WorldWideScience

Sample records for adsorbed organic films

  1. Computer simulations of adsorbed liquid crystal films

    Science.gov (United States)

    Wall, Greg D.; Cleaver, Douglas J.

    2003-01-01

    The structures adopted by adsorbed thin films of Gay-Berne particles in the presence of a coexisting vapour phase are investigated by molecular dynamics simulation. The films are adsorbed at a flat substrate which favours planar anchoring, whereas the nematic-vapour interface favours normal alignment. On cooling, a system with a high molecule-substrate interaction strength exhibits substrate-induced planar orientational ordering and considerable stratification is observed in the density profiles. In contrast, a system with weak molecule-substrate coupling adopts a director orientation orthogonal to the substrate plane, owing to the increased influence of the nematic-vapour interface. There are significant differences between the structures adopted at the two interfaces, in contrast with the predictions of density functional treatments of such systems.

  2. Hydrophobic Porous Material Adsorbs Small Organic Molecules

    Science.gov (United States)

    Sharma, Pramod K.; Hickey, Gregory S.

    1994-01-01

    Composite molecular-sieve material has pore structure designed specifically for preferential adsorption of organic molecules for sizes ranging from 3 to 6 angstrom. Design based on principle that contaminant molecules become strongly bound to surface of adsorbent when size of contaminant molecules is nearly same as that of pores in adsorbent. Material used to remove small organic contaminant molecules from vacuum systems or from enclosed gaseous environments like closed-loop life-support systems.

  3. Size selective hydrophobic adsorbent for organic molecules

    Science.gov (United States)

    Sharma, Pramod K. (Inventor); Hickey, Gregory S. (Inventor)

    1997-01-01

    The present invention relates to an adsorbent formed by the pyrolysis of a hydrophobic silica with a pore size greater than 5 .ANG., such as SILICALITE.TM., with a molecular sieving polymer precursor such as polyfurfuryl alcohol, polyacrylonitrile, polyvinylidene chloride, phenol-formaldehyde resin, polyvinylidene difluoride and mixtures thereof. Polyfurfuryl alcohol is the most preferred. The adsorbent produced by the pyrolysis has a silicon to carbon mole ratio of between about 10:1 and 1:3, and preferably about 2:1 to 1:2, most preferably 1:1. The pyrolysis is performed as a ramped temperature program between about 100.degree. and 800.degree. C., and preferably between about 100.degree. and 600.degree. C. The present invention also relates to a method for selectively adsorbing organic molecules having a molecular size (mean molecular diameter) of between about 3 and 6 .ANG. comprising contacting a vapor containing the small organic molecules to be adsorbed with the adsorbent composition of the present invention.

  4. Interactions of organic contaminants with mineral-adsorbed surfactants

    Science.gov (United States)

    Zhu, L.; Chen, B.; Tao, S.; Chiou, C.T.

    2003-01-01

    Sorption of organic contaminants (phenol, p-nitrophenol, and naphthalene) to natural solids (soils and bentonite) with and without myristylpyridinium bromide (MPB) cationic surfactant was studied to provide novel insight to interactions of contaminants with the mineral-adsorbed surfactant. Contaminant sorption coefficients with mineral-adsorbed surfactants, Kss, show a strong dependence on surfactant loading in the solid. At low surfactant levels, the Kss values increased with increasing sorbed surfactant mass, reached a maximum, and then decreased with increasing surfactant loading. The Kss values for contaminants were always higher than respective partition coefficients with surfactant micelles (Kmc) and natural organic matter (Koc). At examined MPB concentrations in water the three organic contaminants showed little solubility enhancement by MPB. At low sorbed-surfactant levels, the resulting mineral-adsorbed surfactant via the cation-exchange process appears to form a thin organic film, which effectively "adsorbs" the contaminants, resulting in very high Kss values. At high surfactant levels, the sorbed surfactant on minerals appears to form a bulklike medium that behaves essentially as a partition phase (rather than an adsorptive surface), with the resulting Kss being significantly decreased and less dependent on the MPB loading. The results provide a reference to the use of surfactants for remediation of contaminated soils/sediments or groundwater in engineered surfactant-enhanced washing.

  5. Structure and properties of water film adsorbed on mica surfaces

    Science.gov (United States)

    Zhao, Gutian; Tan, Qiyan; Xiang, Li; Cai, Di; Zeng, Hongbo; Yi, Hong; Ni, Zhonghua; Chen, Yunfei

    2015-09-01

    The structure profiles and physical properties of the adsorbed water film on a mica surface under conditions with different degrees of relative humidity are investigated by a surface force apparatus. The first layer of the adsorbed water film shows ice-like properties, including a lattice constant similar with ice crystal, a high bearing capacity that can support normal pressure as high as 4 MPa, a creep behavior under the action of even a small normal load, and a character of hydrogen bond. Adjacent to the first layer of the adsorbed water film, the water molecules in the outer layer are liquid-like that can flow freely under the action of external loads. Experimental results demonstrate that the adsorbed water layer makes the mica surface change from hydrophilic to weak hydrophobic. The weak hydrophobic surface may induce the latter adsorbed water molecules to form water islands on a mica sheet.

  6. Ordered molecular layer structure of lubricating oil adsorbed films

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Low-angle X-ray diffraction has been applied to analyze the structure of stearic acid LB films and self-grown surface adsorbed films of aluminium product metalworking lubricants. The results show that LB films exhibit a good layer-like ordered structure in the normal direction of film-carrying surface, while in the tangential direction, they do not show a cyclically ordered molecular arrangement; as for the self-grown surface adsorbed films of aluminium sheet and strip metalworking lubricants, their molecules are orderly arranged to certain degree in both the tangential and the normal directions of film-carrying surface, and they have a short-range ordered structure. Moreover, the better the orientation of normal molecules is, the higher the oil film strength is, and the smaller the friction factor is.

  7. Alpha spectrometry sample preparation using selectively adsorbing thin films

    International Nuclear Information System (INIS)

    Several years ago, Switzerland introduced limits for natural radionuclides in food, e.g. 1 Bq/l for 226Ra or 10 Bq/l for the sum of 238U and 234U in drinking water. To make enforcement by regional (cantonal) laboratories more attractive, simplified analytical methods had to be offered, at least for drinking water. A first step has been the development of radium adsorbing sheets. A 20 mm x 20 mm MnO2 film on a polyamide substrate adsorbs more than 80% of the radium present in a 100 ml water sample within 6 h. The film is thin enough to allow for high resolution alpha spectrometry. A second step now under way is to produce thin films, which selectively adsorb uranium. Actually, an ion exchange resin with diphosphonic and sulfonic acid groups is used for this purpose. Although not yet very thin, these films make possible energy resolutions far better than with any liquid scintillation alpha spectrometry method. Adsorption efficiencies are more than 80% after 20 h exposition to a 100 ml water sample (20 mm x 20 mm sheet). A third step is to have a system that measures radionuclide concentrations in water on-line. A prototype is presented where radionuclides are adsorbed on a film in contact with the water. A Si-detector placed on the other side of the film support counts the alphas passing through

  8. Adsorbed Methane Film Properties in Nanoporous Carbon Monoliths

    Science.gov (United States)

    Soo, Yuchoong; Chada, Nagaraju; Beckner, Matthew; Romanos, Jimmy; Burress, Jacob; Pfeifer, Peter

    2013-03-01

    Carbon briquetting can increase methane storage capacity by reducing the useless void volume resulting in a better packing density. It is a robust and efficient space-filling form for an adsorbed natural gas vehicle storage tank. To optimize methane storage capacity, we studied three fabrication process parameters: carbon-to-binder ratio, compaction temperature, and pyrolysis temperature. We found that carbon-to-binder ratio and pyrolysis temperature both have large influences on monolith uptakes. We have been able to optimize these parameters for high methane storage. All monolith uptakes (up to 260 bar) were measured by a custom-built, volumetric, reservoir-type instrument. The saturated film density and the film thickness was determined using linear extrapolation on the high pressure excess adsorption isotherms. The saturated film density was also determined using the monolayer Ono-Kondo model. Film densities ranged from ca. 0.32 g/cm3 - 0.37 g/cm3.The Ono-Kondo model also determines the binding energy of methane. Binding energies were also determined from isosteric heats calculated from the Clausius-Clapeyron equation and compared with the Ono-Kondo model method. Binding energies from Ono-Kondo were ca. 7.8 kJ/mol - 10 kJ/mol. Work funded by California Energy Commission Contract #500-08-022.

  9. Preconcentration in gas or liquid phases using adsorbent thin films

    Directory of Open Access Journals (Sweden)

    Antonio Pereira Nascimento Filho

    2006-03-01

    Full Text Available The possibility of preconcentration on microchannels for organic compounds in gas or liquid phases was evaluated. Microstructures with different geometries were mechanically machined using poly(methyl methacrylate - PMMA as substrates and some cavities were covered with cellulose. The surfaces of the microchannels were modified by plasma deposition of hydrophilic or hydrophobic films using 2-propanol and hexamethyldisilazane (HMDS, respectively. Double layers of HMDS + 2-propanol were also used. Adsorption characterization was made by Quartz Crystal Measurements (QCM technique using reactants in a large polarity range that showed the adsorption ability of the structures depends more on the films used than on the capillary phenomena. Cellulose modified by double layer film showed a high retention capacity for all gaseous compounds tested. However, structures without plasma deposition showed low retention capacity. Microchannels modified with double layers or 2-propanol plasma films showed higher retention than non-modified ones on gas or liquid phase.

  10. Aging of the nanosized photochromic WO3 films and the role of adsorbed water in the photochromism

    Science.gov (United States)

    Gavrilyuk, A. I.

    2016-02-01

    Here it has been reported on aging of the nanosized WO3 film, which is revealed is continuous reduction of the photochromic sensitivity over time. Water molecules physically adsorbed on the film surface from ambient air form donor-acceptor and hydrogen bonds, changing gradually the adsorption state to chemisorption which prevents an access of organic molecules that serve as hydrogen donors by the photochromism. The mechanism of the process has been investigated and discussed. The role of water in the photochromism has been highlighted. The difference in the efficiency for being of a hydrogen donor in the photochromic process between water and organic molecules is discussed.

  11. Organic adsorbates on metal surfaces. PTCDA and NTCDA on AG(110)

    Energy Technology Data Exchange (ETDEWEB)

    Abbasi, Afshin

    2010-02-22

    Polyaromatic molecules functionalized with carboxylic groups have served as model systems for the growth of organic semiconducting films on a large variety of substrates. Most non-reactive substrates allow for a growth mode compatible with the bulk phase of the molecular crystal with two molecules in the unit cell, but some more reactive substrates including Ag(111) and Ag(110) can induce substantial changes in the first monolayer (ML). In the specific case of Ag(110), the adsorbate unit cell of both NTCDA and PTCDA resembles a brickwall structure, with a single molecule in the unit cell. From this finding, it can be concluded that the adsorbate-substrate interaction is stronger than typical inter-molecular binding energies in the respective bulk phases. In the present work, the interactions between small Ag(110) clusters and a single NTCDA or PTCDA molecule are investigated with different ab initio techniques. Four major ingredients contribute to the binding between adsorbate and substrate: Directional bonds between Ag atoms in the topmost layer and the oxygen atoms of the molecule, Pauli repulsion between filled orbitals of molecule and substrate, an attractive van-der-Waals interaction, and a negative net charge on the molecule inducing positive image charges in the substrate, resulting therefore in an attractive Coulomb interaction between these opposite charges. As both Hartree-Fock theory and density functional theory with typical gradient-corrected density functional do not contain any long range correlation energy required for dispersion interactions, we compare these approaches with the fastest numerical technique where the leading term of the van-der-Waals interaction is included, i.e. second order Moeller-Plesset theory (MP2). Both Hartree-Fock and density functional theory result in bended optimized geometries where the adsorbate is interacting mainly via the oxygen atoms, with the core of the molecule repelled from the substrate. Only at the MP2 level

  12. Interactions between adsorbed macromolecules : measurements on emulsions and liquid films

    NARCIS (Netherlands)

    Vliet, van T.

    1977-01-01

    The aim of this study was to gain more insight into the factors, determining the inter- and intramolecular interactions between adsorbed macromolecules. To that end several experimental and theoretical approaches were followed, using well-defined systems. It was shown that these interactions could c

  13. Heat capacity measurements of atoms and molecules adsorbed on evaporated metal films

    International Nuclear Information System (INIS)

    Investigations of the properties of absorbed monolayers have received great experimental and theoretical attention recently, both because of the importance of surface processes in practical applications such as catalysis, and the importance of such systems to the understanding of the fundamentals of thermodynamics in two dimensions. We have adapted the composite bolometer technology to the construction of microcalorimeters. For these calorimeters, the adsorption substrate is an evaporated film deposited on one surface of an optically polished sapphire wafer. This approach has allowed us to make the first measurements of the heat capacity of submonolayer films of 4He adsorbed on metallic films. In contrast to measurements of 4He adsorbed on all other insulating substrates, we have shown that 4He on silver films occupies a two-dimensional gas phase over a broad range of coverages and temperatures. Our apparatus has been used to study the heat capacity of Indium flakes. CO multilayers, 4He adsorbed on sapphire and on Ag films and H2 adsorbed on Ag films. The results are compared with appropriate theories. 68 refs., 19 figs

  14. Heat capacity measurements of atoms and molecules adsorbed on evaporated metal films

    Energy Technology Data Exchange (ETDEWEB)

    Kenny, T.W.

    1989-05-01

    Investigations of the properties of absorbed monolayers have received great experimental and theoretical attention recently, both because of the importance of surface processes in practical applications such as catalysis, and the importance of such systems to the understanding of the fundamentals of thermodynamics in two dimensions. We have adapted the composite bolometer technology to the construction of microcalorimeters. For these calorimeters, the adsorption substrate is an evaporated film deposited on one surface of an optically polished sapphire wafer. This approach has allowed us to make the first measurements of the heat capacity of submonolayer films of /sup 4/He adsorbed on metallic films. In contrast to measurements of /sup 4/He adsorbed on all other insulating substrates, we have shown that /sup 4/He on silver films occupies a two-dimensional gas phase over a broad range of coverages and temperatures. Our apparatus has been used to study the heat capacity of Indium flakes. CO multilayers, /sup 4/He adsorbed on sapphire and on Ag films and H/sub 2/ adsorbed on Ag films. The results are compared with appropriate theories. 68 refs., 19 figs.

  15. Preparation and characterization of a novel adsorbent for removing lipophilic organic from water

    Institute of Scientific and Technical Information of China (English)

    LIU; Huijuan; DAI; Ruihua; QU; Jiuhui; RU; Jia

    2005-01-01

    A novel composite adsorbent containing a kind of lipid-triolein is studied. The adsorbent is prepared by embedding triolein into cellulose acetate (CA) sphere. The preparation method, the physical-chemical properties of the adsorbent and the removal efficiency of two organochlorinated pesticides are studied. The adsorbent is stable in water and no triolein leaks into water for 465 h soaking. The adsorbent has high adsorption capacity for organochlorinated pesticides such as dieldrin and aldrin. The results suggest that triolein-containing adsorbent could serve as a good adsorbent for lipophilic organic pollutants. The adsorption rate for lipophilic pollutants is very fast and has relation with the logKow of the compounds.

  16. Critical behavior of superfluid 4He films adsorbed in aerogel glass

    International Nuclear Information System (INIS)

    We present measurements of the superfluid density and heat capacity of thin films of 4He adsorbed in aerogel glass. We find that the critical behavior of the superfluid density for films with transition temperatures between 50 mK and 1 K is similar to that seen for films adsorbed on Vycor. Power-law behavior is observed over at least one order of magnitude in reduced temperature with an exponent ζ=0.63±0.03. This exponent is much smaller than the value 0.811±0.004 found when the pores were filled with helium. We also find that the exponent is unchanged by the addition of small amounts of 3He. These results are consistent with the existence of a correlation length that diverges at the superfluid transition. Unlike for full-pore 4He aerogel, the correlation length is long compared with all structural length scales throughout the superfluid density power-law regime, thus leading to the more bulklike critical behavior. The heat capacity of 4He films in aerogel shows no singularity like that seen for full-pore 4He aerogel or for thin films adsorbed in Vycor. We show that this result is consistent with the predictions of hyperuniversality given the long correlation lengths implied by the superfluid density measurements

  17. Luminescence of 2,5-bis(2-benzoxazolylhydroquinone Molecules Adsorbed on Copper Island Film

    Directory of Open Access Journals (Sweden)

    Chayka K.

    2005-12-01

    Full Text Available Characteristics of photoluminescence spectra of polycrystalline 2,5-bis(2-benzoxazolylhydroquinone (BBHQ adsorbed on a copper island film have been studied in the conditions of laser excitation. The reflectivity, transmission and luminescence spectra have been measured in the temperature range of 600 – 800 K for a number of film thicknesses and annealing conditions. It has been found that annealing of the films induces changes in the islands’ morphologies. The spectral luminescence characteristics have been compared with those peculiar for the BBHQ solution in 3-metylpentan, for the BBHQ samples adsorbed on pure plane-parallel quartz plates and for the samples contained in quartz glass cell. The results have been used for interpretation of the spectra and estimation of the average amplification factor and the characteristics of molecular excitons in the crystals under investigation.

  18. Anomalous conformational transitions in cytochrome C adsorbing to Langmuir-Blodgett films

    Science.gov (United States)

    Sankaranarayanan, Kamatchi; Nair, B. U.; Dhathathreyan, A.

    2013-05-01

    Helix to beta conformational transitions in proteins has attracted much attention due to their relevance to fibril formation which is implicated in many neurological diseases. This study reports on unusual conformational transition of cytochrome C adsorbing to hydrophilic surface containing pure cationic lipid and mixed Langmuir-Blodgett films (LB films) of cationic and neutral lipids. Evidence for conformational changes of the protein from its native helical state to beta sheet comes from Circular dichroic spectroscopy (CD spectroscopy). Analysis of these samples using High resolution TEM (HRTEM) shows a typical fibrillar pattern with each strand spacing of about 0.41 nm across which can be attributed to the repeat distance of interdigitated neighboring hydrogen-bonded ribbons in a beta sheet. Changes in contact angles of protein adsorbing to the LB films together with the increased mass uptake of water using quartz crystal microbalance (QCM) confirm the role of positive charges in the conformational transition. Dehydration of the protein resulting from the excess water entrainment in the polar planes of the cationic lipid in hydrophilic surface seems to trigger the refolding of the protein to beta sheet while it retains its native conformation in hydrophobic films. The results suggest that drastic conformational changes in CytC adsorbing to cationic lipids may be of significance in its role as a peripheral membrane protein.

  19. Unusual Morphologies of Poly(vinyl alcohol) Thin Films Adsorbed on Poly(dimethylsiloxane) Substrates.

    Science.gov (United States)

    Karki, Akchheta; Nguyen, Lien; Sharma, Bhanushee; Yan, Yan; Chen, Wei

    2016-04-01

    Adsorption of poly(vinyl alcohol) (PVOH), 99% and 88% hydrolyzed poly(vinyl acetate), to poly(dimethylsiloxane) (PDMS) substrates was studied. The substrates were prepared by covalently attaching linear PDMS polymers of 2, 9, 17, 49, and 116 kDa onto silicon wafers. As the PDMS molecular weight/thickness increases, the adsorbed PVOH thin films progressively transition from continuous to discontinuous morphologies, including honeycomb and fractal/droplet. The structures are the result of thin film dewetting that occurs upon exposure to air. The PVOH film thickness does not vary significantly on these PDMS substrates, implicating the PDMS thickness as the cause for the morphology differences. The adsorbed PVOH thin films are less stable and have a stronger tendency to dewet on thicker, more liquid-like PDMS layers. When PVOH(99%) and PVOH(88%) thin films are compared, fractal and droplet morphologies are observed on high molecular weight PDMS substrates, respectively. The formation of the unique fractal features in the PVOH(99%) thin films as well as other crystalline and semicrystalline thin films is most likely driven by crystallization during the dehydration process in a diffusion-limited aggregation fashion. The only significant enhancement in hydrophilicity via PVOH adsorption was obtained on PDMS(2k), which is completely covered with a PVOH thin film. To mimic the lower receding contact angle and less liquid-like character of the PDMS(2k) substrate, light plasma treatment of the higher molecular weight PDMS substrates was carried out. On the treated PDMS substrates, the adsorbed PVOH thin films are in the more continuous honeycomb morphology, giving rise to significantly enhanced wettability. Furthermore, hydrophobic recovery of the hydrophilized PDMS substrates was not observed during a 1 week period. Thus, light plasma oxidation and subsequent PVOH adsorption can be utilized as a means to effectively hydrophilize conventional PDMS substrates. This study

  20. Film morphology and orientation of amino silicone adsorbed onto cellulose substrate

    International Nuclear Information System (INIS)

    A series of amino silicones with different amino values were synthesized and adsorbed onto surfaces of cotton fibers and cellulose substrates. The film morphology, hydrophobic properties and surface composition of the silicones are investigated and characterized by field emission scanning electron microscope (FESEM), atomic force microscope (AFM), contact angle measurement, X-ray photoelectron spectroscopy (XPS) and attenuated total reflectance infrared (ATR-IR). The results of the experiments indicate that the amino silicone can form a hydrophobic film on both cotton fibers and cellulose substrates and reduce the surface roughness significantly. Furthermore, the roughness becomes smaller with an increase in the amino value. All these results suggest that the orientation of amino silicone molecule is with the amino functional groups of amino silicone molecule adsorbed onto the cellulose interface while the main polymer chains and the hydrophobic Si-CH3 groups extend toward the air.

  1. Competition between the superfluidity and the slippage of 4He films adsorbed on porous gold

    International Nuclear Information System (INIS)

    We have carried out QCM measurements for 4He films adsorbed on porous gold in the crossover region between the superfluidity and slippage. In relative low areal densities, the resonance frequency increases gradually below TS due to the slippage of solid film, while the superfluid onset is observed in high areal densities. In the crossover region, we observed a peculiar behavior: The increase in the resonance frequency below TS is suddenly suppressed at a certain temperature TD. From these observations, it is concluded that the superfluidity and the slippage of 4He competes with each other.

  2. Comparative study of normal and branched alkane monolayer films adsorbed on a solid surface. I. Structure

    DEFF Research Database (Denmark)

    Enevoldsen, Ann Dorrit; Hansen, Flemming Yssing; Diama, A.;

    2007-01-01

    ) tetracosane film is roughly the same as the bulk melting point, the surface strongly stabilizes the 2D squalane film such that its melting point is 91 K above its value in bulk. Therefore, squalane, like tetracosane, will be a poor lubricant in those nanoscale devices that require a fluid lubricant at room......The structure of a monolayer film of the branched alkane squalane (C30H62) adsorbed on graphite has been studied by neutron diffraction and molecular dynamics (MD) simulations and compared with a similar study of the n-alkane tetracosane (n-C24H52). Both molecules have 24 carbon atoms along their...... backbone and squalane has, in addition, six methyl side groups. Upon adsorption, there are significant differences as well as similarities in the behavior of these molecular films. Both molecules form ordered structures at low temperatures; however, while the melting point of the two-dimensional (2D...

  3. Scandium-Triflate/Metal-Organic Frameworks: Remarkable Adsorbents for Desulfurization and Denitrogenation.

    Science.gov (United States)

    Khan, Nazmul Abedin; Jhung, Sung Hwa

    2015-12-01

    Scandium-triflate (Sc(OTf)3) was introduced for the first time on metal-organic frameworks (MOFs), to utilize acidic Sc(OTf)3 for adsorptive desulfurization and denitrogenation of fuel containing benzothiophene (BT), dibenzothiophene (DBT), quinoline (QUI), and indole (IND). A remarkable improvement in the adsorption capacity (about 65% based on the weight of adsorbents; 90% based on the surface area of the adsorbents) was observed with the Sc(OTf)3/MOFs as compared to the virgin MOFs for the adsorption of BT from liquid fuel. The basic QUI was also adsorbed preferentially onto the acidic Sc(OTf)3/MOFs. However, nonsupported Sc(OTf)3 showed negligible adsorption capacities. The improved adsorptive performance for BT, DBT, and QUI might be derived from acid-base interactions between the acidic Sc(OTf)3 and basic adsorbates. On the other hand, the Sc(OTf)3, loaded on MOFs, reduced the adsorption capacity for neutral IND due to lack of interaction between the neutral adsorbate and acidic adsorbent and the reduced porosities of the modified adsorbents. The reusability of the adsorbents was found satisfactory up to the fourth run. On the basis of the result, it is suggested that metal-triflates, such as Sc(OTf)3, can be prospective materials for adsorptive desulfurization/denitrogenation of fuels when supported on porous materials such as MOFs. PMID:26575418

  4. Metallo-organic decomposition films

    Science.gov (United States)

    Gallagher, B. D.

    1985-01-01

    A summary of metallo-organic deposition (MOD) films for solar cells was presented. The MOD materials are metal ions compounded with organic radicals. The technology is evolving quickly for solar cell metallization. Silver compounds, especially silver neodecanoate, were developed which can be applied by thick-film screening, ink-jet printing, spin-on, spray, or dip methods. Some of the advantages of MOD are: high uniform metal content, lower firing temperatures, decomposition without leaving a carbon deposit or toxic materials, and a film that is stable under ambient conditions. Molecular design criteria were explained along with compounds formulated to date, and the accompanying reactions for these compounds. Phase stability and the other experimental and analytic results of MOD films were presented.

  5. Heat capacity of quantum adsorbates: Hydrogen and helium on evaporated gold films

    International Nuclear Information System (INIS)

    The author has constructed an apparatus to make specific heat measurements of quantum gases adsorbed on metallic films at temperatures between 0.3 and 4 K. He has used this apparatus to study quench-condensed hydrogen films between 4 and 923 layers thick with J = 1 concentrations between 0.28 and 0.75 deposited on an evaporated gold surface. He has observed that the orientational ordering of the J = 1 molecules depends on the substrate temperature during deposition of the hydrogen film. He has inferred that the density of the films condensed at the lowest temperatures is 25% higher than in bulk H2 crystals and have observed that the structure of those films is affected by annealing at 3.4 K. The author has measured the J = 1 to J = 0 conversion rate to be comparable to that of the bulk for thick films; however, he found evidence that the gold surface catalyzes conversion in the first two to four layers. He has also used this apparatus to study films of 4He less than one layer thick adsorbed on an evaporated gold surface. He shows that the phase diagram of the system is similar to that for 4He/graphite although not as rich in structure, and the phase boundaries occur at different coverages and temperatures. At coverages below about half a layer and at sufficiently high temperatures, the 4He behaves like a two-dimensional noninteracting Bose gas. At lower temperatures and higher coverages, liquidlike and solidlike behavior is observed. The Appendix shows measurements of the far-infrared absorptivity of the high-Tc superconductor La1.87Sr0.13CuO4

  6. A novel aminated polymeric adsorbent for removing refractory dissolved organic matter from landfill leachate treatment plant

    Institute of Scientific and Technical Information of China (English)

    ZHANG Long; LI Aimin; WANG Jinnan; LU Yufei; ZHOU Youdong

    2009-01-01

    Refractory dissolved organic matter (DOM) from landfill leachate treatment plant was with high dissolved organic carbon (DOC) content.An aminated polymeric adsorbent NDA-8 with tertiary amino groups and sufficient mesopore was synthesized, which exhibited high adsorption capacity to the DOM (raw water after coagulation).Resin NDA-8 performed better in the uptake of the DOM than resin DAX-8 and A100.Electrostatic attraction was considered as the decisive interaction between the adsorbent and adsorbate.Special attention was paid to the correlation between porous structure and adsorption capacity.The mesopore of NDA-8 played a crucial role during uptake of the DOM.In general, resin in chloride form performed a higher removal rate of DOC.According to the column adsorption test, total adsorption capacity of NDA-8 was calculated to 52.28 mg DOC/mL wet resin.0.2 mol/L sodium hydroxide solution could regenerate the adsorbent efficiently.

  7. Extra adsorption and adsorbate superlattice formation in metal-organic frameworks

    Science.gov (United States)

    Sung Cho, Hae; Deng, Hexiang; Miyasaka, Keiichi; Dong, Zhiyue; Cho, Minhyung; Neimark, Alexander V.; Ku Kang, Jeung; Yaghi, Omar M.; Terasaki, Osamu

    2015-11-01

    Metal-organic frameworks (MOFs) have a high internal surface area and widely tunable composition, which make them useful for applications involving adsorption, such as hydrogen, methane or carbon dioxide storage. The selectivity and uptake capacity of the adsorption process are determined by interactions involving the adsorbates and their porous host materials. But, although the interactions of adsorbate molecules with the internal MOF surface and also amongst themselves within individual pores have been extensively studied, adsorbate-adsorbate interactions across pore walls have not been explored. Here we show that local strain in the MOF, induced by pore filling, can give rise to collective and long-range adsorbate-adsorbate interactions and the formation of adsorbate superlattices that extend beyond an original MOF unit cell. Specifically, we use in situ small-angle X-ray scattering to track and map the distribution and ordering of adsorbate molecules in five members of the mesoporous MOF-74 series along entire adsorption-desorption isotherms. We find in all cases that the capillary condensation that fills the pores gives rise to the formation of ‘extra adsorption domains’—that is, domains spanning several neighbouring pores, which have a higher adsorbate density than non-domain pores. In the case of one MOF, IRMOF-74-V-hex, these domains form a superlattice structure that is difficult to reconcile with the prevailing view of pore-filling as a stochastic process. The visualization of the adsorption process provided by our data, with clear evidence for initial adsorbate aggregation in distinct domains and ordering before an even distribution is finally reached, should help to improve our understanding of this process and may thereby improve our ability to exploit it practically.

  8. Organic photovoltaic films

    Directory of Open Access Journals (Sweden)

    Jenny Nelson

    2002-05-01

    The last two years have seen an unprecedented growth of interest in solar cells made from organic electronic materials. This is partly due to the rapid growth of the photovoltaic market1, which has stimulated research into longer term, more innovative photovoltaic technologies, and partly to the development of organic electronic materials for display applications. The rapid progress in optoelectronic molecular materials has introduced a range of potential new photovoltaic materials, as well as an improved understanding of the capabilities of such materials and confidence in their application2.

  9. Effect of γ-ray irradiation on adsorbents used in organic waste treatment

    International Nuclear Information System (INIS)

    Radioactive organic liquids (ROLs) are waste that require specific treatment. The Arvia process, developed by Arvia Technology Ltd., combines adsorption of organic material with electrochemical oxidation. This work focuses on the effect of γ-rays on the performance of adsorbents used in the Arvia process. Adsorbents used in this experimental study were provided by Arvia Technology Ltd. Specifically, Nyex 1000, a flake like carbon-based adsorbent, and Nyex 2105, a carbon-based adsorbent with a granular morphology. The γ-ray irradiation experiments were carried out using a Co-60 irradiator. The impact of irradiation on the microstructure, the adsorption capacity and the leaching of the 2 adsorbents were studied. The results show that no significant changes were detected in terms of structure, adsorption capacity and leaching of ions. The results of this paper are promising for the use of Nyex 1000 and Nyex 2105 as adsorbents in electrochemical waste treatment processes which involve high levels of γ-rays. The article is followed by the slides of the presentation

  10. Photoconductivity of thin organic films

    International Nuclear Information System (INIS)

    Thin organic films were deposited on silicon oxide surfaces with golden interdigitated electrodes (interelectrode gap was 2 μm), and the film resistivities were measured in dark and under white light illumination. The compounds selected for the measurements include molecules widely used in solar cell applications, such as polythiophene (PHT), fullerene (C60), pyrelene tetracarboxylic diimide (PTCDI) and copper phthalocyanine (CuPc), as well as molecules potentially interesting for photovoltaic applications, e.g. porphyrin-fullerene dyads. The films were deposited using thermal evaporation (e.g. for C60 and CuPc films), spin coating for PHT, and Langmuir-Schaeffer for the layer-by-layer deposition of porphyrin-fullerene dyads. The most conducting materials in the series are films of PHT and CuPc with resistivities 1.2 x 103 Ω m and 3 x 104 Ω m, respectively. Under light illumination resistivity of all films decreases, with the strongest light effect observed for PTCDI, for which resistivity decreases by 100 times, from 3.2 x 108 Ω m in dark to 3.1 x 106 Ω m under the light.

  11. Economic alpha spectrometry using silicon microsystems and selectively adsorbing thin films

    International Nuclear Information System (INIS)

    We present first results obtained with a monitor SARAD EQF 3020 containing three alpha detector microsystems measuring radon in air, attached radon daughters and unattached radon daughters respectively. The three components are measured quasicontinuousely with a temporal resolution of 2 hours. The measuring range is 1 to 10 MBq/m3 by low detection limit of 0.1 Bq/m3 equivalent radon concentration. The system was rested in buildings, caves, mines, waterworks and other places. Using silicon microsystem integrating on a few chips an alpha detector, an ADC, a memory and logics can be produced at far lower cost than if assembled from individual components. We have also developed thin films selectively adsorbing radium and uranium from aqueous solutions, e.g. drinking waters. These films have simply to be placed into the solution to be analyzed and accumulate radium and uranium with a high efficiency. The adsorption capacity of this films is by a 20 h exposure nearly 70% for radium in the solution. The films are eventually measured by alpha spectrometry and show energy resolutions of below 50 keV. These thin films considerably reduce preparation times and thus costs. Replacing in addition the conventional alpha spectrometer by one of our silicon microsystems leads to a very economic system for the analysis of radium and uranium in drinking water. (author). 6 refs, 6 figs

  12. The onset of superfluidity in thin films of 4He adsorbed on ordered and disordered substrates

    International Nuclear Information System (INIS)

    The authors have completed a systematic study of the superfluid density of 4He films adsorbed on two substrates: exfoliated basal-plane graphite and 91% porosity aerogel glass. The authors measurements demonstrate a dramatic difference in the coverage-dependence of the superfluid density in these two systems. The onset of superfluidity in the aerogel system is similar to that observed in the case of other disordered substrates such as Vycor glass and mylar. The superfluid density at zero temperature is nearly proportional to coverage once the critical coverage for superfluidity is exceeded. The superfluid density for films adsorbed on graphite does not evolve in this simple fashion. The onset of superfluidity appears to occur near two layers, but the superfluid density increases very rapidly between 2.5 and 3 layers. This coverage regime is also characterized by a dramatic sharpening density and transition temperature remain essentially unchanged as the coverage is increased. We will discuss in the context of recent theoretical work on the onset of superfluidity in model Bose systems

  13. Nanotribological properties of water films adsorbing atop, and absorbing below, graphene layers supported by metal substrates

    Science.gov (United States)

    Liu, Zijian; Curtis, C. K.; Stine, R.; Sheehan, P.; Krim, J.

    The tribological properties of graphite, a common lubricant with known sensitivity to the presence of water, have been studied extensively at the macroscopic and microscopic scales. Although far less attention has been devoted to the tribological properties of graphene, it has been established that the tribological response to the presence of water is dissimilar from that of graphite. We report here a quartz crystal microbalance study of the nanotribological properties of water films adsorbed/absorbed on graphene layers prepared by either chemical decomposition on nickel(111) substrates or transfer of freestanding graphene layers to aluminum substrates. Sliding friction levels of the water films were also measured for metal surfaces in the absence of a graphene layer. We observe very high friction levels for water adsorbed atop graphene on Ni(111) and very low levels for water on aluminum. For the case of graphene/aluminum, the data indicate that the water is absorbing between the graphene layer and the aluminum. Dissipation levels moreover indicate the presence of an interstitial water increases sliding friction between the graphene and the aluminum substrate Work supported by NSF and NRL.

  14. Organic thin-film photovoltaics

    OpenAIRE

    Liu, Miaoyin

    2010-01-01

    Zusammenfassung Zur Verbesserung der Leistungsumwandlung in organischen Solarzellen sind neue Materialien von zentraler Bedeutung, die sämtliche Erfordernisse für organische Photovoltaik-Elemente erfüllen. In der vorliegenden Arbeit „Organic thin-film photovoltaics“ wurden im Hinblick auf ein besseres Verständnis der Zusammenhänge zwischen molekularer Struktur und der Leistungsfähigkeit neue Materialien in „bulk-heterojunction“ Solarzellen und in Festphasen-Farbstoffsensibilisierten ...

  15. Comparative study of normal and branched alkane monolayer films adsorbed on a solid surface. II. Dynamics

    DEFF Research Database (Denmark)

    Enevoldsen, Ann Dorrit; Hansen, Flemming Yssing; Diama, A.;

    2007-01-01

    The dynamics of monolayer films of the n-alkane tetracosane (n-C24H52) and the branched alkane squalane (C30H62) adsorbed on graphite have been studied by quasielastic and inelastic neutron scattering and molecular dynamics (MD) simulations. Both molecules have 24 carbon atoms along their carbon...... backbone, and squalane has an additional six methyl side groups symmetrically placed along its length. The authors' principal objective has been to determine the influence of the side groups on the dynamics of the squalane monolayer and thereby assess its potential as a nanoscale lubricant. To investigate...... analysis of the quasielastic scattering. They conclude that there are no major differences in the monolayer dynamics caused by intramolecular branching. It remains to be seen whether this similarity in monolayer dynamics also holds for the lubricating properties of these molecules in confined geometries...

  16. Low cost adsorbents for the removal of organic pollutants from wastewater.

    Science.gov (United States)

    Ali, Imran; Asim, Mohd; Khan, Tabrez A

    2012-12-30

    Water pollution due to organic contaminants is a serious issue because of acute toxicities and carcinogenic nature of the pollutants. Among various water treatment methods, adsorption is supposed as the best one due to its inexpensiveness, universal nature and ease of operation. Many waste materials used include fruit wastes, coconut shell, scrap tyres, bark and other tannin-rich materials, sawdust and other wood type materials, rice husk, petroleum wastes, fertilizer wastes, fly ash, sugar industry wastes blast furnace slag, chitosan and seafood processing wastes, seaweed and algae, peat moss, clays, red mud, zeolites, sediment and soil, ore minerals etc. These adsorbents have been found to remove various organic pollutants ranging from 80 to 99.9%. The present article describes the conversion of waste products into effective adsorbents and their application for water treatment. The possible mechanism of adsorption on these adsorbents has also been included in this article. Besides, attempts have been made to discuss the future perspectives of low cost adsorbents in water treatment. PMID:23023039

  17. Relaxation of surface stress induced by an organic adsorbate: PTCDA on vicinal Ag(111)

    Energy Technology Data Exchange (ETDEWEB)

    Pollinger, Florian; Vrdoljak, Pavo; Fertig, Dominik; Schmitt, Stefan; Kumpf, Christian; Schoell, Achim; Umbach, Eberhard [Universitaet Wuerzburg, Experimentelle Physik II, Am Hubland, 97074 Wuerzburg (Germany); Tian, Zhen; Sander, Dirk; Kirschner, Juergen [Max-Planck-Institut fuer Mikrostrukturphysik, Weinberg 2, 06120 Halle (Germany)

    2007-07-01

    Self-organization of metallic surfaces on large scales can be induced by the adsorption of organic molecules and has been observed in several experiments. One example is the growth of 3,4,9,10-perylenetetracarboxylic-acid dianhydride (PTCDA) on stepped (8.5 -vicinal) Ag(111) surfaces. At elevated temperatures, the adsorbate molecules lead to a bunching of substrate steps, which agglomerate to facets of critical sizes. The facets arrange in a coverage-dependent grating-like pattern on a mesoscopic length scale. The resulting order requires a long-range interaction which is mediated by the substrate. It can be explained by a change of surface stress induced by the adsorbate layer. Experimentally, such a change is directly accessible by an optical cantilever bending technique. We monitored the bending of a faceting thin Ag(10 8 7) crystal with this method in order to quantify the occurring relaxation of surface stress.

  18. Direct Measurement of Adsorbed Gas Redistribution in Metal–Organic Frameworks

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Ying-Pin [Texas A & M Univ., College Station, TX (United States); Liu, Yangyang [Texas A & M Univ., College Station, TX (United States); Liu, Dahuan [Texas A & M Univ., College Station, TX (United States); Beijing Univ. of Chemical Technology (China); Bosch, Mathieu [Texas A & M Univ., College Station, TX (United States); Zhou, Hong-Cai [Texas A & M Univ., College Station, TX (United States)

    2015-03-04

    Knowledge about the interactions between gas molecules and adsorption sites is essential to customize metal-organic frameworks (MOFs) as adsorbents. The dynamic interactions occurring during adsorption/desorption working cycles with several states are especially complicated. Even so, the gas dynamics based upon experimental observations and the distribution of guest molecules under various conditions in MOFs have not been extensively studied yet. In this work, a direct time-resolved diffraction structure envelope (TRDSE) method using sequential measurements by in situ synchrotron powder X-ray diffraction has been developed to monitor several gas dynamic processes taking place in MOFs: infusion, desorption, and gas redistribution upon temperature change. The electron density maps indicate that gas molecules prefer to redistribute over heterogeneous types of sites rather than to exclusively occupy the primary binding sites. We found that the gas molecules are entropically driven from open metal sites to larger neighboring spaces during the gas infusion period, matching the localized-to-mobile mechanism. In addition, the partitioning ratio of molecules adsorbed at each site varies with different temperatures, as opposed to an invariant distribution mode. Equally important, the gas adsorption in MOFs is intensely influenced by the gas–gas interactions, which might induce more molecules to be accommodated in an orderly compact arrangement. This sequential TRDSE method is generally applicable to most crystalline adsorbents, yielding information on distribution ratios of adsorbates at each type of site.

  19. Solid waste from leather industry as adsorbent of organic dyes in aqueous-medium

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, Luiz C.A. [Universidade Federal de Lavras, Depto. de Quimica, Caixa Postal 37, CEP 37200.000, Lavras-MG (Brazil)]. E-mail: luizoliveira@ufla.br; Goncalves, Maraisa [Universidade Federal de Lavras, Depto. de Quimica, Caixa Postal 37, CEP 37200.000, Lavras-MG (Brazil); Oliveira, Diana Q.L. [Universidade Federal de Lavras, Depto. de Quimica, Caixa Postal 37, CEP 37200.000, Lavras-MG (Brazil); Guerreiro, Mario C. [Universidade Federal de Lavras, Depto. de Quimica, Caixa Postal 37, CEP 37200.000, Lavras-MG (Brazil); Guilherme, Luiz R.G. [Universidade Federal de Lavras, Depto. de Ciencia do solo, CEP 37200.000, Lavras-MG (Brazil); Dallago, Rogerio M. [URI-Campus Erechim, Av. 7 Setembro 1621, Centro, CEP 99700-000, Depto de Quimica, Erechim-RS (Brazil)

    2007-03-06

    The industrial tanning of leather usually produces considerable amounts of chromium-containing solid waste and liquid effluents and raises many concerns on its environmental effect as well as on escalating landfill costs. Actually, these shortcomings are becoming increasingly a limiting factor to this industrial activity that claims for alternative methods of residue disposals. In this work, it is proposed a novel alternative destination of the solid waste, based on the removal of organic contaminants from the out coming aqueous-residue. The adsorption isotherm pattern for the wet blue leather from the Aurea tanning industry in Erechim-RS (Brazil) showed that these materials present high activity on adsorbing the reactive red textile dye as well as other compounds. The adsorbent materials were characterized by IR spectroscopy and SEM and tested for the dye adsorption (reactive textile and methylene blue dyes). The concentrations of dyes were measured by UV-vis spectrophotometry and the chromium extraction from leather waste was realized by basic hydrolysis and determined by atomic absorption. As a low cost abundant adsorbent material with high adsorption ability on removing dye methylene blue (80 mg g{sup -1}) and textile dye reactive red (163 mg g{sup -1}), the leather waste is revealed to be a interesting alternative relatively to more costly adsorbent materials.

  20. Solid waste from leather industry as adsorbent of organic dyes in aqueous-medium

    International Nuclear Information System (INIS)

    The industrial tanning of leather usually produces considerable amounts of chromium-containing solid waste and liquid effluents and raises many concerns on its environmental effect as well as on escalating landfill costs. Actually, these shortcomings are becoming increasingly a limiting factor to this industrial activity that claims for alternative methods of residue disposals. In this work, it is proposed a novel alternative destination of the solid waste, based on the removal of organic contaminants from the out coming aqueous-residue. The adsorption isotherm pattern for the wet blue leather from the Aurea tanning industry in Erechim-RS (Brazil) showed that these materials present high activity on adsorbing the reactive red textile dye as well as other compounds. The adsorbent materials were characterized by IR spectroscopy and SEM and tested for the dye adsorption (reactive textile and methylene blue dyes). The concentrations of dyes were measured by UV-vis spectrophotometry and the chromium extraction from leather waste was realized by basic hydrolysis and determined by atomic absorption. As a low cost abundant adsorbent material with high adsorption ability on removing dye methylene blue (80 mg g-1) and textile dye reactive red (163 mg g-1), the leather waste is revealed to be a interesting alternative relatively to more costly adsorbent materials

  1. Evaluation of organic and inorganic adsorbents for the removal of uranium and plutonium from process streams

    Energy Technology Data Exchange (ETDEWEB)

    Herald, W.R.; Koenst, J.W.; Luthy, D.F.

    1977-01-01

    Mound Laboratory is evaluating macroporous, ion exchange resins for the removal of plutonium, uranium, and various colloids from process waste treatment effluents. A number of organic ion exchange resins were evaluated for removal of /sup 238/Pu(IV), /sup 238/Pu(VI), and /sup 233/U(VI) from water using batch isotherm tests. The capacity and equilibrium distribution coefficients were compared with each other and with bone char, an inorganic adsorbent consisting of hydroxyapatite (HAP). The various types of adsorbents showed that the extent of removal and the equilibrium coefficients (Kd) were functions of pH. For removal of polymeric plutonium, /sup 238/Pu(IV), the best results were achieved using the inorganic adsorbent, bone char (hydroxyapatite), at pH 7. However, macroporous, weak base, anion exchange resins also showed reasonable Kd values at pH 7. Therefore, the best removal of polymeric plutonium can be achieved using chemisorption or weak base anionic exchange, indicating strongly ionized anions. Excellent results for removal of /sup 238/Pu(VI) were achieved using macroporous, strong base, anion exchange resins and macroporous, strong acid, cation exchange resins. For removal of ionic /sup 233/U(VI), the strongly acidic cation exchangers gave the better results; the Kd values were on the order of 10/sup 2/ better than bone char. Again, performance was strongly dependent upon pH. Adsorbent resins which remove constituents by physical adsorption did not perform well for uranium removal.

  2. Atomic force microscopy measurements of topography and friction on dotriacontane films adsorbed on a SiO2 surface

    DEFF Research Database (Denmark)

    Trogisch, S.; Simpson, M.J.; Taub, H.;

    2005-01-01

    We report comprehensive atomic force microscopy (AFM) measurements at room temperature of the nanoscale topography and lateral friction on the surface of thin solid films of an intermediate-length normal alkane, dotriacontane (n-C32H66), adsorbed onto a SiO2 surface. Our topographic and frictional...... images, recorded simultaneously in the contact mode, reveal a multilayer structure in which one to two layers of molecules adsorb adjacent to the SiO2 surface oriented with their long axis parallel to the interface followed by partial layers of molecules oriented perpendicular to the surface. The...

  3. Organic and Inorganic Dyes in Polyelectrolyte Multilayer Films

    Directory of Open Access Journals (Sweden)

    Vincent Ball

    2012-12-01

    Full Text Available Polyelectrolyte multilayer films are a versatile functionalization method of surfaces and rely on the alternated adsorption of oppositely charged species. Among such species, charged dyes can also be alternated with oppositely charged polymers, which is challenging from a fundamental point of view, because polyelectrolytes require a minimal number of charges, whereas even monovalent dyes can be incorporated during the alternated adsorption process. We will not only focus on organic dyes but also on their inorganic counterparts and on metal complexes. Such films offer plenty of possible applications in dye sensitized solar cells. In addition, dyes are massively used in the textile industry and in histology to stain textile fibers or tissues. However, the excess of non bound dyes poses serious environmental problems. It is hence of the highest interest to design materials able to adsorb such dyes in an almost irreversible manner. Polyelectrolyte multilayer films, owing to their ion exchange behavior can be useful for such a task allowing for impressive overconcentration of dyes with respect to the dye in solution. The actual state of knowledge of the interactions between charged dyes and adsorbed polyelectrolytes is the focus of this review article.

  4. Adsorbed films of three-patch colloids: continuous and discontinuous transitions between thick and thin films.

    Science.gov (United States)

    Dias, C S; Araújo, N A M; Telo da Gama, M M

    2014-09-01

    We investigate numerically the role of spatial arrangement of the patches on the irreversible adsorption of patchy colloids on a substrate. We consider spherical three-patch colloids and study the dependence of the kinetics on the opening angle between patches. We show that growth is suppressed below and above minimum and maximum opening angles, revealing two absorbing phase transitions between thick and thin film regimes. While the transition at the minimum angle is continuous, in the directed percolation class, that at the maximum angle is clearly discontinuous. For intermediate values of the opening angle, a rough colloidal network in the Kardar-Parisi-Zhang universality class grows indefinitely. The nature of the transitions was analyzed in detail by considering bond flexibility, defined as the dispersion of the angle between the bond and the center of the patch. For the range of flexibilities considered we always observe two phase transitions. However, the range of opening angles where growth is sustained increases with flexibility. At a tricritical flexibility, the discontinuous transition becomes continuous. The practical implications of our findings and the relation to other nonequilibrium transitions are discussed. PMID:25314441

  5. XPS study of the surfactant film adsorbed onto growing titania nanoparticles

    International Nuclear Information System (INIS)

    TiO2 particles, prepared by following a sol-gel preparative route, were submitted to hydrothermal growing stages in the presence of an anionic surfactant, sodium dodecyl-sulfate (SDS), at solution pH values corresponding, respectively, to positive surface charges and to the isoelectric point of the oxide. The concentration of the surfactant in the aqueous solution was varied in order to produce different conditions of self-aggregation between the amphiphilic molecules. XPS analyses were performed on the aged and dried precursors to characterize the surfactant films adsorbed onto the oxide. The regions of Ti 2p, O 1s, and C 1s were specifically investigated. The samples, calcined at 600 deg. C, were characterized for phase composition-crystallinity, by X-ray diffraction, and for surface area. The role played by the oxide-surfactant interactions and by the surfactant self-aggregation phenomena in affecting the physico-chemical properties of the powders is discussed

  6. Development of adsorbent for the simultaneous removal of organic and inorganic contaminants from aqueous solution.

    Science.gov (United States)

    Choi, J W; Chung, S G; Hong, S W; Kim, D J; Lee, S H

    2011-01-01

    In this study, a modified adsorbent, alginate complex beads, was prepared and applied to the removal of mixed contaminants from wastewater. The alginate complex beads were generated by the immobilization of powdered activated carbon and synthetic zeolites onto alginate gel beads, which were then dried at 110 °C for 20 h until the diameter had been reduced to 1 mm. This dry technique increased the hardness of the adsorbent to assure its durability and application. The adsorption onto the alginate complex beads of organic and inorganic compounds, as target contaminants, was investigated by performing both equilibrium and kinetic batch experiments. From the adsorption isotherms, according to the Langmuir equation, the alginate complex bead was capable of effectively removing benzene, toluene, zinc and cadmium. From kinetic batch experiments, the removal efficiencies of benzene, toluene, zinc and cadmium were found to be 66.5, 92.4, 74.1 and 76.7%, respectively, for initial solution concentrations of 100 mg L(-1). The results indicated that the adsorbent developed in this study has the potential to be a promising material for the removal of mixed pollutants from industrial wastewater or contaminated groundwater. PMID:22020474

  7. Ionic liquids supported on metal-organic frameworks: remarkable adsorbents for adsorptive desulfurization.

    Science.gov (United States)

    Khan, Nazmul Abedin; Hasan, Zubair; Jhung, Sung Hwa

    2014-01-01

    Acidic ionic-liquids (IL) supported on metal-organic frameworks (MOFs) have been shown to be beneficial for adsorptive desulfurization. A remarkable improvement in the adsorption capacity (ca. 71%) was observed in for ILs supported on MIL-101 compared with virgin MIL-101. The improved adsorptive performance might be explained by the acid-base interactions between the acidic ionic liquid and basic benzothiophene (BT). Moreover, from this study, it can be suggested that porous MOFs, supported with ionic liquids, may introduce a new class of highly porous adsorbents for the efficient adsorption of various compounds. PMID:24390909

  8. Mixed waste remediation using HUMASORB trademark -- an adsorbent to remove organic and inorganic contaminants

    International Nuclear Information System (INIS)

    The groundwater contamination at different Department of Energy (DOE) and other similar industrial sites is complex due to the presence of both volatile organic compounds (VOC) and heavy metals. ARCTECH, Inc. is developing a process based on HUMASORB trademark--a humic acid based adsorbent, to remove heavy metal, radionuclide and organic contaminants from groundwater and surface water streams in one processing step. The properties of HUMASORBtrademark that are useful for mixed waste remediation include: high cation exchange capacity; ability to chelate metals; and ability to adsorb organics. The starting materials for the development of HUMASORBtrademark is actosol reg-sign, a humic acid based soil amendment product manufactured by ARCTECH, Inc. Humic acid isolated from actosol reg-sign was purified, and cross-linked by different methods to make HUMASORB trademark. This material was then used for contaminant removal from both an actual waste stream from a Superfund site and simulated waste streams containing contaminants such as heavy metals, radionuclides, chlorinated and fuel hydrocarbons. Adsorption and metal sorption isotherms were developed for different contaminants

  9. The effects of adsorbing organic pollutants from super heavy oil wastewater by lignite activated coke.

    Science.gov (United States)

    Tong, Kun; Lin, Aiguo; Ji, Guodong; Wang, Dong; Wang, Xinghui

    2016-05-01

    The adsorption of organic pollutants from super heavy oil wastewater (SHOW) by lignite activated coke (LAC) was investigated. Specifically, the effects of LAC adsorption on pH, BOD5/COD(Cr)(B/C), and the main pollutants before and after adsorption were examined. The removed organic pollutants were characterized by Fourier transform infrared spectroscopy (FTIR), Boehm titrations, gas chromatography-mass spectrometry (GC-MS), and liquid chromatography with organic carbon detection (LC-OCD). FTIR spectra indicated that organic pollutants containing -COOH and -NH2 functional groups were adsorbed from the SHOW. Boehm titrations further demonstrated that carboxyl, phenolic hydroxyl, and lactonic groups on the surface of the LAC increased. GC-MS showed that the removed main organic compounds are difficult to be degraded or extremely toxics to aquatic organisms. According to the results of LC-OCD, 30.37 mg/L of dissolved organic carbons were removed by LAC adsorption. Among these, hydrophobic organic contaminants accounted for 25.03 mg/L. Furthermore, LAC adsorption was found to increase pH and B/C ratio of the SHOW. The mechanisms of adsorption were found to involve between the hydrogen bonding and the functional groups of carboxylic, phenolic, and lactonic on the LAC surface. In summary, all these results demonstrated that LAC adsorption can remove bio-refractory DOCs, which is beneficial for biodegradation. PMID:26808249

  10. Metallo-Organic Decomposition (MOD) film development

    Science.gov (United States)

    Parker, J.

    1986-01-01

    The processing techniques and problems encountered in formulating metallo-organic decomposition (MOD) films used in contracting structures for thin solar cells are described. The use of thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC) techniques performed at Jet Propulsion Laboratory (JPL) in understanding the decomposition reactions lead to improvements in process procedures. The characteristics of the available MOD films were described in detail.

  11. Performance of non-coconut base adsorbers in removal of iodine and organic iodides

    International Nuclear Information System (INIS)

    Systems for the removal of radioactive iodine and organic iodides have used impregnated coconut shell activated carbons almost exclusively. Coconut shell carbons have some disadvantages: their geographical origin determines their trace chemical content; pore structures and impregnant effectiveness are highly dependent on activation and impregnation techniques. The authors report laboratory performance of a group of iodine-organic iodide adsorbers using bases other than coconut shell carbon. These have been evaluated in conformity with USAEC Regulatory Guide 1.52 and RDT M16 1T. Performance with regard to 131I2 and CH3131I penetration and high-temperature elution have equaled or exceeded both the requirements of Guide 1.52 and results on typical coconut-shell carbons. Some performance outside Guide 1.52 ranges is included. Experimental problems in simulated LOCA testing are discussed. (U.S.)

  12. Mixed waste: The treatment of organic radioactive waste by means of adsorbents

    International Nuclear Information System (INIS)

    Full text: The work described in this paper has been carried in the radioactive waste treatment facilities of the Nuclear Research Center Lo Aguirre, CEN LA, which are operated by Radioactive Waste Management Unit, UGDR. This last, centralizes its activities in order to manage all radioactive waste generated in the country due to the nuclear development. Features of danger and risks presented by organic radioactive liquid waste, make the need to develop a practicable alternative for its treatment and to allow the conditioning towards a suitable final disposal The raw material for this work, is an organic liquid waste arising from scintillation techniques, contaminated with Tritium. This mixed waste has to be treated and then conditioned in a solid form within a 200 I container, according with actual acceptance criteria for our temporary store for radioactive waste. The best formulation which allows to immobilize the liquid waste was determined. The first step consists in the adsorption treatment that waste is humbled. From the available adsorbents, two types were studied: adsorption granulat and diatomaceous earth. From the waste management standpoint, results with diatomaceous earth present physical characteristics better than the other Following, the second stage is the immobilization, which is achieved in a cement matrix made with puzzolanic cement (Polpaico 400) made in Chile. Later, due to cost and availability in the country, the diatomaceous earth is selected for the study, in the form of celite which is comparatively economic. The best mixture, with regard to physical feature, has the following composition: a 0.35 (w/w) water/cement ratio, which represents the needed quantity to obtain workability in the mixture, and it is the minimum amount of water to hydrating the cement; a waste/adsorbent ratio of 0.5 (v/v), in which the organic liquid is completely adsorbed and it is incorporated into the crystalline system of the solid form; and an adsorbed waste

  13. Ellipsometry of functional organic surfaces and films

    CERN Document Server

    Hinrichs, Karsten

    2013-01-01

    Ellipsometry is the method of choice to determin the properties of surfaces and thin films. It provides comprehensive and sensitive characterization in a contactless and non-invasive measurements. This book gives a state-of-the-art survey of ellipsometric investigations of organic films and surfaces, from laboratory to synchrotron applications, with a special focus on in-situ use in processing environments and at solid-liquid interfaces.

  14. Injection currents in thin disordered organic films

    International Nuclear Information System (INIS)

    Analytic model of barrier-limited injection of charge carriers from metal electrodes into organic film, which was introduced by Arkhipov and co-workers, is modified, considering effects of multiple image charges and injection from both electrodes. Limits of applicability of Arkhipov's model are discussed. Variations from Arkhipov's model are important, if film thickness is comparable with Onsager length

  15. Low concentration CO2 capture using physical adsorbents: Are Metal-Organic Frameworks becoming the new benchmark materials?

    KAUST Repository

    Belmabkhout, Youssef

    2016-03-30

    The capture and separation of traces and concentrated CO2 from important commodities such as CH4, H2, O2 and N2, is becoming important in many areas related to energy security and environmental sustainability. While trace CO2 concentration removal applications have been modestly studied for decades, the spike in interest in the capture of concentrated CO2 was motivated by the need for new energy vectors to replace highly concentrated carbon fuels and the necessity to reduce emissions from fossil fuel-fired power plants. CO2 capture from various gas streams, at different concentrations, using physical adsorbents, such as activated carbon, zeolites, and metal-organic frameworks (MOFs), is attractive. However, the adsorbents must be designed with consideration of many parameters including CO2 affinity, kinetics, energetics, stability, capture mechanism, in addition to cost. Here, we perform a systematic analysis regarding the key technical parameters that are required for the best CO2 capture performance using physical adsorbents. We also experimentally demonstrate a suitable material model of Metal Organic Framework as advanced adsorbents with unprecedented properties for CO2 capture in a wide range of CO2 concentration. These recently developed class of MOF adsorbents represent a breakthrough finding in the removal of traces CO2 using physical adsorption. This platform shows colossal tuning potential for more efficient separation agents.

  16. Effect of alkane chain length and counterion on the freezing transition of cationic surfactant adsorbed film at alkane mixture - water interfaces.

    Science.gov (United States)

    Tokiwa, Yuhei; Sakamoto, Hiroyasu; Takiue, Takanori; Aratono, Makoto; Matsubara, Hiroki

    2015-05-21

    Penetration of alkane molecules into the adsorbed film gives rise to a surface freezing transition of cationic surfactant at the alkane-water interface. To examine the effect of the alkane chain length and counterion on the surface freezing, we employed interfacial tensiometry and ellipsometry to study the interface of cetyltrimethylammonium bromide and cetyltrimethylammonium chloride aqueous solutions against dodecane, tetradecane, hexadecane, and their mixtures. Applying theoretical equations to the experimental results obtained, we found that the alkane molecules that have the same chain length as the surfactant adsorb preferentially into the surface freezing film. Furthermore, we demonstrated that the freezing transition temperature of cationic surfactant adsorbed film was independent of the kind of counterion. PMID:25932500

  17. Organic silicon compounds anf hydrogen sulfide removal from biogas by mineral and adsorbent

    Science.gov (United States)

    Choi, J.

    2015-12-01

    Biogas utilized for energy production needs to be free from organic silicon compounds and hydrogen sulfide , as their burning has damaging effects on utilities and humans; organic silicon compounds and hydrogen sulfide can be found in biogas produced from biomass wastes, due to their massive industrial use in synthetic product,such as cosmetics, detergents and paints.Siloxanes and hydrogen sulfide removal from biogas can be carried out by various methods (Ajhar et al., 2010); aim of the present work is to find a single practical andeconomic way to drastically and simultaneously reduce both hydrogen sulfide and the siloxanes concentration to less than 1 ppm. Some commercial activated carbons previously selected (Monteleoneet al., 2011) as being effective in hydrogen sulfide up taking have been tested in an adsorption measurement apparatus, by flowing both hydrogen sulphide and volatile siloxane (Decamethycyclopentasiloxane or D5) in a nitrogen stream,typically 25-300 ppm D5 over N2, through an clay minerals, Fe oxides and Silica; the adsorption process was analyzed by varying some experimental parameters (concentration, grain size, bed height). The best silica shows an adsorption capacity of 0.2 g D5 per gram of silica. The next thermo gravimetric analysis (TGA) confirms the capacity data obtained experimentally by the breakthrough curve tests.The capacity results depend on D5 and hydrogen sulphide concentrations. A regenerative silica process is then carried out byheating the silica bed up to 200 ° C and flushing out the adsorbed D5 and hydrogen sulphide samples in a nitrogen stream in athree step heating procedure up to 200 ° C. The adsorption capacity is observed to degrade after cyclingthe samples through several adsorption-desorption cycles.

  18. The inter-adsorbate interaction mediated by Shockley-type surface state electrons and dipole moment: Cs and Ba atoms absorbed on Ag (1 1 1) films

    International Nuclear Information System (INIS)

    Through first-principles investigation, we display the formation process of Shockley-type surface states which emerges on silver thin films along Ag (1 1 1) orientation with increasing thicknesses from 6 to 21 layers. We look at the surface state band for various adatoms adsorbed on 6, 12, 18 layers strained Ag (1 1 1) films with different coverage, and discuss the long range interaction mediated by surface state electrons. We discovered that film's thickness can modulate the surface state mediated interaction drastically, but the dipole–dipole repulsive interaction is not affected by slab thickness. This factor had never been discussed in detail. Therefore, adatoms adsorbed on thin films have strong attractive interaction which leads to small adsorption separation and the tendency of island formation. For different coverage or different adsorbate types, both surface states and dipole moment are modulated. The three factors, film's thickness, adsorbate coverage and adatoms types, could help us learn more about the interactions between adatoms and exploit advanced ways to control surface geometry structures of self-assembly.

  19. Methyl red removal from water by iron based metal-organic frameworks loaded onto iron oxide nanoparticle adsorbent

    Energy Technology Data Exchange (ETDEWEB)

    Dadfarnia, S., E-mail: sdadfarnia@yazd.ac.ir [Department of Chemistry, Faculty of Science, Yazd University, Yazd 89195-741 (Iran, Islamic Republic of); Haji Shabani, A.M.; Moradi, S.E. [Department of Chemistry, Faculty of Science, Yazd University, Yazd 89195-741 (Iran, Islamic Republic of); Emami, S. [Department of Medicinal Chemistry and Pharmaceutical Sciences Research Center, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari (Iran, Islamic Republic of)

    2015-03-01

    Highlights: • Synthesis and characterization of (Fe{sub 3}O{sub 4}@MIL-100(Fe)). • Studying the capability of (Fe{sub 3}O{sub 4}@MIL-100(Fe)) for the removal of methyl red. • Studying the adsorption kinetic of MR on (Fe{sub 3}O{sub 4}@MIL-100(Fe)). • Studying the adsorption thermodynamic of MR on (Fe{sub 3}O{sub 4}@MIL-100(Fe)). • Introduction of a sorbent with high capacity for MR removal. - Abstract: The objective followed by this research is the synthesis of iron based metal organic framework loaded on iron oxide nanoparticles (Fe{sub 3}O{sub 4}@MIL-100(Fe)) and the study of its capability for the removal of methyl red. Effective parameters in the selection of a new adsorbent, i.e. adsorption capacity, thermodynamics, and kinetics were investigated. All the studies were carried out in batch experiments. Removal of methyl red from aqueous solutions varied with the amount of adsorbent, methyl red contact time, initial concentration of dye, adsorbent dosage, and solution pH. The capability of the synthesized adsorbent in the removal of methyl red was compared with the metal organic framework (MIL-100(Fe)) and iron oxide nanoparticles. The results show that Fe{sub 3}O{sub 4}@MIL-100(Fe) nanocomposite exhibits an enhanced adsorption capacity.

  20. Methyl red removal from water by iron based metal-organic frameworks loaded onto iron oxide nanoparticle adsorbent

    International Nuclear Information System (INIS)

    Highlights: • Synthesis and characterization of (Fe3O4@MIL-100(Fe)). • Studying the capability of (Fe3O4@MIL-100(Fe)) for the removal of methyl red. • Studying the adsorption kinetic of MR on (Fe3O4@MIL-100(Fe)). • Studying the adsorption thermodynamic of MR on (Fe3O4@MIL-100(Fe)). • Introduction of a sorbent with high capacity for MR removal. - Abstract: The objective followed by this research is the synthesis of iron based metal organic framework loaded on iron oxide nanoparticles (Fe3O4@MIL-100(Fe)) and the study of its capability for the removal of methyl red. Effective parameters in the selection of a new adsorbent, i.e. adsorption capacity, thermodynamics, and kinetics were investigated. All the studies were carried out in batch experiments. Removal of methyl red from aqueous solutions varied with the amount of adsorbent, methyl red contact time, initial concentration of dye, adsorbent dosage, and solution pH. The capability of the synthesized adsorbent in the removal of methyl red was compared with the metal organic framework (MIL-100(Fe)) and iron oxide nanoparticles. The results show that Fe3O4@MIL-100(Fe) nanocomposite exhibits an enhanced adsorption capacity

  1. Novel magnetic Fe3O4-C nanoparticles as adsorbents for removal of organic dyes from aqueous solution

    International Nuclear Information System (INIS)

    Highlights: → In this work, novel magnetic Fe3O4-C nanoparticles have been synthesized and employed as high efficient adsorbent for removal cationic dyes from polluted water. → While up to now, little study is done on adsorption of dyes by the Fe3O4-C nanoparticles. → Hence, here we provide a simply and environment friendly method for removal of cationic dyes or other pollutants from water. - Abstract: The magnetic Fe3O4/C core-shell nanoparticles have been synthesized by a simple strategy and used as adsorbents for removal of organic dyes from aqueous solution. The resulting products are characterized by scanning electron microscope (SEM), energy dispersive X-ray spectrometry (EDX), X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), Raman spectra and Fourier transform infrared spectra (FTIR). Adsorption performances of the nanomaterial adsorbents are tested with removal of methylene blue (MB) and cresol red (CR) from aqueous solution. The effects of solution pH value, adsorption time and capacity of the nanocomposites have been fully investigated. The results reveal that the nanospheres can be easily manipulated by an external magnetic field with high separation efficiency. In addition, the process is clean and safe for purifying water pollution. The prepared Fe3O4/C complex nanomaterials could thus be used as promising adsorbents for the remove organic dyes, especially, cationic dye, from polluted water.

  2. Low concentration volatile organic pollutants removal in combined adsorber-desorber-catalytic reactor system

    Directory of Open Access Journals (Sweden)

    Arsenijević Zorana

    2008-01-01

    Full Text Available The removal of volatile organic compounds (VOCs from numerous emission sources is of crucial importance due to more rigorous demands on air quality. Different technologies can be used to treat the VOCs from effluent gases: absorption, physical adsorption, open flame combustion, thermal and catalytic incineration. Their appropriateness for the specific process depends on several factors such as efficiency, energy consumption, secondary pollution, capital investments etc. The distinctive features of the catalytic combustion are high efficiency and selectivity toward be­nign products, low energy consumption and absence of secondary polluti­on. The supported noble catalysts are widely used for catalytic incineration due to their low ignition temperatures and high thermal and chemical stability. In our combined system adsorption and desorption are applied in the spouted bed with draft tube (SBDT unit. The annular zone, loaded with sorbent, was divided in adsorption and desorption section. Draft tube enabled sorbent recirculation between sections. Combustion of desorbed gases to CO2 and water vapor are realized in additive catalytic reactor. This integrated device provided low concentrations VOCs removal with reduced energy consumption. Experiments were conducted on a pilot unit of 220 m3/h nominal capacity. The sorbent was activated carbon, type K81/B - Trayal Corporation, Krusevac. A sphere shaped commercial Pt/Al2O3 catalyst with "egg-shell" macro-distribution was used for the investigation of xylene deep oxidation. Within this paper the investigations of removal of xylene vapors, a typical pollutant in production of liquid pesticides, in combined adsorber/desorber/catalytic reactor system is presented.

  3. Surface morphology and thickness of a multilayer film composed of strong and weak polyelectrolytes: Effect of the number of adsorbed layers, concentration and type of salts

    International Nuclear Information System (INIS)

    Self-assembled multilayered films were prepared by alternate deposition of a strong cationic polyelectrolyte, poly(trimethylammonium ethyl methacrylate chloride) and a pH-dependant anionic polyelectrolyte, poly(acrylic acid). The layer-by-layer adsorption was followed in-situ by optical fixed-angle reflectometry and after drying by ellipsometry. A recently developed 'substrate thickness method' was applied to calculate the adsorbed amount of polymer from the reflectometric signal. Surface film morphology was imaged before and after drying with atomic force microscopy (AFM). Influence of the number of adsorbed layers, concentration and type of salts on the multilayer growth was examined. The number of adsorbed layers produced a specific effect on the reflectometric signal which is linked to the refractive index of the film. Adjustment of the adsorbed amount of polyelectrolytes was done by changing sodium chloride salt concentration within a range of 10-3 to 10-1 M. AFM observations showed a significant evolution in surface morphology and a maximum of surface roughness for films built-up at 10-2 M. Experiments were then carried out at 10-3 M in either barium chloride or zinc chloride salts. In the presence of Ba2+ and Zn2+ ions, adsorption of 5 bilayers is completely modified and the surface morphology was smoother than the multilayers obtained using sodium chloride salt

  4. Treatment of Adsorbable Organic Halides from Recycled Paper Industry Wastewater using a GAC-SBBR Pilot Plant System

    OpenAIRE

    Khadum, A.A.H.; Rahman, R.A.; Mohamad, A.B.; S.R.S. Abdullah; M.H. Muhamad

    2011-01-01

    Wastewater originating from recycled paper industry is known to be potentially toxic/inhibitory. Adsorbable Organic Halides (AOX) are among the toxic constituents generated from the recycled paper industry. The problems associated with AOX in the environment are their accumulation in the food chain and their persistence in nature. Hence, it is imperative to improve the effluent quality emanating from the recycled paper industry in order to meet the future discharge limits. One the plausible t...

  5. Use of Low-cost Adsorbents to Chlorophenols and Organic Matter Removal of Petrochemical Wastewater

    Directory of Open Access Journals (Sweden)

    Aretha Moreira de Oliveira

    2013-11-01

    Full Text Available The removal of 2,4 diclorophenol (2,4-DCF and 2,4,6 trichlorophenol (2,4,6 TCF present in  petrochemical wastewater was evaluated using low-cost adsorbents, such as chitin, chitosan and coconut shells. Batch studies showed that the absorption efficiency for 2,4 DCF and 2,4,6 TCF follow the order: chitosan > chitin > coconut shells. Langmuir and Freundlich models have been applied to experimental isotherms data, to better understand the adsorption mechanisms. Petrochemical wastewater treatment with fixed bed column system using chitinous adsorbents showed a removal of COD (75% , TOG (90% and turbidity (74-89%.

  6. Entropy-Driven Conformational Control of α,ω-Difunctional Bidentate-Dithiol Azo-Based Adsorbates Enables the Fabrication of Thermally Stable Surface-Grafted Polymer Films.

    Science.gov (United States)

    Lee, Han Ju; Jamison, Andrew C; Lee, T Randall

    2016-06-22

    Thermally stable radical initiator monolayers were prepared from uniquely designed α,ω-difunctional adsorbates with bidentate headgroups for the growth of nanoscale polymer films on metal surfaces. The length of the spacer separating the bidentate headgroups was varied to afford 4,4'-(diazene-1,2-diyl)bis(N-(16-(3,5-bis(mercaptomethyl)phenoxy)hexadecyl)-4-cyanopentanamide) (B16), 4,4'-(diazene-1,2-diyl)bis(N-(16-(3,5-bis(mercapto-methyl)phenoxy)decyl)-4-cyanopentanamide) (B10), and 4,4'-(diazene-1,2-diyl)bis(N-(4-(3,5-bis(mercaptomethyl)phenoxy)butyl)-4-cyanopentanamide) (B4). The structural features of the self-assembled monolayers (SAMs) derived from B16, B10, and B4 were characterized by X-ray photoelectron spectroscopy (XPS), ellipsometry, and polarization modulation infrared reflection-absorption spectroscopy (PM-IRRAS) and compared to those derived from an analogous α,ω-difunctional adsorbate with monodentate headgroups, 4,4'-(diazene-1,2-diyl)bis(4-cyano-N-(16-mercaptohexadecyl)pentanamide (M). These studies demonstrate that the conformation (i.e., hairpin vs standing up) of the bidentate initiator adsorbates on gold surfaces was easily controlled by adjusting the concentration of the adsorbates in solution. The results of solution-phase thermal desorption tests revealed that the radical initiator monolayers generated from B16, B10, and B4 exhibit an enhanced thermal stability when compared to those generated from M. Furthermore, a study of the growth of polymer films was performed to evaluate the utility of these new bidentate adsorbate SAMs as film-development platforms for new functional materials and devices. Specifically, surface-grafted polystyrene films were successfully generated from SAMs derived from B16. In contrast, attempts to grow polystyrene films from SAMs derived from M under a variety of analogous conditions were unsuccessful. PMID:27219525

  7. NMR diffusion and relaxation measurements of organic molecules adsorbed in porous media

    International Nuclear Information System (INIS)

    a bipolar form of the pulsed field gradient has proved to be an efficient method for both reducing the cross-term between the applied and internal gradient and reducing the eddy current dead time. Without the use of a bipolar sequence, the measured diffusivities are likely to be underestimated. In order to get sufficient attenuation of the signal a stimulated-echo sequence together with magnetic field gradients have been used. It was then possible to increase the z-storage period to compensate for insufficient gradient strength. However, the employed diffusion probe and gradient power supply are able to generate magnetic field gradients that make the z-storage period unnecessary. In this work we also present a spin-echo analogue to the 13-interval PFGSTE sequence presented by Cotts et al., a so-called 11-interval bipolar PFGSE sequence. Conclusions: The molecular dynamics of four organic adsorbates confined in porous materials have been investigated. The confinement gives rise to substantial changes in the phase behaviour and molecular dynamics. From the line shape of the confined substances a narrow-line component superimposed on a broad resonance is observed at temperatures well below the transition point of the bulk material. This narrow-line component is, in the freezing region, attributed to the surface layer and the undercooled liquid in the smaller pores that remains unfrozen. In the low-temperature region, the narrow-line component corresponds to the surface layer, while the broad component originates from the crystalline phase at the centre of the pores. The persistent surface layer does not appear to crystallize at all, and a relatively high diffusion rate of this liquid-like phase is observed over a wide temperature range, even well below the transition point of the bulk material. However, with decreasing temperature T2 of the molecules in the surface layer becomes shorter and the contribution to the NMR signal decreases gradually. For pivalic acid and

  8. Neutron scattering study of 36 Ar monolayer films adsorbed on graphite

    DEFF Research Database (Denmark)

    Taub, H.; da Costa Carneiro, Kim; Kjems, Jørgen;

    1977-01-01

    scattered from 36 Ar monolayers in the nominally in-plane configuration can be reasonably well described at low temperatures by a 2D harmonic-phonon model while the scattering in the out-of-plane configuration seems to be best represented in terms of a resonant coupling of the monolayer film to out......-of-plane collective motions of the graphite substrate. There is some evidence of renormalization of the in-plane transverse modes of the monolayer at higher temperatures; however, the in-plane longitudinal modes and the out-of-plane modes do not appear to be similarly affected....

  9. Third Sound Generation in Superfluid 4He Films Adsorbed on Multiwall Carbon Nanotubes

    Science.gov (United States)

    Iaia, Vito; Menachekanian, Emin; Williams, Gary

    2014-03-01

    A technique is developed for generating third sound in superfluid 4He films coating the surface of multiwall carbon nanotubes. Third sound is a thickness and temperature wave of the helium film, and in our case we detect the temperature oscillations with a carbon resistance bolometer. The nanotubes are packed in an annular resonator that is vibrated with a mechanical shaker assembly consisting of a permanent magnet mounted on springs, and surrounded by a superconducting coil. The coil is driven with an oscillating current, vibrating the cell at that frequency. Sweeping the drive frequency over the range 100-200 Hz excites the resonant third sound mode of the cell, seen as a high-Q signal in the FFT analysis of the bolometer signal. A problem with our original cell was that the mechanical drive would also shake the dilution refrigerator cooling the cell to low temperatures, and increasing the drive would start to heat up the refrigerator and the cell, which were rigidly coupled together. A new configuration now suspends the cell as a pendulum on a string, with thermal contact made by copper wires. Piezo sensor measurements show this reduces the vibration reaching the refrigerator by two orders of magnitude, which should allow measurements at lower temperatures.

  10. Scanning tunneling microscopy studies of organic monolayers adsorbed on the rhodium(111) crystal surface

    Energy Technology Data Exchange (ETDEWEB)

    Cernota, Paul D.

    1999-08-01

    Scanning Tunneling Microscopy studies were carried out on ordered overlayers on the (111) surface of rhodium. These adsorbates include carbon monoxide (CO), cyclohexane, cyclohexene, 1,4-cyclohexadiene, para-xylene, and meta-xylene. Coadsorbate systems included: CO with ethylidyne, CO with para- and meta-xylene, and para-xylene with meta-xylene. In the case of CO, the structure of the low coverage (2x2) overlayer has been observed. The symmetry of the unit cell in this layer suggests that the CO is adsorbed in the 3-fold hollow sites. There were also two higher coverage surface structures with ({radical}7x{radical}7) unit cells. One of these is composed of trimers of CO and has three CO molecules in each unit cell. The other structure has an additional CO molecule, making a total of four. This extra CO sits on a top site.

  11. Adsorption of organic layers over electrodeposited magnetite (Fe3O4) thin films

    International Nuclear Information System (INIS)

    Research highlights: → Adherent low roughness magnetite films ranging from 80 nm to 3.75 μm-thick were electrodeposited on Au/glass substrates under galvanostatic control. → X-ray diffraction and magnetic measurements corroborates the purity of the electrodeposited magnetite. → Both dodecanethiol and oleic acid are shown to adsorb on the magnetite prepared at low temperature, significantly inducing the hydrophobicity of the surface. → Contact angle and voltammetric measurements, as well as XPS confirm the monolayers formation. - Abstract: The formation of monolayers of two organic compounds (oleic acid and dodecanethiol) over magnetite films was studied. Magnetite films ranging from 80 nm to 3.75 μm-thick were electrodeposited on Au on glass substrates under galvanostatic control, with deposition parameters optimized for minimum surface roughness. Films were characterised by SEM and AFM, showing granular deposits with a low rms roughness of 5-40 nm measured over an area of 1 μm2. The growth rate was estimated by measuring cross-sections of the thin films. Pure magnetite with an fcc structure is observed in XRD diffractograms. The adsorption of both oleic acid and dodecanethiol on the magnetite films was tested by immersing them in ethanol solutions containing the organic molecules, for different deposition time, temperature and cleaning procedure. Monolayer formation in both cases was studied by contact angle and voltammetric measurements, as well as XPS.

  12. Hybrid inorganic-organic adsorbents Part 1: Synthesis and characterization of mesoporous zirconium titanate frameworks containing coordinating organic functionalities.

    Science.gov (United States)

    Griffith, Christopher S; De Los Reyes, Massey; Scales, Nicholas; Hanna, John V; Luca, Vittorio

    2010-12-01

    A series of functional hybrid inorganic-organic adsorbent materials have been prepared through postsynthetic grafting of mesoporous zirconium titanate xerogel powders using a range of synthesized and commercial mono-, bis-, and tris-phosphonic acids, many of which have never before been investigated for the preparation of hybrid phases. The hybrid materials have been characterized using thermogravimetric analysis, diffuse reflectance infrared (DRIFT) and 31P MAS NMR spectroscopic techniques and their adsorption properties studied using a 153Gd radiotracer. The highest level of surface functionalization (molecules/nm2) was observed for methylphosphonic acid (∼3 molecules/nm2). The level of functionalization decreased with an increase in the number of potential surface coordinating groups of the phosphonic acids. Spectral decomposition of the DRIFT and 31P MAS NMR spectra showed that each of the phosphonic acid molecules coordinated strongly to the metal oxide surface but that for the 1,1-bis-phosphonic acids and tris-phosphonic acids the coordination was highly variable resulting in a proportion of free or loosely coordinated phosphonic acid groups. Functionalization of a porous mixed metal oxide framework with the tris-methylenephosphonic acid (ATMP-ZrTi-0.33) resulted in a hybrid with the highest affinity for 153Gd3+ in nitric acid solutions across a wide range of acid concentrations. The ATMP-ZrTi-0.33 hybrid material extracted 153Gd3+ with a Kd value of 1×10(4) in 0.01 M HNO3 far exceeding that of the other hybrid phases. The unfunctionalized mesoporous mixed metal oxide had negligible affinity for Gd3+ (Kdcapacity of the ATMP-ZrTi-0.33 hybrid phase for Gd3+ has been determined to be about 0.005 mmol/g in 0.01 M HNO3. This behavior and that of the other hybrid phases suggests that the surface-bound ATMP ligand functions as a chelating ligand toward 153Gd3+ under these acidic conditions. PMID:21073158

  13. Two-Factor Model of Soil Suction from Capillarity, Shrinkage, Adsorbed Film, and Intra-aggregate Structure

    CERN Document Server

    Chertkov, V Y

    2014-01-01

    The objective of this work is to derive the soil water retention from the soil structure without curve-fitting and only using the physical parameters found irrespective of an experimental retention curve. Two key points underlie the work: (i) the soil suction at drying coincides with that of the soil intra-aggregate matrix and contributive clay; and (ii) both the soil suction and volume shrinkage at drying depend on the same soil water content. In addition the two following results are used: (i) the available two-factor (capillarity and shrinkage) model of clay suction enables one to connect a clay suction and clay water content using the clay matrix structure; and (ii) the recent reference shrinkage curve model based on the concepts of intra-aggregate soil structure permits one to connect the soil water content at shrinkage with the water content of the contributive clay. With that the available two-factor model was essentially modified and, in particular, the effect of adsorbed water film was taken into acc...

  14. Magnetic niobia as adsorbent of organic contaminants in aqueous medium: effect of temperature and pH

    International Nuclear Information System (INIS)

    This work describes novel materials based on pure iron oxide and iron oxide/niobia composite to produce a magnetic adsorbent. These materials were prepared with synthetic iron oxide and characterized by powder XRD, SEM, FTIR, TPR and Moessbauer spectroscopy. Results showed that the main iron oxides formed were goethite (α FeOOH) and maghemite (γFe2O3) with small particle size. The iron oxide and iron oxide/niobia composite showed high adsorption ability for organic compounds. The positive enthalpy indicated an endothermic adsorption process suggesting physical adsorption. (author)

  15. A New Experimental Method to Determine the Henry’s Law Constant of a Volatile Organic Compound Adsorbed in Soil

    OpenAIRE

    2015-01-01

    This paper presents a new mechanical method to determine Henry’s law constant (HLC) of a volatile organic compound (VOC). This method is an extension of the one proposed by Ouoba et al. (2010) to determine the water activity in porous media. This work focuses on TCE and aims at characterizing its liquid-vapor equilibrium in various cases in the form of a pure liquid phase or dissolved in an aqueous solution, adsorbed or not in a natural soil. A liquid phase is disposed in a closed chamber who...

  16. Tribochemical synthesis of nano-lubricant films from adsorbed molecules at sliding solid interface: Tribo-polymers from α-pinene, pinane, and n-decane

    Science.gov (United States)

    He, Xin; Barthel, Anthony J.; Kim, Seong H.

    2016-06-01

    The mechanochemical reactions of adsorbed molecules at sliding interfaces were studied for α-pinene (C10H16), pinane (C10H18), and n-decane (C10H22) on a stainless steel substrate surface. During vapor phase lubrication, molecules adsorbed at the sliding interface could be activated by mechanical shear. Under the equilibrium adsorption condition of these molecules, the friction coefficient of sliding steel surfaces was about 0.2 and a polymeric film was tribochemically produced. The synthesis yield of α-pinene tribo-polymers was about twice as much as pinane tribo-polymers. In contrast to these strained bicyclic hydrocarbons, n-decane showed much weaker activity for tribo-polymerization at the same mechanical shear condition. These results suggested that the mechanical shear at tribological interfaces could induce the opening of the strained ring structure of α-pinene and pinane, which leads to polymerization of adsorbed molecules at the sliding track. On a stainless steel surface, such polymerization reactions of adsorbed molecules do not occur under typical surface reaction conditions. The mechanical properties and boundary lubrication efficiency of the produced tribo-polymer films are discussed.

  17. An investigation of the sorption/desorption of organics from natural waters by solid adsorbents and anion exchangers

    International Nuclear Information System (INIS)

    The results of laboratory and operational tests at thermal and nuclear power stations on anion exchangers and solid adsorbents of makeup water treatment plants with regard to the sorption/desorption of organic substances in natural water and condensate are presented. The resins Amberlite trademark IRA-67, IRA-900, IRA-958Cl, Purolite registered 2 A-500P, DowexTM3 Marathon, and others were tested. Retention of up to 60-80% of the ''organic'' material on the anion exchangers and organic absorbers installed at different places in the technological scheme of the water processing unit was attained. The possibility of a partial ''poisoning'' of the resins and the degradation of the working characteristics over the first year of operation are discussed. (orig.)

  18. Uenbinding'' an adsorbed organic molecule: K plus PTCDA on Ag(110)

    Energy Technology Data Exchange (ETDEWEB)

    Bauer, Oliver; Schmitz, Christoph H.; Fiedler, Benjamin; Sokolowski, Moritz [Institut fuer Physikalische und Theoretische Chemie, Universitaet Bonn (Germany); Mercurio, Giuseppe; Subach, Sergey; Tautz, Frank Stefan [Institut fuer Bio- und Nanosysteme 3, Forschungszentrum Juelich (Germany)

    2010-07-01

    We have doped the well-known brick-wall structure of pristine PTCDA which is present in the monolayer on the Ag(110) surface with potassium (K) and investigated the induced structural and electronic changes at the interface. SPA-LEED measurements reveal that the structural order of the PTCDA molecules is strongly altered upon K dosing: A variety of co-existing binary phases is observed within the monolayer. In addition we have conducted XPS and NIXSW measurements on K+PTCDA/Ag(110). The photoemission experiments indicate that the K atoms preferentially interact with the carboxylic groups of the co-adsorbed PTCDA molecules. This interpretation is further supported by the NIXSW results: The adsorption geometries of the carboxylic and the anhydride oxygen (O) atoms are highly influenced by the presence of K on the surface, the bonding distances are extended. The adsorption height of the perylene core is also increased by K doping. Hence we conclude that the local Ag-O bonds at the interface are partially lifted by the co-adsorbed K and that K and Ag atoms compete for the interaction with the carboxylic groups of PTCDA while the bonding across the interface is weakened.

  19. Effects of molecule-insulator interaction on geometric property of a single phthalocyanine molecule adsorbed on an ultrathin NaCl film

    Science.gov (United States)

    Miwa, Kuniyuki; Imada, Hiroshi; Kawahara, Shota; Kim, Yousoo

    2016-04-01

    The adsorption structure and orientation of a metal-free phthalocyanine (H2Pc ) and a magnesium phthalocyanine (MgPc) on a bilayer of NaCl films were investigated both theoretically and experimentally by means of first-principles calculations based on density functional theory and by scanning tunneling microscopy. H2Pc is adsorbed with its center over the sodium cation, and H-N bonds in the molecule are aligned with the [100] or [010] surface direction of a bilayer (001)-terminated NaCl film. The most stable structures of MgPc on the NaCl film show two kinds of orientations corresponding to the molecule rotated by ±7∘ relative to the [110] surface direction, with the Mg cation positioned over the chlorine anion in both cases. The energetic barrier for switching between these orientations is as low as 9.0 meV, and during an STM measurement, an orientational change of MgPc can be observed. The interaction between the adsorbed molecule and the NaCl film were analyzed in terms of dispersion interaction, Mg-Cl chemical bonding, and electrostatic interaction. It is found that the small electrostatic interaction between the molecule and the film gives a dominant contribution to determining the molecular orientation. Our detailed and comprehensive studies of the molecule-insulator interaction will provide knowledge to understand and control the properties of molecules on an insulating material.

  20. Organic thin films and surfaces directions for the nineties

    CERN Document Server

    Ulman, Abraham

    1995-01-01

    Physics of Thin Films has been one of the longest running continuing series in thin film science consisting of 20 volumes since 1963. The series contains some of the highest quality studies of the properties ofvarious thin films materials and systems.In order to be able to reflect the development of todays science and to cover all modern aspects of thin films, the series, beginning with Volume 20, will move beyond the basic physics of thin films. It will address the most important aspects of both inorganic and organic thin films, in both their theoretical as well as technological aspects. Ther

  1. Mixture diffusion of adsorbed organic compounds in metal-organic frameworks as studied by magic-angle spinning pulsed-field gradient nuclear magnetic resonance

    International Nuclear Information System (INIS)

    The magic-angle spinning (MAS) and pulsed-field gradient nuclear magnetic resonance (PFG NMR) techniques have been combined using a commercially available microimaging system providing a gradient in the magic-angle direction of up to ±2.6 T m-1, together with a narrow bore MAS probe. By narrowing the spectral linewidths, detection of the single and mixed molecular species adsorbed in porous material and their respective mobilities becomes possible. Here, we report on protocols for MAS PFG NMR measurements, new methods for the indispensable sample alignment along the MAS rotational axis and gradient direction and first experimental results of diffusion studies on n-hexane and benzene adsorbed in the metal-organic framework MOF-5.

  2. Ultrathin organic semiconductor films--soft matter effect.

    Science.gov (United States)

    Wang, Tong; Yan, Donghang

    2014-05-01

    The growth of organic semiconductor thin films has been a crucial issue in organic electronics, especially the growth at the early stages. The thin-film phase has been found to be a common phenomenon in many organic semiconductor thin films, which is closely related with the weak van der Waals interaction between organic molecules, the long-range interaction between organic molecules and the substrate, as well as the soft matter characteristics of ultrathin films. The growth behavior and soft matter characteristics of the thin-film phase have great effects on thin film morphology and structure, for example, the formation and coalescence of grain boundaries, which further influences the performance of organic electronic devices. The understanding of thin-film phase and its intrinsic quality is necessary for fabricating large-size, highly ordered, continuous and defect-free ultrathin films. This review will focus on the growth behavior of organic ultrathin films, i.e., the level of the first several molecular layers, and provide an overview of the soft matter characteristics. PMID:24548597

  3. Linear and nonlinear surface spectroscopy of supported size selected metal clusters and organic adsorbates

    Energy Technology Data Exchange (ETDEWEB)

    Thaemer, Martin Georg

    2012-03-08

    The spectroscopic investigation of supported size selected metal clusters over a wide wavelength range plays an important role for understanding their outstanding catalytic properties. The challenge which must be overcome to perform such measurements is the difficult detection of the weak spectroscopic signals from these samples. As a consequence, highly sensitive spectroscopic methods are applied, such as surface Cavity Ringdown Spectroscopy and surface Second Harmonic Generation Spectroscopy. The spectroscopic apparatus developed is shown to have a sensitivity which is high enough to detect sub-monolayer coverages of adsorbates on surfaces. In the measured spectra of small supported silver clusters of the sizes Ag{sub 4}2, Ag{sub 2}1, Ag{sub 9}, and Ag atoms a stepwise transition from particles with purely metallic character to particles with molecule-like properties can be observed within this size range.

  4. Structure and spectroscopy of hydrogen adsorbed in a nickel metal–organic framework

    International Nuclear Information System (INIS)

    Highlights: • D2 adsorbed in Ni2(dobdc) exhibits a close metal-D2 distance of 2.20(1) Å. • H2 quantum rotational levels determined for 3 adsorption sites. • Layering of H2 over D2 reveal the transitions of H2 at the second adsorption site. - Abstract: The structure of Ni2(dobdc) (dobdc4− = 2,5-dioxido-1,4-benzenedicarboxylate) as a function of deuterium adsorption has been determined through the application of in situ neutron powder diffraction. Detailed information concerning the local adsorption potential for hydrogen at each site has also been probed using inelastic neutron scattering techniques. These results are compared to those previously published on isostructural analogs and the Ni2+ variant shows the shortest deuterium-metal distance in the M2(dobdc) series (M = Mg, Zn, Co, Fe) that have been studied so far

  5. Multilayer bonding using a conformal adsorbate film (CAF) for the fabrication of 3D monolithic microfluidic devices in photopolymer

    International Nuclear Information System (INIS)

    Reliable microfabrication processes and materials compatible with complementary metal-oxide semiconductor (CMOS) technology are required by industry for the mass production of complex and highly miniaturized lab-on-a-chip systems. Photopolymers are commonly used in the semiconductor industry, and are suitable for the integration of multilayer structures onto CMOS substrates. This paper describes a novel photopolymer bonding process compatible with CMOS technology for the fabrication of three-dimensional monolithic microfluidic devices. The process consists of the formation of a conformal adsorbate film (CAF) approximately 15 nm thick on a patterned photopolymer layer (KMPR), thereby increasing the number of open polymer chains at the bonding interface and acting as an ultra-thin adhesive layer. This thin adhesive layer is made of the same photopolymer as the microfluidic structures, but has a substantially lower crosslinking density so it will be able to make better bonds during a thermocompressive bonding step. This CAF treatment substantially improves the bonding yield between two patterned and previously crosslinked photopolymer layers because both optimum structure strength (to resist deformation during bonding) and bonding strength from epoxy crosslinking can be achieved. We demonstrate high bonding yields of up to 99% of the useful area of the substrate after three successive bonding steps. With this technique, up to six layers have been bonded in a single device. Unlike previously reported methods the quality of bonding is mostly decoupled from soft-bake parameters and crosslinking level of the previously patterned layers. Three differentbonding processes were characterized to describe the bonding mechanism and the differences between the presented method and the partial-crosslinking bonding method. Capillary filling experiments were performed in microchannels of multilayer structures built with the CAF technique, without any observable leakage between

  6. Removing organic contaminants with bifunctional iron modified rectorite as efficient adsorbent and visible light photo-Fenton catalyst

    International Nuclear Information System (INIS)

    Highlights: ► Rectorite was modified by ultrasonic-assisted ion-exchange and hydrolysis. ► The pillaring increased the layer-to-layer spacing of rectorite. ► The iron-modified rectorite was found to be an excellent adsorbent. ► The iron-modified rectorite showed good visible light photocatalytic ability. ► FeR was highly chemically stable with a wide operating range of pH. - Abstract: Iron-modified rectorite (FeR) was prepared as both adsorbent and catalyst. The iron modification increased layer-to-layer spacing and surface area of rectorite, leading to much increased adsorption of Rhodamine B (RhB) on rectorite. The maximum adsorption capacity of RhB on FeR reached 101 mg g−1 at pH 4.5, being 11 folds of that on the unmodified one. The iron modification also enabled rectorite to have efficient visible light photocatalytic ability. The apparent rate constant for the degradation of RhB (80 μM) at 298 K and pH 4.5 in the presence of H2O2 (6.0 mM) and FeR (0.4 g L−1) was evaluated to be 0.0413 min−1 under visible light and 0.122 min−1 under sunlight, respectively. The analysis with electron spin resonance spin-trapping technique supported that the iron modified rectorite effectively catalyzed the decomposition of H2O2 into hydroxyl radicals. On the basis of the characterization and analysis, the new bifunctional material was well clarified as both adsorbent and photocatalyst in the removing of organic pollutants.

  7. Zirconium-based metal organic frameworks: Highly selective adsorbents for removal of phosphate from water and urine

    International Nuclear Information System (INIS)

    Phosphate is one of the most concerning compounds in wastewater streams and a main nutrient that causes eutrophication. To eliminate the phosphate pollution, Metal Organic Frameworks (MOFs) are proposed in this study as adsorbents to remove phosphate from water. The zirconium-based MOF, UiO-66, was selected as representative MOF given its exceptional stability in water. To investigate the effect of an amine functional group, UiO-66-NH2 was also prepared using an amine-substituted ligand. The adsorption kinetics and isotherm reveal that UiO-66-NH2 exhibited higher adsorption capacities than UiO-66 possibly due to the amine group. However, the interaction between phosphate and zirconium sites of UiO MOFs might be the primary factor accounting for the phosphate adsorption to UiO MOFs. UiO MOFs also exhibited a high selectivity towards phosphate over other anions such as bromate, nitrite and nitrate. Furthermore, UiO MOFs were found to adsorb phosphate and to completely remove diluted phosphate in urine. We also found that UiO MOFs could be easily regenerated and re-used for phosphate adsorption. These findings suggest that UiO MOFs can be effective and selective adsorbents to remove phosphate from water as well as urine. - Highlights: • UiO-66 as the first type of MOFs was used to remove phosphate from water and urine. • The amine group in UiO MOFs was found to enhance the phosphate adsorption. • UiO-66 exhibited a high adsorption selectivity towards phosphate over other anions. • UiO-66 could be easily regenerated and re-used with 85% regeneration efficiency

  8. Zirconium-based metal organic frameworks: Highly selective adsorbents for removal of phosphate from water and urine

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Kun-Yi Andrew, E-mail: linky@nchu.edu.tw [Department of Environmental Engineering, National Chung Hsing University, 250 Kuo-Kuang Road, Taichung, Taiwan (China); Chen, Shen-Yi [Department of Environmental Engineering, National Chung Hsing University, 250 Kuo-Kuang Road, Taichung, Taiwan (China); Jochems, Andrew P. [New Mexico Bureau of Geology & Mineral Resources and New Mexico Institute of Mining & Technology, Socorro, NM (United States)

    2015-06-15

    Phosphate is one of the most concerning compounds in wastewater streams and a main nutrient that causes eutrophication. To eliminate the phosphate pollution, Metal Organic Frameworks (MOFs) are proposed in this study as adsorbents to remove phosphate from water. The zirconium-based MOF, UiO-66, was selected as representative MOF given its exceptional stability in water. To investigate the effect of an amine functional group, UiO-66-NH2 was also prepared using an amine-substituted ligand. The adsorption kinetics and isotherm reveal that UiO-66-NH2 exhibited higher adsorption capacities than UiO-66 possibly due to the amine group. However, the interaction between phosphate and zirconium sites of UiO MOFs might be the primary factor accounting for the phosphate adsorption to UiO MOFs. UiO MOFs also exhibited a high selectivity towards phosphate over other anions such as bromate, nitrite and nitrate. Furthermore, UiO MOFs were found to adsorb phosphate and to completely remove diluted phosphate in urine. We also found that UiO MOFs could be easily regenerated and re-used for phosphate adsorption. These findings suggest that UiO MOFs can be effective and selective adsorbents to remove phosphate from water as well as urine. - Highlights: • UiO-66 as the first type of MOFs was used to remove phosphate from water and urine. • The amine group in UiO MOFs was found to enhance the phosphate adsorption. • UiO-66 exhibited a high adsorption selectivity towards phosphate over other anions. • UiO-66 could be easily regenerated and re-used with 85% regeneration efficiency.

  9. Removal of hexenuronic acid by xylanase to reduce adsorbable organic halides formation in chlorine dioxide bleaching of bagasse pulp.

    Science.gov (United States)

    Nie, Shuangxi; Wang, Shuangfei; Qin, Chengrong; Yao, Shuangquan; Ebonka, Johnbull Friday; Song, Xueping; Li, Kecheng

    2015-11-01

    Xylanase-aided chlorine dioxide bleaching of bagasse pulp was investigated. The pulp was pretreated with xylanase and followed a chlorine dioxide bleaching stage. The ATR-FTIR and XPS were employed to determine the surface chemistry of the control pulp, xylanase treated and chlorine dioxide treated pulps. The hexenuronic acid (HexA) could obviously be reduced after xylanase pretreatment, and the adsorbable organic halides (AOX) were reduced after chlorine dioxide bleaching. Compared to the control pulp, AOX could be reduced by 21.4-26.6% with xylanase treatment. Chlorine dioxide demand could be reduced by 12.5-22% to achieve the same brightness. The ATR-FTIR and XPS results showed that lignin and hemicellulose (mainly HexA) were the main source for AOX formation. Xylanase pretreatment could remove HexA and expose more lignin, which decreased the chlorine dioxide demand and thus reduced formation of AOX. PMID:26263004

  10. Biogas from MSW landfill: Composition and determination of chlorine content with the AOX (adsorbable organically bound halogens) technique

    International Nuclear Information System (INIS)

    An exhaustive characterization of the biogas from some waste disposal facilities has been carried out. The analysis includes the main components (methane, carbon dioxide, nitrogen and oxygen) as well as trace components such as hydrogen sulphide, ammonia and VOCs (volatile organic compounds) including siloxanes and halogenated compounds. VOCs were measured by GC/MS (Gas Chromatography/Mass Spectrometry) using two different procedures: thermal desorption of the Tenax TA and Carbotrap 349 tubes and SPME (Solid Phase Micro-Extraction). A method has been established to measure the total halogen content of the biogas with the AOX (adsorbable organically bound halogens) technique. The equipment used to analyze the samples was a Total Organic Halogen Analyzer (TOX-100). Similar results were obtained when comparing the TOX (Total Organic Halogen) values with those obtained by GC/MS. The halogen content in all the samples was under 22 mg Cl/Nm3 which is below the limit of 150 mg/Nm3 proposed in the Spanish Regulations for any use of the biogas. The low chlorine content in the biogas studied, as well as the low content of other trace compounds, makes it suitable for use as a fuel for electricity generating engines

  11. Fluorescent thin gel films using organic dyes and pigments

    Science.gov (United States)

    Nakazumi, Hiroyuki; Takashi, Tarao; Taniguchi, Shin-ichi; Nanto, Hidehito

    1997-10-01

    New organic-inorganic fluorescent thin gel films included with laser dyes or fluorescent organic pigments have been prepared for display application. The florescent dyes (benzoxazolium, pyrromethene, and rhodamine dyes) and super-fine particles of fluorescent pigments (coumarin and perylene) were successfully incorporated into thin silicate gel films prepared from tetraethoxysilane (TEOS), methyltriethoxysilane (MTES), and methoxysilane oligomer (MTSO) under acid catalyzed hydrolysis. The blue, green, and red luminescence were observed from these thin films (thickness: 100 - 400 nm), respectively. Fluorescence spectra, fluorescent quantum yield and lifetime of thin gel films are examined. Fluorescent peaks for most of dyes and pigments used in gel films were similar to those in solution, and fluorescent lifetime for dyes and pigments used in gel films were 2.9 - 4.5 ns. Photostability of fluorescent gel films is dependent on fluorescent organic dyes and pigments used and/or silicate gel matrixes. Coumarin and perylene pigments have higher fluorescent quantum yield in gel film prepared from MTSO. The large Stokes shift was observed in fluorescent gel film using coumarin and benzoxazolium dyes. The coumarin and perylene pigments are significantly photo- stable in gel film prepared from MTSO, and photodegradation of perylene red after irradiation of 500 W Xi-lamp for 30 min is below 20%.

  12. Prediction of capacity factors for aqueous organic solutes adsorbed on a porous acrylic resin

    Science.gov (United States)

    Thurman, E.M.

    1978-01-01

    The capacity factors of 20 aromatic, allphatic, and allcycllc organic solutes with carboxyl, hydroxyl, amine, and methyl functional groups were determined on Amberlite XAD-8, a porous acrylic resin. The logarithm of the capacity factor, k???, correlated inversely with the logarithm of the aqueous molar solubility with significance of less than 0.001. The log k???-log solubility relationship may be used to predict the capacity of any organic solute for XAD-8 using only the solubility of the solute. The prediction is useful as a guide for determining the proper ratio of sample to column size In the preconcentration of organic solutes from water. The inverse relationship of solubility and capacity is due to the unfavorable entropy of solution of organic solutes which affects both solubility and sorption.

  13. Studying of kinetic growth of organic thin films

    Directory of Open Access Journals (Sweden)

    J.P. Weszka

    2009-07-01

    Full Text Available Purpose: of this paper: Studying of growth kinetic of organic thin film prepared by vacuum thermal evaporation technology.Design/methodology/approach: Applying of quartz crystal microbalance to thickness control of organic thin films deposition process.Findings: Results of this issue suggesting that the kinetics of organic thin films is depending of current flowing through the crucible (crucible temperature.Research limitations/implications: Kinetics of vacuum evaporation of thin film is different from that of inorganic thin films during the growth process.Practical implications: The means of connect the quartz crystal microbalance MSV 1843/AB with vacuum chamber, function and means of thickness and deposition rate measuring has been described. This scientific paper include also description of researching results of kinetics of organic and metallic thin film evaporation process by MSV 1843/AB quartz crystal microbalance and verification these results by comparing them with results from other measuring techniques.Originality/value: Controlling thickness of thermally evaporated organic thin film during the film growth process.

  14. Techniques expérimentales pour l'étude des films monomoléculaires adsorbés sur un substrat Experimental Techniques for Analysing the Monomolecular Films Absorbed on a Substrate

    Directory of Open Access Journals (Sweden)

    Jacquet M.

    2006-11-01

    Full Text Available Cet article a pour but de donner un aperçu des différentes méthodes les plus couramment utilisées dans l'étude des films monomoléculaires adsorbés sur un substrat massif et d'orienter l'utilisateur vers l'une ou l'autre de ces méthodes. Pour chacune d'elles, le fondement théorique, l'information fournie et la sensibilité de la mesure sont précisés. Une des difficultés réside dans le fait que les échantillons utilisés sont massifs et que les quantités adsorbées mises en jeu sont de ce fait toujours extrêmement petites. The aim of this article is to toke a look at the different methods most commonly used for analyzing the monomolecular films adsorbed on a massive substrate and to guide users toward one or another of these methods. For each of them, the theoretical validity, the information available and the measurement sensitivity are given. One of the difficulties lies in the fact that the samples used are massive and the adsorbed amounts involved are hence always extremely minute.

  15. Electrochemical Behavior of Organic Film With Nano Silica

    Institute of Scientific and Technical Information of China (English)

    GONG Li; LU Tan-ping

    2004-01-01

    Organic-inorganic composite films were prepared by adding different amount of nano-SiO2into water soluble acrylic resin (AC) on hot-dip galvanized steel sheet. The electrochemical behavior of nano SiO2 modified acrylic resin films in 5 % NaCl solution were studied by electrochemical measurement techniques. Results indicate when there are 8% ~ 12% SiO2 in organic film, it can shows an analogous passivation propertyin anodic polarization curves, increase anodic polarization function of galvanized coating, retarde lectrode reaction more efficiently. The reason is that either SiO2 in organic film occur chemical reaction with Zn, produce stable zinc silicate compound; or as aresult of dissolve-redeposit of SiO2 in the film.

  16. Advanced Structural Characterization of Organic Thin Films

    DEFF Research Database (Denmark)

    Gu, Yun

    of small molecule and polymer layers is indicated by Flory- Huggins theory for the triisopropylsilylethynl pentacene (TIPS-PEN) and polystyrene blend films. In order to investigate the phase separated layers in the ink-jet printed films, we propose a method to measure diraction Bragg peaks by X...

  17. Characterization of interfaces between metals and organic thin films by electron and ion spectroscopies

    Energy Technology Data Exchange (ETDEWEB)

    Schmid, Martin

    2012-01-18

    In this thesis, interfaces between metals and organic thin films have been characterized with photoelectron and ion-scattering spectroscopies. Two different classes of metal/organic interfaces were examined in detail. First, interfaces which can be mainly characterized by relatively weak coordinative interactions between substrate and adsorbate. Second, interfaces which are mostly determined, or even created, by chemical reactions between different adsorbates or between adsorbates and substrate. Typical examples from the first class are metalated tetrapyrrole monolayers on Ag(111) and Au(111) single-crystal substrates. In this study, a focus was set to the interaction between iron and cobalt tetrapyrroles with Ag(111) or Au(111) substrates. A detailed examination of the corresponding photoelectron spectra revealed that the adsorbatesubstrate interaction is associated with a charge transfer from the metallic substrate to the Fe(II) or Co(II) ions within the tetrapyrrole units. The examination of cobalt(II) phthalocyanine monolayers further led to the conclusion that the magnetic moment, as present in unperturbed CoPc molecules, is efficiently quenched by the contact to the Ag(111) surface and the associated charge transfer. Similar investigations on Au(111) substrates gave evidence for possible adsorption site effects, further complicating the adsorbate/substrate interaction. Furthermore the formation of two-dimensional structures of poly(p-phenylene-terephthalamide) (PPTA, trademark Kevlar) on Ag(111) was closely examined. The Ag(111) surface does not only provide the geometrical boundary for the formation of the 2D covalent structures, but, moreover, actively participates in the reaction; after the adsorption of TPC molecules, a scission of the C-Cl bond, in particular at temperatures above 120 K, was evident. The resulting radical fragments appear stable and can act as reaction partners for the co-adsorbed PPD units. The chlorine atoms reside on the surface even

  18. AMBIENT LEVEL VOLATILE ORGANIC COMPOUND (VOC) MONITORING USING SOLID ADSORBANTS - RECENT U.S. EPA STUDIES

    Science.gov (United States)

    Ambient air spiked with 1-10 ppbv concentrations of 41 toxic volatile organic compounds (VOCs) listed in U.S. Environmental Protection Agency (EPA) Compendium Method TO-14A was monitored using solid sorbents for sample collection and a Varian Saturn 2000 ion trap mass spectrome...

  19. Composition of Organic Compounds Adsorbed on PM10 in the Air Above Maribor.

    Science.gov (United States)

    Miuc, Alen; Vončina, Ernest; Lečnik, Uroš

    2015-01-01

    Organic compounds in atmospheric particulate matterabove Maribor were analysed in 120 samples of PM10 sampled according to the EN 12341:2014 reference method. Organic compounds compositions were investigated together with the primary and secondary sources of air pollution. Silylation as derivatisation method was used for the GC/MS determination of volatile and semi-volatile polar organic compounds. Distribution of fatty acids, n-alkanes and iso-alkanes, phthalate esters, siloxanes, different sterols, various sugars and sugar alcohols, compounds of lignin and resin acids, dicarboxylic acids from photochemical reactions, PAHs, organic nitrogen compounds and products from secondary oxidation of monoterpenes were determined. The use of silicone grease for the purpose of lubricating the impact surface of the air sampler caused higher values of gravimetric determination. Solid particles may have been bounced from the surface of a greasy impact plate and re-entrained within the air stream and then collected on a sample filter. The carryover of siloxanes was at least from 5% up to 15% of the accumulated particles weight, depending on ambient temperature. This was the reason that the gravimetric results for determination of PM10 according to the standard EN 12341:2014 were overestimated. PMID:26680711

  20. A Neutron-Diffraction Study of the Solid Layers at the Liquid Solid Boundary in 4He-Films Adsorbed on Graphite

    DEFF Research Database (Denmark)

    da Costa Carneiro, Kim; Passell, L.; Thomlinson, W.;

    1981-01-01

    A neutron scattering study of the structure of 4He films adsorbed on graphite is reported. Diffraction from helium monolayers at a temperature of 1.2K shows the formation of an incommensurate, triangular-lattice solid of high density. As the coverage is increased above two layers, the diffraction...... pattern changes indicating solidification of a second layer. The observed two-layer patterns can be indexed with either a pair of incommensurate, triangular-lattice solid layers of different densities or a close-packed bilayer; the experimental information available is not sufficient to make a more...

  1. Fabrication and characterization of advanced Organic Thin Film Transistors

    OpenAIRE

    Scaldaferri, Rossana

    2009-01-01

    The thesis aims to the development of Organic Thin Film Transistors and more complex devices based on organic materials. The experimental work demonstrates the possibility to manufacture transistors and more complex circuits with innovative polymers and technologies, leading to an experimental validation of the possibility to realize all-organic devices.

  2. Removal of methylene blue from aqueous solutions by an adsorbent based on metal-organic framework and polyoxometalate

    International Nuclear Information System (INIS)

    A metal-organic framework (Cu3(BTC)2, BTC = 1,3,5-benzenetricarboxylate) composite based on polyoxometalate (H6P2W18O62) was synthesized by a simple one-pot solvent-thermal method and applied as an adsorbent to remove methylene blue (MB) from aqueous solution. The chemical structure, morphology and thermostability of the composite were characterized by Fourier Transform Infrared Spectroscopy (FTIR), X-ray diffraction (XRD), Scanning Electron Microscope (SEM), Thermogravimetric Analysis (TG) and N2 adsorption–desorption isotherms. The removal rate of the composite H6P2W18O62@Cu3(BTC)2 was greater than that of the pure Cu3(BTC)2, especially at higher initial concentrations, showing that the adsorption performance of porous Cu3(BTC)2 can be improved through the modification of H6P2W18O62. The effect factors containing the initial concentration, contact time, initial solution pH and temperature of MB adsorption onto the composite were systematically explored. The experimental isotherm data was found to fit the Freundlich model well and the process of MB adsorption onto H6P2W18O62@Cu3(BTC)2 was controlled by the pseudo-second-order kinetic model. The thermodynamic parameters illustrated that the adsorption was spontaneous and exothermic process. These results show that designing a metal-organic framework composite is a quite promising strategy to achieve extreme application for metal-organic framework. - Graphical abstract: Comparison of removal rate for MB in pure Cu3(BTC)2 and H6P2W18O62@Cu3(BTC)2 at different initial concentration. - Highlights: • Metal-organic framework (MOF) composite in the adsorption application was proposed. • The adsorption rate of MOF was improved by introducing polyoxometalates. • The adsorption isotherm and kinetic was used to describe the adsorption mechanism. • The thermodynamic parameters on the composite were thoroughly investigated

  3. Organic nanostructured thin film devices and coatings for clean energy

    CERN Document Server

    Zhang, Sam

    2010-01-01

    Authored by leading experts from around the world, the three-volume Handbook of Nanostructured Thin Films and Coatings gives scientific researchers and product engineers a resource as dynamic and flexible as the field itself. The first two volumes cover the latest research and application of the mechanical and functional properties of thin films and coatings, while the third volume explores the cutting-edge organic nanostructured devices used to produce clean energy. This third volume, Organic Nanostructured Thin Film Devices and Coatings for Clean Energy, addresses various aspects of the proc

  4. Thin-film organic photonics molecular layer deposition and applications

    CERN Document Server

    Yoshimura, Tetsuzo

    2011-01-01

    Among the many atomic/molecular assembling techniques used to develop artificial materials, molecular layer deposition (MLD) continues to receive special attention as the next-generation growth technique for organic thin-film materials used in photonics and electronics. Thin-Film Organic Photonics: Molecular Layer Deposition and Applications describes how photonic/electronic properties of thin films can be improved through MLD, which enables precise control of atomic and molecular arrangements to construct a wire network that achieves ""three-dimensional growth"". MLD facilitates dot-by-dot--o

  5. Mechanisms of Heat Transfer in Porous Crystals Containing Adsorbed Gases: Applications to Metal-Organic Frameworks

    Science.gov (United States)

    Babaei, Hasan; Wilmer, Christopher E.

    2016-01-01

    We have studied the mechanisms of heat transfer in a porous crystal-gas mixture system, motivated by the not insignificant challenge of quickly dissipating heat generated in metal-organic frameworks (MOFs) due to gas adsorption. Our study reveals that the thermal conductance of the system (crystal and gas) is dominated by lattice thermal conductivity in the crystal, and that conductance is reduced as the concentration of gas in the pores increases. This mechanism was observed from classical molecular simulations of a monatomic gas in an idealized porous crystal structure. We show that the decreased conductivity associated with increased gas concentration is due to phonon scattering in the crystal due to interactions with gas molecules. Calculations of scattering rates for two phonon modes reveal that scattering of the lowest frequency mode scales linearly with gas density. This result suggests that the probability of a phonon-gas collision is simply proportional to the number of gas molecules in the pore.

  6. Femtomagnetism in graphene induced by core level excitation of organic adsorbates

    Science.gov (United States)

    Ravikumar, Abhilash; Baby, Anu; Lin, He; Brivio, Gian Paolo; Fratesi, Guido

    2016-01-01

    We predict the induction or suppression of magnetism in the valence shell of physisorbed and chemisorbed organic molecules on graphene occurring on the femtosecond time scale as a result of core level excitations. For physisorbed molecules, where the interaction with graphene is dominated by van der Waals forces and the system is non-magnetic in the ground state, numerical simulations based on density functional theory show that the valence electrons relax towards a spin polarized configuration upon excitation of a core-level electron. The magnetism depends on efficient electron transfer from graphene on the femtosecond time scale. On the other hand, when graphene is covalently functionalized, the system is magnetic in the ground state showing two spin dependent mid gap states localized around the adsorption site. At variance with the physisorbed case upon core-level excitation, the LUMO of the molecule and the mid gap states of graphene hybridize and the relaxed valence shell is not magnetic anymore. PMID:27089847

  7. Tunneling spectroscopy of highly ordered organic thin films

    OpenAIRE

    Törker, Michael

    2003-01-01

    In this work, a Au(100) single crystal was used as substrate for organic molecular beam epitaxy. Highly ordered organic thin films of the molecules 3,4,9,10-perylenetetracarboxylic-3,4,9,10-dianhydrid (PTCDA) and hexa-peri-hexabenzo-coronene (HBC) as well as organic-organic heterostructures on reconstructed Au(100) were prepared. The molecular arrangement was characterized in Scanning Tunneling Microscopy and Low Energy Electron Diffraction investigations. Scanning Tunneling Spectroscopy data...

  8. NMR Study of HD Adsorbed in a Z-type Metal-Organic Framework

    International Nuclear Information System (INIS)

    We report the results of measurements of the nuclear spin-lattice and spin-spin relaxation rates of hydrogen deuteride trapped in the mesoporous cages of a metal organic framework (MOF) for temperatures 2.2 < T < 50 K There is considerable interest in the use of this class of materials for hydrogen storage because of the high density of adsorption. NMR studies can provide important information about the molecular interactions and dynamics inside the cages of the MOF structure. Samples were studied with filling factors of 0.1 and 1.0 molecules per cage as determined by the adsorption isotherm at 77 K The results show strong peaks in the relaxation times at several well defined temperatures that are very different from the adsorption energy levels. The origin of these peaks is discussed in terms of the quantization of the translational degrees of freedom of the molecules inside the cages and the associated discrete energy levels. Measurements of the nuclear spin-spin relaxation times also provide an important measure of the diffusivity of hydrogen through the MOF structure which is a critical parameter for the use of MOFs for storage and transport.

  9. Aluminium fumarate metal-organic framework: A super adsorbent for fluoride from water.

    Science.gov (United States)

    Karmakar, Sankha; Dechnik, Janina; Janiak, Christoph; De, Sirshendu

    2016-02-13

    Potential of aluminium fumarate metal organic framework (MOF) for fluoride removal from groundwater has been explored in this work. The laboratory produced MOF exhibited characteristics similar to the commercial version. MOF was found to be micro-porous with surface area of 1156 m(2)/g and average pore size 17Å. Scanning electron micrograph of the AlFu MOF showed minute pores and texture was completely different from either of the parent materials. Change in the composition of AlFu MOF after fluoride adsorption was evident from powder X-ray diffraction analysis. Thermal stability of the AlFu MOF up to 700K was established by thermo-gravimetric analysis. Incorporation of fluoride phase after adsorption was confirmed by X-ray fluorescence analysis. As observed from FTIR study, hydroxyl ions in AlFu MOF were substituted by fluoride. 0.75 g/l AlFu MOF was good enough for complete removal of 30 mg/l fluoride concentration in feed solution. The maximum adsorption capacity for fluoride was 600, 550, 504 and 431 mg/g, respectively, at 293, 303, 313 and 333K. PMID:26513559

  10. Preparation and characterization of humic acid-carbon hybrid materials as adsorbents for organic micro-pollutants.

    Science.gov (United States)

    Radwan, Emad K; Abdel Ghafar, Hany H; Moursy, Ahmed S; Langford, Cooper H; Bedair, Ahmed H; Achari, Gopal

    2015-08-01

    The present work involves the preparation of novel adsorbent materials by the insolubilization and hybridization of humic acid (HA) with carbon. The prepared materials were characterized by N2 adsorption, elemental analysis, Fourier transform infrared spectroscopy, scanning electron microscopy, transmission electron microscopy, solid-state (13)C cross polarization magic angle spinning nuclear magnetic resonance, and low-field nuclear magnetic resonance (NMR) relaxometry on wetted samples. The water solubility of these materials and the lack of effect of oxidants were also confirmed. With this background, the adsorption capacities toward phenol, 2,4,6-tricholrophenol, and atrazine were evaluated, using these as model compounds for organic micropollutants of concern in water. Experimental results show that the prepared materials are mesoporous and have a higher surface area than humic acid and even than the porous carbon in the case of carbon coating. They retain the basic features of the starting materials with lowered functional group content. Moreover, there are interesting new features. NMR relaxometry shows that equilibration of water uptake is very fast, making use in water simple. They have higher adsorption capacities than the pure materials, and they can be applied under a wide range of environmental conditions. PMID:25874433

  11. Polymeric Thin Films for Organic Electronics: Properties and Adaptive Structures

    Directory of Open Access Journals (Sweden)

    Bruno Pignataro

    2013-03-01

    Full Text Available This review deals with the correlation between morphology, structure and performance of organic electronic devices including thin film transistors and solar cells. In particular, we report on solution processed devices going into the role of the 3D supramolecular organization in determining their electronic properties. A selection of case studies from recent literature are reviewed, relying on solution methods for organic thin-film deposition which allow fine control of the supramolecular aggregation of polymers confined at surfaces in nanoscopic layers. A special focus is given to issues exploiting morphological structures stemming from the intrinsic polymeric dynamic adaptation under non-equilibrium conditions.

  12. Reversible CO Scavenging via Adsorbate-Dependent Spin State Transitions in an Iron(II)-Triazolate Metal-Organic Framework.

    Science.gov (United States)

    Reed, Douglas A; Xiao, Dianne J; Gonzalez, Miguel I; Darago, Lucy E; Herm, Zoey R; Grandjean, Fernande; Long, Jeffrey R

    2016-05-01

    A new metal-organic framework, Fe-BTTri (Fe3[(Fe4Cl)3(BTTri)8]2·18CH3OH, H3BTTri =1,3,5-tris(1H-1,2,3-triazol-5-yl)benzene)), is found to be highly selective in the adsorption of CO over a variety of other gas molecules, making it extremely effective, for example, in the removal of trace CO from mixtures with H2, N2, and CH4. This framework not only displays significant CO adsorption capacity at very low pressures (1.45 mmol/g at just 100 μbar), but, importantly, also exhibits readily reversible CO binding. Fe-BTTri utilizes a unique spin state change mechanism to bind CO in which the coordinatively unsaturated, high-spin Fe(II) centers of the framework convert to octahedral, low-spin Fe(II) centers upon CO coordination. Desorption of CO converts the Fe(II) sites back to a high-spin ground state, enabling the facile regeneration and recyclability of the material. This spin state change is supported by characterization via infrared spectroscopy, single crystal X-ray analysis, Mössbauer spectroscopy, and magnetic susceptibility measurements. Importantly, the spin state change is selective for CO and is not observed in the presence of other gases, such as H2, N2, CO2, CH4, or other hydrocarbons, resulting in unprecedentedly high selectivities for CO adsorption for use in CO/H2, CO/N2, and CO/CH4 separations and in preferential CO adsorption over typical strongly adsorbing gases like CO2 and ethylene. While adsorbate-induced spin state transitions are well-known in molecular chemistry, particularly for CO, to our knowledge this is the first time such behavior has been observed in a porous material suitable for use in a gas separation process. Potentially, this effect can be extended to selective separations involving other π-acids. PMID:27097297

  13. High-resolution ellipsometric study of an n-alkane film, dotriacontane, adsorbed on a SiO2 surface

    DEFF Research Database (Denmark)

    Volkmann, U.G.; Pino, M.; Altamirano, L.A.;

    2002-01-01

    alkane/SiO2 interfacial region differs qualitatively from that which occurs in the surface freezing effect at the bulk alkane fluid/vapor interface. In that case, there is again a perpendicular film phase adjacent to the air interface but no parallel film phase intervenes between it and the bulk alkane...... present at higher coverages. In addition, we have performed high-resolution ellipsometry and stray-light measurements on dotriacontane films deposited from solution onto highly oriented pyrolytic graphite substrates. After film deposition, these substrates proved to be less stable in air than SiO2....

  14. Electrodeposition of hybrid ZnO/organic dye films

    Energy Technology Data Exchange (ETDEWEB)

    Moya, Monica; Mari, Bernabe; Mollar, Miquel [Department de Fisica Aplicada-IDF, Universitat Politecnica de Valencia, Cami de Vera s/n, 46022 Valencia (Spain)

    2011-06-15

    The viability of the electrodeposition as a suitable technique for preparing new porous hybrid materials has been tested in this paper. Hybrid ZnO films with two different organic dyes: Eosin-Y and Tetrasulphonated-Cu-phtalocyanine were prepared. Their physical and chemical properties as well as their dependence on the growth conditions were investigated. It is found that the type of dye has a big influence on the morphology and porosity of hybrid films. Open and connected pores are created in hybrid ZnO/Eosin-Y films while both open and closed pores coexist in hybrid ZnO/Tetrasulfonated-Cu-phthalocyanine. As one of the promising applications of hybrid materials is photovoltaic conversion of sunlight, photoelectrochemical characterization of hybrid films is also reported. Photocurrent generation owing to both contributions ZnO and Eosin-Y is observed in ZnO/Eosin-Y films but no photocurrent has been observed in ZnO/Tetrasulfonated-Cu-phthalocyanine films. SEM micrographs of hybrid ZnO films grown in aqueous bath; (Left) ZnO/Eosin-Y films grown at 70 C, -0.9 V (Right) ZnO/Ts-CuPc films grown at 70 C, -0.9 V. (copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  15. Falling film evaporators: organic solvent regeneration in nuclear fuel reprocessing

    International Nuclear Information System (INIS)

    The aim of this work was to improve knowledge about working of falling film evaporators used in nuclear fuel reprocessing plants for organic solvent regeneration. The first part deals with a non evaporation film. An original film thickness measuring technique was used; infrared thermography. It gave indications on hydrodynamics and wave amplitude and pointed out thermocapillary forces to be the cause of bad wetting of the heated wall. By another way we showed that a small slit spacing on the film distributor, an enhanced surface roughness and an important liquid flow rate favour a better wetting. The second part deals with evaporation of a binary solvent mixture. Experiments in an industrial evaporator corroborated the fact that it is essential for the efficiency of the apparatus to work at high flow rates. We propose an over-simple model which can be used to estimate performances of co-current falling film evaporators of the process

  16. Langmuir-Blodgett films of molecular organic materials

    Energy Technology Data Exchange (ETDEWEB)

    Talham, Daniel R; Yamamoto, Takashi [Department of Chemistry, University of Florida, Gainesville, FL 32611-7200 (United States); Meisel, Mark W [Department of Physics, Center for Condensed Matter Science, University of Florida, Gainesville, FL 32611-8440 (United States)], E-mail: talham@chem.ufl.edu

    2008-05-07

    Langmuir-Blodgett methods are perhaps the original approach for achieving controlled deposition of organic thin films. Molecules are first organized into a monolayer array on the surface of water before transfer as a monolayer onto solid supports. Molecular monolayers, multilayers, and multilayered heterostructures can be achieved. The capability of exercising such control over thin film assemblies has attracted materials chemists and physicists to develop Langmuir-Blodgett films for studies on organic conductors, magnets, non-linear optics, rectifiers, and intermolecular electron transfer. This article reviews objectives in each of these areas and selects some specific examples from the literature to highlight the state of the art, mostly from the point of view of the chemical systems that are studied. Mixed organic/inorganic hybrid films represent a new direction for Langmuir-Blodgett films in materials science, combining conventional inorganic solid-state phenomena with the properties of the organic networks, and recent examples, taken principally from the authors' work, are highlighted.

  17. Fundamentals of laser-assisted fabrication of inorganic and organic films

    DEFF Research Database (Denmark)

    Schou, Jørgen

    2008-01-01

    The standard method for producing films by laser-assisted methods, Pulsed Laser Deposition (PLD) will be reviewed. The films considered are usually inorganic films, but also films of organic materials have been produced. Also the deposition of organic films by MAPLE (Matrix Assisted Pulsed Laser...

  18. Thin films by metal-organic precursor plasma spray

    International Nuclear Information System (INIS)

    While most plasma spray routes to coatings utilize solids as the precursor feedstock, metal-organic precursor plasma spray (MOPPS) is an area that the authors have investigated recently as a novel route to thin film materials. Very thin films are possible via MOPPS and the technology offers the possibility of forming graded structures by metering the liquid feed. The current work employs metal-organic compounds that are liquids at standard temperature-pressure conditions. In addition, these complexes contain chemical functionality that allows straightforward thermolytic transformation to targeted phases of interest. Toward that end, aluminum 3,5-heptanedionate (Al(hd)3), triethylsilane (HSi(C2H5)3 or HSiEt3), and titanium tetrakisdiethylamide (Ti(N(C2H5)2)4 or Ti(NEt2)4) were employed as precursors to aluminum oxide, silicon carbide, and titanium nitride, respectively. In all instances, the liquids contain metal-heteroatom bonds envisioned to provide atomic concentrations of the appropriate reagents at the film growth surface, thus promoting phase formation (e.g., Si-C bond in triethylsilane, Ti-N bond in titanium amide, etc.). Films were deposited using a Sulzer Metco TriplexPro-200 plasma spray system under various experimental conditions using design of experiment principles. Film compositions were analyzed by glazing incidence x-ray diffraction and elemental determination by x-ray spectroscopy. MOPPS films from HSiEt3 showed the formation of SiC phase but Al(hd)3-derived films were amorphous. The Ti(NEt2)4 precursor gave MOPPS films that appear to consist of nanosized splats of TiOCN with spheres of TiO2 anatase. While all films in this study suffered from poor adhesion, it is anticipated that the use of heated substrates will aid in the formation of dense, adherent films.

  19. Removal of methylene blue from aqueous solutions by an adsorbent based on metal-organic framework and polyoxometalate

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Xiaoxia; Luo, Jing; Zhu, Yating; Yang, Yun; Yang, Shuijin, E-mail: yangshuijin@163.com

    2015-11-05

    A metal-organic framework (Cu{sub 3}(BTC){sub 2}, BTC = 1,3,5-benzenetricarboxylate) composite based on polyoxometalate (H{sub 6}P{sub 2}W{sub 18}O{sub 62}) was synthesized by a simple one-pot solvent-thermal method and applied as an adsorbent to remove methylene blue (MB) from aqueous solution. The chemical structure, morphology and thermostability of the composite were characterized by Fourier Transform Infrared Spectroscopy (FTIR), X-ray diffraction (XRD), Scanning Electron Microscope (SEM), Thermogravimetric Analysis (TG) and N{sub 2} adsorption–desorption isotherms. The removal rate of the composite H{sub 6}P{sub 2}W{sub 18}O{sub 62}@Cu{sub 3}(BTC){sub 2} was greater than that of the pure Cu{sub 3}(BTC){sub 2}, especially at higher initial concentrations, showing that the adsorption performance of porous Cu{sub 3}(BTC){sub 2} can be improved through the modification of H{sub 6}P{sub 2}W{sub 18}O{sub 62}. The effect factors containing the initial concentration, contact time, initial solution pH and temperature of MB adsorption onto the composite were systematically explored. The experimental isotherm data was found to fit the Freundlich model well and the process of MB adsorption onto H{sub 6}P{sub 2}W{sub 18}O{sub 62}@Cu{sub 3}(BTC){sub 2} was controlled by the pseudo-second-order kinetic model. The thermodynamic parameters illustrated that the adsorption was spontaneous and exothermic process. These results show that designing a metal-organic framework composite is a quite promising strategy to achieve extreme application for metal-organic framework. - Graphical abstract: Comparison of removal rate for MB in pure Cu{sub 3}(BTC){sub 2} and H{sub 6}P{sub 2}W{sub 18}O{sub 62}@Cu{sub 3}(BTC){sub 2} at different initial concentration. - Highlights: • Metal-organic framework (MOF) composite in the adsorption application was proposed. • The adsorption rate of MOF was improved by introducing polyoxometalates. • The adsorption isotherm and kinetic was used to

  20. Liquid crystals for organic thin-film transistors

    OpenAIRE

    Iino, Hiroaki; Usui, Takayuki; Hanna, Jun-ichi

    2015-01-01

    Crystalline thin films of organic semiconductors are a good candidate for field effect transistor (FET) materials in printed electronics. However, there are currently two main problems, which are associated with inhomogeneity and poor thermal durability of these films. Here we report that liquid crystalline materials exhibiting a highly ordered liquid crystal phase of smectic E (SmE) can solve both these problems. We design a SmE liquid crystalline material, 2-decyl-7-phenyl-[1]benzothieno[3,...

  1. Organic Thin-Film Transistor (OTFT-Based Sensors

    Directory of Open Access Journals (Sweden)

    Daniel Elkington

    2014-04-01

    Full Text Available Organic thin film transistors have been a popular research topic in recent decades and have found applications from flexible displays to disposable sensors. In this review, we present an overview of some notable articles reporting sensing applications for organic transistors with a focus on the most recent publications. In particular, we concentrate on three main types of organic transistor-based sensors: biosensors, pressure sensors and “e-nose”/vapour sensors.

  2. Thin film Encapsulations of Flexible Organic Light Emitting Diodes

    Directory of Open Access Journals (Sweden)

    Tsai Fa-Ta

    2016-01-01

    Full Text Available Various encapsulated films for flexible organic light emitting diodes (OLEDs were studied in this work, where gas barrier layers including inorganic Al2O3 thin films prepared by atomic layer deposition, organic Parylene C thin films prepared by chemical vapor deposition, and their combination were considered. The transmittance and water vapor transmission rate of the various organic and inorgabic encapsulated films were tested. The effects of the encapsulated films on the luminance and current density of the OLEDs were discussed, and the life time experiments of the OLEDs with these encapsulated films were also conducted. The results showed that the transmittance are acceptable even the PET substrate were coated two Al2O3 and Parylene C layers. The results also indicated the WVTR of the PET substrate improved by coating the barrier layers. In the encapsulation performance, it indicates the OLED with Al2O3 /PET, 1 pair/PET, and 2 pairs/PET presents similarly higher luminance than the other two cases. Although the 1 pair/PET encapsulation behaves a litter better luminance than the 2 pairs/PET encapsulation, the 2 pairs/PET encapsulation has much better life time. The OLED with 2 pairs/PET encapsulation behaves near double life time to the 1 pair encapsulation, and four times to none encapsulation.

  3. Chemical Annealing of Zinc Tetraphenylporphyrin Films: Effects on Film Morphology and Organic Photovoltaic Performance

    KAUST Repository

    Trinh, Cong

    2012-07-10

    We present a chemical annealing process for organic thin films. In this process, a thin film of a molecular material, such as zinc tetraphenylporphyrin (ZnTPP), is exposed to a vapor of nitrogen-based ligand (e.g., pyrazine, pz, and triazine, tz), forming a film composed of the metal-ligand complex. Fast and quantitative formation of the complex leads to marked changes in the morphology and optical properties of the film. X-ray diffraction studies show that the chemical annealing process converts amorphous ZnTPP films to crystalline ZnTPP•ligand films, whose porphryin planes lie nearly parallel to the substrate (average deviation is 8° for the ZnTPP•pz film). Organic solar cells were prepared with ZnTPP donor and C 60 acceptor layers. Devices were prepared with and without chemical annealing of the ZnTPP layer with a pyrazine ligand. The devices with chemically annealed ZnTPP donor layer show an increase in short-circuit current (J SC) and fill factor (FF) relative to analogous unannealed devices, presumably because of enhanced exciton diffusion length and improved charge conductivity. The open circuit voltages (V OC) of the chemically annealed devices are lower than their unannealed counterpart because of enhanced polaron pair recombination at the donor/acceptor heterojunction. A net improvement of 5-20% in efficiency has been achieved, after chemical annealing of ZnTPP films with pyrazine. © 2012 American Chemical Society.

  4. Light trapping in thin film organic solar cells

    Directory of Open Access Journals (Sweden)

    Zheng Tang

    2014-10-01

    Full Text Available A major issue in organic solar cells is the poor mobility and recombination of the photogenerated charge carriers. The active layer has to be kept thin to facilitate charge transport and minimize recombination losses. However, optical losses due to inefficient light absorption in the thin active layers can be considerable in organic solar cells. Therefore, light trapping schemes are critically important for efficient organic solar cells. Traditional light trapping schemes for thick solar cells need to be modified for organic thin film solar cells in which coherent optics and wave effects play a significant role. In this review, we discuss the light trapping schemes for organic thin film solar cells, which includes geometric engineering of the structure of the solar cell at the micro and nanoscale, plasmonic structures, and more.

  5. Cognitive ability experiment with photosensitive organic molecular thin films

    CERN Document Server

    Barille, R; Ortyl, E; Kucharski, S; Nunzi, J M; Barille, Regis; Ahmadi-Kandjani, Sohrab; Ortyl, Ewelina; Kucharski, Stanislaw; Nunzi, Jean-Michel

    2006-01-01

    We present an optical experiment which permits to evaluate the information exchange necessary to self-induce cooperatively a well-organized pattern in a randomly activated molecular assembly. A low-power coherent beam carrying polarization and wavelength information is used to organize a surface relief grating on a photochromic polymer thin film which is photo-activated by a powerful incoherent beam. We demonstrate experimentally that less than 1% of the molecules possessing information cooperatively transmit it to the entire photo-activated polymer film.

  6. Morphology of polymer-based films for organic photovoltaics

    OpenAIRE

    Ruderer, Matthias A.

    2012-01-01

    In this thesis, polymer-based films are examined for applications in organic photovoltaics. Polymer-fullerene, polymer-polymer and diblock copolymer systems are characterized as active layer materials. The focus is on experimental parameters influencing the morphology formation of the active layer in organic solar cells. Scattering and imaging techniques provide a complete understanding of the internal structure on different length scales which is compared to spectroscopic and photovoltaic pr...

  7. Measuring Thicknesses Of Vacuum-Deposited Organic Thin Films

    Science.gov (United States)

    David, Carey E.

    1996-01-01

    Method of measuring thickness of thin organic liquid film deposited in vacuum involves use of quartz-crystal monitor (QCM) calibrated by use of witness plate that has, in turn, calibrated by measurement of absorption of infrared light in deposited material. Present procedure somewhat tedious, but once calibration accomplished, thicknesses of organic liquid deposits monitored in real time and in situ by use of QCM.

  8. Study of neural cells on organic semiconductor ultra thin films

    Energy Technology Data Exchange (ETDEWEB)

    Bystrenova, Eva; Tonazzini, Ilaria; Stoliar, Pablo; Greco, Pierpaolo; Lazar, Adina; Dutta, Soumya; Dionigi, Chiara; Cacace, Marcello; Biscarini, Fabio [ISMN-CNR, Bologna (Italy); Jelitai, Marta; Madarasz, Emilia [IEM- HAS, Budapest (Hungary); Huth, Martin; Nickel, Bert [LMU, Munich (Germany); Martini, Claudia [Dept. PNPB, Univ. of Pisa (Italy)

    2008-07-01

    Many technological advances are currently being developed for nano-fabrication, offering the ability to create and control patterns of soft materials. We report the deposition of cells on organic semiconductor ultra-thin films. This is a first step towards the development of active bio/non bio systems for electrical transduction. Thin films of pentacene, whose thickness was systematically varied, were grown by high vacuum sublimation. We report adhesion, growth, and differentiation of human astroglial cells and mouse neural stem cells on an organic semiconductor. Viability of astroglial cells in time was measured as a function of the roughness and the characteristic morphology of ultra thin organic film, as well as the features of the patterned molecules. Optical fluorescence microscope coupled to atomic force microscope was used to monitor the presence, density and shape of deposited cells. Neural stem cells remain viable, differentiate by retinoic acid and form dense neuronal networks. We have shown the possibility to integrate living neural cells on organic semiconductor thin films.

  9. Metal-organic frameworks: A thin film opening

    Science.gov (United States)

    Sumby, Christopher J.

    2016-04-01

    The properties of metal-organic frameworks -- promising for a myriad of applications -- can be commonly tuned by judicious choice of the building blocks used to prepare the material. Now, simply downsizing a rigid, non-porous MOF to a thin film has been shown to endow it with dynamic, gate-opening-type guest uptake behaviour.

  10. Fundamentals of laser-assisted fabrication of inorganic and organic films

    DEFF Research Database (Denmark)

    Schou, Jørgen

    The standard method for producing films by laser-assisted methods, Pulsed Laser Deposition (PLD) will be reviewed. The films considered are usually inorganic films, but also films of organic materials have been produced. Also the deposition of organic films by MAPLE (Matrix Assisted Pulsed Laser...... Evaporation), in which the target is replaced by a frozen matrix containing a few per cent film material, will be reviewed....

  11. Theoretical and experimental studies of the recovery of volatile organic compounds from waste air streams in the thermal swing adsorption system with closed-loop regeneration of adsorbent

    International Nuclear Information System (INIS)

    Highlights: • The TSA process for VOCs recovery from the waste air was studied. • The closed-loop adsorbent regeneration method was used. • A mathematical model was developed to simulate the TSA process. • The toluene–Sorbonorit 4 activated carbon system was studied. • We proved that toluene can be recovered in moderate condensation temperature range. - Abstract: The cyclic thermal swing adsorption (TSA) process for volatile organic compounds (VOCs) recovery from the waste air is studied theoretically and experimentally. Toluene is chosen as the volatile organic compound. Activated carbon Sorbonorit 4 is used as an adsorbent. The TSA cycle is operated in three steps: an adsorption step with cold feed, a desorption step with hot purge gas and a cooling step with cold inert gas. The desorption and cooling are affected by nitrogen circulated through a heater, an adsorber and a condenser. A nonequilibrium, nonisothermal mathematical model is developed to simulate temperature and concentration breakthrough curves for both adsorption and desorption steps. The computer simulation results are compared with the experimental data. A bench scale fixed bed adsorption unit was used for the experimental study. It is shown that the theoretical model predicts the experimental results well. The computer simulation results are used to study the effect of the purge gas and condensation temperature on the process efficiency

  12. Change in surface states of Ag(111) thin films upon adsorption of a monolayer of PTCDA organic molecules

    International Nuclear Information System (INIS)

    The change in the electronic structure of silver thin films of different thicknesses with the Ag( 111) orientation due to the interaction with an adsorbed monolayer of ordered organic molecules of 3,4,9,10-perylene-tetracarboxylic acid dianhydride (PTCDA) has been investigated in terms of density functional theory. It has been shown that one of the two surface states of the pure films transforms into an unocc upied interface state due to the interaction so that all the main features of the initial state are retained. The relation of the resulting state to the unoccupied state experimentally observed in the PTCDA/Ag( 111 ) system by scanning tunneling and two-photon photoemission spectroscopy has been discussed.

  13. Self-organized structures in soft confined thin films

    Indian Academy of Sciences (India)

    Ashutosh Sharma

    2005-10-01

    We present a mini-review of our recent work on spontaneous, self-organized creation of mesostructures in soft materials like thin films of polymeric liquids and elastic solids. These very small scale, highly confined systems are inherently unstable and thus self-organize into ordered structures which can be exploited for MEMS, sensors, opto-electronic devices and a host of other nanotechnology applications. In particular, mesomechanics requires incorporation of intermolecular interactions and surface tension forces, which are usually inconsequential in classical macroscale mechanics. We point to some experiments and quasi-continuum simulations of self-organized structures in thin soft films which are germane not only to nanotechnology, but also to a spectrum of classical issues such as adhesion/debonding, wetting, coatings, tribology and membranes.

  14. Fabrication of a room-temperature NO2 gas sensor based on WO3 films and WO3/MWCNT nanocomposite films by combining polyol process with metal organic decomposition method

    International Nuclear Information System (INIS)

    Research highlights: → In this study, we fabricated a room-temperature NO2 gas sensor based on WO3/MWCNT nanocomposite film by combining polyol process with metal organic decomposition method. → The response of the WO3/MWCNT nanocomposite film to NO2 gas increased dramatically when a few MWCNTs were added to the WO3 film. → New electrical paths and depletion layers formed in the WO3/MWCNT nanocomposite film were used to explain the high sensitivity of WO3/MWCNT nanocomposite film. - Abstract: Polyol process was combined with metal organic decomposition (MOD) method to fabricate a room-temperature NO2 gas sensor based on a tungsten oxide (WO3) film and another a nanocomposite film of WO3/multi-walled carbon nanotubes (WO3/MWCNTs). X-ray diffractometry (XRD), scanning electron microscopy (SEM) and atomic force microscopy (AFM) were used to analyze the structure and morphology of the fabricated films. Comparative gas sensing results indicated that the sensor that was based on the WO3/MWCNT nanocomposite film exhibited a much higher sensitivity than that based on a WO3 film in detecting NO2 gas at room temperature. Microstructural observations revealed that MWCNTs were embedded in the WO3 matrix. Therefore, a model of potential barriers to electronic conduction in the composite material was used to suggest that the high sensitivity is associated with the stretching of the two depletion layers at the surface of the WO3 film and at the interface of the WO3 film and the MWCNTs when detected gases are adsorbed at room temperature. The sensor that is based on a nanocomposite film of WO3/MWCNT exhibited a strong response in detecting very low concentrations of NO2 gas at room temperature and is practical because of the ease of its fabrication.

  15. Exploration of exciton delocalization in organic crystalline thin films

    Science.gov (United States)

    Hua, Kim; Manning, Lane; Rawat, Naveen; Ainsworth, Victoria; Furis, Madalina

    The electronic properties of organic semiconductors play a crucial role in designing new materials for specific applications. Our group recently found evidence for a rotation of molecular planes in phthalocyanines that is responsible for the disappearance of a delocalized exciton in these systems for T >150K.................()().......1 In this study, we attempt to tune the exciton delocalization of small organic molecules using strain effects and alloying different molecules in the same family. The exciton behavior is monitored using time- and polarization resolved photolumniscence (PL) spectroscopy as a function of temperature. Specifically, organic crystalline thin films of octabutoxy phthalocyanine (H2OBPc), octyloxy phthalocyanines and H-bonded semiconductors such as the quinacridone and indigo derivatives are deposited on flexible substrates (i.e. Kapton and PEN) using an in-house developed pen-writing method.........2 that results in crystalline films with macroscopic long range order. The room temperature PL studies show redshift and changes in polarization upon bending of the film. Crystalline thin films of alloyed H2OBPc and octabutoxy naphthalocyanine with ratios ranging from 1:1 to 100:1 fabricated on both sapphire and flexible substrates are also explored using the same PL spectroscopy to elucidate the behaviors of delocalized excitons. .1N. Rawat, et al., J Phys Chem Lett 6, 1834 (2015). 2R. L. Headrick, et al., Applied Physics Letters 92, 063302 (2008). NSF DMR-1056589, NSF DMR-1062966.

  16. Thin films by metal-organic precursor plasma spray

    Energy Technology Data Exchange (ETDEWEB)

    Schulz, Douglas L.; Sailer, Robert A.; Payne, Scott; Leach, James; Molz, Ronald J. [North Dakota State University, Fargo, North Dakota 58108-6050 (United States); Sulzer Metco (United States) Inc., Westbury, New York 11590-2724 (United States)

    2009-07-15

    While most plasma spray routes to coatings utilize solids as the precursor feedstock, metal-organic precursor plasma spray (MOPPS) is an area that the authors have investigated recently as a novel route to thin film materials. Very thin films are possible via MOPPS and the technology offers the possibility of forming graded structures by metering the liquid feed. The current work employs metal-organic compounds that are liquids at standard temperature-pressure conditions. In addition, these complexes contain chemical functionality that allows straightforward thermolytic transformation to targeted phases of interest. Toward that end, aluminum 3,5-heptanedionate (Al(hd){sub 3}), triethylsilane (HSi(C{sub 2}H{sub 5}){sub 3} or HSiEt{sub 3}), and titanium tetrakisdiethylamide (Ti(N(C{sub 2}H{sub 5}){sub 2}){sub 4} or Ti(NEt{sub 2}){sub 4}) were employed as precursors to aluminum oxide, silicon carbide, and titanium nitride, respectively. In all instances, the liquids contain metal-heteroatom bonds envisioned to provide atomic concentrations of the appropriate reagents at the film growth surface, thus promoting phase formation (e.g., Si-C bond in triethylsilane, Ti-N bond in titanium amide, etc.). Films were deposited using a Sulzer Metco TriplexPro-200 plasma spray system under various experimental conditions using design of experiment principles. Film compositions were analyzed by glazing incidence x-ray diffraction and elemental determination by x-ray spectroscopy. MOPPS films from HSiEt{sub 3} showed the formation of SiC phase but Al(hd){sub 3}-derived films were amorphous. The Ti(NEt{sub 2}){sub 4} precursor gave MOPPS films that appear to consist of nanosized splats of TiOCN with spheres of TiO{sub 2} anatase. While all films in this study suffered from poor adhesion, it is anticipated that the use of heated substrates will aid in the formation of dense, adherent films.

  17. Reference spectra of important adsorbed organic and inorganic phosphate binding forms for soil P speciation using synchrotron-based K-edge XANES spectroscopy.

    Science.gov (United States)

    Prietzel, Jörg; Harrington, Gertraud; Häusler, Werner; Heister, Katja; Werner, Florian; Klysubun, Wantana

    2016-03-01

    Direct speciation of soil phosphorus (P) by linear combination fitting (LCF) of P K-edge XANES spectra requires a standard set of spectra representing all major P species supposed to be present in the investigated soil. Here, available spectra of free- and cation-bound inositol hexakisphosphate (IHP), representing organic P, and of Fe, Al and Ca phosphate minerals are supplemented with spectra of adsorbed P binding forms. First, various soil constituents assumed to be potentially relevant for P sorption were compared with respect to their retention efficiency for orthophosphate and IHP at P levels typical for soils. Then, P K-edge XANES spectra for orthophosphate and IHP retained by the most relevant constituents were acquired. The spectra were compared with each other as well as with spectra of Ca, Al or Fe orthophosphate and IHP precipitates. Orthophosphate and IHP were retained particularly efficiently by ferrihydrite, boehmite, Al-saturated montmorillonite and Al-saturated soil organic matter (SOM), but far less efficiently by hematite, Ca-saturated montmorillonite and Ca-saturated SOM. P retention by dolomite was negligible. Calcite retained a large portion of the applied IHP, but no orthophosphate. The respective P K-edge XANES spectra of orthophosphate and IHP adsorbed to ferrihydrite, boehmite, Al-saturated montmorillonite and Al-saturated SOM differ from each other. They also are different from the spectra of amorphous FePO4, amorphous or crystalline AlPO4, Ca phosphates and free IHP. Inclusion of reference spectra of orthophosphate as well as IHP adsorbed to P-retaining soil minerals in addition to spectra of free or cation-bound IHP, AlPO4, FePO4 and Ca phosphate minerals in linear combination fitting exercises results in improved fit quality and a more realistic soil P speciation. A standard set of P K-edge XANES spectra of the most relevant adsorbed P binding forms in soils is presented. PMID:26917141

  18. Direct observation of epitaxial organic film growth: temperature-dependent growth mechanisms and metastability.

    Science.gov (United States)

    Marchetto, Helder; Schmidt, Thomas; Groh, Ullrich; Maier, Florian C; Lévesque, Pierre L; Fink, Rainer H; Freund, Hans-Joachim; Umbach, Eberhard

    2015-11-21

    The growth of the first ten layers of organic thin films on a smooth metallic substrate has been investigated in real-time using the model system PTCDA on Ag(111). The complex behaviour is comprehensively studied by electron microscopy, spectroscopy and diffraction in a combined PEEM/LEEM instrument revealing several new phenomena and yielding a consistent picture of this layer growth. PTCDA grows above room temperature in a Stranski-Krastanov mode, forming three-dimensional islands on a stable bi-layer, in competition with metastable 3rd and 4th layers. Around room temperature this growth mode changes into a quasi layer-by-layer growth, while at temperatures below about 250 K a Vollmer-Weber-like behaviour is observed. By means of laterally resolved soft X-ray absorption spectroscopy the orientation of all adsorbed molecules is found to be homogeneously flat lying on the surface, even during the growth process. The films grow epitaxially, showing long-range order with rotational domains. For the monolayer these domains could be directly analysed, showing an average size of several micrometers extending over substrate steps. PMID:26462749

  19. Crystalline-to-plastic phase transitions in molecularly thin n-dotriacontane films adsorbed on solid surfaces

    DEFF Research Database (Denmark)

    Cisternas, Edgardo; Corrales, T. P.; del Campo, V.;

    2009-01-01

    identify with a solid-solid phase transition. At higher coverages, we observed additional steps in the ellipsometric signal that we identify with a solid-solid phase transition in multilayer islands (similar to 333 K) and with the transition to the rotator phase in bulk crystallites (similar to 337 K......), respectively. After considering three alternative explanations, we propose that the step upward in the ellipsometric signal observed at similar to 331 K on heating the submonolayer film is the signature of a transition from a perpendicular monolayer phase to a denser phase in which the alkane chains contain on...

  20. Controlling Listeria monocytogenes on Pork Meat with Combinations of Lyophilized Cell-adsorbed Bacteriocin of Lactobacillus curvatus CWBI-B28 and Organic Acids or Salts

    Directory of Open Access Journals (Sweden)

    Privat Kouakou

    2016-06-01

    Full Text Available The main aim of this study was to see if the antilisterial action of lyophilized cell-adsorbed bacteriocin from Lactobacillus curvatus CWBI-B28 might be reinforced by simultaneous treatment with an organic acid or salt. Slices of raw pork (lean bacon inoculated with Listeria monocytogenes (at 102 cfu/g meat were either vacuum packaged directly and stored at 4°C or treated prior to packaging with a solution containing either lyophilized cell-adsorbed bacteriocin from Lactobacillus curvatus CWBI-B28 (at 1 g/100 mL, an organic acid or salt, or both. The organic acids/salts used were acetic acid, lactic acid, sodium acetate, sodium diacetate, potassium sorbate, and potassium benzoate and the concentrations of the corresponding solutions were calculated so as to treat each slice with approximately 0.1, 0.3, or 0.5 mg acid/salt. Of the antimicrobials used alone, LCaB had the strongest inhibitory effect (a 1-Log reduction in the Listeria cfu count after two weeks, followed by an increase. In combination with LCaB, three antimicrobials had a much more drastic effect: acetic acid, sodium diacetate, and potassium benzoate. At the highest acid/salt concentration tested in such combinations, Listeria became undetectable after one or two weeks and remained so until the end of the 6-week experiment.

  1. Organic Dielectrics Influence the Crystallographic Structure of Pentacene Thin Films

    International Nuclear Information System (INIS)

    Full text: X-ray diffraction as well as atomic force microscopy experiments have been performed to investigate thin films of pentacene. The films were deposited on thermally grown SiO2 pre-covered by different organic layers. Modifying substrates that the substrate pre-treatments have a strong impact on the performance of the device as well as on the growth of the active layer. However, there are few reports about the influence on the crystalline properties of pentacene. In this work three different systems have been investigated. For one sample series vacuum deposited polymeric Parylene C - with varying thicknesses - was used as the dielectric layer. A second series of dielectric layers was prepared by spin coating a photoreactive polymer (PBHND [poly(bicyclo[2.2.1]hept-5-ene-2,3-(2- nitrobenzyl)dicarboxylate)]) onto the wafer. Subsequently the samples were exposed to UV-light for different time spans. For the third class of systems, a self assembled film of T-SC/SA [4-(2-(trichlorosilyl)ethyl)benzene-1-sulfonyl chloride (TSC), 30% sulfonic acid T-SA] was used to modify the SiOx surface. From the obtained x-ray data we find that the investigated pentacene films are polymorphic and consist of the two commonly observed crystal phases, namely the thin film phase and the Campbell phase. On weakly interacting substrates, these phases are typically oriented with their (001) lattice planes parallel to the substrate surface. Yet in the present investigation it is found that for some dielectric layers the (001) planes of the thin film phase are tilted approximately 3o and of the Campbell phase about 10o with respect to the substrate surface. These small deviations in the structure have a large influence to the in-plane diffraction patterns. Therefore, the changes in the patterns can be unambiguously attributed to the change of preferred orientation. (author)

  2. Printed organic thin-film transistor-based integrated circuits

    International Nuclear Information System (INIS)

    Organic electronics is moving ahead on its journey towards reality. However, this technology will only be possible when it is able to meet specific criteria including flexibility, transparency, disposability and low cost. Printing is one of the conventional techniques to deposit thin films from solution-based ink. It is used worldwide for visual modes of information, and it is now poised to enter into the manufacturing processes of various consumer electronics. The continuous progress made in the field of functional organic semiconductors has achieved high solubility in common solvents as well as high charge carrier mobility, which offers ample opportunity for organic-based printed integrated circuits. In this paper, we present a comprehensive review of all-printed organic thin-film transistor-based integrated circuits, mainly ring oscillators. First, the necessity of all-printed organic integrated circuits is discussed; we consider how the gap between printed electronics and real applications can be bridged. Next, various materials for printed organic integrated circuits are discussed. The features of these circuits and their suitability for electronics using different printing and coating techniques follow. Interconnection technology is equally important to make this product industrially viable; much attention in this review is placed here. For high-frequency operation, channel length should be sufficiently small; this could be achievable with a combination of surface treatment-assisted printing or laser writing. Registration is also an important issue related to printing; the printed gate should be perfectly aligned with the source and drain to minimize parasitic capacitances. All-printed organic inverters and ring oscillators are discussed here, along with their importance. Finally, future applications of all-printed organic integrated circuits are highlighted. (paper)

  3. Film stresses and electrode buckling in organic solar cells

    KAUST Repository

    Brand, Vitali

    2012-08-01

    We investigate the film stresses that develop in the polymer films and metal electrodes of poly(3-hexyl thiophene) (P3HT) and [6,6]-phenyl C61-butyric acid methyl ester (PCBM) bulk heterojunction (BHJ) organic solar cells. A compressive biaxial stress of ∼-36 MPa was measured in PEDOT:PSS while a tensile stress of ∼6 MPa was measured in the BHJ layer. We then analyze the effect of electrode deposition rate on the film stresses in the Al electrode. Compressive stresses of ∼-100 to -145 MPa in the Al electrode lead to a buckling instability resulting in undulating electrode surface topography. The BHJ layer was found to have the lowest cohesion (∼1.5-1.8 J/m 2) among the layers of the solar cell and dependent on the Al electrode deposition rate. The cohesive failure path in the BHJ layer exhibited the same periodicity and orientation of the Al electrode buckling topography. We discuss the implications of the film stresses on damage processes during device fabrication and operation. © 2012 Elsevier B.V. All rights reserved.

  4. Adsorption energy and geometry of adsorbed organic molecules on Au(111) probed by surface-state photoemission

    Energy Technology Data Exchange (ETDEWEB)

    Ziroff, Johannes; Forster, Frank [Universitaet Wuerzburg, Experimentelle Physik II, D-97074 Wuerzburg (Germany); Reinert, Friedrich [Universitaet Wuerzburg, Experimentelle Physik II, D-97074 Wuerzburg (Germany); Forschungszentrum Karlsruhe, Gemeinschaftslabor fuer Nanoanalytik, D-76021 Karlsruhe (Germany)

    2009-07-01

    The modification of the Au(111) surface states by an adsorbed monolayer of large {pi}-conjugated molecules (PTCDA, NTCDA, CuPc) was investigated by high-resolution angle-resolved photoelectron spectroscopy. We determined binding energy, band mass, and Rashba-splitting and discuss the results in the context of rare-gas adsorption on noble metals. This comparison allows the determination of the bonding strength of the adsorbates, found to be physisorptive with derived binding energies per molecule of 2.0 eV for PTCDA and 1.5 eV for NTCDA. We will also present a superstructure model for the NTCDA/Au(111) system, deduced from low energy electron diffraction images in combination with band-backfolding of the Tamm and Shockley states. The coverage dependent evolution of the surface states was also investigated for the three molecules, giving evidence for a dilute-phase growth of the CuPc molecule on the Au(111) surface.

  5. Development of adsorbents from used tire rubber. Their use in the adsorption of organic and inorganic solutes in aqueous solution

    Energy Technology Data Exchange (ETDEWEB)

    Troca-Torrado, Cesar; Alexandre-Franco, Maria; Fernandez-Gonzalez, Carmen; Gomez-Serrano, Vicente [Extremadura Univ., Badajoz (Spain). Dept. de Quimica Organica e Inorganica; Alfaro-Dominguez, Manuel [Extremadura Univ., Badajoz (Spain). Dept. de Ingenieria Mecanica, Energetica y de los Materiales

    2011-02-15

    Using used tire rubber (UTR), carbonaceous adsorbents (CAs) were prepared by chemical treatment of the material with HCl, HNO{sub 3} and NaOH aqueous solutions and by heat treatment at 900 C for 2 h in N{sub 2} atmosphere (H900). UTR and the UTR-derived products were first characterized in terms of texture by N{sub 2} adsorption at - 196 C and of oxygen surface groups by FT-IR spectroscopy and pH of the point of zero charge (pH{sub pzc}). Then, the products were tested as adsorbents of phenol, p-aminophenol, p-nitrophenol, and p-chlorophenol and of chromium, cadmium, mercury and lead in aqueous solution. The development of porosity is very poor in UTR and in the chemically treated products. H900 is the only CA with a better developed porosity, mainly in the regions of meso and macropores. pH{sub pzc} is close to 7.0 for most of the CAs. As an exception to the rule, pH{sub pzc} is 8.4 for H900. For this CA, the adsorption of all the adsorptives is greater. Usually, adsorption kinetics are fast. This is so in particular for p-nitrophenol and p-chlorophenol, on the one side, and for mercury and lead, on the other side. Adsorption is much higher for mercury and lead than for the remaining adsorptives. (author)

  6. Graphene nanosheets as novel adsorbents in adsorption, preconcentration and removal of gases, organic compounds and metal ions

    International Nuclear Information System (INIS)

    Due to their high adsorption capacities, carbon-based nanomaterials such as carbon nanotubes, activated carbons, fullerene and graphene are widely used as the currently most promising functional materials. Since its discovery in 2004, graphene has exhibited great potential in many technological fields, such as energy storage materials, supercapacitors, resonators, quantum dots, solar cells, electronics, and sensors. The large theoretical specific surface area of graphene nanosheets (2630 m2·g−1) makes them excellent candidates for adsorption technologies. Further, graphene nanosheets could be used as substrates for decorating the surfaces of nanoparticles, and the corresponding nanocomposites could be applied as novel adsorbents for the removal of low concentrated contaminants from aqueous solutions. Therefore, graphene nanosheets will challenge the current existing adsorbents, including other types of carbon-based nanomaterials. - Highlights: • The recent progress of application of graphene in adsorption was presented. • The design and practical application of graphene based composites was discussed. • The future trends and prospects of graphene were analyzed and proposed

  7. Cellulose nanocrystals as organic nanofillers for transparent polycarbonate films

    International Nuclear Information System (INIS)

    Cellulose nanocrystals (CNCs) produced by sulfuric acid hydrolysis as organic nanofillers were dispersed into polycarbonate (PC) in organic solution through a solvent exchange procedure, and their influence on the optical, mechanical, and thermal properties of the resulting composite films were studied. It is demonstrated that due to the good dispersion of the nanofillers in the polymeric matrix, the formation of strong hydrogen bonds between carbonyl groups of PC and hydroxyl groups of the CNCs can be achieved, leading to a simultaneous reinforcement effect on mechanical and thermal properties of the composite films. Moreover, it was further found that the existence of nanofillers in the composite efficiently hindered the main thermal degradation pathways of PC involving the chain scission at carbonate linkage and rearrangement of carbonate groups. Compared with neat PC, the composite film with 3 wt% CNCs has an increase of about 30.6 % in tensile strength, 27.3 % in Young’s modulus, and 3.3 % in maximum decomposition temperature, but still remain quite transparent.

  8. Multifunctional organic thin films and their electronic/optical properties

    Science.gov (United States)

    Shao, Yan

    The concept of multifunctional organic thin films and their electronic/optical properties has been applied to organic functional device design, fabrication, and characterization. The organic devices involve organic light-emitting diodes (OLEDs) and organic photovoltaic devices (OPV) in this dissertation. In the research of graded junction structure of OLEDs, two kinds of naturally-formed graded junction (NFGJ) structures, sharp and shallow graded junctions, can be formed using single thermal evaporation boat loaded with uniformly mixed charge transport and light-emitting materials. OLEDs with NFGJ have been demonstrated in Chapter 3; the performance is comparable to the heterojunction OLEDs, but with better device lifetime. A novel method to prepare highly uniform mixed organic solid solutions through a high temperature and high-pressure fusion process has been demonstrated in Chapter 4. A series of fused organic solid solution (FOSS) compounds with NPD doped with different organic emitting dopants were prepared and DSC technique was utilized to determine the thermal characteristics. For the first time, the schematic phase diagram for this binary system has been obtained. High performance OLEDs of single color and white emission were fabricated and the device properties were characterized. In Chapter 5, an efficient photovoltaic heterojunction of tetracene and fullerene has been investigated and high performance organic solar cells have been demonstrated by thermal deposition and successive heat treatment. The preliminary conclusion for this enhancement is discussed and supported by atomic force microscopy images, absorption spectra and x-ray diffraction analysis. Additionally, an effective organic photovoltaic heterojunction based on the typical triplet material PtOEP was demonstrated. It is believed that introducing appropriate organic materials with long exciton lifetime is a very promising way to improve photovoltaic performance.

  9. Two-Dimensional Organic-Inorganic Hybrid Perovskite Photonic Films.

    Science.gov (United States)

    Meng, Ke; Gao, Shanshan; Wu, Longlong; Wang, Geng; Liu, Xin; Chen, Gang; Liu, Zhou; Chen, Gang

    2016-07-13

    Organic-inorganic hybrid perovskites have created enormous expectations for low-cost and high-performance optoelectronic devices. In prospect, future advancements may derive from reaping novel electrical and optical properties beyond pristine perovskites through microscopic structure design and engineering. Herein, we report the successful preparation of two-dimensional inverse-opal perovskite (IOP) photonic films, featuring unique nanostructures and vivid colors. Further compositional and structural managements promise optical property and energy level tunability of the IOP films. They are further functionalized in solar cells, resulting in colorful devices with respectable power conversion efficiency. Such concept has not been previously applied for perovskite-based solar cells, which could open a route for more versatile optoelectronic devices. PMID:27267266

  10. Orbital tomography for highly symmetric adsorbate systems

    Science.gov (United States)

    Stadtmüller, B.; Willenbockel, M.; Reinisch, E. M.; Ules, T.; Bocquet, F. C.; Soubatch, S.; Puschnig, P.; Koller, G.; Ramsey, M. G.; Tautz, F. S.; Kumpf, C.

    2012-10-01

    Orbital tomography is a new and very powerful tool to analyze the angular distribution of a photoemission spectroscopy experiment. It was successfully used for organic adsorbate systems to identify (and consequently deconvolute) the contributions of specific molecular orbitals to the photoemission data. The technique was so far limited to surfaces with low symmetry like fcc(110) oriented surfaces, owing to the small number of rotational domains that occur on such surfaces. In this letter we overcome this limitation and present an orbital tomography study of a 3,4,9,10-perylene-tetra-carboxylic-dianhydride (PTCDA) monolayer film adsorbed on Ag(111). Although this system exhibits twelve differently oriented molecules, the angular resolved photoemission data still allow a meaningful analysis of the different local density of states and reveal different electronic structures for symmetrically inequivalent molecules. We also discuss the precision of the orbital tomography technique in terms of counting statistics and linear regression fitting algorithm. Our results demonstrate that orbital tomography is not limited to low-symmetry surfaces, a finding which makes a broad field of complex adsorbate systems accessible to this powerful technique.

  11. A rapid microwave-assisted synthesis of a sodium-cadmium metal-organic framework having improved performance as a CO2 adsorbent for CCS.

    Science.gov (United States)

    Palomino Cabello, Carlos; Arean, Carlos Otero; Parra, José B; Ania, Conchi O; Rumori, P; Turnes Palomino, G

    2015-06-01

    We report on a facile and rapid microwave-assisted method for preparing a sodium-cadmium metal-organic framework (having coordinatively unsaturated sodium ions) that considerably shortens the conventional synthesis time from 5 days to 1 hour. The obtained (Na,Cd)-MOF showed an excellent volumetric CO2 adsorption capacity (5.2 mmol cm(-3) at 298 K and 1 bar) and better CO2 adsorption properties than those shown by the same metal-organic framework when synthesized following a more conventional procedure. Moreover, the newly prepared material was found to display high selectivity for adsorption of carbon dioxide over nitrogen, and good regenerability and stability during repeated CO2 adsorption-desorption cycles, which are the required properties for any adsorbent intended for carbon dioxide capture and sequestration (CSS) from the post-combustion flue gas of fossil fuelled power stations. PMID:25939594

  12. Thin Film Solar Cells: Organic, Inorganic and Hybrid

    Science.gov (United States)

    Dankovich, John

    2004-01-01

    Thin film solar cells are an important developing resource for hundreds of applications including space travel. In addition to being more cost effective than traditional single crystal silicon cells, thin film multi-crystaline cells are plastic and light weight. The plasticity of the cells allows for whole solar panels to be rolled out from reams. Organic layers are being investigated in order to increase the efficiency of the cells to create an organic / inorganic hybrid cell. The main focus of the group is a thin film inorganic cell made with the absorber CuInS2. So far the group has been successful in creating the layer from a single-source precursor. They also use a unique method of film deposition called chemical vapor deposition for this. The general makeup of the cell is a molybdenum back contact with the CuInS2 layer, then CdS, ZnO and aluminum top contacts. While working cells have been produced, the efficiency so far has been low. Along with quantum dot fabrication the side project of this that is currently being studied is adding a polymer layer to increase efficiency. The polymer that we are using is P3OT (Poly(3-octylthiopene-2,5-diyll), retroregular). Before (and if) it is added to the cell, it must be understood in itself. To do this simple diodes are being constructed to begin to look at its behavior. The P3OT is spin coated onto indium tin oxide and silver or aluminum contacts are added. This method is being studied in order to find the optimal thickness of the layer as well as other important considerations that may later affect the composition of the finished solar cell. Because the sun is the most abundant renewable, energy source that we have, it is important to learn how to harness that energy and begin to move away from our other depleted non-renewable energy sources. While traditional silicon cells currently create electricity at relatively high efficiencies, they have drawbacks such as weight and rigidness that make them unattractive

  13. Controlled Growth of Ultrathin Film of Organic Semiconductors by Balancing the Competitive Processes in Dip-Coating for Organic Transistors.

    Science.gov (United States)

    Wu, Kunjie; Li, Hongwei; Li, Liqiang; Zhang, Suna; Chen, Xiaosong; Xu, Zeyang; Zhang, Xi; Hu, Wenping; Chi, Lifeng; Gao, Xike; Meng, Yancheng

    2016-06-28

    Ultrathin film with thickness below 15 nm of organic semiconductors provides excellent platform for some fundamental research and practical applications in the field of organic electronics. However, it is quite challenging to develop a general principle for the growth of uniform and continuous ultrathin film over large area. Dip-coating is a useful technique to prepare diverse structures of organic semiconductors, but the assembly of organic semiconductors in dip-coating is quite complicated, and there are no reports about the core rules for the growth of ultrathin film via dip-coating until now. In this work, we develop a general strategy for the growth of ultrathin film of organic semiconductor via dip-coating, which provides a relatively facile model to analyze the growth behavior. The balance between the three direct factors (nucleation rate, assembly rate, and recession rate) is the key to determine the growth of ultrathin film. Under the direction of this rule, ultrathin films of four organic semiconductors are obtained. The field-effect transistors constructed on the ultrathin film show good field-effect property. This work provides a general principle and systematic guideline to prepare ultrathin film of organic semiconductors via dip-coating, which would be highly meaningful for organic electronics as well as for the assembly of other materials via solution processes. PMID:27267545

  14. Quantification of LEED measurements. II. Application to epitaxial organic films

    Energy Technology Data Exchange (ETDEWEB)

    Meissner, Matthias; Sojka, Falko; Gruenewald, Marco; Forker, Roman; Fritz, Torsten [University of Jena, Institute of Solid State Physics, Max-Wien-Platz 1, 07743 Jena (Germany)

    2012-07-01

    Low energy electron diffraction (LEED) on epitaxial layers is a powerful tool to examine long-range ordering at the interface. However, due to limitations like distortion of the LEED images, often additional efforts have to be made in order to derive precise epitaxial relations. Based on LEED images corrected for their distortion and calibrated by means of a Si(111)-7 x 7 diffraction pattern, a home-made algorithm finds the LEED spots belonging to a certain structure and fits a lattice to all those spots simultaneously. This provides us with absolute lattice parameters within a small error margin. Additionally, in the case of organic-inorganic epitaxy, measurements at higher energies can be used to relate the adsorbate lattice to the substrate lattice and derive the epitaxy matrix. The precision of this procedure will be evaluated on the basis of two systems: (a) 3,4,9,10-perylenetetracarboxylic dianhydride (PTCDA) on epitaxial graphene, featuring two different PTCDA phases, one known, the other not; (b) Tin-phthalocyanine (SnPc) on Au(111), not being described in literature yet.

  15. High performance small-molecule organic thin film transistors

    Science.gov (United States)

    Kuo, Chung-Chen

    The roadmap of developing microelectronics has a new branch: organic electronics. Organic electronics, which utilizes the electrical properties of organic materials in the active or passive layers, is an emerging technology that has received much attention. In conjunction with today's demands for new materials and devices, many technologies have emerged for developing organic electronics and consolidating applications and markets. An organic thin-film transistor is the essential device in this paradigm in addition to organic photodiodes and organic light emitting diodes. This thesis presents advances made in design and fabrication of organic thin-film transistors (OTFTs) using small-molecule organic semiconductors (pentacene, anthradithiophene, and their derivatives) as the active layer with record device performance. In this work OTFT test structures fabricated on oxidized silicon substrates were utilized to provide a convenient substrate, gate contact, and gate insulator for the processing and characterization of vapor-deposited organic materials and their transistors. By developing a gate dielectric treatment using silane coupling agents the performance and yield of pentacene OTFTs was improved and a field-effect mobility of larger than 2 cm2/V-s was achieved. Such device performance is comparable to a-Si:H TFTs and have the potential for electronic applications. In addition, the first direct photolithographic process for top contacts to pentacene OTFTs on oxidized silicon with an acceptable performance (a field-effect mobility of 0.3 cm2/V-s, an on/off current ratio of 10 7, and a subthreshold slope of 1 V/decade) was developed. The multiple layer photoresist process demonstrated the feasibility of creating source and drain metallic electrodes on vapor-deposited pentacene thin films with a resolution less than 10 mum. Subsequently, solution-processed OTFTs were then investigated and high performance transistors, with field-effect mobilities > 1 cm2/V-s and an

  16. Semiconducting Organic Thin Film Devices with Large Magnetoresistance

    Science.gov (United States)

    Sheng, Y.; Mermer, Ö.; Veeraraghavan, G.; Nguyen, T. D.; Francis, T. L.; Wohlgenannt, M.

    2006-03-01

    A comprehensive study on a recently discovered, large magnetoresistance (MR) effect in sandwich devices comprised of nonmagnetic electrodes and organic thin films is performed. Devices were fabricated from pi-conjugated polymers and small molecular weight compounds in combination with different electrode materials, and characterized extensively at different voltages, temperatures, and at weak magnetic fields from DC up to 100 kHz in frequency. The MR effect shows only weak temperature dependence and is independent of the sign and direction of the magnetic field. The effect reaches up to 10% in a magnetic field of 10 mT at room temperature. To illustrate a potential application of the effect, we demonstrate a prototype organic LED (OLED) touchscreen using the MR effect. To the best of our knowledge, the discovered effect is not adequately described by any of the MR mechanisms known to date.

  17. Stabilization of organic thin film transistors by ion implantation

    Energy Technology Data Exchange (ETDEWEB)

    Fraboni, B., E-mail: beatrice.fraboni@unibo.it [CNISM and Dipartimento di Fisica, Universita di Bologna, viale Berti Pichat 6/2, 40127 Bologna (Italy); Cosseddu, P. [Dipartimento di Ingegneria Elettrica ed Elettronica, Universita di Cagliari, piazza d' Armi, 09123 Cagliari, Italy and CNR-INFM S3 via Campi 213/a 41100 Modena (Italy); Wang, Y.Q.; Schulze, R.K. [Los Alamos National Laboratory MS-K771 Los Alamos NM 87545 (United States); Cavallini, A. [CNISM and Dipartimento di Fisica, Universita di Bologna, viale Berti Pichat 6/2, 40127 Bologna (Italy); Nastasi, M. [Los Alamos National Laboratory MS-K771 Los Alamos NM 87545 (United States); Bonfiglio, A. [Dipartimento di Ingegneria Elettrica ed Elettronica, Universita di Cagliari, piazza d' Armi, 09123 Cagliari, Italy and CNR-INFM S3 via Campi 213/a 41100 Modena (Italy)

    2012-08-01

    We report on the effects of low energy ion implantation (N and Ne) in the reduction and control of the degradation of pentacene organic thin film transistors (OTFTs) due to the exposure to atmosphere (i.e. oxygen and water). We have observed that a controlled damage depth distribution preserves the functionality of the devices, even if ion implantation induces significant molecular structure modifications, in particular a combination of dehydrogenation and carbonification effects. No relevant changes in the pentacene thin film thickness have been observed. The two major transport parameters that characterize OTFT performance are the carrier mobility and the threshold voltage. We have monitored the effectiveness of this process in stabilizing the device by monitoring the carrier mobility and the threshold voltage over a long time (over 2000 h). Finally, we have assessed by depth resolved X-ray Photoemission Spectroscopy analyses that, by selectively implanting with ions that can react with the hydrocarbon matrix (e.g. N{sup +}), it is possible to locally modify the charge distribution within the organic layer.

  18. Optical analysis of trap states in amorphous organic semiconductor films

    Energy Technology Data Exchange (ETDEWEB)

    Graaf, Harald; Borczyskowski, Christian von [Center of Nanostructured Materials and Analytics, Chemnitz University of Technology (Germany); Friedriszk, Frank [Center of Nanostructured Materials and Analytics, Chemnitz University of Technology (Germany); Institut fuer Physik, Universitaet Rostock (Germany)

    2010-07-01

    Increasing interest is drawn on thin organic semiconductor films in opto-electronic devices. While for applications like field-effect transistors and photovoltaic cells highly ordered morphologies resulting in higher charge carrier mobilities are requested, for other purposes like organic light emitting diodes amorphous arrangement of the molecules is needed. Here lower mobilities increase the recombination rate leading to a higher photon yield. In such systems trap states can influence dramatically the luminescence in its intensity and spectral regime. We show recent results on amorphous films of a perylene dye with a rather high concentration of trap states. These trap states act as sinks for the excitons and leads therefore to a clear shift of the luminescence to the red compared to the monomer emission. Temperature depended and time resolved measurements give a clear hint for the population of the traps from the exciton band. Comparisons with previous electrical measurements lead us to the assumption, that these traps are also dominating the charge carrier mobility within the material.

  19. Dependence of interfacial film organization on lipid molecular structure.

    Science.gov (United States)

    Matyszewska, Dorota; Sek, Slawomir; Jabłonowska, Elżbieta; Pałys, Barbara; Pawlowski, Jan; Bilewicz, Renata; Konrad, Fabian; Osornio, Yazmin M; Landau, Ehud M

    2014-09-30

    Combination of surface analytical techniques was employed to investigate the interfacial behavior of the two designed lipids-N-stearoylglycine (1) and its bulky neutral headgroup-containing derivative N-stearoylvaline ethyl ester (2)-at the air-solution interface and as transferred layers on different substrates. Formation of monolayers at the air-water interface was monitored on pure water and on aqueous solutions of different pH. Crystallization effects were visualized at pure water by recording the hystereses in the Langmuir-Blodgett (LB) isotherms and by transferring the layers onto mica, gold (111), and ITO (indium-tin oxide on glass) electrodes. Subphase pH affects the morphology and patch formation in monolayers of 1, as evidenced by BAM measurements. At pH 8.2, formation of well-ordered crystallites is observed, which upon compression elongate according to predominantly 1-D growth mechanism to form a dense layer of crystallites. This effect is not observed in monolayers of 2, whose headgroup is not protonated. The orientation of layers of 1 transferred to the solid supports is also pH dependent, and their stability can be related to formation of a hydrogen-bonded networks. AFM images of 1 exhibited platelets of multilayer phase. The IR spectra of the ITO substrates covered by 1 indicated formation of hydrogen bonds between the amide groups. The nature of the adsorption layer and its organization as a function of potential were studied in-depth by EC STM using Au(111) as the substrate. A model showing the arrangement of hydrogen bonds between adsorbed molecules is presented and related to the observed organization of the layer. PMID:25229461

  20. Nanoporous carbon derived from a metal organic framework as a new kind of adsorbent for dispersive solid phase extraction of benzoylurea insecticides

    International Nuclear Information System (INIS)

    We describe the preparation of nanoporous carbon using a metal-organic framework (MOF) as a template and furfuryl alcohol as the source for carbon. The MOF consists of a zeolitic framework (ZIF-8) that was obtained from 2-methylimidazole and Zn(II) ions. ZIF-8 was soaked with furfuryl alcohol which then was carbonized at 900 °C. The resulting nanoporous carbon (MOF-C) exhibits a high specific surface area and a large pore volume. It was used as a dispersive solid-phase adsorbent for the preconcentration of the benzoylurea insecticides diflubenzuron, triflumuron, hexaflumuron and teflubenzuron from water and tangerine samples. Under optimized conditions, the methods exhibits excellent extraction performance. The insecticides can be quantified via HPLC with UV detection in the 0.5 to 100 ng mL−1 concentration range in case of spiked tap water, and in the 2.0 to 200 ng g−1 concentration range in case of tangerines. The limits of detection range from 0.10 to 0.23 ng mL−1 in case of water samples, and from 0.34 to 0.71 ng g−1 for tangerine sample (at an S/N ratio of 3). Mean recoveries range from 91.7 to 107.9 %, with relative standard deviations of <7.1 %. The results indicate that the method was efficient for the preconcentration of trace levels of benzoylurea insecticides from water and tangerine samples. Conceivably, this new adsorbent has a large potential with respect to the enrichment of other organic pollutants from various kinds of samples. (author)

  1. Bilayer Photoresist Insulator for High Performance Organic Thin-Film Transistors on Plastic Films

    International Nuclear Information System (INIS)

    A novel bilayer photoresist insulator is applied in flexible vanadyl-phthalocyanine (VOPc) organic thin-film transistors (OTFTs). The micron-size patterns of this photoresisit insulator can be directly defined only by photolithography without the etching process. Furthermore, these OTFTs exhibit high field-effect mobility (about 0.8 cm2/Vs) and current on/off ratio (about 106). In particular, they show rather low hysteresis (< 1 V). The results demonstrate that this bilayer photoresist insulator can be applied in large-area electronics and in the facilitation of patterning insulators. (cross-disciplinary physics and related areas of science and technology)

  2. Organic and inorganic-organic thin film structures by molecular layer deposition: A review.

    Science.gov (United States)

    Sundberg, Pia; Karppinen, Maarit

    2014-01-01

    The possibility to deposit purely organic and hybrid inorganic-organic materials in a way parallel to the state-of-the-art gas-phase deposition method of inorganic thin films, i.e., atomic layer deposition (ALD), is currently experiencing a strongly growing interest. Like ALD in case of the inorganics, the emerging molecular layer deposition (MLD) technique for organic constituents can be employed to fabricate high-quality thin films and coatings with thickness and composition control on the molecular scale, even on complex three-dimensional structures. Moreover, by combining the two techniques, ALD and MLD, fundamentally new types of inorganic-organic hybrid materials can be produced. In this review article, we first describe the basic concepts regarding the MLD and ALD/MLD processes, followed by a comprehensive review of the various precursors and precursor pairs so far employed in these processes. Finally, we discuss the first proof-of-concept experiments in which the newly developed MLD and ALD/MLD processes are exploited to fabricate novel multilayer and nanostructure architectures by combining different inorganic, organic and hybrid material layers into on-demand designed mixtures, superlattices and nanolaminates, and employing new innovative nanotemplates or post-deposition treatments to, e.g., selectively decompose parts of the structure. Such layer-engineered and/or nanostructured hybrid materials with exciting combinations of functional properties hold great promise for high-end technological applications. PMID:25161845

  3. Organic and inorganic–organic thin film structures by molecular layer deposition: A review

    Directory of Open Access Journals (Sweden)

    Pia Sundberg

    2014-07-01

    Full Text Available The possibility to deposit purely organic and hybrid inorganic–organic materials in a way parallel to the state-of-the-art gas-phase deposition method of inorganic thin films, i.e., atomic layer deposition (ALD, is currently experiencing a strongly growing interest. Like ALD in case of the inorganics, the emerging molecular layer deposition (MLD technique for organic constituents can be employed to fabricate high-quality thin films and coatings with thickness and composition control on the molecular scale, even on complex three-dimensional structures. Moreover, by combining the two techniques, ALD and MLD, fundamentally new types of inorganic–organic hybrid materials can be produced. In this review article, we first describe the basic concepts regarding the MLD and ALD/MLD processes, followed by a comprehensive review of the various precursors and precursor pairs so far employed in these processes. Finally, we discuss the first proof-of-concept experiments in which the newly developed MLD and ALD/MLD processes are exploited to fabricate novel multilayer and nanostructure architectures by combining different inorganic, organic and hybrid material layers into on-demand designed mixtures, superlattices and nanolaminates, and employing new innovative nanotemplates or post-deposition treatments to, e.g., selectively decompose parts of the structure. Such layer-engineered and/or nanostructured hybrid materials with exciting combinations of functional properties hold great promise for high-end technological applications.

  4. Influence of organic acids on kinetic release of chromium in soil contaminated with leather factory waste in the presence of some adsorbents.

    Science.gov (United States)

    Taghipour, Marzieh; Jalali, Mohsen

    2016-07-01

    In this study, batch experiments were conducted to investigate the effects of nanoparticles (NPs) (MgO, ZnO, TiO2) and clay minerals (bentonite, zeolite) on the release of chromium (Cr) from leather factory waste (LFW) and LFW treated soil using organic acids. Chromium release from all treatments was studied in the presence of citric acid, oxalic acid and CaCl2 solutions. The results showed that, in all treatments, organic acids released more Cr than inorganic salt (CaCl2). The release of Cr by citric acid was higher than that by oxalic acid. In LFW treated soil and LFW, the release of Cr from the all treatments with NPs was less than that from the clay mineral treatments. On the other hand, in the presence of organic acids, Cr release by NPs and clay minerals decreased. Two kinetic models including pseudo-first- and pseudo-second-order model were tested to describe the time dependent Cr release data. Among the kinetic models used, the pseudo-second-order model generally gave the best fits to experimental data. Before and after release experiments, Cr in LFW, treated LFW, control soil and LFW treated soils were fractionated. In all treatments, the greatest amounts of Cr were found in the residual fraction (RES). The organic acids were effective in reducing the exchangeable (EXC), bound to organic matter (OM) and bound to carbonate (CAR) fractions of Cr in all treatments, whereas, after release of Cr from treated soils, Cr remained mainly in the RES fraction. The application of NPs and clay minerals in soil led to a significant transformation of Cr from mobile fractions to the RES fraction. Therefore, organic ligands played a dominant role in mobility and bioavailability of Cr and the removal of Cr by adsorbents. PMID:27139119

  5. QSAR models for removal rates of organic pollutants adsorbed by in situ formed manganese dioxide under acid condition.

    Science.gov (United States)

    Su, Pingru; Zhu, Huicen; Shen, Zhemin

    2016-02-01

    Manganese dioxide formed in oxidation process by potassium permanganate exhibits promising adsorptive capacity which can be utilized to remove organic pollutants in wastewater. However, the structure variances of organic molecules lead to wide difference of adsorption efficiency. Therefore, it is of great significance to find a general relationship between removal rate of organic compounds and their quantum parameters. This study focused on building up quantitative structure activity relationship (QSAR) models based on experimental removal rate (r(exp)) of 25 organic compounds and 17 quantum parameters of each organic compounds computed by Gaussian 09 and Material Studio 6.1. The recommended model is rpre = -0.502-7.742 f(+)x + 0.107 E HOMO + 0.959 q(H(+)) + 1.388 BOx. Both internal and external validations of the recommended model are satisfied, suggesting optimum stability and predictive ability. The definition of applicability domain and the Y-randomization test indicate all the prediction is reliable and no possibility of chance correlation. The recommended model contains four variables, which are closely related to adsorption mechanism. f(+)x reveals the degree of affinity for nucleophilic attack. E HOMO represents the difficulty of electron loss. q(H(+)) reflect the distribution of partial charge between carbon and hydrogen atom. BO x shows the stability of a molecule. PMID:26490942

  6. Organic Thin Film Devices for Displays and Lighting

    Science.gov (United States)

    Weiss, Oliver J.; Krause, Ralf; Paetzold, Ralph

    Organic materials can be used for fabrication of, e.g., electronic circuits, solar cells, light sensors, memory cells and light emitting diodes. Especially organic light emitting diodes (OLEDs) are increasingly attractive because of their huge market potential. The feasibility of efficient OLEDs was first shown in 1987 [3]. Only about ten years later the first product, a display for car radios, entered the market. Today monochrome and full colour OLED-displays can be found in many applications replacing established flat panel display technologies like TFT-LCDs. This substitution is a consequence of the outstanding attributes of OLED technology: Organic light emitting displays are self-emissive, thin, video capable and in addition they show a wide temperature operation range and allow a viewing angle of nearly 180 degree in conjunction with a low power consumption. As performance has steadily increased over the last years, today OLEDs are also under investigation as next generation light source. In contrast to inorganic LEDs, they can be built as flat 2-dimensional light sources that are lightweight, colour tunable, and potentially cheap. This will open up new degrees of freedom in design leading also to completely new applications. In this contribution we will have a brief view on the history of organic electroluminescent materials before we introduce the basic principles of OLEDs with a focus on the physical processes leading to light generation in thin organic films. Along with an overview of different concepts and technologies used to build OLEDs, the current status of OLED development will be illustrated. The last part focuses on the challenges that have to be overcome to enable a sustainable success in the display and lighting markets.

  7. Preparation of organic thin-film field effect transistor

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The organic thin-film field effect transistor was prepared through vacuum deposition by using teflon as di-electric material. Indium-tin-oxide acted as the source and drain electrodes. Copper phthalocyanine and teflon were used as the semiconductor layer and dielectric layer, respectively. The gate electrode was made of Ag. The channel length between the source and drain was 50 μm. After preparing the source and drain electrodes by lithography, the copper phthalocyanine layer, teflon layer and Ag layerwere prepared by vacuum deposition sequentially. The field effect electron mobility of the device reached 1.1×10ˉ6 cm2/(V@s), and the on/off current ratio reached 500.

  8. Organically Modified Nanoclay-Reinforced Rigid Polyurethane Films

    Science.gov (United States)

    Park, Yong Tae; Qian, Yuqiang; Lindsay, Chris; Stein, Andreas; Macosko, Christopher

    2012-02-01

    The nanodispersion of vermiculite in polyurethanes was investigated to produce organoclay-reinforced rigid gas barrier films. Reducing gas transport can improve the insulation performance of closed cell polyurethane foam. In a previous study, the dispersion of vermiculite in polyurethanes without organic modification was not sufficient due to the non-uniform dispersion morphology. When vermiculite was modified by cation exchange with long-chain quaternary ammonium cations, the dispersion in methylene diphenyl diisocyanate (MDI) was significantly improved. Dispersion was improved by combining high intensity dispersive mixing with efficient distributive mixing. Polymerization conditions were also optimized in order to provide a high state of nanodispersion in the polyurethane nanocomposite. The dispersions were characterized using rheological, microscopic and scattering/diffraction techniques. The final nanocomposites showed enhancement of mechanical properties and reduction in permeability to carbon dioxide at low clay concentration (around 2 wt percent).

  9. Adsorbate-modified growth of ultrathin rare-earth oxide films on silicon and complementary studies of cerium oxide on ruthenium

    International Nuclear Information System (INIS)

    Rare-earth oxides (REOx) are extensively investigated due to their extraordinary physical and chemical properties, which essentially arise from the unfilled 4f electron shell, in order to reveal the nature of these exceptional properties and ultimately to utilize them for multiple technological applications. To maintain the exponential increase in integration density in CMOS technology, which is also known as Moore s law, there is a strong desire for ultrathin, well-ordered, epitaxial REOx layers with a precisely engineered interface, which is essential for reliable, ultrahigh-performance devices. So far this has been considerably impeded by RE-promoted silicon oxidation, leading to amorphous silicon oxide and RE silicon formation. By using complementary synchrotron radiation methods such as X-ray standing waves (XSW), X-ray photoelectron spectroscopy (XPS) and X-ray diffraction (XRD), structural and spectroscopic information are inferred simultaneously from ultrathin ceria and lanthana films grown on chlorine, silver and gallium passivated silicon(111). In general, it is revealed that the chemical and structural composition of the interface and the crystallinity of ultrathin REOx layers on silicon can be precisely controlled by adsorbate-mediated growth. This might represent a crucial step towards a perfectly engineered interface, eventually allowing for the integration of REOx as high-k gate oxides in microelectronics. In catalysis inverse model catalysts are studied with the aim of getting an in-depth understanding of the basic principles of catalysis. These model systems are employed to study, e. g., the nature of active sites and the reaction pathways in complex catalytic converters. However, a lot remains unknown about the chemical activity and selectivity as a function of the growth mechanism, structure and morphology of these model systems. The powerful spectroscopic photoemission and low-energy electron microscope, which is able to reveal the surface

  10. Optical properties of organic films, multilayers and plasmonic metal-organic waveguides fabricated by organic molecular beam deposition

    Science.gov (United States)

    Wickremasinghe, Niranjala D.

    In this thesis, the optical properties of tris (8-hydroxyquinoline) aluminum (Alq3) and 3,5,9,10-perylentetracarboxylic dianhydride (PTCDA) organic films, PTCDA/ Alq3 multilayers and plasmonic Alq3 -metal waveguides are investigated. The organic films and heterostructures used for this work were fabricated by organic molecular beam deposition (OMBD). We investigated the quenching of the light emission in Alq3 films grown on a Si substrate as a function of cw laser excitation intensity at varying temperatures from 15 to 300 K. The saturation of the singlet-singlet annihilation coefficient was measured with spectrally-integrated (SI) photoluminescence (PL) using a photodiode. The bimolecular quenching coefficient was further studied with time-resolved (TR) PL as a function of 100 fs pulse fluences. The PL quenching is attributed to the annihilation of trapped excitons at Alq3 nanocrystal grain boundaries. The saturation is explained by the limited density of available trapping states at the grain boundaries. Our interpretation is supported by structural investigations of ultrathin Alq3 films with atomic force microscopy (AFM), scanning electron microscopy (SEM) and by comparing the experimental data with calculations using a coupled rate equation model. The wavelength dispersion of the refractive indices of PTCDA and Alq 3 layers and of PTCDA/Alq3 multilayer waveguides grown on Pyrex substrates was investigated. The m-line technique, an evanescent prism coupling technique, was used to determine the layers' thickness and the in-plane (TE modes) and normal (TM modes) refractive indices. The potential for controlling the refractive index dispersion and anisotropy by tailored organic multilayer waveguides is discussed.

  11. Organic crystalline films for optical applications and related methods of fabrication

    Science.gov (United States)

    Leyderman, Alexander (Inventor); Cui, Yunlong (Inventor)

    2003-01-01

    The present invention provides organic single crystal films of less than 20 .mu.m, and devices and methods of making such films. The crystal films are useful in electro-optical applications and can be provided as part of an electro-optical device which provides strength, durability, and relative ease of manipulation of the mono-crystalline films during and after crystal growth.

  12. The Self-Assembly of Nano-Objects Code: Applications to supramolecular organic monolayers adsorbed on metal surfaces

    CERN Document Server

    Roussel, Thomas

    2012-01-01

    The Self-Assembly of Nano-Objects (SANO) code we implemented demonstrates the ability to predict the molecular self-assembly of different structural motifs by tuning the molecular building blocks as well as the metallic substrate. It consists in a two-dimensional Grand Canonical Monte-Carlo (GCMC) approach developed to perform atomistic simulations of thousands of large organic molecules self-assembling on metal surfaces. Computing adsorption isotherms at room temperature and spanning over the characteristic sub-micrometric scales, we confront the robustness of the approach with three different well-known systems: ZnPcCl8 on Ag(111), CuPcF16 on Au(111) and PTBC on Ag(111). We retrieve respectively their square, oblique and hexagonal supramolecular tilling. The code incorporates generalized force fields to describe the molecular interactions, which provides transferability and versatility to many organic building blocks and metal surfaces.

  13. Organic and inorganic contaminants removal from water with biochar, a renewable, low cost and sustainable adsorbent--a critical review.

    Science.gov (United States)

    Mohan, Dinesh; Sarswat, Ankur; Ok, Yong Sik; Pittman, Charles U

    2014-05-01

    Biochar is used for soil conditioning, remediation, carbon sequestration and water remediation. Biochar application to water and wastewater has never been reviewed previously. This review focuses on recent applications of biochars, produced from biomass pyrolysis (slow and fast), in water and wastewater treatment. Slow and fast pyrolysis biochar production is briefly discussed. The literature on sorption of organic and inorganic contaminants by biochars is surveyed and reviewed. Adsorption capacities for organic and inorganic contaminants by different biochars under different operating conditions are summarized and, where possible, compared. Mechanisms responsible for contaminant remediation are briefly discussed. Finally, a few recommendations for further research have been made in the area of biochar development for application to water filtration. PMID:24636918

  14. The Self-Assembly of Nano-Objects Code: Applications to supramolecular organic monolayers adsorbed on metal surfaces

    OpenAIRE

    Roussel, Thomas; Vega, Lourdes F.

    2012-01-01

    The Self-Assembly of Nano-Objects (SANO) code we implemented demonstrates the ability to predict the molecular self-assembly of different structural motifs by tuning the molecular building blocks as well as the metallic substrate. It consists in a two-dimensional Grand Canonical Monte-Carlo (GCMC) approach developed to perform atomistic simulations of thousands of large organic molecules self-assembling on metal surfaces. Computing adsorption isotherms at room temperature and spanning over th...

  15. Computational Redox Potential Predictions: Applications to Inorganic and Organic Aqueous Complexes, and Complexes Adsorbed to Mineral Surfaces

    OpenAIRE

    Krishnamoorthy Arumugam; Udo Becker

    2014-01-01

    Applications of redox processes range over a number of scientific fields. This review article summarizes the theory behind the calculation of redox potentials in solution for species such as organic compounds, inorganic complexes, actinides, battery materials, and mineral surface-bound-species. Different computational approaches to predict and determine redox potentials of electron transitions are discussed along with their respective pros and cons for the prediction of redox potentials. Subs...

  16. Biogas from MSW landfill: Composition and determination of chlorine content with the AOX (adsorbable organically bound halogens) technique

    OpenAIRE

    Rey Martínez, María Dolores; Font Montesinos, Rafael; Aracil, Ignacio

    2013-01-01

    An exhaustive characterization of the biogas from some waste disposal facilities has been carried out. The analysis includes the main components (methane, carbon dioxide, nitrogen and oxygen) as well as trace components such as hydrogen sulphide, ammonia and VOCs (volatile organic compounds) including siloxanes and halogenated compounds. VOCs were measured by GC/MS (Gas Chromatography/Mass Spectrometry) using two different procedures: thermal desorption of the Tenax TA and Carbotrap 349 tubes...

  17. Structure of the Buried Metal-Molecule Interface in Organic Thin Film Devices

    DEFF Research Database (Denmark)

    Hansen, Christian Rein; Sørensen, Thomas Just; Glyvradal, Magni; Larsen, Jacob; Eisenhardt, Sara H.; Bjørnholm, Thomas; Nielsen, Martin Meedom; Feidenhans'l, Robert Krarup; Laursen, Bo Wegge

    2009-01-01

    comparison of XR data for the five-layer Pb2+ arachidate LB film before and after vapor deposition of the Ti/Al top electrode, a detailed account of the structural damage to the organic film at the buried metal-molecule interface is obtained. We find that the organized structure of the two topmost LB layers...

  18. Influence of surface chemistry on the structural organization of monomolecular protein layers adsorbed to functionalized aqueous interfaces

    DEFF Research Database (Denmark)

    Lösche, M.; Piepenstock, M.; Diederich, A.;

    1993-01-01

    The molecular organization of streptavidin (SA) bound to aqueous surface monolayers of biotin-functionalized lipids and binary lipid mixtures has been investigated with neutron reflectivity and electron and fluorescence microscopy. The substitution of deuterons (2H) for protons (1H), both in...... dependence of the structural properties of such self-assembled SA monolayers on the surface chemistry was observed: the lateral protein density depends on the length of the spacer connecting the biotin moiety and its hydrophobic anchor. The hydration of the lipid head groups in the protein-bound state...

  19. Organic-Inorganic Hybrid Polymers as Adsorbents for Removal of Heavy Metal Ions from Solutions: A Review

    Directory of Open Access Journals (Sweden)

    Babak Samiey

    2014-01-01

    Full Text Available Over the past decades, organic-inorganic hybrid polymers have been applied in different fields, including the adsorption of pollutants from wastewater and solid-state separations. In this review, firstly, these compounds are classified. These compounds are prepared by sol-gel method, self-assembly process (mesopores, assembling of nanobuilding blocks (e.g., layered or core-shell compounds and as interpenetrating networks and hierarchically structures. Lastly, the adsorption characteristics of heavy metals of these materials, including different kinds of functional groups, selectivity of them for heavy metals, effect of pH and synthesis conditions on adsorption capacity, are studied.

  20. Electro-optical Properties of Ultra-Thin Organic Films

    OpenAIRE

    Hodges, Ping Y.

    2001-01-01

    Electro-optical properties of thin film are of great interest owing to the perpetual demand for miniaturization and higher speed devices for communication, electronic, and biomedical applications. The thickness of polymer films developed for these applications has decreased dramatically making interfacial effects significant. It is well documented that, in submicron thickness range, both film/substrate & film/air interface are critical. In this study, we probe the dynamics of electro-optic...

  1. The structure of deuterated benzene films adsorbed on the graphite (0001) basal plane: what happens below and above the monolayer coverage?

    OpenAIRE

    Bahn, Emanuel; Hedgeland, Holly; Jardine, Andrew P.; Henry, Paul F.; Hansen, Thomas C.; Fouquet, Peter

    2014-01-01

    An exact description of the interactions in aromatic carbon systems is a key condition for the design of carbon based nanomaterials. In this paper we investigate the binding and adsorbate structure of the simplest prototype system in this class – the single aromatic ring molecule benzene on graphite. We have collected neutron diffraction data of the ordered phase of deuterated benzene, C6D6, adsorbed on the graphite (0001) basal plane surface. We examined relative coverages from 0.15 up to 1....

  2. Structural properties of organic Langmuir-Blodgett thin films using atomic force microscopy

    International Nuclear Information System (INIS)

    The Langmuir-Blodgett (LB) thin film deposition technique is an elegant method in thin film technology to fabricate ultra-thin organic LB films on the nanoscale. This technique allows us to make monolayer or multilayer ultra-thin LB films by sequentially transferring monolayers from a water surface onto a solid substrate. During the last decade many scientists have a significant interest in Langmuir-Blodgett films because of potential applications of such films, which have many potential applications in physics, chemistry, biology and molecular electronics. There are a number of techniques such as Atomic Force Microscopy, Surface Plasmon Resonance, X-ray diffraction, Infra-red and Raman Spectroscopy, Ellipsometry etc that can be used to characterise and evaluate the optical and structural information of monolayer and multilayer organic LB films. In this work organic materials have been used to fabricate an ultra-thin LB film using a computer controlled alternate layer Langmuir-Blodgett trough. Atomic Force Microscopy (AFM) is employed to investigate the structural properties of such LB films. All results of the structural properties for organic ultra-thin LB films will be discussed in this paper

  3. Assembly of europium organic framework–gold nanoparticle composite thin films on silicon substrate

    International Nuclear Information System (INIS)

    Metal organic frameworks are a sub-class of coordination polymers and rapidly generating huge research interests in several technological areas. One of the emerging areas of their potential applications is the photovoltaics. The present study proposes the assembly of europium organic framework–gold nanoparticle nanocomposite thin film on silicon substrate. Microscopic, X-ray diffraction, surface area measurement and thermal studies have indicated the formation of the desired thin film. Spectral studies have been used to highlight their solid state optical property. Current–voltage studies have established semiconducting property of the above thin films. - Highlights: • Thin film of europium organic framework/gold nanoparticles is prepared on silicon. • Fairly homogeneous films with a roughness factor of 5–10 nm are obtained. • Above thin films offer solid-state photoluminescence and semiconducting properties

  4. Assembly of europium organic framework–gold nanoparticle composite thin films on silicon substrate

    Energy Technology Data Exchange (ETDEWEB)

    Deep, Akash, E-mail: dr.akashdeep@gmail.com [Central Scientific Instruments Organisation (CSIR-CSIO), Sector 30 C, Chandigarh 160030 (India); Academy of Scientific and Innovative Research, CSIR-CSIO, Sector 30 C, Chandigarh 160030 (India); Kaur, Rajnish [Central Scientific Instruments Organisation (CSIR-CSIO), Sector 30 C, Chandigarh 160030 (India); Academy of Scientific and Innovative Research, CSIR-CSIO, Sector 30 C, Chandigarh 160030 (India); Kumar, Parveen [Central Scientific Instruments Organisation (CSIR-CSIO), Sector 30 C, Chandigarh 160030 (India); Kumar, Pawan; Paul, A.K. [Central Scientific Instruments Organisation (CSIR-CSIO), Sector 30 C, Chandigarh 160030 (India); Academy of Scientific and Innovative Research, CSIR-CSIO, Sector 30 C, Chandigarh 160030 (India)

    2014-08-28

    Metal organic frameworks are a sub-class of coordination polymers and rapidly generating huge research interests in several technological areas. One of the emerging areas of their potential applications is the photovoltaics. The present study proposes the assembly of europium organic framework–gold nanoparticle nanocomposite thin film on silicon substrate. Microscopic, X-ray diffraction, surface area measurement and thermal studies have indicated the formation of the desired thin film. Spectral studies have been used to highlight their solid state optical property. Current–voltage studies have established semiconducting property of the above thin films. - Highlights: • Thin film of europium organic framework/gold nanoparticles is prepared on silicon. • Fairly homogeneous films with a roughness factor of 5–10 nm are obtained. • Above thin films offer solid-state photoluminescence and semiconducting properties.

  5. Computational Redox Potential Predictions: Applications to Inorganic and Organic Aqueous Complexes, and Complexes Adsorbed to Mineral Surfaces

    Directory of Open Access Journals (Sweden)

    Krishnamoorthy Arumugam

    2014-04-01

    Full Text Available Applications of redox processes range over a number of scientific fields. This review article summarizes the theory behind the calculation of redox potentials in solution for species such as organic compounds, inorganic complexes, actinides, battery materials, and mineral surface-bound-species. Different computational approaches to predict and determine redox potentials of electron transitions are discussed along with their respective pros and cons for the prediction of redox potentials. Subsequently, recommendations are made for certain necessary computational settings required for accurate calculation of redox potentials. This article reviews the importance of computational parameters, such as basis sets, density functional theory (DFT functionals, and relativistic approaches and the role that physicochemical processes play on the shift of redox potentials, such as hydration or spin orbit coupling, and will aid in finding suitable combinations of approaches for different chemical and geochemical applications. Identifying cost-effective and credible computational approaches is essential to benchmark redox potential calculations against experiments. Once a good theoretical approach is found to model the chemistry and thermodynamics of the redox and electron transfer process, this knowledge can be incorporated into models of more complex reaction mechanisms that include diffusion in the solute, surface diffusion, and dehydration, to name a few. This knowledge is important to fully understand the nature of redox processes be it a geochemical process that dictates natural redox reactions or one that is being used for the optimization of a chemical process in industry. In addition, it will help identify materials that will be useful to design catalytic redox agents, to come up with materials to be used for batteries and photovoltaic processes, and to identify new and improved remediation strategies in environmental engineering, for example the

  6. Dramatic effect of pore size reduction on the dynamics of hydrogen adsorbed in metal–organic materials

    KAUST Repository

    Nugent, Patrick

    2014-07-21

    The effects of pore size reduction on the dynamics of hydrogen sorption in metal-organic materials (MOMs) were elucidated by studying SIFSIX-2-Cu and its doubly interpenetrated polymorph SIFSIX-2-Cu-i by means of sorption, inelastic neutron scattering (INS), and computational modeling. SIFSIX-2-Cu-i exhibits much smaller pore sizes, which possess high H2 sorption affinity at low loadings. Experimental H2 sorption measurements revealed that the isosteric heat of adsorption (Qst) for H2 in SIFSIX-2-Cu-i is nearly two times higher than that for SIFSIX-2-Cu (8.6 vs. 4.6 kJ mol-1). The INS spectrum for H2 in SIFSIX-2-Cu-i is rather unique for a porous material, as only one broad peak appears at low energies near 6 meV, which simply increases in intensity with loading until the pores are filled. The value for this rotational transition is lower than that in most neutral metal-organic frameworks (MOFs), including those with open Cu sites (8-9 meV), which is indicative of a higher barrier to rotation and stronger interaction in the channels of SIFSIX-2-Cu-i than the open Cu sites in MOFs. Simulations of H2 sorption in SIFSIX-2-Cu-i revealed two hydrogen sorption sites in the MOM: direct interaction with the equatorial fluorine atom (site 1) and between two equatorial fluorine atoms on opposite walls (site 2). The calculated rotational energy levels and rotational barriers for the two sites in SIFSIX-2-Cu-i are in good agreement with INS data. Furthermore, the rotational barriers and binding energies for site 2 are slightly higher than that for site 1, which is consistent with INS results. The lowest calculated transition for the primary site in SIFSIX-2-Cu is also in good agreement with INS data. In addition, this transition in the non-interpenetrating material is higher than any of the sites in SIFSIX-2-Cu-i, which indicates a significantly weaker interaction with the host as a result of the larger pore size. This journal is © the Partner Organisations 2014.

  7. Electromagnetic Scattering from Rough Sea Surface with PM Spectrum Covered by an Organic Film

    Institute of Scientific and Technical Information of China (English)

    WANG Rui; GUO Li-Xin; WANG An-Qi; WU Zhen-Sen

    2011-01-01

    The rough sea surface covered by an organic film will cause attenuation of capillarity waves, which implies that the organic films play an important role in rough sea surface processes. We focus on a one-dimensional(1D)rough sea surface with the Pierson-Moskowitz(PM)spectrum distributed to the homogeneous insoluble organic slicks. First, the impact of the organic film on the PM surface spectrum is presented, as well as that of the correlation length, the rms height and slope of the rough sea surface. The damping effect of the organic film changes the physical parameters of the rough sea surface. For example, the organic film will reduce the rms height and slopee of the rough sea surface, which results in the attenuation of the high-frequency components of the PM spectrum leading to modification of the surface PM spectrum. Then, the influence of the organic film on the electromagnetic(EM) scattering coefficients from PM rough sea surface covered by the organic film is investigated and discussed in detail, compared with the clean PM rough sea surface through the method of moments.

  8. Electroless plating of honeycomb and pincushion polymer films prepared by self-organization.

    Science.gov (United States)

    Yabu, Hiroshi; Hirai, Yuji; Shimomura, Masatsugu

    2006-11-01

    This report describes the fabrication and electroless plating of regular porous and pincushion-like polymer structures prepared by self-organization. Honeycomb-patterned films were prepared by simple casting of polymer solution under applied humid air and pincushion structures by peeling off the top layer of the former films. Silver-deposited honeycomb-patterned films and pincushion films were obtained by simple electroless plating of the respective original structures. XPS revealed Ag deposition on the honeycomb-patterned film. After thermal decomposition or solvent elution of the template polymer, unique metal mesoscopic structures were obtained. PMID:17073508

  9. Magnetic porous carbon derived from a Zn/Co bimetallic metal-organic framework as an adsorbent for the extraction of chlorophenols from water and honey tea samples.

    Science.gov (United States)

    Li, Menghua; Wang, Junmin; Jiao, Caina; Wang, Chun; Wu, Qiuhua; Wang, Zhi

    2016-05-01

    A novel magnetic porous carbon derived from a bimetallic metal-organic framework, Zn/Co-MPC, was prepared by introducing cobalt into ZIF-8. Magnetic porous carbon that possesses magnetic properties and a large specific surface area was firstly fabricated by the direct carbonization of Zn/Co-ZIF-8. The prepared magnetic porous carbon material was characterized by scanning electron microscopy, transmission electron microscopy, powder X-ray diffraction, N2 adsorption, and vibrating sample magnetometry. The prepared magnetic porous carbon was used as a magnetic solid-phase extraction adsorbent for the enrichment of chlorophenols from water and honey tea samples before high-performance liquid chromatography analysis. Several experimental parameters that could influence the extraction efficiency were investigated and optimized. Under the optimum conditions, good linearities (r > 0.9957) for all calibration curves were obtained with low limits of detection, which are in the range of 0.1-0.2 ng mL(-1) for all the analytes. The results showed that the prepared magnetic porous carbon had an excellent adsorption capability toward the target analytes. PMID:26991637

  10. Adsorptive removal of hydrophobic organic compounds by carbonaceous adsorbents: A comparative study of waste-polymer-based,coal-based activated carbon, and carbon nanotubes

    Institute of Scientific and Technical Information of China (English)

    Fei Lian; Chun Chang; Yang Du; Lingyan Zhu; Baoshan Xing; Chang Liu

    2012-01-01

    Adsorption of the hydrophobic organic compounds (HOCs) trichloroethylene (TCE),1,3-dichlorobenzene (DCB),1,3-dinitrobenzene (DNB) and γ-hexachlorocyclohexane (HCH) on five different carbonaceous materials was compared.The adsorbents included three polymer-based activated carbons,one coal-based activated carbon (F400) and multiwalled carbon nanotubes (MWNT).The polymerbased activated carbons were prepared using KOH activation from waste polymers:polyvinyl chloride (PVC),polyethyleneterephthalate (PET) and tire rubber (TR).Compared with F400 and MWNT,activated carbons derived from PVC and PET exhibited fast adsorption kinetics and high adsorption capacity toward the HOCs,attributed to their extremely large hydrophobic surface area (2700 m2/g) and highly mesoporous structures.Adsorption of small-sized TCE was stronger on the tire-rubber-based carbon and F400 resulting from the pore-filling effect.In contrast,due to the molecular sieving effect,their adsorption on HCH was lower.MWNT exhibited the lowest adsorption capacity toward HOCs because of its low surface area and characteristic of aggregating in aqueous solution.

  11. The structure of organic langmuir films on liquid metal surfaces

    International Nuclear Information System (INIS)

    Langmuir films (LFs) on water have long been studied for their interest for basic science and their numerous applications in chemistry, physics, materials science and biology. We present here A-resolution synchrotron X-ray studies of the structure of stearic acid LFs on a liquid mercury surface. At low coverage, ≥110 A2/mol, a 2D gas phase of flat-lying molecules is observed. At high coverage, ≤23 A2/mol, two different hexatic phases of standing-up molecules are observed. At intermediate coverage, 52≤A≤110 A2/mol, novel single- and double-layered phases of flat-lying molecular dimers are found, exhibiting a 1D in-layer order. Such flat-lying phases were not hitherto observed in any LF. Measurements on LFs of fatty acids of other chain lengths indicate that this structure is generic to chain molecules on mercury, although the existence of some of the flat-lying phases, and the observed phase sequence, depend on the chain length. Organic LFs on Hg, and in particular the new flat-lying phases, should provide a broader nano-structural tunability range for molecular electronic device construction than most solid-supported self-assembled monolayers used at present

  12. Perylene Diimide Based ``Nanofabric'' Thin Films for Organic Photovoltaic Cells

    Science.gov (United States)

    Carter, Austin; Park, June Hyoung; Min, Yong; Epstein, Arthur

    2011-03-01

    We report progress in using a perylene diimide (PDI) nanofabric as an effective electron accepting nanostructure for organic photovoltaics (OPV). A key challenge in OPV continues to be the recovery of electrons after charge separation due to the relatively poor mobility of C60 and related materials. A series of PDI compounds and complexes have been synthesized and used to fabricate nanofibers and thin films using solution and vacuum deposition techniques. Overlaping PDI-based nanofibers form a fast electron-transporting ``nanofabric'' that has been characterized (AFM, PL, UV-vis, etc.) and can be blended with electron donating materials. A solution-processible OPV configuration containing a nanofabric heterojunction (FHJ) of poly(3-hexylthiophene) and the PDI nanofabric was investigated. We observed a significant improvement in power-conversion efficiency due in part to expansion of the interfacial area and the presence of high mobility electron pathways to the LiF/Al electrode. This work is supported by the Wright Center for Photovoltaic Innovation and Commercialization, the Institute for Materials Research and the Center for Affordable Nanoengineering of Polymeric Biomedical Devices.

  13. Metal–organic coordinated multilayer film formation: Quantitative analysis of composition and structure

    International Nuclear Information System (INIS)

    Metal–organic coordinated multilayers are self-assembled thin films fabricated by alternating solution–phase deposition of bifunctional organic molecules and metal ions. The multilayer film composed of α,ω-mercaptoalkanoic acid and Cu (II) has been the focus of fundamental and applied research with its robust reproducibility and seemingly simple hierarchical architecture. However, internal structure and composition have not been unambiguously established. The composition of films up to thirty layers thick was investigated using Rutherford backscattering spectrometry and particle induced X-ray emission. Findings show these films are copper enriched, elucidating a 2:1 ratio for the ion to molecule complexation at the metal–organic interface. Results also reveal that these films have an average layer density similar to literature values established for a self-assembled monolayer, indicating a robust and stable structure. The surface structures of multilayer films have been characterized by contact angle goniometry, ellipsometry, and scanning probe microscopy. A morphological transition is observed as film thickness increases from the first few foundational layers to films containing five or more layers. Surface roughness analysis quantifies this evolution as the film initially increases in roughness before obtaining a lower roughness comparable to the underlying gold substrate. Quantitative analysis of topographical structure and internal composition for metal–organic coordinated multilayers as a function of number of deposited layers has implications for their incorporation in the fields of photonics and nanolithography. - Highlights: • Layer-by-layer deposition is examined by scanning probe microscopy and ion beam analysis. • Film growth undergoes morphological evolution during foundational layer deposition. • Image analysis quantified surface features such as roughness, grain size, and coverage. • Molecular density of each film layer is found to

  14. Protection of MoO{sub 3} high work function by organic thin film

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Chenggong; Irfan, Irfan [Department of Physics and Astronomy, University of Rochester, Rochester, New York 14627 (United States); Gao, Yongli [Department of Physics and Astronomy, University of Rochester, Rochester, New York 14627 (United States); Institute for Super-microstructure and Ultrafast Process in Advanced Materials (ISUPAM), Central South University, Changsha, Hunan 410083 (China)

    2014-11-03

    The effects of air exposure are investigated for molybdenum trioxide (MoO{sub 3}) covered with organic thin films using ultraviolet photoemission spectroscopy. It is found that the severe drop of the work function of MoO{sub 3} by air exposure is substantially reduced by the organic thin films. Both CuPc and C{sub 60} are used for the investigations. The results indicate that the MoO{sub 3} surface can be passivated by approximately two monolayers of organic thin films against exposure to air.

  15. Fluorescence dynamics of microsphere-adsorbed sunscreens

    Science.gov (United States)

    Krishnan, R.

    2005-03-01

    Sunscreens are generally oily substances which are prepared in organic solvents, emulsions or dispersions with micro- or nanoparticles. These molecules adsorb to and integrate into skin cells. In order to understand the photophysical properties of the sunscreen, we compare steady-state and time-resolved fluorescence in organic solvent of varying dielectric constant ɛ and adsorbed to polystyrene microspheres and dispersed in water. Steady-state fluorescence is highest and average fluorescence lifetime longest in toluene, the solvent of lowest ɛ. However, there is no uniform dependence on ɛ. Sunscreens PABA and padimate-O show complex emission spectra. Microsphere-adsorbed sunscreens exhibit highly non-exponential decay, illustrative of multiple environments of the adsorbed molecule. The heterogeneous fluorescence dynamics likely characterizes sunscreen adsorbed to cells.

  16. Organic ultrathin film adhesion on compliant substrate using scratch test technique

    OpenAIRE

    Boddaert, Xavier; Covarel, Grégory; Ben Saïd, Bassem; Mattei, Mylene; Benaben, Patrick; Bois, Jérôme

    2012-01-01

    International audience Many adhesion test techniques have been developed to measure the adhesion energy of thin films but they are hard to implement in the case of submicron organic thin films deposited on a flexible substrate. Recently the feasibility and repeatability of the scratch test technique as a tool for testing the adhesion and the damage behaviour of ultra-thin films on polymer substrates has been demonstrated. However, direct comparison of the critical load between samples was ...

  17. Deposition of metal oxide films and nanostructures by methods derived from photochemical metal organic deposition

    OpenAIRE

    Xin ZHANG

    2009-01-01

    In this research, methods for the deposition of patterned films and nanostructures were developed from photochemical metal organic deposition (PMOD). Positive lithographic PMOD was demonstrated with films of titanium (IV) di-n-butoxide bis(2-ethylhexanoate) (Ti(OBun)2(eh)2), titanium (IV) diisopropoxide bis(2,4-pentanedionate), and zirconium (IV) di-n-butoxide bis(2,4-pentanedionate). The photochemistry of these complexes in films was studied by FTIR, AES, and XRD. Photo-induced reactivity an...

  18. Comparison of physicomechanical properties of films prepared from organic solutions and aqueous dispersion of Eudragit RL

    OpenAIRE

    H Afrasiabi Garekani; M. Shahabi; F Sadeghi

    2011-01-01

    Background and the purpose of the study: Mechanical properties of films prepared from aqueous dispersion and organic solutions of Eudragit RL were assessed and the effects of plasticizer type, concentration and curing were examined. Methods: Films were prepared from aqueous dispersion and solutions of Eudragit RL (isopropyl alcohol-water 9:1) containing 0, 10 or 20% (based on polymer weight) of PEG 400 or Triethyl Citrate (TEC) as plasticizer using casting method. Samples of films were stored...

  19. Mesoscale control of organic crystalline thin films: effects of film morphology on the performance of organic transistors

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jaekyun; Park, Sungkyu [Chung-Ang University, Seoul (Korea, Republic of); Kim, Yonghoon [Sungkyunkwan University, Suwon (Korea, Republic of)

    2014-08-15

    We report mesoscale control of small molecular 6,13-bis(triisopropylsilylethynyl) pentacene (TIPS-pentacene) crystalline thin films by varying the solute concentration in the fluidic channel method. A stepwise increase in the TIPS-pentacene concentration in the solution enabled us to prepare highly-crystallized ribbons, thin films, and thick films in a mesoscale range, respectively. All three types of deposited films exhibited an in-plane crystalline nature of (001) direction being normal to the substrate as well as crystalline domain growth parallel to the direction of the receding meniscus inside the fluidic channel. In addition, the film's morphology and thickness were found to have a great influence on the field-effect mobility of the transistors, and the highest average and maximum mobilities were achieved from transistors with thin-film semiconductor channels.

  20. Erbium-doped yttria thin films prepared by metal organic decomposition for up-conversion

    International Nuclear Information System (INIS)

    Er:Y2O3 thin films have been obtained by spin coating process. Precursor solutions were prepared using nitrates as metal precursors and water as solvent. Citric, malic, and lactic acids were used as complexant. Investigations on resin compositions and on their coating parameters have been made, leading to crack-free thin films with citric and malic acids after direct deposition under standard room conditions (temperature, pressure and atmosphere). The films are homogeneous with a low root mean square roughness, less than 2.5 nm. We demonstrated that the nature of the carboxylic acid is the key point to obtain high quality thin films on silicon substrates from 20 nm up to 230 nm thick, while the film porosity is related to the number of carbon in the acid molecule. All films exhibit up-conversion luminescence in the near infrared and in the visible range, under 1.54 μm laser excitation. Furthermore, the up-conversion luminescence intensity increases with the applied annealing temperature on the films, due to an improvement of their crystallinity and to the total decomposition of organics. - Highlights: • We deposit films by spin-coating, using aqueous precursor solutions. • No special control of atmosphere is needed during all the process. • The organics are the key parameter for controlling the quality of films. • Multilayer have been obtained with all carboxylic acids we have studied. • All films exhibit an up-conversion property

  1. Erbium-doped yttria thin films prepared by metal organic decomposition for up-conversion

    Energy Technology Data Exchange (ETDEWEB)

    Andriamiadamanana, Christian, E-mail: chriast@yahoo.fr [LCMCP UMR7574 CNRS/UPMC/Chimie Paristech, 11 Rue Pierre et Marie Curie, F-75235 Paris (France); IRDEP, UMR 7174 CNRS/EDF/Chimie ParisTech, 6 Quai Watier, F-78401 Chatou (France); Ibanez, Alain [Institut Néel, UPR2940, CNRS/Université Joseph Fourier, 25 rue des Martyrs, BP166, F-38042, Grenoble Cedex 9 (France); Ferrier, Alban [LCMCP UMR7574 CNRS/UPMC/Chimie Paristech, 11 Rue Pierre et Marie Curie, F-75235 Paris (France); Joudrier, Anne-Laure [LCMCP UMR7574 CNRS/UPMC/Chimie Paristech, 11 Rue Pierre et Marie Curie, F-75235 Paris (France); IRDEP, UMR 7174 CNRS/EDF/Chimie ParisTech, 6 Quai Watier, F-78401 Chatou (France); Lombez, Laurent [IRDEP, UMR 7174 CNRS/EDF/Chimie ParisTech, 6 Quai Watier, F-78401 Chatou (France); Liotaud, Marine [Institut Néel, UPR2940, CNRS/Université Joseph Fourier, 25 rue des Martyrs, BP166, F-38042, Grenoble Cedex 9 (France); Guillemoles, Jean-François [IRDEP, UMR 7174 CNRS/EDF/Chimie ParisTech, 6 Quai Watier, F-78401 Chatou (France); Pellé, Fabienne [LCMCP UMR7574 CNRS/UPMC/Chimie Paristech, 11 Rue Pierre et Marie Curie, F-75235 Paris (France)

    2013-06-30

    Er:Y{sub 2}O{sub 3} thin films have been obtained by spin coating process. Precursor solutions were prepared using nitrates as metal precursors and water as solvent. Citric, malic, and lactic acids were used as complexant. Investigations on resin compositions and on their coating parameters have been made, leading to crack-free thin films with citric and malic acids after direct deposition under standard room conditions (temperature, pressure and atmosphere). The films are homogeneous with a low root mean square roughness, less than 2.5 nm. We demonstrated that the nature of the carboxylic acid is the key point to obtain high quality thin films on silicon substrates from 20 nm up to 230 nm thick, while the film porosity is related to the number of carbon in the acid molecule. All films exhibit up-conversion luminescence in the near infrared and in the visible range, under 1.54 μm laser excitation. Furthermore, the up-conversion luminescence intensity increases with the applied annealing temperature on the films, due to an improvement of their crystallinity and to the total decomposition of organics. - Highlights: • We deposit films by spin-coating, using aqueous precursor solutions. • No special control of atmosphere is needed during all the process. • The organics are the key parameter for controlling the quality of films. • Multilayer have been obtained with all carboxylic acids we have studied. • All films exhibit an up-conversion property.

  2. Highly Crystalline Films of Organic Small Molecules with Alkyl Chains Fabricated by Weak Epitaxy Growth.

    Science.gov (United States)

    Zhu, Yangjie; Chen, Weiping; Wang, Tong; Wang, Haibo; Wang, Yue; Yan, Donghang

    2016-05-12

    Because side-chain engineering of organic conjugated molecules has been widely utilized to tune organic solid-state optoelectronic properties, the achievement of their high-quality films is important for realizing high-performance devices. Here, highly crystalline films of an organic molecule with short alkyl chains, 5,8,15,18-tetrabutyl-5,8,15,18-tetrahydroindolo[3,2-a]indole[30,20:5,6]quinacridone (C4-IDQA), are fabricated by weak epitaxy growth, and highly oriented, large-area, and continuous films are obtained. Because of the soft matter properties, the C4-IDQA molecules can adjust themselves to realize commensurate epitaxy growth on the inducing layers and exhibited good lattice matching in the thin film phase. The crystalline phase is also observed in thicker C4-IDQA films. The growth behavior of C4-IDQA on the inducing layer is further investigated, including the strong dependence of film morphologies on substrate temperatures and deposition rates due to the poor diffusion ability of C4-IDQA molecules. Moreover, highly crystalline films and high electron field-effect mobility are also obtained for the small molecule N,N'-dioctyl-3,4:9,10-perylene tetracarboxylic diimide (C8-PTCDI), which demonstrate that the weak epitaxy growth method could be an effective way to fabricate highly crystalline films of organic small molecules with flexible side chains. PMID:27116036

  3. Properties of alumina films by atmospheric pressure metal-organic chemical vapour deposition

    NARCIS (Netherlands)

    Haanappel, V.A.C.; Corbach, van H.D.; Fransen, T.; Gellings, P.J.

    1994-01-01

    Thin alumina films were deposited at low temperatures (290–420°C) on stainless steel, type AISI 304. The deposition process was carried out in nitrogen by metal-organic chemical vapour deposition using aluminum tri-sec-butoxide. The film properties including the protection of the underlying substrat

  4. Using Organic Light-Emitting Electrochemical Thin-Film Devices to Teach Materials Science

    Science.gov (United States)

    Sevian, Hannah; Muller, Sean; Rudmann, Hartmut; Rubner, Michael F.

    2004-01-01

    Materials science can be taught by applying organic light-emitting electrochemical thin-film devices and in this method students were allowed to make a light-emitting device by spin coating a thin film containing ruthenium (II) complex ions onto a glass slide. Through this laboratory method students are provided with the opportunity to learn about…

  5. Organization of copper nanoclusters in Langmuir–Blodgett films

    Indian Academy of Sciences (India)

    G Hemakanthi; Aruna Dhathathreyan; T Ramasami

    2002-02-01

    Stable nanoclusters of Cu were synthesized using Langmuir–Blodgett films of octadecylsuccinic acid (ODSA) as template. The Langmuir–Blodgett films of ODSA formed from subphase containing copper ions were first subjected to sulphidation (S) using sodium sulphide and then hydrogenated (H) using hydrogen gas. Diffuse reflectance UV-visible spectroscopy (DIR-UV-vis), X-ray photoelectron spectroscopy (XPS) and transmission electron microscopy (TEM) used to characterize these films indicated the formation of Cu(0) metallic clusters ranging in size from 3 ∼ 10 nm.

  6. Organic-​organic interfaces and unoccupied electronic states of thin films of perylene and naphthalene derivatives

    DEFF Research Database (Denmark)

    Kamounah, Fadhil S.; Komolov, A.S; Juul Møller, Preben;

    2005-01-01

    ,4,5,8-naphthalenetetracarboxylic dianhydride (NTCDA, Fig. 1c) film surfaces, respectively, in order to form organic–organic interfaces so that molecules constituting the interfacing layers differ by the substituent group. The surface potential and the density of unoccupied electron states (DOUS) located 5–25 eV above the Fermi...... level (EF) were measured during the film deposition using an incident beam of low-energy electrons according to the total current electron spectroscopy (TCS) method. Analysis of the TCS data allowed us to assign the π( band located 5–7.5 eV above EF for all the four films under study and the higher...

  7. Influence of organic films on the evaporation and condensation of water in aerosol

    OpenAIRE

    Davies, James F.; Miles, Rachael E H; Haddrell, Allen E; Reid, Jonathan P.

    2013-01-01

    Uncertainties in quantifying the kinetics of evaporation and condensation of water fromatmospheric aerosol are a significant contributor to the uncertainty in predicting cloud droplet number and the indirect effect of aerosols on climate. The influence of aerosol particle surface composition, particularly the impact of surface active organic films, on the condensation and evaporation coefficients remains ambiguous. Here, we report measurements of the influence of organic films on the evaporat...

  8. Adaptive hydrophobic and hydrophilic interactions of mussel foot proteins with organic thin films

    OpenAIRE

    Yu, J; Kan, Y.; M. Rapp; Danner, E; Wei, W.; Das, S.; Miller, DR; Chen, Y.; Waite, JH; Israelachvili, JN

    2013-01-01

    The adhesion of mussel foot proteins (Mfps) to a variety of specially engineered mineral and metal oxide surfaces has previously been investigated extensively, but the relevance of these studies to adhesion in biological environments remains unknown. Most solid surfaces exposed to seawater or physiological fluids become fouled by organic conditioning films and biofilms within minutes. Understanding the binding mechanisms of Mfps to organic films with known chemical and physical properties the...

  9. Combinatorial Techniques to Efficiently Investigate and Optimize Organic Thin Film Processing and Properties

    OpenAIRE

    Hans-Werner Schmidt; Ober, Christopher K.; Christian Neuber; Tristan Kolb; Florian Wieberger

    2013-01-01

    In this article we present several developed and improved combinatorial techniques to optimize processing conditions and material properties of organic thin films. The combinatorial approach allows investigations of multi-variable dependencies and is the perfect tool to investigate organic thin films regarding their high performance purposes. In this context we develop and establish the reliable preparation of gradients of material composition, temperature, exposure, and immersion time. Furth...

  10. Organic thin film field effect transistor made with soluble Al(OH) phthalocyanine

    Czech Academy of Sciences Publication Activity Database

    Janus, K.; Lutsyk, P.; Nešpůrek, Stanislav

    Wroclaw: Oficyna Wydawnicza Politechniki Wroclawskiej, 2008. s. 76. ISBN 978-83-7493-399-5. [International Conference on Electrical and Related Properties of Organic Solids /11./. 13.07.2008-17.07.2008, Piechowice] R&D Projects: GA AV ČR KAN401770651 EU Projects: European Commission(XE) 35859 - BIMORE Institutional research plan: CEZ:AV0Z40500505 Keywords : organic thin film * phthalocyanine film s * field effect transistor Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering

  11. Pulsed injection metal organic chemical vapour deposition and characterisation of thin CaO films

    International Nuclear Information System (INIS)

    Thin films of CaO were grown on silicon (Si) and lanthanum aluminate (LaAlO3) substrates by pulsed injection metal-organic chemical vapour deposition in a vertical injection MOCVD system. Growth parameters were systematically varied to study their effect on film growth and quality and to determine the optimal growth conditions for this material. Film quality and growth rate were evaluated by atomic force microscopy, X-ray diffraction and Rutherford Backscattering Spectroscopy measurements. Optimised conditions allowed growing transparent, single phase films textured along the (0 0 l) direction.

  12. Adhesive flexible barrier film, method of forming same, and organic electronic device including same

    Energy Technology Data Exchange (ETDEWEB)

    Blizzard, John Donald; Weidner, William Kenneth

    2013-02-05

    An adhesive flexible barrier film comprises a substrate and a barrier layer disposed on the substrate. The barrier layer is formed from a barrier composition comprising an organosilicon compound. The adhesive flexible barrier film also comprises an adhesive layer disposed on the barrier layer and formed from an adhesive composition. A method of forming the adhesive flexible barrier film comprises the steps of disposing the barrier composition on the substrate to form the barrier layer, disposing the adhesive composition on the barrier layer to form the adhesive layer, and curing the barrier layer and the adhesive layer. The adhesive flexible barrier film may be utilized in organic electronic devices.

  13. Adsorbate-modified growth of ultrathin rare-earth oxide films on silicon and complementary studies of cerium oxide on ruthenium; Adsorbat-modifiziertes Wachstum ultraduenner Seltenerdoxid-Filme auf Silizium und komplementaere Studien von Ceroxid auf Ruthenium

    Energy Technology Data Exchange (ETDEWEB)

    Kaemena, Bjoern

    2013-11-27

    Rare-earth oxides (REOx) are extensively investigated due to their extraordinary physical and chemical properties, which essentially arise from the unfilled 4f electron shell, in order to reveal the nature of these exceptional properties and ultimately to utilize them for multiple technological applications. To maintain the exponential increase in integration density in CMOS technology, which is also known as Moore s law, there is a strong desire for ultrathin, well-ordered, epitaxial REOx layers with a precisely engineered interface, which is essential for reliable, ultrahigh-performance devices. So far this has been considerably impeded by RE-promoted silicon oxidation, leading to amorphous silicon oxide and RE silicon formation. By using complementary synchrotron radiation methods such as X-ray standing waves (XSW), X-ray photoelectron spectroscopy (XPS) and X-ray diffraction (XRD), structural and spectroscopic information are inferred simultaneously from ultrathin ceria and lanthana films grown on chlorine, silver and gallium passivated silicon(111). In general, it is revealed that the chemical and structural composition of the interface and the crystallinity of ultrathin REOx layers on silicon can be precisely controlled by adsorbate-mediated growth. This might represent a crucial step towards a perfectly engineered interface, eventually allowing for the integration of REOx as high-k gate oxides in microelectronics. In catalysis inverse model catalysts are studied with the aim of getting an in-depth understanding of the basic principles of catalysis. These model systems are employed to study, e. g., the nature of active sites and the reaction pathways in complex catalytic converters. However, a lot remains unknown about the chemical activity and selectivity as a function of the growth mechanism, structure and morphology of these model systems. The powerful spectroscopic photoemission and low-energy electron microscope, which is able to reveal the surface

  14. Organic ferroelectric gate field-effect transistor memory using high-mobility rubrene thin film

    Science.gov (United States)

    Kanashima, Takeshi; Katsura, Yuu; Okuyama, Masanori

    2014-01-01

    An organic ferroelectric gate field-effect transistor (FET) memory has been fabricated using an organic semiconductor of rubrene thin film with a high mobility and a gate insulating layer of poly(vinylidene fluoride-tetrafluoroethylene) [P(VDF-TeFE)] thin film. A rubrene thin-film sheet was grown by physical vapor transport (PVT), and placed onto a spin-coated P(VDF-TeFE) thin-film layer, and Au source and drain electrodes were formed on this rubrene thin film. A hysteresis loop of the drain current-gate voltage (ID-VG) characteristic has been clearly observed in the ferroelectric gate FET, and is caused by the ferroelectricity. The maximum drain current is 1.5 × 10-6 A, which is about two orders of magnitude larger than that of the P(VDF-TeFE) gate FET using a pentacene thin film. Moreover, the mobility of this organic ferroelectric gate FET using rubrene thin film is 0.71 cm2 V-1 s-1, which is 35 times larger than that of the FET with pentacene thin film.

  15. Processing and performance of organic insulators as a gate layer in organic thin film transistors fabricated on polyethylene terephthalate substrate

    Indian Academy of Sciences (India)

    Saumen Mandal; Monica Katiyar

    2013-08-01

    Fabrication of organic thin film transistor (OTFT) on flexible substrates is a challenge, because of its low softening temperature, high roughness and flexible nature. Although several organic dielectrics have been used as gate insulator, it is difficult to choose one in absence of a comparative study covering processing of dielectric layer on polyethylene terephthalate (PET), characterization of dielectric property, pentacene film morphology and OTFT characterization. Here, we present the processing and performance of three organic dielectrics, poly(4-vinylphenol) (PVPh), polyvinyl alcohol (PVA) and poly(methylmethacrylate) (PMMA), as a gate layer in pentacene-based organic thin film transistor on PET substrate. We have used thermogravimetric analysis of organic dielectric solution to determine annealing temperature for spin-coated films of these dielectrics. Comparison of the leakage currents for the three dielectrics shows PVA exhibiting lowest leakage (in the voltage range of −30 to +30 V). This is partly because solvent is completely eliminated in the case of PVA as observed by differential thermogravimetric analysis (DTGA). We propose that DTGA can be a useful tool to optimize processing of dielectric layers. From organic thin film transistor point of view, crystal structure, morphology and surface roughness of pentacene film on all the dielectric layers were studied using X-ray diffraction (XRD), atomic force microscopy (AFM) and scanning electron microscopy (SEM).We observe pyramidal pentacene on PVPh whereas commonly observed dendritic pentacene on PMMA and PVA surface. Pentacene morphology development is discussed in terms of surface roughness, surface energy and molecular nature of the dielectric layer.

  16. Characterisation of molecular thin films grown by organic molecular beam deposition

    CERN Document Server

    Bayliss, S M

    2000-01-01

    This work concerns the growth and characterisation of molecular thin films in an ultra high vacuum regime by organic molecular beam deposition (OMBD). Films of three different molecular materials are grown, namely free base phthalocyanine (H sub 2 Pc), perylene 3,4,9,10-tetracarboxylic dianhydride (PTCDA) and aluminium tris-8-hydroxyquinoline (Alq sub 3). The relationship between the growth parameters such as film thickness, growth rate, and substrate temperature during and after growth, and the structural, optical and morphological properties of the film are investigated. These investigations are carried out using various ex-situ techniques. X-ray diffraction, Raman spectroscopy and electronic absorption spectroscopy are used to probe the bulk film characteristics, whilst Nomarski microscopy and atomic force microscopy are used to study the surface morphology. Three different levels of influence of the growth parameters on the film properties are observed. In the case of H sub 2 Pc, two crystal phases are fo...

  17. Detection of volatile organic compounds using optical fibre long period grating modified with metal organic framework thin films

    Science.gov (United States)

    Hromadka, Jiri; Tokay, Begum; Korposh, Sergiy; James, Stephen; Tatam, Ralph P.

    2015-09-01

    An optical fibre long period grating (LPG) modified with a thin film of ZIF-8, a zeolitic immidazol framework (ZIF) material, a subgroup of the metal organic framework (MOF) family, was employed for the detection of organic vapours. ZIF-8 film was deposited onto the surface of the LPG using an in-situ crystallization technique. The sensing mechanism is based on the measurement of the refractive index (RI) change induced by the penetration of the chemical molecules into the ZIF-8 pores. An LPG modified with 5 growth cycles of ZIF-8 responded to exposure to methanol and ethanol vapours.

  18. Tracing the 4000 year history of organic thin films: From monolayers on liquids to multilayers on solidsa)

    Science.gov (United States)

    Greene, J. E.

    2015-03-01

    The recorded history of organic monolayer and multilayer thin films spans approximately 4000 years. Fatty-acid-based monolayers were deposited on water by the ancients for applications ranging from fortune telling in King Hammurabi's time (˜1800 BC, Mesopotamia) to stilling choppy waters for sailors and divers as reported by the Roman philosopher Pliny the Elder in ˜78 AD, and then much later (1774) by the peripatetic American statesman and natural philosopher Benjamin Franklin, to Japanese "floating-ink" art (suminagashi) developed ˜1000 years ago. The modern science of organic monolayers began in the late-1800s/early-1900s with experiments by Lord Rayleigh and the important development by Agnes Pockels, followed two decades later by Irving Langmuir, of the tools and technology to measure the surface tension of liquids, the surface pressure of organic monolayers deposited on water, interfacial properties, molecular conformation of the organic layers, and phase transitions which occur upon compressing the monolayers. In 1935, Katherine Blodgett published a landmark paper showing that multilayers can be synthesized on solid substrates, with controlled thickness and composition, using an apparatus now known as the Langmuir-Blodgett (L-B) trough. A disadvantage of LB films for some applications is that they form weak physisorbed bonds to the substrate. In 1946, Bigelow, Pickett, and Zisman demonstrated, in another seminal paper, the growth of organic self-assembled monolayers (SAMs) via spontaneous adsorption from solution, rather than from the water/air interface, onto SiO2 and metal substrates. SAMs are close-packed two-dimensional organic crystals which exhibit strong covalent bonding to the substrate. The first multicomponent adsorbed monolayers and multilayer SAMs were produced in the early 1980s. Langmuir monolayers, L-B multilayers, and self-assembled mono- and multilayers have found an extraordinarily broad range of applications including controlled wetting

  19. Tracing the 4000 year history of organic thin films: From monolayers on liquids to multilayers on solids

    Energy Technology Data Exchange (ETDEWEB)

    Greene, J. E. [University of Illinois, Urbana, Illinois 61801 (United States); Linköping University, 581 83 Linköping (Sweden); National Taiwan University of Science and Technology, Taipei 10607, Taiwan (China)

    2015-03-15

    The recorded history of organic monolayer and multilayer thin films spans approximately 4000 years. Fatty-acid-based monolayers were deposited on water by the ancients for applications ranging from fortune telling in King Hammurabi's time (∼1800 BC, Mesopotamia) to stilling choppy waters for sailors and divers as reported by the Roman philosopher Pliny the Elder in ∼78 AD, and then much later (1774) by the peripatetic American statesman and natural philosopher Benjamin Franklin, to Japanese “floating-ink” art (suminagashi) developed ∼1000 years ago. The modern science of organic monolayers began in the late-1800s/early-1900s with experiments by Lord Rayleigh and the important development by Agnes Pockels, followed two decades later by Irving Langmuir, of the tools and technology to measure the surface tension of liquids, the surface pressure of organic monolayers deposited on water, interfacial properties, molecular conformation of the organic layers, and phase transitions which occur upon compressing the monolayers. In 1935, Katherine Blodgett published a landmark paper showing that multilayers can be synthesized on solid substrates, with controlled thickness and composition, using an apparatus now known as the Langmuir-Blodgett (L-B) trough. A disadvantage of LB films for some applications is that they form weak physisorbed bonds to the substrate. In 1946, Bigelow, Pickett, and Zisman demonstrated, in another seminal paper, the growth of organic self-assembled monolayers (SAMs) via spontaneous adsorption from solution, rather than from the water/air interface, onto SiO{sub 2} and metal substrates. SAMs are close-packed two-dimensional organic crystals which exhibit strong covalent bonding to the substrate. The first multicomponent adsorbed monolayers and multilayer SAMs were produced in the early 1980s. Langmuir monolayers, L-B multilayers, and self-assembled mono- and multilayers have found an extraordinarily broad range of applications including

  20. Tracing the 4000 year history of organic thin films: From monolayers on liquids to multilayers on solids

    International Nuclear Information System (INIS)

    The recorded history of organic monolayer and multilayer thin films spans approximately 4000 years. Fatty-acid-based monolayers were deposited on water by the ancients for applications ranging from fortune telling in King Hammurabi's time (∼1800 BC, Mesopotamia) to stilling choppy waters for sailors and divers as reported by the Roman philosopher Pliny the Elder in ∼78 AD, and then much later (1774) by the peripatetic American statesman and natural philosopher Benjamin Franklin, to Japanese “floating-ink” art (suminagashi) developed ∼1000 years ago. The modern science of organic monolayers began in the late-1800s/early-1900s with experiments by Lord Rayleigh and the important development by Agnes Pockels, followed two decades later by Irving Langmuir, of the tools and technology to measure the surface tension of liquids, the surface pressure of organic monolayers deposited on water, interfacial properties, molecular conformation of the organic layers, and phase transitions which occur upon compressing the monolayers. In 1935, Katherine Blodgett published a landmark paper showing that multilayers can be synthesized on solid substrates, with controlled thickness and composition, using an apparatus now known as the Langmuir-Blodgett (L-B) trough. A disadvantage of LB films for some applications is that they form weak physisorbed bonds to the substrate. In 1946, Bigelow, Pickett, and Zisman demonstrated, in another seminal paper, the growth of organic self-assembled monolayers (SAMs) via spontaneous adsorption from solution, rather than from the water/air interface, onto SiO2 and metal substrates. SAMs are close-packed two-dimensional organic crystals which exhibit strong covalent bonding to the substrate. The first multicomponent adsorbed monolayers and multilayer SAMs were produced in the early 1980s. Langmuir monolayers, L-B multilayers, and self-assembled mono- and multilayers have found an extraordinarily broad range of applications including

  1. Water Pollution and Treatments Part I: Evaluation of Organic, Inorganic and Marine Products as Adsorbents For Petroleum Pollutants Present In Aqueous Wastes

    International Nuclear Information System (INIS)

    The main objective of the present work is to perform a comparative laboratory study using an adsorption technique for oil removal from the waste water drained to sea from refineries, offshore and/or onshore petroleum installations. Different crushed adsorbent materials, namely, cotton fibers, charcoal, petroleum coke, agriculture wastes (such as, rice straws, wheat stems, milled dry leaves and lignin), inorganic adsorbents (such as sand, and bricks) and a marine Product (such as sponge) are included in this study. They were tested for oil recovery from laboratory prepared oily salt water samples. Two different Egyptian crude oils varying in their properties and several refined products (gasoline, kerosene, gas oil, diesel oil, fuel oil, lubricating oil) and skimmed oil were employed. Their adsorptive efficiencies were tested. Good results were obtained with sponge and cotton fibers. The used agricultural wastes show better adsorption compared with coke and inorganic adsorbents.

  2. A flexible organic active matrix circuit fabricated using novel organic thin film transistors and organic light-emitting diodes

    KAUST Repository

    Gutiérrez-Heredia, Gerardo

    2010-10-04

    We present an active matrix circuit fabricated on plastic (polyethylene naphthalene, PEN) and glass substrates using organic thin film transistors and organic capacitors to control organic light-emitting diodes (OLEDs). The basic circuit is fabricated using two pentacene-based transistors and a capacitor using a novel aluminum oxide/parylene stack (Al2O3/ parylene) as the dielectric for both the transistor and the capacitor. We report that our circuit can deliver up to 15 μA to each OLED pixel. To achieve 200 cd m-2 of brightness a 10 μA current is needed; therefore, our approach can initially deliver 1.5× the required current to drive a single pixel. In contrast to parylene-only devices, the Al2O 3/parylene stack does not fail after stressing at a field of 1.7 MV cm-1 for >10 000 s, whereas \\'parylene only\\' devices show breakdown at approximately 1000 s. Details of the integration scheme are presented. © 2010 IOP Publishing Ltd.

  3. In-Line Sputtered Gallium and Aluminum Codoped Zinc Oxide Films for Organic Solar Cells

    Directory of Open Access Journals (Sweden)

    Shang-Chou Chang

    2014-01-01

    Full Text Available Gallium and aluminum codoped zinc oxide (GAZO films were deposited at different temperatures by in-line sputtering. Aluminum is thermally unstable compared to other elements in GAZO films. The grains of GAZO films increase with deposition temperature. Coalescence between grains was observed for GAZO films deposited at 250°C. The deposition temperature exhibits positive influence on crystallinity, and electrical and optical properties of GAZO films. The carrier concentration and mobility of GAZO films increase, while the electrical resistivity of GAZO films decreases with deposition temperature. The average optical transmittance of GAZO films rises with deposition temperature. In-line sputtering demonstrates a potential method with simplicity, mass production, and large-area deposition to produce GAZO films with good electrical and optical quality. The electrical resistivity of 4.3 × 10−4 Ω cm and the average optical transmittance in the visible range from 400 to 800 nm of 92% can be obtained for GAZO films deposited at 250°C. The hybrid organic solar cells (OSC were fabricated on GAZO-coated glass substrates. Blended poly(3-hexylthiophene (P3HT and [6,6]-phenyl C61 butyric acid methyl ester (PCBM were the photoactive materials in OSC. The power conversion efficiency of OSC is 0.65% for the OSC with the 250°C deposited GAZO electrode.

  4. Fabrication of organic-inorganic perovskite thin films for planar solar cells via pulsed laser deposition

    Energy Technology Data Exchange (ETDEWEB)

    Liang, Yangang; Zhang, Xiaohang; Gong, Yunhui; Shin, Jongmoon; Wachsman, Eric D.; Takeuchi, Ichiro, E-mail: takeuchi@umd.edu [Department of Materials Science and Engineering, University of Maryland, College Park, Maryland 20740 (United States); Yao, Yangyi; Hsu, Wei-Lun; Dagenais, Mario [Department of Electrical and Computer Engineering, University of Maryland, College Park, Maryland 20740 (United States)

    2016-01-15

    We report on fabrication of organic-inorganic perovskite thin films using a hybrid method consisting of pulsed laser deposition (PLD) of lead iodide and spin-coating of methylammonium iodide. Smooth and highly crystalline CH{sub 3}NH{sub 3}PbI{sub 3} thin films have been fabricated on silicon and glass coated substrates with fluorine doped tin oxide using this PLD-based hybrid method. Planar perovskite solar cells with an inverted structure have been successfully fabricated using the perovskite films. Because of its versatility, the PLD-based hybrid fabrication method not only provides an easy and precise control of the thickness of the perovskite thin films, but also offers a straightforward platform for studying the potential feasibility in using other metal halides and organic salts for formation of the organic-inorganic perovskite structure.

  5. Fabrication of organic-inorganic perovskite thin films for planar solar cells via pulsed laser deposition

    International Nuclear Information System (INIS)

    We report on fabrication of organic-inorganic perovskite thin films using a hybrid method consisting of pulsed laser deposition (PLD) of lead iodide and spin-coating of methylammonium iodide. Smooth and highly crystalline CH3NH3PbI3 thin films have been fabricated on silicon and glass coated substrates with fluorine doped tin oxide using this PLD-based hybrid method. Planar perovskite solar cells with an inverted structure have been successfully fabricated using the perovskite films. Because of its versatility, the PLD-based hybrid fabrication method not only provides an easy and precise control of the thickness of the perovskite thin films, but also offers a straightforward platform for studying the potential feasibility in using other metal halides and organic salts for formation of the organic-inorganic perovskite structure

  6. The Dynamics and Structures of Adsorbed Surfaces

    DEFF Research Database (Denmark)

    Nielsen, M; Ellenson, W. D.; McTague, J. P.

    1978-01-01

    Reviews neutron scattering work performed on films of simple gas atoms and molecules adsorbed primarily on graphite surfaces. Exfoliated graphite substrates such as Grafoil were first used in this kind of measurements about five years ago and new results have been reported at an increasing pace. ...

  7. Study of intermolecular interactions in hetero-organic thin films

    OpenAIRE

    Stadtmüller, Benjamin

    2013-01-01

    The interest in organic semiconductors is based on their great potential to serve as active materials in electronic devices such as organic light-emitting diodes or organic photovoltaic cells. The performance of these molecular assemblies does not only depend on the properties of the organic bulk materials but also on the interfaces formed by the contact between different materials. Therefore, the physical properties of interfaces between metal contacts and organic materials have been studied...

  8. In situ ellipsometry — A powerful tool for monitoring alkali doping of organic thin films

    Energy Technology Data Exchange (ETDEWEB)

    Haidu, F.; Ludemann, M.; Schäfer, P.; Gordan, O.D., E-mail: ovidiu.gordan@physik.tu-chemnitz.de; Zahn, D.R.T.

    2014-11-28

    The changes of the optical properties of several organic thin films induced by potassium doping were monitored using in situ spectroscopic ellipsometry. The samples were prepared in a high vacuum chamber by organic molecular deposition. Then, potassium (K) was evaporated by passing current through K getters. The three different organic molecules used, show very distinct and different spectral behaviour upon doping. While for Tris-(8-hydroxyquinoline)-aluminium(III) and N,N′-Di-[(1-naphthyl)-N,N′-diphenyl]-(1,1′-biphenyl)-4,4′-diamine only small shifts of the spectral features were noticed, Manganese Phthalocyanine revealed significant changes of the optical properties induced by the K doping. This work indicates that the K doping process can have a dramatic effect on the electronic and the optical properties of the organic molecules, but the effect on the optical spectra remains specific for each organic molecule used, and cannot be easily predicted. - Highlights: • Monitoring organic film growth and doping with in situ spectroscopic ellipsometry • K doped organic thin films • Optical properties of organic thin films change by K doping. • The changes in the optical spectra remain specific for each organic molecule used.

  9. Facile preparation of continuous indium metal-organic framework thin films on indium tin oxide glass

    International Nuclear Information System (INIS)

    Continuous indium metal-organic framework thin films of In12O(OH)12[(OH)4·(H2O)5)][BTC]6 (MIL-96(In)) (BTC = 1,3,5-benzenetricarboxylate) were prepared on indium tin oxide glass by in situ solvothermal growth method. The structure of the films was confirmed by X-ray diffraction. The growth process and the possible growth mechanism of MIL-96(In) films were investigated by a scanning electron microscopy. Furthermore, the influence of the reaction conditions on the morphology and thickness of films was studied. The best crack-free, continuous film with thickness of approximate 6 μm was obtained at the proper concentrations of InCl3 and H3BTC of 25.0 mmol·l−1 at 100 °C for 12 h. - Highlights: • Continuous indium metal-organic framework thin films are prepared. • The growth process and the possible growth mechanism of thin films are investigated. • Indium tin oxide glass promotes the homogeneous nucleation of thin films

  10. Ordered organic thin films self-assembled from the vapor phase

    Science.gov (United States)

    Debe, M. K.

    1993-01-01

    Organic films self-assembled from a liquid phase, as in Langmuir-Blodgett or adsorption from solution, have received much attention in the past decade as techniques to achieve highly oriented-ordered polymeric thin films. Many organic compounds including some of the same fatty acids have been vapor deposited as well. However, organic pigments and dyes comprise a major class of important materials which have very low solubilities yet excellent thermal stabilities, making them ideally suited for film deposition from the vapor phase. Surprisingly, such molecular systems exhibit a significant propensity to self order, a high sensitivity to deposition parameters, and a range of microstructural forms that cannot be duplicated by the less energetic mechanisms associated with solution adsorption processes. Molecular solids such as heterocyclic polynuclear aromatics are excellent candidates for film formation by vacuum deposition means. Over the past decade, our work and that of others investigating a wide variety of perylene and phthalocyanine derivatives identified five deposition parameters that can significantly affect film morphology, physical microstructure, and type and extent of ordering developed in vacuum and vapor transport grown films. These parameters are substrate temperature, deposition rate, substrate chemistry and epitaxy, ambient gas convective flows, and post deposition annealing. Examples of how each of these conditions manifest themselves in the film structure and ordering, most frequently revealed by scanning electron microscopy, reflection absorption infrared spectroscopy (RAIR), and grazing incidence x-ray diffraction (GIX), are presented.

  11. VERUCLAY – a new type of photo-adsorbent active in the visible light range: modification of montmorillonite surface with organic surfactant

    Science.gov (United States)

    Montmorillonite K10 was treated with VeruSOL-3, a biodegradable and food-grade surfactant mixture of coconut oil, castor oil and citrus extracts, to manufacture a benign catalytic adsorbent that is active in the visible light. Veruclay was characterized by SEM, XRD, TGA, UVDRS, a...

  12. Batch Scale Removal of an Organic Pollutant Amaranth Dye from Aqueous Solution using Pisum sativum Peels and Arachis hypogaea Shells as Adsorbents

    International Nuclear Information System (INIS)

    The goal of this study was to utilize low cost and environmentally friendly adsorbents for batch scale removal of Amaranth dye from aqueous medium. Peels of Pisum sativum (Pea) and Arachis hypogaea (Peanut) were utilized to investigate their dye removing capacity. The optimized adsorption conditions for Pisum sativum (P.S.P) and Arachis hypogaea (A.H.S) were: adsorbent dose; 0.6 and 0.4 g, contact time; 45 and 10 minutes, pH; 2.0 for both, agitation speed; 150 and 100 rpm and temperature; 60 and 50 degree C for P.S.P and A.H.S respectively. The adsorption data well suited to Langmuir isotherm. Maximum adsorption capacities were found to be 144.93 and 10.53 mg/g for P.S.P and A.H.S respectively. Feasibility of the process was indicated by negative values of thermodynamic parameters delta G/sup 0/ for both adsorbents. Kinetic studies indicated that adsorption of Amaranth dye from aqueous medium by Pisum sativum peels and Arachis hypogaea shells followed pseudo-seconder order kinetics. It was concluded that Pisum sativum peels are more effective adsorbent for removal of Amaranth from aqueous solution as compared to Arachis hypogaea shells. (author)

  13. Analysis of surface films on lithium in various organic electrolytes

    Energy Technology Data Exchange (ETDEWEB)

    Kominato, A.; Yasukawa, E.; Sato, N.; Ijuuin, T.; Asahina, H.; Mori, S. [Mitsubishi Chemical Corp., Ibaraki (Japan). Tsukuba Research Center

    1997-10-01

    The surface films formed on lithium metal in ethylene carbonate (EC)+dimethyl carbonate (DMC) containing LiPF{sub 6}, LiClO{sub 4} and LiN(SO{sub 2}CF{sub 3}){sub 2} electrolytes were analysed by using Auger electron spectroscopy (AES), temperature-programmed decomposition mass spectrography (TPD-MS), FT-IR, ion chromatography (IC) and atomic adsorption spectroscopy (AAS). The morphology of the film was observed by using scanning electron microscopy (SEM). The film formed in the LiPF{sub 6} solution exhibited spherical morphology and was found to contain LiF, lithium oxide compounds (most of which seems to be inorganic), (CH{sub 2}OCO{sub 2}Li){sub 2} and CH{sub 3}OCO{sub 2}Li. The films in LiClO{sub 4} and LiN(SO{sub 2}CF{sub 3}){sub 2} were dendritic and contained the lithium oxide compounds, (CH{sub 2}OCO{sub 2}Li){sub 2} and CH{sub 3}OCO{sub 2}Li. (orig.)

  14. Poly(methyl methacrylate) films for organic vapour sensing

    CERN Document Server

    Capan, R; Hassan, A K; Tanrisever, T

    2003-01-01

    Optical constants and fabrication parameters are investigated using surface plasmon resonance (SPR) studies on spun films of poly(methyl methacrylate) (PMMA) derivatives in contact with two different dielectric media. A value of 1.503 for the refractive index of PMMA films produced from a solution having concentration of 1 mg ml sup - sup 1 at the speed of 3000 rpm is in close agreement with the data obtained from ellipsometric measurements. The film thickness shows a power-law dependence on the spin speed but the thickness increases almost linearly with the concentration of the spreading solution. These results are in good agreement with the hydrodynamic theory for a low-viscosity and highly volatile liquid. On the basis of SPR measurements under dynamic conditions, room temperature response of PMMA films to benzene vapours is found to be fast, highly sensitive and reversible. The sensitivity of detection of toluene, ethyl benzene and m-xylene is much smaller than that of benzene.

  15. Exciton-polaron quenching in organic thin-film transistors studied by fluorescence lifetime imaging microscopy

    DEFF Research Database (Denmark)

    Jensen, Per Baunegaard With; Leißner, Till; Osadnik, Andreas;

    Organic semiconductors show great potential in electronic and optical applications. However, a major challenge is the degradation of the semiconductor materials that cause a reduction in device performance. Here, we present our investigations of Organic Thin Film Transistors (OTFT) based on the...

  16. Thin films of metal-organic compounds and metal nanoparticle-embedded polymers for nonlinear optical applications

    Indian Academy of Sciences (India)

    S Philip Anthony; Shatabdi Porel; D Narayana Rao; T P Radhakrishnan

    2005-11-01

    Thin films based on two very different metal-organic systems are developed and some nonlinear optical applications are explored. A family of zinc complexes which form perfectly polar assemblies in their crystalline state are found to organize as uniaxially oriented crystallites in vapor deposited thin films on glass substrate. Optical second harmonic generation from these films is investigated. A simple protocol is developed for the in-situ fabrication of highly monodisperse silver nanoparticles in a polymer film matrix. The methodology can be used to produce free-standing films. Optical limiting capability of the nanoparticle-embedded polymer film is demonstrated.

  17. Nucleation and strain-stabilization during organic semiconductor thin film deposition.

    Science.gov (United States)

    Li, Yang; Wan, Jing; Smilgies, Detlef-M; Bouffard, Nicole; Sun, Richard; Headrick, Randall L

    2016-01-01

    The nucleation mechanisms during solution deposition of organic semiconductor thin films determine the grain morphology and may influence the crystalline packing in some cases. Here, in-situ optical spectromicroscopy in reflection mode is used to study the growth mechanisms and thermal stability of 6,13-bis(trisopropylsilylethynyl)-pentacene thin films. The results show that the films form in a supersaturated state before transforming to a solid film. Molecular aggregates corresponding to subcritical nuclei in the crystallization process are inferred from optical spectroscopy measurements of the supersaturated region. Strain-free solid films exhibit a temperature-dependent blue shift of optical absorption peaks due to a continuous thermally driven change of the crystalline packing. As crystalline films are cooled to ambient temperature they become strained although cracking of thicker films is observed, which allows the strain to partially relax. Below a critical thickness, cracking is not observed and grazing incidence X-ray diffraction measurements confirm that the thinnest films are constrained to the lattice constants corresponding to the temperature at which they were deposited. Optical spectroscopy results show that the transition temperature between Form I (room temperature phase) and Form II (high temperature phase) depends on the film thickness, and that Form I can also be strain-stabilized up to 135 °C. PMID:27600905

  18. Biological activities of organic compounds adsorbed onto ambient air particles: comparison between the cities of Teplice and Prague during the summer and winter seasons 2000-2001

    Energy Technology Data Exchange (ETDEWEB)

    Binkova, Blanka; Cerna, Milena; Pastorkova, Anna; Jelinek, Richard; Benes, Ivan; Novak, Jiri; Sram, Radim J

    2003-04-09

    The capital of the Czech Republic, Prague, appears today to be one of the most polluted residential areas in the country, whereas air pollution in the Northern Bohemia region (the former 'Black Triangle Region') has substantially decreased during the last decade, especially with respect to the gaseous pollutant SO{sub 2}. This study evaluated the biological activities of complex mixtures of organic compounds adsorbed onto ambient air particles (PM10) collected during the summer and winter seasons of 2000-2001 at three monitoring sites - Teplice (TP), Prague-Smichov (PRG-SM) (city centre) and Prague-Libus (PRG-LB) (suburban area). The following short-term in vitro assays with strikingly different endpoints were used: a bacterial mutagenicity test using the Salmonella typhimurium tester strain TA98 and YG1041, an acellular assay (CT DNA) combined with {sup 32}P-postlabelling to evaluate DNA adduct-forming potency and the chick embryotoxicity screening test (CHEST). The results of the mutagenicity test with the YG1041 strain, the acellular genotoxicity (DNA adducts) and the embryotoxicity tests responded to the amount of eight carcinogenic polycyclic aromatic hydrocarbons (PAHs) analysed in the EOM (dichloromethane extractable organic matter) samples tested. Nevertheless, the biological effects of the EOM did not differ between locations. The highest biological activity of the ambient air in terms of organic compounds associated with particles (per unit volume of air) was seen in the Prague city centre during both summer and winter seasons. At this location, B[a]P concentration ranged from 0.1 to 8.9 ng/m{sup 3} (mean 0.3 and 3.6 ng/m{sup 3} for summer and winter seasons, respectively), 13 PAHs ranged from 11 to 343 ng/m{sup 3} (mean 52 and 160 ng/m{sup 3} for summer and winter seasons, respectively). Generally, using in vitro tests, higher ambient air activity was found in the winter season as compared with the summer season at all three monitoring sites

  19. Organic thin film transistor integration a hybrid approach

    CERN Document Server

    Li, Flora; Wu, Yiliang; Ong, Beng S

    2013-01-01

    Research on organic electronics (or plastic electronics) is driven by the need to create systems that are lightweight, unbreakable, and mechanically flexible. With the remarkable improvement in the performance of organic semiconductor materials during the past few decades, organic electronics appeal to innovative, practical, and broad-impact applications requiring large-area coverage, mechanical flexibility, low-temperature processing, and low cost. Thus, organic electronics appeal to a broad range of electronic devices and products including transistors, diodes, sensors, solar cells, lighting

  20. Comparison of physicomechanical properties of films prepared from organic solutions and aqueous dispersion of Eudragit RL

    Directory of Open Access Journals (Sweden)

    H Afrasiabi Garekani

    2011-05-01

    Full Text Available Background and the purpose of the study: Mechanical properties of films prepared from aqueous dispersion and organic solutions of Eudragit RL were assessed and the effects of plasticizer type, concentration and curing were examined. Methods: Films were prepared from aqueous dispersion and solutions of Eudragit RL (isopropyl alcohol-water 9:1 containing 0, 10 or 20% (based on polymer weight of PEG 400 or Triethyl Citrate (TEC as plasticizer using casting method. Samples of films were stored in oven at 60ºC for 24 hrs (Cured. The stress-strain curve was obtained for each film using material testing machine and tensile strength, elastic modulus, %elongation and work of failure were calculated. Results and major conclusion: The films with no plasticizer showed different mechanical properties depending on the vehicle used. Addition of 10% or 20% of plasticizer decreased the tensile strength and elastic modulus and increased %elongation and work of failure for all films. The effect of PEG400 on mechanical properties of Eudragit RL films was more pronounced. The differences in mechanical properties of the films due to vehicle decreased by addition of plasticizer and increase in its concentration. Curing process weakened the mechanical properties of the films with no plasticizer and for films with 10% plasticizer no considerable difference in mechanical properties was observed before and after curing. For those with 20% plasticizer only films prepared from aqueous dispersion showed remarkable difference in mechanical properties before and after curing. Results of this study suggest that the mechanical properties of the Eudragit RL films were affected by the vehicle, type of plasticizer and its concentration in the coating liquid.

  1. Surface-enhanced fluorescence and surface-enhanced Raman scattering of ultrathin layers of bichromophoric antenna systems adsorbed on silver nanoisland films

    International Nuclear Information System (INIS)

    We investigated a novel bichromophoric antenna system, characterized by energy transfer between a naphthalene group acting as the donor and a benzofurazane group acting as the acceptor. We studied the spectroscopic properties (infrared, Raman, UV-vis and fluorescence) of self-assembled monolayers of this molecular antenna on Ag nanoisland films and the energy-transfer process upon irradiation at 300 nm.

  2. Indium-Doped Zinc Oxide Thin Films as Effective Anodes of Organic Photovoltaic Devices

    Directory of Open Access Journals (Sweden)

    Ziyang Hu

    2011-01-01

    Full Text Available Indium-doped zinc oxide (IZO thin films were prepared by low-cost ultrasonic spray pyrolysis (USP. Both a low resistivity (3.13×10−3 Ω cm and an average direct transmittance (400∼1500 nm about 80% of the IZO films were achieved. The IZO films were investigated as anodes in bulk-heterojunction organic photovoltaic (OPV devices based on poly(3-hexylthiophene and [6,6]-phenyl C61-butyric acid methyl ester. The device fabricated on IZO film-coated glass substrate showed an open circuit voltage of 0.56 V, a short circuit current of 8.49 mA cm-2, a fill factor of 0.40, and a power conversion efficiency of 1.91%, demonstrating that the IZO films prepared by USP technique are promising low In content and transparent electrode candidates of low-cost OPV devices.

  3. Flexible barrier film, method of forming same, and organic electronic device including same

    Energy Technology Data Exchange (ETDEWEB)

    Blizzard, John; Tonge, James Steven; Weidner, William Kenneth

    2013-03-26

    A flexible barrier film has a thickness of from greater than zero to less than 5,000 nanometers and a water vapor transmission rate of no more than 1.times.10.sup.-2 g/m.sup.2/day at 22.degree. C. and 47% relative humidity. The flexible barrier film is formed from a composition, which comprises a multi-functional acrylate. The composition further comprises the reaction product of an alkoxy-functional organometallic compound and an alkoxy-functional organosilicon compound. A method of forming the flexible barrier film includes the steps of disposing the composition on a substrate and curing the composition to form the flexible barrier film. The flexible barrier film may be utilized in organic electronic devices.

  4. Simulation of heterojunction organic thin film devices and exciton diffusion analysis in stacked-hetero device

    Science.gov (United States)

    Kamohara, Itaru; Townsend, Mark; Cottle, Bob

    2005-01-01

    A two-dimensional device simulation methodology for organic heterojunction thin film devices has been developed. Multilayer organic light emitting diodes, organic thin film heterojunction field effect transistors, and stacked heterojunction organic complementary devices were simulated. Heterojunction organic layer devices have been analyzed using a two-dimensional simulator with heterointerface models and organic material specific models. The stacked heterojunction organic double carrier device exhibits both horizontal and vertical carrier flow in the organic thin film. This unique dual-directional carrier flow shows efficient electron-hole recombination resulting in exciton generation in the organic heterojunction layers. Furthermore, the enhanced behavior of the generated excitons has been analyzed using a self-consistent exciton diffusion model. The vertical (thickness) diffusion of the excitons and the lateral (along heterointerface) diffusion (accompanied by exciton hopping) were simulated. The exciton diffusion model is applicable to electroluminescent characteristics in organic devices. This feature is one of the essential differences between the present model for high-injected polymer devices and conventional drift-diffusion transport in nonpolymer semiconductor devices.

  5. Fine structures of organic photovoltaic thin films probed by frequency-shift electrostatic force microscopy

    Science.gov (United States)

    Araki, Kento; Ie, Yutaka; Aso, Yoshio; Matsumoto, Takuya

    2016-07-01

    The localized charge and electrostatic properties of organic photovoltaic thin films are predominating factors for controlling energy conversion efficiency. The surface potential and electrostatic structures of organic photovoltaic thin films were investigated by frequency shift mode Kelvin force microscopy (KFM) and electrostatic force microscopy (EFM). The KFM images of a poly[2-methoxy-5-(3‧,7‧-dimethyloctyloxy)-1,4-phenylene vinylene]/phenyl-C61-butyric-acid-methyl ester (PCBM) blend thin film reveals that the PCBM domains precipitate as the topmost layer on the thin films. We find fine structures that were not observed in the topography and KFM images. The bias dependence of the EFM images suggests that the EFM contrast reflects the field-induced polarization, indicating the presence of charge trapping sites.

  6. Tetracene films for light-emitting transistors: chemical and physical effects of the organic dielectric substrates

    Science.gov (United States)

    Santato, Clara; Cicoira, Fabio; Bertolazzi, Simone

    2010-03-01

    Tetracene vacuum-sublimed films have been used to demonstrate the first Organic Light Emitting Field Effect Transistor (OLEFET), in 2003. Because of their planar configuration, OLEFET are excellent systems to study fundamental processes such as charge injection, transport, and light emission in organic semiconductor films. OLEFET are intensively investigated for applications in active matrix full-color displays and, ultimately, lasers. Since the first Tetracene-OLEFET, a number of excellent studies have been reported on vacuum-sublimed as well as solution-processed films of organic semiconductors incorporated into OLEFET. Investigating the role played by the surface substrate chemistry and establishing sound structure-property relationships in organic semiconductor films incorporated into OLEFET structures are the keys to understand and improve the optoelectronic characteristics of OLEFET. Here we present our results on the morphological, structural, light-emission, and charge transport properties in field-effect transistor configuration of vacuum-sublimed tetracene films deposited on chemically and physically different organic dielectric substrates (HMDS- and OTS-treated SiO2, polystyrene, parylene, PMMA).

  7. Corrosion protection by sonoelectrodeposited organic films on zinc coated steel.

    Science.gov (United States)

    Et Taouil, Abdeslam; Mahmoud, Mahmoud Mourad; Lallemand, Fabrice; Lallemand, Séverine; Gigandet, Marie-Pierre; Hihn, Jean-Yves

    2012-11-01

    A variety of coatings based on electrosynthesized polypyrrole were deposited on zinc coated steel in presence or absence of ultrasound, and studied in terms of corrosion protection. Cr III and Cr VI commercial passivation were used as references. Depth profiling showed a homogeneous deposit for Cr III, while SEM imaging revealed good surface homogeneity for Cr VI layers. These chromium-based passivations ensured good protection against corrosion. Polypyrrole (PPy) was also electrochemically deposited on zinc coated steel with and without high frequency ultrasound irradiation in aqueous sodium tartrate-molybdate solution. Such PPy coatings act as a physical barrier against corrosive species. PPy electrosynthesized in silent conditions exhibits similar properties to Cr VI passivation with respect to corrosion protection. Ultrasound leads to more compact and more homogeneous surface structures for PPy, as well as to more homogeneous distribution of doping molybdate anions within the film. Far better corrosion protection is exhibited for such sonicated films. PMID:22516111

  8. Implantation and annealing effects in molecular organic films

    CERN Document Server

    Pakhomov, G L; Shashkin, V I; Tura, J M; Ribo, J M; Ottaviano, L

    2002-01-01

    Ion implantation and annealing effects on the surface of phthalocyanine thin films have been studied by means of atomic force microscopy and electron spectroscopy for chemical analysis. Both the topology and the chemical composition of the surface are affected by irradiation. The influence of the irradiation dose is shown. The chemical degradation of the layer results mainly in the decrease of atomic concentration of nitrogen and chlorine, and in the increase of atomic concentration of oxygen. At highest dose, carbonization becomes important. Furthermore, N 1s, C 1s and Cl 2p core levels testify that the formation of new chemical species occurs in implanted pthalocyanine films. All these processes are modified by subsequent heat treatment in different ways, depending on the applied implantation fluence.

  9. A Naphthalenediimide-Based Metal-Organic Framework and Thin Film Exhibiting Photochromic and Electrochromic Properties.

    Science.gov (United States)

    Xie, Yi-Xin; Zhao, Wen-Na; Li, Guo-Chang; Liu, Peng-Fei; Han, Lei

    2016-01-19

    A multifunctional metal-organic framework, NBU-3, has been explored as a 2D three-connected network based on a naphthalenediimide-based ligand. The NBU-3 crystals display photochromic properties, and NBU-3 thin films on FTO substrates exhibit electrochromic properties. NBU-3 is the first example of MOF materials containing both photochromic and electrochromic properties, which can be desirable for thin film devices. PMID:26713454

  10. Nanostructuring on zinc phthalocyanine thin films for single-junction organic solar cells

    Science.gov (United States)

    Chaudhary, Dhirendra K.; Kumar, Lokendra

    2016-05-01

    Vertically aligned and random oriented crystalline molecular nanorods of organic semiconducting Zinc Phthalocyanine (ZnPc) have been grown on ITO coated glass substrate using solvent volatilization method. Interesting changes in surface morphology were observed under different solvent treatment. Vertically aligned nanorods of ZnPc thin film were observed in the films treated with acetone, where as the random oriented nanorods were observed in the films treated with chloroform. The X-ray diffraction (XRD), scanning electron microscopy (SEM), atomic force microscopy (AFM) have been used for characterization of nanostructures. The optical properties of the nanorods have been investigated by UV-Vis. absorption spectroscopy.

  11. Wrinkling of YBa2Cu3O7-x film prepared by trifluoroacetate metal organic deposition

    Science.gov (United States)

    Jin, L. H.; Li, C. S.; Yu, Z. M.; Feng, J. Q.; Zhang, S. N.; Sulpice, A.; Wang, Y.; Zhang, P. X.

    2015-11-01

    YBa2Cu3O7-x (YBCO) films with wrinkles have been fabricated on LaAlO3(1 0 0) substrates by trifluoroacetate metal organic deposition (TFA-MOD). The decomposition behavior of YBCO-TFA gel and the formation mechanism of wrinkles were analyzed by thermal analysis, Fourier transform infrared spectroscopy, and atomic force microscopy. The effects of wrinkles on the texture, microstructure and critical current density of the final crystallized film were also investigated by X-ray diffraction and scanning electron microscopy. The heating rate in the decomposition process was a crucial parameter to control the wavelength and wave amplitude of wrinkles on the surface of YBCO precursor film. Furthermore, the wrinkles of precursor films were transformed into the ridges of crystallized films during the crystallization process. Large ridges resulted in the degradation of texture of YBCO crystallized films. The decrease of critical current density (Jc) of YBCO crystallized films could be ascribed to the formation of ridges, the segregated phases and the degradation of texture. It suggested that the smooth morphology of YBCO precursor films would be beneficial to the enhancement of Jc value.

  12. Solution-Processed Organic Thin-Film Transistor Array for Active-Matrix Organic Light-Emitting Diode

    Science.gov (United States)

    Harada, Chihiro; Hata, Takuya; Chuman, Takashi; Ishizuka, Shinichi; Yoshizawa, Atsushi

    2013-05-01

    We developed a 3-in. organic thin-film transistor (OTFT) array with an ink-jetted organic semiconductor. All layers except electrodes were fabricated by solution processes. The OTFT performed well without hysteresis, and the field-effect mobility in the saturation region was 0.45 cm2 V-1 s-1, the threshold voltage was 3.3 V, and the on/off current ratio was more than 106. We demonstrated a 3-in. active-matrix organic light-emitting diode (AMOLED) display driven by the OTFT array. The display could provide clear moving images. The peak luminance of the display was 170 cd/m2.

  13. Molecular Dynamics Study of Ionic Liquid Film Based on [emim][Tf2N] and [emim][TfO] Adsorbed on Highly Oriented Pyrolytic Graphite

    Institute of Scientific and Technical Information of China (English)

    XUE Xiang-gui; ZHAO Li; L(U) Zhong-yuan; QIAN Hu-iun

    2013-01-01

    Molecular dynamics simulation was used to study the ionic liquid(IL) crystalline film based on 1-ethyl-3-methylimidazolium bis[trifluoromethylsulfonyl]imide([emim][Tf2N]) and 1-ethyl-3-methylimidazolium trifluoromethanesulfonate([emim][TfO]) on the graphite surface.Our results show that the cations are parallelly dis-tributed to the surface in the l/2 monolayer(ML) crystalline film.The [Tf2N] anions are parallel to the surface with the oxygen atoms at the bottom,whereas the [TfO] anions are perpendicularly distributed to the surface also with the oxygen atoms at the bottom in the 1/2 ML crystalline film.It has been found that the IL-vapor interface strongly influences the arrangement of ions at the interface.The anions in the top layer with the oxygen atoms outmost turn over to make themselves with the F atoms outmost so as to form C-H...O hydrogen bonds with the cations.The calculated orientational ordering shows that in the outmost layer at the IL-vapor interface,the cation rings present either parallel or perpendicular to the surface at 350 K.

  14. Singlet Exciton Lifetimes in Conjugated Polymer Films for Organic Solar Cells

    Directory of Open Access Journals (Sweden)

    Stoichko D. Dimitrov

    2016-01-01

    Full Text Available The lifetime of singlet excitons in conjugated polymer films is a key factor taken into account during organic solar cell device optimization. It determines the singlet exciton diffusion lengths in polymer films and has a direct impact on the photocurrent generation by organic solar cell devices. However, very little is known about the material properties controlling the lifetimes of singlet excitons, with most of our knowledge originating from studies of small organic molecules. Herein, we provide a brief summary of the nature of the excited states in conjugated polymer films and then present an analysis of the singlet exciton lifetimes of 16 semiconducting polymers. The exciton lifetimes of seven of the studied polymers were measured using ultrafast transient absorption spectroscopy and compared to the lifetimes of seven of the most common photoactive polymers found in the literature. A plot of the logarithm of the rate of exciton decay vs. the polymer optical bandgap reveals a medium correlation between lifetime and bandgap, thus suggesting that the Energy Gap Law may be valid for these systems. This therefore suggests that small bandgap polymers can suffer from short exciton lifetimes, which may limit their performance in organic solar cell devices. In addition, the impact of film crystallinity on the exciton lifetime was assessed for a small bandgap diketopyrrolopyrrole co-polymer. It is observed that the increase of polymer film crystallinity leads to reduction in exciton lifetime and optical bandgap again in agreement with the Energy Gap Law.

  15. Singlet Exciton Lifetimes in Conjugated Polymer Films for Organic Solar Cells

    KAUST Repository

    Dimitrov, Stoichko

    2016-01-13

    The lifetime of singlet excitons in conjugated polymer films is a key factor taken into account during organic solar cell device optimization. It determines the singlet exciton diffusion lengths in polymer films and has a direct impact on the photocurrent generation by organic solar cell devices. However, very little is known about the material properties controlling the lifetimes of singlet excitons, with most of our knowledge originating from studies of small organic molecules. Herein, we provide a brief summary of the nature of the excited states in conjugated polymer films and then present an analysis of the singlet exciton lifetimes of 16 semiconducting polymers. The exciton lifetimes of seven of the studied polymers were measured using ultrafast transient absorption spectroscopy and compared to the lifetimes of seven of the most common photoactive polymers found in the literature. A plot of the logarithm of the rate of exciton decay vs. the polymer optical bandgap reveals a medium correlation between lifetime and bandgap, thus suggesting that the Energy Gap Law may be valid for these systems. This therefore suggests that small bandgap polymers can suffer from short exciton lifetimes, which may limit their performance in organic solar cell devices. In addition, the impact of film crystallinity on the exciton lifetime was assessed for a small bandgap diketopyrrolopyrrole co-polymer. It is observed that the increase of polymer film crystallinity leads to reduction in exciton lifetime and optical bandgap again in agreement with the Energy Gap Law.

  16. Wavelength Dispersive X-ray Fluorescence Spectrometry for the Analysis of Organic Polymer Film

    International Nuclear Information System (INIS)

    Recently, many studies have been focused on the thin films because there are numerous industrial processes relevant to thin films such as fuel cells, sensors, lubricants, coatings, and so on. Physical and chemical properties of solid surface have been modified by ultra-thin coatings such as Langmuir-Blodgett (LB) method with a variety of types of organic functional materials for the specific purposes in many applications. In addition, the layer-by-layer technique using polyelectrolyte films are now of interest as biosensors, electrochromic and electroluminescent devices, etc. In general, several methods such as X-ray or neutron reflectivity, and quartz crystal microbalance (QCM) have been utilized for the thin film analysis. These optical techniques can measure the film thicknesses up to hundreds of nanometers while X-ray photoelectron spectroscopy is widely used to study a few nanometers thick films. Other methods such as X-ray Photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and atom force microscopy (AFM) have also been used in the film analysis in spite of some disadvantages for each method. X-ray fluorescence (XRF) has long been used as a rapid and simple analytical tool for the analysis of elemental composition of materials. XRF technique is suitable for on-line or in-line real-time monitoring because it is a non-destructive and rapid analysis with good precision and good accuracy at low cost. The aim of this work is to develop a new analytical technique for the quantitative analysis of polymer film on metal substrate. In the present study, Compton peak profile was investigated under different experimental conditions by using wavelength-dispersive XRF (WD-XRF). Compared to energy-dispersive XRF (ED-XRF), WD-XRF is more adequate in an accurate quantitative analysis of thin organic film

  17. How long may a breath sample be stored for at  -80 °C? A study of the stability of volatile organic compounds trapped onto a mixed Tenax:Carbograph trap adsorbent bed from exhaled breath.

    Science.gov (United States)

    Kang, S; Paul Thomas, C L

    2016-01-01

    Thermal desorption is used extensively in exhaled breath volatile organic compound (VOC) analysis, and it is often necessary to store the adsorbent tube samples before analysis. The possible introduction of storage artefacts is an important potential confounding factor in the development of standard methodologies for breath sampling and analysis. The stability of VOCs trapped from breath samples onto a dual bed Tenax(®) TA:Carbograph adsorbent tube and stored  -80°C was studied over 12.5 month. 25 samples were collected from a single male participant over 3 h and then stored at  -80 °C. Randomly selected adsorbent tubes were subsequent analysed by thermal desorption-gas chromatography-mass spectrometry at 5 times points throughout the 12.5 month of the study. Toluene-d8, decane-d22 and hexadecane-d34 internal standards were used to manage the instrument variability throughout the duration of the study. A breath-matrix consisting of 161 endogenous and 423 exogenous VOC was created. Iterative orthogonal partial least squared discriminant analysis (OPLS-DA) and principal components analysis (PCA) indicated that it was not possible to detect storage artefacts at 1.5 month storage. By 6 month storage artefacts were discernible with significant changes observed for 27% of the recovered VOC. Endogenous VOC were observed to be more susceptible to storage. A paired two-tailed t-test on the endogenous compounds indicated that the maximum storage duration under these conditions was 1.5 month with 94% of the VOCs stable. This study indicates that a prudent approach is best adopted for the storage of adsorbent samples; storage times should be minimised, and storage time examined as a possible discriminatory factor in multivariate analysis. PMID:27272219

  18. Molecular Adsorber Coating

    Science.gov (United States)

    Straka, Sharon; Peters, Wanda; Hasegawa, Mark; Hedgeland, Randy; Petro, John; Novo-Gradac, Kevin; Wong, Alfred; Triolo, Jack; Miller, Cory

    2011-01-01

    A document discusses a zeolite-based sprayable molecular adsorber coating that has been developed to alleviate the size and weight issues of current ceramic puck-based technology, while providing a configuration that more projects can use to protect against degradation from outgassed materials within a spacecraft, particularly contamination-sensitive instruments. This coating system demonstrates five times the adsorption capacity of previously developed adsorber coating slurries. The molecular adsorber formulation was developed and refined, and a procedure for spray application was developed. Samples were spray-coated and tested for capacity, thermal optical/radiative properties, coating adhesion, and thermal cycling. Work performed during this study indicates that the molecular adsorber formulation can be applied to aluminum, stainless steel, or other metal substrates that can accept silicate-based coatings. The coating can also function as a thermal- control coating. This adsorber will dramatically reduce the mass and volume restrictions, and is less expensive than the currently used molecular adsorber puck design.

  19. Controlled Microstructure and Photochromism of Inorganic-organic Thin Films by Ultrasound

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    A series of inorganic-organic thin films based on uniformly dispersed nanoparticles of polyoxometalates (POM)entrapped in polyacrylamide (PAM) matrix were prepared by ultrasonic method with different irradiation time.The microstructure, photochromic behavior and mechanism of the films were studied by transmission electron microscopy (TEM), ultraviolet-visible spectra (UV-VIS) and Fourier transform-infrared spectroscopy (FT-IR).The microstructure and photochromic properties of the hybrid thin films could be controlled by ultrasound.TEM image revealed that the average size of phosphotungstic acid (PWA) nanoparticles decreased from 20 to 10 nm with the ultrasound irradiation time from 30 to 60 min. After irradiated with ultraviolet light,the transparent films changed from colorless to blue and showed reversible photochromism. The hybrid film, with ultrasound irradiation for 60 min had higher photochromic efficiency and faster bleaching reaction than the one with ultrasound irradiation for 30 min. FT-IR spectra showed that the Keggin geometry of heteropolyoxometalate was still preserved inside the composites, and the interactions between polyanions and polymer matrix increased as the ultrasound time prolonged. It is suggested that the mechanism of the different photochromic properties for the inorganic-organic thin films is the variation of the microstructure and interfacial interactions induced by ultrasound.

  20. Optical properties of organic semiconductor thin films. Static spectra and real-time growth studies

    Energy Technology Data Exchange (ETDEWEB)

    Heinemeyer, Ute

    2009-07-20

    The aim of this work was to establish the anisotropic dielectric function of organic thin films on silicon covered with native oxide and to study their optical properties during film growth. While the work focuses mainly on the optical properties of Diindenoperylene (DIP) films, also the optical response of Pentacene (PEN) films during growth is studied for comparison. Spectroscopic ellipsometry and differential reflectance spectroscopy are used to determine the dielectric function of the films ex-situ and in-situ, i.e. in air and in ultrahigh vacuum. Additionally, Raman- and fluorescence spectroscopy is utilized to characterize the DIP films serving also as a basis for spatially resolved optical measurements beyond the diffraction limit. Furthermore, X-ray reflectometry and atomic force microscopy are used to determine important structural and morphological film properties. The absorption spectrum of DIP in solution serves as a monomer reference. The observed vibronic progression of the HOMO-LUMO transition allows the determination of the Huang-Rhys parameter experimentally, which is a measure of the electronic vibrational coupling. The corresponding breathing modes are measured by Raman spectroscopy. The optical properties of DIP films on native oxide show significant differences compared to the monomer spectrum due to intermolecular interactions. First of all, the thin film spectra are highly anisotropic due to the structural order of the films. Furthermore the Frenkel exciton transfer is studied and the energy difference between Frenkel and charge transfer excitons is determined. Real-time measurements reveal optical differences between interfacial or surface molecules and bulk molecules that play an important role for device applications. They are not only performed for DIP films but also for PEN films. While for DIP films on glass the appearance of a new mode is visible, the spectra of PEN show a pronounced energy red-shift during growth. It is shown how the

  1. Thin aligned organic polymer films for liquid crystal devices

    International Nuclear Information System (INIS)

    This project was designed to investigate the possibility of producing alignment layers for liquid crystal devices by cross-linking thin films containing anisotropic polymer bound chromophores via irradiation with polarised ultraviolet light. Photocross-linkable polymers find use in microelectronics, liquid crystal displays, printing and UV curable lacquers and inks; so there is an increasing incentive for the development of new varieties of photopolymers in general. The synthesis and characterisation of two new photopolymers that are suitable as potential alignment layers for liquid crystal devices are reported in this thesis. The first polymer contains the anthracene chromophore attached via a spacer unit to a methacrylate backbone and the second used a similarly attached aryl azide group. Copolymers of the new monomers with methyl methacrylate were investigated to establish reactivity ratios in order to understand composition drift during polymerisation. (author)

  2. Thin aligned organic polymer films for liquid crystal devices

    CERN Document Server

    Foster, K E

    1997-01-01

    This project was designed to investigate the possibility of producing alignment layers for liquid crystal devices by cross-linking thin films containing anisotropic polymer bound chromophores via irradiation with polarised ultraviolet light. Photocross-linkable polymers find use in microelectronics, liquid crystal displays, printing and UV curable lacquers and inks; so there is an increasing incentive for the development of new varieties of photopolymers in general. The synthesis and characterisation of two new photopolymers that are suitable as potential alignment layers for liquid crystal devices are reported in this thesis. The first polymer contains the anthracene chromophore attached via a spacer unit to a methacrylate backbone and the second used a similarly attached aryl azide group. Copolymers of the new monomers with methyl methacrylate were investigated to establish reactivity ratios in order to understand composition drift during polymerisation.

  3. XANES analysis of tribochemical and thermal films generating from some organic polysulfides

    Institute of Scientific and Technical Information of China (English)

    YI Hongling; ZENG Xiangqiong; CAO Yan; REN Tianhui; M. Kasrai; G. M. Bancroft

    2006-01-01

    X-ray absorption near edge structure (XANES) spectroscopy has been firstly used to characterize the chemical nature of tribochemical and thermal films generated from alkyl, benzyl and acylcontaining organic polysulfides. It has been found that the thermal films generated from these polysulfides are mainly composed of FeSO4, and alkyl disulfides also exist in the subsurface and bulk of thermal films generated from acyl-containing polysulfides. Under tribochemical conditions, the composition of film is dependent on the molecular structure of the additives.Namely, the tribochemical film generated from alkyl polysulfide is composed of alkyl disulfide in the out surface, a mixture of FeSO4, FeS2 and sulfoxide in the subsurface, and FeSO4 in the bulk; the composition of the tribochemical film for benzyl polysulfide consists of FeSO4 in the out surface, while the composition in subsurface and bulk is the same as the alkyl polysulfide. For acyl-containing polysulfides, the tribochemical films consist of alkyl disulfide in the out surface, and FeS2 in the subsurface and bulk.

  4. Nanomechanical investigation of thin-film electroceramic/metal-organic framework multilayers

    International Nuclear Information System (INIS)

    Thin-film multilayer stacks of mechanically hard magnetron sputtered indium tin oxide (ITO) and mechanically soft highly porous surface anchored metal-organic framework (SURMOF) HKUST-1 were studied using nanoindentation. Crystalline, continuous, and monolithic surface anchored MOF thin films were fabricated using a liquid-phase epitaxial growth method. Control over respective fabrication processes allowed for tuning of the thickness of the thin film systems with a high degree of precision. It was found that the mechanical indentation of such thin films is significantly affected by the substrate properties; however, elastic parameters were able to be decoupled for constituent thin-film materials (EITO ≈ 96.7 GPa, EHKUST−1 ≈ 22.0 GPa). For indentation of multilayer stacks, it was found that as the layer thicknesses were increased, while holding the relative thickness of ITO and HKUST-1 constant, the resistance to deformation was significantly altered. Such an observation is likely due to small, albeit significant, changes in film texture, interfacial roughness, size effects, and controlling deformation mechanism as a result of increasing material deposition during processing. Such effects may have consequences regarding the rational mechanical design and utilization of MOF-based hybrid thin-film devices

  5. Nanomechanical investigation of thin-film electroceramic/metal-organic framework multilayers

    Energy Technology Data Exchange (ETDEWEB)

    Best, James P., E-mail: james.best@empa.ch, E-mail: engelbert.redel@kit.edu, E-mail: christof.woell@kit.edu; Michler, Johann; Maeder, Xavier [Empa, Swiss Federal Laboratories for Materials Science and Technology, Laboratory for Mechanics of Materials and Nanostructures, Feuerwerkerstrasse 39, CH-3602 Thun (Switzerland); Liu, Jianxi; Wang, Zhengbang; Tsotsalas, Manuel; Liu, Jinxuan; Gliemann, Hartmut; Weidler, Peter G.; Redel, Engelbert, E-mail: james.best@empa.ch, E-mail: engelbert.redel@kit.edu, E-mail: christof.woell@kit.edu; Wöll, Christof, E-mail: james.best@empa.ch, E-mail: engelbert.redel@kit.edu, E-mail: christof.woell@kit.edu [Institute of Functional Interfaces (IFG), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany); Röse, Silvana [Preparative Macromolecular Chemistry, Institute for Chemical Technology and Polymer Chemistry (ICTP), Karlsruhe Institute of Technology (KIT), Engesserstrasse 18, 76128 Karlsruhe (Germany); Institute for Biological Interfaces (IBG), Karlsruhe Institute of Technology (KIT), Herrmann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany); Oberst, Vanessa [Institute of Applied Materials (IAM), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany); Walheim, Stefan [Institute of Nanotechnology (INT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany)

    2015-09-07

    Thin-film multilayer stacks of mechanically hard magnetron sputtered indium tin oxide (ITO) and mechanically soft highly porous surface anchored metal-organic framework (SURMOF) HKUST-1 were studied using nanoindentation. Crystalline, continuous, and monolithic surface anchored MOF thin films were fabricated using a liquid-phase epitaxial growth method. Control over respective fabrication processes allowed for tuning of the thickness of the thin film systems with a high degree of precision. It was found that the mechanical indentation of such thin films is significantly affected by the substrate properties; however, elastic parameters were able to be decoupled for constituent thin-film materials (E{sub ITO} ≈ 96.7 GPa, E{sub HKUST−1} ≈ 22.0 GPa). For indentation of multilayer stacks, it was found that as the layer thicknesses were increased, while holding the relative thickness of ITO and HKUST-1 constant, the resistance to deformation was significantly altered. Such an observation is likely due to small, albeit significant, changes in film texture, interfacial roughness, size effects, and controlling deformation mechanism as a result of increasing material deposition during processing. Such effects may have consequences regarding the rational mechanical design and utilization of MOF-based hybrid thin-film devices.

  6. Preparation of porous titanium oxide films onto indium tin oxide for application in organic photovoltaic devices

    Energy Technology Data Exchange (ETDEWEB)

    Macedo, Andreia G. [Laboratorio de Dispositivos Nanoestruturados, Departamento de Fisica, Universidade Federal do Parana, Curitiba, Parana (Brazil); Mattos, Luana L.; Spada, Edna R.; Serpa, Rafael B.; Campos, Cristiani S. [Laboratorio de Sistemas Nanoestruturados, Departamento de Fisica, Universidade Federal de Santa Catarina, Florianopolis, Santa Catarina (Brazil); Grova, Isabel R.; Ackcelrud, Leni [Laboratorio de Polimeros Paulo Scarpa, Departamento de Quimica, Universidade Federal do Parana, Curitiba, Parana (Brazil); Reis, Francoise T.; Sartorelli, Maria L. [Laboratorio de Sistemas Nanoestruturados, Departamento de Fisica, Universidade Federal de Santa Catarina, Florianopolis, Santa Catarina (Brazil); Roman, Lucimara S., E-mail: lsroman@fisica.ufpr.br [Laboratorio de Dispositivos Nanoestruturados, Departamento de Fisica, Universidade Federal do Parana, Curitiba, Parana (Brazil)

    2012-05-01

    In this work, porous ordered TiO{sub 2} films were prepared through sol gel route by using a monolayer of polystyrene spheres as template on indium-tin oxide/glass substrate. These films were characterized by SEM, AFM, Raman spectroscopy, UV-vis absorbance and XRD. The UV-vis absorbance spectrum show a pseudo band gap (PBG) with maxima at 460 nm arising from the light scattering and partial or total suppression of the photon density of states, this PBG can be controlled by the size of the pore. We also propose the use of this porous film as electron acceptor electrode in organic photovoltaic cells; we show that devices prepared with porous titania displayed higher efficiencies than devices using compact titania films as electrode. Such behaviour was observed in both bilayer and bulk heterojunction devices.

  7. Ordered nanocolumn-array organic semiconductor thin films with controllable molecular orientation

    Science.gov (United States)

    Yang, Bingchu; Duan, Haichao; Zhou, Conghua; Gao, Yongli; Yang, Junliang

    2013-12-01

    Ordered nanocolumn-array phthalocynine semiconductor thin films with controllable molecular orientation were fabricated by combining molecular template growth (MTG) and glancing angle deposition (GLAD) techniques. The pre-deposited planar perylene-3,4,9,10-tetracarboxylic-3,4,9,10-dianhydride (PTCDA) molecular template layer induces phthalocynine molecules arrange with a lying-down molecular orientation, in which the π-π stacking is vertical to the substrate improving the charge transport along the vertical direction; While the GLAD technique supports the formation of nanocolumn-array thin films, supplying a much larger exposed surface area than the conventional compact thin films. The ordered nanocolumn-array thin films with controllable molecular orientation fabricated by combining MTG and GLAD techniques show the potentials to fabricate ordered bulk heterojunction for improving the performance in organic photovoltaics.

  8. Mapping chemical concentration in binary thin organic films via multi-wavelength scanning absorption microscopy (MWSAM)

    International Nuclear Information System (INIS)

    The composition and thickness of binary thin organic films is determined by measuring the optical absorption at multiple wavelengths across the film surface and performing a component analysis fit to absorption standards for the materials. The multiple laser wavelengths are focused onto the surface using microscope objectives and raster scanned across the film surface using a piezo-electric actuator X–Y stage. All of the wavelengths are scanned simultaneously with a frequency division multiplexing system used to separate the individual wavelength response. The composition values are in good quantitative agreement with measurements obtained by scanning transmission x-ray microscopy (STXM). This new characterization technique extends quantitative compositional mapping of thin films to thickness regimes beyond that accessible by STXM. (paper)

  9. Tunable electrical conductivity in oriented thin films of tetrathiafulvalene-based covalent organic framework

    Energy Technology Data Exchange (ETDEWEB)

    Cai, SL; Zhang, YB; Pun, AB; He, B; Yang, JH; Toma, FM; Sharp, ID; Yaghi, OM; Fan, J; Zheng, SR; Zhang, WG; Liu, Y

    2014-09-16

    Despite the high charge-carrier mobility in covalent organic frameworks (COFs), the low intrinsic conductivity and poor solution processability still impose a great challenge for their applications in flexible electronics. We report the growth of oriented thin films of a tetrathiafulvalene-based COF (TTF-COF) and its tunable doping. The porous structure of the crystalline TTF-COF thin film allows the diffusion of dopants such as I-2 and tetracyanoquinodimethane (TCNQ) for redox reactions, while the closely packed 2D grid sheets facilitate the cross-layer delocalization of thus-formed TTF radical cations to generate more conductive mixed-valence TTF species, as is verified by UV-vis-NIR and electron paramagnetic resonance spectra. Conductivity as high as 0.28 S m(-1) is observed for the doped COF thin films, which is three orders of magnitude higher than that of the pristine film and is among the highest for COF materials.

  10. Layer-by-layer deposited organic/inorganic hybrid multilayer films containing noncentrosymmetrically orientated azobenzene chromophores.

    Science.gov (United States)

    Kang, En-Hua; Bu, Tianjia; Jin, Pengcheng; Sun, Junqi; Yang, Yanqiang; Shen, Jiacong

    2007-07-01

    Organic/inorganic hybrid multilayer films with noncentrosymmetrically orientated azobenzene chromophores were fabricated by the sequential deposition of ZrO2 layers by a surface sol-gel process and subsequent layer-by-layer (LbL) adsorption of the nonlinear optical (NLO)-active azobenzene-containing polyanion PAC-azoBNS and poly(diallyldimethylammonium chloride) (PDDA). Noncentrosymmetric orientation of the NLO-active azobenzene chromophores was achieved because of the strong repulsion between the negatively charged ZrO(2) and the sulfonate groups of the azobenzene chromophore in PAC-azoBNS. Regular deposition of ZrO(2)/PAC-azoBNS/PDDA multilayer films was verified by UV-vis absorption spectroscopy and quartz crystal microbalance measurements. Both UV-vis absorption spectroscopy and transmission second harmonic generation (SHG) measurements confirmed the noncentrosymmetric orientation of the azobenzene chromophores in the as-prepared ZrO2/PAC-azoBNS/PDDA multilayer films. The square root of the SHG signal (I(2omega)(1/2)) increases with the increase of the azobenzene graft ratio in PAC-azoBNS as the number of deposition cycles of the ZrO(2)/PAC-azoBNS/PDDA films remains the same, while the second-order susceptibility chi(zzz)(2) of the film decreases with the increase of the azobenzene graft ratio. Furthermore, the present method was successfully extended to realize the noncentrosymmetric orientation of azobenzene chromophores in multilayer films when small organic azobenzene compounds with carboxylic acid and/or hydroxyl groups at one end and sulfonate groups at the other end were used. The present method was characterized by its simplicity and flexibility in film preparation, and it is anticipated to be a facile way to fabricate second-order nonlinear optical film materials. PMID:17555337

  11. Film-coupled nanoparticles by atomic layer deposition: Comparison with organic spacing layers

    Energy Technology Data Exchange (ETDEWEB)

    Ciracì, Cristian, E-mail: cristian.ciraci@duke.edu; Mock, Jack J.; McGuire, Felicia; Liu, Xiaojun; Smith, David R. [Center for Metamaterials and Integrated Plasmonics and Department of Electrical and Computer Engineering, Duke University, Durham, North Carolina 27708 (United States); Chen, Xiaoshu; Oh, Sang-Hyun [Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, Minnesota 55455 (United States)

    2014-01-13

    Film-coupled nanoparticle systems have proven a reliable platform for exploring the field enhancement associated with sub-nanometer sized gaps between plasmonic nanostructures. In this Letter, we present a side-by-side comparison of the spectral properties of film-coupled plasmon-resonant, gold nanoparticles, with dielectric spacer layers fabricated either using atomic layer deposition or using organic layers (polyelectrolytes or self-assembled monolayers of molecules). In either case, large area, uniform spacer layers with sub-nanometer thicknesses can be accurately deposited, allowing extreme coupling regimes to be probed. The observed spectral shifts of the nanoparticles as a function of spacer layer thickness are similar for the organic and inorganic films and are consistent with numerical calculations taking into account the nonlocal response of the metal.

  12. V2O5 thin film deposition for application in organic solar cells

    Science.gov (United States)

    Arbab, Elhadi A. A.; Mola, Genene Tessema

    2016-04-01

    Vanadium pentoxide V2O5 films were fabricated by way of electrochemical deposition technique for application as hole transport buffer layer in organic solar cell. A thin and uniform V2O5 films were successfully deposited on indium tin oxide-coated glass substrate. The characterization of surface morphology and optical properties of the deposition suggest that the films are suitable for photovoltaic application. Organic solar cell fabricated using V2O5 as hole transport buffer layer showed better devices performance and environmental stability than those devices fabricated with PEDOT:PSS. In an ambient device preparation condition, the power conversion efficiency increases by nearly 80 % compared with PEDOT:PSS-based devices. The devices lifetime using V2O5 buffer layer has improved by a factor of 10 over those devices with PEDOT:PSS.

  13. Metallo-organic decomposition for superconductive YBa2Cu3O7-x film

    International Nuclear Information System (INIS)

    Polycrystalline Y-Ba-Cu-O thin films have been deposited on alumina and sapphire substrates by using a metallo-organic decomposition method. The metallo-organic precursors of yttrium, barium, and copper metal-carboxylates have been synthesized and dissolved in a common solvent to make the ink. Deposition of the ink was made by a multi-layer spin-on coating followed by a thermal treatment. The treated films were polycrystalline, and the electrical results showed an onset temperature of about 90 K and a zero resistance temperature of 75 K. A mechanism has been postulated for the thermal decomposition of the compounds to the superconductive film. The principle of thermodynamics on this method is discussed

  14. Maximum probing depth of low-energy photoelectrons in an amorphous organic semiconductor film

    Energy Technology Data Exchange (ETDEWEB)

    Ozawa, Yusuke [Graduate School of Advanced Integration Science, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba 263-8522 (Japan); Nakayama, Yasuo, E-mail: nkym@restaff.chiba-u.jp [Graduate School of Advanced Integration Science, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba 263-8522 (Japan); Machida, Shin’ichi; Kinjo, Hiroumi [Graduate School of Advanced Integration Science, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba 263-8522 (Japan); Ishii, Hisao [Graduate School of Advanced Integration Science, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba 263-8522 (Japan); Center for Frontier Science, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba 263-8522 (Japan)

    2014-12-15

    Highlights: • Photoelectron attenuation lengths (AL) through amorphous organic films were examined. • In the energy range below 9 eV, AL fluctuates unlike a prediction by universal curve. • AL of photoelectron yield spectroscopy (PYS) measurements was found to be ∼3.6 nm. • PYS signals still survived through an 18 nm-thick film despite such a moderate AL. • This indicates buried interfaces in practical organic devices can be accessed by PYS. - Abstract: The attenuation length (AL) of low energy photoelectrons inside a thin film of a π-conjugated organic semiconductor material, 2,2′,2″-(1,3,5-benzinetriyl)-tris(1-phenyl-1-H-benzimidazole), was investigated using ultraviolet photoelectron spectroscopy (UPS) and photoelectron yield spectroscopy (PYS) to discuss their probing depth in amorphous organic thin films. The present UPS results indicated that the AL is 2–3 nm in the electron energy range of 6.3–8.3 eV with respect to the Fermi level, while the PYS measurements which collected the excited electrons in a range of 4.5–6 eV exhibited a longer AL of 3.6 nm. Despite this still short AL in comparison to a typical thickness range of electronic devices that are a few tens of nm-thick, the photoemission signal penetrating through further thicker (18 nm) organic film was successfully detected by PYS. This fact suggests that the electronic structures of “buried interfaces” inside practical organic devices are accessible using this rather simple measurement technique.

  15. Strongly Dichroic Organic Films via Controlled Assembly of Modular Aromatic Charge-Transfer Liquid Crystals.

    Science.gov (United States)

    Bé, Ariana Gray; Tran, Cheryl; Sechrist, Riley; Reczek, Joseph J

    2015-10-01

    The formation of highly anisotropic organic thin films based on the designed self-assembly of mixed-stack liquid crystals is reported. A series of alkoxyanthracene donors is combined in a modular fashion with a naphthalenediimide acceptor to generate new charge-transfer columnar liquid crystals. Materials characterization and molecular modeling provides insight into structure-function relationships in these organic materials that lead to the striking bulk dichroic properties of certain molecular assemblies. PMID:26375256

  16. Organic donor-acceptor thin film systems. Towards optimized growth conditions

    Energy Technology Data Exchange (ETDEWEB)

    Keller, Kerstin Andrea

    2009-06-30

    In this work the preparation of organic donor-acceptor thin films was studied. A chamber for organic molecular beam deposition was designed and integrated into an existing deposition system for metallic thin films. Furthermore, the deposition system was extended by a load-lock with integrated bake-out function, a chamber for the deposition of metallic contacts via stencil mask technique and a sputtering chamber. For the sublimation of the organic compounds several effusion cells were designed. The evaporation characteristic and the temperature profile within the cells was studied. Additionally, a simulation program was developed, which calculates the evaporation characteristics of different cell types. The following processes were integrated: evaporation of particles, migration on the cell walls and collisions in the gas phase. It is also possible to consider a temperature gradient within the cell. All processes can be studied separately and their relative strength can be varied. To verify the simulation results several evaporation experiments with different cell types were employed. The thickness profile of the prepared thin films was measured position-dependently. The results are in good agreement with the simulation. Furthermore, the simulation program was extended to the field of electron beam induced deposition (EBID). The second part of this work deals with the preparation and characterization of organic thin films. The focus hereby lies on the charge transfer salt (BEDT-TTF)(TCNQ), which has three known structure variants. Thin films were prepared by different methods of co-evaporation and were studied with optical microscopy, X-ray diffraction and energy dispersive X-ray spectroscopy (EDX).The formation of the monoclinic phase of (BEDT-TTF)(TCNQ) could be shown. As a last part tunnel structures were prepared as first thin film devices and measured in a He{sub 4} cryostat. (orig.)

  17. Thermal stability and partial dewetting of crystalline organic thin films: 3,4,9,10-perylenetetracarboxylic dianhydride on Ag(111)

    OpenAIRE

    Krause, B.; Dürr, A. C.; Schreiber, F.; Dosch, H.; Seeck, O

    2003-01-01

    The thermal stability and dewetting effects of crystalline organic thin films on inorganic substrates have been investigated for a model system for organic epitaxy, 3,4,9,10-perylenetetracarboxylic dianhydride (PTCDA) on Ag(111). The thin films deposited under a variety of growth conditions have been annealed stepwise and studied by in situ x-ray diffraction and noncontact atomic force microscopy. It has been found that comparatively smooth films deposited at temperatures T(g)less than or sim...

  18. Solvent Vapor Treatment Effects on Poly(3-hexylthiophene Thin Films and its Application for Interpenetrating Heterojunction Organic Solar Cells

    Directory of Open Access Journals (Sweden)

    Masanori Ozaki

    2010-11-01

    Full Text Available The solvent vapor treatment (SVT for poly(3-hexylthiophene (PAT6 films and its application to interpenetrating heterojunction organic solar cells have been studied. It was found that SVT could improve the crystallinity and electrical characteristics of the PAT6 films. We fabricated organic solar cells with an interpenetrating structure of PAT6 and fullerenes utilizing the SVT process, and discuss the improved performance of the solar cells by taking the film crystallinity, optical properties, and morphology into consideration.

  19. The Perfect Organism: the intruder of the Alien films as a bio-fictional construct

    DEFF Research Database (Denmark)

    Baron, Christian

    2016-01-01

    his film Quest for Fire (1981), as well as the fictional biology of the intruder in Ridley Scott’s Alien (1979) and some of its sequels, it introduces the notion of bio-fictional constructs as a term used to denote fictive and quasi-fictive organisms whose life cycle is either fully or partially...

  20. Organic thin film transistors with polymer brush gate dielectrics synthesized by atom transfer radical polymerization

    DEFF Research Database (Denmark)

    Pinto, J.C.; Whiting, G.L.; Khodabakhsh, S.;

    2008-01-01

    Low operating voltage is an important requirement that must be met for industrial adoption of organic field-effect transistors (OFETs). We report here solution fabricated polymer brush gate insulators with good uniformity, low surface roughness and high capacitance. These ultra thin polymer films...

  1. Antifouling polymeric films against marine organisms. Kaiyo seibutsu fuchaku boshi to kobunshi

    Energy Technology Data Exchange (ETDEWEB)

    Yamamori, N. (Nippon Paint Co. Ltd., Tokyo (Japan))

    1991-07-15

    An introduction is made on prevention of marine organisms from depositing on bridges and vessels, and on anti-fouling function of highly anti-fouling silicone resin and hydrolytic resins. First, in the case of silicone rubber, its surface is hydrophobic making it more difficult for sticking constituent (glycoprotein) in a depositing organism to deposit, in addition to its resilience, which sheds off easily the deposited organisms by its impact resilience. On the one hand, organism deposition can be prevented by means of micro-domain structure. Further, a description is given on the hydrolytic resins as to their anti-fouling agent releasing mechanism in hydrolytic paint film, and capability of prolonging the anti-fouling life by means of making the film thicker because the anti-fouling life is proportional to film thickness. In addition, explanations are given on elusion mechanism of hydrolytic resins, their behaviors in anti-fouling agent dispersion, the importance of controlling the elusion since the film elusion amount is an important factor to determine the release amount of the dispersed anti-fouling agent and the anti-fouling life, and the improvement of anti-fouling performance of the resins by means of adding monobasic acid into copper-acrylic resin. 9 refs., 13 figs., 8 tabs.

  2. Large nonlinear optical activity from hybrid inorganic–organic films with fluorinated benzene as isolation group

    International Nuclear Information System (INIS)

    Two azo chromophores containing fluorinated benzene and alkyl chain as isolation group were designed and synthesized, respectively, and the corresponding alkoxysilane dyes were obtained by coupling 3-isocyanatopropyltriethoxysilane with the chromophores. The molecular structures were verified by elemental analysis, hydrogen nuclear magnetic resonance, and Fourier transform infrared spectrum. Followed by a sol–gel process of the alkoxysilane dyes, inorganic–organic hybrid films were prepared by spin-coating. After electric poling, these hybrid films show the higher nonlinear optical (NLO) response than their analog containing chromophore DR1. Furthermore, the fluorinated benzene group exhibits better enhanced effect than the flexible alkyl group. The highest NLO coefficients (d33) of the hybrid film containing fluorinated benzene group was determined to be 140.5 pm V−1 at the chromophore concentration of 40%. - Highlights: • Inorganic-organic hybrid films are prepared via sol-gel process of alkoxysilane dyes • Nonlinear optical properties of hybrid films are investigated • Fluorinated benzene group effectively improves the nonlinear optical property

  3. Organic luminescent materials. First results on synthesis and characterization of Alq{sub 3} thin films

    Energy Technology Data Exchange (ETDEWEB)

    Baldacchini, G.; Gagliardi, S.; Montereali, R.M.; Pace, A. [ENEA, Centro Ricerche Frascati, Frascati, RM (Italy). Div. Fisica Applicata; Balaji Pode, R. [Nagpur University, Nagpur (India). Dept. of Physics

    2000-07-01

    Inorganic semiconductor diodes brought a technological revolution in the field of efficient light and laser sources in the last 20 years. New development in this field are expected from organic compounds, thanks to their low cost of synthesis and the relative easiness of growth as thin films. In particular, electrically pumped luminescent devices based on organic thin layers are among the most promising systems for next generation flat panel displays and semiconductor lasers. The tris - (8-hydroxy quinoline)-aluminium complex-Alq{sub 3} - is one of the most studied electro luminescent materials. In this paper, after a short introduction regarding historical development in the field, are reported preliminary results on the growth of Alq{sub 3} films and on their optical and spectroscopic characterization. [Italian] Negli ultimi 20 anni i diodi semiconduttori hanno portato una rivoluzione tecnologica nel campo delle sorgenti luminose e laser. Un nuovo sviluppo possibile in questo campo sono i composti organici, grazie al basso costo di sintesi e la relativa facilita' di crescerli in forma di film sottile. In particolare, dispositivi luminescenti pompati elettricamente basati su film sottili di materiali organici sono promettenti per una nuova generazione di display per schermi piatti e laser a Alq{sub 3} e' uno dei materiali elettroluminescenti piu' studiati. In questo rapporto, dopo una breve introduzione sullo sviluppo storico in questo campo, presentiamo i nostri primi risultati sulla crescita e caratterizzazione ottica di film di Alq{sub 3}.

  4. Lithography-Free Broadband Ultrathin-Film Absorbers with Gap-Plasmon Resonance for Organic Photovoltaics.

    Science.gov (United States)

    Choi, Minjung; Kang, Gumin; Shin, Dongheok; Barange, Nilesh; Lee, Chang-Won; Ko, Doo-Hyun; Kim, Kyoungsik

    2016-05-25

    Strategies to confine electromagnetic field within ultrathin film emerge as essential technologies for applications from thin-film solar cells to imaging and sensing devices. We demonstrate a lithography-free, low-cost, large-scale method to realize broadband ultrathi-film metal-dielectric-metal (MDM) absorbers, by exploiting gap-plasmon resonances for strongly confined electromagnetic field. A two-steps method, first organizing Au nanoparticles via thermal dewetting and then transferring the nanoparticles to a spacer-reflector substrate, is used to achieve broader absorption bandwidth by manipulating geometric shapes of the top metallic layer into hemiellipsoids. A fast-deposited nominal Au film, instead of a conventional slow one, is employed in the Ostwald ripening process to attain hemiellipsoidal nanoparticles. A polymer supported transferring step allows a wider range of dewetting temperature to manipulate the nanoparticles' shape. By incorporating circularity with ImageJ software, the geometries of hemiellipsoidal nanoparticles are quantitatively characterized. Controlling the top geometry of MDM structure from hemisphere to hemiellipsoid increases the average absorption at 500-900 nm from 23.1% to 43.5% in the ultrathin film and full width at half-maximum of 132-324 nm, which is consistently explained by finite-difference time-domain simulation. The structural advantages of our scheme are easily applicable to thin-film photovoltaic devices because metal electrodes can act as metal reflectors and semiconductor layers as dielectric spacers. PMID:27160410

  5. Optical performance of mesostructured composite silica film loaded with organic dye.

    Science.gov (United States)

    Guli, Mina; Chen, Shijian; Zhang, Dingke; Li, Xiaotian; Yao, Jianxi; Chen, Lei; Xiao, Li

    2014-01-10

    A mesoporous composite silica film loaded with organic dye has been successfully synthesized by a solgel reaction process and a simple postgrafting method at room temperature. The composite film was characterized by x-ray diffraction, transmission electron microscopy, UV-Vis, photoluminescence (PL) spectra, and laser performance, and the results confirmed the existence of dyes in the channels of the silica film. A blue-shift and fluorescence property in the PL spectrum was observed from the composite film compared with that of dye molecules in C₂H₅OH solution. The spectrum narrowing phenomena has been observed when the composite film is pumped at λp=355  nm by a Nd:YAG pulsed laser. A narrower, higher peak was observed in emission spectra from the mesostructured composite silica film compared with the PL spectrum of dye in C₂H₅OH solution. There is a substantial reduction in the full width at half-maximum of the emitting light, which results in peaks with linewidths of 26 nm or more. This collapse of the emission spectrum is one of the signatures of the presence of amplified spontaneous emission. PMID:24514063

  6. Roughness development in electrodeposited soft magnetic CoNiFe films in the presence of organic additives

    Directory of Open Access Journals (Sweden)

    STEVE RIEMER

    2003-05-01

    Full Text Available The effects of three additives, sodium lauryl sulfate (NaLS, saccharin (Sacc, and NaLS + Sacc, on roughness development during the electrodeposition of CoNiFe films were investigated. The characterization of these films by atomic force microscopy shows that the electrodeposits produced from NaLS containing solution result in a rough surface. The role of NaLS surfactant is to change the interfacial tension and clean non-polar species like hydrogen bubbles from the surface. In Sacc containing solution, the evolution of a smooth surface is controlled by adsorbed Sacc molecule at the interface. The kinetic roughening of these deposits was investigated by dynamic scaling analysis. It was demonstrated that the roughness of CoNiFe films, obtained in the presence of NaLS + Sacc additives, was also dependent on current density, roughness of substrate, and the temperature of plating bath.

  7. High-efficiency THz modulator based on phthalocyanine-compound organic films

    International Nuclear Information System (INIS)

    We report a high efficiency, broadband terahertz (THz) modulator following a study of phthalocyanine-compound organic films irradiated with an external excitation laser. Both transmission and reflection modulations of each organic/silicon bilayers were measured using THz time-domain and continuous-wave systems. For very low intensities, the experimental results show that AlClPc/Si can achieve a high modulation factor for transmission and reflection, indicating that AlClPc/Si has a superior modulation efficiency compared with the other films (CuPc and SnCl2Pc). In contrast, the strong attenuation of the transmitted and reflected THz waves revealed that a nonlinear absorption process takes place at the organic/silicon interface

  8. High-efficiency THz modulator based on phthalocyanine-compound organic films

    Science.gov (United States)

    He, Ting; Zhang, Bo; Shen, Jingling; Zang, Mengdi; Chen, Tianji; Hu, Yufeng; Hou, Yanbing

    2015-02-01

    We report a high efficiency, broadband terahertz (THz) modulator following a study of phthalocyanine-compound organic films irradiated with an external excitation laser. Both transmission and reflection modulations of each organic/silicon bilayers were measured using THz time-domain and continuous-wave systems. For very low intensities, the experimental results show that AlClPc/Si can achieve a high modulation factor for transmission and reflection, indicating that AlClPc/Si has a superior modulation efficiency compared with the other films (CuPc and SnCl2Pc). In contrast, the strong attenuation of the transmitted and reflected THz waves revealed that a nonlinear absorption process takes place at the organic/silicon interface.

  9. High-efficiency THz modulator based on phthalocyanine-compound organic films

    Energy Technology Data Exchange (ETDEWEB)

    He, Ting; Zhang, Bo, E-mail: bzhang@cnu.edu.cn, E-mail: sjl-phy@cnu.edu.cn; Shen, Jingling, E-mail: bzhang@cnu.edu.cn, E-mail: sjl-phy@cnu.edu.cn; Zang, Mengdi; Chen, Tianji [Beijing Key Laboratory for Terahertz Spectroscopy and Imaging, Key Laboratory of Terahertz Optoelectronics, Ministry of Education, Department of Physics, Capital Normal University, Beijing 100048 (China); Hu, Yufeng; Hou, Yanbing [Key Laboratory of Luminescence and Optical Information, Ministry of Education, Institute of Optoelectronic Technology, Beijing Jiaotong University, Beijing 100044 (China)

    2015-02-02

    We report a high efficiency, broadband terahertz (THz) modulator following a study of phthalocyanine-compound organic films irradiated with an external excitation laser. Both transmission and reflection modulations of each organic/silicon bilayers were measured using THz time-domain and continuous-wave systems. For very low intensities, the experimental results show that AlClPc/Si can achieve a high modulation factor for transmission and reflection, indicating that AlClPc/Si has a superior modulation efficiency compared with the other films (CuPc and SnCl{sub 2}Pc). In contrast, the strong attenuation of the transmitted and reflected THz waves revealed that a nonlinear absorption process takes place at the organic/silicon interface.

  10. Solution coating of large-area organic semiconductor thin films with aligned single-crystalline domains

    KAUST Repository

    Diao, Ying

    2013-06-02

    Solution coating of organic semiconductors offers great potential for achieving low-cost manufacturing of large-area and flexible electronics. However, the rapid coating speed needed for industrial-scale production poses challenges to the control of thin-film morphology. Here, we report an approach - termed fluid-enhanced crystal engineering (FLUENCE) - that allows for a high degree of morphological control of solution-printed thin films. We designed a micropillar-patterned printing blade to induce recirculation in the ink for enhancing crystal growth, and engineered the curvature of the ink meniscus to control crystal nucleation. Using FLUENCE, we demonstrate the fast coating and patterning of millimetre-wide, centimetre-long, highly aligned single-crystalline organic semiconductor thin films. In particular, we fabricated thin films of 6,13-bis(triisopropylsilylethynyl) pentacene having non-equilibrium single-crystalline domains and an unprecedented average and maximum mobilities of 8.1±1.2 cm2 V-1 s -1 and 11 cm2 V-1 s-1. FLUENCE of organic semiconductors with non-equilibrium single-crystalline domains may find use in the fabrication of high-performance, large-area printed electronics. © 2013 Macmillan Publishers Limited. All rights reserved.

  11. Combinatorial Techniques to Efficiently Investigate and Optimize Organic Thin Film Processing and Properties

    Directory of Open Access Journals (Sweden)

    Hans-Werner Schmidt

    2013-04-01

    Full Text Available In this article we present several developed and improved combinatorial techniques to optimize processing conditions and material properties of organic thin films. The combinatorial approach allows investigations of multi-variable dependencies and is the perfect tool to investigate organic thin films regarding their high performance purposes. In this context we develop and establish the reliable preparation of gradients of material composition, temperature, exposure, and immersion time. Furthermore we demonstrate the smart application of combinations of composition and processing gradients to create combinatorial libraries. First a binary combinatorial library is created by applying two gradients perpendicular to each other. A third gradient is carried out in very small areas and arranged matrix-like over the entire binary combinatorial library resulting in a ternary combinatorial library. Ternary combinatorial libraries allow identifying precise trends for the optimization of multi-variable dependent processes which is demonstrated on the lithographic patterning process. Here we verify conclusively the strong interaction and thus the interdependency of variables in the preparation and properties of complex organic thin film systems. The established gradient preparation techniques are not limited to lithographic patterning. It is possible to utilize and transfer the reported combinatorial techniques to other multi-variable dependent processes and to investigate and optimize thin film layers and devices for optical, electro-optical, and electronic applications.

  12. Nanoscale aluminum concaves for light-trapping in organic thin-films

    Science.gov (United States)

    Goszczak, Arkadiusz Jarosław; Adam, Jost; Cielecki, Paweł Piotr; Fiutowski, Jacek; Rubahn, Horst-Günter; Madsen, Morten

    2016-07-01

    Anodic aluminum oxide (AAO) templates, fabricated from oxalic acid and phosphoric acid, lead to non-periodic nanoscale concave structures in their underlying aluminum layer, which are investigated for their field-enhancement properties by applying a thin-film polymer coating based laser ablation technique. Local ablation spots, corresponding to field enhancement on the ridge edges of the aluminum concave nanostructures, are observed in surface-covering polymer films, and confirmed with FDTD studies. The field enhancement leads to improved light absorption in the applied polymer layers, which may be used as an efficient method for enhancing the power conversion efficiency of organic solar cells.

  13. Trapping light with micro lenses in thin film organic photovoltaic cells.

    Science.gov (United States)

    Tvingstedt, Kristofer; Dal Zilio, Simone; Inganäs, Olle; Tormen, Massimo

    2008-12-22

    We demonstrate a novel light trapping configuration based on an array of micro lenses in conjunction with a self aligned array of micro apertures located in a highly reflecting mirror. When locating the light trapping element, that displays strong directional asymmetric transmission, in front of thin film organic photovoltaic cells, an increase in cell absorption is obtained. By recycling reflected photons that otherwise would be lost, thinner films with more beneficial electrical properties can effectively be deployed. The light trapping element enhances the absorption rate of the solar cell and increases the photocurrent by as much as 25%. PMID:19104592

  14. Quantitative analysis and optimization of gravure printed metal ink, dielectric, and organic semiconductor films.

    Science.gov (United States)

    Higgins, Stuart G; Boughey, Francesca L; Hills, Russell; Steinke, Joachim H G; Muir, Beinn V O; Campbell, Alasdair J

    2015-03-11

    Here we demonstrate the optimization of gravure printed metal ink, dielectric, and semiconductor formulations. We present a technique for nondestructively imaging printed films using a commercially available flatbed scanner, combined with image analysis to quantify print behavior. Print speed, cliché screen density, nip pressure, the orientation of print structures, and doctor blade extension were found to have a significant impact on the quality of printed films, as characterized by the spreading of printed structures and variation in print homogeneity. Organic semiconductor prints were observed to exhibit multiple periodic modulations, which are correlated to the underlying cell structure. PMID:25646647

  15. Electric dipolar interaction assisted growth of single crystalline organic thin films

    Energy Technology Data Exchange (ETDEWEB)

    Jin-ming, Cai [Material Science and Technology Division, Oak Ridge National Laboratory; Yu-Yang, Zhang [Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China; Hao, Hu [Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China; Li-Hong, Bao [Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China; Li-Da, Pan [Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China; Wei, Tang [Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China; Guo, Li [Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China; Shi-Xuan, Du [Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China; Jian, Shen [Material Science and Technology Division, Oak Ridge National Laboratory; Hong-Jun, Gao [Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China

    2010-01-01

    We report on a forest-like-to-desert-like pattern evolution in the growth of an organic thin film observed by using an atomic force microscope. We use a modified diffusion limited aggregation model to simulate the growth process and are able to reproduce the experimental patterns. The energy of electric dipole interaction is calculated and determined to be the driving force for the pattern formation and evolution. Based on these results, single crystalline films are obtained by enhancing the electric dipole interaction while limiting effects of other growth parameters.

  16. Nanoscale aluminum concaves for light-trapping in organic thin-films

    DEFF Research Database (Denmark)

    Goszczak, Arkadiusz Jaroslaw; Adam, Jost; Cielecki, Pawel Piotr; Fiutowski, Jacek; Rubahn, Horst-Günter; Madsen, Morten

    2016-01-01

    Anodic aluminum oxide (AAO) templates, fabricated from oxalic acid and phosphoric acid, lead to non-periodic nanoscale concave structures in their underlying aluminum layer, which are investigated for their field-enhancement properties by applying a thin-film polymer coating based laser ablation...... technique. Local ablation spots, corresponding to field enhancement on the ridge edges of the aluminum concave nanostructures, are observed in surface-covering polymer films, and confirmed with FDTD studies. The field enhancement leads to improved light absorption in the applied polymer layers, which may be...... used as an efficient method for enhancing the power conversion efficiency of organic solar cells....

  17. In situ spectroelectrochemical and theoretical study on the oxidation of a 4H-imidazole-ruthenium dye adsorbed on nanocrystalline TiO2 thin film electrodes.

    Science.gov (United States)

    Zhang, Ying; Kupfer, Stephan; Zedler, Linda; Schindler, Julian; Bocklitz, Thomas; Guthmuller, Julien; Rau, Sven; Dietzek, Benjamin

    2015-11-28

    Terpyridine 4H-imidazole-ruthenium(II) complexes are considered promising candidates for use as sensitizers in dye sensitized solar cells (DSSCs) by displaying broad absorption in the visible range, where the dominant absorption features are due to metal-to-ligand charge transfer (MLCT) transitions. The ruthenium(III) intermediates resulting from photoinduced MLCT transitions are essential intermediates in the photoredox-cycle of the DSSC. However, their photophysics is much less studied compared to the ruthenium(II) parent systems. To this end, the structural alterations accompanying one-electron oxidation of the RuIm dye series (including a non-carboxylic RuIm precursor, and, carboxylic RuImCOO in solution and anchored to a nanocrystalline TiO2 film) are investigated via in situ experimental and theoretical UV-Vis absorption and resonance Raman (RR) spectroelectrochemistry. The excellent agreement between the experimental and the TDDFT spectra derived in this work allows for an in-depth assignment of UV-Vis and RR spectral features of the dyes. A concordant pronounced wavelength dependence with respect to the charge transfer character has been observed for the model system RuIm, and both RuImCOO in solution and attached on the TiO2 surface. Excitation at long wavelengths leads to the population of ligand-to-metal charge transfer states, i.e. photoreduction of the central ruthenium(III) ion, while high-energy excitation features an intra-ligand charge transfer state localized on the 4H-imidazole moiety. Therefore, these 4H-imidazole ruthenium complexes investigated here are potential multi-photoelectron donors. One electron is donated from MLCT states, and additionally, the 4H-imidazole ligand reveals electron-donating character with a significant contribution to the excited states of the ruthenium(III) complexes upon blue-light irradiation. PMID:26478575

  18. Comparison of Structural and Electrochemical Properties of V2O5 Thin Films Prepared by Organic/Inorganic Precursors

    International Nuclear Information System (INIS)

    Vanadium pentoxide thin films were produced from organic and inorganic precursors by sol gel dip-coating method. Fourier transform infrared spectroscopy and UV Vis spectroscopy were made to figure out structural properties of the films. Electrochemical properties were investigated by cyclic voltammetry. The shape of the curves was in agreement with a typical diffusion controlled cyclic voltammograms of amorphous V2O5 films for a reversible lithium ion intercalation/deintercalation process showing yellow–green–blue multi-electrochromism. V2O5 films, synthesized from organic precursor, indicated lower band gap energy, higher charge capacity as well as homogeneous and low granule size compared to inorganic route

  19. Recent progress on thin-film encapsulation technologies for organic electronic devices

    Science.gov (United States)

    Yu, Duan; Yang, Yong-Qiang; Chen, Zheng; Tao, Ye; Liu, Yun-Fei

    2016-03-01

    Among the advanced electronic devices, flexible organic electronic devices with rapid development are the most promising technologies to customers and industries. Organic thin films accommodate low-cost fabrication and can exploit diverse molecules in inexpensive plastic light emitting diodes, plastic solar cells, and even plastic lasers. These properties may ultimately enable organic materials for practical applications in industry. However, the stability of organic electronic devices still remains a big challenge, because of the difficulty in fabricating commercial products with flexibility. These organic materials can be protected using substrates and barriers such as glass and metal; however, this results in a rigid device and does not satisfy the applications demanding flexible devices. Plastic substrates and transparent flexible encapsulation barriers are other possible alternatives; however, these offer little protection to oxygen and water, thus rapidly degrading the devices. Thin-film encapsulation (TFE) technology is most effective in preventing water vapor and oxygen permeation into the flexible devices. Because of these (and other) reasons, there has been an intense interest in developing transparent barrier materials with much lower permeabilities, and their market is expected to reach over 550 million by 2025. In this study, the degradation mechanism of organic electronic devices is reviewed. To increase the stability of devices in air, several TFE technologies were applied to provide efficient barrier performance. In this review, the degradation mechanism of organic electronic devices, permeation rate measurement, traditional encapsulation technologies, and TFE technologies are presented.

  20. Preparation and characterization of LaNiO3 films grown by metal–organic deposition

    Indian Academy of Sciences (India)

    Yao Wang; Guofang Zhang; Chengshan Li; Guo Yan; Yafeng Lu

    2011-12-01

    We have investigated the synthesis and characterization of LaNiO3 (LNO) layers deposited on YSZ (100) substrate by metal–organic deposition (MOD). Texture, morphology and electrical properties of the LaNiO3 films were characterized by X-ray diffraction (XRD), atomic force microscopy (AFM), scanning electron microscopy (SEM) and electrical resistivity measurement. It has been found that the formation of (ℎ00) orientation depends on pyrolysis temperature, annealing temperature and thickness of LaNiO3 layers. The LaNiO3 films prepared under optimal condition indicate highly (ℎ00) orientation and a rather smooth surface. The LaNiO3 films show a metallic behaviour in the measured temperature range.

  1. Inverted organic solar cells employing RGO/TiOx composite films as electron transport layers

    International Nuclear Information System (INIS)

    Reduced graphene oxide (RGO)/titanium oxide (TiOx) (RGO/TiOx) composite films are successfully prepared by a sol-gel method. Inverted organic solar cells incorporating RGO/TiOx composite as electron transport layer and MoO3 as hole transport layer were fabricated. A short-circuit current of 9.85 mA/cm2 and power conversion efficiency of 3.82% are achieved by using the RGO/TiOx composite films with 0.083 mg/mL of RGO in TiO2 colloidal solution as electron transport layers for the inverted solar cells based on P3HT and PCBM, which are increased by 14.8% and 26.1% compared with the reference device without RGO, respectively. Impedance measurements revealed that the significantly enhanced efficiency was attributed to the RGO/TiOx composite films with efficient electron transport

  2. Nanobiohybrid structures based on the organized films of photosensitive membrane proteins

    International Nuclear Information System (INIS)

    The fundamental principles and technologies for the design of stable film systems based on biomembranes, photosensitive membrane proteins and complexes (retinal-containing proteins, reaction centres of photosynthetic bacteria, light-harvesting complexes of photosystems I and II), including their associates with metal and metal oxide nanoparticles or quantum dots are described. The advantages of controlled incorporation of the semiconductor or plasmonic nanocrystals into the biohybrid film structures are analyzed, first of all, the increase in the wavelength range of solar light harvesting and effective transfer of collected energy to the biological chromophores. Particular attention is devoted to the production of ultrathin and highly organized films at interfaces as the key stage of the design of nanobiohybrid materials with particular properties for photovoltaics, optoelectronics and nanophotonics. The bibliography includes 182 references

  3. High mobility InN films grown by metal-organic vapor phase epitaxy

    International Nuclear Information System (INIS)

    We have grown single crystalline InN films on sapphire substrate using metal-organic vapor phase epitaxy (MOVPE). Electron mobility exceeding 1100 cm2/V sec was obtained for the as-grown films, with a donor concentration of 1-2 x 1019 cm-3. The observed mobility was higher than other reports using the MOVPE technique, and was comparable to the best results with similar carrier concentration using molecular beam epitaxy. Photoluminescence measurement showed a broad emission near 1.6 μm, indicating a likely narrow bandgap similar to many recent reports on InN. X-ray photoelectron spectroscopic analysis revealed little oxygen in the InN films grown. (copyright 2004 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  4. Transporting method for adsorbing tower and the adsorbing tower

    International Nuclear Information System (INIS)

    A cylindrical plastic bag is disposed to the upper surface of an adsorbing tower so as to surround a suspending piece. One opening of the bag is sealed, and other opening is secured in a sealed state to a bag holding portion disposed to glove box at a gate for the adsorbing tower box. The adsorbing tower is transported into the glove box, and after the completion of the operation of the adsorbing tower, the adsorbing tower is taken out in a state that the bag is restricted and sealed at a portion below the adsorbing tower. The bag may be made of a vinyl plastic, the bag holding portion may be a short-cylindrical protrusion, and may have an O-ring groove at the outer surface. Even if the adsorbing tower is heavy, the adsorbing tower can be carried out easily in a state where it is sealed gas tightly. (N.H.)

  5. Theoretical Insight of Physical Adsorption for a Single Component Adsorbent + Adsorbate System: II. The Henry Region

    KAUST Repository

    Chakraborty, Anutosh

    2009-07-07

    The Henry coefficients of a single component adsorbent + adsorbate system are calculated from experimentally measured adsorption isotherm data, from which the heat of adsorption at zero coverage is evaluated. The first part of the papers relates to the development of thermodynamic property surfaces for a single-component adsorbent + adsorbate system1 (Chakraborty, A.; Saha, B. B.; Ng, K. C.; Koyama, S.; Srinivasan, K. Langmuir 2009, 25, 2204). A thermodynamic framework is presented to capture the relationship between the specific surface area (Ai) and the energy factor, and the surface structural and the surface energy heterogeneity distribution factors are analyzed. Using the outlined approach, the maximum possible amount of adsorbate uptake has been evaluated and compared with experimental data. It is found that the adsorbents with higher specific surface areas tend to possess lower heat of adsorption (ΔH°) at the Henry regime. In this paper, we have established the definitive relation between Ai and ΔH° for (i) carbonaceous materials, metal organic frameworks (MOFs), carbon nanotubes, zeolites + hydrogen, and (ii) activated carbons + methane systems. The proposed theoretical framework of At and AH0 provides valuable guides for researchers in developing advanced porous adsorbents for methane and hydrogen uptake. © 2009 American Chemical Society.

  6. Self-assembly of ferromagnetic organic-inorganic perovskite-like films.

    Science.gov (United States)

    Akhtar, Naureen; Polyakov, Alexey O; Aqeel, Aisha; Gordiichuk, Pavlo; Blake, Graeme R; Baas, Jacob; Amenitsch, Heinz; Herrmann, Andreas; Rudolf, Petra; Palstra, Thomas T M

    2014-12-10

    Perovskite-based organic-inorganic hybrids hold great potential as active layers in electronics or optoelectronics or as components of biosensors. However, many of these applications require thin films grown with good control over structure and thickness--a major challenge that needs to be addressed. The work presented here is an effort towards this goal and concerns the layer-by-layer deposition at ambient conditions of ferromagnetic organic-inorganic hybrids consisting of alternating CuCl4-octahedra and organic layers. The Langmuir-Blodgett technique used to assemble these structures provides intrinsic control over the molecular organization and film thickness down to the molecular level. Magnetic characterization reveals that the coercive field for these thin films is larger than that for solution-grown layered bulk crystals. The strategy presented here suggests a promising cost effective route to facilitate the excellently controlled growth of sophisticated materials on a wide variety of substrates that have properties relevant for the high density storage media and spintronic devices. PMID:25059565

  7. [Effects of white organic light-emitting devices using color conversion films on electroluminescence spectra].

    Science.gov (United States)

    Hou, Qing-Chuan; Wu, Xiao-Ming; Hua, Yu-Lin; Qi, Qing-Jin; Li, Lan; Yin, Shou-Gen

    2010-06-01

    The authors report a novel white organic light-emitting device (WOLED), which uses a strategy of exciting organic/ inorganic color conversion film with a blue organic light-emitting diode (OLED). The luminescent layer of the blue OLED was prepared by use of CBP host blended with a blue highly fluorescent dye N-BDAVBi. The organic/inorganic color conversion film was prepared by dispersing a mixture of red pigment VQ-D25 and YAG : Ce3+ phosphor in PMMA. The authors have achieved a novel WOLED with the high color stability by optimizing the thickness and fluorescent pigment concentration of the color conversion film. When the driving voltage varied between 6 and 14 V, the color coordinates (CIE) varied slightly from (0.354, 0.304) to (0.357, 0.312) and the maximum current efficiency is about 5.8 cd x A(-1) (4.35 mA x cm(-2)), the maximum brightness is 16 800 cd x m(-2) at the operating voltage of 14 V. PMID:20707129

  8. Substrate mediated growth of organic semiconducting thin films; Templateffekte bei der Strukturierung organischer Halbleiterfilme

    Energy Technology Data Exchange (ETDEWEB)

    Goetzen, Jan

    2010-09-17

    Since electronic properties of molecular materials are closely related to their structural order a precise control of the molecular packing and crystalline orientation of thin films is of vital interest for an optimization of organic electronic devices. Of particular interest in this respect is the initial stage of film formation which is largely governed by the interplay of intermolecular and molecule-substrate interactions. One approach to control the molecular film structure is based on substrate mediated growth. In this respect we have studied structural properties of thin films of pentacene, pentacene- 5,7,12,14-tetrone and perfluoro-pentacene which were grown onto various substrates including metals, metal oxides and graphite. On metal surfaces the molecules initially form a chemisorbed monolayer where molecules even can be uniformly aligned when using appropriate substrates with twofold symmetry. Further deposition, however, is accompanied by a pronounced dewetting and formation of disjoined islands which results from a large structural mismatch between the molecular arrangement in the monolayer and the crystalline phase. In some cases it is possible to orient such islands by utilizing step mediated nucleation and decoration of step bunches which allows the preparation of azimuthally well oriented elongated islands. On single crystalline oxides the growth parallels the situation found before for SiO{sub 2} where islands of upright oriented molecules are formed. The growth on graphite is somewhat particular since the lattice provides a natural template for acenes yielding epitaxially ordered monolayer films with planar adsorption geometry like in case of metals. Interestingly, however, no dewetting occurs upon further growth and instead rather smooth films are formed. The detailed analysis for the case of pentacene showed that the substrate-molecule interaction actually is weaker than the intermolecular interaction so that multilayer films can lift the

  9. Polymer assisted solution processing of Ti-doped indium oxide transparent conducting thin films for organic solar cells

    International Nuclear Information System (INIS)

    Highlights: • Polymer assisted solution process. • Ti-doped indium oxide (TIO) transparent conducting films. • Replacement of sputtered ITO with polymer-assisted-solution-coated TIO films. • High mobility transparent conducting films. • Application of polymer-assisted-solution-coated TIO films to organic solar cells. - Abstract: We report the preparation and evaluation of Ti-doped indium oxide (TIO) transparent conducting films by a polymer-assisted solution (PAS) process, as well as the evaluation of this type of film as a transparent cathode in an inverted organic solar cell (IOCS). Both Ti- and In-PASs have been synthesized by coordinating Ti- and In-anionic complexes with polyethyleneimine. The final TIO–PAS was formed by mixing Ti-PAS into In-PAS with a Ti concentration between 1 at.% and 7 at.%. The TIO–PAS was spin-coated onto glass substrates to form uniform thin films of Ti-doped indium oxide, which were then annealed at high temperature. The optimum Ti concentration to achieve the best electrical and optical properties of PAS–TIO films was found to be 3 at.%. With the film thickness of 650 nm, PAS–TIO films had a sheet resistance of 65 Ω/sq and an optical transmittance greater than 85%. The feasibility of PAS-coated TIO thin film as a transparent electrode was evaluated by applying it to the fabrication of IOSCs, which showed the energy conversion efficiency of 4.60%

  10. Organosilicon Ion-Exchange and Complexing Adsorbents

    Institute of Scientific and Technical Information of China (English)

    M. Voronkov; N. Vlasova; Yu. Pozhidaev; L. Belousova

    2005-01-01

    @@ 1Introduction Modification of mineral synthetic or natural substrates by organosilicon G-functionally substituted monomers, copolycondensation of the latter with organic and organosilicon compounds, and hydrolytic polycondensation of these monomers are the most widely used methods of synthesis of organosilicon adsorbents.

  11. Improvement of the outcoupling efficiency of an organic light-emitting device by attaching microstructured films

    Science.gov (United States)

    Lin, Hoang-Yan; Lee, Jiun-Haw; Wei, Mao-Kuo; Dai, Ching-Liang; Wu, Chia-Fang; Ho, Yu-Hsuan; Lin, Hung-Yi; Wu, Tung-Chuan

    2007-07-01

    In this paper, we present and analyse the optical characteristics, such as spectral shift, CIE coordinates, viewing angle dependence, luminous current efficiency and luminous power efficiency, of an organic light-emitting device (OLED) with a commercial diffuser film or a brightness-enhancement film (BEF) attached. Compared to a planar green OLED, the luminous current efficiencies of the OLED with an attached diffuser film or BEF increase by 29% and 23%, respectively. The overall luminous power efficiencies are enhanced by 28% and 7%. Compared to the planar green device, we observe blue shifts at different viewing angles when microstructured films are attached, which is the evidence that the waveguiding modes are being extracted. In our planar OLED, the peak wavelength blue shifts and the full width at the half maximum (FWHM) decrease with increasing viewing angles due to the microcavity effect. When the diffuser is attached, the spectral peak has a constant blue shift (6 nm) compared to that of the planar OLED. On the other hand, in the BEF case, the spectral shift depends on the viewing angle (2-12 nm blue shifts from 0 to 80°). This is due to the different operating principles (scattering and redirected light) of the diffuser and BEF. Since the transmittance spectra of both the diffuser film and the BEF are flat over the visible range, it is suitable for lighting applications by using white OLED. When attaching the films on a commercial white OLED, the luminous current efficiencies of the OLED with an attached diffuser film or BEF increase by 34% and 31%, respectively. The overall luminous power efficiencies are enhanced by 42% and 8%.

  12. An anode with aluminum doped on zinc oxide thin films for organic light emitting devices

    International Nuclear Information System (INIS)

    Doped zinc oxides are attractive alternative materials as transparent conducting electrode because they are nontoxic and inexpensive compared with indium tin oxide (ITO). Transparent conducting aluminum-doped zinc oxide (AZO) thin films have been deposited on glass substrates by DC reactive magnetron sputtering method. Films were deposited at a substrate temperature of 150-bar oC in 0.03 Pa of oxygen pressure. The electrical and optical properties of the film with the Al-doping amount of 2 wt% in the target were investigated. For the 300-nm thick AZO film deposited using a ZnO target with an Al content of 2 wt%, the lowest electrical resistivity was 4x10-4Ωcm and the average transmission in the visible range 400-700 nm was more than 90%. The AZO film was used as an anode contact to fabricate organic light-emitting diodes. The device performance was measured and the current efficiency of 2.9 cd/A was measured at a current density of 100 mA/cm2

  13. Molecular organization in the thin films of chloroaluminium hexadecafluorophthalocyanine revealed by polarized Raman spectroscopy

    International Nuclear Information System (INIS)

    The molecular arrangement in the thin films of chloroaluminium hexadecafluorophthalocyanine (AlClPcF16) grown by physical vapor deposition has been studied using atomic force microscopy and optical spectroscopy techniques. It was shown that AlClPcF16 films, 20 nm thick, prepared on the quartz substrate at 60 °C are well organized and characterized by a predominantly co-facial parallel arrangement of molecules vertical to the surface. According to the polarized Raman spectroscopy measurements, the mean tilt angle between the AlClPcF16 species and the substrate surface was found to be 75 ± 5°. All intense bands in the experimental Infrared and Raman spectra of AlClPcF16 were assigned using density functional theory calculations. The theoretically predicted geometry and wavenumbers are in a good agreement with the experimental values. Apart from this, the temperature dependence of vapor pressure and sublimation enthalpy of AlClPcF16 were determined by the Knudsen effusion method. - Highlights: • Aluminium hexadecafluorophthalocyanine films were grown by physical vapor deposition. • Orientation of molecules in the films was studied using polarized Raman spectroscopy. • Films have a co-facial parallel arrangement of molecules vertical to the surface. • Temperature dependence of vapor pressure was determined by Knudsen effusion method

  14. Organic self-assembled layer-by-layer thin films for second-order nonlinear optics

    Science.gov (United States)

    Guzy, Matthew T.

    Layer-by-layer deposition techniques were used to fabricate films with second order nonlinear optical (NLO) properties. These materials are key to the development of electro-optic modulators used in fiber optic communication systems. Performance benefits and lower manufacturing costs are driving the development of organic NLO materials as replacements for inorganic crystalline materials such as lithium niobate. The layer-by-layer deposition technique in which polyelectrolytes are deposited on a surface by electrostatic effects is called the Ionically Self-Assembled Monolayer or ISAM method. The role of the optically inactive polycation's structure on deposition and chromophore orientation was studied by fabricating films with several different polycations. While the specific interactions responsible for chromophore orientation in ISAM films remains unclear, hydrogen bonding and electrostatic effects are ruled out as the sole sources of orientation. The highest values of chi(2) were observed under pH conditions that resulted in flat and thin layers. The relationship between pH and the optical homogeneity of the film was also explored. Deposition of polymers under pH conditions in which the polymer chains were aggregated in solution results in films that are not suitable for use in devices. In this work, a new layer-by-layer deposition technique was developed. Coined hybrid deposition, it relies on covalent bonds and electrostatic interactions for film fabrication. Optically inactive polyamines were used as sources of positive charges and as binding sites with optically active low molecular weight chromophores functionalized with a reactive triazine ring and negative charged sulfonate groups. Polar ordering of the chromophores was obtained when the deposition was done under conditions in which covalent bonding was the preferred attachment mechanism for the chromophore molecules. pH conditions in which electrostatic attachment dominated resulted in poorer orientation

  15. Dielectric properties of crystalline organic molecular films in the limit of zero overlap

    Energy Technology Data Exchange (ETDEWEB)

    D’Avino, Gabriele, E-mail: gabriele.davino@gmail.com [Laboratory for Chemistry of Novel Materials, University of Mons, Place du Parc 20, BE-7000 Mons, Belgium and Department of Physics, University of Liège, Allée du 6 Août 17, BE-4000 Liège (Belgium); Vanzo, Davide; Soos, Zoltán G., E-mail: soos@princeton.edu [Department of Chemistry, Princeton University, Princeton, New Jersey 08544 (United States)

    2016-01-21

    We present the calculation of the static dielectric susceptibility tensor and dipole field sums in thin molecular films in the well-defined limit of zero intermolecular overlap. Microelectrostatic and charge redistribution approaches are applied to study the evolution of dielectric properties from one to a few molecular layers in films of different conjugated molecules with organic electronics applications. Because of the conditional convergence of dipolar interactions, dipole fields depend on the shape of the sample and different values are found in the middle layer of a thick film and in the bulk. The shape dependence is eliminated when depolarization is taken into account, and the dielectric tensor of molecular films converges to the bulk limit within a few molecular layers. We quantify the magnitude of surface effects and interpret general trends among different systems in terms of molecular properties, such as shape, polarizability anisotropy, and supramolecular organization. A connection between atomistic models for molecular dielectrics and simpler theories for polarizable atomic lattices is also provided.

  16. Dielectric properties of crystalline organic molecular films in the limit of zero overlap

    International Nuclear Information System (INIS)

    We present the calculation of the static dielectric susceptibility tensor and dipole field sums in thin molecular films in the well-defined limit of zero intermolecular overlap. Microelectrostatic and charge redistribution approaches are applied to study the evolution of dielectric properties from one to a few molecular layers in films of different conjugated molecules with organic electronics applications. Because of the conditional convergence of dipolar interactions, dipole fields depend on the shape of the sample and different values are found in the middle layer of a thick film and in the bulk. The shape dependence is eliminated when depolarization is taken into account, and the dielectric tensor of molecular films converges to the bulk limit within a few molecular layers. We quantify the magnitude of surface effects and interpret general trends among different systems in terms of molecular properties, such as shape, polarizability anisotropy, and supramolecular organization. A connection between atomistic models for molecular dielectrics and simpler theories for polarizable atomic lattices is also provided

  17. Continuous, Highly Flexible, and Transparent Graphene Films by Chemical Vapor Deposition for Organic Photovoltaics

    KAUST Repository

    Gomez De Arco, Lewis

    2010-05-25

    We report the implementation of continuous, highly flexible, and transparent graphene films obtained by chemical vapor deposition (CVD) as transparent conductive electrodes (TCE) in organic photovoltaic cells. Graphene films were synthesized by CVD, transferred to transparent substrates, and evaluated in organic solar cell heterojunctions (TCE/poly-3,4- ethylenedioxythiophene:poly styrenesulfonate (PEDOT:PSS)/copper phthalocyanine/fullerene/bathocuproine/aluminum). Key to our success is the continuous nature of the CVD graphene films, which led to minimal surface roughness (∼ 0.9 nm) and offered sheet resistance down to 230 Ω/sq (at 72% transparency), much lower than stacked graphene flakes at similar transparency. In addition, solar cells with CVD graphene and indium tin oxide (ITO) electrodes were fabricated side-by-side on flexible polyethylene terephthalate (PET) substrates and were confirmed to offer comparable performance, with power conversion efficiencies (η) of 1.18 and 1.27%, respectively. Furthermore, CVD graphene solar cells demonstrated outstanding capability to operate under bending conditions up to 138°, whereas the ITO-based devices displayed cracks and irreversible failure under bending of 60°. Our work indicates the great potential of CVD graphene films for flexible photovoltaic applications. © 2010 American Chemical Society.

  18. Thin-film encapsulation of the air-sensitive organic-based ferrimagnet vanadium tetracyanoethylene

    Energy Technology Data Exchange (ETDEWEB)

    Froning, I. H.; Harberts, M.; Yu, H.; Johnston-Halperin, E., E-mail: ejh@physics.osu.edu [Department of Physics, The Ohio State University, Columbus, Ohio 43210-1117 (United States); Lu, Y. [Department of Chemistry, The Ohio State University, Columbus, Ohio 43210-1173 (United States); Epstein, A. J. [Department of Physics, The Ohio State University, Columbus, Ohio 43210-1117 (United States); Department of Chemistry, The Ohio State University, Columbus, Ohio 43210-1173 (United States)

    2015-03-23

    The organic-based ferrimagnet vanadium tetracyanoethylene (V[TCNE]{sub x∼2}) has demonstrated potential for use in both microwave electronics and spintronics due to the combination of high temperature magnetic ordering (T{sub C} > 600 K), extremely sharp ferromagnetic resonance (peak to peak linewidth of 1 G), and low-temperature conformal deposition via chemical vapor deposition (deposition temperature of 50 °C). However, air-sensitivity leads to the complete degradation of the films within 2 h under ambient conditions, with noticeable degradation occurring within 30 min. Here, we demonstrate encapsulation of V[TCNE]{sub x∼2} thin films using a UV-cured epoxy that increases film lifetime to over 710 h (30 days) as measured by the remanent magnetization. The saturation magnetization and Curie temperature decay more slowly than the remanence, and the coercivity is unchanged after 340 h (14 days) of air exposure. Fourier transform infrared spectroscopy indicates that the epoxy does not react with the film, and magnetometry measurements show that the presence of the epoxy does not degrade the magnetic properties. This encapsulation strategy directly enables a host of experimental protocols and investigations not previously feasible for air-sensitive samples and lays the foundation for the development of practical applications for this promising organic-based magnetic material.

  19. Highly Non-Linear Optical (NLO) organic crystals and films. Electrooptical organic materials

    Science.gov (United States)

    Mcmanus, Samuel P.; Rosenberger, Franz; Matthews, John

    1987-01-01

    Devices employing nonlinear optics (NLO) hold great promise for important applications in integrated optics, optical information processing and telecommunications. Properly designed organics possess outstanding optical and electrooptical properties which will substantially advance many technologies including electrooptical switching, optical amplification for communications, and parallel processing for hybrid optical computers. A brief comparison of organic and inorganic materials is given.

  20. Growth of thin films of organic nonlinear optical materials by vapor growth processes - An overview and examination of shortfalls

    Science.gov (United States)

    Frazier, D. O.; Penn, B. G.; Witherow, W. K.; Paley, M. S.

    1991-01-01

    Research on the growth of second- and third-order nonlinear optical (NLO) organic thin film by vapor deposition is reviewed. Particular attention is given to the experimental methods for growing thin films of p-chlorophenylurea, diacetylenes, and phthalocyanines; characteristics of the resulting films; and approaches for advancing thin film technology. It is concluded that the growth of NLO thin films by vapor processes is a promising method for the fabrication of planar waveguides for nonlinear optical devices. Two innovative approaches are proposed including a method of controlling the input beam frequency to maximize nonlinear effects in thin films and single crystals, and the alternate approach to the molecular design of organic NLO materials by increasing the transition dipole moment between ground and excited states of the molecule.

  1. Formation of molecular doping patterns in organic-inorganic hybrid films by a capillary electrophoresis doping technique

    International Nuclear Information System (INIS)

    A new technique is proposed for the fabrication of fine patterns of molecular doping in organic-inorganic hybrid materials by the combination of capillary electrophoresis doping (CED) and photolithography. The UV-induced polymerization of - -- C=C - -- bonds in organic groups yields a fine contrast of structures with the desired pattern in organic-inorganic hybrid films, and CED treatment introduces functional molecules only into unirradiated regions to form the doping patterns of molecules inside the films. The fine patterning of rhodamine-6G doping with from 2 to 4 μm resolution is demonstrated in hybrid films of 10 μm thickness.

  2. Self-organization of crystalline domains in originally amorphous perylene diimide films

    International Nuclear Information System (INIS)

    Thin films (100-150 nm) of 1,6,7,10-tetra-chloro-N, N'-dimethyl-perylene-tetracarboxylic- bisimide (Cl4MePTCDI) were grown by physical vapour deposition on glass and characterized as being widely amorphous with a rather small degree of intermolecular electronic coupling. A slow reorganization process was detected upon conditioning the films in air by optical microscopy. Polarized microscopy and scanning force microscopy revealed the formation of crystalline domains. Locally resolved absorption and photoluminescence measurements were used to analyse changes in intermolecular coupling. Individual domains were studied by micro-photoluminescence and temperature-dependent photoluminescence was used to characterize the degree of intermolecular coupling in the crystalline domains. The results are discussed in view of recently proposed applications of such perylene imides with a twisted aromatic core in organic inverters and organic photovoltaic cells

  3. Low voltage copper phthalocyanine organic thin film transistors with a polymer layer as the gate insulator

    International Nuclear Information System (INIS)

    Low voltage organic thin film transistors (OTFTs) were created using polymethyl-methacrylate-co g-lyciclyl-methacrylate (PMMA-GMA) as the gate dielectric. The OTFTs performed acceptably at supply voltages of about 10 V. From a densely packed copolymer brush, a leakage current as low as 2 x 10-8 A/cm2 was obtained. From the measured capacitance-insulator frequency characteristics, a dielectric constant in the range 3.9-5.0 was obtained. By controlling the thickness of the gate dielectric, the threshold voltage was reduced from -3.5 to -2.0 V. The copper phthalocyanine (CuPc) based organic thin film transistor could be operated at low voltage and 1.2 x 10-3 cm2/(V·s) mobility. (semiconductor devices)

  4. Performance improvement in pentacene organic thin film transistors by inserting a C60 ultrathin layer

    Institute of Scientific and Technical Information of China (English)

    Sun Qin-Jun; Xu Zheng; Zhao Su-Ling; Zhang Fu-Jun; Gao Li-Yan

    2011-01-01

    The contact effect on the performances of organic thin film transistors is studied here. A C60 ultrathin layer is inserted between Al source-drain electrode and pentacene to reduce the contact resistance. By a 3 nm C60 modification,the injection harrier is lowered and the contact resistance is reduced. Thus, the field-effect mobility increases from 0.12to 0.52 cm2/(V.s). It means that inserting a C60 ultra thin layer is a good method to improve the organic thin film transistor (OTFT) performance. The output curve is simulated by using a charge drift model. Considering the contact of OTFTs should be carried out.

  5. High brightness phosphorescent organic light emitting diodes on transparent and flexible cellulose films

    International Nuclear Information System (INIS)

    Organic light-emitting diodes (OLED) were fabricated on flexible and transparent reconstituted cellulose obtained from wood pulp. Cellulose is naturally available, abundant, and biodegradable and offers a unique substrate alternative for the fabrication of flexible OLEDs. Transparent cellulose material was formed by dissolution of cellulose in an organic solvent (dimethyl acetamide) at elevated temperature (165 °C) in the presence of a salt (LiCl). The optical transmission of 40-μm thick transparent cellulose sheet averaged 85% over the visible spectrum. High brightness and high efficiency thin film OLEDs were fabricated on transparent cellulose films using phosphorescent Ir(ppy)3 as the emitter material. The OLEDs achieved current and luminous emission efficiencies as high as 47 cd A−1 and 20 lm W−1, respectively, and a maximum brightness of 10 000 cd m−2. (paper)

  6. High mobility high efficiency organic films based on pure organic materials

    Science.gov (United States)

    Salzman, Rhonda F.; Forrest, Stephen R.

    2009-01-27

    A method of purifying small molecule organic material, performed as a series of operations beginning with a first sample of the organic small molecule material. The first step is to purify the organic small molecule material by thermal gradient sublimation. The second step is to test the purity of at least one sample from the purified organic small molecule material by spectroscopy. The third step is to repeat the first through third steps on the purified small molecule material if the spectroscopic testing reveals any peaks exceeding a threshold percentage of a magnitude of a characteristic peak of a target organic small molecule. The steps are performed at least twice. The threshold percentage is at most 10%. Preferably the threshold percentage is 5% and more preferably 2%. The threshold percentage may be selected based on the spectra of past samples that achieved target performance characteristics in finished devices.

  7. Photosensitive organized organic films in the light of bound electromagnetic waves

    Science.gov (United States)

    Sekkat, Zouheir; Knoll, Wolfgang

    1997-01-01

    This paper describes recent advances in the field of photochromic polymeric structures for optical data storage. In particular, we discuss photo-induced effects in supramolecular assemblies containing azobenzene molecules (e.g. Langmuir-Blodgett-Kuhn structures and ultrathin silane layers). Reorientation of azobenzenes in these structures is compared to that observed in spin-cast films. Photoisomerization and photo-induced orientation of azobenzene molecules is studied at the molecular level by means of azosilane molecules chemisorbed on silicon oxide substrates. The study of the thermal back isomerization reaction of the azobenzene molecules in these layers reveals steric hindrance at the molecular level. These ultra-thin photochromic self-assembled monolayers (SAMs) exhibit persistent dichroism upon linearly polarized light irradiation. This dichroism could be both written and erased by irradiation with light of an appropriate wavelength. In addition, the sign of this dichroism can be inverted by choosing the appropriate polarization of the irradiating light, thus showing a 'smart communication' between the light polarization and the ultra-thin photochromic layers. Photoisomerization also induces reversible changes in the optical thickness of these molecularly thin SAMs. Langmuir- Blodgett-Kuhn (LBK) multilayer assemblies of 'hairy-rod' polyglutamates with stiff main chains and flexible side chains containing photochromic azo units exhibit a highly optically anisotropic structure when the azo molecules are in the trans form, and a nearly optically isotropic structure when the azo molecules are in the cis form. The trans $ARLR cis photoisomerization of the azo molecules switches them between a highly oriented trans configuration and a bend cis configuration, thus turning the anisotropy 'on' and 'off.' In contrast to spin-cast polymer films containing azobenzene units, photoselection under polarized light irradiation does not occur in these LBK structures. The

  8. High index of refraction films for dielectric mirrors prepared by metal-organic chemical vapor deposition

    International Nuclear Information System (INIS)

    A wide variety of metal oxides with high index of refraction can be prepared by Metal-Organic Chemical Vapor Deposition. We present some recent optical and laser damage results on oxide films prepared by MOCVD which could be used in a multilayer structure for highly reflecting (HR) dielectric mirror applications. The method of preparation affects both optical properties and laser damage threshold. 10 refs., 8 figs., 4 tabs

  9. Hybrid organic-inorganic coatings and films containing conducting polyaniline nanoparticles

    Czech Academy of Sciences Publication Activity Database

    Špírková, Milena; Stejskal, Jaroslav; Prokeš, J.

    2004-01-01

    Roč. 212, č. 1 (2004), s. 343-348. ISSN 1022-1360. [Electrical and Related Properties of Polymers and Other Organic Solids /9./. Prague, 14.07.2002-18.07.2002] R&D Projects: GA AV ČR KSK4050111; GA ČR GA203/01/0735 Institutional research plan: CEZ:AV0Z4050913 Keywords : atomic force microscopy * films * hybrid networks Subject RIV: CD - Macromolecular Chemistry Impact factor: 0.691, year: 2004

  10. Comparative study of the growth of sputtered aluminum oxide films on organic and inorganic substrates

    OpenAIRE

    Sellner, Stefan; Gerlach, Alexander; Kowarik, Stefan; Schreiber, Frank; Dosch, Helmut; Meyer, Stephan; Pflaum, Jens; Ulbricht, Gerhard

    2007-01-01

    We present a comparative study of the growth of the technologically highly relevant gate dielectric and encapsulation material aluminum oxide in inorganic and also organic heterostructures. Atomic force microscopy studies indicate strong similarities in the surface morphology of aluminum oxide films grown on these chemically different substrates. In addition, from X-ray reflectivity measurements we extract the roughness exponent \\beta of aluminum oxide growth on both substrates. By renormalis...

  11. Liquid- and Gas-Phase Diffusion of Ferrocene in Thin Films of Metal-Organic Frameworks

    OpenAIRE

    Wencai Zhou; Christof Wöll; Lars Heinke

    2015-01-01

    The mass transfer of the guest molecules in nanoporous host materials, in particular in metal-organic frameworks (MOFs), is among the crucial features of their applications. By using thin surface-mounted MOF films in combination with a quartz crystal microbalance (QCM), the diffusion of ferrocene vapor and of ethanolic and hexanic ferrocene solution in HKUST-1 was investigated. For the first time, liquid- and gas-phase diffusion in MOFs was compared directly in the identical sample. The diff...

  12. Improved sensor selectivity for chemical vapors using organic thin-film transistors

    OpenAIRE

    Royer, James Edward

    2012-01-01

    Organic thin-film transistors (OTFTs) offer unique methods for chemical vapor detection due to multiple device parameters which are influenced by reactive gases. The simplest conventional readout for OTFT sensors is the drain current; however, the drain current is dependent on changes in fundamental device characteristics such as mobility and/or threshold voltage. The chemical properties of the analyte determine whether the mobility or threshold voltage response is dominant for the OTFT. The ...

  13. Photoactive self-assembled monolayers for optically switchable organic thin-film transistors

    OpenAIRE

    Salinas, Michael; Halik, Marcus

    2013-01-01

    We investigate the photoconductive and photovoltaic effects in organic thin-film transistors with thin hybrid dielectrics composed of aluminum oxide and self-assembled monolayers (SAMs). By using SAM molecules with an electro-optical functionality tuning of the photoinduced charge transfer at the interface of semiconductor and SAM upon illumination with laser light can be achieved. Control of the threshold voltage by the SAM composition enables the optical operation of the transistors without...

  14. Organic Self-Assembled Layer-by-Layer Thin Films for Second-Order Nonlinear Optics

    OpenAIRE

    Guzy, Matthew Thomas

    2003-01-01

    Layer-by-layer deposition techniques were used to fabricate films with second order nonlinear optical (NLO) properties. These materials are key to the development of electro-optic modulators used in fiber optic communication systems. Performance benefits and lower manufacturing costs are driving the development of organic NLO materials as replacements for inorganic crystalline materials such as lithium niobate. The layer-by-layer deposition technique in which polyelectrolytes are deposit...

  15. Ultraselective Gas Separation by Nanoporous Metal-Organic Frameworks Embedded in Gas-Barrier Nanocellulose Films.

    Science.gov (United States)

    Matsumoto, Makoto; Kitaoka, Takuya

    2016-03-01

    Metal-organic frameworks (MOFs) are synthesized at carboxy groups on crystalline TEMPO-oxidized cellulose nanofibers (TOCNs). MOF-TOCN films coated on a paper filter have a hierarchical structure from the nano- to macroscale, and demonstrate a high CO2 /CH4 selectivity, over 120 for CO2 at a high gas flux, by the combination of the nanoporous MOFs and the gas-barrier TOCNs, which have strong affinity with each other. PMID:26669724

  16. Langmuir-Blodgett films of micron-sized organic and inorganic colloids.

    Science.gov (United States)

    Reculusa, Stéphane; Perrier-Cornet, Romain; Agricole, Béatrice; Héroguez, Valérie; Buffeteau, Thierry; Ravaine, Serge

    2007-12-28

    Multilayered films starting with silica or polymer particles in the micron-size range have been prepared using the Langmuir-Blodgett technique. The polymer particles made of highly cross-linked cores and hydrophilic shells were elaborated through a precipitation polymerization method that allows formation of particles with a low polydispersity. The influence of the surface function, the differences between organic and inorganic systems, and the characterization of these materials by means of reflectance infrared spectroscopy are also discussed. PMID:18060168

  17. The formation of organic (propolis films)/inorganic (layered crystals) interfaces for optoelectronic applications

    Science.gov (United States)

    Drapak, S. I.; Bakhtinov, A. P.; Gavrylyuk, S. V.; Kovalyuk, Z. D.; Lytvyn, O. S.

    2008-10-01

    Propolis (honeybee glue) organic films were prepared from an alcoholic solution on the surfaces of inorganic layered semiconductors (indium, gallium and bismuth selenides). Atomic force microscopy (AFM) and X-ray diffraction (XRD) are used to characterize structural properties of an organic/inorganic interfaces. It is shown that nanodimensional linear defects and nanodimensional cavities of various shapes are formed on the van der Waals (VDW) surfaces of layered crystals as a result of chemical interaction between the components of propolis (flavonoids, aminoacids and phenolic acids) and the VDW surfaces as well as deformation interaction between the VDW surfaces and propolis films during their polymerization. The nanocavities are formed as a result of the rupture of strong covalent bonds in the upper layers of layered crystals and have the shape of hexagons or triangles in the (0001) plane. The shape, lateral size and distribution of nanodimensional defects on the VDW surfaces depends on the type of crystals, the magnitude and distribution of surface stresses. We have obtained self-organized nanofold structures of propolis/InSe interface. It is established that such heterostructures have photosensitivity in the infrared range hν<1.2 eV (the values of energy gap are 1.2 eV for InSe and 3.07 eV for propolis films at room temperature).

  18. The response of quartz crystals coated with thin fatty acid film to organic gases

    International Nuclear Information System (INIS)

    We tried to apply a quartz crystal as a sensor by using the resonant frequency and the resistance properties of quartz crystals. Four kinds of fatty acids that have the same head groups were coated on the surfaces of the quartz crystals, and the shift of the resonant frequency and the resistance were observed based on the lengths of the tail groups. Myristic acid (C14), palmitic acid (C16), stearic acid (C18), and arachidic acid (C20) were deposited on the surfaces of quartz crystals by using the Langmuir-Blodgett (LB) method. As a result, the resonant frequency change was more sensitive to high molecular-weight fatty acids than to low molecular-weight ones. We also observed the effect of temperature on stearic acid LB films, and the response properties of quartz crystals coated with stearic-acid LB films to organic gases were investigated. As a result, the sensitivity of quartz crystals to organic gases was higher for higher molecular-weight gas, and we found that quartz crystals coated with stearic-acid LB film were more sensitive to organic gas than bare quartz crystals at room temperature

  19. The Integration and Applications of Organic Thin Film Transistors and Ferroelectric Polymers

    Science.gov (United States)

    Hsu, Yu-Jen

    Organic thin film transistors and ferroelectric polymer (polyvinylidene difluoride) sheet material are integrated to form various sensors for stress/strain, acoustic wave, and Infrared (heat) sensing applications. Different from silicon-based transistors, organic thin film transistors can be fabricated and processed in room-temperature and integrated with a variety of substrates. On the other hand, polyvinylidene difluoride (PVDF) exhibits ferroelectric properties that are highly useful for sensor applications. The wide frequency bandwidth (0.001 Hz to 10 GHz), vast dynamic range (100n to 10M psi), and high elastic compliance (up to 3 percent) make PVDF a more suitable candidate over ceramic piezoelectric materials for thin and flexible sensor applications. However, the low Curie temperature may have impeded its integration with silicon technology. Organic thin film transistors, however, do not have the limitation of processing temperature, hence can serve as transimpedance amplifiers to convert the charge signal generated by PVDF into current signal that are more measurable and less affected by any downstream parasitics. Piezoelectric sensors are useful for a range of applications, but passive arrays suffer from crosstalk and signal attenuation which have complicated the development of array-based PVDF sensors. We have used organic field effect transistors, which are compatible with the low Curie temperature of a flexible piezoelectric polymer,PVDF, to monolithically fabricate transimpedance amplifiers directly on the sensor surface and convert the piezoelectric charge signal into a current signal which can be detected even in the presence of parasitic capacitances. The device couples the voltage generated by the PVDF film under strain into the gate of the organic thin film transistors (OFET) using an arrangement that allows the full piezoelectric voltage to couple to the channel, while also increasing the charge retention time. A bipolar detector is created by

  20. NEXAF/XPS study of organic molecules adsorbed on rutile TiO2(110) and Al2O3/ Ni3Al(111) substrates

    OpenAIRE

    Naboka, Michael

    2014-01-01

    The spectroscopic studies of metal oxide surface interaction with different organic molecules have been performed for the needs of organic electronics, heterogeneous catalysis and surface chemistry. Three different systems: terephthalic acid (TPA) on rutile TiO2(110), azobenzene on rutile-TiO2(110), and tetracene on Al2O3/Ni3Al (111) were investigated.

  1. An introduction to ultrathin organic films from Langmuir-Blodgett to self-assembly

    CERN Document Server

    Ulman, Abraham

    1991-01-01

    The development of oriented organic monomolecular layers by the Langmuir-Blodgett (LB) and self-assembly (SA) techniques has led researchers toward their goal of assembling individual molecules into highly ordered architectures. Thus the continually growing contribution of LB and SA systems to the chemistry and physics of thin organic films is widely recognized. Equally well-known is the difficulty in keeping up to date with the burgeoning multidisciplinary research in this area. Dr. Ulman provides a massive survey of the available literature. The book begins with a section on analytical tools

  2. The interaction of organic adsorbate vibrations with substrate lattice waves in methyl-Si(111)-(1 × 1)

    International Nuclear Information System (INIS)

    A combined helium atom scattering and density functional perturbation theory study has been performed to elucidate the surface phonon dispersion relations for both the CH3-Si(111)-(1 × 1) and CD3-Si(111)-(1 × 1) surfaces. The combination of experimental and theoretical methods has allowed characterization of the interactions between the low energy vibrations of the adsorbate and the lattice waves of the underlying substrate, as well as characterization of the interactions between neighboring methyl groups, across the entire wavevector resolved vibrational energy spectrum of each system. The Rayleigh wave was found to hybridize with the surface rocking libration near the surface Brillouin zone edge at both the M¯-point and K¯-point. The calculations indicated that the range of possible energies for the potential barrier to the methyl rotation about the Si-C axis is sufficient to prevent the free rotation of the methyl groups at a room temperature interface. The density functional perturbation theory calculations revealed several other surface phonons that experienced mode-splitting arising from the mutual interaction of adjacent methyl groups. The theory identified a Lucas pair that exists just below the silicon optical bands. For both the CH3- and CD3-terminated Si(111) surfaces, the deformations of the methyl groups were examined and compared to previous experimental and theoretical work on the nature of the surface vibrations. The calculations indicated a splitting of the asymmetric deformation of the methyl group near the zone edges due to steric interactions of adjacent methyl groups. The observed shifts in vibrational energies of the -CD3 groups were consistent with the expected effect of isotopic substitution in this system

  3. The interaction of organic adsorbate vibrations with substrate lattice waves in methyl-Si(111)-(1 × 1)

    Energy Technology Data Exchange (ETDEWEB)

    Brown, Ryan D.; Hund, Zachary M.; Sibener, S. J., E-mail: s-sibener@uchicago.edu [The James Franck Institute and Department of Chemistry, The University of Chicago, 929 E. 57th Street, Chicago, Illinois 60637 (United States); Campi, Davide; Bernasconi, M. [Dipartimento di Scienza dei Materiali, Universitá di Milano-Bicocca, Via Cozzi 53, 20125 Milano (Italy); O’Leary, Leslie E.; Lewis, Nathan S. [Beckman Institute and Kavli Nanoscience Institute, Division of Chemistry and Chemical Engineering, 210 Noyes Laboratory, 127-72, California Institute of Technology, Pasadena, California 91125 (United States); Benedek, G. [Dipartimento di Scienza dei Materiali, Universitá di Milano-Bicocca, Via Cozzi 53, 20125 Milano (Italy); Donostia International Physics Center (DIPC), Universidad del País Vasco (EHU), 20018 Donostia / San Sebastian (Spain)

    2014-07-14

    A combined helium atom scattering and density functional perturbation theory study has been performed to elucidate the surface phonon dispersion relations for both the CH{sub 3}-Si(111)-(1 × 1) and CD{sub 3}-Si(111)-(1 × 1) surfaces. The combination of experimental and theoretical methods has allowed characterization of the interactions between the low energy vibrations of the adsorbate and the lattice waves of the underlying substrate, as well as characterization of the interactions between neighboring methyl groups, across the entire wavevector resolved vibrational energy spectrum of each system. The Rayleigh wave was found to hybridize with the surface rocking libration near the surface Brillouin zone edge at both the M{sup ¯}-point and K{sup ¯}-point. The calculations indicated that the range of possible energies for the potential barrier to the methyl rotation about the Si-C axis is sufficient to prevent the free rotation of the methyl groups at a room temperature interface. The density functional perturbation theory calculations revealed several other surface phonons that experienced mode-splitting arising from the mutual interaction of adjacent methyl groups. The theory identified a Lucas pair that exists just below the silicon optical bands. For both the CH{sub 3}- and CD{sub 3}-terminated Si(111) surfaces, the deformations of the methyl groups were examined and compared to previous experimental and theoretical work on the nature of the surface vibrations. The calculations indicated a splitting of the asymmetric deformation of the methyl group near the zone edges due to steric interactions of adjacent methyl groups. The observed shifts in vibrational energies of the -CD{sub 3} groups were consistent with the expected effect of isotopic substitution in this system.

  4. Influence of deposition parameters on morphology, growth and structure of crystalline and amorphous organic thin films : (the case of perylene and alpha-NPD)

    OpenAIRE

    Niyamakom, Phenwisa

    2008-01-01

    A growing research effort in organic electronics has been developped rapidly to utilize the electronic and optical properties of organic materials (polymers and oligomers) and hybrids (organic-inorganic composites) through novel material synthesis, thin film deposition techniques and many mores. Several applications, e.g. organic thin film transistors (OTFTs) and organic light emitting devices (OLEDs), have been envisioned in both academic research and industry. An understanding of thin film ...

  5. INFLUENCE OF FILM STRUCTURE AND LIGHT ON CHARGE TRAPPING AND DISSIPATION DYNAMICS IN SPUN-CAST ORGANIC THIN-FILM TRANSISTORS MEASURED BY SCANNING KELVIN PROBE MICROSCOPY

    Energy Technology Data Exchange (ETDEWEB)

    Teague, L.; Moth, M.; Anthony, J.

    2012-05-03

    Herein, time-dependent scanning Kelvin probe microscopy of solution processed organic thin film transistors (OTFTs) reveals a correlation between film microstructure and OTFT device performance with the location of trapped charge within the device channel. The accumulation of the observed trapped charge is concurrent with the decrease in I{sub SD} during operation (V{sub G}=-40 V, V{sub SD}= -10 V). We discuss the charge trapping and dissipation dynamics as they relate to the film structure and show that application of light quickly dissipates the observed trapped charge.

  6. Deposition of highly (111)-oriented PZT thin films by using metal organic chemical deposition

    CERN Document Server

    Bu, K H; Choi, D K; Seong, W K; Kim, J D

    1999-01-01

    Lead zirconate titanate (PZT) thin films have been grown on Pt/Ta/SiNx/Si substrates by using metal organic chemical vapor deposition with Pb(C sub 2 H sub 5) sub 4 , Zr(O-t-C sub 4 H sub 9) sub 4 , and Ti(O-i-C sub 3 H sub 7) sub 4 as source materials and O sub 2 as an oxidizing gas. The Zr fraction in the thin films was controlled by varying the flow rate of the Zr source material. The crystal structure and the electrical properties were investigated as functions of the composition. X-ray diffraction analysis showed that at a certain range of Zr fraction, highly (111)-oriented PZT thin films with no pyrochlore phases were deposited. On the other hand, at low Zr fractions, there were peaks from Pb-oxide phases. At high Zr fractions, peaks from pyrochlore phase were seen. The films also showed good electrical properties, such as a high dielectric constant of more than 1200 and a low coercive voltage of 1.35 V.

  7. Charge Transfer-Induced Molecular Hole Doping into Thin Film of Metal-Organic Frameworks.

    Science.gov (United States)

    Lee, Deok Yeon; Kim, Eun-Kyung; Shrestha, Nabeen K; Boukhvalov, Danil W; Lee, Joong Kee; Han, Sung-Hwan

    2015-08-26

    Despite the highly porous nature with significantly large surface area, metal-organic frameworks (MOFs) can be hardly used in electronic and optoelectronic devices due to their extremely poor electrical conductivity. Therefore, the study of MOF thin films that require electron transport or conductivity in combination with the everlasting porosity is highly desirable. In the present work, thin films of Co3(NDC)3DMF4 MOFs with improved electronic conductivity are synthesized using layer-by-layer and doctor blade coating techniques followed by iodine doping. The as-prepared and doped films are characterized using FE-SEM, EDX, UV/visible spectroscopy, XPS, current-voltage measurement, photoluminescence spectroscopy, cyclic voltammetry, and incident photon to current efficiency measurements. In addition, the electronic and semiconductor properties of the MOF films are characterized using Hall Effect measurement, which reveals that, in contrast to the insulator behavior of the as-prepared MOFs, the iodine doped MOFs behave as a p-type semiconductor. This is caused by charge transfer-induced hole doping into the frameworks. The observed charge transfer-induced hole doping phenomenon is also confirmed by calculating the densities of states of the as-prepared and iodine doped MOFs based on density functional theory. Photoluminescence spectroscopy demonstrates an efficient interfacial charge transfer between TiO2 and iodine doped MOFs, which can be applied to harvest solar radiations. PMID:26226050

  8. Spin coated graphene films as the transparent electrode in organic photovoltaic devices

    International Nuclear Information System (INIS)

    Many research efforts have been devoted to the replacement of the traditional indium–tin-oxide (ITO) electrode in organic photovoltaics. Solution-based graphene has been identified as a potential replacement, since it has less than two percent absorption per layer, relative high carrier mobility, and it offers the possibility of deposition on large area and flexible substrates, compatible with roll to roll manufacturing methods. In this work, soluble reduced graphene films with high electrical conductivity and transparency were fabricated and incorporated in poly(3-hexylthiophene) [6,6]-phenyl-C61-butyric acid methyl ester photovoltaic devices, as the transparent electrode. The graphene films were spin coated on glass from an aqueous dispersion of functionalized graphene, followed by a reduction process combining hydrazine vapor and annealing under argon, in order to reduce the sheet resistance. The photovoltaic devices obtained from the graphene films showed lower performance than the reference devices with ITO, due to the higher sheet resistance (2 kΩ/sq) and the poor hydrophilicity of the spin coated graphene films.

  9. Characterization of amorphous organic thin films, determination of precise model for spectroscopic ellipsometry measurements

    Energy Technology Data Exchange (ETDEWEB)

    Farahzadi, Azadeh, E-mail: farahzadi@physics.rwth-aachen.de [Institute of Physics (IA), RWTH Aachen University of Technology, 52056 Aachen (Germany); Beigmohamadi, Maryam; Niyamakom, Phenwisa; Kremers, Stephan [Institute of Physics (IA), RWTH Aachen University of Technology, 52056 Aachen (Germany); Meyer, Nico; Heuken, Michael [AIXTRON AG, Kackertstr. 15-17, 52072 Aachen (Germany); Wuttig, Matthias [Institute of Physics (IA), RWTH Aachen University of Technology, 52056 Aachen (Germany)

    2010-09-01

    The optical properties of tris(8-hydroxyquinoline) aluminum (Alq{sub 3}), N,N'-diphenyl-N,N'-bis(1-naphthyl)-1-1'biphenyl-4,4''diamine ({alpha}-NPD) and other amorphous organic materials for OLEDs application, e.g. 4,4-bis(2,2-diphenyl vinyl)-1,1-biphenyl (DPVBI) and Spiro-DPVBI have been studied by multi-angle spectroscopic ellipsometry (SE). The thin films of these materials have been deposited by organic vapor phase deposition (OVPD). The structural characterization has been performed using atomic force microscopy (AFM) and X-ray reflectometry (XRR). Comparison of the measurements using these different independent techniques enables the precise determination of the optical model for dielectric function of these thin films. The detail analyses on Alq{sub 3} and {alpha}-NPD show that the Kim model with Gaussian broadening provides a significantly better fit to the ellipsometry data than the frequently used harmonic oscillator model. This conclusion is further proved by performing similar measurements on other amorphous organic samples for OLEDs application, e.g. DPVBI and Spiro-DPVBI. This result can be explained by the characteristic features of electronic states in organic molecules.

  10. Characterization of amorphous organic thin films, determination of precise model for spectroscopic ellipsometry measurements

    International Nuclear Information System (INIS)

    The optical properties of tris(8-hydroxyquinoline) aluminum (Alq3), N,N'-diphenyl-N,N'-bis(1-naphthyl)-1-1'biphenyl-4,4''diamine (α-NPD) and other amorphous organic materials for OLEDs application, e.g. 4,4-bis(2,2-diphenyl vinyl)-1,1-biphenyl (DPVBI) and Spiro-DPVBI have been studied by multi-angle spectroscopic ellipsometry (SE). The thin films of these materials have been deposited by organic vapor phase deposition (OVPD). The structural characterization has been performed using atomic force microscopy (AFM) and X-ray reflectometry (XRR). Comparison of the measurements using these different independent techniques enables the precise determination of the optical model for dielectric function of these thin films. The detail analyses on Alq3 and α-NPD show that the Kim model with Gaussian broadening provides a significantly better fit to the ellipsometry data than the frequently used harmonic oscillator model. This conclusion is further proved by performing similar measurements on other amorphous organic samples for OLEDs application, e.g. DPVBI and Spiro-DPVBI. This result can be explained by the characteristic features of electronic states in organic molecules.

  11. Polysilsesquioxanes for Gate-Insulating Materials of Organic Thin-Film Transistors

    Directory of Open Access Journals (Sweden)

    Kimihiro Matsukawa

    2012-01-01

    Full Text Available Printable organic thin-film transistor (O-TFT is one of the most recognized technical issues nowadays. Our recent progress on the formation of organic-inorganic hybrid thin films consists of polymethylsilsesquioxane (PMSQ, and its applications for the gate-insulating layer of O-TFTs are introduced in this paper. PMSQ synthesized in toluene solution with formic acid catalyst exhibited the electric resistivity of higher than 1014 Ω cm after thermal treatment at 150°C, and the very low concentration of residual silanol groups in PMSQ was confirmed. The PMSQ film contains no mobile ionic impurities, and this is also important property for the practical use for the gate-insulating materials. In the case of top-contact type TFT using poly(3-hexylthiophene (P3HT with PMSQ gate-insulating layer, the device properties were comparable with the TFTs having thermally grown SiO2 gate-insulating layer. The feasibility of PMSQ as a gate-insulating material for O-TFTs, which was fabricated on a flexible plastic substrate, has been demonstrated. Moreover, by the modification of PMSQ, further functionalities, such as surface hydrophobicity, high permittivity that allows low driving voltage, and photocurability that allows photolithography, could be appended to the PMSQ gate-insulating layers.

  12. Hemolysis effect and calcium-phosphate precipitation of heat-organic-film treated magnesium

    Institute of Scientific and Technical Information of China (English)

    GAO Jia-cheng; QIAO Li-ying; LI Long-chuan; WANG Yong

    2006-01-01

    A heat-organic-films process was employed to induce calcium-phosphate apatites formation on magnesium, consequently the corrosion resistance and hemolysis properties of magnesium were improved for biomedical applications. Firstly, magnesium samples were heat-treated at 773 K for 10 h; secondly, stearic acid films were coated on the surface of the heat-treated magnesium.Then the surface modified magnesium was soaked in simulated body fluid (SBF) to test its corrosion resistance. The results show that the heat treatment process allows magnesium to form a dense oxide layer with a thickness of around 20 μm, thereby the surface modified magnesium has higher corrosion resistance. After 24 h in SBF island apatite was deposited on magnesium. The unevenly precipitates were characterized by XRD and FTIR as the mixture of hydroxyapatite(HA) and octacalcium phosphate(OCP). The preliminary hemolysis experiment indicates that untreated magnesium has hemolytic effect (about 60%); whereas the heat-organic film treated samples has no hemolytic effect. The mechanism of fast nucleation and growth of calcium-phosphate apatites on surface modified magnesium in SBF was also discussed.

  13. Organic solar cells based on liquid crystalline and polycrystalline thin films

    Science.gov (United States)

    Yoo, Seunghyup

    This dissertation describes the study of organic thin-film solar cells in pursuit of affordable, renewable, and environmentally-friendly energy sources. Particular emphasis is given to the molecular ordering found in liquid crystalline or polycrystalline films as a way to leverage the efficiencies of these types of cells. Maximum efficiencies estimated based on excitonic character of organic solar cells show power conversion efficiencies larger than 10% are possible in principle. However, their performance is often limited due to small exciton diffusion lengths and poor transport properties which may be attributed to the amorphous nature of most organic semiconductors. Discotic liquid crystal (DLC) copper phthalocyanine was investigated as an easily processible building block for solar cells in which ordered molecular arrangements are enabled by a self-organization in its mesophases. An increase in photocurrent and a reduction in series resistance have been observed in a cell which underwent an annealing process. X-ray diffraction (XRD) and atomic force microscopy (AFM) measurements suggest that structural and morphological changes induced after the annealing process are related to these improvements. In an alternative approach, p-type pentacene thin films prepared by physical vapor deposition were incorporated into heterojunction solar cells with C60 as n-type layers. Power conversion efficiencies of 2.7% under broadband illumination (350--900 nm) with a peak external quantum efficiency of 58% have been achieved with the broad spectral coverage across the visible spectrum. Analysis using an exciton diffusion model shows this efficient carrier generation is mainly due to the large exciton diffusion length of pentacene films. Joint XRD and AFM studies reveal that the highly crystalline nature of pentacene films can account for the observed large exciton diffusion length. In addition, the electrical characteristics are studied as a function of light intensity using

  14. Fabrication of continuous mesoporous organic-inorganic nanocomposite films for corrosion protection of stainless steel in PEM fuel cells

    International Nuclear Information System (INIS)

    Graphical abstract: Ordered mesoporous organic-inorganic composite film has been achieved by sol-gel and spin-coating techniques. We believe that the mesoporous composite films have a potential application as a protect coating of bipolar plate material. Display Omitted Research highlights: → Ordered mesoporous composite film was deposited on the 304 stainless steel. → This composite film exhibited excellent protective performance in 0.5 M H2SO4. → The film exhibited a high surface tension with water contact angle close to 90o. - Abstract: The organic-inorganic composite film was deposited on the 304 stainless steel as bipolar plate material for proton exchange membrane fuel cells by spin-coating method. As shown by XRD, N2 adsorption-desorption and TEM, the composite films exhibit ordered mesoporous structures. The corrosion tests in 0.5 M H2SO4 system displayed that, compared with 304SS, the composite films made corrosion potential shifted to positive direction by 250-1000 mV (SCE) and corrosion current decreased by 1-3 orders of magnitude. Wherein, the C-50-60% composite film showed the optimal protective performance, its corresponding potentiostatic polarization process was extremely stable in the simulated fuel cells environment.

  15. Electrical and physicochemical properties of Poly(3,4-ethylenedioxythiophene)-based organic-inorganic hybrid conductive thin films

    International Nuclear Information System (INIS)

    Conductive polymer coating precursors were prepared using poly (3, 4-ehtylenedioxythiophene) (PEDOT) and three kinds of silane precursors (Q type, T type, and bridged T type) through an in-situ organic/inorganic hybrid sol-gel process. The spin-coated precursor films on Poly(ethyleneterephthalate) substrate exhibited fairly good surface resistance (∼ 104 Ω/□), transparency (∼ 80%) and pencil hardness (2 - 4 H). The solvent resistance of the film using 2, 5-bis (triethoxysilyl)-3, 4-ethylenedioxythiophene (BTES-EDOT) was excellent as compared with the films that used silane precursors due to a high degree of BTES-EDOT crosslinking in the hybrid film. Moreover, EDOT moiety in the BTES-EDOT molecule may contribute to homogeneous dispersion of the PEDOT in the organic-inorganic hybrid film.

  16. Concurrent photocatalytic hydrogen production and organic degradation by a composite catalyst film in a two-chamber photo-reactor

    OpenAIRE

    X. Wang; LI, XY

    2013-01-01

    A novel visible light-driven photocatalyst film, MoS2/Ag/TiO2, was synthesized on a glass-fiber membrane. The composite catalyst film had a multi-layer structure with Ag as nanoconjunctions between the MoS2 and TiO2 layers. The catalyst film performed well for both photocatalytic hydrogen production and organic degradation in a two-chamber photo-reactor under either solar or visible light. Hydrogen was produced in the cathode side chamber while the model organic was decomposed in the anode si...

  17. SUPERCRITICAL FLUID EXTRACTION OF PARTICULATE AND ADSORBENT MATERIALS

    Science.gov (United States)

    The report is a summary of work performed by PNL on the extraction of semivolatile organic materials (SVOCs), for example, polynuclear aromatic compounds, from various adsorbents and environmental matrices, using supercritical fluids (SCFs) as extractants. The results of the work...

  18. Metal–organic framework thin films with well-controlled growth directions confirmed by x-ray study

    Directory of Open Access Journals (Sweden)

    Kazuya Otsubo

    2014-12-01

    Full Text Available Metal–organic frameworks (MOFs have attracted the attention of a variety of researchers because of their structural diversity and designability, and their varied physical properties based on their uniform microporosity. While MOFs are interesting as bulk materials, future applications in functional nanomaterials will require the use of MOFs as thin films, and to achieve this, several thin-film fabrication techniques have been developed. These techniques have provided rational design of a variety of MOF thin films; however, oriented crystal growth of a MOF thin film, which is mainly confirmed by X-ray diffraction, remains a challenge that should be addressed. In this article, we review thin-film fabrications and characterizations, and structural features of MOF thin films with perfect crystalline orientation.

  19. Co-sputtered oxide thin film encapsulated organic electronic devices with prolonged lifetime

    Energy Technology Data Exchange (ETDEWEB)

    Wong, F.L.; Fung, M.K.; Ng, C.Y.; Ng, A.; Bello, I.; Lee, S.T.; Lee, C.S., E-mail: apcslee@cityu.edu.hk

    2011-11-30

    Effective top-side thin film encapsulation for organic light-emitting devices (OLEDs) was achieved by deposition of a multi-layer water diffusion barrier stack to protect the device against moisture permeation. The barrier stack was formed by alternative depositions of co-oxide and fluorocarbon (CF{sub x}) films. The co-oxide layer was fabricated by magnetron co-sputtering of silicon dioxide (SiO{sub 2}) and aluminum oxide (Al{sub 2}O{sub 3}). While the CF{sub x} layer was formed by plasma enhanced chemical vapor deposition. The water vapor transmission rate of the optimized diffusion barrier stack can be down to 10{sup -6} g/m{sup 2}/day. The OLEDs encapsulated with the multilayer stack have been shown to have operation lifetime of over 18,000 h which is nearly the same as devices with conventional glass-cover encapsulation.

  20. High efficiency THz-wave modulators based on conjugated polymer-based organic films

    Science.gov (United States)

    He, Ting; Zhang, Bo; Wang, Guo-cui; Zang, Meng-di; Hou, Yan-bing; Shen, Jing-ling

    2016-02-01

    A study of the modulation mechanisms of conjugated polymer-based organic films and high-efficiency, broadband and all-optically controlled terahertz modulators based on these films is presented in this paper. Under very low-level external laser excitation, modulation efficiency of more than 99% is achieved using MEH-PPV/Si, PFO/Si and F8BT/Si bilayers. By analyzing the changes in the photo-excited carrier density and photoconductivity with changes in the external laser intensity, we introduce a nonlinear photo-induced absorption process to explain the strong attenuation mechanism for the transmitted terahertz waves. Finally, a simple THz communication test is carried out to demonstrate the potential future applications of the high-efficiency all-optically controlled terahertz modulator.

  1. Improved Performance by a Double-Insulator Layer in Organic Thin-Film Transistors

    Institute of Scientific and Technical Information of China (English)

    WANG Wei; SHI Jia-Wei; GUO Shu-Xu; ZHANG Hong-Mei; QUAN Bao-Fu; MA Dong-Ge

    2006-01-01

    @@ Organic thin film transistors based on pentacene are fabricated by the method of full evaporation. The thickness of insulator film can be controlled accurately, which influences the device operation voltage markedly. Compared to the devices with a single-insulator layer, the electric performance of devices by using a double-insulator as the gate dielectric has good improvement. It is found that the gate leakage current can be reduced over one order of magnitude, and the on-state current can be enhanced over one order of magnitude. The devices with double-insulator layer exhibit field-effect mobility as large as 0.14 cm2/Vs and near the zero threshold voltage.The results demonstrate that using a proper double insulator as the gate dielectrics is an effective method to fabricate OTFTs with high electrical performance.

  2. Charge Transport in Thin Organic Semiconducting Films: Seebeck and Field Effect Studies

    Science.gov (United States)

    Böhm, W.; Fritz, T.; Leo, K.

    1997-03-01

    We have investigated the charge transport properties of vapor-deposited thin organic films, using the Seebeck effect for determining conduction type and Fermi energy and the field effect to measure mobility and total charge carrier density. We show that the combination of both techniques gives a complete picture of the electrical properties of the films. Wir untersuchen den Ladungsträgertransport in aufgedampften dünnen organischen Schichten, wobei der Seebeck-Effekt zur Bestimmung des Leitfähigkeitstyps und der Lage des Ferminiveaus und der Feldeffekt zur Bestimmung der Leitfähigkeit und der gesamten Ladungsträgerdichte benutzt wird. Es wird gezeigt, daß durch die Kombination beider Methoden ein geschlossenes Bild der elektrischen Eigenschaften erhalten wird.

  3. High efficiency THz-wave modulators based on conjugated polymer-based organic films

    International Nuclear Information System (INIS)

    A study of the modulation mechanisms of conjugated polymer-based organic films and high-efficiency, broadband and all-optically controlled terahertz modulators based on these films is presented in this paper. Under very low-level external laser excitation, modulation efficiency of more than 99% is achieved using MEH-PPV/Si, PFO/Si and F8BT/Si bilayers. By analyzing the changes in the photo-excited carrier density and photoconductivity with changes in the external laser intensity, we introduce a nonlinear photo-induced absorption process to explain the strong attenuation mechanism for the transmitted terahertz waves. Finally, a simple THz communication test is carried out to demonstrate the potential future applications of the high-efficiency all-optically controlled terahertz modulator. (paper)

  4. Solution-processed hybrid organic-inorganic complementary thin-film transistor inverter

    Science.gov (United States)

    Cheong, Heajeong; Kuribara, Kazunori; Ogura, Shintaro; Fukuda, Nobuko; Yoshida, Manabu; Ushijima, Hirobumi; Uemura, Sei

    2016-04-01

    We investigated hybrid organic-inorganic complementary inverters with a solution-processed indium-gallium-zinc-oxide (IGZO) n-channel thin-film transistor (TFT) and p-channel TFTs using the high-uniformity polymer poly[2,5-bis(alkyl)pyrrolo[3,4-c]pyrrolo-1,4(2H,5H)-dione-alt-5,5-di(thiophene-2-yl)-2,2-(E)-2-(2-(thiophen-2-yl)vinyl)thiophene] (PDVT-10). The IGZO TFT was fabricated at 150 °C for 1 min. It showed a high field-effect mobility of 0.9 cm2·V-1·s-1 and a high on/off current ratio of 107. A hybrid complementary inverter was fabricated by combining IGZO with a PDVT-10 thin-film transistor and its operation was confirmed.

  5. FABRICATION AND CHARACTERIZATION OF ORGANIC THIN FILMS WITH NANO—STRUCTURE

    Institute of Scientific and Technical Information of China (English)

    TakashiH,Noritaka; ChenGuorong; 等

    2002-01-01

    A novel method of thin film formation of organic materials with nano-strucure has been successfully developed by using vacuum technique is proposed. The diarylethene(C18H18N2S2)was selected as a model compound for the evaluation of this method.Polymer,we found that the tendency of dye dispersion into the polymer is as follows:PC>PBzMA>PMMA>PHPMA,where no dispersion is observed for PHPMA under the condition of 115℃ for 24 hours ,Thin film of polymer alloy composed of PMMA and polystylene(PS) was loaded into a glass ample with diarylethene,and treated for three days at 100℃,Dispersed state of the dye was evaluated by transmission electron microscope,and concluded that the dye is distributed only in PS domains selectively.Photochromic properties of the PS domain will be evaluated by using a scanning nearfield optical microscope.

  6. Determination of the transport levels in thin films of organic semiconductors

    Energy Technology Data Exchange (ETDEWEB)

    Krause, Stefan

    2009-07-27

    The approach of using the combination of Ultraviolet (UPS) and Inverse Photoemission (IPS) to determine the transport levels in thin films of organic semiconductors is the scope of this work. For this matter all influences on the peak position and width in Photoelectron Spectroscopy are discussed with a special focus on organic semiconductors. Many of these influences are shown with experimental results of the investigation of diindenoperylene on Ag(111). These findings are applied to inorganic semiconductors silicon in order to establish the use of UPS and IPS on a well-understood system. Finally, the method is used to determine the transport level of several organic semiconductors (PTCDA, Alq3, CuPc, DIP, PBI-H4) and the corresponding exciton binding energies are calculated by comparison to optical absorption data. (orig.)

  7. Ultra-thin films of polysilsesquioxanes possessing 3-methacryloxypropyl groups as gate insulator for organic field-effect transistors

    International Nuclear Information System (INIS)

    Polysilsesquioxanes (PSQs) possessing 3-methacryloxypropyl groups as an organic moiety of the side chain were synthesized by sol–gel condensation copolymerization of the corresponding trialkoxysilanes. The ultra-thin PSQ film with a radical initiator and a cross-linking agent was prepared by a spin-coating method, and the film was cured integrally at low temperatures of less than 120 °C through two different kinds of polymeric reactions, which were radical polymerization of vinyl groups and sol–gel condensation polymerization of terminated silanol and alkoxy groups. The obtained PSQ film showed the almost perfect solubilization resistance to acetone, which is a good solvent of PSQ before polymerization. It became clear by atomic force microscopy observation that the surface of the PSQ film was very smooth at a nano-meter level. Furthermore, pentacene-based organic field-effect transistor (OFET) with the PSQ film as a gate insulator showed typical p-channel enhancement mode operation characteristics and therefore the ultra-thin PSQ film has the potential to be applicable for solution-processed OFET systems. - Highlights: ► Polysilsesquioxanes (PSQs) possessing 3-methacryloxypropyl groups were synthesized. ► The ultra-thin PSQ film could be cured at low temperatures of less than 120 °C. ► The PSQ film showed the almost perfect solubilization resistance to organic solvent. ► The surface of the PSQ film was very smooth at a nano-meter level. ► Pentacene-based organic field-effect transistor with the PSQ film was fabricated.

  8. Effects of Alloying on the Optical Properties of Organic-Inorganic Lead Halide Perovskite Thin Films

    Energy Technology Data Exchange (ETDEWEB)

    Ndione, Paul F.; Li, Zhen; Zhu, Kai

    2016-09-07

    Complex refractive index and dielectric function spectra of organic-inorganic lead halide perovskite alloy thin films are presented, together with the critical-point parameter analysis (energy and broadening) of the respective composition. Thin films of methylammonium lead halide alloys (MAPbI3, MAPbBr3, MAPbBr2I, and MAPbBrI2), formamidinium lead halide alloys (FAPbI3, FAPbBr3, and FAPbBr2I), and formamidinium cesium lead halide alloys [FA0.85Cs0.15PbI3, FA0.85Cs0.15PbBrI2, and FA0.85Cs0.15Pb(Br0.4I0.6)3] were studied. The complex refractive index and dielectric functions were determined by spectroscopic ellipsometry (SE) in the photon energy range of 0.7-6.5 eV. Critical point energies and optical transitions were obtained by lineshape fitting to the second-derivative of the complex dielectric function data of these thin films as a function of alloy composition. Absorption onset in the vicinity of the bandgap, as well as critical point energies and optical band transition shift toward higher energies as the concentration of Br in the films increases. Cation alloying (Cs+) has less effect on the optical properties of the thin films compared to halide mixed alloys. The reported optical properties can help to understand the fundamental properties of the perovskite materials and also be used for optimizing or designing new devices.

  9. In-situ study of pn-heterojunction interface states in organic thin film transistors

    International Nuclear Information System (INIS)

    In this paper, we have investigated the density of pn-heterojunction interface states by evaluating the threshold voltage shift with in-situ measurement of electrical characteristics of a sandwich fluorinated copper phthalocyanine/pentacene thin film transistor with various thicknesses of pentacene thin films. A threshold voltage (VT) undergoes a significant shift from + 20.6 to + 0.53 V with increasing the thickness of pentacene. When the thickness of pentacene is more than a critical thickness of 15 nm, VT undergoes hardly any shift. On the other hand, the value of mobility is lightly decreased with increasing the thickness of pentacene due to the effect of the bulk current. Thus the VT shift is attributed to the increase of drain current in the sandwich device. In order to explain the VT shift, a model was assumed in the linear region of thin film transistor operation and the VT shift agrees with a tan−1 function of film thickness. The total charge density (Q0) of 1.53 × 10−7 C/cm2 (9.56 × 1011 electrons or holes/cm2) was obtained. Furthermore, the VT shift and Q0 could be adjusted by selecting a p-type semiconductor. - Highlights: • A threshold voltage was in-situ measured in an organic sandwich thin film transistor. • Density of pn-heterojunction interface states by evaluating the threshold voltage shift. • The threshold voltage shift attributes to the increase of drain current. • In order to explain the threshold voltage shift, a model was assumed

  10. Zeolite thin film-coated spherical end-face fiber sensors for detection of trace organic vapors

    Science.gov (United States)

    Ning, Xiangping; Zhao, Chun Liu; Yang, Jingyi; Chan, Chi Chiu

    2016-04-01

    A novel zeolite thin film-coated spherical end face fiber sensor for detection of trace organic vapors was experimentally demonstrated. The spherical end-face was fabricated by electrical arc discharge on the end face of a standard single-mode fiber. The proposed sensor comprise of the fiber's spherical end-face covered with a layer of zeolite thin film. The zeolite film and spherical end face constituted an arc-shaped inline Fabry-Perot (F-P) cavity, which improves the interference performance. The trace chemical vapor concentration was measured by monitoring the shift of F-P interference wavelength which induced by the organic vapor molecular adsorption of the zeolite film. The proposed trace organic vapors sensor performed with the enhanced sensitivity 0.91 nm/ppm with the range from 0 to 70 ppm.

  11. Nanostructured thin films for organic photovoltaic cells and organic light-emitting diodes

    Science.gov (United States)

    Zheng, Ying

    2009-12-01

    Achieving efficient organic optoelectronic devices, such as organic photovoltaic (OPV) cells and organic light-emitting diodes (OLEDs), relies on the understanding of the formation of various organic nanostructures as well as the fundamental of physical processes in device operation. The research presented in this thesis systematically investigates the controlled growth of organic nanostructure through different approaches and their relationship to OPV cell performance. Moreover, new materials and device structure are explored to achieve efficient OLEDs, which also provide further insight of the physical processes governing the performance of these devices. We first investigated the phase separation process in a molecular mixed donor-acceptor (D -- A) bulk heterojunction (BHJ) composed of pentacene and C60 suing a combination of experimental and computational approaches. Both experiment characterization and the MD simulation reveals that strong aggregation of pentacene exists in the pentacene:C60 mixtures due to the strong pi -- pi interaction among pentacene molecules. By controlling the processing conditions to suppress the pentacene aggregation to nanoscale leads to higher device efficiency as the more photogenerated excitons are able to reach the D -- A interface and contribute to the photocurrent. To circumvent the limits on phase separated D -- A mixed heterojunction, an interdigitated D -- A BHJ is synthesized through the oblique angle deposition (OAD) of copper phthalocyanine (CuPc). The morphology of CuPc nanorod arrays grown under the OAD process can be controlled by careful selection of the processing conditions, and we have achieved a high density, vertically aligned, polycrystalline CuPc nanorod array with nanorod size as small as 20-30 nm. Successful infiltration of [6,6]-phenyl-C61-butyric acid methyl ester (PCBM) into the optimized CuPc nanorod arrays has resulted in doubling of the power conversion efficiency of the OPV cell over planar

  12. Organic and organic-inorganic hybrid polymer thin films deposited by PECVD using TEOS and cyclohexene for ULSI interlayer-dielectric application

    Science.gov (United States)

    Seo, Hyeon Jin; Nam, Sang-Hun; Kim, Sungsoo; Boo, Jin-Hyo

    2015-11-01

    Organic and organic-inorganic hybrid polymer thin films were deposited on Si(1 0 0) substrates at various ratios of TEOS (tetraethoxysilane) to cyclohexene by the plasma enhanced chemical vapor deposition (PECVD) method. The as-grown polymerized thin films were first analyzed by FT-IR and XPS. The results of FT-IR showed that the hybrid polymer thin films were polymerized with each fragmented precursor. The XPS results showed the chemical species and binding energies of each species. The Si 2p core-level spectra from the hybrid polymer thin film showed the status of the Si oxidation number. Impedance analysis was utilized for the measurement of the capacitance values and I-V curves, and an ultra low-k value and leakage current density of 1.75 and 10-9 A/cm2 at 1 MV/cm were obtained, respectively.

  13. Effect of fractal silver electrodes on charge collection and light distribution in semiconducting organic polymer films

    Energy Technology Data Exchange (ETDEWEB)

    Chamousis, RL; Chang, LL; Watterson, WJ; Montgomery, RD; Taylor, RP; Moule, AJ; Shaheen, SE; Ilan, B; van de Lagemaat, J; Osterloh, FE

    2014-08-21

    Living organisms use fractal structures to optimize material and energy transport across regions of differing size scales. Here we test the effect of fractal silver electrodes on light distribution and charge collection in organic semiconducting polymer films made of P3HT and PCBM. The semiconducting polymers were deposited onto electrochemically grown fractal silver structures (5000 nm x 500 nm; fractal dimension of 1.71) with PEDOT:PSS as hole-selective interlayer. The fractal silver electrodes appear black due to increased horizontal light scattering, which is shown to improve light absorption in the polymer. According to surface photovoltage spectroscopy, fractal silver electrodes outperform the flat electrodes when the BHJ film thickness is large (>400 nm, 0.4 V photovoltage). Photocurrents of up to 200 microamperes cm(-2) are generated from the bulk heterojunction (BHJ) photoelectrodes under 435 nm LED (10-20 mW cm(-2)) illumination in acetonitrile solution containing 0.005 M ferrocenium hexafluorophosphate as the electron acceptor. The low IPCE values (0.3-0.7%) are due to slow electron transfer to ferrocenium ion and due to shunting along the large metal-polymer interface. Overall, this work provides an initial assessment of the potential of fractal electrodes for organic photovoltaic cells.

  14. Synchrotron-radiation XPS analysis of ultra-thin silane films: Specifying the organic silicon

    Science.gov (United States)

    Dietrich, Paul M.; Glamsch, Stephan; Ehlert, Christopher; Lippitz, Andreas; Kulak, Nora; Unger, Wolfgang E. S.

    2016-02-01

    The analysis of chemical and elemental in-depth variations in ultra-thin organic layers with thicknesses below 5 nm is very challenging. Energy- and angle-resolved XPS (ER/AR-XPS) opens up the possibility for non-destructive chemical ultra-shallow depth profiling of the outermost surface layer of ultra-thin organic films due to its exceptional surface sensitivity. For common organic materials a reliable chemical in-depth analysis with a lower limit of the XPS information depth z95 of about 1 nm can be performed. As a proof-of-principle example with relevance for industrial applications the ER/AR-XPS analysis of different organic monolayers made of amino- or benzamidosilane molecules on silicon oxide surfaces is presented. It is demonstrated how to use the Si 2p core-level region to non-destructively depth-profile the organic (silane monolayer) - inorganic (SiO2/Si) interface and how to quantify Si species, ranging from elemental silicon over native silicon oxide to the silane itself. The main advantage of the applied ER/AR-XPS method is the improved specification of organic from inorganic silicon components in Si 2p core-level spectra with exceptional low uncertainties compared to conventional laboratory XPS.

  15. Chemical characterization of a marine conditioning film

    Digital Repository Service at National Institute of Oceanography (India)

    Garg, A.; Jain, A.; Bhosle, N.B.

    in marine waters. Abundance and composition of neutral sugars and its composition are useful tools to assess the sources of organic matter (Cowie and Hedges, 1984; Skoog and Benner, 1997; D’Souza et al., 2005). Carbohydrate polymers appear to play... procedures and substratum surface properties may influence the chemical composition and the amount of the adsorbed material (Little and Zsolnay, 1985; Taylor et al., 1997; Compere et al., 2001). Changes in the chemical composition of the conditioning film...

  16. The importance of spinning speed in fabrication of spin-coated organic thin film transistors: Film morphology and field effect mobility

    International Nuclear Information System (INIS)

    We have investigated the film morphology and the field effect mobility of 2,7-dioctyl[1]benzothieno[3,2-b][1]benzothiophene (C8-BTBT) thin films which were formed by spin coating on the SiO2 substrate with solution-processed graphene electrodes. The domain size and the density of aggregates in the C8-BTBT film showed the same dependence on the spinning speed. These competitive two factors (domain size and density of aggregates) give an optimum spinning speed, at which the field effect mobility of C8-BTBT transistor showed a maximum (2.6 cm2/V s). This result indicates the importance of spinning speed in the fabrication of solution processed organic thin film transistors by spin coating.

  17. Filter-adsorber aging assessment

    International Nuclear Information System (INIS)

    An aging assessment of high-efficiency particulate (HEPA) air filters and activated carbon gas adsorption units was performed by the Pacific Northwest Laboratory as part of the U.S. Nuclear Regulatory Commission's (USNRC) Nuclear Plant Aging Research (NPAR) Program. This evaluation of the general process in which characteristics of these two components gradually change with time or use included the compilation of information concerning failure experience, stressors, aging mechanisms and effects, and inspection, surveillance, and monitoring methods (ISMM). Stressors, the agents or stimuli that can produce aging degradation, include heat, radiation, volatile contaminants, and even normal concentrations of aerosol particles and gasses. In an experimental evaluation of degradation in terms of the tensile breaking strength of aged filter media specimens, over forty percent of the samples did not meet specifications for new material. Chemical and physical reactions can gradually embrittle sealants and gaskets as well as filter media. Mechanisms that can lead to impaired adsorber performance are associated with the loss of potentially available active sites as a result of the exposure of the carbon to airborne moisture or volatile organic compounds. Inspection, surveillance, and monitoring methods have been established to observe filter pressure drop buildup, check HEPA filters and adsorbers for bypass, and determine the retention effectiveness of aged carbon. These evaluations of installed filters do not reveal degradation in terms of reduced media strength but that under normal conditions aged media can continue to effectively retain particles. However, this degradation may be important when considering the likelihood of moisture, steam, and higher particle loadings during severe accidents and the fact it is probable that the filters have been in use for an extended period

  18. All solution processed organic thin film transistor-backplane with printing technology for electrophoretic display

    Science.gov (United States)

    Lee, Myung W.; Song, C.K.

    2012-01-01

    In this study, solution processes were developed for backplane using an organic thin film transistor (OTFT) as a driving device for an electrophoretic display (EPD) panel. The processes covered not only the key device of OTFTs but also interlayer and pixel electrodes. The various materials and printing processes were adopted to achieve the requirements of devices and functioning layers. The performance of OTFT of the backplane was sufficient to drive EPD sheet by producing a mobility of 0.12 cm2/v x sec and on/off current ratio of 10(5).

  19. Detection of saliva-range glucose concentrations using organic thin-film transistors

    Science.gov (United States)

    Elkington, D.; Belcher, W. J.; Dastoor, P. C.; Zhou, X. J.

    2014-07-01

    We describe the development of a glucose sensor through direct incorporation of an enzyme (glucose oxidase) into the gate of an organic thin film transistor (OTFT). We show that glucose diffusion is the key determinant of the device response time and present a mechanism of glucose sensing in these devices that involves protonic doping of the transistor channel via enzymatic oxidation of glucose. The integrated OTFT sensor is sensitive across 4 decades of glucose concentration; a range that encompasses both the blood and salivary glucose concentration levels. As such, this work acts as a proof-of-concept for low-cost printed biosensors for salivary glucose.

  20. Detection of saliva-range glucose concentrations using organic thin-film transistors

    Energy Technology Data Exchange (ETDEWEB)

    Elkington, D.; Belcher, W. J.; Dastoor, P. C.; Zhou, X. J. [Centre for Organic Electronics, University of Newcastle, Callaghan, New South Wales 2308 (Australia)

    2014-07-28

    We describe the development of a glucose sensor through direct incorporation of an enzyme (glucose oxidase) into the gate of an organic thin film transistor (OTFT). We show that glucose diffusion is the key determinant of the device response time and present a mechanism of glucose sensing in these devices that involves protonic doping of the transistor channel via enzymatic oxidation of glucose. The integrated OTFT sensor is sensitive across 4 decades of glucose concentration; a range that encompasses both the blood and salivary glucose concentration levels. As such, this work acts as a proof-of-concept for low-cost printed biosensors for salivary glucose.

  1. High performance Mo adsorbent PZC

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    1998-10-01

    We have developed Mo adsorbents for natural Mo(n, {gamma}){sup 99}Mo-{sup 99m}Tc generator. Among them, we called the highest performance adsorbent PZC that could adsorb about 250 mg-Mo/g. In this report, we will show the structure, adsorption mechanism of Mo, and the other useful properties of PZC when you carry out the examination of Mo adsorption and elution of {sup 99m}Tc. (author)

  2. Electronic properties of the n-type PDI8-CN2 organic semiconductor at the interface with SiO2: addressing the role of adsorbed water molecules by means of optical second-harmonic generation

    International Nuclear Information System (INIS)

    We investigate the interfacial electronic properties of N,N’-bis(n-octyl)-(1,7 and 1,6)-dicyanoperylene-3,4:9,10-bisdicarboximide (PDI8-CN2) organic semiconductor films grown on silicon dioxide (SiO2) by polarization-resolved second harmonic generation optical spectroscopy. The analysis shows a non-uniform distribution of charge carriers in PDI8-CN2, whose spatial profile is affected by hydrophobic passivation of SiO2 surfaces by hexamethyldisilazane. An interpretation model strengthened by photoluminescence analysis is developed, based on the presence of the net charge localized at the SiO2 surface and on consequent charge redistribution in the organic semiconductor. Considerations are expounded suggesting a common and ‘universal’ mechanism for the bias stress effect in p-channel and n-channel organic field-effect transistors, related to proton migration toward SiO2 gate dielectrics. (paper)

  3. Positronium chemistry in porous adsorbents

    International Nuclear Information System (INIS)

    Kinetic studies on the annihilation of orthopositronium in porous adsorbents have been performed using lifetime spectroscopy. The positron source applied was 22Na with 0.2 MBq activity. The adsorbents investigated were silica gels of different particle size and pore structure. The appearance of the long-lived component in the lifetime spectra can be explained by the diffusion of the orthopositronium into the pores affected by the particle size and the pore size of the adsorbent, the coverage on it and the chemical nature of the adsorbate. The long-term aim of the work is to determine and to explain these effects. (author)

  4. Microchip electrophoresis with background electrolyte containing polyacrylic acid and high content organic solvent in cyclic olefin copolymer microchips for easily adsorbed dyes.

    Science.gov (United States)

    Wei, Xuan; Sun, Ping; Yang, Shenghong; Zhao, Lei; Wu, Jing; Li, Fengyun; Pu, Qiaosheng

    2016-07-29

    Plastic microchips can significantly reduce the fabrication cost but the adsorption of some analytes limits their application. In this work, background electrolyte containing ionic polymer and high content of organic solvent was adopted to eliminate the analyte adsorption and achieve highly efficient separation in microchip electrophoresis. Two dyes, rhodamine 6G (Rh6G) and rhodamine B (RhB) were used as the model analytes. By using methanol as the organic solvent and polyacrylic acid (PAA) as a multifunctional additive, successful separation of the two dyes within 75μm id. microchannels was realized. The role of PAA is multiple, including viscosity regulator, selectivity modifier and active additive for counteracting analyte adsorption on the microchannel surface. The number of theoretical plate of 7.0×10(5)/m was attained within an effective separation distance of 2cm using background electrolyte consisting 80% methanol, 0.36% PAA and 30mmol/L phosphate at pH 5.0. Under optimized conditions, relative standard deviations of Rh6G and RhB detection (n=5) were no more than 1.5% for migration time and 2.0% for peak area, respectively. The limit of detection (S/N=3) was 0.1nmol/L for Rh6G. The proposed technique was applied in the determination of both Rh6G and RhB in chilli powder and lipstick samples with satisfactory recoveries of 81.3-103.7%. PMID:27371017

  5. Studies on applications of functional organic-thin-films for lithography on semiconductor device production

    International Nuclear Information System (INIS)

    This report describes some experimental results of studies in an attempt to contribute to the development of ultra-fine lithography which is used for the manufacture of semiconductor devices with design rule below 0.5 μm, and contains (1) manufacture of the exposure apparatus, (2) establishment of the resist process technology, and (3) preparation of the resist materials. The author designed and manufactured the KrF excimer laser stepper which is supposed to be most promising for practical uses. In the resist processing technology, the water-soluble contrast enhanced lithography (CEL) process was developed and this process has advantages is that high pattern contrast and large focus depth latitude were easily obtained. Finally, for resist materials, use of Langmuir-Blodgett (LB) films was investigated since the LB technique provides the method to prepare extremely thin organic films which are uniform in molecular level, and the reaction mechanism of the LB films of unsaturated compounds under irradiation with high energy beams was elucidated. (author)

  6. Natural organic matter interactions with polyamide and polysulfone membranes: Formation of conditioning film

    KAUST Repository

    Gutierrez, Leonardo

    2015-03-31

    A conditioning film changes the physicochemical properties of the membrane surface and strongly affects subsequent fouling behavior. Results from this Atomic Force Microscopy study indicate that Natural Organic Matter (NOM) characteristics, membrane surface properties, and solution chemistry are fundamental during conditioning film formation. Repulsive forces were observed between HUM (humic-NOM) and Polyamide (PA) or Polysulfone (PS) membranes during approach in Na+ and Ca2+ solutions. However, repulsive and attractive forces were randomly recorded during BIOP (biopolymer-NOM) approach to both membranes, possibly caused by low electrostatic repulsion, hydrogen bonding, and presence of chemically/physically heterogeneous regions on membrane surfaces. During retracting, Ca2+ ions increased HUM adhesion to PA and PS membrane, indicating cation bridging/complexation as dominant interacting mechanism for this isolate. BIOP adsorption on PS and PA membrane was stronger than HUM under similar solution conditions, where hydrogen bonding would play an important role. Additionally, irrespective of solution conditions, higher adhesion energy was recorded on PS than on PA membrane for both NOM isolates, indicating membrane hydrophobicity as an important interacting factor. Results from this research will advance our understanding of conditioning film formation for NOM isolates and membranes of different physicochemical characteristics.

  7. Apple, carrot, and hibiscus edible films containing plant antimicrobials inactivate Salmonella Newport in packaged organic leafy greens

    Science.gov (United States)

    The increased demand for organic leafy green may raise the risk of foodborne illness outbreaks due to consumption of contaminated produce. Edible films incorporated with natural antimicrobials have the potential to be used as ingredients into organic bagged salads to control contamination from path...

  8. Metal-organic chemical vapour deposition of lithium manganese oxide thin films via single solid source precursor

    Directory of Open Access Journals (Sweden)

    Oyedotun K.O.

    2015-12-01

    Full Text Available Lithium manganese oxide thin films were deposited on sodalime glass substrates by metal organic chemical vapour deposition (MOCVD technique. The films were prepared by pyrolysis of lithium manganese acetylacetonate precursor at a temperature of 420 °C with a flow rate of 2.5 dm3/min for two-hour deposition period. Rutherford backscattering spectroscopy (RBS, UV-Vis spectrophotometry, X-ray diffraction (XRD spectroscopy, atomic force microscopy (AFM and van der Pauw four point probe method were used for characterizations of the film samples. RBS studies of the films revealed fair thickness of 1112.311 (1015 atoms/cm2 and effective stoichiometric relationship of Li0.47Mn0.27O0.26. The films exhibited relatively high transmission (50 % T in the visible and NIR range, with the bandgap energy of 2.55 eV. Broad and diffused X-ray diffraction patterns obtained showed that the film was amorphous in nature, while microstructural studies indicated dense and uniformly distributed layer across the substrate. Resistivity value of 4.9 Ω·cm was obtained for the thin film. Compared with Mn0.2O0.8 thin film, a significant lattice absorption edge shift was observed in the Li0.47Mn0.27O0.26 film.

  9. Thermodynamic study of fatty acids adsorption on different adsorbents

    International Nuclear Information System (INIS)

    This work has as objective the study about the adsorption behavior of fatty acids (acetic, propionic, and butyric) on activated carbon and on modified and unmodified montmorillonite clays as a function of temperature and initial concentration of the adsorbate, through adsorption isotherms and their thermodynamic parameters (ΔG, ΔH, and ΔS). The activated carbon presented a higher adsorption capacity due to its relatively large surface area, compared to others adsorbents. The polar characteristic of fatty acids decreased with the increase in the length of non-polar hydrocarbon chain, improving the affinity between the activated carbon (non-polar adsorbent) and the acids. The adsorption capacity of modified montmorillonite (polar adsorbent) was favored due to the presence of the organic cation among its layers, which make the surface more hydrophobic and organophilic when compared to the unmodified montmorillonite surface. The amount of fatty acids adsorbed in the adsorbents surface increased with the concentration, at constant temperature, and decreased with the increase of temperature, at constant concentration. The amount of fatty acids adsorbed in the three adsorbents was related to the surface area and polarity of the adsorbent, concentration and solubility of the adsorbate and temperature of the solution. The negative values of ΔG and ΔH showed that the adsorption on activated carbon and on modified and unmodified montmorillonite clays was a spontaneous and an exothermic process. The decrease in the values of ΔG, with the increase of temperature, demonstrated that the adsorption was benefited by the high temperature and the positive values of ΔS showed that the fatty acids molecules were in a more randomic condition in the adsorbed state than in solution. The experimental results obtained at the temperatures of (298, 303, 313, and 323) K showed that experimental data were well represented by the Langmuir and Freundlich isotherms models

  10. Electrokinetic investigations of solid/organic liquid dispersions: Effects of temperature treatment of the solid and alkyl chain length of adsorbed amines

    Energy Technology Data Exchange (ETDEWEB)

    Jada, A.; Siffert, B.; Eleli-Letsango, J. [Centre de Recherches sur la Physico-Chimie des Surfaces Solides 24, avenue du President Kenedy 68200 MULHOUSE (France)

    1996-01-01

    Zeta potential of two oxides TiO{sub 2} and Al{sub 2}O{sub 3}, dispersed in various organic solvents were measured at room temperature. The inorganic particles were dried at temperatures ranging from 100 to 500{degree}C for several days and were allowed to cool under vacuum just before use. Electrokinetic investigations of TiO{sub 2} particles in n-alkylamine-hexane solutions with various amine chain lengths (C{sub n}H{sub 2n+1}NH{sub 2}, n=1{endash}10) were also done and allowed the determination of the shear plane position in the eventual electric double layer surrounding the solid surface. Furthermore, in order to estimate the thickness {delta} of the electrical double layer surrounding the solid surface, DLVO theory was applied to TiO{sub 2} particles dispersed in n-hexane, in the presence of butylamine. {copyright} {ital 1996 American Institute of Physics.}

  11. I. Fundamental Practicum: Temperature Measurements of Falling Droplets, July, 1989. II. Industrial Practicum: Interaction and Effect of Adsorbed Organics on Reference Clays and Reservoir Rock, April, 1988. III. Apprenticeship Practicum: Studies of Group XIII Metal Inclusion Complexes, March, 1987

    Science.gov (United States)

    Wells, Mark Richard

    The temperature of 225 μm decane droplets falling through a hot, quiescent, oxygen -free environment were measured using laser-induced exciplex fluorescence thermometry. The temperature of the droplets was found to increase approximately 0.42^ circC/^circC increase in the environment temperature as the environment temperature was increased to 250^circ C. Less than 10% evaporation of the droplets was observed at the highest environment temperatures. This represents one of the first successful applications of a remote-sensing technique for the temperature determination of droplets in a dynamic system. Industrial practicum. The industrial practicum report, entitled "Interaction and Effect of Adsorbed Organics on Reference Clays and Reservoir Rock," is a discussion of the measurement of the effect adsorbed organic material, especially from crude petroleum, has on the surface area, cation exchange capacity, and zeta potential of reference clay material and reservoir rock. In addition, the energetics of adsorption of a petroleum extract onto several reference clays and reservoir rock were measured using both flow and batch microcalorimetry. These results are very important in evaluating and understanding the wettability of reservoir rock and its impact on the recovery of crude oil from a petroleum reservoir. Apprenticeship practicum. "Studies of Group XIII Metal Inclusion Complexes" investigates the structure and dynamics of liquid inclusion complexes having the general formula (R_4N) (Al_2 Me_6I) cdot (C_6H_6) _{rm x}. ^1H and ^{13}C spin-lattice relaxation times, nuclear Overhauser enhancements, and molecular correlation times were measured as well as diffusion coefficients of the various species in solution. The dynamics of transfer between "guest" and free solvent molecules were measured using a variety of techniques. The inherent structure of liquid inclusion complexes as an ordered medium for homogeneous catalysis was studied using hydrogenation catalyzed by

  12. Structural measurements of polymer-fullerene blend films for organic photovoltaics

    Science.gov (United States)

    Delongchamp, Dean

    2011-03-01

    Organic photovoltaic (OPV) technology has the potential to greatly lower the cost of solar cell fabrication by enabling ink-based deposition of active layers. In bulk heterojunction (BHJ) OPV devices, the power conversion efficiency critically depends on the distribution of the polymer absorber and the fullerene electron acceptor (e.g., the blend morphology). I will describe measurement methods to probe the structure of OPV devices, with a focus on the morphology of the BHJ layer. For example, the vertical distribution of absorber and electron acceptor in BHJ films follows segregation behavior similar to that of miscible polymer blends. The top (air) interface becomes rich in the polymer absorber, whereas the bottom interface composition depends on the substrate surface energy. Thin film transistors fabricated from BHJs can therefore exhibit ambipolar or hole-only transport depending on the dielectric, because of different interfacial segregation. We extend these results to practical photovoltaic devices by comparing BHJs cast upon hole transport layers that have similar work functions but different surface energies. This study includes the application of variable angle spectroscopic ellipsometry (VASE) to BHJ films, and emphasizes the importance of absorber anisotropy and vertical heterogeneity in the optical model. Additional results will describe the nanometer-scale structure in the BHJ interior. The application of solid-state nuclear magnetic resonance (SS-NMR) can reveal details about the segregation of absorber and acceptor in a BHJ film. Nanoscale BHJ morphology information can also be collected using tomographic transmission electron microscopy (TEM). Together these measurements allow us to reveal a detailed picture of BHJ morphology, explain how the morphology originates from materials and processing choices, and relate the morphology to device performance and stability.

  13. Transparent conductive PVP/AgNWs films for flexible organic light emitting diodes by spraying method

    Science.gov (United States)

    Hu, Jun-tao; Mei, Wen-juan; Ye, Kang-li; Wei, Qing-qing; Hu, Sheng

    2016-05-01

    In this study, a simple spraying method is used to prepare the transparent conductive films (TCFs) based on Ag nanowires (AgNWs). Polyvinylpyrrolidone (PVP) is introduced to modify the interface of substrate. The transmittance and bending performance are improved by optimizing the number of spraying times and the solution concentration and controlling the annealing time. The spraying times of 20, the concentration of 2 mg/mL and the annealing time of 10 min are chosen to fabricate the PVP/AgNWs films. The transmittance of PVP/AgNWs films is 53.4%—67.9% at 380—780 nm, and the sheet resistance is 30 Ω/□ which is equivalent to that of commercial indium tin oxide (ITO). During cyclic bending tests to 500 cycles with bending radius of 5 mm, the changes of resistivity are negligible. The performance of PVP/AgNW transparent electrodes has little change after being exposed to the normal environment for 1 000 h. The adhesion to polymeric substrate and the ability to endure bending stress in AgNWs network films are both significantly improved by introducing PVP. Spraying method makes AgNWs form a stratified structure on large-area polymer substrates, and the vacuum annealing method is used to weld the AgNWs together at junctions and substrates, which can improve the electrical conductivity. The experimental results indicate that PVP/AgNW transparent electrodes can be used as transparent conductive electrodes in flexible organic light emitting diodes (OLEDs).

  14. Fabrication of organically modified oxygen sensing film based on fluorescent quenching

    Institute of Scientific and Technical Information of China (English)

    XIN LingLing; XIAO LaiLong; ZHAO Li; CHEN Xi; WANG XiaoRu

    2007-01-01

    An organically modified silicate (ORMOSIL) as a matrix for oxygen-sensitive sensor, in which dimethyldimethoxysilane was selected as an organic modifier in the precursor, is described. The sensing film with tris-(4,7-diphenyl-1,10-phenanthroline) ruthenium(II) as an indicator developed in this paper was characterized by efficient quenching by oxygen. Blue light-emitting diodes ((max = 475 nm) were employed as light excitation source. The linear range of the dissolved oxygen was from 0.5 to 16 (g/mL. The measured RSD was 2%, the response time (t95) was 60 s, and the determination limit was 0.2 (g/mL. A portable and inexpensive luminescence-based sensor was established and applied to the determination of dissolved oxygen in the surface water.

  15. Spectroscopic studies of organic-inorganic composite film cured by low energy electron beam

    International Nuclear Information System (INIS)

    Liquid epoxidized natural rubber acrylate (LENRA) film was reinforced with silica particles formed in-situ via sol gel process. Combination of these two components produces organic-inorganic composites. Tetraethyl orthosilicate (TEOS) was used as precursor material for silica generation. Sol gel reactions was carried out at different concentrations of TEOS i.e. between 10 and 50 phr. The compounds that contain silica were crosslinked by electron beam. Structural properties studies were carried out by Fourier Transform Infrared Spectrometer (FTIR). It was found that miscibility between organic and inorganic components improved with the presence of silanol groups (Si-OH) and polar solvent i.e. THF, via hydrogen bonding formation between siloxane and LENRA. Morphology study by the transmission electron microscopy (TEM) and scanning electron microscopy (SEM) showed in-situ generated silica particles were homogenous and well dispersed at any concentrations of TEOS. (author)

  16. Flexible Electronics: Integration Processes for Organic and Inorganic Semiconductor-Based Thin-Film Transistors

    Directory of Open Access Journals (Sweden)

    Fábio F. Vidor

    2015-07-01

    Full Text Available Flexible and transparent electronics have been studied intensively during the last few decades. The technique establishes the possibility of fabricating innovative products, from flexible displays to radio-frequency identification tags. Typically, large-area polymeric substrates such as polypropylene (PP or polyethylene terephthalate (PET are used, which produces new requirements for the integration processes. A key element for flexible and transparent electronics is the thin-film transistor (TFT, as it is responsible for the driving current in memory cells, digital circuits or organic light-emitting devices (OLEDs. In this paper, we discuss some fundamental concepts of TFT technology. Additionally, we present a comparison between the use of the semiconducting organic small-molecule pentacene and inorganic nanoparticle semiconductors in order to integrate TFTs suitable for flexible electronics. Moreover, a technique for integration with a submicron resolution suitable for glass and foil substrates is presented.

  17. Percolation of Carbon Nanoparticles in Poly(3-Hexylthiophene Enhancing Carrier Mobility in Organic Thin Film Transistors

    Directory of Open Access Journals (Sweden)

    Chang-Hung Lee

    2014-01-01

    Full Text Available To improve the field-effect mobility of all-inkjet-printed organic thin film transistors (OTFTs, a composite material consisted of carbon nanoparticles (CNPs and poly(3-hexylthiophene (P3HT was reported by using homemade inkjet-printing system. These all-inkjet-printed composite OTFTs represented superior characteristics compared to the all-inkjet-printed pristine P3HT OTFTs. To investigate the enhancement mechanism of the blended materials, the percolation model was established and experimentally verified to illustrate the enhancement of the electrical properties with different blending concentrations. In addition, experimental results of OTFT contact resistances showed that both contact resistance and channel resistance were halved. At the same time, X-ray diffraction measurements, Fourier transform infrared spectra, ultraviolet-visible light, and photoluminescence spectra were also accomplished to clarify the material blending effects. Therefore, this study demonstrates the potential and guideline of carbon-based nanocomposite materials in all-inkjet-printed organic electronics.

  18. Sulfometuron incorporation in cationic micelles adsorbed on montmorillonite.

    Science.gov (United States)

    Mishael, Yael Golda; Undabeytia, Tomas; Rytwo, Giora; Papahadjopoulos-Sternberg, Brigitte; Rubin, Baruch; Nir, Shlomo

    2002-05-01

    The aim of this study was to understand the interactions between alkylammonium cations present as monomers and micelles and a clay mineral, montmorillonite, to develop slow release formulations of anionic herbicides, such as sulfometuron (SFM) whose leaching in soils is an environmental and economic problem. In the proposed formulation the herbicide is incorporated in positively charged micelles of quaternary amine cations, which in turn adsorb on the negatively charged clay. The adsorption of hexadecyltrimethylammonium (HDTMA) and octadecyltrimethylammonium (ODTMA) on montmorillonite was studied above and below their critical micelle concentrations (CMC). At concentrations above the CMC, the loading exceeded the clay's cation exchange capacity (CEC) and indicated higher affinity of the cation with the longer alkyl chain. An adsorption model could adequately simulate adsorption at concentrations below the CMC, and yield fair predictions for the effect of ionic strength. The model indicated that above the CMC adsorbed micelles contributed significantly to the amount of ODTMA adsorbed. Evidence for adsorption of ODTMA micelles on montmorillonite was provided by X-ray diffraction, freeze-fracture electron microscopy, and dialysis bag measurements. SFM was not adsorbed directly on the clay mineral, and adsorbed at low levels, when the organic cation was adsorbed as monomers. In contrast, a large fraction of SFM adsorbed on the clay mineral when incorporated in micelles that adsorbed on the clay. PMID:11982411

  19. Selective sorption of perfluorooctane sulfonate on molecularly imprinted polymer adsorbents

    Institute of Scientific and Technical Information of China (English)

    Shubo DENG; Danmeng SHUAI; Qiang YU; Jun HUANG; Gang YU

    2009-01-01

    Perfluorooctane sulfonate (PFOS), as a potential persistent organic pollutant, has been widely detected in water environments, and has become a great concern in recent years. PFOS is very stable and difficult to decompose using conventional techniques. Sorption may be an attractive method to remove it from water. In this study, the molecularly imprinted polymer (MIP) adsorbents were prepared through the polymerization of 4-vinylpyridine under different preparation conditions in order to remove perfluorooctane sulfonate (PFOS) from water. The MIP adsorbents using perfluorooctanoic acid (PFOA) as the template had good imprinting effects and could selectively remove PFOS from aqueous solution. The sorption behaviors including sorption kinetics,isotherms, and effect of pH, salt, and competitive anions were investigated. Experimental results showed that the sorption of PFOS On the MIP adsorbents was very fast, pH-dependent, and highly selective. The achieved fast sorption equilibrium within 1 h was attributed to the surface sorption on the fine adsorbents. The sorption isotherms showed that the sorption selectivity of PFOS on the MIP adsorbents decreased at high PFOS concentrations, which may be due to the double-layer sorption and the formation of PFOS micelles on the sorbent surface. The sorption of PFOS on the MIP adsorbents was mainly dominated by the electrostatic interaction between the protonated vinylpyridine on the adsorbent surface and the anionic PFOS. The prepared MIP adsorbents can potentially be applied in water and wastewater treatment for selective removal of PFOS.

  20. Optical and Morphological Studies of Thermally Evaporated PTCDI-C8 Thin Films for Organic Solar Cell Applications

    Directory of Open Access Journals (Sweden)

    Ronak Rahimi

    2013-01-01

    Full Text Available PTCDI-C8 due to its relatively high photosensitivity and high electron mobility has attracted much attention in organic semiconductor devices. In this work, thin films of PTCDI-C8 with different thicknesses were deposited on silicon substrates with native silicon dioxide using a vacuum thermal evaporator. Several material characterization techniques have been utilized to evaluate the structure, morphology, and optical properties of these films. Their optical constants (refractive index and extinction coefficient have been extracted from the spectroscopic ellipsometry (SE. X-ray reflectivity (XRR and atomic force microscopy (AFM were employed to determine the morphology and structure as well as the thickness and roughness of the PTCDI-C8 thin films. These films revealed a high degree of structural ordering within the layers. All the experimental measurements were performed under ambient conditions. PTCDI-C8 films have shown to endure ambient condition which allows pots-deposition characterization.

  1. Stopping power of fluorides and semiconductor organic films for low-velocity protons

    International Nuclear Information System (INIS)

    A combined experimental and theoretical study of the energy loss of protons in fluorides and organic films is presented. The measurements were performed in fresh AlF3, LiF, and N,N'-bis(1-ethylpropyl)-perylene-3,4,9,10-tetracarboxdiimide (EP-PTCDI) evaporated in situ on self-supported C or Ag foils, covering the very low energy range from 25 keV down to 0.7 keV. The transmission method is used in combination with time-of-flight (TOF) spectrometry. In the case of fluorides with large band gap energies (AlF3 and LiF), the experimental stopping power increases almost linearly with the mean projectile velocity showing a velocity threshold at about 0.1 a.u. These features are well reproduced by a model based on quantum scattering theory that takes into account the velocity distribution and the excitation of the active 2p electrons in the F- anions, and the properties of the electronic bands of the insulators. In the case of the semiconductor organic film with a lower gap, the experimental stopping power increases linearly with the mean projectile velocity without presenting a clear threshold. This trend is also reproduced by the proposed model.

  2. Diffusion of metal atoms on organic thin films studied by PEEM

    International Nuclear Information System (INIS)

    Full text: Recently there has been much interest in organic devices. The stability of metal microstructure deposited on organic films is crucial for these devices of higher integration. In this study, we measured photoelectron emission microscopy (PEEM) images of metals (In, Au, Al) microstructure, deposited onto perylene-3,4,9,10-tetracarboxylic acid-dianhydride (PTCDA) thin films prepared on MoS2 substrate through a mesh (10μm x 10μm square opening, 25μm periodicity). In PEEM experiments, a D2 lamp (hv 2, the PEEM images showed a periodic triangle pattern, although the deposited shape of the In microstructure was square. The triangular shape area was larger than the mesh opening, indicating that In atoms diffuse to three lateral directions. The three directions of diffusion were found to correspond with surface crystal axes of MoS2. Such three directional diffusion was not observed for Au/PTCDA/MoS2, Al/PTCDA/MoS2, In(1 Angstroms)/PTCDA(submonolayer)/MoS2 and In/MoS2. These results suggest that the diffusion originates from (1) strong chemical interaction between PTCDA and In, and (2) the molecular packing structure of PTCDA which depends on substrate surfaces

  3. The Integration and Applications of Organic Thin Film Transistors and Ferroelectric Polymers

    Science.gov (United States)

    Hsu, Yu-Jen

    Organic thin film transistors and ferroelectric polymer (polyvinylidene difluoride) sheet material are integrated to form various sensors for stress/strain, acoustic wave, and Infrared (heat) sensing applications. Different from silicon-based transistors, organic thin film transistors can be fabricated and processed in room-temperature and integrated with a variety of substrates. On the other hand, polyvinylidene difluoride (PVDF) exhibits ferroelectric properties that are highly useful for sensor applications. The wide frequency bandwidth (0.001 Hz to 10 GHz), vast dynamic range (100n to 10M psi), and high elastic compliance (up to 3 percent) make PVDF a more suitable candidate over ceramic piezoelectric materials for thin and flexible sensor applications. However, the low Curie temperature may have impeded its integration with silicon technology. Organic thin film transistors, however, do not have the limitation of processing temperature, hence can serve as transimpedance amplifiers to convert the charge signal generated by PVDF into current signal that are more measurable and less affected by any downstream parasitics. Piezoelectric sensors are useful for a range of applications, but passive arrays suffer from crosstalk and signal attenuation which have complicated the development of array-based PVDF sensors. We have used organic field effect transistors, which are compatible with the low Curie temperature of a flexible piezoelectric polymer,PVDF, to monolithically fabricate transimpedance amplifiers directly on the sensor surface and convert the piezoelectric charge signal into a current signal which can be detected even in the presence of parasitic capacitances. The device couples the voltage generated by the PVDF film under strain into the gate of the organic thin film transistors (OFET) using an arrangement that allows the full piezoelectric voltage to couple to the channel, while also increasing the charge retention time. A bipolar detector is created by

  4. The response of quartz crystals coated with thin fatty acid film to organic gases

    CERN Document Server

    Jin, C N; Kim, K H; Kwon, Y S

    1999-01-01

    We tried to apply a quartz crystal as a sensor by using the resonant frequency and the resistance properties of quartz crystals. Four kinds of fatty acids that have the same head groups were coated on the surfaces of the quartz crystals, and the shift of the resonant frequency and the resistance were observed based on the lengths of the tail groups. Myristic acid (C sub 1 sub 4), palmitic acid (C sub 1 sub 6), stearic acid (C sub 1 sub 8), and arachidic acid (C sub 2 sub 0) were deposited on the surfaces of quartz crystals by using the Langmuir-Blodgett (LB) method. As a result, the resonant frequency change was more sensitive to high molecular-weight fatty acids than to low molecular-weight ones. We also observed the effect of temperature on stearic acid LB films, and the response properties of quartz crystals coated with stearic-acid LB films to organic gases were investigated. As a result, the sensitivity of quartz crystals to organic gases was higher for higher molecular-weight gas, and we found that quar...

  5. The influence of a polymeric adhesion layer on gate insulators in organic thin-film-transistors

    International Nuclear Information System (INIS)

    The electrical characteristics of organic thin-film-transistors (OTFTs) can be improved by inserting an adhesion layer on the gate dielectric prior to the deposition of the organic semiconductor. A polyimide (PI) film was used as polymeric adhesion layer deposited on an inorganic gate insulator such as silicon dioxide (SiO2) or silicon nitride (SiNx), and the adhesion layer was formed by using a vapor deposition polymerization (VDP), instead of a spin-coating process. The molecular ordering of pentacene could be enhanced by using a PI adhesion layer which has a lower surface energy and roughness than SiO2 or SiNx. We also investigated the electrical characteristics of OTFTs for different thickness of the PI adhesion layer. The OTFTs with an adhesion layer attained on on/off ratio of ∼ 106, a threshold voltage of -0.8 ∼ 4 V, and a subthreshold slope of 2.0 ∼ 2.5 V/decade. Especially, a field effect mobility, of about 0.01 cm2/Vs was obtained for bare SiO2 and SiNx, whereas with an adhesion layer, as improved value of 0.1 ∼ 0.4 cm2/Vs was obtained, which depended on the thickness of the PI layer.

  6. Bi2O3 nanoparticles encapsulated in surface mounted metal-organic framework thin films

    Science.gov (United States)

    Guo, Wei; Chen, Zhi; Yang, Chengwu; Neumann, Tobias; Kübel, Christian; Wenzel, Wolfgang; Welle, Alexander; Pfleging, Wilhelm; Shekhah, Osama; Wöll, Christof; Redel, Engelbert

    2016-03-01

    We describe a novel procedure to fabricate a recyclable hybrid-photocatalyst based on Bi2O3@HKUST-1 MOF porous thin films. Bi2O3 nanoparticles (NPs) were synthesized within HKUST-1 (or Cu3(BTC)2) surface-mounted metal-organic frame-works (SURMOFs) and characterized using X-ray diffraction (XRD), a quartz crystal microbalance (QCM) and transmission electron microscopy (TEM). The Bi2O3 semiconductor NPs (diameter 1-3 nm)/SURMOF heterostructures exhibit superior photo-efficiencies compared to NPs synthesized using conventional routes, as demonstrated via the photodegradation of the nuclear fast red (NFR) dye.We describe a novel procedure to fabricate a recyclable hybrid-photocatalyst based on Bi2O3@HKUST-1 MOF porous thin films. Bi2O3 nanoparticles (NPs) were synthesized within HKUST-1 (or Cu3(BTC)2) surface-mounted metal-organic frame-works (SURMOFs) and characterized using X-ray diffraction (XRD), a quartz crystal microbalance (QCM) and transmission electron microscopy (TEM). The Bi2O3 semiconductor NPs (diameter 1-3 nm)/SURMOF heterostructures exhibit superior photo-efficiencies compared to NPs synthesized using conventional routes, as demonstrated via the photodegradation of the nuclear fast red (NFR) dye. Electronic supplementary information (ESI) available. See DOI: 10.1039/c6nr00532b

  7. Preparation and characterization of BiFeO3 thin films by the LPD on OH-functionalized organic SAMs

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    BiFeO3 (BFO) thin films were grown on OH-functionalized organic self-assembled monolayers (SAMs) via liquid-phase deposition (LPD) method at a temperature below 100°C. The BiFeO3 thin films were induced to synthesize on the OH-functionalized organic OTS monolayers prepared on hydroxylated glass substrate by self-assembling technique. The hydrophilic characteristic of the as-prepared OTS-SAMs was measured by contact angle tester. The crystal phase composition, microstructure and topography of the as-synthesized BFO thin films were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), energy disperse spectroscopy (EDS) and atomic force microscope (AFM), respectively. Results show that compact and homogeneous BFO thin films can be formed on the OH-functionalized SAMs at low temperature.

  8. MOLECULAR DYNAMICS SIMULATION OF SELF-ORGANIZED STRUCTURE IN MICRO-PHASE SEPARATION OF NANO-SCALE FILM

    Institute of Scientific and Technical Information of China (English)

    Dexiang Tang; Wei Ge; Jinghai Li

    2004-01-01

    Self-organization in thin micro-films has shown potential for the production of microelements with specific structures and functions; however, little is known about its mechanism of formation. A 2-D molecular dynamics (MD)simulation on this process is carried out in this paper for films between two parallel walls (substrates) under different initial conditions. The films consist of two immiscible components (A and B). The simulation results in alternative columns perpendicular to the walls, which are rich either in A or in B molecules, respectively, apparently owing to their different interactions with the walls. The characteristic breadths of the columns depend on the distance between the two walls. By providing microscopic details of the self-organization processes and the resulted structures, MD simulation proves itself as a unique way for analyzing the dynamics of thin films.

  9. The influence of sediment particle size on the properties of adsorbed dissolved organic matter in the Yangtze Estuary and its interactions with As/Sb.

    Science.gov (United States)

    Wang, Ying; Zhang, Manman; Zhang, Di; Shen, Zhenyao

    2016-04-15

    The characteristics of dissolved organic matter (DOM) extracted from sediments with four particle sizes (200μm) in the Yangtze Estuary were compared. The differences in their binding capacities for individual fluorescent components with As/Sb were studied using fluorescence-quenching titrations combined with excitation-emission matrix (EEM) spectra. The results indicated that the particle size influenced the quality and quantity of extracted DOM. With increasing particle size, the extracted DOM content, value of UV280 and acidic functional group content of the DOM decreased. Three protein-like components (C2, C3 and C4) and one humic-like component (C1) were identified using the parallel factor analysis (PARAFAC) model. Wherein, protein-like material dominated in DOM on different particle-size fractions and possessed a stronger complex capacity with As/Sb. A significant positive correlation between the complexation capacity of extracted DOM from samples, as well as with the acidic functional group content, was observed. PMID:26965093

  10. Structural features of resorcinol–formaldehyde resin chars and interfacial behavior of water co-adsorbed with low-molecular weight organics

    Energy Technology Data Exchange (ETDEWEB)

    Gun’ko, Vladimir M., E-mail: vlad_gunko@ukr.net [Chuiko Institute of Surface Chemistry, 17 General Naumov Street, 03164 Kyiv (Ukraine); Bogatyrov, Viktor M.; Turov, Vladimir V. [Chuiko Institute of Surface Chemistry, 17 General Naumov Street, 03164 Kyiv (Ukraine); Leboda, Roman; Skubiszewska-Zięba, Jadwiga [Faculty of Chemistry, Maria Curie-Skłodowska University, 20031 Lublin (Poland); Urubkov, Iliya V. [Kurdyumov Institute of Metal Physics, 36 Vernadsky Boulevard, 03142 Kyiv (Ukraine)

    2013-10-15

    Products of resorcinol–formaldehyde resin carbonization (chars) are characterized by different morphology (particle shape and sizes) and texture (specific surface area, pore volume and pore size distribution) depending on water content during resin polymerization. At a low amount of water (C{sub w} = 37.8 wt.%) during synthesis resulting in strongly cross-linked polymers, carbonization gives nonporous particles. An increase in the water content to 62.7 wt.% results in a nano/mesoporous char, but if C{sub w} = 73.3 wt.%, a char is purely nanoporous. Despite these textural differences, the Raman spectra of all the chars are similar because of the similarity in the structure of their carbon sheets with a significant contribution of sp{sup 3} C atoms. However, the difference in the spatial organization of the carbon sheet stacks in the particles results in the significant differences in the textural and morphological characteristics and in the adsorption properties of chars with respect to water, methane, benzene, hydrogen, methylene chloride, and dimethylsulfoxide.

  11. Structural features of resorcinol-formaldehyde resin chars and interfacial behavior of water co-adsorbed with low-molecular weight organics

    Science.gov (United States)

    Gun'ko, Vladimir M.; Bogatyrov, Viktor M.; Turov, Vladimir V.; Leboda, Roman; Skubiszewska-Zięba, Jadwiga; Urubkov, Iliya V.

    2013-10-01

    Products of resorcinol-formaldehyde resin carbonization (chars) are characterized by different morphology (particle shape and sizes) and texture (specific surface area, pore volume and pore size distribution) depending on water content during resin polymerization. At a low amount of water (Cw = 37.8 wt.%) during synthesis resulting in strongly cross-linked polymers, carbonization gives nonporous particles. An increase in the water content to 62.7 wt.% results in a nano/mesoporous char, but if Cw = 73.3 wt.%, a char is purely nanoporous. Despite these textural differences, the Raman spectra of all the chars are similar because of the similarity in the structure of their carbon sheets with a significant contribution of sp3 C atoms. However, the difference in the spatial organization of the carbon sheet stacks in the particles results in the significant differences in the textural and morphological characteristics and in the adsorption properties of chars with respect to water, methane, benzene, hydrogen, methylene chloride, and dimethylsulfoxide.

  12. Identification of urushi coated films taken from ancient Buddha images by using PIXE, FT-IR, and organic elemental analysis

    International Nuclear Information System (INIS)

    Six types of samples including urushi, urushi tree and black coating films taken from ancient Buddha images were examined by analyses of PIXE, organic element and FT-IR to identify with urushi or another material. Based on the results of three analytical experiments above mentioned, the coating materials aging over hundreds of years were identified with weathered urushi films mixed with other material. Further investigation may reveal the urushi coating techniques used in the past. (author)

  13. Identification of urushi coated films taken from ancient Buddha images by using PIXE, FT-IR, and organic elemental analysis

    Energy Technology Data Exchange (ETDEWEB)

    Kagemori, N.; Umemura, K.; Yoshimura, T.; Inoue, M.; Kawai, S. [Wood Research Institute, Kyoto Univ., Uji, Kyoto (Japan); Yano, K. [Tokyo National University of Fine Arts and Music, Uenokouen, Tokyo (Japan); Sera, K. [Cyclotron Research Center, Iwate Medical Univ., Takizawa, Iwate (Japan); Futatsugawa, S. [Nishina Memorial Cyclotron Center, Japan Radioisotope Association, Takizawa, Iwate (Japan); Nakamura, Y. [Kyoto National Museum, Higashiyama, Kyoto (Japan)

    1999-07-01

    Six types of samples including urushi, urushi tree and black coating films taken from ancient Buddha images were examined by analyses of PIXE, organic element and FT-IR to identify with urushi or another material. Based on the results of three analytical experiments above mentioned, the coating materials aging over hundreds of years were identified with weathered urushi films mixed with other material. Further investigation may reveal the urushi coating techniques used in the past. (author)

  14. Syntheses of Amine Type Adsorbents with Emulsion Graft Polymerization of Glycidyl Methacrylate

    International Nuclear Information System (INIS)

    Radiation-induced graft polymerization is attractive technique for preparing metal-ion adsorbents. This technique enables to introduce aiming function onto trunk polymers such as polymeric films, fibers, nonwoven fabric, and hollow fibers. The reactive monomer of glycidyl methacrylate (GMA) has been widely used for the syntheses of metal-ion adsorbents. This is because the GMA contains an epoxy group which can react easily with amine derivatives. Therefore, GMA-grafted polymer can be converted to various kinds of metal-ions adsorbents. Generally, GMA can be grafted by using organic solvent such as methanol and dimethyl sulfoxide. We found that the emulsion of GMA was available for effective grafting. In this case, the solvent is water so that the emulsion graft polymerization promises to be the green chemistry. In the present study, the GMA was grafted onto polyethylene fiber (PE fiber) in the emulsion system. Polyoxyethylene sorbitan monolaurate (Tween 20) was used as a surfactant to prepare the micelles of GMA in water. Graft polymerization of GMA micelles was investigated on the conditions of the total dose of irradiation, the monomer concentration, the surfactant concentration, the reaction time, and the reaction temperature

  15. In situ preparation of biomimetic thin films and their surface-shielding effect for organisms in high vacuum.

    Directory of Open Access Journals (Sweden)

    Hiroshi Suzuki

    Full Text Available Self-standing biocompatible films have yet to be prepared by physical or chemical vapor deposition assisted by plasma polymerization because gaseous monomers have thus far been used to create only polymer membranes. Using a nongaseous monomer, we previously found a simple fabrication method for a free-standing thin film prepared from solution by plasma polymerization, and a nano-suit made by polyoxyethylene (20 sorbitan monolaurate can render multicellular organisms highly tolerant to high vacuum. Here we report thin films prepared by plasma polymerization from various monomer solutions. The films had a flat surface at the irradiated site and were similar to films produced by vapor deposition of gaseous monomers. However, they also exhibited unique characteristics, such as a pinhole-free surface, transparency, solvent stability, flexibility, and a unique out-of-plane molecular density gradient from the irradiated to the unirradiated surface of the film. Additionally, covering mosquito larvae with the films protected the shape of the organism and kept them alive under the high vacuum conditions in a field emission-scanning electron microscope. Our method will be useful for numerous applications, particularly in the biological sciences.

  16. One-step growth of lanthanoid metal-organic framework (MOF) films under solvothermal conditions for temperature sensing.

    Science.gov (United States)

    Liu, Xue; Fu, Wentian; Bouwman, Elisabeth

    2016-05-25

    A one-step direct solvothermal synthesis of an Ln metal-organic framework (MOF) film is reported. The LnHL (Ln = Tb and Gd) films that were deposited on a Gd2O3 subtrate are continuous and smooth. The Gd0.9Tb0.1HL film can be used as a ratiometric thermometer, showing good linear behaviour in the temperature range of 110-250 K with a sensitivity up to 0.8% K(-1). PMID:27147478

  17. Molecular beam deposition and polymerization of parylene-N ultrathin films: Effective buffers in organic light emitting diodes

    International Nuclear Information System (INIS)

    Highlights: • Parylene-N (PPXN) films prepared by using a home-made Knudsen Cell were identified and characterized. • 1 nm PPXN thin films were inserted at different locations in the hole transport layers of organic light emitting diodes. • For an optimized PPXN inserted organic light emitting diodes, current efficiency improvement of 11% was achieved. • The device current efficiency improvement and the current density variation under operation were discussed. - Abstract: Ultrathin Parylene-N (PPXN) films were prepared by using a home-made Knudsen Cell (KC). The PPXN films were identified by infrared (IR) spectra. The morphology and insulativity of PPXN films were measured by atomic force microscope (AFM) and current density versus voltage (j–V) characteristics. Well controlled 1-nm-thick PPXN thin films were inserted at different locations in the N′-bis(naphthalene-1-yl)-N, N′-bis(phenyl) benzidine (NPB) layers of organic light emitting diodes (OLEDs) with the structure of ITO/NPB/tris (8-hydroxyquinolato) aluminum (Alq3)/LiF/Al. For an optimized PPXN inserted structure, current efficiency of 6.27 cd/A was achieved, 11% higher than the 5.64 cd/A of the control one with 1-nm-thick PPXN buffer inserted at the anode interface. The device current efficiency improvement is due to the electron blocking of PPXN buffers, and the current density variation of devices under operation was explained by tunneling barrier reduction

  18. In situ intercalation dynamics in inorganic-organic layered perovskite thin films.

    Science.gov (United States)

    Ahmad, Shahab; Kanaujia, Pawan K; Niu, Wendy; Baumberg, Jeremy J; Vijaya Prakash, G

    2014-07-01

    The properties of layered inorganic semiconductors can be manipulated by the insertion of foreign molecular species via a process known as intercalation. In the present study, we investigate the phenomenon of organic moiety (R-NH3I) intercalation in layered metal-halide (PbI2)-based inorganic semiconductors, leading to the formation of inorganic-organic (IO) perovskites [(R-NH3)2PbI4]. During this intercalation strong resonant exciton optical transitions are created, enabling study of the dynamics of this process. Simultaneous in situ photoluminescence (PL) and transmission measurements are used to track the structural and exciton evolution. On the basis of the experimental observations, a model is proposed which explains the process of IO perovskite formation during intercalation of the organic moiety through the inorganic semiconductor layers. The interplay between precursor film thickness and organic solution concentration/solvent highlights the role of van der Waals interactions between the layers, as well as the need for maintaining stoichiometry during intercalation. Nucleation and growth occurring during intercalation matches a Johnson-Mehl-Avrami-Kolmogorov model, with results fitting both ideal and nonideal cases. PMID:24905435

  19. In Situ Intercalation Dynamics in Inorganic–Organic Layered Perovskite Thin Films

    Science.gov (United States)

    2014-01-01

    The properties of layered inorganic semiconductors can be manipulated by the insertion of foreign molecular species via a process known as intercalation. In the present study, we investigate the phenomenon of organic moiety (R-NH3I) intercalation in layered metal-halide (PbI2)-based inorganic semiconductors, leading to the formation of inorganic–organic (IO) perovskites [(R-NH3)2PbI4]. During this intercalation strong resonant exciton optical transitions are created, enabling study of the dynamics of this process. Simultaneous in situ photoluminescence (PL) and transmission measurements are used to track the structural and exciton evolution. On the basis of the experimental observations, a model is proposed which explains the process of IO perovskite formation during intercalation of the organic moiety through the inorganic semiconductor layers. The interplay between precursor film thickness and organic solution concentration/solvent highlights the role of van der Waals interactions between the layers, as well as the need for maintaining stoichiometry during intercalation. Nucleation and growth occurring during intercalation matches a Johnson–Mehl–Avrami–Kolmogorov model, with results fitting both ideal and nonideal cases. PMID:24905435

  20. Electrochemical fabrication of copper-containing metal-organic framework films as amperometric detectors for bromate determination.

    Science.gov (United States)

    Shi, Erbin; Zou, Xiaoqin; Liu, Jia; Lin, Huiming; Zhang, Feng; Shi, Shaoxuan; Liu, Fenghua; Zhu, Guangshan; Qu, Fengyu

    2016-05-01

    A facile electrochemical plating strategy has been employed to prepare the electroactive metal-organic framework film (NENU-3) onto a copper electrode in the acid electrolyte containing 1,3,5-benzenetricarboxylic acid (H3BTC) and phosphotungstic acid (PTA). The as-made NENU-3 films have been characterized using powder X-ray diffraction (PXRD), scanning electron microscopy (SEM), Fourier transform infrared (FT-IR) spectroscopy and thermogravimetric analyses (TGA). These analyses indicate that NENU-3 films have high phase purity and high stability. Further, different electrochemical techniques are utilized for measuring the electrochemical behaviors of the NENU-3 film electrodes. Accordingly, the kinetic parameters of a NENU-3 film electrode towards the electrocatalytic reduction of bromate are obtained, including the electron transfer coefficient (α), the catalytic rate constant (ks), and the diffusion coefficient (D). The film electrodes present excellent electrocatalytic ability for the bromate reduction, and can be used successfully for the amperometric detection of bromate. Under the optimized conditions, the proposed sensor exhibits a wide linear range (0.05-72.74 mM) and a lower detection limit (12 μM) measured by chronoamperometry (CA). Moreover, the films possess high electrochemical stability and strong anti-interference capability in the bromate detection process. It has been demonstrated that the electrochemical plating method reported here offers a reliable and efficient way to fabricate MOF films on conductive substrates for bromate detection. PMID:27054956

  1. Substrate-adsorbate coupling in CO-adsorbed copper

    CERN Document Server

    Lewis, S P; Lewis, Steven P.; Rappe, Andrew M.

    1996-01-01

    The vibrational properties of carbon monoxide adsorbed to the copper (100) surface are explored within density functional theory. Atoms of the substrate and adsorbate are treated on an equal footing in order to examine the effect of substrate--adsorbate coupling. This coupling is found to have a significant effect on the vibrational modes, particularly the in-plane frustrated translation, which mixes strongly with substrate phonons and broadens into a resonance. The predicted lifetime due to this harmonic decay mechanism is in excellent quantitative agreement with experiment.

  2. Sub-micron phase coexistence in small-molecule organic thin films revealed by infrared nano-imaging

    Science.gov (United States)

    Westermeier, Christian; Cernescu, Adrian; Amarie, Sergiu; Liewald, Clemens; Keilmann, Fritz; Nickel, Bert

    2014-06-01

    Controlling the domain size and degree of crystallization in organic films is highly important for electronic applications such as organic photovoltaics, but suitable nanoscale mapping is very difficult. Here we apply infrared-spectroscopic nano-imaging to directly determine the local crystallinity of organic thin films with 20-nm resolution. We find that state-of-the-art pentacene films (grown on SiO2 at elevated temperature) are structurally not homogeneous but exhibit two interpenetrating phases at sub-micrometre scale, documented by a shifted vibrational resonance. We observe bulk-phase nucleation of distinct ellipsoidal shape within the dominant pentacene thin-film phase and also further growth during storage. A faint topographical contrast as well as X-ray analysis corroborates our interpretation. As bulk-phase nucleation obstructs carrier percolation paths within the thin-film phase, hitherto uncontrolled structural inhomogeneity might have caused conflicting reports about pentacene carrier mobility. Infrared-spectroscopic nano-imaging of nanoscale polymorphism should have many applications ranging from organic nanocomposites to geologic minerals.

  3. Nanostructured films of inorganic-organic hybrid materials for application in photovoltaics; Nanostrukturierte Filme aus anorganisch-organischen Hybridmaterialien fuer die Photovoltaik

    Energy Technology Data Exchange (ETDEWEB)

    Perlich, Jan

    2009-06-25

    Nanostructured thin films of crystalline TiO{sub 2} for applications in photovoltaics were studied. The fabrication of the thin films is based on a hybrid approach. The anorganic metal oxide prepared via a sol-gel synthesis is structurated by the template properties of the applied organic block-copolymer. Via the film epitaxy by means of centrifugal coating first hybrid films (polymer-nanocomposite films) were fabricated, which were changed by calcination into crystalline TiO{sub 2} films with taylored morphology. The successful development of novel preparation approaches to the adaption to consisting conditions in the application field of photovoltaics contains a route to the fine-tuning of the morphology as well as the fabrication of hierarchical morphologies in different configurations. The structural study of the single nanostructurated TiO{sub 2} films up to the functional multilayer arrangement as photovoltaic demonstration cell was performed with conventionally imaging methods, as for instance scanning force microscopy and electron microscopy as well as the special small-angle X-ray scattering method under rigid incident angle (GISAXS). [German] Es wurden nanostrukturierte duenne Filme aus kristallinem TiO{sub 2} fuer Anwendungen in der Photovoltaik untersucht. Die Herstellung der duennen Filme basiert auf einem Hybridansatz. Das ueber eine Sol-Gel-Synthese bereitgestellte anorganische Metalloxid wird durch die Template-Eigenschaften des eingesetzten organischen Block-Copolymers strukturiert. Ueber die Filmaufbringung mittels Schleuderbeschichtung wurden zunaechst Hybridfilme (Polymer-Nanokompositfilme) hergestellt, die durch Kalzinierung in kristalline TiO{sub 2}-Filme mit massgeschneiderter Morphologie umgewandelt werden. Die erfolgreiche Entwicklung von neuartigen Praeparationsansaetzen zur Adaption an bestehende Gegebenheiten im Anwendungsgebiet der Photovoltaik beinhaltet eine Route zur Feineinstellung der Morphologie sowie die Herstellung von

  4. Photocatalytic hydrogen generation with simultaneous organic degradation by a visible light-driven CdS/ZnS film catalyst

    International Nuclear Information System (INIS)

    Highlights: • CdS/ZnS/Ru film catalyst is able to produce H2 under visible light. • The photocatalyst is capable of both H2 production and organic degradation. • ZnS layer improves the photoreactivity and stability of the CdS film. • CdS/ZnS/Ru in formic acid produces 123 mmol H2 and removes 1.9 g COD/m2-h. -- Abstract: A layered CdS/ZnS catalyst film was synthesized on glass using the stepped chemical bath deposition method. The film catalyst was shown as visible light-driven photocatalyst capable of producing H2 under visible light. The ZnS outer layer helped suppress the recombination of photo-generated electron–hole pairs on the CdS base layer, leading to faster H2 generation. The use of the ZnS layer also greatly improved the stability of the catalyst film and prevented the leaching of Cd2+ from the CdS layer. Deposition of Ru on the catalyst film further increased its photoreactivity for H2 production. The photocatalyst was effective in H2 production together with the degradation of model organic substances, such as formic acid, methanol, and ethanol. The greatest H2 production rates were achieved using the CdS/ZnS/Ru film in the formic acid solution at 123 μmol/m2-h under visible light and 135 mmol/m2-h under the simulated solar light. The corresponding theoretical reduction rates of chemical oxygen demand (COD) were 1.9 and 2.1 g/m2-h, respectively. As the multilayer CdS/ZnS/Ru film catalyst can be easily separated from water, it has a great potential for simultaneous photocatalytic hydrogen generation and organic wastewater treatment using solar energy

  5. THE USE OF LOW COST ADSORBENTS FOR PURIFICATION WASTEWATER

    OpenAIRE

    Višekruna, Antonija; Štrkalj, Anita; Marinić Pajc, Ljiljana

    2011-01-01

    Adsorption is one of the effective methods of advanced wastewater treatment, which industries employ to reduce hazardous organic and inorganic wastes in effluents. The use of low cost adsorbent has been investigated as a replacement for current costly methods of removing toxic substances from wastewater. In this article, the use of low cost adsorbents for the removal of toxic substances from wastewater has been reviewed.

  6. Fabrication of single-phase ε-GaSe films on Si(100) substrate by metal organic chemical vapor deposition

    International Nuclear Information System (INIS)

    Single-phase ε-gallium selenide (GaSe) films were fabricated on Si(100) substrate by metal organic chemical vapor deposition using dual-source precursors: triethylgallium (TEG) and hydrogen selenide (H2Se) with the flow ratio of [H2Se]/[TEG] being maintained at 1.2. In particular, an arsine (AsH3) flow was introduced to the Si substrate before the film deposition to induce an arsenic (As)-passivation effect on the substrate. The crystalline structure of GaSe films prepared was analyzed using X-ray diffraction and the surface morphology of them was characterized by scanning electron microscopy. It was found that the film quality could be improved by the As-passivation effect. The optical properties of the films were studied by temperature dependent photoluminescence (PL) measurements. PL spectra obtained with different distributions and intensities favored for resolving the superior material quality of the films produced on the substrate with As-passivation compared to those produced on the substrate without As-passivation. The former was dominated by the excitonic emissions for the whole temperature range of 20–300 K examined, while the latter was initially dominated by the defect-related emission at 1.907 eV for a low-temperature range ≦ 80 K and then became dominated by the weak excitonic emission band instead. The ε modification of GaSe films prepared was further recognized by the Raman scattering measurements conducted at room temperature. - Highlights: • Gallium selenide (GaSe) layered structures are fabricated on Si(100) substrate. • Metal–organic chemical vapor deposition is used for film fabrication. • Arsenic-passivation effects of Si substrate on the GaSe film quality are analyzed. • Photoluminescence measurements of GaSe polycrystals are reported

  7. Preparation of Composited Graphene/PEDOT:PSS Film for Its Possible Application in Graphene-based Organic Solar Cells

    Institute of Scientific and Technical Information of China (English)

    YU Yue; LI Meicheng; CHU Lihua; YU Hakki; Wodtke A M; ZHAO Yan; ZHANG Zhongmo

    2015-01-01

    The interface between graphene and organic layers is a key factor responsible for the performance of gra-phene-based organic solar cells (OSCs). In this paper, we focus on coating PEDOT:PSS onto the surface of graphene. We demonstrate two approaches, applying UV/Ozone treatment on graphene and modifying PEDOT:PSS with Zonyl, to get a PEDOT:PSS well-coated graphene film . Our results prove that both methods can be effective to solve the interface issue between graphene and PEDOT: PSS. Thereby it shows a positive application of the composited gra-phene/PEDOT:PSS film on graphene-based OSCs.

  8. Zeolites as alcohol adsorbents from aqueous solutions

    Directory of Open Access Journals (Sweden)

    Cekova Blagica

    2006-01-01

    Full Text Available The potential usage of zeolites as adsorbents for the removal of organic molecules from water was investigated in a series of experiments with aqueous solutions of lower alcohols. This could represent a simple solution to the problem of cleaning up industrial wastewater as well as recovering valuable chemicals at relatively low costs. Adsorption isotherms of the Langmuir type were applied, and calculations showed that the amount of propanol adsorbed on silicalite corresponded to approximately 70% of the pore volume. The adsorption process is simple, and recovery of the more concentrated products is easily done by heat treatment and/or at lowered pressures. Adsorption experiments with aqueous acetone showed that silicalite had approximately the same adsorption capacity for acetone as for n-propanol. Heats of adsorption were determined calorimetrically.

  9. The effect of dissolved organic carbon on bacterial adhesion to conditioning films adsorbed on glass from natural seawater collected during different seasons

    NARCIS (Netherlands)

    Bakker, D.P.; Klijnstra, J.W.; Busscher, H.J.; Mei, H.C. van der

    2003-01-01

    Adhesion of three marine bacterial strains, i.e. Marinobacter hydrocarbonoclasticus, Psychrobacter sp. and Halomonas pacifica with different cell surface hydrophobicities was measured on glass in a stagnation point flow chamber. Prior to bacterial adhesion, the glass surface was conditioned for 1 h

  10. The effect of dissolved organic carbon on bacterial adhesion to conditioning films adsorbed on glass from natural seawater collected during different seasons

    NARCIS (Netherlands)

    Bakker, DP; Klijnstra, JW; Busscher, HJ; van der Mei, HC

    2003-01-01

    Adhesion of three marine bacterial strains, i.e. Marinobacter hydrocarbonoclasticus , Psychrobacter sp. and Halomonas pacifica with different cell surface hydrophobicities was measured on glass in a stagnation point flow chamber. Prior to bacterial adhesion, the glass surface was conditioned for 1 h

  11. Poly(3-hexylthiophene) films by electrospray deposition for crystalline silicon/organic hybrid junction solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Hiate, Taiga; Miyauchi, Naoto; Tang, Zeguo; Ishikawa, Ryo; Ueno, Keiji; Shirai, Hajime [Graduate School of Science and Engineering, Saitama University, 255 Shimo-Okubo, Sakura, Saitama 858-3676 (Japan)

    2012-10-15

    The electrospray deposition (ESD) of poly(3-hexylthiophene) (P3HT) and conductive poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) on P3HT for use in crystalline silicon/organic hybrid heterojunction solar cells on CZ crystalline silicon (c-Si) (100) wafer was investigated using real-time characterization by spectroscopic ellipsometry (SE). In contrast to the nonuniform deposition of products frequently obtained by conventional spin-coating, a uniform deposition of P3HT and PEDOT:PSS films were achieved on flat and textured hydrophobic c-Si(100) wafers by adjusting the deposition conditions. The c-Si/P3HT/PEDOT:PSS heterojunction solar cells exhibited efficiencies of 4.1 and 6.3% on flat and textured c-Si(100) wafers, respectively. These findings suggest that ESD is a promising method for the uniform deposition of P3HT and PEDOT:PSS films on flat and textured hydrophobic substrates. (copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  12. Photo-induced halide redistribution in organic-inorganic perovskite films.

    Science.gov (United States)

    deQuilettes, Dane W; Zhang, Wei; Burlakov, Victor M; Graham, Daniel J; Leijtens, Tomas; Osherov, Anna; Bulović, Vladimir; Snaith, Henry J; Ginger, David S; Stranks, Samuel D

    2016-01-01

    Organic-inorganic perovskites such as CH3NH3PbI3 are promising materials for a variety of optoelectronic applications, with certified power conversion efficiencies in solar cells already exceeding 21%. Nevertheless, state-of-the-art films still contain performance-limiting non-radiative recombination sites and exhibit a range of complex dynamic phenomena under illumination that remain poorly understood. Here we use a unique combination of confocal photoluminescence (PL) microscopy and chemical imaging to correlate the local changes in photophysics with composition in CH3NH3PbI3 films under illumination. We demonstrate that the photo-induced 'brightening' of the perovskite PL can be attributed to an order-of-magnitude reduction in trap state density. By imaging the same regions with time-of-flight secondary-ion-mass spectrometry, we correlate this photobrightening with a net migration of iodine. Our work provides visual evidence for photo-induced halide migration in triiodide perovskites and reveals the complex interplay between charge carrier populations, electronic traps and mobile halides that collectively impact optoelectronic performance. PMID:27216703

  13. Photo-induced halide redistribution in organic-inorganic perovskite films

    Science.gov (United States)

    Dequilettes, Dane W.; Zhang, Wei; Burlakov, Victor M.; Graham, Daniel J.; Leijtens, Tomas; Osherov, Anna; Bulović, Vladimir; Snaith, Henry J.; Ginger, David S.; Stranks, Samuel D.

    2016-05-01

    Organic-inorganic perovskites such as CH3NH3PbI3 are promising materials for a variety of optoelectronic applications, with certified power conversion efficiencies in solar cells already exceeding 21%. Nevertheless, state-of-the-art films still contain performance-limiting non-radiative recombination sites and exhibit a range of complex dynamic phenomena under illumination that remain poorly understood. Here we use a unique combination of confocal photoluminescence (PL) microscopy and chemical imaging to correlate the local changes in photophysics with composition in CH3NH3PbI3 films under illumination. We demonstrate that the photo-induced `brightening' of the perovskite PL can be attributed to an order-of-magnitude reduction in trap state density. By imaging the same regions with time-of-flight secondary-ion-mass spectrometry, we correlate this photobrightening with a net migration of iodine. Our work provides visual evidence for photo-induced halide migration in triiodide perovskites and reveals the complex interplay between charge carrier populations, electronic traps and mobile halides that collectively impact optoelectronic performance.

  14. Self-organized films from cellulose I Nanofibrils using the layer-by-layer technique.

    Science.gov (United States)

    Aulin, Christian; Johansson, Erik; Wågberg, Lars; Lindström, Tom

    2010-04-12

    The possibility of forming self-organized films using only charge-stabilized dispersions of cellulose I nanofibrils with opposite charges is presented, that is, the multilayers were composed solely of anionically and cationically modified microfibrillated cellulose (MFC) with a low degree of substitution. The build-up behavior and the properties of the layer-by-layer (LbL)-constructed films were studied using a quartz crystal microbalance with dissipation (QCM-D) and stagnation point adsorption reflectometry (SPAR). The adsorption behavior of cationic/anionic MFC was compared with that of polyethyleneimine (PEI)/anionic MFC. The water contents of five bilayers of cationic/anionic MFC and PEI/anionic MFC were approximately 70 and 50%, respectively. The MFC surface coverage was studied by atomic force microscopy (AFM) measurements, which clearly showed a more dense fibrillar structure in the five bilayer PEI/anionic MFC than in the five bilayer cationic/anionic MFC. The forces between the cellulose-based multilayers were examined using the AFM colloidal probe technique. The forces on approach were characterized by a combination of electrostatic and steric repulsion. The wet adhesive forces were very long-range and were characterized by multiple adhesive events. Surfaces covered by PEI/anionic MFC multilayers required more energy to be separated than surfaces covered by cationic/anionic MFC multilayers. PMID:20196583

  15. Light-induced processes on atoms and clusters confined in nanoporous silica and organic films

    Science.gov (United States)

    Moi, L.; Burchianti, A.; Bogi, A.; Marinelli, C.; Maibohm, C.; Mariotti, E.

    2007-03-01

    The study of light induced processes on atoms and nanoparticles confined in organic films or in dielectric structures is motivated both by fundamental interest and applications in optics and photonics. Depending on the light intensity and frequency and the kind of confinement, different processes can be activated. Among them photodesorption processes have a key role. Non thermal light induced atomic desorption has been observed from siloxane and paraffin films previously exposed to alkali vapors. This effect has been extensively investigated and used both to develop photo-atom sources and to load magneto-optical traps. Recently we observed huge photodesorption of alkali atoms embedded in nanoporous silica. In this case the atomic photodesorption causes, by properly tuning the light frequency, either formation or evaporation of clusters inside the silica matrix. Green-blue light desorbs isolated adatoms from the glass surface eventually producing clusters, whereas red-near infrared (NIR) light causes cluster evaporation due to direct excitation of surface plasmon oscillations. Green-blue light induces cluster formation taking advantage of the dense atomic vapor, which diffuses through the glass nano-cavities. Both processes are reversible and even visible to the naked eye. By alternatively illuminating the porous glass sample with blue-green and red-NIR light we demonstrate that the glass remembers the illumination sequences behaving as an effective rereadable and rewritable optical medium.

  16. In situ vibrational spectroscopy of thin organic films confined at the solid-solid interface

    CERN Document Server

    Haydock, S A

    2002-01-01

    Raman scattering was used to study thin films, of hexadecane, octamethyltetrasiloxane (OMCTS), 1-undecanol and Langmuir-Blodgett (LB) monolayers consisting of zinc stearate, zinc arachidate and zinc behenate, all at the solid-solid interface. This thesis contains the first unenhanced Raman spectrum of an organic monolayer confined in the contact between two solid surfaces. The LB monolayers were also investigated with sum-frequency spectroscopy in order that comparisons could be made between results from the two techniques. Thin films were confined between an optical prism and an optical lens at pressures ranging from 30 MPa to 200 MPa. I have shown that the deposited LB monolayers were conformationally ordered and that this high degree of order was retained at applied pressures of up to 200 MPa. However, the application of pressure caused the hydrocarbon chains to tilt from the surface normal. The changes observed in the overall intensity of the Raman spectra on formation of the solid-solid contact can be ex...

  17. Efficiency of photodesorption of Rb atoms collected on polymer organic film in vapor-cell

    CERN Document Server

    Atutov, Sergey N; Chubakov, Pavel A; Plekhanov, Alexander I

    2010-01-01

    The efficiency of photodesorption of Rb atoms previously collected on polymer organic film has been studied in detail. This study was carried out in a glass cell of which the inner surface was covered with (poly)dimethylsiloxane (PDMS) film and illuminated by a photographic flash lamp. The desorption dynamic of the Rb atoms density in the cell caused by the illumination was studied using an Rb resonance lamp as a source of probing light. It was determined that about 25 percent of the total Rb atoms embedded on the cell walls can be desorbed by single flash from the lamp and almost 50 percent are desorbed by a sequence of several light pulses. Our result might help to construct an efficient light-driven source of atoms for a new type magneto optical trap for atoms in extremely low vapor density or very weak atomic flux of such artificial alkaline atoms as Francium. We believe that the collection and photodesorption of particles could be used for the development of sensors for the trace detection of various ele...

  18. Impedimetric and amperometric bifunctional glucose biosensor based on hybrid organic-inorganic thin films.

    Science.gov (United States)

    Wang, Huihui; Ohnuki, Hitoshi; Endo, Hideaki; Izumi, Mitsuru

    2015-02-01

    A novel glucose biosensor with an immobilized mediator was studied using electrochemical impedance spectroscopy (EIS) and amperometry measurements. The biosensor has a characteristic ultrathin form and is composed of a self-assembled monolayer anchoring glucose oxidase (GOx) covered with Langmuir-Blodgett (LB) films of Prussian blue (PB). The immobilized PB in the LB films acts as a mediator and enables the biosensor to work under a low potential (0.0V vs. Ag/AgCl). In the EIS measurements, a dramatic decrease in charge transfer resistance (Rct) was observed with sequential addition of glucose, which can be attributed to enzymatic activity. The linearity of the biosensor response was observed by the variation of the sensor response (1/Rct) as a function of glucose concentration in the range 0 to 25mM. The sensor also showed linear amperometric response below 130mM glucose. The organic-inorganic system of GOx and PB nanoclusters demonstrated bifunctional sensing action, both amperometry and EIS modes, as well as long sensing stability for 4 days. PMID:25014167

  19. Inverted organic light-emitting diodes using different transparent conductive oxide films as a cathode

    Science.gov (United States)

    Takada, Makoto; Kobayashi, Takashi; Nagase, Takashi; Naito, Hiroyoshi

    2016-03-01

    We report on poly(dioctylfluorene-alt-benzothiadiazole) (F8BT) based inverted organic light-emitting diodes (iOLEDs) using commercially available transparent conductive oxide (TCO) films as a cathode, indium tin oxide (ITO), Ga doped ZnO (GZO), and Al doped ZnO (AZO). The ITO, GZO, and AZO glasses work as an electron-injecting layer (EIL) and cathode. The device configuration that we prepared is ITO, GZO, or AZO/F8BT/MoO3/Au. The device characteristics of these iOLEDs are almost comparable to those of conventional iOLEDs with ZnO films prepared by spray pyrolysis as an EIL, indicating that the electron injection properties of ITO, GZO, or AZO as a cathode are similar to those of ZnO layer in conventional iOLEDs. These results demonstrate the low-cost fabrication of iOLEDs utilizing commercially available TCO glasses as a cathode without deposition of ZnO layers on ITO glass.

  20. Flexible suspended gate organic thin-film transistors for ultra-sensitive pressure detection

    Science.gov (United States)

    Zang, Yaping; Zhang, Fengjiao; Huang, Dazhen; Gao, Xike; di, Chong-An; Zhu, Daoben

    2015-03-01

    The utilization of organic devices as pressure-sensing elements in artificial intelligence and healthcare applications represents a fascinating opportunity for the next-generation electronic products. To satisfy the critical requirements of these promising applications, the low-cost construction of large-area ultra-sensitive organic pressure devices with outstanding flexibility is highly desired. Here we present flexible suspended gate organic thin-film transistors (SGOTFTs) as a model platform that enables ultra-sensitive pressure detection. More importantly, the unique device geometry of SGOTFTs allows the fine-tuning of their sensitivity by the suspended gate. An unprecedented sensitivity of 192 kPa-1, a low limit-of-detection pressure of <0.5 Pa and a short response time of 10 ms were successfully realized, allowing the real-time detection of acoustic waves. These excellent sensing properties of SGOTFTs, together with their advantages of facile large-area fabrication and versatility in detecting various pressure signals, make SGOTFTs a powerful strategy for spatial pressure mapping in practical applications.

  1. Sensitivity of the threshold voltage of organic thin-film transistors to light and water

    Energy Technology Data Exchange (ETDEWEB)

    Feng, Cong; Marinov, Ognian; Deen, M. Jamal; Selvaganapathy, Ponnambalam Ravi [McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4K1 (Canada); Wu, Yiliang [Xerox Research Centre, 2660 Speakman Dr., Mississauga, Ontario L5K 2L1 (Canada)

    2015-05-14

    Analyses of extensive experiments with organic thin-film transistors (OTFTs) indicate that the threshold voltage V{sub T} of an OTFT has a temporal differential sensitivity. In particular, V{sub T} changes initially by changing the light illumination intensity or making/removing a contact of water with the organic semiconductor. Keeping the conditions stationary, then the initial shift of V{sub T} diminishes, since the time dependence of V{sub T} gradually recovers the OTFT to the state before applying the change in the environmental conditions. While still causing a differential and time-variant shift of V{sub T}, the deionized water does not have a dramatic impact on OTFTs that use the polymer DKPP-βT (diketopyrrolopyrrole β-unsubstituted quaterthiophene) as the active semiconductor material. Observations for the impact of water are made from experiments with an OTFT that has a microfluidic channel on the top the electrical channel, with the water in the microfluidic channel in direct contact with the electrical channel of the OTFT. This arrangement of electrical and microfluidic channels is a novel structure of the microfluidic OTFT, suitable for sensing applications of liquid analytes by means of organic electronics.

  2. Flexible All-organic, All-solution Processed Thin Film Transistor Array with Ultrashort Channel.

    Science.gov (United States)

    Xu, Wei; Hu, Zhanhao; Liu, Huimin; Lan, Linfeng; Peng, Junbiao; Wang, Jian; Cao, Yong

    2016-01-01

    Shrinking the device dimension has long been the pursuit of the semiconductor industry to increase the device density and operation speed. In the application of thin film transistors (TFTs), all-organic TFT arrays made by all-solution process are desired for low cost and flexible electronics. One of the greatest challenges is how to achieve ultrashort channel through a cost-effective method. In our study, ultrashort-channel devices are demonstrated by direct inkjet printing conducting polymer as source/drain and gate electrodes without any complicated substrate's pre-patterning process. By modifying the substrate's wettability, the conducting polymer's contact line is pinned during drying process which makes the channel length well-controlled. An organic TFT array of 200 devices with 2 μm channel length is fabricated on flexible substrate through all-solution process. The simple and scalable process to fabricate high resolution organic transistor array offers a low cost approach in the development of flexible and wearable electronics. PMID:27378163

  3. Quasi-unipolar pentacene films embedded with fullerene for non-volatile organic transistor memories

    International Nuclear Information System (INIS)

    Quasi-unipolar non-volatile organic transistor memory (NOTM) can combine the best characteristics of conventional unipolar and ambipolar NOTMs and, as a result, exhibit improved device performance. Unipolar NOTMs typically exhibit a large signal ratio between the programmed and erased current signals but also require a large voltage to program and erase the memory cells. Meanwhile, an ambipolar NOTM can be programmed and erased at lower voltages, but the resulting signal ratio is small. By embedding a discontinuous n-type fullerene layer within a p-type pentacene film, quasi-unipolar NOTMs are fabricated, of which the signal storage utilizes both electrons and holes while the electrical signal relies on only hole conduction. These devices exhibit superior memory performance relative to both pristine unipolar pentacene devices and ambipolar fullerene/pentacene bilayer devices. The quasi-unipolar NOTM exhibited a larger signal ratio between the programmed and erased states while also reducing the voltage required to program and erase a memory cell. This simple approach should be readily applicable for various combinations of advanced organic semiconductors that have been recently developed and thereby should make a significant impact on organic memory research

  4. New diarylmethanofullerene derivatives and their properties for organic thin-film solar cells

    Directory of Open Access Journals (Sweden)

    Daisuke Sukeguchi

    2009-02-01

    Full Text Available A number of diarylmethanofullerene derivatives were synthesized. The cyclopropane ring of the derivatives has two aryl groups substituted with electron-withdrawing and -donating groups, the latter with long alkyl chains to improve solubility in organic solvents, an important property in processing cells. First reduction potentials of most derivatives were less negative than that of [6,6]-phenyl-C61-butyric acid methyl ester (PCBM, which is possibly ascribed to their electron-withdrawing nature. Organic thin-film photovoltaic cells fabricated with poly(3-hexylthiophene (P3HT as the electron-donor and diarylmethanofullerene derivatives as the electron-acceptor material were examined. The {(methoxycarbonylphenyl[bis(octyloxyphenyl]methano}fullerene showed power conversion efficiency as high as PCBM, but had higher solubility in a variety of organic solvents than PCBM. The Voc value was higher than that of PCBM, which is derived from the electron-donating (octyloxyphenyl group, possibly raising the LUMO level. Photovoltaic effects of the devices fabricated with the derivatives having some electron-withdrawing groups were also examined.

  5. The effect of pH and DNA concentration on organic thin-film transistor biosensors

    KAUST Repository

    Khan, Hadayat Ullah

    2012-03-01

    Organic electronics are beginning to attract more interest for biosensor technology as they provide an amenable interface between biology and electronics. Stable biosensor based on electronic detection platform would represent a significant advancement in technology as costs and analysis time would decrease immensely. Organic materials provide a route toward that goal due to their compatibility with electronic applications and biological molecules. In this report, we detail the effects of experimental parameters, such as pH and concentration, toward the selective detection of DNA via surface-bound peptide nucleic acid (PNA) sequences on organic transistor biosensors. The OTFT biosensors are fabricated with thin-films of the organic semiconductor, 5,5′-bis-(7-dodecyl-9H-fluoren-2-yl)-2,2′-bithiophene (DDFTTF), in which they exhibit a stable mobility of 0.2 cm 2 V -1 s -1 in buffer solutions (phosphate-buffer saline, pH 7.4 or sodium acetate, pH 7). Device performance were optimized to minimize the deleterious effects of pH on gate-bias stress such that the sensitivity toward DNA detection can be improved. In titration experiments, the surface-bound PNA probes were saturated with 50 nM of complementary target DNA, which required a 10-fold increase in concentration of single-base mismatched target DNA to achieve a similar surface saturation. The binding constant of DNA on the surface-bound PNA probes was determined from the concentration-dependent response (titration measurements) of our organic transistor biosensors. © 2011 Elsevier B.V. All rights reserved.

  6. Organic molecular thin films as next-generation functional materials; Jisedai kinosei sozai to shite no yuki bunshi usumaku

    Energy Technology Data Exchange (ETDEWEB)

    Harima, H. [Hiroshima University, Hiroshima (Japan)

    1998-08-25

    Molecular materials as functional materials for the next generation are described. The thin film illuminates when a voltage is applied across two electrodes installed on both sides of a thin film fabricated of fluorescent dye. This phenomenon is called electroluminescence, and such a thin film is now being studied as a new display medium which may replace the CRT and liquid crystal. Molecular materials are under study as information recording materials. Photochromism is a process in which organic molecules reversibly change between two states different from each other in absorption spectrum under different irradiation, and the changes may be recorded as digital information. There is a super-high density recording system now drawing attention, which uses PHB (photochemical hole burning). In this system, laser beams different in wavelength are projected upon a spot in a thin film, which is a polymeric film with organic molecules dispersed therein, for the recording of more than several hundred pieces of information. It is expected that the new system will achieve a density 3 to 4 orders higher than that of the current optical recording system. The porphyrin thin film should also be named, which converts optical energy into electrical energy. 7 refs., 2 figs., 1 tab.

  7. Effects of Plasma Polymer Films and Their Deposition Powers on the Barrier Characteristics of the Multilayer Encapsulation for Organic Devices.

    Science.gov (United States)

    Kim, Hoonbae; Ban, Wonjin; Kwon, Sungruel; Yong, Sanghyun; Chae, Heeyeop; Jung, Donggeun

    2016-05-01

    Organic electronic devices (OEDs) are quite suitable for use in flexible devices due to their ruggedness and flexibility. A number of researchers have studied the use of OEDs on flexible substrates in transparent, flexible devices in the near future. However, water and oxygen can permeate through the flexible substrates and can reduce the longevity of OEDs made from organic materials, which are weak to moisture and oxygen. In order to prevent the degradation of the OEDs, researchers have applied an encapsulation layer to the flexible substrates. In this study, Al2O3/plasma polymer film/Al2O3 multi-layers were deposited on polyethylene-naphthalate substrates through a combination of atomic layer deposition and plasma-enhanced chemical vapor deposition (PECVD). The plasma polymer film, which is located between the Al2O3 films, is deposited via PECVD with the use of a tetrakis(trimethylsilyloxy)silane precursor. The power of the plasma deposition varied from 10 to 50 W. The hydrophobicity of the plasma polymer film surfaces was investigated by measuring the water contact angle. The chemical structures of the plasma polymer films were measured via ex-situ Fourier transform infrared analysis. The permeation curves of the various films were analyzed by performing a calcium (Ca)-test. PMID:27483936

  8. Metal-Organic Framework Thin Films as Stationary Phases in Microfabricated Gas-Chromatography Columns.

    Energy Technology Data Exchange (ETDEWEB)

    Read, Douglas [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Sillerud, Colin Halliday [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2016-01-01

    The overarching goal of this project is to integrate Sandia's microfabricated gas-chromatography ( GC) columns with a stationary phase material that is capable of retaining high-volatility chemicals and permanent gases. The successful integration of such a material with GCs would dramatically expand the repertoire of detectable compounds for Sandia's various microanalysis systems. One such promising class of candidate materials is metal-organic frameworks (MOFs). In this report we detail our methods for controlled deposition of HKUST-1 MOF stationary phases within GC columns. We demonstrate: the chromatographic separation of natural gas; a method for determining MOF film thickness from chromatography alone; and the first-reported GC x GC separation of natural gas -- in general -- let alone for two disparate MOF stationary phases. In addition we determine the fundamental thermodynamic constant for mass sorption, the partition coefficient, for HKUST-1 and several light hydrocarbons and select toxic industrial chemicals.

  9. Transient phases during fast crystallization of organic thin films from solution

    Directory of Open Access Journals (Sweden)

    Jing Wan

    2016-01-01

    Full Text Available We report an in situ microbeam grazing incidence X-ray scattering study of 2,7-dioctyl[1]benzothieno[3,2-b][1]benzothiophene (C8-BTBT organic semiconductor thin film deposition by hollow pen writing. Multiple transient phases are observed during the crystallization for substrate temperatures up to ≈93 °C. The layered smectic liquid-crystalline phase of C8-BTBT initially forms and preceedes inter-layer ordering, followed by a transient crystalline phase for temperature >60 °C, and ultimately the stable phase. Based on these results, we demonstrate a method to produce extremely large grain size and high carrier mobility during high-speed processing. For high writing speed (25 mm/s, mobility up to 3.0 cm2/V-s has been observed.

  10. Liquid- and Gas-Phase Diffusion of Ferrocene in Thin Films of Metal-Organic Frameworks

    Directory of Open Access Journals (Sweden)

    Wencai Zhou

    2015-06-01

    Full Text Available The mass transfer of the guest molecules in nanoporous host materials, in particular in metal-organic frameworks (MOFs, is among the crucial features of their applications. By using thin surface-mounted MOF films in combination with a quartz crystal microbalance (QCM, the diffusion of ferrocene vapor and of ethanolic and hexanic ferrocene solution in HKUST-1 was investigated. For the first time, liquid- and gas-phase diffusion in MOFs was compared directly in the identical sample. The diffusion coefficients are in the same order of magnitude (~10−16 m2·s−1, whereas the diffusion coefficient of ferrocene in the empty framework is roughly 3-times smaller than in the MOF which is filled with ethanol or n-hexane.

  11. Preparation and characteristics of flexible all-organic thin-film field-effect transistor

    Institute of Scientific and Technical Information of China (English)

    QIU Yong; HU Yuanchuan; Dong Guifang; WANG Liduo; Xie Junfeng; MA Yaning

    2003-01-01

    All-organic thin-film field-effect transistor was prepared on flexible poly(ethylene-terephthalate) (PET) substrate. Poly(methyl-methacrylate) (PMMA) and pentacene are used as a dielectric layer and a semiconductor layer, respectively. The hole mobility of the transistor can reach 2.10×10-2 cm2/Vs, and the on/off current ratio was larger than 105. The performances of the transistor, when the substrate is cured under different radius, were also measured. It was found that the device performance did not change when the curly direction was vertical to the channel length direction and when the curly direction was parallel to the channel length direction with 3.67 cm curvature radius, the mobility of the device increased by more than 20% and the on/off ratio decreased more than one order.

  12. Transient phases during fast crystallization of organic thin films from solution

    Science.gov (United States)

    Wan, Jing; Li, Yang; Ulbrandt, Jeffrey G.; Smilgies, Detlef-M.; Hollin, Jonathan; Whalley, Adam C.; Headrick, Randall L.

    2016-01-01

    We report an in situ microbeam grazing incidence X-ray scattering study of 2,7-dioctyl[1]benzothieno[3,2-b][1]benzothiophene (C8-BTBT) organic semiconductor thin film deposition by hollow pen writing. Multiple transient phases are observed during the crystallization for substrate temperatures up to ≈93 °C. The layered smectic liquid-crystalline phase of C8-BTBT initially forms and preceedes inter-layer ordering, followed by a transient crystalline phase for temperature >60 °C, and ultimately the stable phase. Based on these results, we demonstrate a method to produce extremely large grain size and high carrier mobility during high-speed processing. For high writing speed (25 mm/s), mobility up to 3.0 cm2/V-s has been observed.

  13. Flexible, all-organic ammonia sensor based on dodecylbenzene sulfonic acid-doped polyaniline films

    International Nuclear Information System (INIS)

    A stable chlorobenzene dispersion of conducting polyaniline (PANI) has been obtained by doping emeraldine base with dodecylbenzene sulfonic acid (DBSA) and studied by spectrophotometric measurements in the UV-vis-IR range. The electrical properties of PANI: DBSA films obtained from the above dispersion have been investigated under different temperature and relative humidity conditions. All-organic chemoresistive devices have been developed by spin-coating the PANI: DBSA dispersion on flexible substrates, and then by depositing electrodes on the top, from a carbon nanotube conducting ink. Sensing tests performed under exposition to calibrated amounts of ammonia reveal that these simple and inexpensive sensors are able to detect ammonia at room temperature in a reliable way, with a sensitivity linearly related to concentration in the range between 5 ppm and 70 ppm.

  14. A water-gated organic thin film transistor as a sensor for water-borne amines.

    Science.gov (United States)

    Algarni, Saud A; Althagafi, Talal M; Naim, Abdullah Al; Grell, Martin

    2016-06-01

    The p-type semiconducting polymer Poly(2,5-bis(3-hexadecylthiophen-2-yl)thieno[3,2-b]thiophene) (PBTTT) displays innate sensitivity to water-borne amines. We demonstrate this with the help of water-gated PBTTT thin film transistors (TFTs). When octylamine is added to the gating water, TFTs respond with a significantly reduced saturated drain current. Underlying TFT drift is minimised by initial conditioning, and remaining drift can be accounted for by normalising current response to the current level under purge immediately before exposure. Normalised current response vs. amine concentration is reproducible between different transistors, and can be modelled by a Langmuir surface adsorption isotherm, which suggests physisorption of analyte at the PBTTT surface, rather than bulk penetration. Same PBTTT transistors do not respond to 1- octanol, confirming the specific affinity between amines and thiophene- based organic semiconductors. PMID:27130096

  15. Pentacene organic thin-film transistors on flexible paper and glass substrates

    International Nuclear Information System (INIS)

    Pentacene-based organic thin-film transistors (OTFTs) were fabricated on several types of flexible substrate: commercial photo paper, ultra-smooth specialty paper and ultra-thin (100 μM) flexible glass. The transistors were fabricated entirely through dry-step processing. The transconductance and field-effect mobility of OTFTs on photo paper reached values of ∼0.52 mS m−1 and ∼0.1 cm2 V −1 s−1, respectively. Preliminary results on the lifetime of OTFTs on photo paper yielded stable transconductance and mobility values over a period of more than 250 h. The comparable characteristics of OTFTs fabricated on widely available, low cost paper and high quality expensive liquid crystal display glass indicate the potential importance of cellulose-based electronic devices. (paper)

  16. Laboratory Studies of Hydrocarbon Nucleation on Tholin Particles and Thin Organic Films: Application to Titan's Atmosphere

    Science.gov (United States)

    Curtis, Daniel B.; Glandorf, David L.; Toon, Owen B.; Tolbert, Margaret A.; McKay, Christopher P.; Khare, Bishun N.

    2001-01-01

    Titan, Saturn's largest satellite, has a thick nitrogen/methane atmosphere. In Titan's lower atmosphere, methane is saturated or supersaturated with respect to nucleation and may form clouds. To better characterize the properties of Titan's methane clouds we have measured the saturation ratio required to obtain butane nucleation, S (sub crit), on Titan tholin material and organic films. We find a critical saturation ratio for butane on tholin particles of S (sub crit) = 1.40, suggesting high supersaturations are required for nucleation. If methane is similar to butane, we expect high supersaturations of methane as well. This could favor the formation of a small number of large particles, consistent with recent measurements of methane rain on Titan.

  17. Effect of curing temperature on nano-silver paste ink for organic thin-film transistors.

    Science.gov (United States)

    Kim, Minseok; Koo, Jae Bon; Baeg, Kang-Jun; Noh, Yong-Young; Yang, Yong Suk; Jung, Soon-Won; Ju, Byeong-Kwon; You, In-Kyu

    2012-04-01

    Silver (Ag) metal electrode having 20 microm channel length was printed by reverse offset printing (ROP) using nano-silver paste ink for the source/drain of organic thin-film transistors (OTFT). Specific resistance and surface roughness of printed Ag electrodes with increasing curing temperature were investigated, and surface morphology and grain growth mechanism were systematically verified using a scanning electron microscope (SEM) and atomic force microscope (AFM) in order to obtain an optimized ROP Ag electrode. The Ag electrode was applied to fabricate top-gate/bottom-contact poly(3-hexylthiophene) OTFT devices, which showed reproducible OTFT characteristics such as the field-effect mobility, threshold voltage, and an on/off-current ratio of -10(-3) cm2/Vs, 0.36 V, and -10(2), respectively. PMID:22849104

  18. Effects of neutral particle beam on nano-crystalline silicon thin films, with application to thin film transistor backplane for flexible active matrix organic light emitting diodes

    Energy Technology Data Exchange (ETDEWEB)

    Jang, Jin Nyoung; Song, Byoung Chul; Lee, Dong Hyeok [Dept. of Display and Semiconductor Physics, Korea University, Chungnam (Korea, Republic of); Yoo, Suk Jae; Lee, Bonju [National Fusion Research Institute, 52, Yuseong-Gu, Deajeon, 305-333 (Korea, Republic of); Hong, MunPyo, E-mail: goodmoon@korea.ac.kr [Dept. of Display and Semiconductor Physics, Korea University, Chungnam (Korea, Republic of)

    2011-08-01

    A novel deposition process for nano-crystalline silicon (nc-Si) thin films was developed using neutral beam assisted chemical vapor deposition (NBaCVD) technology for the application of the thin film transistor (TFT) backplane of flexible active matrix organic light emitting diode (AMOLED). During the formation of a nc-Si thin film, the energetic particles enhance nano-sized crystalline rather microcrystalline Si in thin films. Neutral Particle Beam (NPB) affects the crystallinity in two ways: (1) NPB energy enhances nano-crystallinity through kinetic energy transfer and chemical annealing, and (2) heavier NPB (such as Ar) induces damage and amorphization through energetic particle impinging. Nc-Si thin film properties effectively can be changed by the reflector bias. As increase of NPB energy limits growing the crystalline, the performance of TFT supports this NPB behavior. The results of nc-Si TFT by NBaCVD demonstrate the technical potentials of neutral beam based processes for achieving high stability and reduced leakage in TFT backplanes for AMOLEDs.

  19. Impact of universal mobility law on polycrystalline organic thin-film transistors

    Science.gov (United States)

    Raja, Munira; Donaghy, David; Myers, Robert; Eccleston, Bill

    2012-10-01

    We have developed novel analytical models for polycrystalline organic thin-film transistor (OTFT) by employing new concepts on the charge carrier injection to polysilicon thin-films. The models, also incorporate the effect of contact resistance associated with the poor ohmic nature of the contacts. The drain current equations of the OTFT, both in the quasi-diffusion and quasi-drift regimes, predict temperature dependencies on essential material and device parameters. Interestingly, under the drift regime, the polycrystalline OTFT model reveals similar power dependencies on the applied voltages, to those of purely disordered model developed by utilizing the universal mobility law (UML). Such similarities are not thought to be coincidental since the effect of gate voltage on surface potential is influenced by the Fermi level pinning in the grain boundary. Nonetheless, the best fits on the data of 6,13-bis(tri-isopropylsilylethynyl) OTFTs are attained with the proposed polycrystalline rather than the disordered model, particularly at low gate voltages where the diffusive component is dominant. Moreover, in order to understand the effect of grain boundaries, we devise a relationship for the dependency of the effective mobility on carrier concentration, assuming a crystalline region to be in direct contact with a disordered region. Interestingly, we find a similar dependency as the UML in purely disordered materials, which further signifies the conduction to be limited by the grain boundaries. Subsequently, an analytical model for the variation of the effective mobility with gate voltage is established. Such models are vital in assisting the development of more accurate designs of the novel organic circuits.

  20. Ordered conducting polymer multilayer films and its application for hole injection layers in organic light-emitting devices

    International Nuclear Information System (INIS)

    We reported a controlled architecture growth of layer-ordered multilayer film of poly(3,4-ethylene dioxythiophene) (PEDOT) via a modified Langmuir-Blodgett (LB) method. An in situ polymerization of 3,4-ethylene dioxythiophene (EDOT) monomer in multilayer LB film occurred for the formation of ordered conducting polymer embedded multilayer film. The well-distribution of conducting polymer particles was characterized by secondary-ion mass spectrometry (SIMS). The conducting film consisting of ordered PEDOT ultrathin layers was investigated as a hole injection layer for organic light-emitting diodes (OLEDs). The results showed that, compared to conventional spin-coating PEDOT film and electrostatic self-assembly (ESA) film, the improved performance of OLEDs was obtained after using ordered PEDOT LB film as hole injection layer. It also indicated that well-ordered structure of hole injection layer was attributed to the improvement of OLED performance, leading to the increase of charged carrier mobility in hole injection layer and the recombination rate of electrons and holes in the electroluminescent layer.

  1. Ordered conducting polymer multilayer films and its application for hole injection layers in organic light-emitting devices

    Science.gov (United States)

    Xu, Jianhua; Yang, Yajie; Yu, Junsheng; Jiang, Yadong

    2009-01-01

    We reported a controlled architecture growth of layer-ordered multilayer film of poly(3,4-ethylene dioxythiophene) (PEDOT) via a modified Langmuir-Blodgett (LB) method. An in situ polymerization of 3,4-ethylene dioxythiophene (EDOT) monomer in multilayer LB film occurred for the formation of ordered conducting polymer embedded multilayer film. The well-distribution of conducting polymer particles was characterized by secondary-ion mass spectrometry (SIMS). The conducting film consisting of ordered PEDOT ultrathin layers was investigated as a hole injection layer for organic light-emitting diodes (OLEDs). The results showed that, compared to conventional spin-coating PEDOT film and electrostatic self-assembly (ESA) film, the improved performance of OLEDs was obtained after using ordered PEDOT LB film as hole injection layer. It also indicated that well-ordered structure of hole injection layer was attributed to the improvement of OLED performance, leading to the increase of charged carrier mobility in hole injection layer and the recombination rate of electrons and holes in the electroluminescent layer.

  2. Electric and ferroelectric properties of PZT/BLT multilayer films prepared by photochemical metal-organic deposition

    Energy Technology Data Exchange (ETDEWEB)

    Park, Hyeong-Ho; Lee, Hong-Sub [Department of Ceramic Engineering, Yonsei University, 134 Shinchon-Dong, Seodaemun-Ku, Seoul 120-749 (Korea, Republic of); Park, Hyung-Ho [Department of Ceramic Engineering, Yonsei University, 134 Shinchon-Dong, Seodaemun-Ku, Seoul 120-749 (Korea, Republic of)], E-mail: hhpark@yonsei.ac.kr; Hill, Ross H. [4D Labs and Department of Chemistry, Simon Fraser University, Burnaby, BC V5A 1S6 (Canada); Hwang, Yun Taek [Research and semiconductor Division, Hynix semiconductor Inc., Icheon-si, Kyoungki-do 467-701 (Korea, Republic of)

    2009-01-15

    The electric and ferroelectric properties of lead zirconate titanate (PZT) and lanthanum-substituted bismuth titanate (BLT) multilayer films prepared using photosensitive precursors were characterized. The electric and ferroelectric properties were investigated by studying the effect of the stacking order of four ferroelectric layers of PZT or BLT in 4-PZT, PZT/2-BLT/PZT, BLT/2-PZT/BLT, and 4-BLT multilayer films. The remnant polarization values of the 4-BLT and BLT/2-PZT/BLT multilayer films were 12 and 17 {mu}C/cm{sup 2}, respectively. Improved ferroelectric properties of the PZT/BLT multilayer films were obtained by using a PZT intermediate layer. The films which contained a BLT layer on the Pt substrate had improved leakage currents of approximately two orders of magnitude and enhanced fatigue resistances compared to the films with a PZT layer on the Pt substrate. These improvements are due to the reduced number of defects and space charges near the Pt electrodes. The PZT/BLT multilayer films prepared by photochemical metal-organic deposition (PMOD) possessed enhanced electric and ferroelectric properties, and allow direct patterning to fabricate micro-patterned systems without dry etching.

  3. Ultrathin and ultrasmooth Au films as transparent electrodes in ITO-free organic light-emitting devices.

    Science.gov (United States)

    Bi, Yan-Gang; Feng, Jing; Ji, Jin-Hai; Chen, Yang; Liu, Yu-Shan; Li, Yun-Fei; Liu, Yue-Feng; Zhang, Xu-Lin; Sun, Hong-Bo

    2016-05-21

    An ultrathin, ultrasmooth and flexible Au film as an alternative of the indium-tin oxide (ITO) electrode in organic light-emitting devices (OLEDs) has been reported. The 7 nm Au film shows excellent surface morphology, optical and electronic characteristics including a root-mean-square roughness of 0.35 nm, a high transparency of 72% at 550 nm, and a sheet resistance of 23.75 Ω sq(-1). These features arise from the surface modification of the glass substrate by using a SU-8 film, which fixes metal atoms via chemical bond interactions between Au and SU-8 film to suppress the island growth mode. A 17% enhancement in current efficiency has been obtained from the OLEDs based on the ultrathin Au electrodes compared to that of the devices with the ITO electrodes. The OLEDs with the ultrathin Au/SU-8 anodes exhibit high flexibility and mechanical robustness. PMID:27128168

  4. MODIFICATION OF CARBONACEOUS ADSORBENTS WITH MANGANESE COMPOUNDS

    OpenAIRE

    Irina Ginsari; Larisa Postolachi; Vasile Rusu; Oleg Petuhov; Tatiana Goreacioc; Tudor Lupascu; Raisa Nastas

    2015-01-01

    Four series of samples containing manganese supported carbonaceous adsorbents were prepared. Obtained results reveal the importance of surface chemistry of carbonaceous adsorbents on the manganese loading.

  5. A computational chemical study of penetration and displacement of water films near mineral surfaces

    Directory of Open Access Journals (Sweden)

    Larter Steve R

    2001-08-01

    Full Text Available A series of molecular dynamics simulations have been performed on organic–water mixtures near mineral surfaces. These simulations show that, in contrast to apolar compounds, small polar organic compounds such as phenols can penetrate through thin water films to adsorb on these mineral surfaces. Furthermore, additional simulations involving demixing of an organic–water mixture near a surfactant-covered mineral surface demonstrate that even low concentrations of adsorbed polar compounds can induce major changes in mineral surface wettability, allowing sorption of apolar molecules. This strongly supports a two-stage adsorption mechanism for organic solutes, involving initial migration of small polar organic molecules to the mineral surface followed by water film displacement due to co-adsorption of the more apolar organic compounds, thus converting an initial water-wet mineral system to an organic-covered surface. This has profound implications for studies of petroleum reservoir diagenesis and wettability changes.

  6. Hydrophobic plasma polymerized hexamethyldisilazane thin films: characterization and uses

    Directory of Open Access Journals (Sweden)

    Alexsander Tressino de Carvalho

    2006-03-01

    Full Text Available Hexametildisilazane (HMDS plasma polymerized thin films obtained using low frequency power supplies can be used to make adsorbent films and turn surfaces hydrophobic. The aim of this work was to verify the hydrophobicity and adsorption properties of HMDS thin films (with and without the addition of oxygen, resulting in double or single layer films obtained using an inductive reactor powered with a 13.56 MHz power supply. Single and double layer thin films were deposited on silicon for film characterization, polypropylene (PP for ultraviolet (UVA/UVC resistance tests, piezoelectric quartz crystal for adsorption tests. The double layer (intermixing of HMDS plasma polymerized films and HMDS plasma oxidized surfaces showed a non-continuous layer. The films showed good adhesion to all substrates. Infrared analysis showed the presence of CHn, SiCH3, SiNSi and SiCH2Si within the films. Contact angle measurements with water showed hydrophobic surfaces. UVA/UVC exposure of the films resulted in the presence of cross-linking on carbonic radicals and SiCH2Si formation, which resulted in a possible protection of PP against UVA/UVC for a duration of up to two weeks. Adsorption tests showed that all organic reactants were adsorbed but not water. Plasma etching (PE using O2 showed that even after 15 minutes of exposure the films do not change their hydrophobic characteristic but were oxidized. The results point out that HMDS films can be used: for ultraviolet protection of flexible organic substrates, such as PP, for sensor and/or preconcentrator development, due to their adsorption properties, and in spatial applications due to resistance for O2 attack in hostile conditions, such as plasma etching.

  7. Low-voltage polymer/small-molecule blend organic thin-film transistors and circuits fabricated via spray deposition

    Energy Technology Data Exchange (ETDEWEB)

    Hunter, By Simon; Anthopoulos, Thomas D., E-mail: t.anthopoulos@ic.ac.uk [Department of Physics and Centre for Plastic Electronics, Imperial College London, South Kensington SW7 2AZ (United Kingdom); Ward, Jeremy W.; Jurchescu, Oana D. [Department of Physics, Wake Forest University, Winston-Salem, North Carolina 27109 (United States); Payne, Marcia M.; Anthony, John E. [Department of Chemistry, University of Kentucky, Lexington, Kentucky 40506 (United States)

    2015-06-01

    Organic thin-film electronics have long been considered an enticing candidate in achieving high-throughput manufacturing of low-power ubiquitous electronics. However, to achieve this goal, more work is required to reduce operating voltages and develop suitable mass-manufacture techniques. Here, we demonstrate low-voltage spray-cast organic thin-film transistors based on a semiconductor blend of 2,8-difluoro- 5,11-bis (triethylsilylethynyl) anthradithiophene and poly(triarylamine). Both semiconductor and dielectric films are deposited via successive spray deposition in ambient conditions (air with 40%–60% relative humidity) without any special precautions. Despite the simplicity of the deposition method, p-channel transistors with hole mobilities of >1 cm{sup 2}/Vs are realized at −4 V operation, and unipolar inverters operating at −6 V are demonstrated.

  8. Evaluating phosphorus availability in soils receiving organic amendment application using the Diffusive Gradients in Thin-films (DGT) technique

    OpenAIRE

    Kane, David

    2013-01-01

    Phosphorus is a resource in finite supply. Use of organic amendments in agriculture can be a sustainable alternative to inorganic P, provided it can meet crop requirements. However a lack of consistent knowledge of plant P availability following application of organic amendments, limits its potential. Studies suggest chemical extraction procedures, may not reflect plant available P. The Diffusive Gradients in Thin-films (DGT) technique is based on natural diffusion of P via a hydrogel and sor...

  9. Monolithically integrated, flexible display of polymer-dispersed liquid crystal driven by rubber-stamped organic thin-film transistors

    International Nuclear Information System (INIS)

    This letter describes the monolithic integration of rubber-stamped thin-film organic transistors with polymer-dispersed liquid crystals (PDLCs) to create a multipixel, flexible display with plastic substrates. We report the electro-optic switching behavior of the PDLCs as driven by the organic transistors, and we show that our displays operate robustly under flexing and have a contrast comparable to that of newsprint. [copyright] 2001 American Institute of Physics

  10. Thiol anchoring and catalysis of gold nanoparticles at the liquid interface of thin-organic film-modified electrodes

    OpenAIRE

    Mirceski, Valentin; Aleksovska, Angela; Pejova, Biljana; Ivanovski, Vladimir; Mitrova, Biljana; Mitreska, Nikolina; Gulaboski, Rubin

    2014-01-01

    The deposition of in-situ formed gold nanoparticles at the liquid/liquid (L/L) interface is studied by means of thin-organic-film-modified electrodes (TFE). The degree of ordering and aggregation of gold nanoparticles can be tuned by adding a lipophilic and hydrophilic thiol in the organic and aqueous phase, respectively. The ordered thiol-anchored gold nanoparticles exhibit pronounced catalytic effect toward electron-transfer reactions across the L/L interface.

  11. Studying the ion transfer across liquid interface of thin organic-film-modified electrodes in the presence of glucose oxidase

    OpenAIRE

    Mirceski, Valentin; Mitrova, Biljana; Ivanovski, Vladimir; Mitreska, Nikolina; Aleksovska, Angela; Gulaboski, Rubin

    2015-01-01

    A coupled electron-ion transfer reaction at thin organic-film-modified electrodes (TFE) is studied in the presence of glucose oxidase (GOx) under voltammetric conditions. TFE consists of a graphite electrode modified with a nitrobenzene solution of decamethylferrocene (DMFC) as a redox mediator and tetrabuthylammonium perchlorate as an organic-supporting electrolyte, in contact with aqueous buffer solutions containing percholarte ions and GOx. The redox turnover of DMFC coupled with perchl...

  12. Characterizations of arsenic-doped zinc oxide films produced by atmospheric metal-organic chemical vapor deposition

    International Nuclear Information System (INIS)

    p-type ZnO films were prepared by atmospheric metal-organic chemical vapor deposition technique using arsine (AsH3) as the doping source. The electrical and optical properties of arsenic-doped ZnO (ZnO:As) films fabricated at 450–600 °C with various AsH3 flow rates ranging from 8 to 21.34 μmol/min were analyzed and compared. Hall measurements indicate that stable p-type ZnO films with hole concentrations varying from 7.2 × 1015 to 5.8 × 1018 cm−3 could be obtained. Besides, low temperature (17 K) photoluminescence spectra of all ZnO:As films also demonstrate the dominance of the line related to the neutral acceptor-bound exciton. Moreover, the elemental identity and chemical bonding information for ZnO:As films were examined by X-ray photoelectron spectroscopy. Based on the results obtained, the effects of doping conditions on the mechanism responsible for the p-type conduction were studied. Conclusively, a simple technique to fabricate good-quality p-type ZnO films has been recognized in this work. Depositing the film at 550 °C with an AsH3 flow rate of 13.72 μmol/min is appropriate for producing hole concentrations on the order of 1017 cm−3 for it. Ultimately, by increasing the AsH3 flow rate to 21.34 μmol/min for doping and depositing the film at 600 °C, ZnO:As films with a hole concentration over 5 × 1018 cm−3 together with a mobility of 1.93 cm2V−1 s−1 and a resistivity of 0.494 ohm-cm can be achieved.

  13. Effect of fluorine plasma treatment with chemically reduced graphene oxide thin films as hole transport layer in organic solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Youn-Yeol; Kang, Byung Hyun; Lee, Yang Doo; Lee, Sang Bin; Ju, Byeong-Kwon, E-mail: bkju@korea.ac.kr

    2013-12-15

    The inorganic materials such as V{sub 2}O{sub 5}, MoO{sub 3} and WO{sub 3} were investigated to replace PEDOT:PSS as hole transport layer (HTL) in organic electronic devices such as organic solar cells (OSCs) and organic lighting emission diodes. However, these methods require vacuum techniques that are long time process and complex. Here, we report about plasma treatment with SF{sub 6} and CF{sub 4} using reactive ion etching on reduced graphene oxide (rGO) thin films that are obtained using an eco-friendly method with vitamin C. The plasma treated rGO thin films have dipoles since they consist of covalent bonds with fluorine on the surface of rGO. This means it is possible to increase the electrostatic potential energy than bare rGO. Increased potential energy on the surface of rGO films is worth applying organic electronic devices as HTL such as OSCs. Consequently, the power conversion efficiency of OSCs increased more than the rGO films without plasma treatment.

  14. Plasma-polymerized films providing selective affinity to the polarity of vaporized organic solvents

    International Nuclear Information System (INIS)

    Plasma-polymerized films (PPFs) were fabricated as recognition membranes for a vapor-sensing device, and their affinity to vaporized organic solvents was evaluated with surface plasmon resonance. The affinity we intended to create is the selective sorption of the vaporized organic solvents depending on their polarity. For this purpose, acetonitrile, ethylenediamine (EDA), styrene, hexamethyldisiloxane (HMDSO), and hexamethyldisilazane were used to fabricate PPFs. Vaporized methanol, ethanol, and 1-propanol were used as high-polar solvents to be analyzed. Hexane, toluene, and p-xylene were used as low-polar solvents. As a result, the HMDSO-PPF with 97.3o of contact angle was found to provide affinity to the low-polar solvents. In contrast, the EDA-PPF with 7.1o of contact angle provided affinity to the high-polar solvents. Observations of the surface morphology of the HMDSO- and EDA-PPFs with a scanning electron microscope revealed that they are composed of nano-scale islands.

  15. Roll-printed organic thin-film transistor using patterned poly(dimethylsiloxane) (PDMS) stamp.

    Science.gov (United States)

    Jo, Jeongdai; Yu, Jong-Su; Lee, Taik-Min; Kim, Dong-Soo; Kim, Kwang-Young

    2010-05-01

    The roll-printed gate, source, and drain electrodes of organic thin-film transistors (OTFTs) were fabricated by gravure printing or gravure-offset printing using patterned poly(dimethylsiloxane) (PDMS) stamp with various channel lengths and low-resistance silver (Ag) pastes on flexible 150 x 150 mm2 plastic substrates. Bottom-contact roll-printed OTFTs used polyvinylphenol (PVP) as polymeric dielectric and bis(triisopropyl-silylethynyl) pentacene (TIPS-pentacene) as organic semiconductor; they were formed by spin coating or ink-jetting. Depending on the choice of roll-printing method, the printed OTFTs obtained had a field-effect mobility of between 0.08 and 0.1 cm2/Vs, an on/off current ratio of between 10(4) and 10(5), and a subthreshold slope of between 1.96 and 2.32 V/decade. The roll-printing using patterned PDMS stamp and soluble processes made it possible to fabricate a printed OTFT with a channel length of between 12 to 74 microm on a plastic substrate; this was not previously possible using traditional printing techniques. The proposed fabrication process was 20 steps shorted than conventional fabrication techniques. PMID:20359007

  16. Overview of recent developments in organic thin-film transistor sensor technology

    International Nuclear Information System (INIS)

    Bio and chemical sensing represents one of the most attractive applications of organic electronics and of Organic Thin Film Transistors(OTFTs) in particular. The implementation of miniaturized portable systems for the detection of chemical analytes as well as of biological species, is still a challenge for the sensor' community. In this respect OTFTs appear as a new class of sensors able, in principle, to overcome some of the commercial sensors drawbacks. As far as volatile analytes are concerned, commercially available sensing systems, such as metal oxide based chemi-resistors, offer great stability but rather poor selectivity. In spite of the improved selectivity offered by organic chemi-resistors the reliability of such devices is not yet satisfactory proven. On the other hand, complex odors recognition, but also explosives or pathogen bacteria detection are currently being addressed by sensor array systems, called e-noses, that try to mimic the mammalian olfactory system. Even though potentially very effective, this technology has not yet reached the performance level required by the market mostly because miniaturization and cost effective production issues. OTFT sensors can offer the advantage of room temperature operation and deliver high repeatable responses. Beside, they show very good selectivity properties. In fact, they implement organic active layers, which behave as sensing layers as well. This improves OTFTs sensitivity towards different chemical and biological analytes as organic materials can be properly chemically tailored to achieve differential detection and potentially even discrimination of biological species. In addiction to this, OTFTs are also able to offer the unique advantages of multi-parametric response and a gate bias enhanced sensitivity. Recently thin dielectric low-voltage OTFTs have also been demonstrated. Their implementation in low power consumption devices has attracted the attention of the organic electronic community. But such

  17. The Production of Organic-Inorganic Compound Film-Coated Urea and the Characteristics of Its Nutrient Release

    Institute of Scientific and Technical Information of China (English)

    ZOU Hong-tao; WANG Yao-sheng; SONG Hao-wen; HAN Yan-yu; YU Na; ZHANG Yu-ling; DANG Xiu-li; HUANG Yi; ZHANG Yu-long

    2009-01-01

    The effect of different concentrations of natural macromolecular compound on the characteristics of nutrient release in the membrane materials of organic-inorganic compound film-coated urea was discussed,and the optimal concentrations for better nutrient release was proposed.The characteristics of nutrient release of film-coated urea were evaluated by soil column leaching experiment.Organic-inorganic compound film-coated urea showed good characteristics of nutrient release,which could be well simulated by Logistic curve.The two parameters in this curve,a and r,can be used to present nutrient release of film-coated urea,and followed the order of B > C > A and C < B < A,respectively,indicating that the release was stronger with the increasing concentration of natural maeromolecular compound in the membrane,which implied better controllability of nutrient release.The concentration of 5% of natural macromolecular compound showed better characteristic of nutrient release and can be utilized as a membrane material combined with inorganic mineral powders to develop film-coated slow-release fertilizer.

  18. P-type indium oxide thin film for the hole-transporting layer of organic solar cells

    International Nuclear Information System (INIS)

    Efficient organic solar cells (OSCs) based on regioregular of poly (3-hexylthiophene): fullerene derivative [6,6]-phenyl-C61 butyric acid methyl ester composites have been fabricated on fluorine-doped tin oxide coated glass substrates by using a sputtered indium oxide film as a hole-transporting layer (HTL). Optimized parameters for p-type In2O3 layer fabrication have been obtained through In2O3 layer sputtering temperature modulation. Based on this HTL, photovoltaic devices have been fabricated, and a power conversion efficiency up to 1.32% has been achieved. With the help of X-ray photoelectron spectroscopy and Hall-effect measurements, we conclude that the formation of In(OH)3/InOOH on the surface of In2O3 film could increase the electrical resistivity of films and affect the performance of OSC further. - Highlights: ► The p-type In2O3 films were fabricated using the magnetron sputtering method. ► The p-type In2O3 films have been applied to the hole-transporting layer. ► The formation of In(OH)3/InOOH affects the performance of organic solar cells.

  19. In situ vibrational spectroscopy of thin organic films confined at the solid-solid interface

    International Nuclear Information System (INIS)

    Raman scattering was used to study thin films, of hexadecane, octamethyltetrasiloxane (OMCTS), 1-undecanol and Langmuir-Blodgett (LB) monolayers consisting of zinc stearate, zinc arachidate and zinc behenate, all at the solid-solid interface. This thesis contains the first unenhanced Raman spectrum of an organic monolayer confined in the contact between two solid surfaces. The LB monolayers were also investigated with sum-frequency spectroscopy in order that comparisons could be made between results from the two techniques. Thin films were confined between an optical prism and an optical lens at pressures ranging from 30 MPa to 200 MPa. I have shown that the deposited LB monolayers were conformationally ordered and that this high degree of order was retained at applied pressures of up to 200 MPa. However, the application of pressure caused the hydrocarbon chains to tilt from the surface normal. The changes observed in the overall intensity of the Raman spectra on formation of the solid-solid contact can be explained by changes in electric field strengths, but this interpretation cannot be made in the case of the SF spectra. The SF signal arising from the monolayer confined between the two solid surfaces was often much lower than predicted, and this is discussed in terms of structural changes and transfer of monolayer material from one surface to the other. Liquid lubricants were squeezed almost completely out of the solid-solid contact at pressures of 40 MPa. However, the use of a total internal reflection (TIR) excitation geometry in the Raman experiments increased the sensitivity of this technique sufficiently for spectra to be obtained from sub-monolayer amounts of material that had collected in small surface defects, with acquisition times of minutes. (author)

  20. Hydrophilic property of SiO2/TiO2 double layer films

    International Nuclear Information System (INIS)

    The hydrophilicity of the SiO2(top)/TiO2(under) double layer films prepared by vacuum evaporation was investigated. The as-deposited SiO2/TiO2 double layer films showed very good hydrophilicity (water contact angle: ∼0o). Their hydrophilicity, however, is deteriorated by the organic contamination adsorbed on the film but the hydrophilicity can be recovered by UV light irradiation. TOF-SIMS (time-of-flight secondary-ion-mass-spectrometry) measurements revealed that the amount of organic compounds adsorbed on the films decreased with the UV light irradiation. Secondarily, the amount of both Si-OH and Ti-OH groups changed little by the UV light irradiation. Thus, it can be concluded that the hydrophilicity of the SiO2/TiO2 double layer films is due to the stable Si-OH groups and the photo-catalytic TiO2 underlayer maintains the hydrophilicity of the double layer films by decomposing organic contaminants on the film surface. This SiO2/TiO2 double layer film has been in practical use for the automobiles' exterior rear view mirrors

  1. Evaluation of the Process of Solvent Vapor Annealing on Organic Thin Films

    KAUST Repository

    Ren, Yi

    2011-07-01

    Solvent vapor annealing has recently emerged as an intriguing, room-temperature, and highly versatile alternative to thermal annealing. The chemically selective interaction between solvents and organic semiconductors opens new opportunities to selectively anneal certain components of the device, while leaving others intact. On the downside, these interactions are complex and rather unpredictable, requiring further investigation. We propose a novel methodology to investigate solvent-film interactions, based on use of an in situ quartz crystal microbalance with dissipation (QCM-D) capability and in situ grazing incidence wide angle X-ray scattering (GIWAXS). These methods make it possible to investigate both qualitatively and quantitatively the solvent vapor uptake, the resulting softening and changes (reversible and/or irreversible) in crystallinity. Using this strategy, we have investigated the solvent vapor annealing of traditional donor and acceptor materials, namely poly(3-hexylthiophene-2,5-diyl) (P3HT) and [6,6]-Phenyl-C61-butyric acid methyl ester (PCBM). We find these materials retain their rigid structure during toluene vapor annealing and do not dewet. We also investigated the toluene vapor annealing of several newly proposed acceptor molecules (pentacene-based) modified with various silyl groups and electron withdrawing groups to tune the packing structure of the acceptor domains and energy levels at the donor-acceptor interface. We found a dramatic effect of the electron-withdrawing group on vapor uptake and whether the film remains rigid, softens, or dissolves completely. In the case of trifluoromethyl electron-withdrawing group, we found the film dissolves, resulting in complete and irreversible loss of long range order. By contrast, the cyano group prevented loss of long range order, instead promoting crystallization in some cases. The silyl groups had a secondary effect in comparison to these. In the last part of the thesis, we investigated the

  2. Effect of Polymer Binders on UV-Responsive Organic Thin-Film Phototransistors with Benzothienobenzothiophene Semiconductor.

    Science.gov (United States)

    Ljubic, Darko; Smithson, Chad S; Wu, Yiliang; Zhu, Shiping

    2016-02-17

    The influence of polymer binders on the UV response of organic thin-film phototransistors (OTF-PTs) is reported. The active channel of the OTF-PTs was fabricated by blending a UV responsive 2,7-dipenty-[1]benzothieno[2,3-b][1]benzothiophene (C5-BTBT) as small molecule semiconductor and a branched unsaturated polyester (B-upe) as dielectric binder (ratio 1:1). To understand the influence of the polymer composition on the photoelectrical properties and UV response of C5-BTBT, control blends were prepared using common dielectric polymers, namely, poly(vinyl acetate) (PVAc), polycarbonate (PC), and polystyrene (PS), for comparison. Thin-film morphology and nanostructure of the C5-BTBT/polymer blends were investigated by means of optical and atomic force microscopy, and powder X-ray diffraction, respectively. Electrical and photoelectrical characteristics of the studied OTF-PTs were evaluated in the dark and under UV illumination with a constant light intensity (P = 3 mW cm(-2), λ = 365 nm), respectively, using two- and three-terminal I-V measurements. Results revealed that the purposely chosen B-upe polymer binder strongly affected the UV response of OTF-PTs. A photocurrent increase of more than 5 orders of magnitude in the subthreshold region was observed with a responsivity as high as 9.7 AW(-1), at VG = 0 V. The photocurrent increase and dramatic shift of VTh,average (∼86 V) were justified by the high number of photogenerated charge carriers upon the high trap density in bulk 8.0 × 10(12) cm(-2) eV(-1) generated by highly dispersed C5-BTBT in B-upe binder. Compared with other devices, the B-upe OTF-PTs had the fastest UV response times (τr1/τr2 = 0.5/6.0) reaching the highest saturated photocurrent (>10(6)), at VG = -5 V and VSD = -60 V. The enhanced UV sensing properties of B-upe based OTF-PTs were attributed to a self-induced thin-film morphology. The enlarged interface facilitated the electron withdrawing/donating functional groups in the polymer chains in

  3. Preparation of TiO2 thin film by the LPD method on functionalized organic self-assembled monolayers

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    In this paper, uniform titania (TiO2) films have been formed at 50℃ on silanol SAMs by the liquid-phase deposition (LPD) method at a temperature below 100℃. OTS (Octadecyltrichloro-Silane) selfassembled monolayers (SAMs) on glass wafers were used as substrates for the deposition of titanium dioxide thin films. This functionalized organic surface has shown to be effective for promoting the growth of films from titanic aqueous solutions by the LPD method at a low temperature below 100℃. The crystal phase composition, microstructure and topography of the as-prepared films were characterized by various techniques, including X-ray diffraction (XRD), scanning electron microscopy (SEM), and atomic force microscopy (AFM). The results indicate that the as-prepared thin films are purely crystallized anatase TiO2 constituted by nanorods after being annealed at 500℃. The pH values, concentration of reactants, and deposition temperatures play important roles in the growth of TiO2 thin films.

  4. Preparation of TiO2 thin film by the LPD method on functionalized organic self-assembled monolayers

    Institute of Scientific and Technical Information of China (English)

    HE ZhongLiang; YU ZhiWei; MIAO HongYan; TAN GuoQiang; LIU Yan

    2009-01-01

    In this paper, uniform titania (TiO2) films have been formed at 50℃ on silanol SAMs by the liquid-phase deposition (LPD) method at a temperature below 100℃. OTS (Octadecyltrichloro-Silane) self-assembled monolayers (SAMs) on glass wafers were used as substrates for the deposition of titanium dioxide thin films. This functionalized organic surface has shown to be effective for promoting the growth of films from titanic aqueous solutions by the LPD method at a low temperature below 10012. The crystal phase composition, microstructure and topography of the as-prepared films were characterized by various techniques, including X-ray diffraction (XRD), scanning electron microscopy (SEM), and atomic force microscopy (AFM). The results indicate that the as-prepared thin films are purely crystallized anatase TiO2 constituted by nanorods after being annealed at 500℃. The pH values, concentration of reactants, and deposition temperatures play important roles in the growth of TiO2 thin films.

  5. Method for Aluminum Oxide Thin Films Prepared through Low Temperature Atomic Layer Deposition for Encapsulating Organic Electroluminescent Devices

    Directory of Open Access Journals (Sweden)

    Hui-Ying Li

    2015-02-01

    Full Text Available Preparation of dense alumina (Al2O3 thin film through atomic layer deposition (ALD provides a pathway to achieve the encapsulation of organic light emitting devices (OLED. Unlike traditional ALD which is usually executed at higher reaction n temperatures that may affect the performance of OLED, this application discusses the development on preparation of ALD thin film at a low temperature. One concern of ALD is the suppressing effect of ambient temperature on uniformity of thin film. To mitigate this issue, the pumping time in each reaction cycle was increased during the preparation process, which removed reaction byproducts and inhibited the formation of vacancies. As a result, the obtained thin film had both high uniformity and density properties, which provided an excellent encapsulation performance. The results from microstructure morphology analysis, water vapor transmission rate, and lifetime test showed that the difference in uniformity between thin films prepared at low temperatures, with increased pumping time, and high temperatures was small and there was no obvious influence of increased pumping time on light emitting performance. Meanwhile, the permeability for water vapor of the thin film prepared at a low temperature was found to reach as low as 1.5 × 10−4 g/(m2·day under ambient conditions of 25 °C and 60% relative humidity, indicating a potential extension in the lifetime for the OLED.

  6. Fabrication of water-stable organic transistors using crystalline rubrene thin-film and polymer-treated dielectric (Presentation Recording)

    Science.gov (United States)

    Kim, Jaejoon; Lee, Hyoek Moo; Cho, Sung Oh

    2015-10-01

    For the real application of organic electronics, stable operation of electronic devices in humid or aqueous condition is essential and desirable. However, most of organic semiconductors were very weak to the oxygen or water and especially, cannot be operated well in aqueous condition without an encapsulation. Here, we present water-stable organic thin-film transistors with highly crystallized rubrene and polymer-treated dielectrics. These high water-stability could be achieved by two factors. First, rubrene, a well-known p-type semiconducting material, showed high air and water stability after the crystallization of `abrupt heating'. By the fabrication and aqueous operation of rubrene thin film transistor, we could show the water stability of crystallized thin-film rubrene. Such high environmental stability is attributed to the fact that rubrene has comparatively low HOMO level of -5.4 eV and large bandgap energy of 3.2 eV and that the rubrene thin-film is composed of well-interconnected orthorhombic rubrene crystals. Second, the polymer-treatment of dielectrics can enhance long-term water stability of fabricated rubrene thin-film transistor. By the complete immersion test of transistors, we could characterize the increase of water-stability after the treatment of dielectrics with cross-linked polymer. For this purpose, polystyrene is cross-linked by electron irradiation and the water penetration into semiconductor/dielectric interface was decreased due to the decreased surface energy of polymer dielectric compared to the SiO₂. The fabricated rubrene thin-film transistors showed a field-effect mobility of ~0.5 cm2V-1s-1 and long-term stability under ambient and aqueous conditions. Also, we investigated their potential applications in chemical or bio sensors.

  7. Preparation of Titanium Oxide-containing Organic Film by Dipping Ti(OR)4 and Cold Plasma oxidizing on PET

    International Nuclear Information System (INIS)

    Low temperature process to prepare titanium oxide film on the surface of PET was investigated in this study. The substrates were pre-treated by oxygen plasma activated procedure, and then spin coating of Ti(OR)4 precursor solution was carried out to prepare Ti-containing organic films. Finally, O2 plasma was employed to decompose organic compounds and oxidize Ti to form oxides. Oxygen plasma post treatment can oxidize the organic compounds to form titanium oxide carbon subsequently. From the IR and ESCA analysis could be observed that -CH bond decreases and Ti-O, C-O bonds increase after O2 plasma treatment. Their surface hydrophilicity was enhanced by UV-irradiation, the degree of water contact angle decreased from 60 deg. to 10 deg.

  8. A Boltzmann-weighted hopping model of charge transport in organic semicrystalline films

    KAUST Repository

    Kwiatkowski, Joe J.

    2011-01-01

    We present a model of charge transport in polycrystalline electronic films, which considers details of the microscopic scale while simultaneously allowing realistically sized films to be simulated. We discuss the approximations and assumptions made by the model, and rationalize its application to thin films of directionally crystallized poly(3-hexylthiophene). In conjunction with experimental data, we use the model to characterize the effects of defects in these films. Our findings support the hypothesis that it is the directional crystallization of these films, rather than their defects, which causes anisotropic mobilities. © 2011 American Institute of Physics.

  9. Hybrid composite of screen-printed inorganic thermoelectric film and organic conducting polymer for flexible thermoelectric power generator

    International Nuclear Information System (INIS)

    TEG (Thermoelectric power generator) modules are attractive energy harvesters, as they can deliver electrical output power from the temperature difference of all sorts of things. Recently, growing interests in self-powered wearable mobile electronics provoke the necessity of flexible TEG modules. However, the technology on flexible TEG modules is still at a very early stage. Here we demonstrate flexible high-performance TEG modules using a screen-printed inorganic thermoelectric thick film and organic conducting polymer hybrid composite. By infiltrating the organic conducting polymer, poly(3,4-ethylenedioxythiophene): poly(styrenesulfonate) (PEDOT:PSS), into the micropores of the screen-printed thermoelectric thick film, the flexibility of the module is greatly enhanced without degradation of the output characteristics of the module. This work provides a promising new approach which has the potential to achieve a flexible high-performance TEG module. - Highlights: • Hybrid composite of inorganic TE film and organic conducting polymer was prepared. • Addition of PEDOT:PSS to the TE film provided a 10% increment in the ZT value. • The flexible TEG module using the composite have successfully demonstrated. • The proposed method is simple, cheap, and mass-production friendly. • The strategy is applicable in self-powered wearable mobile electronics

  10. Numerical Study on the Contribution of Convective Mass Transfer Inside High-Porosity Adsorbents in the VOC Adsorption Process

    DEFF Research Database (Denmark)

    Zhang, Ge; He, Wenna; Fang, Lei;

    2013-01-01

    The transfer mechanism of volatile organic compounds (VOCs) being trapped inside the various types of adsorbents is usually regarded as mere diffusion. This paper investigated the contribution of convective mass transfer inside the adsorbents used for VOC air-cleaning. The adsorbents are typicall...

  11. Effect of titanium oxide–polystyrene nanocomposite dielectrics on morphology and thin film transistor performance for organic and polymeric semiconductors

    International Nuclear Information System (INIS)

    Previous studies have shown that organic thin film transistors with pentacene deposited on gate dielectrics composed of a blend of high K titanium oxide–polystyrene core–shell nanocomposite (TiO2–PS) with polystyrene (PS) perform with an order of magnitude increase in saturation mobility for TiO2–PS (K = 8) as compared to PS devices (K = 2.5). The current study finds that this performance enhancement can be translated to alternative small single crystal organics such as α-sexithiophene (α-6T) (enhancement factor for field effect mobility ranging from 30-100× higher on TiO2–PS/PS blended dielectrics as compared to homogenous PS dielectrics). Interestingly however, in the case of semicrystalline polymers such as (poly-3-hexylthiophene) P3HT, this dramatic enhancement is not observed, possibly due to the difference in processing conditions used to fabricate these devices (film transfer as opposed to thermal evaporation). The morphology for α-sexithiophene (α-6T) grown by thermal evaporation on TiO2–PS/PS blended dielectrics parallels that observed in pentacene devices. Smaller grain size is observed for films grown on dielectrics with higher TiO2–PS content. In the case of poly(3-hexylthiophene) (P3HT) devices, constructed via film transfer, morphological differences exist for the P3HT on different substrates, as discerned by atomic force microscopy studies. However, these devices only exhibit a modest (2×) increase in mobility with increasing TiO2–PS content in the films. After annealing of the transferred P3HT thin film transistor (TFT) devices, no appreciable enhancement in mobility is observed across the different blended dielectrics. Overall the results support the hypothesis that nucleation rate is responsible for changes in film morphology and device performance in thermally evaporated small molecule crystalline organic semiconductor TFTs. The increased nucleation rate produces organic polycrystalline films with small grain size which are

  12. Methyl blue dyed polyethylene oxide films: Optical and electrochemical characterization and application as a single layer organic device

    Science.gov (United States)

    Kamath, Archana; Raghu, S.; Devendrappa, H.

    2016-01-01

    A single layer organic device employing methyl blue (MB) dyed polyethylene oxide (PEO) film has been fabricated and studied. The cyclic voltammetry was used to estimate the redox potential and energy band diagram of the device. The polymer film with highest concentration of the dye in PEO (PMB2%) possessing highest conductivity exhibited energy band gap of 2.62 eV with HOMO and LUMO values of 5.34 and 2.72 eV respectively. Based on cyclic voltammetry data, the electron affinity, ionization potential and energy band diagram of the device are discussed.

  13. Krypton retention on solid adsorbents

    International Nuclear Information System (INIS)

    Radioactive krypton-85 is released to the atmosphere in the off-gas from nuclear reprocessing plants. Three main methods have been suggested for removal of krypton from off-gas streams: cryogenic distillation; fluorocarbon absorption; and adsorption on solid sorbents. Use of solid adsorbents is the least developed of these methods, but offers the potential advantages of enhanced safety and lower operating costs. An experimental laboratory program was developed that will be used to investigate systematically many solid adsorbents (such as zeolites, i.e., mordenites) for trapping krypton in air. The objective of this investigation is to find an adsorbent that is more economical than silver-exchanged mordenite. Various physical and chemical characteristics such as adsorption isotherms, decontamination factors, co-adsorption, regeneration, and the mechanism and kinetics of noble gas adsorption were used to characterize the adsorbents. In the experimental program, a gas chromatograph using a helium ionization detector was used to measure the krypton in air before and after the adsorbent bed. This method can determine directly decontamination factors greater than 100

  14. The multiscale simulation of metal organic chemical vapor deposition growth dynamics of GaInP thin film

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    As a Group III–V compound, GaInP is a high-efficiency luminous material. Metal organic chemical vapor deposition (MOCVD) technology is a very efficient way to uniformly grow multi-chip, multilayer and large-area thin film. By combining the computational fluid dynamics (CFD) and the kinetic Monte Carlo (KMC) methods with virtual reality (VR) technology, this paper presents a multiscale simulation of fluid dynamics, thermodynamics, and molecular dynamics to study the growth process of GaInP thin film in a vertical MOCVD reactor. The results of visualization truly and intuitively not only display the distributional properties of the gas’ thermal and flow fields in a MOCVD reactor but also display the process of GaInP thin film growth in a MOCVD reactor. The simulation thus provides us with a fundamental guideline for optimizing GaInP MOCVD growth.

  15. Enhanced electrical properties of pentacene-based organic thin-film transistors by modifying the gate insulator surface

    Science.gov (United States)

    Tang, J. X.; Lee, C. S.; Chan, M. Y.; Lee, S. T.

    2008-09-01

    A reliable surface treatment for the pentacene/gate dielectric interface was developed to enhance the electrical transport properties of organic thin-film transistors (OTFTs). Plasma-polymerized fluorocarbon (CFx) film was deposited onto the SiO 2 gate dielectric prior to pentacene deposition, resulting in a dramatic increase of the field-effect mobility from 0.015 cm 2/(V s) to 0.22 cm 2/(V s), and a threshold voltage reduction from -14.0 V to -9.9 V. The observed carrier mobility increase by a factor of 10 in the resulting OTFTs is associated with various growth behaviors of polycrystalline pentacene thin films on different substrates, where a pronounced morphological change occurs in the first few molecular layers but the similar morphologies in the upper layers. The accompanying threshold voltage variation suggests that hole accumulation in the conduction channel-induced weak charge transfer between pentacene and CFx.

  16. Structural and morphological evolution of cerium oxide thin film on silicon prepared by metal-organic decomposition route

    International Nuclear Information System (INIS)

    Thin film of cerium oxide (CeO2) were prepared on silicon (Si) substrate by metal organic decomposition route. 0.25 M of cerium (III) acetylacetonate (acac) was used as starting materials with the addition of methanol and acetic acid as solvents. Oxide conversion of the film by thermal treatment was conducted at temperature ranging from 400 degree Celsius to 1000 degree Celsius for 15 min in argon ambient. X-ray diffraction (XRD) analysis utilizing Cukα radiation (Model Brukker DiffracPlus), Filmetrics system measurement, field emission scanning electron microscope (FESEM) (Model Zeiss Supra 35 VP FESEM) and atomic force microscopy (AFM) (Model SII Nanonavi) were employed to characterize the phase formed and morphologies of the film produced. (author)

  17. Evaluation of a cesium adsorbent grafted with ammonium 12-molybdophosphate

    Science.gov (United States)

    Shibata, Takuya; Seko, Noriaki; Amada, Haruyo; Kasai, Noboru; Saiki, Seiichi; Hoshina, Hiroyuki; Ueki, Yuji

    2016-02-01

    A fibrous cesium (Cs) adsorbent was developed using radiation-induced graft polymerization with a cross-linked structure containing a highly stable adsorption ligand. The ligand, ammonium 12-molybdophosphate (AMP), was successfully introduced onto the fibrous polyethylene trunk material. The resulting Cs adsorbent contained 36% nonwoven fabric polyethylene (NFPE), 1% AMP, 2% triallyl isocyanurate (TAIC) and 61% glycidyl methacrylate (GMA). The adsorbent's Cs adsorption capacity was evaluated using batch and column tests. It was determined that the adsorbent could be used in a wide pH range. The amount of desorbed molybdenum, which can be used as an estimate for AMP stability on the Cs adsorbent, was minimized at the standard drinking water pH range of 5.8-8.6. Based from the inspection on the adherence of these results to the requirements set forth by the Food Sanitation Act by a third party organization, it can be concluded that the developed Cs adsorbent can be safely utilized for drinking water.

  18. Titania nanotubes from weak organic acid electrolyte: fabrication, characterization and oxide film properties.

    Science.gov (United States)

    Munirathinam, Balakrishnan; Neelakantan, Lakshman

    2015-04-01

    In this study, TiO2 nanotubes were fabricated using anodic oxidation in fluoride containing weak organic acid for different durations (0.5h, 1h, 2h and 3h). Scanning electron microscope (SEM) micrographs reveal that the morphology of titanium oxide varies with anodization time. Raman spectroscopy and X-ray diffraction (XRD) results indicate that the as-formed oxide nanotubes were amorphous in nature, yet transform into crystalline phases (anatase and rutile) upon annealing at 600°C. Wettability measurements show that both as-formed and annealed nanotubes exhibited hydrophilic behavior. The electrochemical behavior was ascertained by DC polarization and AC electrochemical impedance spectroscopy (EIS) measurements in 0.9% NaCl solution. The results suggest that the annealed nanotubes showed higher impedance (10(5)-10(6)Ωcm(2)) and lower passive current density (10(-7)Acm(-2)) than the as-formed nanotubes. In addition, we investigated the influence of post heat treatment on the semiconducting properties of the oxides by capacitance measurements. In vitro bioactivity test in simulated body fluid (SBF) showed that precipitation of Ca/P is easier in crystallized nanotubes than the amorphous structure. Our study uses a simple strategy to prepare nano-structured titania films and hints the feasibility of tailoring the oxide properties by thermal treatment, producing surfaces with better bioactivity. PMID:25686985

  19. Analysis of a gas-liquid film plasma reactor for organic compound oxidation.

    Science.gov (United States)

    Hsieh, Kevin; Wang, Huijuan; Locke, Bruce R

    2016-11-01

    A pulsed electrical discharge plasma formed in a tubular reactor with flowing argon carrier gas and a liquid water film was analyzed using methylene blue as a liquid phase hydroxyl radical scavenger and simultaneous measurements of hydrogen peroxide formation. The effects of liquid flow rate, liquid conductivity, concentration of dye, and the addition of ferrous ion on dye decoloration and degradation were determined. Higher liquid flow rates and concentrations of dye resulted in less decoloration percentages and hydrogen peroxide formation due to initial liquid conductivity effects and lower residence times in the reactor. The highest decoloration energy yield of dye found in these studies was 5.2g/kWh when using the higher liquid flow rate and adding the catalyst. The non-homogeneous nature of the plasma discharge favors the production of hydrogen peroxide in the plasma-liquid interface over the chemical oxidation of the organic in the bulk liquid phase and post-plasma reactions with the Fenton catalyst lead to complete utilization of the plasma-formed hydrogen peroxide. PMID:27267693

  20. Poly(3-Methylthiophene) Thin Films Deposited Electrochemically on QCMs for the Sensing of Volatile Organic Compounds.

    Science.gov (United States)

    Öztürk, Sadullah; Kösemen, Arif; Şen, Zafer; Kılınç, Necmettin; Harbeck, Mika

    2016-01-01

    Poly(3-methylthiophene) (PMeT) thin films were electrochemically deposited on quartz crystal microbalance QCM transducers to investigate their volatile organic compound (VOC) sensing properties depending on ambient conditions. Twelve different VOCs including alcohols, ketones, chlorinated compounds, amines, and the organosphosphate dimethyl methylphosphonate (DMMP) were used as analytes. The responses of the chemical sensors against DMMP were the highest among the tested analytes; thus, fabricated chemical sensors based on PMeT can be evaluated as potential candidates for selectively detecting DMMP. Generally, detection limits in the low ppm range could be achieved. The gas sensing measurements were recorded at various humid air conditions to investigate the effects of the humidity on the gas sensing properties. The sensing performance of the chemical sensors was slightly reduced in the presence of humidity in ambient conditions. While a decrease in sensitivity was observed for humidity levels up to 50% r.h., the sensitivity was nearly unaffected for higher humidity levels and a reliable detection of the VOCs and DMMP was possible with detection limits in the low ppm range. PMID:27023539