst.u-tokyo.ac.jp; Tokonami, Shinji; Morishita, Yasuaki; Kosako, Toshiso

    2004-09-01

    Most commercially based activated charcoal radon collectors were designed for use in indoor environments. However, at present, they are often used for research in radon surveys in unique environments, such as in the bathrooms, underground areas, mines, caves and tunnels. In these environments, the relative humidity would be around 100%, and a change in the sensitivity of cpm(Bq m{sup -3}){sup -1}(radon) would occur. For this study, the reduction in the sensitivity of activated charcoal radon collector due to environmental humidity was investigated, and the data correction was discussed. Here, ST-100 (Pico-Rad) was selected as an example of a familiar activated charcoal radon collector. According to our performance test, the humidity of 90% (20 deg. C) resulted in a 15% reduction of the sensitivity for 24 h collection. The ST-100 user should discuss the necessity of data correction by comparing the change of sensitivity with other levels of estimation errors.

  10. Application of activated charcoal radon collectors in high humidity environments.

    Science.gov (United States)

    Iimoto, Takeshi; Tokonami, Shinji; Morishita, Yasuaki; Kosako, Toshiso

    2005-01-01

    Most commercially based activated charcoal radon collectors were designed for use in indoor environments. However, at present, they are often used for research in radon surveys in unique environments, such as in the bathrooms, underground areas, mines, caves and tunnels. In these environments, the relative humidity would be around 100%, and a change in the sensitivity of cpm(Bq m(-3))(-1)(radon) would occur. For this study, the reduction in the sensitivity of activated charcoal radon collector due to environmental humidity was investigated, and the data correction was discussed. Here, ST-100 (Pico-Rad) was selected as an example of a familiar activated charcoal radon collector. According to our performance test, the humidity of 90% (20 degrees C) resulted in a 15% reduction of the sensitivity for 24 h collection. The ST-100 user should discuss the necessity of data correction by comparing the change of sensitivity with other levels of estimation errors.

  11. Influence of Emulsification of Composite Collector on Rutile Flotation

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The emulsifiable conditions of composite collector (FP-2) in industry are systematically researched in the paper. It is found that tpyes of the emulsifiers, emulsification temperature, the mixed proportion of FP-2 to emulsifier are the important parameters affecting emulsification effect and rutile flotation targets. When the proportion of FP-2 to emulsifier (E-4) is 100, by means of emulsification of mechanical stirring, the rutile flotation recovery is 85.6% and the grade is 75.3%, which approach the flotation targets of FP-2 used as collector by ultrasonic emulsification unit. The favorable conditions are set up for FP-2 in industry application. By means of XPS measurement,the chemical interaction of composite collector with rutile is found.

  12. Thermal performance evaluation of the Calmac (liquid) solar collector

    Science.gov (United States)

    Usher, H.

    1978-01-01

    The procedures used and the results obtained during the evaluation test program on the S. N. 1, (liquid) solar collector are presented. The flat plate collector uses water as the working fluid. The absorber plate is aluminum with plastic tubes coated with urethane black. The glazing consists of .040 in fiberglass reinforced polyester. The collector weight is 78.5 pounds with overall external dimensions of approximately 50.3in. x 98.3in. x 3.8in. The following information is given: thermal performance data under simulated conditions, structural behavior under static loading, and the effects of long term exposure to natural weathering. These tests were conducted using the MSFC Solar Simulator.

  13. Quality and efficiency of solar collectors in Sweden

    Science.gov (United States)

    Wennerholm, H.

    Transparent or translucent insulation materials (TIM's) represent a new class of materials with a high potential for increasing the efficiency of solar thermal conversion systems. A large number of materials have been subjected to theoretical and experimental investigation. If materials that suppress heat losses are transparent to solar radiation, vacuum, certain gases, convection barriers, etc., then they can be regarded as TIM's. Exploratory field and laboratory studies of degraded FEP-film convection barriers in flat plate thermal solar collectors are described. The study related to collectors that had been operating in Sweden for periods of one year to ten years. Both physical, functional (thermal) and chemical aspects of degradation were considered. The report identifies the mistakes made so that they need not be repeated by the solar collector manufacturers in the future.

  14. Wind effects in solar fields with various collector designs

    Science.gov (United States)

    Paetzold, Joachim; Cochard, Steve; Fletcher, David F.; Vassallo, Anthony

    2016-05-01

    Parabolic trough power plants are often located in areas that are subjected to high wind speeds, as an open terrain without any obstructions is beneficial for the plant performance. The wind impacts both the structural requirements and the performance of the plant. The aerodynamic loads from the wind impose strong requirements on the support structure of the reflectors, and they also impact the tracking accuracy. On a thermal level the airflow around the glass envelope of the receiver tube cools its outer surface through forced convection, thereby contributing to the heat loss. Based on previous studies at the level of an individual row of collectors, this study analyses the wind effects in a full-scale solar field of different continuous and staggered trough designs. The airflow around several rows of parabolic trough collectors (PTC) is simulated at full scale in steady state simulations in an atmospheric boundary layer flow using the commercial computational fluid dynamics software ANSYSO® CFX 15.0. The effect of the wake of a collector row on the following collectors is analysed, and the aerodynamic loads are compared between the different geometries. The outermost collectors of a solar field experience the highest wind forces, as the rows in the interior of the solar field are protected from high wind speeds. While the aerodynamic forces in the interior of the solar field are almost independent of the collector shape, the deeper troughs (with large rim angles) tested in this study show a lower heat loss due to forced convection on the outer surface of the receiver tube than the shallower ones (with small rim angles) in most of the solar field.

  15. Adsorbent Selection by Functional Group Interaction Screening for Peptide Recovery

    NARCIS (Netherlands)

    Wijntje, Renze; Bosch, Hans; Haan, de Andre B.; Bussman, Paul

    2005-01-01

    In order to selectively adsorb small peptides from complex aqueous feeds, selective adsorbents are required. The goal is to first find adsorbents with capacity for triglycine, as triglycine contains all groups common to small peptides. Selectivity studies will follow. Adsorbent selection was based o

  16. Opensource Software for MLR-Modelling of Solar Collectors

    DEFF Research Database (Denmark)

    Bacher, Peder; Perers, Bengt

    2011-01-01

    A first research version is now in operation of a software package for multiple linear regression (MLR) modeling and analysis of solar collectors according to ideas originating all the way from Walletun et. al. (1986), Perers, (1987 and 1993). The tool has been implemented in the free and open...... source program R http://www.r-project.org/. Applications of the software package includes: visual validation, resampling and conversion of data, collector performance testing analysis according to the European Standard EN 12975 (Fischer et al., 2004), statistical validation of results...

  17. Thermal performance evaluation of the Semco (liquid) solar collector

    Science.gov (United States)

    1979-01-01

    Procedures used and results obtained during the evaluation test program on a flat plate collector which uses water as the working fluid are discussed. The absorber plate is copper tube soldered to copper fin coated with flat black paint. The glazing consists of two plates of Lo-Iron glass; the insulation is polyurethane foam. The collector weight is 242.5 pounds with overall external dimensions of approximately 48.8 in. x 120.8 in. x 4.1 in. The test program was conducted to obtain thermal performance data before and after 34 days of weather exposure test.

  18. Size selective hydrophobic adsorbent for organic molecules

    Science.gov (United States)

    Sharma, Pramod K. (Inventor); Hickey, Gregory S. (Inventor)

    1997-01-01

    The present invention relates to an adsorbent formed by the pyrolysis of a hydrophobic silica with a pore size greater than 5 .ANG., such as SILICALITE.TM., with a molecular sieving polymer precursor such as polyfurfuryl alcohol, polyacrylonitrile, polyvinylidene chloride, phenol-formaldehyde resin, polyvinylidene difluoride and mixtures thereof. Polyfurfuryl alcohol is the most preferred. The adsorbent produced by the pyrolysis has a silicon to carbon mole ratio of between about 10:1 and 1:3, and preferably about 2:1 to 1:2, most preferably 1:1. The pyrolysis is performed as a ramped temperature program between about 100.degree. and 800.degree. C., and preferably between about 100.degree. and 600.degree. C. The present invention also relates to a method for selectively adsorbing organic molecules having a molecular size (mean molecular diameter) of between about 3 and 6 .ANG. comprising contacting a vapor containing the small organic molecules to be adsorbed with the adsorbent composition of the present invention.

  19. Black Molecular Adsorber Coatings for Spaceflight Applications

    Science.gov (United States)

    Abraham, Nithin Susan; Hasegawa, Mark Makoto; Straka, Sharon A.

    2014-01-01

    The molecular adsorber coating is a new technology that was developed to mitigate the risk of on-orbit molecular contamination on spaceflight missions. The application of this coating would be ideal near highly sensitive, interior surfaces and instruments that are negatively impacted by outgassed molecules from materials, such as plastics, adhesives, lubricants, epoxies, and other similar compounds. This current, sprayable paint technology is comprised of inorganic white materials made from highly porous zeolite. In addition to good adhesion performance, thermal stability, and adsorptive capability, the molecular adsorber coating offers favorable thermal control characteristics. However, low reflectivity properties, which are typically offered by black thermal control coatings, are desired for some spaceflight applications. For example, black coatings are used on interior surfaces, in particular, on instrument baffles for optical stray light control. Similarly, they are also used within light paths between optical systems, such as telescopes, to absorb light. Recent efforts have been made to transform the white molecular adsorber coating into a black coating with similar adsorptive properties. This result is achieved by optimizing the current formulation with black pigments, while still maintaining its adsorption capability for outgassing control. Different binder to pigment ratios, coating thicknesses, and spray application techniques were explored to develop a black version of the molecular adsorber coating. During the development process, coating performance and adsorption characteristics were studied. The preliminary work performed on black molecular adsorber coatings thus far is very promising. Continued development and testing is necessary for its use on future contamination sensitive spaceflight missions.

  20. Repository site data report for unsaturated tuff, Yucca Mountain, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    Tien, P.L.; Updegraff, C.D.; Siegel, M.D.; Wahi, K.K.; Guzowski, R.V.

    1985-11-01

    The US Department of Energy is currently considering the thick sequences of unsaturated, fractured tuff at Yucca Mountain, on the southwestern boundary of the Nevada Test Site, as a possible candidate host rock for a nuclear-waste repository. Yucca Mountain is in one of the most arid areas in the United States. The site is within the south-central part of the Great Basin section of the Basin and Range physiographic province and is located near a number of silicic calderas of Tertiary age. Although localized zones of seismic activity are common throughout the province, and faults are present at Yucca Mountain, the site itself is basically aseismic. No data are available on the composition of ground water in the unsaturated zone at Yucca Mountain. It has been suggested that the composition is bounded by the compositions of water from wells USW-H3, UE25p-1, J-13, and snow or rain. There are relatively few data available from Yucca Mountain on the moisture content and saturation, hydraulic conductivity, and characteristic curves of the unsaturated zone. The available literature on thermomechanical properties of tuff does not always distinguish between data from the saturated zone and data from the unsaturated zone. Geochemical, hydrologic, and thermomechanical data available on the unsaturated tuffs of Yucca Mountain are tabulated in this report. Where the data are very sparse, they have been supplemented by data from the saturated zone or from areas other than Yucca Mountain. 316 refs., 58 figs., 37 tabs.

  1. Measurement and modeling of unsaturated hydraulic conductivity: Chapter 21

    Science.gov (United States)

    Perkins, Kim S.; Elango, Lakshmanan

    2011-01-01

    The unsaturated zone plays an extremely important hydrologic role that influences water quality and quantity, ecosystem function and health, the connection between atmospheric and terrestrial processes, nutrient cycling, soil development, and natural hazards such as flooding and landslides. Unsaturated hydraulic conductivity is one of the main properties considered to govern flow; however it is very difficult to measure accurately. Knowledge of the highly nonlinear relationship between unsaturated hydraulic conductivity (K) and volumetric water content () is required for widely-used models of water flow and solute transport processes in the unsaturated zone. Measurement of unsaturated hydraulic conductivity of sediments is costly and time consuming, therefore use of models that estimate this property from more easily measured bulk-physical properties is common. In hydrologic studies, calculations based on property-transfer models informed by hydraulic property databases are often used in lieu of measured data from the site of interest. Reliance on database-informed predicted values with the use of neural networks has become increasingly common. Hydraulic properties predicted using databases may be adequate in some applications, but not others.

  2. Development of 12.5 m² Solar Collector Panel for Solar Heating Plants

    DEFF Research Database (Denmark)

    Vejen, Niels Kristian; Furbo, Simon; Shah, Louise Jivan

    2004-01-01

    Theoretical and experimental investigations have elucidated how different changes in the design of the 12.5 m(2) HT flat-plate solar collector from the Danish company ARCON Solvarme A/S influence the solar collector efficiency and the yearly thermal performance. The collector is designed for medium...... and large solar heating systems. Based on the theoretical findings a prototype of an improved HT solar collector was built and tested side-by-side with the original HT solar collector. The improved HT collector makes use of a changed insulation material, an absorber with improved absorptance and emittance......, and a changed antireflection treated glass cover. Calculations based on the measured efficiencies showed that the yearly thermal performance is increased by 23-37% at operation temperatures between 40degreesC and 80degreesC when using the improved HT collector. The cost of the collector was however only...

  3. Performance evaluation of the solar kinetics T-700 line concentrating solar collector

    Science.gov (United States)

    1981-01-01

    A performance evaluation of the solar kinetics T-700 line concentrating solar collector is reported. Collector descriptions, summary, test conditions, test equipment, test requirements and procedures, and an analysis of the various tests performed are described.

  4. EVALUATION OF EVACUATED TUBULAR SOLAR COLLECTORS FOR LARGE SDHW SYSTEMS AND COMBINED SPACE HEATING SYSTEMS

    DEFF Research Database (Denmark)

    Qin, Lin; Furbo, Simon

    1999-01-01

    . Based on thesemodels, the thermal performance of large solar domestic hot water (DHW) systems and combined domestichot water and space heating systems with the four evacuated tubular collectors was determined. To make acomparison with traditional flat-plate collectors, similar simulations were also...... carried out for systems with atypical flat-plate collector. The results show that the thermal advantage of evacuated tubular collectors variesgreatly from system to system, and increases with the solar fraction. Furthermore, the higher the operationtemperature of the collector in the system is......In the present study, detailed investigations on evacuated tubular solar collectors for large solarheating systems have been carried out. Four types of evacuated tubular solar collectors were used in theinvestigation. Based on laboratory tests, simulation models for the collectors were determined...

  5. Adsorbent catalytic nanoparticles and methods of using the same

    Energy Technology Data Exchange (ETDEWEB)

    Slowing, Igor Ivan; Kandel, Kapil

    2017-01-31

    The present invention provides an adsorbent catalytic nanoparticle including a mesoporous silica nanoparticle having at least one adsorbent functional group bound thereto. The adsorbent catalytic nanoparticle also includes at least one catalytic material. In various embodiments, the present invention provides methods of using and making the adsorbent catalytic nanoparticles. In some examples, the adsorbent catalytic nanoparticles can be used to selectively remove fatty acids from feedstocks for biodiesel, and to hydrotreat the separated fatty acids.

  6. No difference in the incidence of malaria in human-landing mosquito catch collectors and non-collectors in a Senegalese village with endemic malaria.

    Directory of Open Access Journals (Sweden)

    Amélé N Wotodjo

    Full Text Available The human landing catches is the gold standard method used to study the vectors of malaria and to estimate their aggressiveness. However, this method has raised safety concerns due to a possible increased risk of malaria or other mosquito-borne diseases among the mosquito collectors. The aim of this study was to evaluate the incidence of malaria attacks among mosquito collectors and to compare these results with those of non-collectors in a Senegalese village.From July 1990 to December 2011, a longitudinal malaria study involving mosquito collectors and non-collectors was performed in Dielmo village, Senegal. During the study period, 4 drugs were successively used to treat clinical malaria, and long-lasting insecticide-treated nets were offered to all villagers in July 2008. No malaria chemoprophylaxis was given to mosquito collectors. Incidence of uncomplicated clinical malaria and asymptomatic malaria infection were analyzed among these two groups while controlling for confounding factors associated with malaria risk in random effects negative binomial and logistic regression models, respectively.A total of 3,812 person-trimester observations of 199 adults at least 15 years of age were analyzed. Clinical malaria attacks accounted for 6.3% both in collectors and non-collectors, and asymptomatic malaria infections accounted for 21% and 20% in collectors and non-collectors, respectively. A non-significant lower risk of malaria was observed in the collector group in comparison with the non-collector group after adjusting for other risk factors of malaria and endemicity level (Clinical malaria: adjusted incidence rate ratio = 0.89; 95% confidence interval = 0.65-1.22; p= 0.47.Being a mosquito collector in Dielmo was not significantly associated with an increased risk of malaria both under holoendemic, mesoendemic and hypoendemic conditions of malaria epidemiology. This result supports the view that HLC, the most accurate method for evaluating

  7. CFD MODELING OF SOLAR COLLECTOR WITH NANO-FLUID DIRECT ABSORPTION FOR CIVIL APPLICATION

    OpenAIRE

    Simonetti, Marco; Chiavazzo, Eliodoro; Asinari, Pietro

    2013-01-01

    Direct solar absorption has been considered often in the past as a possible configuration of solar thermal collectors for residential and small commercial applications. Of course, a direct absorption could improve the performance of solar collectors by skipping one step of the heat transfer mechanism of standard devices and by modifying the temperature distribution inside the collector. In fact, classical solar thermal collectors have a metal sheet as absorber, designed such that water has th...

  8. Performance Evaluation of a Nanofluid-Based Direct Absorption Solar Collector with Parabolic Trough Concentrator

    OpenAIRE

    Xu, Guoying; Chen, Wei; Deng, Shiming; Zhang, Xiaosong; Zhao, Sainan

    2015-01-01

    Application of solar collectors for hot water supply, space heating, and cooling plays a significant role in reducing building energy consumption. For conventional solar collectors, solar radiation is absorbed by spectral selective coating on the collectors’ tube/plate wall. The poor durability of the coating can lead to an increased manufacturing cost and unreliability for a solar collector operated at a higher temperature. Therefore, a novel nanofluid-based direct absorption solar collector...

  9. The Influence of Different Absorbed Coatings on Thermal Effect of Prefabricated Solar Collector Panels

    OpenAIRE

    Wang Qi; Yang Liquan; Yu Miao; Li Song

    2016-01-01

    Prefabricated solar collector panels is a kind of new permeability structure of collector panels. For this test, we adopt a certain proportion of copper oxide, magnesium oxide and iron oxide to enamel paint as absorbed panel coating and make two kinds of collector panels for different forms of color by dark green coating and black coating. By the methods of comparison, the two kinds of panel collector efficiency and heat loss coefficient UL were tested. The results showed that there was a sli...

  10. An analytical comparison of the efficiency of solar thermal collector arrays with and without external manifolds

    Science.gov (United States)

    1981-01-01

    An analytical comparison of the efficiency of solar thermal collector arrays with and without external manifolds is reported. A FORTRAN computer program was written for the computation of the thermal performance of solar thermal collector arrays with and without external manifolds. Arrays constructed from two example solar thermal collectors are computated. Typical external manifold sizes and thermal insulations are presented graphically and are compared with the thermal performance of the collector alone.

  11. Theoretical analysis of solar thermal collector and flat plate bottom reflector with a gap between them

    OpenAIRE

    Hiroshi Tanaka

    2015-01-01

    Augmentation of solar radiation absorbed on a flat plate solar thermal collector by a flat plate bottom reflector was numerically determined when there was a gap between the collector and reflector. The inclination of both the collector and reflector was assumed to be adjustable according to the season. A mirror-symmetric plane of the collector to the reflector was introduced, and a graphical model was proposed to calculate the amount of solar radiation reflected by the reflector and then abs...

  12. Development of a Polymer-carbon Nanotubes based Economic Solar Collector

    OpenAIRE

    Kim, S. I.; Kissick, John; Spence, Stephen; Boyle, Christine

    2014-01-01

    A low cost solar collector was developed by using polymeric components as opposed to metal and glass components of traditional solar collectors. In order to utilize polymers for the absorber of the solar collector, Carbon Nanotubes (CNT) has been added as a filler to improve the thermal conductivity and the solar absorptivity of polymers. The solar collector was designed as a multi-layer construction with considering the economic manufacturing. Through the mathematical heat transfer analysis,...

  13. The cone penetration test in unsaturated silty sands

    Directory of Open Access Journals (Sweden)

    Yang Hongwei

    2016-01-01

    Full Text Available Very little is known about how to interpret the cone penetration test (CPT when performed in unsaturated soils. The few published studies on the CPT in unsaturated soils have focused on either clean sands or a silt. In this study new results of laboratory-controlled CPTs in an unsaturated silty sand are presented. The silty sand exhibits hydraulic hysteresis and suction hardening. Suction is observed to have a pronounced affect on measured cone penetration resistance. For an isotropic net confining stress of 60 kPa it is observed that higher suctions give rise to cone penetration resistances that are 50% larger than those for lower suctions. A semi-theoretical correlation is presented that links measured cone penetration resistances to initial relative density and mean effective stress. For this silty sand it is shown that failing to account for suction may result in significant overestimations and unsafe predictions of soil properties from measured cone penetration resistances.

  14. Second European Conference on Unsaturated Soils, E-UNSAT 2012

    CERN Document Server

    Jommi, Cristina; D’Onza, Francesca; Unsaturated Soils: Research and Applications

    2012-01-01

    These volumes contain the contributions to the Second European Conference on Unsaturated Soils, E-UNSAT 2012, held in Napoli, Italy, in June 2012. The event is the second of a series of European conferences, and follows the first successful one, organised in Durham, UK, in 2008. The conference series is supported by Technical Committee 106 of the International Society of Soil Mechanics and Geotechnical Engineering on Unsaturated Soils. The published contributions were selected after a careful peer-review process. A collection of more than one hundred papers is included, addressing the three thematic areas experimental, including advances in testing techniques and soil behaviour, modelling, covering theoretical and constitutive issues together with numerical and physical modelling, and engineering, focusing on approaches, case histories and geo-environmental themes. The areas of application of the papers embrace most of the geotechnical problems related to unsaturated soils. Increasing interest in geo-environm...

  15. A constitutive model for unsaturated cemented soils under cyclic loading

    CERN Document Server

    Yang, C; Pereira, Jean-Michel; Huang, M S

    2008-01-01

    On the basis of plastic bounding surface model, the damage theory for structured soils and unsaturated soil mechanics, an elastoplastic model for unsaturated loessic soils under cyclic loading has been elaborated. Firstly, the description of bond degradation in a damage framework is given, linking the damage of soil's structure to the accumulated strain. The Barcelona Basic Model (BBM) was considered for the suction effects. The elastoplastic model is then integrated into a bounding surface plasticity framework in order to model strain accumulation along cyclic loading, even under small stress levels. The validation of the proposed model is conducted by comparing its predictions with the experimental results from multi-level cyclic triaxial tests performed on a natural loess sampled beside the Northern French railway for high speed train and about 140 km far from Paris. The comparisons show the capabilities of the model to describe the behaviour of unsaturated cemented soils under cyclic loading.

  16. Revisiting the thermodynamics of hardening plasticity for unsaturated soils

    CERN Document Server

    Coussy, Olivier; Vaunat, Jean; 10.1016/j.compgeo.2009.09.003

    2010-01-01

    A thermodynamically consistent extension of the constitutive equations of saturated soils to unsaturated conditions is often worked out through the use a unique 'effective' interstitial pressure, accounting equivalently for the pressures of the saturating fluids acting separately on the internal solid walls of the pore network. The natural candidate for this effective interstitial pressure is the space averaged interstitial pressure. In contrast experimental observations have revealed that, at least, a pair of stress state variables was needed for a suitable framework to describe stress-strain-strength behaviour of unsaturated soils. The thermodynamics analysis presented here shows that the most general approach to the behaviour of unsaturated soils actually requires three stress state variables: the suction, which is required to describe the invasion of the soil by the liquid water phase through the retention curve; two effective stresses, which are required to describe the soil deformation at water saturati...

  17. Modelling plasticity of unsaturated soils in a thermodynamically consistent framework

    CERN Document Server

    Coussy, O

    2010-01-01

    Constitutive equations of unsaturated soils are often derived in a thermodynamically consistent framework through the use a unique 'effective' interstitial pressure. This later is naturally chosen as the space averaged interstitial pressure. However, experimental observations have revealed that two stress state variables were needed to describe the stress-strain-strength behaviour of unsaturated soils. The thermodynamics analysis presented here shows that the most general approach to the behaviour of unsaturated soils actually requires three stress state variables: the suction, which is required to describe the retention properties of the soil and two effective stresses, which are required to describe the soil deformation at water saturation held constant. Actually, it is shown that a simple assumption related to internal deformation leads to the need of a unique effective stress to formulate the stress-strain constitutive equation describing the soil deformation. An elastoplastic framework is then presented ...

  18. Energy and exergy analysis of PV/T air collectors connected in series

    NARCIS (Netherlands)

    Dubey, Swapnil; Solanki, S.C.; Tiwari, Arvind

    2009-01-01

    In this paper an attempt has been made to derive the analytical expressions for N hybrid photovoltaic/thermal (PV/T) air collectors connected in series. The performance of collectors is evaluated by considering the two different cases, namely, Case I (air collector is fully covered by PV module (gla

  19. Theoretical analysis of solar thermal collector and flat plate bottom reflector with a gap between them

    Directory of Open Access Journals (Sweden)

    Hiroshi Tanaka

    2015-11-01

    Full Text Available Augmentation of solar radiation absorbed on a flat plate solar thermal collector by a flat plate bottom reflector was numerically determined when there was a gap between the collector and reflector. The inclination of both the collector and reflector was assumed to be adjustable according to the season. A mirror-symmetric plane of the collector to the reflector was introduced, and a graphical model was proposed to calculate the amount of solar radiation reflected by the reflector and then absorbed on the collector. The performance was analyzed for three typical days at a latitude of 30°N. Solar radiation absorbed on the collector can be increased by the bottom reflector even if there is a gap between the collector and reflector. The optimum inclinations of both the collector and reflector are almost the same while the gap length is less than the lengths of the collector and reflector. However, the range of inclination of the reflector that can increase the solar radiation absorbed on the collector decreases with an increase in gap length, and the solar radiation absorbed on the collector rapidly decreased with an increase in the gap length when the reflector and/or collector were not set at a proper angle.

  20. On the Adsorption of Some Anionic Collectors on Fluoride Minerals

    DEFF Research Database (Denmark)

    Sørensen, Emil

    1973-01-01

    Test flotations have been carried out in a small apparatus under standardized conditions in order to determine the dependence of the flotation yield on the reagent concentration for certain minerals and anionic collectors. The results suggest that a special adsorption mechanism is operating...

  1. Evacuated-tube solar collector--performance evaluation

    Science.gov (United States)

    1980-01-01

    Report gives thermal performance test procedures and results for commercially produced, water-filled, 8-tube collectors. Tests include efficiency, time constant for temperature drop after solar flux is cut, change in efficiency as function of sun angle, and test to see if tubes break when filled with hot water.

  2. Low cost vee-trough evacuated tube collector module

    Science.gov (United States)

    Selcuk, M. K.

    1979-01-01

    A low cost solar collector capable of operating at 150-200 C is described. An evacuated tube receiver is combined with asymmetric vee-trough concentrators. Peak efficiencies of about 40% at 120 C and 30% at 180 C are expected. Predicted future collector cost is $70/sq m which yields an energy cost of $4.20/GJ at 120 C. During the development of the vee trough/evacuated tube collector both mathematical models to predict thermal and optical performance were developed and tests run to verify theory. The asymmetric vee trough concentrator increases the solar flux intensity for an average value of 2 for year-round performance. Optimized collector module has reflector angles of 55 deg/85 deg. The aperture plane is tilted to the latitude. The reflector is made of electropolished aluminum. The supporting frame is formed by bending sheet metal. Evacuated tube receivers are Pyrex, 15 cm diam and 2.4 m long. The module has 12 tubes on right and left sides altogether. Attainable operation at temperatures on the order of 150-200 C are suitable for absorption refrigeration and power generation via Rankine engines.

  3. Geometry optimization of Fresnel-collectors with economic assessment

    Energy Technology Data Exchange (ETDEWEB)

    Mertins, M.; Heinzel, V. [Karlsruhe Univ. (Germany); Lerchenmueller, H. [Fraunhofer Inst. for Solar Energy Systems ISE, Freiburg (Germany); Haeberle, A. [PSE GmbH, Solar Info Center, Freiburg (Germany)

    2004-07-01

    The Fresnel solar collector is a promising concept to reduce the electricity cost price in solar thermal power plants. The optical performance of a Fresnel collector depends on material properties, on its geometric layout and on the level of optical accuracy that can be obtained. A variety of geometric parameters, e.g. the height of the absorber, the number, size and distance of primary mirrors in.uence the shading and blocking of rays and the amount of rays missing the absorber. To evaluate the in.uence of the parameter variation regarding the electricity cost price and to yield an optimization, the optical performance is assessed with an annual simulation based on hourly weather-data. To permit a consideration of changes in collector cost according to different geometric layouts, cost factors where allocated to geometric parameters. The paper presents the method and the simulation results of the optimization under different boundary conditions and shows how the developed simulation tool can lead to an optimum collector design with respect to cost price of electricity. The sensitivity of the results will be discussed. (orig.)

  4. Certification and verification for calmac flat plate solar collector

    Energy Technology Data Exchange (ETDEWEB)

    1978-01-27

    This document contains information used in the certification and verification of the Calmac Flat Plate Collector. Contained are such items as test procedures and results, information on materials used, Installation, Operation, and Maintenance Manuals, and other information pertaining to the verification and certification.

  5. Development of nonmetallic solar collector and solar-powered pump

    Science.gov (United States)

    Parker, J. C.

    1979-01-01

    Design and building of two unique components for solar heating (1. flatplate solar collector using no metal components, and 2. solar powered pump for heating and cooling systems are outlined in report. Report also discusses hardware, deliverable end items, problems encountered during fabrication and testing, and performance certification.

  6. NUMERICAL STUDY ON MIXED CONVECTIVE FLOW IN A SOLAR COLLECTOR

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    In a solar energy heat collector forced convection and free convection will occur concurrently. In this paper, the mixed convective flow was investigated. The dimensionless equation was derived and the results was verified by experiments. The numerical solution shows that error is less than 5% if the effect of free convection is ignored.

  7. Genesis Solar Wind Collector Cleaning Assessment: 60366 Sample Case Study

    Science.gov (United States)

    Goreva, Y. S.; Gonzalez, C. P.; Kuhlman, K. R.; Burnett, D. S.; Woolum, D.; Jurewicz, A. J.; Allton, J. H.; Rodriguez, M. C.; Burkett, P. J.

    2014-01-01

    In order to recognize, localize, characterize and remove particle and thin film surface contamination, a small subset of Genesis mission collector fragments are being subjected to extensive study via various techniques [1-5]. Here we present preliminary results for sample 60336, a Czochralski silicon (Si-CZ) based wafer from the bulk array (B/C).

  8. Carbon nanotube-based supercapacitors using low cost collectors

    Science.gov (United States)

    Amirhoseiny, Maryam; Zandi, Majid; Mosayyebi, Abolghasem; Khademian, Mehrzad

    2016-01-01

    In this work, electrochemical double layer supercapacitors were fabricated using multiwalled carbon nanotube (MWCNT) composite microfilm as electrode. To improve the electrochemical properties, MWCNTs were functionalized with -COOH by acid treatments. CNT/PVA films have been deposited on different current collectors by spin coating to drastically enhance the electrode performance. Electrode fabrication involved various stages preparing of the CNT composite, and coating of the CNT/PVA paste on different substrates which also served as current collector. Al, Ni and graphite were used and compared as current collectors. The surface morphology of the fabricated electrodes was investigated with scanning electrode microscopy (SEM). Overall cell performance was evaluated with a multi-channel potentiostat/galvanostat analyzer. Each supercapacitor cell was subjected to charge-discharge cycling study at different current rates from 0.2Ag-1 to 1Ag-1. The results showed that graphite-based electrodes offer advantages of significantly higher conductivity and superior capacitive behavior compared to thin film electrodes formed on Ni and Al current collectors. The specific capacitance of graphite based electrode is found to be 29Fg-1.

  9. Solar-collector manufacturing activity, July through December, 1981

    Energy Technology Data Exchange (ETDEWEB)

    None

    1982-03-01

    Solar thermal collector and solar cell manufacturing activity is both summarized and tabulated. Data are compared for three survey periods (July through December, 1981; January through June, 1981; and July through December, 1980). Annual totals are also provided for the years 1979 through 1981. Data include total producer shipments, end use, market sector, imports and exports. (LEW)

  10. Silicon crystal as a low work function collector

    Science.gov (United States)

    Chang, K. H.; Shimada, K.

    1975-01-01

    A test vehicle with a low work function collector which can be incorporated in a thermionic converter was constructed from standard vacuum components including an ultrahigh vacuum ion pump. The collector assembly was fabricated by diffusion bonding a (100) oriented silicon single crystal to a molybdenum block. The silicon surface was treated with cesium and oxygen to produce an NEA-type condition and the results were tested by photoemission and work function measurements. An n-type silicon collector was successfully activated to a work function of 1.0 eV, which was verified by photoemission spectral yield measurements. The stability test of an activated surface at elevated temperatures was conducted in the range from room temperature to 619 K, which was slightly lower than the designed collector temperature of 700 K. The work function measurements clearly demonstrated that the behavior of cesium replenishment on the activated Si surface was similar in nature to that of a metallic surface; that is, the loss of cesium by thermal desorption could be compensated by maintaining an adequate vapor pressure of cesium.

  11. Testing of a solar collector with concentrating mirrors

    Science.gov (United States)

    1980-01-01

    Commerical flat-plate solar collector with concentrating mirrors has been tested for thermal performance, structured behavior under static load, and effects of long-term natural weathering. Report documents results of testing and concludes that absorptivity was degraded by weathering.

  12. Preliminary design package for Sunair SEC-601 solar collector

    Energy Technology Data Exchange (ETDEWEB)

    1978-12-01

    This report presents the preliminary design of the Owens-Illinois mode Sunair SEC-601 tubular air solar collector. Information in this package includes the Subsystem Design and Development Approaches, hazard analysis, and detailed drawings available as the Preliminary Design Review.

  13. Multiple tracing experiments in unsaturated fractured clayey till

    DEFF Research Database (Denmark)

    Mortensen, Annette Pia; Jensen, Karsten Høgh; Nilsson, B.;

    2004-01-01

    Current monitoring and sampling techniques in unsaturated fractured clay often fail to characterize fast preferential flow. To circumvent these problems, an isolated block ( 3.5 by 3.5 by 3.3 m) of unsaturated fractured clayey till was used for multiple tracing experiments. The setup allowed full...... control of the water balance in the block. Experiments at three different steady-state flow rates were performed. Multiple tracers with different diffusion coefficients were applied in each experiment to evaluate the influence of diffusive exchange between fractures and the matrix. The tracers included...

  14. Reaction Behavior of Unsaturated Compounds in Sub- and Supercritical Water

    Institute of Scientific and Technical Information of China (English)

    K. Kobiro

    2005-01-01

    @@ 1Introduction Much attention has been paid on the chemistry of sub- and supercritical water, because of their unique prosperities such as low viscosity, low polarity, and high solubility to organic compounds[1]. Recently, the unique sub- and supercritical water is applied as reaction media and reaction catalysts for organic reactions[2,3].We herein disclose the unique reaction of unsaturated compounds in sub- and supercritical water with specific interaction between unsaturated bond(s) and high-density and high-energy water molecule(s) in sub- and supercritical water.

  15. Process for making unsaturated hydrocarbons using microchannel process technology

    Science.gov (United States)

    Tonkovich, Anna Lee; Yuschak, Thomas; LaPlante, Timothy J.; Rankin, Scott; Perry, Steven T.; Fitzgerald, Sean Patrick; Simmons, Wayne W.; Mazanec, Terry Daymo, Eric

    2011-04-12

    The disclosed invention relates to a process for converting a feed composition comprising one or more hydrocarbons to a product comprising one or more unsaturated hydrocarbons, the process comprising: flowing the feed composition and steam in contact with each other in a microchannel reactor at a temperature in the range from about 200.degree. C. to about 1200.degree. C. to convert the feed composition to the product, the process being characterized by the absence of catalyst for converting the one or more hydrocarbons to one or more unsaturated hydrocarbons. Hydrogen and/or oxygen may be combined with the feed composition and steam.

  16. Phase separation during radiation crosslinking of unsaturated polyester resin

    Science.gov (United States)

    Pucić, Irina; Ranogajec, Franjo

    2003-06-01

    Phase separation during radiation-initiated crosslinking of unsaturated polyester resin was studied. Residual reactivity of liquid phases and gels of partially cured samples was determined by DSC. Uncured resin and liquid phases showed double reaction exotherm, gels had a single maximum that corresponded to higher-temperature maximum of liquid parts. The lower-temperature process was attributed to styrene-polyester copolymerization. At higher temperatures, polyester unsaturations that remained unreacted due to microgel formation homopolymerized. FTIR revealed different composition of phases. In thicker samples, reaction heat influenced microgel formation causing delayed appearance of gel and faster increase in conversion.

  17. Direct measurement of thermal expansion in unsaturated soils

    OpenAIRE

    Pintado Llurba, Xavier; Lloret Morancho, Antonio

    2010-01-01

    A method designed to measure the thermal dilatation coefficient of unsaturated soils is presented. It is based on the ASTM 4535-85 standard with some important considerations taken into account. A number of tests following this methodology were performed on unsaturated swelling clay. Thermal dilatation coefficients were measured over a temperature range from 25 to 65°C for material dry densities and saturation degrees varying between 16–17 kN/m3 and 60–95%, respectively. The results are so...

  18. Mechanical Behavior of Unsaturated Soils Subjected to Impact Loading

    Directory of Open Access Journals (Sweden)

    Xianqi Xie

    2016-01-01

    Full Text Available This paper presents an experimental study on unsaturated soils. A designed test setup was used and the impact loading was applied with a drop hammer. The experimental results show that the soil properties, including water content, density, void ratio, and saturation, changed because of impact loading, and these variations of the soil properties affected the matrix suctions of the unsaturated soils. The impact hole depth increased with the increasing impact energy and gradually reached a critical value. The dynamic stress in soil increased with the increased impact loading. The results obtained in this work can be applied to optimize the effective reinforcement region of soils in the dynamic compaction construction.

  19. SHEARING AND WATER RETENTION BEHAVIOR OF UNSATURATED LOAM WITH MODELING

    Science.gov (United States)

    Kiyohara, Yukoh; Kazama, Motoki

    Unsaturated triaxial tests were carried out to study deformation behavior, effective stress path and water retention property of consolidated loam during consolidation and shearing processes. Initial matric suction was set as 0, 50, and 90 kPa, and confining pressures (net normal stresses) were set as 100 kPa. Then shearing processes were done under undrained and drained conditions. We clarified the relation between void ratio and Van Genuchten model parameter by using water retention curve. To predict the unsaturated shearing behavior, a modified Cam Clay model considering void ratio dependent Van Genuchten parameter was proposed. Those numerical test results were agreed well with laboratory tests results.

  20. Comparison under a simulated sun of two black-nickel-coated flat-plate solar collectors with a nonselective black-paint-coated collector

    Science.gov (United States)

    Simon, F. F.

    1975-01-01

    A performance evaluation was made of two, black nickel coated, flat plate solar collectors. Collector performance was determined under a simulated sun for a wide range of inlet temperatures, including the temperature required for solar powered absorption air conditioning. For a basis of comparison a performance test was made on a traditional, two glass, nonselective, black paint coated, flat plate collector. Performance curves and performance parameters are presented to point out the importance of the design variables which determine an efficient collector. A black nickel coated collector was found to be a good performer at the conditions expected for solar powered absorption air conditioning. This collector attained a thermal efficiency of 50 percent at an inlet temperature of 366 K (200 F) and an incident flux of 946 watts/sq m (300 Btu/hr-sq ft).

  1. Theoretical Insight of Physical Adsorption for a Single Component Adsorbent + Adsorbate System: II. The Henry Region

    KAUST Repository

    Chakraborty, Anutosh

    2009-07-07

    The Henry coefficients of a single component adsorbent + adsorbate system are calculated from experimentally measured adsorption isotherm data, from which the heat of adsorption at zero coverage is evaluated. The first part of the papers relates to the development of thermodynamic property surfaces for a single-component adsorbent + adsorbate system1 (Chakraborty, A.; Saha, B. B.; Ng, K. C.; Koyama, S.; Srinivasan, K. Langmuir 2009, 25, 2204). A thermodynamic framework is presented to capture the relationship between the specific surface area (Ai) and the energy factor, and the surface structural and the surface energy heterogeneity distribution factors are analyzed. Using the outlined approach, the maximum possible amount of adsorbate uptake has been evaluated and compared with experimental data. It is found that the adsorbents with higher specific surface areas tend to possess lower heat of adsorption (ΔH°) at the Henry regime. In this paper, we have established the definitive relation between Ai and ΔH° for (i) carbonaceous materials, metal organic frameworks (MOFs), carbon nanotubes, zeolites + hydrogen, and (ii) activated carbons + methane systems. The proposed theoretical framework of At and AH0 provides valuable guides for researchers in developing advanced porous adsorbents for methane and hydrogen uptake. © 2009 American Chemical Society.

  2. Effect of Adsorbent Diameter on the Performance of Adsorption Refrigeration

    Institute of Scientific and Technical Information of China (English)

    黄宏宇; 何兆红; 袁浩然; 小林敬幸; 赵丹丹; 窪田光宏; 郭华芳

    2014-01-01

    Adsorbents are important components in adsorption refrigeration. The diameter of an adsorbent can af-fect the heat and mass transfer of an adsorber. The effect of particle diameter on effective thermal conductivity was investigated. The heat transfer coefficient of the refrigerant and the void rate of the adsorbent layer can also affect the effective thermal conductivity of adsorbents. The performance of mass transfer in the adsorber is better when pressure drop decreases. Pressure drop decreases with increasing permeability. The permeability of the adsorbent layer can be improved with increasing adsorbent diameter. The effect of adsorbent diameter on refrigeration output power was experimentally studied. Output power initially increases and then decreases with increasing diameter under different cycle time conditions. Output power increases with decreasing cycle time under similar diameters.

  3. The biogeochemical cycle of the adsorbed template. II - Selective adsorption of mononucleotides on adsorbed polynucleotide templates

    Science.gov (United States)

    Lazard, Daniel; Lahav, Noam; Orenberg, James B.

    1988-01-01

    Experimental results are presented for the verification of the specific interaction step of the 'adsorbed template' biogeochemical cycle, a simple model for a primitive prebiotic replication system. The experimental system consisted of gypsum as the mineral to which an oligonucleotide template attaches (Poly-C or Poly-U) and (5-prime)-AMP, (5-prime)-GMP, (5-prime)-CMP and (5-prime)-UMP as the interacting biomonomers. When Poly-C or Poly-U were used as adsorbed templates, (5-prime)-GMP and (5-prime)-AMP, respectively, were observed to be the most strongly adsorbed species.

  4. Radon emanation from radium specific adsorbents.

    Science.gov (United States)

    Alabdula'aly, Abdulrahman I; Maghrawy, Hamed B

    2010-01-01

    Pilot studies were undertaken to quantify the total activity of radon that is eluted following no-flow periods from several Ra-226 adsorbents loaded to near exhaustion. The adsorbents studied included two types of barium sulphate impregnated alumina (ABA-8000 and F-1) and Dowex MSC-1 resin treated by either barium hydroxide or barium chloride. In parallel, radium loaded plain activated aluminas and Dowex MSC-1 resin were similarly investigated. The results revealed that radon was quantitatively eluted during the first few bed volumes of column operation after no-flow periods. Although similar radon elution profiles were obtained, the position of the radon peak was found to vary and depended on the adsorbent type. Radon levels up to 24 and 14 kBq dm(-3) were measured after a rest period of 72h from radium exhausted Dowex MSC-1 treated with barium chloride and F-1 impregnated alumina with barium sulphate, respectively. The eluted radon values measured experimentally were compared to those calculated theoretically from accumulated radium quantities for the different media. For plain adsorbents, an agreement better than 10% was obtained. For treated resin-types a consistency within 30% but for impregnated alumina-types high discrepancy between respective values were obtained.

  5. Linear Sweep Voltammetry of Adsorbed Neutral Red.

    Science.gov (United States)

    1982-05-01

    E. Creager, G. T. Marks, D. A. Aikens and H. H. Richtol Prepared for Publication in Journal of Electroanalytical Chemistry Rensselaer Polytechnic... Electroanalytical Chemistry It. KEY WORDS (Continue oun reverse side It necessary mid Ideneliy by block ntaibor) Neutral Red, cyclic voltammetry, adsorbed dye 20

  6. Adsorbate Diffusion on Transition Metal Nanoparticles

    Science.gov (United States)

    2015-01-01

    catalysis . KEYWORDS: Heterogeneous catalysis , diffusion, edge barrier, transition metal nanoparticles, DFT calculations 2 Diffusion of adsorbed...species on transition metal surfaces is an important process for thin-film and nanostructure growth and for heterogeneous catalysis , among others.1-4 In...process for heterogeneously catalyzed reactions, and as a result, an atomistic understanding of the diffusion mechanism is very important. We

  7. Heparin interaction with protein-adsorbed surfaces

    NARCIS (Netherlands)

    Winterton, Lynn C.; Andrade, Joseph D.; Feijen, Jan; Kim, Sung Wan

    1986-01-01

    Albumin and fibrinogen show no binding affinity to varied molecular weights of heparin at physiological pH. Human plasma fibronectin was shown to bind heparins in both the solution and adsorbed states. Fibronectin was shown to have six active binding sites for heparins which may be sterically blocke

  8. Glazed PVT Collector with Polysiloxane Encapsulation of PV Cells: Performance and Economic Analysis

    Directory of Open Access Journals (Sweden)

    Tomas Matuska

    2015-01-01

    Full Text Available Development of a new concept of glazed PVT collector based on temperature resistant polysiloxane encapsulation material is presented together with the results from experimental testing and modelling. Performance and economic analysis in 4 different European climates has been done to derive the competitive price of the PVT collector concepts with main focus on the glazed PVT collector under development. Results have shown that specific market price 400 to 500 EUR/m2 for the glazed PVT collector should not be exceeded in order to become competitive with conventional combination of photothermal and photovoltaic collectors.

  9. Performance evaluation of two black nickel and two black chrome solar collectors

    Science.gov (United States)

    Losey, R.

    1977-01-01

    The test program was based on the evaluation of four unique solar collectors described below: (1) black nickel collector surface with a desiccant drying bed, (2) black nickel collector surface without a desiccant drying bed, (3) black chrome collector surface with a dessicant drying bed, and (4) black chrome collector surface without a desiccant drying bed. The test program included three distinct phases: Initial performance evaluation, natural environmental aging, and post-aging performance evaluation. Results of Phase III testing conclusively indicated a higher normalized efficiency for Black Chrome surfaces when compared to Black Nickel.

  10. Estimation of ash recirculation effect upon ash collector efficiency by the example of a TsBR-150U-1280 multicyclone collector

    Science.gov (United States)

    Elsukov, V. K.; Latushkina, S. V.

    2014-10-01

    Problems of the mathematical estimation of the amount of recirculating ash and its effect upon the efficiency of gas treating within ash collectors with the scroll and semiscroll gas supply, which are equipped by a gas and ash recirculation system, are considered. Based on the analysis of various publications and operational experience, a conclusion is drawn regarding the complex and substantial effect of the recirculation system upon the ash collector efficiency. The following research tasks are posed: computational determination of ash weight at the ash collector inlet subject to its recirculation, development of measures for enhancement of the ash collector, and estimation of these measures. A computation procedure for consumption of recirculating ash in the ash collector and its sections with the use of formulas of the geometrical progression is represented. Based on the represented procedure as applied to a TsBR-150U-1280 multicyclone collector collecting ash of coal of an Irsha-Borodinsk coalfield, corresponding ash consumptions are determined, including that at which the effective operation of the ash collector is provided. Various variants of the modernization of the mentioned multicyclone collector are developed and estimated. Conclusions are drawn regarding the necessity for further investigations for improvement of the represented procedure, in particular, the effect of the gas speed (boiler load) upon the efficiency of various ash collector units, recirculating ash consumption, and clogging their cyclone units.

  11. Nitric oxide adsorbed on zeolites: EPR studies.

    Science.gov (United States)

    Yahiro, Hidenori; Lund, Anders; Shiotani, Masaru

    2004-05-01

    CW-EPR studies of NO adsorbed on sodium ion-exchanged zeolites were focused on the geometrical structure of NO monoradical and (NO)2 biradical formed on zeolites. The EPR spectrum of NO monoradical adsorbed on zeolite can be characterized by the three different g-tensor components and the resolved y-component hyperfine coupling with the 14N nucleus. Among the g-tensor components, the value of g(zz) is very sensitive to the local environment of zeolite and becomes a measure of the electrostatic field in zeolite. The temperature dependence of the g-tensor demonstrated the presence of two states of the Na-NO adduct, in rigid and rotational states. The EPR spectra of NO adsorbed on alkaline metal ion-exchanged zeolite and their temperature dependency are essentially the same as that on sodium ion-exchanged zeolite. On the other hand, for NO adsorbed on copper ion-exchanged zeolite it is known that the magnetic interaction between NO molecule and paramagnetic copper ion are observable in the spectra recorded at low temperature. The signals assigned to (NO)2 biradical were detected for EPR spectrum of NO adsorbed on Na-LTA. CW-EPR spectra as well as their theoretical calculation suggested that the two NO molecules are aligned along their N-O bond axes. A new procedure for automatical EPR simulation is described which makes it possible to analyze EPR spectrum easily. In the last part of this paper, some instances when other nitrogen oxides were used as a probe molecule to characterize the zeolite structure, chemical properties of zeolites, and dynamics of small molecules were described on the basis of selected literature data reported recently.

  12. BIODEGRADATION OF HYDROCARBON VAPORS IN THE UNSATURATED ZONE

    Science.gov (United States)

    The time-averaged concentration of hydrocarbon and oxygen vapors were measured in the unsaturated zone above the residually contaminated capillary fringe at the U.S. Coast Guard Air Station in Traverse City, Michigan. Total hydrocarbon and oxygen vapor concentrations were observe...

  13. Analog modeling of transient moisture flow in unsaturated soil

    NARCIS (Netherlands)

    Wind, G.P.

    1979-01-01

    Hydraulic and electronic analog models are developed for the simulation of moisture flow and accumulation in unsaturated soil. The analog models are compared with numerical models and checked with field observations. Application of soil physical knowledge on a soil technological problem by means of

  14. ENGINEERING ISSUE: IN SITU BIOREMEDIATION OF CONTAMINATED UNSATURATED SUBSURFACE SOILS

    Science.gov (United States)

    An emerging technology for the remediation of unsaturated subsurface soils involves the use of microorganisms to degrade contaminants which are present in such soils. Understanding the processes which drive in situ bioremediation, as well as the effectiveness and efficiency of th...

  15. Axisymmetric Consolidation of Unsaturated Soils by Differential Quadrature Method

    Directory of Open Access Journals (Sweden)

    Wan-Huan Zhou

    2013-01-01

    Full Text Available Axisymmetric consolidation in a sand drain foundation is a common problem in foundation engineering. In unsaturated soils, the excess pore-water and pore-air pressures simultaneously change during the consolidation procedure; and the solutions are not easy to obtain. The present paper uses the differential quadrature method (DQM for axisymmetric consolidation of unsaturated soils in a sand drain foundation. The radial seepage of sand drain foundation is considered based on the framework of Fredlund’s one-dimensional consolidation theory in unsaturated soils. With the use of Darcy’s law and Fick’s law, the polar governing equations of excess pore-air and pore-water pressures of axisymmetric consolidation are derived. By using DQM, the two governing equations are transformed into two sets of ordinary differential equations. Then the solutions of excess pore-water and pore-air pressures can be obtained by Rong-Kutta method. The DQM solution can be used to deal with the case of nonuniform initial pore-air and pore-water distributions. Finally, case studies are presented to investigate the behavior of axisymmetric consolidation of unsaturated soils. The convergence analysis and average degree of consolidation, the settlements in radial and vertical direction, and the effects of different initial excess pore pressure distributions are presented, and discussed in this paper.

  16. Review of Upscaling Methods for Describing Unsaturated Flow

    Energy Technology Data Exchange (ETDEWEB)

    Wood, Brian D.

    2000-09-26

    Representing samll-scale features can be a challenge when one wants to model unsaturated flow in large domains. In this report, the various upscaling techniques are reviewed. The following upscaling methods have been identified from the literature: stochastic methods, renormalization methods, volume averaging and homogenization methods. In addition, a final technique, full resolution numerical modeling, is also discussed.

  17. Unsaturated and Saturated Permeabilities of Fiber Reinforcement: Critics and Suggestions

    Science.gov (United States)

    Park, Chung Hae; Krawczak, Patricia

    2015-04-01

    In general, permeability measurement results show a strong scattering according to the measurement method, the type of test fluid and the fluid injection condition, even though permeability is regarded as a unique property of porous medium. In particular, the discrepancy between the unsaturated and saturated permeabilities for the same fabric has been widely reported. In the literature, relative permeability has been adopted to model the unsaturated flow. This approach has some limits in the modeling of double-scale porosity medium. We address this issue of permeability measurement by rigorously examining the mass conservation condition. Finally, we identify that the pressure gradient is non-linear with positive curvature in the unsaturated flow and a misinterpretation of pressure gradient is the main reason for the difference between the saturated and unsaturated permeabilities of the same fiber reinforcement. We propose to use a fixed value of permeability and to modify the mass conservation equation if there are air voids which are entrapped inside the fiber tow. Finally, we also suggest some guidelines and future perspectives to obtain more consistent permeability measurement results.

  18. Heuristical Strategies on the Study Theme "The Unsaturated Hydrocarbons -- Alkenes"

    Science.gov (United States)

    Naumescu, Adrienne Kozan; Pasca, Roxana-Diana

    2011-01-01

    The influence of heuristical strategies upon the level of two experimental classes is studied in this paper. The didactic experiment took place at secondary school in Cluj-Napoca, in 2008-2009 school year. The study theme "The Unsaturated Hydrocarbons--Alkenes" has been efficiently learned by using the most active methods: laboratory…

  19. Movement of pentachlorophenol in unsaturated soil by electrokinetics

    Energy Technology Data Exchange (ETDEWEB)

    Harbottle, M.; Sills, G. [Dept. of Engineering Science, Oxford (United Kingdom); Jackman, S. [Dept. of Engineering Science, Oxford (United Kingdom)]|[NERC Centre for Ecology and Hydrology, Oxford (United Kingdom); Thompson, I. [NERC Centre for Ecology and Hydrology, Oxford (United Kingdom)

    2001-07-01

    Electrokinetic experiments have been performed on unsaturated natural soil specimens artificially contaminated with pentachlorophenol. Movement of pentachlorophenol within the soil mass has been demonstrated, but no contaminant was discovered in any effluent fluids. The results indicate that it may be possible to improve the bioavailability of the pollutant to degradative microorganisms using electrokinetics, by moving the chemical and microbes relative to each others. (orig.)

  20. Heat and mass transfer in unsaturated porous media. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Childs, S.W.; Malstaff, G.

    1982-02-01

    A preliminary study of heat and water transport in unsaturated porous media is reported. The project provides background information regarding the feasibility of seasonal thermal energy storage in unconfined aquifers. A parametric analysis of the factors of importance, and an annotated bibliography of research findings pertinent to unconfined aquifer thermal energy storage (ATES) are presented. This analysis shows that heat and mass transfer of water vapor assume dominant importance in unsaturated porous media at elevated temperature. Although water vapor fluxes are seldom as large as saturated medium liquid water fluxes, they are important under unsaturated conditions. The major heat transport mechanism for unsaturated porous media at temperatures from 50 to 90/sup 0/C is latent heat flux. The mechanism is nonexistent under saturated conditions but may well control design of unconfined aquifer storage systems. The parametric analysis treats detailed physical phenomena which occur in the flow systems study and demonstrates the temperature and moisture dependence of the transport coefficients of importance. The question of design of an unconfined ATES site is also addressed by considering the effects of aquifer temperature, depth to water table, porous medium flow properties, and surface boundary conditions. Recommendations are made for continuation of this project in its second phase. Both scientific and engineering goals are considered and alternatives are presented.

  1. Unsaturated and Saturated Permeabilities of Fiber Reinforcement: Critics and Suggestions

    Directory of Open Access Journals (Sweden)

    Chung Hae ePARK

    2015-04-01

    Full Text Available In general, permeability measurement results show a strong scattering according to the measurement method, the type of test fluid and the fluid injection condition, even though permeability is regarded as a unique property of porous medium. In particular, the discrepancy between the unsaturated and saturated permeabilities for the same fabric has been widely reported. In the literature, relative permeability has been adopted to model the unsaturated flow. This approach has some limits in the modeling of double-scale porosity medium. We address this issue of permeability measurement by rigorously examining the mass conservation condition. Finally, we identify that the pressure gradient is non-linear with positive curvature in the unsaturated flow and a misinterpretation of pressure gradient is the main reason for the difference between the saturated and unsaturated permeabilities of the same fiber reinforcement. We propose to use a fixed value of permeability and to modify the mass conservation equation if there are air voids which are entrapped inside the fiber tow. Finally, we also suggest some guidelines and future perspectives to obtain more consistent permeability measurement results.

  2. Mechanism of Reduction Action of Unsaturated Polyester Resin

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The reduction action mechanism of the unsatrurated polyester resin reducer is analysed by the free space volume theory.Through measuring the reduction magnitude in each phase of solidification,the authors predicted the rate of reduction is in concordance with the results from experiments.From this we presented corresponding solutions to different causes of the reduction action of the unsaturated polyester resin.

  3. Beaded Fiber Mats of PVA Containing Unsaturated Heteropoly Salt

    Institute of Scientific and Technical Information of China (English)

    Guo Cheng YANG; Yan PAN; Jian GONG; Chang Lu SHAO; Shang Bin WEN; Chen SHAO; Lun Yu QU

    2004-01-01

    Poly(vinyl alcohol) (PVA) fiber mats containing unsaturated heteropoly salt was prepared for the first time. IR, X-ray diffraction and SEM photographs characterized the beaded fiber mats.The viscoelasticity and the conductivity of the solution were the key factors that influence the formation of the beaded fiber mats.

  4. Bio-olefins from unsaturated fatty acids via tandem catalysis

    Science.gov (United States)

    A new catalytic route to bio-olefins from unsaturated fatty acids will be described. At the heart of the process, the catalyst apparently functions in a tandem mode by both dynamically isomerizing the positions of double bonds in an aliphatic chain and, subsequently, decarboxylating specific isomers...

  5. Characterization of a direct methanol fuel cell using Hilbert curve fractal current collectors

    Energy Technology Data Exchange (ETDEWEB)

    Kuan, Yean-Der [Department of Refrigeration, Air-Conditioning and Energy Engineering, National Chun-Yi University of Technology, NO 35, Lane 215, Section 1, Chung-Shan Road, Taiping City, 411 Taichung County (China); Chang, Jing-Yi [Department of Mechanical and Electro-Mechanical Engineering, Tamkang University, Tamsui, 251 Taipei County (China); Lee, Shi-Min [Department of Aerospace Engineering, Tamkang University, Tamsui, 251 Taipei County (China); Lee, Shah-Rong [Department of Mechanical Engineering, Technology and Science Institute of Northern Taiwan, Peitou, 112 Taipei (China)

    2009-02-01

    The current collector or bi-polar plate is a key component in direct methanol fuel cells (DMFCs). Current collector geometric designs have significant influence on cell performance. This paper presents a continuous type fractal geometry using the Hilbert curve applied to current collector design in a direct methanol fuel cell. The Hilbert curve fractal geometry current collector is named HFCC (Hilbert curve fractal current collector). This research designs the current collector using a first, second and third order open carved HFCC shape. The cell performances of the different current collector geometries were measured and compared. Two important factors, the free open ratio and total perimeter length of the open carved design are discussed. The results show that both the larger free open ratio and longer carved open perimeter length present higher performance. (author)

  6. Characterization of a direct methanol fuel cell using Hilbert curve fractal current collectors

    Science.gov (United States)

    Kuan, Yean-Der; Chang, Jing-Yi; Lee, Shi-Min; Lee, Shah-Rong

    The current collector or bi-polar plate is a key component in direct methanol fuel cells (DMFCs). Current collector geometric designs have significant influence on cell performance. This paper presents a continuous type fractal geometry using the Hilbert curve applied to current collector design in a direct methanol fuel cell. The Hilbert curve fractal geometry current collector is named HFCC (Hilbert curve fractal current collector). This research designs the current collector using a first, second and third order open carved HFCC shape. The cell performances of the different current collector geometries were measured and compared. Two important factors, the free open ratio and total perimeter length of the open carved design are discussed. The results show that both the larger free open ratio and longer carved open perimeter length present higher performance.

  7. Experimental and numerical investigation of a flat-plate solar collector

    Energy Technology Data Exchange (ETDEWEB)

    Alvarez, A. [Departamento de Construcciones Navales, E.U. Politecnica, Universidade da Coruna, 15405 Ferrol (Spain); Cabeza, O. [Departamento de Fisica, Universidade da Coruna, 15072 A Coruna (Spain); Muniz, M.C. [Departamento de Matematica Aplicada, Universidade de Santiago de Compostela, 15782 Santiago de Compostela (Spain); Varela, L.M. [Departamento de Fisica de la Materia Condensada, Universidade de Santiago de Compostela, 15782 Santiago de Compostela (Spain)

    2010-09-15

    In the present paper we present an experimental analysis and a thermal and hydrodynamic modelling of a newly designed flat-plate solar collector characterized by its corrugated channel and by the high surface area directly in contact with the heat transport fluid. The thermal and hydrodynamic modelling of the collector has been performed by means of the Finite Element Method (FEM), validated with analytical results for a well-known fin-and-tube type solar collector. The thermodynamic efficiency of the collector is analyzed by means of its experimental heating curves. The yield of the new collector has been compared to a previously existing commercial collector of related geometry but with less area in direct contact with the heat transport fluid. The experimental results are seen to adequately fit the simulation predictions, and a methodology to use in order to compute the parameters characterizing the thermal behavior of the collector is introduced. (author)

  8. General solution of collector performance with axial conduction and end effects

    Science.gov (United States)

    Shouman, A. R.; Tag, I. A.

    The Phillips solution of the flat-plate solar collector is extended and utilized to examine the influence of the end losses on collector performance. The results of this study show that the influence of the end temperatures of the absorber plate is more significant than the losses due to the axial conductivity of an insulated end collector plate. It will be shown that for an insulated end collector, the loss in the heat removal factor due to axial conductivity is negligible in the region of interest for flat-plate collectors. However, the end temperatures of the collector plate have more significant influence on the same factor, showing losses in some regions and improvements in other regions. This study emphasizes the necessity of measuring the temperature of the absorber plate at both the fluid inlet and exit locations in order to determine accurately the collector performance parameters.

  9. A theoretical study of adsorbate-adsorbate interactions on Ru(0001)

    DEFF Research Database (Denmark)

    Mortensen, Jens Jørgen; Hammer, Bjørk; Nørskov, Jens Kehlet

    1998-01-01

    Using density functional theory we study the effect of pre-adsorbed atoms on the dissociation of N(2) and the adsorption of N, N(2), and CO on Ru(0001). We have done calculations for pre-adsorbed Na, Cs, and S, and find that alkali atoms adsorbed close to a dissociating N(2) molecule will lower...... the barrier for dissociation, whereas S will increase it. The interaction with alkali atoms is mainly of an electrostatic nature. The poisoning by S is due to two kinds of repulsive interactions: a Pauli repulsion and a reduced covalent bond strength between the adsorbate and the surface d-electrons. In order...... to investigate these different interactions in more detail, we look at three different species (N atoms, and terminally bonded N(2) and CO) and use them as probes to study their interaction with two modifier atoms (Na and S). The two modifier atoms have very different properties, which allows us to decouple...

  10. LUGH an experimental facility for preferential flow-colloidal transport in heterogeneous unsaturated soil

    Science.gov (United States)

    Angulo-Jaramillo, R.; Bien, L.; Hehn, V.; Winiarski, T.

    2011-12-01

    Colloidal particles transport through vadose zone can contribute to fast transport of contaminants into groundwater. The objective is to study the preferential flow and transport of colloids in heterogeneous unsaturated soil subjected to high organic matter entry. A physically based model is developed based on a large laboratory lysimeter than usual laboratory column experiments. LUGH-Lysimeter for Unsaturated Groundwater Hydrodynamics- is used to embed a soil monolith (1.6 m3) made of different cross-bedded lithological types with contrasting hydraulic properties. The filling material is a carbonated graded sand and gravel from the fluvioglacial vadose zone of the east of Lyon (France). Materials are 3D arranged on contrasting textured lithofacies analogous to the sedimentary lithology of a fluvioglacial cross-bedded deposit. Tracer (Br 1E-2M) and colloid solutions were injected in a pulse mode using a rainfall simulator. Colloid solution is Chlamydomonas reinhardtii at 3.2E+6 units/mL concentration. These unicellular algae can be considered as spherical particles from 6 to 10 μm in diam. Their resistance and doubling time of cell growth are greater than the transfer time in the lysimeter. Algae moving into the porous medium do not immediately reproduce, and then the population size remains constant. During this period, called the lag phase (1 to 2 days), the cells are metabolically active and increase only in cell size. Tensiometers, TDR and electric resistivity enable measurements of the parameters related to flow, solute and colloid transfer. Eluted solutions are sampled by 15 separated fraction collectors, leading to independent breakthrough curves. Eluted colloid concentration is measured by spectrofluorometry. The model approach combines Richards equation, coupled to a convective-dispersive equation with a source/sink term for particle transport and mobilization. Macroscopic particle attachment/detachment from pores is assumed to follow first-order kinetics

  11. Transport of citrate-coated silver nanoparticles in unsaturated sand

    Energy Technology Data Exchange (ETDEWEB)

    Kumahor, Samuel K., E-mail: samuel.kumahor@ufz.de [Department of Soil Physics, Helmholtz Centre for Environmental Research–UFZ, Theodor-Lieser-Strasse 4, 06120 Halle-Saale (Germany); Hron, Pavel, E-mail: pavel.hron@iwr.uni-heidelberg.de [Interdisciplinary Center for Scientific Computing, University of Heidelberg, Im Neuenheimer Feld 368, Raum 422, 69120 Heidelberg (Germany); Metreveli, George, E-mail: metreveli@uni-landau.de [Universität Koblenz-Landau, Institute for Environmental Sciences, Group of Environmental and Soil Chemistry, Fortstr. 7, D-76829 Landau (Germany); Schaumann, Gabriele E., E-mail: schaumann@uni-landau.de [Universität Koblenz-Landau, Institute for Environmental Sciences, Group of Environmental and Soil Chemistry, Fortstr. 7, D-76829 Landau (Germany); Vogel, Hans-Jörg, E-mail: hans-joerg.vogel@ufz.de [Department of Soil Physics, Helmholtz Centre for Environmental Research–UFZ, Theodor-Lieser-Strasse 4, 06120 Halle-Saale (Germany); Institute of Soil Science and Plant Nutrition, Martin-Luther-University Halle-Wittenberg, Von-Seckendorff-Platz 3, 06120 Halle-Saale (Germany)

    2015-12-01

    Chemical factors and physical constraints lead to coupled effects during particle transport in unsaturated porous media. Studies on unsaturated transport as typical for soils are currently scarce. In unsaturated porous media, particle mobility is determined by the existence of an air–water interface in addition to a solid–water interface. To this end, we measured breakthrough curves and retention profiles of citrate-coated Ag nanoparticles in unsaturated sand at two pH values (5 and 9) and three different flow rates corresponding to different water contents with 1 mM KNO{sub 3} as background electrolyte. The classical DLVO theory suggests unfavorable deposition conditions at the air–water and solid–water interfaces. The breakthrough curves indicate modification in curve shapes and retardation of nanoparticles compared to inert solute. Retention profiles show sensitivity to flow rate and pH and this ranged from almost no retention for the highest flow rate at pH = 9 to almost complete retention for the lowest flow rate at pH = 5. Modeling of the breakthrough curves, thus, required coupling two parallel processes: a kinetically controlled attachment process far from equilibrium, responsible for the shape modification, and an equilibrium sorption, responsible for particle retardation. The non-equilibrium process and equilibrium sorption are suggested to relate to the solid–water and air–water interfaces, respectively. This is supported by the DLVO model extended for hydrophobic interactions which suggests reversible attachment, characterized by a secondary minimum (depth 3–5 kT) and a repulsive barrier at the air–water interface. In contrast, the solid–water interface is characterized by a significant repulsive barrier and the absence of a secondary minimum suggesting kinetically controlled and non-equilibrium interaction. This study provides new insights into particle transport in unsaturated porous media and offers a model concept representing the

  12. Groundwater recharge dynamics in unsaturated fractured chalk: a case study

    Science.gov (United States)

    Cherubini, Claudia; Pastore, Nicola; Giasi, Concetta I.; Allegretti, Nicolaetta M.

    2016-04-01

    The heterogeneity of the unsaturated zone controls its hydraulic response to rainfall and the extent to which pollutants are delayed or attenuated before reaching groundwater. It plays therefore a very important role in the recharge of aquifers and the transfer of pollutants because of the presence of temporary storage zones and preferential flows. A better knowledge of the physical processes in the unsaturated zone would allow an improved assessment of the natural recharge in a heterogeneous aquifer and of its vulnerability to surface-applied pollution. The case study regards the role of the thick unsaturated zone of the Cretaceous chalk aquifer in Picardy (North of France) that controls the hydraulic response to rainfall. In the North Paris Basin, much of the recharge must pass through a regional chalk bed that is composed of a porous matrix with embedded fractures. Different types of conceptual models have been formulated to explain infiltration and recharge processes in the unsaturated fractured rock. The present study analyses the episodic recharge in fractured Chalk aquifer using the kinematic diffusion theory to predict water table fluctuation in response to rainfall. From an analysis of the data, there is the evidence of 1) a seasonal behavior characterized by a constant increase in the water level during the winter/spring period and a recession period, 2) a series of episodic behaviors during the summer/autumn. Kinematic diffusion models are useful for predict preferential fluxes and dynamic conditions. The presented approach conceptualizes the unsaturated flow as a combination of 1) diffusive flow refers to the idealized portion of the pore space of the medium within the flow rate is driven essentially by local gradient of potential; 2) preferential flow by which water moves across macroscopic distances through conduits of macropore length.

  13. Transport of citrate-coated silver nanoparticles in unsaturated sand

    Science.gov (United States)

    Kumahor, Samuel; Hron, Pavel; Metreveli, George; Schaumann, Gabriele; Vogel, Hans-Jörg

    2015-04-01

    Chemical factors and physical constraints lead to coupled effects during particle transport in unsaturated porous media. Unlike for saturated transport, studies on unsaturated transport as typical for soil are currently scarce. We investigated the mobility of citrate-coated Ag NPs in unsaturated sand (grain diameter: 0.1-0.3 mm). For three flux rates and a given pore-water ionic strength (1 mM KNO3), the citrate-coated Ag NPs were less mobile at pH = 5 compared to pH = 9. The classic Derjaguin-Landau-Verwey-Overbeek (DLVO) theory suggests unfavorable deposition conditions at both, the air-water interface and solid-water interface. Breakthrough curves measured under quasi-steady state unsaturated flow showed retardation of the citrate-coated Ag NPs compared to inert solute (KBr). After flushing with nanoparticle-free 1 mM KNO3 solution (pH-adjusted), retention was much lower in deeper depths compared to the surface where the particles entered the flow field. The results show a non-linear dependence of nanoparticle (NP) mobility on flux rate and water content. Especially the observed retardation similar to equilibrium sorption is in contrast to observations under saturated flow conditions. A convection-dispersion and reaction model that combines a reversible equilibrium process and a non-equilibrium interaction process reproduced the measured breakthrough curves reasonably well. From comparison between saturated and unsaturated experiments we conclude that the air-water interface is responsible for the reversible equilibrium process while the water-solid interface accounts for irreversible soption.

  14. Research and Development of a Low Cost Solar Collector

    Energy Technology Data Exchange (ETDEWEB)

    Ansari, Asif; Philip, Lee; Thouppuarachchi, Chirath

    2012-08-01

    This is a Final Technical Report on the Research and Development completed towards the development of a Low Cost Solar Collector conducted under the DOE cost-sharing award EE-0003591. The objective of this project was to develop a new class of solar concentrators with geometries and manufacturability that could significantly reduce the fully installed cost of the solar collector field for concentrated solar thermal power plants. The goal of the project was to achieve an aggressive cost target of $170/m2, a reduction of up to 50% in the total installed cost of a solar collector field as measured against the current industry benchmark of a conventional parabolic trough. The project plan, and the detailed activities conducted under the scope of the DOE Award project addressed all major drivers that affect solar collector costs. In addition to costs, the study also focused on evaluating technical performance of new collector architectures and compared them to the performance of the industry benchmark parabolic trough. The most notable accomplishment of this DOE award was the delivery of a full-scale integrated design, manufacturing and field installation solution for a new class of solar collector architecture which has been classified as the Bi-Planar Fresnel Collector (BPFC) and may be considered as a viable alternative to the conventional parabolic trough, as well as the conventional Fresnel collectors. This was in part accomplished through the design and development, all the way through fabrication and test validation of a new class of Linear Planar Fresnel Collector architecture. This architecture offers a number of key differentiating features which include a planar light-weight frame geometry with small mass-manufacturable elements utilizing flat mirror sections. The designs shows significant promise in reducing the material costs, fabrication costs, shipping costs, and on-site field installation costs compared to the benchmark parabolic trough, as well as the

  15. Investigation on Adsorption State of Surface Adsorbate on Silicon Wafer

    Institute of Scientific and Technical Information of China (English)

    1999-01-01

    An adsorption kinetics model for adsorbate on the specularly polished silicon wafer was suggested. The mathematical model of preferential adsorption and the mechanism controlling the adsorption state of adsorbate were discussed.

  16. Bilinear reduced order approximate model of parabolic distributed solar collectors

    KAUST Repository

    Elmetennani, Shahrazed

    2015-07-01

    This paper proposes a novel, low dimensional and accurate approximate model for the distributed parabolic solar collector, by means of a modified gaussian interpolation along the spatial domain. The proposed reduced model, taking the form of a low dimensional bilinear state representation, enables the reproduction of the heat transfer dynamics along the collector tube for system analysis. Moreover, presented as a reduced order bilinear state space model, the well established control theory for this class of systems can be applied. The approximation efficiency has been proven by several simulation tests, which have been performed considering parameters of the Acurex field with real external working conditions. Model accuracy has been evaluated by comparison to the analytical solution of the hyperbolic distributed model and its semi discretized approximation highlighting the benefits of using the proposed numerical scheme. Furthermore, model sensitivity to the different parameters of the gaussian interpolation has been studied.

  17. Thermal advantage of tracking solar collectors under Danish weather conditions

    DEFF Research Database (Denmark)

    Andersen, Elsa; Dragsted, Janne; Furbo, Simon

    2010-01-01

    . The investigations are based on calculations with a newly developed program. Measured weather data from a solar radiation measurement station at Technical University of Denmark in Kgs. Lyngby Denmark in the period 1990 to 2002 and the Danish Design Reference Year, DRY data file are used in the investigations....... The weather data used for Sisimiut are based on a Test Reference Year, TRY weather data file. The thermal advantages of different tracking strategies is investigated for two flat plate solar collectors with different efficiencies, operated at different temperature levels. The investigations show......Theoretical investigations have been carried out with the aim to elucidate the thermal advantage of tracking solar collectors for different weather conditions in Kgs. Lyngby, Denmark (55.8°N), and for the weather conditions in Sisimiut, Greenland (66.9°N), just north of the arctic circle...

  18. New generation of hybrid solar PV/T collectors

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-07-01

    This final report for the Swiss Federal Office of Energy (SFOE) presents the results of a study made on the suitability of commercially available panels using amorphous silicon (a-Si) technology for use in hybrid photovoltaic-thermal collectors. A previously made feasibility study is quoted that showed that the competitiveness of hybrid collectors depends on the technical requirements placed on the integrated photovoltaic modules. The detail results of tests made on unencapsulated samples of a-Si modules based on various different substrates are presented. These include assessment of absorption factors on the basis of spectrometric and calorimetric measurements, testing of the thermal stability of the a-Si cells and emissivity measurements made on the top-cover materials used in the panels. The report is concluded with recommendations for the development of new encapsulation materials with low emissivity and improved durability at high temperatures.

  19. Application of Induction Heating for Brazing Parts of Solar Collectors

    Directory of Open Access Journals (Sweden)

    Kristína Demianová

    2012-01-01

    Full Text Available This paper reports on the application of induction heating for brazing parts of solar collectors made of Al alloys. The tube-flange joint is a part of the collecting pipe of a solar collector. The main task was to design an induction coil for this type of joint, and to select the optimum brazing parameters. Brazing was performed with AlSi12 brazing alloy, and corrosive and non-corrosive flux types were also applied. The optimum brazing parameters were determined on the basis of testing the fabricated brazed joints by visual inspection, by leakage tests, and by macro- and micro-analysis of the joint boundary. The following conditions can be considered to be the best for brazing Al materials: power 2.69 kW,brazing time 24 s, flux BrazeTec F32/80.

  20. Evaluation of Surface Slope Irregularity in Linear Parabolic Solar Collectors

    Directory of Open Access Journals (Sweden)

    F. Francini

    2012-01-01

    Full Text Available The paper describes a methodology, very simple in its application, for measuring surface irregularities of linear parabolic collectors. This technique was principally developed to be applied in cases where it is difficult to use cumbersome instruments and to facilitate logistic management. The instruments to be employed are a digital camera and a grating. If the reflector surface is defective, the image of the grating, reflected on the solar collector, appears distorted. Analyzing the reflected image, we can obtain the local slope of the defective surface. These profilometric tests are useful to identify and monitor the mirror portions under mechanical stress and to estimate the losses caused by the light rays deflected outside the absorber.

  1. Investigation of Backside Textures for Genesis Solar Wind Silicon Collectors

    Science.gov (United States)

    Gonzalez, C. P.; Burkett, P. J.; Rodriguez, M. C.; Allton, J. H.

    2014-01-01

    Genesis solar wind collectors were comprised of a suite of 15 types of ultrapure materials. The single crystal, pure silicon collectors were fabricated by two methods: float zone (FZ) and Czochralski (CZ). Because of slight differences in bulk purity and surface cleanliness among the fabrication processes and the specific vendor, it is desirable to know which variety of silicon and identity of vendor, so that appropriate reference materials can be used. The Czochralski method results in a bulk composition with slightly higher oxygen, for example. The CZ silicon array wafers that were Genesis-flown were purchased from MEMC Electronics. Most of the Genesis-flown FZ silicon was purchased from Unisil and cleaned by MEMC, although a few FZ wafers were acquired from International Wafer Service (IWS).

  2. Low work function silicon collector for thermionic converters

    Science.gov (United States)

    Chang, K. H.; Shimada, K.

    1976-01-01

    To improve the efficiency of present thermionic converters, single crystal silicon was investigated as a low work function collector material. The experiments were conducted in a test vehicle which resembled an actual thermionic converter. Work function as low as 1.0eV was obtained with an n-type silicon. The stabilities of the activated surfaces at elevated temperatures were tested by raising the collector temperature up to 829 K. By increasing the Cs arrival rate, it was possible to restore the originally activated low work function of the surface at elevated surface temperatures. These results, plotted in the form of Rasor-Warner curve, show a behavior similar to that of metal electrode except that the minimum work function was much lower with silicon than with metals.

  3. Water heating solar system using collector with polycarbonate absorber surface

    Energy Technology Data Exchange (ETDEWEB)

    Souza, Luiz Guilherme Meira de; Sodre, Dilton; Cavalcanti, Eduardo Jose Cidade; Souza, Luiz Guilherme Vieira Meira de; Mendes, Jose Ubiragi de Lima [Universidade Federal do Rio Grande do Norte (UFRN), Natal, RN (Brazil)], e-mails: lguilherme@dem.ufrn.br, diltonsodre@ifba.edu.br, ubiragi@ct.ufrn.br

    2010-07-01

    It is presented s solar collector to be used in a heating water for bath system, whose main characteristics are low cost and easy fabrication and assembly processes. The collector absorber surface consists of a polycarbonate plate with an area of 1.5 m{sup 2}. The water inlet and outlet are made of PVC 50mm, and were coupled to a 6mm thick polycarbonate plate using fiberglass resin. A 200 liters thermal reservoir will be used. This reservoir is also alternative. The absorber heating system works under thermo-siphon regimen. Thermal parameters will be evaluated to prove the feasibility of the studied solar heating system to obtain bath water for a four people family. (author)

  4. A reference heat source for solar collector thermal testing

    Science.gov (United States)

    Harrison, S. J.; Bernier, M. A.

    1984-12-01

    A direct-comparison reference heat source (RHS), used for testing liquid-based solar collectors, is described. A major advantage of the RHS is its capability to measure the product of mass flow and specific heat directly in the test loop. Calibration tests are performed on two reference heat sources over a range of flowrates and inlet temperatures normally encountered in flat-plate solar collector testing (10 C to 95 C). It is shown that at low flowrates (less than or equal to 0.008 kg/s), localized boiling may introduce errors if the heater power density is not reduced as well, whereas operation at flowrates greater than 0.05 kg/s reduces the temperature rise across the RHS, increasing temperature measurement uncertainty. To achieve satisfactory results with an RHS, a stable inlet temperature, good flowrate control, and regulation of the power supplied to the heater are required.

  5. Zeolites as alcohol adsorbents from aqueous solutions

    Directory of Open Access Journals (Sweden)

    Cekova Blagica

    2006-01-01

    Full Text Available The potential usage of zeolites as adsorbents for the removal of organic molecules from water was investigated in a series of experiments with aqueous solutions of lower alcohols. This could represent a simple solution to the problem of cleaning up industrial wastewater as well as recovering valuable chemicals at relatively low costs. Adsorption isotherms of the Langmuir type were applied, and calculations showed that the amount of propanol adsorbed on silicalite corresponded to approximately 70% of the pore volume. The adsorption process is simple, and recovery of the more concentrated products is easily done by heat treatment and/or at lowered pressures. Adsorption experiments with aqueous acetone showed that silicalite had approximately the same adsorption capacity for acetone as for n-propanol. Heats of adsorption were determined calorimetrically.

  6. Analysis of Adsorbed Natural Gas Tank Technology

    Science.gov (United States)

    Knight, Ernest; Schultz, Conrad; Rash, Tyler; Dohnke, Elmar; Stalla, David; Gillespie, Andrew; Sweany, Mark; Seydel, Florian; Pfeifer, Peter

    With gasoline being an ever decreasing finite resource and with the desire to reduce humanity's carbon footprint, there has been an increasing focus on innovation of alternative fuel sources. Natural gas burns cleaner, is more abundant, and conforms to modern engines. However, storing compressed natural gas (CNG) requires large, heavy gas cylinders, which limits space and fuel efficiency. Adsorbed natural gas (ANG) technology allows for much greater fuel storage capacity and the ability to store the gas at a much lower pressure. Thus, ANG tanks are much more flexible in terms of their size, shape, and weight. Our ANG tank employs monolithic nanoporous activated carbon as its adsorbent material. Several different configurations of this Flat Panel Tank Assembly (FPTA) along with a Fuel Extraction System (FES) were examined to compare with the mass flow rate demands of an engine.

  7. Thermal performance of evacuated tube heat pipe solar collector

    Science.gov (United States)

    Putra, Nandy; Kristian, M. R.; David, R.; Haliansyah, K.; Ariantara, Bambang

    2016-06-01

    The high fossil energy consumption not only causes the scarcity of energy but also raises problems of global warming. Increasing needs of fossil fuel could be reduced through the utilization of solar energy by using solar collectors. Indonesia has the abundant potential for solar energy, but non-renewable energy sources still dominate energy consumption. With heat pipe as passive heat transfer device, evacuated tube solar collector is expected to heat up water for industrial and home usage without external power supply needed to circulate water inside the solar collector. This research was conducted to determine the performance of heat pipe-based evacuated tube solar collector as solar water heater experimentally. The experiments were carried out using stainless steel screen mesh as a wick material, and water and Al2O3-water 0.1% nanofluid as working fluid, and applying inclination angles of 0°, 15°, 30°, and 45°. To analyze the heat absorbed and transferred by the prototype, water at 30°C was circulated through the condenser. A 150 Watt halogen lamp was used as sun simulator, and the prototype was covered by an insulation box to obtain a steady state condition with a minimum affection of ambient changes. Experimental results show that the usage of Al2O3-water 0.1% nanofluid at 30° inclination angle provides the highest thermal performance, which gives efficiency as high as 0.196 and thermal resistance as low as 5.32 °C/W. The use of nanofluid as working fluid enhances thermal performance due to high thermal conductivity of the working fluid. The increase of the inclination angle plays a role in the drainage of the condensate to the evaporator that leads to higher thermal performance until the optimal inclination angle is reached.

  8. THE FORMATION OF THE MODIFIED CONCRETE STRUCTURE FOR PIPE COLLECTORS

    Directory of Open Access Journals (Sweden)

    V. M. Pylypenko

    2009-03-01

    Full Text Available In the article main points of developed technology of vibroimpact-pulse compaction of concrete mix for producing the pipes of sewage collectors are stated. It is shown that using the offered technology ensures the intensive growth of concrete strength at an initial period of hardening, the reduction of duration of heat treatment or its absolute avoidance, the manufacture of products with the stability and longevity of structures.

  9. Parabolic-trough solar collectors and their applications

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez-Garcia, A.; Zarza, E.; Valenzuela, L. [CIEMAT-Plataforma Solar de Almeria, Ctra. Senes, km. 4, Tabernas (Almeria) 04200 (Spain); Perez, M. [Departamento de Fisica Aplicada, Universidad de Almeria, Almeria 04120 (Spain)

    2010-09-15

    This paper presents an overview of the parabolic-trough collectors that have been built and marketed during the past century, as well as the prototypes currently under development. It also presents a survey of systems which could incorporate this type of concentrating solar system to supply thermal energy up to 400 C, especially steam power cycles for electricity generation, including examples of each application. (author)

  10. Preparation of Curled Micro bers by Electrospinning with Tip Collector

    Institute of Scientific and Technical Information of China (English)

    TANG Cheng-Chun; CHEN Jun-Chi; LONG Yun-Ze; YIN Hong-Xing; SUN Bin; ZHANG Hong-Di

    2011-01-01

    We report on curled polyvinylpyrrolidone (PVP) microfibers fabricated by a modified electrospinning with a small nail as the tip collector. PVP (45 wt%) ethanol solution is electrospun under different working voltages ranging from 10 to 15, 20, 30 and 40kV. It is found that with the increase of working voltage, the proportion of the curled fibers increases and the uniformity of the curled fibers improves, as well as the repeat distance of the curled structures reducing. Particularly, some curled fibers develop into helical structures under relatively high voltages. Further analyses indicate that the formation mechanism for the curled polymer fibers can be ascribed to electrical driven bending instability and/or mechanical jet buckling when hitting the collector surface. This modified electrospinning technique may be a cost-effective approach for the mass production of curled microfibers.%@@ We report on curled polyvinylpyrrolidone(PVP) microfibers fabricated by a modified electrospinning with a small nail as the tip collector.PVP(45 wt%) ethanol solution is electrospun under different working voltages ranging from 10 to 15,20,30 and 40kV.It is found that with the increase of working voltage,the proportion of the curled fibers increases and the uniformity of the curled fibers improves,as well as the repeat distance of the curled structures reducing.Particularly,some curled fibers develop into helical structures under relatively high voltages.Further analyses indicate that the formation mechanism for the curled polymer fibers can be ascribed to electrical driven bending instability and/or mechanical jet buckling when hitting the collector surface.This modified electrospinning technique may be a cost-effective approach for the mass production of curled microfibers.

  11. Fluorescence of dyes adsorbed on highly organized nanostructured gold surfaces

    NARCIS (Netherlands)

    Levi, Stefano A.; Mourran, Ahmed; Spatz, Joachim P.; Veggel, van Frank C.J.M.; Reinhoudt, David N.; Möller, M.

    2002-01-01

    It is shown that fluorescent dyes can be adsorbed selectively on gold nanoparticles which are immobilized on a glass substrate and that the fluorescence originating from the adsorbed dyes exhibits significantly less quenching when compared to dyes adsorbed on bulk gold. Self-assembled monolayers of

  12. Lifetime of solar collectors in solar heating plants; Levetid for solfangere i solvarmecentraler

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Z.; Fan, J.; Perers, B.; Furbo, S.

    2009-10-15

    Two HT solar collectors, which have been in operation at high temperature levels in Ottrupgaard solar heating plant for 15 years and in Marstal solar heating plant for 13 years, were in the spring of 2009 tested with regard to efficiency. The collectors were also inspected with the aim to evaluate the life time of the collectors. An old version of the HT solar collector, which has been in operation in a Swedish test facility since 1982, was tested with regard to the thermal performance. The measurements showed that the efficiencies of the solar collectors from the two Danish solar heating plants have been decreased since the installation. The reductions of the yearly thermal performance of the solar collectors are at a temperature level of 40 centigrade Celsius, 1% and 4%, respectively, for the Marstal collector and the Ottrupgaard collector. At a temperature level of 60 centigrade Celsius the reduction of the yearly thermal performance is 10% and 11%, respectively, for the Marstal collector and the Ottrupgaard collector. At a temperature level of 80 centigrade Celsius the reduction is 27% and 23%, respectively, for the Marstal collector and the Ottrupgaard collector. Based on the inspection, it is estimated that the reason for the reduction of thermal performance is the condition of the Teflon foil and the installation of the Teflon foil. The Teflon foil is wrinkled and folded and expanded in such a way that the distance between the absorber and the Teflon foil is far too small. Further, cracks in the Teflon foil have been observed. The thermal performance of the Swedish solar collector in the test facility is after 26 years of operation reduced compared to the thermal performance of the collector when it was first installed. For this collector the reduction in thermal performance is only 2-5%. The collectors from Ottrupgaard solar heating plant and from Marstal solar heating plant were in a very good condition with exception of the above mentioned problems with

  13. Adsorbent Alkali Conditioning for Uranium Adsorption from Seawater. Adsorbent Performance and Technology Cost Evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Tsouris, Costas [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Mayes, Richard T. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Janke, Christopher James [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Dai, Sheng [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Das, S. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Liao, W. -P. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Kuo, Li-Jung [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Wood, Jordana [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Gill, Gary [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Byers, Maggie Flicker [Univ. of Texas, Austin, TX (United States); Schneider, Eric [Univ. of Texas, Austin, TX (United States)

    2015-09-30

    The Fuel Resources program of the Fuel Cycle Research and Development program of the Office of Nuclear Energy (NE) is focused on identifying and implementing actions to assure that nuclear fuel resources are available in the United States. An immense source of uranium is seawater, which contains an estimated amount of 4.5 billion tonnes of dissolved uranium. This unconventional resource can provide a price cap and ensure centuries of uranium supply for future nuclear energy production. NE initiated a multidisciplinary program with participants from national laboratories, universities, and research institutes to enable technical breakthroughs related to uranium recovery from seawater. The goal is to develop advanced adsorbents to reduce the seawater uranium recovery technology cost and uncertainties. Under this program, Oak Ridge National Laboratory (ORNL) has developed a new amidoxime-based adsorbent of high surface area, which tripled the uranium capacity of leading Japanese adsorbents. Parallel efforts have been focused on the optimization of the physicochemical and operating parameters used during the preparation of the adsorbent for deployment. A set of parameters that need to be optimized are related to the conditioning of the adsorbent with alkali solution, which is necessary prior to adsorbent deployment. Previous work indicated that alkali-conditioning parameters significantly affect the adsorbent performance. Initiated in 2014, this study had as a goal to determine optimal parameters such as base type and concentration, temperature, and duration of conditioning that maximize the uranium adsorption performance of amidoxime functionalized adsorbent, while keeping the cost of uranium production low. After base-treatment at various conditions, samples of adsorbent developed at ORNL were tested in this study with batch simulated seawater solution of 8-ppm uranium concentration, batch seawater spiked with uranium nitrate at 75-100 ppb uranium, and continuous

  14. Behavior of macromolecules in adsorbed layers

    Institute of Scientific and Technical Information of China (English)

    牟伯中[1; 姚恒申[2; 罗平亚[3

    2000-01-01

    A model for describing the behavior ot macromoiecuies in aosoroea layers is developed by introducing a concept of distribution density of layer thickness U based on stochastic process and probabilistic statistics. The molecular behavior of layers adsorbed on clay particle surfaces is discussed; the random distribution and its statistics of the layer thickness are given by incorporating experimental results with an ionic polyelectrolyte with the molecular weight of 1.08×106and chain charged density of 0.254.

  15. MOLECULAR IMPRINTED POLYMERS--Novel Polymer Adsorbents

    Institute of Scientific and Technical Information of China (English)

    LI Haitao; XU Mancai; SHI Zuoqing; HE Binglin

    2001-01-01

    Molecular imprinted polymers (MIPs) are novel functional polymer materials and known as specific adsorbents for the template molecules. These novel functional polymers have promised potential applications in racemic resolution, sensor, chromatography, adsorptive separation and other fields. This review exhibits the approach for preparing MIPs, the features of MIPs obtained by different routes and the characteristics of adsorptive separations with MIPs. The molecular recognition mechanism and the idea of the present possibilities and limitations of molecular imprinting polymerization are discussed as well.

  16. Green Adsorbents for Wastewaters: A Critical Review

    Directory of Open Access Journals (Sweden)

    George Z. Kyzas

    2014-01-01

    Full Text Available One of the most serious environmental problems is the existence of hazardous and toxic pollutants in industrial wastewaters. The major hindrance is the simultaneous existence of many/different types of pollutants as (i dyes; (ii heavy metals; (iii phenols; (iv pesticides and (v pharmaceuticals. Adsorption is considered to be one of the most promising techniques for wastewater treatment over the last decades. The economic crisis of the 2000s led researchers to turn their interest in adsorbent materials with lower cost. In this review article, a new term will be introduced, which is called “green adsorption”. Under this term, it is meant the low-cost materials originated from: (i agricultural sources and by-products (fruits, vegetables, foods; (ii agricultural residues and wastes; (iii low-cost sources from which most complex adsorbents will be produced (i.e., activated carbons after pyrolysis of agricultural sources. These “green adsorbents” are expected to be inferior (regarding their adsorption capacity to the super-adsorbents of previous literature (complex materials as modified chitosans, activated carbons, structurally-complex inorganic composite materials etc., but their cost-potential makes them competitive. This review is a critical approach to green adsorption, discussing many different (maybe in some occasions doubtful topics such as: (i adsorption capacity; (ii kinetic modeling (given the ultimate target to scale up the batch experimental data to fixed-bed column calculations for designing/optimizing commercial processes and (iii critical techno-economical data of green adsorption processes in order to scale-up experiments (from lab to industry with economic analysis and perspectives of the use of green adsorbents.

  17. Performance Simulation Comparison for Parabolic Trough Solar Collectors in China

    Directory of Open Access Journals (Sweden)

    Jinping Wang

    2016-01-01

    Full Text Available Parabolic trough systems are the most used concentrated solar power technology. The operating performance and optical efficiency of the parabolic trough solar collectors (PTCs are different in different regions and different seasons. To determine the optimum design and operation of the parabolic trough solar collector throughout the year, an accurate estimation of the daily performance is needed. In this study, a mathematical model for the optical efficiency of the parabolic trough solar collector was established and three typical regions of solar thermal utilization in China were selected. The performance characteristics of cosine effect, shadowing effect, end loss effect, and optical efficiency were calculated and simulated during a whole year in these three areas by using the mathematical model. The simulation results show that the optical efficiency of PTCs changes from 0.4 to 0.8 in a whole year. The highest optical efficiency of PTCs is in June and the lowest is in December. The optical efficiency of PTCs is mainly influenced by the solar incidence angle. The model is validated by comparing the test results in parabolic trough power plant, with relative error range of 1% to about 5%.

  18. Design and evaluation of a computer controlled solar collector simulator

    Science.gov (United States)

    Kotas, J. F.; Wood, B. D.

    1980-11-01

    A computer-controlled system has been developed to simulate the thermal processes of a flat-plate solar collector. The simulator is based on four water heaters of capacities of 1.5, 2.5, 5.0 and 5.0 kW providing a maximum design output of 14.0 kW which are controlled by a Nova 3 minicomputer, which also monitors temperatures in the fluid stream. Measurements have been obtained of the steady-state operating values and time constants of the individual heaters at different flow rates in order to utilize effectively their thermal outputs. Software was designed to control the heater system so the total thermal output closely approximates that of an actual heater array, utilizing steady-state or dynamic control modes. Simulation of the heat output of a previously tested collector has resulted in simulated values differing from actual output by a maximum of 3% under identical operating conditions, thus indicating that the simulator represents a viable alternative to the testing of a large field of collectors.

  19. Effective Thermal Conductivity of Adsorbent Packed Beds

    Science.gov (United States)

    Mori, Hideo; Hamamoto, Yoshinori; Yoshida, Suguru

    The effective thermal conductivity of adsorbent packed beds of granular zeolite 13X and granular silica gel A in the presence of stagnant steam or air was measured under different conditions of the adsorbent bed temperature, particle size and filler-gas pressure. The measured effective thermal conductivity showed to become smaller with decreasing particle size or decreasing pressure, but it was nearly independent of the bed temperature. When steam was the filler-gas, the rise in the thermal conductivity of the adsorbent particles due to steam adsorption led to the increase in the effective thermal conductivity of the bed, and this effect was not negligible at high steam pressure for the bed of large particle size. It was found that both the predictions of the effective thermal conductivity by the Hayashi et al.'s model and the Bauer-Schlünder model generally agreed well with the measurements, by considering the particle thermal conductivity rise due to steam adsorption. The thermal conductivity of a consolidated bed of granular zeolite 13X was also measured, and it was found to be much larger than that of the packed bed especially at lower pressure. The above prediction models underestimated the effective thermal conductivity of the consolidated bed.

  20. Remediation of AMD using industrial waste adsorbents

    Science.gov (United States)

    Mohammed, Nuur Hani Bte; Yaacob, Wan Zuhairi Wan

    2016-11-01

    The study investigates the characteristic of industrial waste as adsorbents and its potential as heavy metals absorbents in AMD samples. The AMD sample was collected from active mine pond and the pH was measured in situ. The metal contents were analyzed by ICP-MS. The AMD water was very acidic (pH< 3.5), and the average heavy metals content in AMD were high especially in Fe (822.029 mg/l). Fly ash was found to be the most effective absorbent material containing high percentage of CaO (57.24%) and SiO2 (13.88%), followed by ladle furnace slag containing of high amount of CaO (51.52%) and Al2O3 (21.23%), while biomass ash consists of SiO2 (43.07%) and CaO (12.97%). Tank analysis display a huge changes due to pH value change from acidity to nearly neutral phases. After 50 days, fly ash remediation successfully increase the AMD pH values from pH 2.57-7.09, while slag change from acidity to nearly alkaline phase from pH 2.60-7.3 and biomass has change to pH 2.54-6.8. Fly ash has successfully remove Fe, Mn, Cu, and Ni. Meanwhile, slag sample displays as an effective adsorbent to adsorb more Pb and Cd in acid mine drainage.

  1. On the failure of upscaling the single-collector efficiency to the transport of colloids in an array of collectors

    Science.gov (United States)

    Messina, Francesca; Tosco, Tiziana; Sethi, Rajandrea

    2016-07-01

    Defining the removal efficiency of a filter is a key aspect for colloid transport in porous media. Several efforts were devoted to derive accurate correlations for the single-collector removal efficiency, but its upscaling to the entire porous medium is still a challenging topic. A common approach involves the assumption of deposition being independent of the history of transport, that is, the collector efficiency is uniform along the porous medium. However, this approach was shown inadequate under unfavorable deposition conditions. In this work, the authors demonstrate that it is not adequate even in the simplest case of favorable deposition. Computational Fluid Dynamics (CFD) simulations were run in a vertical array of 50 identical spherical collectors. Particle transport was numerically solved by analyzing a broad range of parameters. The results evidenced that when particle deposition is not controlled by Brownian diffusion, nonexponential concentration profiles are retrieved, in contrast with the assumption of uniform efficiency. If sedimentation and interception dominate, the efficiency of the first sphere is significantly higher compared to the others, and then declines along the array down to an asymptotic value. Finally, a correlation for the upscaled removal efficiency of the entire array was derived.

  2. On Unsaturated Soil Mechanics - Personal Views on Current Research

    Science.gov (United States)

    Pande, G. N.; Pietruszczak, S.

    2015-09-01

    This paper presents the authors' personal views on current research being conducted by various research groups around the world in the broad area of mechanics of unsaturated geomaterials in general and soils in particular. The topic is of interest to a wide spectrum of scientists and engineers working in diverse areas such as geology and geophysics, powder technology, agricultural, petroleum, chemical, geotechnical, civil, environmental and nuclear engineering. Even if we restrict ourselves to civil, geotechnical and environmental engineering, it is noted that a plethora of hypotheses as well as a number of empirical and semi-empirical relations have been introduced for describing the mechanics of unsaturated porous media. However, many of these proposed advances as well as methods of testing may lack sound theoretical basis.

  3. Interacting Blends of Novel Unsaturated Polyester Amide Resin with Styrene

    Directory of Open Access Journals (Sweden)

    Hasmukh S. Patel

    2004-01-01

    Full Text Available Novel unsaturated poly (ester-amide resins (UPEAs were prepared by the reaction between an epoxy resin, namely diglycidyl ether of bisphenol–A (DGEBA and unsaturated aliphatic bisamic acids using a base catalyst. These UPEAs were then blended with a vinyl monomer namely, Styrene (STY. to produce a homogeneous resin syrup. The curing of these UPEAs-STY. resin blends was carried out by using benzoyl peroxide (BPO as a catalyst and was monitored by using a differential scanning calorimeter (DSC. The glass fibre reinforced composites (i.e. laminates of these UPEA-STY. resin blends were fabricated using the DSC data. The chemical, mechanical and electrical properties of the glass fibre composites have also been evaluated. The unreinforced cured samples of the UPEA-STY. resin blends were also analyzed by thermogravimetry (TGA.

  4. Thionation of Some α,β-Unsaturated Steroidal Ketones

    Directory of Open Access Journals (Sweden)

    Natalija M. Krstić

    2010-05-01

    Full Text Available The reactions of selected α,β-unsaturated steroidal ketones with Lawesson’s reagent (LR in CH2Cl2 and toluene under the standard reaction conditions and with a combination of phosphorus pentasulfide with hexamethyldisiloxane (P4S10/HMDO in 1,2-dichlorobenzene (ODCB under microwave irradiation were investigated and for this purpose several cholestane, androstane and pregnane carbonyl derivatives were chosen. Depending on the reagent and the solvent, 19 new sulfur containing compounds, including dithiones 4c and 4d, α,β-unsaturated 3-thiones 3a-e, dimer-sulfides 2a-e, 1,2,4-trithiolanes 5a-e and phosphonotrithioates 6b-e were synthesized. All newly prepared compounds were characterized by IR, 1H- and 13C-NMR spectroscopy and elemental analysis.

  5. Transport of Polycyclic Aromatic Hydrocarbons in Unsaturated Porous Media

    Science.gov (United States)

    Chahal, Maninder; Flury, Markus

    2016-04-01

    Polycyclic aromatic hydrocarbons (PAHs) are complex organic molecules containing 2 or more fused benzene rings. Being hydrophobic and non-polar, PAHs tend to partition to the organic matter in the soil from bulk aqueous phase. Though transport of these contaminants has been well studied in saturated environment, interactive mechanisms of these fluorescent compounds in unsaturated (identified by presence of air-water interface) porous media is still not well understood. We studied is the transport of fluoranthene in unsaturated porous media as facilitated by moving air-water interfaces. Confocal microscopy was used to visualize the interactions of fluoranthene particles in a glass channel packed with quartz glass beads. The packed glass channel was used to mimic a porous media and effects of an advancing and receding capillary fringe on the detachment of fluoranthene.

  6. A comprehensive probabilistic model of chloride ingress in unsaturated concrete

    OpenAIRE

    Bastidas-Arteaga, Emilio; Chateauneuf, Alaa; Sánchez-Silva, Mauricio; Bressolette, Philippe; Schoefs, Franck

    2011-01-01

    International audience; Corrosion induced by chloride ions has become a critical issue for many reinforced concrete structures. The chloride ingress into concrete has been usually simplified as a diffusion problem where the chloride concentration throughout concrete is estimated analytically. However, this simplified approach has several limitations. For instance, it does not consider chloride ingress by convection which is essential to model chloride penetration in unsaturated conditions as ...

  7. Stereoselective synthesis of unsaturated α-amino acids.

    Science.gov (United States)

    Fanelli, Roberto; Jeanne-Julien, Louis; René, Adeline; Martinez, Jean; Cavelier, Florine

    2015-06-01

    Stereoselective synthesis of unsaturated α-amino acids was performed by asymmetric alkylation. Two methods were investigated and their enantiomeric excess measured and compared. The first route consisted of an enantioselective approach induced by the Corey-Lygo catalyst under chiral phase transfer conditions while the second one involved the hydroxypinanone chiral auxiliary, both implicating Schiff bases as substrate. In all cases, the use of a prochiral Schiff base gave higher enantiomeric excess and yield in the final desired amino acid.

  8. FLOW DISTRIBUTION IN A SOLAR COLLECTOR PANEL WITH HORIZONTAL ABSORBER STRIPS

    DEFF Research Database (Denmark)

    Fan, Jianhua; Shah, Louise Jivan; Furbo, Simon

    2007-01-01

    The objective of this work is to theoretically and experimentally investigate the flow and temperature distribution in a solar collector panel with an absorber consisting of horizontal strips. Fluid flow and heat transfer in the collector panel are studied by means of computational fluid dynamics...... (CFD) calculations. Further, experimental investigations of a 12.5 m² solar collector panel with 16 parallel connected horizontal fins are carried out. The flow distribution through the absorber is evaluated by means of temperature measurements on the backside of the absorber tubes. The measured...... rate, properties of solar collector fluid, solar collector fluid inlet temperature and collector tilt angle are shown. The flow distribution through the absorber fins is uniform if high flow rates are used. By decreased flow rate and decreased content of glycol in the glycol/water mixture used as solar...

  9. Comparative test of two large solar collectors for solar field application

    DEFF Research Database (Denmark)

    Bava, Federico; Furbo, Simon

    2014-01-01

    and their results were compared to the experimental measurements. The experimental results showed that the FEP foil caused a decrease in the start efficiency of 2-4 percent. Nevertheless, the collector with the FEP foil performed better when the mean temperature of the solar collector fluid was sufficiently high......Two large solar collectors for solar heating plants were tested according to the standard norm EN 12975-2. The two collectors were almost identical, the only difference being a thin FEP (fluorinated ethylene propylene) foil interposed between the absorber and the glass cover in one of them......, in order to decrease convection losses. The efficiencies of the collectors were tested for different flow rates and tilt angles. The effect of the change from laminar to turbulent regime was investigated as well. Numerical models of the two collectors were developed with the software Soleff...

  10. VALIDATION OF SIMULATION MODELS FOR DIFFERENTLY DESIGNED HEAT-PIPE EVACUATED TUBULAR COLLECTORS

    DEFF Research Database (Denmark)

    Fan, Jianhua; Dragsted, Janne; Furbo, Simon

    2007-01-01

    cases, a good degree of similarity between measured and calculated results is found. With these validated models detailed parameter analyses and collector design optimization are now possible. Key words: Evacuated tubular collector, Heat pipe, Thermal performance, TRNSYS simulation.......Differently designed heat-pipe evacuated tubular collectors have been investigated theoretically and experimentally. The theoretical work has included development of two TRNSYS [1] simulation models for heat-pipe evacuated tubular collectors utilizing solar radiation from all directions. One model...... is developed for heat-pipe evacuated tubular collectors with flat fins and one model is developed for heat-pipe evacuated tubular collectors with curved fins. The models are characterized by detailed calculations of the heat transfer processes in the fins, by detailed shadow modeling and by fins with selective...

  11. A dynamic performance simulation model of flat-plate solar collectors for a heat pump system

    Energy Technology Data Exchange (ETDEWEB)

    Arinze, E.A.; Schoenau, G.J.; Sokhansanj, S. (Saskatchewan Univ., Saskatoon, SK (Canada). College of Engineering); Adefila, S.S.; Mumah, S.M. (Ahmadu Bello Univ., Zaria (Nigeria). Dept. of Chemical Engineering)

    1993-01-01

    Flat-plate collectors are inherently exposed to time-varying meteorological and system parameters. Thus, dynamic modeling, rather than the commonly used steady-state models, is a more accurate approach for the design and performance evaluation of flat-plate solar collectors. The dynamic model presented in this study describes the fluid, plate and cover temperatures of the collector by three different differential equations. Taylor series expansion and the Runge-Kutta method are used in the solution of the differential equations. The accuracy of the dynamic model was tested by comparing the results predicted by the model with experimental performance data obtained for a liquid-cooled flat-plate solar collector with a corrugated transparent fiberglass cover. The predicted results by the dynamic model agreed favorably with the measured experimental data for the flat-plate solar collector. Experimentally determined collector temperatures varied by a maximum of [+-]3[sup o]C from values predicted by the model. (Author)

  12. New Optical Evaluation Approach for Parabolic Trough Collectors: First-Principle OPTical Intercept Calculation

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, G.; Lewandowski, A.

    2012-11-01

    A new analytical method -- First-principle OPTical Intercept Calculation (FirstOPTIC) -- is presented here for optical evaluation of trough collectors. It employs first-principle optical treatment of collector optical error sources and derives analytical mathematical formulae to calculate the intercept factor of a trough collector. A suite of MATLAB code is developed for FirstOPTIC and validated against theoretical/numerical solutions and ray-tracing results. It is shown that FirstOPTIC can provide fast and accurate calculation of intercept factors of trough collectors. The method makes it possible to carry out fast evaluation of trough collectors for design purposes. The FirstOPTIC techniques and analysis may be naturally extended to other types of CSP technologies such as linear-Fresnel collectors and central-receiver towers.

  13. Numerical 3-D heat flux simulations on flat plate solar collectors

    Energy Technology Data Exchange (ETDEWEB)

    Villar, N. Molero; Lopez, J.M. Cejudo; Munoz, F. Dominguez; Garcia, E. Rodriguez; Andres, A. Carrillo [Grupo de Energetica, Escuela Tecnica Superior de Ingenieros Industriales, UMA, Plaza El Ejido s/n, 29013 Malaga (Spain)

    2009-07-15

    A transient 3-D mathematical model for solar flat plate collectors has been developed. The model is based on setting mass and energy balances on finite volumes. The model allows the comparison of different configurations: parallel tubes collectors (PTC), serpentine tube collectors (STC), two parallel plate collectors (TPPC), and other non-usual possibilities like the use of absorbent fluids with semitransparent or transparent plates. Transparent honeycomb insulation between plate and cover can also be modelled. The effect of temperature on the thermal properties of the materials has also been considered. The model has been validated experimentally with a commercial PTC. The model is a useful tool to improve the design of plate solar collectors and to compare different configurations. In order to show the capabilities of the model, the performance of a PTC collector with non-uniformity flow is analysed and compared with experimental data from literature with good agreement. (author)

  14. Use of mirrors with plate collectors; Uso de espejos con colectores planos

    Energy Technology Data Exchange (ETDEWEB)

    Follari, J. A.; Odicino, L. a.; Perello, A. D.; Fasulo, A. J.

    2004-07-01

    We analyze the solar radiative contribution that a fixed flat mirror cam perform on a collector, also fixed in its position , if that mirror is put above the collector. Various angles, be they for the mirror or for the collector are investigated, in order to determine their practical usefulness as a function of the real effective contribution they provide. First the theoretical contribution is calculated using approximative formulae, then the effective contribution to a solar collector connected to a thermal reservoir mow forming a solar heater, is measured. The field of applicability of this device is analyzed considering the cost of collector and the mirror, the usefulness depending on the angle between the collector and the horizontal plain. (Author)

  15. The unsaturated hydraulic characteristics of the Bandelier Tuff

    Energy Technology Data Exchange (ETDEWEB)

    Rogers, D.B.; Gallaher, B.M.

    1995-09-01

    This report summarizes the physical and, unsaturated hydraulic properties of the Bandelier Tuff determined from laboratory measurements made on core samples collected at Los Alamos National Laboratory. We fit new van Genuchten-type moisture retention curves to this data, which was categorized according to member of the Bandelier Tuff and subunit of the Tshirege Member. Reasonable consistency was observed for hydraulic properties and retention curves within lithologic units, while distinct differences were observed for those properties between units. With the moisture retention data, we constructed vertical profiles of in situ matric suction and hydraulic head. These profiles give an indication of the likely direction of liquid water movement within the unsaturated zone and allow comparison of core-scale and field-scale estimates of water flow and solute transport parameters. Our core-derived transport velocities are much smaller than values estimated from tritium, Cl, and NO{sub 3} contamination found recently in boreholes. The contaminant tracer-derived transport velocities from Los Alamos Canyon are greater than corederived values found for the Otowi Member, and for Mortandad Canyon, greater than core-derived values for that borehole. The significant difference found for Mortandad Canyon suggests that fracture or other fast-path transport may be important there. The relatively small difference between observed and predicted velocities at Los Alamos Canyon may mean that vadose zone transport there occurs by unsaturated matrix flow.

  16. Characterization of unsaturated hydraulic parameters for homogeneous and heterogeneous soils

    Energy Technology Data Exchange (ETDEWEB)

    Wildenschild, Dorthe

    1997-09-01

    Application of numerical models for predicting future spreading of contaminants into ground water aquifers is dependent on appropriate characterization of the soil hydraulic properties controlling flow and transport in the unsaturated zone. This thesis reviews the current knowledge on two aspects of characterization of unsaturated hydraulic parameters; estimation of the basic hydraulic parameters for homogeneous soils and statistical representation of heterogeneity for spatially variable soils. The retention characteristic is traditionally measured using steady-state procedures, but new ideas based on dynamic techniques have been developed that reduce experimental efforts and that produce retention curves which compare to those measured by traditional techniques. The unsaturated hydraulic conductivity is difficult to establish by steady-state procedures, and extensive research efforts have been focused on alternative methods that are based on inverse estimation. The inverse methods have commonly been associated with problems of numerical instability and ill-posedness of the parameter estimates, but recent investigations have shown that the uniqueness of parameter estimates can be improved by including additional, independent information on, for instance, the retention characteristic. Also, uniqueness may be improved by careful selection of experimental conditions are parametric functions. (au) 234 refs.

  17. Role of unsaturated soil in a waste containment system

    Energy Technology Data Exchange (ETDEWEB)

    Lim, P.C.; Tay, J.H. [Nanyang Technological Univ. (Singapore)

    1996-12-31

    The role of the unsaturated properties of sand as a drainage layer in a composite liner system for landfills is investigated. The effect of the unsaturated properties of coarse-grained soil on contaminant migration was evaluated by means of a series of simulations using a one-dimensional model of a two- and a three-layer soil liner system for advection and diffusion, respectively. The results showed that under seepage conditions, the effect of an unsaturated sand layer on the advancement of the concentration front was quite insignificant. The arrival time of the C/C{sub o} = 0.5 concentration front increased from 651 days for the case with no sand layer to approximately 951 days for the case with a 1.0-m sand layer. A steady-state flow condition was ultimately established in the sand, and this fact suggests that the capillary action might not be effective. For diffusion, the arrival time of the concentration front increased nonlinearly with a decrease in the degree of saturation and linearly with increasing depths of the sand layer. At a residual degree of saturation, the arrival times of the C/C{sub o} = 0.01 and 0.5 concentration front at the base of the 1-m sand layer were 26.9 and 877.4 years as compared to 1.52 and 2.62 years by advection, respectively. 17 refs., 11 figs.

  18. Modeling of biological clogging in unsaturated porous media

    Science.gov (United States)

    Soleimani, Sahar; Van Geel, Paul J.; Isgor, O. Burkan; Mostafa, Mohamed B.

    2009-04-01

    A two-dimensional unsaturated flow and transport model, which includes microbial growth and decay, has been developed to simulate biological clogging in unsaturated soils, specifically biofilters. The bacterial growth and rate of solute reduction due to biodegradation is estimated using the Monod equation. The effect of microbial growth is considered in the proposed conceptual model that relates the relative permeability term for unsaturated flow to the microbial growth. Two applications of the model are presented in this study. Using the model, the clogging mechanism in different soils has been simulated. The results of the model indicate that the time to reach a clogged state is influenced by the hydraulic properties of the soil. Clogging is delayed in soils with higher saturated hydraulic conductivities, and higher porosities. For the relative permeability model proposed, higher van Genuchten n values lead to a delay in clogging. The model was also used to simulate the progressive clogging of a septic bed as the biomat initially forms at the up-gradient end of the distribution pipe, displacing wastewater infiltration and biomat formation further down-gradient over time.

  19. A quasilinear model for solute transport under unsaturated flow

    Energy Technology Data Exchange (ETDEWEB)

    Houseworth, J.E.; Leem, J.

    2009-05-15

    We developed an analytical solution for solute transport under steady-state, two-dimensional, unsaturated flow and transport conditions for the investigation of high-level radioactive waste disposal. The two-dimensional, unsaturated flow problem is treated using the quasilinear flow method for a system with homogeneous material properties. Dispersion is modeled as isotropic and is proportional to the effective hydraulic conductivity. This leads to a quasilinear form for the transport problem in terms of a scalar potential that is analogous to the Kirchhoff potential for quasilinear flow. The solutions for both flow and transport scalar potentials take the form of Fourier series. The particular solution given here is for two sources of flow, with one source containing a dissolved solute. The solution method may easily be extended, however, for any combination of flow and solute sources under steady-state conditions. The analytical results for multidimensional solute transport problems, which previously could only be solved numerically, also offer an additional way to benchmark numerical solutions. An analytical solution for two-dimensional, steady-state solute transport under unsaturated flow conditions is presented. A specific case with two sources is solved but may be generalized to any combination of sources. The analytical results complement numerical solutions, which were previously required to solve this class of problems.

  20. Saturated versus unsaturated hydrocarbon interactions with carbon nanostructures

    Directory of Open Access Journals (Sweden)

    Deivasigamani eUmadevi

    2014-09-01

    Full Text Available The interactions of various acyclic and cyclic hydrocarbons in both saturated and unsaturated forms with the carbon nanostructures (CNSs have been explored by using density functional theory (DFT calculations. Model systems representing armchair and zigzag carbon nanotubes (CNTs and graphene have been considered to investigate the effect of chirality and curvature of the CNSs towards these interactions. Results of this study reveal contrasting binding nature of the acyclic and cyclic hydrocarbons towards CNSs. While the saturated molecules show stronger binding affinity in acyclic hydrocarbons; the unsaturated molecules exhibit higher binding affinity in cyclic hydrocarbons. In addition, acyclic hydrocarbons exhibit stronger binding affinity towards the CNSs when compared to their corresponding cyclic counterparts. The computed results excellently corroborate the experimental observations. The interaction of hydrocarbons with graphene is more favourable when compared with CNTs. Bader’s theory of atoms in molecules has been invoked to characterize the noncovalent interactions of saturated and unsaturated hydrocarbons. Our results are expected to provide useful insights towards the development of rational strategies for designing complexes with desired noncovalent interaction involving CNSs.

  1. One-dimensional consolidation in unsaturated soils under cyclic loading

    Science.gov (United States)

    Lo, Wei-Cheng; Sposito, Garrison; Lee, Jhe-Wei; Chu, Hsiuhua

    2016-05-01

    The one-dimensional consolidation model of poroelasticity of Lo et al. (2014) for an unsaturated soil under constant loading is generalized to include an arbitrary time-dependent loading. A closed-form solution for the pore water and air pressures along with the total settlement is derived by employing a Fourier series representation in the spatial domain and a Laplace transformation in the time domain. This solution is illustrated for the important example of a fully-permeable soil cylinder with an undrained initial condition acted upon by a periodic stress. Our results indicate that, in terms of a dimensionless time scale, the transient solution decays to zero most slowly in a water-saturated soil, whereas for an unsaturated soil, the time for the transient solution to die out is inversely proportional to the initial water saturation. The generalization presented here shows that the diffusion time scale for pore water in an unsaturated soil is orders of magnitude greater than that in a water-saturated soil, mainly because of the much smaller hydraulic conductivity of the former.

  2. Decrease in membrane phospholipid unsaturation induces unfolded protein response.

    Science.gov (United States)

    Ariyama, Hiroyuki; Kono, Nozomu; Matsuda, Shinji; Inoue, Takao; Arai, Hiroyuki

    2010-07-16

    Various kinds of fatty acids are distributed in membrane phospholipids in mammalian cells and tissues. The degree of fatty acid unsaturation in membrane phospholipids affects many membrane-associated functions and can be influenced by diet and by altered activities of lipid-metabolizing enzymes such as fatty acid desaturases. However, little is known about how mammalian cells respond to changes in phospholipid fatty acid composition. In this study we showed that stearoyl-CoA desaturase 1 (SCD1) knockdown increased the amount of saturated fatty acids and decreased that of monounsaturated fatty acids in phospholipids without affecting the amount or the composition of free fatty acid and induced unfolded protein response (UPR), evidenced by increased expression of C/EBP homologous protein (CHOP) and glucose-regulated protein 78 (GRP78) mRNAs and splicing of Xbox-binding protein 1 (XBP1) mRNA. SCD1 knockdown-induced UPR was rescued by various unsaturated fatty acids and was enhanced by saturated fatty acid. Lysophosphatidylcholine acyltransferase 3 (LPCAT3), which incorporates preferentially polyunsaturated fatty acids into phosphatidylcholine, was up-regulated in SCD1 knockdown cells. Knockdown of LPCAT3 synergistically enhanced UPR with SCD1 knockdown. Finally we showed that palmitic acid-induced UPR was significantly enhanced by LPCAT3 knockdown as well as SCD1 knockdown. These results suggest that a decrease in membrane phospholipid unsaturation induces UPR.

  3. Collapsibility and Volume Change Behavior of Unsaturated Residual Soil

    Directory of Open Access Journals (Sweden)

    Azalan A. Aziz

    2006-01-01

    Full Text Available Residual soils occur in most countries of the world but the greater areas and depths are normally found in tropical humid areas. In these places, the soil forming processes are still very active and the weathering development is much faster than the erosive factor. Most residual soil exhibit high suctions for most of the year. The absence of positive pore water pressure except immediately after rain, makes conventional soil mechanics for saturated soil not so relevant. Ignorance or lack of understanding of the geotechnical behavior of soil in the partially or unsaturated state has caused a lot of damages to infrastructures, buildings and other structures. For instance, the collapsibility and volume change of partially saturated soils in connection with the drying or wetting causes a lot of damage in foundation, roads and other structures. It is also observed that many shallow slope failures involve a slumping (collapse type of failure. As such, the development of extended soil mechanics, which embraces the soil in the unsaturated state or subjected to soil suction, is essential. This study examines the collapsibility and volume change behavior specifically of an unsaturated residual soil under various levels of applied matric suction (ua-uw and net mean stress (σ-ua in a predetermined stress path. The volume change of the soil is found to be sensitive to both the applied matric suction and net mean stress. The soil is found to exhibit a collapsibility behavior upon a reduction in applied matric suction at constant net mean stress.

  4. Saturated vs. unsaturated hydrocarbon interactions with carbon nanostructures

    Science.gov (United States)

    Umadevi, Deivasigamani; Sastry, G. Narahari

    2014-01-01

    The interactions of various acyclic and cyclic hydrocarbons in both saturated and unsaturated forms with the carbon nanostructures (CNSs) have been explored by using density functional theory (DFT) calculations. Model systems representing armchair and zigzag carbon nanotubes (CNTs) and graphene have been considered to investigate the effect of chirality and curvature of the CNSs toward these interactions. Results of this study reveal contrasting binding nature of the acyclic and cyclic hydrocarbons toward CNSs. While the saturated molecules show stronger binding affinity in acyclic hydrocarbons; the unsaturated molecules exhibit higher binding affinity in cyclic hydrocarbons. In addition, acyclic hydrocarbons exhibit stronger binding affinity toward the CNSs when compared to their corresponding cyclic counterparts. The computed results excellently corroborate the experimental observations. The interaction of hydrocarbons with graphene is more favorable when compared with CNTs. Bader's theory of atoms in molecules has been invoked to characterize the noncovalent interactions of saturated and unsaturated hydrocarbons. Our results are expected to provide useful insights toward the development of rational strategies for designing complexes with desired noncovalent interaction involving CNSs. PMID:25232539

  5. Saturated versus unsaturated hydrocarbon interactions with carbon nanostructures

    Science.gov (United States)

    Umadevi, Deivasigamani; Sastry, G. Narahari

    2014-09-01

    The interactions of various acyclic and cyclic hydrocarbons in both saturated and unsaturated forms with the carbon nanostructures (CNSs) have been explored by using density functional theory (DFT) calculations. Model systems representing armchair and zigzag carbon nanotubes (CNTs) and graphene have been considered to investigate the effect of chirality and curvature of the CNSs towards these interactions. Results of this study reveal contrasting binding nature of the acyclic and cyclic hydrocarbons towards CNSs. While the saturated molecules show stronger binding affinity in acyclic hydrocarbons; the unsaturated molecules exhibit higher binding affinity in cyclic hydrocarbons. In addition, acyclic hydrocarbons exhibit stronger binding affinity towards the CNSs when compared to their corresponding cyclic counterparts. The computed results excellently corroborate the experimental observations. The interaction of hydrocarbons with graphene is more favourable when compared with CNTs. Bader’s theory of atoms in molecules has been invoked to characterize the noncovalent interactions of saturated and unsaturated hydrocarbons. Our results are expected to provide useful insights towards the development of rational strategies for designing complexes with desired noncovalent interaction involving CNSs.

  6. Two dimensional simulation of direct methanol fuel cell : a new (embedded) type of current collectors

    OpenAIRE

    Kulikovsky, A. A.; Divisek, J.; Kornyshev, Yu. M.

    2000-01-01

    A two-dimensional numerical model of the direct methanol fuel cell with gas fuel is developed. Simulation of the cell with current collectors of conventional geometry reveal the formation of fuel-depleted, "shaded" regions in the cathode and anode catalyst layers. These regions are positioned in front of current collectors, farther from the gas channel windows. Another disadvantage of the conventional geometry is the concentration of electron current at the edges of current collectors. Based ...

  7. Municipal waste collectors and hepatitis B and C virus infection: a cross-sectional study.

    Science.gov (United States)

    Tsovili, Eva; Rachiotis, George; Symvoulakis, Emmanouil K; Thanasias, Efthimios; Giannisopoulou, Olganthi; Papagiannis, Dimitrios; Eleftheriou, Andreas; Hadjichristodoulou, Christos

    2014-12-01

    There is some evidence that municipal waste collectors are at risk of Hepatitis B virus infection (HBV). Published information on risk of Hepatitis C Virus (HCV) infection among waste collectors is scant. We aimed to investigate the prevalence and possible risk factors of HBV and HCV infections among waste collectors in a municipality of the broader region of Attica, Greece. A cross-sectional sero-prevalence study was conducted in a municipality of the broader region of Attica, Greece. Fifty waste collectors participated in the study (response rate: 95%). The group of municipal waste collectors was compared to a convenient sample of white collar employees not exposed to waste (No 83). Waste collectors recorded a significantly higher prevalence of hepatitis B virus infection (anti-HBc positivity) in comparison to the reference group (15% vs. 2.5%, respectively; p .001). Waste collectors who reported frequent exposure to needle-stick injuries had higher risk of HBV infection (RR 8.28; 95% CI 1.076-63.79; p 0.033). Only one municipal waste collector was anti-HCV positive. Our study corroborates previous results of an increased prevalence of Hepatitis B infection among municipal waste collectors. In addition we found that needle stick injuries were associated with the risk of HBV infection. By contrast, HCV infection does not seem to represent a significant occupational hazard among waste collectors. Vaccination against HBV among municipal solid waste collectors and promotion and use of safer methods for the collection of non-hospital medical waste could represent potential measures for the prevention of Hepatitis B Virus infection among municipal waste collectors.

  8. Optimization of Thin-Film Transparent Plastic Honeycomb Covered Flat-Plate Solar Collectors. Phase 2.

    Science.gov (United States)

    2007-11-02

    the former preferred for high-temperature collectors since it is opaque in the longer wavelength region and hence improves the efficiency by reducing re...different temperature regions . The analyses show that collectors equipped with Lexan honeycomb are more cost ef- fective than comparable nonhoneycomb...Contract E(04-3)- 1081. " REFERENCES 1. Francia , G., "A New Collector of Solar Energy -- Theory and Experimental Verification -- Calculation of the

  9. Formation of oil complex collectors in the Pripyatskiy trough. Formirovaniye kollektorov neftenosnykh kompleksov Pripyatskogo progiba

    Energy Technology Data Exchange (ETDEWEB)

    Demidovich, L.A.

    1979-01-01

    Based on a comprehensive study of sedimentary formations, the formation of capacitance and filtering properties of rocks is examined. In order to clarify the conditions of formation and dispersal of rock-collectors of oil and gas, tectonic-lithological geochemical method is used. Results are used from multiple-factor analysis. A general classification of the collectors is given. It was compiled with regard for rock lithogenesis. Possibilities are examined for predicting collectors using the data of geochemical studies.

  10. Indoor test for thermal performance evaluation on the Sunworks (air) solar collector

    Science.gov (United States)

    1978-01-01

    The test procedure used and the results obtained from an evaluation test program conducted to obtain thermal performance data on a Sunworks single glazed air solar collector under simulated conditions are described. A time constant test and incident angle modifier test were conducted to determine the transient effect and the incident angle effect on the collector. These results and the results of the collector load test are also discussed.

  11. Indoor test for thermal performance of the Sunmaster evacuated tube (liquid) solar collector

    Science.gov (United States)

    1979-01-01

    The test procedures used to obtain the thermal performance data for a solar collector under simulated conditions are presented. Tests included a stagnation test, a time constant test, a thermal efficiency test, an incident angle modifier test, and a hot fill test. All tests were performed at ambient conditions and the transient effect and the incident angle effect on the collector were determined. The solar collector is a water working fluid type.

  12. A Dynamic Multinode Model for Component-Oriented Thermal Analysis of Flat-Plate Solar Collectors

    OpenAIRE

    Reiter, Christoph N.; Christoph Trinkl; Wilfried Zörner; Hanby, Vic I.

    2015-01-01

    A mathematical model of a flat-plate solar collector was developed on the basis of the physical principles of optics and heat transfer in order to determine collector’s component temperatures as well as collector efficiency. In contrast to many available models, the targeted use of this dynamic model is the detailed, theoretical investigation of the thermal behaviour of newly developed or adjusted collector designs on component level, for example, absorber, casing, or transparent cover. The d...

  13. The Effect of the Configuration of the Absorber on the Performance of Flat Plate Thermal Collector

    OpenAIRE

    Yan, Moyu; Qu, Ming; Peng, Steve

    2016-01-01

    In this study, a numerical thermal analysis for a new designed flat plate thermal collector was conducted through modeling. The new flat plate thermal collector has ellipse shaped tubes inside a wavy shaped absorber, which is made of stainless steel. For the comparison, the conventional flat plate thermal collector with circular copper tubes served as a base case was also modeled. Hottel-Whillier equations were utilized to formulate thermal networks for both models developed in Engineering Eq...

  14. Different collector types for sampling deposition of polycyclic aromatic hydrocarbons--comparison of measurement results and their uncertainty.

    Science.gov (United States)

    Gladtke, Dieter; Bakker, Frits; Biaudet, Hugues; Brennfleck, Alexandra; Coleman, Peter; Creutznacher, Harald; Van Egmond, Ben F; Hafkenscheid, Theo; Hahne, Frank; Houtzager, Marc M; Leoz-Garziandia, Eva; Menichini, Edoardo; Olschewski, Anja; Remesch, Thomas

    2012-08-01

    Different collector types, sample workup procedures and analysis methods to measure the deposition of polycyclic aromatic hydrocarbons (PAH) were tested and compared. Whilst sample workup and analysis methods did not influence the results of PAH deposition measurements, using different collector types changed the measured deposition rates of PAH significantly. The results obtained with a funnel-bottle collector showed the highest deposition rates and a low measurement uncertainty. The deposition rates obtained with the wet-only collectors were the lowest at industrial sites and under dry weather conditions. For the open-jar collectors the measurement uncertainty was high. Only at an industrial site with extremely high PAH deposition rates the results of open-jar collectors were comparable to those obtained with funnel-bottle collectors. Thus, if bulk deposition of PAH has to be measured, funnel-bottle combinations are proved to be the collectors of choice. These collectors were the only ones always fulfilling the requirements of European legislation.

  15. The Uranium from Seawater Program at the Pacific Northwest National Laboratory: Overview of Marine Testing, Adsorbent Characterization, Adsorbent Durability, Adsorbent Toxicity, and Deployment Studies

    Energy Technology Data Exchange (ETDEWEB)

    Gill, Gary A.; Kuo, Li-Jung; Janke, Chris J.; Park, Jiyeon; Jeters, Robert T.; Bonheyo, George T.; Pan, Horng-Bin; Wai, Chien; Khangaonkar, Tarang; Bianucci, Laura; Wood, Jordana R.; Warner, Marvin G.; Peterson, Sonja; Abrecht, David G.; Mayes, Richard T.; Tsouris, Costas; Oyola, Yatsandra; Strivens, Jonathan E.; Schlafer, Nicholas J.; Addleman, R. Shane; Chouyyok, Wilaiwan; Das, Sadananda; Kim, Jungseung; Buesseler, Ken; Breier, Crystal; D’Alessandro, Evan

    2016-02-07

    The Pacific Northwest National Laboratory’s (PNNL) Marine Science Laboratory (MSL) located along the coast of Washington State is evaluating the performance of uranium adsorption materials being developed for seawater extraction under realistic marine conditions with natural seawater. Two types of exposure systems were employed in this program: flow-through columns for testing of fixed beds of individual fibers and pellets and a recirculating water flume for testing of braided adsorbent material. Testing consists of measurements of the adsorption of uranium and other elements from seawater as a function of time, typically 42 to 56 day exposures, to determine the adsorbent capacity and adsorption rate (kinetics). Analysis of uranium and other trace elements collected by the adsorbents was conducted following strong acid digestion of the adsorbent with 50% aqua regia using either Inductively Coupled Plasma Optical Emission Spectrometry (ICP-OES) or Inductively Coupled Plasma Mass Spectrometer (ICP-MS). The ORNL 38H adsorbent had a 56 day adsorption capacity of 3.30 ± 0.68 g U/ kg adsorbent (normalized to a salinity of 35 psu), a saturation adsorption capacity of 4.89 ± 0.83 g U/kg of adsorbent material (normalized to a salinity of 35 psu) and a half-saturation time of 28 ± 10 days. The AF1 adsorbent material had a 56 day adsorption capacity of 3.9 ± 0.2 g U/kg adsorbent material (normalized to a salinity of 35 psu), a saturation capacity of 5.4 ± 0.2 g U/kg adsorbent material (normalized to a salinity of 35 psu) and a half saturation time of 23 ± 2 days. The ORNL amidoxime-based adsorbent materials are not specific for uranium, but also adsorb other elements from seawater. The major doubly charged cations in seawater (Ca and Mg) account for a majority of the cations adsorbed (61% by mass and 74% by molar percent). For the ORNL AF1 adsorbent material, U is the 4th most abundant element adsorbed by mass and 7th most abundant by molar percentage

  16. Higher Magnification Imaging of the Polished Aluminum Collector Returned from the Genesis Mission

    Science.gov (United States)

    Rodriquez, Melissa C.; Burkett, P. J.; Allton, J. H.

    2011-01-01

    The polished aluminum collector (previously referred to as the polished aluminum kidney) was intended for noble gas analysis for the Gene-sis mission. The aluminum collector, fabricated from alloy 6061T, was polished for flight with alumina, then diamond paste. Final cleaning was performed by soak-ing and rinsing with hexane, then isopropanol, and last-ly megasonically energized ultrapure water prior to installation. It was mounted inside the collector canister on the thermal shield at JSC in 2000. The polished aluminum collector was not surveyed microscopically prior to flight.

  17. Simulations of geometry effects and loss mechanisms affecting the photon collection in photovoltaic fluorescent collectors

    Directory of Open Access Journals (Sweden)

    Rau U.

    2012-06-01

    Full Text Available Monte-Carlo simulations analyze the photon collection in photovoltaic systems with fluorescent collectors. We compare two collector geometries: the classical setup with solar cells mounted at each collector side and solar cells covering the collector back surface. For small ratios of collector length and thickness, the collection probability of photons is equally high in systems with solar cells mounted on the sides or at the bottom of the collector. We apply a photonic band stop filter acting as an energy selective filter which prevents photons emitted by the dye from leaving the collector. We find that the application of such a filter allows covering only 1% of the collector side or bottom area with solar cells. Furthermore, we compare ideal systems in their radiative limits to systems with included loss mechanisms in the dye, at the mirror, or the photonic filter. Examining loss mechanisms in photovoltaic systems with fluorescent collectors enables us to estimate quality limitations of the used materials and components.

  18. The program for calculation of heat productivity of solar converters with flat collectors

    Energy Technology Data Exchange (ETDEWEB)

    Kazarian, E.; Vrtanessyan, K.; Kazarian, G. [State Engineering University of Armenia, Yerevan (Armenia)

    1997-12-31

    The program for calculation of heat productivity of Solar Converters with flat collectors allows to calculate the parameters of heliosystem taking into account the input data and monthly meteorological data of regions. For solar heat study and predesigning process it is expedient to use a program for flat collectors productivity calculation. That program allows to calculate the collector`s parameters and characteristics proceeding from meteorological input data. Depending on the season of the year that program takes into account the whole absorbed solar energy and determines the coefficient for additional energy for the provision of necessary temperature

  19. Solar-collector studies for solar-heating and -cooling applications. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Liers, H. S.; Yenamandra, N.; Brittle, P. N.; Raymond, M.; Edelman, D. G.

    1979-01-01

    Mirror and lens solar concentrator collectors suitable for space heating, cooling, and hot water applications were surveyed. The scope of the survey includes identification, analysis and comparison for all concentrating collector types for which prototypes and/or market models are or have been built for less than 10X concentration. The survey includes greater than 10X concentration ratios for manufacturers marketing such collectors for space heating and/or cooling applications. Collectors in the conceptual stage are noted and their attributes and disadvantages identified.

  20. Instrumentation for measuring direct and diffuse insolation in testing thermal collectors

    Energy Technology Data Exchange (ETDEWEB)

    Reed, K A

    1976-01-01

    The efficiencies of thermal collectors are traditionally expressed with respect to the total (direct beam plus diffuse) insolation at the collector plane. Evaluation of the performance of concentrating collectors, however, requires, in addition, a knowledge of the insolation which is within the angular field of view of the collector. The use of pyranometers to measure the total insolation as well as the insolation within specified angular fields of view, together with a normal incidence pyrheliometer to measure the direct beam component, is described. The instrument calibration procedure is discussed, and several data are presented.

  1. NUMERICAL SIMULATION OF THE AIR FLOW AROUND THE ARRAYS OF SOLAR COLLECTORS

    Directory of Open Access Journals (Sweden)

    Vukman V Bakić

    2011-01-01

    Full Text Available This paper deals with the numerical simulation of air around the arrays of flat plate collectors and determination of the flow field, which should provide a basis for estimating a convective heat losses, a parameter which influences their working characteristics. Heat losses are the result of the reflection on the glass, conductive losses at the collector's absorber plate, radiation of the absorber plate and convective losses on the glass. Wind velocity in the vicinity of the absorber plate depends on its position in the arrays of collectors. Results obtained in the numerical simulation of flow around collectors were used as boundary conditions in modeling of thermal-hydraulic processes inside the solar collector. A method for coupling thermal-hydraulic processes inside the collector with heat transfer from plate to tube bundle was developed, in order to find out the distribution of the temperature of the absorber plate and the efficiency of the flat plate collectors. Analyses of flow around arrays of collectors are preformed with RNG k - ε model. Three values for free-stream velocity were analysed, i.e. 1 m/s, 5 m/s and 10 m/s, as well as two values for the angle between the ground and the collector (20° and 40°. Heat transfer coefficient was determined from the theory of boundary layer. Heat transfer inside the plate cavity was analyzed assuming constant intensity of radiation.

  2. A diagram for defined flat plate solar collector area for solar floor heating

    Energy Technology Data Exchange (ETDEWEB)

    Altuntop, N.; Tekin, Y. [Erciyes University, Dept. of Mechanical Engineering (Turkey); Cengel, Y.A. [Nevada Reno University, Dept. of Mechanical Engineering, NV (United States)

    2000-07-01

    In winters, one of the best ways to heat living areas by using the low- temperature - water obtained from flat-plate solar collectors is the floor heating. In floor heating, low temperature-water (30 + 60 deg C) can be used and heat can be stored in water when solar radiation is not possible. In this study, it is aimed to define collector surface needed to supply heat for floor heating. It is also aimed to define and explain the diagram developed for every heating months. The calculations about the sun geometry are used to define the amount of radiation coming in to the collectors. Formulations are made about the definition of solar radiation absorbed by the collectors, the total heat loss coefficient, and the collector plate surface temperature. These formulations are transformed in to the diagram. In addition, the studies, heat transfer calculations and design parameters about the floor of the heating areas are used. A combined collector floor heating diagram is obtained. This diagram is used to define collector surface area necessary to supply heat for floor heated places. In this diagram, the collector surface area is obtained by giving the heat capacity of the place area, floor surface temperature, approximate modulation distance of the floor, the elevation of city, collector slope angle, wind speed, sun shine lime and the amount of the solar radiation obtained from the solar radiation diagram. (authors)

  3. Methods for determining the hydrodynamic parameters of oil and gas collectors

    Energy Technology Data Exchange (ETDEWEB)

    Megyeri, M.

    1984-01-01

    The Hungarian oil and gas extracting industry has had high resolution pressure meters at its disposal since 1976. Pulsed measurement of the interaction between wells has entered oil field practice which gives a basis for determining the throughput and the useful volume of the collector or the examined sector of a collector. The results are briefly presented of developments which took place between 1980 and 1982, aimed at developing methods for determining the volume of a water zone associated with oil and gas collectors, studying the relationships between the change in pressure and porosity caused by influxes and outflows and measuring the shift of the phase interfaces in collectors.

  4. Dynamics and control of a solar collector system for near Earth object deflection *

    Institute of Scientific and Technical Information of China (English)

    Shen-Ping Gong; Jun-Feng Li; Yun-Feng Gao

    2011-01-01

    A solar collector system is a possible method using solar energy to deflect Earth-threatening near-Earth objects. We investigate the dynamics and control of a solar collector system including a main collector (MC) and secondary collector (SC).The MC is used to collect the sunlight to its focal point, where the SC is placed and directs the collected light to an asteroid. Both the relative position and attitude of the two collectors should be accurately controlled to achieve the desired optical path. First,the dynamical equation of the relative motion of the two collectors in the vicinity of the asteroid is modeled. Secondly, the nonlinear sliding-mode method is employed to design a control law to achieve the desired configuration of the two collectors. Finally,the deflection capability of this solar collector system is compared with those of the gravitational tractor and solar sail gravitational tractor. The results show that the solar collector is much more efficient with respect to deflection capability.

  5. Flow distribution in a solar collector panel with horizontally inclined absorber strips

    DEFF Research Database (Denmark)

    Fan, Jianhua; Shah, Louise Jivan; Furbo, Simon

    2007-01-01

    dynamics (CFD) calculations. Further, experimental investigations of a 12.5 m(2) solar collector panel with 16 parallel connected horizontal fins are carried out. The flow distribution through the absorber is evaluated by means of temperature measurements on the backside of the absorber tubes. The measured...... rate, properties of solar collector fluid, solar collector fluid inlet temperature and collector tilt angle are shown. The flow distribution through the absorber fins is uniform if high flow rates are used. By decreased flow rate and decreased content of glycol in the glycol/water mixture used as solar...

  6. Standard Test Method for Determining Thermal Performance of Tracking Concentrating Solar Collectors

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    1987-01-01

    1.1 This test method covers the determination of thermal performance of tracking concentrating solar collectors that heat fluids for use in thermal systems. 1.2 This test method applies to one- or two-axis tracking reflecting concentrating collectors in which the fluid enters the collector through a single inlet and leaves the collector through a single outlet, and to those collectors where a single inlet and outlet can be effectively provided, such as into parallel inlets and outlets of multiple collector modules. 1.3 This test method is intended for those collectors whose design is such that the effects of diffuse irradiance on performance is negligible and whose performance can be characterized in terms of direct irradiance. Note 1—For purposes of clarification, this method shall apply to collectors with a geometric concentration ratio of seven or greater. 1.4 The collector may be tested either as a thermal collection subsystem where the effects of tracking errors have been essentially removed from t...

  7. Thermal performance evaluation of the Solargenics solar collector at outdoor conditions

    Science.gov (United States)

    1978-01-01

    Test procedures used during the performance of an evaluation program are presented. The test program was conducted to obtain the following performance data and information on the solar collector. (1) thermal performance data under outdoor conditions; (2) structural behavior of collector under static conditions; (3) effects of long term exposure to material weathering elements. The solargenics is a liquid, single-glazed, flat plate collector. Approximate dimensions of each collector are 240 inches long, 36 inches wide, and 3.5 inches in depth.

  8. Effect of Glass Thickness on Performance of Flat Plate Solar Collectors for Fruits Drying

    Directory of Open Access Journals (Sweden)

    Ramadhani Bakari

    2014-01-01

    Full Text Available This study aimed at investigating the effect of thickness of glazing material on the performance of flat plate solar collectors. Performance of solar collector is affected by glaze transmittance, absorptance, and reflectance which results into major heat losses in the system. Four solar collector models with different glass thicknesses were designed, constructed, and experimentally tested for their performances. Collectors were both oriented to northsouth direction and tilted to an angle of 10° with the ground toward north direction. The area of each collector model was 0.72 m2 with a depth of 0.15 m. Low iron (extra clear glass of thicknesses 3 mm, 4 mm, 5 mm, and 6 mm was used as glazing materials. As a control, all collector performances were analysed and compared using a glass of 5 mm thickness and then with glass of different thickness. The results showed that change in glass thickness results into variation in collector efficiency. Collector with 4 mm glass thick gave the best efficiency of 35.4% compared to 27.8% for 6 mm glass thick. However, the use of glass of 4 mm thick needs precautions in handling and during placement to the collector to avoid extra costs due to breakage.

  9. MOLECULAR IMPRINTED POLYMERS—Novel Polymer Adsorbents

    Institute of Scientific and Technical Information of China (English)

    LIHaitao; XUMancai; 等

    2001-01-01

    Molecular imprinted polymers(MIPs) are novel functional polymer materials and known as specific adsorbents for the template molecules,These novel functional polymers have promised potential applications in racemic resolution,sensor,chromatography,adsorptive separation and other fields.This review exhibits the approach for preparing MIPs,the features of MIPs obtained by different routes and the characteristics of adsorptive separations with MIPs.The molecular recognition mechanism and the idea of the present possibilities and limitations of molecular imprinting polymerization are discussed as well.

  10. Adsorption characteristics of water vapor on honeycomb adsorbents

    Science.gov (United States)

    Wajima, Takaaki; Munakata, Kenzo; Takeishi, Toshiharu; Hara, Keisuke; Wada, Kouhei; Katekari, Kenichi; Inoue, Keita; Shinozaki, Yohei; Mochizuki, Kazuhiro; Tanaka, Masahiro; Uda, Tatsuhiko

    2011-10-01

    Recovery of tritium released into working areas in nuclear fusion plants is a key issue of safety. A large volume of air from tritium fuel cycle or vacuum vessel should be processed by air cleanup system (ACS). In ACS, tritium gas is oxidized by catalysts, and then tritiated water vapor is collected by adsorbents. This method can remove tritium effectively, whereas high throughput of air causes high-pressure drop in catalyst and adsorbent beds. In this study, the applicability of honeycomb-type adsorbents, which offers a useful advantage in terms of their low-pressure drop, to ACS was examined, in comparison with conventional pebble-type adsorbent. Honeycomb-type adsorbent causes far less pressure drop than pebble-type adsorbent beds. Adsorption capacity of water vapor on a honeycomb-type adsorbent is slightly lower than that on a pebble-type adsorbent, while adsorption rate of water vapor on honeycomb-type adsorbent is much higher than that of pebble-type adsorbent.

  11. Experience with building integrated solar collectors; Erfaring med bygningsintegrerte solfangere

    Energy Technology Data Exchange (ETDEWEB)

    Simonsen, Ingeborg; Time, Berit; Andresen, Inger

    2011-07-01

    The main objective of the research 'Zero Emission Buildings' ZEB is to develop products and solutions that provide buildings with zero greenhouse gas emissions associated with the production, operation and disposal. Can we make this happen must the building produce more energy than it needs to compensate for greenhouse gas emissions from the production of materials and the actual construction.To build up knowledge on experience with building integrated solar collectors in Norway, we have in this study made interviews with suppliers and manufacturers of solar collectors and some building owners. Since the focus is on climate shell, we have limited the study to include solar collectors to replace a part of the cladding or roofing. Construction upstairs roofing, outside facade or freestanding rack is not considered as building integrated in this context. The providers we have been in contact with appeals to slightly different parts of the market. This is reflected in the product's development, assembly and approach to the calculation of energy delivery. Overall, providers may offer a range of products suitable for both the professional and skilled carpenter, the interested 'man in the street' . The feedback we have received shows generally good experiences with the product and the installation. Because of the preliminary short operating periods of the investigated plants we have little data on energy supply from these plants. In summary, we can say that the knowledge and the products are available and it is up to use to use them.(Author)

  12. Fuzzy Universal Model Approximator for Distributed Solar Collector Field Control

    KAUST Repository

    Elmetennani, Shahrazed

    2014-07-01

    This paper deals with the control of concentrating parabolic solar collectors by forcing the outlet oil temperature to track a set reference. A fuzzy universal approximate model is introduced in order to accurately reproduce the behavior of the system dynamics. The proposed model is a low order state space representation derived from the partial differential equation describing the oil temperature evolution using fuzzy transform theory. The resulting set of ordinary differential equations simplifies the system analysis and the control law design and is suitable for real time control implementation. Simulation results show good performance of the proposed model.

  13. Insect thin films as sun blocks, not solar collectors.

    Science.gov (United States)

    Koon, D W; Crawford, A B

    2000-05-20

    We measured the visible reflectance spectra of whole wing sections from three species of iridescent butterflies and moths, for normal incidence, integrated over all reflected angles. In this manner, we separated the optics of the thin films causing the iridescence from the optics of the rest of the scale. We found that iridescence reduces solar absorption by the wing in all cases, typically by approximately 20% or less, in contrast to claims by Miaoulis and Heilman [Ann. Entomol. Soc. Am. 91, 122 (1998)] that the thin-film structures that produce iridescence act as solar collectors.

  14. Key aspects of cost effective collector and solar field design

    Science.gov (United States)

    von Reeken, Finn; Nicodemo, Dario; Keck, Thomas; Weinrebe, Gerhard; Balz, Markus

    2016-05-01

    A study has been performed where different key parameters influencing solar field cost are varied. By using levelised cost of energy as figure of merit it is shown that parameters like GoToStow wind speed, heliostat stiffness or tower height should be adapted to respective site conditions from an economical point of view. The benchmark site Redstone (Northern Cape Province, South Africa) has been compared to an alternate site close to Phoenix (AZ, USA) regarding site conditions and their effect on cost-effective collector and solar field design.

  15. Theoretical Study of the Compound Parabolic Trough Solar Collector

    Directory of Open Access Journals (Sweden)

    Dr. Subhi S. Mahammed

    2012-06-01

    Full Text Available Theoretical design of compound parabolic trough solar collector (CPC without tracking is presented in this work. The thermal efficiency is obtained by using FORTRAN 90 program. The thermal efficiency is between (60-67% at mass flow rate between (0.02-0.03 kg/s at concentration ratio of (3.8 without need to tracking system.The total and diffused radiation is calculated for Tikrit city by using theoretical equations. Good agreement between present work and the previous work.

  16. Myers-Briggs personality types of art collectors.

    Science.gov (United States)

    Gridley, Mark C

    2004-04-01

    27 art collectors (13 men, 14 women) completed the Myers-Briggs Type Indicator. Their age range was 37 to 86 years and the mean 59.5 yr. Seventy percent were classified as Intuition types instead of Sensation types (versus its 25% incidence in the general population). This corresponds to personality profiles of artists and the disproportionately high incidence of high scores on the related Openness to Experience factor in studies of creative personalities, thereby supporting the contention that persons creating art and appreciating art have personality traits in common.

  17. A Garbage Collector for a Large Distributed Address Space,

    Science.gov (United States)

    1985-06-01

    Memory 5 The Garbage Collector 6 Practical Implementation 7 Conclusions 8 Acknowledgements 9 Reference Appendix A. Algorithm in Pidgin Algol e’ * * S...lowest level, but also contributes to the garbage collection of the higher level areas above it. The algorithm is given in pidgin Algol in Appendix A...NJECESSARILY AV.-tLAfq F 10 MFMF:rRS 6’ INE PUBLIC OR TUOW-VMERCIAL ORG ,N’ ,ONS 13 APPENDIX A. Algorithm In Pidgin Algol. TYPE COLOUR - (whlte,grey

  18. An NMR study of adsorbed helium films

    Science.gov (United States)

    Kent, Anthony Joseph

    The properties of sub-monolayer Helium-3 films adsorbed on two totally different but planar substrates, Mylar† film and exfoliated graphite have been studied using NMR. The nuclear magnetic relaxation times T1 and T 2 have been measured as functions of fractional monolayer completion, temperature, substrate plane orientation and Larmor frequency using a specially designed and constructed NMR spectrometer system. The results obtained with a Mylar film substrate are consistent3with the formation of patches of solid 3He at regions of preferential adsorption on the substrate. Measurements of T2 m very low coverage 3He films on exfoliated graphite also indicate that the adsorbate forms areas of relatively high density solid, in agreement with the thermodynamic analysis of Elgin and Goodstein. Finally, detailed measurements of T2 as a function of all of the above parameters at low areal densities will help us to characterise the relaxation processes for the fluid phase of 33He on exfoliated graphite. †Mylar is the tradename of poly(ethelene-terephthalate) film, marketed by Du Pont.

  19. Dye sequestration using agricultural wastes as adsorbents

    Directory of Open Access Journals (Sweden)

    Kayode Adesina Adegoke

    2015-12-01

    Full Text Available Color is a visible pollutant and the presence of even minute amounts of coloring substance makes it undesirable due to its appearance. The removal of color from dye-bearing effluents is a major problem due to the difficulty in treating such wastewaters by conventional treatment methods. The most commonly used methods for color removal are biological oxidation and chemical precipitation. However, these processes are effective and economic only in the case where the solute concentrations are relatively high. Most industries use dyes and pigments to color their products. The presence of dyes in effluents is a major concern due to its adverse effect on various forms of life. The discharge of dyes in the environment is a matter of concern for both toxicological and esthetical reasons. It is evident from a literature survey of about 283 recently published papers that low-cost adsorbents have demonstrated outstanding removal capabilities for dye removal and the optimal equilibrium time of various dyes with different charcoal adsorbents from agricultural residues is between 4 and 5 h. Maximum adsorptions of acidic dyes were obtained from the solutions with pH 8–10. The challenges and future prospects are discussed to provide a better framework for a safer and cleaner environment.

  20. Optimizing heterosurface adsorbent synthesis for liquid chromatography

    Science.gov (United States)

    Bogoslovskii, S. Yu.; Serdan, A. A.

    2016-03-01

    The structural and geometric parameters of a silica matrix (SM) for the synthesis of heterosurface adsorbents (HAs) are optimized. Modification is performed by shielding the external surfaces of alkyl-modified silica (AS) using human serum albumin and its subsequent crosslinking. The structural and geometric characteristics of the SM, AS, and HA are measured via low-temperature nitrogen adsorption. It is found that the structural characteristics of AS pores with diameters D 9 nm reduces significantly due to adsorption of albumin. It is concluded that silica gel with a maximum pore size distribution close to 5 nm and a minimal proportion of pores with D > 9 nm is optimal for HA synthesis; this allows us to achieve the greatest similarity between the chromatographic retention parameters for HA and AS. The suitability of the synthesized adsorbents for analyzing drugs in biological fluids through direct sample injection is confirmed by chromatography. It was found that the percentage of the protein fraction detected at the outlet of the chromatographic column is 98%.

  1. TRMM project contamination control using molecular adsorbers

    Energy Technology Data Exchange (ETDEWEB)

    Straka, S.; Chen, P.; Thomson, S. [NASA Goddard Space Flight Center, Greenbelt, Maryland 20771 (United States); Bettini, R.; Triolo, J.; Carosso, N. [Swales and Associates, Inc., 5050 Powder Mill Road, Beltsville, Maryland 20705 (United States)

    1996-03-01

    The Tropical Rainfall Measuring Mission (TRMM) is a spacecraft under development by the National Aeronautics and Space Administration (NASA) and the National Space Development Agency of Japan (NASDA) and is scheduled for launch in August 1997. The spacecraft design includes the use of numerous optical instruments and the thermal control surfaces. In addition to the inherent contamination sensitivities of the optical and thermal systems, TRMM has had the added challenge of designing systems to function at a relatively low altitude (350 km), with solar exposure. Under these conditions, high atomic oxygen densities and potentially high levels of backscattered contamination (self-contamination), as well as UV photopolymerization effects, all pose major threats to sensitive TRMM elements. In considering the various contamination control paths to follow, the TRMM project management has opted for pursuing a relatively new, but very promising technology for the TRMM spacecraft in order to lower the on-orbit contamination levels. TRMM will be incorporating Molecular Adsorbers as part of the basic spacecraft design. This paper will summarize the TRMM requirements, describe the Molecular Adsorbers being fabricated for the mission, and discuss the expected benefits of this method of on-orbit contamination control. {copyright} {ital 1996 American Institute of Physics.}

  2. Equilibrium molecular theory of two-dimensional adsorbate drops on surfaces of heterogeneous adsorbents

    Science.gov (United States)

    Tovbin, Yu. K.

    2016-08-01

    A molecular statistical theory for calculating the linear tension of small multicomponent droplets in two-dimensional adsorption systems is developed. The theory describes discrete distributions of molecules in space (on a scale comparable to molecular size) and continuous distributions of molecules (at short distances inside cells) in their translational and vibrational motions. Pair intermolecular interaction potentials (the Mie type potential) in several coordination spheres are considered. For simplicity, it is assumed that distinctions in the sizes of mixture components are slight and comparable to the sizes of adsorbent adsorption centers. Expressions for the pressure tensor components inside small droplets on the heterogeneous surface of an adsorbent are obtained, allowing calculations of the thermodynamic characteristics of a vapor-fluid interface, including linear tension. Problems in refining the molecular theory are discussed: describing the properties of small droplets using a coordination model of their structure, considering the effect an adsorbate has on the state of a near-surface adsorbent region, and the surface heterogeneity factor in the conditions for the formation of droplets.

  3. Adsorbent Alkali Conditioning for Uranium Adsorption from Seawater. Adsorbent Performance and Technology Cost Evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Tsouris, Costas [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Mayes, Richard T. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Janke, Christopher James [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Dai, Sheng [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Das, S. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Liao, W. -P. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Kuo, Li-Jung [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Wood, Jordana [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Gill, Gary [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Byers, Maggie Flicker [Univ. of Texas, Austin, TX (United States); Schneider, Eric [Univ. of Texas, Austin, TX (United States)

    2015-09-30

    The Fuel Resources program of the Fuel Cycle Research and Development program of the Office of Nuclear Energy (NE) is focused on identifying and implementing actions to assure that nuclear fuel resources are available in the United States. An immense source of uranium is seawater, which contains an estimated amount of 4.5 billion tonnes of dissolved uranium. This unconventional resource can provide a price cap and ensure centuries of uranium supply for future nuclear energy production. NE initiated a multidisciplinary program with participants from national laboratories, universities, and research institutes to enable technical breakthroughs related to uranium recovery from seawater. The goal is to develop advanced adsorbents to reduce the seawater uranium recovery technology cost and uncertainties. Under this program, Oak Ridge National Laboratory (ORNL) has developed a new amidoxime-based adsorbent of high surface area, which tripled the uranium capacity of leading Japanese adsorbents. Parallel efforts have been focused on the optimization of the physicochemical and operating parameters used during the preparation of the adsorbent for deployment. A set of parameters that need to be optimized are related to the conditioning of the adsorbent with alkali solution, which is necessary prior to adsorbent deployment. Previous work indicated that alkali-conditioning parameters significantly affect the adsorbent performance. Initiated in 2014, this study had as a goal to determine optimal parameters such as base type and concentration, temperature, and duration of conditioning that maximize the uranium adsorption performance of amidoxime functionalized adsorbent, while keeping the cost of uranium production low. After base-treatment at various conditions, samples of adsorbent developed at ORNL were tested in this study with batch simulated seawater solution of 8-ppm uranium concentration, batch seawater spiked with uranium nitrate at 75-100 ppb uranium, and continuous

  4. Natural convection characteristics of flat plate collectors. Progress report

    Energy Technology Data Exchange (ETDEWEB)

    Randall, K.R.; Wl-Wakil, M.M.; Mitchell, J.W.

    1977-09-01

    The results of an experimental investigation into the convective heat losses in large aspect ratio flat-plate solar collectors are described. An experimental study has been undertaken on a specially designed test cell using a 3 inch Mach-Zehnder interferometer. Air at atmospheric pressure was used as the heat-transfer fluid. The experimental results include interferograms which show the thermal boundary layer formations and the temperature profiles. Local temperature profiles have been analyzed through the use of an optical comparator to determine local Nusselt number profiles, which have, in turn, been integrated to give average heat-transfer results. Angles of inclination from the horizontal of 45, 60, 75 and 90 degrees have been investigated. Aspect ratios from 9 to 36 were examined over a Rayleigh number range of 4,000 to 310,000. Finally, heat-transfer correlations have been developed for the prediction of local Nusselt numbers in the starting and departure corners and for the average heat-transfer results as a function of collector tilt angle.

  5. Nanoparticles Ni electroplating and black paint for solar collector applications

    Directory of Open Access Journals (Sweden)

    J. El Nady

    2016-06-01

    Full Text Available A nanoparticles layer of bright nickel base was deposited on copper substrates using electrodeposition technique before spraying the paint. IR reflectance of the paint was found to be around 0.4 without bright nickel layer and the reflectance increased to 0.6 at a Ni layer thickness of 750 nm. The efficiency of the constructed solar collectors using black paint and black paint combined with bright nickel was found to be better than black paint individually. After aging tests under high temperature, Bright nickel improved the stability of the absorber paint. The collector optical gain FR(τα was lowered by 24.7% for the commercial paint and lowered by 19.3% for the commercial paint combined with bright nickel. The overall heat loss FR(UL was increased by 3.3% for the commercial paint and increased by 2.7% for the commercial paint combined with bright nickel after the temperature aging test.

  6. Optimization of Dish Solar Collectors with and without Secondary Concentrators

    Science.gov (United States)

    Jaffe, L. D.

    1982-01-01

    Methods for optimizing parabolic dish solar collectors and the consequent effects of various optical, thermal, mechanical, and cost variables are examined. The most important performance optimization is adjusting the receiver aperture to maximize collector efficiency. Other parameters that can be adjusted to optimize efficiency include focal length, and, if a heat engine is used, the receiver temperature. The efficiency maxima associated with focal length and receiver temperature are relatively broad; it may, accordingly, be desirable to design somewhat away from the maxima. Performance optimization is sensitive to the slope and specularity errors of the concentrator. Other optical and thermal variables affecting optimization are the reflectance and blocking factor of the concentrator, the absorptance and losses of the receiver, and, if a heat engine is used, the shape of the engine efficiency versus temperature curve. Performance may sometimes be improved by use of an additional optical element (a secondary concentrator) or a receiver window if the errors of the primary concentrator are large or the receiver temperature is high.

  7. Slope Error Measurement Tool for Solar Parabolic Trough Collectors: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Stynes, J. K.; Ihas, B.

    2012-04-01

    The National Renewable Energy Laboratory (NREL) has developed an optical measurement tool for parabolic solar collectors that measures the combined errors due to absorber misalignment and reflector slope error. The combined absorber alignment and reflector slope errors are measured using a digital camera to photograph the reflected image of the absorber in the collector. Previous work using the image of the reflection of the absorber finds the reflector slope errors from the reflection of the absorber and an independent measurement of the absorber location. The accuracy of the reflector slope error measurement is thus dependent on the accuracy of the absorber location measurement. By measuring the combined reflector-absorber errors, the uncertainty in the absorber location measurement is eliminated. The related performance merit, the intercept factor, depends on the combined effects of the absorber alignment and reflector slope errors. Measuring the combined effect provides a simpler measurement and a more accurate input to the intercept factor estimate. The minimal equipment and setup required for this measurement technique make it ideal for field measurements.

  8. Rotating field collector subsystem phase 1 study and evaluation

    Science.gov (United States)

    Jones, D.; Eibling, J. A.

    1982-10-01

    The rotating field collector system is an alternative concept in which all heliostats are mounted on a single large platform which rotates around a tower to track the azumuthal angle of the Sun. Each heliostat is mounted to the platform with appropriate pivots, linkage, and controls to provide the additional positioning required to properly direct the solar radiation onto the receiver. The results are presented of the first phase of a study to investigate the technical and economic merits of a particular type of rotating field collector subsystem. The large pie-shaped platform would revolve over an array of support pedestals by means of a roller at the top of each pedestal. Several heliostats were built to demonstrate their construction features, and the operation of both flat and amphitheater rotating fields was studied. Work included an analysis of the concepts, development of modifications and additions to make the system comply with design criteria, and cost estimates to be used for comparison with other heliostat subsystems. Because of considerably high cost estimates, the focus of a large part of the study was directed toward developing lower cost designs of major components.

  9. Theoretical study for solar air pretreatment collector/regenerator

    Energy Technology Data Exchange (ETDEWEB)

    Peng Donggen; Zhang Xiaosong; Yin Yonggao [School of Energy and Environment, Southeast Univ., Nanjing (China)

    2008-07-01

    A new liquid regeneration equipment - solar air pretreatment collector/regenerator for liquid desiccant cooling system is put forward in this paper, which is preferable to solution regeneration in hot and moist climate in South China. The equipment can achieve liquid regeneration in lower temperature. When the solution and the air are in ''match'' state in collector/ regenerator, a match air to salt mass ratio ASMR* is found by theoretical study in which there is the largest theoretical storage capacity SC{sub max}. After two new concepts of the effective solution proportion (EPS) and the effective storage capacity (ESC) are defined, it is found by theoretical calculation that when ESP drops from 100% to 67%, ESC raises lowly, not drops and liquid outlet concentration C{sub str} {sub sol} increases from 40% to 49% in which its increment totals to 90%. All these data explain fully that air pretreatment liquid regeneration equipment enables to improve the performance of liquid desiccant cooling system. (orig.)

  10. Solar assisted heat pump on air collectors: A simulation tool

    Energy Technology Data Exchange (ETDEWEB)

    Karagiorgas, Michalis; Galatis, Kostas; Tsagouri, Manolis [Department of Mechanical Engineering Educators, ASPETE, N. Iraklio, GR 14121 (Greece); Tsoutsos, Theocharis [Environmental Engineering Dept., Technical University of Crete, Technical University Campus, GR 73100, Chania (Greece); Botzios-Valaskakis, Aristotelis [Centre for Renewable Energy Sources (CRES), 19th km Marathon Ave., GR 19001, Pikermi (Greece)

    2010-01-15

    The heating system of the bioclimatic building of the Greek National Centre for Renewable Energy Sources (CRES) comprises two heating plants: the first one includes an air source heat pump, Solar Air Collectors (SACs) and a heat distribution system (comprising a fan coil unit network); the second one is, mainly, a geothermal heat pump unit to cover the ground floor thermal needs. The SAC configuration as well as the fraction of the building heating load covered by the heating plant are assessed in two operation modes; the direct (hot air from the collectors is supplied directly to the heated space) and the indirect mode (warm air from the SAC or its mixture with ambient air is not supplied directly to the heated space but indirectly into the evaporator of the air source heat pump). The technique of the indirect mode of heating aims at maximizing the efficiency of the SAC, saving electrical power consumed by the compressor of the heat pump, and therefore, at optimizing the coefficient of performance (COP) of the heat pump due to the increased intake of ambient thermal energy by means of the SAC. Results are given for three research objectives: assessment of the heat pump efficiency whether in direct or indirect heating mode; Assessment of the overall heating plant efficiency on a daily or hourly basis; Assessment of the credibility of the suggested simulation model TSAGAIR by comparing its results with the TRNSYS ones. (author)

  11. Water disinfection by solar photocatalysis using compound parabolic collectors

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez, P.; Blanco, J.; Sichel, C.; Malato, S. [Centro de Investigaciones Energeticas, Medioambientales y Tecnologicas (CIEMAT), Plataforma Solar de Almeria (PSA), P.O. Box 22, 04200 Tabernas, Almeria (Spain)

    2005-04-15

    TiO{sub 2} solar photocatalysis has been proven to be a degradation process for aqueous organic contaminant leading to total mineralisation of a large number of compounds. Furthermore, the interest in using this technique for water disinfection has grown in the last decade. Recent publications have reported photokilling of bacteria and viruses by TiO{sub 2} photocatalysis. Therefore, solar photocatalysis disinfection seems to be a very promising process, which could help to improve public health in rural areas of developing countries. The objective of this work was to assess the feasibility of using TiO{sub 2} solar photocatalysis to disinfect water supplies for future applications in developing countries. This article reviews the viability of solar photocatalysis for disinfection in low cost compound parabolic collectors, using sunlight and titanium dioxide semiconductor, both applied as slurry and supported. We report on the bactericidal action of TiO{sub 2} on a pure culture of Escherichia coli with a low cost photoreactor based on compound parabolic collectors. The influence of different experimental set-ups and parameters are also analysed. The results and potential application of the solar photocatalysis technology to water disinfection are studied within the frame of two research EU projects whose objective consist on the development of a fully autonomous solar reactor system to purify drinking water in remote locations of developing countries.

  12. Thermal and optical efficiency investigation of a parabolic trough collector

    Directory of Open Access Journals (Sweden)

    C. Tzivanidis

    2015-09-01

    Full Text Available Solar energy utilization is a promising Renewable Energy source for covering a variety of energy needs of our society. This study presents the most well-known solar concentrating system, the parabolic trough collector, which is operating efficiently in high temperatures. The simulation tool of this analysis is the commercial software Solidworks which simulates complicated problems with an easy way using the finite elements method. A small parabolic trough collector model is designed and simulated for different operating conditions. The goal of this study is to predict the efficiency of this model and to analyze the heat transfer phenomena that take place. The efficiency curve is compared to a one dimensional numerical model in order to make a simple validation. Moreover, the temperature distribution in the absorber and inside the tube is presented while the heat flux distribution in the outer surface of the absorber is given. The heat convection coefficient inside the tube is calculated and compared with the theoretical one according to the literature. Also the angle efficiency modifier is calculated in order to predict the thermal and optical efficiency for different operating conditions. The final results show that the PTC model performs efficiently and all the calculations are validated.

  13. Parabolic Trough Photovoltaic/Thermal Collectors: Design and Simulation Model

    Directory of Open Access Journals (Sweden)

    Laura Vanoli

    2012-10-01

    Full Text Available This paper presents a design procedure and a simulation model of a novel concentrating PVT collector. The layout of the PVT system under investigation was derived from a prototype recently presented in literature and commercially available. The prototype consisted in a parabolic trough concentrator and a linear triangular receiver. In that prototype, the bottom surfaces of the receiver are equipped with mono-crystalline silicon cells whereas the top surface is covered by an absorbing surface. The aperture area of the parabola was covered by a glass in order to improve the thermal efficiency of the system. In the modified version of the collector considered in this paper, two changes are implemented: the cover glass was eliminated and the mono-crystalline silicon cells were replaced by triple-junction cells. In order to analyze PVT performance, a detailed mathematical model was implemented. This model is based on zero-dimensional energy balances. The simulation model calculates the temperatures of the main components of the system and the main energy flows Results showed that the performance of the system is excellent even when the fluid temperature is very high (>100 °C. Conversely, both electrical and thermal efficiencies dramatically decrease when the incident beam radiation decreases.

  14. Functionalization of Magnetite Nanoparticles as Oil Spill Collector

    Directory of Open Access Journals (Sweden)

    Ayman M. Atta

    2015-03-01

    Full Text Available In the present study, a new magnetic powder based on magnetite can be used as a petroleum crude oil collector. Amidoximes based on rosin as a natural product can be prepared from a reaction between hydroxylamine and rosin/acrylonitrile adducts. The produced rosin amidoximes were used as capping agents for magnetite nanoparticles to prepare hydrophobic coated magnetic powders. A new class of monodisperse hydrophobic magnetite nanoparticles was prepared by a simple and inexpensive co-precipitation method. Iron ions and iodine were prepared by the reaction between ferric chloride and potassium iodide. The structure and morphology of magnetite capped with rosin amidoxime were characterized by Fourier transform infrared spectroscopy (FTIR, X-ray diffraction (XRD, transmission electron microscopy (TEM, zeta potential, thermogravimetric analysis (TGA and dynamic light scattering (DLS. The magnetic properties were determined from vibrating sample magnetometer (VSM analyses. These prepared magnetite nanoparticles were tested as bioactive nanosystems and their antimicrobial effects were investigated. The prepared nanomaterials were examined as a crude oil collector using magnetic fields. The results show promising data for the separation of the petroleum crude oil from aqueous solution in environmental pollution cleanup.

  15. Functionalization of magnetite nanoparticles as oil spill collector.

    Science.gov (United States)

    Atta, Ayman M; Al-Lohedan, Hamad A; Al-Hussain, Sami A

    2015-03-26

    In the present study, a new magnetic powder based on magnetite can be used as a petroleum crude oil collector. Amidoximes based on rosin as a natural product can be prepared from a reaction between hydroxylamine and rosin/acrylonitrile adducts. The produced rosin amidoximes were used as capping agents for magnetite nanoparticles to prepare hydrophobic coated magnetic powders. A new class of monodisperse hydrophobic magnetite nanoparticles was prepared by a simple and inexpensive co-precipitation method. Iron ions and iodine were prepared by the reaction between ferric chloride and potassium iodide. The structure and morphology of magnetite capped with rosin amidoxime were characterized by Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), transmission electron microscopy (TEM), zeta potential, thermogravimetric analysis (TGA) and dynamic light scattering (DLS). The magnetic properties were determined from vibrating sample magnetometer (VSM) analyses. These prepared magnetite nanoparticles were tested as bioactive nanosystems and their antimicrobial effects were investigated. The prepared nanomaterials were examined as a crude oil collector using magnetic fields. The results show promising data for the separation of the petroleum crude oil from aqueous solution in environmental pollution cleanup.

  16. Unsaturated Zone and Saturated Zone Transport Properties (U0100)

    Energy Technology Data Exchange (ETDEWEB)

    J. Conca

    2000-12-20

    This Analysis/Model Report (AMR) summarizes transport properties for the lower unsaturated zone hydrogeologic units and the saturated zone at Yucca Mountain and provides a summary of data from the Busted Butte Unsaturated Zone Transport Test (UZTT). The purpose of this report is to summarize the sorption and transport knowledge relevant to flow and transport in the units below Yucca Mountain and to provide backup documentation for the sorption parameters decided upon for each rock type. Because of the complexity of processes such as sorption, and because of the lack of direct data for many conditions that may be relevant for Yucca Mountain, data from systems outside of Yucca Mountain are also included. The data reported in this AMR will be used in Total System Performance Assessment (TSPA) calculations and as general scientific support for various Process Model Reports (PMRs) requiring knowledge of the transport properties of different materials. This report provides, but is not limited to, sorption coefficients and other relevant thermodynamic and transport properties for the radioisotopes of concern, especially neptunium (Np), plutonium (Pu), Uranium (U), technetium (Tc), iodine (I), and selenium (Se). The unsaturated-zone (UZ) transport properties in the vitric Calico Hills (CHv) are discussed, as are colloidal transport data based on the Busted Butte UZTT, the saturated tuff, and alluvium. These values were determined through expert elicitation, direct measurements, and data analysis. The transport parameters include information on interactions of the fractures and matrix. In addition, core matrix permeability data from the Busted Butte UZTT are summarized by both percent alteration and dispersion.

  17. Experimental Study of Fluorine Transport Rules in Unsaturated Stratified Soil

    Institute of Scientific and Technical Information of China (English)

    ZHANG Hong-mei; SU Bao-yu; LIU Peng-hua; ZHANG Wei

    2007-01-01

    With the aid of soil column test models, the transport rules of fluorine contaminants in unsaturated stratified soils are discussed. Curves of F- concentrations at different times and sites in the unsaturated stratified soil were obtained under conditions of continuous injection of fluoride contaminants and water. Based on the analysis of the actual observation data, the values between computed results and observed data were compared. It is shown that the chemical properties of fluorine ions are active. The migration process of fluorine ions in soils is complex. Because of the effect of adsorption and desorption, the curve of the fluorine ion breakthrough curve is not symmetric. Its concentration peak value at each measuring point gradually decays. The tail of the breakthrough curve is long and the process of leaching and purifying using water requires considerable time. Along with the release of OHˉ in the process of fluorine absorption, the pH value of the soil solution changed from neutral to alkalinity during the test process. The first part of the breakthrough curve fitted better than the second part. The main reason is that fluorine does not always exist in the form of fluorinions in groundwater. Given the long test time, fluorinions possibly react with other ions in the soil solution to form complex water-soluble fluorine compounds. Only the retardation factor and source-sink term have been considered in our numerical model, which may leads to errors of computed values. But as a whole the migration rules of fluorine ions are basically correct, which indicates that the established numerical model can be used to simulate the transport rules of fluorine contaminants in unsaturated stratified soils.

  18. Flat-plate solar-collector performance evaluation with a solar simulator as a basis for collector selection and performance prediction

    Science.gov (United States)

    Simon, F. F.

    1975-01-01

    This paper reports the measured thermal efficiency and evaluation of 23 collectors which differ according to absorber material (copper, aluminum, steel), absorber coating (nonselective black paint, selective copper oxide, selective black nickel, selective black chrome), type of glazing material (glass, Tedlar, Lexan, anti-reflection glass), the use of honeycomb material and the use of vacuum to prevent thermal convection losses. The collectors are given performance rankings based on noon-hour solar conditions and all-day solar conditions. The determination with the simulator of an all-day collector performance is made possible by tests at different incident angles. The solar performance rankings are made based on whether the collector is to be used for pool heating, hot water, absorption air conditioning, heating, or for a solar Rankine machine.

  19. DESORPTION OF VOCs FROM POLYMERIC ADSORBENTS UNDER MICROWAVE FIELD

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Desorption of volatile organic compounds (VOCs)from polymeric adsorbents by microwave was investigated experimentally. Two kinds of organic compounds, benzene and toluene,were separately used as adsorbates in this work. Results showed that the application of microwave to regenerate the polymeric adsorbents not only can get higher regeneration efficiency in comparison with the use of heat regeneration, but also make the temperatures of the fixed beds much lower than that when using the heat regeneratton The weaker the polarity of a polymeric adsorbent, the easier its regeneration was.

  20. Oxidation processes and clogging in intermittent unsaturated infiltration.

    Science.gov (United States)

    Bancolé, A; Brissaud, F; Gnagne, T

    2003-01-01

    Intermittent infiltration of wastewater through a non saturated sand bed is an extensive treatment process aimed at eliminating organic pollution, oxidizing ammonia and removing pathogens. A 1D numerical model, IPOX, has been worked out to simulate the transfer and oxidation of dissolved organic matter and nitrogen in unsaturated sand beds. IPOX was calibrated after real scale tests performed in Spain and Burkina Faso. Simulations allowed us to point out the influence of (i) kinetics on oxidation performances and (ii) biomass development on the process sustainability. These results brought a new light on the sizing and operation of infiltration percolation and soil aquifer treatment (SAT) plants.

  1. Post-irradiation crosslinking of partially cured unsaturated polyester resin

    Energy Technology Data Exchange (ETDEWEB)

    Jurkin, Tanja [Ruder Boskovic Institute, POB 180, Zagreb (Croatia); Pucic, Irina [Ruder Boskovic Institute, POB 180, Zagreb (Croatia)]. E-mail: pucic@rudjer.irb.hr

    2006-09-15

    The post-irradiation crosslinking of unsaturated polyester (UP) resin samples irradiated to different doses was monitored during the 15-days period. The post-reaction sensitivity of three experimental techniques was evaluated. Significant changes were detected by extraction analysis that also included determination of the free styrene content. The most substantial changes were detected by differential scanning calorimetry, even up to 5 days after the irradiation. The sensitivity and reproducibility of FTIR was the lowest. The first two techniques detected the influence of particular reaction periods, at which the radiation crosslinking was terminated, on the post-reaction.

  2. Post-irradiation crosslinking of partially cured unsaturated polyester resin

    Science.gov (United States)

    Jurkin, Tanja; Pucić, Irina

    2006-09-01

    The post-irradiation crosslinking of unsaturated polyester (UP) resin samples irradiated to different doses was monitored during the 15-days period. The post-reaction sensitivity of three experimental techniques was evaluated. Significant changes were detected by extraction analysis that also included determination of the free styrene content. The most substantial changes were detected by differential scanning calorimetry, even up to 5 days after the irradiation. The sensitivity and reproducibility of FTIR was the lowest. The first two techniques detected the influence of particular reaction periods, at which the radiation crosslinking was terminated, on the post-reaction.

  3. Crack spacing of unsaturated soils in the critical state

    Institute of Scientific and Technical Information of China (English)

    SUN JiChao; WANG GuangQian; SUN QiCheng

    2009-01-01

    The cracking mechanism of unsaturated soils due to evaporation is poorly understood, and the magnitude of crack spacing is usually hard to estimate. In this work, cracks were postulated to occur suc-cedently rather than simultaneously, that is, secondary cracks appear after primary cracks as evaporation continues. Formulae of the secondary crack spacing and secondary trend crack spacing were then derived after stress analysis. The calculated spacing values were consistent with the published experimental data. Meanwhile, the effect of the Poisson ratio on the crack spacing was analyzed, which showed that the magnitude of crack spacing was proportional to the Poisson ratio in the range of [0.30,0.35].

  4. Piperidine Promoted Regioselective Synthesis of α, β-unsaturated Aldehydes

    Directory of Open Access Journals (Sweden)

    *A. H. Banday

    2013-03-01

    Full Text Available An efficient, facile and regioselective synthesis of α,β-unsaturated aldehydes from β-hydroxynitriles is reported. The reaction is carried out using DIBAL-H and promoted by piperidine under dry conditions at a temperature of -78 oC and can be described as a concomitant reduction-elimination reaction. The same reaction if carried out in the absence of piperidine gives mainly the uneliminated reduction product. The products formed are of immense importance as synthons in a large number of chemical reactions and biological processes.

  5. ADSORPTION OF UNSATURATED ALDEHYDES ON TiO2

    OpenAIRE

    Natalia Ortega; Oswaldo Núñez

    2012-01-01

    In this work, the unsaturated aldehydes adsorption on TiO2 surface was studied. To test their efficiency as catalyst, experiments on heterogeneous photocatalysis of p-nitrophenol (PNP) and a sample obtained from an oil industry effluent were carried out using a solar simulator and modified-TiO2 systems. The systems of TiO2 used were: TiO2 pure (without modifying) and TiO2-dienal systems constituted by the chemical adsorption of 2,4 hexadienal, 2,4 heptadienal and trans-cinamaldehyde on the su...

  6. Stereoselective Synthesis of (Z)-α,β-Unsaturated Ketones via Hydromagnesiation of Alkynylsilanes

    Institute of Scientific and Technical Information of China (English)

    ZHAO,Hong; XIE,Guo-Hao; WU,Guo-Ying

    2004-01-01

    @@ α,β-Unsaturated ketones are important synthetic intermediates because of their versatile reactivities and many syn-thetic applications of them have been reported in the literature.[1] However, only a few methods for the synthesis of (Z)-α,β-unsaturated ketones are available. The palladium catalyzed coupling reactions of alkenyl copper reagents with acid chlorides afforded (Z)-α,β-unsaturated ketones.[2] The phase transfer catalyzed hydroacylation of allenes with carbon monoxide, decacarbonyldimanganese and methyl iodide gave (Z)-α,β-unsaturated ketones in a stereospecific process.

  7. Impacts of Soil Moisture Content and Vegetation on Shear Strength of Unsaturated Soil

    Institute of Scientific and Technical Information of China (English)

    YANG Yong-hong; ZHANG Jian-guo; ZHANG Jian-hui; LIU Shu-zhen; WANG Cheng-hua; XIAO Qing-hua

    2005-01-01

    It is analyzed that the impacts of vegetation type and soil moisture content on shear strength of unsaturated soil through direct shearing tests for various vegetation types, different soil moisture contents and different-depth unsaturated soil. The results show that the cohesion of unsaturated soil changes greatly, and the friction angle changes a little with soil moisture content. It is also shown that vegetation can improve shear strength of unsaturated soil, which therefore provides a basis that vegetation can reinforce soil and protect slopes.

  8. NONLINEAR AND ELASTO-PLASTICITY CONSOLIDATION MODELS OF UNSATURATED SOIL AND APPLICATIONS

    Institute of Scientific and Technical Information of China (English)

    陈正汉; 黄海; 卢再华

    2001-01-01

    The non-linear constitutive model suggested by the authors and the Alonso' s elasto-plasticity model of unsaturated soil modified by the authors are introduced into the consolidation theory of ursaturated soil proposed by CHEN Zheng-han, and the non-linear and the elasto-plasticity consolidation models of unsaturated soil are obtained. Programs related to the two consolidation models are designed, and a 2-D consolidation problem of unsaturated soil is solved using the programs , the consolidation process and the development of plastic zone under multi-grade load are studied. The above research develops the consolidation theory of unsaturated soil to a new level.

  9. 30 CFR 33.35 - Methods of drilling; dust-collector unit.

    Science.gov (United States)

    2010-07-01

    ... shall be done with conventional, commercial drilling equipment—pneumatic-percussion, hydraulic-rotary... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Methods of drilling; dust-collector unit. 33.35..., EVALUATION, AND APPROVAL OF MINING PRODUCTS DUST COLLECTORS FOR USE IN CONNECTION WITH ROCK DRILLING IN...

  10. Parametric studies of an active solar water heating system with various types of PVT collectors

    Indian Academy of Sciences (India)

    Roonak Daghigh; Mohd Hafidz Ruslan; Kamaruzzaman Sopian

    2015-10-01

    This study simulated active photovoltaic thermal solar collectors (PV/T) for hot water production using TRNSYS. The PV/T collectors consist of the amorphous, monocrystalline and polycrystalline. The long-term performances for the glazed and unglazed PV/T collectors were also evaluated. In this simulation, the design parameters used were collector area of 4 m2, collector slope angle of 15 degree and mass flow rate to the collector area ratio of 8–20 kg/hm2. In addition the tank height between 0.9 m to 1.1 m for unglazed PV/T collectors and 0.9 m to 1 m for glazed collectors, as well as the storage tank volume between 200 and 300 L has been used. The climate parameters used were solar radiation levels range of 4–4.9 kWh/m2, the mean ambient temperature in the range of 25–28°C. The results of the simulation indicated that there was an increase in solar fraction and electrical power output of the active PV/T hot water system.

  11. TECHNIQUE OF DEFINITION TRANSMITTANCE- ABSORPTION PRODUCT OF THE SOLAR COLLECTOR WITH POLYMERIC TUBES ABSORBER

    OpenAIRE

    Ermuratskii V.V.

    2009-01-01

    It is presented technique of determination of the reduced carrying and absorptance capacity of collector, which absorber represents the register made from polymeric pipes. This determination was made on the basis of experimental data received at zero collector flow rate of water and minimum difference of temperatures between the absorber and the environment.

  12. TECHNIQUE OF DEFINITION TRANSMITTANCE- ABSORPTION PRODUCT OF THE SOLAR COLLECTOR WITH POLYMERIC TUBES ABSORBER

    Directory of Open Access Journals (Sweden)

    Ermuratskii V.V.

    2009-12-01

    Full Text Available It is presented technique of determination of the reduced carrying and absorptance capacity of collector, which absorber represents the register made from polymeric pipes. This determination was made on the basis of experimental data received at zero collector flow rate of water and minimum difference of temperatures between the absorber and the environment.

  13. Experimental Validation and Model Verification for a Novel Geometry ICPC Solar Collector

    DEFF Research Database (Denmark)

    Perers, Bengt; Duff, William S.; Daosukho, Jirachote

    A novel geometry ICPC solar collector was developed at the University of Chicago and Colorado State University. A ray tracing model has been designed to investigate the optical performance of both the horizontal and vertical fin versions of this collector. Solar radiation is modeled as discrete...

  14. METAL-POLYMER SOLAR COLLECTORS WITH MULTICHANNEL ABSORBER FOR MULTIFUNCTIONAL MULTIPURPOSE ENERGY SYSTEMS

    Directory of Open Access Journals (Sweden)

    Doroshenko A.

    2012-08-01

    Full Text Available New modification of liquid-metal-polymer solar collector for solar heating and for creation of multifunctional energy systems on its basis, particularly solar refrigeration systems was developed. A comparative study of several modifications of polymer collectors involving data of a set of foreign researchers was made and high efficiency of the new elaboration was proven.

  15. Certification and verification for Northrup Model NSC-01-0732 Fresnel lens concentrating solar collector

    Energy Technology Data Exchange (ETDEWEB)

    1979-03-01

    The certification and verification of the Northrup Model NSC-01-0732 Fresnel lens tracking solar collector are presented. A certification statement is included with signatures and a separate report on the structural analysis of the collector system. System verification against the Interim Performance Criteria are indicated by matrices with verification discussion, analysis, and enclosed test results.

  16. A Didactic Experiment and Model of a Flat-Plate Solar Collector

    Science.gov (United States)

    Gallitto, Aurelio Agliolo; Fiordilino, Emilio

    2011-01-01

    We report on an experiment performed with a home-made flat-plate solar collector, carried out together with high-school students. To explain the experimental results, we propose a model that describes the heating process of the solar collector. The model accounts quantitatively for the experimental data. We suggest that solar-energy topics should…

  17. An Experimental Study of the Effect of Vortex Shedding on Solar Collector Performance

    Directory of Open Access Journals (Sweden)

    Alaulddin Abdulqader Kadim

    2015-07-01

    Full Text Available In this work, the effect of vortex shedding on the solar collector performance of the parabolic trough solar collector (PTSC was estimated experimentally. The effect of structure oscillations due to wind vortex shedding on solar collector performance degradation was estimated. The performance of PTSC is evaluated by using the useful heat gain and the thermal instantaneous efficiency. Experimental work to simulate the vortex shedding excitation was done. The useful heat gain and the thermal efficiency of the parabolic trough collector were calculated from experimental measurements with and without vortex loading. The prototype of the collector was fabricated for this purpose. The effect of vortex shedding at different operation conditions was examined. The variation of angles of attack and wind velocity leads to different values of vortex loading coefficients and shedding frequencies. The relation between the dynamic characteristics and solar collector performance was evaluated. The finite element method was used to estimate the dynamic characteristic of the solar collector in addition to experimental work to evaluate the relation between the dynamic behavior of the collector and its performance.

  18. A Computer-Interfaced Drop Counter as an Inexpensive Fraction Collector for Column Chromatography

    Science.gov (United States)

    Nash, Barbara T.

    2008-01-01

    A computer-interfaced drop counter is described that serves as an inexpensive alternative to a fraction collector for column chromatography experiments. Undergraduate biochemistry laboratories frequently do not have the budget to purchase fraction collectors. Protocols that call for the manual measurement of fraction volumes as well as the manual…

  19. Dispersal of collectors in different-facial Zadonsko-Yeletskiy deposits of the Pripyatskiy trough

    Energy Technology Data Exchange (ETDEWEB)

    Demidovich, L.A.; Nazarova, N.V.

    1981-01-01

    Features are examined of dispersal of rock-collectors in different-facial deposits of the lower and upper Zadonskiy sublevels, as well as in the Yeletskiy level of the Devonian in the Pripyatskiy trough. It has been established that rock-collectors in the northern part of the Pripyatskiy trough are associated with organogenic reconstructions.

  20. Efficiency of liquid flat-plate solar energy collector with solar tracking system

    Directory of Open Access Journals (Sweden)

    Chekerovska Marija

    2015-01-01

    Full Text Available An extensive testing programme is performed on a solar collector experimental set-up, installed on a location in Shtip (Republic of Macedonia, latitude 41º 45’ and longitude 22º 12’, in order to investigate the effect of the sun tracking system implementation on the collector efficiency. The set-up consists of two flat plate solar collectors, one with a fixed surface tilted at 30о towards the South, and the other one equipped with dual-axis rotation system. The study includes development of a 3-D mathematical model of the collectors system and a numerical simulation programme, based on the computational fluid dynamics (CFD approach. The main aim of the mathematical modelling is to provide information on conduction, convection and radiation heat transfer, so as to simulate the heat transfer performances and the energy capture capabilities of the fixed and moving collectors in various operating modes. The feasibility of the proposed method was confirmed by experimental verification, showing significant increase of the daily energy capture by the moving collector, compared to the immobile collector unit. The comparative analysis demonstrates a good agreement between the experimental and numerically predicted results at different running conditions, which is a proof that the presented CFD modelling approach can be used for further investigations of different solar collectors configurations and flow schemes.

  1. 78 FR 38452 - Price for the 2013 Girl Scouts of the USA Young Collector Set

    Science.gov (United States)

    2013-06-26

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF THE TREASURY United States Mint Price for the 2013 Girl Scouts of the USA Young Collector Set AGENCY: United States... of $54.95 for the 2013 Girl Scouts of the USA Young Collector Set. FOR FURTHER INFORMATION...

  2. Theoretical Insight of Physical Adsorption for a Single-Component Adsorbent + Adsorbate System: I. Thermodynamic Property Surfaces

    KAUST Repository

    Chakraborty, Anutosh

    2009-02-17

    Thermodynamic property surfaces for a single-component adsorbent + adsorbate system are derived and developed from the viewpoint of classical thermodynamics, thermodynamic requirements of chemical equilibrium, Gibbs law, and Maxwell relations. They enable us to compute the entropy and enthalpy of the adsorbed phase, the isosteric heat of adsorption, specific heat capacity, and the adsorbed phase volume thoroughly. These equations are very simple and easy to handle for calculating the energetic performances of any adsorption system. We have shown here that the derived thermodynamic formulations fill up the information gap with respect to the state of adsorbed phase to dispel the confusion as to what is the actual state of the adsorbed phase. We have also discussed and established the temperature-entropy diagrams of (i) CaCl 2-in-silica gel + water system for cooling applications, and (ii) activated carbon (Maxsorb III) + methane system for gas storage. © Copyright 2009 American Chemical Society.

  3. Results of thermal performance evaluation of the Owens-Illinois sunpack liquid solar collector at indoor conditions

    Science.gov (United States)

    1979-01-01

    Test procedures and results of the thermal performance of a liquid, evacuated tube, solar collector under simulated conditions are presented. The collector tested was a module used on the early demonstration projects.

  4. Carbon Dioxide Capture Adsorbents: Chemistry and Methods.

    Science.gov (United States)

    Patel, Hasmukh A; Byun, Jeehye; Yavuz, Cafer T

    2016-12-21

    Excess carbon dioxide (CO2 ) emissions and their inevitable consequences continue to stimulate hard debate and awareness in both academic and public spaces, despite the widespread lack of understanding on what really is needed to capture and store the unwanted CO2 . Of the entire carbon capture and storage (CCS) operation, capture is the most costly process, consisting of nearly 70 % of the price tag. In this tutorial review, CO2 capture science and technology based on adsorbents are described and evaluated in the context of chemistry and methods, after briefly introducing the current status of CO2 emissions. An effective sorbent design is suggested, whereby six checkpoints are expected to be met: cost, capacity, selectivity, stability, recyclability, and fast kinetics.

  5. The condensation of water on adsorbed viruses.

    Science.gov (United States)

    Alonso, José María; Tatti, Francesco; Chuvilin, Andrey; Mam, Keriya; Ondarçuhu, Thierry; Bittner, Alexander M

    2013-11-26

    The wetting and dewetting behavior of biological nanostructures and to a greater degree single molecules is not well-known even though their contact with water is the basis for all biology. Here, we show that environmental electron microscopy (EM) can be applied as a means of imaging the condensation of water onto viruses. We captured the formation of submicrometer water droplets and filaments on single viral particles by environmental EM and by environmental transmission EM. The condensate structures are compatible with capillary condensation between adsorbed virus particles and with known droplet shapes on patterned surfaces. Our results confirm that such droplets exist down to evaporation cycle as expected from their stability in air and water. Moreover we developed procedures that overcome problems of beam damage and of resolving structures with a low atomic number.

  6. Trends in adsorbate induced core level shifts

    Science.gov (United States)

    Nilsson, Viktor; Van den Bossche, Maxime; Hellman, Anders; Grönbeck, Henrik

    2015-10-01

    Photoelectron core level spectroscopy is commonly used to monitor atomic and molecular adsorption on metal surfaces. As changes in the electron binding energies are convoluted measures with different origins, calculations are often used to facilitate the decoding of experimental signatures. The interpretation could in this sense benefit from knowledge on trends in surface core level shifts for different metals and adsorbates. Here, density functional theory calculations have been used to systematically evaluate core level shifts for (111) and (100) surfaces of 3d, 4d, and 5d transition metals upon CO, H, O and S adsorption. The results reveal trends and several non-intuitive cases. Moreover, the difficulties correlating core level shifts with charging and d-band shifts are underlined.

  7. New performance testing stand for the characterization of innovative collectors and optical components; Neuer Leistungsteststand zur Charakterisierung innovativer Kollektoren und optischer Komponenten

    Energy Technology Data Exchange (ETDEWEB)

    Fahr, Sven; Schaefer, Arim; Mehnert, Stefan; Kramer, Korbinian; Hess, Stefan; Thoma, Christoph; Richter, Jens; Stryi-Hipp, Gerhard [Fraunhofer Institut fuer Solare Energiesysteme, Freiburg (Germany); Luginsland, Frank [PSE AG, Freiburg (Germany)

    2010-07-01

    The variety of collector designs is on the increase. It is expected that technologies such as concentrating collectors, solar air collectors, heat pipe collectors and facade integrated collectors increase their market shares. In order to meet the various requirements for the measurement of this collector design, the Fraunhofer Institute for Solar Energy Systems (Freiburg, Federal Republic of Germany) and PSE-AG (Freiburg, Federal Republic of Germany) developed a new modular outdoor test stand was developed for performance testing. This test stand meets the highest requirements on tracking accuracy and flexibility. If necessary, mobile test equipment for testing of air temperature collectors and medium temperature collectors can be integrated easily.

  8. Review of state-of-the-art of solar collector corrosion processes. Task 1 of solar collector studies for solar heating and cooling applications. Final technical progress report

    Energy Technology Data Exchange (ETDEWEB)

    Clifford, J E; Diegle, R B

    1980-04-11

    The state-of-the-art of solar collector corrosion processes is reviewed, and Task 1 of a current research program on use of aqueous heat transfer fluids for solar heating and cooling is summarized. The review of available published literature has indicated that lack of quantitative information exists relative to collector corrosion at the present time, particularly for the higher temperature applications of solar heating and cooling compared to domestic water heating. Solar collector systems are reviewed from the corrosion/service life viewpoint, with emphasis on various applications, collector design, heat transfer fluids, and freeze protection methods. Available information (mostly qualitative) on collector corrosion technology is reviewed to indicate potential corrosion problem areas and corrosion prevention practices. Sources of limited quantitative data that are reviewed are current solar applications, research programs on collector corrosion, and pertinent experience in related applications of automotive cooling and non-solar heating and cooling. A data bank was developed to catalog corrosion information. Appendix A of this report is a bibliography of the data bank, with abstracts reproduced from presently available literature accessions (about 220). This report is presented as a descriptive summary of information that is contained in the data bank.

  9. The use of collector efficiency test results in long term performance calculations. Revisions and clarifications in view of proper collector characterization and inter comparison

    Energy Technology Data Exchange (ETDEWEB)

    Carvalho, Maria Joao; Horta, Pedro; Mendes, Joao Farinha [INETI - Inst. Nacional de Engenharia Tecnologia e Inovacao, IP, Lisboa (Portugal); Collares Pereira, Manuel; Carbajal, Wildor Maldonado [AO SOL, Energias Renovaveis, S.A., Samora Correia (Portugal)

    2008-07-01

    There are a growing number of solar thermal collector types: flat plates, evacuated tubes with and without backing reflectors and different tubular spacing, low concentration collectors, using different types of concentrating optics. These different concepts and designs all compete to be more efficient or simply cheaper, easier to operate, etc. at ever higher temperatures, and even to extend the use of solar thermal energy in other applications beyond the most common water heating for domestic purposes. This means that there is a growing need for the existing and future simulation tools to be as accurate as possible in the treatment of these different collector types, to allow for the proper dimensioning of solar thermal systems as well as the proper comparison of different collector technologies for a given application. This paper develops a systematic approach to the problem of the proper handling of solar radiation available to each collector type. The proposed methodology subdivides radiation in its different components, folding that with the information available from efficiency curve tests (steady state) for each collector type and the way the optics of each particular case transforms and uses the incident solar radiation. The suggestions made will hopefully be taken at the level of the testing standards themselves, rendering them more complete and general. (orig.)

  10. Influences of the Twisted Strips Insertion on the Performance of Flat Plate Water Solar Collector

    Directory of Open Access Journals (Sweden)

    Jafar M. Hassan

    2015-09-01

    Full Text Available In order to enhance the efficiency of flat plate solar water collectors without changing in its original shape and with low additional cost, twisted strips are inserted inside its riser pipes. Three flat plate collectors are used for test. Family of twisted strips are inserted inside each collector risers with different twisted ratios (TR=3,4,5. The collectors are connected in parallel mode (Z-Configuration and are exposed to the same conditions (solar radiation and ambient temperature .The experimental results show that, the highest heat transfer rate occurs at twisted ratio (3 .Consequently, for the same twisted ratio the daily efficiencies for the solar collector at different flow rate used (60,100 and 150 ℓ /hr. were 49 %, 57% and 63% respectively.

  11. Modeling Heat Flow In a Calorimeter Equipped With a Textured Solar Collector

    Science.gov (United States)

    Jaworske, Donald A.; Allen, Bradley J.

    2001-01-01

    Heat engines are being considered for generating electric power for minisatellite applications, particularly for those missions in high radiation threat orbits. To achieve this objective, solar energy must be collected and transported to the hot side of the heat engine. A solar collector is needed having the combined properties of high solar absorptance, low infrared emittance, and high thermal conductivity. To test candidate solar collector concepts, a simple calorimeter was designed, manufactured, and installed in a bench top vacuum chamber to measure heat flow. In addition, a finite element analysis model of the collector/calorimeter combination was made to model this heat flow. The model was tuned based on observations from the as-manufactured collector/calorimeter combination. In addition, the model was exercised to examine other collector concepts, properties, and scale up issues.

  12. An analytical investigation of the performance of solar collectors as nighttime heat radiators in airconditioning cycles

    Science.gov (United States)

    Jones, C. B.; Smetana, F. O.

    1979-01-01

    It was found that if the upper and lower ends of a collector were opened, large free convention currents may be set up between the collector surface and the cover glass(es) which can result in appreciable heat rejection. If the collector is so designed that both plates surfaces are exposed to convection currents when the upper and lower ends of the collector enclosure are opened, the heat rejection rate is 300 watts sq m when the plate is 13 C above ambient. This is sufficient to permit a collector array designed to provide 100 percent of the heating needs of a home to reject the accumulated daily air conditioning load during the course of a summer night. This also permits the overall energy requirements for cooling to be reduced by at least 15 percent and shift the load on the utility entirely to the nighttime hours.

  13. The Influence of Different Absorbed Coatings on Thermal Effect of Prefabricated Solar Collector Panels

    Directory of Open Access Journals (Sweden)

    Wang Qi

    2016-01-01

    Full Text Available Prefabricated solar collector panels is a kind of new permeability structure of collector panels. For this test, we adopt a certain proportion of copper oxide, magnesium oxide and iron oxide to enamel paint as absorbed panel coating and make two kinds of collector panels for different forms of color by dark green coating and black coating. By the methods of comparison, the two kinds of panel collector efficiency and heat loss coefficient UL were tested. The results showed that there was a slight difference between the heat loss coefficient of prefabricated solar collector panels, using the panel with dark green coating’s comprehensive thermal effect is well than the panel with black coating. The beautiful appearance color is more suitable for building requirements.

  14. SIDE-BY-SIDE TESTS OF DIFFERENTLY DESIGNED EVACUATED TUBULAR COLLECTORS

    DEFF Research Database (Denmark)

    Fan, Jianhua; Dragsted, Janne; Furbo, Simon

    2007-01-01

    Six differently designed evacuated tubular collectors, ETCs, utilizing solar radiation from all directions, have been investigated experimentally. The evacuated tubular solar collectors investigated include one SLL all-glass ETC from Tshinghua Solar Co., four heat pipe ETCs from Sunda Technolgoy Co....... and one all-glass ETC with heat pipe from Exoheat AB. The collectors have been investigated side-by-side in an outdoor test facility for a long period. During the measurements, the operating conditions – such as weather conditions, inlet and mean solar collector fluid temperatures have been the same. Thus...... a direct performance comparison is possible. The results of the measurements will be presented in this paper. Among other things, the influence on the thermal performance of the absorber design will be explained. Further, it will be illustrated how the thermal performances of the different collector types...

  15. Standard performance tests of collectors of solar thermal energy: A selectively coated, flat-plate copper collector with one transparent cover and a tube-to-tube spacing of 3-7/8 inches

    Science.gov (United States)

    1976-01-01

    Basic test results are given of a flat-plate solar collector whose performance was determined in the NASA-Lewis solar simulator. The collector was tested over ranges of inlet temperatures, fluxes, and coolant flow rates. Collector efficiency is correlated in terms of inlet temperature and flux level.

  16. Standardized performance tests of collectors of solar thermal energy: A selectively coated, flat-plate copper collector with one transparent cover and a tube-to-tube spacing of 5 5/8 inches

    Science.gov (United States)

    1976-01-01

    This preliminary data report gives basic test results of a flat-plate solar collector whose performance was determined in the NASA-Lewis solar simulator. The collector was tested over ranges of inlet temperatures, fluxes and coolant flow rates. Collector efficiency is correlated in terms of inlet temperature and flux level.

  17. Understanding Trends in Catalytic Activity: The Effect of Adsorbate-Adsorbate Interactions for CO Oxidation Over Transition Metals

    DEFF Research Database (Denmark)

    Grabow, Lars; Larsen, Britt Hvolbæk; Nørskov, Jens Kehlet

    2010-01-01

    Using high temperature CO oxidation as the example, trends in the reactivity of transition metals are discussed on the basis of density functional theory (DFT) calculations. Volcano type relations between the catalytic rate and adsorption energies of important intermediates are introduced...... and the effect of adsorbate-adsorbate interaction on the trends is discussed. We find that adsorbate-adsorbate interactions significantly increase the activity of strong binding metals (left side of the volcano) but the interactions do not change the relative activity of different metals and have a very small...... influence on the position of the top of the volcano, that is, on which metal is the best catalyst....

  18. Raman microspectroscopy based sensor of algal lipid unsaturation

    Science.gov (United States)

    Samek, Ota; Pilát, Zdeněk; Jonáš, Alexandr; Zemánek, Pavel; Šerý, Mojmír; Ježek, Jan; Bernatová, Silvie; Nedbal, Ladislav; Trtílek, Martin

    2011-05-01

    Raman spectroscopy is a powerful tool for chemical analysis. This technique can elucidate fundamental questions about the metabolic processes and intercellular variability on a single cell level. Therefore, Raman spectroscopy can significantly contribute to the study and use of microalgae in systems biology and biofuel technology. Raman spectroscopy can be combined with optical tweezers. We have employed microfluidic system to deliver the sampled microalgae to the Raman-tweezers. This instrument is able to measure chemical composition of cells and to track metabolic processes in vivo, in real-time and label-free making it possible to detect population variability in a wide array of traits. Moreover, employing an active sorting switch, cells can be separated depending on input parameters obtained from Raman spectra. We focus on algal lipids which are promising potential products for biofuel as well as for nutrition. Important parameter characterizing the algal lipids is the degree of unsaturation of the constituent fatty acids. We demonstrate the capacity of our Raman tweezers based sensor to sort cells according to the degree of unsaturation in lipid storage bodies of individual living algal cells.

  19. Review of Upscaling Methods for Describing Unsaturated Flow

    Energy Technology Data Exchange (ETDEWEB)

    BD Wood

    2000-09-26

    The representation of small-scale features can be a challenge when attempting to model unsaturated flow in large domains. Upscaling methods offer the possibility of reducing the amount of resolution required to adequately simulate such a problem. In this report, the various upscaling techniques that are discussed in the literature are reviewed. The following upscaling methods have been identified from the literature: (1) stochastic methods, (2) renormalization methods, and (3) volume averaging and homogenization methods; in addition, a final technique, full resolution numerical modeling, is also discussed. Each of these techniques has its advantages and disadvantages. The trade-off is a reduction in accuracy in favor of a method that is easier to employ. For practical applications, the most reasonable approach appears to be one in which any of the upscaling methods identified above maybe suitable for upscaling in regions where the variations in the parameter fields are small. For regions where the subsurface structure is more complex, only the homogenization and volume averaging methods are probably suitable. With the continual increases in computational capacity, fill-resolution numerical modeling may in many instances provide a tractable means of solving the flow problem in unsaturated systems.

  20. Flow dynamics and solute transport in unsaturated rock fractures

    Energy Technology Data Exchange (ETDEWEB)

    Su, Grace Woan-chee [Univ. of California, Berkeley, CA (United States)

    1999-10-01

    Rock fractures play an important role in flow and contaminant transport in fractured aquifers, production of oil from petroleum reservoirs, and steam generation from geothermal reservoirs. In this dissertation, phenomenological aspects of flow in unsaturated fractures were studied in visualization experiments conducted on a transparent replica of a natural, rough-walled rock fracture for inlet conditions of constant pressure and flow rate over a range of angles of inclination. The experiments demonstrated that infiltrating liquid proceeds through unsaturated rock fractures along non-uniform, localized preferential flow paths. Even in the presence of constant boundary conditions, intermittent flow was a persistent flow feature observed, where portions of the flow channel underwent cycles of snapping and reforming. Two modes of intermittent flow were observed, the pulsating blob mode and the rivulet snapping mode. A conceptual model for the rivulet snapping mode was proposed and examined using idealized, variable-aperture fractures. The frequency of intermittent flow events was measured in several experiments and related to the capillary and Bond numbers to characterize this flow behavior.