WorldWideScience

Sample records for ads black holes

  1. Polarised Black Holes in AdS

    CERN Document Server

    Costa, Miguel S; Oliveira, Miguel; Penedones, João; Santos, Jorge E

    2015-01-01

    We consider solutions in Einstein-Maxwell theory with a negative cosmological constant that asymptote to global $AdS_{4}$ with conformal boundary $S^{2}\\times\\mathbb{R}_{t}$. At the sphere at infinity we turn on a space-dependent electrostatic potential, which does not destroy the asymptotic $AdS$ behaviour. For simplicity we focus on the case of a dipolar electrostatic potential. We find two new geometries: (i) an $AdS$ soliton that includes the full backreaction of the electric field on the $AdS$ geometry; (ii) a polarised neutral black hole that is deformed by the electric field, accumulating opposite charges in each hemisphere. For both geometries we study boundary data such as the charge density and the stress tensor. For the black hole we also study the horizon charge density and area, and further verify a Smarr formula. Then we consider this system at finite temperature and compute the Gibbs free energy for both $AdS$ soliton and black hole phases. The corresponding phase diagram generalizes the Hawkin...

  2. Small black holes in global AdS spacetime

    CERN Document Server

    Jokela, Niko; Vuorinen, Aleksi

    2015-01-01

    We study finite temperature correlation functions and quasinormal modes in a strongly coupled conformal field theory holographically dual to a small black hole in global Anti-de Sitter spacetime. Upon variation of the black hole radius, our results smoothly interpolate between known limits corresponding to large black holes and thermal AdS space, implying that a non-Hermitian eigenvalue problem gets continuously transitioned into a Hermitian one. This provides justification for the use of small black holes as regulators in studies of black hole formation in global AdS spacetime.

  3. Spectrum and Statistical Entropy of AdS Black Holes

    OpenAIRE

    Vaz, Cenalo; Wijewardhana, L. C. R.

    2009-01-01

    Popular approaches to quantum gravity describe black hole microstates differently and apply different statistics to count them. Since the relationship between the approaches is not clear, this obscures the role of statistics in calculating the black hole entropy. We address this issue by discussing the entropy of eternal AdS black holes in dimension four and above within the context of a midisuperspace model. We determine the black hole eigenstates and find that they describe the quantization...

  4. Complexity Growth for AdS Black Holes

    CERN Document Server

    Cai, Rong-Gen; Wang, Shao-Jiang; Yang, Run-Qiu; Peng, Rong-Hui

    2016-01-01

    We further investigate the Complexity-Action (CA) duality conjecture for stationary anti de-Sitter (AdS) black holes and derive some exact results for the growth rate of action within Wheeler-DeWitt (WDW) patch at late time approximation, which is dual to the growth rate of quantum complexity of holographic state. Based on the results from the general $D$-dimensional Reissner-Nordstr\\"{o}m (RN)-AdS black hole, rotating/charged Ba\\~{n}ados-Teitelboim-Zanelli (BTZ) black hole, Kerr-AdS black hole and charged Gauss-Bonnet-AdS black hole, we present a new complexity bound but leave unchanged the conjecture that the stationary AdS black hole in Einstein gravity is the fastest computer in nature.

  5. Thermodynamics of large AdS black holes

    International Nuclear Information System (INIS)

    We consider leading order quantum corrections to the geometry of large AdS black holes in a spherical reduction of four-dimensional Einstein gravity with negative cosmological constant. The Hawking temperature grows without bound with increasing black hole mass, yet the semiclassical back-reaction on the geometry is relatively mild, indicating that observers in free fall outside a large AdS black hole never see thermal radiation at the Hawking temperature. The positive specific heat of large AdS black holes is a statement about the dual gauge theory rather than an observable property on the gravity side. Implications for string thermodynamics with an AdS infrared regulator are briefly discussed

  6. Thermal Fluctuations in a Charged AdS Black Hole

    CERN Document Server

    Pourhassan, B

    2015-01-01

    In this paper, we will analyze the effects of thermal fluctuations on a charged AdS black hole. This will be done by analyzing the corrections to black hole thermodynamics due to these thermal fluctuations. We will demonstrate that the entropy of this black hole get corrected by logarithmic term. We will also calculate other corrections to other important thermodynamic quantities for this black hole. Finally, we will use the corrected value of the specific heat to analyze the phase transition in this system.

  7. Evaporation of large black holes in AdS

    International Nuclear Information System (INIS)

    The AdS/CFT correspondence offers a new perspective on the long-standing black hole information paradox. However, to be able to use the available gauge/gravity machinery one is forced to consider so-called 'large' black holes in AdS, and these objects are thermodynamically stable - they do not evaporate. We describe a simple toy model that allows large AdS black holes to decay, by coupling the emitted radiation to an external scalar field propagating in an auxiliary space. This effectively changes the properties of the boundary of AdS, making it partly absorbing. We demonstrate that the evaporation process never ceases by explicitly presenting (a) the transmission coefficient for a wave scattering from the bulk into auxiliary space and (b) the greybody factor for a black 3-brane in an AdS background. Therefore, the model provides an interesting framework to address the information paradox using AdS/CFT techniques.

  8. Thermodynamics of charged Lovelock: AdS black holes

    Energy Technology Data Exchange (ETDEWEB)

    Prasobh, C.B.; Suresh, Jishnu; Kuriakose, V.C. [Cochin University of Science and Technology, Department of Physics, Cochin (India)

    2016-04-15

    We investigate the thermodynamic behavior of maximally symmetric charged, asymptotically AdS black hole solutions of Lovelock gravity. We explore the thermodynamic stability of such solutions by the ordinary method of calculating the specific heat of the black holes and investigating its divergences which signal second-order phase transitions between black hole states. We then utilize the methods of thermodynamic geometry of black hole spacetimes in order to explain the origin of these points of divergence. We calculate the curvature scalar corresponding to a Legendre-invariant thermodynamic metric of these spacetimes and find that the divergences in the black hole specific heat correspond to singularities in the thermodynamic phase space. We also calculate the area spectrum for large black holes in the model by applying the Bohr-Sommerfeld quantization to the adiabatic invariant calculated for the spacetime. (orig.)

  9. Thermodynamics of charged Lovelock: AdS black holes

    International Nuclear Information System (INIS)

    We investigate the thermodynamic behavior of maximally symmetric charged, asymptotically AdS black hole solutions of Lovelock gravity. We explore the thermodynamic stability of such solutions by the ordinary method of calculating the specific heat of the black holes and investigating its divergences which signal second-order phase transitions between black hole states. We then utilize the methods of thermodynamic geometry of black hole spacetimes in order to explain the origin of these points of divergence. We calculate the curvature scalar corresponding to a Legendre-invariant thermodynamic metric of these spacetimes and find that the divergences in the black hole specific heat correspond to singularities in the thermodynamic phase space. We also calculate the area spectrum for large black holes in the model by applying the Bohr-Sommerfeld quantization to the adiabatic invariant calculated for the spacetime. (orig.)

  10. AdS black holes as reflecting cavities

    International Nuclear Information System (INIS)

    We use the identification between null singularities of correlators in the bulk with time singularities in the boundary correlators to study the analytic structure of time-dependent thermal Green functions using the eikonal approximation for classical solutions in the AdS black hole background. We show that the location of singularities in complex time can be understood in terms of null rays bouncing on the boundaries and singularities of the eternal black hole, giving the picture of a 'reflecting cavity'. We can then extract the general analytic expression for the asymptotic values of the frequencies of quasinormal modes in large AdS black holes.

  11. AdS black holes as reflecting cavities

    CERN Document Server

    Amado, Irene

    2008-01-01

    We use the identification between null singularities of correlators in the bulk with time singularities in the boundary correlators to study the analytic structure of time-dependent thermal Green functions using the eikonal approximation for classical solutions in the AdS black hole background. We show that the location of singularities in complex time can be understood in terms of null rays bouncing on the boundaries and singularities of the eternal black hole, giving the picture of a `reflecting cavity'. We can then extract the general analytic expression for the asymptotic values of the frequencies of quasinormal modes in large AdS black holes.

  12. Smooth Causal Patches for AdS Black Holes

    OpenAIRE

    Raju, Suvrat

    2016-01-01

    We review the paradox of low energy excitations about an AdS black hole. An appropriately chosen unitary operator in the boundary theory can create a locally strong excitation near the black hole horizon, whose global energy is small as a result of the gravitational redshift. The paradox is that this seems to violate a general rule of statistical mechanics, which states that an operator with energy parametrically smaller than $k T$ cannot create a significant excitation in a thermal system. W...

  13. Internal Structure of Charged AdS Black Holes

    CERN Document Server

    Bhattacharjee, Srijit; Virmani, Amitabh

    2016-01-01

    When an electrically charged black hole is perturbed its inner horizon becomes a singularity, often referred to as the Poisson-Israel mass inflation singularity. Ori constructed a model of this phenomenon for asymptotically flat black holes, in which the metric can be determined explicitly in the mass inflation region. In this paper we implement the Ori model for charged AdS black holes. We find that the mass function inflates faster than the flat space case as the inner horizon is approached. Nevertheless, the mass inflation singularity is still a weak singularity: although spacetime curvature becomes infinite, tidal distortions remain finite on physical objects attempting to cross it.

  14. Small black holes in global AdS spacetime

    Science.gov (United States)

    Jokela, Niko; Pönni, Arttu; Vuorinen, Aleksi

    2016-04-01

    We study the properties of two-point functions and quasinormal modes in a strongly coupled field theory holographically dual to a small black hole in global anti-de Sitter spacetime. Our results are seen to smoothly interpolate between known limits corresponding to large black holes and thermal AdS space, demonstrating that the Son-Starinets prescription works even when there is no black hole in the spacetime. Omitting issues related to the internal space, the results can be given a field theory interpretation in terms of the microcanonical ensemble, which provides access to energy densities forbidden in the canonical description.

  15. Internal Structure of Charged AdS Black Holes

    OpenAIRE

    Bhattacharjee, Srijit(Astroparticle Physics & Cosmology Division, Saha Institute of Nuclear Physics, Kolkata, 700064, India); Sarkar, Sudipta; Virmani, Amitabh

    2016-01-01

    When an electrically charged black hole is perturbed its inner horizon becomes a singularity, often referred to as the Poisson-Israel mass inflation singularity. Ori constructed a model of this phenomenon for asymptotically flat black holes, in which the metric can be determined explicitly in the mass inflation region. In this paper we implement the Ori model for charged AdS black holes. We find that the mass function inflates faster than the flat space case as the inner horizon is approached...

  16. Phases of Global AdS Black Holes

    CERN Document Server

    Basu, Pallab; Subramanian, P N Bala

    2016-01-01

    We study the phases of gravity coupled to a charged scalar and gauge field in an asymptotically Anti-de Sitter spacetime ($AdS_4$) in the grand canonical ensemble. For the conformally coupled scalar, an intricate phase diagram is charted out between the four relevant solutions: global AdS, boson star, Reissner-Nordstrom black hole and the hairy black hole. The nature of the phase diagram undergoes qualitative changes as the charge of the scalar is changed, which we discuss. We also discuss the new features that arise in the extremal limit.

  17. Phases of global AdS black holes

    Science.gov (United States)

    Basu, Pallab; Krishnan, Chethan; Subramanian, P. N. Bala

    2016-06-01

    We study the phases of gravity coupled to a charged scalar and gauge field in an asymptotically Anti-de Sitter spacetime ( AdS 4) in the grand canonical ensemble. For the conformally coupled scalar, an intricate phase diagram is charted out between the four relevant solutions: global AdS, boson star, Reissner-Nordstrom black hole and the hairy black hole. The nature of the phase diagram undergoes qualitative changes as the charge of the scalar is changed, which we discuss. We also discuss the new features that arise in the extremal limit.

  18. Eternal Black Holes in AdS

    OpenAIRE

    Maldacena, Juan M.

    2001-01-01

    We propose a dual non-perturbative description for maximally extended Schwarzschild Anti-de-Sitter spacetimes. The description involves two copies of the conformal field theory associated to the AdS spacetime and an initial entangled state. In this context we also discuss a version of the information loss paradox and its resolution.

  19. The Mixed Phase of Charged AdS Black Holes

    Directory of Open Access Journals (Sweden)

    Piyabut Burikham

    2016-01-01

    Full Text Available We study the mixed phase of charged AdS black hole and radiation when the total energy is fixed below the threshold to produce a stable charged black hole branch. The coexistence conditions for the charged AdS black hole and radiation are derived for the generic case when radiation particles carry charge. The phase diagram of the mixed phase is demonstrated for both fixed potential and charge ensemble. In the dual gauge picture, they correspond to the mixed phase of quark-gluon plasma (QGP and hadron gas in the fixed chemical potential and density ensemble, respectively. In the nuclei and heavy-ion collisions at intermediate energies, the mixed phase of exotic QGP and hadron gas could be produced. The mixed phase will condense and evaporate into the hadron gas as the fireball expands.

  20. Self-dual warped AdS3 black holes

    Science.gov (United States)

    Chen, Bin; Ning, Bo

    2010-12-01

    We study a new class of solutions of three-dimensional topological massive gravity. These solutions can be taken as nonextremal black holes, with their extremal counterparts being discrete quotients of spacelike warped AdS3 along the U(1)L isometry. We study the thermodynamics of these black holes and show that the first law is satisfied. We also show that for consistent boundary conditions, the asymptotic symmetry generators form only one copy of the Virasoro algebra with central charge cL=(4νℓ)/(G(ν2+3)), with which the Cardy formula reproduces the black hole entropy. We compute the real-time correlators of scalar perturbations and find a perfect match with the dual conformal field theory (CFT) predictions. Our study provides a novel example of warped AdS/CFT correspondence: the self-dual warped AdS3 black hole is dual to a CFT with nonvanishing left central charge. Moreover, our investigation suggests that the quantum topological massive gravity asymptotic to the same spacelike warped AdS3 in different consistent ways may be dual to different two-dimensional CFTs.

  1. Self-Dual Warped AdS$_3$ Black Holes

    CERN Document Server

    Chen, Bin; Ning, Bo

    2010-01-01

    We propose a new class of solutions of three-dimensional topological massive gravity. These solutions are non-extremal black holes, with their extremal counterparts being discrete quotients of spacelike warped AdS$_3$ along the $U(1)_L$ isometry. We study the thermodynamics of these black holes and show that the first law is satisfied. We also show that for consistent boundary conditions, the asymptotic symmetry generators form only one copy of the Virasoro algebra with central charge $c_L = \\frac{4\

  2. Spectrum and statistical entropy of AdS black holes

    International Nuclear Information System (INIS)

    Popular approaches to quantum gravity describe black hole microstates differently and apply different statistics to count them. Since the relationship between the approaches is not clear, this obscures the role of statistics in calculating the black hole entropy. We address this issue by discussing the entropy of eternal AdS black holes in dimension four and above within the context of a midisuperspace model. We determine the black hole eigenstates and find that they describe the quantization in half integer units of a certain function of the Arnowitt-Deser-Misner (ADM) mass and the cosmological constant. In the limit of a vanishing cosmological constant (the Schwarzschild limit) the quantized function becomes the horizon area and in the limit of a large cosmological constant it approaches the ADM mass of the black holes. We show that in the Schwarzschild limit the area quatization leads to the Bekenstein-Hawking entropy if Boltzmann statistics are employed. In the limit of a large cosmological constant the Bekenstein-Hawking entropy can be recovered only via Bose statistics. The two limits are separated by a first order phase transition, which seems to suggest a shift from ''particlelike'' degrees of freedom at large cosmological constant to geometric degrees of freedom as the cosmological constant approaches zero.

  3. Entanglement Entropy of AdS Black Holes

    Directory of Open Access Journals (Sweden)

    Maurizio Melis

    2010-11-01

    Full Text Available We review recent progress in understanding the entanglement entropy of gravitational configurations for anti-de Sitter gravity in two and three spacetime dimensions using the AdS/CFT correspondence. We derive simple expressions for the entanglement entropy of two- and three-dimensional black holes. In both cases, the leading term of the entanglement entropy in the large black hole mass expansion reproduces exactly the Bekenstein-Hawking entropy, whereas the subleading term behaves logarithmically. In particular, for the BTZ black hole the leading term of the entanglement entropy can be obtained from the large temperature expansion of the partition function of a broad class of 2D CFTs on the torus.

  4. Scalar perturbations of Kerr-AdS black holes

    International Nuclear Information System (INIS)

    We numerically study the scalar perturbation of a rotating black hole in anti-de Sitter spacetime (Kerr-AdS black hole). It is found that small Kerr-AdS black holes characterized by r+ + and l stand, respectively, for the radial coordinate value of the black hole event horizon in the Boyer-Lindquist coordinates and the cosmological length-scale, defined by l=(-3/Λ)1/2. Here Λ is the (negative) cosmological constant.

  5. No Holography for Eternal AdS Black Holes

    CERN Document Server

    Avery, Steven G

    2013-01-01

    It is generally believed that the eternal AdS black hole is dual to two conformal field theories with compact spatial sections that are together in a thermofield double state. We argue that this proposal is incorrect, and by extension so are the "entanglement=geometry" proposal of Van Raamsdonk and "ER=EPR" proposal of Maldacena and Susskind. We show that in the bulk there is an interaction needed between the two halves of the Hilbert space for connectivity across the horizon; however, there is no such interaction between the CFTs. This rules out the possibility of the dual to the CFTs being the eternal AdS black hole. We argue the correct dual "geometries" resemble the exterior of the black hole outside the stretched horizon but cap off before the global horizon. This disallows the possibility of a shared future (and past) wedge where Alice falling from one side can meet Bob falling from the other. We expect that in the UV complete theory the aforementioned caps will be fuzzballs.

  6. Thermodynamic and classical instability of AdS black holes in fourth-order gravity

    International Nuclear Information System (INIS)

    We study thermodynamic and classical instability of AdS black holes in fourth-order gravity. These include the BTZ black hole in new massive gravity, Schwarzschild-AdS black hole, and higher-dimensional AdS black holes in fourth-order gravity. All thermodynamic quantities which are computed using the Abbot-Deser-Tekin method are used to study thermodynamic instability of AdS black holes. On the other hand, we investigate the s-mode Gregory-Laflamme instability of the massive graviton propagating around the AdS black holes. We establish the connection between the thermodynamic instability and the GL instability of AdS black holes in fourth-order gravity. This shows that the Gubser-Mitra conjecture holds for AdS black holes found from fourth-order gravity

  7. Smooth Causal Patches for AdS Black Holes

    CERN Document Server

    Raju, Suvrat

    2016-01-01

    We review the paradox of low energy excitations about an AdS black hole. An appropriately chosen unitary operator in the boundary theory can create a locally strong excitation near the black hole horizon, whose global energy is small as a result of the gravitational redshift. The paradox is that this seems to violate a general rule of statistical mechanics, which states that an operator with energy parametrically smaller than $k T$ cannot create a significant excitation in a thermal system. When we carefully examine the position dependence of the boundary unitary operator that produces the excitation and the bulk observable necessary to detect the anomalously large effect, we find that they do not both fit in a single causal patch. This follows from a remarkable property of position space AdS correlators that we establish explicitly, and resolves the paradox in a generic state of the system, since no combination of observers can both create the excitation and observe its effect. As a special case of our analy...

  8. Canonical energy and hairy AdS black holes

    Science.gov (United States)

    Hyun, Seungjoon; Park, Sang-A.; Yi, Sang-Heon

    2016-08-01

    We propose the modified version of the canonical energy which was introduced originally by Hollands and Wald. Our construction depends only on the Euler-Lagrange expression of the system and thus is independent of the ambiguity in the Lagrangian. After some comments on our construction, we briefly mention on the relevance of our construction to the boundary information metric in the context of the AdS/CFT correspondence. We also study the stability of three-dimensional hairy extremal black holes by using our construction.

  9. Refined holographic entanglement entropy for the AdS solitons and AdS black holes

    International Nuclear Information System (INIS)

    We consider the refinement of the holographic entanglement entropy for the holographic dual theories to the AdS solitons and AdS black holes, including the corrected ones by the Gauss–Bonnet term. The refinement is obtained by extracting the UV-independent piece of the holographic entanglement entropy, the so-called renormalized entanglement entropy which is independent of the choices of UV cutoff. Our main results are: (i) the renormalized entanglement entropies of the AdSd+1 soliton for d=4,5 are neither monotonically decreasing along the RG flow nor positive-definite, especially around the deconfinement/confinement phase transition; (ii) there is no topological entanglement entropy for AdS5 soliton even with Gauss–Bonnet correction; (iii) for the AdS black holes, the renormalized entanglement entropy obeys an expected volume law at IR regime, and the transition between UV and IR regimes is a smooth crossover even with Gauss–Bonnet correction; (iv) based on AdS/MERA conjecture, we postulate that the IR fixed-point state for the non-extremal AdS soliton is a trivial product state

  10. Geometrothermodynamics of phantom AdS black holes

    Energy Technology Data Exchange (ETDEWEB)

    Quevedo, Hernando [Universidad Nacional Autonoma de Mexico, Instituto de Ciencias Nucleares, Mexico (Mexico); Universita di Roma ' ' La Sapienza' ' , Dipartimento di Fisica ed ICRANet, Rome (Italy); Quevedo, Maria N. [Facultad de Ciencias Basicas, Universidad Militar Nueva Granada, Departamento de Matematicas, Bogota (Colombia); Sanchez, Alberto [CIIDET, Departamento de Posgrado, Queretaro (Mexico)

    2016-03-15

    We show that to investigate the thermodynamic properties of charged phantom spherically symmetric anti-de Sitter black holes, it is necessary to consider the cosmological constant as a thermodynamic variable so that the corresponding fundamental equation is a homogeneous function defined on an extended equilibrium space. We explore all the thermodynamic properties of this class of black holes by using the classical physical approach, based upon the analysis of the fundamental equation, and the alternative mathematical approach as proposed in geometrothermodynamics. We show that both approaches are compatible and lead to equivalent results. (orig.)

  11. Geometrothermodynamics of phantom AdS black holes

    CERN Document Server

    Quevedo, H; Sanchez, A

    2016-01-01

    We show that to investigate the thermodynamic properties of charged phantom spherically symmetric anti-de-Sitter black holes, it is necessary to consider the cosmological constant as a thermodynamic variable so that the corresponding fundamental equation is a homogeneous function defined on an extended equilibrium space. We explore all the thermodynamic properties of this class of black holes by using the classical physical approach, based upon the analysis of the fundamental equation, and the alternative mathematical approach as proposed in geometrothermodynamics. We show that both approaches are compatible and lead to equivalent results.

  12. Near horizon data and physical charges of extremal AdS black holes

    NARCIS (Netherlands)

    Astefanesei, D.; Banerjee, N.; Dutta, S.

    2011-01-01

    We compute the physical charges and discuss the properties of a large class of five-dimensional extremal AdS black holes by using the near horizon data. Our examples include baryonic and electromagnetic black branes, as well as supersymmetric spinning black holes. In the presence of the gauge Chern–

  13. Black holes in a box: towards the numerical evolution of black holes in AdS

    CERN Document Server

    Witek, Helvi; Herdeiro, Carlos; Nerozzi, Andrea; Sperhake, Ulrich; Zilhao, Miguel

    2010-01-01

    The evolution of black holes in "confining boxes" is interesting for a number of reasons, particularly because it mimics the global structure of Anti-de Sitter geometries. These are non-globally hyperbolic space-times and the Cauchy problem may only be well defined if the initial data is supplemented by boundary conditions at the time-like conformal boundary. Here, we explore the active role that boundary conditions play in the evolution of a bulk black hole system, by imprisoning a black hole binary in a box with mirror-like boundary conditions. We are able to follow the post-merger dynamics for up to two reflections off the boundary of the gravitational radiation produced in the merger. We estimate that about 15% of the radiation energy is absorbed by the black hole per interaction, whereas transfer of angular momentum from the radiation to the black hole is only observed in the first interaction. We discuss the possible role of superradiant scattering for this result. Unlike the studies with outgoing bound...

  14. Geometric finiteness, holography and quasinormal modes for the warped AdS3 black hole

    International Nuclear Information System (INIS)

    We show that there exists a precise kinematical notion of holography for the Euclidean warped AdS3 black hole. This follows from the fact that the Euclidean warped AdS3 black hole spacetime is a geometrically finite hyperbolic manifold. For such manifolds a theorem of Sullivan provides a one-to-one correspondence between the hyperbolic structure in the bulk and the conformal structure of its boundary. Using this theorem we obtain the holographic quasinormal modes for the warped AdS3 black hole.

  15. Hawking radiation from AdS black holes

    International Nuclear Information System (INIS)

    We investigate Hawking radiation from black holes in (d+1)-dimensional anti--de Sitter space. We focus on s waves, make use of the geometrical optics approximation, and follow three approaches to analyze the radiation. First, we compute a Bogoliubov transformation between Kruskal and asymptotic coordinates and compare the different vacua. Second, following a method due to Kraus, Parikh, and Wilczek, we view Hawking radiation as a tunneling process across the horizon and compute the tunneling probability. This approach uses an anti--de Sitter version of a metric originally introduced by Painleve for Schwarzschild black holes. From the tunneling probability one also finds a leading correction to the semiclassical emission rate arising from back reaction to the background geometry. Finally, we consider a spherically symmetric collapse geometry and the Bogoliubov transformation between the initial vacuum state and the vacuum of an asymptotic observer

  16. Testing quantum gravity effects through Dyonic charged AdS black hole

    OpenAIRE

    Sadeghi, J.; Pourhassan, B.; Rostami, M.

    2016-01-01

    In this paper, we consider dyonic charged AdS black hole which is holographic dual of a van der Waals fluid. We use logarithmic corrected entropy and study thermodynamics of the black hole and show that holographic picture is still valid. Critical behaviors and stability also discussed. Logarithmic corrections arises due to thermal fluctuations which are important when size of black hole be small. So, thermal fluctuations interpreted as quantum effect. It means that we can see quantum effect ...

  17. A Mean-Field Description for AdS Black Hole

    CERN Document Server

    Dutta, Suvankar

    2016-01-01

    In this paper we find an equivalent mean-field description for asymptotically $AdS$ black hole in high temperature limit and in arbitrary dimensions. We obtain a class of mean-field potential for which the description is valid. We explicitly show that there is an one to one correspondence between the thermodynamics of a gas of interacting particles moving under a mean-field potential and an $AdS$ black hole, namely the equation of state, temperature, pressure, entropy and enthalpy of both the systems match. In $3+1$ dimensions, in particular, the mean-field description can be thought of as an ensemble of tiny interacting {\\it asymptotically flat} black holes moving in volume $V$ and at temperature $T$. This motivates us to identify these asymptotically flat black holes as microstructure of asymptotically $AdS$ black holes in $3+1$ dimensions.

  18. WIRELESS AD-HOC NETWORK UNDER BLACK-HOLE ATTACK

    Directory of Open Access Journals (Sweden)

    Shree Om

    2011-01-01

    Full Text Available Wireless Ad-hoc Network is a temporary and decentralized type of wireless network. Due to security vulnerabilities in the routing protocol currently, this type of network is unprotected to network layer attacks. Black-hole attack is such a type of attack and is a Denial-of-Service (DoS attack. Due to its nature, the attack makes the source node send all the data packets to a Black-hole node that ends up dropping all the packets. The aim of this paper is to reflect light on the severe effects of a Black-hole attack in a Wireless Ad-hoc network and the drawbacks of the security mechanisms being used for the mitigation of this attack.

  19. On thermodynamics of AdS black holes in M-theory

    International Nuclear Information System (INIS)

    Motivated by recent work on asymptotically AdS4 black holes in M-theory, we investigate the thermodynamics and thermodynamical geometry of AdS black holes from M2- and M5-branes. Concretely, we consider AdS black holes in AdSp+2 x S11-p-2, where p = 2,5 by interpreting the number of M2- (and M5-branes) as a thermodynamical variable. More precisely, we study the corresponding phase transition to examine their stabilities by calculating and discussing various thermodynamical quantities including the chemical potential. Then we compute the thermodynamical curvatures from the Quevedo metric for M2- and M5-branes geometries to reconsider the stability of such black holes. The Quevedo metric singularities recover similar stability results provided by the phase-transition program. It has been shown that similar behaviors are also present in the limit of large N. (orig.)

  20. Critical phenomena in higher curvature charged AdS black holes

    OpenAIRE

    Arindam Lala

    2012-01-01

    In this paper we have studied the critical phenomena in higher curvature charged black holes in the anti-de Sitter (AdS) space-time. As an example we have considered the third order Lovelock-Born-Infeld black holes in AdS space-time. We have analytically derived the thermodynamic quantities of the system. Our analysis revealed the onset of a higher order phase transition in the black hole leading to an infinite discontinuity in the specific heat at constant charge at the critical points. Our ...

  1. Horizon Conformal Field Theories from $AdS_2$ Black Holes

    CERN Document Server

    Halyo, Edi

    2015-01-01

    We show that the very near horizon region of nonextreme black holes, which can be described by horizon CFTs, are related to $AdS_2$ Rindler spaces. The latter are $AdS_2$ black holes with specific masses and can be described by states of either $D=1$ or $D=2$ CFTs. The central charges of these CFTs and the conformal weights of their states that correspond to the nonextreme black holes exactly match those predicted by the horizon CFTs, providing supporting evidence for this description.

  2. Black hole microstates in AdS$_4$ from supersymmetric localization

    CERN Document Server

    Benini, Francesco; Zaffaroni, Alberto

    2015-01-01

    This paper addresses a long standing problem, the counting of the microstates of supersymmetric asymptotically AdS black holes in terms of a holographically dual field theory. We focus on a class of asymptotically AdS$_4$ static black holes preserving two real supercharges which are dual to a topologically twisted deformation of the ABJM theory. We evaluate in the large $N$ limit the topologically twisted index of the ABJM theory and we show that it correctly reproduces the entropy of the AdS$_4$ black holes. An extremization of the index with respect to a set of chemical potentials is required. We interpret it as the selection of the exact R-symmetry of the superconformal quantum mechanics describing the horizon of the black hole.

  3. On thermodynamics of AdS black holes in M-theory

    Energy Technology Data Exchange (ETDEWEB)

    Belhaj, A. [Universite Sultan Moulay Slimane, Departement de Physique, LIRST, Faculte Polydisciplinaire, Beni Mellal (Morocco); Cadi Ayyad University, High Energy Physics and Astrophysics Laboratory, FSSM, Marrakesh (Morocco); Chabab, M.; Masmar, K. [Cadi Ayyad University, High Energy Physics and Astrophysics Laboratory, FSSM, Marrakesh (Morocco); El Moumni, H. [Cadi Ayyad University, High Energy Physics and Astrophysics Laboratory, FSSM, Marrakesh (Morocco); Universite Ibn Zohr, Departement de Physique, Faculte des Sciences, Agadir (Morocco); Sedra, M.B. [Universite Ibn Tofail, Departement de Physique, LASIMO, Faculte des Sciences, Kenitra (Morocco)

    2016-02-15

    Motivated by recent work on asymptotically AdS{sub 4} black holes in M-theory, we investigate the thermodynamics and thermodynamical geometry of AdS black holes from M2- and M5-branes. Concretely, we consider AdS black holes in AdS{sub p+2} x S{sup 11-p-2}, where p = 2,5 by interpreting the number of M2- (and M5-branes) as a thermodynamical variable. More precisely, we study the corresponding phase transition to examine their stabilities by calculating and discussing various thermodynamical quantities including the chemical potential. Then we compute the thermodynamical curvatures from the Quevedo metric for M2- and M5-branes geometries to reconsider the stability of such black holes. The Quevedo metric singularities recover similar stability results provided by the phase-transition program. It has been shown that similar behaviors are also present in the limit of large N. (orig.)

  4. The Black Hole Singularity in AdS/CFT

    OpenAIRE

    Fidkowski, Lukasz; Hubeny, Veronika; Kleban, Matthew; Shenker, Stephen

    2003-01-01

    We explore physics behind the horizon in eternal AdS Schwarzschild black holes. In dimension d >3, where the curvature grows large near the singularity, we find distinct but subtle signals of this singularity in the boundary CFT correlators. Building on previous work, we study correlation functions of operators on the two disjoint asymptotic boundaries of the spacetime by investigating the spacelike geodesics that join the boundaries. These dominate the correlators for large mass bulk fields....

  5. Ehrenfest scheme for $P-V$ criticality of higher dimensional charged black holes, rotating black holes and Gauss-Bonnet AdS black holes

    CERN Document Server

    Mo, Jie-Xiong

    2014-01-01

    To provide an analytic verification of the nature of phase transition at the critical point of $P-V$ criticality, the original expressions of Ehrenfest equations have been introduced directly. By treating the cosmological constant and its conjugate quantity as thermodynamic pressure and volume respectively, we carry out analytical check of classical Ehrenfest equations. To show that our approach is universal, we investigate not only higher-dimensional charged AdS black holes, but also rotating AdS black holes. Not only are the examples of Einstein gravity shown, but also the example of modified gravity is presented for Gauss-Bonnet AdS black holes. The specific heat at constant pressure $C_P$, the volume expansion coefficient $\\alpha$ and the isothermal compressibility coefficient $\\kappa_T$ are found to diverge exactly at the critical point. It has been verified that both Ehrenfest equations hold at the critical point of $P-V$ criticality in the extended phase spaces of AdS black holes. So the nature of the ...

  6. Effects of dark energy on P-V criticality of charged AdS black holes

    OpenAIRE

    Li, Gu-Qiang

    2014-01-01

    In this Letter, we investigate the effects of dark energy on $P-V$ criticality of charged AdS black holes by considering the case of the RN-AdS black holes surrounded by quintessence. By treating the cosmological constant as thermodynamic pressure, we study its thermodynamics in the extended phase space. It is shown that quintessence dark energy does not affect the existence of small/large black hole phase transition. For the case $\\omega_q=-2/3$ we derive analytic expressions of critical phy...

  7. Superradiance Instability of Small Rotating AdS Black Holes in Arbitrary Dimensions

    CERN Document Server

    Delice, Özgür

    2015-01-01

    We investigate the stability of $D$ dimensional singly rotating Myers-Perry-AdS black holes under superradiance against scalar field perturbations. It is well known that small four dimensional rotating or charged AdS black holes are unstable against superradiance instability of a scalar field. Recent works extended the existence of this instability to five dimensional rotating charged AdS black holes or static charged AdS Black holes in arbitrary dimensions. In this work we analytically prove that, rotating small AdS black holes in arbitrary dimensions also show superradiance instability irrespective of the value of the (positive) angular momentum quantum number. To do this we solve the Klein-Gordon equation in the slow rotation, low frequency limit. By using the asymptotic matching technique, we are able to calculate the real and imaginary parts of the correction terms to the frequency of the scalar field due to the presence of the black hole, confirming the presence of superradiance instability. We see that...

  8. Effects of dark energy on P–V criticality of charged AdS black holes

    International Nuclear Information System (INIS)

    In this Letter, we investigate the effects of dark energy on P–V criticality of charged AdS black holes by considering the case of the RN-AdS black holes surrounded by quintessence. By treating the cosmological constant as thermodynamic pressure, we study its thermodynamics in the extended phase space. It is shown that quintessence dark energy does not affect the existence of small/large black hole phase transition. For the case ωq=−2/3 we derive analytic expressions of critical physical quantities, while for cases ωq≠−2/3 we appeal to numerical method for help. It is shown that quintessence dark energy affects the critical physical quantities near the critical point. Critical exponents are also calculated. They are exactly the same as those obtained before for arbitrary other AdS black holes, which implies that quintessence dark energy does not change the critical exponents

  9. Hairy Black Holes in AdS$_5\\times S^5$

    CERN Document Server

    Markeviciute, J

    2016-01-01

    We use numerical methods to exhaustively study a novel family of hairy black hole solutions in AdS$_5$. These solutions can be uplifted to solutions of type IIB supergravity with AdS$_5\\times S^5$ asymptotics and are thus expected to play an important role in our understanding of AdS/CFT. We find an intricate phase diagram, with the aforementioned family of hairy black hole solutions branching from the Reissner-Nordstr\\"om black hole at the onset of the superradiance instability. We analyse black holes with spherical and planar horizon topology and explain how they connect in the phase diagram. Finally, we detail their global and local thermodynamic stability across several ensembles.

  10. Charged and rotating AdS black holes and their CFT duals

    CERN Document Server

    Hawking, Stephen William

    2000-01-01

    Black hole solutions that are asymptotic to $ AdS_5 \\times S^5$ or $ AdS_4 then one can obtain a Reissner-Nordstrom-AdS black hole. If the asymptotically AdS space rotates then one can obtain a Kerr-AdS hole. One might expect superradiant scattering to be possible in either of these cases. Superradiant modes reflected off the potential barrier outside the hole would be re-amplified at the horizon, and a classical instability would result. We point out that the existence of a Killing vector field timelike everywhere outside the horizon prevents this from occurring for black holes with negative action. Such black holes are also thermodynamically stable in the grand canonical ensemble. The CFT duals of these black holes correspond to a theory in an Einstein universe with a chemical potential and a theory in a rotating Einstein universe. We study these CFTs in the zero coupling limit. In the first case, Bose-Einstein condensation occurs on the boundary at a critical value of the chemical potential. However the su...

  11. Charge Loss (or the Lack Thereof) for AdS Black Holes

    CERN Document Server

    Ong, Yen Chin

    2014-01-01

    The evolution of evaporating charged black holes is complicated to model in general, but is nevertheless important since the hints to the Information Loss Paradox and its recent firewall incarnation may lie in understanding more generic geometries than that of Schwarzschild spacetime. Fortunately, for sufficiently large asymptotically flat Reissner-Nordstrom black holes, the evaporation process can be modeled via a system of coupled linear ordinary differential equations, with charge loss rate governed by Schwinger pair-production process. The same model can be generalized to study the evaporation of AdS Reissner-Nordstrom black holes with flat horizon. It was recently found that such black holes always evolve towards extremality since charge loss is inefficient. This property is completely opposite to the asymptotically flat case in which the black hole eventually loses its charges and tends towards Schwarzschild limit. We clarify the underlying reason for this different behavior.

  12. Generalized thermodynamic identity and new Maxwell's law for charged AdS black hole

    CERN Document Server

    Zhao, Zixu

    2016-01-01

    We study the thermodynamic properties of the RN-AdS black hole in full phase space and propose a generalized thermodynamic identity. As an example, we use it to find relations of thermodynamical coefficients between the grand canonical and canonical ensembles. We also show, for the first order phase transition, that the usual Maxwell's equal area law should be extended to a new form for the RN-AdS black hole.

  13. Small black holes in $AdS_5\\times S^5$

    CERN Document Server

    Buchel, Alex

    2015-01-01

    We consider small black holes in $AdS_5\\times S^5$, smeared on $S^5$. We compute the spectrum of $\\ell=1$ $S^5$-quasinormal modes corresponding to fluctuations leading to localization of these black holes on $S^5$. We recover the zero mode found by Hubeny and Rangamani (HR) previously \\cite{Hubeny:2002xn}, and explicitly demonstrate the Gregory-Laflamme instability. As expected, the instability is associated with the expectation value of a dimension-5 operator.

  14. Horizon Fluffs: Near Horizon Soft Hairs as Microstates of Generic AdS_3 Black Holes

    CERN Document Server

    Sheikh-Jabbari, M M

    2016-01-01

    In \\cite{Afshar:2016uax} the \\emph{horizon fluffs} proposal is put forward to identify the microstates of three-dimensional Ba\\~nados--Teitelboim--Zanelli (BTZ) black holes. The proposal is that black hole microstates, the horizon fluffs, are states labelled by the conserved charges associated with non-trivial diffeomorphisms on the near horizon geometry which are not distinguishable by the (Brown-Henneaux) conserved charges associated with the asymptotic symmetry algebra. It is also known that AdS_3 Einstein gravity has more general black hole solutions than the BTZ family. These black holes are generically described by two periodic, but otherwise arbitrary, holomorphic and anti-holomorphic functions. We show that these general AdS_3 black holes appear as coherent states in the enhanced asymptotic symmetry algebra, which is the Brown-Henneaux Virasoro algebra plus a u(1) current. These black holes are typically conformal descendants of the BTZ black holes, characterised by specific Virasoro coadjoint orbits....

  15. Warped AdS_3 Black Holes in Higher Derivative Gravity Theories

    CERN Document Server

    Detournay, Stéphane; Ng, Gim Seng; Zwikel, Céline

    2016-01-01

    We consider warped AdS_3 black holes in generic higher derivatives gravity theories in 2+1 dimensions. The asymptotic symmetry group of the phase space containing these black holes is the semi-direct product of a centrally extended Virasoro algebra and an affine u(1) Kac-Moody algebra. Previous works have shown that in some specific theories, the entropy of these black holes agrees with a Cardy-like entropy formula derived for warped conformal field theories. In this paper, we show that this entropy matching continues to hold for the most general higher derivative theories of gravity. We also discuss the existence of phase transitions.

  16. Warped AdS3 black holes in higher derivative gravity theories

    Science.gov (United States)

    Detournay, Stéphane; Douxchamps, Laure-Anne; Ng, Gim Seng; Zwikel, Céline

    2016-06-01

    We consider warped AdS3 black holes in generic higher derivatives gravity theories in 2+1 dimensions. The asymptotic symmetry group of the phase space containing these black holes is the semi-direct product of a centrally extended Virasoro algebra and an affine u(1) Kac-Moody algebra. Previous works have shown that in some specific theories, the entropy of these black holes agrees with a Cardy-like entropy formula derived for warped conformal field theories. In this paper, we show that this entropy matching continues to hold for the most general higher derivative theories of gravity. We also discuss the existence of phase transitions.

  17. Vacuum energy in Kerr-AdS black holes

    CERN Document Server

    Olavarria, Gonzalo

    2014-01-01

    We compute the vacuum energy for Kerr black holes with anti-de Sitter (AdS) asymptotics in dimensions $5\\leq D\\leq 9$ with all rotation parameters. The calculations are carried out employing an alternative regularization scheme for asymptotically AdS gravity, which considers supplementing the bulk action with counterterms which are a given polynomial in the extrinsic and intrinsic curvatures of the boundary (also known as Kounterterms). The Kerr-Schild form of the rotating solutions enables us to identify the vacuum energy as coming from the part of the metric that corresponds to global AdS spacetime written in oblate spheroidal coordinates. We find that the zero-point energy for higher-dimensional Kerr-AdS reduces to the one of Schwarzschild-AdS black hole when all the rotation parameters are equal to each other, fact that is well-known in five dimensions. We also sketch a compact expression for the vacuum energy formula in terms of asymptotic quantities that might be useful to extend the computations to hig...

  18. AdS backgrounds from black hole horizons

    International Nuclear Information System (INIS)

    We utilize the classification of IIB horizons with 5-form flux to present a unified description for the geometry of AdSn, n = 3, 5, 7 solutions. In particular, we show that all such backgrounds can be constructed from eight-dimensional 2-strong Calabi–Yau geometries with torsion which admit some additional isometries. We explore the geometry of AdS3 and AdS5 solutions but we do not find AdS7 solutions. (paper)

  19. Critical Phenomena in Higher Curvature Charged AdS Black Holes

    Directory of Open Access Journals (Sweden)

    Arindam Lala

    2013-01-01

    Full Text Available In this paper, we have studied the critical phenomena in higher curvature charged AdS black holes. We have considered Lovelock-Born-Infeld-AdS black hole as an example. The thermodynamics of the black hole have been studied which reveals the onset of a higher-order phase transition in the black hole in the canonical ensemble (fixed charge ensemble framework. We have analytically derived the critical exponents associated with these thermodynamic quantities. We find that our results fit well with the thermodynamic scaling laws and consistent with the mean field theory approximation. The suggestive values of the other two critical exponents associated with the correlation function and correlation length on the critical surface have been derived.

  20. Stability of rapidly-rotating charged black holes in $AdS_5 \\times S^5$

    CERN Document Server

    Berkooz, Micha; Zait, Amir

    2013-01-01

    We study the stability of charged rotating black holes in a consistent truncation of Type $IIB$ Supergravity on $AdS_5 \\times S^5$ that degenerate to extremal black holes with zero entropy. These black holes have scaling properties between charge and angular momentum similar to those of Fermi surface-like operators in a subsector of ${\\cal N}=4$ SYM. By solving the equation of motion for a massless scalar field in this background, using matched asymptotic expansion followed by a numerical solution scheme, we are able to compute its Quasi-Normal modes, and analyze it's regime of (in)stability. We find that the black hole is unstable when its angular velocity with respect to the horizon exceeds 1 (in units of $1/l_{AdS}$). A study of the relevant thermodynamic Hessian reveals a local thermodynamic instability which occurs at the same region of parameter space. We comment on the endpoints of this instability.

  1. Fermions Tunnelling from Black String and Kerr AdS Black Hole with Consideration of Quantum Gravity

    Science.gov (United States)

    Li, Zhong-hua; Zhang, Li-mei

    2016-01-01

    In this paper, using the Hamilton-Jacobi Ansatz, we discuss the tunnelling of fermions when effects of quantum gravity are taken into account. We investigate two cases, black string and Kerr AdS black hole. For black string, the uncharged and un-rotating case, we find that the correction of Hawking temperature is only affected by the mass of emitted fermions and the quantum gravitational corrections slow down the increases of the temperature, which naturally leads to remnants left in the evaporation. For another case, the Kerr AdS black hole, we find that the quantum gravitational corrections are not only determined by the mass of the emitted fermions but also affected by the rotating properties of the AdS black hole. So with consideration of the quantum gravity corrections, an offset around the standard temperature always exists.

  2. A Mean-Field Description for AdS Black Hole

    OpenAIRE

    Dutta, Suvankar; P, Sachin Shain

    2016-01-01

    In this paper we find an equivalent mean-field description for asymptotically $AdS$ black hole in high temperature limit and in arbitrary dimensions. We obtain a class of mean-field potential for which the description is valid. We explicitly show that there is an one to one correspondence between the thermodynamics of a gas of interacting particles moving under a mean-field potential and an $AdS$ black hole, namely the equation of state, temperature, pressure, entropy and enthalpy of both the...

  3. Flowing along the edge: spinning up black holes in AdS spacetimes with test particles

    CERN Document Server

    Rocha, Jorge V

    2014-01-01

    We investigate the consequences of throwing point particles into odd-dimensional Myers-Perry black holes in asymptotically anti-de Sitter (AdS) backgrounds. We restrict our attention to the case in which the angular momenta of the background geometry are all equal. This process allows us to test the generalization of the weak cosmic censorship conjecture to asymptotically AdS spacetimes in higher dimensions. We find no evidence for overspinning in D = 5, 7, 9 and 11 dimensions. Instead, test particles carrying the maximum possible angular momentum that still fall into an extremal rotating black hole generate a flow along the curve of extremal solutions.

  4. Fermionic Wigs for AdS-Schwarzschild Black Holes

    CERN Document Server

    Gentile, L G C; Mezzalira, A

    2012-01-01

    We provide the metric, the gravitino fields and the gauge fields to all orders in the fermionic zero modes for D=5 and D=4, N=2 gauged supergravity solutions starting from non-extremal AdS--Schwarzschild black holes. We compute the Brown-York stress--energy tensor on the boundary of AdS_5 / AdS_4 spaces and we discuss some implications of the fermionic corrections to perfect fluid interpretation of the boundary theory. The complete non-linear solution, which we denote as fermionic wig, is achieved by acting with supersymmetry transformations upon the supergravity fields and that expansion naturally truncates at some order in the fermionic zero modes.

  5. Testing quantum gravity effects through Dyonic charged AdS black hole

    CERN Document Server

    Sadeghi, J; Rostami, M

    2016-01-01

    In this paper, we consider dyonic charged AdS black hole which is holographic dual of a van der Waals fluid. We use logarithmic corrected entropy and study thermodynamics of the black hole and show that holographic picture is still valid. Critical behaviors and stability also discussed. Logarithmic corrections arises due to thermal fluctuations which are important when size of black hole be small. So, thermal fluctuations interpreted as quantum effect. It means that we can see quantum effect of a black hole which is a gravitational system. Hence, one can use result of this paper to compare with that of van der Waals fluid in the lab and see quantum gravity effects.

  6. Constructing the AdS dual of a Fermi liquid: AdS Black holes with Dirac hair

    CERN Document Server

    \\vCubrović, Mihailo; Schalm, Koenraad

    2010-01-01

    We provide new evidence that the holographic dual to a strongly coupled charged Fermi Liquid has a non-zero fermion density in the bulk. We show that the pole-strength of the stable quasiparticle characterizing the Fermi surface is encoded in the spatially averaged AdS probability density of a single normalizable fermion wavefunction in AdS. Recalling Migdal's theorem which relates the pole strength to the Fermi-Dirac characteristic discontinuity in the number density at $\\ome_F$, we conclude that the AdS dual of a Fermi liquid is described by occupied on-shell fermionic modes in AdS. Encoding the occupied levels in the total probability density of the fermion field directly, we show that an AdS Reissner-Nordstr\\"{o}m black hole in a theory with charged fermions has a critical temperature, at which the system undergoes a first-order transition to a black hole with a non-vanishing profile for the bulk fermion field. Thermodynamics and spectral analysis confirm that the solution with non-zero AdS fermion-profil...

  7. Covariant anomalies and Hawking radiation from Kaluza–Klein AdS black holes

    Indian Academy of Sciences (India)

    Chuan-Yi Bai

    2013-02-01

    In this paper, Hawking radiation is studied from four-dimensional (4D) Kaluza–Klein (KK) AdS black holes via the method of anomaly cancellation. The {|bf KK-AdS} black hole considered is a non-extremal charged rotating solution in the theory of 4D gauged supergravity. Its Hawking fluxes of electric charge, angular momentum and energy momentum tensor are derived here. Our results support the common view that Hawking radiation is the quantum effect arising at the event horizon.

  8. Note on Stability and Holographic Renyi Entropy in New Hyperbolic AdS Black Holes

    CERN Document Server

    Fang, Zhen; Li, Danning

    2016-01-01

    We construct a series of new hyperbolic black hole solutions in Einstein-Dilaton system and we apply holographic approach to investigate the spherical Renyi entropy in various deformations. Especially, we introduce various powers in the scalar potential for massive and massless scalar cases. These scalar potentials correspond to deformation of dual CFTs. We make use of a systematic way to generate numerical hyperbolic AdS black hole solutions. Based on these solutions, we study the temperature dependent condensation of dual operator of massive and massless scalar respectively. These condensations show that there might be phase transitions in deformed CFTs. We also compare free energy between hyperbolic black hole solutions and hyperbolic AdS-SW black hole to judge phase transitions. In order to confirm the existence of phase transitions, we turn on linear in-homogenous perturbation to test stability of these hyperbolic AdS black holes. In this paper, we show how potential parameters affect the stability of hy...

  9. Charged and rotating AdS black holes and their CFT duals

    Science.gov (United States)

    Hawking, S. W.; Reall, H. S.

    2000-01-01

    Black hole solutions that are asymptotic to AdS5×S5 or AdS4×S7 can rotate in two different ways. If the internal sphere rotates, then one can obtain a Reissner-Nordström-AdS black hole. If the asymptotically AdS space rotates, then one can obtain a Kerr-AdS hole. One might expect superradiant scattering to be possible in either of these cases. Superradiant modes reflected off the potential barrier outside the hole would be reamplified at the horizon, and a classical instability would result. We point out that the existence of a Killing vector field timelike everywhere outside the horizon prevents this from occurring for black holes with negative action. Such black holes are also thermodynamically stable in the grand canonical ensemble. The CFT duals of these black holes correspond to a theory in an Einstein universe with a chemical potential and a theory in a rotating Einstein universe. We study these CFTs in the zero coupling limit. In the first case, Bose-Einstein condensation occurs on the boundary at a critical value of the chemical potential. However, the supergravity calculation demonstrates that this is not to be expected at strong coupling. In the second case, we investigate the limit in which the angular velocity of the Einstein universe approaches the speed of light at finite temperature. This is a new limit in which to compare the CFT at strong and weak coupling. We find that the free CFT partition function and supergravity action have the same type of divergence but the usual factor of 4/3 is modified at finite temperature.

  10. Time-dependent flow from an AdS Schwarzschild black hole

    International Nuclear Information System (INIS)

    I discuss two examples of time-dependent flow which can be described in terms of an AdS Schwarzschild black hole via holography. The first example involves Bjorken hydrodynamics which should be applicable to the formation of the quark gluon plasma in heavy ion collisions. The second example is the cosmological evolution of our Universe

  11. Entropy of near-extremal black holes in AdS_5

    NARCIS (Netherlands)

    V. Balasubramanian; J. de Boer; V. Jejjala; J. Simón

    2008-01-01

    We construct the microstates of near-extremal black holes in AdS_5 x S^5 as gases of defects distributed in heavy BPS operators in the dual SU(N) Yang-Mills theory. These defects describe open strings on spherical D3-branes in the S^5, and we show that they dominate the entropy by directly enumerati

  12. Evaporation of large black holes in AdS: coupling to the evaporon

    International Nuclear Information System (INIS)

    Large black holes in an asymptotically AdS spacetime have a dual description in terms of approximately thermal states in the boundary CFT. The reflecting boundary conditions of AdS prevent such black holes from evaporating completely. On the other hand, the formulation of the information paradox becomes more stringent when a black hole is allowed to evaporate. In order to address the information loss problem from the AdS/CFT perspective we then need the boundary to become partially absorptive. We present a simple model that produces the necessary changes on the boundary by coupling a bulk scalar field to the evaporon, an external field propagating in one extra spatial dimension. The interaction is localized at the boundary of AdS and leads to partial transmission into the additional space. The transmission coefficient is computed in the planar limit and perturbatively in the coupling constant. Evaporation of the large black hole corresponds to cooling down the CFT by transferring energy to an external sector.

  13. Small black holes in AdS5 × S5

    Science.gov (United States)

    Buchel, Alex; Lehner, Luis

    2015-07-01

    We consider small black holes in {{AdS}}5× {S}5, smeared on S5. We compute the spectrum of {\\ell } \\in [1, 10] S5-quasinormal modes corresponding to fluctuations leading to localization of these black holes on S5. We recover the zero mode found by Hubeny and Rangamani previously (Hubeny and Rangamani 2002 J. High Energy Phys. JHEP05(2002)027), and explicitly demonstrate that a Gregory-Laflamme type instability is at play in this system. The instability is associated with the expectation value of a dimension-5 operator.

  14. Entropy of near-extremal black holes in AdS5

    International Nuclear Information System (INIS)

    We construct the microstates of near-extremal black holes in AdS5 x S5 as gases of defects distributed in heavy BPS operators in the dual SU(N) Yang-Mills theory. These defects describe open strings on spherical D3-branes in the S5, and we show that they dominate the entropy by directly enumerating them and comparing the results with a partition sum calculation. We display new decoupling limits in which the field theory of the lightest open strings on the D-branes becomes dual to a near-horizon region of the black hole geometry. In the single-charge black hole we find evidence for an infrared duality between SU(N) Yang-Mills theories that exchanges the rank of the gauge group with an R-charge. In the two-charge case (where pairs of branes intersect on a line), the decoupled geometry includes an AdS3 factor with a two-dimensional CFT dual. The degeneracy in this CFT accounts for the black hole entropy. In the three-charge case (where triples of branes intersect at a point), the decoupled geometry contains an AdS2 factor. Below a certain critical mass, the two-charge system displays solutions with naked timelike singularities even though they do not violate a BPS bound. We suggest a string theoretic resolution of these singularities.

  15. Entropy of near-extremal black holes in AdS5

    International Nuclear Information System (INIS)

    We construct the microstates of near-extremal black holes in AdS5 x S5 as gases of defects distributed in heavy BPS operators in the dual SU(N) Yang-Mills theory. These defects describe open strings on spherical D3-branes in the S5, and we show that they dominate the entropy by directly enumerating them and comparing the results with a partition sum calculation. We display new decoupling limits in which the field theory of the lightest open strings on the D-branes becomes dual to a near-horizon region of the black hole geometry. In the single-charge black hole we find evidence for an infrared duality between SU(N) Yang-Mills theories that exchanges the rank of the gauge group with an R-charge. In the two-charge case (where pairs of branes intersect on a line), the decoupled geometry includes an AdS3 factor with a two-dimensional CFT dual. The degeneracy in this CFT accounts for the black hole entropy. In the three-charge case (where triples of branes intersect at a point), the decoupled geometry contains an AdS2 factor. Below a certain critical mass, the two-charge system displays solutions with naked timelike singularities even though they do not violate a BPS bound. We suggest a string theoretic resolution of these singularities

  16. Entropy of near-extremal black holes in AdS5

    Energy Technology Data Exchange (ETDEWEB)

    Simon, Joan; Balasubramanian, Vijay; de Boer, Jan; Jejjala, Vishnu; Simon, Joan

    2007-07-24

    We construct the microstates of near-extremal black holes in AdS_5 x S5 as gases of defects distributed in heavy BPS operators in the dual SU(N) Yang-Mills theory. These defects describe open strings on spherical D3-branes in the S5, and we show that they dominate the entropy by directly enumerating them and comparing the results with a partition sum calculation. We display new decoupling limits in which the field theory of the lightest open strings on the D-branes becomes dual to a near-horizon region of the black hole geometry. In the single-charge black hole we find evidence for an infrared duality between SU(N) Yang-Mills theories that exchanges the rank of the gauge group with an R-charge. In the two-charge case (where pairs of branes intersect on a line), the decoupled geometry includes an AdS_3 factor with a two-dimensional CFT dual. The degeneracy in this CFT accounts for the black hole entropy. In the three-charge case (where triples of branes intersect at a point), the decoupled geometry contains an AdS_2 factor. Below a certain critical mass, the two-charge system displays solutions with naked timelike singularities even though they do not violate a BPS bound. We suggest a string theoretic resolution of these singularities.

  17. Superradiance and instability of small rotating charged AdS black holes in all dimensions

    Energy Technology Data Exchange (ETDEWEB)

    Aliev, Alikram N. [Yeni Yuezyil University, Faculty of Engineering and Architecture, Istanbul (Turkey)

    2016-02-15

    Rotating small AdS black holes exhibit the superradiant instability to low-frequency scalar perturbations, which is amenable to a complete analytic description in four dimensions. In this paper, we extend this description to all higher dimensions, focusing on slowly rotating charged AdS black holes with a single angular momentum. We divide the spacetime of these black holes into the near-horizon and far regions and find solutions to the scalar wave equation in each of these regions. Next, we perform the matching of these solutions in the overlap between the regions, by employing the idea that the orbital quantum number l can be thought of as an approximate integer. Thus, we obtain the complete low-frequency solution that allows us to calculate the complex frequency spectrum of quasinormal modes, whose imaginary part is determined by a small damping parameter. Finally, we find a remarkably instructive expression for the damping parameter, which appears to be a complex quantity in general. We show that the real part of the damping parameter can be used to give a universal analytic description of the superradiant instability for slowly rotating charged AdS black holes in all spacetime dimensions. (orig.)

  18. Superradiance and instability of small rotating charged AdS black holes in all dimensions

    International Nuclear Information System (INIS)

    Rotating small AdS black holes exhibit the superradiant instability to low-frequency scalar perturbations, which is amenable to a complete analytic description in four dimensions. In this paper, we extend this description to all higher dimensions, focusing on slowly rotating charged AdS black holes with a single angular momentum. We divide the spacetime of these black holes into the near-horizon and far regions and find solutions to the scalar wave equation in each of these regions. Next, we perform the matching of these solutions in the overlap between the regions, by employing the idea that the orbital quantum number l can be thought of as an approximate integer. Thus, we obtain the complete low-frequency solution that allows us to calculate the complex frequency spectrum of quasinormal modes, whose imaginary part is determined by a small damping parameter. Finally, we find a remarkably instructive expression for the damping parameter, which appears to be a complex quantity in general. We show that the real part of the damping parameter can be used to give a universal analytic description of the superradiant instability for slowly rotating charged AdS black holes in all spacetime dimensions. (orig.)

  19. Dualities in D=5, N=2 supergravity, black hole entropy, and AdS central charges

    International Nuclear Information System (INIS)

    The issue of microstate counting for general black holes in D=5, N=2 supergravity coupled to vector multiplets is discussed from various viewpoints. The statistical entropy is computed for the near-extremal case by using the central charge appearing in the asymptotic symmetry algebra of AdS2. Furthermore, we show that the considered supergravity theory enjoys a duality invariance which connects electrically charged black holes and magnetically charged black strings. The near-horizon geometry of the latter turns out to be AdS3 x S2, which allows a microscopic calculation of their entropy using the Brown-Hennaux central charges in Cardy's formula. In both approaches we find perfect agreement between statistical and thermodynamical entropy. (orig.)

  20. Discrete D-branes in AdS3 and in the 2d black hole

    International Nuclear Information System (INIS)

    I show how the AdS2 D-branes in the Euclidean AdS3 string theory are related to the continuous D-branes in Liouville theory. I then propose new discrete D-branes in the Euclidean AdS3 which correspond to the discrete D-branes in Liouville theory. These new D-branes satisfy the appropriate shift equations. They give rise to two families of discrete D-branes in the 2d black hole, which preserve di (registered) erent symmetries

  1. Discrete D-branes in AdS3 and in the 2d black hole

    CERN Document Server

    Ribault, S

    2006-01-01

    I show how the AdS2 D-branes in the Euclidean AdS3 string theory are related to the continuous D-branes in Liouville theory. I then propose new discrete D-branes in the Euclidean AdS3 which correspond to the discrete D-branes in Liouville theory. These new D-branes satisfy the appropriate shift equations. They give rise to two families of discrete D-branes in the 2d black hole, which preserve different symmetries.

  2. Discrete D-branes in AdS3 and in the 2d black hole

    International Nuclear Information System (INIS)

    I show how the AdS2 D-branes in the Euclidean AdS3 string theory are related to the continuous D-branes in Liouville theory. I then propose new discrete D-branes in the Euclidean AdS3 which correspond to the discrete D-branes in Liouville theory. These new D-branes satisfy the appropriate shift equations. They give rise to two families of discrete D-branes in the 2d black hole, which preserve different symmetries. (orig.)

  3. Black hole formation in AdS and thermalization on the boundary

    International Nuclear Information System (INIS)

    We investigate black hole formation by a spherically collapsing thin shell of matter in AdS space. This process has been suggested to have a holographic interpretation as thermalization of the CFT on the boundary of the AdS space. The AdS/CFT duality relates the shell in the bulk to an off-equilibrium state of the boundary theory which evolves towards a thermal equilibrium when the shell collapses to a black hole. We use 2-point functions to obtain information about the spectrum of excitations in the off-equilibrium state, and discuss how it characterizes the approach towards thermal equilibrium. The full holographic interpretation of the gravitational collapse would require a kinetic theory of the CFT at strong coupling. We speculate that the kinetic equations should be interpreted as a holographic dual of the equation of motion of the collapsing shell. (author)

  4. An alternative perspective to observe the critical phenomena of dilaton AdS black holes

    CERN Document Server

    Mo, Jie-Xiong

    2016-01-01

    The critical phenomena of dilaton AdS black holes are probed from a totally different perspective other than the $P-v$ criticality and the $q-U$ criticality discussed in the former literature. We investigate not only the two point correlation function but also the entanglement entropy of dilaton AdS black holes. We achieve this goal by solving the equation of motion constrained by the boundary condition numerically and we concentrate on $\\delta L$ and $\\delta S$ which have been regularized by subtracting the terms in pure AdS with the same boundary region. For both the two point correlation function and the entanglement entropy, we consider $4\\times2\\times2=16$ cases due to different choices of parameters. The van der Waals like behavior can be clearly witnessed from all the $T-\\delta L$ ($T-\\delta S$) graphs for $qAdS black holes are disclosed. Furthermore, we discuss the stability of dilaton...

  5. Critical phenomena in higher curvature charged AdS black holes

    CERN Document Server

    Lala, Arindam

    2012-01-01

    In this paper we have studied the critical phenomena in higher curvature charged black holes in the anti-de Sitter (AdS) space-time. As an example we have considered the third order Lovelock-Born-Infeld black holes in AdS space-time. We have analytically derived the thermodynamic quantities of the system. Our analysis revealed the onset of a higher order phase transition in the black hole leading to an infinite discontinuity in the specific heat at constant charge at the critical points. Our entire analysis is based on the canonical framework where we have fixed the charge of the black hole. In an attempt to study the behavior of the thermodynamic quantities near the critical points we have derived the critical exponents of the system explicitly. Although the values of the critical points have been determined numerically, the critical exponents are calculated analytically. Our results fit well with the thermodynamic scaling laws. The scaling hypothesis is also seen to be consistent with these scaling laws. We...

  6. AdS and Lifshitz Scalar Hairy Black Holes in Gauss-Bonnet Gravity

    CERN Document Server

    Chen, Bin; Zhu, Lu-Yao

    2016-01-01

    We consider Gauss-Bonnet (GB) gravity in general dimensions, which is non-minimally coupled to a scalar field, together with a generic scalar potential. By choosing the scalar potential of the type $V(\\phi)=2\\Lambda_0+\\frac{1}{2}m^2\\phi^2+\\gamma_4\\phi^4$, we first obtain large classes of scalar hairy black holes with spherical/hyperbolic/planar topologies that are asymptotic to locally anti-de Sitter (AdS) space-times. We derive the first law of black hole thermodynamics using Wald formalism. In particular, for one class of the solutions, the scalar hair forms a thermodynamic conjugate with the graviton and nontrivially contributes to the thermodynamical first law. We observe that except for one class of planar black holes, all these solutions are constructed at the critical point of GB gravity where there exists an unique AdS vacua. Actually Lifshitz vacuum is also allowed at the critical point. We then construct many new classes of neutral and charged Lifshitz black hole solutions for a either minimally or ...

  7. Thermodynamics of AdS Black Holes in Einstein-Scalar Gravity

    CERN Document Server

    Lu, H; Wen, Qiang

    2014-01-01

    We study the thermodynamics of $n$-dimensional static asymptotically AdS black holes in Einstein gravity coupled to a scalar field with a potential admitting a stationary point with an AdS vacuum. Such black holes with non-trivial scalar hair can exist provided that the mass-squared of the scalar field is negative, and above the Breitenlohner-Freedman bound. We use the Wald procedure to derive the first law of thermodynamics for these black holes, showing how the scalar hair (or charge) contributes non-trivially in the expression. We show in general that the black hole mass can be deduced by isolating an integrable contribution to the (non-integrable) variation of the Hamiltonian arising in the Wald construction, and that this is consistent with the mass calculated using the renormalised holographic stress tensor and also, in those cases where it is defined, with the mass calculated using the conformal method of Ashtekar, Magnon and Das. Similar arguments can also be given for the smooth solitonic solutions i...

  8. String in AdS Black Hole: A Thermo Field Dynamic Approach

    OpenAIRE

    Cantcheff, M. Botta; Gadelha, Alexandre L.; Marchioro, Dafni F. Z.; Nedel, Daniel Luiz

    2012-01-01

    Based on Maldacena's description of an eternal AdS-black hole, we reassess the Thermo Field Dynamics (TFD) formalism in the context of the AdS/CFT correspondence. The model studied here involves the maximally extended AdS-Schwarschild solution and two (non-interacting) copies of the CFT associated to the global AdS spacetime, along with an extension of the string by imposing natural gluing conditions in the horizon. We show that the gluing conditions in the horizon define a string boundary st...

  9. CFT dual of charged AdS black hole in the large dimension limit

    CERN Document Server

    Guo, Er-Dong; Sun, Jia-Rui

    2015-01-01

    We study the dual CFT description of the $d+1$-dimensional Reissner-Nordstr\\"om-Anti de Sitter (RN-AdS$_{d+1}$) black hole in the large dimension (large $d$) limit, both for the extremal and nonextremal cases. The central charge of the dual CFT$_2$ (or chiral CFT$_1$) is calculated for the near horizon near extremal geometry which possess an AdS$_2$ structure. Besides, the $Q$-picture hidden conformal symmetry in the nonextremal background can be naturally obtained by a probe charged scalar field in the large $d$ limit, without the need to input the usual limits to probe the hidden conformal symmetry. Furthermore, an new dual CFT description of the nonextremal RN-AdS$_{d+1}$ black hole is found in the large $d$ limit and the duality is analyzed by comparing the entropies, the absorption cross sections and the retarded Green's functions obtained both from the gravity and the dual CFT sides.

  10. A Particle Probing Thermodynamics in Rotating AdS Black Hole

    Science.gov (United States)

    Gwak, Bogeun; Lee, Bum-Hoon

    2016-07-01

    We briefly review the thermodynamics of a probe particle absorption to a black hole in this proceeding. The particle energy has a relation to its momenta at the horizon of the black hole. Following this relation, the particle infinitesimally changes the black hole mass and momenta. Under these changes, the changes of properties of the black hole are consistent with the laws of thermodynamics.

  11. Modified dispersion relations and (A)dS Schwarzschild Black holes

    OpenAIRE

    Han, Xin; Li, Huarun; Ling, Yi

    2008-01-01

    In this paper we investigate the impact of modified dispersion relations (MDR) on (Anti)de Sitter-Schwarzschild black holes. In this context we find the temperature of black holes can be derived with important corrections. In particular given a specific MDR the temperature has a maximal value such that it can prevent black holes from total evaporation. The entropy of the (A)dS black holes is also obtained with a logarithmic correction.

  12. P-V criticality of charged AdS black holes

    OpenAIRE

    Kubiznak, David; Robert B. Mann

    2012-01-01

    Treating the cosmological constant as a thermodynamic pressure and its conjugate quantity as a thermodynamic volume, we reconsider the critical behaviour of charged AdS black holes. We complete the analogy of this system with the liquid-gas system and study its critical point, which occurs at the point of divergence of specific heat at constant pressure. We calculate the critical exponents and show that they coincide with those of the Van der Waals system.

  13. Ehrenfest's scheme and thermodynamic geometry in Born-Infeld AdS black holes

    OpenAIRE

    Lala, Arindam; Roychowdhury, Dibakar

    2011-01-01

    In this paper we analyze the phase transition phenomena in Born-Infeld AdS black holes using Ehrenfest's scheme of standard thermodynamics. The critical points are marked by the divergences in the heat capacity. In order to investigate the nature of the phase transition, we analytically check both the Ehrenfest's equations near the critical points. Our analysis reveals that this is indeed a second order phase transition. Finally, we analyze the nature of the phase transition using state space...

  14. Exact microstate counting for dyonic black holes in AdS4

    CERN Document Server

    Benini, Francesco; Zaffaroni, Alberto

    2016-01-01

    We present a counting of microstates of a class of dyonic BPS black holes in AdS$_4$ which precisely reproduces their Bekenstein-Hawking entropy. The counting is performed in the dual boundary description, that provides a non-perturbative definition of quantum gravity, in terms of a twisted and mass-deformed ABJM theory. We evaluate its twisted index and propose an extremization principle to extract the entropy, which reproduces the attractor mechanism in gauged supergravity.

  15. Exact black hole formation in asymptotically (AdS and flat spacetimes

    Directory of Open Access Journals (Sweden)

    Xuefeng Zhang

    2014-09-01

    Full Text Available We consider four-dimensional Einstein gravity minimally coupled to a dilaton scalar field with a supergravity-inspired scalar potential. We obtain an exact time-dependent spherically symmetric solution describing gravitational collapse to a static scalar-hairy black hole. The solution can be asymptotically AdS, flat or dS depending on the value of the cosmological constant parameter Λ in the potential. As the advanced time u increases, the metric approaches the static limit in an exponential fashion, i.e., e−u/u0 with u0∼1/(α4M01/3, where M0 is the mass of the final black hole and α is the second parameter in the potential. Similarly to the Vaidya solution, at u=0, the spacetime can be matched to an (AdS or flat vacuum except that at the origin a naked singularity may occur. Moreover, a limiting case of our solution with α=0 gives rise to an (AdS generalization of the Roberts solution. Our results provide a new model for investigating formation of real life black holes with Λ≥0. For Λ<0, it can be instead used to study non-equilibrium thermalization of certain strongly-coupled field theory.

  16. Evaporation of large black holes in AdS: greybody factor and decay rate

    International Nuclear Information System (INIS)

    We consider a massless, minimally coupled scalar field propagating through the geometry of a black 3-brane in an asymptotically AdS5 x S5 space. The wave equation for modes traveling purely in the holographic direction reduces to a Heun equation and the corresponding greybody factor is obtained numerically. Approximations valid in the low- and high-frequency regimes are also obtained analytically. The greybody factor is then used to determine the rate of evaporation of these large black holes in the context of the evaporon model proposed in [13]. This setting represents the evolution of a black hole under Hawking evaporation with a known CFT dual description and is therefore unitary. Information must then be preserved under this evaporation process.

  17. Coexistence curves and molecule number densities of AdS black holes in the reduced parameter space

    CERN Document Server

    Mo, Jie-Xiong

    2016-01-01

    In this paper, we investigate the coexistence curves and molecule number densities of $f(R)$ AdS black holes and Gauss-Bonnet AdS black holes. Specifically, we work with the reduced parameter space and derive the analytic expressions of the universal coexistence curves that are independent of theory parameters. Moreover, we obtain the explicit expressions of the physical quantity describing the difference of the number densities of black hole molecules between the small and large black hole. It is found that both the coexistence curve and the difference of the molecule number densities of $f(R)$ AdS black holes coincide with those of RN-AdS black holes. It may be attributed to the same equation of state they share in the reduced parameter space. The difference of the molecule number densities between the small and large Gauss-Bonnet AdS black hole exhibits different behavior. This may be attributed to the fact that the charge of RN-AdS black hole is non-trivial. Our research will not only deepen the understan...

  18. Warped-AdS3 black holes with scalar halo

    CERN Document Server

    Giribet, Gaston

    2015-01-01

    We construct a stretched (aka Warped) Anti-de Sitter black hole in 3 dimensions supported by a real scalar field configuration. The latter is regular everywhere outside and on the horizon. No hair theorems in 3 dimensions demand the matter to be coupled to the curvature in a non-minimal way; however, this coupling can still be of the Horndeski type, i.e. yielding second order field equations similar to those appearing in the context of Galileon theories. These Warped-Anti-de Sitter black holes exhibit interesting thermodynamical properties, such as finite Hawking temperature and entropy. We compute the black hole entropy in the gravity theory and speculate with the possibility of this to admit a microscopic description in terms of a dual (Warped) Conformal Field Theory. We also discuss the inner and outer black hole mechanics.

  19. Static black holes with axial symmetry in asymptotically AdS4 spacetime

    Science.gov (United States)

    Kichakova, Olga; Kunz, Jutta; Radu, Eugen; Shnir, Yasha

    2016-02-01

    The known static electrovacuum black holes in a globally AdS4 background have an event horizon which is geometrically a round sphere. In this work we argue that the situation is different in models with matter fields possessing an explicit dependence on the azimuthal angle φ , which, however, does not manifest at the level of the energy-momentum tensor. As a result, the full solutions are axially symmetric only, possessing a single (timelike) Killing vector field. Explicit examples of such static black holes are constructed in Einstein-(complex) scalar field and Einstein-Yang-Mills theories. The basic properties of these solutions are discussed, looking for generic features. For example, we notice that the horizon has an oblate spheroidal shape for solutions with a scalar field and a prolate one for black holes with Yang-Mills fields. The deviation from sphericity of the horizon geometry manifests itself in the holographic stress tensor. Finally, based on the results obtained in the probe limit, we conjecture the existence in Einstein-Maxwell theory of static black holes with axial symmetry only.

  20. P-V criticality of conformal anomaly corrected AdS black holes

    CERN Document Server

    Mo, Jie-Xiong

    2015-01-01

    The effects of conformal anomaly on the thermodynamics of black holes are investigated in this Letter from the perspective of $P-V$ criticality of AdS black holes. Treating the cosmological constant as thermodynamic pressure, we extend the recent research to the extended phase space. Firstly, we study the $P$-$V$ criticality of the uncharged AdS black holes with conformal anomaly and find that conformal anomaly does not influence whether there exists Van der Waals like critical behavior. Secondly, we investigate the $P$-$V$ criticality of the charged cases and find that conformal anomaly influences not only the critical physical quantities but also the ratio $\\frac{P_cr_c}{T_c}$. The ratio is no longer a constant as before but a function of conformal anomaly parameter $\\tilde{\\alpha}$. We also show that the conformal parameter should satisfy a certain range to guarantee the existence of critical point that has physical meaning. Our results show the effects of conformal anomaly.

  1. String in AdS black hole: A thermo field dynamic approach

    Science.gov (United States)

    Cantcheff, M. Botta; Gadelha, Alexandre L.; Marchioro, Dáfni F. Z.; Nedel, Daniel Luiz

    2012-10-01

    Based on Maldacena’s description of an eternal anti-de Sitter (AdS) black hole, we reassess the thermo field dynamics (TFD) formalism in the context of the AdS/CFT correspondence. The model studied here involves the maximally extended AdS-Schwarschild solution and two (noninteracting) copies of the conformal field theory (CFT) associated to the global AdS spacetime, along with an extension of the string by imposing natural gluing conditions in the horizon. We show that the gluing conditions in the horizon define a string boundary state which is identified with the TFD thermal vacuum, globally defined in the Kruskal extension of the AdS black hole. We emphasize the connection of this picture with unitary SU(1,1) TFD formulation, and we show that information about the bulk and the conformal boundary is present in the SU(1,1) parameters. Using the unitary SU(1,1) TFD formulation, a canonical prescription for calculating the world sheet real time thermal Green’s function is made, and the entropy associated with the entanglement of the two CFT’s is calculated.

  2. Dyonic AdS_4 black hole entropy and attractors via entropy function

    CERN Document Server

    Goulart, Prieslei

    2015-01-01

    Using the Sen's entropy function formalism, we compute the entropy for the extremal dyonic black hole solutions of theories in the presence of dilaton field coupled to the field strength and a dilaton potential. We solve the attractor equations analytically and determine the near horizon metric, the value of the scalar fields and the electric field on the horizon, and consequently the entropy of these black holes. The attractor mechanism plays a very important role for these systems, and after studying the simplest systems involving dilaton fields, we propose a general ansatz for the value of the scalar field on the horizon, which allows us to solve the attractor equations for gauged supergravity theories in AdS_4 spaces.

  3. Hidden Conformal Symmetry of Self-Dual Warped AdS_3 Black Holes in Topological Massive Gravity

    CERN Document Server

    Li, Ran; Ren, Ji-Rong

    2010-01-01

    We consider the hidden conformal symmetry of the self-dual warped $AdS_3$ black holes in topological massive gravity. It is shown that the wave equation of massive scalar field propagating in the self-dual warped $AdS_3$ black hole background can be reproduced by the Casimir operator of $SL_L(2, R)\\times SL_R(2, R)$ Lie algebra, which implies that self-dual warped $AdS_3$ black hole is holographically dual to a two dimensional conformal field theory with the left temperature $T_L=\\frac{\\alpha}{2\\pi}$ and the right temperature $T_R=\\frac{x_+-x_-}{4\\pi}$. Furthermore, we find the entropy of conformal field given by the Cardy formula matches exactly with the Bekenstein-Hawking entropy of self-dual warped $AdS_3$ black hole.

  4. String in AdS Black Hole: A Thermo Field Dynamic Approach

    CERN Document Server

    Cantcheff, M Botta; Marchioro, Dafni F Z; Nedel, Daniel Luiz

    2012-01-01

    Based on Maldacena's description of an eternal AdS-black hole, we reassess the Thermo Field Dynamics (TFD) formalism in the context of the AdS/CFT correspondence. The model studied here involves the maximally extended AdS-Schwarschild solution and two (non-interacting) copies of the CFT associated to the global AdS spacetime, along with an extension of the string by imposing natural gluing conditions in the horizon. We show that the gluing conditions in the horizon define a string boundary state which is identified with the TFD thermal vacuum, globally defined in the Kruskal extension of the AdS black hole. We emphasize the connection of this picture with unitary SU(1,1) TFD formulation and we show that information about the bulk and the conformal boundary is present in the SU(1,1) parameters. Using the unitary SU(1,1) TFD formulation, a canonical prescription for calculating the worldsheet real time thermal Green's function is made and the entropy associated with the entanglement of the two CFT's is calculat...

  5. Static black holes with no spatial isometries in AdS-electrovacuum

    CERN Document Server

    Herdeiro, Carlos A R

    2016-01-01

    We explicitly construct static black hole solutions to the fully non-linear, D=4, Einstein-Maxwell-AdS equations that have no continuous spatial symmetries. These black holes have a smooth, topologically spherical horizon (section), but without isometries, and approach, asymptotically, global AdS spacetime. They are interpreted as bound states of a horizon with the Einstein-Maxwell-AdS solitons recently discovered, for appropriate boundary data. In sharp contrast with the uniqueness results for Minkowski electrovacuum, the existence of these black holes shows that single, equilibrium, BH solutions in AdS-electrovacuum admit an arbitrary multipole structure.

  6. From accelerating and Poincare coordinates to black holes in spacelike warped AdS3, and back

    International Nuclear Information System (INIS)

    We first review spacelike stretched warped AdS3 and we describe its black hole quotients by using accelerating and Poincare coordinates. We then describe the maximal analytic extension of the black holes and present their causal diagrams. Finally, we calculate spacetime limits of the black hole phase space (TR, TL). This is done by requiring that the identification vector ∂θ has a finite non-zero limit. The limits we obtain are the self-dual solution in accelerating or Poincare coordinates, depending respectively on whether the limiting spacetimes are non-extremal or extremal, and warped AdS3 with a periodic proper time identification.

  7. Entropy of near-extremal black holes in AdS_5

    OpenAIRE

    Balasubramanian, Vijay; de Boer, Jan; Jejjala, Vishnu; Simon, Joan

    2007-01-01

    We construct the microstates of near-extremal black holes in AdS_5 x S^5 as gases of defects distributed in heavy BPS operators in the dual SU(N) Yang-Mills theory. These defects describe open strings on spherical D3-branes in the S^5, and we show that they dominate the entropy by directly enumerating them and comparing the results with a partition sum calculation. We display new decoupling limits in which the field theory of the lightest open strings on the D-branes becomes dual to a near-ho...

  8. Ehrenfest's scheme and thermodynamic geometry in Born-Infeld AdS black holes

    Science.gov (United States)

    Lala, Arindam; Roychowdhury, Dibakar

    2012-10-01

    In this paper, we analyze the phase transition phenomena in Born-Infeld anti-de Sitter (BI AdS) black holes using Ehrenfest’s scheme of standard thermodynamics. The critical points are marked by the divergences in the heat capacity. In order to investigate the nature of the phase transition, we analytically check both Ehrenfest equations near the critical points. Our analysis reveals that this is indeed a second order phase transition. Finally, we analyze the nature of the phase transition using the state space geometry approach. This is found to be compatible with Ehrenfest’s scheme.

  9. Ehrenfest's scheme and thermodynamic geometry in Born-Infeld AdS black holes

    CERN Document Server

    Lala, Arindam

    2011-01-01

    In this paper we analyze the phase transition phenomena in Born-Infeld AdS black holes using Ehrenfest's scheme of standard thermodynamics. The critical points are marked by the divergences in the heat capacity. In order to investigate the nature of the phase transition, we analytically check both the Ehrenfest's equations near the critical points. Our analysis reveals that this is indeed a second order phase transition. Finally, we analyze the nature of the phase transition using state space geometry approach. This is found to be compatible with the Ehrenfest's scheme.

  10. Entropy of near-extremal black holes in AdS5

    OpenAIRE

    Balasubramanian, Vijay

    2008-01-01

    We construct the microstates of near-extremal black holes in AdS_5 x S5 as gases of defects distributed in heavy BPS operators in the dual SU(N) Yang-Mills theory. These defects describe open strings on spherical D3-branes in the S5, and we show that they dominate the entropy by directly enumerating them and comparing the results with a partition sum calculation. We display new decoupling limits in which the field theory of the lightest open strings on the D-branes becomes dual to a near-hori...

  11. Static black holes with no spatial isometries in AdS-electrovacuum

    OpenAIRE

    Herdeiro, Carlos A. R.; Radu, Eugen

    2016-01-01

    We explicitly construct static black hole solutions to the fully non-linear, D=4, Einstein-Maxwell-AdS equations that have no continuous spatial symmetries. These black holes have a smooth, topologically spherical horizon (section), but without isometries, and approach, asymptotically, global AdS spacetime. They are interpreted as bound states of a horizon with the Einstein-Maxwell-AdS solitons recently discovered, for appropriate boundary data. In sharp contrast with the uniqueness results f...

  12. Black Hole Formation in AdS Einstein-Gauss-Bonnet Gravity

    CERN Document Server

    Deppe, Nils; Frey, Andrew R; Kunstatter, Gabor

    2016-01-01

    AdS spacetime has been shown numerically to be unstable against a large class of arbitrarily small perturbations. In arXiv:1410.1869, the authors presented a preliminary study of the effects on stability of changing the local dynamics by adding a Gauss-Bonnet term to the Einstein action. Here we provide further details as well as new results with improved numerical methods. In particular, we elucidate new structure in Choptuik scaling plots. We also provide evidence of chaotic behavior at the transition between immediate horizon formation and horizon formation after the matter pulse reflects from the AdS conformal boundary. Finally, we present data suggesting the formation of naked singularities in spacetimes with ADM mass below the algebraic bound for black hole formation.

  13. Static black holes with axial symmetry in asymptotically AdS$_4$ spacetime

    CERN Document Server

    Kichakova, Olga; Radu, Eugen; Shnir, Yasha

    2015-01-01

    The known static electro-vacuum black holes in a globally AdS$_4$ background have an event horizon which is geometrically a round sphere. In this work we argue that the situation is different in models with matter fields possessing an explicit dependence on the azimuthal angle $\\varphi$, which, however, does not manifest at the level of the energy-momentum tensor. As a result, the full solutions are axially symmetric only, possessing a single (timelike) Killing vector field. Explicit examples of such static black holes are constructed in Einstein--(complex) scalar field and Einstein--Yang-Mills theories. The basic properties of these solutions are discussed, looking for generic features. For example, we notice that the horizon has an oblate spheroidal shape for solutions with a scalar field and a prolate one for black holes with Yang-Mills fields. The deviation from sphericity of the horizon geometry manifests itself in the holographic stress-tensor. Finally, based on the results obtained in the probe limit, ...

  14. On conserved charges and thermodynamics of the AdS4 dyonic black hole

    Science.gov (United States)

    Cárdenas, Marcela; Fuentealba, Oscar; Matulich, Javier

    2016-05-01

    We consider four-dimensional gravity in the presence of a dilatonic scalar field and an Abelian gauge field. This theory corresponds to the bosonic sector of a Kaluza-Klein reduction of eleven-dimensional supergravity which induces a specific self-interacting potential for the scalar field. We compute the conserved charges and carry out the thermodynamics of an anti-de Sitter (AdS) dyonic black hole solution that was proposed recently. The charges coming from symmetries of the action are computed using the Regge-Teitelboim Hamiltonian approach. They correspond to the mass, which acquires contributions from the scalar field, and the electric charge. We introduce integrability conditions because the scalar field leads to non-integrable terms in the variation of the mass. These conditions are generically solved by introducing boundary conditions that relate the leading and subleading terms of the scalar field fall-off. The Hamiltonian Euclidean action, computed in the grand canonical ensemble, is obtained by demanding the action to have an extremum. Its value is given by a radial boundary term plus an additional polar angle boundary term due to the presence of a magnetic monopole. Remarkably, the magnetic charge can be identified from the variation of the additional polar angle boundary term, confirming that the first law of black hole thermodynamics is a consequence of having a well-defined and finite Hamiltonian action principle, even if the charge does not come from a symmetry of the action. The temperature and electrostatic potential are determined by demanding regularity of the black hole solution, whereas the value of the magnetic potential is determined by the variation of the additional polar angle boundary term. Consequently, the first law of black hole thermodynamics is identically satisfied by construction.

  15. Hawking temperature of Kerr-Newman-AdS black hole from tunneling

    CERN Document Server

    Ma, Zheng Ze

    2009-01-01

    Using the null-geodesic tunneling method of Parikh and Wilczek, we derive the Hawking temperature of a general four-dimensional rotating black hole. In order to eliminate the motion of $\\phi$ degree of freedom of a tunneling particle, we have chosen a reference system that is co-rotating with the black hole horizon. Then we give the explicit result for the Hawking temperature of the Kerr-Newman-AdS black hole from the tunneling approach.

  16. Stability of Horava-Lifshitz Black Holes in the Context of AdS/CFT

    Energy Technology Data Exchange (ETDEWEB)

    Ong, Yen Chin; /Taiwan, Natl. Taiwan U.; Chen, Pisin; /Taiwan, Natl. Taiwan U. /KIPAC, Menlo Park /SLAC

    2012-06-13

    The anti-de Sitter/conformal field theory (AdS/CFT) correspondence is a powerful tool that promises to provide new insights toward a full understanding of field theories under extreme conditions, including but not limited to quark-gluon plasma, Fermi liquid, and superconductor. In many such applications, one typically models the field theory with asymptotically AdS black holes. These black holes are subjected to stringy effects that might render them unstable. Horava-Lifshitz gravity, in which space and time undergo different transformations, has attracted attention due to its power-counting renormalizability. In terms of AdS/CFT correspondence, Horava-Lifshitz black holes might be useful to model holographic superconductors with Lifshitz scaling symmetry. It is thus interesting to study the stringy stability of Horava-Lifshitz black holes in the context of AdS/CFT. We find that uncharged topological black holes in {lambda} = 1 Horava-Lifshitz theory are nonperturbatively stable, unlike their counterparts in Einstein gravity, with the possible exceptions of negatively curved black holes with detailed balance parameter {epsilon} close to unity. Sufficiently charged flat black holes for {epsilon} close to unity, and sufficiently charged positively curved black holes with {epsilon} close to zero, are also unstable. The implication to the Horava-Lifshitz holographic superconductor is discussed.

  17. CFT dual of charged AdS black hole in the large dimension limit

    Science.gov (United States)

    Guo, Er-Dong; Li, Miao; Sun, Jia-Rui

    2016-05-01

    We study the dual CFT description of the d + 1-dimensional Reissner-Nordström-Anti de Sitter (RN-AdSd+1) black hole in the large dimension (large d) limit, both for the extremal and nonextremal cases. The central charge of the dual CFT2 (or chiral CFT1) is calculated for the near-horizon near extremal geometry which possesses an AdS2 structure. Besides, the Q-picture hidden conformal symmetry in the nonextremal background can be naturally obtained by a probe charged scalar field in the large d limit, without the need to input the usual limits to probe the hidden conformal symmetry. Furthermore, a new dual CFT description of the nonextremal RN-AdSd+1 black hole is found in the large d limit and the duality is analyzed by comparing the entropies, the absorption cross-sections and the retarded Green’s functions obtained both from the gravity and the dual CFT sides.

  18. Quantum compositeness of gravity: black holes, AdS and inflation

    International Nuclear Information System (INIS)

    Gravitational backgrounds, such as black holes, AdS, de Sitter and inflationary universes, should be viewed as composite of N soft constituent gravitons. It then follows that such systems are close to quantum criticality of graviton Bose-gas to Bose-liquid transition. Generic properties of the ordinary metric description, including geodesic motion or particle-creation in the background metric, emerge as the large-N limit of quantum scattering of constituent longitudinal gravitons. We show that this picture correctly accounts for physics of large and small black holes in AdS, as well as reproduces well-known inflationary predictions for cosmological parameters. However, it anticipates new effects not captured by the standard semi-classical treatment. In particular, we predict observable corrections that are sensitive to the inflationary history way beyond last 60 e-foldings. We derive an absolute upper bound on the number of e-foldings, beyond which neither de Sitter nor inflationary Universe can be approximated by a semi-classical metric. However, they could in principle persist in a new type of quantum eternity state. We discuss implications of this phenomenon for the cosmological constant problem

  19. Near-horizon geometries of supersymmetric AdS5 black holes

    International Nuclear Information System (INIS)

    We provide a classification of near-horizon geometries of supersymmetric, asymptotically anti-de Sitter, black holes of five-dimensional U(1)3-gauged supergravity which admit two rotational symmetries. We find three possibilities: a topologically spherical horizon, an S1 x S2 horizon and a toroidal horizon. The near-horizon geometry of the topologically spherical case turns out to be that of the most general known supersymmetric, asymptotically anti-de Sitter, black hole of U(1)3-gauged supergravity. The other two cases have constant scalars and only exist in particular regions of this moduli space - in particular they do not exist within minimal gauged supergravity. We also find a solution corresponding to the near-horizon geometry of a three-charge supersymmetric black ring held in equilibrium by a conical singularity; when lifted to type IIB supergravity this solution can be made regular, resulting in a discrete family of warped AdS3 geometries. Analogous results are presented in U(1)n gauged supergravity

  20. Near-horizon geometries of supersymmetric AdS(5) black holes

    CERN Document Server

    Kunduri, Hari K

    2007-01-01

    We provide a classification of near-horizon geometries of supersymmetric, asymptotically anti-de Sitter, black holes of five-dimensional U(1)^3-gauged supergravity which admit two rotational symmetries. We find three possibilities: a topologically spherical horizon, an S^1 \\times S^2 horizon and a toroidal horizon. The near-horizon geometry of the topologically spherical case turns out to be that of the most general known supersymmetric, asymptotically anti-de Sitter, black hole of U(1)^3-gauged supergravity. The other two cases are parameterised by constant scalars and only exist in particular regions of this moduli space -- in particular they do not exist within minimal gauged supergravity. We also find a solution corresponding to the near-horizon geometry of a three-charge supersymmetric black ring held in equilibrium by a conical singularity; when lifted to type IIB supergravity this solution can be made regular, resulting in a discrete family of warped AdS(3) geometries. Analogous results are presented i...

  1. Thermodynamic stability of modified Schwarzschild-AdS black hole in rainbow gravity

    CERN Document Server

    Kim, Yong-Wan; Park, Young-Jai

    2016-01-01

    In this paper, we have extended the previous study of the thermodynamics and phase transition of the Schwarzschild black hole in the rainbow gravity to the Schwarzschild-AdS black hole where metric depends on the energy of a probe. Making use of the Heisenberg uncertainty principle and the modified dispersion relation, we have obtained the modified local Hawking temperature and thermodynamic quantities in an isothermal cavity. Moreover, we carry out the analysis of constant temperature slices of a black hole. As a result, we have shown that there also exists another Hawking-Page-like phase transition in which case a locally stable small black hole tunnels into a globally stable large black hole as well as the standard Hawking-Page phase transition from a hot flat space to a black hole.

  2. Phase transition and thermodynamical geometry for Schwarzschild AdS black hole in $AdS_5\\times{S^5}$ spacetime

    OpenAIRE

    Zhang, Jia-Lin; Cai, Rong-Gen; Yu, Hongwei

    2014-01-01

    We study the thermodynamics and thermodynamic geometry of a five-dimensional Schwarzschild AdS black hole in AdS 5 × S 5 spacetime by treating the cosmological constant as the number of colors in the boundary gauge theory and its conjugate quantity as the associated chemical potential. It is found that the chemical potential is always negative in the stable branch of black hole thermodynamics and it has a chance to be positive, but appears in the unstable branch. We calculate the scalar curva...

  3. A rotating hairy AdS$_3$ black hole with the metric having only one Killing vector field

    CERN Document Server

    Iizuka, Norihiro; Maeda, Kengo

    2015-01-01

    We perturbatively construct a three-dimensional rotating AdS black hole with a real scalar hair. We choose the mass of a scalar field slightly above the Breitenlohner-Freedman bound and impose a more general boundary condition for the bulk scalar field at AdS infinity. We first show that rotating BTZ black holes are unstable against superradiant modes under our more general boundary condition. Next we construct a rotating hairy black hole perturbatively with respect to a small amplitude $\\epsilon$ of the scalar field, up to $O(\\epsilon^4)$. The lumps of non-linearly perturbed geometry admit only one Killing vector field and co-rotate with the black hole, and it shows no dissipation. We numerically show that the entropy of our hairy black hole is larger than that of the BTZ black hole with the same energy and the angular momentum. This indicates, at least in the perturbative level, that our rotating hairy black hole in lumpy geometry can be the endpoint of the superradiant instability.

  4. AdS and dS black hole solutions in analogue gravity: The relativistic and non-relativistic cases

    CERN Document Server

    Dey, Ramit; Turcati, Rodrigo

    2016-01-01

    We show that Schwarzschild black hole solutions in asymptotically Anti-de Sitter (AdS) and de Sitter (dS) spaces may, up to a conformal factor, be reproduced in the framework of analogue gravity. The aforementioned derivation is performed using relativistic and non-relativistic Bose-Einstein condensates. In addition, we demonstrate that the (2+1) planar AdS black hole can be mapped into the non-relativistic acoustic metric. Given that AdS black holes are extensively employed in the gauge/gravity duality, we then comment on the possibility to study the AdS/CFT correspondence and gravity/fluid duality from an analogue gravity perspective.

  5. Comment on "Insight into the Microscopic Structure of an AdS Black Hole from Thermodynamical Phase Transition"

    CERN Document Server

    Zangeneh, M Kord; Sheykhi, A

    2016-01-01

    In their Letter [Phys. Rev. Lett. 115, 111302 (2015)], Shao-Wen Wei and Yu-Xiao Liu have introduced the number density of the black hole molecules as a measure for microscopic degrees of freedom of the black hole. Based on this, they have figured out some microscopic properties of the $4$-dimensional charged AdS black hole as an example relying on the thermodynamic phase transition and thermodynamic geometry, specially the behavior of the Ricci scalar of Ruppeiner geometry \\cite{Rup0}. At first glance, the obtained Ricci scalar seems surprising since shows no divergency as one usually expects for black holes \\cite{Rup1}. This motivates us to check whether the obtained Ricci scalar is correct. We observed that Ricci scalar is not correct as we guessed and therefore discussions and insights about microscopic structure of charged AdS black holes relying on this should be revised. In this Letter, we address the correct Ricci scalar of the $4$-dimensional charged AdS black holes and disclose the correct properties...

  6. A Note on Physical Mass and the Thermodynamics of AdS-Kerr Black Holes

    CERN Document Server

    McInnes, Brett

    2015-01-01

    As with any black hole, asymptotically anti-de Sitter Kerr black holes are described by a small number of parameters, including a "mass parameter" $M$ that reduces to the AdS-Schwarzschild mass in the limit of vanishing angular momentum. In sharp contrast to the asymptotically flat case, the horizon area of such a black hole increases with the angular momentum parameter $a$ if one fixes $M$; this appears to mean that the Penrose process in this case would violate the Second Law of black hole thermodynamics. We show that the correct procedure is to fix not $M$ but rather the "physical" mass $E=M/(1-a^2/L^2)^2$; this is motivated by the First Law. For then the horizon area decreases with $a$. We recommend that $E$ always be used as the mass: for example, in attempts to "over-spin" AdS-Kerr black holes.

  7. A note on physical mass and the thermodynamics of AdS-Kerr black holes

    Science.gov (United States)

    McInnes, Brett; Ong, Yen Chin

    2015-11-01

    As with any black hole, asymptotically anti-de Sitter Kerr black holes are described by a small number of parameters, including a ``mass parameter'' M that reduces to the AdS-Schwarzschild mass in the limit of vanishing angular momentum. In sharp contrast to the asymptotically flat case, the horizon area of such a black hole increases with the angular momentum parameter a if one fixes M; this appears to mean that the Penrose process in this case would violate the Second Law of black hole thermodynamics. We show that the correct procedure is to fix not M but rather the ``physical'' mass E=M/(1-a2/L2)2 this is motivated by the First Law. For then the horizon area decreases with a. We recommend that E always be used as the mass in physical processes: for example, in attempts to ``over-spin'' AdS-Kerr black holes.

  8. Hawking Radiation of Topological Massive Warped-AdS3 Black Holes via Particles Tunnelling

    CERN Document Server

    Gecim, Ganim

    2014-01-01

    We investigate the Dirac and scalar particles tunnelling as a radiation of Warped AdS3 black holes in Topological Massive Gravity. Using Hamilton-Jacobi method, we discuss tunnelling probability and Hawking temperature of the spin-1/2 and spin-0 particles for the black hole. We observe the tunnelling probability and Hawking temperature to be same for the spin-1/2 and spin-0. We also examined the same procedure for the extremal case of the Warped AdS3 black holes, and thus, we show that the tunnelling process may occur, for both Dirac and scalar particles. Furthermore, in the extremal case, we find that the extremal case of the black hole has the Hawking Temperature in the Planck scale and thus it has a surface gravity although it has no surface gravity according to the classical method.

  9. Conserved charges for black holes in Einstein-Gauss-Bonnet gravity coupled to nonlinear electrodynamics in AdS space

    CERN Document Server

    Miskovic, Olivera

    2010-01-01

    Motivated by possible applications within the framework of anti-de Sitter gravity/Conformal Field Theory (AdS/CFT) correspondence, charged black holes with AdS asymptotics, which are solutions to Einstein-Gauss-Bonnet gravity in D dimensions, and whose electric field is described by a nonlinear electrodynamics (NED) are studied. For a topological static black hole ansatz, the field equations are exactly solved in terms of the electromagnetic stress tensor for an arbitrary NED Lagrangian, in any dimension D and for arbitrary positive values of Gauss-Bonnet coupling. In particular, this procedure reproduces the black hole metric in Born-Infeld and conformally invariant electrodynamics previously found in the literature. Altogether, it extends to D>4 the four-dimensional solution obtained by Soleng in logarithmic electrodynamics, which comes from vacuum polarization effects. Fall-off conditions for the electromagnetic field that ensure the finiteness of the electric charge are also discussed. The black hole mass...

  10. Dirac and scalar particles tunnelling from topological massive warped-AdS3 black hole

    Science.gov (United States)

    Gecim, G.; Sucu, Y.

    2015-06-01

    We investigate the Dirac and scalar particles tunnelling as a radiation of Warped AdS3 black holes in Topological Massive Gravity. Using Hamilton-Jacobi method, we discuss tunnelling probability and Hawking temperature of the spin-1/2 and spin-0 particles for the black hole. We observe the tunnelling probability and Hawking temperature to be same for the spin-1/2 and spin-0. We show that the tunnelling process may occur, for both Dirac and scalar particles.

  11. Complex entangling surfaces for AdS and Lifshitz black holes?

    International Nuclear Information System (INIS)

    We discuss the possible relevance of complex codimension-two extremal surfaces to the Ryu–Takayanagi holographic entanglement proposal and its covariant Hubeny–Rangamani–Takayanagi generalization. Such surfaces live in a complexified bulk spacetime defined by analytic continuation. We identify surfaces of this type for BTZ, Schwarzschild–AdS, and Schwarzschild–Lifshitz planar black holes. Since the dual CFT interpretation for the imaginary part of their areas is unclear, we focus on a straw man proposal relating CFT entropy to the real part of the area alone. For Schwarzschild–AdS and Schwarzschild–Lifshitz, we identify families where the real part of the area agrees with qualitative physical expectations for the time-dependence of the appropriate CFT entropy and, in addition, where it is smaller than the area of corresponding real extremal surfaces. It is thus plausible that the CFT entropy is controlled by these complex extremal surfaces. (paper)

  12. Holographic fermionic spectrum from Born-Infeld AdS black hole

    Science.gov (United States)

    Wu, Jian-Pin

    2016-07-01

    In this letter, we systematically explore the holographic (non-)relativistic fermionic spectrum without/with dipole coupling dual to Born-Infeld anti-de Sitter (BI-AdS) black hole. For the relativistic fermionic fixed point, this holographic fermionic system exhibits non-Fermi liquid behavior. Also, with the increase of BI parameter γ, the non-Fermi liquid becomes even "more non-Fermi". When the dipole coupling term is included, we find that the BI term makes it a lot tougher to form the gap. While for the non-relativistic fermionic system with large dipole coupling in BI-AdS background, with the increase of BI parameter, the gap comes into being again.

  13. Holographic p-Wave Superconductors in Quintessence AdS Black Hole Spacetime

    International Nuclear Information System (INIS)

    We construct a holographic p-wave superconductor model in the background of quintessence AdS black hole with an SU(2) Yang—Mills gauge field and then probe the effects of quintessence on the holographic p-wave superconductor. We investigate the relation between the critical temperature and the state parameter of quintessence, and present the numerical results for electric conductivity. It is shown that the condensation of the vector field becomes harder as the absolute value of the state parameter increases. Unlike the scalar condensate in the s-wave model, the condensation of the vector field in p-wave model can occur in the total value range of the state parameter wq of quintessence. These results could help us know more about holographic superconductor and dark energy. (physics of elementary particles and fields)

  14. Hidden Conformal Symmetry of the Warped AdS_3 Black Holes

    CERN Document Server

    Fareghbal, Reza

    2010-01-01

    We show that for a certain low frequency limit the wave equation of a generic massive scalar field in the background of the spacelike warped AdS_3 black hole can be written as the Casimir of an SL(2,R) symmetry. Two sets of SL(2,R) generators are found which uncover the hidden SL(2,R)\\times SL(2,R) symmetry of the solution. This symmetry is only locally defined and is spontaneously broken to U(1)\\times U(1) by a periodic identification of the \\phi coordinate. By using the generator of the identification we read the left and right temperatures (T_L,T_R) of the proposed dual conformal field theory which are in complete agreement with the WAdS/CFT conjecture. Moreover, under the above condition of the scalar wave frequency, absorption cross section of the scalar field is consistent with the two-point function of the dual CFT.

  15. On conserved charges and thermodynamics of the AdS$_{4}$ dyonic black hole

    CERN Document Server

    Cárdenas, Marcela; Matulich, Javier

    2016-01-01

    Four-dimensional gravity in the presence of a dilatonic scalar field and an Abelian gauge field is considered. This theory corresponds to the bosonic sector of a Kaluza-Klein dimensional reduction of eleven-dimensional supergravity which induces a determined self-interacting potential for the scalar field. We compute the conserved charges and carry out the thermodynamics of an anti-de Sitter (AdS) dyonic black hole solution recently proposed. The charges coming from symmetries of the action are computed by using the Regge-Teitelboim Hamiltonian approach. These correspond to the mass, which acquires contributions from the scalar field, and the electric charge. Integrability conditions are introduced because the scalar field leads to non-integrable terms in the variation of the mass. These conditions are generically solved by introducing boundary conditions that arbitrarily relates the leading and subleading terms of the scalar field fall-off. The Hamiltonian Euclidean action, computed in the grand canonical en...

  16. Holographic fermionic spectrum from Born–Infeld AdS black hole

    Directory of Open Access Journals (Sweden)

    Jian-Pin Wu

    2016-07-01

    Full Text Available In this letter, we systematically explore the holographic (non-relativistic fermionic spectrum without/with dipole coupling dual to Born–Infeld anti-de Sitter (BI-AdS black hole. For the relativistic fermionic fixed point, this holographic fermionic system exhibits non-Fermi liquid behavior. Also, with the increase of BI parameter γ, the non-Fermi liquid becomes even “more non-Fermi”. When the dipole coupling term is included, we find that the BI term makes it a lot tougher to form the gap. While for the non-relativistic fermionic system with large dipole coupling in BI-AdS background, with the increase of BI parameter, the gap comes into being again.

  17. A new metric for rotating charged Gauss—Bonnet black holes in AdS space

    International Nuclear Information System (INIS)

    In this paper, we study a new metric for slowly rotating charged Gauss-Bonnet black holes in higher-dimensional anti-de Sitter space. Taking the angular momentum parameter a up to second order, the slowly rotating charged black hole solutions are obtained by working directly in the action. (general)

  18. Schwinger Effect in (A)dS and Charged Black Hole

    CERN Document Server

    Kim, Sang Pyo

    2015-01-01

    In an (Anti-) de Sitter space and a charged black hole the Schwinger effect is either enhanced by the Hawking radiation or suppressed by the negative curvature. We use the contour integral method to calculate the production of charged pairs in the global (A)dS space. The charge emission from near-extremal black hole is found from the AdS geometry near the horizon and interpreted as the Schwinger effect in a Rindler space with the surface gravity for the acceleration as well as the Schwinger effect in AdS space.

  19. Schwinger effect in (A)dS and charged black hole

    Science.gov (United States)

    Kim, Sang Pyo

    In an Anti-de Sitter space and a charged black hole the Schwinger effect is either enhanced by the Hawking radiation or suppressed by the negative curvature. We use the contour integral method to calculate the production of charged pairs in the global (A)dS space. The charge emission from near-extremal black hole is found from the AdS geometry near the horizon and interpreted as the Schwinger effect in a Rindler space with the surface gravity for the acceleration as well as the Schwinger effect in AdS space.

  20. Phase transitions for the topological AdS-black holes and de Sitter spaces

    CERN Document Server

    mYung, Y S

    2006-01-01

    We study whether or not the Hawking-Page phase transition occurs in the topological AdS-black holes (TAdS), topological de Sitter spaces (TdS), and Schwarzschild-de Sitter black hole (SdS). It turns out that at the critical temperature $T=T_1$, the TAdS with a spherical horizon and TdS with a hyperbolic cosmological horizon can make a phase transition from thermal AdS (dS) space to the black hole. It is shown that there is no Hawking-Page transition for the TAdS and TdS with Ricci-flat horizons when the zero mass black hole and de Sitter are taken as the thermal background. Finally, we find that the SdS takes a kind of the Hawking-Page phase transition at T=0.

  1. Asymptotically locally AdS and flat black holes in Horndeski theory

    CERN Document Server

    Anabalon, Andres; Oliva, Julio

    2013-01-01

    In this paper we construct asymptotically locally AdS and flat black holes in the presence of scalar field whose kinetic term is constructed out from a linear combination of the metric and the Einstein tensor. The field equations as well as the energy-momentum tensor are second order in the metric and the field, therefore the theory belongs to the ones defined by Horndeski. We show that in the presence of a cosmological term in the action, it is possible to have a real scalar field in the region outside of the event horizon. The solutions are characterized by a single integration constant, the scalar field vanishes at the horizon and it contributes to the effective cosmological constant at infinity. We extend these results to the topological case. The solution is disconnected from the maximally symmetric AdS background, however, within this family there exits a gravitational soliton which is everywhere regular. This soliton is therefore used as a background to define a finite Euclidean action and to obtain th...

  2. Weak field black hole formation in asymptotically AdS spacetimes

    International Nuclear Information System (INIS)

    We use the AdS/CFT correspondence to study the thermalization of a strongly coupled conformal field theory that is forced out of its vacuum by a source that couples to a marginal operator. The source is taken to be of small amplitude and finite duration, but is otherwise an arbitrary function of time. When the field theory lives on Rd-1,1, the source sets up a translationally invariant wave in the dual gravitational description. This wave propagates radially inwards in AdSd+1 space and collapses to form a black brane. Outside its horizon the bulk spacetime for this collapse process may systematically be constructed in an expansion in the amplitude of the source function, and takes the Vaidya form at leading order in the source amplitude. This solution is dual to a remarkably rapid and intriguingly scale dependent thermalization process in the field theory. When the field theory lives on a sphere the resultant wave either slowly scatters into a thermal gas (dual to a glueball type phase in the boundary theory) or rapidly collapses into a black hole (dual to a plasma type phase in the field theory) depending on the time scale and amplitude of the source function. The transition between these two behaviors is sharp and can be tuned to the Choptuik scaling solution in Rd,1.

  3. $P-V$ Criticality In the Extended Phase Space of Charged Accelerating AdS Black Holes

    CERN Document Server

    Liu, Hang

    2016-01-01

    In this paper, we investigate the $P-V$ criticality and phase transition of charged accelerating AdS black holes in the extended thermodynamic phase space in analogy between black hole system and Van der Waals liquid-gas system, where the cosmological constant $\\Lambda$ is treated as a thermodynamical variable interpreted as dynamic pressure and its conjugate quantity is the thermodynamic volume of the black holes. When the electric charge vanishes, we find that no $P-V$ criticality will appear but the Hawking-Page like phase transition will be present, just as what Schwarzschild-AdS black holes behave like. For the charged case, the $P-V$ criticality appears and the accelerating black holes will undergo a small black hole/large phase transition under the condition that the acceleration parameter $A$ and the horizon radius $r_h$ meet a certain simple relation $A r_h=a$, where $a$ is a constant in our discussion. To make $P-V$ criticality appear, there exists an upper bounds for constant $a$. When $P-V$ critic...

  4. Gravitational perturbation of the BTZ black hole induced by test particles and weak cosmic censorship in AdS spacetime

    International Nuclear Information System (INIS)

    We analyze the gravitational perturbations induced by particles falling into a three dimensional, asymptotically AdS black hole geometry. More specifically, we solve the linearized perturbation equations obtained from the geodesic motion of a ringlike distribution of test particles in the BTZ background. This setup ensures that the U(1) symmetry of the background is preserved. The nonasymptotic flatness of the background raises difficulties in attributing the significance of energy and angular momentum to the conserved quantities of the test particles. This issue is well known but, to the best of our knowledge, has never been addressed in the literature. We confirm that the naive expressions for energy and angular momentum are the correct definitions. Finally, we put an asymptotically AdS version of the weak cosmic censorship to a test: by attempting to overspin the BTZ black hole with test particles it is found that the black hole cannot be spun-up past its extremal limit.

  5. From accelerating and Poincaré coordinates to black holes in spacelike warped AdS3, and back

    Science.gov (United States)

    Jugeau, Frederic; Moutsopoulos, George; Ritter, Patricia

    2011-02-01

    We first review spacelike stretched warped AdS3 and we describe its black hole quotients by using accelerating and Poincaré coordinates. We then describe the maximal analytic extension of the black holes and present their causal diagrams. Finally, we calculate spacetime limits of the black hole phase space (TR, TL). This is done by requiring that the identification vector ∂θ has a finite non-zero limit. The limits we obtain are the self-dual solution in accelerating or Poincaré coordinates, depending respectively on whether the limiting spacetimes are non-extremal or extremal, and warped AdS3 with a periodic proper time identification.

  6. From accelerating and Poincar\\'e coordinates to black holes in spacelike warped AdS$_3$, and back

    CERN Document Server

    Jugeau, Frederic; Ritter, Patricia

    2010-01-01

    We first review spacelike stretched warped AdS$_3$ and we describe its black hole quotients by using accelerating and Poincar\\'e coordinates. We then describe the maximal analytic extension of the black holes and present their causal diagrams. Finally, we calculate spacetime limits of the black hole phase space $(T_R,T_L)$. This is done by requiring that the identification vector $\\partial_\\theta$ has a finite non-zero limit. The limits we obtain are the self-dual solution in accelerating or Poincar\\'e coordinates, depending respectively on whether the limiting spacetimes are non-extremal or extremal, and warped AdS with a periodic proper time identification.

  7. A consistent and unified picture for critical phenomena of f(R) AdS black holes

    Science.gov (United States)

    Mo, Jie-Xiong; Li, Gu-Qiang; Wu, Yu-Cheng

    2016-04-01

    A consistent and unified picture for critical phenomena of charged AdS black holes in f(R) gravity is drawn in this paper. Firstly, we investigate the phase transition in canonical ensemble. We derive the explicit solutions corresponding to the divergence of CQ. The two solutions merge into one when the condition Qc=√(‑1/3R0) is satisfied. The curve of specific heat for Q Qc, the specific heat is always positive, implying the black holes are locally stable and no phase transition will take place. Secondly, both the T‑r+ curve and T‑S curve f(R) AdS black holes are investigated and they exhibit Van der Vaals like behavior as the P‑v curve in the former research. Critical physical quantities are obtained and they are consistent with those derived from the specific heat analysis. We carry out numerical check of Maxwell equal area law for the cases Q=0.2Qc, 0.4Qc, 0.6Qc, 0.8Qc. The relative errors are amazingly small and can be negligible. So the Maxwell equal area law holds for T‑S curve of f(R) black holes. Thirdly, we establish geometrothermodynamics for f(R) AdS black hole to examine the phase structure. It is shown that the Legendre invariant scalar curvature fraktur R would diverge exactly where the specific heat diverges. To summarize, the above three perspectives are consistent with each other, thus providing a unified picture which deepens the understanding of critical phenomena of f(R) AdS black holes.

  8. Integrable models, degenerate horizons and AdS_2 black holes

    OpenAIRE

    J. Cruz; Fabbri, A; Navarro, D. J.; Navarro-Salas, J.; Navarro, P.

    1999-01-01

    The near extremal Reissner-Nordstrom black holes in arbitrary dimensions ca be modeled by the Jackiw-Teitelboim (JT) theory. The asymptotic Virasoro symmetry of the corresponding JT model exactly reproduces, via Cardy's formula, the deviation of the Bekenstein-Hawking entropy of the Reissner-Nordstrom black holes from extremality. We also comment how can we extend this approach to investigate the evaporation process.

  9. Charge loss (or the lack thereof) for AdS black holes

    OpenAIRE

    Yen Chin Ong; Pisin Chen

    2014-01-01

    The evolution of evaporating charged black holes is complicated to model in general, but is nevertheless important since the hints to the Information Loss Paradox and its recent firewall incarnation may lie in understanding more generic geometries than that of Schwarzschild spacetime. Fortunately, for sufficiently large asymptotically flat Reissner-Nordstrom black holes, the evaporation process can be modeled via a system of coupled linear ordinary differential equations, with charge loss rat...

  10. Dyonic (A)dS Black Holes in Einstein-Born-Infeld Theory in Diverse Dimensions

    CERN Document Server

    Li, Shoulong; Wei, Hao

    2016-01-01

    We study Einstein-Born-Infeld gravity and construct the dyonic (A)dS planar black holes in general even dimensions, that carry both the electric charge and magnetic fluxes along the planar space. In four dimensions, the solution can be constructed with also spherical and hyperbolic topologies. We study the black hole thermodynamics and obtain the first law. We also classify the singularity structure.

  11. Equal Area Laws and Latent Heat for d-Dimensional RN-AdS Black Hole

    International Nuclear Information System (INIS)

    We study the equal area laws of d-dimensional RN-AdS black hole. We choose two kinds of phase diagrams, P-V and T-S. We employ the equal area laws to find an isobar which is the real two-phase coexistence line. Our calculation is much simpler to derive the critical value of the thermodynamic quantities. According to the thermodynamic quantities, we also study the latent heat of the black hole

  12. Dyonic (A)dS black holes in Einstein-Born-Infeld theory in diverse dimensions

    Science.gov (United States)

    Li, Shoulong; Lü, H.; Wei, Hao

    2016-07-01

    We study Einstein-Born-Infeld gravity and construct the dyonic (A)dS planar black holes in general even dimensions, that carry both the electric charge and magnetic fluxes along the planar space. In four dimensions, the solution can be constructed with also spherical and hyperbolic topologies. We study the black hole thermodynamics and obtain the first law. We also classify the singularity structure.

  13. Equal Area Laws and Latent Heat for d-Dimensional RN-AdS Black Hole

    Directory of Open Access Journals (Sweden)

    Li-Chun Zhang

    2014-01-01

    Full Text Available We study the equal area laws of d-dimensional RN-AdS black hole. We choose two kinds of phase diagrams, P-V and T-S. We employ the equal area laws to find an isobar which is the real two-phase coexistence line. Our calculation is much simpler to derive the critical value of the thermodynamic quantities. According to the thermodynamic quantities, we also study the latent heat of the black hole.

  14. Brick Walls for Black Holes in AdS/CFT

    CERN Document Server

    Iizuka, Norihiro

    2013-01-01

    We study the 't Hooft's brick wall model for black holes in a holographic context. The brick wall model suggests that without an appropriate near horizon IR cut-off, the free energy of the probe fields show the divergence due to the large degenerate states near the horizons. After studying the universal nature of the divergence in various holographic setting in various dimensions, we interpret the nature of the divergence in a holographic context. The free energy divergence is due to the large degeneracy and continuity of the low energy spectrum in the boundary theory at the deconfinement phase. These divergence and continuity should be removed by finite N effects, which make the spectrum discrete even at the deconfinement phase. On the other hand, in the bulk, these degenerate states are localized near the horizon, and the universal divergence of these degenerate states implies that the naive counting of the degrees of freedom in bulk should be modified once we take into account the non-perturbative quantum ...

  15. Brick walls for black holes in AdS/CFT

    Directory of Open Access Journals (Sweden)

    Norihiro Iizuka

    2015-06-01

    Full Text Available We study the 't Hooft's brick wall model for black holes in a holographic context. The brick wall model suggests that without an appropriate near horizon IR cut-off, the free energy of the probe fields shows the divergence due to the large degenerate states near the horizons. After studying the universal nature of the divergence in various holographic settings in various dimensions, we interpret the nature of the divergence in a holographic context. The free energy divergence is due to the large degeneracy and continuity of the low energy spectrum in the boundary theory at the deconfinement phase. These divergence and continuity should be removed by finite N effects, which make the spectrum discrete even at the deconfinement phase. On the other hand, in the bulk, these degenerate states are localized near the horizon, and the universal divergence of these degenerate states implies that the naive counting of the degrees of freedom in bulk should be modified once we take into account the non-perturbative quantum gravity effects near the horizon. Depending on the microscopic degrees of freedom, the position, where the effective field theory description to count the states breaks down, has different Planck scale dependence. It also implies the difficulty to have an electron like gauge-singlet elementary field in the boundary theory Lagrangian. These singlet fields are at most composite fields, because they show divergent free energy, suggesting a positive power of N at the deconfinement phase.

  16. Brick walls for black holes in AdS/CFT

    Energy Technology Data Exchange (ETDEWEB)

    Iizuka, Norihiro, E-mail: iizuka@yukawa.kyoto-u.ac.jp; Terashima, Seiji, E-mail: terasima@yukawa.kyoto-u.ac.jp

    2015-06-15

    We study the 't Hooft's brick wall model for black holes in a holographic context. The brick wall model suggests that without an appropriate near horizon IR cut-off, the free energy of the probe fields shows the divergence due to the large degenerate states near the horizons. After studying the universal nature of the divergence in various holographic settings in various dimensions, we interpret the nature of the divergence in a holographic context. The free energy divergence is due to the large degeneracy and continuity of the low energy spectrum in the boundary theory at the deconfinement phase. These divergence and continuity should be removed by finite N effects, which make the spectrum discrete even at the deconfinement phase. On the other hand, in the bulk, these degenerate states are localized near the horizon, and the universal divergence of these degenerate states implies that the naive counting of the degrees of freedom in bulk should be modified once we take into account the non-perturbative quantum gravity effects near the horizon. Depending on the microscopic degrees of freedom, the position, where the effective field theory description to count the states breaks down, has different Planck scale dependence. It also implies the difficulty to have an electron like gauge-singlet elementary field in the boundary theory Lagrangian. These singlet fields are at most composite fields, because they show divergent free energy, suggesting a positive power of N at the deconfinement phase.

  17. Brick walls for black holes in AdS/CFT

    Science.gov (United States)

    Iizuka, Norihiro; Terashima, Seiji

    2015-06-01

    We study the 't Hooft's brick wall model for black holes in a holographic context. The brick wall model suggests that without an appropriate near horizon IR cut-off, the free energy of the probe fields shows the divergence due to the large degenerate states near the horizons. After studying the universal nature of the divergence in various holographic settings in various dimensions, we interpret the nature of the divergence in a holographic context. The free energy divergence is due to the large degeneracy and continuity of the low energy spectrum in the boundary theory at the deconfinement phase. These divergence and continuity should be removed by finite N effects, which make the spectrum discrete even at the deconfinement phase. On the other hand, in the bulk, these degenerate states are localized near the horizon, and the universal divergence of these degenerate states implies that the naive counting of the degrees of freedom in bulk should be modified once we take into account the non-perturbative quantum gravity effects near the horizon. Depending on the microscopic degrees of freedom, the position, where the effective field theory description to count the states breaks down, has different Planck scale dependence. It also implies the difficulty to have an electron like gauge-singlet elementary field in the boundary theory Lagrangian. These singlet fields are at most composite fields, because they show divergent free energy, suggesting a positive power of N at the deconfinement phase.

  18. Brick walls for black holes in AdS/CFT

    International Nuclear Information System (INIS)

    We study the 't Hooft's brick wall model for black holes in a holographic context. The brick wall model suggests that without an appropriate near horizon IR cut-off, the free energy of the probe fields shows the divergence due to the large degenerate states near the horizons. After studying the universal nature of the divergence in various holographic settings in various dimensions, we interpret the nature of the divergence in a holographic context. The free energy divergence is due to the large degeneracy and continuity of the low energy spectrum in the boundary theory at the deconfinement phase. These divergence and continuity should be removed by finite N effects, which make the spectrum discrete even at the deconfinement phase. On the other hand, in the bulk, these degenerate states are localized near the horizon, and the universal divergence of these degenerate states implies that the naive counting of the degrees of freedom in bulk should be modified once we take into account the non-perturbative quantum gravity effects near the horizon. Depending on the microscopic degrees of freedom, the position, where the effective field theory description to count the states breaks down, has different Planck scale dependence. It also implies the difficulty to have an electron like gauge-singlet elementary field in the boundary theory Lagrangian. These singlet fields are at most composite fields, because they show divergent free energy, suggesting a positive power of N at the deconfinement phase

  19. Motion of particles on a Four-Dimensional Asymptotically AdS Black Hole with Scalar Hair

    CERN Document Server

    Gonzalez, P A; Vasquez, Yerko

    2015-01-01

    Motivated by black hole solutions with matter fields outside their horizon, we study the effect of these matter fields in the motion of massless and massive particles. We consider as background a four-dimensional asymptotically AdS black hole with scalar hair. The geodesics are studied numerically and we discuss about the differences in the motion of particles between the four-dimensional asymptotically AdS black holes with scalar hair and their no-hair limit, that is, Schwarzschild AdS black holes. Mainly, we found that there are bounded orbits like planetary orbits in this background. However, the periods associated to circular orbits are modified by the presence of the scalar hair. Besides, we found that some classical tests such as perihelion precession, deflection of light and gravitational time delay have the standard value of general relativity plus a correction term coming from the cosmological constant and the scalar hair. Finally, we found a specific value of the parameter associated to the scalar h...

  20. Motion of particles on a four-dimensional asymptotically AdS black hole with scalar hair

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez, P.A.; Olivares, Marco [Universidad Diego Portales, Facultad de Ingenieria, Santiago (Chile); Vasquez, Yerko [Universidad de La Serena, Departamento de Fisica, Facultad de Ciencias, La Serena (Chile)

    2015-10-15

    Motivated by black hole solutions with matter fields outside their horizon, we study the effect of these matter fields on the motion of massless and massive particles. We consider as background a four-dimensional asymptotically AdS black hole with scalar hair. The geodesics are studied numerically and we discuss the differences in the motion of particles between the four-dimensional asymptotically AdS black holes with scalar hair and their no-hair limit, that is, Schwarzschild AdS black holes. Mainly, we found that there are bounded orbits like planetary orbits in this background. However, the periods associated to circular orbits are modified by the presence of the scalar hair. Besides, we found that some classical tests such as perihelion precession, deflection of light, and gravitational time delay have the standard value of general relativity plus a correction term coming from the cosmological constant and the scalar hair. Finally, we found a specific value of the parameter associated to the scalar hair, in order to explain the discrepancy between the theory and the observations, for the perihelion precession of Mercury and light deflection. (orig.)

  1. Bosonic excitations of the AdS4 Reissner-Nordstrom black hole

    CERN Document Server

    Davison, Richard A

    2011-01-01

    We study the long-lived modes of the charge density and energy density correlators in the strongly-coupled, finite density field theory dual to the AdS4 Reissner-Nordstrom black hole. For small momenta q<<\\mu, these correlators contain a pole due to sound propagation, as well as a pole due to a long-lived, purely imaginary mode analogous to the \\mu=0 hydrodynamic charge diffusion mode. As the temperature is raised in the range T\\lesssim\\mu, the sound attenuation shows no significant temperature dependence. When T\\gtrsim\\mu, it quickly approaches the \\mu=0 hydrodynamic result where it decreases like 1/T. It does not share any of the temperature-dependent properties of the 'zero sound' of Landau Fermi liquids observed in the strongly-coupled D3/D7 field theory. For such small momenta, the energy density spectral function is dominated by the sound mode at all temperatures, whereas the charge density spectral function undergoes a crossover from being dominated by the sound mode at low temperatures to being ...

  2. Phase transition and thermodynamical geometry for Schwarzschild AdS black hole in $AdS_5\\times{S^5}$ spacetime

    CERN Document Server

    Zhang, Jia-Lin; Yu, Hongwei

    2014-01-01

    We study thermodynamics and thermodynamic geometry of a five-dimensional Schwarzschild AdS black hole in $AdS_5\\times{S^5}$ spacetime by treating the cosmological constant as the number of colors in the boundary gauge theory and its conjugate quantity as the associated chemical potential. It is found that the chemical potential is always negative in the stable branch of black hole thermodynamics and it has a chance to be positive, but appears in the unstable branch. We calculate scalar curvatures of the thermodynamical Weinhold metric, Ruppeiner metric and Quevedo metric, respectively and we find that the divergence of scalar curvature is related to the divergence of specific heat with fixed chemical potential in the Weinhold metric and Ruppeiner metric, while in the Quevedo metric the divergence of scalar curvature is related to the divergence of specific heat with fixed number of colors and the vanishing of the specific heat with fixed chemical potential.

  3. Area functional relation for 5D-Gauss-Bonnet-AdS black hole

    Science.gov (United States)

    Pradhan, Parthapratim

    2016-08-01

    We present area (or entropy) functional relation for multi-horizons five dimensional (5D) Einstein-Maxwell-Gauss-Bonnet-AdS black hole. It has been observed by exact and explicit calculation that some complicated function of two or three horizons area is mass-independent whereas the entropy product relation is not mass-independent. We also study the local thermodynamic stability of this black hole. The phase transition occurs at certain condition. Smarr mass formula and first law of thermodynamics have been derived. This mass-independent relation suggests they could turn out to be an universal quantity and further helps us to understanding the nature of black hole entropy (both interior and exterior) at the microscopic level. In the "Appendix", we have derived the thermodynamic products for 5D Einstein-Maxwell-Gauss-Bonnet black hole with vanishing cosmological constant.

  4. Critical phenomena in the extended phase space of Kerr-Newman-AdS black holes

    CERN Document Server

    Cheng, Peng; Liu, Yu-Xiao

    2016-01-01

    Treating the cosmological constant as a thermodynamic pressure, we investigate the critical behavior of a Kerr-Newman-AdS black hole system. The critical points for the van der Waals like phase transition are numerically solved. The highly accurate fitting formula for them is given and is found to be dependent of the charge $Q$ and angular momentum $J$. In the reduced parameter space, we find that the temperature, Gibbs free energy, and coexistence curve depend only on the dimensionless angular momentum-charge ratio $\\epsilon=J/Q^2$ rather than $Q$ and $J$. Moreover, when varying $\\epsilon$ from 0 to $\\infty$, the coexistence curve will continuously change from that of the Reissner-Nordstr\\"{o}m-AdS black hole to the Kerr-AdS black hole. These results may guide us to study the critical phenomena for other thermodynamic systems with two characteristic parameters.

  5. On thermodynamics of charged AdS black holes in extended phases space via M2-branes background

    Science.gov (United States)

    Chabab, M.; El Moumni, H.; Masmar, K.

    2016-06-01

    Motivated by a recent work on asymptotically AdS_4 black holes in M-theory, we investigate both thermodynamics and the thermodynamical geometry of Reissner-Nordstrom-AdS black holes from M2-branes. More precisely, we study AdS black holes in AdS4× S7, with the number of M2-branes interpreted as a thermodynamical variable. In this context, we calculate various thermodynamical quantities including the chemical potential, and examine their phase transitions along with the corresponding stability behaviors. In addition, we also evaluate the thermodynamical curvatures of the Weinhold, Ruppeiner, and Quevedo metrics for M2-branes geometry to study the stability of such a black object. We show that the singularities of these scalar curvature's metrics reproduce similar stability results to those obtained by the phase transition diagram via the heat capacities in different ensembles either when the number of the M2 branes or the charge is held fixed. Also, we note that all results derived in Belhaj et al. (Eur Phys J C 76(2):73, 2016) are recovered in the limit of the vanishing charge.

  6. Thermodynamics of Charged AdS Black Holes in Extended Phases Space via M2-branes Background

    CERN Document Server

    Chabab, M; Masmar, K

    2015-01-01

    Motivated by a recent work on asymptotically Ad$S_4$ black holes in M-theory, we investigate both thermodynamics and thermodynamical geometry of Raissner-Nordstrom-AdS black holes from M2-branes. More precisely, we study AdS black holes in $AdS_{4}\\times S^{7}$, with the number of M2-branes interpreted as a thermodynamical variable. In this context, we calculate various thermodynamical quantities including the chemical potential, and examine their phase transitions along with the corresponding stability behaviors. In addition, we also evaluate the thermodynamical curvatures of the Weinhold, Ruppeiner and Quevedo metrics for M2-branes geometry to study the stability of such black object. We show that the singularities of these scalar curvature's metrics reproduce similar stability results obtained by the phase transition program via the heat capacities in different ensembles either when the number of the M2 branes or the charge are held fixed. Also, we note that all results derived in [1] are recovered in the ...

  7. Conformal invariance and near-extreme rotating AdS black holes

    International Nuclear Information System (INIS)

    We obtain retarded Green's functions for massless scalar fields in the background of near-extreme, near-horizon rotating charged black holes of five-dimensional minimal gauged supergravity. The radial part of the (separable) massless Klein-Gordon equation in such general black hole backgrounds is Heun's equation, due to the singularity structure associated with the three black hole horizons. On the other hand, we find the scaling limit for the near-extreme, near-horizon background where the radial equation reduces to a hypergeometric equation whose SL(2,R)2 symmetry signifies the underlying two-dimensional conformal invariance, with the two sectors governed by the respective Frolov-Thorne temperatures.

  8. Rotating AdS black hole stealth solution in D=3

    CERN Document Server

    Hassaine, Mokhtar

    2013-01-01

    We show that the rotating asymptotically anti de Sitter black hole solution of new massive gravity in three dimensions can support a static stealth configuration given by a conformally coupled scalar field. By static stealth configuration, we mean a nontrivial time independent scalar field whose energy-momentum tensor vanishes identically on the rotating black hole metric solution of new massive gravity. The existence of this configuration is rendered possible because of the presence of a gravitational hair in the black hole metric that prevents the scalar field to be trivial. In the extremal case, the stealth scalar field diverges at the horizon as it occurs for the conformal scalar field of the Bocharova-Bronnikov-Melnikov-Bekenstein solution in four dimensions.

  9. Born–Infeld AdS black holes as heat engines

    Science.gov (United States)

    Johnson, Clifford V.

    2016-07-01

    We study the efficiency of heat engines that perform mechanical work via the pdV terms present in the first law in extended gravitational thermodynamics. We use charged black holes as the working substance, for a particular choice of engine cycle. The context is Einstein gravity with negative cosmological constant and a Born–Infeld nonlinear electrodynamics sector. We compare the results for these ‘holographic’ heat engines to previous results obtained for Einstein–Maxwell black holes, and for the case where there is a Gauss–Bonnet sector.

  10. (Un)attractor black holes in higher derivative AdS gravity

    International Nuclear Information System (INIS)

    We investigate five-dimensional static (non-)extremal black hole solutions in higher derivative Anti-de Sitter gravity theories with neutral scalars non-minimally coupled to gauge fields. We explicitly identify the boundary counterterms to regularize the gravitational action and the stress tensor. We illustrate these results by applying the method of holographic renormalization to computing thermodynamical properties in several concrete examples. We also construct numerical extremal black hole solutions and discuss the attractor mechanism by using the entropy function formalism.

  11. Born-Infeld AdS Black Holes as Heat Engines

    CERN Document Server

    Johnson, Clifford V

    2015-01-01

    We study the efficiency of heat engines that perform mechanical work via the pdV terms present in the First Law in extended gravitational thermodynamics. We use charged black holes as the working substance, for a particular choice of engine cycle. The context is Einstein gravity with negative cosmological constant and a Born-Infeld non-linear electrodynamics sector. We compare the results for these `holographic' heat engines to previous results obtained for Einstein-Maxwell black holes, and for the case where there is a Gauss-Bonnet sector.

  12. Thermodynamics of spinning AdS4 black holes in gauged supergravity

    OpenAIRE

    Toldo, Chiara

    2016-01-01

    In this paper we study the thermodynamics of rotating black hole solutions arising from four-dimensional gauged N=2 supergravity. We analyze two different supergravity models, characterized by prepotentials $F = -i X^0 X^1$ and $F= -2i \\sqrt{X^0 (X^1)^3}$. The black hole configurations are supported by electromagnetic charges and scalar fields with different kinds of boundary conditions. We perform our analysis in the canonical ensemble, where we find a first order phase transition for a suit...

  13. On particles tunneling from the Taub-NUT-AdS black hole

    Institute of Scientific and Technical Information of China (English)

    Zeng Xiao-Xiong; Li Qiang

    2009-01-01

    This paper discusses tunneling of scalar particles and Dirac particles from the Taub-NUT-AdS black hole by the Hamilton-Jacobi equation, initially used by Angheben et al, and the Dirac equation, recently proposed by Kerner and Mann. This is performed in the dragging coordinate frame so as to avoid the ergosphere dragging effect. A general form is obtained for the temperature of scalar and Dirac particles tunneling from the Taub-NUT-Ads black hole, which is commensurate with other methods as expected.

  14. GENERAL: On particles tunneling from the Taub-NUT-AdS black hole

    Science.gov (United States)

    Zeng, Xiao-Xiong; Li, Qiang

    2009-11-01

    This paper discusses tunneling of scalar particles and Dirac particles from the Taub-NUT-AdS black hole by the Hamilton-Jacobi equation, initially used by Angheben et al, and the Dirac equation, recently proposed by Kerner and Mann. This is performed in the dragging coordinate frame so as to avoid the ergosphere dragging effect. A general form is obtained for the temperature of scalar and Dirac particles tunneling from the Taub-NUT-Ads black hole, which is commensurate with other methods as expected.

  15. (Un)attractor black holes in higher derivative AdS gravity

    OpenAIRE

    Astefanesei, D.; Banerjee, N.; Dutta, S.

    2008-01-01

    We investigate five-dimensional static (non-)extremal black hole solutions in higher derivative Anti-de Sitter gravity theories with neutral scalars non- minimally coupled to gauge fields. We explicitly identify the boundary counterterms to regularize the gravitational action and the stress tensor. We illustrate these results by applying the method of holographic renormalization to computing thermodynamical properties in several concrete examples. We also construct numerical extremal black ho...

  16. Guard against cooperative black hole attack in Mobile Ad-Hoc Network

    Directory of Open Access Journals (Sweden)

    Harsh Pratap Singh

    2011-07-01

    Full Text Available A mobile ad-hoc network is an autonomous network that consists of nodes which communicate with each other with wireless channel. Due to its dynamic nature and mobility of nodes, mobile ad hoc networks are more vulnerable to security attack than conventional wired and wireless networks. One of the principal routing protocols AODV used in MANETs. The security of AODV protocol is influence by the particular type of attack called Black Hole attack. In a black hole attack, a malicious node injects a faked route reply claiming to havethe shortest and freshest route to the destination. However, when the data packets arrive, the malicious node discards them. To preventing black hole attack, this paper presents RBS (Reference Broadcast Synchronization & Relative velocity distance method for clock synchronization process in Mobile ad-hoc Network for removal of cooperative black hole node. This paper evaluates the performance in NS2 network simulator and our analysis indicates that this method is very suitable to remove black hole attack.

  17. Thermodynamics of higher spin black holes in AdS3

    Science.gov (United States)

    de Boer, Jan; Jottar, Juan I.

    2014-01-01

    We discuss the thermodynamics of recently constructed three-dimensional higher spin black holes in SL( N, ) × SL( N, ) Chern-Simons theory with generalized asymptotically-anti-de Sitter boundary conditions. From a holographic perspective, these bulk theories are dual to two-dimensional CFTs with WN symmetry algebras, and the black hole solutions are dual to thermal states with higher spin chemical potentials and charges turned on. Because the notion of horizon area is not gauge-invariant in the higher spin theory, the traditional approaches to the computation of black hole entropy must be reconsidered. One possibility, explored in the recent literature, involves demanding the existence of a partition function in the CFT, and consistency with the first law of thermodynamics. This approach is not free from ambiguities, however, and in particular different definitions of energy result in different expressions for the entropy. In the present work we show that there are natural definitions of the thermodynamically conjugate variables that follow from careful examination of the variational principle, and moreover agree with those obtained via canonical methods. Building on this intuition, we derive general expressions for the higher spin black hole entropy and free energy which are written entirely in terms of the Chern-Simons connections, and are valid for both static and rotating solutions. We compare our results to other proposals in the literature, and provide a new and efficient way to determine the generalization of the Cardy formula to a situation with higher spin charges.

  18. Thermodynamics of higher spin black holes in AdS3

    International Nuclear Information System (INIS)

    We discuss the thermodynamics of recently constructed three-dimensional higher spin black holes in SL(N,ℝ)×SL(N,ℝ) Chern-Simons theory with generalized asymptotically-anti-de Sitter boundary conditions. From a holographic perspective, these bulk theories are dual to two-dimensional CFTs with WN symmetry algebras, and the black hole solutions are dual to thermal states with higher spin chemical potentials and charges turned on. Because the notion of horizon area is not gauge-invariant in the higher spin theory, the traditional approaches to the computation of black hole entropy must be reconsidered. One possibility, explored in the recent literature, involves demanding the existence of a partition function in the CFT, and consistency with the first law of thermodynamics. This approach is not free from ambiguities, however, and in particular different definitions of energy result in different expressions for the entropy. In the present work we show that there are natural definitions of the thermodynamically conjugate variables that follow from careful examination of the variational principle, and moreover agree with those obtained via canonical methods. Building on this intuition, we derive general expressions for the higher spin black hole entropy and free energy which are written entirely in terms of the Chern-Simons connections, and are valid for both static and rotating solutions. We compare our results to other proposals in the literature, and provide a new and efficient way to determine the generalization of the Cardy formula to a situation with higher spin charges

  19. Phase transitions and statistical mechanics for BPS Black Holes in AdS/CFT

    International Nuclear Information System (INIS)

    Using the general framework developed in hep-th/0607056, we study in detail the phase space of BPS Black Holes in AdS, for the case where all three electric charges are equal. Although these solitons are supersymmetric with zero Hawking temperature, it turns out that these Black Holes have rich phase structure with sharp phase transitions associated to a corresponding critical generalized temperature. We are able to rewrite the gravity variables in terms of dual CFT variables and compare the gravity phase diagram with the free dual CFT phase diagram. In particular, the elusive supergravity constraint characteristic of these Black Holes is particularly simple and in fact appears naturally in the dual CFT in the definition of the BPS Index. Armed with this constraint, we find perfect match between BH and free CFT charges up to expected constant factors

  20. AODV Robust (AODVR: An Analytic Approach to Shield Ad-hoc Networks from Black Holes

    Directory of Open Access Journals (Sweden)

    Mohammad Abu Obaida

    2011-08-01

    Full Text Available Mobile ad-hoc networks are vulnerable to several types of malicious routing attacks, black hole is one of those, where a malicious node advertise to have the shortest path to all other nodes in the network by the means of sending fake routing reply. As a result the destinations are deprived of desired information. In this paper, we propose a method AODV Robust (AODVR a revision to the AODV routing protocol, in which black hole is perceived as soon as they emerged and other nodes are alerted to prevent the network of such malicious threats thereby isolating the black hole. In AODVR method, the routers formulate the range of acceptable sequence numbers and define a threshold. If a node exceeds the threshold several times then it is black listed thereby increasing the network robustness.

  1. Thermodynamics of spinning AdS4 black holes in gauged supergravity

    CERN Document Server

    Toldo, Chiara

    2016-01-01

    In this paper we study the thermodynamics of rotating black hole solutions arising from four-dimensional gauged N=2 supergravity. We analyze two different supergravity models, characterized by prepotentials $F = -i X^0 X^1$ and $F= -2i \\sqrt{X^0 (X^1)^3}$. The black hole configurations are supported by electromagnetic charges and scalar fields with different kinds of boundary conditions. We perform our analysis in the canonical ensemble, where we find a first order phase transition for a suitable range of charges and angular momentum. We perform the thermodynamic stability check on the configurations. Using the holographic dictionary we interpret the phase transition in terms of expectation values of operators in the dual field theory, which pertains to the class of ABJM theories living on a rotating Einstein universe. We extend the analysis to dyonic configurations as well. Lastly, we show the computation of the on-shell action and mass via holographic renormalization techniques.

  2. Renormalized vacuum polarization on rotating warped AdS3 black holes

    CERN Document Server

    Ferreira, Hugo R C

    2014-01-01

    We compute the renormalized vacuum polarization of a massive scalar field in the Hartle-Hawking state on (2+1)-dimensional rotating, spacelike stretched black hole solutions to Topologically Massive Gravity, surrounded by a Dirichlet mirror that makes the state well defined. The Feynman propagator is written as a mode sum on the complex Riemannian section of the spacetime, and a Hadamard renormalization procedure is implemented by matching to a mode sum on the complex Riemannian section of a rotating Minkowski spacetime. No analytic continuation in the angular momentum parameter is invoked. Selected numerical results are given, demonstrating the numerical efficacy of the method. We anticipate that this method can be extended to wider classes of rotating black hole spacetimes, in particular to the Kerr spacetime in four dimensions.

  3. Renormalized vacuum polarization on rotating warped AdS3 black holes

    Science.gov (United States)

    Ferreira, Hugo R. C.; Louko, Jorma

    2015-01-01

    We compute the renormalized vacuum polarization of a massive scalar field in the Hartle-Hawking state on (2 +1 )-dimensional rotating, spacelike stretched black hole solutions to topologically massive gravity, surrounded by a Dirichlet mirror that makes the state well defined. The Feynman propagator is written as a mode sum on the complex Riemannian section of the spacetime, and a Hadamard renormalization procedure is implemented by matching to a mode sum on the complex Riemannian section of a rotating Minkowski spacetime. No analytic continuation in the angular momentum parameter is invoked. Selected numerical results are given, demonstrating the numerical efficacy of the method. We anticipate that this method can be extended to wider classes of rotating black hole spacetimes, in particular to the Kerr spacetime in four dimensions.

  4. Black Holes

    Science.gov (United States)

    Luminet, Jean-Pierre

    1992-09-01

    Foreword to the French edition; Foreword to the English edition; Acknowledgements; Part I. Gravitation and Light: 1. First fruits; 2. Relativity; 3. Curved space-time; Part II. Exquisite Corpses: 4. Chronicle of the twilight years; 5. Ashes and diamonds; 6. Supernovae; 7. Pulsars; 8. Gravitation triumphant; Part III. Light Assassinated: 9. The far horizon; 10. Illuminations; 11. A descent into the maelstrom; 12. Map games; 13. The black hole machine; 14. The quantum black hole; Part IV. Light Regained: 15. Primordial black holes; 16. The zoo of X-ray stars; 17. Giant black holes; 18. Gravitational light; 19. The black hole Universe; Appendices; Bibliography; Name index; Subject index.

  5. Thermodynamics of Higher Spin Black Holes in AdS$_{3}$

    CERN Document Server

    de Boer, Jan

    2013-01-01

    We discuss the thermodynamics of recently constructed three-dimensional higher spin black holes in $SL(N,\\mathds{R})\\times SL(N,\\mathds{R})$ Chern-Simons theory with generalized asymptotically-anti-de Sitter boundary conditions. From a holographic perspective, these bulk theories are dual to two-dimensional CFTs with $\\mathcal{W}_{N}$ symmetry algebras, and the black hole solutions are dual to thermal states with higher spin chemical potentials and charges turned on. Because the notion of horizon area is not gauge-invariant in the higher spin theory, the traditional approaches to the computation of black hole entropy must be reconsidered. One possibility, explored in the recent literature, involves demanding the existence of a partition function in the CFT, and consistency with the first law of thermodynamics. This approach is not free from ambiguities, however, and in particular different definitions of energy result in different expressions for the entropy. In the present work we show that there are natural...

  6. Non-extended phase space thermodynamics of Lovelock AdS black holes in the grand canonical ensemble

    International Nuclear Information System (INIS)

    Recently, extended phase space thermodynamics of Lovelock AdS black holes has been of great interest. To provide insight from a different perspective and gain a unified phase transition picture, the non-extended phase space thermodynamics of (n+1)-dimensional charged topological Lovelock AdS black holes is investigated in detail in the grand canonical ensemble. Specifically, the specific heat at constant electric potential is calculated and the phase transition in the grand canonical ensemble is discussed. To probe the impact of the various parameters, we utilize the control variate method and solve the phase transition condition equation numerically for the cases k = 1,-1. There are two critical points for the case n = 6, k = 1, while there is only one for the other cases. For k = 0, there exists no phase transition point. To figure out the nature of the phase transition in the grand canonical ensemble, we carry out an analytic check of the analog form of the Ehrenfest equations proposed by Banerjee et al. It is shown that Lovelock AdS black holes in the grand canonical ensemble undergo a second-order phase transition. To examine the phase structure in the grand canonical ensemble, we utilize the thermodynamic geometry method and calculate both the Weinhold metric and the Ruppeiner metric. It is shown that for both analytic and graphical results that the divergence structure of the Ruppeiner scalar curvature coincides with that of the specific heat. Our research provides one more example that Ruppeiner metric serves as a wonderful tool to probe the phase structures of black holes. (orig.)

  7. Area Functional Relation for 5D-Gauss-Bonnet-AdS Black Hole

    CERN Document Server

    Pradhan, Parthapratim

    2016-01-01

    We present \\emph{area functional relation} and \\emph{entropy functional relation} for multi-horizon five dimensional Einstein-Maxwell-Gauss-Bonnet-AdS Black Hole. It has been observed by exact calculation that some complicated function of two or three horizons area is \\emph{mass-independent} whereas the entropy product relation is \\emph{not} mass-independent. We study the thermodynamic stability of this black hole. The phase transition occurs at certain condition. \\emph{Smarr mass formula} and \\emph{first law} of thermodynamics is also discussed. Thermodynamic product formula for 5D Einstein-Maxwell-Gauss-Bonnet black hole without Cosmological parameter is also derived in appendix. This \\emph{mass-independent} relation suggests they could turn out to be an \\emph{universal} quantity.

  8. Angular Momentum Independence of the Entropy Sum and Entropy Product for AdS Rotating Black Holes In All Dimensions

    CERN Document Server

    Liu, Hang

    2016-01-01

    In this paper, we investigate the angular momentum independence of the entropy sum and product for AdS rotating black holes based on the first law of thermodynamics and a mathematical lemma related to Vandermonde determinant. The advantage of this method is that the explicit forms of the spacetime metric, black hole mass and charge are not needed but the Hawking temperature and entropy formula on the horizons are necessary for static black holes, while our calculations require the expressions of metric and angular velocity formula. We find that the entropy sum is always independent of angular momentum for all dimensions and the angular momentum-independence of entropy product only holds for the dimensions $d>4$ with at least one rotation parameter $a_i=0$, while the mass-free of entropy sum and entropy product for rotating black holes only stand for higher dimensions ($d>4$) and for all dimensions, respectively. On the other hand, we find that the introduction of a negative cosmological constant does not affe...

  9. Angular momentum independence of the entropy sum and entropy product for AdS rotating black holes in all dimensions

    Science.gov (United States)

    Liu, Hang; Meng, Xin-he

    2016-08-01

    In this paper, we investigate the angular momentum independence of the entropy sum and product for AdS rotating black holes based on the first law of thermodynamics and a mathematical lemma related to Vandermonde determinant. The advantage of this method is that the explicit forms of the spacetime metric, black hole mass and charge are not needed but the Hawking temperature and entropy formula on the horizons are necessary for static black holes, while our calculations require the expressions of metric and angular velocity formula. We find that the entropy sum is always independent of angular momentum for all dimensions and the angular momentum-independence of entropy product only holds for the dimensions d > 4 with at least one rotation parameter ai = 0, while the mass-free of entropy sum and entropy product for rotating black holes only stand for higher dimensions (d > 4) and for all dimensions, respectively. On the other hand, we find that the introduction of a negative cosmological constant does not affect the angular momentum-free of entropy sum and product but the criterion for angular momentum-independence of entropy product will be affected.

  10. Conserved charges for black holes in Einstein-Gauss-Bonnet gravity coupled to nonlinear electrodynamics in AdS space

    Science.gov (United States)

    Mišković, Olivera; Olea, Rodrigo

    2011-01-01

    Motivated by possible applications within the framework of anti-de Sitter gravity/conformal field theory correspondence, charged black holes with AdS asymptotics, which are solutions to Einstein-Gauss-Bonnet gravity in D dimensions, and whose electric field is described by nonlinear electrodynamics are studied. For a topological static black hole ansatz, the field equations are exactly solved in terms of the electromagnetic stress tensor for an arbitrary nonlinear electrodynamic Lagrangian in any dimension D and for arbitrary positive values of Gauss-Bonnet coupling. In particular, this procedure reproduces the black hole metric in Born-Infeld and conformally invariant electrodynamics previously found in the literature. Altogether, it extends to D>4 the four-dimensional solution obtained by Soleng in logarithmic electrodynamics, which comes from vacuum polarization effects. Falloff conditions for the electromagnetic field that ensure the finiteness of the electric charge are also discussed. The black hole mass and vacuum energy as conserved quantities associated to an asymptotic timelike Killing vector are computed using a background-independent regularization of the gravitational action based on the addition of counterterms which are a given polynomial in the intrinsic and extrinsic curvatures.

  11. Conserved charges for black holes in Einstein-Gauss-Bonnet gravity coupled to nonlinear electrodynamics in AdS space

    International Nuclear Information System (INIS)

    Motivated by possible applications within the framework of anti-de Sitter gravity/conformal field theory correspondence, charged black holes with AdS asymptotics, which are solutions to Einstein-Gauss-Bonnet gravity in D dimensions, and whose electric field is described by nonlinear electrodynamics are studied. For a topological static black hole ansatz, the field equations are exactly solved in terms of the electromagnetic stress tensor for an arbitrary nonlinear electrodynamic Lagrangian in any dimension D and for arbitrary positive values of Gauss-Bonnet coupling. In particular, this procedure reproduces the black hole metric in Born-Infeld and conformally invariant electrodynamics previously found in the literature. Altogether, it extends to D>4 the four-dimensional solution obtained by Soleng in logarithmic electrodynamics, which comes from vacuum polarization effects. Falloff conditions for the electromagnetic field that ensure the finiteness of the electric charge are also discussed. The black hole mass and vacuum energy as conserved quantities associated to an asymptotic timelike Killing vector are computed using a background-independent regularization of the gravitational action based on the addition of counterterms which are a given polynomial in the intrinsic and extrinsic curvatures.

  12. Phase transition and thermodynamic geometry of f (R ) AdS black holes in the grand canonical ensemble

    Science.gov (United States)

    Li, Gu-Qiang; Mo, Jie-Xiong

    2016-06-01

    The phase transition of a four-dimensional charged AdS black hole solution in the R +f (R ) gravity with constant curvature is investigated in the grand canonical ensemble, where we find novel characteristics quite different from that in the canonical ensemble. There exists no critical point for T -S curve while in former research critical point was found for both the T -S curve and T -r+ curve when the electric charge of f (R ) black holes is kept fixed. Moreover, we derive the explicit expression for the specific heat, the analog of volume expansion coefficient and isothermal compressibility coefficient when the electric potential of f (R ) AdS black hole is fixed. The specific heat CΦ encounters a divergence when 0 b . This finding also differs from the result in the canonical ensemble, where there may be two, one or no divergence points for the specific heat CQ . To examine the phase structure newly found in the grand canonical ensemble, we appeal to the well-known thermodynamic geometry tools and derive the analytic expressions for both the Weinhold scalar curvature and Ruppeiner scalar curvature. It is shown that they diverge exactly where the specific heat CΦ diverges.

  13. Phase transition and thermodynamic geometry of $f(R)$ AdS black holes in the grand canonical ensemble

    CERN Document Server

    Li, Gu-Qiang

    2016-01-01

    The phase transition of four-dimensional charged AdS black hole solution in the $R+f(R)$ gravity with constant curvature is investigated in the grand canonical ensemble, where we find novel characteristics quite different from that in canonical ensemble. There exists no critical point for $T-S$ curve while in former research critical point was found for both the $T-S$ curve and $T-r_+$ curve when the electric charge of $f(R)$ black holes is kept fixed. Moreover, we derive the explicit expression for the specific heat, the analog of volume expansion coefficient and isothermal compressibility coefficient when the electric potential of $f(R)$ AdS black hole is fixed. The specific heat $C_\\Phi$ encounters a divergence when $0b$. This finding also differs from the result in the canonical ensemble, where there may be two, one or no divergence points for the specific heat $C_Q$. To examine the phase structure newly found in the grand canonical ensemble, we appeal to the well-known thermodynamic geometry tools and de...

  14. A consistent and unified picture for critical phenomena of $f(R)$ AdS black holes

    CERN Document Server

    Mo, Jie-Xiong; Wu, Yu-Cheng

    2016-01-01

    A consistent and unified picture for critical phenomena of charged AdS black holes in $f(R)$ gravity is drawn in this paper. Firstly, we investigate the phase transition in canonical ensemble. We derive the explicit solutions corresponding to the divergence of $C_Q$. The two solutions merge into one when the condition $Q_c=\\sqrt{\\frac{-1}{3R_0}}$ is satisfied. The curve of specific heat for $QQ_c$, the specific heat is always positive, implying the black holes are locally stable and no phase transition will take place. Secondly, both the $T-r_+$ curve and $T-S$ curve $f(R)$ AdS black holes are investigated and they exhibit Van der Vaals like behavior as the $P-v$ curve in the former research. Critical physical quantities are obtained and they are consistent with those derived from the specific heat analysis. We carry out numerical check of Maxwell equal area law for the cases $Q=0.2Q_c, 0.4Q_c, 0.6Q_c, 0.8Q_c$. The relative errors are amazingly small and can be negligible. So the Maxwell equal area law holds ...

  15. 1/16-BPS Black Holes and Giant Gravitons in the AdS_5 X S^5 Space

    CERN Document Server

    Kim, S; Kim, Seok; Lee, Ki-Myeong

    2006-01-01

    We explore 1/16-BPS objects of type IIB string theory in AdS_5 * S^5. First, we consider supersymmetric AdS_5 black holes, which should be 1/16-BPS and have a characteristic that not all physical charges are independent. We point out that the Bekenstein-Hawking entropy of these black holes admits a remarkably simple expression in terms of (dependent) physical charges, which suggests its microscopic origin via certain Cardy or Hardy-Ramanujan formula. We also note that there is an upper bound for the angular momenta given by the electric charges. Second, we construct a class of 1/16-BPS giant graviton solutions in AdS_5 * S^5 and explore their properties. The solutions are given by the intersections of AdS_5 * S^5 and complex 3 dimensional holomorphic hyperspaces in C^{1+5}, the latter being the zero loci of three holomorphic functions which are homogeneous with suitable weights on coordinates. We investigate examples of giant gravitons, including their degenerations to tensionless strings.

  16. An equal area law for holographic entanglement entropy of the AdS-RN black hole

    Science.gov (United States)

    Nguyen, Phuc H.

    2015-12-01

    The Anti-de Sitter-Reissner-Nordström (AdS-RN) black hole in the canonical ensemble undergoes a phase transition similar to the liquid-gas phase transition, i.e. the isocharges on the entropy-temperature plane develop an unstable branch when the charge is smaller than a critical value. It was later discovered that the isocharges on the entanglement entropy -temperature plane also exhibit the same van der Waals-like structure, for spherical entangling regions. In this paper, we present numerical results which sharpen this similarity between entanglement entropy and black hole entropy, by showing that both of these entropies obey Maxwell's equal area law to an accuracy of around 1%. Moreover, we checked this for a wide range of size of the spherical entangling region, and the equal area law holds independently of the size. We also checked the equal area law for AdS-RN in 4 and 5 dimensions, so the conclusion is not specific to a particular dimension. Finally, we repeated the same procedure for a similar, van der Waals-like transition of the dyonic black hole in AdS in a mixed ensemble (fixed electric potential and fixed magnetic charge), and showed that the equal area law is not valid in this case. Thus the equal area law for entanglement entropy seems to be specific to the AdS-RN background.

  17. Exact black hole formation in asymptotically (A)dS and flat spacetimes

    International Nuclear Information System (INIS)

    We consider four-dimensional Einstein gravity minimally coupled to a dilaton scalar field with a supergravity-inspired scalar potential. We obtain an exact time-dependent spherically symmetric solution describing gravitational collapse to a static scalar-hairy black hole. The solution can be asymptotically AdS, flat or dS depending on the value of the cosmological constant parameter Λ in the potential. As the advanced time u increases, the metric approaches the static limit in an exponential fashion, i.e., e−u/u0 with u0∼1/(α4M0)1/3, where M0 is the mass of the final black hole and α is the second parameter in the potential. Similarly to the Vaidya solution, at u=0, the spacetime can be matched to an (A)dS or flat vacuum except that at the origin a naked singularity may occur. Moreover, a limiting case of our solution with α=0 gives rise to an (A)dS generalization of the Roberts solution. Our results provide a new model for investigating formation of real life black holes with Λ≥0. For Λ<0, it can be instead used to study non-equilibrium thermalization of certain strongly-coupled field theory

  18. Preventive Aspect of Black Hole Attack in Mobile AD HOC Network

    Directory of Open Access Journals (Sweden)

    Kumar Roshan

    2012-06-01

    Full Text Available Mobile ad hoc network is infrastructure less type of network. In this paper we present the prevention mechanism for black hole in mobile ad hoc network. The routing algorithms are analyzed and discrete properties of routing protocols are defined. The discrete properties support in distributed routing efficiently. The protocol is distributed and not dependent upon the centralized controlling node. Important features of Ad hoc on demand vector routing (AODV are inherited and new mechanism is combined with it to get the multipath routing protocol for Mobile ad hoc network (MANET to prevent the black hole attack. When the routing path is discovered and entered into the routing table, the next step is taken by combined protocol to search the new path with certain time interval. The old entered path is refreshed into the routing table. The simulation is taken on 50 moving nodes in the area of 1000 x 1000 square meter and the maximum speed of nodes are 5m/sec. The result is calculated for throughput verses number of black hole nodes with pause time of 0 sec. to 40 sec., 120 sec. and 160 sec. when the threshold value is 1.0.

  19. Randall-Sundrum II cosmology, AdS/CFT, and the bulk black hole

    Science.gov (United States)

    Hebecker, A.; March-Russell, J.

    2001-08-01

    We analyse the cosmology of a brane world model where a single brane carrying the standard model fields forms the boundary of a 5-dimensional AdS bulk (the Randall-Sundrum II scenario). We focus on the thermal radiation of bulk gravitons, the formation of the bulk black hole, and the holographic AdS/CFT definition of the RSII theory. Our detailed calculation of bulk radiation reduces previous estimates to a phenomenologically acceptable, although potentially visible level. In late cosmology, in which the Friedmann equation depends linearly on the energy density /ρ, only about 1% of energy density is lost to the black hole or, equivalently, to the `dark radiation' (Ωd,N~=0.01 at nucleosynthesis). The preceding, unconventional ρ2 period can produce up to 10% dark radiation (Ωd,Ncorrection to the standard treatment at low matter density. However, the 4-dimensional effective theory of CFT /+ gravity breaks down due to higher curvature terms for energy densities where ρ2 behaviour in the Friedmann equation is usually predicted. We emphasize that, in going beyond this energy density, the microscopic formulation of the theory becomes essential. For example, the pure AdS5 and string-motivated AdS5×S5 definitions differ in their cosmological implications.

  20. Randall-Sundrum II cosmology, AdS/CFT, and the bulk black hole

    International Nuclear Information System (INIS)

    We analyse the cosmology of a brane world model where a single brane carrying the standard model fields forms the boundary of a 5-dimensional AdS bulk (the Randall-Sundrum II scenario). We focus on the thermal radiation of bulk gravitons, the formation of the bulk black hole, and the holographic AdS/CFT definition of the RSII theory. Our detailed calculation of bulk radiation reduces previous estimates to a phenomenologically acceptable, although potentially visible level. In late cosmology, in which the Friedmann equation depends linearly on the energy density ρ, only about 1% of energy density is lost to the black hole or, equivalently, to the 'dark radiation' (Ωd,N≅0.01 at nucleosynthesis). The preceding, unconventional ρ2 period can produce up to 10% dark radiation (Ωd,N 2 correction to the standard treatment at low matter density. However, the 4-dimensional effective theory of CFT + gravity breaks down due to higher curvature terms for energy densities where ρ2 behaviour in the Friedmann equation is usually predicted. We emphasize that, in going beyond this energy density, the microscopic formulation of the theory becomes essential. For example, the pure AdS5 and string-motivated AdS5xS5 definitions differ in their cosmological implications

  1. Perturbation of Large Anti-deSitter Black Holes and AdS/CFT Correspondence

    Science.gov (United States)

    Ahmadzadegan, Aida

    As the main goal of this thesis, the canonical form of the perturbation metric of anti-de Sitter black holes in four dimensions is derived by choosing the Regge-Wheeler gauge in the standard Schwarzschild coordinates (t, r, theta, ϕ). By assuming the perturbations to be small, the differential equations governing the perturbations are obtained from the equations deltaRmunu(h ) = 0. Then, by taking the limit of m > > R where R is the radius of AdS space, the perturbation metric and field equations of large AdS black holes are found. Finally, under the shadow of AdS/CFT correspondence, these perturbations can be compared to their corresponding three-dimensional theory of fluid dynamics on the dual space, R x S2. Furthermore, by using the definitions of stress-energy tensor and its perturbation, we can find energy density, pressure and shear viscosity which are the quantities we need to describe the behavior of the fluid on the boundary of the AdS space.

  2. Thermodynamics of static dyonic AdS black holes in the ω-deformed Kaluza–Klein gauged supergravity theory

    Directory of Open Access Journals (Sweden)

    Shuang-Qing Wu

    2015-06-01

    Full Text Available We study thermodynamical properties of static dyonic AdS black holes in four-dimensional ω-deformed Kaluza–Klein gauged supergravity theory, and find that the differential first law requires a modification via introducing a new pair of thermodynamical conjugate variables (X,Y. To ensure such a modification, we then apply the quasi-local ADT formalism developed in Kim et al. (2013 [20] to calculate the quasi-local conserved charge and identify that the new pair is precisely the one previously introduced to modify the differential form of the first law.

  3. Thermodynamics of the Schwarzschild-AdS black hole with a minimal length

    CERN Document Server

    Miao, Yan-Gang

    2016-01-01

    Using the mass-smeared scheme of black holes, we study the thermodynamics of black holes. Two interesting models are considered. One is the self-regular Schwarzschild-AdS black hole whose mass density is given by the analogue to probability densities of quantum hydrogen atoms. The other model is the same black hole but whose mass density is chosen to be a rational fractional function of radial coordinates. Both mass densities are in fact analytic expressions of the ${\\delta}$-function. We analyze the phase structures of the two models by investigating the heat capacity at constant pressure and the Gibbs free energy in an isothermal-isobaric ensemble. Both models fail to decay into the pure thermal radiation even with the positive Gibbs free energy due to the existence of a minimal length. Furthermore, we extend our analysis to a general mass-smeared form that is also associated with the ${\\delta}$-function, and indicate the similar thermodynamic properties for various possible mass-smeared forms based on the ...

  4. Insight into the microscopic structure of an AdS black hole from a thermodynamical phase transition.

    Science.gov (United States)

    Wei, Shao-Wen; Liu, Yu-Xiao

    2015-09-11

    Comparing with an ordinary thermodynamic system, we investigate the possible microscopic structure of a charged anti-de Sitter black hole completely from the thermodynamic viewpoint. The number density of the black hole molecules is introduced to measure the microscopic degrees of freedom of the black hole. We found that the number density suffers a sudden change accompanied by a latent heat when the black hole system crosses the small-large black hole coexistence curve, while when the system passes the critical point, it encounters a second-order phase transition with a vanishing latent heat due to the continuous change of the number density. Moreover, the thermodynamic scalar curvature suggests that there is a weak attractive interaction between two black hole molecules. These phenomena might cast new insight into the underlying microscopic structure of a charged anti-de Sitter black hole. PMID:26406818

  5. Randall-Sundrum II Cosmology, AdS/CFT, and the Bulk Black Hole

    CERN Document Server

    Hebecker, A

    2001-01-01

    We analyse the cosmology of a brane world model where a single brane carrying the standard model fields forms the boundary of a 5-dimensional AdS bulk (the Randall-Sundrum II scenario). We focus on the thermal radiation of bulk gravitons, the formation of the bulk black hole, and the holographic AdS/CFT definition of the RSII theory. Our detailed calculation of bulk radiation reduces previous estimates to a phenomenologically acceptable, although potentially visible level. In late cosmology, in which the Friedmann equation depends linearly on the energy density \\rho, only about 1% of energy density is lost to the black hole or, equivalently, to the `dark radiation' (\\Omega_{d,N} \\simeq 0.01 at nucleosynthesis). The preceding, unconventional \\rho^2 period can produce up to 10% dark radiation (\\Omega_{d,N} <\\sim 0.1). The AdS/CFT correspondence provides an equivalent description of late RSII cosmology. We show how the AdS/CFT formulation can reproduce the \\rho^2 correction to the standard treatment at low ma...

  6. Behavior of Quasinormal Modes and high dimension RN-AdS Black Hole phase transition

    CERN Document Server

    Chabab, M; Iraoui, S; Masmar, K

    2016-01-01

    In this work we use the quasinormal frequencies of a massless scalar perturbation to probe the phase transition of the high dimension charged-AdS black hole. The signature of the critical behavior of this black hole solution is detected in the isobaric as well as in isothermal process. This paper is a natural generalization of \\cite{base} to higher dimensional spacetime. More precisely our study shows a clear signal for any dimension $d$ in the isobaric process. As to the isothermal case, we find out that this signature can be affected by other parameters like the pressure and the horizon radius. We conclude that the quasinormal modes can be an efficient tool to investigate the first order phase transition, but fail to disclose the signature of the second order phase transition.

  7. Exact Black Hole Formation in Asymptotically (A)dS and Flat Spacetimes

    CERN Document Server

    Zhang, Xuefeng

    2014-01-01

    We consider four-dimensional Einstein gravity minimally coupled to a dilaton scalar field with a supegravity-inspired scalar potential. We obtain an exact time-dependent spherically symmetric solution describing gravitational collapse to a scalar-hairy black hole. The solution can be asymptotically AdS, flat or dS depending on values of the cosmological constant parameter $\\Lambda$ in the potential. As the advanced time $u$ increases, the spacetime reaches equilibrium in an exponential fashion, i.e., $e^{-u/u_0}$ with $u_0\\sim1/(\\alpha^4 M_0)^{1/3}$, where $M_0$ is the mass of the final black hole and $\\alpha$ is the second parameter in the potential. Similar to Vaidya solution, at $u=0$, the spacetime can be matched to an (A)dS or flat vacuum except that at the origin a naked singularity may occur. Moreover, a limiting case of our solution gives rise to an (A)dS generalization of Roberts solution, thereby making it relevant to cosmic censorship. Our results provide a new model for studying the formation of r...

  8. Thermodynamics of black holes in Einstein-Gauss-Bonnet AdS gravity coupled to Nonlinear Electrodynamics

    International Nuclear Information System (INIS)

    In an arbitrary dimension D, we study quadratic corrections to Einstein-Hilbert action described by the Gauss-Bonnet term. We consider charged black hole solutions with anti-de Sitter (AdS) asymptotics, of interest in the context of gravity/gauge theory dualities (AdS/CFT). The electric charge here is due to the addition of an arbitrary nonlinear electrodynamics (NED) Lagrangian. Due to the existence of a vacuum energy for global AdS spacetime in odd dimensions in the framework of AdS/CFT correspondence, we derive a Quantum Statistical Relation directly from the Euclidean action and not from the First Law of thermodynamics. To this end, we employ a background-independent regularization scheme which consists in supplementing the bulk action with counterterms that depend both on the extrinsic and intrinsic curvatures of the boundary (also known as Kounterterms). This procedure results in a consistent inclusion of the vacuum energy in the thermodynamic description for Einstein-Gauss-Bonnet AdS gravity regardless the explicit form of the NED Lagrangian.

  9. Thermodynamics of noncommutative high-dimensional AdS black holes with non-Gaussian smeared matter distributions

    OpenAIRE

    Miao, Yan-Gang; Xu, Zhen-Ming

    2015-01-01

    Considering non-Gaussian smeared matter distributions, we investigate thermodynamic behaviors of the noncommutative high-dimensional Schwarzschild-Tangherlini anti-de Sitter black hole, and obtain the condition for the existence of extreme black holes. We indicate that the Gaussian smeared matter distribution, which is a special case of non-Gaussian smeared matter distributions, is not applicable for the 6- and higher-dimensional black holes due to the hoop conjecture. In particular, the phas...

  10. Quantum statistical relation for black holes in nonlinear electrodynamics coupled to Einstein-Gauss-Bonnet AdS gravity

    International Nuclear Information System (INIS)

    We consider curvature-squared corrections to Einstein-Hilbert gravity action in the form of a Gauss-Bonnet term in D>4 dimensions. In this theory, we study the thermodynamics of charged static black holes with anti-de Sitter (AdS) asymptotics, and whose electric field is described by nonlinear electrodynamics. These objects have received considerable attention in recent literature on gravity/gauge dualities. It is well-known that, within the framework of anti-de Sitter/conformal field theory (AdS/CFT) correspondence, there exists a nonvanishing Casimir contribution to the internal energy of the system, manifested as the vacuum energy for global AdS spacetime in odd dimensions. Because of this reason, we derive a quantum statistical relation directly from the Euclidean action and not from the integration of the first law of thermodynamics. To this end, we employ a background-independent regularization scheme which consists, in addition to the bulk action, of counterterms that depend on both extrinsic and intrinsic curvatures of the boundary (Kounterterm series). This procedure results in a consistent inclusion of the vacuum energy and chemical potential in the thermodynamic description for Einstein-Gauss-Bonnet AdS gravity regardless of the explicit form of the nonlinear electrodynamics Lagrangian.

  11. Localised $\\bf{AdS_5\\times S^5}$ Black Holes

    CERN Document Server

    Dias, Oscar J C; Way, Benson

    2016-01-01

    We numerically construct asymptotically global $\\mathrm{AdS}_5\\times \\mathrm{S}^5$ black holes that are localised on the $\\mathrm{S}^5$. These are solutions to type IIB supergravity with $\\mathrm S^8$ horizon topology that dominate the theory in the microcanonical ensemble at small energies. At higher energies, there is a first-order phase transition to $\\mathrm{AdS}_5$-Schwarzschild$\\times \\mathrm{S}^5$. By the AdS/CFT correspondence, this transition is dual to spontaneously breaking the $SO(6)$ R-symmetry of $\\mathcal N=4$ super Yang-Mills down to $SO(5)$. We extrapolate the location of this phase transition and compute the expectation value of the resulting scalar operators in the low energy phase.

  12. $Q-\\Phi$ criticality in the extended phase space of $(n+1)$-dimensional RN-AdS black holes

    CERN Document Server

    Ma, Yu-Bo; Cao, Shuo

    2016-01-01

    In order to achieve a deeper understanding of gravity theories, it is important to further investigate the thermodynamic properties of black hole at the critical point, besides the phase transition and critical behaviors. In this paper, by using Maxwell's equal area law, we choose $T,Q,\\Phi$ as the state parameters and study the phase equilibrium problem of general $(n+1)$-dimensional RN-AdS black holes thermodynamic system. The boundary of the two-phase coexistence region and its isotherm and isopotential lines are presented, which may provide theoretical foundation for studying the phase transition and phase structure of black hole systems.

  13. A Mechanism for Detection of Cooperative Black Hole Attack in Mobile Ad Hoc Networks

    CERN Document Server

    Sen, Jaydip; Ukil, Arijit

    2011-01-01

    A mobile ad hoc network (MANET) is a collection of autonomous nodes that communicate with each other by forming a multi-hop radio network and maintaining connections in a decentralized manner. Security remains a major challenge for these networks due to their features of open medium, dynamically changing topologies, reliance on cooperative algorithms,absence of centralized monitoring points, and lack of clear lines of defense. Most of the routing protocols for MANETs are thus vulnerable to various types of attacks. Ad hoc on-demand distance vector routing (AODV) is a very popular routing algorithm. However, it is vulnerable to the well-known black hole attack, where a malicious node falsely advertises good paths to a destination node during the route discovery process. This attack becomes more sever when a group of malicious nodes cooperate each other. In this paper, a defense mechanism is presented against a coordinated attack by multiple black hole nodes in a MANET. The simulation carried out on the propose...

  14. Phase transition and Thermodynamical geometry of Reissner-Nordstr\\"om-AdS Black Holes in Extended Phase Space

    OpenAIRE

    Zhang, Jia-Lin; Cai, Rong-Gen; Yu, Hongwei

    2015-01-01

    We study the thermodynamics and thermodynamic geometry of a five-dimensional Reissner-Nordstr\\"om-AdS black hole in the extended phase space by treating the cosmological constant as being related to the number of colors in the boundary gauge theory and its conjugate quantity as the associated chemical potential. It is found that the contribution of the charge of the black hole to the chemical potential is always positive and the existence of charge make the chemical potential become positive ...

  15. Quantum Statistical Relation for black holes in nonlinear electrodynamics coupled to Einstein-Gauss-Bonnet AdS gravity

    CERN Document Server

    Miskovic, Olivera

    2010-01-01

    We consider curvature-squared corrections to Einstein-Hilbert gravity action in the form of Gauss-Bonnet term in D>4 dimensions. In this theory, we study the thermodynamics of charged static black holes with anti-de Sitter (AdS) asymptotics, and whose electric field is described by nonlinear electrodynamics (NED). These objects have received considerable attention in recent literature on gravity/gauge dualities. It is well-known that, within the framework of anti de-Sitter/Conformal Field Theory (AdS/CFT) correspondence, there exists a nonvanishing Casimir contribution to the internal energy of the system, manifested as the vacuum energy for global AdS spacetime in odd dimensions. Because of this reason, we derive a Quantum Statistical Relation directly from the Euclidean action and not from the integration of the First Law of thermodynamics. To this end, we employ a background-independent regularization scheme which consists in the addition to the bulk action of counterterms that depend on both extrinsic and...

  16. Thermodynamics of Charged Kalb Ramond AdS black hole in presence of Gauss-Bonnet coupling

    CERN Document Server

    Choudhury, Sayantan

    2013-01-01

    We study the role of the Gauss-Bonnet corrections to the gravity action on the charged AdS black hole in presence of rank 3 antisymmetric Kalb Ramond tensor field strength. Analyzing the branch singularity and the killing horizon, we explicitly derive various thermodynamic parameters and study their behaviour in presence of five dimensional Gauss-Bonnet coupling in AdS space-time. The possibility of a second order phase transition is explored in the light of AdS/CMT correspondence and various critical exponents associated with the discontinuities of the various thermodynamic parameters are determined. We further comment on the universality of the well known Rushbrooke Josephson scaling law and derive a relation between the degree of homogeneity appearing in various free energies and the critical exponents by homogeneous hypothesis test. By making use of the constraints appearing from Hawking temperature and Gauss-Bonnet extended gravity version of Kubo formula we introduce a bound on the five dimensional Gaus...

  17. Black Holes in AdS/BCFT and Fluid/Gravity Correspondence

    CERN Document Server

    Magán, Javier M; Silva, Madson R O

    2014-01-01

    A proposal to describe gravity duals of conformal theories with boundaries (AdS/BCFT correspondence) was put forward by Takayanagi few years ago. However interesting solutions describing field theories at finite temperature and charge density are still lacking. In this paper we describe a class of theories with boundary, which admit black hole type gravity solutions. The theories are specified by stress-energy tensors that reside on the extensions of the boundary to the bulk. From this perspective AdS/BCFT appears analogous to the fluid/gravity correspondence. Among the class of the boundary extensions there is a special (integrable) one, for which the stress-energy tensor is fluid-like. We discuss features of that special solution as well as its thermodynamic properties.

  18. Hairy Black Hole Stability in AdS, Quantum Mechanics on the Half-Line and Holography

    CERN Document Server

    Anabalon, Andres; Oliva, Julio

    2015-01-01

    We consider the linear stability of $4$-dimensional hairy black holes with mixed boundary conditions in Anti-de Sitter spacetime. We focus on the mass of scalar fields around the maximally supersymmetric vacuum of the gauged $\\mathcal{N}=8$ supergravity in four dimensions, $m^{2}=-2l^{-2}$. It is shown that the Schr\\"{o}dinger operator on the half-line, governing the $S^{2}$, $H^{2}$ or $\\mathbb{R}^{2}$ invariant mode around the hairy black hole, allows for non-trivial self-adjoint extensions and each of them correspons to a class of mixed boundary conditions in the gravitational theory. Discarding the self-adjoint extensions with a negative mode impose a restriction on these boundary conditions. The restriction is given in terms of an integral of the potential in the Schr\\"{o}dinger operator resembling the estimate of Simon for Schr\\"{o}dinger operators on the real line. In the context of AdS/CFT duality, our result has a natural interpretation in terms of the field theory dual effective potential.

  19. Thermal String Vacuum in Black-Hole AdS Spacetime

    CERN Document Server

    Graça, E L

    2005-01-01

    In this letter we propose a new ansatz for the thermal string in the TFD formulation. From it, we derive the thermal vacuum for the closed bosonic string and calculate the thermal partition function in the blackhole $AdS$ background in the first order of the perturbative quantization.

  20. Bulk-boundary thermodynamic equivalence, and the Bekenstein and cosmic-censorship bounds for rotating charged AdS black holes

    International Nuclear Information System (INIS)

    We show that one may pass from bulk to boundary thermodynamic quantities for rotating anti-de Sitter (AdS) black holes in arbitrary dimensions so that if the bulk quantities satisfy the first law of thermodynamics then so do the boundary conformal field theory (CFT) quantities. This corrects recent claims that boundary CFT quantities satisfying the first law may only be obtained using bulk quantities measured with respect to a certain frame rotating at infinity, and which therefore do not satisfy the first law. We show that the bulk black-hole thermodynamic variables, or equivalently therefore the boundary CFT variables, do not always satisfy a Cardy-Verlinde type formula, but they do always satisfy an AdS-Bekenstein bound. The universal validity of the Bekenstein bound is a consequence of the more fundamental cosmic-censorship bound, which we find to hold in all cases examined. We also find that at fixed entropy, the temperature of a rotating black hole is bounded above by that of a nonrotating black hole, in four and five dimensions, but not in six or more dimensions. We find evidence for universal upper bounds for the area of cosmological event horizons and black-hole horizons in rotating black-hole spacetimes with a positive cosmological constant

  1. Massive charged BTZ black holes in asymptotically (a)dS spacetimes

    Science.gov (United States)

    Hendi, S. H.; Panah, B. Eslam; Panahiyan, S.

    2016-05-01

    Motivated by recent developments of BTZ black holes and interesting results of massive gravity, we investigate massive BTZ black holes in the presence of Maxwell and Born-Infeld (BI) electrodynamics. We study geometrical properties such as type of singularity and asymptotical behavior as well as thermodynamic structure of the solutions through canonical ensemble. We show that despite the existence of massive term, obtained solutions are asymptotically (a)dS and have a curvature singularity at the origin. Then, we regard varying cosmological constant and examine the Van der Waals like behavior of the solutions in extended phase space. In addition, we employ geometrical thermodynamic approaches and show that using Weinhold, Ruppeiner and Quevedo metrics leads to existence of ensemble dependency while HPEM metric yields consistent picture. For neutral solutions, it will be shown that generalization to massive gravity leads to the presence of non-zero temperature and heat capacity for vanishing horizon radius. Such behavior is not observed for linearly charged solutions while generalization to nonlinearly one recovers this property.

  2. Thermodynamics of noncommutative high-dimensional AdS black holes with non-Gaussian smeared matter distributions

    International Nuclear Information System (INIS)

    Considering non-Gaussian smeared matter distributions, we investigate the thermodynamic behaviors of the noncommutative high-dimensional Schwarzschild-Tangherlini anti-de Sitter black hole, and we obtain the condition for the existence of extreme black holes. We indicate that the Gaussian smeared matter distribution, which is a special case of non-Gaussian smeared matter distributions, is not applicable for the six- and higher-dimensional black holes due to the hoop conjecture. In particular, the phase transition is analyzed in detail. Moreover, we point out that the Maxwell equal area law holds for the noncommutative black hole whose Hawking temperature is within a specific range, but fails for one whose the Hawking temperature is beyond this range. (orig.)

  3. Thermodynamics of noncommutative high-dimensional AdS black holes with non-Gaussian smeared matter distributions

    Science.gov (United States)

    Miao, Yan-Gang; Xu, Zhen-Ming

    2016-04-01

    Considering non-Gaussian smeared matter distributions, we investigate the thermodynamic behaviors of the noncommutative high-dimensional Schwarzschild-Tangherlini anti-de Sitter black hole, and we obtain the condition for the existence of extreme black holes. We indicate that the Gaussian smeared matter distribution, which is a special case of non-Gaussian smeared matter distributions, is not applicable for the six- and higher-dimensional black holes due to the hoop conjecture. In particular, the phase transition is analyzed in detail. Moreover, we point out that the Maxwell equal area law holds for the noncommutative black hole whose Hawking temperature is within a specific range, but fails for one whose the Hawking temperature is beyond this range.

  4. Thermodynamics of noncommutative high-dimensional AdS black holes with non-Gaussian smeared matter distributions

    Energy Technology Data Exchange (ETDEWEB)

    Miao, Yan-Gang [Nankai University, School of Physics, Tianjin (China); Chinese Academy of Sciences, State Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, P.O. Box 2735, Beijing (China); CERN, PH-TH Division, Geneva 23 (Switzerland); Xu, Zhen-Ming [Nankai University, School of Physics, Tianjin (China)

    2016-04-15

    Considering non-Gaussian smeared matter distributions, we investigate the thermodynamic behaviors of the noncommutative high-dimensional Schwarzschild-Tangherlini anti-de Sitter black hole, and we obtain the condition for the existence of extreme black holes. We indicate that the Gaussian smeared matter distribution, which is a special case of non-Gaussian smeared matter distributions, is not applicable for the six- and higher-dimensional black holes due to the hoop conjecture. In particular, the phase transition is analyzed in detail. Moreover, we point out that the Maxwell equal area law holds for the noncommutative black hole whose Hawking temperature is within a specific range, but fails for one whose the Hawking temperature is beyond this range. (orig.)

  5. Thermodynamics of noncommutative high-dimensional AdS black holes with non-Gaussian smeared matter distributions

    CERN Document Server

    Miao, Yan-Gang

    2015-01-01

    Considering non-Gaussian smeared matter distributions, we investigate thermodynamic behaviors of the noncommutative high-dimensional Schwarzschild-Tangherlini anti-de Sitter black hole, and obtain the condition for the existence of extreme black holes. We indicate that the Gaussian smeared matter distribution, which is a special case of non-Gaussian smeared matter distributions, is not applicable for the 6- and higher-dimensional black holes due to the hoop conjecture. In particular, the phase transition is analyzed in detail. Moreover, we point out that the Maxwell equal area law maintains for the noncommutative black hole with the Hawking temperature within a specific range, but fails with the Hawking temperature beyond this range.

  6. The Hawking temperature in the context of dark energy for four-dimensional asymptotically AdS black holes with scalar hair

    OpenAIRE

    Naji, J

    2014-01-01

    In this paper, we considered new solutions for four-dimensional asymptotically AdS black holes with scalar hair and discuss about Hawking temperature in the context of dark energy by using the tunneling method. We obtain modification of the Hawking temperature due to presence of the dark energy.

  7. Holographic superconductors in the AdS black hole with a magnetic charge

    International Nuclear Information System (INIS)

    In this work, we study the analytical properties of a 2 + 1-dimensional magnetically charged holographic superconductor in AdS4. We obtain the critical chemical potential μc analytically, using the Sturm-Liouville variational approach. Further, by applying the perturbation scheme, we obtain the electrical conductivity of the model. We observe that the real part of the σ increases and the imaginary part of the conductivity decreases monotonously versus the frequency ω. Each module of σ has a minimum value, which is similar to the case of the uncharged Schwarachild-AdS background. Further, we also conclude that the value of ωε/Tc increases. For the condensate operator O2 we find that, as the frequency ω increases for fixed H, the real part has a common behavior. However, the imaginary part possesses a minimum value in this case and the location of this minimum value changes along right when H increases. We find that at ω = 0, the real part of conductivity behaves as a delta function and the imaginary part exists as a pole in the background. This pole may be related to the existence of a magnetic monopole. Also, the obtained analytic result can be used to back up numerical computations in the holographic superconductor in the probe limit.

  8. P-V Criticality of Conformal Anomaly Corrected AdS Black Holes

    OpenAIRE

    Liu, Wen-Biao; Mo, Jie-Xiong

    2015-01-01

    The effects of conformal anomaly on the thermodynamics of black holes are investigated in this paper from the perspective of P-V criticality of AdS black holes. Treating the cosmological constant as thermodynamic pressure, we extend the recent research to the extended phase space. Firstly, we study the P - V criticality of the uncharged AdS black holes with conformal anomaly and find that conformal anomaly does not influence whether there exists Van der Waals like critical behavior. Secondly,...

  9. The landscape of string theory (orientifolds and their statistics, D-brane instantons, AdS4 domain walls and black holes)

    International Nuclear Information System (INIS)

    In this talk we discuss various aspects of the string landscape: D-brane model building and their statistics, the generation of non-perturbative superpotentials from D-brane instantons, moduli stabilization by fluxes and non-perturbative effects, the relation between flux vacua and BPS black holes, the construction of AdS4 vacua and related domain wall solutions, transitions between flux vacua and also some constraints on the string landscape from black hole considerations. (Abstract Copyright [2008], Wiley Periodicals, Inc.)

  10. A proposal of the gauge theory description of the small Schwarzschild black hole in AdS$_5\\times$S$^5$

    CERN Document Server

    Hanada, Masanori

    2016-01-01

    Based on 4d ${\\cal N}=4$ SYM on $\\mathbb{R}^{1}\\times$S$^3$, a gauge theory description of a small black hole in AdS$_5\\times$S$^5$ is proposed. The change of the number of dynamical degrees of freedom associated with the emission of the scalar fields' eigenvalues plays a crucial role in this description. By analyzing the microcanonical ensemble, the Hagedorn behavior of long strings at low energy is obtained. Modulo an assumption based on the AdS/CFT duality for a large black hole, the energy of the small ten-dimensional Schwarzschild black hole $E\\sim 1/(G_{\\rm 10,N}T^7)$ is derived. %(We will eliminate necessity of this assumption by giving a heuristic argument based only on gauge theory.) A heuristic gauge theory argument supporting this assumption is also given. The same argument applied to the ABJM theory correctly reproduces the relation for the eleven-dimensional Schwarzschild black hole. One of the consequences of our proposal is that the small and large black holes are very similar when seen from th...

  11. Thermodynamics of third order Lovelock adS black holes in the presence of Born-Infeld type nonlinear electrodynamics

    CERN Document Server

    Hendi, Seyed Hossein

    2015-01-01

    In this paper, we obtain topological black hole solutions of third order Lovelock gravity couple with two classes of Born-Infeld type nonlinear electrodynamics with anti-de Sitter asymptotic structure. We investigate geometric and thermodynamics properties of the solutions and obtain conserved quantities of the black holes. We examine the first law of thermodynamics and find that the conserved and thermodynamic quantities of the black hole solutions satisfy the first law of thermodynamics. Finally, we calculate the heat capacity and determinant of Hessian matrix to evaluate thermal stability in both canonical and grand canonical ensembles. Moreover, we consider extended phase space thermodynamics to obtain generalized first law of thermodynamics as well as extended Smarr formula.

  12. Thermodynamical Structure of AdS Black Holes in Massive Gravity with Stringy Gauge-Gravity Corrections

    CERN Document Server

    Hendi, S H; Panahiyan, S

    2015-01-01

    Motivated by gauge/gravity group in the low energy effective theory of the heterotic string theory, the minimal coupling of Gauss-Bonnet-massive gravity with Born-Infeld electrodynamics is considered. At first the metric function is calculated and then the geometrical properties of the solutions are investigated. It is found that there is an essential singularity at the origin and the intrinsic curvature is regular elsewhere. In addition, the effects of massive parameters on the horizons of black holes are studied and the conserved and thermodynamic quantities are calculated. Also, it is shown that the solutions satisfy the first law of thermodynamics. Furthermore using heat capacity of these black holes, thermal stability and phase transitions are investigated. The variation of different parameters and related modifications on the (number of) phase transition are examined. Next, the critical behavior of the Gauss-Bonnet-Born-Infeld-massive black holes in context of extended phase space is studied. It is show...

  13. Non-susy D3 brane and an interpolating solution between AdS$_5$ black hole, AdS$_5$ soliton and a `soft-wall' gravity solution

    OpenAIRE

    Roy, Shibaji

    2015-01-01

    It is known from the work in \\cite{Lu:2007bu} of Lu et. al. that the non-supersymmetric charged D3-brane (with anisotropies in time as well as one of the spatial directions of D3-brane) of type IIB string theory is characterized by five independent parameters. By fixing one of the parameters and zooming into a particular region of space-time we construct a four parameter family of solution in AdS$_5$, which interpolates between AdS$_5$ black hole and AdS$_5$ soliton (when one of spatial direc...

  14. AdS/CFT without holography: A hidden dimension on the CFT side and implications for black-hole entropy

    CERN Document Server

    Nikolic, H

    2015-01-01

    We propose a new non-holographic formulation of AdS/CFT correspondence, according to which quantum gravity on AdS and its dual non-gravitational field theory both live in the same number D of dimensions. The field theory, however, appears (D-1)-dimensional because the interactions do not propagate in one of the dimensions. The D-dimensional action for the field theory can be identified with the sum over (D-1)-dimensional actions with all possible values $\\Lambda$ of the UV cutoff, so that the extra hidden dimension can be identified with $\\Lambda$. Since there are no interactions in the extra dimension, most of the practical results of standard holographic AdS/CFT correspondence transcribe to non-holographic AdS/CFT without any changes. However, the implications on black-hole entropy change significantly. The maximal black-hole entropy now scales with volume, while the Bekenstein-Hawking entropy is interpreted as the minimal possible black-hole entropy. In this way, the non-holographic AdS/CFT correspondence ...

  15. Superfluid Black Holes

    CERN Document Server

    Hennigar, Robie A; Tjoa, Erickson

    2016-01-01

    We present what we believe is the first example of a "$\\lambda$-line" phase transition in black hole thermodynamics. This is a line of (continuous) second order phase transitions which in the case of liquid $^4$He marks the onset of superfluidity. The phase transition occurs for a class of asymptotically AdS hairy black holes in Lovelock gravity where a real scalar field is conformally coupled to gravity. We discuss the origin of this phase transition and outline the circumstances under which it (or generalizations of it) could occur.

  16. Discrete D-branes in AdS{sub 3} and in the 2d black hole

    Energy Technology Data Exchange (ETDEWEB)

    Ribault, S.

    2005-12-01

    I show how the AdS{sub 2} D-branes in the Euclidean AdS{sub 3} string theory are related to the continuous D-branes in Liouville theory. I then propose new discrete D-branes in the Euclidean AdS{sub 3} which correspond to the discrete D-branes in Liouville theory. These new D-branes satisfy the appropriate shift equations. They give rise to two families of discrete D-branes in the 2d black hole, which preserve different symmetries. (orig.)

  17. Geodesic Motion in the Spacetime Of a SU(2)-Colored (A)dS Black Hole in Conformal Gravity

    CERN Document Server

    Hoseini, Bahareh; Soroushfar, Saheb

    2016-01-01

    In this paper we are interested to study the geodesic motion in the spacetime of a SU(2)-colored (A)dS black hole solving in conformal gravity. Using Weierstrass elliptic and Kleinian {\\sigma} hyperelliptic functions, we derive the analytical solutions for the equation of motion of test particles and light rays. Also, we classify the possible orbits according to the particle's energy and angular momentum.

  18. Black hole nonmodal linear stability: the Schwarzschild (A)dS cases

    CERN Document Server

    Dotti, Gustavo

    2016-01-01

    The nonmodal linear stability of the Schwarzschild black hole established in Phys.\\ Rev.\\ Lett.\\ {\\bf 112} (2014) 191101 is generalized to the case of nonnegative cosmological constant $\\Lambda$. Two gauge invariant combinations $G_{\\pm}$ of perturbed scalars made out of the Weyl tensor and its first covariant derivative are found such that the map $[h_{\\alpha \\beta}] \\to \\left( G_- \\left([h_{\\alpha \\beta}] \\right), G_+ \\left([h_{\\alpha \\beta}] \\right) \\right)$, $[h_{\\alpha \\beta}]$ an equivalence class under gauge transformations of a solution of the linearized Einstein's equation, is invertible. The way to reconstruct a representative of $[h_{\\alpha \\beta}]$ in terms of $(G_-,G_+)$ is given. It is proved that, for an arbitrary perturbation consistent with the background asymptote, $G_+$ and $G_-$ are bounded in the the outer static region. At large times, the perturbation decays leaving a linearized Kerr black hole around the Schwarzschild or Schwarschild de Sitter background solution. For negative cosmolog...

  19. Analytical and exact critical phenomena of d -dimensional singly spinning Kerr-AdS black holes

    Science.gov (United States)

    Wei, Shao-Wen; Cheng, Peng; Liu, Yu-Xiao

    2016-04-01

    In the extended phase space, the d -dimensional singly spinning Kerr-anti-de Sitter black holes exhibit the van der Waals phase transition and reentrant phase transition. Since the black hole system is a single-characteristic-parameter system, we show that the form of the critical point can be uniquely determined by the dimensional analysis. When d =4 , we get the analytical critical point. The coexistence curve and phase diagram are obtained. The result shows that the fitting form of the coexistence curve in the reduced parameter space is independent of the angular momentum. When d =5 - 9 , the exact critical points are numerically solved. It demonstrates that when d ≥6 , there are two critical points. However, the small one does not participate in the phase transition. Moreover, the exact critical reentrant phase transition points are also obtained. All the critical points are obtained without any approximation.

  20. Clapeyron equations and fitting formula of the coexistence curve in the extended phase space of the charged AdS black holes

    CERN Document Server

    Wei, Shao-Wen

    2014-01-01

    In this paper, we first review the equal area laws and Clapeyron equations in the extended phase space of the charged AdS black holes. With different fixed parameters, the Maxwell's equal area law not only hold in $P-V$ (pressure-thermodynamic volume) oscillatory line, but also in $Q-\\Phi$ (charge-electric potential) and $T-S$ (temperature-entropy) oscillatory lines. The classical Clapeyron equation also obtains its generalizations that two extra equations are found. Moreover, we present the fitting formula of the coexistence curve that the small and large charged black holes coexist. The result shows that the fitting formula is charge independent in the reduced parameter space for any dimension of spacetime. Using such analytic expression of the coexistence curve, we find that the Clapeyron equations are highly consistent with the calculated values. The fitting formula is useful for further study on the thermodynamic property of the system varying along the coexistence curve.

  1. Information Storage in Black Holes

    OpenAIRE

    Maia, M. D.

    2005-01-01

    The information loss paradox for Schwarzschild black holes is examined, using the ADS/CFT correspondence extended to the $M_6 (4,2)$ bulk. It is found that the only option compatible with the preservation of the quantum unitarity is when a regular remnant region of the black hole survives to the black hole evaporation process, where information can be stored and eventually retrieved.

  2. Noncommutative black holes

    International Nuclear Information System (INIS)

    We study noncommutative black holes, by using a diffeomorphism between the Schwarzschild black hole and the Kantowski-Sachs cosmological model, which is generalized to noncommutative minisuperspace. Through the use of the Feynman-Hibbs procedure we are able to study the thermodynamics of the black hole, in particular, we calculate Hawking's temperature and entropy for the 'noncommutative' Schwarzschild black hole

  3. Black Hole Bose Condensation

    International Nuclear Information System (INIS)

    General consensus on the nature of the degrees of freedom responsible for the black hole entropy remains elusive despite decades of effort dedicated to the problem. Different approaches to quantum gravity disagree in their description of the microstates and, more significantly, in the statistics used to count them. In some approaches (string theory, AdS/CFT) the elementary degrees of freedom are indistinguishable, whereas they must be treated as distinguishable in other approaches to quantum gravity (eg., LQG) in order to recover the Bekenstein-Hawking area-entropy law. However, different statistics will imply different behaviors of the black hole outside the thermodynamic limit. We illustrate this point by quantizing the Bañados-Teitelboim-Zanelli (BTZ) black hole, for which we argue that Bose condensation will occur leading to a cold, stable remnant

  4. Black Hole Bose Condensation

    Science.gov (United States)

    Vaz, Cenalo; Wijewardhana, L. C. R.

    2013-12-01

    General consensus on the nature of the degrees of freedom responsible for the black hole entropy remains elusive despite decades of effort dedicated to the problem. Different approaches to quantum gravity disagree in their description of the microstates and, more significantly, in the statistics used to count them. In some approaches (string theory, AdS/CFT) the elementary degrees of freedom are indistinguishable, whereas they must be treated as distinguishable in other approaches to quantum gravity (eg., LQG) in order to recover the Bekenstein-Hawking area-entropy law. However, different statistics will imply different behaviors of the black hole outside the thermodynamic limit. We illustrate this point by quantizing the Bañados-Teitelboim-Zanelli (BTZ) black hole, for which we argue that Bose condensation will occur leading to a "cold", stable remnant.

  5. Phase transition in black holes

    CERN Document Server

    Roychowdhury, Dibakar

    2014-01-01

    The present thesis is devoted towards the study of various aspects of the phase transition phenomena occurring in black holes defined in an Anti-de-Sitter (AdS) space. Based on the fundamental principles of thermodynamics and considering a grand canonical framework we examine various aspects of the phase transition phenomena occurring in AdS black holes. We analytically check that this phase transition between the smaller and larger mass black holes obey Ehrenfest relations defined at the critical point and hence confirm a second order phase transition. This include both the rotating and charged black holes in Einstein gravity. Apart from studying these issues, based on a canonical framework, we also investigate the critical behavior in charged AdS black holes. The scaling laws for these black holes are found to be compatible with the static scaling hypothesis. Finally, based on the usual framework of AdS/CFT duality, we investigate the phase transition phenomena occurring in charged hairy black holes defined...

  6. Hawking Radiation of Massive Vector Particles From Warped AdS$_{\\text{3}}$ Black Hole

    CERN Document Server

    Gursel, H

    2015-01-01

    Hawking radiation (HR) of massive vector particles from a rotating Warped Anti-de Sitter black hole in 2+1 dimensions (WAdS$_{\\text{3}}$BH) is studied in detail. The quantum tunneling approach with the Hamilton-Jacobi method (HJM) is applied in the Proca equation (PE), and we show that the radial function yields the tunneling rate of the outgoing particles. Comparing the result obtained with the Boltzmann factor, we satisfactorly reproduce the Hawking temperature (HT) of the WAdS$_{\\text{3}}$BH.

  7. The Klein–Gordon equation on the toric AdS-Schwarzschild black hole

    Science.gov (United States)

    Dunn, Jake; Warnick, Claude

    2016-06-01

    We consider the Klein–Gordon equation on the exterior of the toric anti de-Sitter Schwarzschild black hole with Dirichlet, Neumann and Robin boundary conditions at { I }. We define a non-degenerate energy for the equation which controls the renormalised H 1 norm of the field. We then establish both decay and integrated decay of this energy through vector field methods. Finally, we demonstrate the necessity of ‘losing a derivative’ in the integrated energy estimate through the construction of a Gaussian beam staying in the exterior of the event horizon for arbitrarily long coordinate time.

  8. Are black holes totally black?

    CERN Document Server

    Grib, A A

    2014-01-01

    Geodesic completeness needs existence near the horizon of the black hole of "white hole" geodesics coming from the region inside of the horizon. Here we give the classification of all such geodesics with the energies $E/m \\le 1$ for the Schwarzschild and Kerr's black hole. The collisions of particles moving along the "white hole" geodesics with those moving along "black hole" geodesics are considered. Formulas for the increase of the energy of collision in the centre of mass frame are obtained and the possibility of observation of high energy particles arriving from the black hole to the Earth is discussed.

  9. Black Hole Masses are Quantized

    CERN Document Server

    Dvali, Gia; Mukhanov, Slava

    2011-01-01

    We give a simple argument showing that in any sensible quantum field theory the masses of black holes cannot assume continuous values and must be quantized. Our proof solely relies on Poincare-invariance of the asymptotic background, and is insensitive to geometric characteristics of black holes or other peculiarities of the short distance physics. Therefore, our results are equally-applicable to any other localized objects on asymptotically Poincare-invariant space, such as classicalons. By adding a requirement that in large mass limit the quantization must approximately account for classical results, we derive an universal quantization rule applicable to all classicalons (including black holes) in arbitrary number of dimensions. In particular, this implies, that black holes cannot emit/absorb arbitrarily soft quanta. The effect has phenomenological model-independent implications for black holes and other classicalons that may be created at LHC. We predict, that contrary to naive intuition, the black holes a...

  10. Einstein-Born-Infeld-Massive Gravity: adS-Black Hole Solutions and their Thermal Stability

    CERN Document Server

    Hendi, Seyed Hossein; Panahiyan, Shahram

    2015-01-01

    In this paper, we study massive gravity in the presence of Born-Infeld nonlinear electrodynamics. First, we obtain metric function related to this gravity and investigate the geometry of the solutions and find that there is an essential singularity at the origin ($r=0$). It will be shown that due to contribution of the massive part, the number, types and places of horizons may be changed. Next, we calculate the conserved and thermodynamic quantities and check the validation of the first law of thermodynamics. We also investigate thermal stability of these black holes in context of canonical ensemble. It will be shown that number, type and place of phase transitions points are functions of the different parameters which lead to dependency of stability conditions to these parameters. Also, it will be shown how the behavior of the temperature is modified due to extension of massive gravity and strong nonlinearity parameter.

  11. Black holes and Higgs stability

    CERN Document Server

    Tetradis, Nikolaos

    2016-01-01

    We study the effect of primordial black holes on the classical rate of nucleation of AdS regions within the standard electroweak vacuum. We find that the energy barrier for transitions to the new vacuum, which characterizes the exponential suppression of the nucleation rate, can be reduced significantly in the black-hole background. A precise analysis is required in order to determine whether the the existence of primordial black holes is compatible with the form of the Higgs potential at high temperature or density in the Standard Model or its extensions.

  12. The Black Hole Information Problem

    CERN Document Server

    Polchinski, Joseph

    2016-01-01

    The black hole information problem has been a challenge since Hawking's original 1975 paper. It led to the discovery of AdS/CFT, which gave a partial resolution of the paradox. However, recent developments, in particular the firewall puzzle, show that there is much that we do not understand. I review the black hole, Hawking radiation, and the Page curve, and the classic form of the paradox. I discuss AdS/CFT as a partial resolution. I then discuss black hole complementarity and its limitations, leading to many proposals for different kinds of `drama.' I conclude with some recent ideas.

  13. Thermodynamics of Lifshitz black holes

    Science.gov (United States)

    Devecioǧlu, Deniz Olgu; Sarıoǧlu, Özgür

    2011-06-01

    We apply the recently extended conserved Killing charge definition of Abbott-Deser-Tekin formalism to compute, for the first time, the energies of analytic Lifshitz black holes in higher dimensions. We then calculate the temperature and the entropy of this large family of solutions, and study and discuss the first law of black hole thermodynamics. Along the way we also identify the possible critical points of the relevant quadratic curvature gravity theories. Separately, we also apply the generalized Killing charge definition to compute the energy and the angular momentum of the warped AdS3 black hole solution of the three-dimensional new massive gravity theory.

  14. Nonstationary analogue black holes

    International Nuclear Information System (INIS)

    We study the existence of analogue nonstationary spherically symmetric black holes. The prime example is the acoustic model see Unruh (1981 Phys. Rev. Lett. 46 1351). We consider also a more general class of metrics that could be useful in other physical models of analogue black and white holes. We give examples of the appearance of black holes and of disappearance of white holes. We also discuss the relation between the apparent and the event horizons for the case of analogue black holes. In the end we study the inverse problem of determination of black or white holes by boundary measurements for the spherically symmetric nonstationary metrics. (paper)

  15. Dynamics of black holes

    OpenAIRE

    Hayward, Sean A.

    2008-01-01

    This is a review of current theory of black-hole dynamics, concentrating on the framework in terms of trapping horizons. Summaries are given of the history, the classical theory of black holes, the defining ideas of dynamical black holes, the basic laws, conservation laws for energy and angular momentum, other physical quantities and the limit of local equilibrium. Some new material concerns how processes such as black-hole evaporation and coalescence might be described by a single trapping h...

  16. Noncommutative black holes

    Energy Technology Data Exchange (ETDEWEB)

    Lopez-DomInguez, J C [Instituto de Fisica de la Universidad de Guanajuato PO Box E-143, 37150 Leoen Gto. (Mexico); Obregon, O [Instituto de Fisica de la Universidad de Guanajuato PO Box E-143, 37150 Leoen Gto. (Mexico); RamIrez, C [Facultad de Ciencias FIsico Matematicas, Universidad Autonoma de Puebla, PO Box 1364, 72000 Puebla (Mexico); Sabido, M [Instituto de Fisica de la Universidad de Guanajuato PO Box E-143, 37150 Leoen Gto. (Mexico)

    2007-11-15

    We study noncommutative black holes, by using a diffeomorphism between the Schwarzschild black hole and the Kantowski-Sachs cosmological model, which is generalized to noncommutative minisuperspace. Through the use of the Feynman-Hibbs procedure we are able to study the thermodynamics of the black hole, in particular, we calculate Hawking's temperature and entropy for the 'noncommutative' Schwarzschild black hole.

  17. Black Hole Statistics

    OpenAIRE

    Strominger, Andrew

    1993-01-01

    The quantum statistics of charged, extremal black holes is investigated beginning with the hypothesis that the quantum state is a functional on the space of closed three-geometries, with each black hole connected to an oppositely charged black hole through a spatial wormhole. From this starting point a simple argument is given that a collection of extremal black holes obeys neither Bose nor Fermi statistics. Rather they obey an exotic variety of particle statistics known as ``infinite statist...

  18. Phantom Black Holes

    OpenAIRE

    Gao, C. J.; Zhang, S. N.

    2006-01-01

    The exact solutions of electrically charged phantom black holes with the cosmological constant are constructed. They are labelled by the mass, the electrical charge, the cosmological constant and the coupling constant between the phantom and the Maxwell field. It is found that the phantom has important consequences on the properties of black holes. In particular, the extremal charged phantom black holes can never be achieved and so the third law of thermodynamics for black holes still holds. ...

  19. Constraints on force-free magnetospheres for Kerr(-AdS) black holes with non-null currents

    CERN Document Server

    Wang, Xun

    2015-01-01

    Force-free magnetospheres are of particular interest due to their role in energy extraction from Kerr black holes via the Blandford-Znajek process. Recently, a class of exact analytic solutions has been found with null currents [1,2]. In this paper, we elaborate some constraints on various force-free magnetosphere solutions with non-null currents, utilizing the Newman-Penrose electromagnetic scalars to categorize a range of different cases. We perform a thorough search for stationary and axisymmetric (SAS) solutions, and find that putative SAS solutions within the categories considered generically exhibit singularities on the horizon. We also present some non-SAS solutions found via spacetime-dependent electric-magnetic duality rotations. Additional special solutions in flat, pure AdS and near-horizon-extreme-Kerr (NHEK) spacetimes are also presented.

  20. Einstein-Born-Infeld-massive gravity: adS-black hole solutions and their thermodynamical properties

    Science.gov (United States)

    Hendi, S. H.; Panah, B. Eslam; Panahiyan, S.

    2015-11-01

    In this paper, we study massive gravity in the presence of Born-Infeld nonlinear electrodynamics. First, we obtain metric function related to this gravity and investigate the geometry of the solutions and find that there is an essential singularity at the origin ( r = 0). It will be shown that due to contribution of the massive part, the number, type and place of horizons may be changed. Next, we calculate the conserved and thermodynamic quantities and check the validation of the first law of thermodynamics. We also investigate thermal stability of these black holes in context of canonical ensemble. It will be shown that number, type and place of phase transition points are functions of different parameters which lead to dependency of stability conditions to these parameters. Also, it will be shown how the behavior of temperature is modified due to extension of massive gravity and strong nonlinearity parameter. Next, critical behavior of the system in extended phase space by considering cosmological constant as pressure is investigated. A study regarding neutral Einstein-massive gravity in context of extended phase space is done. Geometrical approach is employed to study the thermodynamical behavior of the system in context of heat capacity and extended phase space. It will be shown that GTs, heat capacity and extended phase space have consistent results. Finally, critical behavior of the system is investigated through use of another method. It will be pointed out that the results of this method is in agreement with other methods and follow the concepts of ordinary thermodynamics.

  1. Black Hole Battery

    Science.gov (United States)

    Levin, Janna; D'Orazio, Daniel

    2016-03-01

    Black holes are dark dead stars. Neutron stars are giant magnets. As the neutron star orbits the black hole, an electronic circuit forms that generates a blast of power just before the black hole absorbs the neutron star whole. The black hole battery conceivably would be observable at cosmological distances. Possible channels for luminosity include synchro-curvature radiation, a blazing fireball, or even an unstable, short-lived black hole pulsar. As suggested by Mingarelli, Levin, and Lazio, some fraction of the battery power could also be reprocessed into coherent radio emission to populate a subclass of fast radio bursts.

  2. Black holes and branes in string theory

    CERN Document Server

    Skenderis, K

    1999-01-01

    This is a set of introductory lecture notes on black holes in string theory. After reviewing some aspects of string theory such as dualities, brane solutions, supersymmetric and non-extremal intersection rules, we analyze in detail extremal and non-extremal 5d black holes. We first present the D-brane counting for extremal black holes. Then we show that 4d and 5d non-extremal black holes can be mapped to the BTZ black hole (times a compact manifold) by means of dualities. The validity of these dualities is analyzed in detail. We present an analysis of the same system in the spirit of the adS/CFT correspondence. In the ``near-horizon'' limit (which is actually a near inner-horizon limit for non-extremal black holes) the black hole reduces again to the BTZ black hole. A state counting is presented in terms of the BTZ black hole.

  3. Phase transition and Thermodynamical geometry of Reissner-Nordstr\\"om-AdS Black Holes in Extended Phase Space

    CERN Document Server

    Zhang, Jia-Lin; Yu, Hongwei

    2015-01-01

    We study the thermodynamics and thermodynamic geometry of a five-dimensional Reissner-Nordstr\\"om-AdS black hole in the extended phase space by treating the cosmological constant as being related to the number of colors in the boundary gauge theory and its conjugate quantity as the associated chemical potential. It is found that the contribution of the charge of the black hole to the chemical potential is always positive and the existence of charge make the chemical potential become positive more easily. We calculate the scalar curvatures of the thermodynamical Weinhold metric, Ruppeiner metric and Quevedo metric, respectively, in the fixed $N^2$ case and the fixed $q$ case. It is found that in the fixed $N^2$ case the divergence of the scalar curvature is related to the divergence of the specific heat with fixed electric potential in the Weinhold metric and Ruppeiner metric, and the divergence of the scalar curvature in the Quevedo metric corresponds to the divergence of the specific heat with fixed electric...

  4. Black Hole Bound State Metamorphosis

    CERN Document Server

    Chowdhury, Abhishek; Saha, Arunabha; Sen, Ashoke

    2012-01-01

    N=4 supersymmetric string theories contain negative discriminant states whose numbers are known precisely from microscopic counting formulae. On the macroscopic side, these results can be reproduced by regarding these states as multi-centered black hole configurations provided we make certain identification of apparently distinct multi-centered black hole configurations according to a precise set of rules. In this paper we provide a physical explanation of such identifications, thereby establishing that multi-centered black hole configurations reproduce correctly the microscopic results for the number of negative discriminant states without any ad hoc assumption.

  5. Vacuum metastability with black holes.

    OpenAIRE

    Burda, Philipp; Gregory, Ruth; Moss, Ian

    2015-01-01

    We consider the possibility that small black holes can act as nucleation seeds for the decay of a metastable vacuum, focussing particularly on the Higgs potential. Using a thin-wall bubble approximation for the nucleation process, which is possible when generic quantum gravity corrections are added to the Higgs potential, we show that primordial black holes can stimulate vacuum decay. We demonstrate that for suitable parameter ranges, the vacuum decay process dominates over the Hawking evapor...

  6. Stimulated Black Hole Evaporation

    CERN Document Server

    Spaans, Marco

    2016-01-01

    Black holes are extreme expressions of gravity. Their existence is predicted by Einstein's theory of general relativity and is supported by observations. Black holes obey quantum mechanics and evaporate spontaneously. Here it is shown that a mass rate $R_f\\sim 3\\times 10^{-8} (M_0/M)^{1/2}$ $M_0$ yr$^{-1}$ onto the horizon of a black hole with mass $M$ (in units of solar mass $M_0$) stimulates a black hole into rapid evaporation. Specifically, $\\sim 3 M_0$ black holes can emit a large fraction of their mass, and explode, in $M/R_f \\sim 3\\times 10^7 (M/M_0)^{3/2}$ yr. These stimulated black holes radiate a spectral line power $P \\sim 2\\times 10^{39} (M_0/M)^{1/2}$ erg s$^{-1}$, at a wavelength $\\lambda \\sim 3\\times 10^5 (M/M_0)$ cm. This prediction can be observationally verified.

  7. Astrophysical black holes

    CERN Document Server

    Gorini, Vittorio; Moschella, Ugo; Treves, Aldo; Colpi, Monica

    2016-01-01

    Based on graduate school lectures in contemporary relativity and gravitational physics, this book gives a complete and unified picture of the present status of theoretical and observational properties of astrophysical black holes. The chapters are written by internationally recognized specialists. They cover general theoretical aspects of black hole astrophysics, the theory of accretion and ejection of gas and jets, stellar-sized black holes observed in the Milky Way, the formation and evolution of supermassive black holes in galactic centers and quasars as well as their influence on the dynamics in galactic nuclei. The final chapter addresses analytical relativity of black holes supporting theoretical understanding of the coalescence of black holes as well as being of great relevance in identifying gravitational wave signals. With its introductory chapters the book is aimed at advanced graduate and post-graduate students, but it will also be useful for specialists.

  8. Evidence for black holes.

    Science.gov (United States)

    Begelman, Mitchell C

    2003-06-20

    Black holes are common objects in the universe. Each galaxy contains large numbers-perhaps millions-of stellar-mass black holes, each the remnant of a massive star. In addition, nearly every galaxy contains a supermassive black hole at its center, with a mass ranging from millions to billions of solar masses. This review discusses the demographics of black holes, the ways in which they interact with their environment, factors that may regulate their formation and growth, and progress toward determining whether these objects really warp spacetime as predicted by the general theory of relativity. PMID:12817138

  9. Black hole statistics

    International Nuclear Information System (INIS)

    The quantum statistics of charged, extremal black holes is investigated beginning with the hypothesis that the quantum state is a functional on the space of closed three-geometries, with each black hole connected to an oppositely charged black hole through a spatial wormhole. From this starting point a simple argument is given that a collection of extremal black holes obeys neither Bose nor Fermi statistics. Rather, they obey an exotic variety of particle statistics known as ''infinite statistics'' which resembles that of distinguishable particles and is realized by a q deformation of the quantum commutation relations

  10. Deforming regular black holes

    CERN Document Server

    Neves, J C S

    2015-01-01

    In this work, we have deformed regular black holes which possess a general mass term described by a function which generalizes the Bardeen and Hayward mass terms. Using linear constraints in the energy-momentum tensor, the solutions are either regular or singular. That is, with this approach, it is possible to generate singular black holes from regular black holes and vice versa. Moreover, contrary to the Bardeen and Hayward regular solutions, the regular deformed metrics may violate the weak energy condition despite the presence of the spherical symmetry. Some comments on accretion of deformed black holes in cosmological scenarios are made.

  11. White holes and eternal black holes

    International Nuclear Information System (INIS)

    We investigate isolated white holes surrounded by vacuum, which correspond to the time reversal of eternal black holes that do not evaporate. We show that isolated white holes produce quasi-thermal Hawking radiation. The time reversal of this radiation, incident on a black hole precursor, constitutes a special preparation that will cause the black hole to become eternal. (paper)

  12. White holes and eternal black holes

    OpenAIRE

    Stephen D. H. Hsu

    2010-01-01

    We investigate isolated white holes surrounded by vacuum, which correspond to the time reversal of eternal black holes that do not evaporate. We show that isolated white holes produce quasi- thermal Hawking radiation. The time reversal of this radiation, incident on a black hole precursor, constitutes a special preparation that will cause the black hole to become eternal.

  13. Black holes and beyond

    International Nuclear Information System (INIS)

    Belief in the existence of black holes is the ultimate act of faith for a physicist. First suggested by the English clergyman John Michell in the year 1784, the gravitational pull of a black hole is so strong that nothing - not even light - can escape. Gravity might be the weakest of the fundamental forces but black-hole physics is not for the faint-hearted. Black holes present obvious problems for would-be observers because they cannot, by definition, be seen with conventional telescopes - although before the end of the decade gravitational-wave detectors should be able to study collisions between black holes. Until then astronomers can only infer the existence of a black hole from its gravitational influence on other matter, or from the X-rays emitted by gas and dust as they are dragged into the black hole. However, once this material passes through the 'event horizon' that surrounds the black hole, we will never see it again - not even with X-ray specs. Despite these observational problems, most physicists and astronomers believe that black holes do exist. Small black holes a few kilometres across are thought to form when stars weighing more than about two solar masses collapse under the weight of their own gravity, while supermassive black holes weighing millions of solar masses appear to be present at the centre of most galaxies. Moreover, some brave physicists have proposed ways to make black holes - or at least event horizons - in the laboratory. The basic idea behind these 'artificial black holes' is not to compress a large amount of mass into a small volume, but to reduce the speed of light in a moving medium to less than the speed of the medium and so create an event horizon. The parallels with real black holes are not exact but the experiments could shed new light on a variety of phenomena. The first challenge, however, is to get money for the research. One year on from a high-profile meeting on artificial black holes in London, for instance, the UK

  14. Einstein-Katz action, variational principle, Noether charges and the thermodynamics of AdS-black holes

    CERN Document Server

    Anabalón, Andrés; Julié, Félix

    2016-01-01

    In this paper we describe 4-dimensional gravity coupled to scalar and Maxwell fields by the Einstein-Katz action, that is, the covariant version of the "Gamma-Gamma $-$ Gamma-Gamma" part of the Hilbert action supplemented by the divergence of a generalized "Katz vector". We consider static solutions of Einstein's equations, parametrized by some integration constants, which describe an ensemble of asymptotically AdS black holes. Instead of the usual Dirichlet boundary conditions, which aim at singling out a specific solution within the ensemble, we impose that the variation of the action vanishes on shell for the broadest possible class of solutions. We will see that, when a long-range scalar "hair" is present, only sub-families of the solutions can obey that criterion. The Katz superpotential built on his (generalized) vector will then give straightforwardly the Noether charges associated with the spacetime symmetries (that is, in the static case, the mass). Computing the action on shell, we will see next tha...

  15. Black Hole Statistics from Holography

    OpenAIRE

    Shepard, Peter G.

    2005-01-01

    We study the microstates of the ``small'' black hole in the $\\half$-BPS sector of AdS$_5\\times S^5$, the superstar of Myers and Tafjord, using the powerful holographic description provided by LLM. The system demonstrates the inherently statistical nature of black holes, with the geometry of Myer and Tafjord emerging only after averaging over an ensemble of geometries. The individual microstate geometries differ in the highly non-trivial topology of a quantum foam at their core, and the entrop...

  16. Information Loss in Black Holes

    CERN Document Server

    Hawking, Stephen William

    2005-01-01

    The question of whether information is lost in black holes is investigated using Euclidean path integrals. The formation and evaporation of black holes is regarded as a scattering problem with all measurements being made at infinity. This seems to be well formulated only in asymptotically AdS spacetimes. The path integral over metrics with trivial topology is unitary and information preserving. On the other hand, the path integral over metrics with non-trivial topologies leads to correlation functions that decay to zero. Thus at late times only the unitary information preserving path integrals over trivial topologies will contribute. Elementary quantum gravity interactions do not lose information or quantum coherence.

  17. Information loss in black holes

    Science.gov (United States)

    Hawking, S. W.

    2005-10-01

    The question of whether information is lost in black holes is investigated using Euclidean path integrals. The formation and evaporation of black holes is regarded as a scattering problem with all measurements being made at infinity. This seems to be well formulated only in asymptotically AdS spacetimes. The path integral over metrics with trivial topology is unitary and information preserving. On the other hand, the path integral over metrics with nontrivial topologies leads to correlation functions that decay to zero. Thus at late times only the unitary information preserving path integrals over trivial topologies will contribute. Elementary quantum gravity interactions do not lose information or quantum coherence.

  18. Noncommutative Singular Black Holes

    International Nuclear Information System (INIS)

    In this paper, applying the method of coordinate coherent states to describe a noncommutative model of Vaidya black holes leads to an exact (t - r) dependence of solution in terms of the noncommutative parameter σ. In this setup, there is no black hole remnant at long times.

  19. Noncommutative Singular Black Holes

    Science.gov (United States)

    Hamid Mehdipour, S.

    2010-11-01

    In this paper, applying the method of coordinate coherent states to describe a noncommutative model of Vaidya black holes leads to an exact (t — r) dependence of solution in terms of the noncommutative parameter σ. In this setup, there is no black hole remnant at long times.

  20. Black holes matter

    DEFF Research Database (Denmark)

    Kragh, Helge Stjernholm

    2016-01-01

    Review essay, Marcia Bartusiak, Black Hole: How an Idea Abandoned by Newtonians, Hated by Einstein, and Gambled On by Hawking Became Loved (New Haven: Yale University Press, 2015).......Review essay, Marcia Bartusiak, Black Hole: How an Idea Abandoned by Newtonians, Hated by Einstein, and Gambled On by Hawking Became Loved (New Haven: Yale University Press, 2015)....

  1. Black holes in inflation

    Science.gov (United States)

    Bousso, R.; Hawking, S. W.

    1997-08-01

    We summarise recent work on the quantum production of black holes in the inflationary era. We describe, in simple terms, the Euclidean approach used, and the results obtained both for the pair creation rate and for the evolution of the black holes.

  2. Scattering by Black Holes

    CERN Document Server

    Andersson, N

    2000-01-01

    This is a chapter on Black-hole Scattering that was commissioned for an Encyclopaedia on Scattering edited by Pike and Sabatier, to be published by Academic Press. The chapter surveys wave propagation in black-hole spacetimes, diffraction effects in wave scattering, resonances, quasinormal modes and related topics.

  3. Black Hole Dynamic Potentials

    Indian Academy of Sciences (India)

    Koustubh Ajit Kabe

    2012-09-01

    In the following paper, certain black hole dynamic potentials have been developed definitively on the lines of classical thermodynamics. These potentials have been refined in view of the small differences in the equations of the laws of black hole dynamics as given by Bekenstein and those of thermodynamics. Nine fundamental black hole dynamical relations have been developed akin to the four fundamental thermodynamic relations of Maxwell. The specific heats , and , have been defined. For a black hole, these quantities are negative. The d equation has been obtained as an application of these fundamental relations. Time reversible processes observing constancy of surface gravity are considered and an equation connecting the internal energy of the black hole , the additional available energy defined as the first free energy function , and the surface gravity , has been obtained. Finally as a further application of the fundamental relations, it has been proved for a homogeneous gravitational field in black hole space times or a de Sitter black hole that $C_{\\Omega,\\Phi}-C_{J,Q}=\\kappa \\left[\\left(\\dfrac{\\partial J}{\\partial \\kappa}\\right)_{\\Omega,\\Phi}\\left(\\dfrac{\\partial \\Omega}{\\partial \\kappa}\\right)_{J,Q}+\\left(\\dfrac{\\partial Q}{\\partial \\kappa}\\right)_{\\Omega,\\Phi}\\left(\\dfrac{\\partial\\Phi}{\\partial \\kappa}\\right)_{J,Q}\\right]$. This is dubbed as the homogeneous fluid approximation in context of the black holes.

  4. Reflection from black holes

    CERN Document Server

    Kuchiev, M Yu

    2003-01-01

    Black holes are presumed to have an ideal ability to absorb and keep matter. Whatever comes close to the event horizon, a boundary separating the inside region of a black hole from the outside world, inevitably goes in and remains inside forever. This work shows, however, that quantum corrections make possible a surprising process, reflection: a particle can bounce back from the event horizon. For low energy particles this process is efficient, black holes behave not as holes, but as mirrors, which changes our perception of their physical nature. Possible ways for observations of the reflection and its relation to the Hawking radiation process are outlined.

  5. Evaporation of charged black holes near extremality

    OpenAIRE

    Fabbri, A; Navarro, D. J.; Navarro-Salas, J.

    2000-01-01

    The AdS_2\\timesS^2 geometry of near-extremal Reissner-Nordstrom black holes can be described by an effective solvable model which allows to follow analytically the evaporation process including the backreaction. We find that an infinite amount of time is required for the black hole to decay to extremality.

  6. Evolution of massive black holes

    OpenAIRE

    Volonteri, Marta

    2007-01-01

    Supermassive black holes are nowadays believed to reside in most local galaxies. Accretion of gas and black hole mergers play a fundamental role in determining the two parameters defining a black hole: mass and spin. I briefly review here some of the physical processes that are conducive to the evolution of the massive black hole population. I'll discuss black hole formation processes that are likely to place at early cosmic epochs, and how massive black hole evolve in a hierarchical Universe...

  7. Fluctuating Black Hole Horizons

    CERN Document Server

    Mei, Jianwei

    2013-01-01

    In this paper we treat the black hole horizon as a physical boundary to the spacetime and study its dynamics following from the Gibbons-Hawking-York boundary term. Using the Kerr black hole as an example we derive an effective action that describes, in the large wave number limit, a massless Klein-Gordon field living on the average location of the boundary. Complete solutions can be found in the small rotation limit of the black hole. The formulation suggests that the boundary can be treated in the same way as any other matter contributions. In particular, the angular momentum of the boundary matches exactly with that of the black hole, suggesting an interesting possibility that all charges (including the entropy) of the black hole are carried by the boundary. Using this as input, we derive predictions on the Planck scale properties of the boundary.

  8. Antigravity and black holes

    CERN Document Server

    Hajdukovic, D

    2006-01-01

    We speculate about impact of antigravity (i.e. gravitational repulsion between matter and antimatter) on the creation and emission of particles by a black hole. If antigravity is present a black hole made of matter may radiate particles as a black body, but this shouldn't be true for antiparticles. It may lead to radical change of radiation process predicted by Hawking and should be taken into account in preparation of the attempt to create and study mini black holes at CERN. Gravity, including antigravity is more than ever similar to electrodynamics and such similarity with a successfully quantized interaction may help in quantization of gravity.

  9. Charged Black Holes with Scalar Hair

    CERN Document Server

    Fan, Zhong-Ying

    2015-01-01

    We consider a class of Einstein-Maxwell-Dilaton theories, in which the dilaton coupling to the Maxwell field is not the usual single exponential function, but one with a stationary point. The theories admit two charged black holes: one is the Reissner-Nordstr\\o m (RN) black hole and the other has a varying dilaton. For a given charge, the new black hole in the extremal limit has the same AdS$_2\\times$Sphere near-horizon geometry as the RN black hole, but it carries larger mass. We then introduce some scalar potentials and obtain exact charged AdS black holes. We also generalize the results to black $p$-branes with scalar hair.

  10. Cosmic Black Holes

    OpenAIRE

    Ahn, Eun-Joo; Cavaglia, Marco

    2003-01-01

    Production of high-energy gravitational objects is a common feature of gravitational theories. The primordial universe is a natural setting for the creation of black holes and other nonperturbative gravitational entities. Cosmic black holes can be used to probe physical properties of the very early universe which would usually require the knowledge of the theory of quantum gravity. They may be the only tool to explore thermalisation of the early universe. Whereas the creation of cosmic black ...

  11. Van der Waals like behavior and equal area law of two point correlation function of f(R) AdS black holes

    CERN Document Server

    Mo, Jie-Xiong; Lin, Ze-Tao; Zeng, Xiao-Xiong

    2016-01-01

    To gain holographic insight into critical phenomena of $f(R)$ AdS black holes, we investigate their two point correlation function, which are dual to the geodesic length in the bulk. We solve the equation of motion constrained by the boundary condition numerically and probe both the effect of boundary region size and $f(R)$ gravity. Moreover, we introduce an analogous specific heat related to $\\delta L$. It is shown in the $T-\\delta L$ graph for the case $Q

  12. Kerr black holes are not fragile

    Energy Technology Data Exchange (ETDEWEB)

    McInnes, Brett, E-mail: matmcinn@nus.edu.sg [Centro de Estudios Cientificos (CECs), Valdivia (Chile); National University of Singapore (Singapore)

    2012-04-21

    Certain AdS black holes are 'fragile', in the sense that, if they are deformed excessively, they become unstable to a fundamental non-perturbative stringy effect analogous to Schwinger pair-production [of branes]. Near-extremal topologically spherical AdS-Kerr black holes, which are natural candidates for string-theoretic models of the very rapidly rotating black holes that have actually been observed to exist, do represent a very drastic deformation of the AdS-Schwarzschild geometry. One therefore has strong reason to fear that these objects might be 'fragile', which in turn could mean that asymptotically flat rapidly rotating black holes might be fragile in string theory. Here we show that this does not happen: despite the severe deformation implied by near-extremal angular momenta, brane pair-production around topologically spherical AdS-Kerr-Newman black holes is always suppressed.

  13. Disrupting Entanglement of Black Holes

    CERN Document Server

    Leichenauer, Stefan

    2014-01-01

    We study entanglement in thermofield double states of strongly coupled CFTs by analyzing two-sided Reissner-Nordstrom solutions in AdS. The central object of study is the mutual information between a pair of regions, one on each asymptotic boundary of the black hole. For large regions the mutual information is positive and for small ones it vanishes; we compute the critical length scale, which goes to infinity for extremal black holes, of the transition. We also generalize the butterfly effect of Shenker and Stanford to a wide class of charged black holes, showing that mutual information is disrupted upon perturbing the system and waiting for a time of order $\\log E/\\delta E$ in units of the temperature. We conjecture that the parametric form of this timescale is universal.

  14. Existence of quasinormal modes for Kerr-AdS black holes

    CERN Document Server

    Gannot, Oran

    2016-01-01

    This paper establishes the existence of quasinormal frequencies converging exponentially to the real axis for the Klein-Gordon equation on a Kerr-AdS spacetime when Dirichlet boundary conditions are imposed at the conformal boundary. The proof is adapted from results in Euclidean scattering about the existence of scattering poles generated by sequences of time-periodic approximate solutions to the wave equation.

  15. Taking the Temperature of a Black Hole

    OpenAIRE

    Brynjolfsson, Erling J.; Thorlacius, Larus

    2008-01-01

    We use the global embedding of a black hole spacetime into a higher dimensional flat spacetime to define a local temperature for observers in free fall outside a static black hole. The local free-fall temperature remains finite at the event horizon and in asymptotically flat spacetime it approaches the Hawking temperature at spatial infinity. Freely falling observers outside an AdS black hole do not see any high-temperature thermal radiation even if the Hawking temperature of such black holes...

  16. ULTRAMASSIVE BLACK HOLE COALESCENCE

    International Nuclear Information System (INIS)

    Although supermassive black holes (SMBHs) correlate well with their host galaxies, there is an emerging view that outliers exist. Henize 2-10, NGC 4889, and NGC 1277 are examples of SMBHs at least an order of magnitude more massive than their host galaxy suggests. The dynamical effects of such ultramassive central black holes is unclear. Here, we perform direct N-body simulations of mergers of galactic nuclei where one black hole is ultramassive to study the evolution of the remnant and the black hole dynamics in this extreme regime. We find that the merger remnant is axisymmetric near the center, while near the large SMBH influence radius, the galaxy is triaxial. The SMBH separation shrinks rapidly due to dynamical friction, and quickly forms a binary black hole; if we scale our model to the most massive estimate for the NGC 1277 black hole, for example, the timescale for the SMBH separation to shrink from nearly a kiloparsec to less than a parsec is roughly 10 Myr. By the time the SMBHs form a hard binary, gravitational wave emission dominates, and the black holes coalesce in a mere few Myr. Curiously, these extremely massive binaries appear to nearly bypass the three-body scattering evolutionary phase. Our study suggests that in this extreme case, SMBH coalescence is governed by dynamical friction followed nearly directly by gravitational wave emission, resulting in a rapid and efficient SMBH coalescence timescale. We discuss the implications for gravitational wave event rates and hypervelocity star production

  17. Noncommutative Solitonic Black Hole

    CERN Document Server

    Chang-Young, Ee; Lee, Daeho; Lee, Youngone

    2012-01-01

    We investigate solitonic black hole solutions in three dimensional noncommutative spacetime. We do this in gravity with negative cosmological constant coupled to a scalar field using the Moyal product expanded up to first order in the noncommutativity parameter in the two noncommutative spatial directions. By numerical simulation we look for black hole solutions by increasing the non- commutativity parameter value starting from regular solutions with vanishing noncommutativity. We find that even a regular soliton solution in the commutative case becomes a black hole solution when the noncommutativity parameter reaches a certain value.

  18. Black holes new horizons

    CERN Document Server

    Hayward, Sean Alan

    2013-01-01

    Black holes, once just fascinating theoretical predictions of how gravity warps space-time according to Einstein's theory, are now generally accepted as astrophysical realities, formed by post-supernova collapse, or as supermassive black holes mysteriously found at the cores of most galaxies, powering active galactic nuclei, the most powerful objects in the universe. Theoretical understanding has progressed in recent decades with a wider realization that local concepts should characterize black holes, rather than the global concepts found in textbooks. In particular, notions such as trapping h

  19. Scalarized hairy black holes

    International Nuclear Information System (INIS)

    In the presence of a complex scalar field scalar–tensor theory allows for scalarized rotating hairy black holes. We exhibit the domain of existence for these scalarized black holes, which is bounded by scalarized rotating boson stars and hairy black holes of General Relativity. We discuss the global properties of these solutions. Like their counterparts in general relativity, their angular momentum may exceed the Kerr bound, and their ergosurfaces may consist of a sphere and a ring, i.e., form an ergo-Saturn

  20. Scalarized hairy black holes

    Energy Technology Data Exchange (ETDEWEB)

    Kleihaus, Burkhard, E-mail: b.kleihaus@uni-oldenburg.de [Institut für Physik, Universität Oldenburg, Postfach 2503, D-26111 Oldenburg (Germany); Kunz, Jutta [Institut für Physik, Universität Oldenburg, Postfach 2503, D-26111 Oldenburg (Germany); Yazadjiev, Stoytcho [Department of Theoretical Physics, Faculty of Physics, Sofia University, Sofia 1164 (Bulgaria)

    2015-05-11

    In the presence of a complex scalar field scalar–tensor theory allows for scalarized rotating hairy black holes. We exhibit the domain of existence for these scalarized black holes, which is bounded by scalarized rotating boson stars and hairy black holes of General Relativity. We discuss the global properties of these solutions. Like their counterparts in general relativity, their angular momentum may exceed the Kerr bound, and their ergosurfaces may consist of a sphere and a ring, i.e., form an ergo-Saturn.

  1. Scalarized Hairy Black Holes

    CERN Document Server

    Kleihaus, Burkhard; Yazadjiev, Stoytcho

    2015-01-01

    In the presence of a complex scalar field scalar-tensor theory allows for scalarized rotating hairy black holes. We exhibit the domain of existence for these scalarized black holes, which is bounded by scalarized rotating boson stars and ordinary hairy black holes. We discuss the global properties of these solutions. Like their counterparts in general relativity, their angular momentum may exceed the Kerr bound, and their ergosurfaces may consist of a sphere and a ring, i.e., form an ergo-Saturn.

  2. Slowly Rotating Black Holes with Nonlinear Electrodynamics

    International Nuclear Information System (INIS)

    We study charged slowly rotating black hole with a nonlinear electrodynamics (NED) in the presence of cosmological constant. Starting from the static solutions of Einstein-NED gravity as seed solutions, we use the angular momentum as the perturbative parameter to obtain slowly rotating black holes. We perform the perturbations up to the linear order for black holes in 4 dimensions. These solutions are asymptotically AdS and their horizon has spherical topology. We calculate the physical properties of these black holes and study their dependence on the rotation parameter a as well as the nonlinearity parameter β. In the limit β→∞, the solution describes slowly rotating AdS type black holes

  3. On Noncommutative Black Holes Thermodynamics

    CERN Document Server

    Faizal, Mir; Ulhoa, S C

    2015-01-01

    In this paper, we will analyze noncommutative deformation of the Schwarzschild black holes and Kerr black holes. We will perform our analysis by relating the commutative and the noncommutative metrics using an Moyal product. We will also analyze the thermodynamics of these noncommutative black hole solutions. We will explicitly derive expression for the corrected entropy and temperature of these black hole solutions.

  4. The Thermodynamics of Black Holes

    Directory of Open Access Journals (Sweden)

    Wald Robert M.

    2001-01-01

    Full Text Available We review the present status of black hole thermodynamics. Our review includes discussion of classical black hole thermodynamics, Hawking radiation from black holes, the generalized second law, and the issue of entropy bounds. A brief survey also is given of approaches to the calculation of black hole entropy. We conclude with a discussion of some unresolved open issues.

  5. The Thermodynamics of Black Holes

    OpenAIRE

    Wald Robert M.

    1999-01-01

    We review the present status of black hole thermodynamics. Our review includes discussion of classical black hole thermodynamics, Hawking radiation from black holes, the generalized second law, and the issue of entropy bounds. A brief survey also is given of approaches to the calculation of black hole entropy. We conclude with a discussion of some unresolved open issues.

  6. Introducing the Black Hole

    Science.gov (United States)

    Ruffini, Remo; Wheeler, John A.

    1971-01-01

    discusses the cosmology theory of a black hole, a region where an object loses its identity, but mass, charge, and momentum are conserved. Include are three possible formation processes, theorized properties, and three way they might eventually be detected. (DS)

  7. Black holes in astrophysics

    International Nuclear Information System (INIS)

    In this review we shall concentrate on the application of the concept of black hole to different areas in astrophysics. Models in which this idea is involved are connected with basically two areas in astrophysics: a) The death of massive stars due to gravitational collapse. This process would lead to the formation of black holes with stellar masses (10-20 M sun). The detection of these kind of - objects is in principle possible, by means of studying the so-called X-ray binary system. b) Active nuclei of galaxies, including quasars as an extreme case. In this case, the best model available to explain the generation of the enormous amounts of energy observed as well as several other properties, is accretion into a supermassive black hole (106-1010 M sun) in the center. The problem of the origin of such black holes is related to cosmology. (author)

  8. Van der Waals black hole

    International Nuclear Information System (INIS)

    In the context of extended phase space, where the negative cosmological constant is treated as a thermodynamic pressure in the first law of black hole thermodynamics, we find an asymptotically AdS metric whose thermodynamics matches exactly that of the Van der Waals fluid. We show that as a solution of Einstein's equations, the corresponding stress energy tensor obeys (at least for certain range of metric parameters) all three weak, strong, and dominant energy conditions

  9. Van der Waals black hole

    Directory of Open Access Journals (Sweden)

    Aruna Rajagopal

    2014-10-01

    Full Text Available In the context of extended phase space, where the negative cosmological constant is treated as a thermodynamic pressure in the first law of black hole thermodynamics, we find an asymptotically AdS metric whose thermodynamics matches exactly that of the Van der Waals fluid. We show that as a solution of Einstein's equations, the corresponding stress energy tensor obeys (at least for certain range of metric parameters all three weak, strong, and dominant energy conditions.

  10. Topics in black hole evaporation

    International Nuclear Information System (INIS)

    Two major aspects of particle creation by gravitational fields of black holes are studied: the neutrino emission from rotating black holes; and interactions between scalar particles emitted by a black hole. Neutrino emission is investigated under three topics: The asymmetry of the angular dependence of neutrino emission from rotating black holes; the production of a local matter excess by rotating black holes in a baryon symmetric universe; and cosmological magnetic field generation by neutrinos from evaporating black holes. Finally the author studies the effects of interactions on the black hole evaporation process

  11. Cosmological Black Holes

    OpenAIRE

    Stornaiolo, Cosimo

    2001-01-01

    In this paper we propose a model for the formation of the cosmological voids. We show that cosmological voids can form directly after the collapse of extremely large wavelength perturbations into low-density black holes or cosmological black holes (CBH). Consequently the voids are formed by the comoving expansion of the matter that surrounds the collapsed perturbation. It follows that the universe evolves, in first approximation, according to the Einstein-Straus cosmological model. We discuss...

  12. Quantum black holes

    International Nuclear Information System (INIS)

    No particle theory can be complete without gravity. Einstein's theory of gravity is of the Euler-Lagrange form, but standard quantization procedure fails. In quantum gravity the higher order interactions have a dimensionality different form the fundamental ones, because Newton's constant G has dimensions and the renormalization procedure fails. Another problem with quantum gravity is even more mysterious. Suppose that we had regularized the gravitational forces at the small distance end in the way that the weak intermediate vector boson regularized the fundamental 4-fermion interaction vertex of the weak interactions. Then what we discover is that the gravitational forces are unstable. Given sufficiently large amount of matter, it can collapse under its own weight. Classical general relativity tells us what will happen: a black hole is formed. But how is this formulated in quantum theory. S. Hawking observed that when a field theory is quantized in the background metric of a black hole, the black hole actually emits particles in a completely random thermal way. Apparently black holes are just another form of matter unstable against Hawking decay. Unfortunately this picture cannot be complete. The problem is that the quantum version of black holes has infinite phase space, and other symptoms of a run-away solution. Black holes are the heaviest and most compact forms of matter that can be imagined. A complete particle theory can have nothing but a spectrum of black-hole like objects at it high-energy end. This is why it is believed that a resolution of the black hole problem will in time disclose the complete small-distance structure of our world. 6 references

  13. Thermal corpuscular black holes

    OpenAIRE

    Casadio, Roberto; Giugno, Andrea; Orlandi, Alessio

    2015-01-01

    We study the corpuscular model of an evaporating black hole consisting of a specific quantum state for a large number $N$ of self-confined bosons. The single-particle spectrum contains a discrete ground state of energy $m$ (corresponding to toy gravitons forming the black hole), and a gapless continuous spectrum (to accommodate for the Hawking radiation with energy $\\omega>m$). Each constituent is in a superposition of the ground state and a Planckian distribution at the expected Hawking temp...

  14. Black hole critical phenomena without black holes

    Indian Academy of Sciences (India)

    Steven L Liebling

    2000-10-01

    Studying the threshold of black hole formation via numerical evolution has led to the discovery of fascinating nonlinear phenomena. Power-law mass scaling, aspects of universality, and self-similarity have now been found for a large variety of models. However, questions remain. Here I briefly review critical phenomena, discuss some recent results, and describe a model which demonstrates similar phenomena without gravity.

  15. Charged Galileon black holes

    Science.gov (United States)

    Babichev, Eugeny; Charmousis, Christos; Hassaine, Mokhtar

    2015-05-01

    We consider an Abelian gauge field coupled to a particular truncation of Horndeski theory. The Galileon field has translation symmetry and couples non minimally both to the metric and the gauge field. When the gauge-scalar coupling is zero the gauge field reduces to a standard Maxwell field. By taking into account the symmetries of the action, we construct charged black hole solutions. Allowing the scalar field to softly break symmetries of spacetime we construct black holes where the scalar field is regular on the black hole event horizon. Some of these solutions can be interpreted as the equivalent of Reissner-Nordstrom black holes of scalar tensor theories with a non trivial scalar field. A self tuning black hole solution found previously is extended to the presence of dyonic charge without affecting whatsoever the self tuning of a large positive cosmological constant. Finally, for a general shift invariant scalar tensor theory we demonstrate that the scalar field Ansatz and method we employ are mathematically compatible with the field equations. This opens up the possibility for novel searches of hairy black holes in a far more general setting of Horndeski theory.

  16. Exact formation of hairy planar black holes

    Science.gov (United States)

    Fan, Zhong-Ying; Chen, Bin

    2016-04-01

    We consider Einstein gravity minimally coupled to a scalar field with a given potential in general dimensions. We obtain large classes of static hairy planar black holes which are asymptotic to anti-de Sitter (AdS) space-times. In particular, for a special case μ =(n -2 )/2 , we obtain new classes of exact dynamical solutions describing black hole formation. We find there are two classes of collapse solutions. The first class of solutions describes the evolution start from AdS space-time with a naked singularity at the origin. The space-time is linearly unstable and evolves into stationary black hole states even under small perturbation. The second class of solutions describes the space-time spontaneously evolving from AdS vacua into stationary black hole states undergoing nonlinear instability. We also discuss the global properties of all these dynamical solutions.

  17. Newborn Black Holes

    Science.gov (United States)

    Science Teacher, 2005

    2005-01-01

    Scientists using NASA's Swift satellite say they have found newborn black holes, just seconds old, in a confused state of existence. The holes are consuming material falling into them while somehow propelling other material away at great speeds. "First comes a blast of gamma rays followed by intense pulses of x-rays. The energies involved are much…

  18. Cosmic censorship inside black holes

    CERN Document Server

    Thorlacius, L

    2006-01-01

    A simple argument is given that a traversable Cauchy horizon inside a black hole is incompatible with unitary black hole evolution. The argument assumes the validity of black hole complementarity and applies to a generic black hole carrying angular momentum and/or charge. In the second part of the paper we review recent work on the semiclassical geometry of two-dimensional charged black holes.

  19. Quantum Black Holes as Atoms

    OpenAIRE

    Bekenstein, Jacob D.

    1997-01-01

    In some respects the black hole plays the same role in gravitation that the atom played in the nascent quantum mechanics. This analogy suggests that black hole mass $M$ might have a discrete spectrum. I review the physical arguments for the expectation that black hole horizon area eigenvalues are uniformly spaced, or equivalently, that the spacing between stationary black hole mass levels behaves like 1/M. This sort of spectrum has also emerged in a variety of formal approaches to black hole ...

  20. Black holes and beyond

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2002-02-01

    Belief in the existence of black holes is the ultimate act of faith for a physicist. First suggested by the English clergyman John Michell in the year 1784, the gravitational pull of a black hole is so strong that nothing - not even light - can escape. Gravity might be the weakest of the fundamental forces but black-hole physics is not for the faint-hearted. Black holes present obvious problems for would-be observers because they cannot, by definition, be seen with conventional telescopes - although before the end of the decade gravitational-wave detectors should be able to study collisions between black holes. Until then astronomers can only infer the existence of a black hole from its gravitational influence on other matter, or from the X-rays emitted by gas and dust as they are dragged into the black hole. However, once this material passes through the 'event horizon' that surrounds the black hole, we will never see it again - not even with X-ray specs. Despite these observational problems, most physicists and astronomers believe that black holes do exist. Small black holes a few kilometres across are thought to form when stars weighing more than about two solar masses collapse under the weight of their own gravity, while supermassive black holes weighing millions of solar masses appear to be present at the centre of most galaxies. Moreover, some brave physicists have proposed ways to make black holes - or at least event horizons - in the laboratory. The basic idea behind these 'artificial black holes' is not to compress a large amount of mass into a small volume, but to reduce the speed of light in a moving medium to less than the speed of the medium and so create an event horizon. The parallels with real black holes are not exact but the experiments could shed new light on a variety of phenomena. The first challenge, however, is to get money for the research. One year on from a high-profile meeting on artificial black holes in London, for

  1. On the thermodynamics of hairy black holes

    International Nuclear Information System (INIS)

    We investigate the thermodynamics of a general class of exact 4-dimensional asymptotically Anti-de Sitter hairy black hole solutions and show that, for a fixed temperature, there are small and large hairy black holes similar to the Schwarzschild–AdS black hole. The large black holes have positive specific heat and so they can be in equilibrium with a thermal bath of radiation at the Hawking temperature. The relevant thermodynamic quantities are computed by using the Hamiltonian formalism and counterterm method. We explicitly show that there are first order phase transitions similar to the Hawking–Page phase transition

  2. Entropy Inequality Violations from Ultraspinning Black Holes.

    Science.gov (United States)

    Hennigar, Robie A; Mann, Robert B; Kubizňák, David

    2015-07-17

    We construct a new class of rotating anti-de Sitter (AdS) black hole solutions with noncompact event horizons of finite area in any dimension and study their thermodynamics. In four dimensions these black holes are solutions to gauged supergravity. We find that their entropy exceeds the maximum implied from the conjectured reverse isoperimetric inequality, which states that for a given thermodynamic volume, the black hole entropy is maximized for Schwarzschild-AdS space. We use this result to suggest more stringent conditions under which this conjecture may hold. PMID:26230779

  3. Black holes and beyond

    International Nuclear Information System (INIS)

    The black hole information paradox forces us into a strange situation: we must find a way to break the semiclassical approximation in a domain where no quantum gravity effects would normally be expected. Traditional quantizations of gravity do not exhibit any such breakdown, and this forces us into a difficult corner: either we must give up quantum mechanics or we must accept the existence of troublesome ‘remnants’. In string theory, however, the fundamental quanta are extended objects, and it turns out that the bound states of such objects acquire a size that grows with the number of quanta in the bound state. The interior of the black hole gets completely altered to a ‘fuzzball’ structure, and information is able to escape in radiation from the hole. The semiclassical approximation can break at macroscopic scales due to the large entropy of the hole: the measure in the path integral competes with the classical action, instead of giving a subleading correction. Putting this picture of black hole microstates together with ideas about entangled states leads to a natural set of conjectures on many long-standing questions in gravity: the significance of Rindler and de Sitter entropies, the notion of black hole complementarity, and the fate of an observer falling into a black hole. - Highlights: ► The information paradox is a serious problem. ► To solve it we need to find ‘hair’ on black holes. ► In string theory we find ‘hair’ by the fuzzball construction. ► Fuzzballs help to resolve many other issues in gravity.

  4. Virtual black holes

    Science.gov (United States)

    Hawking, S. W.

    1996-03-01

    One would expect spacetime to have a foamlike structure on the Planck scale with a very high topology. If spacetime is simply connected (which is assumed in this paper), the nontrivial homology occurs in dimension two, and spacetime can be regarded as being essentially the topological sum of S2×S2 and K3 bubbles. Comparison with the instantons for pair creation of black holes shows that the S2×S2 bubbles can be interpreted as closed loops of virtual black holes. It is shown that scattering in such topological fluctuations leads to loss of quantum coherence, or in other words, to a superscattering matrix S/ that does not factorize into an S matrix and its adjoint. This loss of quantum coherence is very small at low energies for everything except scalar fields, leading to the prediction that we may never observe the Higgs particle. Another possible observational consequence may be that the θ angle of QCD is zero without having to invoke the problematical existence of a light axion. The picture of virtual black holes given here also suggests that macroscopic black holes will evaporate down to the Planck size and then disappear in the sea of virtual black holes.

  5. Charged Galileon black holes

    CERN Document Server

    Babichev, Eugeny; Hassaine, Mokhtar

    2015-01-01

    We consider an Abelian gauge field coupled to a particular truncation of Horndeski theory. The Galileon field has translation symmetry and couples non minimally both to the metric and the gauge field. When the gauge-scalar coupling is zero the gauge field reduces to a standard Maxwell field. By taking into account the symmetries of the action, we construct charged black hole solutions. Allowing the scalar field to softly break symmetries of spacetime we construct black holes where the scalar field is regular on the black hole event horizon. Some of these solutions can be interpreted as the equivalent of Reissner-Nordstrom black holes of scalar tensor theories with a non trivial scalar field. A self tuning black hole solution found previously is extended to the presence of dyonic charge without affecting whatsoever the self tuning of a large positive cosmological constant. Finally, for a general shift invariant scalar tensor theory we demonstrate that the scalar field Ansatz and method we employ are mathematic...

  6. Renormalized vacuum polarization of rotating black holes

    CERN Document Server

    Ferreira, Hugo R C

    2015-01-01

    Quantum field theory on rotating black hole spacetimes is plagued with technical difficulties. Here, we describe a general method to renormalize and compute the vacuum polarization of a quantum field in the Hartle-Hawking state on rotating black holes. We exemplify the technique with a massive scalar field on the warped AdS3 black hole solution to topologically massive gravity, a deformation of (2+1)-dimensional Einstein gravity. We use a "quasi-Euclidean" technique, which generalizes the Euclidean techniques used for static spacetimes, and we subtract the divergences by matching to a sum over mode solutions on Minkowski spacetime. This allows us, for the first time, to have a general method to compute the renormalized vacuum polarization (and, more importantly, the renormalized stress-energy tensor), for a given quantum state, on a rotating black hole, such as the physically relevant case of the Kerr black hole in four dimensions.

  7. Renormalized vacuum polarization of rotating black holes

    Science.gov (United States)

    Ferreira, Hugo R. C.

    2015-04-01

    Quantum field theory on rotating black hole spacetimes is plagued with technical difficulties. Here, we describe a general method to renormalize and compute the vacuum polarization of a quantum field in the Hartle-Hawking state on rotating black holes. We exemplify the technique with a massive scalar field on the warped AdS3 black hole solution to topologically massive gravity, a deformation of (2 + 1)-dimensional Einstein gravity. We use a "quasi-Euclidean" technique, which generalizes the Euclidean techniques used for static spacetimes, and we subtract the divergences by matching to a sum over mode solutions on Minkowski spacetime. This allows us, for the first time, to have a general method to compute the renormalized vacuum polarization, for a given quantum state, on a rotating black hole, such as the physically relevant case of the Kerr black hole in four dimensions.

  8. Noncommutative black hole thermodynamics

    International Nuclear Information System (INIS)

    We give a general derivation, for any static spherically symmetric metric, of the relation Th=(K/2π) connecting the black hole temperature (Th) with the surface gravity (K), following the tunneling interpretation of Hawking radiation. This derivation is valid even beyond the semi-classical regime, i.e. when quantum effects are not negligible. The formalism is then applied to a spherically symmetric, stationary noncommutative Schwarzschild space-time. The effects of backreaction are also included. For such a black hole the Hawking temperature is computed in a closed form. A graphical analysis reveals interesting features regarding the variation of the Hawking temperature (including corrections due to noncommutativity and backreaction) with the small radius of the black hole. The entropy and tunneling rate valid for the leading order in the noncommutative parameter are calculated. We also show that the noncommutative Bekenstein-Hawking area law has the same functional form as the usual one

  9. Turbulent black holes.

    Science.gov (United States)

    Yang, Huan; Zimmerman, Aaron; Lehner, Luis

    2015-02-27

    We demonstrate that rapidly spinning black holes can display a new type of nonlinear parametric instability-which is triggered above a certain perturbation amplitude threshold-akin to the onset of turbulence, with possibly observable consequences. This instability transfers from higher temporal and azimuthal spatial frequencies to lower frequencies-a phenomenon reminiscent of the inverse cascade displayed by (2+1)-dimensional fluids. Our finding provides evidence for the onset of transitory turbulence in astrophysical black holes and predicts observable signatures in black hole binaries with high spins. Furthermore, it gives a gravitational description of this behavior which, through the fluid-gravity duality, can potentially shed new light on the remarkable phenomena of turbulence in fluids. PMID:25768746

  10. Merging Black Holes

    Science.gov (United States)

    Centrella, Joan

    2012-01-01

    The final merger of two black holes is expected to be the strongest source of gravitational waves for both ground-based detectors such as LIGO and VIRGO, as well as future. space-based detectors. Since the merger takes place in the regime of strong dynamical gravity, computing the resulting gravitational waveforms requires solving the full Einstein equations of general relativity on a computer. For many years, numerical codes designed to simulate black hole mergers were plagued by a host of instabilities. However, recent breakthroughs have conquered these instabilities and opened up this field dramatically. This talk will focus on.the resulting 'gold rush' of new results that is revealing the dynamics and waveforms of binary black hole mergers, and their applications in gravitational wave detection, testing general relativity, and astrophysics

  11. Turbulent Black Holes

    CERN Document Server

    Yang, Huan; Lehner, Luis

    2014-01-01

    We show that rapidly-spinning black holes can display turbulent gravitational behavior which is mediated by a new type of parametric instability. This instability transfers energy from higher temporal and azimuthal spatial frequencies to lower frequencies--- a phenomenon reminiscent of the inverse energy cascade displayed by 2+1-dimensional turbulent fluids. Our finding reveals a path towards gravitational turbulence for perturbations of rapidly-spinning black holes, and provides the first evidence for gravitational turbulence in an asymptotically flat spacetime. Interestingly, this finding predicts observable gravitational wave signatures from such phenomena in black hole binaries with high spins and gives a gravitational description of turbulence relevant to the fluid-gravity duality.

  12. Turbulent Black Holes

    Science.gov (United States)

    Yang, Huan; Zimmerman, Aaron; Lehner, Luis

    2015-02-01

    We demonstrate that rapidly spinning black holes can display a new type of nonlinear parametric instability—which is triggered above a certain perturbation amplitude threshold—akin to the onset of turbulence, with possibly observable consequences. This instability transfers from higher temporal and azimuthal spatial frequencies to lower frequencies—a phenomenon reminiscent of the inverse cascade displayed by (2 +1 )-dimensional fluids. Our finding provides evidence for the onset of transitory turbulence in astrophysical black holes and predicts observable signatures in black hole binaries with high spins. Furthermore, it gives a gravitational description of this behavior which, through the fluid-gravity duality, can potentially shed new light on the remarkable phenomena of turbulence in fluids.

  13. Slowly balding black holes

    International Nuclear Information System (INIS)

    The 'no-hair' theorem, a key result in general relativity, states that an isolated black hole is defined by only three parameters: mass, angular momentum, and electric charge; this asymptotic state is reached on a light-crossing time scale. We find that the no-hair theorem is not formally applicable for black holes formed from the collapse of a rotating neutron star. Rotating neutron stars can self-produce particles via vacuum breakdown forming a highly conducting plasma magnetosphere such that magnetic field lines are effectively ''frozen in'' the star both before and during collapse. In the limit of no resistivity, this introduces a topological constraint which prohibits the magnetic field from sliding off the newly-formed event horizon. As a result, during collapse of a neutron star into a black hole, the latter conserves the number of magnetic flux tubes NB=eΦ∞/(πc(ℎ/2π)), where Φ∞≅2π2BNSRNS3/(PNSc) is the initial magnetic flux through the hemispheres of the progenitor and out to infinity. We test this theoretical result via 3-dimensional general relativistic plasma simulations of rotating black holes that start with a neutron star dipole magnetic field with no currents initially present outside the event horizon. The black hole's magnetosphere subsequently relaxes to the split-monopole magnetic field geometry with self-generated currents outside the event horizon. The dissipation of the resulting equatorial current sheet leads to a slow loss of the anchored flux tubes, a process that balds the black hole on long resistive time scales rather than the short light-crossing time scales expected from the vacuum no-hair theorem.

  14. Black hole statistics from holography

    International Nuclear Information System (INIS)

    We study the microstates of the 'small' black hole in the 1/2-BPS sector of AdS5 x S5, the superstar, using the powerful holographic description provided by LLM. The system demonstrates the inherently statistical nature of black holes, with the geometry presented elsewhere emerging only after averaging over an ensemble of geometries. The individual microstate geometries differ in the highly non-trivial topology of a quantum foam at their core, and the entropy can be understood as a partition of N units of flux among 5-cycles, as required by flux quantization. While the system offers confirmation of the most controversial aspect of Mathur and Lunin's recent 'fuzzball' proposal, we see signs of a discrepancy in interpreting its details

  15. Noncommutative solitonic black hole

    International Nuclear Information System (INIS)

    We investigate solitonic black hole solutions in three-dimensional noncommutative spacetime. We do this in gravity with a negative cosmological constant coupled to a scalar field. Noncommutativity is realized with the Moyal product which is expanded up to first order in the noncommutativity parameter in two spatial directions. With numerical simulation we study the effect of noncommutativity by increasing the value of the noncommutativity parameter starting from commutative solutions. We find that even a regular soliton solution in the commutative case becomes a black hole solution when the noncommutativity parameter reaches a certain value. (paper)

  16. Noncommutative solitonic black hole

    Science.gov (United States)

    Chang-Young, Ee; Kimm, Kyoungtae; Lee, Daeho; Lee, Youngone

    2012-05-01

    We investigate solitonic black hole solutions in three-dimensional noncommutative spacetime. We do this in gravity with a negative cosmological constant coupled to a scalar field. Noncommutativity is realized with the Moyal product which is expanded up to first order in the noncommutativity parameter in two spatial directions. With numerical simulation we study the effect of noncommutativity by increasing the value of the noncommutativity parameter starting from commutative solutions. We find that even a regular soliton solution in the commutative case becomes a black hole solution when the noncommutativity parameter reaches a certain value.

  17. Virtual Black Holes

    OpenAIRE

    Hawking, Stephen W.

    1995-01-01

    One would expect spacetime to have a foam-like structure on the Planck scale with a very high topology. If spacetime is simply connected (which is assumed in this paper), the non-trivial homology occurs in dimension two, and spacetime can be regarded as being essentially the topological sum of $S^2\\times S^2$ and $K3$ bubbles. Comparison with the instantons for pair creation of black holes shows that the $S^2\\times S^2$ bubbles can be interpreted as closed loops of virtual black holes. It is ...

  18. Dancing with black holes

    CERN Document Server

    Aarseth, Sverre J

    2007-01-01

    We describe efforts over the last six years to implement regularization methods suitable for studying one or more interacting black holes by direct N-body simulations. Three different methods have been adapted to large-N systems: (i) Time-Transformed Leapfrog, (ii) Wheel-Spoke, and (iii) Algorithmic Regularization. These methods have been tried out with some success on GRAPE-type computers. Special emphasis has also been devoted to including post-Newtonian terms, with application to moderately massive black holes in stellar clusters. Some examples of simulations leading to coalescence by gravitational radiation will be presented to illustrate the practical usefulness of such methods.

  19. Characterizing Black Hole Mergers

    Science.gov (United States)

    Baker, John; Boggs, William Darian; Kelly, Bernard

    2010-01-01

    Binary black hole mergers are a promising source of gravitational waves for interferometric gravitational wave detectors. Recent advances in numerical relativity have revealed the predictions of General Relativity for the strong burst of radiation generated in the final moments of binary coalescence. We explore features in the merger radiation which characterize the final moments of merger and ringdown. Interpreting the waveforms in terms of an rotating implicit radiation source allows a unified phenomenological description of the system from inspiral through ringdown. Common features in the waveforms allow quantitative description of the merger signal which may provide insights for observations large-mass black hole binaries.

  20. Scattering from black holes

    Energy Technology Data Exchange (ETDEWEB)

    Futterman, J.A.H.; Handler, F.A.; Matzner, R.A.

    1987-01-01

    This book provides a comprehensive treatment of the propagation of waves in the presence of black holes. While emphasizing intuitive physical thinking in their treatment of the techniques of analysis of scattering, the authors also include chapters on the rigorous mathematical development of the subject. Introducing the concepts of scattering by considering the simplest, scalar wave case of scattering by a spherical (Schwarzschild) black hole, the book then develops the formalism of spin weighted spheroidal harmonics and of plane wave representations for neutrino, electromagnetic, and gravitational scattering. Details and results of numerical computations are given. The techniques involved have important applications (references are given) in acoustical and radar imaging.

  1. Scattering from black holes

    International Nuclear Information System (INIS)

    This book provides a comprehensive treatment of the propagation of waves in the presence of black holes. While emphasizing intuitive physical thinking in their treatment of the techniques of analysis of scattering, the authors also include chapters on the rigorous mathematical development of the subject. Introducing the concepts of scattering by considering the simplest, scalar wave case of scattering by a spherical (Schwarzschild) black hole, the book then develops the formalism of spin weighted spheroidal harmonics and of plane wave representations for neutrino, electromagnetic, and gravitational scattering. Details and results of numerical computations are given. The techniques involved have important applications (references are given) in acoustical and radar imaging

  2. Acoustic black holes

    CERN Document Server

    Visser, M

    1999-01-01

    Acoustic propagation in a moving fluid provides a conceptually clean and powerful analogy for understanding black hole physics. As a teaching tool, the analogy is useful for introducing students to both General Relativity and fluid mechanics. As a research tool, the analogy helps clarify what aspects of the physics are kinematics and what aspects are dynamics. In particular, Hawking radiation is a purely kinematical effect, whereas black hole entropy is intrinsically dynamical. Finally, I discuss the fact that with present technology acoustic Hawking radiation is almost experimentally testable.

  3. Are Black Holes Springy?

    CERN Document Server

    Good, Michael R R

    2014-01-01

    A $(3+1)$-dimensional asymptotically flat Kerr black hole angular speed $\\Omega_+$ can be used to define an effective spring constant, $k=m\\Omega_+^2$. Its maximum value is the Schwarzschild surface gravity, $k = \\kappa $, which rapidly weakens as the black hole spins down and the temperature increases. The Hawking temperature is expressed in terms of the spring constant: $2\\pi T = \\kappa - k$. Hooke's law, in the extremal limit, provides the force $F = 1/4$, which is consistent with the conjecture of maximum force in general relativity.

  4. Horndeski black hole geodesics

    CERN Document Server

    Tretyakova, D A

    2016-01-01

    We examine geodesics for the scalar-tensor black holes in the Horndeski-Galileon framework. Our analysis shows that first kind relativistic orbits may not be present within some model parameters range. This is a highly pathological behavior contradicting to the black hole accretion and Solar System observations. We also present a new (although very similar to those previously known) solution, which contains the orbits we expect from a compact object, admits regular scalar field at the horizon and and can fit into the known stability criteria.

  5. On the thermodynamics of Lifshitz black holes

    CERN Document Server

    Devecioglu, Deniz Olgu

    2011-01-01

    We apply the recently extended conserved Killing charge definition of Abbott-Deser-Tekin formalism to compute, for the first time, the energies of analytic Lifshitz black holes in higher dimensions. We then calculate the temperature and the entropy of this large family of solutions and find that imposing the first law of black hole thermodynamics puts, sometimes severe, extra constraints on the allowed values of the dynamical exponent, which is a characteristic of these spacetimes. Separately, we also apply the generalized Killing charge definition to compute the energy and the angular momentum of the warped AdS_3 black hole solution of the three-dimensional New Massive Gravity theory.

  6. The black hole final state

    OpenAIRE

    Horowitz, Gary T.; Maldacena, Juan

    2003-01-01

    We propose that in quantum gravity one needs to impose a final state boundary condition at black hole singularities. This resolves the apparent contradiction between string theory and semiclassical arguments over whether black hole evaporation is unitary.

  7. Quantum aspects of black holes

    CERN Document Server

    2015-01-01

    Beginning with an overview of the theory of black holes by the editor, this book presents a collection of ten chapters by leading physicists dealing with the variety of quantum mechanical and quantum gravitational effects pertinent to black holes. The contributions address topics such as Hawking radiation, the thermodynamics of black holes, the information paradox and firewalls, Monsters, primordial black holes, self-gravitating Bose-Einstein condensates, the formation of small black holes in high energetic collisions of particles, minimal length effects in black holes and small black holes at the Large Hadron Collider. Viewed as a whole the collection provides stimulating reading for researchers and graduate students seeking a summary of the quantum features of black holes.

  8. Slowly balding black holes

    Science.gov (United States)

    Lyutikov, Maxim; McKinney, Jonathan C.

    2011-10-01

    The “no-hair” theorem, a key result in general relativity, states that an isolated black hole is defined by only three parameters: mass, angular momentum, and electric charge; this asymptotic state is reached on a light-crossing time scale. We find that the no-hair theorem is not formally applicable for black holes formed from the collapse of a rotating neutron star. Rotating neutron stars can self-produce particles via vacuum breakdown forming a highly conducting plasma magnetosphere such that magnetic field lines are effectively “frozen in” the star both before and during collapse. In the limit of no resistivity, this introduces a topological constraint which prohibits the magnetic field from sliding off the newly-formed event horizon. As a result, during collapse of a neutron star into a black hole, the latter conserves the number of magnetic flux tubes NB=eΦ∞/(πcℏ), where Φ∞≈2π2BNSRNS3/(PNSc) is the initial magnetic flux through the hemispheres of the progenitor and out to infinity. We test this theoretical result via 3-dimensional general relativistic plasma simulations of rotating black holes that start with a neutron star dipole magnetic field with no currents initially present outside the event horizon. The black hole’s magnetosphere subsequently relaxes to the split-monopole magnetic field geometry with self-generated currents outside the event horizon. The dissipation of the resulting equatorial current sheet leads to a slow loss of the anchored flux tubes, a process that balds the black hole on long resistive time scales rather than the short light-crossing time scales expected from the vacuum no-hair theorem.

  9. Over spinning a black hole?

    Energy Technology Data Exchange (ETDEWEB)

    Bouhmadi-Lopez, Mariam; Cardoso, Vitor; Nerozzi, Andrea; Rocha, Jorge V, E-mail: mariam.bouhmadi@ist.utl.pt, E-mail: vitor.cardoso@ist.utl.pt, E-mail: andrea.nerozzi@ist.utl.pt, E-mail: jorge.v.rocha@ist.utl.pt [CENTRA, Department de Fisica, Instituto Superior Tecnico, Av. Rovisco Pais 1, 1049 Lisboa (Portugal)

    2011-09-22

    A possible process to destroy a black hole consists on throwing point particles with sufficiently large angular momentum into the black hole. In the case of Kerr black holes, it was shown by Wald that particles with dangerously large angular momentum are simply not captured by the hole, and thus the event horizon is not destroyed. Here we reconsider this gedanken experiment for black holes in higher dimensions. We show that this particular way of destroying a black hole does not succeed and that Cosmic Censorship is preserved.

  10. Exact solutions of higher dimensional black holes

    CERN Document Server

    Tomizawa, Shinya

    2011-01-01

    We review exact solutions of black holes in higher dimensions, focusing on asymptotically flat black hole solutions and Kaluza-Klein type black hole solutions. We also summarize some properties which such black hole solutions reveal.

  11. Black Hole Evaporation. A Survey

    OpenAIRE

    Benachenhou, Farid

    1994-01-01

    This thesis is a review of black hole evaporation with emphasis on recent results obtained for two dimensional black holes. First, the geometry of the most general stationary black hole in four dimensions is described and some classical quantities are defined. Then, a derivation of the spectrum of the radiation emitted during the evaporation is presented. In section four, a two dimensional model which has black hole solutions is introduced, the so-called CGHS model. These two dimensional blac...

  12. Towards noncommutative quantum black holes

    International Nuclear Information System (INIS)

    In this paper we study noncommutative black holes. We use a diffeomorphism between the Schwarzschild black hole and the Kantowski-Sachs cosmological model, which is generalized to noncommutative minisuperspace. Through the use of the Feynman-Hibbs procedure we are able to study the thermodynamics of the black hole, in particular, we calculate the Hawking's temperature and entropy for the noncommutative Schwarzschild black hole

  13. Towards Noncommutative Quantum Black Holes

    OpenAIRE

    Lopez-Dominguez, J. C.; Obregon, O.; Ramirez, C.; Sabido, M.

    2006-01-01

    In this paper we study noncommutative black holes. We use a diffeomorphism between the Schwarzschild black hole and the Kantowski-Sachs cosmological model, which is generalized to noncommutative minisuperspace. Through the use of the Feynman-Hibbs procedure we are able to study the thermodynamics of the black hole, in particular, we calculate the Hawking's temperature and entropy for the noncommutative Schwarzschild black hole.

  14. Black Hole: The Interior Spacetime

    CERN Document Server

    Ong, Yen Chin

    2016-01-01

    The information loss paradox is often discussed from the perspective of the observers who stay outside of a black hole. However, the interior spacetime of a black hole can be rather nontrivial. We discuss the open problems regarding the volume of a black hole, and whether it plays any role in information storage. We also emphasize the importance of resolving the black hole singularity, if one were to resolve the information loss paradox.

  15. Black hole magnetospheres

    International Nuclear Information System (INIS)

    We investigate the structure of the steady-state force-free magnetosphere around a Kerr black hole in various astrophysical settings. The solution Ψ(r, θ) depends on the distributions of the magnetic field line angular velocity ω(Ψ) and the poloidal electric current I(Ψ). These are obtained self-consistently as eigenfunctions that allow the solution to smoothly cross the two singular surfaces of the problem, the inner light surface inside the ergosphere, and the outer light surface, which is the generalization of the pulsar light cylinder. Magnetic field configurations that cross both singular surfaces (e.g., monopole, paraboloidal) are uniquely determined. Configurations that cross only one light surface (e.g., the artificial case of a rotating black hole embedded in a vertical magnetic field) are degenerate. We show that, similar to pulsars, black hole magnetospheres naturally develop an electric current sheet that potentially plays a very important role in the dissipation of black hole rotational energy and in the emission of high-energy radiation.

  16. When Black Holes Collide

    Science.gov (United States)

    Baker, John

    2010-01-01

    Among the fascinating phenomena predicted by General Relativity, Einstein's theory of gravity, black holes and gravitational waves, are particularly important in astronomy. Though once viewed as a mathematical oddity, black holes are now recognized as the central engines of many of astronomy's most energetic cataclysms. Gravitational waves, though weakly interacting with ordinary matter, may be observed with new gravitational wave telescopes, opening a new window to the universe. These observations promise a direct view of the strong gravitational dynamics involving dense, often dark objects, such as black holes. The most powerful of these events may be merger of two colliding black holes. Though dark, these mergers may briefly release more energy that all the stars in the visible universe, in gravitational waves. General relativity makes precise predictions for the gravitational-wave signatures of these events, predictions which we can now calculate with the aid of supercomputer simulations. These results provide a foundation for interpreting expect observations in the emerging field of gravitational wave astronomy.

  17. Black Holes in Higher Dimensions

    International Nuclear Information System (INIS)

    In four space-time dimensions black holes of Einstein-Maxwell theory satisfy a number of theorems. In more than four space-time dimensions, however, some of the properties of black holes can change. In particular, uniqueness of black holes no longer holds. In five and more dimensions black rings arise. Thus in a certain region of the phase diagram there are three black objects with the same global charges present. Here we discuss properties of higher-dimensional vacuum and charged black holes, which possess a spherical horizon topology, and of vacuum and charged black rings, which have a ringlike horizon topology

  18. Warped products and black holes

    International Nuclear Information System (INIS)

    We apply the warped product space-time scheme to the Banados-Teitelboim-Zanelli black holes and the Reissner-Nordstroem-anti-de Sitter black hole to investigate their interior solutions in terms of warped products. It is shown that there exist no discontinuities of the Ricci and Einstein curvatures across event horizons of these black holes

  19. Warped products and black holes

    CERN Document Server

    Hong, S T

    2005-01-01

    We apply the warped product spacetime scheme to the Banados-Teitelboim-Zanelli black holes and the Reissner-Nordstr\\"om-anti-de Sitter black hole to investigate their interior solutions in terms of warped products. It is shown that there exist no discontinuities of the Ricci and Einstein curvatures across event horizons of these black holes.

  20. Black-hole astrophysics

    Energy Technology Data Exchange (ETDEWEB)

    Bender, P. [Univ. of Colorado, Boulder, CO (United States); Bloom, E. [Stanford Linear Accelerator Center, Menlo Park, CA (United States); Cominsky, L. [Sonoma State Univ., Rohnert Park, CA (United States). Dept. of Physics and Astronomy] [and others

    1995-07-01

    Black-hole astrophysics is not just the investigation of yet another, even if extremely remarkable type of celestial body, but a test of the correctness of the understanding of the very properties of space and time in very strong gravitational fields. Physicists` excitement at this new prospect for testing theories of fundamental processes is matched by that of astronomers at the possibility to discover and study a new and dramatically different kind of astronomical object. Here the authors review the currently known ways that black holes can be identified by their effects on their neighborhood--since, of course, the hole itself does not yield any direct evidence of its existence or information about its properties. The two most important empirical considerations are determination of masses, or lower limits thereof, of unseen companions in binary star systems, and measurement of luminosity fluctuations on very short time scales.

  1. Rotating Brane World Black Holes

    OpenAIRE

    Modgil, Moninder Singh; Panda, Sukanta; Sengupta, Gautam

    2001-01-01

    A five dimensional rotating black string in a Randall-Sundrum brane world is considered. The black string intercepts the three brane in a four dimensional rotating black hole. The geodesic equations and the asymptotics in this background are discussed.

  2. Observational Evidence for Black Holes

    OpenAIRE

    Narayan, Ramesh; McClintock, Jeffrey E.

    2013-01-01

    Astronomers have discovered two populations of black holes: (i) stellar-mass black holes with masses in the range 5 to 30 solar masses, millions of which are present in each galaxy in the universe, and (ii) supermassive black holes with masses in the range 10^6 to 10^{10} solar masses, one each in the nucleus of every galaxy. There is strong circumstantial evidence that all these objects are true black holes with event horizons. The measured masses of supermassive black hole are strongly corr...

  3. Statistical mechanics of black holes

    International Nuclear Information System (INIS)

    We analyze the statistical mechanics of a gas of neutral and charged black holes. The microcanonical ensemble is the only possible approach to this system, and the equilibrium configuration is the one for which most of the energy is carried by a single black hole. Schwarzschild black holes are found to obey the statistical bootstrap condition. In all cases, the microcanonical temperature is identical to the Hawking temperature of the most massive black hole in the gas. U(1) charges in general break the bootstrap property. The problems of black-hole decay and of quantum coherence are also addressed

  4. Massive BTZ black hole thermodynamics

    CERN Document Server

    Hendi, S H; Panahiyan, S

    2016-01-01

    Motivated by large applications of BTZ black holes and interesting results of massive gravity, we investigate massive BTZ black holes in presence of Maxwell and Born-Infeld (BI) electrodynamics. We study geometric as well as thermodynamic structure of the solutions through canonical ensemble. Despite the existence of massive term, obtained solutions are asymptotically (a)dS and have a curvature singularity at the origin. Next, we regard varying cosmological constant and examine Van der Waals like behavior of the solutions in the extended phase space. In addition, we employ geometrical thermodynamic approaches and show that using Weinhold, Ruppeiner and Quevedo metrics leads to existence of ensemble dependency while HPEM metric yields uniform picture. For neutral case, it will be shown that generalization to massive gravity leads to presence of non-zero temperature and heat capacity for vanishing horizon radius. Such behavior is not observed for linearly charged solutions while generalization to nonlinearly on...

  5. Prisons of light : black holes

    Science.gov (United States)

    Ferguson, Kitty

    What is a black hole? Could we survive a visit to one -- perhaps even venture inside? Have we yet discovered any real black holes? And what do black holes teach us about the mysteries of our Universe? These are just a few of the tantalizing questions examined in this tour-de-force, jargon-free review of one of the most fascinating topics in modern science. In search of the answers, we trace a star from its birth to its death throes, take a hypothetical journey to the border of a black hole and beyond, spend time with some of the world's leading theoretical physicists and astronomers, and take a whimsical look at some of the wild ideas black holes have inspired. Prisons of Light - Black Holes is comprehensive and detailed. Yet Kitty Ferguson's lightness of touch and down-to-earth analogies set this book apart from all others on black holes and make it a wonderfully stimulating and entertaining read.

  6. Point mass Cosmological Black Holes

    CERN Document Server

    Firouzjaee, Javad T

    2016-01-01

    Real black holes in the universe are located in the expanding accelerating background which are called the cosmological black holes. Hence, it is necessary to model these black holes in the cosmological background where the dark energy is the dominant energy. In this paper, we argue that most of the dynamical cosmological black holes can be modeled by point mass cosmological black holes. Considering the de Sitter background for the accelerating universe, we present the point mass cosmological background in the cosmological de Sitter space time. Our work also includes the point mass black holes which have charge and angular momentum. We study the mass, horizons, redshift structure and geodesics properties for these black holes.

  7. Brane-World Black Holes

    CERN Document Server

    Chamblin, A; Reall, H S

    2000-01-01

    Gravitational collapse of matter trapped on a brane will produce a black hole on the brane. We discuss such black holes in the models of Randall and Sundrum where our universe is viewed as a domain wall in five dimensional anti-de Sitter space. We present evidence that a non-rotating uncharged black hole on the domain wall is described by a ``black cigar'' solution in five dimensions.

  8. Brane-world black holes

    Science.gov (United States)

    Chamblin, A.; Hawking, S. W.; Reall, H. S.

    2000-03-01

    Gravitational collapse of matter trapped on a brane will produce a black hole on the brane. We discuss such black holes in the models of Randall and Sundrum where our universe is viewed as a domain wall in five-dimensional anti-de Sitter space. We present evidence that a non-rotating uncharged black hole on the domain wall is described by a ``black cigar'' solution in five dimensions.

  9. Black Holes in Higher Dimensions

    Directory of Open Access Journals (Sweden)

    Reall Harvey S.

    2008-09-01

    Full Text Available We review black-hole solutions of higher-dimensional vacuum gravity and higher-dimensional supergravity theories. The discussion of vacuum gravity is pedagogical, with detailed reviews of Myers–Perry solutions, black rings, and solution-generating techniques. We discuss black-hole solutions of maximal supergravity theories, including black holes in anti-de Sitter space. General results and open problems are discussed throughout.

  10. Black Holes and Fourfolds

    CERN Document Server

    Bena, Iosif; Vercnocke, Bert

    2012-01-01

    We establish the relation between the structure governing supersymmetric and non-supersymmetric four- and five-dimensional black holes and multicenter solutions and Calabi-Yau flux compactifications of M-theory and type IIB string theory. We find that the known BPS and almost-BPS multicenter black hole solutions can be interpreted as GKP compactifications with (2,1) and (0,3) imaginary self-dual flux. We also show that the most general GKP compactification leads to new classes of BPS and non-BPS multicenter solutions. We explore how these solutions fit into N=2 truncations, and elucidate how supersymmetry becomes camouflaged. As a necessary tool in our exploration we show how the fields in the largest N=2 truncation fit inside the six-torus compactification of eleven-dimensional supergravity.

  11. Shape of black holes

    CERN Document Server

    Clement, María E Gabach

    2015-01-01

    It is well known that celestial bodies tend to be spherical due to gravity and that rotation produces deviations from this sphericity. We discuss what is known and expected about the shape of black holes' horizons from their formation to their final, stationary state. We present some recent results showing that black hole rotation indeed manifests in the widening of their central regions, limits their global shapes and enforces their whole geometry to be close to the extreme Kerr horizon geometry at almost maximal rotation speed. The results depend only on the horizon area and angular momentum. In particular they are entirely independent of the surrounding geometry of the spacetime and of the presence of matter satisfying the strong energy condition. We also discuss the the relation of this result with the Hoop conjecture.

  12. Noncommutative Black Holes

    CERN Document Server

    Bastos, C; Dias, N C; Prata, J N

    2010-01-01

    One considers phase-space noncommutativity in the context of a Kantowski-Sachs cosmological model to study the interior of a Schwarzschild black hole. It is shown that the potential function of the corresponding quantum cosmology problem has a local minimum. One deduces the thermodynamics and show that the Hawking temperature and entropy exhibit an explicit dependence on the momentum noncommutativity regime and it is shown that the wave function vanishes in this limit.

  13. Noncommutative Solitonic Black Hole

    OpenAIRE

    Chang-Young, Ee; Kimm, Kyoungtae; Lee, Daeho; Lee, Youngone

    2011-01-01

    We investigate solitonic black hole solutions in three dimensional noncommutative spacetime. We do this in gravity with negative cosmological constant coupled to a scalar field. Noncommutativity is realized with the Moyal product which is expanded up to first order in the noncommutativity parameter in two spatial directions. With numerical simulation we study the effect of noncommutativity by increasing the value of the noncommutativity parameter starting from commutative solutions. We find t...

  14. Infinitely Coloured Black Holes

    OpenAIRE

    Mavromatos, Nick E.; Winstanley, Elizabeth(Consortium for Fundamental Physics, School of Mathematics and Statistics, University of Sheffield, Hicks Building, Hounsfield Road, Sheffield, S3 7RH, United Kingdom)

    1999-01-01

    We formulate the field equations for $SU(\\infty)$ Einstein-Yang-Mills theory, and find spherically symmetric black-hole solutions. This model may be motivated by string theory considerations, given the enormous gauge symmetries which characterize string theory. The solutions simplify considerably in the presence of a negative cosmological constant, particularly for the limiting cases of a very large cosmological constant or very small gauge field. The situation of an arbitrarily small gauge f...

  15. Beyond the black hole

    International Nuclear Information System (INIS)

    This book is about the life and work of Stephen Hawking. It traces the development of his theories about the universe and particularly black holes, in a biographical context. Hawking's lecture 'Is the end in sight for theoretical physics' is presented as an appendix. In this, he discusses the possibility of achieving a complete, consistent and unified theory of the physical interactions which would describe all possible observations. (U.K.)

  16. Thermal BEC Black Holes

    OpenAIRE

    Roberto Casadio(INFN, Bologna); Andrea Giugno; Octavian Micu; Alessio Orlandi

    2015-01-01

    We review some features of Bose–Einstein condensate (BEC) models of black holes obtained by means of the horizon wave function formalism. We consider the Klein–Gordon equation for a toy graviton field coupled to a static matter current in a spherically-symmetric setup. The classical field reproduces the Newtonian potential generated by the matter source, while the corresponding quantum state is given by a coherent superposition of scalar modes with a continuous occupation number. An attractiv...

  17. Black Hole Thermodynamics and Hamilton-Jacobi Counterterm

    CERN Document Server

    Bergamin, Luzi; McNees, Robert; Meyer, Rene

    2007-01-01

    We review the construction of the universal Hamilton-Jacobi counterterm for dilaton gravity in two dimensions, derive the corresponding result in the Cartan formulation and elaborate further upon black hole thermodynamics and semi-classical corrections. Applications include spherically symmetric black holes in arbitrary dimensions with Minkowski- or AdS-asymptotics, the BTZ black hole and black holes in two-dimensional string theory.

  18. Black Hole Structure in Schwarzschild Coordinates

    Directory of Open Access Journals (Sweden)

    Proffitt D.

    2014-07-01

    Full Text Available In the analysis of the interior region of both stationary and rotating black holes, it is customary to switch to a set of in-falling coordinates to avoid problems posed by the coordinate singularity at the event horizon. I take the view here that to understand the physics of black holes, we need to restrict ourselves to book keeper or Schwarzschild coordinates of a distant observer if we are to derive measurable properties. I show that one can derive interesting properties of black holes th at might explain some of the observational evidence available without the necessity of introducing further ad hoc conjectures.

  19. Quantum chaos and the black hole horizon

    CERN Document Server

    CERN. Geneva

    2016-01-01

    Thanks to AdS/CFT, the analogy between black holes and thermal systems has become a practical tool, shedding light on thermalization, transport, and entanglement dynamics. Continuing in this vein, recent work has shown how chaos in the boundary CFT can be analyzed in terms of high energy scattering right on the horizon of the dual black hole. The analysis revolves around certain out-of-time-order correlation functions, which are simple diagnostics of the butterfly effect. We will review this work, along with a general bound on these functions that implies black holes are the most chaotic systems in quantum mechanics. (NB Room Change to Main Auditorium)

  20. CFT Duals for Accelerating Black Holes

    CERN Document Server

    Astorino, Marco

    2016-01-01

    The near horizon geometry of the rotating C-metric, describing accelerating Kerr-Newman black holes, is analysed. It is shown that, at extremality, even though not it is isomorphic to the extremal Kerr-Newman, it remains a warped and twisted product of $AdS_2 \\times S^2$. Therefore the methods of the Kerr/CFT correspondence can successfully be applied to build a CFT dual model, whose entropy reproduce, through the Cardy formula, the Beckenstein-Hawking entropy of the accelerating black hole. The mass of accelerating Kerr-Newman black hole, which fulfil the first law of thermodynamics, is presented. Further generalisation in presence of an external Melvin-like magnetic field, used to regularise the conical singularity characteristic of the C-metrics, shows that the Kerr/CFT correspondence can be applied also for the accelerating and magnetised extremal black holes.

  1. CFT duals for accelerating black holes

    Science.gov (United States)

    Astorino, Marco

    2016-09-01

    The near horizon geometry of the rotating C-metric, describing accelerating Kerr-Newman black holes, is analysed. It is shown that, at extremality, even though it is not isomorphic to the extremal Kerr-Newman, it remains a warped and twisted product of AdS2 ×S2. Therefore the methods of the Kerr/CFT correspondence can successfully be applied to build a CFT dual model, whose entropy reproduces, through the Cardy formula, the Bekenstein-Hawking entropy of the accelerating black hole. The mass of accelerating Kerr-Newman black hole, which fulfils the first law of thermodynamics, is presented. Further generalisation in presence of an external Melvin-like magnetic field, used to regularise the conical singularity characteristic of the C-metrics, shows that the Kerr/CFT correspondence can be applied also for the accelerating and magnetised extremal black holes.

  2. Black holes reconsidered

    CERN Document Server

    Helfer, Adam D

    2011-01-01

    I review elements of the foundations of black-hole theory with attention to problematic issues, and describe some techniques which either seem to help with the difficulties or at least investigate their scope. The definition of black holes via event horizons has been problematic because it depends on knowing the global structure of space-time; often attempts to avoid this (e.g. apparent horizons) require knowledge of the interior geometry. I suggest studying instead the holonomy relating the exterior neighborhood of the incipient horizon to the regime of distant observers; at least in the spherically symmetric case, this holonomy will develop certain universal features, in principle observable from signals emitted from infalling objects. I discuss the theory of quantum fields in curved space-time, and the difficulties with Hawking's prediction of black-hole radiation. I then show that the usual, very natural, theory of quantum fields in curved space-time runs into difficulties when applied to measurement prob...

  3. Slowly balding black holes

    CERN Document Server

    Lyutikov, Maxim

    2011-01-01

    The "no hair" theorem, a key result in General Relativity, states that an isolated black hole is defined by only three parameters: mass, angular momentum, and electric charge; this asymptotic state is reached on a light-crossing time scale. We find that the "no hair" theorem is not formally applicable for black holes formed from collapse of a rotating neutron star. Rotating neutron stars can self-produce particles via vacuum breakdown forming a highly conducting plasma magnetosphere such that magnetic field lines are effectively "frozen-in" the star both before and during collapse. In the limit of no resistivity, this introduces a topological constraint which prohibits the magnetic field from sliding off the newly-formed event horizon. As a result, during collapse of a neutron star into a black hole, the latter conserves the number of magnetic flux tubes $N_B = e \\Phi_\\infty /(\\pi c \\hbar)$, where $\\Phi_\\infty \\approx 2 \\pi^2 B_{NS} R_{NS}^3 /(P_{\\rm NS} c)$ is the initial magnetic flux through the hemisphere...

  4. Thermal corpuscular black holes

    Science.gov (United States)

    Casadio, Roberto; Giugno, Andrea; Orlandi, Alessio

    2015-06-01

    We study the corpuscular model of an evaporating black hole consisting of a specific quantum state for a large number N of self-confined bosons. The single-particle spectrum contains a discrete ground state of energy m (corresponding to toy gravitons forming the black hole), and a gapless continuous spectrum (to accommodate for the Hawking radiation with energy ω >m ). Each constituent is in a superposition of the ground state and a Planckian distribution at the expected Hawking temperature in the continuum. We first find that, assuming the Hawking radiation is the leading effect of the internal scatterings, the corresponding N -particle state can be collectively described by a single-particle wave function given by a superposition of a total ground state with energy M =N m and a Planckian distribution for E >M at the same Hawking temperature. From this collective state, we compute the partition function and obtain an entropy which reproduces the usual area law with a logarithmic correction precisely related with the Hawking component. By means of the horizon wave function for the system, we finally show the backreaction of modes with ω >m reduces the Hawking flux. Both corrections, to the entropy and to the Hawking flux, suggest the evaporation properly stops for vanishing mass, if the black hole is in this particular quantum state.

  5. Black holes with bottle-shaped horizons

    CERN Document Server

    Chen, Yu

    2016-01-01

    We present a new class of four-dimensional AdS black holes with non-compact event horizons of finite area. The event horizons are topologically spheres with one puncture, with the puncture pushed to infinity in the form of a cusp. Because of the shape of their event horizons, we call such black holes "black bottles". The solution was obtained as a special case of the Plebanski-Demianski solution, and may describe either static or rotating black bottles. For certain ranges of parameters, an acceleration horizon may also appear in the space-time. We study the full parameter space of the solution, and the various limiting cases that arise. In particular, we show how the rotating black hole recently discovered by Klemm arises as a special limit.

  6. Black Holes versus Strange Quark Matter

    OpenAIRE

    Gladysz-Dziadus, Ewa

    2004-01-01

    Interpretation of Centauro like events still remains the open question. To the list of models proposed to explain Centauros, the new idea based on mini black holes evaporation has been recently added by A. Mironov et al.. In our paper we give some comments to this scenario, showing that the hypothesis that Centauro like events result from decay of mini black holes, encounters various difficulties, when compared with experimental observations. The QGP strangelet mechanism, proposed in some of ...

  7. Equal Area Laws and Latent Heat for d -Dimensional RN-AdS Black Hole

    OpenAIRE

    Li-Chun Zhang; Hui-Hua Zhao; Ren Zhao; Meng-Sen Ma

    2014-01-01

    We study the equal area laws of d -dimensional RN-AdS black hole. We choose two kinds of phase diagrams, P-V and T-S . We employ the equal area laws to find an isobar which is the real two-phase coexistence line. Our calculation is much simpler to derive the critical value of the thermodynamic quantities. According to the thermodynamic quantities, we also study the latent heat of the black hole.

  8. Extreme Black Holes and Near-Horizon Geometries

    OpenAIRE

    Li, Ka Ki; Li, Carmen

    2016-01-01

    In this thesis we study near-horizon geometries of extreme black holes. We first consider stationary extreme black hole solutions to the Einstein-Yang-Mills theory with a compact semi-simple gauge group in four dimensions, allowing for a negative cosmological constant. We prove that any axisymmetric black hole of this kind possesses a near-horizon AdS2 symmetry and deduce its near-horizon geometry must be that of the abelian embedded extreme Kerr-Newman (AdS) black hole. We sho...

  9. Hologram of a pure state black hole

    CERN Document Server

    Roy, Shubho R

    2015-01-01

    In this paper we extend the HKLL holographic smearing function method to reconstruct (quasi)local AdS bulk scalar observables in the background of a large AdS black hole formed by null shell collapse (a "pure state" black hole), from the dual CFT which is undergoing a sudden quench. In particular, we probe the near horizon and sub-horizon bulk locality. First we construct local bulk operators from the CFT in the leading semiclassical limit, $N\\rightarrow\\infty$. Then we look at effects due to the finiteness of $N$, where we propose a suitable coarse-graining prescription involving early and late time cut-offs to define semiclassical bulk observables which are approximately local; their departure from locality being non-perturbatively small in $N$. Our results have important implications on the black hole information problem.

  10. Stimulated emission and black holes

    International Nuclear Information System (INIS)

    The probability of a black hole emitting m particles when n particles are incident on the black hole was first derived by Bekenstein and Meisels, and later, using a different method, by Panangaden and Wald. In another paper by Bekenstein, it was argued that black holes should have stimulated emission in all modes including the nonsuperradiant ones. In this paper, we use a model based on quantum field theory. We show that Bose-Einstein statistics enhances the probability for particles to scatter in the same direction. We also prove that a black hole is equivalent to a perfect blackbody surrounded by a mirror. In our model, the black hole does not exhibit stimulated emission in nonsuperradiant modes. We also compare the black hole to a gray body

  11. Black Hole's 1/N Hair

    CERN Document Server

    Dvali, Gia

    2013-01-01

    According to the standard view classically black holes carry no hair, whereas quantum hair is at best exponentially weak. We show that suppression of hair is an artifact of the semi-classical treatment and that in the quantum picture hair appears as an inverse mass-square effect. Such hair is predicted in the microscopic quantum description in which a black hole represents a self-sustained leaky Bose-condensate of N soft gravitons. In this picture the Hawking radiation is the quantum depletion of the condensate. Within this picture we show that quantum black hole physics is fully compatible with continuous global symmetries and that global hair appears with the strength B/N, where B is the global charge swallowed by the black hole. For large charge this hair has dramatic effect on black hole dynamics. Our findings can have interesting astrophysical consequences, such as existence of black holes with large detectable baryonic and leptonic numbers.

  12. Black hole's 1/N hair

    International Nuclear Information System (INIS)

    According to the standard view classically black holes carry no hair, whereas quantum hair is at best exponentially weak. We show that suppression of hair is an artifact of the semi-classical treatment and that in the quantum picture hair appears as an inverse mass-square effect. Such hair is predicted in the microscopic quantum description in which a black hole represents a self-sustained leaky Bose-condensate of N soft gravitons. In this picture the Hawking radiation is the quantum depletion of the condensate. Within this picture we show that quantum black hole physics is fully compatible with continuous global symmetries and that global hair appears with the strength B/N, where B is the global charge swallowed by the black hole. For large charge this hair has dramatic effect on black hole dynamics. Our findings can have interesting astrophysical consequences, such as existence of black holes with large detectable baryonic and leptonic numbers

  13. Small black holes on cylinders

    International Nuclear Information System (INIS)

    We find the metric of small black holes on cylinders, i.e. neutral and static black holes with a small mass in d-dimensional Minkowski space times a circle. The metric is found using an ansatz for black holes on cylinders proposed in J. High Energy Phys. 05, 032 (2002). We use the new metric to compute corrections to the thermodynamics which is seen to deviate from that of the (d+1)-dimensional Schwarzschild black hole. Moreover, we compute the leading correction to the relative binding energy which is found to be non-zero. We discuss the consequences of these results for the general understanding of black holes and we connect the results to the phase structure of black holes and strings on cylinders

  14. Black hole bound states and their quantization

    NARCIS (Netherlands)

    J. de Boer

    2007-01-01

    We briefly review the construction of multi-centered black hole solutions in type IIA string theory. We then discuss a decoupling limit which embeds these solutions in M-theory on AdS(3) x S-2 x CY, and discuss some aspects of their dual CFT interpretation. Finally, we consider the quantization of t

  15. Non-Abelian magnetic black strings versus black holes

    Science.gov (United States)

    Mazharimousavi, S. Habib; Halilsoy, M.

    2016-05-01

    We present d+1 -dimensional pure magnetic Yang-Mills (YM) black strings (or 1-branes) induced by the d -dimensional Einstein-Yang-Mills-Dilaton black holes. The Born-Infeld version of the YM field makes our starting point which goes to the standard YM field through a limiting procedure. The lifting from black holes to black strings (with less number of fields) is done by adding an extra, compact coordinate. This amounts to the change of horizon topology from S^{d-2} to a product structure. Our black string in 5 dimensions is a rather special one, with uniform Hawking temperature and non-asymptotically flat structure. As the YM charge becomes large the string gets thinner to tend into a breaking point and transform into a 4-dimensional black hole.

  16. Origin of supermassive black holes

    OpenAIRE

    Dokuchaev, V. I.; Eroshenko, Yu. N.; Rubin, S. G.

    2007-01-01

    The origin of supermassive black holes in the galactic nuclei is quite uncertain in spite of extensive set of observational data. We review the known scenarios of galactic and cosmological formation of supermassive black holes. The common drawback of galactic scenarios is a lack of time and shortage of matter supply for building the supermassive black holes in all galaxies by means of accretion and merging. The cosmological scenarios are only fragmentarily developed but propose and pretend to...

  17. Brane-world black holes

    International Nuclear Information System (INIS)

    In this talk, I present and discuss a number of attempts to construct black hole solutions in models with Warped Extra Dimensions. Then, a contact is made with models with Large Extra Dimensions, where black-hole solutions are easily constructed - here the focus will be on the properties of microscopic black holes and the possibility of using phenomena associated with them, such as the emission of Hawking radiation, to discover fundamental properties of our spacetime.

  18. The fuzzball proposal for black holes

    CERN Document Server

    Skenderis, Kostas

    2008-01-01

    The fuzzball proposal states that associated with a black hole of entropy S there are exp S horizon-free non-singular solutions that asymptotically look like the black hole but generically differ from the black hole up to the horizon scale. These solutions, the fuzzballs, are considered to be the black hole microstates while the original black hole represents the average description of the system. The purpose of this report is to review current evidence for the fuzzball proposal, emphasizing the use of AdS/CFT methods in developing and testing the proposal. In particular, we discuss the status of the proposal for 2 and 3 charge black holes in the D1-D5 system, presenting new derivations and streamlining the discussion of their properties. Results to date support the fuzzball proposal but further progress is likely to require going beyond the supergravity approximation and sharpening the definition of a ``stringy fuzzball''. We outline how the fuzzball proposal could resolve longstanding issues in black hole p...

  19. The fuzzball proposal for black holes

    International Nuclear Information System (INIS)

    The fuzzball proposal states that associated with a black hole of entropy S, there are expShorizon-free non-singular solutions that asymptotically look like the black hole but generically differ from the black hole up to the horizon scale. These solutions, the fuzzballs, are considered to be the black hole microstates, while the original black hole represents the average description of the system. The purpose of this report is to review current evidence for the fuzzball proposal, emphasizing the use of AdS/CFT methods in developing and testing the proposal. In particular, we discuss the status of the proposal for 2 and 3 charge black holes in the D1-D5 system, presenting new derivations and streamlining the discussion of their properties. Results to date support the fuzzball proposal, but further progress is likely to require going beyond the supergravity approximation and sharpening the definition of a 'stringy fuzzball'. We outline how the fuzzball proposal could resolve longstanding issues in black hole physics, such as Hawking radiation and information loss. Our emphasis throughout is on connecting different developments and identifying open problems and directions for future research

  20. Canonical Entropy and Phase Transition of Rotating Black Hole

    Institute of Scientific and Technical Information of China (English)

    ZHAO Ren; WU Yue-Qin; ZHANG Li-Chun

    2008-01-01

    Recently, the Hawking radiation of a black hole has been studied using the tunnel effect method. The radiation spectrum of a black hole is derived. By discussing the correction to spectrum of the rotating black hole, we obtain the canonical entropy. The derived canonical entropy is equal to the sum of Bekenstein-Hawking entropy and correction term. The correction term near the critical point is different from the one near others. This difference plays an important role in studying the phase transition of the black hole. The black hole thermal capacity diverges at the critical point. However, the canonical entropy is not a complex number at this point. Thus we think that the phase transition created by this critical point is the second order phase transition. The discussed black hole is a five-dimensional Kerr-AdS black hole. We provide a basis for discussing thermodynamic properties of a higher-dimensional rotating black hole.

  1. Thermal BEC Black Holes

    Science.gov (United States)

    Casadio, Roberto; Giugno, Andrea; Micu, Octavian; Orlandi, Alessio

    2015-10-01

    We review some features of BEC models of black holes obtained by means of the HWF formalism. We consider the KG equation for a toy graviton field coupled to a static matter current in spherical symmetry. The classical field reproduces the Newtonian potential generated by the matter source, while the corresponding quantum state is given by a coherent superposition of scalar modes with continuous occupation number. An attractive self-interaction is needed for bound states to form, so that (approximately) one mode is allowed, and the system of N bosons can be self-confined in a volume of the size of the Schwarzschild radius. The HWF is then used to show that the radius of such a system corresponds to a proper horizon. The uncertainty in the size of the horizon is related to the typical energy of Hawking modes: it decreases with the increasing of the black hole mass (larger number of gravitons), in agreement with semiclassical calculations and different from a single very massive particle. The spectrum contains a discrete ground state of energy $m$ (the bosons forming the black hole), and a continuous spectrum with energy $\\omega > m$ (representing the Hawking radiation and modelled with a Planckian distribution at the expected Hawking temperature). The $N$-particle state can be collectively described by a single-particle wave-function given by a superposition of a total ground state with energy $M = N m$ and a Planckian distribution for $E > M$ at the same Hawking temperature. The partition function is then found to yield the usual area law for the entropy, with a logarithmic correction related with the Hawking component. The backreaction of modes with $\\omega > m$ is also shown to reduce the Hawking flux and the evaporation properly stops for vanishing mass.

  2. Caged black holes: Black holes in compactified spacetimes. I. Theory

    International Nuclear Information System (INIS)

    In backgrounds with compact dimensions there may exist several phases of black objects including a black hole and a black string. The phase transition between them raises questions and touches on fundamental issues such as topology change, uniqueness, and cosmic censorship. No analytic solution is known for the black hole, and moreover one can expect approximate solutions only for very small black holes, while phase transition physics happens when the black hole is large. Hence we turn to numerical solutions. Here some theoretical background to the numerical analysis is given, while the results will appear in a subsequent paper. The goals for a numerical analysis are set. The scalar charge and tension along the compact dimension are defined and used as improved order parameters which put both the black hole and the black string at finite values on the phase diagram. The predictions for small black holes are presented. The differential and the integrated forms of the first law are derived, and the latter (Smarr's formula) can be used to estimate the 'overall numerical error'. Field asymptotics and expressions for physical quantities in terms of the numerical values are supplied. The techniques include the 'method of equivalent charges', free energy, dimensional reduction, and analytic perturbation for small black holes

  3. Black holes and the multiverse

    Science.gov (United States)

    Garriga, Jaume; Vilenkin, Alexander; Zhang, Jun

    2016-02-01

    Vacuum bubbles may nucleate and expand during the inflationary epoch in the early universe. After inflation ends, the bubbles quickly dissipate their kinetic energy; they come to rest with respect to the Hubble flow and eventually form black holes. The fate of the bubble itself depends on the resulting black hole mass. If the mass is smaller than a certain critical value, the bubble collapses to a singularity. Otherwise, the bubble interior inflates, forming a baby universe, which is connected to the exterior FRW region by a wormhole. A similar black hole formation mechanism operates for spherical domain walls nucleating during inflation. As an illustrative example, we studied the black hole mass spectrum in the domain wall scenario, assuming that domain walls interact with matter only gravitationally. Our results indicate that, depending on the model parameters, black holes produced in this scenario can have significant astrophysical effects and can even serve as dark matter or as seeds for supermassive black holes. The mechanism of black hole formation described in this paper is very generic and has important implications for the global structure of the universe. Baby universes inside super-critical black holes inflate eternally and nucleate bubbles of all vacua allowed by the underlying particle physics. The resulting multiverse has a very non-trivial spacetime structure, with a multitude of eternally inflating regions connected by wormholes. If a black hole population with the predicted mass spectrum is discovered, it could be regarded as evidence for inflation and for the existence of a multiverse.

  4. Statistical Hair on Black Holes

    International Nuclear Information System (INIS)

    The Bekenstein-Hawking entropy for certain BPS-saturated black holes in string theory has recently been derived by counting internal black hole microstates at weak coupling. We argue that the black hole microstate can be measured by interference experiments even in the strong coupling region where there is clearly an event horizon. Extracting information which is naively behind the event horizon is possible due to the existence of statistical quantum hair carried by the black hole. This quantum hair arises from the arbitrarily large number of discrete gauge symmetries present in string theory. copyright 1996 The American Physical Society

  5. How black holes saved relativity

    Science.gov (United States)

    Prescod-Weinstein, Chanda

    2016-02-01

    While there have been many popular-science books on the historical and scientific legacy of Albert Einstein's general theory of relativity, a gap exists in the literature for a definitive, accessible history of the theory's most famous offshoot: black holes. In Black Hole, the science writer Marcia Bartusiak aims for a discursive middle ground, writing solely about black holes at a level suitable for both high-school students and more mature readers while also giving some broader scientific context for black-hole research.

  6. Thermodynamics of Accelerating Black Holes

    CERN Document Server

    Appels, Michael; Kubiznak, David

    2016-01-01

    We address a long-standing problem of describing the thermodynamics of a charged accelerating black hole. We derive a standard first law of black hole thermodynamics, with the usual identification of entropy proportional to the area of the event horizon -- even though the event horizon contains a conical singularity. This result not only extends the applicability of black hole thermodynamics to realms previously not anticipated, it also opens a possibility for studying novel properties of an important class of exact radiative solutions of Einstein equations describing accelerated objects. We discuss the thermodynamic volume, stability and phase structure of these black holes.

  7. Asymmetric black dyonic holes

    Directory of Open Access Journals (Sweden)

    I. Cabrera-Munguia

    2015-04-01

    Full Text Available A 6-parametric asymptotically flat exact solution, describing a two-body system of asymmetric black dyons, is studied. The system consists of two unequal counterrotating Kerr–Newman black holes, endowed with electric and magnetic charges which are equal but opposite in sign, separated by a massless strut. The Smarr formula is generalized in order to take into account their contribution to the mass. The expressions for the horizon half-length parameters σ1 and σ2, as functions of the Komar parameters and of the coordinate distance, are displayed, and the thermodynamic properties of the two-body system are studied. Furthermore, the seven physical parameters satisfy a simple algebraic relation which can be understood as a dynamical scenario, in which the physical properties of one body are affected by the ones of the other body.

  8. stu Black Holes Unveiled

    Directory of Open Access Journals (Sweden)

    Armen Yeranyan

    2008-10-01

    Full Text Available The general solutions of the radial attractor flow equations for extremal black holes, both for non-BPS with non-vanishing central charge Z and for Z = 0, are obtained for the so-called stu model, the minimal rank-3 N = 2 symmetric supergravity in d = 4 space-time dimensions. Comparisons with previous partial results, as well as the fake supergravity (first order formalism and an analysis of the marginal stability of corresponding D-brane configurations, are given.

  9. Noncommutative black holes

    Science.gov (United States)

    Bastos, C.; Bertolami, O.; Dias, N. C.; Prata, J. N.

    2010-04-01

    One considers phase-space noncommutativity in the context of a Kantowski-Sachs cosmological model to study the interior of a Schwarzschild black hole. It is shown that the potential function of the corresponding quantum cosmology problem has a local minimum. One deduces the thermodynamics and show that the Hawking temperature and entropy exhibit an explicit dependence on the momentum noncommutativity parameter, η. Furthermore, the t = r = 0 singularity is analysed in the noncommutative regime and it is shown that the wave function vanishes in this limit.

  10. Noncommutative black holes

    Energy Technology Data Exchange (ETDEWEB)

    Bastos, C; Bertolami, O [Departamento de Fisica, Instituto Superior Tecnico, Avenida Rovisco Pais 1, 1049-001 Lisboa (Portugal); Dias, N C; Prata, J N, E-mail: cbastos@fisica.ist.utl.p, E-mail: orfeu@cosmos.ist.utl.p, E-mail: ncdias@mail.telepac.p, E-mail: joao.prata@mail.telepac.p [Departamento de Matematica, Universidade Lusofona de Humanidades e Tecnologias, Avenida Campo Grande, 376, 1749-024 Lisboa (Portugal)

    2010-04-01

    One considers phase-space noncommutativity in the context of a Kantowski-Sachs cosmological model to study the interior of a Schwarzschild black hole. It is shown that the potential function of the corresponding quantum cosmology problem has a local minimum. One deduces the thermodynamics and show that the Hawking temperature and entropy exhibit an explicit dependence on the momentum noncommutativity parameter, {eta}. Furthermore, the t = r = 0 singularity is analysed in the noncommutative regime and it is shown that the wave function vanishes in this limit.

  11. Noncommutative black holes

    International Nuclear Information System (INIS)

    One considers phase-space noncommutativity in the context of a Kantowski-Sachs cosmological model to study the interior of a Schwarzschild black hole. It is shown that the potential function of the corresponding quantum cosmology problem has a local minimum. One deduces the thermodynamics and show that the Hawking temperature and entropy exhibit an explicit dependence on the momentum noncommutativity parameter, η. Furthermore, the t = r = 0 singularity is analysed in the noncommutative regime and it is shown that the wave function vanishes in this limit.

  12. Thermal BEC Black Holes

    Directory of Open Access Journals (Sweden)

    Roberto Casadio

    2015-10-01

    Full Text Available We review some features of Bose–Einstein condensate (BEC models of black holes obtained by means of the horizon wave function formalism. We consider the Klein–Gordon equation for a toy graviton field coupled to a static matter current in a spherically-symmetric setup. The classical field reproduces the Newtonian potential generated by the matter source, while the corresponding quantum state is given by a coherent superposition of scalar modes with a continuous occupation number. An attractive self-interaction is needed for bound states to form, the case in which one finds that (approximately one mode is allowed, and the system of N bosons can be self-confined in a volume of the size of the Schwarzschild radius. The horizon wave function formalism is then used to show that the radius of such a system corresponds to a proper horizon. The uncertainty in the size of the horizon is related to the typical energy of Hawking modes: it decreases with the increasing of the black hole mass (larger number of gravitons, resulting in agreement with the semiclassical calculations and which does not hold for a single very massive particle. The spectrum of these systems has two components: a discrete ground state of energy m (the bosons forming the black hole and a continuous spectrum with energy ω > m (representing the Hawking radiation and modeled with a Planckian distribution at the expected Hawking temperature. Assuming the main effect of the internal scatterings is the Hawking radiation, the N-particle state can be collectively described by a single-particle wave-function given by a superposition of a total ground state with energy M = Nm and Entropy 2015, 17 6894 a Planckian distribution for E > M at the same Hawking temperature. This can be used to compute the partition function and to find the usual area law for the entropy, with a logarithmic correction related to the Hawking component. The backreaction of modes with ω > m is also shown to reduce

  13. Holographic Black Hole Chemistry

    CERN Document Server

    Karch, Andreas

    2015-01-01

    Thermodynamic quantities associated with black holes in Anti-de Sitter space obey an interesting identity when the cosmological constant is included as one of the dynamical variables, the generalized Smarr relation. We show that this relation can easily be understood from the point of view of the dual holographic field theory. It amounts to the simple statement that the extensive thermodynamic quantities of a large $N$ gauge theory only depend on the number of colors, $N$, via an overall factor of $N^2$.

  14. Surfing a Black Hole

    Science.gov (United States)

    2002-10-01

    Star Orbiting Massive Milky Way Centre Approaches to within 17 Light-Hours [1] Summary An international team of astronomers [2], lead by researchers at the Max-Planck Institute for Extraterrestrial Physics (MPE) , has directly observed an otherwise normal star orbiting the supermassive black hole at the center of the Milky Way Galaxy. Ten years of painstaking measurements have been crowned by a series of unique images obtained by the Adaptive Optics (AO) NAOS-CONICA (NACO) instrument [3] on the 8.2-m VLT YEPUN telescope at the ESO Paranal Observatory. It turns out that earlier this year the star approached the central Black Hole to within 17 light-hours - only three times the distance between the Sun and planet Pluto - while travelling at no less than 5000 km/sec . Previous measurements of the velocities of stars near the center of the Milky Way and variable X-ray emission from this area have provided the strongest evidence so far of the existence of a central Black Hole in our home galaxy and, implicitly, that the dark mass concentrations seen in many nuclei of other galaxies probably are also supermassive black holes. However, it has not yet been possible to exclude several alternative configurations. In a break-through paper appearing in the research journal Nature on October 17th, 2002, the present team reports their exciting results, including high-resolution images that allow tracing two-thirds of the orbit of a star designated "S2" . It is currently the closest observable star to the compact radio source and massive black hole candidate "SgrA*" ("Sagittarius A") at the very center of the Milky Way. The orbital period is just over 15 years. The new measurements exclude with high confidence that the central dark mass consists of a cluster of unusual stars or elementary particles, and leave little doubt of the presence of a supermassive black hole at the centre of the galaxy in which we live . PR Photo 23a/02 : NACO image of the central region of the Milky Way

  15. Greybody factors for d-dimensional black holes

    DEFF Research Database (Denmark)

    Harmark, Troels; Natário, José; Schiappa, Ricardo

    2010-01-01

    Gravitational greybody factors are analytically computed for static, spherically symmetric black holes in d-dimensions, including black holes with charge and in the presence of a cosmological constant (where a proper definition of greybody factors for both asymptotically de Sitter and anti...... of the details of the black hole. For asymptotically de Sitter black holes the greybody factor is different for even or odd spacetime dimension, and proportional to the ratio of the areas of the event and cosmological horizons. For asymptotically Ads black holes the greybody factor has a rich structure in which...... universality is hidden in the transmission and reflection coefficients. For either charged or asymptotically de Sitter black holes the greybody factors are given by non-trivial functions, while for asymptotically Ads black holes the greybody factor precisely equals one (corresponding to pure blackbody emission...

  16. Thermal BEC black holes

    CERN Document Server

    Casadio, Roberto; Micu, Octavian; Orlandi, Alessio

    2015-01-01

    We review some features of BEC models of black holes obtained by means of the HWF formalism. We consider the KG equation for a toy graviton field coupled to a static matter current in spherical symmetry. The classical field reproduces the Newtonian potential generated by the matter source, while the corresponding quantum state is given by a coherent superposition of scalar modes with continuous occupation number. An attractive self-interaction is needed for bound states to form, so that (approximately) one mode is allowed, and the system of N bosons can be self-confined in a volume of the size of the Schwarzschild radius. The HWF is then used to show that the radius of such a system corresponds to a proper horizon. The uncertainty in the size of the horizon is related to the typical energy of Hawking modes: it decreases with the increasing of the black hole mass (larger number of gravitons), in agreement with semiclassical calculations and different from a single very massive particle. The spectrum contains a...

  17. Thermal corpuscular black holes

    CERN Document Server

    Casadio, Roberto; Orlandi, Alessio

    2015-01-01

    We study the corpuscular model of an evaporating black hole consisting of a specific quantum state for a large number $N$ of self-confined bosons. The single-particle spectrum contains a discrete ground state of energy $m$ (corresponding to toy gravitons forming the black hole), and a gapless continuous spectrum (to accommodate for the Hawking radiation with energy $\\omega>m$). Each constituent is in a superposition of the ground state and a Planckian distribution at the expected Hawking temperature in the continuum. We first find that, assuming the Hawking radiation is the leading effect of the internal scatterings, the corresponding $N$-particle state can be collectively described by a single-particle wave-function given by a superposition of a total ground state with energy $M=N\\,m$ and a Planckian distribution for $E>M$ at the same Hawking temperature. From this collective state, we compute the partition function and obtain an entropy which reproduces the usual area law with a logarithmic correction preci...

  18. Virtual Black Holes

    CERN Document Server

    Hawking, Stephen William

    1996-01-01

    One would expect spacetime to have a foam-like structure on the Planck scale with a very high topology. If spacetime is simply connected (which is assumed in this paper), the non-trivial homology occurs in dimension two, and spacetime can be regarded as being essentially the topological sum of S^2\\times S^2 and K3 bubbles. Comparison with the instantons for pair creation of black holes shows that the S^2\\times S^2 bubbles can be interpreted as closed loops of virtual black holes. It is shown that scattering in such topological fluctuations leads to loss of quantum coherence, or in other words, to a superscattering matrix \\ that does not factorise into an S matrix and its adjoint. This loss of quantum coherence is very small at low energies for everything except scalar fields, leading to the prediction that we may never observe the Higgs particle. Another possible observational consequence may be that the \\theta angle of QCD is zero without having to invoke the problematical existence of a light axion. The pic...

  19. Black hole thermodynamical entropy

    Energy Technology Data Exchange (ETDEWEB)

    Tsallis, Constantino [Centro Brasileiro de Pesquisas Fisicas and National Institute of Science and Technology for Complex Systems, Rio de Janeiro, RJ (Brazil); Santa Fe Institute, Santa Fe, NM (United States); Cirto, Leonardo J.L. [Centro Brasileiro de Pesquisas Fisicas and National Institute of Science and Technology for Complex Systems, Rio de Janeiro, RJ (Brazil)

    2013-07-15

    As early as 1902, Gibbs pointed out that systems whose partition function diverges, e.g. gravitation, lie outside the validity of the Boltzmann-Gibbs (BG) theory. Consistently, since the pioneering Bekenstein-Hawking results, physically meaningful evidence (e.g., the holographic principle) has accumulated that the BG entropy S{sub BG} of a (3+1) black hole is proportional to its area L{sup 2} (L being a characteristic linear length), and not to its volume L{sup 3}. Similarly it exists the area law, so named because, for a wide class of strongly quantum-entangled d-dimensional systems, S{sub BG} is proportional to lnL if d=1, and to L{sup d-1} if d>1, instead of being proportional to L{sup d} (d {>=} 1). These results violate the extensivity of the thermodynamical entropy of a d-dimensional system. This thermodynamical inconsistency disappears if we realize that the thermodynamical entropy of such nonstandard systems is not to be identified with the BG additive entropy but with appropriately generalized nonadditive entropies. Indeed, the celebrated usefulness of the BG entropy is founded on hypothesis such as relatively weak probabilistic correlations (and their connections to ergodicity, which by no means can be assumed as a general rule of nature). Here we introduce a generalized entropy which, for the Schwarzschild black hole and the area law, can solve the thermodynamic puzzle. (orig.)

  20. Transient Black Hole Binaries

    CERN Document Server

    Belloni, T M

    2016-01-01

    The last two decades have seen a great improvement in our understand- ing of the complex phenomenology observed in transient black-hole binary systems, especially thanks to the activity of the Rossi X-Ray Timing Explorer satellite, com- plemented by observations from many other X-ray observatories and ground-based radio, optical and infrared facilities. Accretion alone cannot describe accurately the intricate behavior associated with black-hole transients and it is now clear that the role played by different kinds of (often massive) outflows seen at different phases of the outburst evolution of these systems is as fundamental as the one played by the accretion process itself. The spectral-timing states originally identified in the X-rays and fundamentally based on the observed effect of accretion, have acquired new importance as they now allow to describe within a coherent picture the phenomenology observed at other wave- length, where the effects of ejection processes are most evident. With a particular focu...

  1. Quantum black hole evaporation

    CERN Document Server

    Schoutens, K; Verlinde, Erik; Schoutens, Kareljan; Verlinde, Erik; Verlinde, Herman

    1993-01-01

    We investigate a recently proposed model for a full quantum description of two-dimensional black hole evaporation, in which a reflecting boundary condition is imposed in the strong coupling region. It is shown that in this model each initial state is mapped to a well-defined asymptotic out-state, provided one performs a certain projection in the gravitational zero mode sector. We find that for an incoming localized energy pulse, the corresponding out-going state contains approximately thermal radiation, in accordance with semi-classical predictions. In addition, our model allows for certain acausal strong coupling effects near the singularity, that give rise to corrections to the Hawking spectrum and restore the coherence of the out-state. To an asymptotic observer these corrections appear to originate from behind the receding apparent horizon and start to influence the out-going state long before the black hole has emitted most of its mass. Finally, by putting the system in a finite box, we are able to deriv...

  2. Chaotic Information Processing by Extremal Black Holes

    CERN Document Server

    Axenides, Minos; Nicolis, Stam

    2015-01-01

    We review an explicit regularization of the AdS$_2$/CFT$_1$ correspondence, that preserves all isometries of bulk and boundary degrees of freedom. This scheme is useful to characterize the space of the unitary evolution operators that describe the dynamics of the microstates of extremal black holes in four spacetime dimensions. Using techniques from algebraic number theory to evaluate the transition amplitudes, we remark that the regularization scheme expresses the fast quantum computation capability of black holes as well as its chaotic nature.

  3. CFT Duals for Accelerating Black Holes

    OpenAIRE

    Astorino, Marco

    2016-01-01

    The near horizon geometry of the rotating C-metric, describing accelerating Kerr-Newman black holes, is analysed. It is shown that, at extremality, even though not it is isomorphic to the extremal Kerr-Newman, it remains a warped and twisted product of $AdS_2 \\times S^2$. Therefore the methods of the Kerr/CFT correspondence can successfully be applied to build a CFT dual model, whose entropy reproduce, through the Cardy formula, the Beckenstein-Hawking entropy of the accelerating black hole. ...

  4. Area spectrum of slowly rotating black holes

    OpenAIRE

    Myung, Yun Soo

    2010-01-01

    We investigate the area spectrum for rotating black holes which are Kerr and BTZ black holes. For slowly rotating black holes, we use the Maggiore's idea combined with Kunstatter's method to derive their area spectra, which are equally spaced.

  5. Spacetime Duality of BTZ Black Hole

    OpenAIRE

    Ho, Jeongwon; Kim, Won T.; Park, Young-Jai

    1999-01-01

    We consider the duality of the quasilocal black hole thermodynamics, explicitly the quasilocal black hole thermodynamic first law, in BTZ black hole solution as a special one of the three-dimensional low energy effective string theory.

  6. What, no black hole evaporation

    International Nuclear Information System (INIS)

    Tipler has claimed that the inward flux of negative energy across the horizon which (according to the semi-classical approximation) accompanies the evaporation of a black hole would cause a solar mass black hole to evaporate in less than a second. It is shown that this claim is in error. (orig.)

  7. Nonlinear Electrodynamics and black holes

    CERN Document Server

    Breton, N; Breton, Nora; Garcia-Salcedo, Ricardo

    2007-01-01

    It is addressed the issue of black holes with nonlinear electromagnetic field, focussing mainly in the Born-Infeld case. The main features of these systems are described, for instance, geodesics, energy conditions, thermodynamics and isolated horizon aspects. Also are revised some black hole solutions of alternative nonlinear electrodynamics and its inconveniences.

  8. Black-Hole Mass Measurements

    DEFF Research Database (Denmark)

    Vestergaard, Marianne

    2004-01-01

    The applicability and apparent uncertainties of the techniques currently available for measuring or estimating black-hole masses in AGNs are briefly summarized.......The applicability and apparent uncertainties of the techniques currently available for measuring or estimating black-hole masses in AGNs are briefly summarized....

  9. Can Black Hole Relax Unitarily?

    CERN Document Server

    Solodukhin, S N

    2004-01-01

    We review the way the BTZ black hole relaxes back to thermal equilibrium after a small perturbation and how it is seen in the boundary (finite volume) CFT. The unitarity requires the relaxation to be quasi-periodic. It is preserved in the CFT but is not obvious in the case of the semiclassical black hole the relaxation of which is driven by complex quasi-normal modes. We discuss two ways of modifying the semiclassical black hole geometry to maintain unitarity: the (fractal) brick wall and the worm-hole modification. In the latter case the entropy comes out correctly as well.

  10. Quantum black hole without singularity

    CERN Document Server

    Kiefer, Claus

    2015-01-01

    We discuss the quantization of a spherical dust shell in a rigorous manner. Classically, the shell can collapse to form a black hole with a singularity. In the quantum theory, we construct a well-defined self-adjoint extension for the Hamilton operator. As a result, the evolution is unitary and the singularity is avoided. If we represent the shell initially by a narrow wave packet, it will first contract until it reaches the region where classically a black hole would form, but then re-expands to infinity. In a way, the state can be interpreted as a superposition of a black hole with a white hole.

  11. Supersymmetric black holes in string theory

    OpenAIRE

    Mohaupt, T.

    2007-01-01

    We review recent developments concerning supersymmetric black holes in string theory. After a general introduction to the laws of black hole mechanics and to black hole entropy in string theory, we discuss black hole solutions in N=2 supergravity, special geometry, the black hole attractor equations and the underlying variational principle. Special attention is payed to the crucial role of higher derivative corrections. Finally we discuss black hole partition functions and their relation to t...

  12. Prisons of Light - Black Holes

    Science.gov (United States)

    Ferguson, Kitty

    1998-05-01

    In this jargon-free review of one of the most fascinating topics in modern science, acclaimed science writer Kitty Ferguson examines the discovery of black holes, their nature, and what they can teach us about the mysteries of the universe. In search of the answers, we trace a star from its birth to its death throes, take a hypothetical journey to the border of a black hole and beyond, spend time with some of the world's leading theoretical physicists and astronomers, and take a whimsical look at some of the wild ideas black holes have inspired. Prisons of Light--Black Holes is comprehensive and detailed. Yet Kitty Ferguson's lightness of touch and down-to-earth analogies set this book apart from all others on black holes and make it a wonderfully stimulating and entertaining read.

  13. Black Holes and Galaxy Metamorphosis

    CERN Document Server

    Holley-Bockelmann, K

    2001-01-01

    Supermassive black holes can be seen as an agent of galaxy transformation. In particular, a supermassive black hole can cause a triaxial galaxy to evolve toward axisymmetry by inducing chaos in centrophilic orbit families. This is one way in which a single supermassive black hole can induce large-scale changes in the structure of its host galaxy -- changes on scales far larger than the Schwarzschild radius ($O(10^{-5}) \\rm{pc}$) and the radius of influence of the black hole ($O(1)-O(100) \\rm{pc}$). We will discuss the transformative power of supermassive black holes in light of recent high resolution N-body realizations of cuspy triaxial galaxies.

  14. Black holes and the multiverse

    CERN Document Server

    Garriga, Jaume; Zhang, Jun

    2015-01-01

    Vacuum bubbles may nucleate and expand during the inflationary epoch in the early universe. After inflation ends, the bubbles quickly dissipate their kinetic energy; they come to rest with respect to the Hubble flow and eventually form black holes. The fate of the bubble itself depends on the resulting black hole mass. If the mass is smaller than a certain critical value, the bubble collapses to a singularity. Otherwise, the bubble interior inflates, forming a baby universe, which is connected to the exterior FRW region by a wormhole. A similar black hole formation mechanism operates for spherical domain walls nucleating during inflation. As an illustrative example, we studied the black hole mass spectrum in the domain wall scenario, assuming that domain walls interact with matter only gravitationally. Our results indicate that, depending on the model parameters, black holes produced in this scenario can have significant astrophysical effects and can even serve as dark matter or as seeds for supermassive blac...

  15. Quantum strings and black holes

    CERN Document Server

    Damour, Thibault Marie Alban Guillaume

    2001-01-01

    The transition between (non supersymmetric) quantum string states and Schwarzschild black holes is discussed. This transition occurs when the string coupling $g^2$ (which determines Newton's constant) increases beyond a certain critical value $g_c^2$. We review a calculation showing that self-gravity causes a typical string state of mass $M$ to shrink, as the string coupling $g^2$ increases, down to a compact string state whose mass, size, entropy and luminosity match (for the critical value $g_c^2 \\sim (M \\sqrt{\\alpha'})^{-1}$) those of a Schwarzschild black hole. This confirms the idea (proposed by several authors) that the entropy of black holes can be accounted for by counting string states. The level spacing of the quantum states of Schwarzschild black holes is expected to be exponentially smaller than their radiative width. This makes it very difficult to conceive (even Gedanken) experiments probing the discreteness of the quantum energy levels of black holes.

  16. Hairy planar black holes in higher dimensions

    International Nuclear Information System (INIS)

    We construct exact hairy planar black holes in D-dimensional AdS gravity. These solutions are regular except at the singularity and have stress-energy that satisfies the null energy condition. We present a detailed analysis of their thermodynamical properties and show that the first law is satisfied. We also discuss these solutions in the context of AdS/CFT duality and construct the associated c-function

  17. Slicing black hole spacetimes

    Science.gov (United States)

    Bini, Donato; Bittencourt, Eduardo; Geralico, Andrea; Jantzen, Robert T.

    2015-04-01

    A general framework is developed to investigate the properties of useful choices of stationary spacelike slicings of stationary spacetimes whose congruences of timelike orthogonal trajectories are interpreted as the world lines of an associated family of observers, the kinematical properties of which in turn may be used to geometrically characterize the original slicings. On the other hand, properties of the slicings themselves can directly characterize their utility motivated instead by other considerations like the initial value and evolution problems in the 3-plus-1 approach to general relativity. An attempt is made to categorize the various slicing conditions or "time gauges" used in the literature for the most familiar stationary spacetimes: black holes and their flat spacetime limit.

  18. Slicing black hole spacetimes

    CERN Document Server

    Bini, Donato; Geralico, Andrea; Jantzen, Robert T

    2015-01-01

    A general framework is developed to investigate the properties of useful choices of stationary spacelike slicings of stationary spacetimes whose congruences of timelike orthogonal trajectories are interpreted as the world lines of an associated family of observers, the kinematical properties of which in turn may be used to geometrically characterize the original slicings. On the other hand properties of the slicings themselves can directly characterize their utility motivated instead by other considerations like the initial value and evolution problems in the 3-plus-1 approach to general relativity. An attempt is made to categorize the various slicing conditions or "time gauges" used in the literature for the most familiar stationary spacetimes: black holes and their flat spacetime limit.

  19. Exact black hole formation in three dimensions

    International Nuclear Information System (INIS)

    We consider three dimensional Einstein gravity non-minimally coupled to a real scalar field with a self-interacting scalar potential and present the exact black hole formation in three dimensions. Firstly we obtain an exact time-dependent spherically symmetric solution describing the gravitational collapse to a scalar black hole at the infinite time, i.e. in the static limit. The solution can only be asymptotically AdS because of the No–Go theorem in three dimensions which is resulting from the existence of a smooth black hole horizon. Then we analyze their geometric properties and properties of the time evolution. We also get the exact time-dependent solution in the minimal coupling model after taking a conformal transformation

  20. Exact black hole formation in three dimensions

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Wei, E-mail: xuweifuture@gmail.com

    2014-11-10

    We consider three dimensional Einstein gravity non-minimally coupled to a real scalar field with a self-interacting scalar potential and present the exact black hole formation in three dimensions. Firstly we obtain an exact time-dependent spherically symmetric solution describing the gravitational collapse to a scalar black hole at the infinite time, i.e. in the static limit. The solution can only be asymptotically AdS because of the No–Go theorem in three dimensions which is resulting from the existence of a smooth black hole horizon. Then we analyze their geometric properties and properties of the time evolution. We also get the exact time-dependent solution in the minimal coupling model after taking a conformal transformation.

  1. Thermodynamics of Third Order Lovelock-Born-Infeld Black Holes

    Institute of Scientific and Technical Information of China (English)

    李鹏; 岳瑞宏; 邹德成

    2011-01-01

    We here explore black holes in the third order Lovelock gravity coupling with nonlinear Born-Infeld electro- magnetic field. Considering special second and third order coefficients (&g = 363 = a2), we analyze the thermodynamics of third order Lovelock-Born-Infeld black holes and, in 7-dimensional AdS space-time, discuss the stability of black holes in different event horizon structures. We find that the cosmological constant A plays an important role in the distribution of black hole stable regions.

  2. Quantization of black holes by analogy with hydrogen atoms

    CERN Document Server

    Liu, Chang; Wu, Yu-Mei; Zhang, Yu-Hao

    2015-01-01

    We suggest a proposal of quantization for black holes that is based on an analogy between a black hole and a hydrogen atom. A self-regular Schwarzschild-AdS black hole is investigated, where the mass density of the extreme black hole is given by the probability density of the ground state of hydrogen atoms and the mass densities of non-extreme black holes are chosen to be the probability densities of excited states with no angular momenta. Consequently, it is logical to accept quantization of mean radii of hydrogen atoms as that of black hole horizons. In this way, quantization of total black hole masses is deduced. Furthermore, the quantum hoop conjecture and the Correspondence Principle are discussed.

  3. Rotating black hole and quintessence

    Energy Technology Data Exchange (ETDEWEB)

    Ghosh, Sushant G. [Jamia Millia Islamia, Centre for Theoretical Physics, New Delhi (India); University of KwaZulu-Natal, Astrophysics and Cosmology Research Unit, School of Mathematics, Statistics and Computer Science, Private Bag 54001, Durban (South Africa)

    2016-04-15

    We discuss spherically symmetric exact solutions of the Einstein equations for quintessential matter surrounding a black hole, which has an additional parameter (ω) due to the quintessential matter, apart from the mass (M). In turn, we employ the Newman-Janis complex transformation to this spherical quintessence black hole solution and present a rotating counterpart that is identified, for α = -e{sup 2} ≠ 0 and ω = 1/3, exactly as the Kerr-Newman black hole, and as the Kerr black hole when α = 0. Interestingly, for a given value of parameter ω, there exists a critical rotation parameter (a = a{sub E}), which corresponds to an extremal black hole with degenerate horizons, while for a < a{sub E}, it describes a nonextremal black hole with Cauchy and event horizons, and no black hole for a > a{sub E}. We find that the extremal value a{sub E} is also influenced by the parameter ω and so is the ergoregion. (orig.)

  4. A nonsingular rotating black hole

    International Nuclear Information System (INIS)

    The spacetime singularities in classical general relativity are inevitable, as predicated by the celebrated singularity theorems. However, it is a general belief that singularities do not exist in Nature and that they are the limitations of the general relativity. In the absence of a welldefined quantum gravity, models of regular black holes have been studied. We employ a probability distribution inspired mass function m(r) to replace the Kerr black hole mass M to represent a nonsingular rotating black hole that is identified asymptotically (r >> k, k > 0 constant) exactly as the Kerr-Newman black hole, and as the Kerr black hole when k = 0. The radiating counterpart renders a nonsingular generalization of Carmeli's spacetime as well as Vaidya's spacetime, in the appropriate limits. The exponential correction factor changing the geometry of the classical black hole to remove the curvature singularity can also be motivated by quantum arguments. The regular rotating spacetime can also be understood as a black hole of general relativity coupled to nonlinear electrodynamics. (orig.)

  5. Acceleration of Black Hole Universe

    Science.gov (United States)

    Zhang, Tianxi

    2012-05-01

    An alternative cosmological model called black hole universe has been recently proposed by the author. According to this model, the universe originated from a hot star-like black hole, and gradually grew up through a supermassive black hole to the present state by accreting ambient materials and merging with other black holes. The entire space is structured with an infinite number of layers hierarchically. The innermost three layers are the universe that we live, the outside space called mother universe, and the inside star-like and supermassive black holes called child universes. The outermost layer has an infinite radius and limits to zero for both the mass density and absolute temperature. All layers or universes are governed by the same physics, the Einstein general theory of relativity with the Robertson-Walker metric of space-time, and tend to expand outward physically. The evolution of the space structure is iterative. When one universe expands out, a new similar universe grows up from its inside. In this study. we will analyze the acceleration of black hole universe that accretes its ambient matter in an increasing rate. We will also compare the result obtained from the black hole universe model with the measurement of type Ia supernova and the result from the big bang cosmology.

  6. Black Hole Grabs Starry Snack

    Science.gov (United States)

    2006-01-01

    [figure removed for brevity, see original site] Poster Version This artist's concept shows a supermassive black hole at the center of a remote galaxy digesting the remnants of a star. NASA's Galaxy Evolution Explorer had a 'ringside' seat for this feeding frenzy, using its ultraviolet eyes to study the process from beginning to end. The artist's concept chronicles the star being ripped apart and swallowed by the cosmic beast over time. First, the intact sun-like star (left) ventures too close to the black hole, and its own self-gravity is overwhelmed by the black hole's gravity. The star then stretches apart (middle yellow blob) and eventually breaks into stellar crumbs, some of which swirl into the black hole (cloudy ring at right). This doomed material heats up and radiates light, including ultraviolet light, before disappearing forever into the black hole. The Galaxy Evolution Explorer was able to watch this process unfold by observing changes in ultraviolet light. The area around the black hole appears warped because the gravity of the black hole acts like a lens, twisting and distorting light.

  7. A nonsingular rotating black hole

    Energy Technology Data Exchange (ETDEWEB)

    Ghosh, Sushant G. [Jamia Millia Islamia, Centre for Theoretical Physics, New Delhi (India); University of KwaZulu-Natal, Astrophysics and Cosmology Research Unit, School of Mathematical Sciences, Durban (South Africa)

    2015-11-15

    The spacetime singularities in classical general relativity are inevitable, as predicated by the celebrated singularity theorems. However, it is a general belief that singularities do not exist in Nature and that they are the limitations of the general relativity. In the absence of a welldefined quantum gravity, models of regular black holes have been studied. We employ a probability distribution inspired mass function m(r) to replace the Kerr black hole mass M to represent a nonsingular rotating black hole that is identified asymptotically (r >> k, k > 0 constant) exactly as the Kerr-Newman black hole, and as the Kerr black hole when k = 0. The radiating counterpart renders a nonsingular generalization of Carmeli's spacetime as well as Vaidya's spacetime, in the appropriate limits. The exponential correction factor changing the geometry of the classical black hole to remove the curvature singularity can also be motivated by quantum arguments. The regular rotating spacetime can also be understood as a black hole of general relativity coupled to nonlinear electrodynamics. (orig.)

  8. Implication of Classical Black Hole Evaporation Conjecture to Floating Black Holes

    OpenAIRE

    Tanaka, Takahiro

    2007-01-01

    In Randall-Sundrum single-brane (RS-II) model, it was conjectured that there is no static large black hole localized on the brane based on adS/CFT correspondence. Here we consider the phase diagram of black objects in the models extended from the RS-II model. We propose a scenario for the phase diagram consistent with the classical black hole evaporation conjecture. The proposed scenario indicates the existence of a rich variety of the families of black objects.

  9. Connection between classical black hole evaporation conjecture and floating black holes

    International Nuclear Information System (INIS)

    In the Randall-Sundrum single-brane (RS-II) model, it was conjectured, on the basis of the AdS/CFT correspondence, that there is no static large black hole localized on the brane. Here we consider the phase diagram of black objects in the models which are extentions of the RS-II model. We propose a scenario for the phase diagram that is consistent with the classical black hole evaporation conjecture. The proposed scenario indicates the existence of a rich variety of families of black objects. (author)

  10. Asymmetric interiors for small black holes

    CERN Document Server

    Kabat, Daniel

    2016-01-01

    We develop the representation of infalling observers and bulk fields in the CFT as a way to understand the black hole interior in AdS. We first discuss properties of CFT states which are dual to black holes. Then we show that in the presence of a Killing horizon bulk fields can be decomposed into pieces we call ingoing and outgoing. The ingoing field admits a simple operator representation in the CFT, even inside a small black hole at late times, which leads to a simple CFT description of infalling geodesics. This means classical infalling observers will experience the classical geometry in the interior. The outgoing piece of the field is more subtle. In an eternal two-sided geometry it can be represented as an operator on the left CFT. In a stable one-sided geometry it can be described using entanglement via the PR construction. But in an evaporating black hole trans-horizon entanglement changes at the Page time, which means that for old black holes the PR construction fails and the outgoing field does not s...

  11. Novel CFT duals for extreme black holes

    International Nuclear Information System (INIS)

    In this paper, we study the CFT duals for extreme black holes in the stretched horizon formalism. We consider the extremal RN, Kerr-Newman-AdS-dS, as well as the higher dimensional Kerr-AdS-dS black holes. In all these cases, we reproduce the well-established CFT duals. Actually we show that for stationary extreme black holes, the stretched horizon formalism always gives rise to the same dual CFT pictures as the ones suggested by ASG of corresponding near horizon geometries. Furthermore, we propose new CFT duals for 4D Kerr-Newman-AdS-dS and higher dimensional Kerr-AdS-dS black holes. We find that every dual CFT is defined with respect to a rotation in certain angular direction, along which the translation defines a U(1) Killing symmetry. In the presence of two sets of U(1) symmetry, the novel CFT duals are generated by the modular group SL(2,Z), and for n sets of U(1) symmetry there are general CFT duals generated by T-duality group SL(n,Z).

  12. Local Operators in the Eternal Black Hole

    NARCIS (Netherlands)

    Papadodimas, Kyriakos; Raju, Suvrat

    2015-01-01

    In the AdS/CFT correspondence, states obtained by Hamiltonian evolution of the thermofield doubled state are also dual to an eternal black-hole geometry, which is glued to the boundary with a time shift generated by a large diffeomorphism. We describe gauge-invariant relational observables that prob

  13. Novel CFT Duals for Extreme Black Holes

    CERN Document Server

    Chen, Bin

    2011-01-01

    In this paper, we study the CFT duals for extreme black holes in the stretched horizon formalism. We consider the extremal RN, Kerr-Newman(-AdS-dS), as well as the higher dimensional Kerr-AdS-dS black holes. In all these cases, we reproduce the well-established CFT duals. Furthermore, we propose new CFT duals for 4D Kerr-Newman(-AdS-dS) and higher dimensional Kerr(-AdS-dS) black holes. We find that every dual CFT is defined with respect to a rotation in certain angular direction, along which the translation defines a U(1) Killing symmetry. We check these novel CFT duals by computing the central charges from asymptotical symmetry group(ASG) of the near horizon geometry and we find complete consistence. Actually we show that for stationary extreme black holes, the stretched horizon formalism always gives rise to the same dual CFT pictures as the ones suggested by ASG of corresponding near horizon geometries.

  14. Orbital resonances around black holes.

    Science.gov (United States)

    Brink, Jeandrew; Geyer, Marisa; Hinderer, Tanja

    2015-02-27

    We compute the length and time scales associated with resonant orbits around Kerr black holes for all orbital and spin parameters. Resonance-induced effects are potentially observable when the Event Horizon Telescope resolves the inner structure of Sgr A*, when space-based gravitational wave detectors record phase shifts in the waveform during the resonant passage of a compact object spiraling into the black hole, or in the frequencies of quasiperiodic oscillations for accreting black holes. The onset of geodesic chaos for non-Kerr spacetimes should occur at the resonance locations quantified here. PMID:25768747

  15. Evaporation of primordial black holes

    Science.gov (United States)

    Hawking, S. W.

    The usual explanation of the isotropy of the universe is that inflation would have smoothed out any inhomogeneities. However, if the universe was initially fractal or in a foam like state, an overall inflation would have left it in the same state. I suggest that the universe did indeed begin with a tangled web of wormholes connecting pairs of black holes but that the inflationary expansion was unstable: wormholes that are slightly smaller correspond to black holes that are hotter than the cosmological background and evaporate away. This picture is supported by calculations with Raphael Bousso of the evaporation of primordial black holes in the s-wave and large N approximations.

  16. On the State Space Geometries and Thermodynamic Ensembles of Black Holes: A Case Study of the 4 Dimensional Kerr-AdS Black Hole in the Extended State Space

    CERN Document Server

    Sahay, Anurag

    2016-01-01

    Thermodynamic fluctuation metrics in Ruppeiner's formalism are worked out for general rotating black holes in extended state space, which includes the cosmological constant $\\Lambda$ as a thermodynamic variable. The implications of constraints upon the state space geometry are explicitly worked out. The corresponding state space scalar curvature is found to be sensitive to the instabilities/phase transitions associated with the constrained thermodynamic process. In particular, it is found that the appropriate scalar curvature does encode critical phenomena in these black holes. A detailed study is undertaken of the landscape of the state space as determined by the scalar curvature and suitable inferences have been drawn. The extrinsic curvature of the ensemble hypersurfaces is introduced and its relevance discussed.

  17. On the State Space Geometries and Thermodynamic Ensembles of Black Holes: A Case Study of the 4 Dimensional Kerr-AdS Black Hole in the Extended State Space

    OpenAIRE

    Sahay, Anurag

    2016-01-01

    Thermodynamic fluctuation metrics in Ruppeiner's formalism are worked out for general rotating black holes in extended state space, which includes the cosmological constant $\\Lambda$ as a thermodynamic variable. The implications of constraints upon the state space geometry are explicitly worked out. The corresponding state space scalar curvature is found to be sensitive to the instabilities/phase transitions associated with the constrained thermodynamic process. In particular, it is found tha...

  18. Extremal Black Hole Entropy from Horizon Conformal Field Theories

    CERN Document Server

    Halyo, Edi

    2015-01-01

    We show that the entropy of extremal $D=4$ Reissner--Nordstrom black holes can be computed from horizon CFTs with central charges and conformal weights fixed by the dimensionless Rindler energy. This is possible in the simultaneous extremal and near horizon limit of the black hole which takes the geometry to an $AdS_2$ Rindler space with finite temperature. The CFT description of dilatonic $AdS_2$ black holes, obtained from extremal ones by dimensional reduction, lead to exactly the same CFT states.

  19. Erratic Black Hole Regulates Itself

    Science.gov (United States)

    2009-03-01

    New results from NASA's Chandra X-ray Observatory have made a major advance in explaining how a special class of black holes may shut off the high-speed jets they produce. These results suggest that these black holes have a mechanism for regulating the rate at which they grow. Black holes come in many sizes: the supermassive ones, including those in quasars, which weigh in at millions to billions of times the mass of the Sun, and the much smaller stellar-mass black holes which have measured masses in the range of about 7 to 25 times the Sun's mass. Some stellar-mass black holes launch powerful jets of particles and radiation, like seen in quasars, and are called "micro-quasars". The new study looks at a famous micro-quasar in our own Galaxy, and regions close to its event horizon, or point of no return. This system, GRS 1915+105 (GRS 1915 for short), contains a black hole about 14 times the mass of the Sun that is feeding off material from a nearby companion star. As the material swirls toward the black hole, an accretion disk forms. This system shows remarkably unpredictable and complicated variability ranging from timescales of seconds to months, including 14 different patterns of variation. These variations are caused by a poorly understood connection between the disk and the radio jet seen in GRS 1915. Chandra, with its spectrograph, has observed GRS 1915 eleven times since its launch in 1999. These studies reveal that the jet in GRS 1915 may be periodically choked off when a hot wind, seen in X-rays, is driven off the accretion disk around the black hole. The wind is believed to shut down the jet by depriving it of matter that would have otherwise fueled it. Conversely, once the wind dies down, the jet can re-emerge. "We think the jet and wind around this black hole are in a sort of tug of war," said Joseph Neilsen, Harvard graduate student and lead author of the paper appearing in the journal Nature. "Sometimes one is winning and then, for reasons we don

  20. Holographic superconductor in the exact hairy black hole

    CERN Document Server

    Myung, Yun Soo

    2010-01-01

    We study the charged black hole of hyperbolic horizon with scalar hair (charged Martinez-Troncoso-Zanelli: CMTZ black hole) as a model of exact hairy black hole for holographic superconductor. This situation is opposite to a case of numerical hairy black holes that the charged black holes without scalar hair were known explicitly, while the charged black holes with scalar hair were found numerically. For this purpose, we investigate the second order phase transition between CMTZ and hyperbolic Reissner-Nordstr\\"om-AdS (HRNAdS) black holes. However, this transition unlikely occur, which means that HRNAdS black holes may not be the corresponding black hole without scalar hair. As an analytic treatment for holographic superconductor, we develop superconductor in the bulk and superfluidity on the boundary using the CMTZ black hole below the critical temperature. The presence of charge destroys the condensates around the zero temperature, which is in accord with the thermodynamic analysis of the CMTZ black hole.

  1. Accretion, Primordial Black Holes and Standard Cosmology

    OpenAIRE

    Nayak, Bibekananda; Singh, Lambodar Prasad

    2009-01-01

    Primordial Black Holes evaporate due to Hawking radiation. We find that the evaporation time of primordial black holes increase when accretion of radiation is included.Thus depending on accretion efficiency more and more number of primordial black holes are existing today, which strengthens the idea that the primordial black holes are the proper candidate for dark matter.

  2. Black Hole Complementary Principle and Noncommutative Membrane

    International Nuclear Information System (INIS)

    In the spirit of black hole complementary principle, we have found the noncommutative membrane of Scharzchild black holes. In this paper we extend our results to Kerr black hole and see the same story. Also we make a conjecture that spacetimes are noncommutative on the stretched membrane of the more general Kerr-Newman black hole.

  3. Accretion, primordial black holes and standard cosmology

    Indian Academy of Sciences (India)

    B Nayak; P Singh

    2011-01-01

    Primordial black holes evaporate due to Hawking radiation. We find that the evaporation times of primordial black holes increase when accretion of radiation is included. Thus, depending on accretion efficiency, more primordial black holes are existing today, which strengthens the conjecture that the primordial black holes are the proper candidates for dark matter.

  4. Towards a Theory of Quantum Black Hole

    OpenAIRE

    Berezin, V.

    2001-01-01

    We describe some specific quantum black hole model. It is pointed out that the origin of a black hole entropy is the very process of quantum gravitational collapse. The quantum black hole mass spectrum is extracted from the mass spectrum of the gravitating source. The classical analog of quantum black hole is constructed.

  5. Local Operators in the Eternal Black Hole.

    Science.gov (United States)

    Papadodimas, Kyriakos; Raju, Suvrat

    2015-11-20

    In the AdS/CFT correspondence, states obtained by Hamiltonian evolution of the thermofield doubled state are also dual to an eternal black-hole geometry, which is glued to the boundary with a time shift generated by a large diffeomorphism. We describe gauge-invariant relational observables that probe the black hole interior in these states and constrain their properties using effective field theory. By adapting recent versions of the information paradox we show that these observables are necessarily described by state-dependent bulk-boundary maps, which we construct explicitly. PMID:26636843

  6. Entanglement negativity, Holography and Black holes

    CERN Document Server

    Chaturvedi, Pankaj; Sengupta, Gautam

    2016-01-01

    We conjecture a holographic prescription to compute the entanglement negativity for finite temperature conformal field theories in arbitrary dimensions that leads to the distilled pure quantum entanglement at all temperatures. Our prescription exactly reproduces the entanglement negativity for 1+1 dimensional conformal field theories at finite temperatures dual to bulk Euclidean BTZ black holes. A similar entanglement distillation is also observed for the entanglement negativity of conformal field theories dual to AdS-Schwarzschild black holes in higher dimensions illustrating the universality of our conjecture.

  7. CFT Duals for Extreme Black Holes

    OpenAIRE

    Hartman, Thomas(Department of Physics, Cornell University, Ithaca, New York, 14853, U.S.A.); Murata, Keiju; Nishioka, Tatsuma; Strominger, Andrew E.

    2009-01-01

    It is argued that the general four-dimensional extremal Kerr-Newman-AdS-dS black hole is holographically dual to a (chiral half of a) two-dimensional CFT, generalizing an argument given recently for the special case of extremal Kerr. Specifically, the asymptotic symmetries of the near-horizon region of the general extremal black hole are shown to be generated by a Virasoro algebra. Semiclassical formulae are derived for the central charge and temperature of the dual CFT as functions of the co...

  8. Black hole evaporation: a paradigm

    International Nuclear Information System (INIS)

    A paradigm describing black hole evaporation in non-perturbative quantum gravity is developed by combining two sets of detailed results: (i) resolution of the Schwarzschild singularity using quantum geometry methods and (ii) time evolution of black holes in the trapping and dynamical horizon frameworks. Quantum geometry effects introduce a major modification in the traditional spacetime diagram of black hole evaporation, providing a possible mechanism for recovery of information that is classically lost in the process of black hole formation. The paradigm is developed directly in the Lorentzian regime and necessary conditions for its viability are discussed. If these conditions are met, much of the tension between expectations based on spacetime geometry and structure of quantum theory would be resolved

  9. Switching off black hole evaporation

    International Nuclear Information System (INIS)

    The inclusion of the back-reaction in the Hawking effect leads to the result that, if vector boson fields predominate in nature, then black holes stop evaporating when their mass reaches a non-vanishing limiting value. (author)

  10. Formation of Supermassive Black Holes

    CERN Document Server

    Volonteri, Marta

    2010-01-01

    Evidence shows that massive black holes reside in most local galaxies. Studies have also established a number of relations between the MBH mass and properties of the host galaxy such as bulge mass and velocity dispersion. These results suggest that central MBHs, while much less massive than the host (~ 0.1%), are linked to the evolution of galactic structure. In hierarchical cosmologies, a single big galaxy today can be traced back to the stage when it was split up in hundreds of smaller components. Did MBH seeds form with the same efficiency in small proto-galaxies, or did their formation had to await the buildup of substantial galaxies with deeper potential wells? I briefly review here some of the physical processes that are conducive to the evolution of the massive black hole population. I will discuss black hole formation processes for `seed' black holes that are likely to place at early cosmic epochs, and possible observational tests of these scenarios.

  11. Black hole thermodynamics from decoherence

    CERN Document Server

    Guo, Xiao-Kan

    2015-01-01

    We present an approach to the four laws of black hole thermodynamics by utilizing the thermodynamics of quantum coherence. Firstly, Hawking effect is attributed to the decoherence of the two-mode squeezed state in a black hole spacetime. Then use is made of the relative entropy between undecohered and decohered squeezed states whose monotonicity gives the zeroth and the second law, while the first law can be obtained either by the vanishing of the first derivative of relative entropy or by studying the effective thermal model generated by the modular Hamiltonian. Futhermore, information-theoretic arguments give a Planck's form of the third law of black hole thermodynamics. With this approach we can understand the laboratory analogues of black holes solely by quantum theory. This approach also opens a way to reconstruct classical geometry from quantum gravity.

  12. Black hole accretion disc impacts

    Science.gov (United States)

    Pihajoki, P.

    2016-04-01

    We present an analytic model for computing the luminosity and spectral evolution of flares caused by a supermassive black hole impacting the accretion disc of another supermassive black hole. Our model includes photon diffusion, emission from optically thin regions and relativistic corrections to the observed spectrum and time-scales. We test the observability of the impact scenario with a simulated population of quasars hosting supermassive black hole binaries. The results indicate that for a moderate binary mass ratio of 0.3, and impact distances of 100 primary Schwarzschild radii, the accretion disc impacts can be expected to equal or exceed the host quasar in brightness at observed wavelength λ = 510 nm up to z = 0.6. We conclude that accretion disc impacts may function as an independent probe for supermassive black hole binaries. We release the code used for computing the model light curves to the community.

  13. Black hole accretion disc impacts

    CERN Document Server

    Pihajoki, Pauli

    2015-01-01

    We present an analytic model for computing the luminosity and spectral evolution of flares caused by a supermassive black hole impacting the accretion disc of another supermassive black hole. Our model includes photon diffusion, emission from optically thin regions and relativistic corrections to the observed spectrum and time-scales. We test the observability of the impact scenario with a simulated population of quasars hosting supermassive black hole binaries. The results indicate that for a moderate binary mass ratio of 0.3, and impact distances of 100 primary Schwarzschild radii, the accretion disc impacts can be expected to equal or exceed the host quasar in brightness at observed wavelength {\\lambda} = 510 nm up to z = 0.6. We conclude that accretion disc impacts may function as an independent probe for supermassive black hole binaries. We release the code used for computing the model light curves to the community.

  14. Black hole interior mass formula

    International Nuclear Information System (INIS)

    We argue by explicit computations that, although the area product, horizon radii product, entropy product, and irreducible mass product of the event horizon and Cauchy horizon are universal, the surface gravity product, the surface temperature product and the Komar energy product of the said horizons do not seem to be universal for Kerr-Newman black hole spacetimes. We show the black hole mass formula on the Cauchy horizon following the seminal work by Smarr [Phys Rev Lett 30:71 (1973), Phys Rev D 7:289 (1973)] for the outer horizon. We also prescribe the four laws of black hole mechanics for the inner horizon. A new definition of the extremal limit of a black hole is discussed. (orig.)

  15. Black Hole Meiosis

    CERN Document Server

    Van Herck, Walter

    2009-01-01

    The enumeration of BPS bound states in string theory needs refinement. Studying partition functions of particles made from D-branes wrapped on algebraic Calabi-Yau 3-folds, and classifying states using split attractor flow trees, we extend the method for computing a refined BPS index, arXiv:0810.4301. For certain D-particles, a finite number of microstates, namely polar states, exclusively realized as bound states, determine an entire partition function (elliptic genus). This underlines their crucial importance: one might call them the `chromosomes' of a D-particle or a black hole. As polar states also can be affected by our refinement, previous predictions on elliptic genera are modified. This can be metaphorically interpreted as `crossing-over in the meiosis of a D-particle'. Our results improve on hep-th/0702012, provide non-trivial evidence for a strong split attractor flow tree conjecture, and thus suggest that we indeed exhaust the BPS spectrum. In the D-brane description of a bound state, the necessity...

  16. Black hole meiosis

    Science.gov (United States)

    van Herck, Walter; Wyder, Thomas

    2010-04-01

    The enumeration of BPS bound states in string theory needs refinement. Studying partition functions of particles made from D-branes wrapped on algebraic Calabi-Yau 3-folds, and classifying states using split attractor flow trees, we extend the method for computing a refined BPS index, [1]. For certain D-particles, a finite number of microstates, namely polar states, exclusively realized as bound states, determine an entire partition function (elliptic genus). This underlines their crucial importance: one might call them the ‘chromosomes’ of a D-particle or a black hole. As polar states also can be affected by our refinement, previous predictions on elliptic genera are modified. This can be metaphorically interpreted as ‘crossing-over in the meiosis of a D-particle’. Our results improve on [2], provide non-trivial evidence for a strong split attractor flow tree conjecture, and thus suggest that we indeed exhaust the BPS spectrum. In the D-brane description of a bound state, the necessity for refinement results from the fact that tachyonic strings split up constituent states into ‘generic’ and ‘special’ states. These are enumerated separately by topological invariants, which turn out to be partitions of Donaldson-Thomas invariants. As modular predictions provide a check on many of our results, we have compelling evidence that our computations are correct.

  17. QCD against black holes?

    CERN Document Server

    Royzen, Ilya I

    2009-01-01

    Along with compacting baryon (neutron) spacing, two very important factors come into play at once: the lack of self-stabilization within a compact neutron star (NS) associated with possible black hole (BH) horizon appearance and the phase transition - color deconfinement and QCD-vacuum reconstruction - within the nuclear matter. That is why both phenomena should be taken into account side by side, as the gravitational collapse is considered. Since, under the above transition, the hadronic-phase vacuum (filled up with gluon and chiral $q\\bar q$-condensates) turns into the "empty" (perturbation) subhadronic-phase one and, thus, the corresponding (very high) pressure falls down rather abruptly, the formerly cold (degenerated) nuclear medium starts to implode into the new vacuum. If the mass of a star is sufficiently large, then this implosion produces an enormous heating, which stops only after quark-gluon plasma of a temperature about 100 MeV (or even higher) is formed to withstand the gravitational compression...

  18. The Black Hole Universe Model

    Science.gov (United States)

    Zhang, Tianxi

    2014-06-01

    The black hole universe model is a multiverse model of cosmology recently developed by the speaker. According to this new model, our universe is a fully grown extremely supermassive black hole, which originated from a hot star-like black hole with several solar masses, and gradually grew up from a supermassive black hole with million to billion solar masses to the present state with trillion-trillion solar masses by accreting ambient matter or merging with other black holes. The entire space is structured with infinite layers or universes hierarchically. The innermost three layers include the universe that we live, the inside star-like and supermassive black holes called child universes, and the outside space called mother universe. The outermost layer is infinite in mass, radius, and entropy without an edge and limits to zero for both the matter density and absolute temperature. All layers are governed by the same physics and tend to expand physically in one direction (outward or the direction of increasing entropy). The expansion of a black hole universe decreases its density and temperature but does not alter the laws of physics. The black hole universe evolves iteratively and endlessly without a beginning. When one universe expands out, a new similar one is formed from inside star-like and supermassive black holes. In each of iterations, elements are resynthesized, matter is reconfigurated, and the universe is renewed rather than a simple repeat. The black hole universe is consistent with the Mach principle, observations, and Einsteinian general relativity. It has only one postulate but is able to explain all phenomena occurred in the universe with well-developed physics. The black hole universe does not need dark energy for acceleration and an inflation epoch for flatness, and thus has a devastating impact on the big bang model. In this talk, I will present how this new cosmological model explains the various aspects of the universe, including the origin

  19. Black Hole Lensing and Wave Bursts

    CERN Document Server

    Gogberashvili, Merab

    2016-01-01

    It is shown that close to a black hole horizon wave equations have real-valued exponentially time-dependent solutions and to investigate strong gravitational lensing we need to introduce an effective negative cosmological constant between the Schwarzschild and photon spheres. Then exponentially amplified reflected waves from this effective AdS space could explain properties of some gamma ray bursts, fast radio bursts and gravitational waves.

  20. Microstate solutions from black hole deconstruction

    CERN Document Server

    Raeymaekers, Joris

    2015-01-01

    We present a new family of asymptotic AdS_3 x S^2 solutions to eleven dimensional supergravity compactified on a Calabi-Yau threefold. They originate from the backreaction of S^2-wrapped M2-branes, which play a central role in the deconstruction proposal for the microscopic interpretation of the D4-D0 black hole entropy. We show that they are free of possible pathologies such as closed timelike curves and discuss their holographic interpretation.

  1. Energy Extraction from Black Holes

    OpenAIRE

    Straumann, Norbert

    2007-01-01

    In this lecture I give an introduction to the rotational energy extraction of black holes by the electromagnetic Blandford-Znajek process and the generation of relativistic jets. After some basic material on the electrodynamics of black hole magnetospheres, we derive the most important results of Blandford and Znajek by making use of Kerr-Schild coordinates, which are regular on the horizon. In a final part we briefly describe results of recent numerical simulations of accretion flows on rota...

  2. Black Holes and String Theory

    CERN Document Server

    Myers, R C

    2001-01-01

    This is a short summary of my lectures given at the Fourth Mexican School on Gravitation and Mathematical Physics. These lectures gave a brief introduction to black holes in string theory, in which I primarily focussed on describing some of the recent calculations of black hole entropy using the statistical mechanics of D-brane states. The following overview will also provide the interested students with an introduction to the relevant literature.

  3. Charged rotating noncommutative black holes

    International Nuclear Information System (INIS)

    In this paper we complete the program of the noncomutative geometry inspired black holes, providing the richest possible solution, endowed with mass, charge and angular momentum. After providing a prescription for employing the Newman-Janis algorithm in the case of nonvanishing stress tensors, we find regular axisymmetric charged black holes in the presence of a minimal length. We study also the new thermodynamics and we determine the corresponding higher-dimensional solutions. As a conclusion we make some consideration about possible applications.

  4. Charged rotating noncommutative black holes

    Science.gov (United States)

    Modesto, Leonardo; Nicolini, Piero

    2010-11-01

    In this paper we complete the program of the noncomutative geometry inspired black holes, providing the richest possible solution, endowed with mass, charge and angular momentum. After providing a prescription for employing the Newman-Janis algorithm in the case of nonvanishing stress tensors, we find regular axisymmetric charged black holes in the presence of a minimal length. We study also the new thermodynamics and we determine the corresponding higher-dimensional solutions. As a conclusion we make some consideration about possible applications.

  5. Charged rotating noncommutative black holes

    CERN Document Server

    Modesto, Leonardo

    2010-01-01

    In this paper we complete the program of the Noncomutative Geometry inspired black holes, providing the richest possible solution, endowed with mass, charge and angular momentum. After providing a prescription for employing the Newmann-Janis algorithm in case of nonvanishing stress tensors, we find regular axisymmetric charged black holes in the presence of a minimal length. We study also the new thermodynamics and we determine the corresponding higher-dimensional solutions. As a conclusion we make some consideration about possible applications.

  6. Geometric inequalities for black holes

    CERN Document Server

    Dain, Sergio

    2014-01-01

    It is well known that the three parameters that characterize the Kerr black hole (mass, angular momentum and horizon area) satisfy several important inequalities. Remarkably, some of these inequalities remain valid also for dynamical black holes. This kind of inequalities play an important role in the characterization of the gravitational collapse. They are closed related with the cosmic censorship conjecture. In this article recent results in this subject are reviewed.

  7. Black holes and cosmic censorship

    International Nuclear Information System (INIS)

    It is widely accepted that the complete gravitational collapse of a body always yields a black hole, and that naked singularities are never produced (the cosmic censorship hypothesis). The local (or strong) cosmic censorship hypothesis states that singularities which are even locally naked (e.g., to an observer inside a black hole) are never produced. This dissertation studies the validity of these two conjectures. The Kerr-Newman metrics describes the black holes only when M2 greater than or equal to Q2 + P2, where M is the mass of the black hole, a = J/M its specific angular momentum, Q its electric charge, and P its magnetic charge. In the first part of this dissertation, the possibility of converting an extreme Kerr-Newman black hole (M2 = a2 + Q2 + P2) into a naked singularity by the accretion of test particles is considered. The motion of test particles is studied with a large angular momentum to energy ratio, and also test particles with a large charge to energy ratio. The final state is always found to be a black hole if the angular momentum, electric charge, and magnetic charge of the black hole are all much greater than the corresponding angular momentum, electric charge, and magnetic charge of the test particle. In Part II of this dissertation possible black hole interior solutions are studied. The Cauchy horizons and locally naked timelike singularities of the charged (and/or rotating) solutions are contrasted with the spacelike all-encompassing singularity of the Schwarzschild solution. It is determined which portions of the analytic extension of the Reissner-Nordstroem solution are relevant to realistic gravitational collapse

  8. Dynamic black-hole entropy

    OpenAIRE

    Hayward, Sean A.; Mukohyama, Shinji; Ashworth, M. C.

    1998-01-01

    We consider two non-statistical definitions of entropy for dynamic (non-stationary) black holes in spherical symmetry. The first is analogous to the original Clausius definition of thermodynamic entropy: there is a first law containing an energy-supply term which equals surface gravity times a total differential. The second is Wald's Noether-charge method, adapted to dynamic black holes by using the Kodama flow. Both definitions give the same answer for Einstein gravity: one-quarter the area ...

  9. Soft Hair on Black Holes

    OpenAIRE

    Hawking, Stephen W.; Perry, Malcolm J.; Strominger, Andrew

    2016-01-01

    It has recently been shown that BMS supertranslation symmetries imply an infinite number of conservation laws for all gravitational theories in asymptotically Minkowskian spacetimes. These laws require black holes to carry a large amount of soft ($i.e.$ zero-energy) supertranslation hair. The presence of a Maxwell field similarly implies soft electric hair. This paper gives an explicit description of soft hair in terms of soft gravitons or photons on the black hole horizon, and shows that com...

  10. Probability for primordial black holes

    Science.gov (United States)

    Bousso, R.; Hawking, S. W.

    1995-11-01

    We consider two quantum cosmological models with a massive scalar field: an ordinary Friedmann universe and a universe containing primordial black holes. For both models we discuss the complex solutions to the Euclidean Einstein equations. Using the probability measure obtained from the Hartle-Hawking no-boundary proposal we find that the only unsuppressed black holes start at the Planck size but can grow with the horizon scale during the roll down of the scalar field to the minimum.

  11. Constraints on Black Hole Remnants

    OpenAIRE

    Giddings, S. B.

    1993-01-01

    One possible fate of information lost to black holes is its preservation in black hole remnants. It is argued that a type of effective field theory describes such remnants (generically referred to as informons). The general structure of such a theory is investigated and the infinite pair production problem is revisited. A toy model for remnants clarifies some of the basic issues; in particular, infinite remnant production is not suppressed simply by the large internal volumes as proposed in c...

  12. Information retrieval from black holes

    OpenAIRE

    Lochan, Kinjalk; Chakraborty, Sumanta; Padmanabhan, T.

    2016-01-01

    It is generally believed that, when matter collapses to form a black hole, the complete information about the initial state of the matter cannot be retrieved by future asymptotic observers, through local measurements. This is contrary to the expectation from a unitary evolution in quantum theory and leads to (a version of) the black hole information paradox. Classically, nothing else, apart from mass, charge and angular momentum is expected to be revealed to such asymptotic observers after th...

  13. Black hole thermodynamics from decoherence

    OpenAIRE

    Guo, Xiao-Kan

    2015-01-01

    We present an approach to the four laws of black hole thermodynamics by utilizing the thermodynamics of quantum coherence. Firstly, Hawking effect is attributed to the decoherence of the two-mode squeezed state in a black hole spacetime. Then use is made of the relative entropy between undecohered and decohered squeezed states whose monotonicity gives the zeroth and the second law, while the first law can be obtained either by the vanishing of the first derivative of relative entropy or by st...

  14. New regular black hole solutions

    International Nuclear Information System (INIS)

    In the present work we consider general relativity coupled to Maxwell's electromagnetism and charged matter. Under the assumption of spherical symmetry, there is a particular class of solutions that correspond to regular charged black holes whose interior region is de Sitter, the exterior region is Reissner-Nordstroem and there is a charged thin-layer in-between the two. The main physical and geometrical properties of such charged regular black holes are analyzed.

  15. Black Holes as Dark Matter

    OpenAIRE

    Frampton, Paul H.

    2009-01-01

    While the energy of the universe has been established to be about 0.04 baryons, 0.24 dark matter and 0.72 dark energy, the cosmological entropy is almost entirely, about $(1 - 10^{-15})$, from black holes and only $10^{-15}$ from everything else. This identification of all dark matter as black holes is natural in statistical mechanics. Cosmological history of dark matter is discussed.

  16. Are Black Holes Elementary Particles?

    OpenAIRE

    Ha, Yuan K.

    2009-01-01

    Quantum black holes are the smallest and heaviest conceivable elementary particles. They have a microscopic size but a macroscopic mass. Several fundamental types have been constructed with some remarkable properties. Quantum black holes in the neighborhood of the Galaxy could resolve the paradox of ultra-high energy cosmic rays detected in Earth's atmosphere. They may also play a role as dark matter in cosmology.

  17. The Acoustic Black Hole Is Not Merely An Analogy

    CERN Document Server

    Ge, Xian-Hui; Tian, Yu; Wu, Xiao-Ning; Zhang, Yun-Long

    2015-01-01

    With the attempt to find the holographic description of the usual acoustic black hole in fluid, we construct an acoustic black hole formed in the $d$-dimensional fluid located at the timelike cutoff surface of an neutral black brane in asymptotically AdS$_{d+1}$ spacetime, the bulk gravitational dual of the acoustic black hole is presented at first order of the hydrodynamic fluctuation. Moreover, the Hawking-like temperature of the acoustic black hole horizon is showed to be connected to the Hawking temperature of the real AdS black brane in the bulk, and the duality between the phonon propagating in the acoustic black hole and the sound channel quasinormal mode is analyzed. We thus point out that, the acoustic black hole in fluid, which was originally proposed as an analogous model to simulate Hawking radiation of the real black hole, is not merely an analogy, it can indeed be used to describe specific properties of the real black hole, in the spirits of the fluid/gravity duality.

  18. Entropy of Warped Taub-NUT AdS Black String via the Brick Wall Method

    CERN Document Server

    Lee, Chong Oh

    2014-01-01

    When we consider five-dimensional warped Taub-NUT AdS black string with minimally coupled massive scalar field, we calculate an entropy by using the brick wall method. In extremely light effective mass, we find the entropy is proportional to an extra dimension wave number as well as quadratically divergent in a cutoff parameter. After taking zero NUT charge, we find the entropy of warped (AdS) Schwartzshield black hole string has a similar properties in as warped Taub-NUT AdS black string.

  19. Black holes: the membrane paradigm

    International Nuclear Information System (INIS)

    The physics of black holes is explored in terms of a membrane paradigm which treats the event horizon as a two-dimensional membrane embedded in three-dimensional space. A 3+1 formalism is used to split Schwarzschild space-time and the laws of physics outside a nonrotating hole, which permits treatment of the atmosphere in terms of the physical properties of thin slices. The model is applied to perturbed slowly or rapidly rotating and nonrotating holes, and to quantify the electric and magnetic fields and eddy currents passing through a membrane surface which represents a stretched horizon. Features of tidal gravitational fields in the vicinity of the horizon, quasars and active galalctic nuclei, the alignment of jets perpendicular to accretion disks, and the effects of black holes at the center of ellipsoidal star clusters are investigated. Attention is also given to a black hole in a binary system and the interactions of black holes with matter that is either near or very far from the event horizon. Finally, a statistical mechanics treatment is used to derive a second law of thermodynamics for a perfectly thermal atmosphere of a black hole

  20. New Concepts for Old Black Holes

    CERN Document Server

    Susskind, Leonard

    2013-01-01

    It has been argued that the AMPS paradox implies catastrophic breakdown of the equivalence principle in the neighborhood of a black hole horizon, or even the non-existence of any spacetime at all behind the horizon. Maldacena and the author suggested a different resolution of the paradox based on the close relationship between Einstein-Rosen bridges and Einstein-Podolsky-Rosen entanglement. In this paper the new mechanisms required by the proposal are reviewed: the ER=EPR connection: precursors: timefolds: and the black hole interior as a fault-tolerant, negative information message. Along the way a model of an ADS black hole as a single long-string is explained, and used to clarify the relation between Wilson loops and precursors.