WorldWideScience

Sample records for ads black holes

  1. Polarised black holes in AdS

    Science.gov (United States)

    Costa, Miguel S.; Greenspan, Lauren; Oliveira, Miguel; Penedones, João; Santos, Jorge E.

    2016-06-01

    We consider solutions in Einstein-Maxwell theory with a negative cosmological constant that asymptote to global AdS 4 with conformal boundary {S}2× {{{R}}}t. At the sphere at infinity we turn on a space-dependent electrostatic potential, which does not destroy the asymptotic AdS behaviour. For simplicity we focus on the case of a dipolar electrostatic potential. We find two new geometries: (i) an AdS soliton that includes the full backreaction of the electric field on the AdS geometry; (ii) a polarised neutral black hole that is deformed by the electric field, accumulating opposite charges in each hemisphere. For both geometries we study boundary data such as the charge density and the stress tensor. For the black hole we also study the horizon charge density and area, and further verify a Smarr formula. Then we consider this system at finite temperature and compute the Gibbs free energy for both AdS soliton and black hole phases. The corresponding phase diagram generalizes the Hawking-Page phase transition. The AdS soliton dominates the low temperature phase and the black hole the high temperature phase, with a critical temperature that decreases as the external electric field increases. Finally, we consider the simple case of a free charged scalar field on {S}2× {{{R}}}t with conformal coupling. For a field in the SU(N ) adjoint representation we compare the phase diagram with the above gravitational system.

  2. Polarised Black Holes in AdS

    CERN Document Server

    Costa, Miguel S; Oliveira, Miguel; Penedones, João; Santos, Jorge E

    2015-01-01

    We consider solutions in Einstein-Maxwell theory with a negative cosmological constant that asymptote to global $AdS_{4}$ with conformal boundary $S^{2}\\times\\mathbb{R}_{t}$. At the sphere at infinity we turn on a space-dependent electrostatic potential, which does not destroy the asymptotic $AdS$ behaviour. For simplicity we focus on the case of a dipolar electrostatic potential. We find two new geometries: (i) an $AdS$ soliton that includes the full backreaction of the electric field on the $AdS$ geometry; (ii) a polarised neutral black hole that is deformed by the electric field, accumulating opposite charges in each hemisphere. For both geometries we study boundary data such as the charge density and the stress tensor. For the black hole we also study the horizon charge density and area, and further verify a Smarr formula. Then we consider this system at finite temperature and compute the Gibbs free energy for both $AdS$ soliton and black hole phases. The corresponding phase diagram generalizes the Hawkin...

  3. Complexity Growth for AdS Black Holes

    CERN Document Server

    Cai, Rong-Gen; Wang, Shao-Jiang; Yang, Run-Qiu; Peng, Rong-Hui

    2016-01-01

    We further investigate the Complexity-Action (CA) duality conjecture for stationary anti de-Sitter (AdS) black holes and derive some exact results for the growth rate of action within Wheeler-DeWitt (WDW) patch at late time approximation, which is dual to the growth rate of quantum complexity of holographic state. Based on the results from the general $D$-dimensional Reissner-Nordstr\\"{o}m (RN)-AdS black hole, rotating/charged Ba\\~{n}ados-Teitelboim-Zanelli (BTZ) black hole, Kerr-AdS black hole and charged Gauss-Bonnet-AdS black hole, we present a new complexity bound but leave unchanged the conjecture that the stationary AdS black hole in Einstein gravity is the fastest computer in nature.

  4. Action growth for AdS black holes

    Science.gov (United States)

    Cai, Rong-Gen; Ruan, Shan-Ming; Wang, Shao-Jiang; Yang, Run-Qiu; Peng, Rong-Hui

    2016-09-01

    Recently a Complexity-Action (CA) duality conjecture has been proposed, which relates the quantum complexity of a holographic boundary state to the action of a Wheeler-DeWitt (WDW) patch in the anti-de Sitter (AdS) bulk. In this paper we further investigate the duality conjecture for stationary AdS black holes and derive some exact results for the growth rate of action within the Wheeler-DeWitt (WDW) patch at late time approximation, which is supposed to be dual to the growth rate of quantum complexity of holographic state. Based on the results from the general D-dimensional Reissner-Nordström (RN)-AdS black hole, rotating/charged Bañados-Teitelboim-Zanelli (BTZ) black hole, Kerr-AdS black hole and charged Gauss-Bonnet-AdS black hole, we present a universal formula for the action growth expressed in terms of some thermodynamical quantities associated with the outer and inner horizons of the AdS black holes. And we leave the conjecture unchanged that the stationary AdS black hole in Einstein gravity is the fastest computer in nature.

  5. Thermodynamics of charged Lovelock: AdS black holes

    Energy Technology Data Exchange (ETDEWEB)

    Prasobh, C.B.; Suresh, Jishnu; Kuriakose, V.C. [Cochin University of Science and Technology, Department of Physics, Cochin (India)

    2016-04-15

    We investigate the thermodynamic behavior of maximally symmetric charged, asymptotically AdS black hole solutions of Lovelock gravity. We explore the thermodynamic stability of such solutions by the ordinary method of calculating the specific heat of the black holes and investigating its divergences which signal second-order phase transitions between black hole states. We then utilize the methods of thermodynamic geometry of black hole spacetimes in order to explain the origin of these points of divergence. We calculate the curvature scalar corresponding to a Legendre-invariant thermodynamic metric of these spacetimes and find that the divergences in the black hole specific heat correspond to singularities in the thermodynamic phase space. We also calculate the area spectrum for large black holes in the model by applying the Bohr-Sommerfeld quantization to the adiabatic invariant calculated for the spacetime. (orig.)

  6. Thermodynamics of charged Lovelock: AdS black holes

    Science.gov (United States)

    Prasobh, C. B.; Suresh, Jishnu; Kuriakose, V. C.

    2016-04-01

    We investigate the thermodynamic behavior of maximally symmetric charged, asymptotically AdS black hole solutions of Lovelock gravity. We explore the thermodynamic stability of such solutions by the ordinary method of calculating the specific heat of the black holes and investigating its divergences which signal second-order phase transitions between black hole states. We then utilize the methods of thermodynamic geometry of black hole spacetimes in order to explain the origin of these points of divergence. We calculate the curvature scalar corresponding to a Legendre-invariant thermodynamic metric of these spacetimes and find that the divergences in the black hole specific heat correspond to singularities in the thermodynamic phase space. We also calculate the area spectrum for large black holes in the model by applying the Bohr-Sommerfeld quantization to the adiabatic invariant calculated for the spacetime.

  7. Reentrant Phase Transitions in Rotating AdS Black Holes

    CERN Document Server

    Altamirano, Natacha; Mann, Robert B

    2013-01-01

    We study the thermodynamics of higher-dimensional singly spinning asymptotically AdS black holes in the canonical (fixed J) ensemble of extended phase space, where the cosmological constant is treated as pressure and the corresponding conjugate quantity is interpreted as thermodynamic volume. Along with the usual small/large black hole phase transition, we find a new phenomenon of reentrant phase transitions for all d>5 dimensions, in which a monotonic variation of the temperature yields two phase transitions from large to small and back to large black holes. This situation is similar to that seen in multicomponent liquids.

  8. Internal Structure of Charged AdS Black Holes

    CERN Document Server

    Bhattacharjee, Srijit; Virmani, Amitabh

    2016-01-01

    When an electrically charged black hole is perturbed its inner horizon becomes a singularity, often referred to as the Poisson-Israel mass inflation singularity. Ori constructed a model of this phenomenon for asymptotically flat black holes, in which the metric can be determined explicitly in the mass inflation region. In this paper we implement the Ori model for charged AdS black holes. We find that the mass function inflates faster than the flat space case as the inner horizon is approached. Nevertheless, the mass inflation singularity is still a weak singularity: although spacetime curvature becomes infinite, tidal distortions remain finite on physical objects attempting to cross it.

  9. The Mixed Phase of Charged AdS Black Holes

    Directory of Open Access Journals (Sweden)

    Piyabut Burikham

    2016-01-01

    Full Text Available We study the mixed phase of charged AdS black hole and radiation when the total energy is fixed below the threshold to produce a stable charged black hole branch. The coexistence conditions for the charged AdS black hole and radiation are derived for the generic case when radiation particles carry charge. The phase diagram of the mixed phase is demonstrated for both fixed potential and charge ensemble. In the dual gauge picture, they correspond to the mixed phase of quark-gluon plasma (QGP and hadron gas in the fixed chemical potential and density ensemble, respectively. In the nuclei and heavy-ion collisions at intermediate energies, the mixed phase of exotic QGP and hadron gas could be produced. The mixed phase will condense and evaporate into the hadron gas as the fireball expands.

  10. Thermodynamics of Einstein-Proca AdS Black Holes

    CERN Document Server

    Liu, Hai-Shan; Pope, C N

    2014-01-01

    We study static spherically-symmetric solutions of the Einstein-Proca equations in the presence of a negative cosmological constant. We show that the theory admits solutions describing both black holes and also solitons in an asymptotically AdS background. Interesting subtleties can arise in the computation of the mass of the solutions and also in the derivation of the first law of thermodynamics. We make use of holographic renormalisation in order to calculate the mass, even in cases where the solutions have a rather slow approach to the asymptotic AdS geometry. By using the procedure developed by Wald, we derive the first law of thermodynamics for the black hole and soliton solutions. This includes a non-trivial contribution associated with the Proca "charge." The solutions cannot be found analytically, and so we make use of numerical integration techniques to demonstrate their existence.

  11. Entanglement Entropy of AdS Black Holes

    Directory of Open Access Journals (Sweden)

    Maurizio Melis

    2010-11-01

    Full Text Available We review recent progress in understanding the entanglement entropy of gravitational configurations for anti-de Sitter gravity in two and three spacetime dimensions using the AdS/CFT correspondence. We derive simple expressions for the entanglement entropy of two- and three-dimensional black holes. In both cases, the leading term of the entanglement entropy in the large black hole mass expansion reproduces exactly the Bekenstein-Hawking entropy, whereas the subleading term behaves logarithmically. In particular, for the BTZ black hole the leading term of the entanglement entropy can be obtained from the large temperature expansion of the partition function of a broad class of 2D CFTs on the torus.

  12. AdS_5 Black Holes with Fermionic Hair

    CERN Document Server

    Burrington, B A; Sabra, W A; Burrington, Benjamin A.; Liu, James T.

    2004-01-01

    The study of new BPS objects in AdS_5 has led to a deeper understanding of AdS/CFT. To help complete this picture, and to fully explore the consequences of the supersymmetry algebra, it is also important to obtain new solutions with bulk fermions turned on. In this paper we construct superpartners of the 1/2 BPS black hole in AdS_5 using a natural set of fermion zero modes. We demonstrate that these superpartners, carrying fermionic hair, have conserved charges differing from the original bosonic counterpart. To do so, we find the R-charge and dipole moment of the new system, as well as the mass and angular momentum, defined through the boundary stress tensor. The complete set of superpartners fits nicely into a chiral representation of AdS_5 supersymmetry, and the spinning solutions have the expected gyromagnetic ratio, g=1.

  13. Smooth Causal Patches for AdS Black Holes

    CERN Document Server

    Raju, Suvrat

    2016-01-01

    We review the paradox of low energy excitations about an AdS black hole. An appropriately chosen unitary operator in the boundary theory can create a locally strong excitation near the black hole horizon, whose global energy is small as a result of the gravitational redshift. The paradox is that this seems to violate a general rule of statistical mechanics, which states that an operator with energy parametrically smaller than $k T$ cannot create a significant excitation in a thermal system. When we carefully examine the position dependence of the boundary unitary operator that produces the excitation and the bulk observable necessary to detect the anomalously large effect, we find that they do not both fit in a single causal patch. This follows from a remarkable property of position space AdS correlators that we establish explicitly, and resolves the paradox in a generic state of the system, since no combination of observers can both create the excitation and observe its effect. As a special case of our analy...

  14. Canonical energy and hairy AdS black holes

    CERN Document Server

    Hyun, Seungjoon; Yi, Sang-Heon

    2016-01-01

    We propose the modified version of the canonical energy which was introduced originally by Hollands and Wald. Our construction depends only on the Euler-Lagrange expression of the system and thus is independent of the ambiguity in the Lagrangian. After some comments on our construction, we briefly mention on the relevance of our construction to the boundary information metric in the context of the AdS/CFT correspondence. We also study the stability of three-dimensional hairy extremal black holes by using our construction.

  15. Refined Holographic Entanglement Entropy for the AdS Solitons and AdS black Holes

    CERN Document Server

    Ishihara, Masafumi; Ning, Bo

    2012-01-01

    We consider the refinement of the holographic entanglement entropy on a disk region for the holographic dual theories to the AdS solitons and AdS black holes, including the corrected ones by the Gauss-Bonnet term. The AdS soliton is dual to a gapped system with an IR fixed-point. The refinement is obtained by extracting the UV-independent piece of the holographic entanglement entropy. We then study the renormalization group (RG) flow of the refinement by tuning the linear size of the chosen disk region. Our main results are (i) the RG flow of the refinement decreases monotonically for most of the cases; (ii) there is no topological entanglement entropy for AdS$_5$ soliton even with Gauss-Bonnet correction; (iii) for the AdS black holes, the refinement obeys the volume law at IR regime, and the transition between UV and IR regimes is a smooth crossover; however, the crossover will turn into phase transition by the Gauss-Bonnet correction; (iv) for the AdS solitons, there are discontinuous phase transitions bet...

  16. Static Einstein-Maxwell Black Holes with No Spatial Isometries in AdS Space

    Science.gov (United States)

    Herdeiro, Carlos A. R.; Radu, Eugen

    2016-11-01

    We explicitly construct static black hole solutions to the fully nonlinear, D =4 , Einstein-Maxwell-anti-de Sitter (AdS) equations that have no continuous spatial symmetries. These black holes have a smooth, topologically spherical horizon (section), but without isometries, and approach, asymptotically, global AdS spacetime. They are interpreted as bound states of a horizon with the Einstein-Maxwell-AdS solitons recently discovered, for appropriate boundary data. In sharp contrast to the uniqueness results for a Minkowski electrovacuum, the existence of these black holes shows that single, equilibrium, black hole solutions in an AdS electrovacuum admit an arbitrary multipole structure.

  17. Static Einstein-Maxwell Black Holes with No Spatial Isometries in AdS Space.

    Science.gov (United States)

    Herdeiro, Carlos A R; Radu, Eugen

    2016-11-25

    We explicitly construct static black hole solutions to the fully nonlinear, D=4, Einstein-Maxwell-anti-de Sitter (AdS) equations that have no continuous spatial symmetries. These black holes have a smooth, topologically spherical horizon (section), but without isometries, and approach, asymptotically, global AdS spacetime. They are interpreted as bound states of a horizon with the Einstein-Maxwell-AdS solitons recently discovered, for appropriate boundary data. In sharp contrast to the uniqueness results for a Minkowski electrovacuum, the existence of these black holes shows that single, equilibrium, black hole solutions in an AdS electrovacuum admit an arbitrary multipole structure.

  18. Thermodynamic geometry and phase transitions of AdS braneworld black holes

    Science.gov (United States)

    Chaturvedi, Pankaj; Sengupta, Gautam

    2017-02-01

    The thermodynamics and phase transitions of charged RN-AdS and rotating Kerr-AdS black holes in a generalized Randall-Sundrum braneworld are investigated in the framework of thermodynamic geometry. A detailed analysis of the thermodynamics, stability and phase structures in the canonical and the grand canonical ensembles for these AdS braneworld black holes are described. The thermodynamic curvatures for both these AdS braneworld black holes are computed and studied as a function of the thermodynamic variables. Through this analysis we illustrate an interesting dependence of the phase structures on the braneworld parameter for these black holes.

  19. Phase Transition and Clapeyon Equation of Black Hole in Higher Dimensional AdS Spacetime

    CERN Document Server

    Zhao, Hui-Hua; Ma, Meng-Sen; Zhao, Ren

    2014-01-01

    By Maxwell equal area law we study the phase transition in higher dimensional Anti-de Sitter (AdS) Reissner-Nordstr\\"{o}m (RN) black hole and Kerr black hole in this paper. The coexisting region of the two phases involved in the phase transition is found and the coexisting curves are shown in $P-T$ figures. We also analytically investigate the parameters which affect the coexisting curves. To better compare with ordinary thermodynamic systems, the Clapeyon equation is derived for higher dimensional AdS black holes. This paper can help to deepen the understanding of the phase transition and phase structure of AdS black holes.

  20. AdS Monopole Black Hole and Phase Transition

    CERN Document Server

    Miyashita, Shoichiro

    2016-01-01

    We study the Einstein-SO(3)Yang-Mills-Higgs system with a negative cosmological constant, and find the monopole black hole solutions as well as the trivial Reissner-Nordstr\\"{o}m black hole. We discuss thermodynamical stability of the monopole black hole in an isolated system. We expect a phase transition between those two black holes when the mass of a black hole increases or decreases. The type of phase transition depends on the cosmological constant $\\Lambda$ as well as the vacuum expectation value $v$ and the coupling constant $\\lambda$ of the Higgs field. Fixing $\\lambda$ small, we find there are two critical values of the cosmological constant $\\Lambda_{\\rm cr (1)}(v)$ and $\\Lambda_{\\rm cr(2)}(v)$, which depend on $v$. If $\\Lambda_{\\rm cr(1)}(v)<\\Lambda (<0)$, we find the first order transition, while if $\\Lambda_{\\rm cr(2)}(v)<\\Lambda<\\Lambda_{\\rm cr(1)}(v)$, the transition becomes second order. For the case of $\\Lambda_{b}(v)<\\Lambda<\\Lambda_{\\rm (2)}(v)$, we again find the first ord...

  1. Joule-Thomson expansion of the charged AdS black holes

    Science.gov (United States)

    Ökcü, Özgür; Aydıner, Ekrem

    2017-01-01

    In this paper, we study Joule-Thomson effects for charged AdS black holes. We obtain inversion temperatures and curves. We investigate similarities and differences between van der Waals fluids and charged AdS black holes for the expansion. We obtain isenthalpic curves for both systems in the T- P plane and determine the cooling-heating regions.

  2. Joule-Thomson Expansion of Charged AdS Black Holes

    CERN Document Server

    Ökcü, Özgür

    2016-01-01

    In this paper, we study Joule-Thomson effects for charged AdS black holes. We obtain inversion temperatures and curves. We investigate similarities and differences between van der Waals fluids and charged AdS black holes for the expansion. We obtain isenthalpic curves for both systems in $T-P$ plane and determine the cooling-heating regions.

  3. Geometrothermodynamics of phantom AdS black holes

    Energy Technology Data Exchange (ETDEWEB)

    Quevedo, Hernando [Universidad Nacional Autonoma de Mexico, Instituto de Ciencias Nucleares, Mexico (Mexico); Universita di Roma ' ' La Sapienza' ' , Dipartimento di Fisica ed ICRANet, Rome (Italy); Quevedo, Maria N. [Facultad de Ciencias Basicas, Universidad Militar Nueva Granada, Departamento de Matematicas, Bogota (Colombia); Sanchez, Alberto [CIIDET, Departamento de Posgrado, Queretaro (Mexico)

    2016-03-15

    We show that to investigate the thermodynamic properties of charged phantom spherically symmetric anti-de Sitter black holes, it is necessary to consider the cosmological constant as a thermodynamic variable so that the corresponding fundamental equation is a homogeneous function defined on an extended equilibrium space. We explore all the thermodynamic properties of this class of black holes by using the classical physical approach, based upon the analysis of the fundamental equation, and the alternative mathematical approach as proposed in geometrothermodynamics. We show that both approaches are compatible and lead to equivalent results. (orig.)

  4. Near horizon data and physical charges of extremal AdS black holes

    NARCIS (Netherlands)

    Astefanesei, D.; Banerjee, N.; Dutta, S.

    2011-01-01

    We compute the physical charges and discuss the properties of a large class of five-dimensional extremal AdS black holes by using the near horizon data. Our examples include baryonic and electromagnetic black branes, as well as supersymmetric spinning black holes. In the presence of the gauge Chern–

  5. The generalization of charged AdS black hole specific volume and number density

    Science.gov (United States)

    Wang, Zi-Liang; He, Miao; Fang, Chao; Sun, Dao-Quan; Deng, Jian-Bo

    2017-04-01

    In this paper, by proposing a generalized specific volume, we restudy the P- V criticality of charged AdS black holes in the extended phase space. The results show that most of the previous conclusions can be generalized without change, but the ratio {\\tilde{ρ }}_c should be 3 {\\tilde{α }}/16 in general case. Further research on the thermodynamical phase transition of black hole leads us to a natural interpretation of our assumption, and more black hole properties can be generalized. Finally, we study the number density for charged AdS black hole in higher dimensions, the results show the necessity of our assumption.

  6. Black holes in a box: towards the numerical evolution of black holes in AdS

    CERN Document Server

    Witek, Helvi; Herdeiro, Carlos; Nerozzi, Andrea; Sperhake, Ulrich; Zilhao, Miguel

    2010-01-01

    The evolution of black holes in "confining boxes" is interesting for a number of reasons, particularly because it mimics the global structure of Anti-de Sitter geometries. These are non-globally hyperbolic space-times and the Cauchy problem may only be well defined if the initial data is supplemented by boundary conditions at the time-like conformal boundary. Here, we explore the active role that boundary conditions play in the evolution of a bulk black hole system, by imprisoning a black hole binary in a box with mirror-like boundary conditions. We are able to follow the post-merger dynamics for up to two reflections off the boundary of the gravitational radiation produced in the merger. We estimate that about 15% of the radiation energy is absorbed by the black hole per interaction, whereas transfer of angular momentum from the radiation to the black hole is only observed in the first interaction. We discuss the possible role of superradiant scattering for this result. Unlike the studies with outgoing bound...

  7. Geometric Finiteness, Holography and Quasinormal Modes for the Warped AdS_3 Black Hole

    CERN Document Server

    Gupta, Kumar S; Sen, Siddhartha; Sivakumar, M

    2009-01-01

    We show that there exists a precise kinematical notion of holography for the Euclidean warped $AdS_3$ black hole. This follows from the fact that the Euclidean warped $AdS_3$ black hole spacetime is a geometrically finite hyperbolic manifold. For such manifolds a theorem of Sullivan provides a one-to-one correspondence between the hyperbolic structure in the bulk and the conformal structure of its boundary. Using this theorem we obtain the holographic quasinormal modes for the warped $AdS_3$ black hole.

  8. Phase transitions of magnetic AdS4 black holes with scalar hair

    NARCIS (Netherlands)

    Hristov, K.; Toldo, C.; Vandoren, S.

    2013-01-01

    We determine the thermodynamic properties of a class of spherically symmetric and static black holes in AdS4 with magnetic charges and scalar hair. These black holes are solutions in four-dimensional N=2 gauged supergravity that can arise from 11-dimensional supergravity compactified on S7. At zero

  9. Rotating (A)dS black holes in bigravity

    CERN Document Server

    Ayón-Beato, Eloy; Méndez-Zavaleta, Julio A

    2015-01-01

    In this paper we explore the advantage of using the Kerr-Schild ansatz in the search of analytic configurations to bigravity. It turns out that it plays a crucial role by providing means to straightforwardly calculate the square root matrix encoding the interaction terms between both gravities. We rederive in this spirit the Babichev-Fabbri family of asymptotically flat rotating black holes with the aid of an emerging circularity theorem. Taking into account that the interaction terms contain by default two cosmological constants, we repeat our approach starting from the more natural seeds for the Kerr-Schild ansatz in this context: the (A)dS spacetimes. As result, we show that a couple of Kerr-(A)dS black holes constitute an exact solution to ghost free bigravity. These black holes share the same angular momentum and (A)dS radius but their masses are not constrained to be equal, similarly to the asymptotically flat case.

  10. Hairy black holes and the endpoint of AdS$_4$ charged superradiance

    CERN Document Server

    Dias, Oscar J C

    2016-01-01

    We construct hairy black hole solutions that merge with the anti-de Sitter (AdS$_4$) Reissner-Nordstr\\"om black hole at the onset of superradiance. These hairy black holes have, for a given mass and charge, higher entropy than the corresponding AdS$_4$-Reissner-Nordstr\\"om black hole. Therefore, they are natural candidates for the endpoint of the charged superradiant instability. On the other hand, hairy black holes never dominate the canonical and grand-canonical ensembles. The zero-horizon radius of the hairy black holes is a soliton (i.e. a boson star under a gauge transformation). We construct our solutions perturbatively, for small mass and charge, so that the properties of hairy black holes can be used to testify and compare with the endpoint of initial value simulations. We further discuss the near-horizon scalar condensation instability which is also present in global AdS$_4$-Reissner-Nordstr\\"om black holes. We highlight the different nature of the near-horizon and superradiant instabilities and that...

  11. Horizon Conformal Field Theories from $AdS_2$ Black Holes

    CERN Document Server

    Halyo, Edi

    2015-01-01

    We show that the very near horizon region of nonextreme black holes, which can be described by horizon CFTs, are related to $AdS_2$ Rindler spaces. The latter are $AdS_2$ black holes with specific masses and can be described by states of either $D=1$ or $D=2$ CFTs. The central charges of these CFTs and the conformal weights of their states that correspond to the nonextreme black holes exactly match those predicted by the horizon CFTs, providing supporting evidence for this description.

  12. On thermodynamics of AdS black holes in M-theory

    Energy Technology Data Exchange (ETDEWEB)

    Belhaj, A. [Universite Sultan Moulay Slimane, Departement de Physique, LIRST, Faculte Polydisciplinaire, Beni Mellal (Morocco); Cadi Ayyad University, High Energy Physics and Astrophysics Laboratory, FSSM, Marrakesh (Morocco); Chabab, M.; Masmar, K. [Cadi Ayyad University, High Energy Physics and Astrophysics Laboratory, FSSM, Marrakesh (Morocco); El Moumni, H. [Cadi Ayyad University, High Energy Physics and Astrophysics Laboratory, FSSM, Marrakesh (Morocco); Universite Ibn Zohr, Departement de Physique, Faculte des Sciences, Agadir (Morocco); Sedra, M.B. [Universite Ibn Tofail, Departement de Physique, LASIMO, Faculte des Sciences, Kenitra (Morocco)

    2016-02-15

    Motivated by recent work on asymptotically AdS{sub 4} black holes in M-theory, we investigate the thermodynamics and thermodynamical geometry of AdS black holes from M2- and M5-branes. Concretely, we consider AdS black holes in AdS{sub p+2} x S{sup 11-p-2}, where p = 2,5 by interpreting the number of M2- (and M5-branes) as a thermodynamical variable. More precisely, we study the corresponding phase transition to examine their stabilities by calculating and discussing various thermodynamical quantities including the chemical potential. Then we compute the thermodynamical curvatures from the Quevedo metric for M2- and M5-branes geometries to reconsider the stability of such black holes. The Quevedo metric singularities recover similar stability results provided by the phase-transition program. It has been shown that similar behaviors are also present in the limit of large N. (orig.)

  13. EVH Black Holes, AdS3 Throats and EVH/CFT Proposal

    CERN Document Server

    Sheikh-Jabbaria, M M

    2011-01-01

    Within class of generic black holes there are extremal black holes (with vanishing Hawking temperature T) and vanishing horizon area Ah, but with finite Ah/T ratio,the Extremal Vanishing Horizon (EVH) black holes. We study the near horizon limit of a four dimensional EVH black hole solution to a generic (gauged) Einstein-Maxwell dilaton theory and show that in the near horizon limit they develop a throat which is a pinching orbifold limit of AdS3. This is an extension of the well known result for extremal black holes the near horizon limit of which contains an AdS2 throat. We show that in the near EVH near horizon limit the pinching AdS3 factor turns to a pinching BTZ black hole and that this near horizon limit is indeed a decoupling limit. We argue that the pinching AdS3 or BTZ orbifold is resolved if the near horizon limit is accompanied by taking the 4d Newton constant G4 to zero such that the Bekenstein-Hawking entropy S = Ah/(4G4) remains finite. We propose that in this limit the near horizon EVH black h...

  14. Charged Rotating AdS Black Holes with Chern-Simons coupling

    CERN Document Server

    Mir, Mozhgan

    2016-01-01

    We obtain a perturbative solution for rotating charged black holes in 5-dimensional Einstein-Maxwell-Chern-Simons theory with a negative cosmological constant. We start from a small undeformed Kerr-AdS solution and use the electric charge as a perturbative parameter to build up black holes with equal-magnitude angular momenta up to forth order. These black hole solutions are described by three parameters, the charge, horizon radius and horizon angular velocity. We determine the physical quantities of these black holes and study their dependence on the parameters of black holes and arbitrary Chern-Simons coefficient. In particular, for values of CS coupling constant beyond its supergravity amount, due to a rotational instability, counterrotating black holes arise. Also the rotating solutions appear to have vanishing angular momenta and do not manifest uniquely by their global charges.

  15. Superradiance Instability of Small Rotating AdS Black Holes in Arbitrary Dimensions

    CERN Document Server

    Delice, Özgür

    2015-01-01

    We investigate the stability of $D$ dimensional singly rotating Myers-Perry-AdS black holes under superradiance against scalar field perturbations. It is well known that small four dimensional rotating or charged AdS black holes are unstable against superradiance instability of a scalar field. Recent works extended the existence of this instability to five dimensional rotating charged AdS black holes or static charged AdS Black holes in arbitrary dimensions. In this work we analytically prove that, rotating small AdS black holes in arbitrary dimensions also show superradiance instability irrespective of the value of the (positive) angular momentum quantum number. To do this we solve the Klein-Gordon equation in the slow rotation, low frequency limit. By using the asymptotic matching technique, we are able to calculate the real and imaginary parts of the correction terms to the frequency of the scalar field due to the presence of the black hole, confirming the presence of superradiance instability. We see that...

  16. On Thermodynamics of AdS Black Holes in M-Theory

    CERN Document Server

    Belhaj, A; Moumni, H EL; Masmar, K; Sedra, M B

    2015-01-01

    Motivated by a recent work on asymptotically AdS_4 black holes in M-theory, we investigate the thermodynamics and thermodynamical geometry of AdS black holes from M2 and M5-branes. Concretely, we consider AdS black holes in AdS_{p+2}\\times S^{11-p-2}, where p=2,5 by interpreting the number of M2 (and M5-branes) as a thermodynamical variable. We study the corresponding phase transition to examine their stabilities by calculating and discussing various thermodynamical quantities including the chemical potential. Then, we compute the thermodynamical curvatures from the Quevedo metric for M2 and M5-branes geometries to reconsider the stability of such black objects. The Quevedo metric singularities recover similar stability results provided by the phase transition program.

  17. Hairy Black Holes in AdS$_5\\times S^5$

    CERN Document Server

    Markeviciute, J

    2016-01-01

    We use numerical methods to exhaustively study a novel family of hairy black hole solutions in AdS$_5$. These solutions can be uplifted to solutions of type IIB supergravity with AdS$_5\\times S^5$ asymptotics and are thus expected to play an important role in our understanding of AdS/CFT. We find an intricate phase diagram, with the aforementioned family of hairy black hole solutions branching from the Reissner-Nordstr\\"om black hole at the onset of the superradiance instability. We analyse black holes with spherical and planar horizon topology and explain how they connect in the phase diagram. Finally, we detail their global and local thermodynamic stability across several ensembles.

  18. Charge Loss (or the Lack Thereof) for AdS Black Holes

    CERN Document Server

    Ong, Yen Chin

    2014-01-01

    The evolution of evaporating charged black holes is complicated to model in general, but is nevertheless important since the hints to the Information Loss Paradox and its recent firewall incarnation may lie in understanding more generic geometries than that of Schwarzschild spacetime. Fortunately, for sufficiently large asymptotically flat Reissner-Nordstrom black holes, the evaporation process can be modeled via a system of coupled linear ordinary differential equations, with charge loss rate governed by Schwinger pair-production process. The same model can be generalized to study the evaporation of AdS Reissner-Nordstrom black holes with flat horizon. It was recently found that such black holes always evolve towards extremality since charge loss is inefficient. This property is completely opposite to the asymptotically flat case in which the black hole eventually loses its charges and tends towards Schwarzschild limit. We clarify the underlying reason for this different behavior.

  19. P-V criticality in AdS black holes of massive gravity

    CERN Document Server

    Fernando, Sharmanthie

    2016-01-01

    In this paper we have studied the extended phase space thermodynamics in the canonical ensemble of black holes in massive gravity in AdS space. The black holes considered here belong to a theory of massive gravity where the graviton gain a mass due to Lorenz symmetry breaking. We have computed various thermodynamical quantities such as temperature, pressure, Gibbs free energy and specific heat capacity. The local and the global thermodynamical stability of the black holes are studied in detail. For a specific value of the parameter in the theory, the black holes undergo a first order phase transition similar to the Van der Waals phase transitions between gas and liquid under constant temperature. This transition is between the small and the large black hole. The critical exponents are computed at the critical values and shown to be the same as for the Van der Waals critical exponents.

  20. Horizon Fluffs: Near Horizon Soft Hairs as Microstates of Generic AdS_3 Black Holes

    CERN Document Server

    Sheikh-Jabbari, M M

    2016-01-01

    In \\cite{Afshar:2016uax} the \\emph{horizon fluffs} proposal is put forward to identify the microstates of three-dimensional Ba\\~nados--Teitelboim--Zanelli (BTZ) black holes. The proposal is that black hole microstates, the horizon fluffs, are states labelled by the conserved charges associated with non-trivial diffeomorphisms on the near horizon geometry which are not distinguishable by the (Brown-Henneaux) conserved charges associated with the asymptotic symmetry algebra. It is also known that AdS_3 Einstein gravity has more general black hole solutions than the BTZ family. These black holes are generically described by two periodic, but otherwise arbitrary, holomorphic and anti-holomorphic functions. We show that these general AdS_3 black holes appear as coherent states in the enhanced asymptotic symmetry algebra, which is the Brown-Henneaux Virasoro algebra plus a u(1) current. These black holes are typically conformal descendants of the BTZ black holes, characterised by specific Virasoro coadjoint orbits....

  1. On the Thermodynamic Geometry and Critical Phenomena of AdS Black Holes

    CERN Document Server

    Sahay, Anurag; Sengupta, Gautam

    2010-01-01

    In this paper, we study various aspects of the equilibrium thermodynamic state space geometry of AdS black holes. We first examine the Reissner-Nordstrom-AdS (RN-AdS) and the Kerr-AdS black holes. In this context, the state space scalar curvature of these black holes are analysed in various regions of their thermodynamic parameter space. This provides important new insights into the structure and significance of the scalar curvature. We further investigate critical phenomena, and the behaviour of the scalar curvature near criticality, for KN-AdS black holes in two mixed ensembles, introduced and elucidated in our earlier work arXiv:1002.2538 [hep-th]. The critical exponents are identical to those in the RN-AdS and Kerr-AdS cases in the canonical ensemble. This suggests an universality in the scaling behaviour near critical points of AdS black holes. Our results further highlight qualitative differences in the thermodynamic state space geometry for electric charge and angular momentum fluctuations of these.

  2. Generalized thermodynamic identity and new Maxwell's law for charged AdS black hole

    CERN Document Server

    Zhao, Zixu

    2016-01-01

    We study the thermodynamic properties of the RN-AdS black hole in full phase space and propose a generalized thermodynamic identity. As an example, we use it to find relations of thermodynamical coefficients between the grand canonical and canonical ensembles. We also show, for the first order phase transition, that the usual Maxwell's equal area law should be extended to a new form for the RN-AdS black hole.

  3. On Heat Properties of AdS Black Holes in Higher Dimensions

    CERN Document Server

    Belhaj, A; Moumni, H EL; Masmar, K; Sedra, B; Segui, A

    2015-01-01

    We investigate the heat properties of AdS Black Holes in higher dimensions. We consider the study of the corresponding thermodynamical properties including the heat capacity explored in the determination of the black hole stability. In particular, we compute the heat latent. To overcome the instability problem, the Maxwell construction, in the (T,S)-plane, is elaborated. This method is used to modify the the Hawking-Page phase structure by removing the negative heat capacity regions. Then, we discuss the thermodynamic cycle and the heat engines using the way based on the extraction of the work from a black hole solution.

  4. Critical Phenomena in Higher Curvature Charged AdS Black Holes

    Directory of Open Access Journals (Sweden)

    Arindam Lala

    2013-01-01

    Full Text Available In this paper, we have studied the critical phenomena in higher curvature charged AdS black holes. We have considered Lovelock-Born-Infeld-AdS black hole as an example. The thermodynamics of the black hole have been studied which reveals the onset of a higher-order phase transition in the black hole in the canonical ensemble (fixed charge ensemble framework. We have analytically derived the critical exponents associated with these thermodynamic quantities. We find that our results fit well with the thermodynamic scaling laws and consistent with the mean field theory approximation. The suggestive values of the other two critical exponents associated with the correlation function and correlation length on the critical surface have been derived.

  5. AdS and Lifshitz scalar hairy black holes in Gauss-Bonnet gravity

    Science.gov (United States)

    Chen, Bin; Fan, Zhong-Ying; Zhu, Lu-Yao

    2016-09-01

    We consider Gauss-Bonnet (GB) gravity in general dimensions, which is nonminimally coupled to a scalar field. By choosing a scalar potential of the type V (ϕ )=2 Λ0+1/2 m2ϕ2+γ4ϕ4 , we first obtain large classes of scalar hairy black holes with spherical/hyperbolic/planar topologies that are asymptotic to locally anti- de Sitter (AdS) space-times. We derive the first law of black hole thermodynamics using Wald formalism. In particular, for one class of the solutions, the scalar hair forms a thermodynamic conjugate with the graviton and nontrivially contributes to the thermodynamical first law. We observe that except for one class of the planar black holes, all these solutions are constructed at the critical point of GB gravity where there exist unique AdS vacua. In fact, a Lifshitz vacuum is also allowed at the critical point. We then construct many new classes of neutral and charged Lifshitz black hole solutions for an either minimally or nonminimally coupled scalar and derive the thermodynamical first laws. We also obtain new classes of exact dynamical AdS and Lifshitz solutions which describe radiating white holes. The solutions eventually become AdS or Lifshitz vacua at late retarded times. However, for one class of the solutions, the final state is an AdS space-time with a globally naked singularity.

  6. Finite temperature effective action, AdS_5 black holes, and 1/N expansion

    CERN Document Server

    Alvarez-Gaumé, Luís; Liu, H; Wadia, S; Alvarez-Gaume, Luis; Gomez, Cesar; Liu, Hong; Wadia, Spenta

    2005-01-01

    We propose a phenomenological matrix model to study string theory in AdS_5 \\times S_5 in the canonical ensemble. The model reproduces all the known qualitative features of the theory. In particular, it gives a simple effective potential description of Euclidean black hole nucleation and the tunnelling between thermal AdS and the big black hole. It also has some interesting predictions. We find that there exists a critical temperature at which the Euclidean small black hole undergoes a Gross-Witten phase transition. We identify the phase transition with the Horowitz-Polchinski point where the black hole horizon size becomes comparable to the string scale. The appearance of the Hagedorn divergence of thermal AdS is due to the merger of saddle points corresponding to the Euclidean small black hole and thermal AdS. The merger can be described in terms of a cusp (A_3) catastrophe and divergences at the perturbative string level are smoothed out at finite string coupling using standard techniques of catastrophe the...

  7. Flowing along the edge: spinning up black holes in AdS spacetimes with test particles

    CERN Document Server

    Rocha, Jorge V

    2014-01-01

    We investigate the consequences of throwing point particles into odd-dimensional Myers-Perry black holes in asymptotically anti-de Sitter (AdS) backgrounds. We restrict our attention to the case in which the angular momenta of the background geometry are all equal. This process allows us to test the generalization of the weak cosmic censorship conjecture to asymptotically AdS spacetimes in higher dimensions. We find no evidence for overspinning in D = 5, 7, 9 and 11 dimensions. Instead, test particles carrying the maximum possible angular momentum that still fall into an extremal rotating black hole generate a flow along the curve of extremal solutions.

  8. Thermodynamics of R-charged Black Holes in AdS(5) From Effective Strings

    CERN Document Server

    Gubser, S S; Gubser, Steven S.; Heckman, Jonathan J.

    2004-01-01

    It is well known that the thermodynamics of certain near-extremal black holes in asymptotically flat space can be lifted to an effective string description created from the intersection of D-branes. In this paper we present evidence that the semiclassical thermodynamics of near-extremal R-charged black holes in AdS(5)xS(5) is described in a similar manner by effective strings created from the intersection of giant gravitons on the S(5). We also present a free fermion description of the supersymmetric limit of the one-charge black hole, and we give a crude catalog of the microstates of the two and three-charge black holes in terms of operators in the dual conformal field theory.

  9. Localized AdS_{5}×S^{5} Black Holes.

    Science.gov (United States)

    Dias, Óscar J C; Santos, Jorge E; Way, Benson

    2016-10-07

    According to heuristic arguments, global AdS_{5}×S^{5} black holes are expected to undergo a phase transition in the microcanonical ensemble. At high energies, one expects black holes that respect the symmetries of the S^{5}; at low energies, one expects "localized" black holes that appear pointlike on the S^{5}. According to anti-de Sitter/conformal field theory correspondence, N=4 supersymmetric Yang-Mills (SYM) theory on a 3-sphere should therefore exhibit spontaneous R-symmetry breaking at strong coupling. In this Letter, we numerically construct these localized black holes. We extrapolate the location of this phase transition, and compute the expectation value of the broken scalar operator with lowest conformal dimension. Via the correspondence, these results offer quantitative predictions for N=4 SYM theory.

  10. Localized AdS5×S5 Black Holes

    Science.gov (United States)

    Dias, Óscar J. C.; Santos, Jorge E.; Way, Benson

    2016-10-01

    According to heuristic arguments, global AdS5×S5 black holes are expected to undergo a phase transition in the microcanonical ensemble. At high energies, one expects black holes that respect the symmetries of the S5; at low energies, one expects "localized" black holes that appear pointlike on the S5. According to anti-de Sitter/conformal field theory correspondence, N =4 supersymmetric Yang-Mills (SYM) theory on a 3-sphere should therefore exhibit spontaneous R -symmetry breaking at strong coupling. In this Letter, we numerically construct these localized black holes. We extrapolate the location of this phase transition, and compute the expectation value of the broken scalar operator with lowest conformal dimension. Via the correspondence, these results offer quantitative predictions for N =4 SYM theory.

  11. Constructing the AdS dual of a Fermi liquid: AdS Black holes with Dirac hair

    CERN Document Server

    \\vCubrović, Mihailo; Schalm, Koenraad

    2010-01-01

    We provide new evidence that the holographic dual to a strongly coupled charged Fermi Liquid has a non-zero fermion density in the bulk. We show that the pole-strength of the stable quasiparticle characterizing the Fermi surface is encoded in the spatially averaged AdS probability density of a single normalizable fermion wavefunction in AdS. Recalling Migdal's theorem which relates the pole strength to the Fermi-Dirac characteristic discontinuity in the number density at $\\ome_F$, we conclude that the AdS dual of a Fermi liquid is described by occupied on-shell fermionic modes in AdS. Encoding the occupied levels in the total probability density of the fermion field directly, we show that an AdS Reissner-Nordstr\\"{o}m black hole in a theory with charged fermions has a critical temperature, at which the system undergoes a first-order transition to a black hole with a non-vanishing profile for the bulk fermion field. Thermodynamics and spectral analysis confirm that the solution with non-zero AdS fermion-profil...

  12. Stability of warped AdS3 black holes in Topologically Massive Gravity under scalar perturbations

    CERN Document Server

    Ferreira, Hugo R C

    2013-01-01

    We demonstrate that the warped AdS3 black hole solutions of Topologically Massive Gravity are classically stable against massive scalar field perturbations by analysing the quasinormal and bound state modes of the scalar field. In particular, it is found that although classical superradiance is present it does not give rise to superradiant instabilities. The stability is shown to persist even when the black hole is enclosed by a stationary mirror with Dirichlet boundary conditions. This is a surprising result in view of the similarity between the causal structure of the warped AdS3 black hole and the Kerr spacetime in 3+1 dimensions. This work provides the foundations for the study of quantum field theory in this spacetime.

  13. P-V criticality of AdS black holes in a general framework

    CERN Document Server

    Majhi, Bibhas Ranjan

    2016-01-01

    Interpreting the cosmological constant as pressure, it has been observed that AdS black holes behave as van der Waals system. The critical exponents for the phase transition for all AdS black holes are exactly same as those for the van der Waals system. Till now this has been observed case by case. Here, without using any specific form of the black hole metric, we present a general framework based on just two universal inputs. These are the general forms of the Smarr formula and the first law of thermodynamics. We find that the same values of the critical exponents can be obtained by this general analysis. Therefore there is no need to investigate for a particular metric. The importance of our analysis is that it highlights the observed universality, as well as revels the reason for such universality.

  14. Covariant anomalies and Hawking radiation from Kaluza–Klein AdS black holes

    Indian Academy of Sciences (India)

    Chuan-Yi Bai

    2013-02-01

    In this paper, Hawking radiation is studied from four-dimensional (4D) Kaluza–Klein (KK) AdS black holes via the method of anomaly cancellation. The {|bf KK-AdS} black hole considered is a non-extremal charged rotating solution in the theory of 4D gauged supergravity. Its Hawking fluxes of electric charge, angular momentum and energy momentum tensor are derived here. Our results support the common view that Hawking radiation is the quantum effect arising at the event horizon.

  15. The Central Charge of the Warped AdS^3 Black Hole

    CERN Document Server

    Gupta, Kumar S; Sen, Siddhartha; Sivakumar, M

    2010-01-01

    The AdS/CFT conjecture offers the possibility of a quantum description for a black hole in terms of a CFT. This has ledto the study of general AdS^3 type black holes with a view to constructing an explicit toy quantum black hole model. Such a CFT description would be characterized by its central charge and the dimensions of its primary fields. Recently the expression for the central charges (C_L, C_R) of the CFT dual to the warped AdS^3 have been determined using asymptotic symmetry arguments. The central charges depend, as expected, on the warping factor. We show that topological arguments, used by Witten to constrain central charges for the BTZ black hole, can be generalized to deal with the warped AdS^3 case. Topology constrains the warped factor to be rational numbers while quasinormal modes are conjectured to give the dimensions of primary fields. We find that in the limit when warping is large or when it takes special rational values the system tends to Witten's conjectured unique CFT's with central cha...

  16. On Thermodynamical Behaviors of Kerr-Newman AdS Black Holes

    CERN Document Server

    Belhaj, A; Moumni, H El; Medari, L; Sedra, M B

    2013-01-01

    We reconsider the study of critical behaviors of Kerr-Newman AdS black holes in four dimensions. The study is made in terms of the moduli space parameterized by the charge Q and the rotation parameter a, relating the mass M of the black hole and its angular momentum J via the relation a=J/M. Specifically, we discuss such thermodynamical behaviors in the presence of a positive cosmological constant considered as a thermodynamic pressure and its conjugate quantity as a thermodynamic volume. The equation of state for a charged RN-AdS black hole predicts a critical universal number depending on the (Q,a) moduli space. In the vanishing limit of the a parameter, this prediction recovers the usual universal number in four dimensions. Then, we find the bounded regions of the moduli space allowing the consistency of the model with real thermodynamical variables.

  17. On Thermodynamics of AdS Black Holes in Arbitrary Dimensions

    CERN Document Server

    Belhaj, A; Moumni, H El; Sedra, M B

    2012-01-01

    Considering the cosmological constant $\\Lambda$ as a thermodynamic pressure and its conjugate quantity as a thermodynamic volume as proposed in Kubiznak and Mann (2012), we discuss the critical behavior of charged AdS black hole in arbitrary dimensions $d$. In particular, we present a comparative study in terms of the spacetime dimension $d$ and the displacement of critical points controlling the transition between the small and the large black holes. Such behaviors vary nicely in terms of $d$. Among our result in this context consists in showing that the equation of state for a charged RN-AdS black hole predicts an universal number given by $\\frac{2d-5}{4d-8}$. The three dimensional solution is also discussed.

  18. Superradiance and instability of small rotating charged AdS black holes in all dimensions

    Energy Technology Data Exchange (ETDEWEB)

    Aliev, Alikram N. [Yeni Yuezyil University, Faculty of Engineering and Architecture, Istanbul (Turkey)

    2016-02-15

    Rotating small AdS black holes exhibit the superradiant instability to low-frequency scalar perturbations, which is amenable to a complete analytic description in four dimensions. In this paper, we extend this description to all higher dimensions, focusing on slowly rotating charged AdS black holes with a single angular momentum. We divide the spacetime of these black holes into the near-horizon and far regions and find solutions to the scalar wave equation in each of these regions. Next, we perform the matching of these solutions in the overlap between the regions, by employing the idea that the orbital quantum number l can be thought of as an approximate integer. Thus, we obtain the complete low-frequency solution that allows us to calculate the complex frequency spectrum of quasinormal modes, whose imaginary part is determined by a small damping parameter. Finally, we find a remarkably instructive expression for the damping parameter, which appears to be a complex quantity in general. We show that the real part of the damping parameter can be used to give a universal analytic description of the superradiant instability for slowly rotating charged AdS black holes in all spacetime dimensions. (orig.)

  19. Lumpy AdS$\\bf{_5\\times}$ S$\\bf{^5}$ Black Holes and Black Belts

    CERN Document Server

    Dias, Oscar J C; Way, Benson

    2015-01-01

    Sufficiently small Schwarzschild black holes in global AdS$_5\\times$S$^5$ are Gregory-Laflamme unstable. We construct new families of black hole solutions that bifurcate from the onset of this instability and break the full SO$(6)$ symmetry group of the S$^5$ down to SO$(5)$. These new "lumpy" solutions are labelled by the harmonics $\\ell$. We find evidence that the $\\ell = 1$ branch never dominates the microcanonical/canonical ensembles and connects through a topology-changing merger to a localised black hole solution with S$^8$ topology. We argue that these S$^8$ black holes should become the dominant phase in the microcanonical ensemble for small enough energies, and that the transition to Schwarzschild black holes is first order. Furthermore, we find two branches of solutions with $\\ell = 2$. We expect one of these branches to connect to a solution containing two localised black holes, while the other branch connects to a black hole solution with horizon topology $\\mathrm S^4\\times\\mathrm S^4$ which we ca...

  20. An alternative perspective to observe the critical phenomena of dilaton AdS black holes

    CERN Document Server

    Mo, Jie-Xiong

    2016-01-01

    The critical phenomena of dilaton AdS black holes are probed from a totally different perspective other than the $P-v$ criticality and the $q-U$ criticality discussed in the former literature. We investigate not only the two point correlation function but also the entanglement entropy of dilaton AdS black holes. We achieve this goal by solving the equation of motion constrained by the boundary condition numerically and we concentrate on $\\delta L$ and $\\delta S$ which have been regularized by subtracting the terms in pure AdS with the same boundary region. For both the two point correlation function and the entanglement entropy, we consider $4\\times2\\times2=16$ cases due to different choices of parameters. The van der Waals like behavior can be clearly witnessed from all the $T-\\delta L$ ($T-\\delta S$) graphs for $qAdS black holes are disclosed. Furthermore, we discuss the stability of dilaton...

  1. Thermodynamics of AdS Black Holes in Einstein-Scalar Gravity

    CERN Document Server

    Lu, H; Wen, Qiang

    2014-01-01

    We study the thermodynamics of $n$-dimensional static asymptotically AdS black holes in Einstein gravity coupled to a scalar field with a potential admitting a stationary point with an AdS vacuum. Such black holes with non-trivial scalar hair can exist provided that the mass-squared of the scalar field is negative, and above the Breitenlohner-Freedman bound. We use the Wald procedure to derive the first law of thermodynamics for these black holes, showing how the scalar hair (or charge) contributes non-trivially in the expression. We show in general that the black hole mass can be deduced by isolating an integrable contribution to the (non-integrable) variation of the Hamiltonian arising in the Wald construction, and that this is consistent with the mass calculated using the renormalised holographic stress tensor and also, in those cases where it is defined, with the mass calculated using the conformal method of Ashtekar, Magnon and Das. Similar arguments can also be given for the smooth solitonic solutions i...

  2. Critical phenomena in higher curvature charged AdS black holes

    CERN Document Server

    Lala, Arindam

    2012-01-01

    In this paper we have studied the critical phenomena in higher curvature charged black holes in the anti-de Sitter (AdS) space-time. As an example we have considered the third order Lovelock-Born-Infeld black holes in AdS space-time. We have analytically derived the thermodynamic quantities of the system. Our analysis revealed the onset of a higher order phase transition in the black hole leading to an infinite discontinuity in the specific heat at constant charge at the critical points. Our entire analysis is based on the canonical framework where we have fixed the charge of the black hole. In an attempt to study the behavior of the thermodynamic quantities near the critical points we have derived the critical exponents of the system explicitly. Although the values of the critical points have been determined numerically, the critical exponents are calculated analytically. Our results fit well with the thermodynamic scaling laws. The scaling hypothesis is also seen to be consistent with these scaling laws. We...

  3. AdS and Lifshitz Scalar Hairy Black Holes in Gauss-Bonnet Gravity

    CERN Document Server

    Chen, Bin; Zhu, Lu-Yao

    2016-01-01

    We consider Gauss-Bonnet (GB) gravity in general dimensions, which is non-minimally coupled to a scalar field, together with a generic scalar potential. By choosing the scalar potential of the type $V(\\phi)=2\\Lambda_0+\\frac{1}{2}m^2\\phi^2+\\gamma_4\\phi^4$, we first obtain large classes of scalar hairy black holes with spherical/hyperbolic/planar topologies that are asymptotic to locally anti-de Sitter (AdS) space-times. We derive the first law of black hole thermodynamics using Wald formalism. In particular, for one class of the solutions, the scalar hair forms a thermodynamic conjugate with the graviton and nontrivially contributes to the thermodynamical first law. We observe that except for one class of planar black holes, all these solutions are constructed at the critical point of GB gravity where there exists an unique AdS vacua. Actually Lifshitz vacuum is also allowed at the critical point. We then construct many new classes of neutral and charged Lifshitz black hole solutions for a either minimally or ...

  4. Exact microstate counting for dyonic black holes in AdS4

    CERN Document Server

    Benini, Francesco; Zaffaroni, Alberto

    2016-01-01

    We present a counting of microstates of a class of dyonic BPS black holes in AdS$_4$ which precisely reproduces their Bekenstein-Hawking entropy. The counting is performed in the dual boundary description, that provides a non-perturbative definition of quantum gravity, in terms of a twisted and mass-deformed ABJM theory. We evaluate its twisted index and propose an extremization principle to extract the entropy, which reproduces the attractor mechanism in gauged supergravity.

  5. Quarter-BPS Black Holes in AdS$_4$-NUT from $N=2$ Gauged Supergravity

    CERN Document Server

    Erbin, Harold

    2015-01-01

    We study $N=2$ gauged supergravity with $U(1)$ gauge group coupled to $n_v$ vector multiplets and find quite general analytic solutions for quarter-BPS black holes with mass, NUT and dyonic Maxwell charges. The solutions we find have running scalar fields and flow in the IR region to a horizon geometry of the form AdS$_2\\times \\Sigma_g$.

  6. Warped-AdS3 black holes with scalar halo

    CERN Document Server

    Giribet, Gaston

    2015-01-01

    We construct a stretched (aka Warped) Anti-de Sitter black hole in 3 dimensions supported by a real scalar field configuration. The latter is regular everywhere outside and on the horizon. No hair theorems in 3 dimensions demand the matter to be coupled to the curvature in a non-minimal way; however, this coupling can still be of the Horndeski type, i.e. yielding second order field equations similar to those appearing in the context of Galileon theories. These Warped-Anti-de Sitter black holes exhibit interesting thermodynamical properties, such as finite Hawking temperature and entropy. We compute the black hole entropy in the gravity theory and speculate with the possibility of this to admit a microscopic description in terms of a dual (Warped) Conformal Field Theory. We also discuss the inner and outer black hole mechanics.

  7. Exact black hole formation in asymptotically (AdS and flat spacetimes

    Directory of Open Access Journals (Sweden)

    Xuefeng Zhang

    2014-09-01

    Full Text Available We consider four-dimensional Einstein gravity minimally coupled to a dilaton scalar field with a supergravity-inspired scalar potential. We obtain an exact time-dependent spherically symmetric solution describing gravitational collapse to a static scalar-hairy black hole. The solution can be asymptotically AdS, flat or dS depending on the value of the cosmological constant parameter Λ in the potential. As the advanced time u increases, the metric approaches the static limit in an exponential fashion, i.e., e−u/u0 with u0∼1/(α4M01/3, where M0 is the mass of the final black hole and α is the second parameter in the potential. Similarly to the Vaidya solution, at u=0, the spacetime can be matched to an (AdS or flat vacuum except that at the origin a naked singularity may occur. Moreover, a limiting case of our solution with α=0 gives rise to an (AdS generalization of the Roberts solution. Our results provide a new model for investigating formation of real life black holes with Λ≥0. For Λ<0, it can be instead used to study non-equilibrium thermalization of certain strongly-coupled field theory.

  8. Coexistence curves and molecule number densities of AdS black holes in the reduced parameter space

    CERN Document Server

    Mo, Jie-Xiong

    2016-01-01

    In this paper, we investigate the coexistence curves and molecule number densities of $f(R)$ AdS black holes and Gauss-Bonnet AdS black holes. Specifically, we work with the reduced parameter space and derive the analytic expressions of the universal coexistence curves that are independent of theory parameters. Moreover, we obtain the explicit expressions of the physical quantity describing the difference of the number densities of black hole molecules between the small and large black hole. It is found that both the coexistence curve and the difference of the molecule number densities of $f(R)$ AdS black holes coincide with those of RN-AdS black holes. It may be attributed to the same equation of state they share in the reduced parameter space. The difference of the molecule number densities between the small and large Gauss-Bonnet AdS black hole exhibits different behavior. This may be attributed to the fact that the charge of RN-AdS black hole is non-trivial. Our research will not only deepen the understan...

  9. Thermodynamics of a Sufficient Small Singly Spinning Kerr-AdS Black Hole

    CERN Document Server

    Pourhassan, Behnam

    2016-01-01

    In this paper, we will analyze the thermodynamics of a small singly spinning Kerr-AdS black hole. As the black hole will be sufficient small, its temperature will be large and so we can not neglect the effects of thermal fluctuations. We will demonstrate that these thermal fluctuations correct the entropy of singly spinning Kerr-AdS black hole by a logarithmic correction term. We will analyze the implications of the logarithmic correction on other thermodynamic properties of this black hole, and analyze the stability of such a black hole. We will observe that this form of correction becomes important when the size of the black hole is sufficient small. We will also analyze the effect of these thermal fluctuations on the critical phenomena for such a black hole.

  10. Gravitational collapse in the AdS background and the black hole formation

    Science.gov (United States)

    Allahyari, Alireza; Firouzjaee, Javad T.; Mansouri, Reza

    2016-10-01

    We study the time evolution of the Misner-Sharp mass and the apparent horizon for gravitational collapse of a massless scalar field in the AdS5 spacetime for both cases of narrow and broad waves by numerically solving the Einstein’s equations coupled to a massless scalar field. This is done by relying on the full dynamics of the collapse including the concept of the dynamical horizon. It turns out that the Misner-Sharp mass is everywhere constant except for a rapid change across a thin shell defined by the density profile of the collapsing wave. By studying the evolution of the apparent horizon, indicating the formation of a black hole at different times we see how asymptotically an event horizon forms. The dependence of the thermalization time on the radius of the initial black hole event horizon is also studied.

  11. Static black holes with no spatial isometries in AdS-electrovacuum

    CERN Document Server

    Herdeiro, Carlos A R

    2016-01-01

    We explicitly construct static black hole solutions to the fully non-linear, D=4, Einstein-Maxwell-AdS equations that have no continuous spatial symmetries. These black holes have a smooth, topologically spherical horizon (section), but without isometries, and approach, asymptotically, global AdS spacetime. They are interpreted as bound states of a horizon with the Einstein-Maxwell-AdS solitons recently discovered, for appropriate boundary data. In sharp contrast with the uniqueness results for Minkowski electrovacuum, the existence of these black holes shows that single, equilibrium, BH solutions in AdS-electrovacuum admit an arbitrary multipole structure.

  12. Quark confinement due to creation of micro AdS black holes in quarkonium model

    CERN Document Server

    Taki, Mehran

    2016-01-01

    We use the solution of the Dirac equation for quarkonium atom in the 4D Anti de sitter (AdS$_{4}$) space to investigate the effect of the large negative cosmological constant on the phenomenon of quark confinement. We do the required calculations in the AdS$_{4}$ space to indicate that large cosmological constant can describe the quark confinement. In fact using the coulomb potential in Dirac equation while we employ the AdS metric will additionally lead us to a linear potential in the quark-antiquark interaction which can be considered to explain the quark confinement. This confining term is arising essentially from the geometrical features of the space. On the other hand the origin of the large cosmological constant can be justified by assuming the appearance of micro black holes in the recent hadronic collision process which is now current, for instance, at the LHC project.

  13. Planar AdS black holes in Lovelock gravity with a nonminimal scalar field

    CERN Document Server

    Gaete, Moises Bravo

    2013-01-01

    In arbitrary dimension D, we consider a self-interacting scalar field nonminimally coupled with a gravity theory given by a particular Lovelock action indexed by an integer k. To be more precise, the coefficients appearing in the Lovelock expansion are fixed by requiring the theory to have a unique AdS vacuum with a fixed value of the cosmological constant. This yields to k=1,2,...,[(D-1)/2] inequivalent possible gravity theories; here the case k=1 corresponds to the standard Einstein-Hilbert Lagrangian. For each par (D,k), we derive two classes of AdS black hole solutions with planar even horizon topology for particular values of the nonminimal coupling parameter. The first family of solutions depends on a unique constant and is valid only for k>1. In fact, its GR counterpart k=1 reduces to the pure AdS metric with a vanishing scalar field. The second family of solutions involves two independent constants and corresponds to a stealth black hole configuration; that is a nontrivial scalar field together with a...

  14. Black Hole Formation in AdS Einstein-Gauss-Bonnet Gravity

    CERN Document Server

    Deppe, Nils; Frey, Andrew R; Kunstatter, Gabor

    2016-01-01

    AdS spacetime has been shown numerically to be unstable against a large class of arbitrarily small perturbations. In arXiv:1410.1869, the authors presented a preliminary study of the effects on stability of changing the local dynamics by adding a Gauss-Bonnet term to the Einstein action. Here we provide further details as well as new results with improved numerical methods. In particular, we elucidate new structure in Choptuik scaling plots. We also provide evidence of chaotic behavior at the transition between immediate horizon formation and horizon formation after the matter pulse reflects from the AdS conformal boundary. Finally, we present data suggesting the formation of naked singularities in spacetimes with ADM mass below the algebraic bound for black hole formation.

  15. Asymptotic symmetries and thermodynamics of higher spin black holes in AdS3

    CERN Document Server

    Ferlaino, Michael; Kumar, S Prem

    2013-01-01

    We study black holes carrying higher spin charge in AdS3 within the framework of SL(N, R) x SL(N, R) Chern-Simons theory. Focussing attention on the N=4 case, we explicitly analyze the asymptotic symmetry algebra of black hole solutions with a chemical potential for spin-four charge. We demonstrate that the background describes an RG flow between an IR fixed point with W_4 symmetry and a UV fixed point with W-symmetry associated to a non-principal embedding of sl(2) in sl(4). Matching Chern-Simons equations with Ward identities of the deformed CFT, we show that the UV stress tensor is twisted by a certain U(1) current, and the flow is triggered by an operator with dimension 4/3 at the UV fixed point. We find independent confirmation of this picture via a consistent formulation of thermodynamics with respect to this UV fixed point. We further analyze the thermodynamics of multiple branches of black hole solutions for N=4,5 and find that the BTZ-branch, dominant at low temperatures, ceases to exist at higher te...

  16. Black hole bound states in AdS_3 x S^2

    CERN Document Server

    de Boer, Jan; El-Showk, Sheer; Messamah, Ilies; Bleeken, Dieter Van den

    2008-01-01

    We systematically construct the geometries dual to the 1+1 dimensional (0,4) conformal field theories that arise in the low-energy description of wrapped M5-branes in S^1 x CY_3 compactifications of M-theory. This includes a large number of multicentered black hole bound states asymptotic to AdS_3 x S^2. In addition, we find many geometries that develop multiple, mutually decoupled AdS_3 x S^2 throats. We argue there is a useful one to one correspondence between the connected components of the space of solutions and particular limits of type IIA attractor flow trees. We point out that there is a thermodynamic instability of small supersymmetric BTZ black holes to localization on the S^2, a supersymmetric and exactly solvable analog of the well known AdS-Schwarzschild localization instability, and identify this with the ``Entropy Enigma'' in four dimensions. We discuss the phase transition this suggests, and initiate the CFT interpretation of these results.

  17. Hawking temperature of Kerr-Newman-AdS black hole from tunneling

    CERN Document Server

    Ma, Zheng Ze

    2009-01-01

    Using the null-geodesic tunneling method of Parikh and Wilczek, we derive the Hawking temperature of a general four-dimensional rotating black hole. In order to eliminate the motion of $\\phi$ degree of freedom of a tunneling particle, we have chosen a reference system that is co-rotating with the black hole horizon. Then we give the explicit result for the Hawking temperature of the Kerr-Newman-AdS black hole from the tunneling approach.

  18. On conserved charges and thermodynamics of the AdS4 dyonic black hole

    Science.gov (United States)

    Cárdenas, Marcela; Fuentealba, Oscar; Matulich, Javier

    2016-05-01

    We consider four-dimensional gravity in the presence of a dilatonic scalar field and an Abelian gauge field. This theory corresponds to the bosonic sector of a Kaluza-Klein reduction of eleven-dimensional supergravity which induces a specific self-interacting potential for the scalar field. We compute the conserved charges and carry out the thermodynamics of an anti-de Sitter (AdS) dyonic black hole solution that was proposed recently. The charges coming from symmetries of the action are computed using the Regge-Teitelboim Hamiltonian approach. They correspond to the mass, which acquires contributions from the scalar field, and the electric charge. We introduce integrability conditions because the scalar field leads to non-integrable terms in the variation of the mass. These conditions are generically solved by introducing boundary conditions that relate the leading and subleading terms of the scalar field fall-off. The Hamiltonian Euclidean action, computed in the grand canonical ensemble, is obtained by demanding the action to have an extremum. Its value is given by a radial boundary term plus an additional polar angle boundary term due to the presence of a magnetic monopole. Remarkably, the magnetic charge can be identified from the variation of the additional polar angle boundary term, confirming that the first law of black hole thermodynamics is a consequence of having a well-defined and finite Hamiltonian action principle, even if the charge does not come from a symmetry of the action. The temperature and electrostatic potential are determined by demanding regularity of the black hole solution, whereas the value of the magnetic potential is determined by the variation of the additional polar angle boundary term. Consequently, the first law of black hole thermodynamics is identically satisfied by construction.

  19. Stability of Horava-Lifshitz Black Holes in the Context of AdS/CFT

    Energy Technology Data Exchange (ETDEWEB)

    Ong, Yen Chin; /Taiwan, Natl. Taiwan U.; Chen, Pisin; /Taiwan, Natl. Taiwan U. /KIPAC, Menlo Park /SLAC

    2012-06-13

    The anti-de Sitter/conformal field theory (AdS/CFT) correspondence is a powerful tool that promises to provide new insights toward a full understanding of field theories under extreme conditions, including but not limited to quark-gluon plasma, Fermi liquid, and superconductor. In many such applications, one typically models the field theory with asymptotically AdS black holes. These black holes are subjected to stringy effects that might render them unstable. Horava-Lifshitz gravity, in which space and time undergo different transformations, has attracted attention due to its power-counting renormalizability. In terms of AdS/CFT correspondence, Horava-Lifshitz black holes might be useful to model holographic superconductors with Lifshitz scaling symmetry. It is thus interesting to study the stringy stability of Horava-Lifshitz black holes in the context of AdS/CFT. We find that uncharged topological black holes in {lambda} = 1 Horava-Lifshitz theory are nonperturbatively stable, unlike their counterparts in Einstein gravity, with the possible exceptions of negatively curved black holes with detailed balance parameter {epsilon} close to unity. Sufficiently charged flat black holes for {epsilon} close to unity, and sufficiently charged positively curved black holes with {epsilon} close to zero, are also unstable. The implication to the Horava-Lifshitz holographic superconductor is discussed.

  20. Quantum compositeness of gravity: black holes, AdS and inflation

    Energy Technology Data Exchange (ETDEWEB)

    Dvali, Gia [Arnold Sommerfeld Center for Theoretical Physics, Department für Physik, Ludwig-Maximilians-Universität München, Theresienstr. 37, 80333 München (Germany); Max-Planck-Institut für Physik, Föhringer Ring 6, 80805 München (Germany); Center for Cosmology and Particle Physics, Department of Physics, New York University, 4 Washington Place, New York, NY 10003 (United States); Gomez, Cesar [Arnold Sommerfeld Center for Theoretical Physics, Department für Physik, Ludwig-Maximilians-Universität München, Theresienstr. 37, 80333 München (Germany); Instituto de Física Teórica UAM-CSIC, C-XVI, Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid (Spain)

    2014-01-14

    Gravitational backgrounds, such as black holes, AdS, de Sitter and inflationary universes, should be viewed as composite of N soft constituent gravitons. It then follows that such systems are close to quantum criticality of graviton Bose-gas to Bose-liquid transition. Generic properties of the ordinary metric description, including geodesic motion or particle-creation in the background metric, emerge as the large-N limit of quantum scattering of constituent longitudinal gravitons. We show that this picture correctly accounts for physics of large and small black holes in AdS, as well as reproduces well-known inflationary predictions for cosmological parameters. However, it anticipates new effects not captured by the standard semi-classical treatment. In particular, we predict observable corrections that are sensitive to the inflationary history way beyond last 60 e-foldings. We derive an absolute upper bound on the number of e-foldings, beyond which neither de Sitter nor inflationary Universe can be approximated by a semi-classical metric. However, they could in principle persist in a new type of quantum eternity state. We discuss implications of this phenomenon for the cosmological constant problem.

  1. Quantum compositeness of gravity: black holes, AdS and inflation

    Energy Technology Data Exchange (ETDEWEB)

    Dvali, Gia; Gomez, Cesar, E-mail: Georgi.Dvali@cern.ch, E-mail: cesar.gomez@uam.es [Arnold Sommerfeld Center for Theoretical Physics, Department für Physik, Ludwig-Maximilians-Universität München, Theresienstr. 37, 80333 München (Germany)

    2014-01-01

    Gravitational backgrounds, such as black holes, AdS, de Sitter and inflationary universes, should be viewed as composite of N soft constituent gravitons. It then follows that such systems are close to quantum criticality of graviton Bose-gas to Bose-liquid transition. Generic properties of the ordinary metric description, including geodesic motion or particle-creation in the background metric, emerge as the large-N limit of quantum scattering of constituent longitudinal gravitons. We show that this picture correctly accounts for physics of large and small black holes in AdS, as well as reproduces well-known inflationary predictions for cosmological parameters. However, it anticipates new effects not captured by the standard semi-classical treatment. In particular, we predict observable corrections that are sensitive to the inflationary history way beyond last 60 e-foldings. We derive an absolute upper bound on the number of e-foldings, beyond which neither de Sitter nor inflationary Universe can be approximated by a semi-classical metric. However, they could in principle persist in a new type of quantum eternity state. We discuss implications of this phenomenon for the cosmological constant problem.

  2. Holographic entropy of Warped-AdS$_3$ black holes

    CERN Document Server

    Donnay, Laura

    2015-01-01

    We study the asymptotic symmetries of three-dimensional Warped Anti-de Sitter (WAdS) spaces in three-dimensional New Massive Gravity (NMG). For a specific choice of asymptotic boundary conditions, we find that the algebra of charges is infinite-dimensional and coincides with the semidirect sum of Virasoro algebra with non-vanishing central charge and an affine $\\hat{u}(1)_k$ Ka\\v{c}-Moody algebra. We show that the WAdS black hole configurations organize in terms of two commuting Virasoro algebras. We identify the Virasoro generators that expand the associated representations in the dual Warped Conformal Field Theory (WCFT) and, by applying the Warped version of the Cardy formula, we prove that the microscopic WCFT computation exactly reproduces the entropy of black holes in WAdS space.

  3. Geometric finiteness, holography and quasinormal modes for the warped AdS{sub 3} black hole

    Energy Technology Data Exchange (ETDEWEB)

    Gupta, Kumar S [Theory Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Calcutta 700064 (India); Harikumar, E; Sivakumar, M [School of Physics, University of Hyderabad, Hyderabad 500046 (India); Sen, Siddhartha, E-mail: kumars.gupta@saha.ac.i, E-mail: harisp@uohyd.ernet.i, E-mail: sen@maths.ucd.i, E-mail: mssp@uohyd.ernet.i [School of Mathematical Sciences, UCD, Belfield, Dublin 4 (Ireland)

    2010-08-21

    We show that there exists a precise kinematical notion of holography for the Euclidean warped AdS{sub 3} black hole. This follows from the fact that the Euclidean warped AdS{sub 3} black hole spacetime is a geometrically finite hyperbolic manifold. For such manifolds a theorem of Sullivan provides a one-to-one correspondence between the hyperbolic structure in the bulk and the conformal structure of its boundary. Using this theorem we obtain the holographic quasinormal modes for the warped AdS{sub 3} black hole.

  4. Thermodynamic stability of modified Schwarzschild-AdS black hole in rainbow gravity

    CERN Document Server

    Kim, Yong-Wan; Park, Young-Jai

    2016-01-01

    In this paper, we have extended the previous study of the thermodynamics and phase transition of the Schwarzschild black hole in the rainbow gravity to the Schwarzschild-AdS black hole where metric depends on the energy of a probe. Making use of the Heisenberg uncertainty principle and the modified dispersion relation, we have obtained the modified local Hawking temperature and thermodynamic quantities in an isothermal cavity. Moreover, we carry out the analysis of constant temperature slices of a black hole. As a result, we have shown that there also exists another Hawking-Page-like phase transition in which case a locally stable small black hole tunnels into a globally stable large black hole as well as the standard Hawking-Page phase transition from a hot flat space to a black hole.

  5. Thermodynamic stability of modified Schwarzschild-AdS black hole in rainbow gravity

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Yong-Wan [Chonbuk National University, Research Institute of Physics and Chemistry, Jeonju (Korea, Republic of); Kim, Seung Kook [Seonam University, Department of Physical Therapy, Namwon (Korea, Republic of); Park, Young-Jai [Sogang University, Department of Physics, Seoul (Korea, Republic of)

    2016-10-15

    In this paper, we have extended the previous study of the thermodynamics and phase transition of the Schwarzschild black hole in the rainbow gravity to the Schwarzschild-AdS black hole where metric depends on the energy of a probe. Making use of the Heisenberg uncertainty principle and the modified dispersion relation, we have obtained the modified local Hawking temperature and thermodynamic quantities in an isothermal cavity. Moreover, we carry out the analysis of constant temperature slices of a black hole. As a result, we have shown that there also exists another Hawking-Page-like phase transition in which case a locally stable small black hole tunnels into a globally stable large black hole as well as the standard Hawking-Page phase transition from a hot flat space to a black hole. (orig.)

  6. Thermodynamic stability of modified Schwarzschild-AdS black hole in rainbow gravity

    Science.gov (United States)

    Kim, Yong-Wan; Kim, Seung Kook; Park, Young-Jai

    2016-10-01

    In this paper, we have extended the previous study of the thermodynamics and phase transition of the Schwarzschild black hole in the rainbow gravity to the Schwarzschild-AdS black hole where metric depends on the energy of a probe. Making use of the Heisenberg uncertainty principle and the modified dispersion relation, we have obtained the modified local Hawking temperature and thermodynamic quantities in an isothermal cavity. Moreover, we carry out the analysis of constant temperature slices of a black hole. As a result, we have shown that there also exists another Hawking-Page-like phase transition in which case a locally stable small black hole tunnels into a globally stable large black hole as well as the standard Hawking-Page phase transition from a hot flat space to a black hole.

  7. The Entropy of the BTZ Black Hole and AdS/CFT Correspondence

    CERN Document Server

    Lee, T

    1998-01-01

    We construct an action, which governs the dynamics of the Bañados-Teitelboim-Zanelli (BTZ) black hole and perform the canonical quantization. The quantum action is given by a $SL(2,R)$ Wess-Zumino-Witten model on the boundary coupled to the classical anti-de Sitter background, representing a massless BTZ black hole. The coupling, determined by a one-cocyle condition, is found to give dominant contribution to the central charge of Virasoro algebra. The entropy of the BTZ black hole is discussed from the point view of the AdS/CFT correspondence and an explanation is given to the puzzle of black hole entropy in the BTZ case. The BTZ black hole is a quantum object and the BTZ black hole with finite mass should be considered as a quantum excitation of the massless one.

  8. P -V criticality of logarithm-corrected dyonic charged AdS black holes

    Science.gov (United States)

    Sadeghi, J.; Pourhassan, B.; Rostami, M.

    2016-09-01

    In this paper, we consider a dyonic charged anti-de Sitter black hole, which is a holographic dual of a van der Waals fluid. We use logarithm-corrected entropy and study thermodynamics of the black hole and show that holographic picture is still valid. Critical behaviors and stability are also discussed. Logarithmic corrections arises due to thermal fluctuations, which are important when the size of black hole is small. So, thermal fluctuations are interpreted as a quantum effect. It means that we can see the quantum effect of a black hole, which is a gravitational system.

  9. A rotating hairy AdS$_3$ black hole with the metric having only one Killing vector field

    CERN Document Server

    Iizuka, Norihiro; Maeda, Kengo

    2015-01-01

    We perturbatively construct a three-dimensional rotating AdS black hole with a real scalar hair. We choose the mass of a scalar field slightly above the Breitenlohner-Freedman bound and impose a more general boundary condition for the bulk scalar field at AdS infinity. We first show that rotating BTZ black holes are unstable against superradiant modes under our more general boundary condition. Next we construct a rotating hairy black hole perturbatively with respect to a small amplitude $\\epsilon$ of the scalar field, up to $O(\\epsilon^4)$. The lumps of non-linearly perturbed geometry admit only one Killing vector field and co-rotate with the black hole, and it shows no dissipation. We numerically show that the entropy of our hairy black hole is larger than that of the BTZ black hole with the same energy and the angular momentum. This indicates, at least in the perturbative level, that our rotating hairy black hole in lumpy geometry can be the endpoint of the superradiant instability.

  10. A Note on Physical Mass and the Thermodynamics of AdS-Kerr Black Holes

    CERN Document Server

    McInnes, Brett

    2015-01-01

    As with any black hole, asymptotically anti-de Sitter Kerr black holes are described by a small number of parameters, including a "mass parameter" $M$ that reduces to the AdS-Schwarzschild mass in the limit of vanishing angular momentum. In sharp contrast to the asymptotically flat case, the horizon area of such a black hole increases with the angular momentum parameter $a$ if one fixes $M$; this appears to mean that the Penrose process in this case would violate the Second Law of black hole thermodynamics. We show that the correct procedure is to fix not $M$ but rather the "physical" mass $E=M/(1-a^2/L^2)^2$; this is motivated by the First Law. For then the horizon area decreases with $a$. We recommend that $E$ always be used as the mass: for example, in attempts to "over-spin" AdS-Kerr black holes.

  11. AdS and dS black hole solutions in analogue gravity: The relativistic and non-relativistic cases

    CERN Document Server

    Dey, Ramit; Turcati, Rodrigo

    2016-01-01

    We show that Schwarzschild black hole solutions in asymptotically Anti-de Sitter (AdS) and de Sitter (dS) spaces may, up to a conformal factor, be reproduced in the framework of analogue gravity. The aforementioned derivation is performed using relativistic and non-relativistic Bose-Einstein condensates. In addition, we demonstrate that the (2+1) planar AdS black hole can be mapped into the non-relativistic acoustic metric. Given that AdS black holes are extensively employed in the gauge/gravity duality, we then comment on the possibility to study the AdS/CFT correspondence and gravity/fluid duality from an analogue gravity perspective.

  12. Conserved charges for black holes in Einstein-Gauss-Bonnet gravity coupled to nonlinear electrodynamics in AdS space

    CERN Document Server

    Miskovic, Olivera

    2010-01-01

    Motivated by possible applications within the framework of anti-de Sitter gravity/Conformal Field Theory (AdS/CFT) correspondence, charged black holes with AdS asymptotics, which are solutions to Einstein-Gauss-Bonnet gravity in D dimensions, and whose electric field is described by a nonlinear electrodynamics (NED) are studied. For a topological static black hole ansatz, the field equations are exactly solved in terms of the electromagnetic stress tensor for an arbitrary NED Lagrangian, in any dimension D and for arbitrary positive values of Gauss-Bonnet coupling. In particular, this procedure reproduces the black hole metric in Born-Infeld and conformally invariant electrodynamics previously found in the literature. Altogether, it extends to D>4 the four-dimensional solution obtained by Soleng in logarithmic electrodynamics, which comes from vacuum polarization effects. Fall-off conditions for the electromagnetic field that ensure the finiteness of the electric charge are also discussed. The black hole mass...

  13. Small hairy black holes in AdS(5) x S-5

    NARCIS (Netherlands)

    Bhattacharyya, Sayantani; Minwalla, Shiraz; Papadodimas, Kyriakos

    2011-01-01

    We study small hairy black holes in a consistent truncation of N = 8 gauged supergravity that consists of a single charged scalar field interacting with the metric and a U(1) gauge field. Small very near extremal RNAdS black holes in this system are unstable to decay by superradiant emission. The en

  14. Thermodynamics of higher dimensional topological charged AdS black holes in dilaton gravity

    CERN Document Server

    Hendi, S H

    2010-01-01

    In this paper, we study topological AdS black holes of $(n+1)$-dimensional Einstein-Maxwell-dilaton theory and investigate their properties. We use the area law, surface gravity and Gauss law interpretations to find entropy, temperature and electrical charge, respectively. We also employ the Brown and York subtraction method to calculate the quasilocal mass of the solutions. We obtain a Smarr-type formula for the mass as a function of the entropy and the charge, and compute the temperature and the electric potential through the Smarr-type formula and show that these thermodynamic quantities coincide with their values which are calculated through using the geometry. Finally, we perform a stability analysis in the canonical ensemble and investigate the effects of the dilaton field as well as other parameters on the thermal stability of the solutions. We find that there is no Hawking-Page phase transition in spite of charge provided $\\alpha \\leq \\alpha_{\\max}$.

  15. Holographic fermionic spectrum from Born-Infeld AdS black hole

    Science.gov (United States)

    Wu, Jian-Pin

    2016-07-01

    In this letter, we systematically explore the holographic (non-)relativistic fermionic spectrum without/with dipole coupling dual to Born-Infeld anti-de Sitter (BI-AdS) black hole. For the relativistic fermionic fixed point, this holographic fermionic system exhibits non-Fermi liquid behavior. Also, with the increase of BI parameter γ, the non-Fermi liquid becomes even ;more non-Fermi;. When the dipole coupling term is included, we find that the BI term makes it a lot tougher to form the gap. While for the non-relativistic fermionic system with large dipole coupling in BI-AdS background, with the increase of BI parameter, the gap comes into being again.

  16. Complex Entangling Surfaces for AdS and Lifshitz Black Holes?

    CERN Document Server

    Fischetti, Sebastian

    2014-01-01

    We discuss the possible relevance of complex codimension-two extremal surfaces to the the Ryu-Takayanagi holographic entanglement proposal and its covariant Hubeny-Rangamani-Takayanagi (HRT) generalization. Such surfaces live in a complexified bulk spacetime defined by analytic continuation. We identify surfaces of this type for BTZ, Schwarzschild-AdS, and Schwarzschild-Lifshitz planar black holes. Since the dual CFT interpretation for the imaginary part of their areas is unclear, we focus on a straw man proposal relating CFT entropy to the real part of the area alone. For Schwarzschild-AdS and Schwarzschild-Lifshitz, we identify families where the real part of the area agrees with qualitative physical expectations for the appropriate CFT entropy and, in addition, where it is smaller than the area of corresponding real extremal surfaces. It is thus plausible that the CFT entropy is controlled by these complex extremal surfaces.

  17. Holographic fermionic spectrum from Born–Infeld AdS black hole

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Jian-Pin, E-mail: jianpinwu@mail.bnu.edu.cn [Institute of Gravitation and Cosmology, Department of Physics, School of Mathematics and Physics, Bohai University, Jinzhou 121013 (China); Shanghai Key Laboratory of High Temperature Superconductors, Shanghai, 200444 (China)

    2016-07-10

    In this letter, we systematically explore the holographic (non-)relativistic fermionic spectrum without/with dipole coupling dual to Born–Infeld anti-de Sitter (BI-AdS) black hole. For the relativistic fermionic fixed point, this holographic fermionic system exhibits non-Fermi liquid behavior. Also, with the increase of BI parameter γ, the non-Fermi liquid becomes even “more non-Fermi”. When the dipole coupling term is included, we find that the BI term makes it a lot tougher to form the gap. While for the non-relativistic fermionic system with large dipole coupling in BI-AdS background, with the increase of BI parameter, the gap comes into being again.

  18. Holographic fermionic spectrum from Born–Infeld AdS black hole

    Directory of Open Access Journals (Sweden)

    Jian-Pin Wu

    2016-07-01

    Full Text Available In this letter, we systematically explore the holographic (non-relativistic fermionic spectrum without/with dipole coupling dual to Born–Infeld anti-de Sitter (BI-AdS black hole. For the relativistic fermionic fixed point, this holographic fermionic system exhibits non-Fermi liquid behavior. Also, with the increase of BI parameter γ, the non-Fermi liquid becomes even “more non-Fermi”. When the dipole coupling term is included, we find that the BI term makes it a lot tougher to form the gap. While for the non-relativistic fermionic system with large dipole coupling in BI-AdS background, with the increase of BI parameter, the gap comes into being again.

  19. On conserved charges and thermodynamics of the AdS$_{4}$ dyonic black hole

    CERN Document Server

    Cárdenas, Marcela; Matulich, Javier

    2016-01-01

    Four-dimensional gravity in the presence of a dilatonic scalar field and an Abelian gauge field is considered. This theory corresponds to the bosonic sector of a Kaluza-Klein dimensional reduction of eleven-dimensional supergravity which induces a determined self-interacting potential for the scalar field. We compute the conserved charges and carry out the thermodynamics of an anti-de Sitter (AdS) dyonic black hole solution recently proposed. The charges coming from symmetries of the action are computed by using the Regge-Teitelboim Hamiltonian approach. These correspond to the mass, which acquires contributions from the scalar field, and the electric charge. Integrability conditions are introduced because the scalar field leads to non-integrable terms in the variation of the mass. These conditions are generically solved by introducing boundary conditions that arbitrarily relates the leading and subleading terms of the scalar field fall-off. The Hamiltonian Euclidean action, computed in the grand canonical en...

  20. Critical behavior of charged Gauss-Bonnet AdS black holes in the grand canonical ensemble

    CERN Document Server

    Zou, De-Cheng; Wang, Bin

    2014-01-01

    We study the thermodynamics in the grand canonical ensemble of D-dimensional charged Gauss-Bonnet-AdS black holes in the extended phase space. We find that the usual small-large black hole phase transition, which exhibits analogy with the Van de Waals liquid-gas system holds in five-dimensional spherical charged Gauss-Bonnet-AdS black holes when its potential is fixed within the range $0<\\Phi<\\frac{\\sqrt{3}\\pi}{4}$. For the other higher dimensional and topological charged Gauss-Bonnet-AdS black holes, there is no such phase transition. In the limiting case, Reissner-Nordstrom-AdS black holes, with vanishing Gauss-Bonnet parameter, there is no critical behavior in the grand canonical ensemble. This result holds independent of the spacetime dimensions and topologies. We also examine the behavior of physical quantities in the vicinity of the critical point in the five-dimensional spherical charged Gauss-Bonnet-AdS black holes.

  1. Schwinger Effect in (A)dS and Charged Black Hole

    CERN Document Server

    Kim, Sang Pyo

    2015-01-01

    In an (Anti-) de Sitter space and a charged black hole the Schwinger effect is either enhanced by the Hawking radiation or suppressed by the negative curvature. We use the contour integral method to calculate the production of charged pairs in the global (A)dS space. The charge emission from near-extremal black hole is found from the AdS geometry near the horizon and interpreted as the Schwinger effect in a Rindler space with the surface gravity for the acceleration as well as the Schwinger effect in AdS space.

  2. On the critical phenomena and thermodynamics of charged topological dilaton AdS black holes

    CERN Document Server

    Zhao, Ren; Ma, Meng-Sen; Zhang, Li-Chun

    2013-01-01

    In this paper, we study the phase structure and equilibrium state space geometry of charged topological dilaton black holes in $(n+1)$-dimensional anti-de Sitter spacetime. By considering the pairs of parameters $(P\\sim V)$ and $(Q\\sim U)$ as variables, we analyze the phase structure and critical phenomena of black holes and discuss the relation between the two kinds of critical phenomena. We find that the phase structures and critical phenomena drastically depend on the cosmological constant $l$ (or the static electric charge $Q$ of the black holes), dimensionality $n$ and dilaton field $\\Phi $.

  3. Critical behavior and microscopic structure of charged AdS black holes via an alternative phase space

    Directory of Open Access Journals (Sweden)

    Amin Dehyadegari

    2017-05-01

    Full Text Available It has been argued that charged Anti-de Sitter (AdS black holes have similar thermodynamic behavior as the Van der Waals fluid system, provided one treats the cosmological constant as a thermodynamic variable (pressure in an extended phase space. In this paper, we disclose the deep connection between charged AdS black holes and Van der Waals fluid system from an alternative point of view. We consider the mass of an AdS black hole as a function of square of the charge Q2 instead of the standard Q, i.e. M=M(S,Q2,P. We first justify such a change of view mathematically and then ask if a phase transition can occur as a function of Q2 for fixed P. Therefore, we write the equation of state as Q2=Q2(T,Ψ where Ψ (conjugate of Q2 is the inverse of the specific volume, Ψ=1/v. This allows us to complete the analogy of charged AdS black holes with Van der Waals fluid system and derive the phase transition as well as critical exponents of the system. We identify a thermodynamic instability in this new picture with real analogy to Van der Waals fluid with physically relevant Maxwell construction. We therefore study the critical behavior of isotherms in Q2–Ψ diagram and deduce all the critical exponents of the system and determine that the system exhibits a small–large black hole phase transition at the critical point (Tc,Qc2,Ψc. This alternative view is important as one can imagine such a change for a given single black hole i.e. acquiring charge which induces the phase transition. Finally, we disclose the microscopic properties of charged AdS black holes by using thermodynamic geometry. Interestingly, we find that scalar curvature has a gap between small and large black holes, and this gap becomes exceedingly large as one moves away from the critical point along the transition line. Therefore, we are able to attribute the sudden enlargement of the black hole to the strong repulsive nature of the internal constituents at the phase transition.

  4. Supersymmetric black holes in AdS{sub 4} from very special geometry

    Energy Technology Data Exchange (ETDEWEB)

    Gnecchi, Alessandra [Institute for Theoretical Physics and Spinoza Institute, Utrecht University,3508 TD Utrecht (Netherlands); Halmagyi, Nick [Laboratoire de Physique Théorique et Hautes Energies, Université Pierre et Marie Curie,CNRS UMR 7589, F-75252 Paris Cedex 05 (France)

    2014-04-29

    Supersymmetric black holes in AdS spacetime are inherently interesting for the AdS/CFT correspondence. Within a four dimensional gauged supergravity theory coupled to vector multiplets, the only analytic solutions for regular, supersymmetric, static black holes in AdS{sub 4} are those in the STU-model due to Cacciatori and Klemm. We study a class of U(1)-gauged supergravity theories coupled to vector multiplets which have a cubic prepotential, the scalar manifold is then a very special Kähler manifold. When the resulting very special Kähler manifold is a homogeneous space, we find analytic solutions for static, supersymmetric AdS{sub 4} black holes with vanishing axions. The horizon geometries of our solutions are constant curvature Riemann surfaces of arbitrary genus.

  5. $P-V$ Criticality In the Extended Phase Space of Charged Accelerating AdS Black Holes

    CERN Document Server

    Liu, Hang

    2016-01-01

    In this paper, we investigate the $P-V$ criticality and phase transition of charged accelerating AdS black holes in the extended thermodynamic phase space in analogy between black hole system and Van der Waals liquid-gas system, where the cosmological constant $\\Lambda$ is treated as a thermodynamical variable interpreted as dynamic pressure and its conjugate quantity is the thermodynamic volume of the black holes. When the electric charge vanishes, we find that no $P-V$ criticality will appear but the Hawking-Page like phase transition will be present, just as what Schwarzschild-AdS black holes behave like. For the charged case, the $P-V$ criticality appears and the accelerating black holes will undergo a small black hole/large phase transition under the condition that the acceleration parameter $A$ and the horizon radius $r_h$ meet a certain simple relation $A r_h=a$, where $a$ is a constant in our discussion. To make $P-V$ criticality appear, there exists an upper bounds for constant $a$. When $P-V$ critic...

  6. P-V criticality in the extended phase-space of charged accelerating AdS black holes

    Science.gov (United States)

    Liu, Hang; Meng, Xin-He

    2016-11-01

    In this paper, we investigate the P-V criticality and phase transition of charged accelerating AdS black holes in the extended thermodynamic phase-space in analogy between black hole system and van der Waals liquid-gas system, where the cosmological constant Λ is treated as a thermodynamical variable interpreted as dynamic pressure and its conjugate quantity is the thermodynamic volume of the black holes. When the electric charge vanishes, we find that no P-V criticality will appear but the Hawking-Page-like phase transition will be present, just as what Schwarzschild-AdS black holes behave like. For the charged case, the P-V criticality appears and the accelerating black holes will undergo a small black hole/large phase transition under the condition that the acceleration parameter A and the horizon radius rh meet a certain simple relation Arh = a, where a is a constant in our discussion. To make P-V criticality appear, there exists an upper bounds for constant a. When P-V criticality appears, we calculate the critical pressure Pc, critical temperature Tc and critical specific volume rc, and we find that Pcrc Tc is an universal number.

  7. Phase Transition in Reissner-Nordstrom-AdS Black Hole With Quintessence Matter

    CERN Document Server

    Xu, Zhaoyi; Wang, Jiancheng

    2016-01-01

    We study the second order phase transition of the Reissner-Nordstrom-AdS black hole in quintessence matter. Using the first law of thermodynamics, some expressions of thermodynamics in this black hole are obtained. We study the phase transition condition under different parameter $\\omega$ or other parameters. For three special cases, we obtain the conditions of phase transition and analysis in detail. We show the relations of the temperature $T$, heat capacity $C_{Q}, C_{\\phi}$ with the entropy of black hole by figures. We also present the relation of phase transition point $S$ with $\\alpha, Q, \\beta$ and $\\omega$.

  8. Thermal phase transitions of dimensionally continued AdS black holes

    CERN Document Server

    Kuang, Xiao-Mei

    2016-01-01

    We study the thermal phase transitions of charged black holes in dimensionally continued gravity in anti-de Sitter space. We find the van der Waals-like phase transition in the temperature-entropy plane of the black holes with spherical horizons in even dimensions, and there is no such phase transition of the black holes with flat and hyperbolic geometries. Near the critical inflection point, the critical exponent is computed and its value does not depend on the dimension. The Maxwell equal area law is checked to be fulfilled in the temperature-entropy diagram for the first order phase transition. In odd dimensions, there are no thermal phase transitions for the black hole with any geometry of the horizon.

  9. Chemical potential driven phase transition of black holes in AdS space

    CERN Document Server

    Galante, Mario; Goya, Andres; Oliva, Julio

    2015-01-01

    Einstein-Maxwell theory conformally coupled to a scalar field in D dimensions may exhibit a phase transition at low temperature whose endpoint is an asymptotically Anti-de Sitter black hole with a scalar field profile that is regular everywhere outside and on the horizon. This provides a tractable model to study the phase transition of hairy black holes in Anti-de Sitter space in which the backreaction on the geometry can be solved analytically.

  10. Equal Area Laws and Latent Heat for d-Dimensional RN-AdS Black Hole

    Directory of Open Access Journals (Sweden)

    Li-Chun Zhang

    2014-01-01

    Full Text Available We study the equal area laws of d-dimensional RN-AdS black hole. We choose two kinds of phase diagrams, P-V and T-S. We employ the equal area laws to find an isobar which is the real two-phase coexistence line. Our calculation is much simpler to derive the critical value of the thermodynamic quantities. According to the thermodynamic quantities, we also study the latent heat of the black hole.

  11. Brick walls for black holes in AdS/CFT

    Directory of Open Access Journals (Sweden)

    Norihiro Iizuka

    2015-06-01

    Full Text Available We study the 't Hooft's brick wall model for black holes in a holographic context. The brick wall model suggests that without an appropriate near horizon IR cut-off, the free energy of the probe fields shows the divergence due to the large degenerate states near the horizons. After studying the universal nature of the divergence in various holographic settings in various dimensions, we interpret the nature of the divergence in a holographic context. The free energy divergence is due to the large degeneracy and continuity of the low energy spectrum in the boundary theory at the deconfinement phase. These divergence and continuity should be removed by finite N effects, which make the spectrum discrete even at the deconfinement phase. On the other hand, in the bulk, these degenerate states are localized near the horizon, and the universal divergence of these degenerate states implies that the naive counting of the degrees of freedom in bulk should be modified once we take into account the non-perturbative quantum gravity effects near the horizon. Depending on the microscopic degrees of freedom, the position, where the effective field theory description to count the states breaks down, has different Planck scale dependence. It also implies the difficulty to have an electron like gauge-singlet elementary field in the boundary theory Lagrangian. These singlet fields are at most composite fields, because they show divergent free energy, suggesting a positive power of N at the deconfinement phase.

  12. Brick walls for black holes in AdS/CFT

    Science.gov (United States)

    Iizuka, Norihiro; Terashima, Seiji

    2015-06-01

    We study the 't Hooft's brick wall model for black holes in a holographic context. The brick wall model suggests that without an appropriate near horizon IR cut-off, the free energy of the probe fields shows the divergence due to the large degenerate states near the horizons. After studying the universal nature of the divergence in various holographic settings in various dimensions, we interpret the nature of the divergence in a holographic context. The free energy divergence is due to the large degeneracy and continuity of the low energy spectrum in the boundary theory at the deconfinement phase. These divergence and continuity should be removed by finite N effects, which make the spectrum discrete even at the deconfinement phase. On the other hand, in the bulk, these degenerate states are localized near the horizon, and the universal divergence of these degenerate states implies that the naive counting of the degrees of freedom in bulk should be modified once we take into account the non-perturbative quantum gravity effects near the horizon. Depending on the microscopic degrees of freedom, the position, where the effective field theory description to count the states breaks down, has different Planck scale dependence. It also implies the difficulty to have an electron like gauge-singlet elementary field in the boundary theory Lagrangian. These singlet fields are at most composite fields, because they show divergent free energy, suggesting a positive power of N at the deconfinement phase.

  13. Small Hairy Black Holes in $AdS_5 \\times S^5$

    CERN Document Server

    Bhattacharyya, Sayantani; Papadodimas, Kyriakos

    2010-01-01

    We study small hairy black holes in a consistent truncation of ${\\cal N}=8$ gauged supergravity that consists of a single charged scalar field interacting with the metric and a U(1) gauge field. Small very near extremal RNAdS black holes in this system are unstable to decay by superradiant emission. The end point of this instability is a small hairy black hole that we construct analytically in a perturbative expansion in its charge. Unlike their RNAdS counterparts, hairy black hole solutions exist all the way down to the BPS bound, demonstrating that ${\\cal N}=4$ Yang Mills theory has an ${\\cal O}(N^2)$ entropy at all energies above supersymmetry. At the BPS bound these black holes reduce to previously discussed regular, supersymmetric horizon free solitons. We use numerical methods to continue the construction of these solitons to large charges and find that the line of soliton solutions terminates at a singular solution $S$ at a finite charge. We conjecture that a one parameter family of singular supersymme...

  14. Motion of particles on a four-dimensional asymptotically AdS black hole with scalar hair

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez, P.A.; Olivares, Marco [Universidad Diego Portales, Facultad de Ingenieria, Santiago (Chile); Vasquez, Yerko [Universidad de La Serena, Departamento de Fisica, Facultad de Ciencias, La Serena (Chile)

    2015-10-15

    Motivated by black hole solutions with matter fields outside their horizon, we study the effect of these matter fields on the motion of massless and massive particles. We consider as background a four-dimensional asymptotically AdS black hole with scalar hair. The geodesics are studied numerically and we discuss the differences in the motion of particles between the four-dimensional asymptotically AdS black holes with scalar hair and their no-hair limit, that is, Schwarzschild AdS black holes. Mainly, we found that there are bounded orbits like planetary orbits in this background. However, the periods associated to circular orbits are modified by the presence of the scalar hair. Besides, we found that some classical tests such as perihelion precession, deflection of light, and gravitational time delay have the standard value of general relativity plus a correction term coming from the cosmological constant and the scalar hair. Finally, we found a specific value of the parameter associated to the scalar hair, in order to explain the discrepancy between the theory and the observations, for the perihelion precession of Mercury and light deflection. (orig.)

  15. Motion of particles on a Four-Dimensional Asymptotically AdS Black Hole with Scalar Hair

    CERN Document Server

    Gonzalez, P A; Vasquez, Yerko

    2015-01-01

    Motivated by black hole solutions with matter fields outside their horizon, we study the effect of these matter fields in the motion of massless and massive particles. We consider as background a four-dimensional asymptotically AdS black hole with scalar hair. The geodesics are studied numerically and we discuss about the differences in the motion of particles between the four-dimensional asymptotically AdS black holes with scalar hair and their no-hair limit, that is, Schwarzschild AdS black holes. Mainly, we found that there are bounded orbits like planetary orbits in this background. However, the periods associated to circular orbits are modified by the presence of the scalar hair. Besides, we found that some classical tests such as perihelion precession, deflection of light and gravitational time delay have the standard value of general relativity plus a correction term coming from the cosmological constant and the scalar hair. Finally, we found a specific value of the parameter associated to the scalar h...

  16. Thermodynamics of Charged AdS Black Holes in Extended Phases Space via M2-branes Background

    CERN Document Server

    Chabab, M; Masmar, K

    2015-01-01

    Motivated by a recent work on asymptotically Ad$S_4$ black holes in M-theory, we investigate both thermodynamics and thermodynamical geometry of Raissner-Nordstrom-AdS black holes from M2-branes. More precisely, we study AdS black holes in $AdS_{4}\\times S^{7}$, with the number of M2-branes interpreted as a thermodynamical variable. In this context, we calculate various thermodynamical quantities including the chemical potential, and examine their phase transitions along with the corresponding stability behaviors. In addition, we also evaluate the thermodynamical curvatures of the Weinhold, Ruppeiner and Quevedo metrics for M2-branes geometry to study the stability of such black object. We show that the singularities of these scalar curvature's metrics reproduce similar stability results obtained by the phase transition program via the heat capacities in different ensembles either when the number of the M2 branes or the charge are held fixed. Also, we note that all results derived in [1] are recovered in the ...

  17. Ehrenfest Scheme of Higher Dimensional Topological AdS Black Holes in Lovelock-Born-Infeld Gravity

    CERN Document Server

    Belhaj, A; Moumni, H EL; Masmar, K; Sedra, M B

    2014-01-01

    Interpreting the cosmological constant as a thermodynamic pressure and its conjugate quantity as a thermodynamic volume, we reconsider the investigation of P-V critical behaviors of (1+n)-dimensional topological AdS black holes in Lovelock-Born-Infeld gravity. In particular, we give an explicit expression of the universal number \\chi=\\frac{P_c v_c}{T_c} in terms of the space dimension $n$. Then, we examine the phase transitions at the critical points of such topological black holes for 6 \\leq n \\leq 11 as required by the physical condition of the thermodynamical quantities. More precisely, the Ehrenfest equations have been checked revealing that the black hole system undergoes a second phase transition at the critical points.

  18. Pair Production, Vacuum Polarization and Anomaly in (A)dS and Charged Black Holes

    CERN Document Server

    Kim, Sang Pyo

    2016-01-01

    We explore the connection between the distribution of particles spontaneously produced from an electric field or black hole and the vacuum persistence, twice the imaginary part of the one-loop effective action. Employing the reconstruction conjecture, we find the effective action for the Bose-Einstein or Fermi-Dirac distribution. The Schwinger effect in ${\\rm AdS}_2$ is computed via the phase-integral method in the static coordinates. The Hawking radiation and Schwinger effect of a charged black hole is rederived and interpreted via the phase-integral. Finally, we discuss the relation between the vacuum persistence and the trace or gravitational anomalies.

  19. Born-Infeld AdS black holes as heat engines

    Science.gov (United States)

    Johnson, Clifford V.

    2016-07-01

    We study the efficiency of heat engines that perform mechanical work via the pdV terms present in the first law in extended gravitational thermodynamics. We use charged black holes as the working substance, for a particular choice of engine cycle. The context is Einstein gravity with negative cosmological constant and a Born-Infeld nonlinear electrodynamics sector. We compare the results for these ‘holographic’ heat engines to previous results obtained for Einstein-Maxwell black holes, and for the case where there is a Gauss-Bonnet sector.

  20. Born-Infeld AdS Black Holes as Heat Engines

    CERN Document Server

    Johnson, Clifford V

    2015-01-01

    We study the efficiency of heat engines that perform mechanical work via the pdV terms present in the First Law in extended gravitational thermodynamics. We use charged black holes as the working substance, for a particular choice of engine cycle. The context is Einstein gravity with negative cosmological constant and a Born-Infeld non-linear electrodynamics sector. We compare the results for these `holographic' heat engines to previous results obtained for Einstein-Maxwell black holes, and for the case where there is a Gauss-Bonnet sector.

  1. Guard against cooperative black hole attack in Mobile Ad-Hoc Network

    Directory of Open Access Journals (Sweden)

    Harsh Pratap Singh

    2011-07-01

    Full Text Available A mobile ad-hoc network is an autonomous network that consists of nodes which communicate with each other with wireless channel. Due to its dynamic nature and mobility of nodes, mobile ad hoc networks are more vulnerable to security attack than conventional wired and wireless networks. One of the principal routing protocols AODV used in MANETs. The security of AODV protocol is influence by the particular type of attack called Black Hole attack. In a black hole attack, a malicious node injects a faked route reply claiming to havethe shortest and freshest route to the destination. However, when the data packets arrive, the malicious node discards them. To preventing black hole attack, this paper presents RBS (Reference Broadcast Synchronization & Relative velocity distance method for clock synchronization process in Mobile ad-hoc Network for removal of cooperative black hole node. This paper evaluates the performance in NS2 network simulator and our analysis indicates that this method is very suitable to remove black hole attack.

  2. AODV Robust (AODVR: An Analytic Approach to Shield Ad-hoc Networks from Black Holes

    Directory of Open Access Journals (Sweden)

    Mohammad Abu Obaida

    2011-08-01

    Full Text Available Mobile ad-hoc networks are vulnerable to several types of malicious routing attacks, black hole is one of those, where a malicious node advertise to have the shortest path to all other nodes in the network by the means of sending fake routing reply. As a result the destinations are deprived of desired information. In this paper, we propose a method AODV Robust (AODVR a revision to the AODV routing protocol, in which black hole is perceived as soon as they emerged and other nodes are alerted to prevent the network of such malicious threats thereby isolating the black hole. In AODVR method, the routers formulate the range of acceptable sequence numbers and define a threshold. If a node exceeds the threshold several times then it is black listed thereby increasing the network robustness.

  3. Time-dependent spacetimes in AdS/CFT: Bubble and black hole

    CERN Document Server

    Ross, S F; Ross, Simon F.; Titchener, Georgina

    2005-01-01

    We extend the study of time-dependent backgrounds in the AdS/CFT correspondence by examining the relation between bulk and boundary for the smooth 'bubble of nothing' solution and for the locally AdS black hole which has the same asymptotic geometry. These solutions are asymptotically locally AdS, with a conformal boundary conformal to de Sitter space cross a circle. We study the cosmological horizons and relate their thermodynamics in the bulk and boundary. We consider the alpha-vacuum ambiguity associated with the de Sitter space, and find that only the Euclidean vacuum is well-defined on the black hole solution. We argue that this selects the Euclidean vacuum as the preferred state in the dual strongly coupled CFT.

  4. Black Holes

    Science.gov (United States)

    Luminet, Jean-Pierre

    1992-09-01

    Foreword to the French edition; Foreword to the English edition; Acknowledgements; Part I. Gravitation and Light: 1. First fruits; 2. Relativity; 3. Curved space-time; Part II. Exquisite Corpses: 4. Chronicle of the twilight years; 5. Ashes and diamonds; 6. Supernovae; 7. Pulsars; 8. Gravitation triumphant; Part III. Light Assassinated: 9. The far horizon; 10. Illuminations; 11. A descent into the maelstrom; 12. Map games; 13. The black hole machine; 14. The quantum black hole; Part IV. Light Regained: 15. Primordial black holes; 16. The zoo of X-ray stars; 17. Giant black holes; 18. Gravitational light; 19. The black hole Universe; Appendices; Bibliography; Name index; Subject index.

  5. On thermodynamics of charged AdS black holes in extended phases space via M2-branes background

    Energy Technology Data Exchange (ETDEWEB)

    Chabab, M.; Masmar, K. [Cadi Ayyad University, High Energy Physics and Astrophysics Laboratory, FSSM, Marrakesh (Morocco); El Moumni, H. [Cadi Ayyad University, High Energy Physics and Astrophysics Laboratory, FSSM, Marrakesh (Morocco); Universite Ibn Zohr, Departement de Physique, Faculte des Sciences, Agadir (Morocco)

    2016-06-15

    Motivated by a recent work on asymptotically AdS{sub 4} black holes in M-theory, we investigate both thermodynamics and the thermodynamical geometry of Reissner-Nordstrom-AdS black holes from M2-branes. More precisely, we study AdS black holes in AdS{sub 4} x S{sup 7}, with the number of M2-branes interpreted as a thermodynamical variable. In this context, we calculate various thermodynamical quantities including the chemical potential, and examine their phase transitions along with the corresponding stability behaviors. In addition, we also evaluate the thermodynamical curvatures of the Weinhold, Ruppeiner, and Quevedo metrics for M2-branes geometry to study the stability of such a black object. We show that the singularities of these scalar curvature's metrics reproduce similar stability results to those obtained by the phase transition diagram via the heat capacities in different ensembles either when the number of the M2 branes or the charge is held fixed. Also, we note that all results derived in Belhaj et al. (Eur Phys J C 76(2):73, 2016) are recovered in the limit of the vanishing charge. (orig.)

  6. Static Einstein–Maxwell Magnetic Solitons and Black Holes in an Odd Dimensional AdS Spacetime

    Directory of Open Access Journals (Sweden)

    Jose Luis Blázquez-Salcedo

    2016-12-01

    Full Text Available We construct a new class of Einstein–Maxwell static solutions with a magnetic field in D-dimensions (with D ≥ 5 an odd number, approaching at infinity a globally Anti-de Sitter (AdS spacetime. In addition to the mass, the new solutions possess an extra-parameter associated with a non-zero magnitude of the magnetic potential at infinity. Some of the black holes possess a non-trivial zero-horizon size limit, which corresponds to a solitonic deformation of the AdS background.

  7. Renormalized vacuum polarization on rotating warped AdS3 black holes

    CERN Document Server

    Ferreira, Hugo R C

    2014-01-01

    We compute the renormalized vacuum polarization of a massive scalar field in the Hartle-Hawking state on (2+1)-dimensional rotating, spacelike stretched black hole solutions to Topologically Massive Gravity, surrounded by a Dirichlet mirror that makes the state well defined. The Feynman propagator is written as a mode sum on the complex Riemannian section of the spacetime, and a Hadamard renormalization procedure is implemented by matching to a mode sum on the complex Riemannian section of a rotating Minkowski spacetime. No analytic continuation in the angular momentum parameter is invoked. Selected numerical results are given, demonstrating the numerical efficacy of the method. We anticipate that this method can be extended to wider classes of rotating black hole spacetimes, in particular to the Kerr spacetime in four dimensions.

  8. Renormalized vacuum polarization on rotating warped AdS3 black holes

    Science.gov (United States)

    Ferreira, Hugo R. C.; Louko, Jorma

    2015-01-01

    We compute the renormalized vacuum polarization of a massive scalar field in the Hartle-Hawking state on (2 +1 )-dimensional rotating, spacelike stretched black hole solutions to topologically massive gravity, surrounded by a Dirichlet mirror that makes the state well defined. The Feynman propagator is written as a mode sum on the complex Riemannian section of the spacetime, and a Hadamard renormalization procedure is implemented by matching to a mode sum on the complex Riemannian section of a rotating Minkowski spacetime. No analytic continuation in the angular momentum parameter is invoked. Selected numerical results are given, demonstrating the numerical efficacy of the method. We anticipate that this method can be extended to wider classes of rotating black hole spacetimes, in particular to the Kerr spacetime in four dimensions.

  9. Thermodynamics of spinning AdS4 black holes in gauged supergravity

    CERN Document Server

    Toldo, Chiara

    2016-01-01

    In this paper we study the thermodynamics of rotating black hole solutions arising from four-dimensional gauged N=2 supergravity. We analyze two different supergravity models, characterized by prepotentials $F = -i X^0 X^1$ and $F= -2i \\sqrt{X^0 (X^1)^3}$. The black hole configurations are supported by electromagnetic charges and scalar fields with different kinds of boundary conditions. We perform our analysis in the canonical ensemble, where we find a first order phase transition for a suitable range of charges and angular momentum. We perform the thermodynamic stability check on the configurations. Using the holographic dictionary we interpret the phase transition in terms of expectation values of operators in the dual field theory, which pertains to the class of ABJM theories living on a rotating Einstein universe. We extend the analysis to dyonic configurations as well. Lastly, we show the computation of the on-shell action and mass via holographic renormalization techniques.

  10. Thermodynamic Geometry and Phase Transitions in Kerr-Newman-AdS Black Holes

    CERN Document Server

    Sahay, Anurag; Sengupta, Gautam

    2010-01-01

    We investigate phase transitions and critical phenomena in Kerr-Newman-Anti de Sitter black holes in the framework of the geometry of their equilibrium thermodynamic state space. The scalar curvature of these state space Riemannian geometries is computed in various ensembles. The scalar curvature diverges at the critical point of second order phase transitions for these systems. Remarkably, however, we show that the state space scalar curvature also carries information about the liquid-gas like first order phase transitions and the consequent instabilities and phase coexistence for these black holes. This is encoded in the turning point behavior and the multi-valued branched structure of the scalar curvature in the neighborhood of these first order phase transitions. We re-examine this first for the conventional Van der Waals system, as a preliminary exercise. Subsequently, we study the Kerr-Newman-AdS black holes for a grand canonical and two "mixed" ensembles and establish novel phase structures. The state ...

  11. Area Functional Relation for 5D-Gauss-Bonnet-AdS Black Hole

    CERN Document Server

    Pradhan, Parthapratim

    2016-01-01

    We present \\emph{area functional relation} and \\emph{entropy functional relation} for multi-horizon five dimensional Einstein-Maxwell-Gauss-Bonnet-AdS Black Hole. It has been observed by exact calculation that some complicated function of two or three horizons area is \\emph{mass-independent} whereas the entropy product relation is \\emph{not} mass-independent. We study the thermodynamic stability of this black hole. The phase transition occurs at certain condition. \\emph{Smarr mass formula} and \\emph{first law} of thermodynamics is also discussed. Thermodynamic product formula for 5D Einstein-Maxwell-Gauss-Bonnet black hole without Cosmological parameter is also derived in appendix. This \\emph{mass-independent} relation suggests they could turn out to be an \\emph{universal} quantity.

  12. Conserved charges for black holes in Einstein-Gauss-Bonnet gravity coupled to nonlinear electrodynamics in AdS space

    Science.gov (United States)

    Mišković, Olivera; Olea, Rodrigo

    2011-01-01

    Motivated by possible applications within the framework of anti-de Sitter gravity/conformal field theory correspondence, charged black holes with AdS asymptotics, which are solutions to Einstein-Gauss-Bonnet gravity in D dimensions, and whose electric field is described by nonlinear electrodynamics are studied. For a topological static black hole ansatz, the field equations are exactly solved in terms of the electromagnetic stress tensor for an arbitrary nonlinear electrodynamic Lagrangian in any dimension D and for arbitrary positive values of Gauss-Bonnet coupling. In particular, this procedure reproduces the black hole metric in Born-Infeld and conformally invariant electrodynamics previously found in the literature. Altogether, it extends to D>4 the four-dimensional solution obtained by Soleng in logarithmic electrodynamics, which comes from vacuum polarization effects. Falloff conditions for the electromagnetic field that ensure the finiteness of the electric charge are also discussed. The black hole mass and vacuum energy as conserved quantities associated to an asymptotic timelike Killing vector are computed using a background-independent regularization of the gravitational action based on the addition of counterterms which are a given polynomial in the intrinsic and extrinsic curvatures.

  13. Angular Momentum Independence of the Entropy Sum and Entropy Product for AdS Rotating Black Holes In All Dimensions

    CERN Document Server

    Liu, Hang

    2016-01-01

    In this paper, we investigate the angular momentum independence of the entropy sum and product for AdS rotating black holes based on the first law of thermodynamics and a mathematical lemma related to Vandermonde determinant. The advantage of this method is that the explicit forms of the spacetime metric, black hole mass and charge are not needed but the Hawking temperature and entropy formula on the horizons are necessary for static black holes, while our calculations require the expressions of metric and angular velocity formula. We find that the entropy sum is always independent of angular momentum for all dimensions and the angular momentum-independence of entropy product only holds for the dimensions $d>4$ with at least one rotation parameter $a_i=0$, while the mass-free of entropy sum and entropy product for rotating black holes only stand for higher dimensions ($d>4$) and for all dimensions, respectively. On the other hand, we find that the introduction of a negative cosmological constant does not affe...

  14. Angular momentum independence of the entropy sum and entropy product for AdS rotating black holes in all dimensions

    Science.gov (United States)

    Liu, Hang; Meng, Xin-he

    2016-08-01

    In this paper, we investigate the angular momentum independence of the entropy sum and product for AdS rotating black holes based on the first law of thermodynamics and a mathematical lemma related to Vandermonde determinant. The advantage of this method is that the explicit forms of the spacetime metric, black hole mass and charge are not needed but the Hawking temperature and entropy formula on the horizons are necessary for static black holes, while our calculations require the expressions of metric and angular velocity formula. We find that the entropy sum is always independent of angular momentum for all dimensions and the angular momentum-independence of entropy product only holds for the dimensions d > 4 with at least one rotation parameter ai = 0, while the mass-free of entropy sum and entropy product for rotating black holes only stand for higher dimensions (d > 4) and for all dimensions, respectively. On the other hand, we find that the introduction of a negative cosmological constant does not affect the angular momentum-free of entropy sum and product but the criterion for angular momentum-independence of entropy product will be affected.

  15. Angular momentum independence of the entropy sum and entropy product for AdS rotating black holes in all dimensions

    Directory of Open Access Journals (Sweden)

    Hang Liu

    2016-08-01

    Full Text Available In this paper, we investigate the angular momentum independence of the entropy sum and product for AdS rotating black holes based on the first law of thermodynamics and a mathematical lemma related to Vandermonde determinant. The advantage of this method is that the explicit forms of the spacetime metric, black hole mass and charge are not needed but the Hawking temperature and entropy formula on the horizons are necessary for static black holes, while our calculations require the expressions of metric and angular velocity formula. We find that the entropy sum is always independent of angular momentum for all dimensions and the angular momentum-independence of entropy product only holds for the dimensions d>4 with at least one rotation parameter ai=0, while the mass-free of entropy sum and entropy product for rotating black holes only stand for higher dimensions (d>4 and for all dimensions, respectively. On the other hand, we find that the introduction of a negative cosmological constant does not affect the angular momentum-free of entropy sum and product but the criterion for angular momentum-independence of entropy product will be affected.

  16. An equal area law for holographic entanglement entropy of the AdS-RN black hole

    Science.gov (United States)

    Nguyen, Phuc H.

    2015-12-01

    The Anti-de Sitter-Reissner-Nordström (AdS-RN) black hole in the canonical ensemble undergoes a phase transition similar to the liquid-gas phase transition, i.e. the isocharges on the entropy-temperature plane develop an unstable branch when the charge is smaller than a critical value. It was later discovered that the isocharges on the entanglement entropy -temperature plane also exhibit the same van der Waals-like structure, for spherical entangling regions. In this paper, we present numerical results which sharpen this similarity between entanglement entropy and black hole entropy, by showing that both of these entropies obey Maxwell's equal area law to an accuracy of around 1%. Moreover, we checked this for a wide range of size of the spherical entangling region, and the equal area law holds independently of the size. We also checked the equal area law for AdS-RN in 4 and 5 dimensions, so the conclusion is not specific to a particular dimension. Finally, we repeated the same procedure for a similar, van der Waals-like transition of the dyonic black hole in AdS in a mixed ensemble (fixed electric potential and fixed magnetic charge), and showed that the equal area law is not valid in this case. Thus the equal area law for entanglement entropy seems to be specific to the AdS-RN background.

  17. A consistent and unified picture for critical phenomena of $f(R)$ AdS black holes

    CERN Document Server

    Mo, Jie-Xiong; Wu, Yu-Cheng

    2016-01-01

    A consistent and unified picture for critical phenomena of charged AdS black holes in $f(R)$ gravity is drawn in this paper. Firstly, we investigate the phase transition in canonical ensemble. We derive the explicit solutions corresponding to the divergence of $C_Q$. The two solutions merge into one when the condition $Q_c=\\sqrt{\\frac{-1}{3R_0}}$ is satisfied. The curve of specific heat for $QQ_c$, the specific heat is always positive, implying the black holes are locally stable and no phase transition will take place. Secondly, both the $T-r_+$ curve and $T-S$ curve $f(R)$ AdS black holes are investigated and they exhibit Van der Vaals like behavior as the $P-v$ curve in the former research. Critical physical quantities are obtained and they are consistent with those derived from the specific heat analysis. We carry out numerical check of Maxwell equal area law for the cases $Q=0.2Q_c, 0.4Q_c, 0.6Q_c, 0.8Q_c$. The relative errors are amazingly small and can be negligible. So the Maxwell equal area law holds ...

  18. Phase transition and thermodynamic geometry of $f(R)$ AdS black holes in the grand canonical ensemble

    CERN Document Server

    Li, Gu-Qiang

    2016-01-01

    The phase transition of four-dimensional charged AdS black hole solution in the $R+f(R)$ gravity with constant curvature is investigated in the grand canonical ensemble, where we find novel characteristics quite different from that in canonical ensemble. There exists no critical point for $T-S$ curve while in former research critical point was found for both the $T-S$ curve and $T-r_+$ curve when the electric charge of $f(R)$ black holes is kept fixed. Moreover, we derive the explicit expression for the specific heat, the analog of volume expansion coefficient and isothermal compressibility coefficient when the electric potential of $f(R)$ AdS black hole is fixed. The specific heat $C_\\Phi$ encounters a divergence when $0b$. This finding also differs from the result in the canonical ensemble, where there may be two, one or no divergence points for the specific heat $C_Q$. To examine the phase structure newly found in the grand canonical ensemble, we appeal to the well-known thermodynamic geometry tools and de...

  19. Phase transition and thermodynamic geometry of f (R ) AdS black holes in the grand canonical ensemble

    Science.gov (United States)

    Li, Gu-Qiang; Mo, Jie-Xiong

    2016-06-01

    The phase transition of a four-dimensional charged AdS black hole solution in the R +f (R ) gravity with constant curvature is investigated in the grand canonical ensemble, where we find novel characteristics quite different from that in the canonical ensemble. There exists no critical point for T -S curve while in former research critical point was found for both the T -S curve and T -r+ curve when the electric charge of f (R ) black holes is kept fixed. Moreover, we derive the explicit expression for the specific heat, the analog of volume expansion coefficient and isothermal compressibility coefficient when the electric potential of f (R ) AdS black hole is fixed. The specific heat CΦ encounters a divergence when 0 b . This finding also differs from the result in the canonical ensemble, where there may be two, one or no divergence points for the specific heat CQ . To examine the phase structure newly found in the grand canonical ensemble, we appeal to the well-known thermodynamic geometry tools and derive the analytic expressions for both the Weinhold scalar curvature and Ruppeiner scalar curvature. It is shown that they diverge exactly where the specific heat CΦ diverges.

  20. Holography, Thermodynamics and Fluctuations of Charged AdS Black Holes

    CERN Document Server

    Chamblin, A; Johnson, C V; Myers, R C; Chamblin, Andrew; Emparan, Roberto; Johnson, Clifford V.; Myers, Robert C.

    1999-01-01

    The physical properties of Reissner-Nordstrom black holes in (n+1)-dimensional anti-de Sitter spacetime are related, by a holographic map, to the physics of a class of n-dimensional field theories coupled to a background global current. Motivated by that fact, and the recent observations of the striking similarity between the thermodynamic phase structure of these black holes (in the canonical ensemble) and that of the van der Waals-Maxwell liquid-gas system, we explore the physics in more detail. We study fluctuations and stability within the equilibrium thermodynamics, examining the specific heats and electrical permittivity of the holes, and consider the analogue of the Clayperon equation at the phase boundaries. Consequently, we refine the phase diagrams in the canonical and grand canonical ensembles. We study the interesting physics in the neighbourhood of the critical point in the canonical ensemble. There is a second order phase transition found there, and that region is characterized by a Landau-Ginzb...

  1. Exact black hole formation in asymptotically (A)dS and flat spacetimes

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Xuefeng, E-mail: zhxf@bnu.edu.cn [Department of Physics, Beijing Normal University, Beijing 100875 (China); Department of Astronomy, Beijing Normal University, Beijing 100875 (China); Lü, H., E-mail: mrhonglu@gmail.com [Department of Physics, Beijing Normal University, Beijing 100875 (China)

    2014-09-07

    We consider four-dimensional Einstein gravity minimally coupled to a dilaton scalar field with a supergravity-inspired scalar potential. We obtain an exact time-dependent spherically symmetric solution describing gravitational collapse to a static scalar-hairy black hole. The solution can be asymptotically AdS, flat or dS depending on the value of the cosmological constant parameter Λ in the potential. As the advanced time u increases, the metric approaches the static limit in an exponential fashion, i.e., e{sup −u/u{sub 0}} with u{sub 0}∼1/(α{sup 4}M{sub 0}){sup 1/3}, where M{sub 0} is the mass of the final black hole and α is the second parameter in the potential. Similarly to the Vaidya solution, at u=0, the spacetime can be matched to an (A)dS or flat vacuum except that at the origin a naked singularity may occur. Moreover, a limiting case of our solution with α=0 gives rise to an (A)dS generalization of the Roberts solution. Our results provide a new model for investigating formation of real life black holes with Λ≥0. For Λ<0, it can be instead used to study non-equilibrium thermalization of certain strongly-coupled field theory.

  2. Preventive Aspect of Black Hole Attack in Mobile AD HOC Network

    Directory of Open Access Journals (Sweden)

    Kumar Roshan

    2012-06-01

    Full Text Available Mobile ad hoc network is infrastructure less type of network. In this paper we present the prevention mechanism for black hole in mobile ad hoc network. The routing algorithms are analyzed and discrete properties of routing protocols are defined. The discrete properties support in distributed routing efficiently. The protocol is distributed and not dependent upon the centralized controlling node. Important features of Ad hoc on demand vector routing (AODV are inherited and new mechanism is combined with it to get the multipath routing protocol for Mobile ad hoc network (MANET to prevent the black hole attack. When the routing path is discovered and entered into the routing table, the next step is taken by combined protocol to search the new path with certain time interval. The old entered path is refreshed into the routing table. The simulation is taken on 50 moving nodes in the area of 1000 x 1000 square meter and the maximum speed of nodes are 5m/sec. The result is calculated for throughput verses number of black hole nodes with pause time of 0 sec. to 40 sec., 120 sec. and 160 sec. when the threshold value is 1.0.

  3. Searching for AdS_3 waves and Asymptotically Lifshitz black holes in R^3-NMG

    CERN Document Server

    Anastasiou, Giorgos G; Vagenas, Elias C

    2013-01-01

    In this paper we consider the structure of the $AdS_3$ vacua in $R^3$ expansion of the New Massive Gravity ($R^3$-NMG). We obtain the degeneracies of the $AdS_3$ vacua at several points of the parametric space. Additionally, following a specific analysis we show that $AdS_3$ wave solutions are present. Using these wave solutions, we single out two special points of the parametric space for which logarithmic terms appear in the solutions. The first one is a point at which the effective mass of the wave profile which is interpreted as a scalar mode, completely saturates the Breitenlohner-Freedman bound of the $AdS_3$ space in which the wave is propagating. The second special point is a point at which the central charge of the theory vanishes. Furthermore, we investigate the possibility of asymptotically Lifshitz black solutions to be present in the three-dimensional $R^3$-NMG. We derive analytically the Lifshitz vacua considering specific relations between the mass parameters of $R^3$-NMG. A certain polynomial ...

  4. Thermodynamics of the Schwarzschild-AdS black hole with a minimal length

    CERN Document Server

    Miao, Yan-Gang

    2016-01-01

    Using the mass-smeared scheme of black holes, we study the thermodynamics of black holes. Two interesting models are considered. One is the self-regular Schwarzschild-AdS black hole whose mass density is given by the analogue to probability densities of quantum hydrogen atoms. The other model is the same black hole but whose mass density is chosen to be a rational fractional function of radial coordinates. Both mass densities are in fact analytic expressions of the ${\\delta}$-function. We analyze the phase structures of the two models by investigating the heat capacity at constant pressure and the Gibbs free energy in an isothermal-isobaric ensemble. Both models fail to decay into the pure thermal radiation even with the positive Gibbs free energy due to the existence of a minimal length. Furthermore, we extend our analysis to a general mass-smeared form that is also associated with the ${\\delta}$-function, and indicate the similar thermodynamic properties for various possible mass-smeared forms based on the ...

  5. Finite N and the failure of bulk locality: black holes in AdS/CFT

    Science.gov (United States)

    Kabat, Daniel; Lifschytz, Gilad

    2014-09-01

    We consider bulk quantum fields in AdS/CFT in the background of an eternal black hole. We show that for black holes with finite entropy, correlation functions of semiclassical bulk operators close to the horizon deviate from their semiclassical value and are ill-defined inside the horizon. This is due to the large-time behavior of correlators in a unitary CFT, and means the region near and inside the horizon receives corrections. We give a prescription for modifying the definition of a bulk field in a black hole background, such that one can still define operators that mimic the inside of the horizon, but at the price of violating microcausality. For supergravity fields we find that commutators at spacelike separation generically ~ e - S/2. Similar results hold for stable black holes that form in collapse. The general lesson may be that a small amount of non-locality, even over arbitrarily large spacelike distances, is an essential aspect of non-perturbative quantum gravity.

  6. Finite N and the failure of bulk locality: Black holes in AdS/CFT

    CERN Document Server

    Kabat, Daniel

    2014-01-01

    We consider bulk quantum fields in AdS/CFT in the background of an eternal black hole. We show that for black holes with finite entropy, correlation functions of semiclassical bulk operators close to the horizon deviate from their semiclassical value and are ill-defined inside the horizon. This is due to the large-time behavior of correlators in a unitary CFT, and means the region near and inside the horizon receives corrections. We give a prescription for modifying the definition of a bulk field in a black hole background, such that one can still define operators that mimic the inside of the horizon, but at the price of violating microcausality. For supergravity fields we find that commutators at spacelike separation generically ~ exp(-S/2). Similar results hold for stable black holes that form in collapse. The general lesson may be that a small amount of non-locality, even over arbitrarily large spacelike distances, is an essential aspect of non-perturbative quantum gravity.

  7. Thermodynamics of the Schwarzschild-AdS Black Hole with a Minimal Length

    Directory of Open Access Journals (Sweden)

    Yan-Gang Miao

    2017-01-01

    Full Text Available Using the mass-smeared scheme of black holes, we study the thermodynamics of black holes. Two interesting models are considered. One is the self-regular Schwarzschild-AdS black hole whose mass density is given by the analogue to probability densities of quantum hydrogen atoms. The other model is the same black hole but whose mass density is chosen to be a rational fractional function of radial coordinates. Both mass densities are in fact analytic expressions of the δ-function. We analyze the phase structures of the two models by investigating the heat capacity at constant pressure and the Gibbs free energy in an isothermal-isobaric ensemble. Both models fail to decay into the pure thermal radiation even with the positive Gibbs free energy due to the existence of a minimal length. Furthermore, we extend our analysis to a general mass-smeared form that is also associated with the δ-function and indicate the similar thermodynamic properties for various possible mass-smeared forms based on the δ-function.

  8. Behavior of Quasinormal Modes and high dimension RN-AdS Black Hole phase transition

    CERN Document Server

    Chabab, M; Iraoui, S; Masmar, K

    2016-01-01

    In this work we use the quasinormal frequencies of a massless scalar perturbation to probe the phase transition of the high dimension charged-AdS black hole. The signature of the critical behavior of this black hole solution is detected in the isobaric as well as in isothermal process. This paper is a natural generalization of \\cite{base} to higher dimensional spacetime. More precisely our study shows a clear signal for any dimension $d$ in the isobaric process. As to the isothermal case, we find out that this signature can be affected by other parameters like the pressure and the horizon radius. We conclude that the quasinormal modes can be an efficient tool to investigate the first order phase transition, but fail to disclose the signature of the second order phase transition.

  9. On Protocols to Prevent Black Hole Attacks in Mobile Ad Hoc Networks

    Directory of Open Access Journals (Sweden)

    Umesh Kumar Singh

    2015-01-01

    Full Text Available Wireless or Mobile Networks emerged to replace the wired networks. The new generation of wireless network is relatively different than the comparisons of traditional wired network in many aspects like resource sharing, power usage, reliability, efficient, ease to handle, network infrastructure and routing protocols, etc. Mobile Ad-Hoc Networks (MANETs are autonomous and decentralized wireless systems. MANETs consist of mobile nodes that are free in moving in and out in the network. There is an increasing threat of attacks on the MANET. Thus, in MANET black hole attack are mostly serious security attacks. In this paper, we have examined certain black hole attacks prevention routing protocols. Finally, we have compared some routing protocols using some important parameters and then addressed major issues related to this.

  10. Extremal Hairy Black Holes

    CERN Document Server

    Gonzalez, P A; Saavedra, Joel; Vasquez, Yerko

    2014-01-01

    We consider a gravitating system consisting of a scalar field minimally coupled to gravity with a self-interacting potential and an U(1) electromagnetic field. Solving the coupled Einstein-Maxwell-scalar system we find exact hairy charged black hole solutions with the scalar field regular everywhere. We go to the zero temperature limit and we study the effect of the scalar field on the near horizon geometry of an extremal black hole. We find that except a critical value of the charge of the black hole there is also a critical value of the charge of the scalar field beyond of which the extremal black hole is destabilized. We study the thermodynamics of these solutions and we find that if the space is flat then at low temperature the Reissner-Nordstr\\"om black hole is thermodynamically preferred, while if the space is AdS the hairy charged black hole is thermodynamically preferred at low temperature.

  11. Using Apriori algorithm to prevent black hole attack in mobile Ad hoc networks

    Directory of Open Access Journals (Sweden)

    Seyed Javad Mirabedini

    2013-01-01

    Full Text Available A mobile ad hoc network (MANET is considered as an autonomous network, which consists of mobile nodes, which communicate with each other over wireless links. When there is no fixed infrastructure, nodes have to cooperate in order to incorporate the necessary network functionality. Ad hoc on Demand Distance Vector (AODV protocol is one of the primary principal routing protocols implemented in Ad hoc networks. The security of the AODV protocol is threaded by a specific kind of attack called ‘Black Hole’ attack. This paper presents a technique to prevent the Black hole attack by implementing negotiation with neighbors who claim to maintain a route to destination. Negotiation process is strengthen by apriori method to judge about suspicious node. Apriori algorithm is an effective association rule mining method with relatively low complexity, which is proper for MANETs. To achieve more improvement, fuzzy version of ADOV is used. The simulation results indicate that the proposed protocol provides more securable routing and also more efficiency in terms of packet delivery, overhead and detection rate than the conventional AODV and fuzzy AODV in the presence of Black hole attacks.

  12. Perturbations around black holes

    CERN Document Server

    Wang, B

    2005-01-01

    Perturbations around black holes have been an intriguing topic in the last few decades. They are particularly important today, since they relate to the gravitational wave observations which may provide the unique fingerprint of black holes' existence. Besides the astrophysical interest, theoretically perturbations around black holes can be used as testing grounds to examine the proposed AdS/CFT and dS/CFT correspondence.

  13. Exact Black Hole Formation in Asymptotically (A)dS and Flat Spacetimes

    CERN Document Server

    Zhang, Xuefeng

    2014-01-01

    We consider four-dimensional Einstein gravity minimally coupled to a dilaton scalar field with a supegravity-inspired scalar potential. We obtain an exact time-dependent spherically symmetric solution describing gravitational collapse to a scalar-hairy black hole. The solution can be asymptotically AdS, flat or dS depending on values of the cosmological constant parameter $\\Lambda$ in the potential. As the advanced time $u$ increases, the spacetime reaches equilibrium in an exponential fashion, i.e., $e^{-u/u_0}$ with $u_0\\sim1/(\\alpha^4 M_0)^{1/3}$, where $M_0$ is the mass of the final black hole and $\\alpha$ is the second parameter in the potential. Similar to Vaidya solution, at $u=0$, the spacetime can be matched to an (A)dS or flat vacuum except that at the origin a naked singularity may occur. Moreover, a limiting case of our solution gives rise to an (A)dS generalization of Roberts solution, thereby making it relevant to cosmic censorship. Our results provide a new model for studying the formation of r...

  14. P-V criticality in the extended phase space of charged f(R) black holes in AdS space-time

    Science.gov (United States)

    Liang, Jun; Sun, Chang-Bo; Feng, Hai-Tao

    2016-02-01

    The P\\text-V criticality and phase transition in the extended phase space of charged f(R) black holes in Anti-de Sitter (AdS) space-time are studied, where the cosmological constant appears as a dynamical pressure and its conjugate quantity is a thermodynamic volume of the black holes. We take into account three-dimensional and higher-dimensional black holes of the f(R) theory coupled to a conformally invariant Maxwell (CIM) field and find that for a f(R) black hole in three-dimensional space-time, critical behavior cannot occur; for a f(R) black hole in higher-dimensional space-time, no P\\text-V criticality occurs in n = 8 dimensions either, while P\\text-V criticality and the small-black-hole/large-black-hole phase transition appears in n = 12 dimensions. It is shown that the f(R) correction affects the phase transition as well as the critical temperature, volume and pressure. In addition, we also discuss the critical exponents at the critical point for the f(R) black hole in n space-time dimensions and show that they are the same as those in the van de Waals liquid-gas system.

  15. Localised $\\bf{AdS_5\\times S^5}$ Black Holes

    CERN Document Server

    Dias, Oscar J C; Way, Benson

    2016-01-01

    We numerically construct asymptotically global $\\mathrm{AdS}_5\\times \\mathrm{S}^5$ black holes that are localised on the $\\mathrm{S}^5$. These are solutions to type IIB supergravity with $\\mathrm S^8$ horizon topology that dominate the theory in the microcanonical ensemble at small energies. At higher energies, there is a first-order phase transition to $\\mathrm{AdS}_5$-Schwarzschild$\\times \\mathrm{S}^5$. By the AdS/CFT correspondence, this transition is dual to spontaneously breaking the $SO(6)$ R-symmetry of $\\mathcal N=4$ super Yang-Mills down to $SO(5)$. We extrapolate the location of this phase transition and compute the expectation value of the resulting scalar operators in the low energy phase.

  16. Black holes

    CERN Document Server

    Chrúsciel, P T

    2002-01-01

    This paper is concerned with several not-quantum aspects of black holes, with emphasis on theoretical and mathematical issues related to numerical modeling of black hole space-times. Part of the material has a review character, but some new results or proposals are also presented. We review the experimental evidence for existence of black holes. We propose a definition of black hole region for any theory governed by a symmetric hyperbolic system of equations. Our definition reproduces the usual one for gravity, and leads to the one associated with the Unruh metric in the case of Euler equations. We review the global conditions which have been used in the Scri-based definition of a black hole and point out the deficiencies of the Scri approach. Various results on the structure of horizons and apparent horizons are presented, and a new proof of semi-convexity of horizons based on a variational principle is given. Recent results on the classification of stationary singularity-free vacuum solutions are reviewed. ...

  17. $Q-\\Phi$ criticality in the extended phase space of $(n+1)$-dimensional RN-AdS black holes

    CERN Document Server

    Ma, Yu-Bo; Cao, Shuo

    2016-01-01

    In order to achieve a deeper understanding of gravity theories, it is important to further investigate the thermodynamic properties of black hole at the critical point, besides the phase transition and critical behaviors. In this paper, by using Maxwell's equal area law, we choose $T,Q,\\Phi$ as the state parameters and study the phase equilibrium problem of general $(n+1)$-dimensional RN-AdS black holes thermodynamic system. The boundary of the two-phase coexistence region and its isotherm and isopotential lines are presented, which may provide theoretical foundation for studying the phase transition and phase structure of black hole systems.

  18. A Distributed and Cooperative Algorithm for the Detection and Elimination of Multiple Black Hole Nodes in Ad Hoc Networks

    Science.gov (United States)

    Yu, Chang Wu; Wu, Tung-Kuang; Cheng, Rei-Heng; Yu, Kun-Ming; Chang, Shun Chao

    A mobile node in ad hoc networks may move arbitrarily and act as a router and a host simultaneously. Such a characteristic makes nodes in MANET vulnerable to potential attacks. The black hole problem, in which some malicious nodes pretend to be intermediate nodes of a route to some given destinations and drop packets that pass through it, is one of the major types of attack. In this paper, we propose a distributed and cooperative mechanism to tackle the black hole problem. The mechanism is distributed so that it suits the ad hoc nature of network, and nodes in the protocol cooperate so that they can analyze, detect, and eliminate possible multiple black-hole nodes in a more reliable fashion. Simulation results show that our method achieves a high black hole detection rate and good packet delivery rate, while the overhead is comparatively lower as the network traffic increases.

  19. A Mechanism for Detection of Cooperative Black Hole Attack in Mobile Ad Hoc Networks

    CERN Document Server

    Sen, Jaydip; Ukil, Arijit

    2011-01-01

    A mobile ad hoc network (MANET) is a collection of autonomous nodes that communicate with each other by forming a multi-hop radio network and maintaining connections in a decentralized manner. Security remains a major challenge for these networks due to their features of open medium, dynamically changing topologies, reliance on cooperative algorithms,absence of centralized monitoring points, and lack of clear lines of defense. Most of the routing protocols for MANETs are thus vulnerable to various types of attacks. Ad hoc on-demand distance vector routing (AODV) is a very popular routing algorithm. However, it is vulnerable to the well-known black hole attack, where a malicious node falsely advertises good paths to a destination node during the route discovery process. This attack becomes more sever when a group of malicious nodes cooperate each other. In this paper, a defense mechanism is presented against a coordinated attack by multiple black hole nodes in a MANET. The simulation carried out on the propose...

  20. Black Holes in AdS/BCFT and Fluid/Gravity Correspondence

    CERN Document Server

    Magán, Javier M; Silva, Madson R O

    2014-01-01

    A proposal to describe gravity duals of conformal theories with boundaries (AdS/BCFT correspondence) was put forward by Takayanagi few years ago. However interesting solutions describing field theories at finite temperature and charge density are still lacking. In this paper we describe a class of theories with boundary, which admit black hole type gravity solutions. The theories are specified by stress-energy tensors that reside on the extensions of the boundary to the bulk. From this perspective AdS/BCFT appears analogous to the fluid/gravity correspondence. Among the class of the boundary extensions there is a special (integrable) one, for which the stress-energy tensor is fluid-like. We discuss features of that special solution as well as its thermodynamic properties.

  1. Black hole thermodynamics in Lovelock gravity's rainbow with (A)dS asymptote

    Science.gov (United States)

    Hendi, Seyed Hossein; Dehghani, Ali; Faizal, Mir

    2017-01-01

    In this paper, we combine Lovelock gravity with gravity's rainbow to construct Lovelock gravity's rainbow. Considering the Lovelock gravity's rainbow coupled to linear and also nonlinear electromagnetic gauge fields, we present two new classes of topological black hole solutions. We compute conserved and thermodynamic quantities of these black holes (such as temperature, entropy, electric potential, charge and mass) and show that these quantities satisfy the first law of thermodynamics. In order to study the thermal stability in canonical ensemble, we calculate the heat capacity and determinant of the Hessian matrix and show in what regions there are thermally stable phases for black holes. Also, we discuss the dependence of thermodynamic behavior and thermal stability of black holes on rainbow functions. Finally, we investigate the critical behavior of black holes in the extended phase space and study their interesting properties.

  2. P- v criticality in the extended phase space of a noncommutative geometry inspired Reissner-Nordström black hole in AdS space-time

    Science.gov (United States)

    Liang, Jun; Guan, Zhi-Hua; Liu, Yan-Chun; Liu, Bo

    2017-02-01

    The P- v criticality and phase transition in the extended phase space of a noncommutative geometry inspired Reissner-Nordström (RN) black hole in Anti-de Sitter (AdS) space-time are studied, where the cosmological constant appears as a dynamical pressure and its conjugate quantity is thermodynamic volume of the black hole. It is found that the P- v criticality and the small black hole/large black hole phase transition appear for the noncommutative RN-AdS black hole. Numerical calculations indicate that the noncommutative parameter affects the phase transition as well as the critical temperature, horizon radius, pressure and ratio. The critical ratio is no longer universal, which is different from the result in the van de Waals liquid-gas system. The nature of phase transition at the critical point is also discussed. Especially, for the noncommutative geometry inspired RN-AdS black hole, a new thermodynamic quantity Ψ conjugate to the noncommutative parameter θ has to be defined further, which is required for consistency of both the first law of thermodynamics and the corresponding Smarr relation.

  3. Clapeyron equation and phase equilibrium properties in higher dimensional charged topological dilaton AdS black holes with a nonlinear source

    CERN Document Server

    Li, Huai-Fan; Zhang, Li-Chun; Zhao, Ren

    2016-01-01

    Using Maxwell's equal area law, we discuss the phase transition of higher dimensional charged topological dilaton AdS black holes with a nonlinear source. The coexisting region of the two phases is found and we depict the coexistence region in $P-v$ diagrams. The two-phase equilibrium curves in $P-T$ diagrams are plotted, and we take the first order approximation of volume $v$ in the calculation. To better compare with a general thermodynamic system, the Clapeyron equation is derived for higher dimensional charged topological black hole with a nonlinear source. The latent heat of isothermal phase transition is investigated. We also study the effect of the parameters of the black hole on the region of two-phases coexistence. The results show that the black hole may go through a small-large phase transition similar to those of usual non-gravity thermodynamic systems.

  4. Holographic research on phase transitions for a five dimensional AdS black hole with conformally coupled scalar hair

    Science.gov (United States)

    Li, Hui-Ling; Yang, Shu-Zheng; Zu, Xiao-Tao

    2017-01-01

    In the framework of holography, we survey the phase structure for a higher dimensional hairy black hole including the effects of the scalar field hair. It is worth emphasizing that, not only black hole entropy, but also entanglement entropy and two point correlation function exhibit the Van der Waals-like phase transition in a fixed scalar charge ensemble. Furthermore, by making use of numerical computation, we show that the Maxwell's equal area law is valid for the first order phase transition. In addition, we also discuss how the hair parameter affects the black hole's phase transition.

  5. Signature of the Van der Waals like small-large charged AdS black hole phase transition in quasinormal modes

    CERN Document Server

    Liu, Yunqi; Wang, Bin

    2014-01-01

    We calculate the quasinormal modes of massless scalar perturbations around small and large four-dimensional Reissner-Nordstrom-Anti de Sitter (RN-AdS) black holes. We find a dramatic change in the slopes of quasinormal frequencies in small and large black holes near the critical point where the Van der Waals like thermodynamic phase transition happens. This further supports that the quasinormal mode can be a dynamic probe of the thermodynamic phase transition.

  6. Thermodynamics of noncommutative high-dimensional AdS black holes with non-Gaussian smeared matter distributions

    Energy Technology Data Exchange (ETDEWEB)

    Miao, Yan-Gang [Nankai University, School of Physics, Tianjin (China); Chinese Academy of Sciences, State Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, P.O. Box 2735, Beijing (China); CERN, PH-TH Division, Geneva 23 (Switzerland); Xu, Zhen-Ming [Nankai University, School of Physics, Tianjin (China)

    2016-04-15

    Considering non-Gaussian smeared matter distributions, we investigate the thermodynamic behaviors of the noncommutative high-dimensional Schwarzschild-Tangherlini anti-de Sitter black hole, and we obtain the condition for the existence of extreme black holes. We indicate that the Gaussian smeared matter distribution, which is a special case of non-Gaussian smeared matter distributions, is not applicable for the six- and higher-dimensional black holes due to the hoop conjecture. In particular, the phase transition is analyzed in detail. Moreover, we point out that the Maxwell equal area law holds for the noncommutative black hole whose Hawking temperature is within a specific range, but fails for one whose the Hawking temperature is beyond this range. (orig.)

  7. Asymptotically AdS Charged Black Holes in String Theory with Gauss-Bonnet Correction in Various Dimensions

    CERN Document Server

    Ohta, Nobuyoshi

    2013-01-01

    We study charged black hole solutions in Einstein-Maxwell-Gauss-Bonnet theory with the dilaton field which is the low-energy effective theory of the heterotic string. The spacetime is $D$-dimensional and assumed to be static and plane symmetric with the $(D-2)$-dimensional constant curvature space and asymptotically anti-de Sitter. By imposing the boundary conditions of the existence of the regular black hole horizon and proper behavior at infinity where the Breitenlohner-Freedman bound should be satisfied, we construct black hole solutions numerically. We give the relations among the physical quantities of the black holes such as the horizon radius, the mass, the temperature, and so on. The properties of the black hole do not depend on the dimensions qualitatively, which is different from the spherically symmetric and asymptotically flat case. There is non-zero lower limit for the radius of the event horizon below which no solution exists. The temperature of the black hole becomes smaller as the horizon radi...

  8. SU(2)-Colored (A)dS Black Holes in Conformal Gravity

    CERN Document Server

    Fan, Zhong-Ying

    2014-01-01

    We consider four-dimensional conformal gravity coupled to the U(1) Maxwell and SU(2) Yang-Mills fields. We study the structure of general black hole solutions carrying five independent parameters: the mass, the electric U(1) and magnetic SU(2) charges, the massive spin-2 charge and the thermodynamical pressure associated with the cosmological constant, which is an integration constant in conformal gravity. We derive the thermodynamical first law of the black holes. We obtain some exact solutions including an extremal black hole with vanishing mass and entropy, but with non-trivial SU(2) Yang-Mills charges. We derive the remainder of the first law for this special solution. We also reexamine the colored black holes and derive their first law in Einstein-Yang-Mills gravity with or without a cosmological constant.

  9. Through the Looking Glass: AdS-FT with time dependent boundary conditions and black hole formation

    CERN Document Server

    Copsey, K

    2004-01-01

    I solve for the behavior of scalars in Lorentzian AdS with time dependent boundary conditions, focusing in particular on the dilaton. This corresponds, via the AdS-CFT correspondence, to considering a gauge theory with a time dependent coupling. Changes which keep the gauge coupling nonzero result in finite but physically interesting states in the bulk, including black holes, while sending the gauge coupling to zero appears to produce a cosmological singularity in the bulk.

  10. Thermodynamical structure of AdS black holes in massive gravity with stringy gauge-gravity corrections

    Science.gov (United States)

    Hendi, S. H.; Eslam Panah, B.; Panahiyan, S.

    2016-12-01

    Motivated by gauge/gravity group in the low energy effective theory of the heterotic string theory and novel aspects of massive gravity in the context of lattice physics, the minimal coupling of Gauss-Bonnet-massive gravity with Born-Infeld electrodynamics is considered. At first, the metric function is calculated and then the geometrical properties of the solutions are investigated. It is found that there is an essential singularity at the origin and the intrinsic curvature is regular elsewhere. In addition, the effects of massive parameters are studied and black hole solutions with multi horizons are found in this gravity. Also, the conserved and thermodynamic quantities are calculated, and it is shown that the solutions satisfy the first law of thermodynamics. Furthermore, using heat capacity of these black holes, thermal stability and phase transitions are investigated. The variation of different parameters and related modifications on the (number of) phase transition are examined. Next, the critical behavior of the Gauss-Bonnet-Born-Infeld-massive black holes in the context of extended phase space is studied. It is shown how the variation of the different parameters affects the existence and absence of phase transition. Also, it is found that for specific values of different parameters, these black holes may enjoy the existence of a new type of phase transition which to our knowledge was not observed in black hole physics before.

  11. A proposal of the gauge theory description of the small Schwarzschild black hole in AdS5 × S5

    Science.gov (United States)

    Hanada, Masanori; Maltz, Jonathan

    2017-02-01

    Based on 4d N = 4 SYM on {R}^1× {S}^3 , a gauge theory description of a small black hole in AdS5×S5 is proposed. The change of the number of dynamical degrees of freedom associated with the emission of the scalar fields' eigenvalues plays a crucial role in this description. By analyzing the microcanonical ensemble, the Hagedorn behavior of long strings at low energy is obtained. Modulo an assumption based on the AdS/CFT duality for a large black hole, the energy of the small ten-dimensional Schwarzschild black hole E ˜ 1 /( G 10,N T 7) is derived. A heuristic gauge theory argument supporting this assumption is also given. The same argument applied to the ABJM theory correctly reproduces the relation for the eleven-dimensional Schwarzschild black hole. One of the consequences of our proposal is that the small and large black holes are very similar when seen from the gauge theory point of view.

  12. Thermodynamical Structure of AdS Black Holes in Massive Gravity with Stringy Gauge-Gravity Corrections

    CERN Document Server

    Hendi, S H; Panahiyan, S

    2015-01-01

    Motivated by gauge/gravity group in the low energy effective theory of the heterotic string theory, the minimal coupling of Gauss-Bonnet-massive gravity with Born-Infeld electrodynamics is considered. At first the metric function is calculated and then the geometrical properties of the solutions are investigated. It is found that there is an essential singularity at the origin and the intrinsic curvature is regular elsewhere. In addition, the effects of massive parameters on the horizons of black holes are studied and the conserved and thermodynamic quantities are calculated. Also, it is shown that the solutions satisfy the first law of thermodynamics. Furthermore using heat capacity of these black holes, thermal stability and phase transitions are investigated. The variation of different parameters and related modifications on the (number of) phase transition are examined. Next, the critical behavior of the Gauss-Bonnet-Born-Infeld-massive black holes in context of extended phase space is studied. It is show...

  13. Q-Φ criticality in the extended phase space of (n+1)-dimensional RN-AdS black holes

    Science.gov (United States)

    Ma, Yu-Bo; Zhao, Ren; Cao, Shuo

    2016-12-01

    In order to achieve a deeper understanding of gravity theories, i.e., the quantum properties of gravity theories and the statistical explanation of gravitational entropy, it is important to further investigate the thermodynamic properties of a black hole at the critical point, besides the phase transition and critical behaviors. In this paper, by using Maxwell's equal area law, we choose T,Q,Φ as the state parameters and study the phase equilibrium problem of a general (n+1)-dimensional RN-AdS black holes thermodynamic system. The boundary of the two-phase coexistence region and its isotherm and isopotential lines are presented, which may provide a theoretical foundation for studying the phase transition and phase structure of black hole systems.

  14. On the critical phenomena and thermodynamic geometry of charged Gauss-Bonnet AdS black hole

    CERN Document Server

    Wei, Shao-Wen

    2012-01-01

    In this paper, we study the phase structure and equilibrium state space geometry of charged topological Gauss-Bonnet black holes in $d$-dimensional anti-de Sitter spacetime. Serval critical points are obtained in the canonical ensemble, and the critical phenomena and critical exponents near them are examined. We find that the phase structures and critical phenomena drastically depend on the cosmological constant $\\Lambda$ and dimensionality $d$. The result also shows that there exists an analogy between the black hole and the van der Waals liquid gas system. Moreover, we explore the phase transition and possible property of the microstructure using the state space geometry. It is found that the Ruppeiner curvature diverges exactly at the points where the heat capacity at constant charge of the black hole diverges. This black hole is also found to be a multiple system, i.e., it is similar to the ideal gas of fermions in some range of the parameters, while to the ideal gas of bosons in another range.

  15. Superfluid Black Holes

    CERN Document Server

    Hennigar, Robie A; Tjoa, Erickson

    2016-01-01

    We present what we believe is the first example of a "$\\lambda$-line" phase transition in black hole thermodynamics. This is a line of (continuous) second order phase transitions which in the case of liquid $^4$He marks the onset of superfluidity. The phase transition occurs for a class of asymptotically AdS hairy black holes in Lovelock gravity where a real scalar field is conformally coupled to gravity. We discuss the origin of this phase transition and outline the circumstances under which it (or generalizations of it) could occur.

  16. Charged Black Holes in New Massive Gravity

    OpenAIRE

    Ghodsi, Ahmad; Moghadassi, Mohammad

    2010-01-01

    We construct charged black hole solutions to three-dimensional New Massive Gravity (NMG), by adding electromagnetic Maxwell and Chern-Simons actions. We find charged black holes in the form of warped AdS_3 and "log" solutions in specific critical point. The entropy, mass and angular momentum of these black holes are computed.

  17. Geodesic Motion in the Spacetime Of a SU(2)-Colored (A)dS Black Hole in Conformal Gravity

    CERN Document Server

    Hoseini, Bahareh; Soroushfar, Saheb

    2016-01-01

    In this paper we are interested to study the geodesic motion in the spacetime of a SU(2)-colored (A)dS black hole solving in conformal gravity. Using Weierstrass elliptic and Kleinian {\\sigma} hyperelliptic functions, we derive the analytical solutions for the equation of motion of test particles and light rays. Also, we classify the possible orbits according to the particle's energy and angular momentum.

  18. On uniqueness of charged Kerr-AdS black holes in five dimensions

    CERN Document Server

    Madden, O; Madden, Owen; Ross, Simon F.

    2004-01-01

    We show that the solutions describing charged rotating black holes in five-dimensional gauged supergravities found recently by Cvetic, Lu and Pope [hep-th/0406196,hep-th/0407058] are completely specified by the mass, charges and angular momentum. The additional parameter appearing in these solutions is removed by a coordinate transformation and redefinition of parameters. Thus, the apparent hair in these solutions is unphysical.

  19. Black hole non-modal linear stability: the Schwarzschild (A)dS cases

    Science.gov (United States)

    Dotti, Gustavo

    2016-10-01

    The non-modal linear stability of the Schwarzschild black hole established in Dotti (2014 Phys. Rev. Lett. 112 191101) is generalized to the case of a non-negative cosmological constant Λ. Two gauge invariant combinations G ± of perturbed scalars made out of the Weyl tensor and its first covariant derivative are found such that the map [{h}α β ]\\to ({G}-([{h}α β ]),{G}+([{h}α β ])) with domain the set of equivalent classes [{h}α β ] under gauge transformations of solutions of the linearized Einstein’s equation, is invertible. The way to reconstruct a representative of [{h}α β ] in terms of ({G}-,{G}+) is given. It is proved that, for an arbitrary perturbation consistent with the background asymptote, {G}+ and {G}- are bounded in the the outer static region. At large times, the perturbation decays leaving a linearized Kerr black hole around the Schwarzschild or Schwarschild de Sitter background solution. For negative cosmological constant it is shown that there are choices of boundary conditions at the time-like boundary under which the Schwarzschild anti de Sitter black hole is unstable. The root of Chandrasekhar’s duality relating odd and even modes is exhibited, and some technicalities related to this duality and omitted in the original proof of the {{Λ }}=0 case are explained in detail.

  20. Clapeyron equations and fitting formula of the coexistence curve in the extended phase space of the charged AdS black holes

    CERN Document Server

    Wei, Shao-Wen

    2014-01-01

    In this paper, we first review the equal area laws and Clapeyron equations in the extended phase space of the charged AdS black holes. With different fixed parameters, the Maxwell's equal area law not only hold in $P-V$ (pressure-thermodynamic volume) oscillatory line, but also in $Q-\\Phi$ (charge-electric potential) and $T-S$ (temperature-entropy) oscillatory lines. The classical Clapeyron equation also obtains its generalizations that two extra equations are found. Moreover, we present the fitting formula of the coexistence curve that the small and large charged black holes coexist. The result shows that the fitting formula is charge independent in the reduced parameter space for any dimension of spacetime. Using such analytic expression of the coexistence curve, we find that the Clapeyron equations are highly consistent with the calculated values. The fitting formula is useful for further study on the thermodynamic property of the system varying along the coexistence curve.

  1. Tensor Network and Black Hole

    CERN Document Server

    Matsueda, Hiroaki; Hashizume, Yoichiro

    2012-01-01

    A tensor network formalism of thermofield dynamics is introduced. The formalism relates the original Hilbert space with its tilde space by a product of two copies of a tensor network. Then, their interface becomes an event horizon, and the logarithm of the tensor rank corresponds to the black hole entropy. Eventually, multiscale entanglement renormalization anzats (MERA) reproduces an AdS black hole at finite temperature. Our finding shows rich functionalities of MERA as efficient graphical representation of AdS/CFT correspondence.

  2. Life inside black holes

    CERN Document Server

    Dokuchaev, V I

    2012-01-01

    We consider test planet and photon orbits of the third kind inside a black hole, which are stable, periodic and neither come out of the black hole nor terminate at the singularity. Interiors of supermassive black holes may be inhabited by advanced civilizations living on planets with the third-kind orbits. In principle, one can get information from the interiors of black holes by observing their white hole counterparts.

  3. Black hole hair removal

    Science.gov (United States)

    Banerjee, Nabamita; Mandal, Ipsita; Sen, Ashoke

    2009-07-01

    Macroscopic entropy of an extremal black hole is expected to be determined completely by its near horizon geometry. Thus two black holes with identical near horizon geometries should have identical macroscopic entropy, and the expected equality between macroscopic and microscopic entropies will then imply that they have identical degeneracies of microstates. An apparent counterexample is provided by the 4D-5D lift relating BMPV black hole to a four dimensional black hole. The two black holes have identical near horizon geometries but different microscopic spectrum. We suggest that this discrepancy can be accounted for by black hole hair — degrees of freedom living outside the horizon and contributing to the degeneracies. We identify these degrees of freedom for both the four and the five dimensional black holes and show that after their contributions are removed from the microscopic degeneracies of the respective systems, the result for the four and five dimensional black holes match exactly.

  4. Black Hole Hair Removal

    CERN Document Server

    Banerjee, Nabamita; Sen, Ashoke

    2009-01-01

    Macroscopic entropy of an extremal black hole is expected to be determined completely by its near horizon geometry. Thus two black holes with identical near horizon geometries should have identical macroscopic entropy, and the expected equality between macroscopic and microscopic entropies will then imply that they have identical degeneracies of microstates. An apparent counterexample is provided by the 4D-5D lift relating BMPV black hole to a four dimensional black hole. The two black holes have identical near horizon geometries but different microscopic spectrum. We suggest that this discrepancy can be accounted for by black hole hair, -- degrees of freedom living outside the horizon and contributing to the degeneracies. We identify these degrees of freedom for both the four and the five dimensional black holes and show that after their contributions are removed from the microscopic degeneracies of the respective systems, the result for the four and five dimensional black holes match exactly.

  5. Rotating black hole hair

    CERN Document Server

    Gregory, Ruth; Wills, Danielle

    2013-01-01

    A Kerr black hole sporting cosmic string hair is studied in the context of the abelian Higgs model vortex. It is shown that a such a system displays much richer phenomenology than its static Schwarzschild or Reissner--Nordstrom cousins, for example, the rotation generates a near horizon `electric' field. In the case of an extremal rotating black hole, two phases of the Higgs hair are possible: Large black holes exhibit standard hair, with the vortex piercing the event horizon. Small black holes on the other hand, exhibit a flux-expelled solution, with the gauge and scalar field remaining identically in their false vacuum state on the event horizon. This solution however is extremely sensitive to confirm numerically, and we conjecture that it is unstable due to a supperradiant mechanism similar to the Kerr-adS instability. Finally, we compute the gravitational back reaction of the vortex, which turns out to be far more nuanced than a simple conical deficit. While the string produces a conical effect, it is con...

  6. Black holes and Higgs stability

    Energy Technology Data Exchange (ETDEWEB)

    Tetradis, Nikolaos [Department of Physics, University of Athens,Zographou 157 84 (Greece); Physics Department, Theory Unit, CERN,CH-1211 Geneva 23 (Switzerland)

    2016-09-20

    We study the effect of primordial black holes on the classical rate of nucleation of AdS regions within the standard electroweak vacuum. We find that the energy barrier for transitions to the new vacuum, which characterizes the exponential suppression of the nucleation rate, can be reduced significantly in the black-hole background. A precise analysis is required in order to determine whether the the existence of primordial black holes is compatible with the form of the Higgs potential at high temperature or density in the Standard Model or its extensions.

  7. The Black Hole Information Problem

    CERN Document Server

    Polchinski, Joseph

    2016-01-01

    The black hole information problem has been a challenge since Hawking's original 1975 paper. It led to the discovery of AdS/CFT, which gave a partial resolution of the paradox. However, recent developments, in particular the firewall puzzle, show that there is much that we do not understand. I review the black hole, Hawking radiation, and the Page curve, and the classic form of the paradox. I discuss AdS/CFT as a partial resolution. I then discuss black hole complementarity and its limitations, leading to many proposals for different kinds of `drama.' I conclude with some recent ideas.

  8. Noncommutative black holes

    Energy Technology Data Exchange (ETDEWEB)

    Lopez-DomInguez, J C [Instituto de Fisica de la Universidad de Guanajuato PO Box E-143, 37150 Leoen Gto. (Mexico); Obregon, O [Instituto de Fisica de la Universidad de Guanajuato PO Box E-143, 37150 Leoen Gto. (Mexico); RamIrez, C [Facultad de Ciencias FIsico Matematicas, Universidad Autonoma de Puebla, PO Box 1364, 72000 Puebla (Mexico); Sabido, M [Instituto de Fisica de la Universidad de Guanajuato PO Box E-143, 37150 Leoen Gto. (Mexico)

    2007-11-15

    We study noncommutative black holes, by using a diffeomorphism between the Schwarzschild black hole and the Kantowski-Sachs cosmological model, which is generalized to noncommutative minisuperspace. Through the use of the Feynman-Hibbs procedure we are able to study the thermodynamics of the black hole, in particular, we calculate Hawking's temperature and entropy for the 'noncommutative' Schwarzschild black hole.

  9. Black Hole Thermodynamics

    Science.gov (United States)

    Israel, Werner

    This chapter reviews the conceptual developments on black hole thermodynamics and the attempts to determine the origin of black hole entropy in terms of their horizon area. The brick wall model and an operational approach are discussed. An attempt to understand at the microlevel how the quantum black hole acquires its thermal properties is included. The chapter concludes with some remarks on the extension of these techniques to describing the dynamical process of black hole evaporation.

  10. Einstein-Born-Infeld-Massive Gravity: adS-Black Hole Solutions and their Thermal Stability

    CERN Document Server

    Hendi, Seyed Hossein; Panahiyan, Shahram

    2015-01-01

    In this paper, we study massive gravity in the presence of Born-Infeld nonlinear electrodynamics. First, we obtain metric function related to this gravity and investigate the geometry of the solutions and find that there is an essential singularity at the origin ($r=0$). It will be shown that due to contribution of the massive part, the number, types and places of horizons may be changed. Next, we calculate the conserved and thermodynamic quantities and check the validation of the first law of thermodynamics. We also investigate thermal stability of these black holes in context of canonical ensemble. It will be shown that number, type and place of phase transitions points are functions of the different parameters which lead to dependency of stability conditions to these parameters. Also, it will be shown how the behavior of the temperature is modified due to extension of massive gravity and strong nonlinearity parameter.

  11. Research on black hole problem in mobile ad hoc networks%移动Ad hoc网络中黑洞问题的研究

    Institute of Scientific and Technical Information of China (English)

    沈明玉; 刘俊龙

    2011-01-01

    移动Ad hoc网络在民用设施和国防事业方面得到广泛应用,动态变化的拓扑结构是Ad hoc网络的一大特征,也正是这种动态性使得Ad hoc网络特别容易受到安全方面的攻击.文章剖析了AODV路由协议的工作过程,针对协议中存在的黑洞问题,提出了一种新的解决方案,该方案不仅有效地解决了黑洞问题而且可以消除一些现有解决方案所存在的缺陷.%Mobile ad hoc networks are extensively used in military and civilian application, one typical characteristic of which is the dynamic topological structure. This dynamic nature of topology makes the network vulnerable to security attacks. This paper analyzes the operating process and potential insecurity factors of AODV routing protocol, and proposes a new solution for the black hole problem.The solution can not only solve the black hole problem efficiently, but it can also make up the deficiencies of some solutions in existence.

  12. Monopole black hole skyrmions

    OpenAIRE

    Moss, I. G.; Shiiki, N.; Winstanley, E.

    2000-01-01

    Charged black hole solutions with pion hair are discussed. These can be\\ud used to study monopole black hole catalysis of proton decay.\\ud There also exist\\ud multi-black hole skyrmion solutions with BPS monopole behaviour.

  13. Black holes in binary stars

    NARCIS (Netherlands)

    Wijers, R.A.M.J.

    1996-01-01

    Introduction Distinguishing neutron stars and black holes Optical companions and dynamical masses X-ray signatures of the nature of a compact object Structure and evolution of black-hole binaries High-mass black-hole binaries Low-mass black-hole binaries Low-mass black holes Formation of black holes

  14. Holographic Lovelock gravities and black holes

    NARCIS (Netherlands)

    de Boer, J.; Kulaxizi, M.; Parnachev, A.

    2010-01-01

    We study holographic implications of Lovelock gravities in AdS spacetimes. For a generic Lovelock gravity in arbitrary spacetime dimensions we formulate the existence condition of asymptotically AdS black holes. We consider small fluctuations around these black holes and determine the constraint on

  15. Einstein-Katz action, variational principle, Noether charges and the thermodynamics of AdS-black holes

    Science.gov (United States)

    Anabalón, Andrés; Deruelle, Nathalie; Julié, Félix-Louis

    2016-08-01

    In this paper we describe 4-dimensional gravity coupled to scalar and Maxwell fields by the Einstein-Katz action, that is, the covariant version of the "Gamma-Gamma -Gamma-Gamma" part of the Hilbert action supplemented by the divergence of a generalized "Katz vector". We consider static solutions of Einstein's equations, parametrized by some integration constants, which describe an ensemble of asymptotically AdS black holes. Instead of the usual Dirichlet boundary conditions, which aim at singling out a specific solution within the ensemble, we impose that the variation of the action vanishes on shell for the broadest possible class of solutions. We will see that, when a long-range scalar "hair" is present, only sub-families of the solutions can obey that criterion. The Katz-Bicak-Lynden-Bell ("KBL") superpotential built on this (generalized) vector will then give straightforwardly the Noether charges associated with the spacetime symmetries (that is, in the static case, the mass). Computing the action on shell, we will see next that the solutions which obey the imposed variational principle, and with Noether charges given by the KBL superpotential, satisfy the Gibbs relation, the Katz vectors playing the role of "counterterms". Finally, we show on the specific example of dyonic black holes that the sub-class selected by our variational principle satisfies the first law of thermodynamics when their mass is defined by the KBL superpotential.

  16. On Accelerated Black Holes

    CERN Document Server

    Letelier, P S; Letelier, Patricio S.; Oliveira, Samuel R.

    1998-01-01

    The C-metric is revisited and global interpretation of some associated spacetimes are studied in some detail. Specially those with two event horizons, one for the black hole and another for the acceleration. We found that the spacetime fo an accelerated Schwarzschild black hole is plagued by either conical singularities or lack of smoothness and compactness of the black hole horizon. By using standard black hole thermodynamics we show that accelerated black holes have higher Hawking temperature than Unruh temperature. We also show that the usual upper bound on the product of the mass and acceleration parameters (<1/sqrt(27)) is just a coordinate artifact. The main results are extended to accelerated Kerr black holes. We found that they are not changed by the black hole rotation.

  17. Charged Lifshitz Black Holes

    OpenAIRE

    Dehghani, M. H.; Pourhasan, R.; Mann, R. B.

    2011-01-01

    We investigate modifications of the Lifshitz black hole solutions due to the presence of Maxwell charge in higher dimensions for arbitrary $z$ and any topology. We find that the behaviour of large black holes is insensitive to the topology of the solutions, whereas for small black holes significant differences emerge. We generalize a relation previously obtained for neutral Lifshitz black branes, and study more generally the thermodynamic relationship between energy, entropy, and chemical pot...

  18. Validity of Maxwell Equal Area Law for Black Holes Conformally Coupled to Scalar Fields in $\\text{AdS}_5$ Spacetime

    CERN Document Server

    Miao, Yan-Gang

    2016-01-01

    We investigate the $P-V$ criticality and the Maxwell equal area law for a five-dimensional spherically symmetric AdS black hole with a scalar hair in the absence of and in the presence of a Maxwell field, respectively. Especially in the charged case, we give the exact $P-V$ critical values. More importantly, we calculate the condition of validity of the Maxwell equal area law for the AdS hairy black hole in the scenarios without and with charges, respectively. Within the scope of validity of the Maxwell equal area law, we point out that there exists a representative van der Waals-type oscillation in the $P-V$ diagram. This oscillating part that indicates the phase transition from a small black hole to a large one can be replaced by an isobar. The small and large black holes share the same Gibbs free energy. Meanwhile, the latent heat is also calculated, which gives the energy released or absorbed between the small and large black hole phases in the isothermal-isobaric procedure.

  19. Astrophysical black holes

    CERN Document Server

    Gorini, Vittorio; Moschella, Ugo; Treves, Aldo; Colpi, Monica

    2016-01-01

    Based on graduate school lectures in contemporary relativity and gravitational physics, this book gives a complete and unified picture of the present status of theoretical and observational properties of astrophysical black holes. The chapters are written by internationally recognized specialists. They cover general theoretical aspects of black hole astrophysics, the theory of accretion and ejection of gas and jets, stellar-sized black holes observed in the Milky Way, the formation and evolution of supermassive black holes in galactic centers and quasars as well as their influence on the dynamics in galactic nuclei. The final chapter addresses analytical relativity of black holes supporting theoretical understanding of the coalescence of black holes as well as being of great relevance in identifying gravitational wave signals. With its introductory chapters the book is aimed at advanced graduate and post-graduate students, but it will also be useful for specialists.

  20. Asymptotic Black Holes

    CERN Document Server

    Ho, Pei-Ming

    2016-01-01

    Following earlier works on the KMY model of black-hole formation and evaporation, we construct the metric for a matter sphere in gravitational collapse, with the back-reaction of pre-Hawking radiation taken into consideration. The mass distribution and collapsing velocity of the matter sphere are allowed to have an arbitrary radial dependence. We find that a generic gravitational collapse asymptote to a universal configuration which resembles a black hole but without horizon. This approach clarifies several misunderstandings about black-hole formation and evaporation, and provides a new model for black-hole-like objects in the universe.

  1. Asymptotic black holes

    Science.gov (United States)

    Ho, Pei-Ming

    2017-04-01

    Following earlier works on the KMY model of black-hole formation and evaporation, we construct the metric for a matter sphere in gravitational collapse, with the back-reaction of pre-Hawking radiation taken into consideration. The mass distribution and collapsing velocity of the matter sphere are allowed to have an arbitrary radial dependence. We find that a generic gravitational collapse asymptote to a universal configuration which resembles a black hole but without horizon. This approach clarifies several misunderstandings about black-hole formation and evaporation, and provides a new model for black-hole-like objects in the universe.

  2. Perturbing supersymmetric black hole

    CERN Document Server

    Onozawa, H; Mishima, T; Ishihara, H; Onozawa, Hisashi; Okamura, Takashi; Mishima, Takashi; Ishihara, Hideki

    1996-01-01

    An investigation of the perturbations of the Reissner-Nordstr\\"{o}m black hole in the N=2 supergravity is presented. In the extreme case, the black hole responds to the perturbation of each field in the same manner. This is possibly because we can match the modes of the graviton, gravitino, and photon using supersymmetry transformations.

  3. Black Hole Dynamic Potentials

    Indian Academy of Sciences (India)

    Koustubh Ajit Kabe

    2012-09-01

    In the following paper, certain black hole dynamic potentials have been developed definitively on the lines of classical thermodynamics. These potentials have been refined in view of the small differences in the equations of the laws of black hole dynamics as given by Bekenstein and those of thermodynamics. Nine fundamental black hole dynamical relations have been developed akin to the four fundamental thermodynamic relations of Maxwell. The specific heats , and , have been defined. For a black hole, these quantities are negative. The d equation has been obtained as an application of these fundamental relations. Time reversible processes observing constancy of surface gravity are considered and an equation connecting the internal energy of the black hole , the additional available energy defined as the first free energy function , and the surface gravity , has been obtained. Finally as a further application of the fundamental relations, it has been proved for a homogeneous gravitational field in black hole space times or a de Sitter black hole that $C_{\\Omega,\\Phi}-C_{J,Q}=\\kappa \\left[\\left(\\dfrac{\\partial J}{\\partial \\kappa}\\right)_{\\Omega,\\Phi}\\left(\\dfrac{\\partial \\Omega}{\\partial \\kappa}\\right)_{J,Q}+\\left(\\dfrac{\\partial Q}{\\partial \\kappa}\\right)_{\\Omega,\\Phi}\\left(\\dfrac{\\partial\\Phi}{\\partial \\kappa}\\right)_{J,Q}\\right]$. This is dubbed as the homogeneous fluid approximation in context of the black holes.

  4. Black holes matter

    DEFF Research Database (Denmark)

    Kragh, Helge Stjernholm

    2016-01-01

    Review essay, Marcia Bartusiak, Black Hole: How an Idea Abandoned by Newtonians, Hated by Einstein, and Gambled On by Hawking Became Loved (New Haven: Yale University Press, 2015).......Review essay, Marcia Bartusiak, Black Hole: How an Idea Abandoned by Newtonians, Hated by Einstein, and Gambled On by Hawking Became Loved (New Haven: Yale University Press, 2015)....

  5. Scattering by Black Holes

    CERN Document Server

    Andersson, N

    2000-01-01

    This is a chapter on Black-hole Scattering that was commissioned for an Encyclopaedia on Scattering edited by Pike and Sabatier, to be published by Academic Press. The chapter surveys wave propagation in black-hole spacetimes, diffraction effects in wave scattering, resonances, quasinormal modes and related topics.

  6. Cosmological Black Holes

    CERN Document Server

    Stornaiolo, C

    2002-01-01

    In this letter we propose the existence of low density black holes and discuss its compatibility with the cosmological observations. The origin of these black holes can be traced back to the collapse of long wavelength cosmological perturbations during the matter dominated era, when the densities are low enough to neglect any internal and thermal pressure. By introducing a threshold density $\\hat{\\rho}$ above which pressure and non-gravitational interactions become effective, we find the highest wavelength for the perturbations that can reach an equilibrium state instead of collapsing to a black hole. The low density black holes introduced here, if they exist, can be observed through weak and strong gravitational lensing effects. Finally we observe that we obtained here a cosmological model which is capable to explain in a qualitative way the void formation together with the value $\\Omega=1$. But we remark that it needs to be improved by considering non spherical symmetric black holes.

  7. Primordial Black Hole Baryogenesis

    CERN Document Server

    Baumann, D; Turok, N G; Baumann, Daniel; Steinhardt, Paul J.; Turok, Neil

    2007-01-01

    We reconsider the possibility that the observed baryon asymmetry was generated by the evaporation of primordial black holes that dominated the early universe. We present a simple derivation showing that the baryon asymmetry is insensitive to the initial black hole density and the cosmological model but is sensitive to the temperature-dependence of the CP and baryon-violating (or lepton-violating) interactions. We also consider the possibility that black holes stop evaporating and form Planck-mass remnants that act as dark matter. We show that primordial black holes cannot simultaneously account for both the observed baryon asymmetry and the (remnant) dark matter density unless the magnitude of CP violation is much greater than expected from most particle physics models. Finally, we apply these results to ekpyrotic/cyclic models, in which primordial black holes may form when branes collide. We find that obtaining the observed baryon asymmetry is compatible with the other known constraints on parameters.

  8. Lifshitz Topological Black Holes

    CERN Document Server

    Mann, R B

    2009-01-01

    I find a class of black hole solutions to a (3+1) dimensional theory gravity coupled to abelian gauge fields with negative cosmological constant that has been proposed as the dual theory to a Lifshitz theory describing critical phenomena in (2+1) dimensions. These black holes are all asymptotic to a Lifshitz fixed point geometry and depend on a single parameter that determines both their area (or size) and their charge. Most of the solutions are obtained numerically, but an exact solution is also obtained for a particular value of this parameter. The thermodynamic behaviour of large black holes is almost the same regardless of genus, but differs considerably for small black holes. Screening behaviour is exhibited in the dual theory for any genus, but the critical length at which it sets in is genus-dependent for small black holes.

  9. Black Hole Thermodynamics

    CERN Document Server

    Carlip, S

    2014-01-01

    The discovery in the early 1970s that black holes radiate as black bodies has radically affected our understanding of general relativity, and offered us some early hints about the nature of quantum gravity. In this chapter I will review the discovery of black hole thermodynamics and summarize the many independent ways of obtaining the thermodynamic and (perhaps) statistical mechanical properties of black holes. I will then describe some of the remaining puzzles, including the nature of the quantum microstates, the problem of universality, and the information loss paradox.

  10. Dumb holes: analogues for black holes.

    Science.gov (United States)

    Unruh, W G

    2008-08-28

    The use of sonic analogues to black and white holes, called dumb or deaf holes, to understand the particle production by black holes is reviewed. The results suggest that the black hole particle production is a low-frequency and low-wavenumber process.

  11. Black Hole Critical Phenomena Without Black Holes

    CERN Document Server

    Liebling, S L

    2000-01-01

    Studying the threshold of black hole formation via numerical evolution has led to the discovery of fascinating nonlinear phenomena. Power-law mass scaling, aspects of universality, and self-similarity have now been found for a large variety of models. However, questions remain. Here I briefly review critical phenomena, discuss some recent results, and describe a model which demonstrates similar phenomena without gravity.

  12. Einstein-Katz action, variational principle, Noether charges and the thermodynamics of AdS-black holes

    CERN Document Server

    Anabalón, Andrés; Julié, Félix

    2016-01-01

    In this paper we describe 4-dimensional gravity coupled to scalar and Maxwell fields by the Einstein-Katz action, that is, the covariant version of the "Gamma-Gamma $-$ Gamma-Gamma" part of the Hilbert action supplemented by the divergence of a generalized "Katz vector". We consider static solutions of Einstein's equations, parametrized by some integration constants, which describe an ensemble of asymptotically AdS black holes. Instead of the usual Dirichlet boundary conditions, which aim at singling out a specific solution within the ensemble, we impose that the variation of the action vanishes on shell for the broadest possible class of solutions. We will see that, when a long-range scalar "hair" is present, only sub-families of the solutions can obey that criterion. The Katz superpotential built on his (generalized) vector will then give straightforwardly the Noether charges associated with the spacetime symmetries (that is, in the static case, the mass). Computing the action on shell, we will see next tha...

  13. Disrupting Entanglement of Black Holes

    CERN Document Server

    Leichenauer, Stefan

    2014-01-01

    We study entanglement in thermofield double states of strongly coupled CFTs by analyzing two-sided Reissner-Nordstrom solutions in AdS. The central object of study is the mutual information between a pair of regions, one on each asymptotic boundary of the black hole. For large regions the mutual information is positive and for small ones it vanishes; we compute the critical length scale, which goes to infinity for extremal black holes, of the transition. We also generalize the butterfly effect of Shenker and Stanford to a wide class of charged black holes, showing that mutual information is disrupted upon perturbing the system and waiting for a time of order $\\log E/\\delta E$ in units of the temperature. We conjecture that the parametric form of this timescale is universal.

  14. Instability of charged anti-de Sitter black holes

    Science.gov (United States)

    Gwak, Bogeun; Lee, Bum-Hoon; Ro, Daeho

    2016-10-01

    We have studied the instability of charged anti-de Sitter black holes in four- or higher-dimensions under fragmentation. The unstable black holes under fragmentation can be broken into two black holes. Instability depends not only on the mass and charge of the black hole but also on the ratio between the fragmented black hole and its predecessor. We have found that the near extremal black holes are unstable, and Schwarzschild-AdS black holes are stable. These are qualitatively similar to black holes in four dimensions and higher. The detailed instabilities are numerically investigated.

  15. Black holes new horizons

    CERN Document Server

    Hayward, Sean Alan

    2013-01-01

    Black holes, once just fascinating theoretical predictions of how gravity warps space-time according to Einstein's theory, are now generally accepted as astrophysical realities, formed by post-supernova collapse, or as supermassive black holes mysteriously found at the cores of most galaxies, powering active galactic nuclei, the most powerful objects in the universe. Theoretical understanding has progressed in recent decades with a wider realization that local concepts should characterize black holes, rather than the global concepts found in textbooks. In particular, notions such as trapping h

  16. Scalarized hairy black holes

    Energy Technology Data Exchange (ETDEWEB)

    Kleihaus, Burkhard, E-mail: b.kleihaus@uni-oldenburg.de [Institut für Physik, Universität Oldenburg, Postfach 2503, D-26111 Oldenburg (Germany); Kunz, Jutta [Institut für Physik, Universität Oldenburg, Postfach 2503, D-26111 Oldenburg (Germany); Yazadjiev, Stoytcho [Department of Theoretical Physics, Faculty of Physics, Sofia University, Sofia 1164 (Bulgaria)

    2015-05-11

    In the presence of a complex scalar field scalar–tensor theory allows for scalarized rotating hairy black holes. We exhibit the domain of existence for these scalarized black holes, which is bounded by scalarized rotating boson stars and hairy black holes of General Relativity. We discuss the global properties of these solutions. Like their counterparts in general relativity, their angular momentum may exceed the Kerr bound, and their ergosurfaces may consist of a sphere and a ring, i.e., form an ergo-Saturn.

  17. Scalarized hairy black holes

    Directory of Open Access Journals (Sweden)

    Burkhard Kleihaus

    2015-05-01

    Full Text Available In the presence of a complex scalar field scalar–tensor theory allows for scalarized rotating hairy black holes. We exhibit the domain of existence for these scalarized black holes, which is bounded by scalarized rotating boson stars and hairy black holes of General Relativity. We discuss the global properties of these solutions. Like their counterparts in general relativity, their angular momentum may exceed the Kerr bound, and their ergosurfaces may consist of a sphere and a ring, i.e., form an ergo-Saturn.

  18. Black Hole Entropy

    OpenAIRE

    P. Mitra

    1994-01-01

    In the talk different definitions of the black hole entropy are discussed and compared. It is shown that the Bekenstein-Hawking entropy $S^{BH}$ (defined by the response of the free energy of a system containing a black hole on the change of the temperature) differs from the statistical- mechanical entropy $S^{SM}=-\\mbox{Tr}(\\hat{\\rho}\\ln \\hat{\\rho})$ (defined by counting internal degrees of freedom of a black hole). A simple explanation of the universality of the Bekenstein-Hawking entropy (...

  19. Black hole entropy

    CERN Document Server

    Frolov, V

    1994-01-01

    In the talk different definitions of the black hole entropy are discussed and compared. It is shown that the Bekenstein-Hawking entropy S^{BH} (defined by the response of the free energy of a system containing a black hole on the change of the temperature) differs from the statistical- mechanical entropy S^{SM}=-\\mbox{Tr}(\\hat{\\rho}\\ln \\hat{\\rho}) (defined by counting internal degrees of freedom of a black hole). A simple explanation of the universality of the Bekenstein-Hawking entropy (i.e. its independence of the number and properties of the fields which might contribute to S^{SM}) is given.

  20. Primordial Black Holes

    CERN Document Server

    MacGibbon, Jane H; Linnemann, J T; Marinelli, S S; Stump, D; Tollefson, K

    2015-01-01

    Primordial Black Holes (PBHs) are of interest in many cosmological contexts. PBHs lighter than about 1012 kg are predicted to be directly detectable by their Hawking radiation. This radiation should produce both a diffuse extragalactic gamma-ray background from the cosmologically-averaged distribution of PBHs and gamma-ray burst signals from individual light black holes. The Fermi, Milagro, Veritas, HESS and HAWC observatories, in combination with new burst recognition methodologies, offer the greatest sensitivity for the detection of such black holes or placing limits on their existence.

  1. On Black Hole Entropy Corrections in the Grand Canonical Ensemble

    CERN Document Server

    Mahapatra, Subhash; Sarkar, Tapobrata

    2011-01-01

    We study entropy corrections due to thermal fluctuations for asymptotically AdS black holes in the grand canonical ensemble. To leading order, these can be expressed in terms of the black hole response coefficients via fluctuation moments. We also analyze entropy corrections due to mass and charge fluctuations of R-charged black holes, and our results indicate an universality in the logarithmic corrections to charged AdS black hole entropy in various dimensions.

  2. Black hole critical phenomena without black holes

    Indian Academy of Sciences (India)

    Steven L Liebling

    2000-10-01

    Studying the threshold of black hole formation via numerical evolution has led to the discovery of fascinating nonlinear phenomena. Power-law mass scaling, aspects of universality, and self-similarity have now been found for a large variety of models. However, questions remain. Here I briefly review critical phenomena, discuss some recent results, and describe a model which demonstrates similar phenomena without gravity.

  3. Modelling quantum black hole

    CERN Document Server

    Govindarajan, T R

    2016-01-01

    Novel bound states are obtained for manifolds with singular potentials. These singular potentials require proper boundary conditions across boundaries. The number of bound states match nicely with what we would expect for black holes. Also they serve to model membrane mechanism for the black hole horizons in simpler contexts. The singular potentials can also mimic expanding boundaries elegantly, there by obtaining appropriately tuned radiation rates.

  4. Helical superconducting black holes.

    Science.gov (United States)

    Donos, Aristomenis; Gauntlett, Jerome P

    2012-05-25

    We construct novel static, asymptotically five-dimensional anti-de Sitter black hole solutions with Bianchi type-VII(0) symmetry that are holographically dual to superconducting phases in four spacetime dimensions with a helical p-wave order. We calculate the precise temperature dependence of the pitch of the helical order. At zero temperature the black holes have a vanishing entropy and approach domain wall solutions that reveal homogenous, nonisotropic dual ground states with an emergent scaling symmetry.

  5. Braneworld black holes

    CERN Document Server

    Gregory, Ruth

    2008-01-01

    In these lectures, I give an introduction to and overview of braneworlds and black holes in the context of warped compactifications. I first describe the general paradigm of braneworlds, and introduce the Randall-Sundrum model. I discuss braneworld gravity, both using perturbation theory, and also non perturbative results. I then discuss black holes on the brane, the obstructions to finding exact solutions, and ways of tackling these difficulties. I describe some known solutions, and conclude with some open questions and controversies.

  6. Black Hole Induced Ejections

    OpenAIRE

    Pelletier, G.

    2004-01-01

    Black Holes generate a particular kind of environments dominated by an accretion flow which concentrates a magnetic field. The interplay of gravity and magnetism creates this paradoxical situation where relativistic ejection is allowed and consequently high energy phenomena take place. Therefore Black Holes, which are very likely at the origin of powerfull astrophysical phenomena such as AGNs, micro- quasars and GRBs where relativistic ejections are observed, are at the heart of high energy a...

  7. Charged Galileon black holes

    Science.gov (United States)

    Babichev, Eugeny; Charmousis, Christos; Hassaine, Mokhtar

    2015-05-01

    We consider an Abelian gauge field coupled to a particular truncation of Horndeski theory. The Galileon field has translation symmetry and couples non minimally both to the metric and the gauge field. When the gauge-scalar coupling is zero the gauge field reduces to a standard Maxwell field. By taking into account the symmetries of the action, we construct charged black hole solutions. Allowing the scalar field to softly break symmetries of spacetime we construct black holes where the scalar field is regular on the black hole event horizon. Some of these solutions can be interpreted as the equivalent of Reissner-Nordstrom black holes of scalar tensor theories with a non trivial scalar field. A self tuning black hole solution found previously is extended to the presence of dyonic charge without affecting whatsoever the self tuning of a large positive cosmological constant. Finally, for a general shift invariant scalar tensor theory we demonstrate that the scalar field Ansatz and method we employ are mathematically compatible with the field equations. This opens up the possibility for novel searches of hairy black holes in a far more general setting of Horndeski theory.

  8. Ultramassive Black Hole Coalescence

    CERN Document Server

    Khan, Fazeel; Berczik, Peter

    2015-01-01

    Although supermassive black holes (SMBHs) correlate well with their host galaxies, there is an emerging view that outliers exist. Henize 2-10, NGC 4889, and NGC1277 are examples of SMBHs at least an order of magnitude more massive than their host galaxy suggests. The dynamical effects of such ultramassive central black holes is unclear. Here, we perform direct N-body simulations of mergers of galactic nuclei where one black hole is ultramassive to study the evolution of the remnant and the black hole dynamics in this extreme regime. We find that the merger remnant is axisymmetric near the center, while near the large SMBH influence radius, the galaxy is triaxial. The SMBH separation shrinks rapidly due to dynamical friction, and quickly forms a binary black hole; if we scale our model to the most massive estimate for the NGC1277 black hole, for example, the timescale for the SMBH separation to shrink from nearly a kiloparsec to less than a parsec is roughly 10 Myr. By the time the SMBHs form a hard binary, gr...

  9. Newborn Black Holes

    Science.gov (United States)

    Science Teacher, 2005

    2005-01-01

    Scientists using NASA's Swift satellite say they have found newborn black holes, just seconds old, in a confused state of existence. The holes are consuming material falling into them while somehow propelling other material away at great speeds. "First comes a blast of gamma rays followed by intense pulses of x-rays. The energies involved are much…

  10. Van der Waals black hole

    Directory of Open Access Journals (Sweden)

    Aruna Rajagopal

    2014-10-01

    Full Text Available In the context of extended phase space, where the negative cosmological constant is treated as a thermodynamic pressure in the first law of black hole thermodynamics, we find an asymptotically AdS metric whose thermodynamics matches exactly that of the Van der Waals fluid. We show that as a solution of Einstein's equations, the corresponding stress energy tensor obeys (at least for certain range of metric parameters all three weak, strong, and dominant energy conditions.

  11. Cosmic censorship inside black holes

    CERN Document Server

    Thorlacius, L

    2006-01-01

    A simple argument is given that a traversable Cauchy horizon inside a black hole is incompatible with unitary black hole evolution. The argument assumes the validity of black hole complementarity and applies to a generic black hole carrying angular momentum and/or charge. In the second part of the paper we review recent work on the semiclassical geometry of two-dimensional charged black holes.

  12. Black holes and beyond

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2002-02-01

    Belief in the existence of black holes is the ultimate act of faith for a physicist. First suggested by the English clergyman John Michell in the year 1784, the gravitational pull of a black hole is so strong that nothing - not even light - can escape. Gravity might be the weakest of the fundamental forces but black-hole physics is not for the faint-hearted. Black holes present obvious problems for would-be observers because they cannot, by definition, be seen with conventional telescopes - although before the end of the decade gravitational-wave detectors should be able to study collisions between black holes. Until then astronomers can only infer the existence of a black hole from its gravitational influence on other matter, or from the X-rays emitted by gas and dust as they are dragged into the black hole. However, once this material passes through the 'event horizon' that surrounds the black hole, we will never see it again - not even with X-ray specs. Despite these observational problems, most physicists and astronomers believe that black holes do exist. Small black holes a few kilometres across are thought to form when stars weighing more than about two solar masses collapse under the weight of their own gravity, while supermassive black holes weighing millions of solar masses appear to be present at the centre of most galaxies. Moreover, some brave physicists have proposed ways to make black holes - or at least event horizons - in the laboratory. The basic idea behind these 'artificial black holes' is not to compress a large amount of mass into a small volume, but to reduce the speed of light in a moving medium to less than the speed of the medium and so create an event horizon. The parallels with real black holes are not exact but the experiments could shed new light on a variety of phenomena. The first challenge, however, is to get money for the research. One year on from a high-profile meeting on artificial black holes in London, for

  13. Janus black holes

    Science.gov (United States)

    Bak, Dongsu; Gutperle, Michael; Janik, Romuald A.

    2011-10-01

    In this paper Janus black holes in A dS 3 are considered. These are static solutions of an Einstein-scalar system with broken translation symmetry along the horizon. These solutions are dual to interface conformal field theories at finite temperature. An approximate solution is first constructed using perturbation theory around a planar BTZ blackhole. Numerical and exact solutions valid for all sets of parameters are then found and compared. Using the exact solution the thermodynamics of the system is analyzed. The entropy associated with the Janus black hole is calculated and it is found that the entropy of the black Janus is the sum of the undeformed black hole entropy and the entanglement entropy associated with the defect.

  14. On the thermodynamics of hairy black holes

    Energy Technology Data Exchange (ETDEWEB)

    Anabalón, Andrés [Departamento de Ciencias, Facultad de Artes Liberales y Facultad de Ingeniería y Ciencias, Universidad Adolfo Ibáñez, Viña del Mar (Chile); Astefanesei, Dumitru [Instituto de Física, Pontificia Universidad Católica de Valparaíso, Casilla 4059, Valparaíso (Chile); Choque, David, E-mail: brst1010123@gmail.com [Universidad Técnica Federico Santa María, Av. España 1680, Valparaiso (Chile)

    2015-04-09

    We investigate the thermodynamics of a general class of exact 4-dimensional asymptotically Anti-de Sitter hairy black hole solutions and show that, for a fixed temperature, there are small and large hairy black holes similar to the Schwarzschild–AdS black hole. The large black holes have positive specific heat and so they can be in equilibrium with a thermal bath of radiation at the Hawking temperature. The relevant thermodynamic quantities are computed by using the Hamiltonian formalism and counterterm method. We explicitly show that there are first order phase transitions similar to the Hawking–Page phase transition.

  15. On the thermodynamics of hairy black holes

    Directory of Open Access Journals (Sweden)

    Andrés Anabalón

    2015-04-01

    Full Text Available We investigate the thermodynamics of a general class of exact 4-dimensional asymptotically Anti-de Sitter hairy black hole solutions and show that, for a fixed temperature, there are small and large hairy black holes similar to the Schwarzschild–AdS black hole. The large black holes have positive specific heat and so they can be in equilibrium with a thermal bath of radiation at the Hawking temperature. The relevant thermodynamic quantities are computed by using the Hamiltonian formalism and counterterm method. We explicitly show that there are first order phase transitions similar to the Hawking–Page phase transition.

  16. Entropy Inequality Violations from Ultraspinning Black Holes.

    Science.gov (United States)

    Hennigar, Robie A; Mann, Robert B; Kubizňák, David

    2015-07-17

    We construct a new class of rotating anti-de Sitter (AdS) black hole solutions with noncompact event horizons of finite area in any dimension and study their thermodynamics. In four dimensions these black holes are solutions to gauged supergravity. We find that their entropy exceeds the maximum implied from the conjectured reverse isoperimetric inequality, which states that for a given thermodynamic volume, the black hole entropy is maximized for Schwarzschild-AdS space. We use this result to suggest more stringent conditions under which this conjecture may hold.

  17. Merging Black Holes

    Science.gov (United States)

    Centrella, Joan

    2009-05-01

    The final merger of two black holes is expected to be the strongest gravitational wave source for ground-based interferometers such as LIGO, VIRGO, and GEO600, as well as the space-based LISA. Observing these sources with gravitational wave detectors requires that we know the radiation waveforms they emit. And, when the black holes merge in the presence of gas and magnetic fields, various types of electromagnetic signals may also be produced. Since these mergers take place in regions of extreme gravity, we need to solve Einstein's equations of general relativity on a computer. For more than 30 years, scientists have tried to compute black hole mergers using the methods of numerical relativity. The resulting computer codes have been plagued by instabilities, causing them to crash well before the black holes in the binary could complete even a single orbit. Within the past few years, however, this situation has changed dramatically, with a series of remarkable breakthroughs. This talk will focus on new simulations that are revealing the dynamics and waveforms of binary black hole mergers, and their applications in gravitational wave detection, testing general relativity, and astrophysics.

  18. Charged Galileon black holes

    CERN Document Server

    Babichev, Eugeny; Hassaine, Mokhtar

    2015-01-01

    We consider an Abelian gauge field coupled to a particular truncation of Horndeski theory. The Galileon field has translation symmetry and couples non minimally both to the metric and the gauge field. When the gauge-scalar coupling is zero the gauge field reduces to a standard Maxwell field. By taking into account the symmetries of the action, we construct charged black hole solutions. Allowing the scalar field to softly break symmetries of spacetime we construct black holes where the scalar field is regular on the black hole event horizon. Some of these solutions can be interpreted as the equivalent of Reissner-Nordstrom black holes of scalar tensor theories with a non trivial scalar field. A self tuning black hole solution found previously is extended to the presence of dyonic charge without affecting whatsoever the self tuning of a large positive cosmological constant. Finally, for a general shift invariant scalar tensor theory we demonstrate that the scalar field Ansatz and method we employ are mathematic...

  19. Black Hole Induced Ejections

    CERN Document Server

    Pelletier, G

    2004-01-01

    Black Holes generate a particular kind of environments dominated by an accretion flow which concentrates a magnetic field. The interplay of gravity and magnetism creates this paradoxical situation where relativistic ejection is allowed and consequently high energy phenomena take place. Therefore Black Holes, which are very likely at the origin of powerfull astrophysical phenomena such as AGNs, micro- quasars and GRBs where relativistic ejections are observed, are at the heart of high energy astrophysics. The combination of General Relativity and Magneto-HydroDynamics (MHD) makes theory difficult; however great pionneers opened beautiful tracks in the seventies and left important problems to be solved for the next decades. These lectures will present the status of these issues. They have a tutorial aspect together with critical review aspect and contain also some new issues. Most of these lectures has been presented at the "School on Black Hole in the Universe" at Cargese, in May 2003.

  20. Turbulent black holes.

    Science.gov (United States)

    Yang, Huan; Zimmerman, Aaron; Lehner, Luis

    2015-02-27

    We demonstrate that rapidly spinning black holes can display a new type of nonlinear parametric instability-which is triggered above a certain perturbation amplitude threshold-akin to the onset of turbulence, with possibly observable consequences. This instability transfers from higher temporal and azimuthal spatial frequencies to lower frequencies-a phenomenon reminiscent of the inverse cascade displayed by (2+1)-dimensional fluids. Our finding provides evidence for the onset of transitory turbulence in astrophysical black holes and predicts observable signatures in black hole binaries with high spins. Furthermore, it gives a gravitational description of this behavior which, through the fluid-gravity duality, can potentially shed new light on the remarkable phenomena of turbulence in fluids.

  1. Merging Black Holes

    Science.gov (United States)

    Centrella, Joan

    2012-01-01

    The final merger of two black holes is expected to be the strongest source of gravitational waves for both ground-based detectors such as LIGO and VIRGO, as well as future. space-based detectors. Since the merger takes place in the regime of strong dynamical gravity, computing the resulting gravitational waveforms requires solving the full Einstein equations of general relativity on a computer. For many years, numerical codes designed to simulate black hole mergers were plagued by a host of instabilities. However, recent breakthroughs have conquered these instabilities and opened up this field dramatically. This talk will focus on.the resulting 'gold rush' of new results that is revealing the dynamics and waveforms of binary black hole mergers, and their applications in gravitational wave detection, testing general relativity, and astrophysics

  2. Black hole entropy quantization

    CERN Document Server

    Corichi, A; Fernandez-Borja, E; Corichi, Alejandro; Diaz-Polo, Jacobo; Fernandez-Borja, Enrique

    2006-01-01

    Ever since the pioneer works of Bekenstein and Hawking, black hole entropy has been known to have a quantum origin. Furthermore, it has long been argued by Bekenstein that entropy should be quantized in discrete (equidistant) steps given its identification with horizon area in (semi-)classical general relativity and the properties of area as an adiabatic invariant. This lead to the suggestion that black hole area should also be quantized in equidistant steps to account for the discrete black hole entropy. Here we shall show that loop quantum gravity, in which area is not quantized in equidistant steps can nevertheless be consistent with Bekenstein's equidistant entropy proposal in a subtle way. For that we perform a detailed analysis of the number of microstates compatible with a given area and show that an observed oscillatory behavior in the entropy-area relation, when properly interpreted yields an entropy that has discrete, equidistant values that are consistent with the Bekenstein framework.

  3. Black hole accretion discs

    CERN Document Server

    Lasota, Jean-Pierre

    2015-01-01

    This is an introduction to models of accretion discs around black holes. After a presentation of the non-relativistic equations describing the structure and evolution of geometrically thin accretion discs we discuss their steady-state solutions and compare them to observation. Next we describe in detail the thermal-viscous disc instability model and its application to dwarf novae for which it was designed and its X-ray irradiated-disc version which explains the soft X--ray transients, i.e. outbursting black-hole low-mass X-ray binaries. We then turn to the role of advection in accretion flow onto black holes illustrating its action and importance with a toy model describing both ADAFs and slim discs. We conclude with a presentation of the general-relativistic formalism describing accretion discs in the Kerr space-time.

  4. Black hole gravitohydromagnetics

    CERN Document Server

    Punsly, Brian

    2008-01-01

    Black hole gravitohydromagnetics (GHM) is developed from the rudiments to the frontiers of research in this book. GHM describes plasma interactions that combine the effects of gravity and a strong magnetic field, in the vicinity (ergosphere) of a rapidly rotating black hole. This topic was created in response to the astrophysical quest to understand the central engines of radio loud extragalactic radio sources. The theory describes a "torsional tug of war" between rotating ergospheric plasma and the distant asymptotic plasma that extracts the rotational inertia of the black hole. The recoil from the struggle between electromagnetic and gravitational forces near the event horizon is manifested as a powerful pair of magnetized particle beams (jets) that are ejected at nearly the speed of light. These bipolar jets feed large-scale magnetized plasmoids on scales as large as millions of light years (the radio lobes of extragalactic radio sources). This interaction can initiate jets that transport energy fluxes exc...

  5. The closest black holes

    CERN Document Server

    Fender, Rob; Heywood, Ian

    2013-01-01

    Starting from the assumption that there is a large population (> 10^8) of isolated, stellar-mass black holes (IBH) distributed throughout our galaxy, we consider the detectable signatures of accretion from the interstellar medium (ISM) that may be associated with such a population. We simulate the nearby (radius 250 pc) part of this population, corresponding to the closest ~35 000 black holes, using current best estimates of the mass distribution of stellar mass black holes combined with two models for the velocity distribution of stellar-mass IBH which bracket likely possibilities. We distribute this population of objects appropriately within the different phases of the ISM and calculate the Bondi-Hoyle accretion rate, modified by a further dimensionless efficiency parameter \\lambda. Assuming a simple prescription for radiatively inefficient accretion at low Eddington ratios, we calculate the X-ray luminosity of these objects, and similarly estimate the radio luminosity from relations found empirically for b...

  6. Black Holes and Random Matrices

    CERN Document Server

    Cotler, Jordan S; Hanada, Masanori; Polchinski, Joseph; Saad, Phil; Shenker, Stephen H; Stanford, Douglas; Streicher, Alexandre; Tezuka, Masaki

    2016-01-01

    We argue that the late time behavior of horizon fluctuations in large anti-de Sitter (AdS) black holes is governed by the random matrix dynamics characteristic of quantum chaotic systems. Our main tool is the Sachdev-Ye-Kitaev (SYK) model, which we use as a simple model of a black hole. We use an analytically continued partition function $|Z(\\beta +it)|^2$ as well as correlation functions as diagnostics. Using numerical techniques we establish random matrix behavior at late times. We determine the early time behavior exactly in a double scaling limit, giving us a plausible estimate for the crossover time to random matrix behavior. We use these ideas to formulate a conjecture about general large AdS black holes, like those dual to 4D super-Yang-Mills theory, giving a provisional estimate of the crossover time. We make some preliminary comments about challenges to understanding the late time dynamics from a bulk point of view.

  7. Black Holes as Effective Geometries

    CERN Document Server

    Balasubramanian, Vijay; El-Showk, Sheer; Messamah, Ilies

    2008-01-01

    Gravitational entropy arises in string theory via coarse graining over an underlying space of microstates. In this review we would like to address the question of how the classical black hole geometry itself arises as an effective or approximate description of a pure state, in a closed string theory, which semiclassical observers are unable to distinguish from the "naive" geometry. In cases with enough supersymmetry it has been possible to explicitly construct these microstates in spacetime, and understand how coarse-graining of non-singular, horizon-free objects can lead to an effective description as an extremal black hole. We discuss how these results arise for examples in Type II string theory on AdS_5 x S^5 and on AdS_3 x S^3 x T^4 that preserve 16 and 8 supercharges respectively. For such a picture of black holes as effective geometries to extend to cases with finite horizon area the scale of quantum effects in gravity would have to extend well beyond the vicinity of the singularities in the effective t...

  8. Life Inside Black Holes

    Science.gov (United States)

    Dokuchaev, Vyacheslav

    2013-11-01

    It is considered the test planet and photon orbits of the third kind inside the black hole (BH), which are stable, periodic and neither come out the BH nor terminate at the central singularity. Interiors of the supermassive BHs may be inhabited by advanced civilizations living on the planets with the third kind orbits. In principle, one can get information from the interiors of BHs by observing their white hole counterparts.

  9. Horndeski black hole geodesics

    CERN Document Server

    Tretyakova, D A

    2016-01-01

    We examine geodesics for the scalar-tensor black holes in the Horndeski-Galileon framework. Our analysis shows that first kind relativistic orbits may not be present within some model parameters range. This is a highly pathological behavior contradicting to the black hole accretion and Solar System observations. We also present a new (although very similar to those previously known) solution, which contains the orbits we expect from a compact object, admits regular scalar field at the horizon and and can fit into the known stability criteria.

  10. Are Black Holes Springy?

    CERN Document Server

    Good, Michael R R

    2014-01-01

    A $(3+1)$-dimensional asymptotically flat Kerr black hole angular speed $\\Omega_+$ can be used to define an effective spring constant, $k=m\\Omega_+^2$. Its maximum value is the Schwarzschild surface gravity, $k = \\kappa $, which rapidly weakens as the black hole spins down and the temperature increases. The Hawking temperature is expressed in terms of the spring constant: $2\\pi T = \\kappa - k$. Hooke's law, in the extremal limit, provides the force $F = 1/4$, which is consistent with the conjecture of maximum force in general relativity.

  11. Acoustic black holes

    CERN Document Server

    Visser, M

    1999-01-01

    Acoustic propagation in a moving fluid provides a conceptually clean and powerful analogy for understanding black hole physics. As a teaching tool, the analogy is useful for introducing students to both General Relativity and fluid mechanics. As a research tool, the analogy helps clarify what aspects of the physics are kinematics and what aspects are dynamics. In particular, Hawking radiation is a purely kinematical effect, whereas black hole entropy is intrinsically dynamical. Finally, I discuss the fact that with present technology acoustic Hawking radiation is almost experimentally testable.

  12. Superfluid Black Holes.

    Science.gov (United States)

    Hennigar, Robie A; Mann, Robert B; Tjoa, Erickson

    2017-01-13

    We present what we believe is the first example of a "λ-line" phase transition in black hole thermodynamics. This is a line of (continuous) second order phase transitions which in the case of liquid ^{4}He marks the onset of superfluidity. The phase transition occurs for a class of asymptotically anti-de Sitter hairy black holes in Lovelock gravity where a real scalar field is conformally coupled to gravity. We discuss the origin of this phase transition and outline the circumstances under which it (or generalizations of it) could occur.

  13. Characterizing Black Hole Mergers

    Science.gov (United States)

    Baker, John; Boggs, William Darian; Kelly, Bernard

    2010-01-01

    Binary black hole mergers are a promising source of gravitational waves for interferometric gravitational wave detectors. Recent advances in numerical relativity have revealed the predictions of General Relativity for the strong burst of radiation generated in the final moments of binary coalescence. We explore features in the merger radiation which characterize the final moments of merger and ringdown. Interpreting the waveforms in terms of an rotating implicit radiation source allows a unified phenomenological description of the system from inspiral through ringdown. Common features in the waveforms allow quantitative description of the merger signal which may provide insights for observations large-mass black hole binaries.

  14. Modeling black hole evaporation

    CERN Document Server

    Fabbri, Alessandro

    2005-01-01

    The scope of this book is two-fold: the first part gives a fully detailed and pedagogical presentation of the Hawking effect and its physical implications, and the second discusses the backreaction problem, especially in connection with exactly solvable semiclassical models that describe analytically the black hole evaporation process. The book aims to establish a link between the general relativistic viewpoint on black hole evaporation and the new CFT-type approaches to the subject. The detailed discussion on backreaction effects is also extremely valuable.

  15. Renormalized vacuum polarization of rotating black holes

    CERN Document Server

    Ferreira, Hugo R C

    2015-01-01

    Quantum field theory on rotating black hole spacetimes is plagued with technical difficulties. Here, we describe a general method to renormalize and compute the vacuum polarization of a quantum field in the Hartle-Hawking state on rotating black holes. We exemplify the technique with a massive scalar field on the warped AdS3 black hole solution to topologically massive gravity, a deformation of (2+1)-dimensional Einstein gravity. We use a "quasi-Euclidean" technique, which generalizes the Euclidean techniques used for static spacetimes, and we subtract the divergences by matching to a sum over mode solutions on Minkowski spacetime. This allows us, for the first time, to have a general method to compute the renormalized vacuum polarization (and, more importantly, the renormalized stress-energy tensor), for a given quantum state, on a rotating black hole, such as the physically relevant case of the Kerr black hole in four dimensions.

  16. Electrodynamics of Black Holes in STU Supergravity

    CERN Document Server

    Cvetic, M; Pope, C N; Saleem, Z H

    2013-01-01

    External magnetic fields can probe the composite structure of black holes in string theory. With this motivation we study magnetised four-charge black holes in the STU model, a consistent truncation of maximally supersymmetric supergravity with four types of electromagnetic fields. We employ solution generating techniques to obtain Melvin backgrounds, and black holes in these backgrounds. For an initially electrically charged static black hole immersed in magnetic fields, we calculate the resultant angular momenta and analyse their global structure. Examples are given for which the ergoregion does not extend to infinity. We calculate magnetic moments and gyromagnetic ratios via Larmor's formula. Our results are consistent with earlier special cases. A scaling limit and associated subtracted geometry in a single surviving magnetic field is shown to lift to $AdS_3\\times S^2$. Magnetizing magnetically charged black holes give static solutions with conical singularities representing strings or struts holding the ...

  17. Quantum aspects of black holes

    CERN Document Server

    2015-01-01

    Beginning with an overview of the theory of black holes by the editor, this book presents a collection of ten chapters by leading physicists dealing with the variety of quantum mechanical and quantum gravitational effects pertinent to black holes. The contributions address topics such as Hawking radiation, the thermodynamics of black holes, the information paradox and firewalls, Monsters, primordial black holes, self-gravitating Bose-Einstein condensates, the formation of small black holes in high energetic collisions of particles, minimal length effects in black holes and small black holes at the Large Hadron Collider. Viewed as a whole the collection provides stimulating reading for researchers and graduate students seeking a summary of the quantum features of black holes.

  18. Growth of Primordial Black Holes

    Science.gov (United States)

    Harada, Tomohiro

    Primordial black holes have important observational implications through Hawking evaporation and gravitational radiation as well as being a candidate for cold dark matter. Those black holes are assumed to have formed in the early universe typically with the mass scale contained within the Hubble horizon at the formation epoch and subsequently accreted mass surrounding them. Numerical relativity simulation shows that primordial black holes of different masses do not accrete much, which contrasts with a simplistic Newtonian argument. We see that primordial black holes larger than the 'super-horizon' primordial black holes have decreasing energy and worm-hole like struture, suggesting the formation through quamtum processes.

  19. Over spinning a black hole?

    Energy Technology Data Exchange (ETDEWEB)

    Bouhmadi-Lopez, Mariam; Cardoso, Vitor; Nerozzi, Andrea; Rocha, Jorge V, E-mail: mariam.bouhmadi@ist.utl.pt, E-mail: vitor.cardoso@ist.utl.pt, E-mail: andrea.nerozzi@ist.utl.pt, E-mail: jorge.v.rocha@ist.utl.pt [CENTRA, Department de Fisica, Instituto Superior Tecnico, Av. Rovisco Pais 1, 1049 Lisboa (Portugal)

    2011-09-22

    A possible process to destroy a black hole consists on throwing point particles with sufficiently large angular momentum into the black hole. In the case of Kerr black holes, it was shown by Wald that particles with dangerously large angular momentum are simply not captured by the hole, and thus the event horizon is not destroyed. Here we reconsider this gedanken experiment for black holes in higher dimensions. We show that this particular way of destroying a black hole does not succeed and that Cosmic Censorship is preserved.

  20. When Black Holes Collide

    Science.gov (United States)

    Baker, John

    2010-01-01

    Among the fascinating phenomena predicted by General Relativity, Einstein's theory of gravity, black holes and gravitational waves, are particularly important in astronomy. Though once viewed as a mathematical oddity, black holes are now recognized as the central engines of many of astronomy's most energetic cataclysms. Gravitational waves, though weakly interacting with ordinary matter, may be observed with new gravitational wave telescopes, opening a new window to the universe. These observations promise a direct view of the strong gravitational dynamics involving dense, often dark objects, such as black holes. The most powerful of these events may be merger of two colliding black holes. Though dark, these mergers may briefly release more energy that all the stars in the visible universe, in gravitational waves. General relativity makes precise predictions for the gravitational-wave signatures of these events, predictions which we can now calculate with the aid of supercomputer simulations. These results provide a foundation for interpreting expect observations in the emerging field of gravitational wave astronomy.

  1. Rotating regular black holes

    CERN Document Server

    Bambi, Cosimo

    2013-01-01

    The formation of spacetime singularities is a quite common phenomenon in General Relativity and it is regulated by specific theorems. It is widely believed that spacetime singularities do not exist in Nature, but that they represent a limitation of the classical theory. While we do not yet have any solid theory of quantum gravity, toy models of black hole solutions without singularities have been proposed. So far, there are only non-rotating regular black holes in the literature. These metrics can be hardly tested by astrophysical observations, as the black hole spin plays a fundamental role in any astrophysical process. In this letter, we apply the Newman-Janis algorithm to the Hayward and to the Bardeen black hole metrics. In both cases, we obtain a family of rotating solutions. Every solution corresponds to a different matter configuration. Each family has one solution with special properties, which can be written in Kerr-like form in Boyer-Lindquist coordinates. These special solutions are of Petrov type ...

  2. Moulting Black Holes

    Science.gov (United States)

    Bena, Iosif; Chowdhury, Borun D.; de Boer, Jan; El-Showk, Sheer; Shigemori, Masaki

    2012-03-01

    We find a family of novel supersymmetric phases of the D1-D5 CFT, which in certain ranges of charges have more entropy than all known ensembles. We also find bulk BPS configurations that exist in the same range of parameters as these phases, and have more entropy than a BMPV black hole; they can be thought of as coming from a BMPV black hole shedding a "hair" condensate outside of the horizon. The entropy of the bulk configurations is smaller than that of the CFT phases, which indicates that some of the CFT states are lifted at strong coupling. Neither the bulk nor the boundary phases are captured by the elliptic genus, which makes the coincidence of the phase boundaries particularly remarkable. Our configurations are supersymmetric, have non-Cardy-like entropy, and are the first instance of a black hole entropy enigma with a controlled CFT dual. Furthermore, contrary to common lore, these objects exist in a region of parameter space (between the "cosmic censorship bound" and the "unitarity bound") where no black holes were thought to exist.

  3. Rotating regular black holes

    Energy Technology Data Exchange (ETDEWEB)

    Bambi, Cosimo, E-mail: bambi@fudan.edu.cn; Modesto, Leonardo, E-mail: lmodesto@fudan.edu.cn

    2013-04-25

    The formation of spacetime singularities is a quite common phenomenon in General Relativity and it is regulated by specific theorems. It is widely believed that spacetime singularities do not exist in Nature, but that they represent a limitation of the classical theory. While we do not yet have any solid theory of quantum gravity, toy models of black hole solutions without singularities have been proposed. So far, there are only non-rotating regular black holes in the literature. These metrics can be hardly tested by astrophysical observations, as the black hole spin plays a fundamental role in any astrophysical process. In this Letter, we apply the Newman–Janis algorithm to the Hayward and to the Bardeen black hole metrics. In both cases, we obtain a family of rotating solutions. Every solution corresponds to a different matter configuration. Each family has one solution with special properties, which can be written in Kerr-like form in Boyer–Lindquist coordinates. These special solutions are of Petrov type D, they are singularity free, but they violate the weak energy condition for a non-vanishing spin and their curvature invariants have different values at r=0 depending on the way one approaches the origin. We propose a natural prescription to have rotating solutions with a minimal violation of the weak energy condition and without the questionable property of the curvature invariants at the origin.

  4. Twistors and Black Holes

    NARCIS (Netherlands)

    Neitzke, A.; Pioline, B.; Vandoren, S.

    2007-01-01

    Motivated by black hole physics in N = 2,D = 4 supergravity, we study the geometry of quaternionic-K¨ahler manifolds Mobtained by the c-map construction from projective special Kähler manifolds Ms. Improving on earlier treatments, we compute the Käahler potentials on the twistor space Z and Swann sp

  5. Black Hole: The Interior Spacetime

    CERN Document Server

    Ong, Yen Chin

    2016-01-01

    The information loss paradox is often discussed from the perspective of the observers who stay outside of a black hole. However, the interior spacetime of a black hole can be rather nontrivial. We discuss the open problems regarding the volume of a black hole, and whether it plays any role in information storage. We also emphasize the importance of resolving the black hole singularity, if one were to resolve the information loss paradox.

  6. Black Holes and Beyond

    CERN Document Server

    Mathur, Samir D

    2012-01-01

    The black hole information paradox forces us into a strange situation: we must find a way to break the semiclassical approximation in a domain where no quantum gravity effects would normally be expected. Traditional quantizations of gravity do not exhibit any such breakdown, and this forces us into a difficult corner: either we must give up quantum mechanics or we must accept the existence of troublesome `remnants'. In string theory, however, the fundamental quanta are extended objects, and it turns out that the bound states of such objects acquire a size that grows with the number of quanta in the bound state. The interior of the black hole gets completely altered to a `fuzzball' structure, and information is able to escape in radiation from the hole. The semiclassical approximation can break at macroscopic scales due to the large entropy of the hole: the measure in the path integral competes with the classical action, instead of giving a subleading correction. Putting this picture of black hole microstates ...

  7. Simulations of coalescing black holes

    CERN Document Server

    Janiuk, Agnieszka

    2016-01-01

    We describe the methods and results of numerical simulations of coalescing black holes. The simulation in dynamical spacetime covers the inspiral, merger, and ringdown phases. We analyze the emission of gravitational waves and properties of a black hole being the merger product. We discuss the results in the context of astrophysical environment of black holes that exist in the Universe.

  8. "Exotic" black holes with torsion

    OpenAIRE

    2013-01-01

    In the context of three-dimensional gravity with torsion, the concepts of standard and "exotic" Banados-Teitelboim-Zanelli black holes are generalized by going over to black holes with torsion. This approach provides a unified insight into thermodynamics of black holes, with or without torsion.

  9. Magnonic Black Holes.

    Science.gov (United States)

    Roldán-Molina, A; Nunez, Alvaro S; Duine, R A

    2017-02-10

    We show that the interaction between the spin-polarized current and the magnetization dynamics can be used to implement black-hole and white-hole horizons for magnons-the quanta of oscillations in the magnetization direction in magnets. We consider three different systems: easy-plane ferromagnetic metals, isotropic antiferromagnetic metals, and easy-plane magnetic insulators. Based on available experimental data, we estimate that the Hawking temperature can be as large as 1 K. We comment on the implications of magnonic horizons for spin-wave scattering and transport experiments, and for magnon entanglement.

  10. Magnonic Black Holes

    Science.gov (United States)

    Roldán-Molina, A.; Nunez, Alvaro S.; Duine, R. A.

    2017-02-01

    We show that the interaction between the spin-polarized current and the magnetization dynamics can be used to implement black-hole and white-hole horizons for magnons—the quanta of oscillations in the magnetization direction in magnets. We consider three different systems: easy-plane ferromagnetic metals, isotropic antiferromagnetic metals, and easy-plane magnetic insulators. Based on available experimental data, we estimate that the Hawking temperature can be as large as 1 K. We comment on the implications of magnonic horizons for spin-wave scattering and transport experiments, and for magnon entanglement.

  11. Philosophical Issues of Black Holes

    CERN Document Server

    Romero, Gustavo E

    2014-01-01

    Black holes are extremely relativistic objects. Physical processes around them occur in a regime where the gravitational field is extremely intense. Under such conditions, our representations of space, time, gravity, and thermodynamics are pushed to their limits. In such a situation philosophical issues naturally arise. In this chapter I review some philosophical questions related to black holes. In particular, the relevance of black holes for the metaphysical dispute between presentists and eternalists, the origin of the second law of thermodynamics and its relation to black holes, the problem of information, black holes and hypercomputing, the nature of determinisim, and the breakdown of predictability in black hole space-times. I maintain that black hole physics can be used to illuminate some important problems in the border between science and philosophy, either epistemology and ontology.

  12. Optical black hole lasers

    CERN Document Server

    Faccio, Daniele; Lamperti, Marco; Leonhardt, Ulf

    2012-01-01

    Using numerical simulations we show how to realise an optical black hole laser, i.e. an amplifier formed by travelling refractive index perturbations arranged so as to trap light between a white and a black hole horizon. The simulations highlight the main features of these lasers: the growth inside the cavity of positive and negative frequency modes accompanied by a weaker emission of modes that occurs in periodic bursts corresponding to the cavity round trips of the trapped modes. We then highlight a new regime in which the trapped mode spectra broaden until the zero-frequency points on the dispersion curve are reached. Amplification at the horizon is highest for zero-frequencies, therefore leading to a strong modification of the structure of the trapped light. For sufficiently long propagation times, lasing ensues only at the zero-frequency modes.

  13. Presentism meets black holes

    CERN Document Server

    Romero, Gustavo E

    2014-01-01

    Presentism is, roughly, the metaphysical doctrine that maintains that whatever exists, exists in the present. The compatibility of presentism with the theories of special and general relativity was much debated in recent years. It has been argued that at least some versions of presentism are consistent with time-orientable models of general relativity. In this paper we confront the thesis of presentism with relativistic physics, in the strong gravitational limit where black holes are formed. We conclude that the presentist position is at odds with the existence of black holes and other compact objects in the universe. A revision of the thesis is necessary, if it is intended to be consistent with the current scientific view of the universe.

  14. Black Holes in Higher Dimensions

    Directory of Open Access Journals (Sweden)

    Reall Harvey S.

    2008-09-01

    Full Text Available We review black-hole solutions of higher-dimensional vacuum gravity and higher-dimensional supergravity theories. The discussion of vacuum gravity is pedagogical, with detailed reviews of Myers–Perry solutions, black rings, and solution-generating techniques. We discuss black-hole solutions of maximal supergravity theories, including black holes in anti-de Sitter space. General results and open problems are discussed throughout.

  15. Noncommutative Black Holes

    CERN Document Server

    Bastos, C; Dias, N C; Prata, J N

    2010-01-01

    One considers phase-space noncommutativity in the context of a Kantowski-Sachs cosmological model to study the interior of a Schwarzschild black hole. It is shown that the potential function of the corresponding quantum cosmology problem has a local minimum. One deduces the thermodynamics and show that the Hawking temperature and entropy exhibit an explicit dependence on the momentum noncommutativity regime and it is shown that the wave function vanishes in this limit.

  16. Slowly balding black holes

    CERN Document Server

    Lyutikov, Maxim

    2011-01-01

    The "no hair" theorem, a key result in General Relativity, states that an isolated black hole is defined by only three parameters: mass, angular momentum, and electric charge; this asymptotic state is reached on a light-crossing time scale. We find that the "no hair" theorem is not formally applicable for black holes formed from collapse of a rotating neutron star. Rotating neutron stars can self-produce particles via vacuum breakdown forming a highly conducting plasma magnetosphere such that magnetic field lines are effectively "frozen-in" the star both before and during collapse. In the limit of no resistivity, this introduces a topological constraint which prohibits the magnetic field from sliding off the newly-formed event horizon. As a result, during collapse of a neutron star into a black hole, the latter conserves the number of magnetic flux tubes $N_B = e \\Phi_\\infty /(\\pi c \\hbar)$, where $\\Phi_\\infty \\approx 2 \\pi^2 B_{NS} R_{NS}^3 /(P_{\\rm NS} c)$ is the initial magnetic flux through the hemisphere...

  17. Linear dilaton black holes

    CERN Document Server

    Clément, G; Leygnac, C; Clement, Gerard; Gal'tsov, Dmitri; Leygnac, Cedric

    2003-01-01

    We present new solutions to Einstein-Maxwell-dilaton-axion (EMDA) gravity in four dimensions describing black holes which asymptote to the linear dilaton background. In the non-rotating case they can be obtained as the limiting geometry of dilaton black holes. The rotating solutions (possibly endowed with a NUT parameter) are constructed using a generating technique based on the Sp(4,R) duality of the EMDA system. In a certain limit (with no event horizon present) our rotating solutions coincide with supersymmetric Israel-Wilson-Perjes type dilaton-axion solutions. In presence of an event horizon supersymmetry is broken. The temperature of the static black holes is constant, and their mass does not depend on it, so the heat capacity is zero. We investigate geodesics and wave propagation in these spacetimes and find superradiance in the rotating case. Because of the non-asymptotically flat nature of the geometry, certain modes are reflected from infinity, in particular, all superradiant modes are confined. Thi...

  18. Moulting Black Holes

    CERN Document Server

    Bena, Iosif; de Boer, Jan; El-Showk, Sheer; Shigemori, Masaki

    2011-01-01

    We find a family of novel supersymmetric phases of the D1-D5 CFT, which in certain ranges of charges have more entropy than all known ensembles. We also find bulk BPS configurations that exist in the same range of parameters as these phases, and have more entropy than a BMPV black hole; they can be thought of as coming from a BMPV black hole shedding a "hair" condensate outside of the horizon. The entropy of the bulk configurations is smaller than that of the CFT phases, which indicates that some of the CFT states are lifted at strong coupling. Neither the bulk nor the boundary phases are captured by the elliptic genus, which makes the coincidence of the phase boundaries particularly remarkable. Our configurations are supersymmetric, have non-Cardy-like entropy, and are the first instance of a black hole entropy enigma with a controlled CFT dual. Furthermore, contrary to common lore, these objects exist in a region of parameter space (between the "cosmic censorship bound" and the "unitarity bound") where no b...

  19. Quantum chaos and the black hole horizon

    CERN Document Server

    CERN. Geneva

    2016-01-01

    Thanks to AdS/CFT, the analogy between black holes and thermal systems has become a practical tool, shedding light on thermalization, transport, and entanglement dynamics. Continuing in this vein, recent work has shown how chaos in the boundary CFT can be analyzed in terms of high energy scattering right on the horizon of the dual black hole. The analysis revolves around certain out-of-time-order correlation functions, which are simple diagnostics of the butterfly effect. We will review this work, along with a general bound on these functions that implies black holes are the most chaotic systems in quantum mechanics. (NB Room Change to Main Auditorium)

  20. Noether charge, black hole volume and complexity

    CERN Document Server

    Couch, Josiah; Nguyen, Phuc H

    2016-01-01

    In this paper, we study the physical significance of the thermodynamic volumes of black holes along two different, but complementary, directions. In the first half of the paper, we make use of the Iyer-Wald charge formalism to compute the volume of a particularly hairy black hole. Our computation clarifies and explains existing results, and serves as a prototype for computations of this kind for complicated black hole solutions. In the second half of the paper, we establish a connection between the extended thermodynamics and the Brown et al's "complexity=action" proposal. We show that, in a broad class of AdS black holes, the thermodynamic volume arises as the late-time rate of growth of the bulk action evaluated on the Wheeler-deWitt patch.

  1. Black Holes with Skyrme Hair

    CERN Document Server

    Shiiki, N; Shiiki, Noriko; Sawado, Nobuyuki

    2005-01-01

    This paper is intended to give a review of the recent developments on black holes with Skyrme hair. The Einstein-Skyrme system is known to possess black hole solutions with Skyrme hair. The spherically symmetric black hole skyrmion with B=1 was the first discovered counter example of the no-hair conjecture for black holes. Recently we found the B=2 axially symmetric black hole skyrmion. In this system, the black hole at the center of the skyrmion absorbs the baryon number partially, leaving fractional charge outside the horizon. Therefore the baryon number is no longer conserved. We examine the B=1, 2 black hole solutions in detail in this paper. The model has a natural extension to the gauged version which can describe monopole black hole skyrmions. Callan and Witten discussed the monopole catalysis of proton decay within the Skyrme model. We apply the idea to the Einstein-Maxwell-Skyrme system and obtain monopole black hole skyrmions. Remarkably there exist multi-black hole skyrmion solutions in which the g...

  2. Black Holes versus Strange Quark Matter

    CERN Document Server

    Gladysz-Dziadus, Ewa

    2004-01-01

    Interpretation of Centauro like events still remains the open question. To the list of models proposed to explain Centauros, the new idea based on mini black holes evaporation has been recently added by A. Mironov et al.. In our paper we give some comments to this scenario, showing that the hypothesis that Centauro like events result from decay of mini black holes, encounters various difficulties, when compared with experimental observations. The QGP strangelet mechanism, proposed in some of our papers, offers better description.

  3. Black holes with bottle-shaped horizons

    CERN Document Server

    Chen, Yu

    2016-01-01

    We present a new class of four-dimensional AdS black holes with non-compact event horizons of finite area. The event horizons are topologically spheres with one puncture, with the puncture pushed to infinity in the form of a cusp. Because of the shape of their event horizons, we call such black holes "black bottles". The solution was obtained as a special case of the Plebanski-Demianski solution, and may describe either static or rotating black bottles. For certain ranges of parameters, an acceleration horizon may also appear in the space-time. We study the full parameter space of the solution, and the various limiting cases that arise. In particular, we show how the rotating black hole recently discovered by Klemm arises as a special limit.

  4. Geometry of black hole spacetimes

    CERN Document Server

    Andersson, Lars; Blue, Pieter

    2016-01-01

    These notes, based on lectures given at the summer school on Asymptotic Analysis in General Relativity, collect material on the Einstein equations, the geometry of black hole spacetimes, and the analysis of fields on black hole backgrounds. The Kerr model of a rotating black hole in vacuum is expected to be unique and stable. The problem of proving these fundamental facts provides the background for the material presented in these notes. Among the many topics which are relevant for the uniqueness and stability problems are the theory of fields on black hole spacetimes, in particular for gravitational perturbations of the Kerr black hole, and more generally, the study of nonlinear field equations in the presence of trapping. The study of these questions requires tools from several different fields, including Lorentzian geometry, hyperbolic differential equations and spin geometry, which are all relevant to the black hole stability problem.

  5. Hologram of a pure state black hole

    CERN Document Server

    Roy, Shubho R

    2015-01-01

    In this paper we extend the HKLL holographic smearing function method to reconstruct (quasi)local AdS bulk scalar observables in the background of a large AdS black hole formed by null shell collapse (a "pure state" black hole), from the dual CFT which is undergoing a sudden quench. In particular, we probe the near horizon and sub-horizon bulk locality. First we construct local bulk operators from the CFT in the leading semiclassical limit, $N\\rightarrow\\infty$. Then we look at effects due to the finiteness of $N$, where we propose a suitable coarse-graining prescription involving early and late time cut-offs to define semiclassical bulk observables which are approximately local; their departure from locality being non-perturbatively small in $N$. Our results have important implications on the black hole information problem.

  6. f(R) Black Holes as Heat Engines

    Science.gov (United States)

    Zhang, Ming; Liu, Wen-Biao

    2016-12-01

    With the cosmological constant considered as a thermodynamic variable in the extended phase space, it is natural to study the thermodynamic cycles of the black hole, which is conjectured to be performed using renormalization group flow. We first investigate the thermodynamic cycles of a 4-dimensional asymptotically AdS f( R) black hole. Then we study the thermodynamic cycles of higher dimensional asymptotically AdS f( R) black holes. It is found that when Δ V ≪ Δ P, the efficiency of isobar-isochore cycles running between high temperature T H and low temperature T C will increase to its maximum value, which is exactly the Carnot cycles' efficiency both in 4-dimensional and in higher dimensional cases. We speculate that this property is universal for AdS black holes, if there is no phase transition in the thermodynamic cycle. This result may deepen our understanding of the thermodynamics of the AdS black holes.

  7. Origin of supermassive black holes

    OpenAIRE

    Dokuchaev, V. I.; Eroshenko, Yu. N.; Rubin, S G

    2007-01-01

    The origin of supermassive black holes in the galactic nuclei is quite uncertain in spite of extensive set of observational data. We review the known scenarios of galactic and cosmological formation of supermassive black holes. The common drawback of galactic scenarios is a lack of time and shortage of matter supply for building the supermassive black holes in all galaxies by means of accretion and merging. The cosmological scenarios are only fragmentarily developed but propose and pretend to...

  8. Thermal BEC Black Holes

    Directory of Open Access Journals (Sweden)

    Roberto Casadio

    2015-10-01

    Full Text Available We review some features of Bose–Einstein condensate (BEC models of black holes obtained by means of the horizon wave function formalism. We consider the Klein–Gordon equation for a toy graviton field coupled to a static matter current in a spherically-symmetric setup. The classical field reproduces the Newtonian potential generated by the matter source, while the corresponding quantum state is given by a coherent superposition of scalar modes with a continuous occupation number. An attractive self-interaction is needed for bound states to form, the case in which one finds that (approximately one mode is allowed, and the system of N bosons can be self-confined in a volume of the size of the Schwarzschild radius. The horizon wave function formalism is then used to show that the radius of such a system corresponds to a proper horizon. The uncertainty in the size of the horizon is related to the typical energy of Hawking modes: it decreases with the increasing of the black hole mass (larger number of gravitons, resulting in agreement with the semiclassical calculations and which does not hold for a single very massive particle. The spectrum of these systems has two components: a discrete ground state of energy m (the bosons forming the black hole and a continuous spectrum with energy ω > m (representing the Hawking radiation and modeled with a Planckian distribution at the expected Hawking temperature. Assuming the main effect of the internal scatterings is the Hawking radiation, the N-particle state can be collectively described by a single-particle wave-function given by a superposition of a total ground state with energy M = Nm and Entropy 2015, 17 6894 a Planckian distribution for E > M at the same Hawking temperature. This can be used to compute the partition function and to find the usual area law for the entropy, with a logarithmic correction related to the Hawking component. The backreaction of modes with ω > m is also shown to reduce

  9. Noncommutative black holes

    Energy Technology Data Exchange (ETDEWEB)

    Bastos, C; Bertolami, O [Departamento de Fisica, Instituto Superior Tecnico, Avenida Rovisco Pais 1, 1049-001 Lisboa (Portugal); Dias, N C; Prata, J N, E-mail: cbastos@fisica.ist.utl.p, E-mail: orfeu@cosmos.ist.utl.p, E-mail: ncdias@mail.telepac.p, E-mail: joao.prata@mail.telepac.p [Departamento de Matematica, Universidade Lusofona de Humanidades e Tecnologias, Avenida Campo Grande, 376, 1749-024 Lisboa (Portugal)

    2010-04-01

    One considers phase-space noncommutativity in the context of a Kantowski-Sachs cosmological model to study the interior of a Schwarzschild black hole. It is shown that the potential function of the corresponding quantum cosmology problem has a local minimum. One deduces the thermodynamics and show that the Hawking temperature and entropy exhibit an explicit dependence on the momentum noncommutativity parameter, {eta}. Furthermore, the t = r = 0 singularity is analysed in the noncommutative regime and it is shown that the wave function vanishes in this limit.

  10. Black hole accretion discs

    OpenAIRE

    Lasota, Jean-Pierre

    2015-01-01

    This is an introduction to models of accretion discs around black holes. After a presentation of the non-relativistic equations describing the structure and evolution of geometrically thin accretion discs we discuss their steady-state solutions and compare them to observation. Next we describe in detail the thermal-viscous disc instability model and its application to dwarf novae for which it was designed and its X-ray irradiated-disc version which explains the soft X--ray transients, i.e. ou...

  11. Artificial black holes

    CERN Document Server

    Visser, Matt; Volovik, Grigory E

    2009-01-01

    Physicists are pondering on the possibility of simulating black holes in the laboratory by means of various "analog models". These analog models, typically based on condensed matter physics, can be used to help us understand general relativity (Einstein's gravity); conversely, abstract techniques developed in general relativity can sometimes be used to help us understand certain aspects of condensed matter physics. This book contains 13 chapters - written by experts in general relativity, particle physics, and condensed matter physics - that explore various aspects of this two-way traffic.

  12. Thermodynamics of Accelerating Black Holes.

    Science.gov (United States)

    Appels, Michael; Gregory, Ruth; Kubizňák, David

    2016-09-23

    We address a long-standing problem of describing the thermodynamics of an accelerating black hole. We derive a standard first law of black hole thermodynamics, with the usual identification of entropy proportional to the area of the event horizon-even though the event horizon contains a conical singularity. This result not only extends the applicability of black hole thermodynamics to realms previously not anticipated, it also opens a possibility for studying novel properties of an important class of exact radiative solutions of Einstein equations describing accelerated objects. We discuss the thermodynamic volume, stability, and phase structure of these black holes.

  13. Black holes and the multiverse

    Science.gov (United States)

    Garriga, Jaume; Vilenkin, Alexander; Zhang, Jun

    2016-02-01

    Vacuum bubbles may nucleate and expand during the inflationary epoch in the early universe. After inflation ends, the bubbles quickly dissipate their kinetic energy; they come to rest with respect to the Hubble flow and eventually form black holes. The fate of the bubble itself depends on the resulting black hole mass. If the mass is smaller than a certain critical value, the bubble collapses to a singularity. Otherwise, the bubble interior inflates, forming a baby universe, which is connected to the exterior FRW region by a wormhole. A similar black hole formation mechanism operates for spherical domain walls nucleating during inflation. As an illustrative example, we studied the black hole mass spectrum in the domain wall scenario, assuming that domain walls interact with matter only gravitationally. Our results indicate that, depending on the model parameters, black holes produced in this scenario can have significant astrophysical effects and can even serve as dark matter or as seeds for supermassive black holes. The mechanism of black hole formation described in this paper is very generic and has important implications for the global structure of the universe. Baby universes inside super-critical black holes inflate eternally and nucleate bubbles of all vacua allowed by the underlying particle physics. The resulting multiverse has a very non-trivial spacetime structure, with a multitude of eternally inflating regions connected by wormholes. If a black hole population with the predicted mass spectrum is discovered, it could be regarded as evidence for inflation and for the existence of a multiverse.

  14. How black holes saved relativity

    Science.gov (United States)

    Prescod-Weinstein, Chanda

    2016-02-01

    While there have been many popular-science books on the historical and scientific legacy of Albert Einstein's general theory of relativity, a gap exists in the literature for a definitive, accessible history of the theory's most famous offshoot: black holes. In Black Hole, the science writer Marcia Bartusiak aims for a discursive middle ground, writing solely about black holes at a level suitable for both high-school students and more mature readers while also giving some broader scientific context for black-hole research.

  15. Asymmetric black dyonic holes

    Directory of Open Access Journals (Sweden)

    I. Cabrera-Munguia

    2015-04-01

    Full Text Available A 6-parametric asymptotically flat exact solution, describing a two-body system of asymmetric black dyons, is studied. The system consists of two unequal counterrotating Kerr–Newman black holes, endowed with electric and magnetic charges which are equal but opposite in sign, separated by a massless strut. The Smarr formula is generalized in order to take into account their contribution to the mass. The expressions for the horizon half-length parameters σ1 and σ2, as functions of the Komar parameters and of the coordinate distance, are displayed, and the thermodynamic properties of the two-body system are studied. Furthermore, the seven physical parameters satisfy a simple algebraic relation which can be understood as a dynamical scenario, in which the physical properties of one body are affected by the ones of the other body.

  16. The fuzzball proposal for black holes

    Energy Technology Data Exchange (ETDEWEB)

    Skenderis, Kostas [Institute for Theoretical Physics, University of Amsterdam, Valckenierstraat 65, 1018XE Amsterdam (Netherlands)], E-mail: skenderi@science.uva.nl; Taylor, Marika [Institute for Theoretical Physics, University of Amsterdam, Valckenierstraat 65, 1018XE Amsterdam (Netherlands)], E-mail: taylor@science.uva.nl

    2008-10-15

    The fuzzball proposal states that associated with a black hole of entropy S, there are expShorizon-free non-singular solutions that asymptotically look like the black hole but generically differ from the black hole up to the horizon scale. These solutions, the fuzzballs, are considered to be the black hole microstates, while the original black hole represents the average description of the system. The purpose of this report is to review current evidence for the fuzzball proposal, emphasizing the use of AdS/CFT methods in developing and testing the proposal. In particular, we discuss the status of the proposal for 2 and 3 charge black holes in the D1-D5 system, presenting new derivations and streamlining the discussion of their properties. Results to date support the fuzzball proposal, but further progress is likely to require going beyond the supergravity approximation and sharpening the definition of a 'stringy fuzzball'. We outline how the fuzzball proposal could resolve longstanding issues in black hole physics, such as Hawking radiation and information loss. Our emphasis throughout is on connecting different developments and identifying open problems and directions for future research.

  17. Surfing a Black Hole

    Science.gov (United States)

    2002-10-01

    Star Orbiting Massive Milky Way Centre Approaches to within 17 Light-Hours [1] Summary An international team of astronomers [2], lead by researchers at the Max-Planck Institute for Extraterrestrial Physics (MPE) , has directly observed an otherwise normal star orbiting the supermassive black hole at the center of the Milky Way Galaxy. Ten years of painstaking measurements have been crowned by a series of unique images obtained by the Adaptive Optics (AO) NAOS-CONICA (NACO) instrument [3] on the 8.2-m VLT YEPUN telescope at the ESO Paranal Observatory. It turns out that earlier this year the star approached the central Black Hole to within 17 light-hours - only three times the distance between the Sun and planet Pluto - while travelling at no less than 5000 km/sec . Previous measurements of the velocities of stars near the center of the Milky Way and variable X-ray emission from this area have provided the strongest evidence so far of the existence of a central Black Hole in our home galaxy and, implicitly, that the dark mass concentrations seen in many nuclei of other galaxies probably are also supermassive black holes. However, it has not yet been possible to exclude several alternative configurations. In a break-through paper appearing in the research journal Nature on October 17th, 2002, the present team reports their exciting results, including high-resolution images that allow tracing two-thirds of the orbit of a star designated "S2" . It is currently the closest observable star to the compact radio source and massive black hole candidate "SgrA*" ("Sagittarius A") at the very center of the Milky Way. The orbital period is just over 15 years. The new measurements exclude with high confidence that the central dark mass consists of a cluster of unusual stars or elementary particles, and leave little doubt of the presence of a supermassive black hole at the centre of the galaxy in which we live . PR Photo 23a/02 : NACO image of the central region of the Milky Way

  18. Non-Abelian magnetic black strings versus black holes

    Science.gov (United States)

    Mazharimousavi, S. Habib; Halilsoy, M.

    2016-05-01

    We present d+1 -dimensional pure magnetic Yang-Mills (YM) black strings (or 1-branes) induced by the d -dimensional Einstein-Yang-Mills-Dilaton black holes. The Born-Infeld version of the YM field makes our starting point which goes to the standard YM field through a limiting procedure. The lifting from black holes to black strings (with less number of fields) is done by adding an extra, compact coordinate. This amounts to the change of horizon topology from S^{d-2} to a product structure. Our black string in 5 dimensions is a rather special one, with uniform Hawking temperature and non-asymptotically flat structure. As the YM charge becomes large the string gets thinner to tend into a breaking point and transform into a 4-dimensional black hole.

  19. Canonical Entropy and Phase Transition of Rotating Black Hole

    Institute of Scientific and Technical Information of China (English)

    ZHAO Ren; WU Yue-Qin; ZHANG Li-Chun

    2008-01-01

    Recently, the Hawking radiation of a black hole has been studied using the tunnel effect method. The radiation spectrum of a black hole is derived. By discussing the correction to spectrum of the rotating black hole, we obtain the canonical entropy. The derived canonical entropy is equal to the sum of Bekenstein-Hawking entropy and correction term. The correction term near the critical point is different from the one near others. This difference plays an important role in studying the phase transition of the black hole. The black hole thermal capacity diverges at the critical point. However, the canonical entropy is not a complex number at this point. Thus we think that the phase transition created by this critical point is the second order phase transition. The discussed black hole is a five-dimensional Kerr-AdS black hole. We provide a basis for discussing thermodynamic properties of a higher-dimensional rotating black hole.

  20. Twistors and Black Holes

    CERN Document Server

    Neitzke, A; Vandoren, S; Neitzke, Andrew; Pioline, Boris; Vandoren, Stefan

    2007-01-01

    Motivated by black hole physics in N=2, D=4 supergravity, we study the geometry of quaternionic-Kahler manifolds M obtained by the c-map construction from projective special Kahler manifolds M_s. Improving on earlier treatments, we compute the Kahler potentials on the twistor space Z and Swann space S in the complex coordinates adapted to the Heisenberg symmetries. The results bear a simple relation to the Hesse potential \\Sigma of the special Kahler manifold M_s, and hence to the Bekenstein-Hawking entropy for BPS black holes. We explicitly construct the ``covariant c-map'' and the ``twistor map'', which relate real coordinates on M x CP^1 (resp. M x R^4/Z_2) to complex coordinates on Z (resp. S). As applications, we solve for the general BPS geodesic motion on M, and provide explicit integral formulae for the quaternionic Penrose transform relating elements of H^1(Z,O(-k)) to massless fields on M annihilated by first or second order differential operators. Finally, we compute the exact radial wave function ...

  1. Transient Black Hole Binaries

    CERN Document Server

    Belloni, T M

    2016-01-01

    The last two decades have seen a great improvement in our understand- ing of the complex phenomenology observed in transient black-hole binary systems, especially thanks to the activity of the Rossi X-Ray Timing Explorer satellite, com- plemented by observations from many other X-ray observatories and ground-based radio, optical and infrared facilities. Accretion alone cannot describe accurately the intricate behavior associated with black-hole transients and it is now clear that the role played by different kinds of (often massive) outflows seen at different phases of the outburst evolution of these systems is as fundamental as the one played by the accretion process itself. The spectral-timing states originally identified in the X-rays and fundamentally based on the observed effect of accretion, have acquired new importance as they now allow to describe within a coherent picture the phenomenology observed at other wave- length, where the effects of ejection processes are most evident. With a particular focu...

  2. Greybody factors for d-dimensional black holes

    DEFF Research Database (Denmark)

    Harmark, Troels; Natário, José; Schiappa, Ricardo

    2010-01-01

    Gravitational greybody factors are analytically computed for static, spherically symmetric black holes in d-dimensions, including black holes with charge and in the presence of a cosmological constant (where a proper definition of greybody factors for both asymptotically de Sitter and anti...... of the details of the black hole. For asymptotically de Sitter black holes the greybody factor is different for even or odd spacetime dimension, and proportional to the ratio of the areas of the event and cosmological horizons. For asymptotically Ads black holes the greybody factor has a rich structure in which...... universality is hidden in the transmission and reflection coefficients. For either charged or asymptotically de Sitter black holes the greybody factors are given by non-trivial functions, while for asymptotically Ads black holes the greybody factor precisely equals one (corresponding to pure blackbody emission...

  3. Effective theory of Black Holes in the 1/D expansion

    CERN Document Server

    Emparan, Roberto; Suzuki, Ryotaku; Tanabe, Kentaro; Tanaka, Takahiro

    2015-01-01

    The gravitational field of a black hole is strongly localized near its horizon when the number of dimensions D is very large. In this limit, we can effectively replace the black hole with a surface in a background geometry (eg Minkowski or Anti-deSitter space). The Einstein equations determine the effective equations that this 'black hole surface' (or membrane) must satisfy. We obtain them up to next-to-leading order in 1/D for static black holes of the Einstein-(A)dS theory. To leading order, and also to next order in Minkowski backgrounds, the equations of the effective theory are the same as soap-film equations, possibly up to a redshift factor. In particular, the Schwarzschild black hole is recovered as a spherical soap bubble. Less trivially, we find solutions for 'black droplets', ie black holes localized at the boundary of AdS, and for non-uniform black strings.

  4. Astrophysical Black Holes in the Physical Universe

    CERN Document Server

    Zhang, Shuang-Nan

    2010-01-01

    In this chapter I focus on asking and answering the following questions: (1) What is a black hole? Answer: There are three types of black holes, namely mathematical black holes, physical black holes and astrophysical black holes. An astrophysical black hole, with mass distributed within its event horizon but not concentrated at the singularity point, is not a mathematical black hole. (2) Can astrophysical black holes be formed in the physical universe? Answer: Yes, at least this can be done with gravitational collapse. (3) How can we prove that what we call astrophysical black holes are really black holes? Answer: Finding direct evidence of event horizon is not the way to go. Instead I propose five criteria which meet the highest standard for recognizing new discoveries in experimental physics and observational astronomy. (4) Do we have sufficient evidence to claim the existence of astrophysical black holes in the physical universe? Answer: Yes, astrophysical black holes have been found at least in some galac...

  5. Area spectrum of slowly rotating black holes

    OpenAIRE

    2010-01-01

    We investigate the area spectrum for rotating black holes which are Kerr and BTZ black holes. For slowly rotating black holes, we use the Maggiore's idea combined with Kunstatter's method to derive their area spectra, which are equally spaced.

  6. Black holes in an expanding universe.

    Science.gov (United States)

    Gibbons, Gary W; Maeda, Kei-ichi

    2010-04-02

    An exact solution representing black holes in an expanding universe is found. The black holes are maximally charged and the universe is expanding with arbitrary equation of state (P = w rho with -1 black hole temperature.

  7. Black-Hole Mass Measurements

    DEFF Research Database (Denmark)

    Vestergaard, Marianne

    2004-01-01

    The applicability and apparent uncertainties of the techniques currently available for measuring or estimating black-hole masses in AGNs are briefly summarized.......The applicability and apparent uncertainties of the techniques currently available for measuring or estimating black-hole masses in AGNs are briefly summarized....

  8. ATLAS simulated black hole event

    CERN Multimedia

    Pequenão, J

    2008-01-01

    The simulated collision event shown is viewed along the beampipe. The event is one in which a microscopic-black-hole was produced in the collision of two protons (not shown). The microscopic-black-hole decayed immediately into many particles. The colors of the tracks show different types of particles emerging from the collision (at the center).

  9. Nonlinear Electrodynamics and black holes

    CERN Document Server

    Breton, N; Breton, Nora; Garcia-Salcedo, Ricardo

    2007-01-01

    It is addressed the issue of black holes with nonlinear electromagnetic field, focussing mainly in the Born-Infeld case. The main features of these systems are described, for instance, geodesics, energy conditions, thermodynamics and isolated horizon aspects. Also are revised some black hole solutions of alternative nonlinear electrodynamics and its inconveniences.

  10. Can Black Hole Relax Unitarily?

    Science.gov (United States)

    Solodukhin, S. N.

    2005-03-01

    We review the way the BTZ black hole relaxes back to thermal equilibrium after a small perturbation and how it is seen in the boundary (finite volume) CFT. The unitarity requires the relaxation to be quasi-periodic. It is preserved in the CFT but is not obvious in the case of the semiclassical black hole the relaxation of which is driven by complex quasi-normal modes. We discuss two ways of modifying the semiclassical black hole geometry to maintain unitarity: the (fractal) brick wall and the worm-hole modification. In the latter case the entropy comes out correctly as well.

  11. Can Black Hole Relax Unitarily?

    CERN Document Server

    Solodukhin, S N

    2004-01-01

    We review the way the BTZ black hole relaxes back to thermal equilibrium after a small perturbation and how it is seen in the boundary (finite volume) CFT. The unitarity requires the relaxation to be quasi-periodic. It is preserved in the CFT but is not obvious in the case of the semiclassical black hole the relaxation of which is driven by complex quasi-normal modes. We discuss two ways of modifying the semiclassical black hole geometry to maintain unitarity: the (fractal) brick wall and the worm-hole modification. In the latter case the entropy comes out correctly as well.

  12. When Charged Black Holes Merge

    Science.gov (United States)

    Kohler, Susanna

    2016-08-01

    Most theoretical models assume that black holes arent charged. But a new study shows that mergers of charged black holes could explain a variety of astrophysical phenomena, from fast radio bursts to gamma-ray bursts.No HairThe black hole no hair theorem states that all black holes can be described by just three things: their mass, their spin, and their charge. Masses and spins have been observed and measured, but weve never measured the charge of a black hole and its widely believed that real black holes dont actually have any charge.That said, weve also never shown that black holes dont have charge, or set any upper limits on the charge that they might have. So lets suppose, for a moment, that its possible for a black hole to be charged. How might that affect what we know about the merger of two black holes? A recent theoretical study by Bing Zhang (University of Nevada, Las Vegas) examines this question.Intensity profile of a fast radio burst, a sudden burst of radio emission that lasts only a few milliseconds. [Swinburne Astronomy Productions]Driving TransientsZhangs work envisions a pair of black holes in a binary system. He argues that if just one of the black holes carries charge possibly retained by a rotating magnetosphere then it may be possible for the system to produce an electromagnetic signal that could accompany gravitational waves, such as a fast radio burst or a gamma-ray burst!In Zhangs model, the inspiral of the two black holes generates a global magnetic dipole thats perpendicular to the plane of the binarys orbit. The magnetic flux increases rapidly as the separation between the black holes decreases, generating an increasingly powerful magnetic wind. This wind, in turn, can give rise to a fast radio burst or a gamma-ray burst, depending on the value of the black holes charge.Artists illustration of a short gamma-ray burst, thought to be caused by the merger of two compact objects. [ESO/A. Roquette]Zhang calculates lower limits on the charge

  13. Black holes and the multiverse

    CERN Document Server

    Garriga, Jaume; Zhang, Jun

    2015-01-01

    Vacuum bubbles may nucleate and expand during the inflationary epoch in the early universe. After inflation ends, the bubbles quickly dissipate their kinetic energy; they come to rest with respect to the Hubble flow and eventually form black holes. The fate of the bubble itself depends on the resulting black hole mass. If the mass is smaller than a certain critical value, the bubble collapses to a singularity. Otherwise, the bubble interior inflates, forming a baby universe, which is connected to the exterior FRW region by a wormhole. A similar black hole formation mechanism operates for spherical domain walls nucleating during inflation. As an illustrative example, we studied the black hole mass spectrum in the domain wall scenario, assuming that domain walls interact with matter only gravitationally. Our results indicate that, depending on the model parameters, black holes produced in this scenario can have significant astrophysical effects and can even serve as dark matter or as seeds for supermassive blac...

  14. String-Corrected Black Holes

    Energy Technology Data Exchange (ETDEWEB)

    Hubeny, Veronika; Maloney, Alexander; Rangamani, Mukund

    2005-02-07

    We investigate the geometry of four dimensional black hole solutions in the presence of stringy higher curvature corrections to the low energy effective action. For certain supersymmetric two charge black holes these corrections drastically alter the causal structure of the solution, converting seemingly pathological null singularities into timelike singularities hidden behind a finite area horizon. We establish, analytically and numerically, that the string-corrected two-charge black hole metric has the same Penrose diagram as the extremal four-charge black hole. The higher derivative terms lead to another dramatic effect -- the gravitational force exerted by a black hole on an inertial observer is no longer purely attractive! The magnitude of this effect is related to the size of the compactification manifold.

  15. Chaotic Information Processing by Extremal Black Holes

    CERN Document Server

    Axenides, Minos; Nicolis, Stam

    2015-01-01

    We review an explicit regularization of the AdS$_2$/CFT$_1$ correspondence, that preserves all isometries of bulk and boundary degrees of freedom. This scheme is useful to characterize the space of the unitary evolution operators that describe the dynamics of the microstates of extremal black holes in four spacetime dimensions. Using techniques from algebraic number theory to evaluate the transition amplitudes, we remark that the regularization scheme expresses the fast quantum computation capability of black holes as well as its chaotic nature.

  16. Magnetic fields around black holes

    Science.gov (United States)

    Garofalo, David A. G.

    Active Galactic Nuclei are the most powerful long-lived objects in the universe. They are thought to harbor supermassive black holes that range from 1 million solar masses to 1000 times that value and possibly greater. Theory and observation are converging on a model for these objects that involves the conversion of gravitational potential energy of accreting gas to radiation as well as Poynting flux produced by the interaction of the rotating spacetime and the electromagnetic fields originating in the ionized accretion flow. The presence of black holes in astrophysics is taking center stage, with the output from AGN in various forms such as winds and jets influencing the formation and evolution of the host galaxy. This dissertation addresses some of the basic unanswered questions that plague our current understanding of how rotating black holes interact with their surrounding magnetized accretion disks to produce the enormous observed energy. Two magnetic configurations are examined. The first involves magnetic fields connecting the black hole with the inner accretion disk and the other involves large scale magnetic fields threading the disk and the hole. We study the effects of the former type by establishing the consequences that magnetic torques between the black hole and the inner accretion disk have on the energy dissipation profile. We attempt a plausible explanation to the observed "Deep Minimum" state in the Seyfert galaxy MCG-6- 30-15. For the latter type of magnetic geometry, we study the effects of the strength of the magnetic field threading the black hole within the context of the cherished Blandford & Znajek mechanism for black hole spin energy extraction. We begin by addressing the problem in the non-relativistic regime where we find that the black hole-threading magnetic field is stronger for greater disk thickness, larger magnetic Prandtl number, and for a larger accretion disk. We then study the problem in full relativity where we show that our

  17. Black hole chemistry: thermodynamics with Lambda

    Science.gov (United States)

    Kubizňák, David; Mann, Robert B.; Teo, Mae

    2017-03-01

    We review recent developments on the thermodynamics of black holes in extended phase space, where the cosmological constant is interpreted as thermodynamic pressure and treated as a thermodynamic variable in its own right. In this approach, the mass of the black hole is no longer regarded as internal energy, rather it is identified with the chemical enthalpy. This leads to an extended dictionary for black hole thermodynamic quantities; in particular a notion of thermodynamic volume emerges for a given black hole spacetime. This volume is conjectured to satisfy the reverse isoperimetric inequality—an inequality imposing a bound on the amount of entropy black hole can carry for a fixed thermodynamic volume. New thermodynamic phase transitions naturally emerge from these identifications. Namely, we show that black holes can be understood from the viewpoint of chemistry, in terms of concepts such as Van der Waals fluids, reentrant phase transitions, and triple points. We also review the recent attempts at extending the AdS/CFT dictionary in this setting, discuss the connections with horizon thermodynamics, applications to Lifshitz spacetimes, and outline possible future directions in this field.

  18. Kerr black hole thermodynamical fluctuations

    Science.gov (United States)

    Pavon, D.; Rubi, J. M.

    1985-04-01

    The near-equilibrium thermodynamical (TD) fluctuations of a massive rotating uncharged Kerr black hole immersed in a uniformly corotating radiation bath at its temperature are investigated theoretically, generalizing Schwarzschild-black-hole analysis of Pavon and Rubi(1983), based on Einstein fluctuation theory. The correlations for the energy and angular moment fluctuations and the second moments of the other TD parameters are obtained, and the generalized second law of black-hole TD and the Bekenstein (1975) interpretation of black-hole entropy are seen as functioning well in this case. A local-stability criterion and relation for TD equilibrium between the Kerr hole and its own radiation in the flat-space-time limit are derived, and a restriction between C and Lambda is deduced.

  19. Recoiling Black Holes in Quasars

    CERN Document Server

    Bonning, E W; Salviander, S

    2007-01-01

    Recent simulations of merging black holes with spin give recoil velocities from gravitational radiation up to several thousand km/s. A recoiling supermassive black hole can retain the inner part of its accretion disk, providing fuel for a continuing QSO phase lasting millions of years as the hole moves away from the galactic nucleus. One possible observational manifestation of a recoiling accretion disk is in QSO emission lines shifted in velocity from the host galaxy. We have examined QSOs from the Sloan Digital Sky Survey with broad emission lines substantially shifted relative to the narrow lines. We find no convincing evidence for recoiling black holes carrying accretion disks. We place an upper limit on the incidence of recoiling black holes in QSOs of 4% for kicks greater than 500 km/s and 0.35% for kicks greater than 1000 km/s line-of-sight velocity.

  20. A nonsingular rotating black hole

    Energy Technology Data Exchange (ETDEWEB)

    Ghosh, Sushant G. [Jamia Millia Islamia, Centre for Theoretical Physics, New Delhi (India); University of KwaZulu-Natal, Astrophysics and Cosmology Research Unit, School of Mathematical Sciences, Durban (South Africa)

    2015-11-15

    The spacetime singularities in classical general relativity are inevitable, as predicated by the celebrated singularity theorems. However, it is a general belief that singularities do not exist in Nature and that they are the limitations of the general relativity. In the absence of a welldefined quantum gravity, models of regular black holes have been studied. We employ a probability distribution inspired mass function m(r) to replace the Kerr black hole mass M to represent a nonsingular rotating black hole that is identified asymptotically (r >> k, k > 0 constant) exactly as the Kerr-Newman black hole, and as the Kerr black hole when k = 0. The radiating counterpart renders a nonsingular generalization of Carmeli's spacetime as well as Vaidya's spacetime, in the appropriate limits. The exponential correction factor changing the geometry of the classical black hole to remove the curvature singularity can also be motivated by quantum arguments. The regular rotating spacetime can also be understood as a black hole of general relativity coupled to nonlinear electrodynamics. (orig.)

  1. Rotating black hole and quintessence

    Energy Technology Data Exchange (ETDEWEB)

    Ghosh, Sushant G. [Jamia Millia Islamia, Centre for Theoretical Physics, New Delhi (India); University of KwaZulu-Natal, Astrophysics and Cosmology Research Unit, School of Mathematics, Statistics and Computer Science, Private Bag 54001, Durban (South Africa)

    2016-04-15

    We discuss spherically symmetric exact solutions of the Einstein equations for quintessential matter surrounding a black hole, which has an additional parameter (ω) due to the quintessential matter, apart from the mass (M). In turn, we employ the Newman-Janis complex transformation to this spherical quintessence black hole solution and present a rotating counterpart that is identified, for α = -e{sup 2} ≠ 0 and ω = 1/3, exactly as the Kerr-Newman black hole, and as the Kerr black hole when α = 0. Interestingly, for a given value of parameter ω, there exists a critical rotation parameter (a = a{sub E}), which corresponds to an extremal black hole with degenerate horizons, while for a < a{sub E}, it describes a nonextremal black hole with Cauchy and event horizons, and no black hole for a > a{sub E}. We find that the extremal value a{sub E} is also influenced by the parameter ω and so is the ergoregion. (orig.)

  2. Cosmic Intelligence and Black Holes

    CERN Document Server

    Lefebvre, V A; Lefebvre, Vladimir A.; Efremov, Yuri N.

    2000-01-01

    The paper is devoted to a new direction in SETI. After a general discussion of the field, the authors put forth the hypothesis that the black holes may serve as a physical substratum for intelligent beings. This hypothesis is based on four parallels between the brain-psyche system, on the one hand, and black holes, on the other. (1) The descriptions of brain and psyche, in the system brain-psyche, are complementary to each other, as descriptions by internal and external observers of a black hole in Susskind-t'Hooft's schema. (2) There is an aspect of the inner structure of a black hole in Kerr's model of the rotating black hole that is isomorphic to the structure of the human subjective domain in the psychological model of reflexion. (3) Both black holes and the brain-psyche system have a facet which can be represented using thermodynamic concepts. (4) The brain lends itself to a holographic description; as has been recently demonstrated by Susskind, black holes can also be described holographically. The auth...

  3. Thermodynamics of Third Order Lovelock-Born-Infeld Black Holes

    CERN Document Server

    Li, Peng; Zou, De-Cheng

    2011-01-01

    We here explore black holes in the third order Lovelock gravity coupling with nonlinear Born-Infeld electromagnetic field. Considering special second and third order coefficients ($\\hat{\\alpha}_2^2=3\\hat{\\alpha}_3=\\alpha^2$), we analyze the thermodynamics of third order Lovelock-Born-Infeld black holes and, in 7-dimensional AdS space-time, discuss the stability of black holes in different event horizon structures. We find that the cosmological constant $\\Lambda$ plays an important role in the distribution of stable regions of black holes.

  4. Thermodynamics of Third Order Lovelock-Born-Infeld Black Holes

    Institute of Scientific and Technical Information of China (English)

    李鹏; 岳瑞宏; 邹德成

    2011-01-01

    We here explore black holes in the third order Lovelock gravity coupling with nonlinear Born-Infeld electro- magnetic field. Considering special second and third order coefficients (&g = 363 = a2), we analyze the thermodynamics of third order Lovelock-Born-Infeld black holes and, in 7-dimensional AdS space-time, discuss the stability of black holes in different event horizon structures. We find that the cosmological constant A plays an important role in the distribution of black hole stable regions.

  5. Quantum mechanics of black holes.

    Science.gov (United States)

    Witten, Edward

    2012-08-03

    The popular conception of black holes reflects the behavior of the massive black holes found by astronomers and described by classical general relativity. These objects swallow up whatever comes near and emit nothing. Physicists who have tried to understand the behavior of black holes from a quantum mechanical point of view, however, have arrived at quite a different picture. The difference is analogous to the difference between thermodynamics and statistical mechanics. The thermodynamic description is a good approximation for a macroscopic system, but statistical mechanics describes what one will see if one looks more closely.

  6. Orbital resonances around black holes.

    Science.gov (United States)

    Brink, Jeandrew; Geyer, Marisa; Hinderer, Tanja

    2015-02-27

    We compute the length and time scales associated with resonant orbits around Kerr black holes for all orbital and spin parameters. Resonance-induced effects are potentially observable when the Event Horizon Telescope resolves the inner structure of Sgr A*, when space-based gravitational wave detectors record phase shifts in the waveform during the resonant passage of a compact object spiraling into the black hole, or in the frequencies of quasiperiodic oscillations for accreting black holes. The onset of geodesic chaos for non-Kerr spacetimes should occur at the resonance locations quantified here.

  7. Static-Fluid Black Holes

    CERN Document Server

    Cho, Inyong

    2016-01-01

    We investigate black holes formed by static perfect fluid with $p=-\\rho/3$. These represent the black holes in $S_3$ and $H_3$ spatial geometries. There are three classes of black-hole solutions, two $S_3$ types and one $H_3$ type. The interesting solution is the one of $S_3$ type which possesses two singularities. The one is at the north pole behind the horizon, and the other is naked at the south pole. The observers, however, are free from falling to the naked singularity. There are also nonstatic cosmological solutions in $S_3$ and $H_3$, and a singular static solution in $H_3$.

  8. On regular rotating black holes

    Science.gov (United States)

    Torres, R.; Fayos, F.

    2017-01-01

    Different proposals for regular rotating black hole spacetimes have appeared recently in the literature. However, a rigorous analysis and proof of the regularity of this kind of spacetimes is still lacking. In this note we analyze rotating Kerr-like black hole spacetimes and find the necessary and sufficient conditions for the regularity of all their second order scalar invariants polynomial in the Riemann tensor. We also show that the regularity is linked to a violation of the weak energy conditions around the core of the rotating black hole.

  9. Black Holes: A Traveler's Guide

    Science.gov (United States)

    Pickover, Clifford A.

    1998-03-01

    BLACK HOLES A TRAVELER'S GUIDE Clifford Pickover's inventive and entertaining excursion beyond the curves of space and time. "I've enjoyed Clifford Pickover's earlier books . . . now he has ventured into the exploration of black holes. All would-be tourists are strongly advised to read his traveler's guide." -Arthur C. Clarke. "Many books have been written about black holes, but none surpass this one in arousing emotions of awe and wonder towards the mysterious structure of the universe." -Martin Gardner. "Bucky Fuller thought big. Arthur C. Clarke thinks big, but Cliff Pickover outdoes them both." -Wired. "The book is fun, zany, in-your-face, and refreshingly addictive." -Times Higher Education Supplement.

  10. Novel CFT duals for extreme black holes

    Energy Technology Data Exchange (ETDEWEB)

    Chen Bin, E-mail: bchen01@pku.edu.cn [Department of Physics, and State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing 100871 (China); Center for High Energy Physics, Peking University, Beijing 100871 (China); Zhang Jiaju, E-mail: jjzhang@pku.edu.cn [Department of Physics, and State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing 100871 (China)

    2012-03-11

    In this paper, we study the CFT duals for extreme black holes in the stretched horizon formalism. We consider the extremal RN, Kerr-Newman-AdS-dS, as well as the higher dimensional Kerr-AdS-dS black holes. In all these cases, we reproduce the well-established CFT duals. Actually we show that for stationary extreme black holes, the stretched horizon formalism always gives rise to the same dual CFT pictures as the ones suggested by ASG of corresponding near horizon geometries. Furthermore, we propose new CFT duals for 4D Kerr-Newman-AdS-dS and higher dimensional Kerr-AdS-dS black holes. We find that every dual CFT is defined with respect to a rotation in certain angular direction, along which the translation defines a U(1) Killing symmetry. In the presence of two sets of U(1) symmetry, the novel CFT duals are generated by the modular group SL(2,Z), and for n sets of U(1) symmetry there are general CFT duals generated by T-duality group SL(n,Z).

  11. Black hole meiosis

    Science.gov (United States)

    van Herck, Walter; Wyder, Thomas

    2010-04-01

    The enumeration of BPS bound states in string theory needs refinement. Studying partition functions of particles made from D-branes wrapped on algebraic Calabi-Yau 3-folds, and classifying states using split attractor flow trees, we extend the method for computing a refined BPS index, [1]. For certain D-particles, a finite number of microstates, namely polar states, exclusively realized as bound states, determine an entire partition function (elliptic genus). This underlines their crucial importance: one might call them the ‘chromosomes’ of a D-particle or a black hole. As polar states also can be affected by our refinement, previous predictions on elliptic genera are modified. This can be metaphorically interpreted as ‘crossing-over in the meiosis of a D-particle’. Our results improve on [2], provide non-trivial evidence for a strong split attractor flow tree conjecture, and thus suggest that we indeed exhaust the BPS spectrum. In the D-brane description of a bound state, the necessity for refinement results from the fact that tachyonic strings split up constituent states into ‘generic’ and ‘special’ states. These are enumerated separately by topological invariants, which turn out to be partitions of Donaldson-Thomas invariants. As modular predictions provide a check on many of our results, we have compelling evidence that our computations are correct.

  12. Black Hole Meiosis

    CERN Document Server

    Van Herck, Walter

    2009-01-01

    The enumeration of BPS bound states in string theory needs refinement. Studying partition functions of particles made from D-branes wrapped on algebraic Calabi-Yau 3-folds, and classifying states using split attractor flow trees, we extend the method for computing a refined BPS index, arXiv:0810.4301. For certain D-particles, a finite number of microstates, namely polar states, exclusively realized as bound states, determine an entire partition function (elliptic genus). This underlines their crucial importance: one might call them the `chromosomes' of a D-particle or a black hole. As polar states also can be affected by our refinement, previous predictions on elliptic genera are modified. This can be metaphorically interpreted as `crossing-over in the meiosis of a D-particle'. Our results improve on hep-th/0702012, provide non-trivial evidence for a strong split attractor flow tree conjecture, and thus suggest that we indeed exhaust the BPS spectrum. In the D-brane description of a bound state, the necessity...

  13. How Black Holes Burn

    CERN Document Server

    Brustein, Ram

    2014-01-01

    We present a calculation of the rate of information release from a Schwarzschild BH. We have recently extended Hawking's theory of black hole (BH) evaporation to account for quantum fluctuations of the background geometry, as well as for back-reaction and time-dependence effects. Our main result has been a two-point function matrix for the radiation that consists of Hawking's thermal matrix plus off-diagonal corrections that are initially small and become more important as the evaporation proceeds. Here, we show that, if the phases and amplitudes of the radiation matrix are recorded over the lifetime of the BH, then the radiation purifies in a continuous way. We conjecture that our results establish the maximal rate at which information can be released from a semiclassical BH, to be contrasted with the minimal rate that was predicted by Page on the basis of generic unitarity arguments. When the phases of the radiation matrix are not tracked, we show that it purifies only parametrically close to the end of the...

  14. Black hole information vs. locality

    CERN Document Server

    Itzhaki, N

    1996-01-01

    We discuss the limitations on space time measurement in Schwarzchild metric. We find that near the horizon the limitations on space time measurement are of the order of the black hole radius. We suggest that it indicates that a large mass black hole can not be described by means of local field theory even at macroscopic distances and that any attempt to describe black hole formation and evaporation by means of an effective local field theory will necessarily lead to information loss. We also present a new interpretation of the black hole entropy which leads to S=cA , where c is a constant of order 1 which does not depend on the number of fields.

  15. 'Black holes': escaping the void.

    Science.gov (United States)

    Waldron, Sharn

    2013-02-01

    The 'black hole' is a metaphor for a reality in the psyche of many individuals who have experienced complex trauma in infancy and early childhood. The 'black hole' has been created by an absence of the object, the (m)other, so there is no internalized object, no (m)other in the psyche. Rather, there is a 'black hole' where the object should be, but the infant is drawn to it, trapped by it because of an intrinsic, instinctive need for a 'real object', an internalized (m)other. Without this, the infant cannot develop. It is only the presence of a real object that can generate the essential gravity necessary to draw the core of the self that is still in an undeveloped state from deep within the abyss. It is the moving towards a real object, a (m)other, that relativizes the absolute power of the black hole and begins a reformation of its essence within the psyche.

  16. Formation of Supermassive Black Holes

    CERN Document Server

    Volonteri, Marta

    2010-01-01

    Evidence shows that massive black holes reside in most local galaxies. Studies have also established a number of relations between the MBH mass and properties of the host galaxy such as bulge mass and velocity dispersion. These results suggest that central MBHs, while much less massive than the host (~ 0.1%), are linked to the evolution of galactic structure. In hierarchical cosmologies, a single big galaxy today can be traced back to the stage when it was split up in hundreds of smaller components. Did MBH seeds form with the same efficiency in small proto-galaxies, or did their formation had to await the buildup of substantial galaxies with deeper potential wells? I briefly review here some of the physical processes that are conducive to the evolution of the massive black hole population. I will discuss black hole formation processes for `seed' black holes that are likely to place at early cosmic epochs, and possible observational tests of these scenarios.

  17. Black holes and quantum mechanics

    Energy Technology Data Exchange (ETDEWEB)

    Hooft, G. ' t, E-mail: g.thooft@uu.n [Institute for Theoretical Physics, Utrecht University and Spinoza Institute, P.O. Box 80.195, 3508 TD Utrecht (Netherlands)

    2010-07-15

    After a brief review of quantum black hole physics, it is shown how the dynamical properties of a quantum black hole may be deduced to a large extent from Standard Model Physics, extended to scales near the Planck length, and combined with results from perturbative quantum gravity. Together, these interactions generate a Hilbert space of states on the black hole horizon, which can be investigated, displaying interesting systematics by themselves. To make such approaches more powerful, a study is made of the black hole complementarity principle, from which one may deduce the existence of a hidden form of local conformal invariance. Finally, the question is raised whether the principles underlying Quantum Mechanics are to be sharpened in this domain of physics as well. There are intriguing possibilities.

  18. Singularities Inside Hairy Black Holes

    OpenAIRE

    Gal'tsov, D. V.; Donets, E. E.; Zotov, M. Yu.

    1997-01-01

    We show that the Strong Cosmic Censorship is supported by the behavior of generic solutions on the class of static spherically symmetric black holes in gravitating gauge models and their stringy generalizations.

  19. Singularities Inside Hairy Black Holes

    CERN Document Server

    Galtsov, D V; Zotov, M Yu

    1998-01-01

    We show that the Strong Cosmic Censorship is supported by the behavior of generic solutions on the class of static spherically symmetric black holes in gravitating gauge models and their stringy generalizations.

  20. Black hole accretion disc impacts

    CERN Document Server

    Pihajoki, Pauli

    2015-01-01

    We present an analytic model for computing the luminosity and spectral evolution of flares caused by a supermassive black hole impacting the accretion disc of another supermassive black hole. Our model includes photon diffusion, emission from optically thin regions and relativistic corrections to the observed spectrum and time-scales. We test the observability of the impact scenario with a simulated population of quasars hosting supermassive black hole binaries. The results indicate that for a moderate binary mass ratio of 0.3, and impact distances of 100 primary Schwarzschild radii, the accretion disc impacts can be expected to equal or exceed the host quasar in brightness at observed wavelength {\\lambda} = 510 nm up to z = 0.6. We conclude that accretion disc impacts may function as an independent probe for supermassive black hole binaries. We release the code used for computing the model light curves to the community.

  1. Space, time, and black holes

    Energy Technology Data Exchange (ETDEWEB)

    Darling, D.

    1980-10-01

    A discussion of Einstein's General Relativity and how it can explain black holes is included. The key idea of general relativity being that gravitational forces are a direct outcome of local curvature of space-time. The more mass something has the deeper the depression or well it causes in space-time. Black holes are supermassive objects, hence their gravity well is so steep even light can't escape. The three properties associated with a black hole are mass angular momentum, and electric charge. Non-rotating, Schwarzchild, and rotating, Kerr, black holes are studied. A Kruskal-Szekeres diagram for each type is given and explained. (SC)

  2. Accretion, primordial black holes and standard cosmology

    Indian Academy of Sciences (India)

    B Nayak; P Singh

    2011-01-01

    Primordial black holes evaporate due to Hawking radiation. We find that the evaporation times of primordial black holes increase when accretion of radiation is included. Thus, depending on accretion efficiency, more primordial black holes are existing today, which strengthens the conjecture that the primordial black holes are the proper candidates for dark matter.

  3. The Black Hole Universe Model

    Science.gov (United States)

    Zhang, Tianxi

    2014-06-01

    The black hole universe model is a multiverse model of cosmology recently developed by the speaker. According to this new model, our universe is a fully grown extremely supermassive black hole, which originated from a hot star-like black hole with several solar masses, and gradually grew up from a supermassive black hole with million to billion solar masses to the present state with trillion-trillion solar masses by accreting ambient matter or merging with other black holes. The entire space is structured with infinite layers or universes hierarchically. The innermost three layers include the universe that we live, the inside star-like and supermassive black holes called child universes, and the outside space called mother universe. The outermost layer is infinite in mass, radius, and entropy without an edge and limits to zero for both the matter density and absolute temperature. All layers are governed by the same physics and tend to expand physically in one direction (outward or the direction of increasing entropy). The expansion of a black hole universe decreases its density and temperature but does not alter the laws of physics. The black hole universe evolves iteratively and endlessly without a beginning. When one universe expands out, a new similar one is formed from inside star-like and supermassive black holes. In each of iterations, elements are resynthesized, matter is reconfigurated, and the universe is renewed rather than a simple repeat. The black hole universe is consistent with the Mach principle, observations, and Einsteinian general relativity. It has only one postulate but is able to explain all phenomena occurred in the universe with well-developed physics. The black hole universe does not need dark energy for acceleration and an inflation epoch for flatness, and thus has a devastating impact on the big bang model. In this talk, I will present how this new cosmological model explains the various aspects of the universe, including the origin

  4. Geometric inequalities for black holes

    CERN Document Server

    Dain, Sergio

    2014-01-01

    It is well known that the three parameters that characterize the Kerr black hole (mass, angular momentum and horizon area) satisfy several important inequalities. Remarkably, some of these inequalities remain valid also for dynamical black holes. This kind of inequalities play an important role in the characterization of the gravitational collapse. They are closed related with the cosmic censorship conjecture. In this article recent results in this subject are reviewed.

  5. Magnetic Black Holes Are Also Unstable

    CERN Document Server

    Kim, Sang Pyo

    2004-01-01

    Most black holes are known to be unstable to emitting Hawking radiation (in asymptotically flat spacetime). If the black holes are non-extreme, they have positive temperature and emit thermally. If they are extremal rotating black holes, they still spontaneously emit particles like gravitons and photons. If they are extremal electrically charged black holes, they are unstable to emitting electrons or positrons. The only exception would be extreme magnetically charged black holes if there do not exist any magnetic monopoles for them to emit. However, here we show that even in this case, vacuum polarization causes all magnetic black holes to be unstable to emitting smaller magnetic black holes.

  6. Extremal Black Hole Entropy from Horizon Conformal Field Theories

    CERN Document Server

    Halyo, Edi

    2015-01-01

    We show that the entropy of extremal $D=4$ Reissner--Nordstrom black holes can be computed from horizon CFTs with central charges and conformal weights fixed by the dimensionless Rindler energy. This is possible in the simultaneous extremal and near horizon limit of the black hole which takes the geometry to an $AdS_2$ Rindler space with finite temperature. The CFT description of dilatonic $AdS_2$ black holes, obtained from extremal ones by dimensional reduction, lead to exactly the same CFT states.

  7. Black Hole Solutions in Rastall Theory

    CERN Document Server

    Heydarzade, Y; Darabi, F

    2016-01-01

    The Reissner-Nordstr\\"om black hole solution in a generic cosmological constant background in the the context of Rastall gravity is obtained. It is shown that the cosmological constant arises naturally from the consistency of the non-vacuum field equations of the Rastall theory for a spherical symmetric spacetime, rather than its {\\it ad-hoc} introduction in the usual Einstein and Einstein-Maxwell field equations. The usual Reissner-Nordstr\\"om, Schwarzschild and Schwarzschild-(anti)de Sitter black hole solutions in the framework of this theory are also addressed as the special independent subclasses of the obtained general solution.

  8. Local Operators in the Eternal Black Hole.

    Science.gov (United States)

    Papadodimas, Kyriakos; Raju, Suvrat

    2015-11-20

    In the AdS/CFT correspondence, states obtained by Hamiltonian evolution of the thermofield doubled state are also dual to an eternal black-hole geometry, which is glued to the boundary with a time shift generated by a large diffeomorphism. We describe gauge-invariant relational observables that probe the black hole interior in these states and constrain their properties using effective field theory. By adapting recent versions of the information paradox we show that these observables are necessarily described by state-dependent bulk-boundary maps, which we construct explicitly.

  9. Tensor network and a black hole

    Science.gov (United States)

    Matsueda, Hiroaki; Ishihara, Masafumi; Hashizume, Yoichiro

    2013-03-01

    A tensor-network variational formalism of thermofield dynamics is introduced. The formalism relates the original Hilbert space with its tilde space by a product of two copies of a tensor network. Then, their interface becomes an event horizon, and the logarithm of the tensor rank corresponds to the black hole entropy. Eventually, a multiscale entanglement renormalization ansatz reproduces an anti-de Sitter black hole at finite temperature. Our finding shows rich functionalities of multiscale entanglement renormalization ansatz as efficient graphical representation of AdS/CFT correspondence.

  10. How objective is black hole entropy?

    CERN Document Server

    Lau, Y K

    1994-01-01

    The objectivity of black hole entropy is discussed in the particular case of a Schwarzchild black hole. Using Jaynes' maximum entropy formalism and Euclidean path integral evaluation of partition function, it is argued that in the semiclassical limit when the fluctutation of metric is neglected, the black hole entropy of a Schwarzchild black hole is equal to the maximal information entropy of an observer whose sole knowledge of the black hole is its mass. Black hole entropy becomes a measure of number of its internal mass eigenstates in accordance with the Boltzmann principle only in the limit of negligible relative mass fluctutation. {}From the information theoretic perspective, the example of a Schwarzchild black hole seems to suggest that black hole entropy is no different from ordinary thermodynamic entropy. It is a property of the experimental data of a black hole, rather than being an intrinsic physical property of a black hole itself independent of any observer. However, it is still weakly objective in...

  11. Black Holes: The Membrane Viewpoint

    Science.gov (United States)

    Thorne, Kip S.

    Contents: I. Introduction: 1. Overview of the membrane viewpoint. 2. History of research on the membrane viewpoint. II. The 3+1 split of spacetime: 1. ZAMOs and the 3+1 split of the metric. 2. Gravitoelectric and gravitomagnetic fields. 3. 3+1 split of electrodynamics. III. Stretching the horizon and black-hole thermodynamics: 1. Macdonald's vibrating magnetic field problem. 2. Stretching the horizon. 3. The entropy of a black hole. 4. The thermodynamics and mechanics of a black hole. IV. Electrodynamics of the stretched horizon: 1. The laws of Gauss, Ampere, Ohm, and charge conservation. 2. Lorentz force and ohmic dissipation in the stretched horizon. V. Some electromagnetic model problems: 1. Charge separation in the stretched horizon. 2. Black hole as a resistor in an electric circuit. 3. Black hole as the rotor in an electric motor. 4. Rotating hole immersed in a time-independent, vacuum magnetic field. 5. Magnetized, rotating hole as a battery for an external circuit. VI. Astrophysical applications of the membrane formalism. VII. Conclusion.

  12. Evolution of supermassive black holes

    CERN Document Server

    Volonteri, M

    2006-01-01

    Supermassive black holes (SMBHs) are nowadays believed to reside in most local galaxies, and the available data show an empirical correlation between bulge luminosity - or stellar velocity dispersion - and black hole mass, suggesting a single mechanism for assembling black holes and forming spheroids in galaxy halos. The evidence is therefore in favour of a co-evolution between galaxies, black holes and quasars. In cold dark matter cosmogonies, small-mass subgalactic systems form first to merge later into larger and larger structures. In this paradigm galaxy halos experience multiple mergers during their lifetime. If every galaxy with a bulge hosts a SMBH in its center, and a local galaxy has been made up by multiple mergers, then a black hole binary is a natural evolutionary stage. The evolution of the supermassive black hole population clearly has to be investigated taking into account both the cosmological framework and the dynamical evolution of SMBHs and their hosts. The seeds of SMBHs have to be looked ...

  13. Intermediate-Mass Black Holes

    CERN Document Server

    Miller, M C

    2004-01-01

    The mathematical simplicity of black holes, combined with their links to some of the most energetic events in the universe, means that black holes are key objects for fundamental physics and astrophysics. Until recently, it was generally believed that black holes in nature appear in two broad mass ranges: stellar-mass (roughly 3-20 solar masses), which are produced by the core collapse of massive stars, and supermassive (millions to billions of solar masses), which are found in the centers of galaxies and are produced by a still uncertain combination of processes. In the last few years, however, evidence has accumulated for an intermediate-mass class of black holes, with hundreds to thousands of solar masses. If such objects exist they have important implications for the dynamics of stellar clusters, the formation of supermassive black holes, and the production and detection of gravitational waves. We review the evidence for intermediate-mass black holes and discuss future observational and theoretical work t...

  14. Bounds on Black Hole Spins

    CERN Document Server

    Daly, Ruth A

    2009-01-01

    Beam powers and black hole masses of 48 extended radio sources are combined to obtain lower bounds on the spins and magnetic field strengths of supermassive black holes. This is done in the context of the models of Blandford & Znajek (1977) (the 'BZ' model) and Meier (1999); a parameterization for bounds in the context of other models is suggested. The bounds obtained for very powerful classical double radio sources in the BZ model are consistent with black hole spins of order unity for sources at high redshift. The black hole spins are largest for the highest redshift sources and decrease for sources at lower redshift; the sources studied have redshifts between zero and two. Lower power radio sources associated with central dominant galaxies may have black hole spins that are significantly less than one. Combining this analysis with other results suggests that the maximum values of black hole spin associated with powerful radio galaxies decline from values of order unity at a redshift of 2 to values of o...

  15. Microstate solutions from black hole deconstruction

    CERN Document Server

    Raeymaekers, Joris

    2015-01-01

    We present a new family of asymptotic AdS_3 x S^2 solutions to eleven dimensional supergravity compactified on a Calabi-Yau threefold. They originate from the backreaction of S^2-wrapped M2-branes, which play a central role in the deconstruction proposal for the microscopic interpretation of the D4-D0 black hole entropy. We show that they are free of possible pathologies such as closed timelike curves and discuss their holographic interpretation.

  16. Regular black hole in three dimensions

    OpenAIRE

    Myung, Yun Soo; Yoon, Myungseok

    2008-01-01

    We find a new black hole in three dimensional anti-de Sitter space by introducing an anisotropic perfect fluid inspired by the noncommutative black hole. This is a regular black hole with two horizons. We compare thermodynamics of this black hole with that of non-rotating BTZ black hole. The first-law of thermodynamics is not compatible with the Bekenstein-Hawking entropy.

  17. New Concepts for Old Black Holes

    CERN Document Server

    Susskind, Leonard

    2013-01-01

    It has been argued that the AMPS paradox implies catastrophic breakdown of the equivalence principle in the neighborhood of a black hole horizon, or even the non-existence of any spacetime at all behind the horizon. Maldacena and the author suggested a different resolution of the paradox based on the close relationship between Einstein-Rosen bridges and Einstein-Podolsky-Rosen entanglement. In this paper the new mechanisms required by the proposal are reviewed: the ER=EPR connection: precursors: timefolds: and the black hole interior as a fault-tolerant, negative information message. Along the way a model of an ADS black hole as a single long-string is explained, and used to clarify the relation between Wilson loops and precursors.

  18. Erratic Black Hole Regulates Itself

    Science.gov (United States)

    2009-03-01

    New results from NASA's Chandra X-ray Observatory have made a major advance in explaining how a special class of black holes may shut off the high-speed jets they produce. These results suggest that these black holes have a mechanism for regulating the rate at which they grow. Black holes come in many sizes: the supermassive ones, including those in quasars, which weigh in at millions to billions of times the mass of the Sun, and the much smaller stellar-mass black holes which have measured masses in the range of about 7 to 25 times the Sun's mass. Some stellar-mass black holes launch powerful jets of particles and radiation, like seen in quasars, and are called "micro-quasars". The new study looks at a famous micro-quasar in our own Galaxy, and regions close to its event horizon, or point of no return. This system, GRS 1915+105 (GRS 1915 for short), contains a black hole about 14 times the mass of the Sun that is feeding off material from a nearby companion star. As the material swirls toward the black hole, an accretion disk forms. This system shows remarkably unpredictable and complicated variability ranging from timescales of seconds to months, including 14 different patterns of variation. These variations are caused by a poorly understood connection between the disk and the radio jet seen in GRS 1915. Chandra, with its spectrograph, has observed GRS 1915 eleven times since its launch in 1999. These studies reveal that the jet in GRS 1915 may be periodically choked off when a hot wind, seen in X-rays, is driven off the accretion disk around the black hole. The wind is believed to shut down the jet by depriving it of matter that would have otherwise fueled it. Conversely, once the wind dies down, the jet can re-emerge. "We think the jet and wind around this black hole are in a sort of tug of war," said Joseph Neilsen, Harvard graduate student and lead author of the paper appearing in the journal Nature. "Sometimes one is winning and then, for reasons we don

  19. Black holes in brane worlds

    Indian Academy of Sciences (India)

    M S Modgil; S Panda; S Sengupta

    2004-03-01

    A Kerr metric describing a rotating black hole is obtained on the three brane in a five-dimensional Randall-Sundrum brane world by considering a rotating five-dimensional black string in the bulk. We examine the causal structure of this space-time through the geodesic equations.

  20. More on the RHIC fireball and dual black holes

    OpenAIRE

    Nastase, Horatiu

    2006-01-01

    We revisit the issue of the RHIC ``fireball'' as a dual black hole, and explain some of the details. We discuss the nature of the (black hole) information paradox as a purely field theory (gauge theory) phenomenon and how the paradox can be formulated in exactly the same way for the RHIC fireball and a black hole. We stress the differences between the black holes produced in the gravity dual and the equilibrium situation of the Witten construction for finite temperature AdS-CFT. We analyze th...

  1. Could supermassive black holes be quintessential primordial black holes?

    CERN Document Server

    Bean, R; Bean, Rachel; Magueijo, Joao

    2002-01-01

    There is growing observational evidence for a population of supermassive black holes (SMBHs) in galactic bulges. We examine in detail the conditions under which these black holes must have originated from primordial black holes (PBHs). We consider the merging and accretion history experienced by SMBHs to find that, whereas it is possible that they were formed by purely astrophysical processes, this is unlikely and most probably a populations of primordial progenitors is necessary. We identify the mass distribution and comoving density of this population and then propose a cosmological scenario producing PBHs with the right properties. Although this is not essential we consider PBHs produced at the end of a period of inflation with a blue spectrum of fluctuations. We constrain the value of the spectral tilt in order to obtain the required PBH comoving density. We then assume that PBHs grow by accreting quintessence showing that their mass scales like the horizon mass while the quintessence field itself is scal...

  2. Resource Letter BH-2: Black Holes

    CERN Document Server

    Gallo, Elena

    2008-01-01

    This resource letter is designed to guide students, educators, and researchers through (some of) the literature on black holes. Both the physics and astrophysics of black holes are discussed. Breadth has been emphasized over depth, and review articles over primary sources. We include resources ranging from non-technical discussions appropriate for broad audiences to technical reviews of current research. Topics addressed include classification of stationary solutions, perturbations and stability of black holes, numerical simulations, collisions, the production of gravity waves, black hole thermodynamics and Hawking radiation, quantum treatments of black holes, black holes in both higher and lower dimensions, and connections to nuclear and condensed matter physics. On the astronomical end, we also cover the physics of gas accretion onto black holes, relativistic jets, gravitationally red-shifted emission lines, evidence for stellar-mass black holes in binary systems and super-massive black holes at the centers...

  3. Vacuum polarization in asymptotically Lifshitz black holes

    Science.gov (United States)

    Quinta, Gonçalo M.; Flachi, Antonino; Lemos, José P. S.

    2016-06-01

    There has been considerable interest in applying the gauge-gravity duality to condensed matter theories with particular attention being devoted to gravity duals (Lifshitz spacetimes) of theories that exhibit anisotropic scaling. In this context, black hole solutions with Lifshitz asymptotics have also been constructed, focused on incorporating finite temperature effects. The goal here is to look at quantum polarization effects in these spacetimes and, to this aim, we develop a way to compute the coincidence limit of the Green's function for massive, nonminimally coupled scalar fields, adapting to the present situation the analysis developed for the case of asymptotically anti-de Sitter black holes. The basics are similar to previous calculations; however, in the Lifshitz case, one needs to extend the previous results to include a more general form for the metric and dependence on the dynamical exponent. All formulas are shown to reduce to the anti-de Sitter (AdS) case studied before once the value of the dynamical exponent is set to unity and the metric functions are accordingly chosen. The analytical results we present are general and can be applied to a variety of cases, in fact, to all spherically symmetric Lifshitz black hole solutions. We also implement the numerical analysis choosing some known Lifshitz black hole solutions as illustration.

  4. Information locking in black holes

    CERN Document Server

    Smolin, J; Smolin, John; Oppenheim, Jonathan

    2005-01-01

    The black hole information loss paradox has plagued physicists since Hawking's discovery that black holes evaporate. The calculation suggests that information thrown into a black hole is evaporated away as thermal radiation, and is destroyed: either the unitary laws of quantum theory break down, or we must modify the laws of general relativity. Here we show that one of the central presumptions of the debate is incorrect. Ensuring that information not escape during the semi-classical evaporation process does not require that all the information remain in the black hole until the final stages of evaporation. By taking into account recent results in quantum information theory, we find that the amount of information that must remain in the black hole until the final stages of evaporation can be very small, even though the amount of information which has already radiated away is negligible. Quantum effects mean that information need not be additive: a small number of quanta can lock a large amount of information, ...

  5. Black Hole Blows Big Bubble

    Science.gov (United States)

    2010-07-01

    Combining observations made with ESO's Very Large Telescope and NASA's Chandra X-ray telescope, astronomers have uncovered the most powerful pair of jets ever seen from a stellar black hole. This object, also known as a microquasar, blows a huge bubble of hot gas, 1000 light-years across, twice as large and tens of times more powerful than other known microquasars. The discovery is reported this week in the journal Nature. "We have been astonished by how much energy is injected into the gas by the black hole," says lead author Manfred Pakull. "This black hole is just a few solar masses, but is a real miniature version of the most powerful quasars and radio galaxies, which contain black holes with masses of a few million times that of the Sun." Black holes are known to release a prodigious amount of energy when they swallow matter. It was thought that most of the energy came out in the form of radiation, predominantly X-rays. However, the new findings show that some black holes can release at least as much energy, and perhaps much more, in the form of collimated jets of fast moving particles. The fast jets slam into the surrounding interstellar gas, heating it and triggering an expansion. The inflating bubble contains a mixture of hot gas and ultra-fast particles at different temperatures. Observations in several energy bands (optical, radio, X-rays) help astronomers calculate the total rate at which the black hole is heating its surroundings. The astronomers could observe the spots where the jets smash into the interstellar gas located around the black hole, and reveal that the bubble of hot gas is inflating at a speed of almost one million kilometres per hour. "The length of the jets in NGC 7793 is amazing, compared to the size of the black hole from which they are launched," says co-author Robert Soria [1]. "If the black hole were shrunk to the size of a soccer ball, each jet would extend from the Earth to beyond the orbit of Pluto." This research will help

  6. Astrophysical Black Holes: Evidence of a Horizon?

    Science.gov (United States)

    Colpi, Monica

    In this Lecture Note we first follow a short account of the history of the black hole hypothesis. We then review on the current status of the search for astrophysical black holes with particular attention to the black holes of stellar origin. Later, we highlight a series of observations that reveal the albeit indirect presence of supermassive black holes in galactic nuclei, with mention to forthcoming experiments aimed at testing directly the black hole hypothesis. We further focus on evidences of a black hole event horizon in cosmic sources.

  7. Supersymmetric black holes in string theory

    Energy Technology Data Exchange (ETDEWEB)

    Mohaupt, T. [Theoretical Physics Division, Department of Mathematical Sciences, University of Liverpool, Peach Street, Liverpool L69 7ZL (United Kingdom)

    2007-05-15

    We review recent developments concerning supersymmetric black holes in string theory. After a general introduction to the laws of black hole mechanics and to black hole entropy in string theory, we discuss black hole solutions in N=2 supergravity, special geometry, the black hole attractor equations and the underlying variational principle. Special attention is payed to the crucial role of higher derivative corrections. Finally we discuss black hole partition functions and their relation with the topological string, mainly from the supergravity perspective. We summarize the state of art and discuss various open questions and problems. (Abstract Copyright [2007], Wiley Periodicals, Inc.)

  8. Entropy of Warped Taub-NUT AdS Black String via the Brick Wall Method

    CERN Document Server

    Lee, Chong Oh

    2014-01-01

    When we consider five-dimensional warped Taub-NUT AdS black string with minimally coupled massive scalar field, we calculate an entropy by using the brick wall method. In extremely light effective mass, we find the entropy is proportional to an extra dimension wave number as well as quadratically divergent in a cutoff parameter. After taking zero NUT charge, we find the entropy of warped (AdS) Schwartzshield black hole string has a similar properties in as warped Taub-NUT AdS black string.

  9. Lee-Wick Black Holes

    CERN Document Server

    Bambi, Cosimo; Wang, Yixu

    2016-01-01

    We derive and study an approximate static vacuum solution generated by a point-like source in a higher derivative gravitational theory with a pair of complex conjugate ghosts. The gravitational theory is local and characterized by a high derivative operator compatible with Lee-Wick unitarity. In particular, the tree-level two-point function only shows a pair of complex conjugate poles besides the massless spin two graviton. We show that singularity-free black holes exist when the mass of the source $M$ exceeds a critical value $M_{\\rm crit}$. For $M > M_{\\rm crit}$ the spacetime structure is characterized by an outer event horizon and an inner Cauchy horizon, while for $M = M_{\\rm crit}$ we have an extremal black hole with vanishing Hawking temperature. The evaporation process leads to a remnant that approaches the zero-temperature extremal black hole state in an infinite amount of time.

  10. Volume inside old black holes

    Science.gov (United States)

    Christodoulou, Marios; De Lorenzo, Tommaso

    2016-11-01

    Black holes that have nearly evaporated are often thought of as small objects, due to their tiny exterior area. However, the horizon bounds large spacelike hypersurfaces. A compelling geometric perspective on the evolution of the interior geometry was recently shown to be provided by a generally covariant definition of the volume inside a black hole using maximal surfaces. In this article, we expand on previous results and show that finding the maximal surfaces in an arbitrary spherically symmetric spacetime is equivalent to a 1 +1 geodesic problem. We then study the effect of Hawking radiation on the volume by computing the volume of maximal surfaces inside the apparent horizon of an evaporating black hole as a function of time at infinity: while the area is shrinking, the volume of these surfaces grows monotonically with advanced time, up to when the horizon has reached Planckian dimensions. The physical relevance of these results for the information paradox and the remnant scenarios are discussed.

  11. Black holes and galaxy formation

    CERN Document Server

    Propst, Raphael J

    2010-01-01

    Galaxies are the basic unit of cosmology. The study of galaxy formation is concerned with the processes that formed a heterogeneous universe from a homogeneous beginning. The physics of galaxy formation is complicated because it deals with the dynamics of stars, thermodynamics of gas and energy production of stars. A black hole is a massive object whose gravitational field is so intense that it prevents any form of matter or radiation to escape. It is hypothesized that the most massive galaxies in the universe- "elliptical galaxies"- grow simultaneously with the supermassive black holes at their centers, giving us much stronger evidence that black holes control galaxy formation. This book reviews new evidence in the field.

  12. Lee-Wick black holes

    Science.gov (United States)

    Bambi, Cosimo; Modesto, Leonardo; Wang, Yixu

    2017-01-01

    We derive and study an approximate static vacuum solution generated by a point-like source in a higher derivative gravitational theory with a pair of complex conjugate ghosts. The gravitational theory is local and characterized by a high derivative operator compatible with Lee-Wick unitarity. In particular, the tree-level two-point function only shows a pair of complex conjugate poles besides the massless spin two graviton. We show that singularity-free black holes exist when the mass of the source M exceeds a critical value Mcrit. For M >Mcrit the spacetime structure is characterized by an outer event horizon and an inner Cauchy horizon, while for M =Mcrit we have an extremal black hole with vanishing Hawking temperature. The evaporation process leads to a remnant that approaches the zero-temperature extremal black hole state in an infinite amount of time.

  13. Scrambling with matrix black holes

    Science.gov (United States)

    Brady, Lucas; Sahakian, Vatche

    2013-08-01

    If black holes are not to be dreaded sinks of information but rather fully described by unitary evolution, they must scramble in-falling data and eventually leak it through Hawking radiation. Sekino and Susskind have conjectured that black holes are fast scramblers; they generate entanglement at a remarkably efficient rate, with the characteristic time scaling logarithmically with the entropy. In this work, we focus on Matrix theory—M-theory in the light-cone frame—and directly probe the conjecture. We develop a concrete test bed for quantum gravity using the fermionic variables of Matrix theory and show that the problem becomes that of chains of qubits with an intricate network of interactions. We demonstrate that the black hole system evolves much like a Brownian quantum circuit, with strong indications that it is indeed a fast scrambler. We also analyze the Berenstein-Maldacena-Nastase model and reach the same tentative conclusion.

  14. Calabi-Yau black holes

    Science.gov (United States)

    Shmakova, Marina

    1997-07-01

    We find the entropy of N=2 extreme black holes associated with general Calabi-Yau moduli space and the prepotential F=dABC(XAXBXC/X0). We show that for arbitrary dABC and black hole charges p and q the entropy-area formula depends on combinations of these charges and parameters dABC. These combinations are the solutions of a simple system of algebraic equations. We give a few examples of particular Calabi-Yau moduli spaces for which this system has an explicit solution. For the special case when one of the black hole charges is equal to zero (p0=0) the solution always exists.

  15. Black holes with vector hair

    Science.gov (United States)

    Fan, Zhong-Ying

    2016-09-01

    In this paper, we consider Einstein gravity coupled to a vector field, either minimally or non-minimally, together with a vector potential of the type V = 2{Λ}_0+1/2{m}^2{A}^2 + {γ}_4{A}^4 . For a simpler non-minimally coupled theory with Λ0 = m = γ4 = 0, we obtain both extremal and non-extremal black hole solutions that are asymptotic to Minkowski space-times. We study the global properties of the solutions and derive the first law of thermodynamics using Wald formalism. We find that the thermodynamical first law of the extremal black holes is modified by a one form associated with the vector field. In particular, due to the existence of the non-minimal coupling, the vector forms thermodynamic conjugates with the graviton mode and partly contributes to the one form modifying the first law. For a minimally coupled theory with Λ0 ≠ 0, we also obtain one class of asymptotically flat extremal black hole solutions in general dimensions. This is possible because the parameters ( m 2 , γ4) take certain values such that V = 0. In particular, we find that the vector also forms thermodynamic conjugates with the graviton mode and contributes to the corresponding first law, although the non-minimal coupling has been turned off. Thus all the extremal black hole solutions that we obtain provide highly non-trivial examples how the first law of thermodynamics can be modified by a either minimally or non-minimally coupled vector field. We also study Gauss-Bonnet gravity non-minimally coupled to a vector and obtain asymptotically flat black holes and Lifshitz black holes.

  16. Force-feeding Black Holes

    CERN Document Server

    Begelman, Mitchell C

    2012-01-01

    We propose that the growth of supermassive black holes is associated mainly with brief episodes of highly super-Eddington infall of gas ("hyperaccretion"). This gas is not swallowed in real time, but forms an envelope of matter around the black hole that can be swallowed gradually, over a much longer timescale. However, only a small fraction of the black hole mass can be stored in the envelope at any one time. We argue that any infalling matter above a few per cent of the hole's mass is ejected as a result of the plunge in opacity at temperatures below a few thousand degrees K, corresponding to the Hayashi track. The speed of ejection of this matter, compared to the velocity dispersion (sigma) of the host galaxy's core, determines whether the ejected matter is lost forever or returns eventually to rejoin the envelope, from which it can be ultimately accreted. The threshold between matter recycling and permanent loss defines a relationship between the maximum black hole mass and sigma that resembles the empiri...

  17. Geometric inequalities for black holes

    Energy Technology Data Exchange (ETDEWEB)

    Dain, Sergio [Universidad Nacional de Cordoba (Argentina)

    2013-07-01

    Full text: A geometric inequality in General Relativity relates quantities that have both a physical interpretation and a geometrical definition. It is well known that the parameters that characterize the Kerr-Newman black hole satisfy several important geometric inequalities. Remarkably enough, some of these inequalities also hold for dynamical black holes. This kind of inequalities, which are valid in the dynamical and strong field regime, play an important role in the characterization of the gravitational collapse. They are closed related with the cosmic censorship conjecture. In this talk I will review recent results in this subject. (author)

  18. Black holes and warped spacetime

    Energy Technology Data Exchange (ETDEWEB)

    Kaufmann, W.J. III

    1979-01-01

    Black holes (BHs) and their warping effect on spacetime are described, beginning with a discussion on stellar evolution that includes white dwarfs, supernovas and neutron stars. The structure of static, rotating, and electrically charged BHs are considered, as well as the general theory of relativity, quantum mechanics, the Einstein-Rosen bridge, and wormholes in spacetime. Attention is also given to gravitational lenses, various space geometries, quasars, Seyfert galaxies, supermassive black holes, the evaporation and particle emission of BHs, and primordial BHs, including their temperature and lifetime.

  19. Black Holes with Zero Mass

    CERN Document Server

    Nucamendi, U; Nucamendi, Ulises; Sudarsky, Daniel

    2000-01-01

    We consider the spacetimes corresponding to static Global Monopoles with interior boundaries corresponding to a Black Hole Horizon and analyze the behavior of the appropriate ADM mass as a function of the horizon radius r_H. We find that for small enough r_H, this mass is negative as in the case of the regular global monopoles, but that for large enough r_H the mass becomes positive encountering an intermediate value for which we have a Black Hole with zero ADM mass.

  20. State-space Manifold and Rotating Black Holes

    CERN Document Server

    Bellucci, Stefano

    2010-01-01

    We study a class of fluctuating higher dimensional black hole configurations obtained in string theory/ $M$-theory compactifications. We explore the intrinsic Riemannian geometric nature of Gaussian fluctuations arising from the Hessian of the coarse graining entropy, defined over an ensemble of brane microstates. It has been shown that the state-space geometry spanned by the set of invariant parameters is non-degenerate, regular and has a negative scalar curvature for the rotating Myers-Perry black holes, Kaluza-Klein black holes, supersymmetric $AdS_5$ black holes, $D_1$-$D_5$ configurations and the associated BMPV black holes. Interestingly, these solutions demonstrate that the principal components of the state-space metric tensor admit a positive definite form, while the off diagonal components do not. Furthermore, the ratio of diagonal components weakens relatively faster than the off diagonal components, and thus they swiftly come into an equilibrium statistical configuration. Novel aspects of the scali...

  1. Black hole phase transitions and the chemical potential

    Directory of Open Access Journals (Sweden)

    Reevu Maity

    2017-02-01

    Full Text Available In the context of black hole thermodynamics and the AdS–CFT correspondence, we consider the chemical potential (μ dual to the number of colours (N of the boundary gauge theory, in the grand canonical ensemble. By appropriately defining μ via densities of thermodynamic quantities, we show that it changes sign precisely at the Hawking–Page transition for AdS–Schwarzschild and RN–AdS black holes in five dimensions, signalling the onset of quantum effects at the transition point. Such behaviour is absent for non-rotating black holes in four dimensions. For Kerr–AdS black holes in four and five dimensions, our analysis points to the fact that μ can change sign in the stable black hole region, i.e. above the Hawking–Page transition temperature, for a range of angular frequencies. We also analyse AdS black holes in five dimensional Gauss–Bonnet gravity, and find similar features for μ as in the Kerr–AdS case.

  2. Black hole phase transitions and the chemical potential

    Science.gov (United States)

    Maity, Reevu; Roy, Pratim; Sarkar, Tapobrata

    2017-02-01

    In the context of black hole thermodynamics and the AdS-CFT correspondence, we consider the chemical potential (μ) dual to the number of colours (N) of the boundary gauge theory, in the grand canonical ensemble. By appropriately defining μ via densities of thermodynamic quantities, we show that it changes sign precisely at the Hawking-Page transition for AdS-Schwarzschild and RN-AdS black holes in five dimensions, signalling the onset of quantum effects at the transition point. Such behaviour is absent for non-rotating black holes in four dimensions. For Kerr-AdS black holes in four and five dimensions, our analysis points to the fact that μ can change sign in the stable black hole region, i.e. above the Hawking-Page transition temperature, for a range of angular frequencies. We also analyse AdS black holes in five dimensional Gauss-Bonnet gravity, and find similar features for μ as in the Kerr-AdS case.

  3. Implementing black hole as efficient power plant

    CERN Document Server

    Wei, Shao-Wen

    2016-01-01

    Treating the black hole molecules as working substance and considering its phase structure, we study the black hole heat engine by a charged anti-de Sitter black hole. In the reduced temperature-entropy chart, it is found that the work, heat, and efficiency of the engine are independent of the black hole charge. Applying the Rankine cycle with or without a back pressure mechanism to the black hole heat engine, the efficiency is numerically solved. The result shows that the black hole engine working along the Rankine cycle with a back pressure mechanism has a higher efficiency. This provides a novel and efficient mechanism to produce the useful mechanical work with black hole, and such heat engine may act as a possible energy source for the high energy astrophysical phenomena near the black hole.

  4. Astronomy: Intermediate-mass black hole found

    Science.gov (United States)

    Gültekin, Kayhan

    2017-02-01

    The existence of medium-sized black holes has long been debated. Such an object has now been discovered in the centre of a dense cluster of stars, potentially enhancing our understanding of all black holes. See Letter p.203

  5. Regular Black Holes with Cosmological Constant

    Institute of Scientific and Technical Information of China (English)

    MO Wen-Juan; CAI Rong-Gen; SU Ru-Keng

    2006-01-01

    We present a class of regular black holes with cosmological constant Λ in nonlinear electrodynamics. Instead of usual singularity behind black hole horizon, all fields and curvature invariants are regular everywhere for the regular black holes. Through gauge invariant approach, the linearly dynamical stability of the regular black hole is studied. In odd-parity sector, we find that the Λ term does not appear in the master equations of perturbations, which shows that the regular black hole is stable under odd-parity perturbations. On the other hand, for the even-parity sector, the master equations are more complicated than the case without the cosmological constant. We obtain the sufficient conditions for stability of the regular black hole. We also investigate the thermodynamic properties of the regular black hole, and find that those thermodynamic quantities do not satisfy the differential form of first law of black hole thermodynamics. The reason for violating the first law is revealed.

  6. Thermodynamics of Third Order Lovelock-Born-Infeld Black Holes

    OpenAIRE

    Li, Peng; Yue, Rui-Hong; Zou, De-Cheng

    2011-01-01

    We here explore black holes in the third order Lovelock gravity coupling with nonlinear Born-Infeld electromagnetic field. Considering special second and third order coefficients ($\\hat{\\alpha}_2^2=3\\hat{\\alpha}_3=\\alpha^2$), we analyze the thermodynamics of third order Lovelock-Born-Infeld black holes and, in 7-dimensional AdS space-time, discuss the stability of black holes in different event horizon structures. We find that the cosmological constant $\\Lambda$ plays an important role in the...

  7. From Pinholes to Black Holes

    Energy Technology Data Exchange (ETDEWEB)

    Fenimore, Edward E. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2014-10-06

    Pinhole photography has made major contributions to astrophysics through the use of “coded apertures”. Coded apertures were instrumental in locating gamma-ray bursts and proving that they originate in faraway galaxies, some from the birth of black holes from the first stars that formed just after the big bang.

  8. Black Holes: A Selected Bibliography.

    Science.gov (United States)

    Fraknoi, Andrew

    1991-01-01

    Offers a selected bibliography pertaining to black holes with the following categories: introductory books; introductory articles; somewhat more advanced articles; readings about Einstein's general theory of relativity; books on the death of stars; articles on the death of stars; specific articles about Supernova 1987A; relevant science fiction…

  9. Gravitational Collapse and Black Holes

    Science.gov (United States)

    Ryder, Lewis

    1973-01-01

    The newest and most exotic manner in which stars die is investigated. A brief outline is presented, along with a discussion of the role supernova play, followed by a description of how the black holes originate, exist, and how they might be detected. (DF)

  10. Black Holes and Exotic Spinors

    Directory of Open Access Journals (Sweden)

    J. M. Hoff da Silva

    2016-05-01

    Full Text Available Exotic spin structures are non-trivial liftings, of the orthogonal bundle to the spin bundle, on orientable manifolds that admit spin structures according to the celebrated Geroch theorem. Exotic spin structures play a role of paramount importance in different areas of physics, from quantum field theory, in particular at Planck length scales, to gravity, and in cosmological scales. Here, we introduce an in-depth panorama in this field, providing black hole physics as the fount of spacetime exoticness. Black holes are then studied as the generators of a non-trivial topology that also can correspond to some inequivalent spin structure. Moreover, we investigate exotic spinor fields in this context and the way exotic spinor fields branch new physics. We also calculate the tunneling probability of exotic fermions across a Kerr-Sen black hole, showing that the exotic term does affect the tunneling probability, altering the black hole evaporation rate. Finally we show that it complies with the Hawking temperature universal law.

  11. Information retrieval from black holes

    CERN Document Server

    Lochan, Kinjalk; Padmanabhan, T

    2016-01-01

    It is generally believed that, when matter collapses to form a black hole, the complete information about the initial state of the matter cannot be retrieved by future asymptotic observers, through local measurements. This is contrary to the expectation from a unitary evolution in quantum theory and leads to (a version of) the black hole information paradox. Classically, nothing else, apart from mass, charge and angular momentum is expected to be revealed to such asymptotic observers after the formation of a black hole. Semi-classically, black holes evaporate after their formation through the Hawking radiation. The dominant part of the radiation is expected to be thermal and hence one cannot know anything about the initial data from the resultant radiation. However, there can be sources of distortions which make the radiation non-thermal. Although the distortions are not strong enough to make the evolution unitary, these distortions carry some part of information regarding the in-state. In this work, we show ...

  12. The case for artificial black holes.

    Science.gov (United States)

    Leonhardt, Ulf; Philbin, Thomas G

    2008-08-28

    The event horizon is predicted to generate particles from the quantum vacuum, an effect that bridges three areas of physics--general relativity, quantum mechanics and thermodynamics. The quantum radiation of real black holes is too feeble to be detectable, but black-hole analogues may probe several aspects of quantum black holes. In this paper, we explain in simple terms some of the motivations behind the study of artificial black holes.

  13. Research on black hole attack in mobile Ad hoc networks%移动Ad hoc网络的黑洞攻击研究

    Institute of Scientific and Technical Information of China (English)

    彭志楠; 叶丹霞; 范明钰

    2009-01-01

    移动Ad hoc网络(MANET)是一个极具实际应用价值的研究领域,由于其自身的开放媒质、动态拓扑、分布式协作和受限能力等特点,MANET极易受到攻击,其安全问题正受到越来越广泛的重视.路由在整个网络安全中扮演重要角色,首先综合论述一种路由攻击类型--黑洞问题的研究概况,然后剖析黑洞问题的基本定义、功能结构和工作原理,归纳总结目前防范黑洞问题的最新技术,最后给出针对黑洞问题研究的若干热点问题与展望.

  14. A note on the black hole remnant

    OpenAIRE

    Xiang, Li

    2006-01-01

    Analyzing the tunneling probability of a Schwarzschild black hole with a negative log-area correction to Bekenstein-Hawking entropy, I argue that this correction may be closely related to a black hole remnant. The value for the minimal black hole mass is also discussed.

  15. Signatures of black holes at the LHC

    Science.gov (United States)

    Cavaglià, Marco; Godang, Romulus; Cremaldi, Lucien M.; Summers, Donald J.

    2007-06-01

    Signatures of black hole events at CERN's Large Hadron Collider are discussed. Event simulations are carried out with the Fortran Monte Carlo generator CATFISH. Inelasticity effects, exact field emissivities, color and charge conservation, corrections to semiclassical black hole evaporation, gravitational energy loss at formation and possibility of a black hole remnant are included in the analysis.

  16. Signatures of black holes at the LHC

    CERN Document Server

    Cavaglia, Marco; Cremaldi, Lucien M; Summers, Donald J

    2007-01-01

    Signatures of black hole events at CERN's Large Hadron Collider are discussed. Event simulations are carried out with the Fortran Monte Carlo generator CATFISH. Inelasticity effects, exact field emissivities, color and charge conservation, corrections to semiclassical black hole evaporation, gravitational energy loss at formation and possibility of a black hole remnant are included in the analysis.

  17. Event horizons of two Schwarzchild black holes

    Energy Technology Data Exchange (ETDEWEB)

    Bishop, N.T.

    1988-06-01

    The problem of two Schwarzchild black holes, one much smaller than the other, is investigated by an approximate analytic method. The critical separation between the black holes at which their event horizons join is found for two cases, (2) time-symmetric initial data, and (b) the small black hole falls from rest at infinity.

  18. Resource Letter BH-1: Black Holes.

    Science.gov (United States)

    Detweiler, Steven

    1981-01-01

    Lists resources on black holes, including: (1) articles of historical interest; (2) books and journal articles on elementary expositions; (3) elementary and advanced textbooks; and (4) research articles on analytic structure of black holes, black hole dynamics, and astrophysical processes. (SK)

  19. Extremal black holes in N=2 supergravity

    NARCIS (Netherlands)

    Katmadas, S.

    2011-01-01

    An explanation for the entropy of black holes has been an outstanding problem in recent decades. A special case where this is possible is that of extremal black holes in N=2 supergravity in four and five dimensions. The best developed case is for black holes preserving some supersymmetry (BPS), whic

  20. Compensating Scientism through "The Black Hole."

    Science.gov (United States)

    Roth, Lane

    The focal image of the film "The Black Hole" functions as a visual metaphor for the sacred, order, unity, and eternal time. The black hole is a symbol that unites the antinomic pairs of conscious/unconscious, water/fire, immersion/emersion, death/rebirth, and hell/heaven. The black hole is further associated with the quest for…

  1. On Quantum Contributions to Black Hole Growth

    NARCIS (Netherlands)

    Spaans, M.

    2013-01-01

    The effects of Wheeler’s quantum foam on black hole growth are explored from an astrophysical per- spective. Quantum fluctuations in the form of mini (10−5 g) black holes can couple to macroscopic black holes and allow the latter to grow exponentially in mass on a time scale of 109 years. Consequent

  2. Micro black holes in the laboratory

    CERN Document Server

    Bleicher, Marcus; Sprenger, Martin; Winstanley, Elizabeth

    2011-01-01

    The possibility of creating microscopic black holes is one of the most exciting predictions for the LHC, with potentially major consequences for our current understanding of physics. We briefly review the theoretical motivation for micro black hole production, and our understanding of their subsequent evolution. Recent work on modelling the radiation from quantum-gravity-corrected black holes is also discussed.

  3. The fuzzball proposal for black holes

    NARCIS (Netherlands)

    Skenderis, K.; Taylor, M.

    2008-01-01

    The fuzzball proposal states that associated with a black hole of entropy S, there are expS horizon-free non-singular solutions that asymptotically look like the black hole but generically differ from the black hole up to the horizon scale. These solutions, the fuzzballs, are considered to be the bl

  4. Compensating Scientism through "The Black Hole."

    Science.gov (United States)

    Roth, Lane

    The focal image of the film "The Black Hole" functions as a visual metaphor for the sacred, order, unity, and eternal time. The black hole is a symbol that unites the antinomic pairs of conscious/unconscious, water/fire, immersion/emersion, death/rebirth, and hell/heaven. The black hole is further associated with the quest for transcendent…

  5. Information retrieval from black holes

    Science.gov (United States)

    Lochan, Kinjalk; Chakraborty, Sumanta; Padmanabhan, T.

    2016-08-01

    It is generally believed that, when matter collapses to form a black hole, the complete information about the initial state of the matter cannot be retrieved by future asymptotic observers, through local measurements. This is contrary to the expectation from a unitary evolution in quantum theory and leads to (a version of) the black hole information paradox. Classically, nothing else, apart from mass, charge, and angular momentum is expected to be revealed to such asymptotic observers after the formation of a black hole. Semiclassically, black holes evaporate after their formation through the Hawking radiation. The dominant part of the radiation is expected to be thermal and hence one cannot know anything about the initial data from the resultant radiation. However, there can be sources of distortions which make the radiation nonthermal. Although the distortions are not strong enough to make the evolution unitary, these distortions carry some part of information regarding the in-state. In this work, we show how one can decipher the information about the in-state of the field from these distortions. We show that the distortions of a particular kind—which we call nonvacuum distortions—can be used to fully reconstruct the initial data. The asymptotic observer can do this operationally by measuring certain well-defined observables of the quantum field at late times. We demonstrate that a general class of in-states encode all their information content in the correlation of late time out-going modes. Further, using a 1 +1 dimensional dilatonic black hole model to accommodate backreaction self-consistently, we show that observers can also infer and track the information content about the initial data, during the course of evaporation, unambiguously. Implications of such information extraction are discussed.

  6. Shapes and Positions of Black Hole Shadows in Accretion Disks and Spin Parameters of Black Holes

    OpenAIRE

    Takahashi, Rohta

    2004-01-01

    Can we determine a spin parameter of a black hole by observation of a black hole shadow in an accretion disk? In order to answer this question, we make a qualitative analysis and a quantitative analysis of a shape and a position of a black hole shadow casted by a rotating black hole on an optically thick accretion disk and its dependence on an angular momentum of a black hole. We have found black hole shadows with a quite similar size and a shape for largely different black hole spin paramete...

  7. Black holes as parts of entangled systems

    Science.gov (United States)

    Basini, G.; Capozziello, S.; Longo, G.

    A possible link between EPR-type quantum phenomena and astrophysical objects like black holes, under a new general definition of entanglement, is established. A new approach, involving backward time evolution and topology changes, is presented bringing to a definition of the system black hole-worm hole-white hole as an entangled system.

  8. Hairy Black Holes in a Box

    CERN Document Server

    Basu, Pallab; Subramanian, P N Bala

    2016-01-01

    We do a systematic study of the phases of gravity coupled to an electromagnetic field and charged scalar in flat space, with box boundary conditions. The scalar-less box has previously been investigated by Braden, Brown, Whiting and York (and others) before AdS/CFT and we elaborate and extend their results in a language more familiar from holography. The phase diagram of the system is analogous to that of AdS black holes, but we emphasize the differences and explain their origin. Once the scalar is added, we show that the system admits both boson stars as well as hairy black holes as solutions, providing yet another way to evade flat space no-hair theorems. Furthermore both these solutions can exist as stable phases in regions of the phase diagram. The final picture of the phases that emerges is strikingly similar to that found recently for holographic superconductors in global AdS, arXiv: 1602.07211. Our construction lays bare certain previously unnoticed subtleties associated to the definition quasi-local c...

  9. Solving puzzles of GW150914 by primordial black holes

    CERN Document Server

    Blinnikov, S; Porayko, N K; Postnov, K

    2016-01-01

    The black hole binary properties inferred from the LIGO gravitational wave signal GW150914 posed several serious problems. The high masses and low effective spin of black hole binary can be explained if they are primordial (PBH) rather than the products of the stellar binary evolution. Such PBH properties are postulated ad hoc but not derived from fundamental theory. We show that the necessary features of PBHs naturally follow from the slightly modified Affleck-Dine (AD) mechanism of baryogenesis. The log-normal distribution of PBHs, predicted within the AD paradigm, is adjusted to provide an abundant population of low-spin stellar mass black holes. The same distribution gives a sufficient number of quickly growing seeds of supermassive black holes observed at high redshifts and may comprise an appreciable fraction of Dark Matter which does not contradict any existing observational limits. Testable predictions of this scenario are discussed.

  10. The quantization of a black hole

    CERN Document Server

    Gerhardt, Claus

    2016-01-01

    We apply our model of quantum gravity to an AdS black hole resulting in a wave equation in a quantum spacetime which has a sequence of solutions that can be expressed as a product of stationary and temporal eigenfunctions. The stationary eigenfunctions can be interpreted as radiation and the temporal as gravitational waves. The event horizon corresponds in the quantum model to a Cauchy hypersurface that can be crossed by causal curves in both directions such that the information paradox does not occur.

  11. Dyonic Non-Abelian Black Holes

    CERN Document Server

    Brihaye, Y; Kunz, J; Tell, N

    1999-01-01

    We study static spherically symmetric dyonic black holes in Einstein-Yang-Mills-Higgs theory. As for the magnetic non-abelian black holes, the domain of existence of the dyonic non-abelian black holes is limited with respect to the horizon radius and the dimensionless coupling constant $\\alpha$, which is proportional to the ratio of vector meson mass and Planck mass. At a certain critical value of this coupling constant, $\\hat \\alpha$, the maximal horizon radius is attained. We derive analytically a relation between $\\hat numerically. Besides the fundamental dyonic non-abelian black holes, we study radially excited dyonic non-abelian black holes and globally regular gravitating dyons.

  12. Black Hole Decay as Geodesic Motion

    CERN Document Server

    Sen-Gupta, K; Gupta, Kumar S.; Sen, Siddhartha

    2003-01-01

    We show that a formalism for analyzing the near-horizon conformal symmetry of Schwarzschild black holes using a scalar field probe is capable of describing black hole decay. The decay rate is shown to be correctly described by geodesic motion in the space of black hole masses. This provides a novel geometric interpretation for the decay of black holes. We also show that the near-horizon conformal symmetry predicts a precise correction term to the usual expression for the decay rate of black holes. The results obtained here are a consequence of the holographic nature of the system.

  13. An Optical Analog of a Black Holes

    CERN Document Server

    Royston, A; Royston, Andrew; Gass, Richard

    2002-01-01

    Using media with extremely low group velocities one can create an optical analog of a curved space-time. Leonhardt and Piwnicki have proposed that a vortex flow will act as an optical black hole. We show that although the Leonhardt - Piwnicki flow has an orbit of no return and an infinite red-shift surface, it is not a true black hole since it lacks a null hypersurface. However a radial flow will produce a true optical black hole that has a Hawking temperature and obeys the first law of black hole mechanics. By combining the Leonhardt - Piwnicki flow with a radial flow we obtain the analog of the Kerr black hole.

  14. Black Hole Radiation and Volume Statistical Entropy

    CERN Document Server

    Rabinowitz, M

    2005-01-01

    The simplest possible equations for Hawking radiation, and other black hole radiated power is derived in terms of black hole density. Black hole density also leads to the simplest possible model of a gas of elementary constituents confined inside a gravitational bottle of Schwarzchild radius at tremendous pressure, which yields identically the same functional dependence as the traditional black hole entropy. Variations of Sbh are can be obtained which depend on the occupancy of phase space cells. A relation is derived between the constituent momenta and the black hole radius RH

  15. Black holes under external influence

    Indian Academy of Sciences (India)

    Jiří Bičák

    2000-10-01

    The work on black holes immersed in external fields is reviewed in both test-field approximation and within exact solutions. In particular we pay attention to the effect of the expulsion of the flux of external fields across charged and rotating black holes which are approaching extremal states. Recently this effect has been shown to occur for black hole solutions in string theory. We also discuss black holes surrounded by rings and disks and rotating black holes accelerated by strings.

  16. f(R) Black Holes as Heat Engines

    Science.gov (United States)

    Zhang, Ming; Liu, Wen-Biao

    2016-08-01

    With the cosmological constant considered as a thermodynamic variable in the extended phase space, it is natural to study the thermodynamic cycles of the black hole, which is conjectured to be performed using renormalization group flow. We first investigate the thermodynamic cycles of a 4-dimensional asymptotically AdS f(R) black hole. Then we study the thermodynamic cycles of higher dimensional asymptotically AdS f(R) black holes. It is found that when ΔV ≪ ΔP, the efficiency of isobar-isochore cycles running between high temperature T H and low temperature T C will increase to its maximum value, which is exactly the Carnot cycles' efficiency both in 4-dimensional and in higher dimensional cases. We speculate that this property is universal for AdS black holes, if there is no phase transition in the thermodynamic cycle. This result may deepen our understanding of the thermodynamics of the AdS black holes.

  17. Black Holes Shed Light on Galaxy Formation

    Science.gov (United States)

    2000-01-01

    This videotape is comprised of several segments of animations on black holes and galaxy formation, and several segments of an interview with Dr. John Kormendy. The animation segments are: (1) a super massive black hole, (2) Centarus A active black hole found in a collision, (3) galaxy NGC-4261 (active black hole and jet model), (4) galaxy M-32 (orbits of stars are effected by the gravity of the black hole), (5) galaxy M-37 (motion of stars increases as mass of black hole increases), (6) Birth of active galactic nuclei, (7) the collision of two galaxy leads to merger of the black holes, (8) Centarus A and simulation of the collision of 2 galaxies. There are also several segments of an interview with John Kormendy. In these segments he discusses the two most important aspects of his recent black hole work: (1) the correlations between galaxies speed and the mass of the black holes, and (2) the existence of black holes and galactic formation. He also discusses the importance of the Hubble Space Telescope and the Space Telescope Imaging Spectrograph to the study of black holes. He also shows the methodology of processing images from the spectrograph in his office.

  18. The stable problem of the black-hole connected region in the Schwarzschild black hole

    OpenAIRE

    Tian, Guihua

    2005-01-01

    The stability of the Schwarzschild black hole is studied. Using the Painlev\\'{e} coordinate, our region can be defined as the black-hole-connected region(r>2m, see text) of the Schwarzschild black hole or the white-hole-connected region(r>2m, see text) of the Schwarzschild black hole. We study the stable problems of the black-hole-connected region. The conclusions are: (1) in the black-hole-connected region, the initially regular perturbation fields must have real frequency or complex frequen...

  19. Quasistars: Accreting black holes inside massive envelopes

    CERN Document Server

    Begelman, Mitchell C; Armitage, Philip J

    2007-01-01

    We study the structure and evolution of "quasistars," accreting black holes embedded within massive hydrostatic gaseous envelopes. These configurations may model the early growth of supermassive black hole seeds. The accretion rate onto the black hole adjusts so that the luminosity carried by the convective envelope equals the Eddington limit for the total mass. This greatly exceeds the Eddington limit for the black hole mass alone, leading to rapid growth of the black hole. We use analytic models and numerical stellar structure calculations to study the structure and evolution of quasistars. We derive analytically the scaling of the photospheric temperature with the black hole mass and envelope mass, and show that it decreases with time as the black hole mass increases. Once the photospheric temperature becomes lower than 10000 K, the photospheric opacity drops precipitously and the photospheric temperature hits a limiting value, analogous to the Hayashi track for red giants and protostars, below which no hy...

  20. From Schwinger Balls to Black Holes

    CERN Document Server

    Allahbakhshi, Davood

    2016-01-01

    We have shown intriguing similarities between Schwinger balls and black holes. By considering black hole as a gravitational Schwinger ball, we have derived the Bekenstein-Hawking entropy and the first law of black hole thermodynamics as a direct result of the inverse area dependence of the gravitational force. It is also shown that the Planck length is nothing but the gravitational Schwinger length. The relation between the mass and the radius of the black hole is derived by considering the black hole as a Schwinger ball of gravitons. We show how the evolution of the entanglement entropy of the black hole, as Page introduced many years ago, can be obtained by including gravitons in the black hole's evaporation process and using a deformed EPR mechanism. Also this deformed EPR mechanism can solve the information paradox. We show how naive simultaneous usage of Page's argument and equivalence principle leads to firewall problem.

  1. Chapter 8. Black Holes in Braneworld Models

    Science.gov (United States)

    Tanahashi, N.; Tanaka, T.

    In this review, we summarize current understandings of blackhole solutions in various braneworld models, including the Arkani-Hamed-Dimopoulos-Dvali model, the Randall-Sundrum (RS) models, Karch-Randall (KR) model and the Dvali-Gabadadze-Porrati model. After illustrating basic properties of each braneworld model, we introduce the bulk/brane correspondence in the RS and KR braneworld models, adding supporting evidence for it. We then summarize the studies on braneworld black hole solutions, which consist of constructing exact or approximate solutions and investigating the phase diagram of solutions. In the study of phase diagram, we will also expound the implications of the bulk/brane correspondence to the braneworld black holes.

  2. Spinning a charged dilaton black hole

    CERN Document Server

    Shiraishi, Kiyoshi

    2015-01-01

    A charged dilaton black hole which possesses infinitesimal angular momentum is studied. We find that the gyromagnetic ratio of the dilaton black hole depends not only on the parameter which appears in the interaction between the dilaton and the electric field but also nonlinearly on the ratio of the charge to the mass of the black hole. The moment of inertia for the charged dilaton hole in the limit of infinitesimal angular momentum is also calculated.

  3. Black Holes with Proca Hair

    CERN Document Server

    Fan, Zhong-Ying

    2016-01-01

    In this paper, we consider Einstein gravity coupled to a Proca field, either minimally or non-minimally, together with a vector potential of the type $V=2\\Lambda_0+ m^2 A^2/2 + \\gamma_4 A^4$. For a simpler non-minimally coupled theory with $\\Lambda_0=m=\\gamma_4=0$, we obtain both extremal and non-extremal black hole solutions that are asymptotic to Minkowski space-times. We study the global properties of the solutions and derive the first law of thermodynamics using Wald formalism. We find that the thermodynamical first laws of the extremal black holes are modified by a one form associated with the Proca. In particular, due to the existence of the non-minimal coupling, the Proca forms thermodynamic conjugates with the graviton mode and partly contributes to the one form modifying the first laws. For a minimally coupled theory with $\\Lambda_0\

  4. "Twisted" black holes are unphysical

    CERN Document Server

    Gray, Finnian; Schuster, Sebastian; Visser, Matt

    2016-01-01

    So-called "twisted" black holes have recently been proposed by Zhang (1609.09721 [gr-qc]), and further considered by Chen and Jing (1610.00886 [gr-qc]), and more recently by Ong (1610.05757 [gr-qc]). While these spacetimes are certainly Ricci-flat, and so mathematically satisfy the vacuum Einstein equations, they are also merely minor variants on Taub--NUT spacetimes. Consequently they exhibit several unphysical features that make them quite unreasonable as realistic astrophysical objects. Specifically, these "twisted" black holes are not (globally) asymptotically flat. Furthermore, they contain closed timelike curves that are not hidden behind any event horizon --- the most obvious of these closed timelike curves are small azimuthal circles around the rotation axis, but the effect is more general. The entire region outside the horizon is infested with closed timelike curves.

  5. Black Hole with Quantum Potential

    CERN Document Server

    Ali, Ahmed Farag

    2015-01-01

    In this work, we investigate black hole (BH) physics in the context of quantum corrections. These quantum corrections were introduced recently by replacing classical geodesics with quantal (Bohmian) trajectories and hence form a quantum Raychaudhuri equation (QRE). From the QRE, we derive a modified Schwarzschild metric, and use that metric to investigate BH singularity and thermodynamics. We find that these quantum corrections change the picture of Hawking radiation greatly when the size of BH approaches the Planck scale. They prevent the BH from total evaporation, predicting the existence of a quantum BH remnant, which introduces a possible resolution for the catastrophic behavior of Hawking radiation as the BH mass approaches zero. It also ameliorates the black hole singularity and the information loss problem.

  6. Black hole with quantum potential

    Directory of Open Access Journals (Sweden)

    Ahmed Farag Ali

    2016-08-01

    Full Text Available In this work, we investigate black hole (BH physics in the context of quantum corrections. These quantum corrections were introduced recently by replacing classical geodesics with quantal (Bohmian trajectories and hence form a quantum Raychaudhuri equation (QRE. From the QRE, we derive a modified Schwarzschild metric, and use that metric to investigate BH singularity and thermodynamics. We find that these quantum corrections change the picture of Hawking radiation greatly when the size of BH approaches the Planck scale. They prevent the BH from total evaporation, predicting the existence of a quantum BH remnant, which may introduce a possible resolution for the catastrophic behavior of Hawking radiation as the BH mass approaches zero. Those corrections also turn the spacelike singularity of the black hole to be timelike, and hence this may ameliorate the information loss problem.

  7. Black Holes at the LHC

    CERN Document Server

    Kanti, Panagiota

    2008-01-01

    In these two lectures, we will address the topic of the creation of small black holes during particle collisions in a ground-based accelerator, such as LHC, in the context of a higher-dimensional theory. We will cover the main assumptions, criteria and estimates for their creation, and we will discuss their properties after their formation. The most important observable effect associated with their creation is likely to be the emission of Hawking radiation during their evaporation process. After presenting the mathematical formalism for its study, we will review the current results for the emission of particles both on the brane and in the bulk. We will finish with a discussion of the methodology that will be used to study these spectra, and the observable signatures that will help us identify the black-hole events.

  8. Black holes in magnetic monopoles

    Science.gov (United States)

    Lee, Kimyeong; Nair, V. P.; Weinberg, Erick J.

    1992-04-01

    We study magnetically charged classical solutions of a spontaneously broken gauge theory interacting with gravity. We show that nonsingular monopole solutions exist only if the Higgs-field vacuum expectation value v is less than or equal to a critical value vcr, which is of the order of the Planck mass. In the limiting case, the monopole becomes a black hole, with the region outside the horizon described by the critical Reissner-Nordström solution. For vsolutions which are singular at r=0, but which have this singularity hidden within a horizon. These have nontrivial matter fields outside the horizon, and may be interpreted as small black holes lying within a magnetic monopole. The nature of these solutions as a function of v and of the total mass M and their relation to the Reissner-Nordström solutions are discussed.

  9. Black Holes in Magnetic Monopoles

    CERN Document Server

    Lee, K; Weinberg, Erick J; Weinberg, Erick J.

    1992-01-01

    We study magnetically charged classical solutions of a spontaneously broken gauge theory interacting with gravity. We show that nonsingular monopole solutions exist only if the Higgs vacuum expectation value $v$ is less than or equal to a critical value $v_{cr}$, which is of the order of the Planck mass. In the limiting case the monopole becomes a black hole, with the region outside the horizon described by the critical Reissner-Nordstrom solution. For $v

  10. Extremal Black Holes as Qudits

    CERN Document Server

    Rios, Michael

    2011-01-01

    We extend the black hole/qudit correspondence by identifying five and six-dimensional 1/2-BPS black string and hole charge vectors in N=8 and N=2 magic supergravities with qubits and qutrits over composition algebras. In D=6, this is accomplished via Hopf fibrations, which map qubits over composition algebras to rank one elements of Jordan algebras of degree two. An analogous procedure maps qutrits over composition algebras to D=5 charge vectors, which are rank one elements of Jordan algebras of degree three. In both cases, the U-duality groups are interpreted as qudit SLOCC transformation groups. We provide explicit gates for such transformations and study their applications in toroidally compactified M-theory.

  11. Black hole with quantum potential

    Energy Technology Data Exchange (ETDEWEB)

    Ali, Ahmed Farag, E-mail: ahmed.ali@fsc.bu.edu.eg [Department of Physics, Faculty of Science, Benha University, Benha 13518 (Egypt); Khalil, Mohammed M., E-mail: moh.m.khalil@gmail.com [Department of Electrical Engineering, Alexandria University, Alexandria 12544 (Egypt)

    2016-08-15

    In this work, we investigate black hole (BH) physics in the context of quantum corrections. These quantum corrections were introduced recently by replacing classical geodesics with quantal (Bohmian) trajectories and hence form a quantum Raychaudhuri equation (QRE). From the QRE, we derive a modified Schwarzschild metric, and use that metric to investigate BH singularity and thermodynamics. We find that these quantum corrections change the picture of Hawking radiation greatly when the size of BH approaches the Planck scale. They prevent the BH from total evaporation, predicting the existence of a quantum BH remnant, which may introduce a possible resolution for the catastrophic behavior of Hawking radiation as the BH mass approaches zero. Those corrections also turn the spacelike singularity of the black hole to be timelike, and hence this may ameliorate the information loss problem.

  12. Complexity, Action, and Black Holes

    CERN Document Server

    Brown, Adam; Susskind, Leonard; Swingle, Brian; Zhao, Ying

    2015-01-01

    Our earlier paper "Complexity Equals Action" conjectured that the quantum computational complexity of a holographic state is given by the classical action of a region in the bulk (the `Wheeler-DeWitt' patch). We provide calculations for the results quoted in that paper, explain how it fits into a broader (tensor) network of ideas, and elaborate on the hypothesis that black holes are fastest computers in nature.

  13. Complexity, action, and black holes

    Science.gov (United States)

    Brown, Adam R.; Roberts, Daniel A.; Susskind, Leonard; Swingle, Brian; Zhao, Ying

    2016-04-01

    Our earlier paper "Complexity Equals Action" conjectured that the quantum computational complexity of a holographic state is given by the classical action of a region in the bulk (the "Wheeler-DeWitt" patch). We provide calculations for the results quoted in that paper, explain how it fits into a broader (tensor) network of ideas, and elaborate on the hypothesis that black holes are the fastest computers in nature.

  14. Geometric obstruction of black holes

    CERN Document Server

    Punzi, R; Wohlfarth, M N R; Punzi, Raffaele; Schuller, Frederic P.; Wohlfarth, Mattias N. R.

    2006-01-01

    We study the global structure of Lorentzian manifolds with partial sectional curvature bounds. In particular, we prove completeness theorems for homogeneous and isotropic cosmologies as well as static spherically symmetric spacetimes. The latter result is used to rigorously prove the absence of static spherically symmetric black holes in more than three dimensions. The proofs of these new results are preceded by a detailed exposition of the local aspects of sectional curvature bounds for Lorentzian manifolds, which extends and strengthens previous constructions.

  15. A Black Hole Life Preserver

    CERN Document Server

    Gott, J R; Freedman, Deborah L.

    2003-01-01

    Since no one lives forever, all a life preserver can really do is prolong life for longer than would have otherwise been the case. With this rather limited definition in mind we explore in this paper whether in principle you can take a life preserver with you to protect you (for a while at least) against the tidal forces encountered on a trip inside a black hole.

  16. Gayge Fields and Black Holes

    Science.gov (United States)

    Gal'Tsov, D. V.

    1987-10-01

    Exact solutions of the Einstein-Yang-Mills and Einstein-Yang-Mills-Higgs systems of equations are examined, which describe Black Holes, with gluonic and scalar hairs. A simple deduction of these equations, based on the use of the gayge symmetry is given. The transition to a nonsingular gayge for gravitating Wu - Yang monopoles, in which the singularity is headen inside the horizon, is discussed. Bibliography: 11

  17. Black Hole Thermodynamics and Electromagnetism

    CERN Document Server

    Sidharth, B G

    2005-01-01

    We show a strong parallel between the Hawking, Beckenstein black hole Thermodynamics and electromagnetism: When the gravitational coupling constant transform into the electromagnetic coupling constant, the Schwarzchild radius, the Beckenstein temperature, the Beckenstein decay time and the Planck mass transform to respectively the Compton wavelength, the Hagedorn temperature, the Compton time and a typical elementary particle mass. The reasons underlying this parallalism are then discussed in detail.

  18. Thermodynamics of rotating black holes and black rings: phase transitions and thermodynamic volume

    CERN Document Server

    Altamirano, Natacha; Mann, Robert B; Sherkatghanad, Zeinab

    2014-01-01

    In this review we summarize, expand, and set in context recent developments on the thermodynamics of black holes in extended phase space, where the cosmological constant is interpreted as thermodynamic pressure and treated as a thermodynamic variable in its own right. We specifically consider the thermodynamics of higher-dimensional rotating asymptotically flat and AdS black holes and black rings in a canonical (fixed angular momentum) ensemble. We plot the associated thermodynamic potential-the Gibbs free energy-and study its behaviour to uncover possible thermodynamic phase transitions in these black hole spacetimes. We show that the multiply-rotating Kerr-AdS black holes exhibit a rich set of interesting thermodynamic phenomena analogous to the "every day thermodynamics" of simple substances, such as reentrant phase transitions of multicomponent liquids, multiple first-order solid/liquid/gas phase transitions, and liquid/gas phase transitions of the Van der Waals type. Furthermore, the reentrant phase tran...

  19. Black Hole Phase Transitions and the Chemical Potential

    CERN Document Server

    Maity, Reevu; Sarkar, Tapobrata

    2015-01-01

    In the context of extended phase space thermodynamics and the AdS-CFT correspondence, we consider the chemical potential ($\\mu$) dual to the number of colours ($N$) of the boundary gauge theory, in the grand canonical ensemble. By appropriately defining $\\mu$ via densities of thermodynamic quantities, we show that it changes sign precisely at the Hawking-Page transition for AdS-Schwarzschild and RN-AdS black holes in five dimensions, signalling the onset of quantum effects at the transition point. Such behaviour is absent for non-rotating black holes in four dimensions. For Kerr-AdS black holes in four and five dimensions, our analysis points to the fact that $\\mu$ can change sign in the stable black hole region, i.e above the Hawking-Page transition temperature, for a range of angular frequencies. We also analyse AdS black holes in five dimensional Gauss-Bonnet gravity, and find similar features for $\\mu$ as in the Kerr-AdS case.

  20. Hawking Radiation from Regular Black Hole as a Possible Probe for Black Hole Interior Structure

    CERN Document Server

    Deng, Yanbin

    2016-01-01

    The notion of the black hole singularity and the proof of the singularity theorem in general relativity were considered great successes in gravitational physics. On the other hand they also presented deep puzzles to physicists. Conceptual challenges were set up by the intractability of the singularity. The existence of black hole horizons which cover up the interior, including the singularity of the black hole from outside observers, builds an information curtain, further hindering physicists from understanding the nature of the singularity and the interior structure of black holes. The regular black hole is a concept produced out of multiple attempts to establish a tractable and understandable interior structure for black hole and to avoid the singularity inside the black hole body. A method is needed to check the correctness of the new constructions of black holes. After studying the Hawking radiation by fermion tunnelling from one type of regular black hole, structure dependent results were obtained. The r...

  1. Hair of astrophysical black holes

    CERN Document Server

    Lyutikov, Maxim

    2012-01-01

    The "no hair" theorem is not applicable to black holes formed from collapse of a rotating neutron star. Rotating neutron stars can self-produce particles via vacuum breakdown forming a highly conducting plasma magnetosphere such that magnetic field lines are effectively "frozen-in" the star both before and during collapse. In the limit of no resistivity, this introduces a topological constraint which prohibits the magnetic field from sliding off the newly-formed event horizon. As a result, during collapse of a neutron star into a black hole, the latter conserves the number of magnetic flux tubes N_B = e \\Phi_\\infty /(\\pi c \\hbar), where \\Phi_\\infty is the initial magnetic flux through the hemispheres of the progenitor and out to infinity. The black hole's magnetosphere subsequently relaxes to the split monopole magnetic field geometry with self-generated currents outside the event horizon. The dissipation of the resulting equatorial current sheet leads to a slow loss of the anchored flux tubes, a process that...

  2. Soft Hair on Black Holes.

    Science.gov (United States)

    Hawking, Stephen W; Perry, Malcolm J; Strominger, Andrew

    2016-06-10

    It has recently been shown that Bondi-van der Burg-Metzner-Sachs supertranslation symmetries imply an infinite number of conservation laws for all gravitational theories in asymptotically Minkowskian spacetimes. These laws require black holes to carry a large amount of soft (i.e., zero-energy) supertranslation hair. The presence of a Maxwell field similarly implies soft electric hair. This Letter gives an explicit description of soft hair in terms of soft gravitons or photons on the black hole horizon, and shows that complete information about their quantum state is stored on a holographic plate at the future boundary of the horizon. Charge conservation is used to give an infinite number of exact relations between the evaporation products of black holes which have different soft hair but are otherwise identical. It is further argued that soft hair which is spatially localized to much less than a Planck length cannot be excited in a physically realizable process, giving an effective number of soft degrees of freedom proportional to the horizon area in Planck units.

  3. Fractal black holes and information

    Energy Technology Data Exchange (ETDEWEB)

    El Naschie, M.S. [Department of Physics, University of Alexandria, Alexandria (Egypt); Department of Astrophysics, Cairo University (Egypt); Department of Physics, Mansura University (Egypt)

    2006-07-15

    If nature is fractal as it evidently is, at classical resolution and if it is suspected to also be fractal at the quantum resolution as it is now a days generally believed to be, then we must have over looked at least two points or so in our physical model building of mini black holes. To start with at such ultra high resolution, the mini black hole geometry must be a fractal. Consequently we have zero volume and only a fractal surface area. Second because we cannot take the differential limit for the -bar {sub p}{sup 2} covering the transfinite surface area, there will be many gaps between the (-bar {sub p}){sup 2} tilings. In other words we must introduce transfinite corrections to the final result. Proceeding this way the information entropy unit of a black hole should be a=I=(7+{phi}{sup 3})(10){sup -66}cm{sup 2}=7.23606799(10){sup -66}cm{sup 2}The nearest classical result to the above is that obtained by Gerard 't Hoofta=I=(0.724)(10){sup -65}cm{sup 2}The paper ends with a general discussion of E-infinity theory and its possible relation with 't Hooft's holographic principle and his gluons-quark strings.

  4. Soft Hair on Black Holes

    CERN Document Server

    Hawking, Stephen W; Strominger, Andrew

    2016-01-01

    It has recently been shown that BMS supertranslation symmetries imply an infinite number of conservation laws for all gravitational theories in asymptotically Minkowskian spacetimes. These laws require black holes to carry a large amount of soft ($i.e.$ zero-energy) supertranslation hair. The presence of a Maxwell field similarly implies soft electric hair. This paper gives an explicit description of soft hair in terms of soft gravitons or photons on the black hole horizon, and shows that complete information about their quantum state is stored on a holographic plate at the future boundary of the horizon. Charge conservation is used to give an infinite number of exact relations between the evaporation products of black holes which have different soft hair but are otherwise identical. It is further argued that soft hair which is spatially localized to much less than a Planck length cannot be excited in a physically realizable process, giving an effective number of soft degrees of freedom proportional to the ho...

  5. Entanglement Entropy of Black Holes

    Directory of Open Access Journals (Sweden)

    Sergey N. Solodukhin

    2011-10-01

    Full Text Available The entanglement entropy is a fundamental quantity, which characterizes the correlations between sub-systems in a larger quantum-mechanical system. For two sub-systems separated by a surface the entanglement entropy is proportional to the area of the surface and depends on the UV cutoff, which regulates the short-distance correlations. The geometrical nature of entanglement-entropy calculation is particularly intriguing when applied to black holes when the entangling surface is the black-hole horizon. I review a variety of aspects of this calculation: the useful mathematical tools such as the geometry of spaces with conical singularities and the heat kernel method, the UV divergences in the entropy and their renormalization, the logarithmic terms in the entanglement entropy in four and six dimensions and their relation to the conformal anomalies. The focus in the review is on the systematic use of the conical singularity method. The relations to other known approaches such as ’t Hooft’s brick-wall model and the Euclidean path integral in the optical metric are discussed in detail. The puzzling behavior of the entanglement entropy due to fields, which non-minimally couple to gravity, is emphasized. The holographic description of the entanglement entropy of the black-hole horizon is illustrated on the two- and four-dimensional examples. Finally, I examine the possibility to interpret the Bekenstein-Hawking entropy entirely as the entanglement entropy.

  6. Entropy of Quantum Black Holes

    Directory of Open Access Journals (Sweden)

    Romesh K. Kaul

    2012-02-01

    Full Text Available In the Loop Quantum Gravity, black holes (or even more general Isolated Horizons are described by a SU(2 Chern-Simons theory. There is an equivalent formulation of the horizon degrees of freedom in terms of a U(1 gauge theory which is just a gauged fixed version of the SU(2 theory. These developments will be surveyed here. Quantum theory based on either formulation can be used to count the horizon micro-states associated with quantum geometry fluctuations and from this the micro-canonical entropy can be obtained. We shall review the computation in SU(2 formulation. Leading term in the entropy is proportional to horizon area with a coefficient depending on the Barbero-Immirzi parameter which is fixed by matching this result with the Bekenstein-Hawking formula. Remarkably there are corrections beyond the area term, the leading one is logarithm of the horizon area with a definite coefficient −3/2, a result which is more than a decade old now. How the same results are obtained in the equivalent U(1 framework will also be indicated. Over years, this entropy formula has also been arrived at from a variety of other perspectives. In particular, entropy of BTZ black holes in three dimensional gravity exhibits the same logarithmic correction. Even in the String Theory, many black hole models are known to possess such properties. This suggests a possible universal nature of this logarithmic correction.

  7. Soft Hair on Black Holes

    Science.gov (United States)

    Hawking, Stephen W.; Perry, Malcolm J.; Strominger, Andrew

    2016-06-01

    It has recently been shown that Bondi-van der Burg-Metzner-Sachs supertranslation symmetries imply an infinite number of conservation laws for all gravitational theories in asymptotically Minkowskian spacetimes. These laws require black holes to carry a large amount of soft (i.e., zero-energy) supertranslation hair. The presence of a Maxwell field similarly implies soft electric hair. This Letter gives an explicit description of soft hair in terms of soft gravitons or photons on the black hole horizon, and shows that complete information about their quantum state is stored on a holographic plate at the future boundary of the horizon. Charge conservation is used to give an infinite number of exact relations between the evaporation products of black holes which have different soft hair but are otherwise identical. It is further argued that soft hair which is spatially localized to much less than a Planck length cannot be excited in a physically realizable process, giving an effective number of soft degrees of freedom proportional to the horizon area in Planck units.

  8. Eternal higher spin black holes: a thermofield Interpretation

    Science.gov (United States)

    Castro, Alejandra; Iqbal, Nabil; Llabrés, Eva

    2016-08-01

    We study Lorentzian eternal black holes in the Chern-Simons sector of AdS3 higher spin gravity. We probe such black holes using bulk Wilson lines and motivate new regularity conditions that must be obeyed by the bulk connections in order for the geometry to be consistent with an interpretation as a thermofield state in the dual CFT2. We demonstrate that any higher spin black hole may be placed in a gauge that satisfies these conditions: this is the Chern-Simons analogue of the construction of Kruskal coordinates that permit passage through the black hole horizon. We also argue that the Wilson line provides a higher-spin notion of causality in higher spin gravity that can be used to associate a Penrose diagram with the black hole. We present some applications of the formalism, including a study of the time-dependent entanglement entropy arising from the higher spin black hole interior and evidence for an emergent AdS2 region in the extremal limit.

  9. Eternal Higher Spin Black Holes: a Thermofield Interpretation

    CERN Document Server

    Castro, Alejandra; Llabrés, Eva

    2016-01-01

    We study Lorentzian eternal black holes in the Chern-Simons sector of AdS$_3$ higher spin gravity. We probe such black holes using bulk Wilson lines and motivate new regularity conditions that must be obeyed by the bulk connections in order for the geometry to be consistent with an interpretation as a thermofield state in the dual CFT$_2$. We demonstrate that any higher spin black hole may be placed in a gauge that satisfies these conditions: this is the Chern-Simons analogue of the construction of Kruskal coordinates that permit passage through the black hole horizon. We also argue that the Wilson line provides a higher-spin notion of causality in higher spin gravity that can be used to associate a Penrose diagram with the black hole. We present some applications of the formalism, including a study of the time-dependent entanglement entropy arising from the higher spin black hole interior and evidence for an emergent AdS$_2$ region in the extremal limit.

  10. Ultraspinning limits and super-entropic black holes

    CERN Document Server

    Hennigar, Robie A; Mann, Robert B; Musoke, Nathan

    2015-01-01

    By employing the new ultraspinning limit we construct novel classes of black holes with non-compact event horizons and finite horizon area and study their thermodynamics. Our ultraspinning limit can be understood as a simple generating technique that consists of three steps: i) transforming the known rotating AdS black hole solution to a special coordinate system that rotates (in a given 2-plane) at infinity ii) boosting this rotation to the speed of light iii) compactifying the corresponding azimuthal direction. In so doing we qualitatively change the structure of the spacetime since it is no longer possible to return to a frame that does not rotate at infinity. The obtained black holes have non-compact horizons with topology of a sphere with two punctures. The entropy of some of these exceeds the maximal bound implied by the reverse isoperimetric inequality, such black holes are super-entropic.

  11. Black hole remnant in asymptotic anti-de Sitter space

    Energy Technology Data Exchange (ETDEWEB)

    Wen, Wen-Yu [Chung Yuan Christian University, Department of Physics, Center for High Energy Physics, Chung Li City (China); National Taiwan University, Leung Center for Cosmology and Particle Astrophysics, Taipei (China); Wu, Shang-Yu [National Chiao Tung University, Department of Electrophysics, Hsinchu (China)

    2015-12-15

    The solution of a remnant was suggested for the black hole ground state after surface gravity is corrected for the loop quantum effect. On the other hand, a Schwarzschild black hole in asymptotic anti-de Sitter space would tunnel into the thermal soliton solution known as the Hawking-Page phase transition. In this letter, we investigate the low temperature phase of a three-dimensional Banados-Teitelboim-Zanelli (BTZ) black hole and four-dimensional AdS Schwarzschild black hole. We find that the thermal soliton is energetically favored rather than the remnant solution at low temperature in three dimensions, while a Planck-size remnant is still possible in four dimensions. Though the BTZ remnant seems energetically disfavored, we argue that it is still possible to find in the overcooled phase if strings were present, and its implication is discussed. (orig.)

  12. Black hole remnant in asymptotic anti-de Sitter space

    Energy Technology Data Exchange (ETDEWEB)

    Wen, Wen-Yu, E-mail: steve.wen@gmail.com [Department of Physics, Center for High Energy Physics, Chung Yuan Christian University, Chung Li City, Taiwan (China); Leung Center for Cosmology and Particle Astrophysics, National Taiwan University, 106, Taipei, Taiwan (China); Wu, Shang-Yu, E-mail: loganwu@gmail.com [Department of Electrophysics, National Chiao Tung University, Hsinchu, Taiwan (China)

    2015-12-21

    The solution of a remnant was suggested for the black hole ground state after surface gravity is corrected for the loop quantum effect. On the other hand, a Schwarzschild black hole in asymptotic anti-de Sitter space would tunnel into the thermal soliton solution known as the Hawking–Page phase transition. In this letter, we investigate the low temperature phase of a three-dimensional Banados–Teitelboim–Zanelli (BTZ) black hole and four-dimensional AdS Schwarzschild black hole. We find that the thermal soliton is energetically favored rather than the remnant solution at low temperature in three dimensions, while a Planck-size remnant is still possible in four dimensions. Though the BTZ remnant seems energetically disfavored, we argue that it is still possible to find in the overcooled phase if strings were present, and its implication is discussed.

  13. On black hole thermodynamics with a momentum relaxation

    CERN Document Server

    Park, Chanyong

    2016-01-01

    We investigate black hole thermodynamics involving a scalar hair which is dual to a momentum relaxation of the dual field theory. This black hole geometry is able to be classified by two parameters. One is a momentum relaxation and the other is a mass density of another matter localized at the center. Even though all parameters are continuous, there exists a specific point where its thermodynamic interpretation is not continuously connected to the one defined in the other parameter regime. The similar feature also appears in a topological AdS black hole. In this work, we show why such an unusual thermodynamic feature happens and provide a unified way to understand such an exotic black hole thermodynamically in the entire parameter range.

  14. On black hole thermodynamics with a momentum relaxation

    Science.gov (United States)

    Park, Chanyong

    2016-12-01

    We investigate black hole thermodynamics involving a scalar hair which is dual to a momentum relaxation of the dual field theory. This black hole geometry is able to be classified by two parameters. One is a momentum relaxation and the other is a mass density of another matter localized at the center. Even though all parameters are continuous, there exists a specific point where its thermodynamic interpretation is not continuously connected to the one defined in the other parameter regime. The similar feature also appears in a topological AdS black hole. In this work, we show why such an unusual thermodynamic feature happens and provide a unified way to understand such an exotic black hole thermodynamically in the entire parameter range.

  15. Black Holes, Worm Holes, and Future Space Propulsion

    Science.gov (United States)

    Barret, Chris

    2000-01-01

    NASA has begun examining the technologies needed for an Interstellar Mission. In 1998, a NASA Interstellar Mission Workshop was held at the California Institute of Technology to examine the technologies required. Since then, a spectrum of research efforts to support such a mission has been underway, including many advanced and futuristic space propulsion concepts which are being explored. The study of black holes and wormholes may provide some of the breakthrough physics needed to travel to the stars. The first black hole, CYGXI, was discovered in 1972 in the constellation Cygnus X-1. In 1993, a black hole was found in the center of our Milky Way Galaxy. In 1994, the black hole GRO J1655-40 was discovered by the NASA Marshall Space Flight center using the Gamma Ray Observatory. Today, we believe we have found evidence to support the existence of 19 black holes, but our universe may contain several thousands. This paper discusses the dead star states - - both stable and unstable, white dwarfs, neutron stars, pulsars, quasars, the basic features and types of black holes: nonspinning, nonspinning with charge, spinning, and Hawking's mini black holes. The search for black holes, gravitational waves, and Laser Interferometer Gravitational Wave Observatory (LIGO) are reviewed. Finally, concepts of black hole powered space vehicles and wormhole concepts for rapid interstellar travel are discussed in relation to the NASA Interstellar Mission.

  16. Black branes in AdS: BPS bounds and asymptotic charges

    Energy Technology Data Exchange (ETDEWEB)

    Hristov, K. [Institute for Theoretical Physics and Spinoza Institute, Utrecht University, 3508 TD Utrecht (Netherlands); Faculty of Physics, Sofia University, Sofia 1164 (Bulgaria); Toldo, C.; Vandoren, S. [Institute for Theoretical Physics and Spinoza Institute, Utrecht University, 3508 TD Utrecht (Netherlands)

    2012-09-15

    We focus on black branes and toroidal black holes in N = 2 gauged supergravities that asymptote to AdS{sub 4}, and derive formulas for the mass and central charge densities. We derive the corresponding BPS bound from the superalgebra of the asymptotic vacuum and illustrate our procedure with explicit examples of genuine black brane solutions with non-trivial scalars. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  17. 5D Black Holes and Matrix Strings

    CERN Document Server

    Dijkgraaf, R; Verlinde, Herman L

    1997-01-01

    We derive the world-volume theory, the (non)-extremal entropy and background geometry of black holes and black strings constructed out of the NS IIA fivebrane within the framework of matrix theory. The CFT description of strings propagating in the black hole geometry arises as an effective field theory.

  18. 5D black holes and matrix strings

    Energy Technology Data Exchange (ETDEWEB)

    Dijkgraaf, R. [Amsterdam Univ. (Netherlands). Dept. of Mathematics; Verlinde, E. [TH-Division, CERN, CH-1211 Geneva 23 (Switzerland)]|[Institute for Theoretical Physics, University of Utrecht, 3508 TA Utrecht (Netherlands); Verlinde, H. [Institute for Theoretical Physics, University of Amsterdam, 1018 XE Amsterdam (Netherlands)

    1997-11-24

    We derive the world-volume theory, the (non)-extremal entropy and background geometry of black holes and black strings constructed out of the NS IIA 5-brane within the framework of matrix theory. The CFT description of strings propagating in the black hole geometry arises as an effective field theory. (orig.). 38 refs.

  19. 5D black holes and matrix strings

    Science.gov (United States)

    Dijkgraaf, Robbert; Verlinde, Erik; Verlinde, Herman

    1997-02-01

    We derive the world-volume theory, the (non)-extremal entropy and background geometry of black holes and black strings constructed out of the NS IIA 5-brane within the framework of matrix theory. The CFT description of strings propagating in the black hole geometry arises as an effective field theory.

  20. A Black Hole in Our Galactic Center

    Science.gov (United States)

    Ruiz, Michael J.

    2008-01-01

    An introductory approach to black holes is presented along with astronomical observational data pertaining to the presence of a supermassive black hole at the center of our galaxy. Concepts of conservation of energy and Kepler's third law are employed so students can apply formulas from their physics class to determine the mass of the black hole…

  1. BSW process of the slowly evaporating charged black hole

    OpenAIRE

    Wang, Liancheng; He, Feng; Fu, Xiangyun

    2015-01-01

    In this paper, we study the BSW process of the slowly evaporating charged black hole. It can be found that the BSW process will also arise near black hole horizon when the evaporation of charged black hole is very slow. But now the background black hole does not have to be an extremal black hole, and it will be approximately an extremal black hole unless it is nearly a huge stationary black hole.

  2. Boosting jet power in black hole spacetimes.

    Science.gov (United States)

    Neilsen, David; Lehner, Luis; Palenzuela, Carlos; Hirschmann, Eric W; Liebling, Steven L; Motl, Patrick M; Garrett, Travis

    2011-08-02

    The extraction of rotational energy from a spinning black hole via the Blandford-Znajek mechanism has long been understood as an important component in models to explain energetic jets from compact astrophysical sources. Here we show more generally that the kinetic energy of the black hole, both rotational and translational, can be tapped, thereby producing even more luminous jets powered by the interaction of the black hole with its surrounding plasma. We study the resulting Poynting jet that arises from single boosted black holes and binary black hole systems. In the latter case, we find that increasing the orbital angular momenta of the system and/or the spins of the individual black holes results in an enhanced Poynting flux.

  3. Kerr-Newman Black Hole In Quintessence

    CERN Document Server

    Xu, Zhaoyi

    2016-01-01

    We study the Kerr-Newman solutions of the Einstein-Maxwell equation in quintessence field around a black hole by Newman-Janis algorithm. From the horizon structure and stationary limit surfaces, we find that Kerr-Newman black hole exists an ergosphere with $r^{+} < r < r^{L}$, which is related to the parameters $\\omega$ and $\\alpha$. We obtain the general expression between $\\alpha$ and $\\omega$ if the cosmological horizon exists, in which for $\\omega=-1/2$, $\\alpha\\leq\\sqrt{2}/5$, and for $\\omega=-2/3$, $\\alpha\\leq 1/6$. For $\\omega=-2/3$, the result is same with rotational black hole in quintessence. The singularity of the black holes is the same with that of Kerr black hole. We also discuss the rotation velocity of the black holes on the equatorial plane for $\\omega =-2/3$ and $-1/2$.

  4. NASA's Chandra Finds Black Holes Are "Green"

    Science.gov (United States)

    2006-04-01

    Black holes are the most fuel efficient engines in the Universe, according to a new study using NASA's Chandra X-ray Observatory. By making the first direct estimate of how efficient or "green" black holes are, this work gives insight into how black holes generate energy and affect their environment. The new Chandra finding shows that most of the energy released by matter falling toward a supermassive black hole is in the form of high-energy jets traveling at near the speed of light away from the black hole. This is an important step in understanding how such jets can be launched from magnetized disks of gas near the event horizon of a black hole. Illustration of Fuel for a Black Hole Engine Illustration of Fuel for a Black Hole Engine "Just as with cars, it's critical to know the fuel efficiency of black holes," said lead author Steve Allen of the Kavli Institute for Particle Astrophysics and Cosmology at Stanford University, and the Stanford Linear Accelerator Center. "Without this information, we cannot figure out what is going on under the hood, so to speak, or what the engine can do." Allen and his team used Chandra to study nine supermassive black holes at the centers of elliptical galaxies. These black holes are relatively old and generate much less radiation than quasars, rapidly growing supermassive black holes seen in the early Universe. The surprise came when the Chandra results showed that these "quiet" black holes are all producing much more energy in jets of high-energy particles than in visible light or X-rays. These jets create huge bubbles, or cavities, in the hot gas in the galaxies. Animation of Black Hole in Elliptical Galaxy Animation of Black Hole in Elliptical Galaxy The efficiency of the black hole energy-production was calculated in two steps: first Chandra images of the inner regions of the galaxies were used to estimate how much fuel is available for the black hole; then Chandra images were used to estimate the power required to produce

  5. String condensation: Nemesis of Black Holes?

    CERN Document Server

    Hewitt, Michael

    2015-01-01

    This paper puts forward a conjecture that there are no black holes in M theory. We will show that a mechanism to prevent black hole formation is needed in 4 dimensions to make string theory a viable high energy model of quantum gravity. Black hole formation may be averted by a gravity regulation mechanism based on string condensation. In this scenario, black holes are replaced by `hot holograms' that form during gravitational collapse. The geometric conditions based on the properties of free thermalon solutions that are proposed for conversion to a high temperature hologram to occur, however, are local and generic in dimension and could apply throughout M space. This idea can be applied to resolve the problems presented by the process of black hole evaporation, which appears to be inconsistent with quantum information theory. Whereas, in the conventional view, black holes are real and firewalls are probably a chimera, in the scenario proposed here that situation would be reversed.

  6. What does a black hole look like?

    CERN Document Server

    Bailyn, Charles D

    2014-01-01

    Emitting no radiation or any other kind of information, black holes mark the edge of the universe--both physically and in our scientific understanding. Yet astronomers have found clear evidence for the existence of black holes, employing the same tools and techniques used to explore other celestial objects. In this sophisticated introduction, leading astronomer Charles Bailyn goes behind the theory and physics of black holes to describe how astronomers are observing these enigmatic objects and developing a remarkably detailed picture of what they look like and how they interact with their surroundings. Accessible to undergraduates and others with some knowledge of introductory college-level physics, this book presents the techniques used to identify and measure the mass and spin of celestial black holes. These key measurements demonstrate the existence of two kinds of black holes, those with masses a few times that of a typical star, and those with masses comparable to whole galaxies--supermassive black holes...

  7. Seeding Black Holes in Cosmological Simulations

    CERN Document Server

    Taylor, Philip

    2014-01-01

    We present a new model for the formation of black holes in cosmological simulations, motivated by the first star formation. Black holes form from high density peaks of primordial gas, and grow via both gas accretion and mergers. Massive black holes heat the surrounding material, suppressing star formation at the centres of galaxies, and driving galactic winds. We perform an investigation into the physical effects of the model parameters, and obtain a `best' set of these parameters by comparing the outcome of simulations to observations. With this best set, we successfully reproduce the cosmic star formation rate history, black hole mass -- velocity dispersion relation, and the size -- velocity dispersion relation of galaxies. The black hole seed mass is 10^3Msun, which is orders of magnitude smaller than has been used in previous cosmological simulations with active galactic nuclei, but suggests that the origin of the seed black holes is the death of Population III stars.

  8. Black hole chemistry: thermodynamics with Lambda

    CERN Document Server

    Kubiznak, David; Teo, Mae

    2016-01-01

    We review recent developments on the thermodynamics of black holes in extended phase space, where the cosmological constant is interpreted as thermodynamic pressure and treated as a thermodynamic variable in its own right. In this approach, the mass of the black hole is no longer regarded as internal energy, rather it is identified with the chemical enthalpy. This leads to an extended dictionary for black hole thermodynamic quantities, in particular a notion of thermodynamic volume emerges for a given black hole spacetime. This volume is conjectured to satisfy the reverse isoperimetric inequality - an inequality imposing a bound on the amount of entropy black hole can carry for a fixed thermodynamic volume. New thermodynamic phase transitions naturally emerge from these identifications. Namely, we show that black holes can be understood from the viewpoint of chemistry, in terms of concepts such as Van der Waals fluids, reentrant phase transitions, and triple points. We also review the recent attempts at exten...

  9. Boosting jet power in black hole spacetimes

    CERN Document Server

    Neilsen, David; Palenzuela, Carlos; Hirschmann, Eric W; Liebling, Steven L; Motl, Patrick M; Garret, T

    2010-01-01

    The extraction of rotational energy from a spinning black hole via the Blandford-Znajek mechanism has long been understood as an important component in models to explain energetic jets from compact astrophysical sources. Here we show more generally that the kinetic energy of the black hole, both rotational and translational, can be tapped, thereby producing even more luminous jets powered by the interaction of the black hole with its surrounding plasma. We study the resulting Poynting jet that arises from single boosted black holes and binary black hole systems. In the latter case, we find that increasing the orbital angular momenta of the system and/or the spins of the individual black holes results in an enhanced Poynting flux.

  10. Weighing black holes in the universe

    Institute of Scientific and Technical Information of China (English)

    WU Xue-bing

    2006-01-01

    The determination of the mass of black holes in our universe is crucial to understand their physics nature but is a great challenge to scientists.In this paper Ⅰ briefly review some methods that are currently used to estimate the mass of black holes,especially those in X-ray binary systems and in galactic nuclei.Our recent progress in improving the mass estimates of supermasssive black holes in active galactic nuclei by involving some empirical relations is presented.Finally Ⅰ point out the similarities and common physics in Galactic black hole X-ray binaries and active galactic nuclei,and demonstrate that the black hole mass estimation is very much helpful to understand the accretion physics around black holes.

  11. The thermal radiation from dynamic black holes

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Using the related formula of dynamic black holes, the instantaneous radiation energy density of the general spherically symmetric charged dynamic black hole and the arbitrarily accelerating charged dynamic black hole is calculated. It is found that the instantaneous radiation energy density of black hole is always proportional to the quartic of the temperature of event horizon in the same direction. The proportional coefficient of generalized Stefan-Boltzmann is no longer a constant, and it becomes a dynamic coefficient that is related to the event horizon changing rate, space-time structure near event horizon and the radiation absorption coefficient of the black hole. It is shown that there should be an internal relation between the gravitational field around black hole and its thermal radiation.

  12. Reversible Carnot cycle outside a black hole

    Institute of Scientific and Technical Information of China (English)

    Deng Xi-Hao; Gao Si-Jie

    2009-01-01

    A Carnot cycle outside a Schwarzschild black hole is investigated in detail. We propose a reversible Carnot cycle with a black hole being the cold reservoir. In our model, a Carnot engine operates between a hot reservoir with temperature T1 and a black hole with Hawking temperature Th. By naturally extending the ordinary Carnot cycle to the black hole system, we show that the thermal efficiency for a reversible process can reach the maximal efficiency 1-TH/T1 Consequently, black holes can be used to determine the thermodynamic temperature by means of the Carnot cycle. The role of the atmosphere around the black hole is discussed. We show that the thermal atmosphere provides a necessary mechanism to make the process reversible.

  13. Information Retention by Stringy Black Holes

    CERN Document Server

    AUTHOR|(CDS)2108556

    2015-01-01

    Building upon our previous work on two-dimensional stringy black holes and its extension to spherically-symmetric four-dimensional stringy black holes, we show how the latter retain information. A key r\\^ole is played by an infinite-dimensional $W_\\infty$ symmetry that preserves the area of an isolated black-hole horizon and hence its entropy. The exactly-marginal conformal world-sheet operator representing a massless stringy particle interacting with the black hole necessarily includes a contribution from $W_\\infty$ generators in its vertex function. This admixture manifests the transfer of information between the string black hole and external particles. We discuss different manifestations of $W_\\infty$ symmetry in black-hole physics and the connections between them.

  14. Instability of ultra-spinning black holes

    Energy Technology Data Exchange (ETDEWEB)

    Emparan, Roberto [Departament de Fisica Fonamental and C.E.R. en Astrofisica, Fisica de Particules i Cosmologia, Universitat de Barcelona, Diagonal 647, E-08028 Barcelona (Spain); Institucio Catalana de Recerca i Estudis Avancats (ICREA) (Spain); Myers, Robert C. [Perimeter Institute for Theoretical Physics, 35 King Street North, Waterloo, Ontario N2J 2W9 (Canada) and Department of Physics, University of Waterloo, Waterloo, Ontario N2L 3G1 (Canada)]. E-mail: rmyers@perimeterinstitute.ca

    2003-09-01

    It has long been known that, in higher-dimensional general relativity, there are black hole solutions with an arbitrarily large angular momentum for a fixed mass. We examine the geometry of the event horizon of such ultra-spinning black holes and argue that these solutions become unstable at large enough rotation. Hence we find that higher-dimensional general relativity imposes an effective 'Kerr-bound' on spinning black holes through a dynamical decay mechanism. Our results also give indications of the existence of new stationary black holes with 'rippled' horizons of spherical topology. We consider various scenarios for the possible decay of ultra-spinning black holes, and finally discuss the implications of our results for black holes in braneworld scenarios. (author)

  15. Microcanonical Description of (Micro Black Holes

    Directory of Open Access Journals (Sweden)

    Benjamin Harms

    2011-02-01

    Full Text Available The microcanonical ensemble is the proper ensemble to describe black holes which are not in thermodynamic equilibrium, such as radiating black holes. This choice of ensemble eliminates the problems, e.g., negative specific heat (not allowed in the canonical ensemble and loss of unitarity, encountered when the canonical ensemble is used. In this review we present an overview of the weaknesses of the standard thermodynamic description of black holes and show how the microcanonical approach can provide a consistent description of black holes and their Hawking radiation at all energy scales. Our approach is based on viewing the horizon area as yielding the ensemble density at fixed system energy. We then compare the decay rates of black holes in the two different pictures. Our description is particularly relevant for the analysis of micro-black holes whose existenceis predicted in models with extra-spatial dimensions.

  16. BOOK REVIEW: Introduction to Black Hole Physics Introduction to Black Hole Physics

    Science.gov (United States)

    Tanaka, Takahiro

    2012-07-01

    expected in the near future. Such hot topics are presented in Section 10: 'Black Holes and All That Jazz'. I would also consider the historical overview of the research on black holes given in Section 1 to be very interesting. Overall, I strongly recognised the intention of the authors not to go into too much detail; in this sense, I would say that the book has the aspect of a showcase of the frontiers of black hole physics. There are many topics which are very interesting but mathematically a little complicated; however, those subjects are appropriately treated so that the reader will not be overloaded with mathematical complexity. For example, in the discussion of black hole perturbation, only scalar field perturbation is discussed. The authors might have discussed gravitational wave perturbation, but this is much more complicated and the essential physics is mostly included in the simplest example of the scalar field. If I were one of the authors, I would consider adding more detailed explanations about several such advanced topics. However, the authors well know that such a challenge just presents a barrier to young students who are going to read this book, and really it is only an introduction to this interesting research field. This style might be the result of the long experience from the lectures over 30 years: the explanations of the subjects that the authors describe in detail are very carefully presented, avoiding logical gaps. In the preface, the authors state that they tried hard to answer students' questions as much as possible; I think that the authors' method in this respect is very successful.

  17. Pair Production in Near Extremal Kerr-Newman Black Holes

    CERN Document Server

    Chen, Chiang-Mei; Sun, Jia-Rui; Tang, Fu-Yi

    2016-01-01

    The spontaneous pair production of charged scalars in a near extremal Kerr-Newman (KN) black hole is analytically studied. It is shown that the existence condition for the pair production is equivalent to the violation of the Breitenlohner-Freedman bound in an AdS$_2$ space. The mean number of produced pairs in the extremal black hole has a thermal interpretation, in which the effective temperature for the Schwinger effect in the AdS$_2$ space persistently holds, while the mean number in the near extremal black hole has an additional factor of the Schwinger effect in the Rindler space. In addition, the holographic dual conformal field theory (CFT) descriptions of the charged scalar pair production are respectively realized both in the $J$ and $Q$ pictures in terms of the KN/CFTs correspondence.

  18. Anomalies, Chern-Simons Terms and Black Hole Entropy

    CERN Document Server

    Azeyanagi, Tatsuo; Ng, Gim Seng

    2015-01-01

    Recent derivations of Cardy-like formulae in higher dimensional field theories have opened up a way of computing, via AdS/CFT, universal contributions to black hole entropy from gravitational Chern-Simons terms. Based on the manifestly covariant formulation of the differential Noether charge for Chern-Simons terms proposed in arXiv:1407.6364, we compute the entropy and asymptotic charges for the rotating charged AdS black holes in higher dimensions at leading order of the fluid/gravity derivative expansion in the Einstein-Maxwell-Chern-Simons system. This gives a result that exactly matches the field theory predictions from Cardy-like formulae.

  19. Effect of Black Hole Attack on MANET Routing Protocols

    Directory of Open Access Journals (Sweden)

    Jaspal Kumar

    2013-04-01

    Full Text Available Due to the massive existing vulnerabilities in mobile ad-hoc networks, they may be insecure against attacks by the malicious nodes. In this paper we have analyzed the effects of Black hole attack on mobile ad hoc routing protocols. Mainly two protocols AODV and Improved AODV have been considered. Simulation has been performed on the basis of performance parameters and effect has been analyzed after adding Black-hole nodes in the network. Finally the results have been computed and compared to stumble on which protocol is least affected by these attacks.

  20. Fermionic wigs for BTZ black holes

    Energy Technology Data Exchange (ETDEWEB)

    Gentile, L.G.C., E-mail: lgentile@pd.infn.it [DISIT, Università del Piemonte Orientale, via T. Michel, 11, Alessandria 15120 (Italy); Dipartimento di Fisica “Galileo Galilei”, Università di Padova, via Marzolo, 8, Padova 35131 (Italy); INFN, Sezione di Padova, via Marzolo, 8, Padova 35131 (Italy); Grassi, P.A., E-mail: pgrassi@mfn.unipmn.it [DISIT, Università del Piemonte Orientale, via T. Michel, 11, Alessandria 15120 (Italy); INFN, Gruppo Collegato di Alessandria, Sezione di Torino (Italy); Mezzalira, A., E-mail: mezzalir@to.infn.it [Dipartimento di Fisica Teorica, Università di Torino, via P. Giuria, 1, Torino 10125 (Italy); INFN, Gruppo Collegato di Alessandria, Sezione di Torino (Italy)

    2013-06-11

    We compute the wig for the BTZ black hole, namely the complete non-linear solution of supergravity equations with all fermionic zero modes. We use a “gauge completion” method starting from AdS{sub 3} Killing spinors to generate the gravitinos fields associated to the BH and we compute the back-reaction on the metric. Due to the anticommutative properties of the fermionic hairs the resummation of these effects truncates at some order. We illustrate the technique proposed in a precedent paper in a very explicit and analytical form. We also compute the mass, the angular momentum and other charges with their corrections.

  1. Joint evolution of black holes and galaxies

    CERN Document Server

    Colpi, M; Haardt, F

    2006-01-01

    OBSERVATIONAL EVIDENCE FOR SUPERMASSIVE BLACK HOLES Introduction Some Useful Formalism General Considerations Resolved Stellar Dynamics Gas as a Tracer of the Gravitational Potential Tackling the Unresolvable: Reverberation Mapping Scaling Relations for SMBHs Black Hole Demographics The Future JOINT EVOLUTION OF BLACK HOLES AND GALAXIES: OBSERVATIONAL ISSUES Galaxy Activity: Generalities Local Evidence on the Interplay Between the Stellar and Gravitational Origin of AGN Activity The Cosmic History of Galaxy Activity Constraints on the Cosmic Energy Budget Current Observational Programs and Fut

  2. Superradiance by mini black holes with mirror

    OpenAIRE

    Lee, Jong-Phil

    2011-01-01

    The superradiant scattering of massive scalar particles by a rotating mini black hole is investigated. Imposing the mirror boundary condition, the system becomes the so called black-hole bomb where the rotation energy of the black hole is transferred to the scattered particle exponentially with time. Bulk emissions as well as brane emissions are considered altogether. It is found that the largest effects are expected for the brane emission of lower angular modes with lighter mass and larger a...

  3. Test fields cannot destroy extremal black holes

    Science.gov (United States)

    Natário, José; Queimada, Leonel; Vicente, Rodrigo

    2016-09-01

    We prove that (possibly charged) test fields satisfying the null energy condition at the event horizon cannot overspin/overcharge extremal Kerr-Newman or Kerr-Newman-anti de Sitter black holes, that is, the weak cosmic censorship conjecture cannot be violated in the test field approximation. The argument relies on black hole thermodynamics (without assuming cosmic censorship), and does not depend on the precise nature of the fields. We also discuss generalizations of this result to other extremal black holes.

  4. Dyonic Non-Abelian Black Holes

    OpenAIRE

    Brihaye, Y.; Hartmann, B.; Kunz, J; Tell, N.

    1999-01-01

    We study static spherically symmetric dyonic black holes in Einstein-Yang-Mills-Higgs theory. As for the magnetic non-abelian black holes, the domain of existence of the dyonic non-abelian black holes is limited with respect to the horizon radius and the dimensionless coupling constant $\\alpha$, which is proportional to the ratio of vector meson mass and Planck mass. At a certain critical value of this coupling constant, $\\hat \\alpha$, the maximal horizon radius is attained. We derive analyti...

  5. Black Hole Entropy without Brick Walls

    OpenAIRE

    Demers, J. -G.; Lafrance, R.; Myers, R. C.

    1995-01-01

    We present evidence which confirms a suggestion by Susskind and Uglum regarding black hole entropy. Using a Pauli-Villars regulator, we find that 't Hooft's approach to evaluating black hole entropy through a statistical-mechanical counting of states for a scalar field propagating outside the event horizon yields precisely the one-loop renormalization of the standard Bekenstein-Hawking formula, $S=\\A/(4G)$. Our calculation also yields a constant contribution to the black hole entropy, a contr...

  6. Quantum aspects of black hole entropy

    Indian Academy of Sciences (India)

    Parthasarathi Majumdar

    2000-10-01

    This survey intends to cover recent approaches to black hole entropy which attempt to go beyond the standard semiclassical perspective. Quantum corrections to the semiclassical Bekenstein–Hawking area law for black hole entropy, obtained within the quantum geometry framework, are treated in some detail. Their ramification for the holographic entropy bound for bounded stationary spacetimes is discussed. Four dimensional supersymmetric extremal black holes in string-based = 2 supergravity are also discussed, albeit more briefly.

  7. The thermodynamics in a dynamical black hole

    Institute of Scientific and Technical Information of China (English)

    Bo LIU; Wen-biao LIU

    2009-01-01

    Considering the back-reaction of emitting particles to the black hole, a "new" horizon is suggested where thermodynamics can be built in the dynamical black hole. It, at least, means that the thermodynamics of a dynamical black hole should not be constructed at the original event horizon any more. The temperature, "new" horizon position and radiating particles' energy will be consistent again under the theory of equilibrium thermodynamical system.

  8. Noncommutative Black Holes and the Singularity Problem

    Energy Technology Data Exchange (ETDEWEB)

    Bastos, C; Bertolami, O [Instituto de Plasmas e Fusao Nuclear, Instituto Superior Tecnico, Avenida Rovisco Pais 1, 1049-001 Lisboa (Portugal); Dias, N C; Prata, J N, E-mail: cbastos@fisica.ist.utl.pt, E-mail: orfeu.bertolami@fc.up.pt, E-mail: ncdias@mail.telepac.pt, E-mail: joao.prata@mail.telepac.pt [Departamento de Matematica, Universidade Lusofona de Humanidades e Tecnologias, Avenida Campo Grande, 376, 1749-024 Lisboa (Portugal)

    2011-09-22

    A phase-space noncommutativity in the context of a Kantowski-Sachs cosmological model is considered to study the interior of a Schwarzschild black hole. Due to the divergence of the probability of finding the black hole at the singularity from a canonical noncommutativity, one considers a non-canonical noncommutativity. It is shown that this more involved type of noncommutativity removes the problem of the singularity in a Schwarzschild black hole.

  9. Black holes in the milky way galaxy.

    Science.gov (United States)

    Filippenko, A V

    1999-08-31

    Extremely strong observational evidence has recently been found for the presence of black holes orbiting a few relatively normal stars in our Milky Way Galaxy and also at the centers of some galaxies. The former generally have masses of 4-16 times the mass of the sun, whereas the latter are "supermassive black holes" with millions to billions of solar masses. The evidence for a supermassive black hole in the center of our galaxy is especially strong.

  10. Schwarzchild Black Holes in Matrix Theory, 2

    CERN Document Server

    Banks, T; Klebanov, Igor R; Susskind, Leonard

    1998-01-01

    We present a crude Matrix Theory model for Schwarzchild black holes in uncompactified dimension greater than 5. The model accounts for the size, entropy, and long range static interactions of black holes. The key feature of the model is a Boltzmann gas of D0 branes, a concept which depends on certain qualitative features of Matrix Theory which previously have not been utilized in studies of black holes.

  11. Geon black holes and quantum field theory

    CERN Document Server

    Louko, Jorma

    2010-01-01

    Black hole spacetimes that are topological geons in the sense of Sorkin can be constructed by taking a quotient of a stationary black hole that has a bifurcate Killing horizon. We discuss the geometric properties of these geon black holes and the Hawking-Unruh effect on them. We in particular show how correlations in the Hawking-Unruh effect reveal to an exterior observer features of the geometry that are classically confined to the regions behind the horizons.

  12. Holographic probes of collapsing black holes

    CERN Document Server

    Hubeny, Veronika E

    2013-01-01

    We continue the programme of exploring the means of holographically decoding the geometry of spacetime inside a black hole using the gauge/gravity correspondence. To this end, we study the behaviour of certain extremal surfaces (focusing on those relevant for equal-time correlators and entanglement entropy in the dual CFT) in a dynamically evolving asymptotically AdS spacetime, specifically examining how deep such probes reach. To highlight the novel effects of putting the system far out of equilibrium and at finite volume, we consider spherically symmetric Vaidya-AdS, describing black hole formation by gravitational collapse of a null shell, which provides a convenient toy model of a quantum quench in the field theory. Extremal surfaces anchored on the boundary exhibit rather rich behaviour, whose features depend on dimension of both the spacetime and the surface, as well as on the anchoring region. The main common feature is that they reach inside the horizon even in the post-collapse part of the geometry. ...

  13. Low-mass black holes as the remnants of primordial black hole formation.

    Science.gov (United States)

    Greene, Jenny E

    2012-01-01

    Bridging the gap between the approximately ten solar mass 'stellar mass' black holes and the 'supermassive' black holes of millions to billions of solar masses are the elusive 'intermediate-mass' black holes. Their discovery is key to understanding whether supermassive black holes can grow from stellar-mass black holes or whether a more exotic process accelerated their growth soon after the Big Bang. Currently, tentative evidence suggests that the progenitors of supermassive black holes were formed as ∼10(4)-10(5) M(⊙) black holes via the direct collapse of gas. Ongoing searches for intermediate-mass black holes at galaxy centres will help shed light on this formation mechanism.

  14. Black holes and the butterfly effect

    CERN Document Server

    Shenker, Stephen H

    2013-01-01

    We use holography to study sensitive dependence on initial conditions in strongly coupled field theories. Specifically, we mildly perturb a thermofield double state by adding a small number of quanta on one side. If these quanta are released a scrambling time in the past, they destroy the local two-sided correlations present in the unperturbed state. The corresponding bulk geometry is a two-sided AdS black hole, and the key effect is the blueshift of the early infalling quanta relative to the $t = 0$ slice, creating a shock wave. We comment on string- and Planck-scale corrections to this setup, and discuss points that may be relevant to the firewall controversy.

  15. Black holes and the butterfly effect

    Energy Technology Data Exchange (ETDEWEB)

    Shenker, Stephen H.; Stanford, Douglas [Stanford Institute for Theoretical Physics and Department of Physics, Stanford University,Stanford, CA 94305 (United States); Kavli Institute for Theoretical Physics, University of California,Santa Barbara, CA 93106-4030 (United States)

    2014-03-13

    We use holography to study sensitive dependence on initial conditions in strongly coupled field theories. Specifically, we mildly perturb a thermofield double state by adding a small number of quanta on one side. If these quanta are released a scrambling time in the past, they destroy the local two-sided correlations present in the unperturbed state. The corresponding bulk geometry is a two-sided AdS black hole, and the key effect is the blueshift of the early infalling quanta relative to the t=0 slice, creating a shock wave. We comment on string- and Planck-scale corrections to this setup, and discuss points that may be relevant to the firewall controversy.

  16. Black Hole Researchers in Schools

    Science.gov (United States)

    Doran, Rosa

    2016-07-01

    "Black Holes in my School" is a research project that aims to explore the impact of engaging students in real research experiences while learning new skills and topics addressed in the regular school curriculum. The project introduces teachers to innovative tools for science teaching, explore student centered methodologies such as inquiry based learning and provides a setting where students take the role of an astrophysicist researching the field of compact stellar mass objects in binary systems. Students will study already existing data and use the Faulkes Telescopes to acquire new data. In this presentation the main aim is to present the framework being built and the results achieved so far.

  17. Bohr-like black holes

    CERN Document Server

    Corda, Christian

    2015-01-01

    The idea that black holes (BHs) result in highly excited states representing both the "hydrogen atom" and the "quasi-thermal emission" in quantum gravity is today an intuitive but general conviction. In this paper it will be shown that such an intuitive picture is more than a picture. In fact, we will discuss a model of quantum BH somewhat similar to the historical semi-classical model of the structure of a hydrogen atom introduced by Bohr in 1913. The model is completely consistent with existing results in the literature, starting from the celebrated result of Bekenstein on the area quantization.

  18. Dynamics around supermassive black holes

    CERN Document Server

    Gualandris, Alessia

    2007-01-01

    The dynamics of galactic nuclei reflects the presence of supermassive black holes (SBHs) in many ways. Single SBHs act as sinks, destroying a mass in stars equal to their own mass in roughly one relaxation time and forcing nuclei to expand. Formation of binary SBHs displaces a mass in stars roughly equal to the binary mass, creating low-density cores and ejecting hyper-velocity stars. Gravitational radiation recoil can eject coalescing binary SBHs from nuclei, resulting in offset SBHs and lopsided cores. We review recent work on these mechanisms and discuss the observable consequences.

  19. Comparisons of Black Hole Entropy

    CERN Document Server

    Kupferman, Judy

    2016-01-01

    In this thesis I examine several different concepts of black hole entropy in order to understand whether they describe the same quantity. I look at statistical and entanglement entropies, Wald entropy and Carlip's entropy from conformal field theory, and compare their behavior in a few specific aspects: divergence at the BH horizon, dependence on space time curvature and behavior under a geometric variation. I find that statistical and entanglement entropy may be similar but they seem to differ from the entropy of Wald and Carlip. Chapters 2 and 3 overlap with 1010.4157 and 1310.3938. Chapter 4 does not appear elsewhere.

  20. Schwarzschild black holes can wear scalar wigs

    CERN Document Server

    Barranco, Juan; Degollado, Juan Carlos; Diez-Tejedor, Alberto; Megevand, Miguel; Alcubierre, Miguel; Núñez, Darío; Sarbach, Olivier

    2012-01-01

    We study the evolution of a massive scalar field surrounding a Schwarzschild black hole and find configurations that can survive for arbitrarily long times, provided the black hole or the scalar field mass is small enough. In particular, both ultra-light scalar field dark matter around supermassive black holes and axion-like scalar fields around primordial black holes can survive for cosmological times. Moreover, these results are quite generic, in the sense that fairly arbitrary initial data evolves, at late times, as a combination of those long-lived configurations.