WorldWideScience

Sample records for adrenergic signaling interact

  1. Signaling from beta1- and beta2-adrenergic receptors is defined by differential interactions with PDE4

    DEFF Research Database (Denmark)

    Richter, Wito; Day, Peter; Agrawal, Rani; Bruss, Matthew D; Granier, Sébastien; Wang, Yvonne L; Rasmussen, Søren Gøgsig Faarup; Horner, Kathleen; Wang, Ping; Lei, Tao; Patterson, Andrew J; Kobilka, Brian; Conti, Marco

    2008-01-01

    Beta1- and beta2-adrenergic receptors (betaARs) are highly homologous, yet they play clearly distinct roles in cardiac physiology and pathology. Myocyte contraction, for instance, is readily stimulated by beta1AR but not beta2AR signaling, and chronic stimulation of the two receptors has opposing...

  2. Thyroid hormone and adrenergic signaling interact to control pineal expression of the dopamine receptor D4 gene (Drd4)

    DEFF Research Database (Denmark)

    Kim, Jong-So; Bailey, Michael J; Weller, Joan L;

    2009-01-01

    Dopamine plays diverse and important roles in vertebrate biology, impacting behavior and physiology through actions mediated by specific G-protein-coupled receptors, one of which is the dopamine receptor D4 (Drd4). Here we present studies on the >100-fold daily rhythm in rat pineal Drd4 expression....... Our studies indicate that Drd4 is the dominant dopamine receptor gene expressed in the pineal gland. The gene is expressed in pinealocytes at levels which are approximately 100-fold greater than in other tissues, except the retina, in which transcript levels are similar. Pineal Drd4 expression is...... circadian in nature and under photoneural control. Whereas most rhythmically expressed genes in the pineal are controlled by adrenergic/cAMP signaling, Drd4 expression also requires thyroid hormone. This advance raises the questions of whether Drd4 expression is regulated by this mechanism in other systems...

  3. The interaction of signal transduction pathways in FRTL5 thyroid follicular cells: Studies with stable expression of beta 2-adrenergic receptors

    International Nuclear Information System (INIS)

    Multiple signal transduction pathways interact in FRTL5 cells to promote thyroid follicular cell differentiated function and cell proliferation. In these cells, TSH is a tissue-specific mitogen that promotes DNA synthesis primarily through activation of adenylate cyclase. To further test the role of adenylate cyclase in regulating cell growth and differentiated function we have introduced into FRTL5 the human beta 2-adrenergic receptor (BAR) complementary DNA and have studied the ability of isoproterenol, alone and in combination with insulin-like growth factor I (IGF-I), to stimulate cAMP accumulation, iodide transport, [3H]thymidine incorporation into DNA, and cell growth. Wild-type FRTL5 were infected with a PLJ retroviral construct containing the BAR in either a sense (FRTL BAR) or antisense (FRTL RBAR) orientation, and cell populations were selected on the basis of resistance to the antibiotic geneticin. FRTL BAR expressed approximately 1.3 x 10(5) high affinity binding sites per cell for the beta 2-specific ligand, CGP-12177, while neither FRTL5 wild-type nor RBAR cells demonstrated any specific binding. FRTL BAR had significantly higher levels of intracellular cAMP, [3H]thymidine incorporation, and iodide uptake in the absence of added isoproterenol than FRTL RBAR or wild-type cells. In FRTL BAR, but not RBAR cells, isoproterenol stimulated a dose-dependent accumulation of cAMP, iodide uptake, [3H]thymidine incorporation, and cell growth. FRTL BAR and RBAR cells were equally responsive to TSH and to IGF-I. Isoproterenol enhanced the ability of IGF-I to stimulate [3H]thymidine incorporation in BAR but not RBAR cells. Isoproterenol partially inhibited the ability of TSH to stimulate cAMP generation and DNA synthesis

  4. A compartmentalized mathematical model of the β1-adrenergic signaling system in mouse ventricular myocytes.

    Directory of Open Access Journals (Sweden)

    Vladimir E Bondarenko

    Full Text Available The β1-adrenergic signaling system plays an important role in the functioning of cardiac cells. Experimental data shows that the activation of this system produces inotropy, lusitropy, and chronotropy in the heart, such as increased magnitude and relaxation rates of [Ca(2+]i transients and contraction force, and increased heart rhythm. However, excessive stimulation of β1-adrenergic receptors leads to heart dysfunction and heart failure. In this paper, a comprehensive, experimentally based mathematical model of the β1-adrenergic signaling system for mouse ventricular myocytes is developed, which includes major subcellular functional compartments (caveolae, extracaveolae, and cytosol. The model describes biochemical reactions that occur during stimulation of β1-adrenoceptors, changes in ionic currents, and modifications of Ca(2+ handling system. Simulations describe the dynamics of major signaling molecules, such as cyclic AMP and protein kinase A, in different subcellular compartments; the effects of inhibition of phosphodiesterases on cAMP production; kinetics and magnitudes of phosphorylation of ion channels, transporters, and Ca(2+ handling proteins; modifications of action potential shape and duration; magnitudes and relaxation rates of [Ca(2+]i transients; changes in intracellular and transmembrane Ca(2+ fluxes; and [Na(+]i fluxes and dynamics. The model elucidates complex interactions of ionic currents upon activation of β1-adrenoceptors at different stimulation frequencies, which ultimately lead to a relatively modest increase in action potential duration and significant increase in [Ca(2+]i transients. In particular, the model includes two subpopulations of the L-type Ca(2+ channels, in caveolae and extracaveolae compartments, and their effects on the action potential and [Ca(2+]i transients are investigated. The presented model can be used by researchers for the interpretation of experimental data and for the developments of

  5. Protein-Protein Interactions at the Adrenergic Receptors

    OpenAIRE

    Cotecchia, Susanna; Stanasila, Laura; Diviani, Dario

    2012-01-01

    The adrenergic receptors are among the best characterized G protein-coupled receptors (GPCRs) and knowledge on this receptor family has provided several important paradigms about GPCR function and regulation. One of the most recent paradigms initially supported by studies on adrenergic receptors is that both βarrestins and G protein-coupled receptors themselves can act as scaffolds binding a variety of proteins and this can result in growing complexity of the receptor-mediated cellular effect...

  6. Pre-test metyrapone impairs memory recall in fear conditioning tasks: lack of interaction with β-adrenergic activity

    Directory of Open Access Journals (Sweden)

    Mariella B.L. Careaga

    2015-03-01

    Full Text Available Cognitive processes, such as learning and memory, are essential for our adaptation to environmental changes and consequently for survival. Numerous studies indicate that hormones secreted during stressful situations, such as glucocorticoids (GCs, adrenaline and noradrenaline, regulate memory functions, modulating aversive memory consolidation and retrieval, in an interactive and complementary way. Thus, the facilitatory effects of GCs on memory consolidation as well as their suppressive effects on retrieval are substantially explained by this interaction. On the other hand, low levels of GCs are also associated with negative effects on memory consolidation and retrieval and the mechanisms involved are not well understood. The present study sought to investigate the consequences of blocking the rise of GCs on fear memory retrieval in multiple tests, assessing the participation of β-adrenergic signaling on this effect. Metyrapone (GCs synthesis inhibitor, administered 90 min before the first test of contextual or auditory fear conditioning, negatively affected animals’ performances, but this effect did not persist on a subsequent test, when the conditioned response was again expressed. This result suggested that the treatment impaired fear memory retrieval during the first evaluation. The administration immediately after the first test did not affect the animals’ performances in contextual fear conditioning, suggesting that the drug did not interfere with processes triggered by memory reactivation. Moreover, metyrapone effects were independent of β-adrenergic signaling, since concurrent administration with propranolol, a β-adrenergic antagonist, did not modify the effects induced by metyrapone alone. These results demonstrate that pre-test metyrapone administration led to negative effects on fear memory retrieval and this action was independent of a β-adrenergic signaling.

  7. AHNAK deficiency promotes browning and lipolysis in mice via increased responsiveness to β-adrenergic signalling.

    Science.gov (United States)

    Shin, Jae Hoon; Lee, Seo Hyun; Kim, Yo Na; Kim, Il Yong; Kim, Youn Ju; Kyeong, Dong Soo; Lim, Hee Jung; Cho, Soo Young; Choi, Junhee; Wi, Young Jin; Choi, Jae-Hoon; Yoon, Yeo Sung; Bae, Yun Soo; Seong, Je Kyung

    2016-01-01

    In adipose tissue, agonists of the β3-adrenergic receptor (ADRB3) regulate lipolysis, lipid oxidation, and thermogenesis. The deficiency in the thermogenesis induced by neuroblast differentiation-associated protein AHNAK in white adipose tissue (WAT) of mice fed a high-fat diet suggests that AHNAK may stimulate energy expenditure via development of beige fat. Here, we report that AHNAK deficiency promoted browning and thermogenic gene expression in WAT but not in brown adipose tissue of mice stimulated with the ADRB3 agonist CL-316243. Consistent with the increased thermogenesis, Ahnak(-/-) mice exhibited an increase in energy expenditure, accompanied by elevated mitochondrial biogenesis in WAT depots in response to CL-316243. Additionally, AHNAK-deficient WAT contained more eosinophils and higher levels of type 2 cytokines (IL-4/IL-13) to promote browning of WAT in response to CL-316243. This was associated with enhanced sympathetic tone in the WAT via upregulation of adrb3 and tyrosine hydroxylase (TH) in response to β-adrenergic activation. CL-316243 activated PKA signalling and enhanced lipolysis, as evidenced by increased phosphorylation of hormone-sensitive lipase and release of free glycerol in Ahnak(-/-) mice compared to wild-type mice. Overall, these findings suggest an important role of AHNAK in the regulation of thermogenesis and lipolysis in WAT via β-adrenergic signalling. PMID:26987950

  8. Sympathetic Nervous System Control of Carbon Tetrachloride-Induced Oxidative Stress in Liver through α-Adrenergic Signaling

    Directory of Open Access Journals (Sweden)

    Jung-Chun Lin

    2016-01-01

    Full Text Available In addition to being the primary organ involved in redox cycling, the liver is one of the most highly innervated tissues in mammals. The interaction between hepatocytes and sympathetic, parasympathetic, and peptidergic nerve fibers through a variety of neurotransmitters and signaling pathways is recognized as being important in the regulation of hepatocyte function, liver regeneration, and hepatic fibrosis. However, less is known regarding the role of the sympathetic nervous system (SNS in modulating the hepatic response to oxidative stress. Our aim was to investigate the role of the SNS in healthy and oxidatively stressed liver parenchyma. Mice treated with 6-hydroxydopamine hydrobromide were used to realize chemical sympathectomy. Carbon tetrachloride (CCl4 injection was used to induce oxidative liver injury. Sympathectomized animals were protected from CCl4 induced hepatic lipid peroxidation-mediated cytotoxicity and genotoxicity as assessed by 4-hydroxy-2-nonenal levels, morphological features of cell damage, and DNA oxidative damage. Furthermore, sympathectomy modulated hepatic inflammatory response induced by CCl4-mediated lipid peroxidation. CCl4 induced lipid peroxidation and hepatotoxicity were suppressed by administration of an α-adrenergic antagonist. We conclude that the SNS provides a permissive microenvironment for hepatic oxidative stress indicating the possibility that targeting the hepatic α-adrenergic signaling could be a viable strategy for improving outcomes in patients with acute hepatic injury.

  9. The Multitarget Ligand 3-Iodothyronamine Modulates β-Adrenergic Receptor 2 Signaling

    Science.gov (United States)

    Dinter, Juliane; Khajavi, Noushafarin; Mühlhaus, Jessica; Wienchol, Carolin Leonie; Cöster, Maxi; Hermsdorf, Thomas; Stäubert, Claudia; Köhrle, Josef; Schöneberg, Torsten; Kleinau, Gunnar; Mergler, Stefan; Biebermann, Heike

    2015-01-01

    Background 3-Iodothyronamine (3-T1AM), a signaling molecule with structural similarities to thyroid hormones, induces numerous physiological responses including reversible body temperature decline. One target of 3-T1AM is the trace amine-associated receptor 1 (TAAR1), which is a member of the rhodopsin-like family of G protein-coupled receptors (GPCRs). Interestingly, the effects of 3-T1AM remain detectable in TAAR1 knockout mice, suggesting further targets for 3-T1AM such as adrenergic receptors. Therefore, we evaluated whether β-adrenergic receptor 1 (ADRB1) and 2 (ADRB2) signaling is affected by 3-T1AM in HEK293 cells and in human conjunctival epithelial cells (IOBA-NHC), where these receptors are highly expressed endogenously. Methods A label-free EPIC system for prescreening the 3-T1AM-induced effects on ADRB1 and ADRB2 in transfected HEK293 cells was used. In addition, ADRB1 and ADRB2 activation was analyzed using a cyclic AMP assay and a MAPK reporter gene assay. Finally, fluorescence Ca2+ imaging was utilized to delineate 3-T1AM-induced Ca2+ signaling. Results 3-T1AM (10−5−10−10M) enhanced isoprenaline-induced ADRB2-mediated Gs signaling but not that of ADRB1-mediated signaling. MAPK signaling remained unaffected for both receptors. In IOBA-NHC cells, norepinephrine-induced Ca2+ influxes were blocked by the nonselective ADRB blocker timolol (10 µM), indicating that ADRBs are most likely linked with Ca2+ channels. Notably, timolol was also found to block 3-T1AM (10−5M)-induced Ca2+ influx. Conclusions The presented data support that 3-T1AM directly modulates β-adrenergic receptor signaling. The relationship between 3-T1AM and β-adrenergic signaling also reveals a potential therapeutic value for suppressing Ca2+ channel-mediated inflammation processes, occurring in eye diseases such as conjunctivitis. PMID:26601070

  10. Arrhythmogenic Remodeling of β2 versus β1 Adrenergic Signaling in the Human Failing Heart

    Science.gov (United States)

    Lang, Di; Holzem, Katherine; Kang, Chaoyi; Xiao, Mengqian; Hwang, Hye Jin; Ewald, Gregory A.; Yamada, Kathryn A.; Efimov, Igor R.

    2015-01-01

    Background Arrhythmia is the major cause of death in patients with heart failure, for which β-adrenergic receptor (AR) blockers are a mainstay therapy. But the role of β-adrenergic signaling in electrophysiology and arrhythmias has never been studied in human ventricles. Methods and Results We used optical imaging of action potentials (AP) and [Ca2+]i transients (CaT) to compare the β1- and β2-adrenergic responses in left ventricular wedge preparations of human donor and failing hearts. β1-stimulation significantly increased conduction velocity (CV), shortened AP duration (APD), CaT duration (CaD) in donor but not failing hearts, due to desensitization of β1-AR in heart failure. In contrast, β2-stimulation increased CV in both donor and failing hearts but shortened APD only in failing hearts. β2-stimulation also affected transmural heterogeneity in APD but not in CaD. Both β1- and β2-stimulation augmented the vulnerability and frequency of ectopic activity and enhanced substrates for ventricular tachycardia in failing, but not donor, hearts. Both β1- and β2-stimulation enhanced Purkinje fiber automaticity, while only β2-stimulation promoted Ca-mediated premature ventricular contractions in heart failure. Conclusions During end-stage heart failure, β2-stimulation creates arrhythmogenic substrates via CV regulation and transmurally heterogeneous repolarization. β2-stimulation is, therefore, more arrhythmogenic than β1-stimulation. In particular, β2-stimulation increases the transmural difference between CaD and APD, which facilitates the formation of delayed afterdepolarizations. PMID:25673629

  11. Sustained adrenergic signaling leads to increased metastasis in ovarian cancer via increased PGE2 synthesis.

    Science.gov (United States)

    Nagaraja, A S; Dorniak, P L; Sadaoui, N C; Kang, Y; Lin, T; Armaiz-Pena, G; Wu, S Y; Rupaimoole, R; Allen, J K; Gharpure, K M; Pradeep, S; Zand, B; Previs, R A; Hansen, J M; Ivan, C; Rodriguez-Aguayo, C; Yang, P; Lopez-Berestein, G; Lutgendorf, S K; Cole, S W; Sood, A K

    2016-05-01

    Adrenergic stimulation adversely affects tumor growth and metastasis, but the underlying mechanisms are not well understood. Here, we uncovered a novel mechanism by which catecholamines induce inflammation by increasing prostaglandin E2 (PGE2) levels in ovarian cancer cells. Metabolic changes in tumors isolated from patients with depression and mice subjected to restraint stress showed elevated PGE2 levels. Increased metabolites, PTGS2 and PTGES protein levels were found in Skov3-ip1 and HeyA8 cells treated with norepinephrine (NE), and these changes were shown to be mediated by ADRB2 receptor signaling. Silencing PTGS2 resulted in significantly decreased migration and invasion in ovarian cancer cells in the presence of NE and decreased tumor burden and metastasis in restraint stress orthotopic models. In human ovarian cancer samples, concurrent increased ADRB2, PTGS2 and PTGES expression was associated with reduced overall and progression-free patient survival. In conclusion, increased adrenergic stimulation results in increased PGE2 synthesis via ADRB2-Nf-kB-PTGS2 axis, which drives tumor growth and metastasis. PMID:26257064

  12. AT(1) receptor Gαq protein-independent signalling transcriptionally activates only a few genes directly, but robustly potentiates gene regulation from the β2-adrenergic receptor

    DEFF Research Database (Denmark)

    Christensen, Gitte Lund; Knudsen, Steen; Schneider, Mikael; Aplin, Mark; Gammeltoft, Steen; Sheikh, Søren P; Hansen, Jakob L

    2011-01-01

    potentiated β2-adrenergic receptor-stimulated gene expression. These novel findings indicate that the Gαq protein-independent signalling mainly modifies the transcriptional response governed by other signalling pathways, while direct induction of gene expression by the AT(1)R is dependent on classical Gαq......-independent signalling from the AT(1)R interact with transcriptional regulators and promote phosphorylation of nuclear proteins. However, the relative contribution of Gαq protein-independent signalling in AT(1)R mediated transcriptional regulation remains elusive. We here present a comprehensive comparative analysis of...... Gαq protein-dependent and -independent regulation of AT(1)R mediated gene expression. We found angiotensin II to regulate 212 genes, whereas Gαq-independent signalling obtained with the biased agonist, SII angiotensin II only regulated few genes. Interestingly, SII angiotensin II, like Ang II vastly...

  13. Environmental Novelty Activates β2-Adrenergic Signaling to Prevent the Impairment of Hippocampal LTP by Aβ Oligomers

    OpenAIRE

    Li, Shaomin; Jin, Ming; Zhang, Dainan; Yang, Ting; Koeglsperger, Thomas; Fu, Hongjun; Selkoe, Dennis J.

    2013-01-01

    A central question about human brain aging is whether cognitive enrichment slows the development of Alzheimer changes. Here we show that prolonged exposure to an enriched environment (EE) facilitated signaling in the hippocampus of wild-type mice that promoted long-term potentiation. A key feature of the EE effect was activation of β2-adrenergic receptors and downstream cAMP/PKA signaling. This EE pathway prevented LTP inhibition by soluble oligomers of amyloid β-protein (Aβ) isolated from AD...

  14. Signal transduction and regulation of melatonin synthesis in bovine pinealocytes: impact of adrenergic, peptidergic and cholinergic stimuli.

    Science.gov (United States)

    Schomerus, Christof; Laedtke, Elke; Olcese, James; Weller, Joan L; Klein, David C; Korf, Horst-Werner

    2002-09-01

    Limited studies of the regulation of pineal melatonin biosynthesis in ungulates indicate that it differs considerably from that in rodents. Here we have investigated several signal transduction cascades and their impact on melatonin synthesis in bovine pinealocytes. Norepinephrine increased the intracellular calcium ion concentration ([Ca2+]i) via alpha(1)-adrenergic receptors. Activation of beta-adrenergic receptors enhanced cAMP accumulation and rapidly elevated arylalkylamine N-acetyltransferase (AANAT) activity and melatonin secretion. The beta-adrenergically evoked increases in AANAT activity were potentiated by alpha(1)-adrenergic stimulation, but this was not seen with cAMP or melatonin production. PACAP treatment caused small increases in cAMP, AANAT activity and melatonin biosynthesis, apparently in a subpopulation of cells. VIP and glutamate did not influence any of these parameters. Activation of nicotinic and muscarinic acetylcholine receptors increased [Ca2+]i, but did not alter cAMP levels, AANAT activity or melatonin production. Our study reveals that discrete differences in pineal signal transduction exist between the cow and rodent, and emphasizes the potential importance that the analysis of ungulate pinealocytes may play in understanding regulation of pineal melatonin biosynthesis in primates and man, whose melatonin-generating system appears to be more similar to that in ungulates than to that in rodents. PMID:12195298

  15. Norepinephrine-Induced Adrenergic Activation Strikingly Increased the Atrial Fibrillation Duration through β1- and α1-Adrenergic Receptor-Mediated Signaling in Mice.

    Directory of Open Access Journals (Sweden)

    Kenji Suita

    Full Text Available Atrial fibrillation (AF is the most common arrhythmias among old people. It causes serious long-term health problems affecting the quality of life. It has been suggested that the autonomic nervous system is involved in the onset and maintenance of AF in human. However, investigation of its pathogenesis and potential treatment has been hampered by the lack of suitable AF models in experimental animals.Our aim was to establish a long-lasting AF model in mice. We also investigated the role of adrenergic receptor (AR subtypes, which may be involved in the onset and duration of AF.Trans-esophageal atrial burst pacing in mice could induce AF, as previously shown, but with only a short duration (29.0 ± 8.1 sec. We found that adrenergic activation by intraperitoneal norepinephrine (NE injection strikingly increased the AF duration. It increased the duration to more than 10 minutes, i.e., by more than 20-fold (656.2 ± 104.8 sec; P<0.001. In this model, a prior injection of a specific β1-AR blocker metoprolol and an α1-AR blocker prazosin both significantly attenuated NE-induced elongation of AF. To further explore the mechanisms underlying these receptors' effects on AF, we assessed the SR Ca(2+ leak, a major trigger of AF, and consequent spontaneous SR Ca(2+ release (SCR in atrial myocytes. Consistent with the results of our in-vivo experiments, both metoprolol and prazosin significantly inhibited the NE-induced SR Ca(2+ leak and SCR. These findings suggest that both β1-AR and α1-AR may play important roles in the development of AF.We have established a long-lasting AF model in mice induced by adrenergic activation, which will be valuable in future AF study using experimental animals, such as transgenic mice. We also revealed the important role of β1- and α1-AR-mediated signaling in the development of AF through in-vivo and in-vitro experiments.

  16. β2-adrenergic receptor signaling promotes pancreatic ductal adenocarcinoma (PDAC) progression through facilitating PCBP2-dependent c-myc expression.

    Science.gov (United States)

    Wan, Chunhua; Gong, Chen; Zhang, Haifeng; Hua, Lu; Li, Xiaohong; Chen, Xudong; Chen, Yinji; Ding, Xiaoling; He, Song; Cao, Wei; Wang, Yingying; Fan, Shaoqing; Xiao, Ying; Zhou, Guoxiong; Shen, Aiguo

    2016-04-01

    The β2-adrenergic receptor (β2-AR) plays a crucial role in pancreatic ductal adenocarcinoma (PDAC) progression. In this report, we identified poly(rC)-binding protein 2 (PCBP2) as a novel binding partner for β2-AR using immunoprecipitation-mass spectrometry (IP-MS) approach. The association between β2-AR and PCBP2 was verified using reciprocal immunoprecipitation. Importantly, we found significant interaction and co-localization of the two proteins in the presence of β2-AR agonist in Panc-1 and Bxpc3 PDAC cells. β2-AR-induced recruitment of PCBP2 led to augmented protein level of c-myc in PDAC cells, likely as a result of enhanced internal ribosome entry segment (IRES)-mediated translation of c-myc. The activation of β2-AR accelerated cell proliferation and colony formation, while knockdown of PCBP2 or c-myc restrained the effect. Furthermore, overexpression of PCBP2 was observed in human PDAC cell lines and tissue specimens compared to the normal pancreatic ductal epithelial cells and the non-cancerous tissues respectively. Overexpression of β2-AR and PCBP2 was associated with advanced tumor stage and significantly worsened prognosis in patients with PDAC. Our results elucidate a new molecular mechanism by which β2-AR signaling facilitates PDAC progression through triggering PCBP2-dependent c-myc expression. PMID:26803058

  17. Can Specific Protein-Lipid Interactions Stabilize an Active State of the Beta 2 Adrenergic Receptor?

    Science.gov (United States)

    Neale, Chris; Herce, Henry D; Pomès, Régis; García, Angel E

    2015-10-20

    G-protein-coupled receptors are eukaryotic membrane proteins with broad biological and pharmacological relevance. Like all membrane-embedded proteins, their location and orientation are influenced by lipids, which can also impact protein function via specific interactions. Extensive simulations totaling 0.25 ms reveal a process in which phospholipids from the membrane's cytosolic leaflet enter the empty G-protein binding site of an activated β2 adrenergic receptor and form salt-bridge interactions that inhibit ionic lock formation and prolong active-state residency. Simulations of the receptor embedded in an anionic membrane show increased lipid binding, providing a molecular mechanism for the experimental observation that anionic lipids can enhance receptor activity. Conservation of the arginine component of the ionic lock among Rhodopsin-like G-protein-coupled receptors suggests that intracellular lipid ingression between receptor helices H6 and H7 may be a general mechanism for active-state stabilization. PMID:26488656

  18. β-Adrenergic receptor subtype signaling in heart:From bench to bedside

    Institute of Scientific and Technical Information of China (English)

    Anthony Yiu Ho WOO; Rui-ping XIAO

    2012-01-01

    β-Adrenergic receptor (βAR) stimulation by the sympathetic nervous system or circulating catecholamines is broadly involved in peripheral blood circulation,metabolic regulation,muscle contraction,and central neural activities.In the heart,acute βAR stimulation serves as the most powerful means to regulate cardiac output in response to a fight-or-flight situation,whereas chronic βAR stimulation plays an important role in physiological and pathological cardiac remodeling.There are three βAR subtypes,β1AR,β2AR and β3AR,in cardiac myocytes.Over the past two decades,we systematically investi-gated the molecular and cellular mechanisms underlying the different even opposite functional roles of β1AR and β2AR subtypes in regulating cardiac structure and function,with keen interest in the development of novel therapies based on our discoveries.We have made three major discoveries,including (1) dual coupling of β2AR to Gs and Gi proteins in cardiomyocytes,(2) cardioprotection by β2AR signaling in improving cardiac function and myocyte viability,and (3) PKA-independent,CaMKII-mediated β1AR apoptotic and maladaptive remodeling signaling in the heart.Based on these discoveries and salutary effects of β1AR blockade on patients with heart failure,we envision that activation of β2AR in combination with clinically used β1AR blockade should provide a safer and more effective therapy for the treatment of heart failure.

  19. The roles of beta-adrenergic receptors in tumorigenesis and the possible use of beta-adrenergic blockers for cancer treatment: possible genetic and cell-signaling mechanisms

    International Nuclear Information System (INIS)

    Cancer is the leading cause of death in the USA, and the incidence of cancer increases dramatically with age. Beta-adrenergic blockers appear to have a beneficial clinical effect in cancer patients. In this paper, we review the evidence of an association between β-adrenergic blockade and cancer. Genetic studies have provided the opportunity to determine which proteins link β-adrenergic blockade to cancer pathology. In particular, this link involves the major histocompatibility complex class II molecules, the renin–angiotensin system, transcription factor nuclear factor-kappa-light-chain-enhancer of activated B cells, poly(ADP-ribose) polymerase-1, vascular endothelial growth factor, and the reduced form of nicotinamide adenine dinucleotide phosphate oxidase. Beta-adrenergic blockers also exert anticancer effects through non-genomic factors, including matrix metalloproteinase, mitogen-activated protein kinase pathways, prostaglandins, cyclooxygenase-2, oxidative stress, and nitric oxide synthase. In conclusion, β-adrenergic blockade may play a beneficial role in cancer treatment. Additional investigations that examine β-adrenergic blockers as cancer therapeutics are required to further elucidate this role

  20. Beta-Adrenergic signaling in rat heart is similarly affected by continuous and intermittent normobaric hypoxia

    Czech Academy of Sciences Publication Activity Database

    Hahnová, K.; Kašparová, D.; Žurmanová, J.; Neckář, Jan; Kolář, František; Novotný, J.

    2016-01-01

    Roč. 35, č. 2 (2016), s. 165-173. ISSN 0231-5882 R&D Projects: GA ČR(CZ) GAP303/12/1162 Institutional support: RVO:67985823 Keywords : rat myocardium * chronic hypoxia * beta-adrenergic receptors * adenylyl cyclase Subject RIV: FA - Cardiovascular Diseases incl. Cardiotharic Surgery Impact factor: 1.173, year: 2014

  1. AHNAK deficiency promotes browning and lipolysis in mice via increased responsiveness to β-adrenergic signalling

    OpenAIRE

    Jae Hoon Shin; Seo Hyun Lee; Yo Na Kim; Il Yong Kim; Youn Ju Kim; Dong Soo Kyeong; Hee Jung Lim; Soo Young Cho; Junhee Choi; Young Jin Wi; Jae-Hoon Choi; Yeo Sung Yoon; Yun Soo Bae; Je Kyung Seong

    2016-01-01

    In adipose tissue, agonists of the β3-adrenergic receptor (ADRB3) regulate lipolysis, lipid oxidation, and thermogenesis. The deficiency in the thermogenesis induced by neuroblast differentiation-associated protein AHNAK in white adipose tissue (WAT) of mice fed a high-fat diet suggests that AHNAK may stimulate energy expenditure via development of beige fat. Here, we report that AHNAK deficiency promoted browning and thermogenic gene expression in WAT but not in brown adipose tissue of mice ...

  2. Yeast two-hybrid screening for proteins that interact with α1-adrenergic receptors

    Institute of Scientific and Technical Information of China (English)

    TanZHANG; QiXU; Feng-rongCHEN; Qi-deHAN; You-yiZHANG

    2004-01-01

    AIM: To find novel proteins that may bind to α1A-adrenergic receptor (α1A-AR) and investigate their interactions with the other two α1-AR subtypes (α1B-AR and α1D-AR) with an expectation to provide new leads for the function study of the receptors. METHODS: Yeast two-hybrid assay was performed to screen a human brain cDNA library using the C terminus of α1A-AR (α1A-AR-CT) as bait. X-Gal assay and o-nitrophenyl-beta-D-galactopyranoside (ONPG) assay were subsequently conducted to further qualitatively or quantitatively confirm the interactions between receptors and the three identified proteins. RESULTS: (1) Selection medium screening identified segments of bone morphogenetic protein-1 (BMP-1), active Bcr-related protein (Abr), and filamin-C as binding partners of α1A-AR-CT in yeast cells respectively. Besides, protein segments of BMP-1 and Abr could only specifically interact with α1A-AR-CT while filamin-C segment interacted with all three α1-AR subtypes. (2) In X-Gal assay, the cotransformants of α1A-AR-CT and BMP-1 segments turned strong blue at about 30 min while other positive transformants only developed weak blue at about 5-6 h. (3) In ONPG assay, interaction (shown in β-galactosidase activity) between α1A-AR-CT and BMP-1 segments was about 30 times stronger than that of control (P<0.01), while other positive interactions were only about 2-5 times as strong as those of controls (P<0.05). CONCLUSION: In yeast cells BMP-1, Abr and/or filamin-C could interact with three α1-AR subtypes, among which, interaction between BMP-1 and α1A-AR was the strongest while other interactions between proteins and receptors were relatively weak.

  3. Receptor subtype involved in α1-adrenergic receptor-mediated Ca2+ sig-naling in cardiomyocytes

    Institute of Scientific and Technical Information of China (English)

    Da-li LUO; Jian GAO; Lin-lin FAN; Yu TANG; You-yi ZHANG; Qi-de HAN

    2007-01-01

    Aim: The enhancement of intracellular Ca2+ signaling in response to α1-adrener-gic receptor (α1-AR) stimulation is an essential signal transduction event in the regulation of cardiac functions, such as cardiac growth, cardiac contraction, and cardiac adaptation to various situations. The present study was intended to determine the role(s) of the α1-AR subtype(s) in mediating this response. Methods: We evaluated the effects of subtype-specific agonists and antagonists of the α1- AR on the intracellular Ca2+ signaling of neonatal rat ventricular myocytes using a confocal microscope. Results: After being cultured for 48 h, the myocytes exhibited spontaneous local Ca2+ release, sparks, and global Ca2+ transients. The activation of the α1-AR with phenylephrine, a selective agonist of the α1-AR, dose-dependently increased the frequency of Ca2+ transients with an EC50 value of 2.3 μmol/L. Blocking the α1A-AR subtype with 5-methyhirapidil (5-Mu) inhi-bited the stimulatory effect of phenylephrine with an IC50 value of 6.7 nmol/L. In contrast, blockade of the α1B-AR and α1D-AR subtypes with chloroethylclonidine and BMY 7378, respectively, did not affect the phenylephrine effect. Similarly, the local Ca2+ spark numbers were also increased by the activation of theα1-AR, and this effect could be abolished selectively by 5-Mu. More importantly, A61603, a novel selective α1A-AR agonist, mimicked the effects of phenylephrine, but with more potency (EC50 value =6.9 nmol/L) in the potentiation of Ca2+ transients, and blockade of the α1A-AR by 5-Mu caused abolishment of its effects. Conclusion: These results indicate that α1-adrenergic stimulation of intracellular Ca2+ activity is mediated selectively by the α1A-AR.

  4. α1B-Adrenergic receptor signaling controls circadian expression of Tnfrsf11b by regulating clock genes in osteoblasts

    Directory of Open Access Journals (Sweden)

    Takao Hirai

    2015-11-01

    Full Text Available Circadian clocks are endogenous and biological oscillations that occur with a period of <24 h. In mammals, the central circadian pacemaker is localized in the suprachiasmatic nucleus (SCN and is linked to peripheral tissues through neural and hormonal signals. In the present study, we investigated the physiological function of the molecular clock on bone remodeling. The results of loss-of-function and gain-of-function experiments both indicated that the rhythmic expression of Tnfrsf11b, which encodes osteoprotegerin (OPG, was regulated by Bmal1 in MC3T3-E1 cells. We also showed that REV-ERBα negatively regulated Tnfrsf11b as well as Bmal1 in MC3T3-E1 cells. We systematically investigated the relationship between the sympathetic nervous system and the circadian clock in osteoblasts. The administration of phenylephrine, a nonspecific α1-adrenergic receptor (AR agonist, stimulated the expression of Tnfrsf11b, whereas the genetic ablation of α1B-AR signaling led to the alteration of Tnfrsf11b expression concomitant with Bmal1 and Per2 in bone. Thus, this study demonstrated that the circadian regulation of Tnfrsf11b was regulated by the clock genes encoding REV-ERBα (Nr1d1 and Bmal1 (Bmal1, also known as Arntl, which are components of the core loop of the circadian clock in osteoblasts.

  5. α1A-adrenergic receptor induces activation of extracellular signal-regulated kinase 1/2 through endocytic pathway.

    Directory of Open Access Journals (Sweden)

    Fei Liu

    Full Text Available G protein-coupled receptors (GPCRs activate mitogen-activated protein kinases through a number of distinct pathways in cells. Increasing evidence has suggested that endosomal signaling has an important role in receptor signal transduction. Here we investigated the involvement of endocytosis in α(1A-adrenergic receptor (α(1A-AR-induced activation of extracellular signal-regulated kinase 1/2 (ERK1/2. Agonist-mediated endocytic traffic of α(1A-AR was assessed by real-time imaging of living, stably transfected human embryonic kidney 293A cells (HEK-293A. α(1A-AR was internalized dynamically in cells with agonist stimulation, and actin filaments regulated the initial trafficking of α(1A-AR. α(1A-AR-induced activation of ERK1/2 but not p38 MAPK was sensitive to disruption of endocytosis, as demonstrated by 4°C chilling, dynamin mutation and treatment with cytochalasin D (actin depolymerizing agent. Activation of protein kinase C (PKC and C-Raf by α(1A-AR was not affected by 4°C chilling or cytochalasin D treatment. U73122 (a phospholipase C [PLC] inhibitor and Ro 31-8220 (a PKC inhibitor inhibited α(1B-AR- but not α(1A-AR-induced ERK1/2 activation. These data suggest that the endocytic pathway is involved in α(1A-AR-induced ERK1/2 activation, which is independent of G(q/PLC/PKC signaling.

  6. ß-Adrenergic Receptor Signaling and Modulation of Long-Term Potentiation in the Mammalian Hippocampus

    Science.gov (United States)

    O'Dell, Thomas J.; Connor, Steven A.; Guglietta, Ryan; Nguyen, Peter V.

    2015-01-01

    Encoding new information in the brain requires changes in synaptic strength. Neuromodulatory transmitters can facilitate synaptic plasticity by modifying the actions and expression of specific signaling cascades, transmitter receptors and their associated signaling complexes, genes, and effector proteins. One critical neuromodulator in the…

  7. Signaling equilibria in sensorimotor interactions.

    Science.gov (United States)

    Leibfried, Felix; Grau-Moya, Jordi; Braun, Daniel A

    2015-08-01

    Although complex forms of communication like human language are often assumed to have evolved out of more simple forms of sensorimotor signaling, less attention has been devoted to investigate the latter. Here, we study communicative sensorimotor behavior of humans in a two-person joint motor task where each player controls one dimension of a planar motion. We designed this joint task as a game where one player (the sender) possesses private information about a hidden target the other player (the receiver) wants to know about, and where the sender's actions are costly signals that influence the receiver's control strategy. We developed a game-theoretic model within the framework of signaling games to investigate whether subjects' behavior could be adequately described by the corresponding equilibrium solutions. The model predicts both separating and pooling equilibria, in which signaling does and does not occur respectively. We observed both kinds of equilibria in subjects and found that, in line with model predictions, the propensity of signaling decreased with increasing signaling costs and decreasing uncertainty on the part of the receiver. Our study demonstrates that signaling games, which have previously been applied to economic decision-making and animal communication, provide a framework for human signaling behavior arising during sensorimotor interactions in continuous and dynamic environments. PMID:25935748

  8. The Golgi apparatus is a functionally distinct Ca2+ store regulated by PKA and Epac branches of the β1-adrenergic signaling pathway

    Science.gov (United States)

    Yang, Zhaokang.; Kirton, Hannah M.; MacDougall, David A.; Boyle, John P.; Deuchars, James; Frater, Brenda; Ponnambalam, Sreenivasan; Hardy, Matthew E.; White, Edward; Calaghan, Sarah C.; Peers, Chris; Steele, Derek S.

    2016-01-01

    Ca2+ release from the Golgi apparatus regulates key functions of the organelle, including vesicle trafficking. However, the signaling pathways that control this form of Ca2+ release are poorly understood and evidence of discrete Golgi Ca2+ release events is lacking. Here, we identified the Golgi apparatus as the source of prolonged Ca2+ release events that originate from the nuclear ‘poles’ of primary cardiac cells. Once initiated, Golgi Ca2+ release was unaffected by global depletion of sarcoplasmic reticulum Ca2+, and disruption of the Golgi apparatus abolished Golgi Ca2+ release without affecting sarcoplasmic reticulum function, suggesting functional and anatomical independence of Golgi and sarcoplasmic reticulum Ca2+ stores. Maximal activation of β1-adrenoceptors had only a small stimulating effect on Golgi Ca2+ release. However, inhibition of phosphodiesterase (PDE) 3 or 4, or downregulation of PDE 3 and 4 in heart failure markedly potentiated β1-adrenergic stimulation of Golgi Ca2+ release, consistent with compartmentalization of cAMP signaling within the Golgi apparatus microenvironment. β1-adrenergic stimulation of Golgi Ca2+ release involved activation of both Epac and PKA signaling pathways and CaMKII. Interventions that stimulated Golgi Ca2+ release induced trafficking of vascular growth factor receptor-1 (VEGFR-1) from the Golgi apparatus to the surface membrane. These data establish the Golgi apparatus as a juxtanuclear focal point for Ca2+ and β1-adrenergic signaling, which functions independently from the sarcoplasmic reticulum and the global Ca2+ transients that underlie the primary contractile function of the cell. PMID:26462734

  9. Intracellular β2-adrenergic receptor signaling specificity in mouse skeletal muscle in response to single-dose β2-agonist clenbuterol treatment and acute exercise

    OpenAIRE

    Sato, Shogo; Shirato, Ken; Mitsuhashi, Ryosuke; Inoue, Daisuke; Kizaki, Takako; Ohno, Hideki; Tachiyashiki, Kaoru; Imaizumi, Kazuhiko

    2013-01-01

    The aim of this study was to clarify the intracellular β2-adrenergic receptor signaling specificity in mouse slow-twitch soleus and fast-twitch tibialis anterior (TA) muscles, resulting from single-dose β2-agonist clenbuterol treatment and acute exercise. At 1, 4, and 24 h after single-dose treatment with clenbuterol or after acute running exercise, the soleus and TA muscles were isolated and subjected to analysis. The phosphorylation of p38 mitogen-activated protein kinase (MAPK) increased a...

  10. Interaction of sarcolysine with β-adrenergic receptors of tumor cells

    International Nuclear Information System (INIS)

    The sites of specific binding of [L-3H]dihydroalprenolol ([3H]DHA), possessing the properties of β-adrenergic receptors, coupled with adenylate cyclase, were detected by methods of competitive displacement and binding of β-adrenoblockers: [3H]-DHA and L-propranolol on the surface of ascites sarcoma 37 cells. Specific binding of the ligand occurs rapidly and with saturation. The total number of binding sites in the case of total saturation is (30-40) x 103 per cell. An analysis of the results by the Scatchard method permitted the detection of two types of β-adrenoreceptors with high (K/sub d/ = 0.9-1.0 mM) and low (K/sub d/ = 15-20 nM) affinity for [3H]DHA. The number of receptors of the first type is (5.0-7.5) x 103, and of the second (20-30) x 103 per cell. Sarcolysine in 1-10 μM concentrations is capable of displacing [3H]DHA bound to the β-adrenoreceptors, competing with it for common binding sites, and, like isoproterenol, inducing a brief increase in the content of cAMP in the tumor cells. Since sarcolysine noncompetitively inhibits cAMP phosphodiesterase of the plasma membranes of ascites sarcoma 37 cells in the same concentration range (2.5-25 μM), a possible functional association between the β-adrenoreceptors, adenylate cyclase, and the membrane cAMP phosphodiesterase and the participation of this complex in the antitumor effect of the cytostatic are suggested

  11. Alpha1-adrenergic, D1, and D2 receptors interactions in the prefrontal cortex: implications for the modality of action of different types of neuroleptics.

    Science.gov (United States)

    Gioanni, Y; Thierry, A M; Glowinski, J; Tassin, J P

    1998-12-01

    The activation of rat mesocortical dopaminergic (DA) neurons evoked by the electrical stimulation of the ventral tegmental area (VTA) induces a marked inhibition of the spontaneous activity of prefrontocortical cells. In the present study, it was first shown that systemic administration of either clozapine (a mixed antagonist of D1, D2, and alpha1-adrenergic receptors) (3-5 mg/kg, i.v.), prazosin (an alpha1-adrenergic antagonist) (0.2 mg/kg, i.v.), or sulpiride (a D2 antagonist) (30 mg/kg, i.v.), but not SCH 23390 (a D1 antagonist) (0.2 mg/kg, i.v.), reversed this cortical inhibition. Second, it was found that following the systemic administration of prazosin, the VTA-induced cortical inhibition reappeared when either SCH 23390 or sulpiride was applied by iontophoresis into the prefrontal cortex. Third, it was seen that, whereas haloperidol (0.2 mg/kg, i.v.), a D2 antagonist which also blocks alpha1-adrenergic receptors, failed to reverse the VTA-induced inhibition, the systemic administration of haloperidol plus SCH 23390 (0.2 mg/kg, i.v.) blocked this inhibition. Finally, it was verified that the cortical inhibitions obtained following treatments with either "prazosin plus sulpiride" or "prazosin plus SCH 23390" were blocked by a superimposed administration of either SCH 23390 or sulpiride, respectively. These data indicate that complex interactions between cortical D2, D1, and alpha1-adrenergic receptors are involved in the regulation of the activity of prefrontocortical cells innervated by the VTA neurons. They confirm that the physiological stimulation of cortical alpha1-adrenergic receptors hampers the functional activity of cortical D1 receptors and suggest that the stimulations of cortical D1 and D2 receptors exert mutual inhibition on each other's transmission. PMID:9826228

  12. Sympathetic Nervous System Control of Carbon Tetrachloride-Induced Oxidative Stress in Liver through α-Adrenergic Signaling

    OpenAIRE

    Jung-Chun Lin; Yi-Jen Peng; Shih-Yu Wang; Mei-Ju Lai; Ton-Ho Young; Salter, Donald M.; Herng-Sheng Lee

    2015-01-01

    In addition to being the primary organ involved in redox cycling, the liver is one of the most highly innervated tissues in mammals. The interaction between hepatocytes and sympathetic, parasympathetic, and peptidergic nerve fibers through a variety of neurotransmitters and signaling pathways is recognized as being important in the regulation of hepatocyte function, liver regeneration, and hepatic fibrosis. However, less is known regarding the role of the sympathetic nervous system (SNS) in m...

  13. Sympathetic Nervous System Control of Carbon Tetrachloride-Induced Oxidative Stress in Liver through a-Adrenergic Signaling

    OpenAIRE

    Lin, Jung-Chun; Peng, Yi-Jen; Wang, Shih-Yu; Lai, Mei-Ju; Young, Ton-Ho; Salter, Donald; Lee, Herng-Sheng

    2016-01-01

    In addition to being the primary organ involved in redox cycling, the liver is one of the most highly innervated tissues in mammals. The interaction between hepatocytes and sympathetic, parasympathetic, and peptidergic nerve fibers through a variety of neurotransmitters and signaling pathways is recognized as being important in the regulation of hepatocyte function, liver regeneration, and hepatic fibrosis. However, less is known regarding the role of the sympathetic nervous system (SNS) in m...

  14. Monoclonal anti-β1-adrenergic receptor antibodies activate G protein signaling in the absence of β-arrestin recruitment

    OpenAIRE

    Hutchings, Catherine J; Cseke, Gabriella; Osborne, Greg; Woolard, Jeanette; Zhukov, Andrei; Koglin, Markus; Jazayeri, Ali; Pandya-Pathak, Jahnavi; Langmead, Christopher J.; Hill, Stephen J.; Weir, Malcolm; Marshall, Fiona H.

    2013-01-01

    Thermostabilized G protein-coupled receptors used as antigens for in vivo immunization have resulted in the generation of functional agonistic anti-β1-adrenergic (β1AR) receptor monoclonal antibodies (mAbs). The focus of this study was to examine the pharmacology of these antibodies to evaluate their mechanistic activity at β1AR. Immunization with the β1AR stabilized receptor yielded five stable hybridoma clones, four of which expressed functional IgG, as determined in cell-based assays used ...

  15. The eukaryotic translation initiation factor 3f (eIF3f) interacts physically with the alpha 1B-adrenergic receptor and stimulates adrenoceptor activity

    OpenAIRE

    Gutiérrez-Fernández, Mario Javier; Higareda-Mendoza, Ana Edith; Gómez-Correa, César Adrián; Pardo-Galván, Marco Aurelio

    2015-01-01

    Background eIF3f is a multifunctional protein capable of interacting with proteins involved in different cellular processes, such as protein synthesis, DNA repair, and viral mRNA edition. In human cells, eIF3f is related to cell cycle and proliferation, and its deregulation compromises cell viability. Results We here report that, in native conditions, eIF3f physically interacts with the alpha 1B-adrenergic receptor, a plasma membrane protein considered as a proto-oncogene, and involved in vas...

  16. Interaction of selected vasodilating beta-blockers with adrenergic receptors in human cardiovascular tissues

    International Nuclear Information System (INIS)

    beta- And alpha 1-adrenoceptor antagonist properties of bufuralol, carvedilol, celiprolol, dilevalol, labetalol, and pindolol were investigated in human myocardium and mammary artery using binding techniques and functional studies. In myocardial membranes, beta-adrenoceptor antagonists showed monophasic competition isotherms for [125I]pindolol binding with high affinity (Ki from 1-100 nM), except for celiprolol which displayed a biphasic competition isotherm (pKi = 6.4 +/- 0.06 for beta 1- and 4.8 +/- 0.07 for beta 2-adrenoceptors). Drug interactions with alpha 1-adrenoceptors were evaluated in human mammary artery by [3H]prazosin binding and by measuring contractile responses to norepinephrine (NE). Labetalol and carvedilol showed a moderate affinity for alpha 1-adrenoceptors (pKi = 6.2 +/- 0.01 and 6.1 +/- 0.06, respectively), and inhibited NE-induced contractions (pA2 = 6.93 +/- 0.23 and 8.64 +/- 0.24, respectively). Dilevalol, bufuralol, and pindolol displayed weak effect both in binding (Ki in micromolar range) and functional experiments (pA2 = 5.98, 5.54, and 6.23, respectively). Celiprolol did not show antagonist properties up to 100 microM in functional studies, but displayed a slight affinity for alpha 1-adrenoceptors in binding studies. The data indicate that the vasodilating activity of these beta-adrenoceptor antagonists is caused in some instances by an alpha 1-adrenoceptor antagonism (labetalol, carvedilol), whereas for the others alternative mechanisms should be considered

  17. From signal to signification in interactive environments

    DEFF Research Database (Denmark)

    Fritsch, Jonas

    2012-01-01

    replace the other. Rather, we should investigate what the fusion between paradigms allows us to say about digital and interactive technologies. This article attempts to do this through a thinking-together of signal and signification as well as affect and emotion based on the work of French philosopher of...... technology Gilbert Simondon. Through an analysis of the minimal media installation Touched Echo, I argue that it is necessary to account for the dynamics of a larger experiential continuum to uncover the affective-emotive relations that occur through the transindividual workings of the signal and...... signification in interactive environments....

  18. Night/day changes in pineal expression of >600 genes: central role of adrenergic/cAMP signaling

    DEFF Research Database (Denmark)

    Bailey, Michael J; Coon, Steven L; Carter, John David;

    2009-01-01

    The pineal gland plays an essential role in vertebrate chronobiology by converting time into a hormonal signal, melatonin, which is always elevated at night. Here we have analyzed the rodent pineal transcriptome using Affymetrix GeneChip(R) technology to obtain a more complete description of pineal...

  19. Signal Use by Octopuses in Agonistic Interactions.

    Science.gov (United States)

    Scheel, David; Godfrey-Smith, Peter; Lawrence, Matthew

    2016-02-01

    Cephalopods show behavioral parallels to birds and mammals despite considerable evolutionary distance [1, 2]. Many cephalopods produce complex body patterns and visual signals, documented especially in cuttlefish and squid, where they are used both in camouflage and a range of interspecific interactions [1, 3-5]. Octopuses, in contrast, are usually seen as solitary and asocial [6, 7]; their body patterns and color changes have primarily been interpreted as camouflage and anti-predator tactics [8-12], though the familiar view of the solitary octopus faces a growing list of exceptions. Here, we show by field observation that in a shallow-water octopus, Octopus tetricus, a range of visible displays are produced during agonistic interactions, and these displays correlate with the outcome of those interactions. Interactions in which dark body color by an approaching octopus was matched by similar color in the reacting octopus were more likely to escalate to grappling. Darkness in an approaching octopus met by paler color in the reacting octopus accompanied retreat of the paler octopus. Octopuses also displayed on high ground and stood with spread web and elevated mantle, often producing these behaviors in combinations. This study is the first to document the systematic use of signals during agonistic interactions among octopuses. We show prima facie conformity of our results to an influential model of agonistic signaling [13]. These results suggest that interactions have a greater influence on octopus evolution than has been recognized and show the importance of convergent evolution in behavioral traits. PMID:26832440

  20. The effect of hydroalcoholic extract of Juglans regia L. leaf on blood pressure and its interaction with adrenergic system of male rats

    Directory of Open Access Journals (Sweden)

    Hajar Ebrahimiyan

    2016-03-01

    Full Text Available Background: Hypertension is one of the most common diseases in recent century with several complications. The purpose of this study was to evaluate the effect of hydroalcoholic extract of Juglans regia L. leaves (Walnut tree on blood pressure and its interaction with the adrenergic system in male rats. Methods: In this experimental study that established in the physiology lab, School of scinse in Shiraz University from September to October 2013, in order to determine some of hydroalcoholic extract of Juglans regia L. leaves effect on blood pressure, the present study was performed by following procedure: 10 adult male wistar rats weighing between 180-250g were used. They were divided into two groups (Each group contained 5 rats randomly: Juglans regia L. leaf extract group and Juglans regia L. leaf extract and adrenaline group. Then each rat was anesthetized by IP injection of 1.2 g/kg urethane. After tracheostomy the femoral vine and artery were cannulated for drug injection and blood pressure recording respectively. Arterial cannula for recording arterial blood pressure connected to a pressure transducer (PowerLab, ADInstruments, Sydney, Australia. Blood pressure parameters were recorded before and after IV administration of hydroalcoholic extract of Juglans regia L. leaf, solvent, adrenalin and extract with adrenaline. Results: The result showed a significant decrease of mean arterial pressure, systolic and diastolic pressure in response to extract with compare to control and sham group (P<0.05. Also a significant decrease of blood pressure showed in presence of walnut leaf extract and adrenaline with compare to sham group (P<0.05. Conclusion: It can be concluded that hydroalcoholic extract of Juglans regia L. leaf suggested as a hypotensive agent. It seems that this effect is probably due to inhibitory effect on adrenergic system.

  1. Human myometrial adrenergic receptors: identification of the beta-adrenergic receptor by [3H]dihydroalprenolol binding

    International Nuclear Information System (INIS)

    The radioactive beta-adrenergic antagonist [3H] dihydroalprenolol (DHA) binds to particulate preparations of human myometrium in a manner compatible with binding to the beta-adrenergic receptor. The binding of DHA is rapid (attaining equilibrium in 12 minutes), readily reversible (half time = 16 minutes), high affinity (K/sub D/ = 0.50 nM), low capacity (Bmax = 70 fmoles/mg of protein), and stereoselective ([-]-propranolol is 100 times as potent as [+] -propranolol in inhibiting DHA binding). Adrenergic agonists competed for DHA binding sites in a manner compatible with beta-adrenergic interactions and mirrored β2 pharmacologic potencies: isoproterenol > epinephrine >> norepinephrine. Studies in which zinterol, a β2-adrenergic agonist, competed for DHA binding sites in human myometrial particulate indicated that at least 87% of the beta-adrenergic receptors present are β2-adrenergic receptors. Binding of DHA to human myometrial beta-adrenergic receptors provides a tool which may be used in the examination of gonadal hormonal modification of adrenergic response in human uterus as well as in the analysis of beta-adrenergic agents as potentially useful tocolytic agents

  2. Allosteric interactions between the oxytocin receptor and the β2-adrenergic receptor in the modulation of ERK1/2 activation are mediated by heterodimerization.

    Science.gov (United States)

    Wrzal, Paulina K; Devost, Dominic; Pétrin, Darlaine; Goupil, Eugénie; Iorio-Morin, Christian; Laporte, Stéphane A; Zingg, Hans H; Hébert, Terence E

    2012-01-01

    The oxytocin receptor (OTR) and the β(2)-adrenergic receptor (β(2)AR) are key regulators of uterine contraction. These two receptors are targets of tocolytic agents used to inhibit pre-term labor. Our recent study on the nature of OTR- and β(2)AR-mediated ERK1/2 activation in human hTERT-C3 myometrial cells suggested the presence of an OTR/β(2)AR hetero-oligomeric complex (see companion article). The goal of this study was to investigate potential allosteric interactions between OTR and β(2)AR and establish the nature of the interactions between these receptors in myometrial cells. We found that OTR-mediated ERK1/2 activation was attenuated significantly when cells were pretreated with the β(2)AR agonist isoproterenol or two antagonists, propranolol or timolol. In contrast, pretreatment of cells with a third β(2)AR antagonist, atenolol resulted in an increase in OTR-mediated ERK1/2 activation. Similarly, β(2)AR-mediated ERK1/2 activation was strongly attenuated by pretreatment with the OTR antagonists, atosiban and OTA. Physical interactions between OTR and β(2)AR were demonstrated using co-immunoprecipitation, bioluminescence resonance energy transfer (BRET) and protein-fragment complementation (PCA) assays in HEK 293 cells, the latter experiments indicating the interactions between the two receptors were direct. Our analyses suggest physical interactions between OTR and β(2)AR in the context of a new heterodimer pair lie at the heart of the allosteric effects. PMID:21963428

  3. Collagen-platelet interactions: recognition and signalling.

    Science.gov (United States)

    Farndale, Richard W; Siljander, Pia R; Onley, David J; Sundaresan, Pavithra; Knight, C Graham; Barnes, Michael J

    2003-01-01

    The collagen-platelet interaction is central to haemostasis and may be a critical determinant of arterial thrombosis, where subendothelium is exposed after rupture of atherosclerotic plaque. Recent research has capitalized on the cloning of an important signalling receptor for collagen, glycoprotein VI, which is expressed only on platelets, and on the use of collagen-mimetic peptides as specific tools for both glycoprotein VI and integrin alpha 2 beta 1. We have identified sequences, GPO and GFOGER (where O denotes hydroxyproline), within collagen that are recognized by the collagen receptors glycoprotein VI and integrin alpha 2 beta 1 respectively, allowing their signalling properties and specific functional roles to be examined. Triple-helical peptides containing these sequences were used to show the signalling potential of integrin alpha 2 beta 1, and to confirm its important contribution to platelet adhesion. Glycoprotein VI appears to operate functionally on the platelet surface as a dimer, which recognizes GPO motifs that are separated by four triplets of collagen sequence. These advances will allow the relationship between the structure of collagen and its haemostatic activity to be established. PMID:14587284

  4. Adrenergic receptors are a fallible index of adrenergic denervation hypersensitivity

    DEFF Research Database (Denmark)

    Dejgaard, Anders; Liggett, S B; Christensen, N J; Cryer, P E; Hilsted, J

    1991-01-01

    diabetic autonomic neuropathy. Regardless of the mechanism of adrenergic denervation hypersensitivity in such patients, these data provide further evidence that measurements of cellular adrenergic receptors (and adenylate cyclase) in vitro are a fallible index of sensitivity to catecholamines in vivo....

  5. Indobufen interacts with the sulphonylurea, glipizide, but not with the beta-adrenergic receptor antagonists, propranolol and atenolol.

    OpenAIRE

    Elvander-Ståhl, E; Melander, A; Wåhlin-Boll, E

    1984-01-01

    This study assessed the possible interactions of the cyclooxygenase inhibitor indobufen with one sulphonylurea, glipizide, and with two beta-adrenoceptor antagonists, one of which is extensively metabolised already in the first passage through the liver (propranolol) while the other essentially escapes biotransformation (atenolol). Indobufen was first given as a single 200 mg dose and then for a 5 day period in a dosage of 200 mg twice daily, to six healthy volunteers. Glipizide (5 mg), propr...

  6. Interaction of electromagnetic signals with particulate clouds

    Science.gov (United States)

    Pauda, Jose Mario

    1990-05-01

    A particulate cloud affects the ability of an electronic detector to receive an electromagnetic signal in two ways: by scattering light from the sun into the detector, thereby masking the signal, and by attenuating the signal itself. These effects are well studied in the Mie theory, which is summarized. The effect of the particle distribution in the cloud and the shape of the cloud on scattering and absorption problems is then analyzed. The results of this analysis and of the Mie theory are incorporated into a computer program which is included in the appendix. The graphs generated with the program can be used (in conjunction with information about the sunlight intensity and the detector's discriminating ability) to determine the effect of scattered light on the detection of the signal. We conclude the attenuation of the signal plays a relatively minor role in the ability of a detector to receive a signal affected by a cloud of particles.

  7. Interactive Teaching of Adaptive Signal Processing

    OpenAIRE

    Stewart, R W; Harteneck, M; WEISS S.

    2000-01-01

    Over the last 30 years adaptive digital signal processing has progressed from being a strictly graduate level advanced class in signal processing theory to a topic that is part of the core curriculum for many undergraduate signal processing classes. The key reason is the continued advance of communications technology, with its need for echo control and equalisation, and the widespread use of adaptive filters in audio, biomedical, and control applications. In this paper we will review the basi...

  8. Adrenergic gene polymorphisms and cardiovascular risk in the NHLBI-sponsored Women's Ischemia Syndrome Evaluation

    OpenAIRE

    Sharaf Barry L; McNamara Dennis M; Bittner Vera; Cooper-DeHoff Rhonda M; Johnson B Delia; Li Haihong; Zineh Issam; Pacanowski Michael A; Merz C Noel; Pepine Carl J; Johnson Julie A

    2008-01-01

    Abstract Background Adrenergic gene polymorphisms are associated with cardiovascular and metabolic phenotypes. We investigated the influence of adrenergic gene polymorphisms on cardiovascular risk in women with suspected myocardial ischemia. Methods We genotyped 628 women referred for coronary angiography for eight polymorphisms in the α1A-, β1-, β2- and β3-adrenergic receptors (ADRA1A, ADRB1, ADRB2, ADRB3, respectively), and their signaling proteins, G-protein β 3 subunit (GNB3) and G-protei...

  9. Language adapts to signal disruption in interaction

    OpenAIRE

    Macuch Silva, V.; Roberts, S

    2016-01-01

    Linguistic traits are often seen as reflecting cognitive biases and constraints (e.g. Christiansen & Chater, 2008). However, language must also adapt to properties of the channel through which communication between individuals occurs. Perhaps the most basic aspect of any communication channel is noise. Communicative signals can be blocked, degraded or distorted by other sources in the environment. This poses a fundamental problem for communication. On average, channel disruption accompanies p...

  10. Subthreshold α2-Adrenergic Activation Counteracts Glucagon-Like Peptide-1 Potentiation of Glucose-Stimulated Insulin Secretion

    Directory of Open Access Journals (Sweden)

    Minglin Pan

    2011-01-01

    Full Text Available The pancreatic β cell harbors α2-adrenergic and glucagon-like peptide-1 (GLP-1 receptors on its plasma membrane to sense the corresponding ligands adrenaline/noradrenaline and GLP-1 to govern glucose-stimulated insulin secretion. However, it is not known whether these two signaling systems interact to gain the adequate and timely control of insulin release in response to glucose. The present work shows that the α2-adrenergic agonist clonidine concentration-dependently depresses glucose-stimulated insulin secretion from INS-1 cells. On the contrary, GLP-1 concentration-dependently potentiates insulin secretory response to glucose. Importantly, the present work reveals that subthreshold α2-adrenergic activation with clonidine counteracts GLP-1 potentiation of glucose-induced insulin secretion. This counteractory process relies on pertussis toxin- (PTX- sensitive Gi proteins since it no longer occurs following PTX-mediated inactivation of Gi proteins. The counteraction of GLP-1 potentiation of glucose-stimulated insulin secretion by subthreshold α2-adrenergic activation is likely to serve as a molecular mechanism for the delicate regulation of insulin release.

  11. Interactive Task Estimation From Unlabelled Teaching Signals

    OpenAIRE

    Jonathan Grizou; I\\xf1aki Iturrate; Luis Montesano; Manuel Lopes; Pierre-Yves Oudeyer

    2013-01-01

    International audience At home, workplaces or schools, an increasing amount of intelligent robotic systems are starting to be able to help us in our daily life (windows or vacuum cleaners, self-driving cars) [1] and in flexible manufacturing systems [2]. A key feature in these new domains is the close interaction between people and robots. In particular, such robotic systems need to be teachable by non-technical users, i.e. programmable for new tasks in novel environments through intuitive...

  12. Actin’ up: Herpesvirus Interactions with Rho GTPase Signaling

    Directory of Open Access Journals (Sweden)

    Herman W. Favoreel

    2011-03-01

    Full Text Available Herpesviruses constitute a very large and diverse family of DNA viruses, which can generally be subdivided in alpha-, beta- and gammaherpesvirus subfamilies. Increasing evidence indicates that many herpesviruses interact with cytoskeleton-regulating Rho GTPase signaling pathways during different phases of their replication cycle. Because of the large differences between herpesvirus subfamilies, the molecular mechanisms and specific consequences of individual herpesvirus interactions with Rho GTPase signaling may differ. However, some evolutionary distinct but similar general effects on Rho GTPase signaling and the cytoskeleton have also been reported. Examples of these include Rho GTPase-mediated nuclear translocation of virus during entry in a host cell and Rho GTPase-mediated viral cell-to-cell spread during later stages of infection. The current review gives an overview of both general and individual interactions of herpesviruses with Rho GTPase signaling.

  13. In brown adipocytes, adrenergically induced β1-/β3-(Gs)-, α2-(Gi)- and α1-(Gq)-signalling to Erk1/2 activation is not mediated via EGF receptor transactivation

    International Nuclear Information System (INIS)

    Brown adipose tissue is unusual in that the neurotransmitter norepinephrine influences cell destiny in ways generally associated with effects of classical growth factors: regulation of cell proliferation, of apoptosis, and progression of differentiation. The norepinephrine effects are mediated through G-protein-coupled receptors; further mediation of such stimulation to e.g. Erk1/2 activation is in cell biology in general accepted to occur through transactivation of the EGF receptor (by external or internal pathways). We have examined here the significance of such transactivation in brown adipocytes. Stimulation of mature brown adipocytes with cirazoline (α1-adrenoceptor coupled via Gq), clonidine (α2 via Gi) or CL316243 (β3 via Gs) or via β1-receptors significantly activated Erk1/2. Pretreatment with the EGF receptor kinase inhibitor AG1478 had, remarkably, no significant effect on Erk1/2 activation induced by any of these adrenergic agonists (although it fully abolished EGF-induced Erk1/2 activation), demonstrating absence of EGF receptor-mediated transactivation. Results with brown preadipocytes (cells in more proliferative states) were not qualitatively different. Joint stimulation of all adrenoceptors with norepinephrine did not result in synergism on Erk1/2 activation. AG1478 action on EGF-stimulated Erk1/2 phosphorylation showed a sharp concentration–response relationship (IC50 0.3 µM); a minor apparent effect of AG1478 on norepinephrine-stimulated Erk1/2 phosphorylation showed nonspecific kinetics, implying caution in interpretation of partial effects of AG1478 as reported in other systems. Transactivation of the EGF receptor is clearly not a universal prerequisite for coupling of G-protein coupled receptors to Erk1/2 signalling cascades. - Highlights: • In brown adipocytes, norepinephrine regulates proliferation, apoptosis, differentiation. • EGF receptor transactivation is supposed to mediate GPCR-induced Erk1/2 activation. • α1-, α2-, β1

  14. Interactions between radiofrequency signals and living organisms

    International Nuclear Information System (INIS)

    This dossier is composed of 13 articles dealing with the interactions between radio-frequencies and living organisms. It is an overview of various scientific approaches to the field and is of interest for all citizens as the use of mobile phones is widely spread. In the first article it is shown how a model has been built to assess the distribution of the whole body exposure of the population. The second article reviews the state of the art in personal exposure measurements at radio-frequencies. The third article shows that the knowledge of the mechanism of action by which exposure increases the risk of health hazards is necessary. The fourth article shows that individual neuro-psychic factors take a prominent but maybe not unique, part in electromagnetic hypersensitivity. The fifth article shows that no evidence was found to link health disturbances of electromagnetic hypersensitive individuals with radiofrequency exposure. The sixth article shows that the wireless phone is not an athermal hazard to the brain. The seventh article shows that the in utero and post-natal exposure to Wi-Fi does not damage the brains of young rats. The eighth article concludes that recent studies provide no convincing proof of deleterious effects of radiofrequency exposure on the integrity of the blood-brain barrier for specific absorption rates up to 6 W/kg. The ninth article shows that no co-genotoxic effect of radiofrequency was found at levels of exposure that did not induce heating. The tenth article confirms that industry-sponsored studies were least likely to report results suggesting effects. The last article shows that general practitioners are increasingly questioned by their patients about the issue of electromagnetic waves. (A.C.)

  15. Root signals that mediate mutualistic interactions in the rhizosphere.

    Science.gov (United States)

    Rasmann, Sergio; Turlings, Ted Cj

    2016-08-01

    A recent boom in research on belowground ecology is rapidly revealing a multitude of fascinating interactions, in particular in the rhizosphere. Many of these interactions are mediated by photo-assimilates that are excreted by plant roots. Root exudates are not mere waste products, but serve numerous functions to control abiotic and biotic processes. These functions range from changing the chemical and physical properties of the soil, inhibiting the growth of competing plants, combatting herbivores, and regulating the microbial community. Particularly intriguing are root-released compounds that have evolved to serve mutualistic interactions with soil-dwelling organisms. These mutually beneficial plant-mediated signals are not only of fundamental ecological interest, but also exceedingly important from an agronomical perspective. Here, we attempt to provide an overview of the plant-produced compounds that have so far been implicated in mutualistic interactions. We propose that these mutualistic signals may have evolved from chemical defenses and we point out that they can be (mis)used by specialized pathogens and herbivores. We speculate that many more signals and interactions remain to be uncovered and that a good understanding of the mechanisms and ecological implications can be the basis for exploitation and manipulation of the signals for crop improvement and protection. PMID:27393937

  16. Interaction between telencephalic signals and respiratory dynamics in songbirds

    OpenAIRE

    Méndez, Jorge M.; Mindlin, Gabriel B.; Goller, Franz

    2012-01-01

    The mechanisms by which telencephalic areas affect motor activities are largely unknown. They could either take over motor control from downstream motor circuits or interact with the intrinsic dynamics of these circuits. Both models have been proposed for telencephalic control of respiration during learned vocal behavior in birds. The interactive model postulates that simple signals from the telencephalic song control areas are sufficient to drive the nonlinear respiratory network into produc...

  17. Recent progress in α1-adrenergic receptor research

    Institute of Scientific and Technical Information of China (English)

    Zhong-jian CHEN; Kenneth P MINNEMAN

    2005-01-01

    α1-Adrenergic receptors (AR) play an important role in the regulation of physiological responses mediated by norepinephrine and epinephrine, particularly in the cardiovascular system. The three cloned α1-AR subtypes (α1A, α1B, and α1D)are G protein-coupled receptors that signal through the Gq/11 signaling pathway,each showing distinct pharmacological properties and tissue distributions.However, due to the lack of highly subtype-selective drugs, the functional rolesof individual subtypes are still not clear. Development of new subtype-specific drugs will greatly facilitate the identification of the functions of each subtype.Conopeptide ρ-TIA has been found to be a new α1B-AR selective antagonist withdifferent modes of inhibition at α1-AR subtypes. In addition, recent studies using genetically engineered mice have shed some light on α1-AR functions in vivo,especially in the cardiovascular system and brain. Several proteins have been shown to interact directly with particular α1-AR, and may be important in regulating receptor function. Receptor heterodimerization has been shown to be important for cell surface expression, signaling and internalization. These new observations are likely to help elucidate the functional roles of individual α1-AR subtypes.

  18. DNA-Metallodrugs Interactions Signaled by Electrochemical Biosensors: An Overview

    Directory of Open Access Journals (Sweden)

    Mauro Ravera

    2007-01-01

    Full Text Available The interaction of drugs with DNA is an important aspect in pharmacology. In recent years, many important technological advances have been made to develop new techniques to monitor biorecognition and biointeraction on solid devices. The interaction between DNA and drugs can cause chemical and conformational modifications and, thus, variation of the electrochemical properties of nucleobases. The propensity of a given compound to interact with DNA is measured as a function of the decrease of guanine oxidation signal on a DNA electrochemical biosensor. Covalent binding at N7 of guanine, electrostatic interactions, and intercalation are the events that this kind of biosensor can detect. In this context, the interaction between a panel of antitumoral Pt-, Ru-, and Ti-based metallodrugs with DNA immobilized on screen-printed electrodes has been studied. The DNA biosensors are used for semiquantitative evaluation of the analogous interaction occurring in the biological environment.

  19. Social signal processing for studying parent–infant interaction

    Science.gov (United States)

    Avril, Marie; Leclère, Chloë; Viaux, Sylvie; Michelet, Stéphane; Achard, Catherine; Missonnier, Sylvain; Keren, Miri; Cohen, David; Chetouani, Mohamed

    2014-01-01

    Studying early interactions is a core issue of infant development and psychopathology. Automatic social signal processing theoretically offers the possibility to extract and analyze communication by taking an integrative perspective, considering the multimodal nature and dynamics of behaviors (including synchrony). This paper proposes an explorative method to acquire and extract relevant social signals from a naturalistic early parent–infant interaction. An experimental setup is proposed based on both clinical and technical requirements. We extracted various cues from body postures and speech productions of partners using the IMI2S (Interaction, Multimodal Integration, and Social Signal) Framework. Preliminary clinical and computational results are reported for two dyads (one pathological in a situation of severe emotional neglect and one normal control) as an illustration of our cross-disciplinary protocol. The results from both clinical and computational analyzes highlight similar differences: the pathological dyad shows dyssynchronic interaction led by the infant whereas the control dyad shows synchronic interaction and a smooth interactive dialog. The results suggest that the current method might be promising for future studies. PMID:25540633

  20. Orally applied doxazosin disturbed testosterone homeostasis and changed the transcriptional profile of steroidogenic machinery, cAMP/cGMP signalling and adrenergic receptors in Leydig cells of adult rats.

    Science.gov (United States)

    Stojkov, N J; Janjic, M M; Kostic, T S; Andric, S A

    2013-03-01

    Doxazosin (Doxa) is an α1-selective adrenergic receptor (ADR) antagonist widely used, alone or in combination, to treat high blood pressure, benign prostatic hyperplasia symptoms, and recently has been suggested as a potential drug for prostate cancer prevention/treatment. This study was designed to evaluate the effect of in vivo Doxa po-application, in clinically relevant dose, on: (i) steroidogenic machinery homeostasis; (ii) cAMP/cGMP signalling; (iii) transcription profile of ADR in Leydig cells of adult rats. The results showed that po-application of Doxa for once (1×Doxa), or for two (2×Doxa) or 10 (10×Doxa) consecutive days significantly disturbed steroidogenic machinery homeostasis in Leydig cells. Doxa po-application significantly decreased circulating luteinizing hormone and androgens levels. The level of androgens in testicular interstitial fluid and that extracted from testes obtained from 1×Doxa/2×Doxa rats decreased, although it remained unchanged in 10×Doxa rats. Similarly, the ex vivo basal androgen production followed in testes isolated from 1×Doxa/2×Doxa rats decreased, while remained unchanged in 10×Doxa rats. Differently, ex vivo testosterone production and steroidogenic capacity of Leydig cells isolated from 1×Doxa/2×Doxa rats was stimulated, while 10×Doxa had opposite effect. In the same cells, cAMP content/release showed similar stimulatory effect, but back to control level in Leydig cells of 10×Doxa. 1×Doxa/2×Doxa decreased transcripts for cAMP specific phosphodiesterases Pde7b/Pde8b, whereas 10×Doxa increased Pde4d. All types of treatment reduced the expression of genes encoding protein kinase A (PRKA) regulatory subunit (Prkar2b), whereas only 10×Doxa stimulated catalytic subunit (Prkaca). Doxa application more affected cGMP signalling: stimulated transcription of constitutive nitric oxide synthases (Nos1, Nos3) in time-dependent manner, whereas reduced inducible Nos2. 10×Doxa increased guanylyl cyclase 1 transcript and

  1. CLE peptide signaling and nitrogen interactions in plant root development.

    Science.gov (United States)

    Araya, Takao; von Wirén, Nicolaus; Takahashi, Hideki

    2016-08-01

    The CLAVATA signaling pathway is essential for the regulation of meristem activities in plants. This signaling pathway consists of small signaling peptides of the CLE family interacting with CLAVATA1 and leucine-rich repeat receptor-like kinases (LRR-RLKs). The peptide-receptor relationships determine the specificities of CLE-dependent signals controlling stem cell fate and differentiation that are critical for the establishment and maintenance of shoot and root apical meristems. Plants root systems are highly organized into three-dimensional structures for successful anchoring and uptake of water and mineral nutrients from the soil environment. Recent studies have provided evidence that CLE peptides and CLAVATA signaling pathways play pivotal roles in the regulation of lateral root development and systemic autoregulation of nodulation (AON) integrated with nitrogen (N) signaling mechanisms. Integrations of CLE and N signaling pathways through shoot-root vascular connections suggest that N demand modulates morphological control mechanisms and optimize N uptake as well as symbiotic N fixation in roots. PMID:26994997

  2. Quantum interactions with closed timelike curves and superluminal signaling

    Science.gov (United States)

    Bub, Jeffrey; Stairs, Allen

    2014-02-01

    There is now a significant body of results on quantum interactions with closed timelike curves (CTCs) in the quantum information literature, for both the Deutsch model of CTC interactions (D-CTCs) and the projective model (P-CTCs). As a consequence, there is a prima facie argument exploiting entanglement that CTC interactions would enable superluminal and, indeed, effectively instantaneous signaling. In cases of spacelike separation between the sender of a signal and the receiver, whether a receiver measures the local part of an entangled state or a disentangled state to access the signal can depend on the reference frame. We propose a consistency condition that gives priority to either an entangled perspective or a disentangled perspective in spacelike-separated scenarios. For D-CTC interactions, the consistency condition gives priority to frames of reference in which the state is disentangled, while for P-CTC interactions the condition selects the entangled state. Using the consistency condition, we show that there is a procedure that allows Alice to signal to Bob in the past via relayed superluminal communications between spacelike-separated Alice and Clio, and spacelike-separated Clio and Bob. This opens the door to time travel paradoxes in the classical domain. Ralph [T. C. Ralph, arXiv:1107.4675 [quant-ph].] first pointed this out for P-CTCs, but we show that Ralph's procedure for a "radio to the past" is flawed. Since both D-CTCs and P-CTCs allow classical information to be sent around a spacetime loop, it follows from a result by Aaronson and Watrous [S. Aaronson and J. Watrous, Proc. R. Soc. A 465, 631 (2009), 10.1098/rspa.2008.0350] for CTC-enhanced classical computation that a quantum computer with access to P-CTCs would have the power of PSPACE, equivalent to a D-CTC-enhanced quantum computer.

  3. β-Adrenergic Agonist and Antagonist Regulation of Autophagy in HepG2 Cells, Primary Mouse Hepatocytes, and Mouse Liver

    OpenAIRE

    Farah, Benjamin L.; Sinha, Rohit A.; Wu, Yajun; Singh, Brijesh K; Zhou, Jin; Bay, Boon-Huat; Yen, Paul M

    2014-01-01

    Autophagy recently has been shown to be involved in normal hepatic function and in pathological conditions such as non-alcoholic fatty liver disease. Adrenergic signalling also is an important regulator of hepatic metabolism and function. However, currently little is known about the potential role of adrenergic signaling on hepatic autophagy, and whether the β-adrenergic receptor itself may be a key regulator of autophagy. To address these issues, we investigated the actions of the β2-adrener...

  4. Signals, processes, and systems an interactive multimedia introduction to signal processing

    CERN Document Server

    Karrenberg, Ulrich

    2013-01-01

    This is a very new concept for learning Signal Processing, not only from the physically-based scientific fundamentals, but also from the didactic perspective, based on modern results of brain research. The textbook together with the DVD form a learning system that provides investigative studies and enables the reader to interactively visualize even complex processes. The unique didactic concept is built on visualizing signals and processes on the one hand, and on graphical programming of signal processing systems on the other. The concept has been designed especially for microelectronics, computer technology and communication. The book allows to develop, modify, and optimize useful applications using DasyLab - a professional and globally supported software for metrology and control engineering. With the 3rd edition, the software is also suitable for 64 bit systems running on Windows 7. Real signals can be acquired, processed and played on the sound card of your computer. The book provides more than 200 pre-pr...

  5. Signal interaction of Hedgehog/GLI and epidermal growth factor receptor signaling in cancer development

    International Nuclear Information System (INIS)

    The subject of this PhD thesis is based on the cooperation of Hedgehog (HH)/GLI with epidermal growth factor receptor (EGFR) signaling synergistically promoting oncogenic transformation and cancer growth. In previous studies we have demonstrated that the HH/GLI and EGFR signaling pathways interact synergistically resulting not only in selective induction of HH/GLI-EGFR target genes, but also in the onset of oncogenic transformation and tumor formation (Kasper, Schnidar et al. 2006; Schnidar, Eberl et al. 2009). However, the molecular key mediators acting downstream of HH/GLI and EGFR signal cooperation were largely unknown and the in vivo evidence for the therapeutic relevance of HH/GLI and EGFR signal cooperation in HH-associated cancers was lacking. During my PhD thesis I could demonstrate that the integration of EGFR and HH/GLI signaling involves activation of RAS/MEK/ERK and JUN/AP1 signaling in response to EGFR activation. Furthermore I succeeded in identifying genes, including stem cell- (SOX2, SOX9), tumor growth- (JUN, TGFA, FGF19) and metastasis-associated genes (SPP1/osteopontin, CXCR4) that showed synergistic transcriptional activation by HH/GLI-EGFR signal integration. Importantly, I could demonstrate that these genes arrange themselves within a stable interdependent signaling network, which is required for in vivo growth of basal cell carcinoma (BCC) and tumor-initiating pancreatic cancer cells. These data validate EGFR signaling as additional drug target in HH/GLI driven cancers and provide new therapeutic strategies based on combined targeting of cooperative HH/GLI-EGFR signaling and selected downstream target genes (Eberl, Klingler et al. 2012). (author)

  6. Phosphoinositide metabolism and adrenergic receptors in astrocytes

    International Nuclear Information System (INIS)

    Agonist-induced phosphoinositide (PI) breakdown functions as a signal generating system. Diacylglycerol, one breakdown product of phosphotidylinositol-4,5-diphosphate hydrolysis, can stimulate protein kinase C, whereas inositol triphosphate, the other product, has been proposed to be a second messenger for Ca++ mobilization. Using purified astrocyte cultures from neonatal rat brain, the effects of adrenergic agonists and antagonists at 10-5 M were measured on PI breakdown. Astrocytes grown in culture were prelabeled with (3H)inositol, and basal (3H) inositol phosphate (IP1) accumulation was measured in the presence of Li+. Epinephrine > norepinephrine (NE) were the most active stimulants of IP1 production. The α1 adrenoreceptor blockers, phentolamine and phenoxybenzamine, added alone had no effect on IP1 production was reduced below basal levels. Propranolol partially blocked the effects of NE. Clonidine and isoproterenol, separately added, reduced IP1 below basal levels and when added together diminished IP1 accumulation even further. The role of adrenergic stimulation in the production of c-AMP

  7. Adrenergic regulation of innate immunity: a review

    Directory of Open Access Journals (Sweden)

    Angela eScanzano

    2015-08-01

    Full Text Available The sympathetic nervous system has a major role in the brain-immune cross-talk, but few information exist on the sympathoadrenergic regulation of innate immune system.The aim of this review is to summarize available knowledge regarding the sympathetic modulation of the innate immune response, providing a rational background for the possible repurposing of adrenergic drugs as immunomodulating agents.The cells of immune system express adrenoceptors (AR, which represent the target for noradrenaline and adrenaline. In human neutrophils, adrenaline and noradrenaline inhibit migration, CD11b/CD18 expression, and oxidative metabolism, possibly through β-AR, although the role of α1- and α2-AR requires further investigation. Natural Killer express β-AR, which are usually inhibitory. Monocytes express β-AR and their activation is usually antiinflammatory. On murine Dentritic cells (DC, β-AR mediate sympathetic influence on DC-T cells interactions. In human DC β2-AR may affect Th1/2 differentiation of CD4+ T cells. In microglia and in astrocytes, β2-AR dysregulation may contribute to neuroinflammation in autoimmune and neurodegenerative disease.In conclusion, extensive evidence supports a critical role for adrenergic mechanisms in the regulation of innate immunity, in peripheral tissues as well as in the CNS. Sympathoadrenergic pathways in the innate immune system may represent novel antiinflammatory and immunomodulating targets with significant therapeutic potential.

  8. Boosted dark matter signals uplifted with self-interaction

    Directory of Open Access Journals (Sweden)

    Kyoungchul Kong

    2015-04-01

    Full Text Available We explore detection prospects of a non-standard dark sector in the context of boosted dark matter. We focus on a scenario with two dark matter particles of a large mass difference, where the heavier candidate is secluded and interacts with the standard model particles only at loops, escaping existing direct and indirect detection bounds. Yet its pair annihilation in the galactic center or in the Sun may produce boosted stable particles, which could be detected as visible Cherenkov light in large volume neutrino detectors. In such models with multiple candidates, self-interaction of dark matter particles is naturally utilized in the assisted freeze-out mechanism and is corroborated by various cosmological studies such as N-body simulations of structure formation, observations of dwarf galaxies, and the small scale problem. We show that self-interaction of the secluded (heavier dark matter greatly enhances the capture rate in the Sun and results in promising signals at current and future experiments. We perform a detailed analysis of the boosted dark matter events for Super-Kamiokande, Hyper-Kamiokande and PINGU, including notable effects such as evaporation due to self-interaction and energy loss in the Sun.

  9. Boosted dark matter signals uplifted with self-interaction

    International Nuclear Information System (INIS)

    We explore detection prospects of a non-standard dark sector in the context of boosted dark matter. We focus on a scenario with two dark matter particles of a large mass difference, where the heavier candidate is secluded and interacts with the standard model particles only at loops, escaping existing direct and indirect detection bounds. Yet its pair annihilation in the galactic center or in the Sun may produce boosted stable particles, which could be detected as visible Cherenkov light in large volume neutrino detectors. In such models with multiple candidates, self-interaction of dark matter particles is naturally utilized in the assisted freeze-out mechanism and is corroborated by various cosmological studies such as N-body simulations of structure formation, observations of dwarf galaxies, and the small scale problem. We show that self-interaction of the secluded (heavier) dark matter greatly enhances the capture rate in the Sun and results in promising signals at current and future experiments. We perform a detailed analysis of the boosted dark matter events for Super-Kamiokande, Hyper-Kamiokande and PINGU, including notable effects such as evaporation due to self-interaction and energy loss in the Sun

  10. Interaction of LRRK2 with kinase and GTPase signaling cascades

    Directory of Open Access Journals (Sweden)

    Joon Y Boon

    2014-07-01

    Full Text Available LRRK2 is a protein that interacts with a plethora of signaling molecules, but the complexity of LRRK2 function presents a challenge for understanding the role of LRRK2 in the pathophysiology of Parkinson’s disease. Studies of LRRK2 using over-expression in transgenic mice have been disappointing, however studies using invertebrate systems have yielded a much clearer picture, with clear effects of LRRK2 expression, knockdown or deletion in C. elegans and Drosophila on modulation of survival of dopaminergic neurons. Recent studies have begun to focus attention on particular signaling cascades that are a target of LRRK2 function. LRRK2 interacts with members of the MAPK pathway and might regulate the pathway action by acting as a scaffold that directs the location of MAPK pathway activity, without strongly affecting the amount of MAPK pathway activity. Binding to GTPases, GAPs and GEFs are another strong theme in LRRK2 biology, with LRRK2 binding to Rac1, cdc42, rab5, rab7L1, endoA, RGS2, ArfGAP1 and ArhGEF7. All of these molecules appear to feed into a function output for LRRK2 that modulates cytoskeletal outgrowth and vesicular dynamics, including autophagy. These functions likely impact modulation of α-synuclein aggregation and associated toxicity eliciting the disease processes that we term Parkinson’s disease.

  11. Heparan sulfate proteoglycans: structure, protein interactions and cell signaling

    Directory of Open Access Journals (Sweden)

    Juliana L. Dreyfuss

    2009-09-01

    Full Text Available Heparan sulfate proteoglycans are ubiquitously found at the cell surface and extracellular matrix in all the animal species. This review will focus on the structural characteristics of the heparan sulfate proteoglycans related to protein interactions leading to cell signaling. The heparan sulfate chains due to their vast structural diversity are able to bind and interact with a wide variety of proteins, such as growth factors, chemokines, morphogens, extracellular matrix components, enzymes, among others. There is a specificity directing the interactions of heparan sulfates and target proteins, regarding both the fine structure of the polysaccharide chain as well precise protein motifs. Heparan sulfates play a role in cellular signaling either as receptor or co-receptor for different ligands, and the activation of downstream pathways is related to phosphorylation of different cytosolic proteins either directly or involving cytoskeleton interactions leading to gene regulation. The role of the heparan sulfate proteoglycans in cellular signaling and endocytic uptake pathways is also discussed.Proteoglicanos de heparam sulfato são encontrados tanto superfície celular quanto na matriz extracelular em todas as espécies animais. Esta revisão tem enfoque nas características estruturais dos proteoglicanos de heparam sulfato e nas interações destes proteoglicanos com proteínas que levam à sinalização celular. As cadeias de heparam sulfato, devido a sua variedade estrutural, são capazes de se ligar e interagir com ampla gama de proteínas, como fatores de crescimento, quimiocinas, morfógenos, componentes da matriz extracelular, enzimas, entreoutros. Existe uma especificidade estrutural que direciona as interações dos heparam sulfatos e proteínas alvo. Esta especificidade está relacionada com a estrutura da cadeia do polissacarídeo e os motivos conservados da cadeia polipeptídica das proteínas envolvidas nesta interação. Os heparam

  12. Boosted Dark Matter Signals Uplifted with Self-Interaction

    CERN Document Server

    Kong, Kyoungchul; Park, Jong-Chul

    2015-01-01

    We explore detection prospects of a non-standard dark sector in the context of boosted dark matter. We focus on a scenario with two dark matter particles of a large mass difference, where the heavier candidate is secluded and interacts with the standard model particles only at loops, escaping existing direct and indirect detection bounds. Yet its pair annihilation in the galactic center or in the Sun may produce boosted stable particles, which could be detected as visible Cherenkov light in large volume neutrino detectors. In such models with multiple candidates, self-interaction of dark matter particles is naturally utilized in the {\\it assisted freeze-out} mechanism and is corroborated by various cosmological studies such as N-body simulations of structure formation, observations of dwarf galaxies, and the small scale problem. We show that self-interaction of the secluded (heavier) dark matter greatly enhances the capture rate in the Sun and results in promising signals at current and future experiments. We...

  13. Nuclear proton dynamics and interactions with calcium signaling.

    Science.gov (United States)

    Hulikova, Alzbeta; Swietach, Pawel

    2016-07-01

    Biochemical signals acting on the nucleus can regulate gene expression. Despite the inherent affinity of nucleic acids and nuclear proteins (e.g. transcription factors) for protons, little is known about the mechanisms that regulate nuclear pH (pHnuc), and how these could be exploited to control gene expression. Here, we show that pHnuc dynamics can be imaged using the DNA-binding dye Hoechst 33342. Nuclear pores allow the passage of medium-sized molecules (calcein), but protons must first bind to mobile buffers in order to gain access to the nucleoplasm. Fixed buffering residing in the nucleus of permeabilized cells was estimated to be very weak on the basis of the large amplitude of pHnuc transients evoked by photolytic H(+)-uncaging or exposure to weak acids/bases. Consequently, the majority of nuclear pH buffering is sourced from the cytoplasm in the form of mobile buffers. Effective proton diffusion was faster in nucleoplasm than in cytoplasm, in agreement with the higher mobile-to-fixed buffering ratio in the nucleus. Cardiac myocyte pHnuc changed in response to maneuvers that alter nuclear Ca(2+) signals. Blocking Ca(2+) release from inositol-1,4,5-trisphosphate receptors stably alkalinized the nucleus. This Ca(2+)-pH interaction may arise from competitive binding to common chemical moieties. Competitive binding to mobile buffers may couple the efflux of Ca(2+)via nuclear pores with a counterflux of protons. This would generate a stable pH gradient between cytoplasm and nucleus that is sensitive to the state of nuclear Ca(2+) signaling. The unusual behavior of protons in the nucleus provides new mechanisms for regulating cardiac nuclear biology. PMID:26183898

  14. Interactions between visceral afferent signaling and stimulus processing

    Directory of Open Access Journals (Sweden)

    Hugo D Critchley

    2015-08-01

    Full Text Available Visceral afferent signals to the brain influence thoughts, feelings and behaviour. Here we highlight the findings of a set of empirical investigations in humans concerning body-mind interaction that focus on how feedback from states of autonomic arousal shapes cognition and emotion. There is a longstanding debate regarding the contribution of the body, to mental processes. Recent theoretical models broadly acknowledge the role of (autonomically-mediated physiological arousal to emotional, social and motivational behaviours, yet the underlying mechanisms are only partially characterized. Neuroimaging is overcoming this shortfall; first, by demonstrating correlations between autonomic change and discrete patterns of evoked, and task-independent, neural activity; second, by mapping the central consequences of clinical perturbations in autonomic response and; third, by probing how dynamic fluctuations in peripheral autonomic state are integrated with perceptual, cognitive and emotional processes. Building on the notion that an important source of the brain’s representation of physiological arousal is derived from afferent information from arterial baroreceptors, we have exploited the phasic nature of these signals to show their differential contribution to the processing of emotionally-salient stimuli. This recent work highlights the facilitation at neural and behavioral levels of fear and threat processing that contrasts with the more established observations of the inhibition of central pain processing during baroreceptors activation. The implications of this body-brain-mind axis are discussed.

  15. Nicotine and 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone induce cyclooxygenase-2 activity in human gastric cancer cells: Involvement of nicotinic acetylcholine receptor (nAChR) and β-adrenergic receptor signaling pathways

    International Nuclear Information System (INIS)

    Induction of cyclooxygenase-2 (COX-2) associates with cigarette smoke exposure in many malignancies. Nicotine and its derivative, 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK), are the two important components in cigarette smoke that contributes to cancer development. However, the molecular mechanism(s) by which nicotine or NNK promotes gastric carcinogenesis remains largely unknown. We found that nicotine and NNK significantly enhanced cell proliferation in AGS cells that expressed both alpha7 nicotinic acetylcholine receptor (α7 nAChR) and β-adrenergic receptors. Treatment of cells with α-bungarotoxin (α-BTX, α7nAChR antagonist) or propranolol (β-adrenergic receptor antagonist) blocked NNK-induced COX-2/PGE2 and cell proliferation, while nicotine-mediated cell growth and COX-2/PGE2 induction can only be suppressed by propranolol, but not α-BTX. Moreover, in contrast to the dependence of growth promoting effect of nicotine on Erk activation, inhibitor of p38 mitogen-activated protein kinase (MAPK) repressed NNK-induced COX-2 upregulation and resulted in suppression of cell growth. In addition, nicotine and NNK mediated COX-2 induction via different receptors to modulate several G1/S transition regulatory proteins and promote gastric cancer cell growth. Selective COX-2 inhibitor (SC-236) caused G1 arrest and abrogated nicotine/NNK-induced cell proliferation. Aberrant expression of cyclin D1 and other G1 regulatory proteins are reversed by blockade of COX-2. These results pointed to the importance of adrenergic and nicotinic receptors in gastric tumor growth through MAPK/COX-2 activation, which may perhaps provide a chemoprevention strategy for cigarette smoke-related gastric carcinogenesis

  16. Developmental and diurnal dynamics of Pax4 expression in the mammalian pineal gland: nocturnal down-regulation is mediated by adrenergic-cyclic adenosine 3',5'-monophosphate signaling

    DEFF Research Database (Denmark)

    Rath, Martin F; Bailey, Michael J; Kim, Jong-So;

    2009-01-01

    Pax4 is a homeobox gene that is known to be involved in embryonic development of the endocrine pancreas. In this tissue, Pax4 counters the effects of the related protein, Pax6. Pax6 is essential for development of the pineal gland. In this study we report that Pax4 is strongly expressed in the pi...... findings suggest that the nocturnal decrease in pineal Pax4 mRNA is controlled by the sympathetic neural pathway that controls pineal function acting via an adrenergic-cAMP mechanism. The daily changes in Pax4 expression may influence gene expression in the pineal gland....

  17. Modulation of. beta. -adrenergic response in rat brain astrocytes by serum and hormones

    Energy Technology Data Exchange (ETDEWEB)

    Wu, D.K.; Morrison, R.S.; de Vellis, J.

    1985-01-01

    Purified astrocyte cultures from neonatal rat cerebrum respond to isoproterenol, a ..beta..-adrenergic agonist, with a transient rise in cAMP production. This astroglial property was regulated by serum, a chemically defined medium (serum-free medium plus hydrocortisone, putrescine, prostaglandin F/sub 2/, insulin, and fibroblast growth factor) and epidermal growth factor. Compared to astrocytes grown in serum-supplemented medium, astrocytes grown in the chemically defined medium were nonresponsive to isoproterenol stimulation, and this difference did not appear to be due to selection of a subpopulation of cells by either medium. The data suggest that a decreased ..beta..-adrenergic receptor number and an increased degradation of cAMP may account for the reduced response to ..beta..-adrenergic stimulation. The nonresponsive state of astrocytes in the defined medium was reversible when the medium was replaced with serum-supplemented medium. An active substance(s) in serum was responsible for restoring the responsiveness of astrocytes. Each of the five components of the defined medium had little effect by itself; however, together they acted synergistically to desensitize astrocytes to ..beta..-adrenergic stimulation. On the other hand, epidermal growth factor, a potent mitogen for astrocytes, was very competent by itself in reducing the cAMP response of astrocytes to ..beta..-adrenergic stimulation. Thus purified astrocytes grown in the chemically defined medium appear to be a good model for the study of hormonal interactions and of serum factors which may modulate the ..beta..-adrenergic response.

  18. An interactive system for seismic signal detection and identification

    International Nuclear Information System (INIS)

    The methods to distinguish an underground explosion from an earthquake are mainly based on exploiting the differences in the source functions of the two processes and locating the depth of source. Various characteristics of seismic signals generated by these sources are usually represented by different parameters or identifiers. However, it is not possible for a single identifier to distinguish an explosion from an earthquake with equal effectiveness in all situations. Usually a combination of several identifiers is found to provide effective means for the identification of seismic sources. In order to use the multiple parameters in an optimum way, an interactive system (IS) for detection and identification of global events has been developed using short period data of Gauribidanur array. This report describes the salient features of the IS and demonstrates its effectiveness in identifying an event using weighted combination of the parameters together with the depth of source. It is intended to augment the system with long period data in the next phase of the development. (author). 37 refs., 14 figs., 2 tabs

  19. Effect of Increased Cyclic AMP Concentration on Muscle Protein Synthesis and Beta-Adrenergic Receptor Expression in Chicken Skeletal Muscle Cells in Culture

    Science.gov (United States)

    Young, R. B.; Vaughn, J. R.; Bridge, K. Y.; Smith, C. K.

    1998-01-01

    Analogies of epinephrine are known to cause hypertrophy of skeletal muscle when fed to animals. These compounds presumably exert their physiological action through interaction with the P-adrenergic receptor. Since the intracellular signal generated by the Beta-adrenergic receptor is cyclic AMP (cAMP), experiments were initiated in cell culture to determine if artificial elevation of cAMP by treatment with forskolin would alter muscle protein metabolism and P-adrenergic receptor expression. Chicken skeletal muscle cells after 7 days in culture were treated with 0.2-30 micrometers forskolin for a total of three days. At the end of the treatment period, both the concentration of cAMP and the quantity of myosin heavy chain (MHC) were measured. Concentration of cAMP in forskolin-treated cells increased up to 10-fold in a dose dependent manner. In contrast, the quantity of MHC was increased approximately 50% above control cells at 0.2 micrometers forskolin, but exhibited a gradual decline at higher levels of forskolin so that the quantity of MHC in cells treated with 30 micrometers forskolin was not significantly different from controls. Curiously, the intracellular concentration of cAMP which elicited the maximum increase in the quantity of MHC was only 40% higher than cAMP concentration in control cells.

  20. [Adrenergic beta-agonist intoxication].

    Science.gov (United States)

    Carrola, Paulo; Devesa, Nuno; Silva, José Manuel; Ramos, Fernando; Alexandrino, Mário B; Moura, José J

    2003-01-01

    The authors describe two clinical cases (father and daughter), observed in the Hospital Urgency with distal tremors, anxiety, palpitations, nausea, headaches and dizziness, two hours after ingestión of cow liver. They also had leucocytosis (with neutrophylia), hypokalemia and hyperglycaemia. After treatment with potassium i.v. and propranolol, the symptoms disappeared. The symptoms recurred at home because the patients didn't take the prescribed medication and persisted for five days, with spontaneous disappearance. The serum of both patients revealed the presence of clenbuterol (65 hg/ml - father and 58 hg/ml - daughter). The animal's liver had a concentration of 1,42 mg/kg. Clenbuterol is a ß-adrenergic agonist with low specificity, with some veterinary indications. However, this substance has been illegally used as a growth's promotor. We intend to alert doctors for this problem, particularly those that work in the Urgency. PMID:22226216

  1. Adrenergic and noradrenergic regulation of poultry behavior and production.

    Science.gov (United States)

    Dennis, R L

    2016-07-01

    Norepinephrine and epinephrine (noradrenaline and adrenaline) are integral in maintaining behavioral and physiological homeostasis during both aversive and rewarding events. They regulate the response to stressful stimuli through direct activation of adrenergic receptors in the central and sympathetic nervous systems, hormonal activity and through the interaction of the brain, gut, and microbiome. The multiple functions of these catecholamines work synergistically to prepare an individual for a "fight or flight" response. However, hyper-reactivity of this system can lead to increased fearfulness and aggression, decreased health and productivity, and a reduction in overall well-being. Behaviors, such as aggression and certain fear-related behaviors, are a serious problem in the poultry industry that can lead to injury and cannibalism. For decades, catecholamines have been used as a measure of stress in animals. However, few studies have specifically targeted the adrenergic systems as means to reduce behaviors that are damaging or maladapted to their rearing environments and improve animal well-being. This article attempts to address our current understanding of specific, adrenergic-regulated behaviors that impact chicken well-being and production. PMID:27345328

  2. Interactions among oscillatory pathways in NF-kappa B signaling

    Directory of Open Access Journals (Sweden)

    White Michael RH

    2011-02-01

    Full Text Available Abstract Background Sustained stimulation with tumour necrosis factor alpha (TNF-alpha induces substantial oscillations—observed at both the single cell and population levels—in the nuclear factor kappa B (NF-kappa B system. Although the mechanism has not yet been elucidated fully, a core system has been identified consisting of a negative feedback loop involving NF-kappa B (RelA:p50 hetero-dimer and its inhibitor I-kappa B-alpha. Many authors have suggested that this core oscillator should couple to other oscillatory pathways. Results First we analyse single-cell data from experiments in which the NF-kappa B system is forced by short trains of strong pulses of TNF-alpha. Power spectra of the ratio of nuclear-to-cytoplasmic concentration of NF-kappa B suggest that the cells' responses are entrained by the pulsing frequency. Using a recent model of the NF-kappa B system due to Caroline Horton, we carried out extensive numerical simulations to analyze the response frequencies induced by trains of pulses of TNF-alpha stimulation having a wide range of frequencies and amplitudes. These studies suggest that for sufficiently weak stimulation, various nonlinear resonances should be observable. To explore further the possibility of probing alternative feedback mechanisms, we also coupled the model to sinusoidal signals with a wide range of strengths and frequencies. Our results show that, at least in simulation, frequencies other than those of the forcing and the main NF-kappa B oscillator can be excited via sub- and superharmonic resonance, producing quasiperiodic and even chaotic dynamics. Conclusions Our numerical results suggest that the entrainment phenomena observed in pulse-stimulated experiments is a consequence of the high intensity of the stimulation. Computational studies based on current models suggest that resonant interactions between periodic pulsatile forcing and the system's natural frequencies may become evident for sufficiently

  3. Adrenergic blockade in diabetic and uninephrectomized rats

    DEFF Research Database (Denmark)

    Thulesen, J; Poulsen, Steen Seier; Jørgensen, P E;

    1999-01-01

    The present study reports on the effects of adrenergic blocking agents on the renal growth and on the renal content and urinary excretion of epidermal growth factor (EGF) in streptozotocin-induced diabetic or uninephrectomized rats. Diabetic and uninephrectomized rats were allocated to groups...... treated with either saline or adrenergic antagonists and compared to controls and sham-operated controls, respectively. 24-hour urine samples were obtained on days 7, 14, and 21 and renal tissue samples on day 21. The 24-hour urinary excretion of EGF from controls and saline-treated diabetic rats was...... comparable. In adrenergic antagonist treated diabetic rats, it was reduced by at least 40% throughout the study period. Uninephrectomy caused a 50% reduction in the urinary excretion of EGF. This was not influenced by treatment with an adrenergic antagonist. After 3 weeks, saline-treated diabetic rats had an...

  4. Structure, function, and regulation of adrenergic receptors.

    OpenAIRE

    Strosberg, A.D.

    1993-01-01

    Adrenergic receptors for adrenaline and noradrenaline belong to the large multigenic family of receptors coupled to GTP-binding proteins. Three pharmacologic types have been identified: alpha 1-, alpha 2-, and beta-adrenergic receptors. Each of these has three subtypes, characterized by both structural and functional differences. The alpha 2 and beta receptors are coupled negatively and positively, respectively, to adenylyl cyclase via Gi or Gs regulatory proteins, and the alpha 1 receptors m...

  5. The Alpha-1A Adrenergic Receptor in the Rabbit Heart

    OpenAIRE

    R Croft Thomas; Cowley, Patrick M.; Abhishek Singh; Bat-Erdene Myagmar; Swigart, Philip M.; Baker, Anthony J.; Simpson, Paul C.

    2016-01-01

    The alpha-1A-adrenergic receptor (AR) subtype is associated with cardioprotective signaling in the mouse and human heart. The rabbit is useful for cardiac disease modeling, but data on the alpha-1A in the rabbit heart are limited. Our objective was to test for expression and function of the alpha-1A in rabbit heart. By quantitative real-time reverse transcription PCR (qPCR) on mRNA from ventricular myocardium of adult male New Zealand White rabbits, the alpha-1B was 99% of total alpha-1-AR mR...

  6. Neurohumoral activation in heart failure: the role of adrenergic receptors

    Directory of Open Access Journals (Sweden)

    Patricia C. Brum

    2006-09-01

    Full Text Available Heart failure (HF is a common endpoint for many forms of cardiovascular disease and a significant cause of morbidity and mortality. The development of end-stage HF often involves an initial insult to the myocardium that reduces cardiac output and leads to a compensatory increase in sympathetic nervous system activity. Acutely, the sympathetic hyperactivity through the activation of beta-adrenergic receptors increases heart rate and cardiac contractility, which compensate for decreased cardiac output. However, chronic exposure of the heart to elevated levels of catecholamines released from sympathetic nerve terminals and the adrenal gland may lead to further pathologic changes in the heart, resulting in continued elevation of sympathetic tone and a progressive deterioration in cardiac function. On a molecular level, altered beta-adrenergic receptor signaling plays a pivotal role in the genesis and progression of HF. beta-adrenergic receptor number and function are decreased, and downstream mechanisms are altered. In this review we will present an overview of the normal beta-adrenergic receptor pathway in the heart and the consequences of sustained adrenergic activation in HF. The myopathic potential of individual components of the adrenergic signaling will be discussed through the results of research performed in genetic modified animals. Finally, we will discuss the potential clinical impact of beta-adrenergic receptor gene polymorphisms for better understanding the progression of HF.A insuficiência cardíaca (IC é a via final comum da maioria das doenças cardiovasculares e uma das maiores causas de morbi-mortalidade. O desenvolvimento do estágio final da IC freqüentemente envolve um insulto inicial do miocárdio, reduzindo o débito cardíaco e levando ao aumento compensatório da atividade do sistema nervoso simpático (SNS. Existem evidências de que apesar da exposição aguda ser benéfica, exposições crônicas a elevadas concentra

  7. Macroecological signals of species interactions in the Danish avifauna

    DEFF Research Database (Denmark)

    Gotelli, N.J.; Graves, Christopher R.; Rahbek, C.

    2010-01-01

    The role of intraspecific and interspecific interactions in structuring biotic communities at fine spatial scales is well documented, but the signature of species interactions at coarser spatial scales is unclear. We present evidence that species interactions may be a significant factor in mediat...

  8. Targeting of beta adrenergic receptors results in therapeutic efficacy against models of hemangioendothelioma and angiosarcoma.

    Directory of Open Access Journals (Sweden)

    Jessica M Stiles

    Full Text Available Therapeutic targeting of the beta-adrenergic receptors has recently shown remarkable efficacy in the treatment of benign vascular tumors such as infantile hemangiomas. As infantile hemangiomas are reported to express high levels of beta adrenergic receptors, we examined the expression of these receptors on more aggressive vascular tumors such as hemangioendotheliomas and angiosarcomas, revealing beta 1, 2, and 3 receptors were indeed present and therefore aggressive vascular tumors may similarly show increased susceptibility to the inhibitory effects of beta blockade. Using a panel of hemangioendothelioma and angiosarcoma cell lines, we demonstrate that beta adrenergic inhibition blocks cell proliferation and induces apoptosis in a dose dependent manner. Beta blockade is selective for vascular tumor cells over normal endothelial cells and synergistically effective when combined with standard chemotherapeutic or cytotoxic agents. We demonstrate that inhibition of beta adrenergic signaling induces large scale changes in the global gene expression patterns of vascular tumors, including alterations in the expression of established cell cycle and apoptotic regulators. Using in vivo tumor models we demonstrate that beta blockade shows remarkable efficacy as a single agent in reducing the growth of angiosarcoma tumors. In summary, these experiments demonstrate the selective cytotoxicity and tumor suppressive ability of beta adrenergic inhibition on malignant vascular tumors and have laid the groundwork for a promising treatment of angiosarcomas in humans.

  9. Effects of adrenergic agents on the expression of zebrafish (Danio rerio) vitellogenin Ao1

    International Nuclear Information System (INIS)

    Teleost vitellogenins (VTGs) are large multidomain apolipoproteins, traditionally considered to be estrogen-responsive precursors of the major egg yolk proteins, expressed and synthesized mainly in hepatic tissue. The inducibility of VTGs has made them one of the most frequently used in vivo and in vitro biomarkers of exposure to estrogen-active substances. A significant level of zebrafish vtgAo1, a major estrogen responsive form, has been unexpectedly found in heart tissue in our present studies. Our studies on zebrafish cardiomyopathy, caused by adrenergic agonist treatment, suggest a similar protective function of the cardiac expressed vtgAo1. We hypothesize that its function is to unload surplus intracellular lipids in cardiomyocytes for 'reverse triglyceride transportation' similar to that found in lipid transport proteins in mammals. Our results also demonstrated that zebrafish vtgAo1 mRNA expression in heart can be suppressed by both α-adrenergic agonist, phenylephrine (PE) and β-adrenergic agonist, isoproterenol (ISO). Furthermore, the strong stimulation of zebrafish vtgAo1 expression in plasma induced by the β-adrenergic antagonist, MOXIsylyl, was detected by Enzyme-Linked ImmunoSorbent Assay (ELISA). Such stimulation cannot be suppressed by taMOXIfen, an antagonist to estrogen receptors. Thus, our present data indicate that the production of teleost VTG in vivo can be regulated not only by estrogenic agents, but by adrenergic signals as well.

  10. Crystal structure of the β2 adrenergic receptor-Gs protein complex

    Energy Technology Data Exchange (ETDEWEB)

    Rasmussen, Søren G.F.; DeVree, Brian T; Zou, Yaozhong; Kruse, Andrew C; Chung, Ka Young; Kobilka, Tong Sun; Thian, Foon Sun; Chae, Pil Seok; Pardon, Els; Calinski, Diane; Mathiesen, Jesper M; Shah, Syed T.A.; Lyons, Joseph A; Caffrey, Martin; Gellman, Samuel H; Steyaert, Jan; Skiniotis, Georgios; Weis, William I; Sunahara, Roger K; Kobilka, Brian K [Brussels; (Trinity); (Michigan); (Stanford-MED); (Michigan-Med); (UW)

    2011-12-07

    G protein-coupled receptors (GPCRs) are responsible for the majority of cellular responses to hormones and neurotransmitters as well as the senses of sight, olfaction and taste. The paradigm of GPCR signalling is the activation of a heterotrimeric GTP binding protein (G protein) by an agonist-occupied receptor. The β2 adrenergic receptor (β2AR) activation of Gs, the stimulatory G protein for adenylyl cyclase, has long been a model system for GPCR signalling. Here we present the crystal structure of the active state ternary complex composed of agonist-occupied monomeric β2AR and nucleotide-free Gs heterotrimer. The principal interactions between the β2AR and Gs involve the amino- and carboxy-terminal α-helices of Gs, with conformational changes propagating to the nucleotide-binding pocket. The largest conformational changes in the β2AR include a 14Å outward movement at the cytoplasmic end of transmembrane segment 6 (TM6) and an α-helical extension of the cytoplasmic end of TM5. The most surprising observation is a major displacement of the α-helical domain of Gαs relative to the Ras-like GTPase domain. This crystal structure represents the first high-resolution view of transmembrane signalling by a GPCR.

  11. Effects of multiple enzyme–substrate interactions in basic units of cellular signal processing

    International Nuclear Information System (INIS)

    Covalent modification cycles are a ubiquitous feature of cellular signalling networks. In these systems, the interaction of an active enzyme with the unmodified form of its substrate is essential for signalling to occur. However, this interaction is not necessarily the only enzyme–substrate interaction possible. In this paper, we analyse the behaviour of a basic model of signalling in which additional, non-essential enzyme–substrate interactions are possible. These interactions include those between the inactive form of an enzyme and its substrate, and between the active form of an enzyme and its product. We find that these additional interactions can result in increased sensitivity and biphasic responses, respectively. The dynamics of the responses are also significantly altered by the presence of additional interactions. Finally, we evaluate the consequences of these interactions in two variations of our basic model, involving double modification of substrate and scaffold-mediated signalling, respectively. We conclude that the molecular details of protein–protein interactions are important in determining the signalling properties of enzymatic signalling pathways. (paper)

  12. Signalling pathway impact analysis based on the strength of interaction between genes.

    Science.gov (United States)

    Bao, Zhenshen; Li, Xianbin; Zan, Xiangzhen; Shen, Liangzhong; Ma, Runnian; Liu, Wenbin

    2016-08-01

    Signalling pathway analysis is a popular approach that is used to identify significant cancer-related pathways based on differentially expressed genes (DEGs) from biological experiments. The main advantage of signalling pathway analysis lies in the fact that it assesses both the number of DEGs and the propagation of signal perturbation in signalling pathways. However, this method simplifies the interactions between genes by categorising them only as activation (+1) and suppression (-1), which does not encompass the range of interactions in real pathways, where interaction strength between genes may vary. In this study, the authors used newly developed signalling pathway impact analysis (SPIA) methods, SPIA based on Pearson correlation coefficient (PSPIA), and mutual information (MSPIA), to measure the interaction strength between pairs of genes. In analyses of a colorectal cancer dataset, a lung cancer dataset, and a pancreatic cancer dataset, PSPIA and MSPIA identified more candidate cancer-related pathways than were identified by SPIA. Generally, MSPIA performed better than PSPIA. PMID:27444024

  13. An interactive software module for DPOAE signal estimation.

    Science.gov (United States)

    Powers, M; Goli, A; Ziarani, A K

    2006-01-01

    This work presents a freely downloadable software module for the estimation of distortion product otoacoustic emission (DPOAE) signals based on a novel adaptive signal processing technique of measurement of signals under large amounts of noise. DPOAE signal estimation is an effective method of testing the human peripheral auditory function and is extensively used in newborn hearing screening. Current technology is based on the averaging of long strings of data and subsequent Fourier analysis, and suffers from the need for relatively long measurement time and acoustically insulated examination rooms. The method presented in this work features structural simplicity which renders it particularly attractive for implementation on both software and hardware platforms. As such, a fully functional software implementation of the proposed algorithm is developed and is made publicly available for free distribution to researchers in the area. The proposed technique offers a high degree of immunity with regard to background noise and parameter variations. Compared to conventional methods, the proposed method offers a shorter measurement time which is of significant value in clinical examinations. Performance of the proposed method is demonstrated with the aid of computer simulation and is verified in laboratory using recorded clinical data. Snapshots of the developed software environment analyzing both simulated and real clinical data are also presented. PMID:17945840

  14. Inter-signal interaction and uncertain information in anuran multimodal signals

    Institute of Scientific and Technical Information of China (English)

    Ryan C.TAYLOR; Barrett A.KLEIN; Michael J.RYAN

    2011-01-01

    Disentangling the influence of multiple signal components on receivers and elucidating general processes influencing complex signal evolution are deffcult tasks.In this study we test mate preferences of female squirres treefrogs Hyla squirella and female tǘngara frogs Physalaemus pustulosus for similar combinations of acoustic and visual components of their multimodal courtship signals.In a two-choice playback expenment with squirrel treefrogs,the visual stimulus of a male model significantly increased the attractivness of a relatively unattractive slow call rate.A previous study demonstrated that faster call rates are more attractive to female squirrel treefrogs,and all else being equal,models of male frogs with large body stripes are more attractive.In a similar experiment with female tǘngar afrogs,the visul istimulus of a robotic frog failed to increse the attracCtivenes of relatively unattractive call.Females also showed no preference for the distinct stripe on the robot that males commonly bear on their throat.Thus,features of conspicuous signal components such as body stripes are not universally important and signal funchon is likely to differ even among species with similar ecologies and communication systems.Finally,we discuss the putative information content of anuran signals and suggest that the categorization of redundant versus multiple messages may not be sufficient as a general explanation for the evolution of multimodal signaling.Instead of relying on untested assumptions concerning the information content of signals,we discuss the value of initially collecting comparative empirical data sets related to receiver responses.

  15. Conversion of agonist site to metal-ion chelator site in the beta(2)-adrenergic receptor

    DEFF Research Database (Denmark)

    Elling, C E; Thirstrup, K; Holst, Birgitte;

    1999-01-01

    Previously metal-ion sites have been used as structural and functional probes in seven transmembrane receptors (7TM), but as yet all the engineered sites have been inactivating. Based on presumed agonist interaction points in transmembrane III (TM-III) and -VII of the beta(2)-adrenergic receptor,...

  16. Stress response, gut microbial diversity and sexual signals correlate with social interactions.

    Science.gov (United States)

    Levin, Iris I; Zonana, David M; Fosdick, Bailey K; Song, Se Jin; Knight, Rob; Safran, Rebecca J

    2016-06-01

    Theory predicts that social interactions are dynamically linked to phenotype. Yet because social interactions are difficult to quantify, little is known about the precise details on how interactivity is linked to phenotype. Here, we deployed proximity loggers on North American barn swallows (Hirundo rustica erythrogaster) to examine intercorrelations among social interactions, morphology and features of the phenotype that are sensitive to the social context: stress-induced corticosterone (CORT) and gut microbial diversity. We analysed relationships at two spatial scales of interaction: (i) body contact and (ii) social interactions occurring between 0.1 and 5 m. Network analysis revealed that relationships between social interactions, morphology, CORT and gut microbial diversity varied depending on the sexes of the individuals interacting and the spatial scale of interaction proximity. We found evidence that body contact interactions were related to diversity of socially transmitted microbes and that looser social interactions were related to signalling traits and CORT. PMID:27354713

  17. Nonlocal signaling in the configuration space model of quantum-classical interactions

    CERN Document Server

    Hall, Michael J W; Savage, C M

    2012-01-01

    When interactions are turned off, the theory of interacting quantum and classical ensembles due to Hall and Reginatto is shown to suffer from a nonlocal signaling effect that is effectively action at a distance. This limits the possible applicability of the theory. In its present form, it is restricted to those situations in which interactions are always on, such as classical gravity interacting with quantized matter.

  18. Comparison of the β-Adrenergic Receptor Antagonists Landiolol and Esmolol: Receptor Selectivity, Partial Agonism, and Pharmacochaperoning Actions.

    Science.gov (United States)

    Nasrollahi-Shirazi, Shahrooz; Sucic, Sonja; Yang, Qiong; Freissmuth, Michael; Nanoff, Christian

    2016-10-01

    Blockage of β1-adrenergic receptors is one of the most effective treatments in cardiovascular medicine. Esmolol was introduced some three decades ago as a short-acting β1-selective antagonist. Landiolol is a more recent addition. Here we compared the two compounds for their selectivity for β1-adrenergic receptors over β2-adrenergic receptors, partial agonistic activity, signaling bias, and pharmacochaperoning action by using human embryonic kidney (HEK)293 cell lines, which heterologously express each human receptor subtype. The affinity of landiolol for β1-adrenergic receptors and β2-adrenergic receptors was higher and lower than that of esmolol, respectively, resulting in an improved selectivity (216-fold versus 30-fold). The principal metabolite of landiolol (M1) was also β1-selective, but its affinity was very low. Both landiolol and esmolol caused a very modest rise in cAMP levels but a robust increase in the phosphorylation of extracellular signal regulated kinases 1 and 2, indicating that the two drugs exerted partial agonist activity with a signaling bias. If cells were incubated for ≥24 hours in the presence of ≥1 μM esmolol, the levels of β1-adrenergic-but not of β2-adrenergic-receptors increased. This effect was contingent on export of the β1-receptor from endoplasmic reticulum and was not seen in the presence of landiolol. On the basis of these observations, we conclude that landiolol offers the advantage of: 1) improved selectivity and 2) the absence of pharmacochaperoning activity, which sensitizes cells to rebound effects upon drug discontinuation. PMID:27451411

  19. Prediction of oncogenic interactions and cancer-related signaling networks based on network topology.

    Directory of Open Access Journals (Sweden)

    Marcio Luis Acencio

    Full Text Available Cancer has been increasingly recognized as a systems biology disease since many investigators have demonstrated that this malignant phenotype emerges from abnormal protein-protein, regulatory and metabolic interactions induced by simultaneous structural and regulatory changes in multiple genes and pathways. Therefore, the identification of oncogenic interactions and cancer-related signaling networks is crucial for better understanding cancer. As experimental techniques for determining such interactions and signaling networks are labor-intensive and time-consuming, the development of a computational approach capable to accomplish this task would be of great value. For this purpose, we present here a novel computational approach based on network topology and machine learning capable to predict oncogenic interactions and extract relevant cancer-related signaling subnetworks from an integrated network of human genes interactions (INHGI. This approach, called graph2sig, is twofold: first, it assigns oncogenic scores to all interactions in the INHGI and then these oncogenic scores are used as edge weights to extract oncogenic signaling subnetworks from INHGI. Regarding the prediction of oncogenic interactions, we showed that graph2sig is able to recover 89% of known oncogenic interactions with a precision of 77%. Moreover, the interactions that received high oncogenic scores are enriched in genes for which mutations have been causally implicated in cancer. We also demonstrated that graph2sig is potentially useful in extracting oncogenic signaling subnetworks: more than 80% of constructed subnetworks contain more than 50% of original interactions in their corresponding oncogenic linear pathways present in the KEGG PATHWAY database. In addition, the potential oncogenic signaling subnetworks discovered by graph2sig are supported by experimental evidence. Taken together, these results suggest that graph2sig can be a useful tool for investigators involved

  20. Boosted dark matter signals uplifted with self-interaction

    OpenAIRE

    Kyoungchul Kong; Gopolang Mohlabeng; Jong-Chul Park

    2014-01-01

    We explore detection prospects of a non-standard dark sector in the context of boosted dark matter. We focus on a scenario with two dark matter particles of a large mass difference, where the heavier candidate is secluded and interacts with the standard model particles only at loops, escaping existing direct and indirect detection bounds. Yet its pair annihilation in the galactic center or in the Sun may produce boosted stable particles, which could be detected as visible Cherenkov light in l...

  1. Muscle Plasticity and β2-Adrenergic Receptors: Adaptive Responses of β2-Adrenergic Receptor Expression to Muscle Hypertrophy and Atrophy

    OpenAIRE

    Shogo Sato; Ken Shirato; Kaoru Tachiyashiki; Kazuhiko Imaizumi

    2011-01-01

    We discuss the functional roles of β2-adrenergic receptors in skeletal muscle hypertrophy and atrophy as well as the adaptive responses of β2-adrenergic receptor expression to anabolic and catabolic conditions. β2-Adrenergic receptor stimulation using anabolic drugs increases muscle mass by promoting muscle protein synthesis and/or attenuating protein degradation. These effects are prevented ...

  2. The Interaction of Signals: A Fuzzy set Analysis of the Video Game Industry

    OpenAIRE

    Daniel Kaimann; Joe Cox

    2014-01-01

    Customers continuously evaluate the credibility and reliability of a range of signals both separately and jointly. However, existing econometric studies pay insufficient attention to the interactions and complex combinations of these signals, and are typically limited as a result of difficulties controlling for multicollinearity and endogeneity in their data. We develop a novel theoretical approach to address these issues and study different signaling effects (i.e., word-of-mouth, brand reput...

  3. Leptonic Indirect Detection Signals from Strongly Interacting Asymmetric Dark Matter

    OpenAIRE

    Cai, Yi; Kaplan, David E.; Luty, Markus A.

    2009-01-01

    Particles with TeV mass and strong self-interactions generically have the right annihilation cross section to explain an observed excess of cosmic electrons and positrons if the end-product of the annihilation is charged leptons. We present an explicit model of strongly-coupled TeV-scale dark matter whose relic abundance related to the matter-antimatter asymmetry of the observed universe. The B - L asymmetry of the standard model is transfered to the dark sector by an operator carrying standa...

  4. Demonstration of β-adrenergic receptors and catecholamine-mediated effects on cell proliferation in embryonic palatal tissue

    International Nuclear Information System (INIS)

    The ability of catecholamines to modulate cell proliferation, differentiation and morphogenesis in other systems, and modulate adenylate cyclase activity in the developing palate during the period of cellular differentiation, made it of interest to determine their involvement in palatal ontogenesis. Catecholamines exert their physiologic effects via interaction with distinct membrane-bound receptors, one class being the B-adrenergic receptors which are coupled to stimulation of adenylate cyclase and the generation of cAMP. A direct radioligand binding technique utilizing the B-adrenergic antagonist [3H]-dihydroalprenolol ([3H]-DHA) was employed in the identification of B-adrenergic receptors in the developing murine secondary palate. Specific binding of [3H]-DHA in embryonic (day 13) palatal tissue homogenates was saturable and of high affinity. The functionality of B-adrenergic receptor binding sites was assessed from the ability of embryonic palate mesenchmyal cells in vitro to respond to catecholamines with elevations of cAMP. Embryonic palate mesenchymal cells responded to various B-adrenergic catecholamine agonists with significant, dose-dependent accumulations of intracellular cAMP. Embryonic (day 13) maxillary tissue homogenates were analyzed for the presence of catecholamines by high performance liquid chromatography and radioenzymatic assay. Since normal palatal and craniofacial morphogenesis depends on proper temporal and spatial patterns of growth, the effect of B-adrenergic catecholamines on embryonic palate mesenchymal cell proliferation was investigated

  5. Characterization of beta-adrenergic receptors in dispersed rat testicular interstitial cells

    Energy Technology Data Exchange (ETDEWEB)

    Poyet, P.; Labrie, F.

    1987-01-01

    Recent studies have shown that beta-adrenergic agents stimulate steroidogenesis and cyclic AMP formation in mouse Leydig cells in culture. To obtain information about the possible presence and the characteristics of a beta-adrenergic receptor in rat testicular interstitial cells, the potent beta-adrenergic antagonist (/sup 125/I)cyanopindolol (CYP) was used as ligand. Interstitial cells prepared by collagenase dispersion from rat testis were incubated with the ligand for 2 h at room temperature. (/sup 125/I)cyanopindolol binds to a single class of high affinity sites at an apparent KD value of 15 pM. A number of sites of 6,600 sites/cell is measured when 0.1 microM (-) propranolol is used to determine non-specific binding. The order of potency of a series of agonists competing for (/sup 125/I)cyanopindolol binding is consistent with the interaction of a beta 2-subtype receptor: zinterol greater than (-) isoproterenol greater than (-) epinephrine = salbutamol much greater than (-) norepinephrine. In addition, it was observed that the potency of a large series of specific beta 1 and beta 2 synthetic compounds for displacing (/sup 125/I)cyanopindolol in rat interstitial cells is similar to the potency observed for these compounds in a typical beta 2-adrenergic tissue, the rat lung. For example, the potency of zinterol, a specific beta 2-adrenergic agonist, is 10 times higher in interstitial cells and lung than in rat heart, a typical beta 1-adrenergic tissue. Inversely, practolol, a typical beta 1-antagonist, is about 50 times more potent in rat heart than in interstitial cells and lung.

  6. NORADRENERGIC AND ADRENERGIC FUNCTIONING IN AUTISM

    NARCIS (Netherlands)

    MINDERAA, RB; ANDERSON, GM; VOLKMAR, FR; AKKERHUIS, GW; COHEN, DJ

    1994-01-01

    A neurochemical assessment of noradrenergic and adrenergic functioning was carried out with autistic patients and normal control individuals. Norepinephrine and related compounds were measured in autistic (n = 17 unmedicated, 23 medicated; age range 9-29 years old) and normal controls (n = 27; age r

  7. Beta adrenergic receptors in human cavernous tissue

    International Nuclear Information System (INIS)

    Beta adrenergic receptor binding was performed with 125I iodocyanopindolol on human cavernous tissue membrane fractions from normal tissue and transsexual procedures obtained postoperatively, as well as from postmortem sources. Isotherm binding studies on normal fresh tissues indicated that the receptor density was 9.1 fmoles/mg. with a KD of 23 pM. Tissue stored at room temperature for 4 to 6 hours, then at 4C in saline solution for 19 to 20 hours before freezing showed no significant changes in receptor density or affinity, and provided evidence for the stability of postmortem tissue obtained within the same time period. Beta receptor density of 2 cavernous preparations from transsexual procedures was not significantly different from normal control tissues, and showed that high concentrations of estrogen received by these patients had no effect on beta adrenergic receptor density. Displacement of 125iodocyanopindolol by 5 beta adrenergic agents demonstrated that 1-propranolol had the greatest affinity followed by ICI 118,551, zinterol, metoprolol and practolol. When the results of these displacement studies were subjected to Scatfit, non- linear regression line analysis, a single binding site was described. Based on the relative potency of the selective beta adrenergic agents it appears that these receptors were of the beta 2 subtype

  8. Beta adrenergic receptors in human cavernous tissue

    Energy Technology Data Exchange (ETDEWEB)

    Dhabuwala, C.B.; Ramakrishna, C.V.; Anderson, G.F.

    1985-04-01

    Beta adrenergic receptor binding was performed with /sup 125/I iodocyanopindolol on human cavernous tissue membrane fractions from normal tissue and transsexual procedures obtained postoperatively, as well as from postmortem sources. Isotherm binding studies on normal fresh tissues indicated that the receptor density was 9.1 fmoles/mg. with a KD of 23 pM. Tissue stored at room temperature for 4 to 6 hours, then at 4C in saline solution for 19 to 20 hours before freezing showed no significant changes in receptor density or affinity, and provided evidence for the stability of postmortem tissue obtained within the same time period. Beta receptor density of 2 cavernous preparations from transsexual procedures was not significantly different from normal control tissues, and showed that high concentrations of estrogen received by these patients had no effect on beta adrenergic receptor density. Displacement of /sup 125/iodocyanopindolol by 5 beta adrenergic agents demonstrated that 1-propranolol had the greatest affinity followed by ICI 118,551, zinterol, metoprolol and practolol. When the results of these displacement studies were subjected to Scatfit, non- linear regression line analysis, a single binding site was described. Based on the relative potency of the selective beta adrenergic agents it appears that these receptors were of the beta 2 subtype.

  9. Progesterone in pregnancy; receptor-ligand interaction and signaling pathways.

    Science.gov (United States)

    Szekeres-Bartho, Julia; Halasz, Melinda; Palkovics, Tamas

    2009-12-01

    Progesterone is indispensable in creating a suitable endometrial environment for implantation, and also for the maintenance of pregnancy. Successful pregnancy depends on an appropriate maternal immune response to the fetus. Along with its endocrine effects, progesterone also acts as an "immunosteroid", by contributing to the establishment of a pregnancy protective immune milieu. Progesterone plays a role in uterine homing of NK cells and upregulates HLA-G gene expression, the ligand for NK inhibitory and activating receptors. At high concentrations, progesterone is a potent inducer of Th2-type cytokines as well as of LIF and M-CSF production by T cells. A protein called progesterone-induced blocking factor (PIBF), by inducing a Th2-dominant cytokine production mediates the immunological effects of progesterone. PIBF binds to a novel type of the IL-4 receptor and signals via the Jak/STAT pathway, to induce a number of genes, that not only affect the immune response, but might also play a role in trophoblast invasiveness. PMID:19880194

  10. Flavonoids and Strigolactones in Root Exudates as Signals in Symbiotic and Pathogenic Plant-Fungus Interactions

    Directory of Open Access Journals (Sweden)

    Horst Vierheilig

    2007-07-01

    Full Text Available Secondary plant compounds are important signals in several symbiotic and pathogenic plant-microbe interactions. The present review is limited to two groups of secondary plant compounds, flavonoids and strigolactones, which have been reported in root exudates. Data on flavonoids as signaling compounds are available from several symbiotic and pathogenic plant-microbe interactions, whereas only recently initial data on the role of strigolactones as plant signals in the arbuscular mycorrhizal symbiosis have been reported. Data from other plant-microbe interactions and strigolactones are not available yet. In the present article we are focusing on flavonoids in plant-fungalinteractions such as the arbuscular mycorrhizal (AM association and the signaling between different Fusarium species and plants. Moreover the role of strigolactones in the AM association is discussed and new data on the effect of strigolactones on fungi, apart from arbuscular mycorrhizal fungi (AMF, are provided.

  11. 3D Structure Prediction of Human β1-Adrenergic Receptor via Threading-Based Homology Modeling for Implications in Structure-Based Drug Designing

    OpenAIRE

    Ul-Haq, Zaheer; Saeed, Maria; Halim, Sobia Ahsan; Khan, Waqasuddin

    2015-01-01

    Dilated cardiomyopathy is a disease of left ventricular dysfunction accompanied by impairment of the β1-adrenergic receptor (β1-AR) signal cascade. The disturbed β1-AR function may be based on an elevated sympathetic tone observed in patients with heart failure. Prolonged adrenergic stimulation may induce metabolic and electrophysiological disturbances in the myocardium, resulting in tachyarrhythmia that leads to the development of heart failure in human and sudden death. Hence, β1-AR is cons...

  12. Steep differences in wingless signaling trigger Myc-independent competitive cell interactions.

    Science.gov (United States)

    Vincent, Jean-Paul; Kolahgar, Golnar; Gagliardi, Maria; Piddini, Eugenia

    2011-08-16

    Wnt signaling is a key regulator of development that is often associated with cancer. Wingless, a Drosophila Wnt homolog, has been reported to be a survival factor in wing imaginal discs. However, we found that prospective wing cells survive in the absence of Wingless as long as they are not surrounded by Wingless-responding cells. Moreover, local autonomous overactivation of Wg signaling (as a result of a mutation in APC or axin) leads to the elimination of surrounding normal cells. Therefore, relative differences in Wingless signaling lead to competitive cell interactions. This process does not involve Myc, a well-established cell competition factor. It does, however, require Notum, a conserved secreted feedback inhibitor of Wnt signaling. We suggest that Notum could amplify local differences in Wingless signaling, thus serving as an early trigger of Wg signaling-dependent competition. PMID:21839923

  13. Bispectral pairwise interacting source analysis for identifying systems of cross-frequency interacting brain sources from electroencephalographic or magnetoencephalographic signals

    Science.gov (United States)

    Chella, Federico; Pizzella, Vittorio; Zappasodi, Filippo; Nolte, Guido; Marzetti, Laura

    2016-05-01

    Brain cognitive functions arise through the coordinated activity of several brain regions, which actually form complex dynamical systems operating at multiple frequencies. These systems often consist of interacting subsystems, whose characterization is of importance for a complete understanding of the brain interaction processes. To address this issue, we present a technique, namely the bispectral pairwise interacting source analysis (biPISA), for analyzing systems of cross-frequency interacting brain sources when multichannel electroencephalographic (EEG) or magnetoencephalographic (MEG) data are available. Specifically, the biPISA makes it possible to identify one or many subsystems of cross-frequency interacting sources by decomposing the antisymmetric components of the cross-bispectra between EEG or MEG signals, based on the assumption that interactions are pairwise. Thanks to the properties of the antisymmetric components of the cross-bispectra, biPISA is also robust to spurious interactions arising from mixing artifacts, i.e., volume conduction or field spread, which always affect EEG or MEG functional connectivity estimates. This method is an extension of the pairwise interacting source analysis (PISA), which was originally introduced for investigating interactions at the same frequency, to the study of cross-frequency interactions. The effectiveness of this approach is demonstrated in simulations for up to three interacting source pairs and for real MEG recordings of spontaneous brain activity. Simulations show that the performances of biPISA in estimating the phase difference between the interacting sources are affected by the increasing level of noise rather than by the number of the interacting subsystems. The analysis of real MEG data reveals an interaction between two pairs of sources of central mu and beta rhythms, localizing in the proximity of the left and right central sulci.

  14. The network of P(II) signalling protein interactions in unicellular cyanobacteria.

    Science.gov (United States)

    Forchhammer, Karl

    2010-01-01

    P(II) signalling proteins constitute a large superfamily of signal perception and transduction proteins, which is represented in all domains of life and whose members play central roles in coordinating nitrogen assimilation. Generally, P(II) proteins act as sensors of the cellular adenylylate energy charge and 2-oxoglutarate level, and in response to these signals, they regulate central nitrogen assimilatory processes at various levels of control (from nutrient transport to gene expression) through protein-protein interactions with P(II) receptor proteins. An examination of the phylogeny of cyanobacteria reveals that specific functions of P(II) signalling evolved in this microbial lineage, which are not found in other prokaryotes. At least one of these functions, regulation of arginine biosynthesis by controlling the key enzyme N-acetyl-L: -glutamate kinase (NAGK), was transmitted by the ancestral cyanobacterium, which gave rise to chloroplasts, into the eukaryotic domain and was conserved during the evolution of planta. We have investigated in some detail the P(II) signalling protein, its signal perception and its interactions with receptors in the unicellular cyanobacteria Synechococcus elongatus PCC 7942 and Synechocystis PCC 6803 and have performed comparative analysis with Arabidopsis thaliana P(II)-NAGK interaction. This chapter will summarize these studies and will describe the emerging picture of a complex network of P(II) protein interactions in the unicellular cyanobacteria. PMID:20532736

  15. Hyperactivated Wnt signaling induces synthetic lethal interaction with Rb inactivation by elevating TORC1 activities.

    Science.gov (United States)

    Zhang, Tianyi; Liao, Yang; Hsu, Fu-Ning; Zhang, Robin; Searle, Jennifer S; Pei, Xun; Li, Xuan; Ryoo, Hyung Don; Ji, Jun-Yuan; Du, Wei

    2014-05-01

    Inactivation of the Rb tumor suppressor can lead to increased cell proliferation or cell death depending on specific cellular context. Therefore, identification of the interacting pathways that modulate the effect of Rb loss will provide novel insights into the roles of Rb in cancer development and promote new therapeutic strategies. Here, we identify a novel synthetic lethal interaction between Rb inactivation and deregulated Wg/Wnt signaling through unbiased genetic screens. We show that a weak allele of axin, which deregulates Wg signaling and increases cell proliferation without obvious effects on cell fate specification, significantly alters metabolic gene expression, causes hypersensitivity to metabolic stress induced by fasting, and induces synergistic apoptosis with mutation of fly Rb ortholog, rbf. Furthermore, hyperactivation of Wg signaling by other components of the Wg pathway also induces synergistic apoptosis with rbf. We show that hyperactivated Wg signaling significantly increases TORC1 activity and induces excessive energy stress with rbf mutation. Inhibition of TORC1 activity significantly suppressed synergistic cell death induced by hyperactivated Wg signaling and rbf inactivation, which is correlated with decreased energy stress and decreased induction of apoptotic regulator expression. Finally the synthetic lethality between Rb and deregulated Wnt signaling is conserved in mammalian cells and that inactivation of Rb and APC induces synergistic cell death through a similar mechanism. These results suggest that elevated TORC1 activity and metabolic stress underpin the evolutionarily conserved synthetic lethal interaction between hyperactivated Wnt signaling and inactivated Rb tumor suppressor. PMID:24809668

  16. iNOS signaling interacts with COX-2 pathway in colonic fibroblasts.

    Science.gov (United States)

    Zhu, Yingting; Zhu, Min; Lance, Peter

    2012-10-01

    COX-2 and iNOS are two major inflammatory mediators implicated in colorectal inflammation and cancer. Previously, the role of colorectal fibroblasts involved in regulation of COX-2 and iNOS expression was largely ignored. In addition, the combined interaction of COX-2 and iNOS signalings and their significance in the progression of colorectal inflammation and cancer within the fibroblasts have received little investigation. To address those issues, we investigated the role of colonic fibroblasts in the regulation of COX-2 and iNOS gene expression, and explored possible mechanisms of interaction between COX-2 and iNOS signalings using a colonic CCD-18Co fibroblast line and LPS, a potential stimulator of COX-2 and iNOS. Our results clearly demonstrated that LPS activated COX-2 gene expression and enhanced PGE(2) production, stimulated iNOS gene expression and promoted NO production in the fibroblasts. Interestingly, activation of COX-2 signaling by LPS was not involved in activation of iNOS signaling, while activation of iNOS signaling by LPS contributed in part to activation of COX-2 signaling. Further analysis indicated that PKC plays a major role in the activation and interaction of COX-2 and iNOS signalings induced by LPS in the fibroblasts. PMID:22683859

  17. Neural interactions in unilateral colliculus and between bilateral colliculi modulate auditory signal processing

    Science.gov (United States)

    Mei, Hui-Xian; Cheng, Liang; Chen, Qi-Cai

    2013-01-01

    In the auditory pathway, the inferior colliculus (IC) is a major center for temporal and spectral integration of auditory information. There are widespread neural interactions in unilateral (one) IC and between bilateral (two) ICs that could modulate auditory signal processing such as the amplitude and frequency selectivity of IC neurons. These neural interactions are either inhibitory or excitatory, and are mostly mediated by γ-aminobutyric acid (GABA) and glutamate, respectively. However, the majority of interactions are inhibitory while excitatory interactions are in the minority. Such unbalanced properties between excitatory and inhibitory projections have an important role in the formation of unilateral auditory dominance and sound location, and the neural interaction in one IC and between two ICs provide an adjustable and plastic modulation pattern for auditory signal processing. PMID:23626523

  18. Inductive interactions mediated by interplay of asymmetric signalling underlie development of adult haematopoietic stem cells.

    Science.gov (United States)

    Souilhol, Céline; Gonneau, Christèle; Lendinez, Javier G; Batsivari, Antoniana; Rybtsov, Stanislav; Wilson, Heather; Morgado-Palacin, Lucia; Hills, David; Taoudi, Samir; Antonchuk, Jennifer; Zhao, Suling; Medvinsky, Alexander

    2016-01-01

    During embryonic development, adult haematopoietic stem cells (HSCs) emerge preferentially in the ventral domain of the aorta in the aorta-gonad-mesonephros (AGM) region. Several signalling pathways such as Notch, Wnt, Shh and RA are implicated in this process, yet how these interact to regulate the emergence of HSCs has not previously been described in mammals. Using a combination of ex vivo and in vivo approaches, we report here that stage-specific reciprocal dorso-ventral inductive interactions and lateral input from the urogenital ridges are required to drive HSC development in the aorta. Our study strongly suggests that these inductive interactions in the AGM region are mediated by the interplay between spatially polarized signalling pathways. Specifically, Shh produced in the dorsal region of the AGM, stem cell factor in the ventral and lateral regions, and BMP inhibitory signals in the ventral tissue are integral parts of the regulatory system involved in the development of HSCs. PMID:26952187

  19. Glucose and Auxin Signaling Interaction in Controlling Arabidopsis thaliana Seedlings Root Growth and Development

    OpenAIRE

    Mishra, Bhuwaneshwar S.; Manjul Singh; Priyanka Aggrawal; Ashverya Laxmi

    2009-01-01

    BACKGROUND: Plant root growth and development is highly plastic and can adapt to many environmental conditions. Sugar signaling has been shown to affect root growth and development by interacting with phytohormones such as gibberellins, cytokinin and abscisic acid. Auxin signaling and transport has been earlier shown to be controlling plant root length, number of lateral roots, root hair and root growth direction. PRINCIPAL FINDINGS: Increasing concentration of glucose not only controls root ...

  20. The Potential for Signal Integration and Processing in Interacting Map Kinase Cascades

    OpenAIRE

    John H Schwacke; Voit, Eberhard O.

    2007-01-01

    The cellular response to environmental stimuli requires biochemical information processing through which sensory inputs and cellular status are integrated and translated into appropriate responses by way of interacting networks of enzymes. One such network, the Mitogen Activated Protein (MAP) kinase cascade is a highly conserved signal transduction module that propagates signals from cell surface receptors to various cytosolic and nuclear targets by way of a phosphorylation cascade. We have i...

  1. β-adrenergic receptor-stimulated lipolysis requires the RAB7-mediated autolysosomal lipid degradation

    OpenAIRE

    Lizaso, Analyn; Tan, Kien-Thiam; Lee, Ying-Hue

    2013-01-01

    Hormone-stimulated lipolysis is a rapid way to mobilize fat from its storage depot for use in peripheral tissues. By convention, activation of cytosolic lipases via the β-adrenergic receptor (ADRB2)-cAMP signaling pathway is the only molecular mechanism considered to liberate fatty acids from triglycerides stored in lipid droplets (LDs) of cells. Herein, we provide evidence that, aside from the activation of cytosolic lipases, autophagy contributes to this hormone-stimulated lipolysis. The AD...

  2. Beta adrenergic receptors in pigmented ciliary processes.

    OpenAIRE

    Trope, G. E.; Clark, B.

    1982-01-01

    Beta adrenergic receptors from membrane fragments of pigmented sheep eyes were studied and characterised by ligand binding techniques after the removal of melanin. In a representative experiment the beta max (total number of beta receptors) was 394.9 fmol/mg protein. The receptor affinity (Ka) was 440 pM. The potency series of drugs to displace 125I-HYP from the receptors was timolol = (-) propranolol greater than (+) propranolol greater than salbutamol greater than practolol. beta 1 Recepto...

  3. The Mutual Interaction effects between Array Antenna Parameters and Receiving Signals Bandwidth

    Directory of Open Access Journals (Sweden)

    Shahad D. Sateaa

    2014-03-01

    Full Text Available The presence of a single complex adaptive weight in each element channel of an adaptive array antenna is sufficient for processing of narrowband signals. The ability of an adaptive array antenna to null interference deteriorates rapidly as the interference bandwidth increases. The performance of narrowband adaptive array antenna with LMCV Beamforming algorithm is examined. The interaction effects between received signal angle of arrival and array parameters like the interelement spacing and the number of array element and the received signal bandwidth were studied. The output Signal to Interference plus Noise Ratio (SINR and Interference to Noise Ratio (INR are used as performance parameters for evaluation of these effects. It is found that the amount of degradation in the output SINR is increased significantly with the increase of array interelement spacing, number of array elements and when the angle of arrival of received signals are closet to end fire.

  4. Interaction of mTOR and Erk1/2 signaling to regulate oligodendrocyte differentiation.

    Science.gov (United States)

    Dai, JinXiang; Bercury, Kathryn K; Macklin, Wendy B

    2014-12-01

    A multitude of factors regulate oligodendrocyte differentiation and remyelination, and to elucidate the mechanisms underlying this process, we analyzed the interactions of known signaling pathways involved in these processes. Previous work from our lab and others shows that Akt, mTOR, and Erk 1/2 are major signaling pathways regulating oligodendrocyte differentiation and myelination in vitro and in vivo. However, the relative contribution of the different pathways has been difficult to establish because the impact of inhibiting one pathway in in vitro cell culture models or in vivo may alter signaling through the other pathway. These studies were undertaken to clarify the interactions between these major pathways and understand more specifically the crosstalk between them. Oligodendrocyte differentiation in vitro required Akt, mTOR, and Erk 1/2 signaling, as inhibition of Akt, mTOR, or Erk 1/2 resulted in a significant decrease of myelin basic protein mRNA and protein expression. Interestingly, while inhibition of the Erk1/2 pathway had little impact on Akt/mTOR signaling, inhibition of the Akt/mTOR pathways significantly increased Erk1/2 signaling, although not enough to overcome the loss of Akt/mTOR signaling in the regulation of oligodendrocyte differentiation. Furthermore, such crosstalk was also noted in an in vivo context, after mTOR inhibition by rapamycin treatment of perinatal pups. GLIA 2014;62:2096-2109. PMID:25060812

  5. Effects of thermal fluctuation and the receptor-receptor interaction in bacterial chemotactic signalling and adaptation

    OpenAIRE

    Shi, Yu

    2001-01-01

    Bacterial chemotaxis is controlled by the conformational changes of the receptors, in response to the change of the ambient chemical concentration. In a statistical mechanical approach, the signalling due to the conformational changes is a thermodynamic average quantity, dependent on the temperature and the total energy of the system, including both ligand-receptor interaction and receptor-receptor interaction. This physical theory suggests to biology a new understanding of cooperation in lig...

  6. Hyperactivated Wnt Signaling Induces Synthetic Lethal Interaction with Rb Inactivation by Elevating TORC1 Activities

    OpenAIRE

    Zhang, Tianyi; Liao, Yang; Hsu, Fu-Ning; Zhang, Robin; Searle, Jennifer S.; Pei, Xun; Li, Xuan; Ryoo, Hyung Don; Ji, Jun-Yuan; Du, Wei

    2014-01-01

    Inactivation of the Rb tumor suppressor can lead to increased cell proliferation or cell death depending on specific cellular context. Therefore, identification of the interacting pathways that modulate the effect of Rb loss will provide novel insights into the roles of Rb in cancer development and promote new therapeutic strategies. Here, we identify a novel synthetic lethal interaction between Rb inactivation and deregulated Wg/Wnt signaling through unbiased genetic screens. We show that a ...

  7. Observing social signals in scaffolding interactions: how to detect when a helping intention risks falling short.

    Science.gov (United States)

    Leone, Giovanna

    2012-10-01

    In face-to-face interactions, some social signals are aimed at regulating scaffolding processes, by which more knowledgeable people try to help less knowledgeable ones, to enable them to learn new concepts or skills (Vygotsky 1978). Observing face-to-face scaffolding interactions might not only allow us to grasp a large variety of these highly interesting social signals but may also be useful for the sake of scaffolding processes themselves. It often happens, in fact, that the empowering intentions implicit in these processes end up falling short, if the social signals regulating this specific kind of face-to-face interaction are misunderstood. Interestingly, many of these misunderstood aspects are related to the recipient's role. Indeed, attention is usually focused on the behavior of those imparting the knowledge, while skills already mastered by the learners, as well as their feedback, tend not to be taken as much into account. For the purpose of exploring the often very subtly nuanced social signals regulating on-going scaffolding processes in real-life interactions, an example of a methodological tool is presented: one already used to observe the interactions of dyads of Italian primary school teachers and their pupils, and mothers and their children. The article leads to two main conclusions: that the results of instances of scaffolding may be predicted as to their success or otherwise simply by telescoping crucial social signals during the scaffolding's initial phases, and that when helpers disregard these signals the effects of their actions may be detrimental or even humiliating for the receivers, notwithstanding the helper's intentions. PMID:22009169

  8. Electrical Stimulation Decreases Coupling Efficiency Between Beta-Adrenergic Receptors and Cyclic AMP Production in Cultured Muscle Cells

    Science.gov (United States)

    Young, R. B.; Bridge, K. Y.

    1999-01-01

    Electrical stimulation of skeletal muscle cells in culture is an effective way to simulate the effects of muscle contraction and its effects on gene expression in muscle cells. Expression of the beta-adrenergic receptor and its coupling to cyclic AMP synthesis are important components of the signaling system that controls muscle atrophy and hypertrophy, and the goal of this project was to determine if electrical stimulation altered the beta-adrenergic response in muscle cells. Chicken skeletal muscle cells that had been grown for seven days in culture were subjected to electrical stimulation for an additional two days at a pulse frequency of 0.5 pulses/sec and a pulse duration of 200 msec. At the end of this two-day stimulation period, beta-adrenergic receptor population was measured by the binding of tritium-labeled CGP-12177 to muscle cells, and coupling to cAMP synthesis was measured by Radioimmunoassay (RIA) after treating the cells for 10 min with the potent (beta)AR agonist, isoproterenol. The number of beta adrenergic receptors and the basal levels of intracellular cyclic AMP were not affected by electrical stimulation. However, the ability of these cells to synthesize cyclic AMP was reduced by approximately 50%. Thus, an enhanced level of contraction reduces the coupling efficiency of beta-adrenergic receptors for cyclic AMP production.

  9. Simultaneous stimulation of GABA and beta adrenergic receptors stabilizes isotypes of activated adenylyl cyclase heterocomplex

    Directory of Open Access Journals (Sweden)

    Robichon Alain

    2004-06-01

    Full Text Available Abstract Background We investigated how the synthesis of cAMP, stimulated by isoproterenol acting through β-adrenoreceptors and Gs, is strongly amplified by simultaneous incubation with baclofen. Baclofen is an agonist of δ-aminobutyric acid type B receptors [GABAB], known to inhibit adenylyl cyclase via Gi. Because these agents have opposite effects on cAMP levels, the unexpected increase in cAMP synthesis when they are applied simultaneously has been intensively investigated. From previous reports, it appears that cyclase type II contributes most significantly to this phenomenon. Results We found that simultaneous application of isoproterenol and baclofen specifically influences the association/dissociation of molecules involved in the induction and termination of cyclase activity. Beta/gamma from [GABA]B receptor-coupled Gi has a higher affinity for adenylyl cyclase isoform(s when these isoforms are co-associated with Gs. Our data also suggest that, when beta/gamma and Gαs are associated with adenylyl cyclase isoform(s, beta/gamma from [GABA]B receptor-coupled Gi retards the GTPase activity of Gαs from adrenergic receptor. These reciprocal regulations of subunits of the adenylyl cyclase complex might be responsible for the drastic increase of cAMP synthesis in response to the simultaneous signals. Conclusions Simultaneous signals arriving at a particular synapse converge on molecular detectors of coincidence and trigger specific biochemical events. We hypothesize that this phenomenon comes from the complex molecular architectures involved, including scaffolding proteins that make reciprocal interactions between associated molecules possible. The biochemistry of simultaneous signaling is addressed as a key to synaptic function.

  10. Interaction between hormonal and mitochondrial signalling during growth, development and in plant defence responses.

    Science.gov (United States)

    Berkowitz, Oliver; De Clercq, Inge; Van Breusegem, Frank; Whelan, James

    2016-05-01

    Mitochondria play a central role in plant metabolism as they are a major source of ATP through synthesis by the oxidative phosphorylation pathway and harbour key metabolic reactions such as the TCA cycle. The energy and building blocks produced by mitochondria are essential to drive plant growth and development as well as to provide fuel for responses to abiotic and biotic stresses. The majority of mitochondrial proteins are encoded in the nuclear genome and have to be imported into the organelle. For the regulation of the corresponding genes intricate signalling pathways exist to adjust their expression. Signals directly regulate nuclear gene expression (anterograde signalling) to adjust the protein composition of the mitochondria to the needs of the cell. In parallel, mitochondria communicate back their functional status to the nucleus (retrograde signalling) to prompt transcriptional regulation of responsive genes via largely unknown signalling mechanisms. Plant hormones are the major signalling components regulating all layers of plant development and cellular functions. Increasing evidence is now becoming available that plant hormones are also part of signalling networks controlling mitochondrial function and their biogenesis. This review summarizes recent advances in understanding the interaction of mitochondrial and hormonal signalling pathways. PMID:26763171

  11. Interaction of connexin43 and protein kinase C-delta during FGF2 signaling

    Directory of Open Access Journals (Sweden)

    Stains Joseph P

    2010-03-01

    Full Text Available Abstract Background We have recently demonstrated that modulation of the gap junction protein, connexin43, can affect the response of osteoblasts to fibroblast growth factor 2 in a protein kinase C-delta-dependent manner. Others have shown that the C-terminal tail of connexin43 serves as a docking platform for signaling complexes. It is unknown whether protein kinase C-delta can physically interact with connexin43. Results In the present study, we investigate by immunofluorescent co-detection and biochemical examination the interaction between Cx43 and protein kinase C-delta. We establish that protein kinase C-delta physically interacts with connexin43 during fibroblast growth factor 2 signaling, and that protein kinase C delta preferentially co-precipitates phosphorylated connexin43. Further, we show by pull down assay that protein kinase C-delta associates with the C-terminal tail of connexin43. Conclusions Connexin43 can serve as a direct docking platform for the recruitment of protein kinase C-delta in order to affect fibroblast growth factor 2 signaling in osteoblasts. These data expand the list of signal molecules that assemble on the connexin43 C-terminal tail and provide a critical context to understand how gap junctions modify signal transduction cascades in order to impact cell function.

  12. Long distance root-shoot signalling in plant-insect community interactions

    NARCIS (Netherlands)

    Soler, R.; Erb, M.; Kaplan, I.

    2013-01-01

    Plants mediate interactions between insects, including leaf- and root-feeders; yet the underlying mechanisms and connection with ecological theory remain unresolved. In this review, based on novel insights into long-distance (i.e., leaf-leaf, root-shoot) defence signalling, we explore the role of ph

  13. The origins of the evolutionary signal used to predict protein-protein interactions

    Directory of Open Access Journals (Sweden)

    Swapna Lakshmipuram S

    2012-12-01

    Full Text Available Abstract Background The correlation of genetic distances between pairs of protein sequence alignments has been used to infer protein-protein interactions. It has been suggested that these correlations are based on the signal of co-evolution between interacting proteins. However, although mutations in different proteins associated with maintaining an interaction clearly occur (particularly in binding interfaces and neighbourhoods, many other factors contribute to correlated rates of sequence evolution. Proteins in the same genome are usually linked by shared evolutionary history and so it would be expected that there would be topological similarities in their phylogenetic trees, whether they are interacting or not. For this reason the underlying species tree is often corrected for. Moreover processes such as expression level, are known to effect evolutionary rates. However, it has been argued that the correlated rates of evolution used to predict protein interaction explicitly includes shared evolutionary history; here we test this hypothesis. Results In order to identify the evolutionary mechanisms giving rise to the correlations between interaction proteins, we use phylogenetic methods to distinguish similarities in tree topologies from similarities in genetic distances. We use a range of datasets of interacting and non-interacting proteins from Saccharomyces cerevisiae. We find that the signal of correlated evolution between interacting proteins is predominantly a result of shared evolutionary rates, rather than similarities in tree topology, independent of evolutionary divergence. Conclusions Since interacting proteins do not have tree topologies that are more similar than the control group of non-interacting proteins, it is likely that coevolution does not contribute much to, if any, of the observed correlations.

  14. Expression of inwardly rectifying potassium channels (GIRKs and beta-adrenergic regulation of breast cancer cell lines

    Directory of Open Access Journals (Sweden)

    Cakir Yavuz

    2004-12-01

    Full Text Available Abstract Background Previous research has indicated that at various organ sites there is a subset of adenocarcinomas that is regulated by beta-adrenergic and arachidonic acid-mediated signal transduction pathways. We wished to determine if this regulation exists in breast adenocarcinomas. Expression of mRNA that encodes a G-protein coupled inwardly rectifying potassium channel (GIRK1 has been shown in tissue samples from approximately 40% of primary human breast cancers. Previously, GIRK channels have been associated with beta-adrenergic signaling. Methods Breast cancer cell lines were screened for GIRK channels by RT-PCR. Cell cultures of breast cancer cells were treated with beta-adrenergic agonists and antagonists, and changes in gene expression were determined by both relative competitive and real time PCR. Potassium flux was determined by flow cytometry and cell signaling was determined by western blotting. Results Breast cancer cell lines MCF-7, MDA-MB-361 MDA-MB 453, and ZR-75-1 expressed mRNA for the GIRK1 channel, while MDA-MB-468 and MDA-MB-435S did not. GIRK4 was expressed in all six breast cancer cell lines, and GIRK2 was expressed in all but ZR-75-1 and MDA-MB-435. Exposure of MDA-MB-453 cells for 6 days to the beta-blocker propranolol (1 μM increased the GIRK1 mRNA levels and decreased beta2-adrenergic mRNA levels, while treatment for 30 minutes daily for 7 days had no effect. Exposure to a beta-adrenergic agonist and antagonist for 24 hours had no effect on gene expression. The beta adrenergic agonist, formoterol hemifumarate, led to increases in K+ flux into MDA-MB-453 cells, and this increase was inhibited by the GIRK channel inhibitor clozapine. The tobacco carcinogen 4-(methylnitrosamino-1-(3-pyridyl-1-butanone (NNK, a high affinity agonist for beta-adrenergic receptors stimulated activation of Erk 1/2 in MDA-MB-453 cells. Conclusions Our data suggests β-adrenergic receptors and GIRK channels may play a role in breast cancer.

  15. Adrenergic Modulation of Pancreatic Glucagon Secretion in Man

    Science.gov (United States)

    Gerich, John E.; Langlois, Maurice; Noacco, Claudio; Schneider, Victor; Forsham, Peter H.

    1974-01-01

    In order to characterize the influence of the adrenergic system on pancreatic glucagon secretion in man, changes in basal glucagon secretion during infusions of pure alpha and beta adrenergic agonists and their specific antagonists were studied. During infusion of isoproterenol (3 μg/min), a beta adrenergic agonist, plasma glucagon rose from a mean (±SE) basal level of 104±10 to 171±15 pg/ml, P < 0.0002. Concomitant infusion of propranolol (80 μg/min), a beta adrenergic antagonist, prevented the effects of isoproterenol, although propranolol itself had no effect on basal glucagon secretion. During infusion of methoxamine (0.5 mg/min), an alpha adrenergic agonist, plasma glucagon declined from a mean basal level of 122±15 to 75±17 pg/ml, P < 0.001. Infusion of phentolamine (0.5 mg/min), an alpha adrenergic antagonist, caused a rise in plasma glucagon from a mean basal level of 118±16 to 175±21 pg/ml, P < 0.0001. Concomitant infusion of methoxamine with phentolamine caused a reversal of the effects of phentolamine. The present studies thus confirm that catecholamines affect glucagon secretion in man and demonstrate that the pancreatic alpha cell possesses both alpha and beta adrenergic receptors. Beta adrenergic stimulation augments basal glucagon secretion, while alpha adrenergic stimulation diminishes basal glucagon secretion. Furthermore, since infusion of phentolamine, an alpha adrenergic antagonist, resulted in an elevation of basal plasma glucagon levels, there appears to be an inhibitory alpha adrenergic tone governing basal glucagon secretion. The above findings suggest that catecholamines may influence glucose homeostasis in man through their effects on both pancreatic alpha and beta cell function. Images PMID:4825234

  16. Physical Reflectivity and Polarization Characteristics for Snow and Ice-Covered Surfaces Interacting with GPS Signals

    Directory of Open Access Journals (Sweden)

    Shuanggen Jin

    2013-08-01

    Full Text Available The Global Positioning System (GPS reflected signal has been demonstrated to remotely sense the oceans, land surfaces and the cryosphere, including measuring snow depth, soil moisture, vegetation growth and wind direction. Since the Earth surface’s characteristics are very complex, the surface reflectivity process and interaction with GPS signals is not well understood. In this study, we investigate the surface’s reflectivity and variability of snow and ice surfaces interacting with GPS L1 and L2 signals in order to retrieve multipath signals and infer surface characteristics by using the direct and reflected polarizations of each signal. Firstly, the effects of both GPS satellite elevation angle and GPS receiver’s antenna height variations on the multipath signal variability have been investigated by numerical formulations. Secondly, the specular reflection coefficients’ features and the total surface polarization for liquid and solid surfaces are discussed. Moreover, the linear polarization and circular polarizations (co-polarized and cross-polarized as well as their corresponding convolution functions are developed horizontally and vertically. The results show that the multipath signals are more sensitive to the satellite elevation angle variations than to changes in the GPS receiver’s antenna height. The convolution function demonstrates that the snowy surface has a minimum reflectance in circular polarization but maximum reflectance in linear polarization. GPS signals reflecting from an ice-covered surface show a maximum value in circular polarization reflectance and a minimum for linear polarization reflectance. Moreover, the values for reflection from soils are between those for snow and ice in all polarization types. The placement of soil surface reflectance values between snowy and icy surface ones may be noteworthy in new remote sensing applications.

  17. Forget-me-not:Complex floral displays,inter-signal interactions,and pollinator cognition

    Institute of Scientific and Technical Information of China (English)

    Anne S.LEONARD; Anna DORNHAUS; Daniel R.PAPAJ

    2011-01-01

    Flowers are multisensory displays used by plants to influence the behavior of pollinators.Although we know a great deal about how individual signal components are preduced by plants and detected or learned by pollinators,very few experiments directly address the function of floral signal complexity,I.e.how the multicompenent nature of these signals benefits plant or pollinator.Yet,experimental psychology suggests that increasing complexity can enhance subjects'ability to deteCt,learn and remember stimuli,and the plant,sreproductive success depends upon ensuring that pollinators learn their signals and so transport pollen to other similar(conspecific)flowers.Here we explore functional hypotheses for why plants invest in complex floral displays focusing on hypotheses in which floral signals interact to promote pollinator learning and memory'Specifically,we discuss how an attention-altering or context-providing function of one signal may promote acquisition or recall of a second signal.Although we focus on communication between plants and poilinators,these process-based hypotheses should apply to any situation where a sender benefits from enhancing a receiver's acquisition or recall of informtion.

  18. Lipid rafts and Alzheimer’s disease: protein-lipid interactions and perturbation of signalling

    Directory of Open Access Journals (Sweden)

    NataliaNNalivaeva

    2012-06-01

    Full Text Available Lipid rafts are membrane domains, more ordered than the bulk membrane and enriched in cholesterol and sphingolipids. They represent a platform for protein-lipid and protein-protein interactions and for cellular signalling events. In addition to their normal functions, including membrane trafficking, ligand binding (including viruses, axonal development and maintenance of synaptic integrity, rafts have also been implicated in the pathogenesis of several neurodegenerative diseases including Alzheimer’s disease (AD. Lipid rafts promote interaction of the amyloid precursor protein (APP with the secretase (BACE-1 responsible for generation of the amyloid β peptide, Aβ. Rafts also regulate cholinergic signalling as well as acetylcholinesterase and Aβ interaction. In addition, such major lipid raft components as cholesterol and GM1 ganglioside have been directly implicated in pathogenesis of the disease. Perturbation of lipid raft integrity can also affect various signalling pathways leading to cellular death and AD. In this review, we discuss modulation of APP cleavage by lipid rafts and their components, while also looking at more recent findings on the role of lipid rafts in signalling events.

  19. Amphetamine administration into the ventral striatum facilitates behavioral interaction with unconditioned visual signals in rats.

    Directory of Open Access Journals (Sweden)

    Rick Shin

    Full Text Available BACKGROUND: Administration of psychomotor stimulants like amphetamine facilitates behavior in the presence of incentive distal stimuli, which have acquired the motivational properties of primary rewards through associative learning. This facilitation appears to be mediated by the mesolimbic dopamine system, which may also be involved in facilitating behavior in the presence of distal stimuli that have not been previously paired with primary rewards. However, it is unclear whether psychomotor stimulants facilitate behavioral interaction with unconditioned distal stimuli. PRINCIPAL FINDINGS: We found that noncontingent administration of amphetamine into subregions of the rat ventral striatum, particularly in the vicinity of the medial olfactory tubercle, facilitates lever pressing followed by visual signals that had not been paired with primary rewards. Noncontingent administration of amphetamine failed to facilitate lever pressing when it was followed by either tones or delayed presentation or absence of visual signals, suggesting that visual signals are key for enhanced behavioral interaction. Systemic administration of amphetamine markedly increased locomotor activity, but did not necessarily increase lever pressing rewarded by visual signals, suggesting that lever pressing is not a byproduct of heightened locomotor activity. Lever pressing facilitated by amphetamine was reduced by co-administration of the dopamine receptor antagonists SCH 23390 (D1 selective or sulpiride (D2 selective. CONCLUSIONS: Our results suggest that amphetamine administration into the ventral striatum, particularly in the vicinity of the medial olfactory tubercle, activates dopaminergic mechanisms that strongly enhance behavioral interaction with unconditioned visual stimuli.

  20. Interaction between Calcium and Actin in Guard Cell and Pollen Signaling Networks

    Directory of Open Access Journals (Sweden)

    Dong-Hua Chen

    2013-10-01

    Full Text Available Calcium (Ca2+ plays important roles in plant growth, development, and signal transduction. It is a vital nutrient for plant physical design, such as cell wall and membrane, and also serves as a counter-cation for biochemical, inorganic, and organic anions, and more particularly, its concentration change in cytosol is a ubiquitous second messenger in plant physiological signaling in responses to developmental and environmental stimuli. Actin cytoskeleton is well known for its importance in cellular architecture maintenance and its significance in cytoplasmic streaming and cell division. In plant cell system, the actin dynamics is a process of polymerization and de-polymerization of globular actin and filamentous actin and that acts as an active regulator for calcium signaling by controlling calcium evoked physiological responses. The elucidation of the interaction between calcium and actin dynamics will be helpful for further investigation of plant cell signaling networks at molecular level. This review mainly focuses on the recent advances in understanding the interaction between the two aforementioned signaling components in two well-established model systems of plant, guard cell, and pollen.

  1. A perspective on inter-kingdom signaling in plant-beneficial microbe interactions.

    Science.gov (United States)

    Rosier, Amanda; Bishnoi, Usha; Lakshmanan, Venkatachalam; Sherrier, D Janine; Bais, Harsh P

    2016-04-01

    Recent work has shown that the rhizospheric and phyllospheric microbiomes of plants are composed of highly diverse microbial species. Though the information pertaining to the diversity of the aboveground and belowground microbes associated with plants is known, an understanding of the mechanisms by which these diverse microbes function is still in its infancy. Plants are sessile organisms, that depend upon chemical signals to interact with the microbiota. Of late, the studies related to the impact of microbes on plants have gained much traction in the research literature, supporting diverse functional roles of microbes on plant health. However, how these microbes interact as a community to confer beneficial traits to plants is still poorly understood. Recent advances in the use of "biologicals" as bio-fertilizers and biocontrol agents for sustainable agricultural practices is promising, and a fundamental understanding of how microbes in community work on plants could help this approach be more successful. This review attempts to highlight the importance of different signaling events that mediate a beneficial plant microbe interaction. Fundamental research is needed to understand how plants react to different benign microbes and how these microbes are interacting with each other. This review highlights the importance of chemical signaling, and biochemical and genetic events which determine the efficacy of benign microbes to promote the development of beneficial traits in plants. PMID:26792782

  2. Holophytochrome-Interacting Proteins in Physcomitrella: Putative Actors in Phytochrome Cytoplasmic Signaling

    Science.gov (United States)

    Ermert, Anna Lena; Mailliet, Katharina; Hughes, Jon

    2016-01-01

    Phytochromes are the principle photoreceptors in light-regulated plant development, primarily acting via translocation of the light-activated photoreceptor into the nucleus and subsequent gene regulation. However, several independent lines of evidence indicate unambiguously that an additional cytoplasmic signaling mechanism must exist. Directional responses in filament tip cells of the moss Physcomitrella patens are steered by phy4 which has been shown to interact physically with the blue light receptor phototropin at the plasma membrane. This complex might perceive and transduce vectorial information leading to cytoskeleton reorganization and finally a directional growth response. We developed yeast two-hybrid procedures using photochemically functional, full-length phy4 as bait in Physcomitrella cDNA library screens and growth assays under different light conditions, revealing Pfr-dependent interactions possibly associated with phytochrome cytoplasmic signaling. Candidate proteins were then expressed in planta with fluorescent protein tags to determine their intracellular localization in darkness and red light. Of 14 candidates, 12 were confirmed to interact with phy4 in planta using bimolecular fluorescence complementation. We also used database information to study their expression patterns relative to those of phy4. We discuss the likely functional characteristics of these holophytochrome-interacting proteins (HIP’s) and their possible roles in signaling. PMID:27242820

  3. Signal-noise interaction in nonlinear optical fibers: a hydrodynamic approach

    CERN Document Server

    Barletti, Luigi

    2015-01-01

    We present a new perturbative approach to the study of signal-noise interactions in amplified optical fibers. The approach is based on the hydrodynamic formulation of the nonlinear Schr\\"odinger equation that governs the propagation of light in the fiber. Our method is discussed in general and is developed in more details for some special cases, namely the small-dispersion regime, the continuous-wave (CW) signal and the solitonic pulse. The accuracy of the approach is numerically tested in the CW case.

  4. Physiological and Clinical Implications of Adrenergic Pathways at High Altitude.

    Science.gov (United States)

    Richalet, Jean-Paul

    2016-01-01

    The adrenergic system is part of a full array of mechanisms allowing the human body to adapt to the hypoxic environment. Triggered by the stimulation of peripheral chemoreceptors, the adrenergic centers in the medulla are activated in acute hypoxia and augment the adrenergic drive to the organs, especially to the heart, leading to tachycardia. With prolonged exposure to altitude hypoxia, the adrenergic drive persists, as witnessed by elevated blood concentrations of catecholamines and nerve activity in adrenergic fibers. In response to this persistent stimulation, the pathways leading to the activation of adenylate cyclase are modified. A downregulation of β-adrenergic and adenosinergic receptors is observed, while muscarinic receptors are upregulated. The expression and activity of Gi and Gs proteins are modified, leading to a decreased response of adenylate cyclase activity to adrenergic stimulation. The clinical consequences of these cellular and molecular changes are of importance, especially for exercise performance and protection of heart function. The decrease in maximal exercise heart rate in prolonged hypoxia is fully accounted for the observed changes in adrenergic and muscarinic pathways. The decreased heart rate response to isoproterenol infusion is another marker of the desensitization of adrenergic pathways. These changes can be considered as mechanisms protecting the heart from a too high oxygen consumption in conditions where the oxygen availability is severely reduced. Similarly, intermittent exposure to hypoxia has been shown to protect the heart from an ischemic insult with similar mechanisms involving G proteins and downregulation of β receptors. Other pathways with G proteins are concerned in adaptation to hypoxia, such as lactate release by the muscles and renal handling of calcium. Altogether, the activation of the adrenergic system is useful for the acute physiological response to hypoxia. With prolonged exposure to hypoxia, the autonomous

  5. Glucose and auxin signaling interaction in controlling Arabidopsis thaliana seedlings root growth and development.

    Directory of Open Access Journals (Sweden)

    Bhuwaneshwar S Mishra

    Full Text Available BACKGROUND: Plant root growth and development is highly plastic and can adapt to many environmental conditions. Sugar signaling has been shown to affect root growth and development by interacting with phytohormones such as gibberellins, cytokinin and abscisic acid. Auxin signaling and transport has been earlier shown to be controlling plant root length, number of lateral roots, root hair and root growth direction. PRINCIPAL FINDINGS: Increasing concentration of glucose not only controls root length, root hair and number of lateral roots but can also modulate root growth direction. Since root growth and development is also controlled by auxin, whole genome transcript profiling was done to find out the extent of interaction between glucose and auxin response pathways. Glucose alone could transcriptionally regulate 376 (62% genes out of 604 genes affected by IAA. Presence of glucose could also modulate the extent of regulation 2 fold or more of almost 63% genes induced or repressed by IAA. Interestingly, glucose could affect induction or repression of IAA affected genes (35% even if glucose alone had no significant effect on the transcription of these genes itself. Glucose could affect auxin biosynthetic YUCCA genes family members, auxin transporter PIN proteins, receptor TIR1 and members of a number of gene families including AUX/IAA, GH3 and SAUR involved in auxin signaling. Arabidopsis auxin receptor tir1 and response mutants, axr2, axr3 and slr1 not only display a defect in glucose induced change in root length, root hair elongation and lateral root production but also accentuate glucose induced increase in root growth randomization from vertical suggesting glucose effects on plant root growth and development are mediated by auxin signaling components. CONCLUSION: Our findings implicate an important role of the glucose interacting with auxin signaling and transport machinery to control seedling root growth and development in changing nutrient

  6. Association between Selective Beta-adrenergic Drugs and Blood Pressure Elevation: Data Mining of the Japanese Adverse Drug Event Report (JADER) Database.

    Science.gov (United States)

    Ohyama, Katsuhiro; Inoue, Michiko

    2016-01-01

    Selective beta-adrenergic drugs are used clinically to treat various diseases. Because of imperfect receptor selectivity, beta-adrenergic drugs cause some adverse drug events by stimulating other adrenergic receptors. To examine the association between selective beta-adrenergic drugs and blood pressure elevation, we reviewed the Japanese Adverse Drug Event Reports (JADERs) submitted to the Japan Pharmaceuticals and Medical Devices Agency. We used the Medical Dictionary for Regulatory Activities (MedDRA) Preferred Terms extracted from Standardized MedDRA queries for hypertension to identify events related to blood pressure elevation. Spontaneous adverse event reports from April 2004 through May 2015 in JADERs, a data mining algorithm, and the reporting odds ratio (ROR) were used for quantitative signal detection, and assessed by the case/non-case method. Safety signals are considered significant if the ROR estimates and lower bound of the 95% confidence interval (CI) exceed 1. A total of 2021 reports were included in this study. Among the nine drugs examined, significant signals were found, based on the 95%CI for salbutamol (ROR: 9.94, 95%CI: 3.09-31.93) and mirabegron (ROR: 7.52, 95%CI: 4.89-11.55). The results of this study indicate that some selective beta-adrenergic drugs are associated with blood pressure elevation. Considering the frequency of their indications, attention should be paid to their use in elderly patients to avoid adverse events. PMID:27374969

  7. Interactions Between Transient and Sustained Neural Signals Support the Generation and Regulation of Anxious Emotion

    OpenAIRE

    Somerville, Leah; Wagner, D. D.; Wig, G. S.; Moran, Joe Michael; Whalen, P. J.; Kelley, W. M.

    2012-01-01

    Anxious emotion can manifest on brief (threat response) and/or persistent (chronic apprehension and arousal) timescales, and prior work has suggested that these signals are supported by separable neural circuitries. This fMRI study utilized a mixed block-event–related emotional provocation paradigm in 55 healthy participants to simultaneously measure brief and persistent anxious emotional responses, testing the specificity of, and interactions between, these potentially distinct systems. Resu...

  8. Quantification of ligand bias for clinically relevant β2-adrenergic receptor ligands: implications for drug taxonomy.

    Science.gov (United States)

    van der Westhuizen, Emma T; Breton, Billy; Christopoulos, Arthur; Bouvier, Michel

    2014-03-01

    The concepts of functional selectivity and ligand bias are becoming increasingly appreciated in modern drug discovery programs, necessitating more informed approaches to compound classification and, ultimately, therapeutic candidate selection. Using the β2-adrenergic receptor as a model, we present a proof of concept study that assessed the bias of 19 β-adrenergic ligands, including many clinically used compounds, across four pathways [cAMP production, extracellular signal-regulated kinase 1/2 (ERK1/2) activation, calcium mobilization, and receptor endocytosis] in the same cell background (human embryonic kidney 293S cells). Efficacy-based clustering placed the ligands into five distinct groups with respect to signaling signatures. In some cases, apparent functional selectivity originated from off-target effects on other endogenously expressed adrenergic receptors, highlighting the importance of thoroughly assessing selectivity of the responses before concluding receptor-specific ligand-biased signaling. Eliminating the nonselective compounds did not change the clustering of the 10 remaining compounds. Some ligands exhibited large differences in potency for the different pathways, suggesting that the nature of the receptor-effector complexes influences the relative affinity of the compounds for specific receptor conformations. Calculation of relative effectiveness (within pathway) and bias factors (between pathways) for each of the compounds, using an operational model of agonism, revealed a global signaling signature for all of the compounds relative to isoproterenol. Most compounds were biased toward ERK1/2 activation over the other pathways, consistent with the notion that many proximal effectors converge on this pathway. Overall, we demonstrate a higher level of ligand texture than previously anticipated, opening perspectives for the establishment of pluridimensional correlations between signaling profiles, drug classification, therapeutic efficacy, and

  9. Interactions between radiofrequency signals and living organisms; Interactions entre signaux radiofrequences et vivants

    Energy Technology Data Exchange (ETDEWEB)

    Boudin, F.; Hours, M.; Lacronique, J.F.; Conil, E.; Hadjem, A.; El Habachi, A.; Wiart, K.; Mann, S.; Kundi, M.; Marc-Vergnes, J.P.; Roosli, M.; Mohler, E.; Frei, P.; Davis, Ch.C.; Balzano, Q.; Ait-Aissa, S.; Billaudel, B.; Poulletier De Gannes, F.; Hurtier, A.; Haro, E.; Taxile, M.; Veyret, B.; Lagroye, I.; Ait-Aissa, S.; Poulletier De Gannes, F.; Athane, A.; Veyret, B.; Lagroye, I.; Yardin, C.; Perrin, A.; Freire, M.; Bachelet, Ch.; Collin, A.; Pla, S.; Debouzy, J.C.; Leveque, Ph.; Van Nierop, L.E.; Huss, A.; Roosli, M.; Egger, M.; Calvez, M.; Salomon, D.

    2010-11-15

    This dossier is composed of 13 articles dealing with the interactions between radio-frequencies and living organisms. It is an overview of various scientific approaches to the field and is of interest for all citizens as the use of mobile phones is widely spread. In the first article it is shown how a model has been built to assess the distribution of the whole body exposure of the population. The second article reviews the state of the art in personal exposure measurements at radio-frequencies. The third article shows that the knowledge of the mechanism of action by which exposure increases the risk of health hazards is necessary. The fourth article shows that individual neuro-psychic factors take a prominent but maybe not unique, part in electromagnetic hypersensitivity. The fifth article shows that no evidence was found to link health disturbances of electromagnetic hypersensitive individuals with radiofrequency exposure. The sixth article shows that the wireless phone is not an athermal hazard to the brain. The seventh article shows that the in utero and post-natal exposure to Wi-Fi does not damage the brains of young rats. The eighth article concludes that recent studies provide no convincing proof of deleterious effects of radiofrequency exposure on the integrity of the blood-brain barrier for specific absorption rates up to 6 W/kg. The ninth article shows that no co-genotoxic effect of radiofrequency was found at levels of exposure that did not induce heating. The tenth article confirms that industry-sponsored studies were least likely to report results suggesting effects. The last article shows that general practitioners are increasingly questioned by their patients about the issue of electromagnetic waves. (A.C.) Available from doi:

  10. Signaling through urokinase and urokinase receptor in lung cancer cells requires interactions with beta1 integrins.

    Science.gov (United States)

    Tang, Chi-Hui; Hill, Marla L; Brumwell, Alexis N; Chapman, Harold A; Wei, Ying

    2008-11-15

    The urokinase receptor (uPAR) is upregulated upon tumor cell invasion and correlates with poor lung cancer survival. Although a cis-interaction with integrins has been ascribed to uPAR, whether this interaction alone is critical to urokinase (uPA)- and uPAR-dependent signaling and tumor promotion is unclear. Here we report the functional consequences of point mutations of uPAR (H249A-D262A) that eliminate beta1 integrin interactions but maintain uPA binding, vitronectin attachment and association with alphaV integrins, caveolin and epidermal growth factor receptor. Disruption of uPAR interactions with beta1 integrins recapitulated previously reported findings with beta1-integrin-derived peptides that attenuated matrix-dependent ERK activation, MMP expression and in vitro migration by human lung adenocarcinoma cell lines. The uPAR mutant cells acquired enhanced capacity to adhere to vitronectin via uPAR-alphaVbeta5-integrin, rather than through the uPAR-alpha3beta1-integrin complex and they were unable to initiate uPA signaling to activate ERK, Akt or Stat1. In an orthotopic lung cancer model, uPAR mutant cells exhibited reduced tumor size compared with cells expressing wild-type uPAR. Taken together, the results indicate that uPAR-beta1-integrin interactions are essential to signals induced by integrin matrix ligands or uPA that support lung cancer cell invasion in vitro and progression in vivo. PMID:18940913

  11. Interactions between Trypanosoma cruzi Secreted Proteins and Host Cell Signaling Pathways

    Science.gov (United States)

    Watanabe Costa, Renata; da Silveira, Jose F.; Bahia, Diana

    2016-01-01

    Chagas disease is one of the prevalent neglected tropical diseases, affecting at least 6–7 million individuals in Latin America. It is caused by the protozoan parasite Trypanosoma cruzi, which is transmitted to vertebrate hosts by blood-sucking insects. After infection, the parasite invades and multiplies in the myocardium, leading to acute myocarditis that kills around 5% of untreated individuals. T. cruzi secretes proteins that manipulate multiple host cell signaling pathways to promote host cell invasion. The primary secreted lysosomal peptidase in T. cruzi is cruzipain, which has been shown to modulate the host immune response. Cruzipain hinders macrophage activation during the early stages of infection by interrupting the NF-kB P65 mediated signaling pathway. This allows the parasite to survive and replicate, and may contribute to the spread of infection in acute Chagas disease. Another secreted protein P21, which is expressed in all of the developmental stages of T. cruzi, has been shown to modulate host phagocytosis signaling pathways. The parasite also secretes soluble factors that exert effects on host extracellular matrix, such as proteolytic degradation of collagens. Finally, secreted phospholipase A from T. cruzi contributes to lipid modifications on host cells and concomitantly activates the PKC signaling pathway. Here, we present a brief review of the interaction between secreted proteins from T. cruzi and the host cells, emphasizing the manipulation of host signaling pathways during invasion. PMID:27065960

  12. SPC toolbox: An interactive MATLAB (tm) package for signal modeling, analysis, and communications

    Science.gov (United States)

    Brown, Dennis W.; Fargues, Monique P.

    1993-10-01

    This report presents the Signal Processing and Communications (SPC) software package. SPC is an interactive package designed to provide the user with a series of data manipulation tools which use MATLAB version 4 graphical interface controls. SPC includes various filtering techniques, AutoRegressive (AR) and linear Moving Average AutoRegressive (ARMA) modeling methods, speech processing, and communication functions. SPC can be used in the classroom to illustrate and to reinforce basic concepts in signal processing and communications. It allows the user to concentrate on the principles presented in class instead of the details related to software usage. It can also be used as a basic analysis and modeling tool for research in signal processing. SPC was designed for Electrical Engineering applications. As a result, it is well suited to reinforce basic concepts presented in the following courses offered at the Naval Postgraduate School: EC 4410: Speech Processing, EC 4420: Modern Spectral Estimation, EC 3420: Statistical Digital Signal Processing, EC 3400: Digital Signal Processing, and EC 2500: Communication Theory. We hope that users will find this package useful, and we welcome any comments and suggestions regarding this software at browndw ece.nps.navy.mil (until 6/94), or fargues ece.nps.navy.mil.

  13. Improved Protein Arrays for Quantitative Systems Analysis of the Dynamics of Signaling Pathway Interactions

    Energy Technology Data Exchange (ETDEWEB)

    YANG, CHIN-RANG [NHLBI, NIH

    2013-12-11

    Astronauts and workers in nuclear plants who repeatedly exposed to low doses of ionizing radiation (IR, <10 cGy) are likely to incur specific changes in signal transduction and gene expression in various tissues of their body. Remarkable advances in high throughput genomics and proteomics technologies enable researchers to broaden their focus from examining single gene/protein kinetics to better understanding global gene/protein expression profiling and biological pathway analyses, namely Systems Biology. An ultimate goal of systems biology is to develop dynamic mathematical models of interacting biological systems capable of simulating living systems in a computer. This Glue Grant is to complement Dr. Boothman’s existing DOE grant (No. DE-FG02-06ER64186) entitled “The IGF1/IGF-1R-MAPK-Secretory Clusterin (sCLU) Pathway: Mediator of a Low Dose IR-Inducible Bystander Effect” to develop sensitive and quantitative proteomic technology that suitable for low dose radiobiology researches. An improved version of quantitative protein array platform utilizing linear Quantum dot signaling for systematically measuring protein levels and phosphorylation states for systems biology modeling is presented. The signals are amplified by a confocal laser Quantum dot scanner resulting in ~1000-fold more sensitivity than traditional Western blots and show the good linearity that is impossible for the signals of HRP-amplification. Therefore this improved protein array technology is suitable to detect weak responses of low dose radiation. Software is developed to facilitate the quantitative readout of signaling network activities. Kinetics of EGFRvIII mutant signaling was analyzed to quantify cross-talks between EGFR and other signaling pathways.

  14. Adrenergic gene polymorphisms and cardiovascular risk in the NHLBI-sponsored Women's Ischemia Syndrome Evaluation

    Directory of Open Access Journals (Sweden)

    Sharaf Barry L

    2008-03-01

    Full Text Available Abstract Background Adrenergic gene polymorphisms are associated with cardiovascular and metabolic phenotypes. We investigated the influence of adrenergic gene polymorphisms on cardiovascular risk in women with suspected myocardial ischemia. Methods We genotyped 628 women referred for coronary angiography for eight polymorphisms in the α1A-, β1-, β2- and β3-adrenergic receptors (ADRA1A, ADRB1, ADRB2, ADRB3, respectively, and their signaling proteins, G-protein β 3 subunit (GNB3 and G-protein α subunit (GNAS. We compared the incidence of death, myocardial infarction, stroke, or heart failure between genotype groups in all women and women without obstructive coronary stenoses. Results After a median of 5.8 years of follow-up, 115 women had an event. Patients with the ADRB1 Gly389 polymorphism were at higher risk for the composite outcome due to higher rates of myocardial infarction (adjusted hazard ratio [HR] 3.63, 95% confidence interval [95%CI] 1.17–11.28; Gly/Gly vs. Arg/Arg HR 4.14, 95%CI 0.88–19.6. The risk associated with ADRB1 Gly389 was limited to those without obstructive CAD (n = 400, Pinteraction = 0.03, albeit marginally significant in this subset (HR 1.71, 95%CI 0.91–3.19. Additionally, women without obstructive CAD carrying the ADRB3 Arg64 variant were at higher risk for the composite endpoint (HR 2.10, 95%CI 1.05–4.24 due to subtle increases in risk for all of the individual endpoints. No genetic associations were present in women with obstructive CAD. Conclusion In this exploratory analysis, common coding polymorphisms in the β1- and β3-adrenergic receptors increased cardiovascular risk in women referred for diagnostic angiography, and could improve risk assessment, particularly for women without evidence of obstructive CAD. Trial Registration ClinicalTrials.gov NCT00000554.

  15. BRCA1 affects protein phosphatase 6 signalling through its interaction with ANKRD28.

    Science.gov (United States)

    Vincent, Anne; Berthel, Elise; Dacheux, Estelle; Magnard, Clémence; Venezia, Nicole L Dalla

    2016-04-01

    The tumour suppressor BRCA1 (breast and ovarian cancer-susceptibility gene 1) is implicated in several nuclear processes including DNA repair, transcription regulation and chromatin remodelling. BRCA1 also has some cytoplasmic functions including a pro-apoptotic activity. We identified ANKRD28 (ankyrin repeat domain 28) as a novel BRCA1-interacting protein in a yeast two-hybrid screen and confirmed this interaction by reciprocal immunoprecipitations of the two overexpressed proteins. Endogenous interaction between BRCA1 and ANKRD28 was also observed by co-immunoprecipitation and located in the cytoplasm by proximity ligation assay. The main site of interaction of ANKRD28 on BRCA1 is located in its intrinsically disordered scaffold central region. Whereas ANKRD28 silencing results in a destabilization of IκBε (inhibitor of nuclear factor κBε) through its activation of PP6 (protein phosphatase 6) co-regulator upon TNFα (tumour necrosis factor α) stimulation, BRCA1 overexpression stabilizes IκBε. A truncated form of BRCA1 that does not interact with ANKRD28 has no such effect. Our findings suggest that BRCA1 is a novel modulator of PP6 signalling via its interaction with ANKRD28. This new cytoplasmic process might participate in BRCA1 tumour-suppressor function. PMID:27026398

  16. Evolution of a Novel Antiviral Immune-Signaling Interaction by Partial-Gene Duplication.

    Directory of Open Access Journals (Sweden)

    Bryan Korithoski

    Full Text Available The RIG-like receptors (RLRs are related proteins that identify viral RNA in the cytoplasm and activate cellular immune responses, primarily through direct protein-protein interactions with the signal transducer, IPS1. Although it has been well established that the RLRs, RIG-I and MDA5, activate IPS1 through binding between the twin caspase activation and recruitment domains (CARDs on the RLR and a homologous CARD on IPS1, it is less clear which specific RLR CARD(s are required for this interaction, and almost nothing is known about how the RLR-IPS1 interaction evolved. In contrast to what has been observed in the presence of immune-modulating K63-linked polyubiquitin, here we show that-in the absence of ubiquitin-it is the first CARD domain of human RIG-I and MDA5 (CARD1 that binds directly to IPS1 CARD, and not the second (CARD2. Although the RLRs originated in the earliest animals, both the IPS1 gene and the twin-CARD domain architecture of RIG-I and MDA5 arose much later in the deuterostome lineage, probably through a series of tandem partial-gene duplication events facilitated by tight clustering of RLRs and IPS1 in the ancestral deuterostome genome. Functional differentiation of RIG-I CARD1 and CARD2 appears to have occurred early during this proliferation of RLR and related CARDs, potentially driven by adaptive coevolution between RIG-I CARD domains and IPS1 CARD. However, functional differentiation of MDA5 CARD1 and CARD2 occurred later. These results fit a general model in which duplications of protein-protein interaction domains into novel gene contexts could facilitate the expansion of signaling networks and suggest a potentially important role for functionally-linked gene clusters in generating novel immune-signaling pathways.

  17. Astrocytic beta(2)-adrenergic receptors: from physiology to pathology.

    Science.gov (United States)

    Laureys, Guy; Clinckers, Ralph; Gerlo, Sarah; Spooren, Anneleen; Wilczak, Nadine; Kooijman, Ron; Smolders, Ilse; Michotte, Yvette; De Keyser, Jacques

    2010-07-01

    Evidence accumulates for a key role of the beta(2)-adrenergic receptors in the many homeostatic and neuroprotective functions of astrocytes, including glycogen metabolism, regulation of immune responses, release of neurotrophic factors, and the astrogliosis that occurs in response to neuronal injury. A dysregulation of the astrocytic beta(2)-adrenergic-pathway is suspected to contribute to the physiopathology of a number of prevalent and devastating neurological conditions such as multiple sclerosis, Alzheimer's disease, human immunodeficiency virus encephalitis, stroke and hepatic encephalopathy. In this review we focus on the physiological functions of astrocytic beta(2)-adrenergic receptors, and their possible impact in disease states. PMID:20138112

  18. Creating and analyzing pathway and protein interaction compendia for modelling signal transduction networks

    Directory of Open Access Journals (Sweden)

    Kirouac Daniel C

    2012-05-01

    Full Text Available Abstract Background Understanding the information-processing capabilities of signal transduction networks, how those networks are disrupted in disease, and rationally designing therapies to manipulate diseased states require systematic and accurate reconstruction of network topology. Data on networks central to human physiology, such as the inflammatory signalling networks analyzed here, are found in a multiplicity of on-line resources of pathway and interactome databases (Cancer CellMap, GeneGo, KEGG, NCI-Pathway Interactome Database (NCI-PID, PANTHER, Reactome, I2D, and STRING. We sought to determine whether these databases contain overlapping information and whether they can be used to construct high reliability prior knowledge networks for subsequent modeling of experimental data. Results We have assembled an ensemble network from multiple on-line sources representing a significant portion of all machine-readable and reconcilable human knowledge on proteins and protein interactions involved in inflammation. This ensemble network has many features expected of complex signalling networks assembled from high-throughput data: a power law distribution of both node degree and edge annotations, and topological features of a “bow tie” architecture in which diverse pathways converge on a highly conserved set of enzymatic cascades focused around PI3K/AKT, MAPK/ERK, JAK/STAT, NFκB, and apoptotic signaling. Individual pathways exhibit “fuzzy” modularity that is statistically significant but still involving a majority of “cross-talk” interactions. However, we find that the most widely used pathway databases are highly inconsistent with respect to the actual constituents and interactions in this network. Using a set of growth factor signalling networks as examples (epidermal growth factor, transforming growth factor-beta, tumor necrosis factor, and wingless, we find a multiplicity of network topologies in which receptors couple to downstream

  19. β-Adrenergic agonist and antagonist regulation of autophagy in HepG2 cells, primary mouse hepatocytes, and mouse liver.

    Directory of Open Access Journals (Sweden)

    Benjamin L Farah

    Full Text Available Autophagy recently has been shown to be involved in normal hepatic function and in pathological conditions such as non-alcoholic fatty liver disease. Adrenergic signalling also is an important regulator of hepatic metabolism and function. However, currently little is known about the potential role of adrenergic signaling on hepatic autophagy, and whether the β-adrenergic receptor itself may be a key regulator of autophagy. To address these issues, we investigated the actions of the β2-adrenergic receptor agonist, clenbuterol on hepatic autophagy. Surprisingly, we found that clenbuterol stimulated autophagy and autophagic flux in hepatoma cells, primary hepatocytes and in vivo. Similar effects also were observed with epinephrine treatment. Interestingly, propranolol caused a late block in autophagy in the absence and presence of clenbuterol, both in cell culture and in vivo. Thus, our results demonstrate that the β2-adrenergic receptor is a key regulator of hepatic autophagy, and that the β-blocker propranolol can independently induce a late block in autophagy.

  20. Adrenergic receptors in human fetal liver membranes

    Energy Technology Data Exchange (ETDEWEB)

    Falkay, G.; Kovacs, L. (Albert Szent-Gyoergyi Medical Univ. Szeged, Semmelweis (Hungary))

    1990-01-01

    The adrenergic receptor binding capacities in human fetal and adult livers were measured to investigate the mechanism of the reduced alpha-1 adrenoreceptor response of the liver associated with a reciprocal increase in beta-adrenoreceptor activity in a number of conditions. Alpha-1 and beta-adrenoreceptor density were determined using {sup 3}H-prazosin and {sup 3}H-dihydroalprenolol, respectively, as radioligand. Heterogeneous populations of beta-adrenoreceptors were found in fetal liver contrast to adult. Decreased alpha-1 and increased beta-receptor density were found which may relate to a decreased level in cellular differentiation. These findings may be important for the investigation of perinatal hypoglycemia of newborns after treatment of premature labor with beta-mimetics. This is the first demonstration of differences in the ratio of alpha-1 and beta-adrenoceptors in human fetal liver.

  1. Effects of halothane on the human beta-adrenergic receptor of lymphocyte membranes

    International Nuclear Information System (INIS)

    The effects of halothane on beta-adrenergic receptor antagonist interaction were studied using the membranes of human lymphocytes as a model. Membrane preparations of lymphocytes were obtained from blood samples withdrawn from seven healthy young volunteers. Beta-receptor studies were performed using (-)125I iodocyanopindolol (125ICP) binding. Non-specific binding was determined in the presence of (-)isoproterenol. Beta-receptor density (Bmax) and the dissociation constant (KD) for 125ICP were determined from saturation curves. Beta-receptor affinity for agonists evaluated by the IC50 (the concentration of isoproterenol required to inhibit 50% of specific 125ICP binding) and the dissociation constant (KL) for isoproterenol was established from competition curves. The effect of halothane 1%, in an air oxygen mixture (oxygen fraction: 0.3) administered by tonometry during ligand membrane incubation, on beta-adrenergic receptor, was compared to that of control experiments not exposed to halothane. Halothane produced a moderate but significant decrease of Bmax (-10%) and a significant increase in non-specific binding (+30%), while KD, IC50, and KL were unchanged. The authors conclude that halothane, in vitro, decreases beta-adrenergic receptor density. This effect could be mediated by an alteration of the receptor in the membrane due to action of halothane on the lipid phase of the membrane

  2. The branching gene RAMOSUS1 mediates interactions among two novel signals and auxin in pea.

    Science.gov (United States)

    Foo, Eloise; Bullier, Erika; Goussot, Magali; Foucher, Fabrice; Rameau, Catherine; Beveridge, Christine Anne

    2005-02-01

    In Pisum sativum, the RAMOSUS genes RMS1, RMS2, and RMS5 regulate shoot branching via physiologically defined mobile signals. RMS1 is most likely a carotenoid cleavage enzyme and acts with RMS5 to control levels of an as yet unidentified mobile branching inhibitor required for auxin inhibition of branching. Our work provides molecular, genetic, and physiological evidence that RMS1 plays a central role in a shoot-to-root-to-shoot feedback system that regulates shoot branching in pea. Indole-3-acetic acid (IAA) positively regulates RMS1 transcript level, a potentially important mechanism for regulation of shoot branching by IAA. In addition, RMS1 transcript levels are dramatically elevated in rms3, rms4, and rms5 plants, which do not contain elevated IAA levels. This degree of upregulation of RMS1 expression cannot be achieved in wild-type plants by exogenous IAA application. Grafting studies indicate that an IAA-independent mobile feedback signal contributes to the elevated RMS1 transcript levels in rms4 plants. Therefore, the long-distance signaling network controlling branching in pea involves IAA, the RMS1 inhibitor, and an IAA-independent feedback signal. Consistent with physiological studies that predict an interaction between RMS2 and RMS1, rms2 mutations appear to disrupt this IAA-independent regulation of RMS1 expression. PMID:15659639

  3. Signalling through the type 1 insulin-like growth factor receptor (IGF1R interacts with canonical Wnt signalling to promote neural proliferation in developing brain

    Directory of Open Access Journals (Sweden)

    Qichen Hu

    2012-07-01

    Full Text Available Signalling through the IGF1R [type 1 IGF (insulin-like growth factor receptor] and canonical Wnt signalling are two signalling pathways that play critical roles in regulating neural cell generation and growth. To determine whether the signalling through the IGF1R can interact with the canonical Wnt signalling pathway in neural cells in vivo, we studied mutant mice with altered IGF signalling. We found that in mice with blunted IGF1R expression specifically in nestin-expressing neural cells (IGF1RNestin−KO mice the abundance of neural β-catenin was significantly reduced. Blunting IGF1R expression also markedly decreased: (i the activity of a LacZ (β-galactosidase reporter transgene that responds to Wnt nuclear signalling (LacZTCF reporter transgene and (ii the number of proliferating neural precursors. In contrast, overexpressing IGF-I (insulin-like growth factor I in brain markedly increased the activity of the LacZTCF reporter transgene. Consistently, IGF-I treatment also markedly increased the activity of the LacZTCF reporter transgene in embryonic neuron cultures that are derived from LacZTCF Tg (transgenic mice. Importantly, increasing the abundance of β-catenin in IGF1RNestin−KO embryonic brains by suppressing the activity of GSK3β (glycogen synthase kinase-3β significantly alleviated the phenotypic changes induced by IGF1R deficiency. These phenotypic changes includes: (i retarded brain growth, (ii reduced precursor proliferation and (iii decreased neuronal number. Our current data, consistent with our previous study of cultured oligodendrocytes, strongly support the concept that IGF signalling interacts with canonical Wnt signalling in the developing brain to promote neural proliferation. The interaction of IGF and canonical Wnt signalling plays an important role in normal brain development by promoting neural precursor proliferation.

  4. Functional interaction of TCF4 with ATF5 to regulate the Wnt signaling pathway

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    Wnt signaling directs cell-fate choices during embryonic development and tissue tumorigenesis. T cell factor 4 (TCF4) plays a pivotal role in the Wnt signaling pathway. We demonstrate that a specific protein-protein interaction occurs between TCF4 and ATF5 (activating transcription factor 5) -- a new member of cAMP response element binding protein (CREB) with the yeast two-hybrid system. The N-terminal and DNA binding domain of TCF4 (TCF4ND, 1-495 aa) and the C-terminal spanning bZIP domain of ATF5 (162-282 aa) were found to be responsible for the interaction, and the C-terminal of ATF5 (ATF5/C) showed a much stronger interaction with TCF4ND than the full-length of ATF5 by detecting the ?-gal activity. Furthermore, overexpression of ATF5/C enhanced transcriptional activation by TCF4 proteins in luciferase assay by transient transfection. Taken together, these data suggest that ATF5 may function as a co-activator to potentiate the ability of TCF4 to activate transcription.

  5. Peptides interfering with protein-protein interactions in the ethylene signaling pathway delay tomato fruit ripening.

    Science.gov (United States)

    Bisson, Melanie M A; Kessenbrock, Mareike; Müller, Lena; Hofmann, Alexander; Schmitz, Florian; Cristescu, Simona M; Groth, Georg

    2016-01-01

    The plant hormone ethylene is involved in the regulation of several processes with high importance for agricultural applications, e.g. ripening, aging and senescence. Previous work in our group has identified a small peptide (NOP-1) derived from the nuclear localization signal of the Arabidopsis ethylene regulator ETHYLENE INSENSITIVE-2 (EIN2) C-terminal part as efficient inhibitor of ethylene responses. Here, we show that NOP-1 is also able to efficiently disrupt EIN2-ETR1 complex formation in tomato, indicating that the NOP-1 inhibition mode is conserved across plant species. Surface application of NOP-1 on green tomato fruits delays ripening similar to known inhibitors of ethylene perception (MCP) and ethylene biosynthesis (AVG). Fruits treated with NOP-1 showed similar ethylene production as untreated controls underlining that NOP-1 blocks ethylene signaling by targeting an essential interaction in this pathway, while having no effect on ethylene biosynthesis. PMID:27477591

  6. The arginine of the DRY motif in transmembrane segment III functions as a balancing micro-switch in the activation of the β2-adrenergic receptor

    DEFF Research Database (Denmark)

    Hansen, Louise Valentin; Groenen, Marleen; Nygaard, Rie;

    2012-01-01

    Recent high resolution x-ray structures of the β2-adrenergic receptor confirmed a close salt-bridge interaction between the suspected micro-switch residue ArgIII:26 (Arg3.50) and the neighboring AspIII:25 (Asp3.49). However, neither the expected "ionic lock" interactions between ArgIII:26 and Glu...

  7. Adrenergic activation attenuates astrocyte swelling induced by hypotonicity and neurotrauma.

    Science.gov (United States)

    Vardjan, Nina; Horvat, Anemari; Anderson, Jamie E; Yu, Dou; Croom, Deborah; Zeng, Xiang; Lužnik, Zala; Kreft, Marko; Teng, Yang D; Kirov, Sergei A; Zorec, Robert

    2016-06-01

    Edema in the central nervous system can rapidly result in life-threatening complications. Vasogenic edema is clinically manageable, but there is no established medical treatment for cytotoxic edema, which affects astrocytes and is a primary trigger of acute post-traumatic neuronal death. To test the hypothesis that adrenergic receptor agonists, including the stress stimulus epinephrine protects neural parenchyma from damage, we characterized its effects on hypotonicity-induced cellular edema in cortical astrocytes by in vivo and in vitro imaging. After epinephrine administration, hypotonicity-induced swelling of astrocytes was markedly reduced and cytosolic 3'-5'-cyclic adenosine monophosphate (cAMP) was increased, as shown by a fluorescence resonance energy transfer nanosensor. Although, the kinetics of epinephrine-induced cAMP signaling was slowed in primary cortical astrocytes exposed to hypotonicity, the swelling reduction by epinephrine was associated with an attenuated hypotonicity-induced cytosolic Ca(2+) excitability, which may be the key to prevent astrocyte swelling. Furthermore, in a rat model of spinal cord injury, epinephrine applied locally markedly reduced neural edema around the contusion epicenter. These findings reveal new targets for the treatment of cellular edema in the central nervous system. GLIA 2016;64:1034-1049. PMID:27018061

  8. The Alpha-1A Adrenergic Receptor in the Rabbit Heart

    Science.gov (United States)

    Myagmar, Bat-Erdene; Swigart, Philip M.; Baker, Anthony J.; Simpson, Paul C.

    2016-01-01

    The alpha-1A-adrenergic receptor (AR) subtype is associated with cardioprotective signaling in the mouse and human heart. The rabbit is useful for cardiac disease modeling, but data on the alpha-1A in the rabbit heart are limited. Our objective was to test for expression and function of the alpha-1A in rabbit heart. By quantitative real-time reverse transcription PCR (qPCR) on mRNA from ventricular myocardium of adult male New Zealand White rabbits, the alpha-1B was 99% of total alpha-1-AR mRNA, with micro Infusion pump did not increase BP at 22 μg/kg/d. A myocardial slice model useful in human myocardium and an anthracycline cardiotoxicity model useful in mouse were both problematic in rabbit. We conclude that alpha-1A mRNA is very low in rabbit heart, but the receptor is present by binding and mediates a negative inotropic response. Expression and function of the alpha-1A in rabbit heart differ from mouse and human, but the vasopressor response is similar to mouse. PMID:27258143

  9. Broccoli consumption interacts with GSTM1 to perturb oncogenic signalling pathways in the prostate.

    Directory of Open Access Journals (Sweden)

    Maria Traka

    Full Text Available BACKGROUND: Epidemiological studies suggest that people who consume more than one portion of cruciferous vegetables per week are at lower risk of both the incidence of prostate cancer and of developing aggressive prostate cancer but there is little understanding of the underlying mechanisms. In this study, we quantify and interpret changes in global gene expression patterns in the human prostate gland before, during and after a 12 month broccoli-rich diet. METHODS AND FINDINGS: Volunteers were randomly assigned to either a broccoli-rich or a pea-rich diet. After six months there were no differences in gene expression between glutathione S-transferase mu 1 (GSTM1 positive and null individuals on the pea-rich diet but significant differences between GSTM1 genotypes on the broccoli-rich diet, associated with transforming growth factor beta 1 (TGFbeta1 and epidermal growth factor (EGF signalling pathways. Comparison of biopsies obtained pre and post intervention revealed more changes in gene expression occurred in individuals on a broccoli-rich diet than in those on a pea-rich diet. While there were changes in androgen signalling, regardless of diet, men on the broccoli diet had additional changes to mRNA processing, and TGFbeta1, EGF and insulin signalling. We also provide evidence that sulforaphane (the isothiocyanate derived from 4-methylsuphinylbutyl glucosinolate that accumulates in broccoli chemically interacts with TGFbeta1, EGF and insulin peptides to form thioureas, and enhances TGFbeta1/Smad-mediated transcription. CONCLUSIONS: These findings suggest that consuming broccoli interacts with GSTM1 genotype to result in complex changes to signalling pathways associated with inflammation and carcinogenesis in the prostate. We propose that these changes may be mediated through the chemical interaction of isothiocyanates with signalling peptides in the plasma. This study provides, for the first time, experimental evidence obtained in humans to

  10. Raf-1 Physically Interacts with Rb and Regulates Its Function: a Link between Mitogenic Signaling and Cell Cycle Regulation

    OpenAIRE

    Wang, Sheng; Ghosh, Richik N.; Chellappan, Srikumar P

    1998-01-01

    Cells initiate proliferation in response to growth factor stimulation, but the biochemical mechanisms linking signals received at the cell surface receptors to the cell cycle regulatory molecules are not yet clear. In this study, we show that the signaling molecule Raf-1 can physically interact with Rb and p130 proteins in vitro and in vivo and that this interaction can be detected in mammalian cells without overexpressing any component. The binding of Raf-1 to Rb occurs subsequent to mitogen...

  11. High-resolution crystal structure of an engineered human beta2-adrenergic G protein-coupled receptor

    DEFF Research Database (Denmark)

    Cherezov, Vadim; Rosenbaum, Daniel M; Hanson, Michael A;

    2007-01-01

    Heterotrimeric guanine nucleotide-binding protein (G protein)-coupled receptors constitute the largest family of eukaryotic signal transduction proteins that communicate across the membrane. We report the crystal structure of a human beta2-adrenergic receptor-T4 lysozyme fusion protein bound to t...... very similar to that of retinal in rhodopsin, structural differences in the ligand-binding site and other regions highlight the challenges in using rhodopsin as a template model for this large receptor family....

  12. Structural basis of SUFU–GLI interaction in human Hedgehog signalling regulation

    International Nuclear Information System (INIS)

    Crystal and small-angle X-ray scattering structures of full-length human SUFU alone and in complex with the conserved SYGHL motif from GLI transcription factors show major conformational changes associated with binding and reveal an intrinsically disordered region crucial for pathway activation. Hedgehog signalling plays a fundamental role in the control of metazoan development, cell proliferation and differentiation, as highlighted by the fact that its deregulation is associated with the development of many human tumours. SUFU is an essential intracellular negative regulator of mammalian Hedgehog signalling and acts by binding and modulating the activity of GLI transcription factors. Despite its central importance, little is known about SUFU regulation and the nature of SUFU–GLI interaction. Here, the crystal and small-angle X-ray scattering structures of full-length human SUFU and its complex with the key SYGHL motif conserved in all GLIs are reported. It is demonstrated that GLI binding is associated with major conformational changes in SUFU, including an intrinsically disordered loop that is also crucial for pathway activation. These findings reveal the structure of the SUFU–GLI interface and suggest a mechanism for an essential regulatory step in Hedgehog signalling, offering possibilities for the development of novel pathway modulators and therapeutics

  13. Structural basis of SUFU–GLI interaction in human Hedgehog signalling regulation

    Energy Technology Data Exchange (ETDEWEB)

    Cherry, Amy L.; Finta, Csaba; Karlström, Mikael; Jin, Qianren; Schwend, Thomas [Karolinska Institutet, Novum, Hälsovägen 7, SE-141 83 Huddinge (Sweden); Astorga-Wells, Juan [Karolinska Institutet, Scheeles väg 2, SE-171 77 Stockholm (Sweden); Biomotif AB, Enhagsvägen 7, SE-182 12 Danderyd (Sweden); Zubarev, Roman A. [Karolinska Institutet, Scheeles väg 2, SE-171 77 Stockholm (Sweden); Del Campo, Mark; Criswell, Angela R. [Rigaku Americas Corporation, 9009 New Trails Drive, The Woodlands, TX 77381 (United States); Sanctis, Daniele de [European Synchrotron Radiation Facility, 6 Rue Jules Horowitz, 38043 Grenoble (France); Jovine, Luca, E-mail: luca.jovine@ki.se; Toftgård, Rune, E-mail: luca.jovine@ki.se [Karolinska Institutet, Novum, Hälsovägen 7, SE-141 83 Huddinge (Sweden)

    2013-12-01

    Crystal and small-angle X-ray scattering structures of full-length human SUFU alone and in complex with the conserved SYGHL motif from GLI transcription factors show major conformational changes associated with binding and reveal an intrinsically disordered region crucial for pathway activation. Hedgehog signalling plays a fundamental role in the control of metazoan development, cell proliferation and differentiation, as highlighted by the fact that its deregulation is associated with the development of many human tumours. SUFU is an essential intracellular negative regulator of mammalian Hedgehog signalling and acts by binding and modulating the activity of GLI transcription factors. Despite its central importance, little is known about SUFU regulation and the nature of SUFU–GLI interaction. Here, the crystal and small-angle X-ray scattering structures of full-length human SUFU and its complex with the key SYGHL motif conserved in all GLIs are reported. It is demonstrated that GLI binding is associated with major conformational changes in SUFU, including an intrinsically disordered loop that is also crucial for pathway activation. These findings reveal the structure of the SUFU–GLI interface and suggest a mechanism for an essential regulatory step in Hedgehog signalling, offering possibilities for the development of novel pathway modulators and therapeutics.

  14. Cutting Edge: A Cullin-5-TRAF6 Interaction Promotes TRAF6 Polyubiquitination and Lipopolysaccharide Signaling.

    Science.gov (United States)

    Zhu, Ziyan; Wang, Lili; Hao, Rui; Zhao, Bo; Sun, Lei; Ye, Richard D

    2016-07-01

    TNFR-associated factor (TRAF)6 integrates signals from multiple cell surface receptors for the activation of NF-κB. However, the mechanism underlying LPS-induced TRAF6 signaling remains unclear. We report that cullin-5 (Cul-5), a cullin family scaffold protein, binds to TRAF6 and promotes TRAF6 polyubiquitination at Lys(63) in response to LPS stimulation. A direct interaction between the C-terminal domain of Cul-5 and the TRAF-C domain of TRAF6 facilitates polyubiquitination of TRAF6. Hemizygous Cul-5 knockout is associated with improved survival of mice following LPS challenge and significant delays in the phosphorylation of p65/RelA, ERK, JNK, and p38 MAPKs in LPS-stimulated macrophages, along with a marked decrease in NF-κB activation. These findings identify Cul-5 as a signaling component that connects an LPS-activated TLR4-MyD88 complex to TRAF6 for efficient activation of NF-κB. PMID:27233966

  15. A membrane protein / signaling protein interaction network for Arabidopsis version AMPv2

    Directory of Open Access Journals (Sweden)

    Sylvie Lalonde

    2010-09-01

    Full Text Available Interactions between membrane proteins and the soluble fraction are essential for signal transduction and for regulating nutrient transport. To gain insights into the membrane-based interactome, 3,852 open reading frames (ORFs out of a target list of 8,383 representing membrane and signaling proteins from Arabidopsis thaliana were cloned into a Gateway compatible vector. The mating-based split-ubiquitin system was used to screen for potential protein-protein interactions (pPPIs among 490 Arabidopsis ORFs. A binary robotic screen between 142 receptor-like kinases, 72 transporters, 57 soluble protein kinases and phosphatases, 40 glycosyltransferases, 95 proteins of various functions and 89 proteins with unknown function detected 387 out of 90,370 possible PPIs. A secondary screen confirmed 343 (of 387 pPPIs between 179 proteins, yielding a scale-free network (r2=0.863. Eighty of 142 transmembrane receptor-like kinases (RLK tested positive, identifying three homomers, 63 heteromers and 80 pPPIs with other proteins. Thirty-one out of 142 RLK interactors (including RLKs had previously been found to be phosphorylated; thus interactors may be substrates for respective RLKs. None of the pPPIs described here had been reported in the major interactome databases, including potential interactors of G protein-coupled receptors, phospholipase C, and AMT ammonium transporters. Two RLKs found as putative interactors of AMT1;1 were independently confirmed using a split luciferase assay in Arabidopsis protoplasts. These RLKs may be involved in ammonium-dependent phosphorylation of the C-terminus and regulation of ammonium uptake activity. The robotic screening method established here will enable a systematic analysis of membrane protein interactions in fungi, plants and metazoa.

  16. The potential of metabolomic analysis techniques for the characterisation of α1-adrenergic receptors in cultured N1E-115 mouse neuroblastoma cells.

    Science.gov (United States)

    Wenner, Maria I; Maker, Garth L; Dawson, Linda F; Drummond, Peter D; Mullaney, Ian

    2016-08-01

    Several studies of neuropathic pain have linked abnormal adrenergic signalling to the development and maintenance of pain, although the mechanisms underlying this are not yet fully understood. Metabolomic analysis is a technique that can be used to give a snapshot of biochemical status, and can aid in the identification of the mechanisms behind pathological changes identified in cells, tissues and biological fluids. This study aimed to use gas chromatography-mass spectrometry-based metabolomic profiling in combination with reverse transcriptase-polymerase chain reaction and immunocytochemistry to identify functional α1-adrenergic receptors on cultured N1E-115 mouse neuroblastoma cells. The study was able to confirm the presence of mRNA for the α1D subtype, as well as protein expression of the α1-adrenergic receptor. Furthermore, metabolomic data revealed changes to the metabolite profile of cells when exposed to adrenergic pharmacological intervention. Agonist treatment with phenylephrine hydrochloride (10 µM) resulted in altered levels of several metabolites including myo-inositol, glucose, fructose, alanine, leucine, phenylalanine, valine, and n-acetylglutamic acid. Many of the changes observed in N1E-115 cells by agonist treatment were modulated by additional antagonist treatment (prazosin hydrochloride, 100 µM). A number of these changes reflected what is known about the biochemistry of α1-adrenergic receptor activation. This preliminary study therefore demonstrates the potential of metabolomic profiling to confirm the presence of functional receptors on cultured cells. PMID:26408527

  17. Potential relevance of alpha(1-adrenergic receptor autoantibodies in refractory hypertension.

    Directory of Open Access Journals (Sweden)

    Katrin Wenzel

    Full Text Available BACKGROUND: Agonistic autoantibodies directed at the alpha(1-adrenergic receptor (alpha(1-AAB have been described in patients with hypertension. We implied earlier that alpha(1-AAB might have a mechanistic role and could represent a therapeutic target. METHODOLOGY/PRINCIPAL FINDINGS: To pursue the issue, we performed clinical and basic studies. We observed that 41 of 81 patients with refractory hypertension had alpha(1-AAB; after immunoadsorption blood pressure was significantly reduced in these patients. Rabbits were immunized to generate alpha(1-adrenergic receptor antibodies (alpha(1-AB. Patient alpha(1-AAB and rabbit alpha(1-AB were purified using affinity chromatography and characterized both by epitope mapping and surface plasmon resonance measurements. Neonatal rat cardiomyocytes, rat vascular smooth muscle cells (VSMC, and Chinese hamster ovary cells transfected with the human alpha(1A-adrenergic receptor were incubated with patient alpha(1-AAB and rabbit alpha(1-AB and the activation of signal transduction pathways was investigated by Western blot, confocal laser scanning microscopy, and gene expression. We found that phospholipase A2 group IIA (PLA2-IIA and L-type calcium channel (Cacna1c genes were upregulated in cardiomyocytes and VSMC after stimulation with both purified antibodies. We showed that patient alpha(1-AAB and rabbit alpha(1-AB result in protein kinase C alpha activation and transient extracellular-related kinase (EKR1/2 phosphorylation. Finally, we showed that the antibodies exert acute effects on intracellular Ca(2+ in cardiomyocytes and induce mesentery artery segment contraction. CONCLUSIONS/SIGNIFICANCE: Patient alpha(1-AAB and rabbit alpha(1-AB can induce signaling pathways important for hypertension and cardiac remodeling. Our data provide evidence for a potential clinical relevance for alpha(1-AAB in hypertensive patients, and the notion of immunity as a possible cause of hypertension.

  18. Structure and mechanism of calmodulin binding to a signaling sphingolipid reveal new aspects of lipid-protein interactions

    OpenAIRE

    Kovacs, Erika; Harmat, Veronika; Tóth, Judit; Vértessy, Beáta G.; Módos, Károly; Kardos, József; Liliom, Károly

    2010-01-01

    Lipid-protein interactions are rarely characterized at a structural molecular level due to technical difficulties; however, the biological significance of understanding the mechanism of these interactions is outstanding. In this report, we provide mechanistic insight into the inhibitory complex formation of the lipid mediator sphingosylphosphorylcholine with calmodulin, the most central and ubiquitous regulator protein in calcium signaling. We applied crystallographic, thermodynamic, kinetic,...

  19. Conversion of agonist site to metal-ion chelator site in the β2-adrenergic receptor

    OpenAIRE

    Elling, Christian E.; Thirstrup, Kenneth; Holst, Birgitte; Thue W. Schwartz

    1999-01-01

    Previously metal-ion sites have been used as structural and functional probes in seven transmembrane receptors (7TM), but as yet all the engineered sites have been inactivating. Based on presumed agonist interaction points in transmembrane III (TM-III) and -VII of the β2-adrenergic receptor, in this paper we construct an activating metal-ion site between the amine-binding Asp-113 in TM-III—or a His residue introduced at this position—and a Cys residue substituted for Asn-312 in TM-VII. No inc...

  20. GPCR engineering yields high-resolution structural insights into beta2-adrenergic receptor function

    DEFF Research Database (Denmark)

    Rosenbaum, Daniel M; Cherezov, Vadim; Hanson, Michael A;

    2007-01-01

    The beta2-adrenergic receptor (beta2AR) is a well-studied prototype for heterotrimeric guanine nucleotide-binding protein (G protein)-coupled receptors (GPCRs) that respond to diffusible hormones and neurotransmitters. To overcome the structural flexibility of the beta2AR and to facilitate its...... reported high-resolution structure of beta2AR-T4L provides insights into inverse-agonist binding and the structural changes required to accommodate catecholamine agonists. Amino acids known to regulate receptor function are linked through packing interactions and a network of hydrogen bonds, suggesting a...

  1. The Molecular Interaction of CAR and JAML Recruits the Central Cell Signal Transducer PI3K

    Energy Technology Data Exchange (ETDEWEB)

    Verdino, Petra; Witherden, Deborah A.; Havran, Wendy L.; Wilson, Ian A. (Scripps)

    2010-11-15

    Coxsackie and adenovirus receptor (CAR) is the primary cellular receptor for group B coxsackieviruses and most adenovirus serotypes and plays a crucial role in adenoviral gene therapy. Recent discovery of the interaction between junctional adhesion molecule-like protein (JAML) and CAR uncovered important functional roles in immunity, inflammation, and tissue homeostasis. Crystal structures of JAML ectodomain (2.2 angstroms) and its complex with CAR (2.8 angstroms) reveal an unusual immunoglobulin-domain assembly for JAML and a charged interface that confers high specificity. Biochemical and mutagenesis studies illustrate how CAR-mediated clustering of JAML recruits phosphoinositide 3-kinase (P13K) to a JAML intracellular sequence motif as delineated for the {alpha}{beta} T cell costimulatory receptor CD28. Thus, CAR and JAML are cell signaling receptors of the immune system with implications for asthma, cancer, and chronic nonhealing wounds.

  2. Information theory in systems biology. Part II: protein-protein interaction and signaling networks.

    Science.gov (United States)

    Mousavian, Zaynab; Díaz, José; Masoudi-Nejad, Ali

    2016-03-01

    By the development of information theory in 1948 by Claude Shannon to address the problems in the field of data storage and data communication over (noisy) communication channel, it has been successfully applied in many other research areas such as bioinformatics and systems biology. In this manuscript, we attempt to review some of the existing literatures in systems biology, which are using the information theory measures in their calculations. As we have reviewed most of the existing information-theoretic methods in gene regulatory and metabolic networks in the first part of the review, so in the second part of our study, the application of information theory in other types of biological networks including protein-protein interaction and signaling networks will be surveyed. PMID:26691180

  3. Nutritional and signal interactions in a tumor-host social relationship

    Institute of Scientific and Technical Information of China (English)

    LOU Mei-qing; HUANG Qiang; ZHAO Yao-dong

    2011-01-01

    @@ To the Editor: We read with great enthusiasm an interesting and exciting viewpoint by Lin,1 who believed that the core relationship between a tumor and its host microenvironment is the nutritional and signal interactions between cancer stem cells and endothelial cells.Our group is long-termly engaged in the study of glioma and glioma stem cell, and we also put much concern upon the research of tumor invasion. One of the most marked bionomics of malignant gliomas is invasion, which leads to the spreading of tumor masses along nerve fibers and blood vessels, and even distant dissemination.However, a benign tumor grows only by expansive growth.Therefore, it is of a quite benefit to illuminate or even partly illuminate the "tumor-host social (THS) relationship".

  4. Distal Hydrogen-bonding Interactions in Ligand Sensing and Signaling by Mycobacterium tuberculosis DosS.

    Science.gov (United States)

    Basudhar, Debashree; Madrona, Yarrow; Yukl, Erik T; Sivaramakrishnan, Santhosh; Nishida, Clinton R; Moënne-Loccoz, Pierre; Ortiz de Montellano, Paul R

    2016-07-29

    Mycobacterium tuberculosis DosS is critical for the induction of M. tuberculosis dormancy genes in response to nitric oxide (NO), carbon monoxide (CO), or hypoxia. These environmental stimuli, which are sensed by the DosS heme group, result in autophosphorylation of a DosS His residue, followed by phosphotransfer to an Asp residue of the response regulator DosR. To clarify the mechanism of gaseous ligand recognition and signaling, we investigated the hydrogen-bonding interactions of the iron-bound CO and NO ligands by site-directed mutagenesis of Glu-87 and His-89. Autophosphorylation assays and molecular dynamics simulations suggest that Glu-87 has an important role in ligand recognition, whereas His-89 is essential for signal transduction to the kinase domain, a process for which Arg-204 is important. Mutation of Glu-87 to Ala or Gly rendered the protein constitutively active as a kinase, but with lower autophosphorylation activity than the wild-type in the Fe(II) and the Fe(II)-CO states, whereas the E87D mutant had little kinase activity except for the Fe(II)-NO complex. The H89R mutant exhibited attenuated autophosphorylation activity, although the H89A and R204A mutants were inactive as kinases, emphasizing the importance of these residues in communication to the kinase core. Resonance Raman spectroscopy of the wild-type and H89A mutant indicates the mutation does not alter the heme coordination number, spin state, or porphyrin deformation state, but it suggests that interdomain interactions are disrupted by the mutation. Overall, these results confirm the importance of the distal hydrogen-bonding network in ligand recognition and communication to the kinase domain and reveal the sensitivity of the system to subtle differences in the binding of gaseous ligands. PMID:27235395

  5. Cannabinoid receptor-interacting protein Crip1a modulates CB1 receptor signaling in mouse hippocampus.

    Science.gov (United States)

    Guggenhuber, Stephan; Alpar, Alan; Chen, Rongqing; Schmitz, Nina; Wickert, Melanie; Mattheus, Tobias; Harasta, Anne E; Purrio, Martin; Kaiser, Nadine; Elphick, Maurice R; Monory, Krisztina; Kilb, Werner; Luhmann, Heiko J; Harkany, Tibor; Lutz, Beat; Klugmann, Matthias

    2016-05-01

    The cannabinoid type 1 receptor (Cnr1, CB1R) mediates a plethora of physiological functions in the central nervous system as a presynaptic modulator of neurotransmitter release. The recently identified cannabinoid receptor-interacting protein 1a (Cnrip1a, CRIP1a) binds to the C-terminal domain of CB1R, a region known to be important for receptor desensitization and internalization. Evidence that CRIP1a and CB1R interact in vivo has been reported, but the neuroanatomical distribution of CRIP1a is unknown. Moreover, while alterations of hippocampal CRIP1a levels following limbic seizures indicate a role in controlling excessive neuronal activity, the physiological function of CRIP1a in vivo has not been investigated. In this study, we analyzed the spatial distribution of CRIP1a in the hippocampus and examined CRIP1a as a potential modulator of CB1R signaling. We found that Cnrip1a mRNA is co-expressed with Cnr1 mRNA in pyramidal neurons and interneurons of the hippocampal formation. CRIP1a protein profiles were largely segregated from CB1R profiles in mossy cell terminals but not in hippocampal CA1 region. CB1R activation induced relocalization to close proximity with CRIP1a. Adeno-associated virus-mediated overexpression of CRIP1a specifically in the hippocampus revealed that CRIP1a modulates CB1R activity by enhancing cannabinoid-induced G protein activation. CRIP1a overexpression extended the depression of excitatory currents by cannabinoids in pyramidal neurons of the hippocampus and diminished the severity of chemically induced acute epileptiform seizures. Collectively, our data indicate that CRIP1a enhances hippocampal CB1R signaling in vivo. PMID:25772509

  6. FOXP2 drives neuronal differentiation by interacting with retinoic acid signaling pathways

    Directory of Open Access Journals (Sweden)

    Jeroen Middelbeek

    2014-09-01

    Full Text Available FOXP2 was the first gene shown to cause a Mendelian form of speech and language disorder. Although developmentally expressed in many organs, loss of a single copy of FOXP2 leads to a phenotype that is largely restricted to orofacial impairment during articulation and linguistic processing deficits. Why perturbed FOXP2 function affects specific aspects of the developing brain remains elusive. We investigated the role of FOXP2 in neuronal differentiation and found that FOXP2 drives molecular changes consistent with neuronal differentiation in a human model system. We identified a network of FOXP2 regulated genes related to retinoic acid signaling and neuronal differentiation. FOXP2 also produced phenotypic changes associated with neuronal differentiation including increased neurite outgrowth and reduced migration. Crucially, cells expressing FOXP2 displayed increased sensitivity to retinoic acid exposure. This suggests a mechanism by which FOXP2 may be able to increase the cellular differentiation response to environmental retinoic acid cues for specific subsets of neurons in the brain. These data demonstrate that FOXP2 promotes neuronal differentiation by interacting with the retinoic acid signaling pathway and regulates key processes required for normal circuit formation such as neuronal migration and neurite outgrowth. In this way, FOXP2, which is found only in specific subpopulations of neurons in the brain, may drive precise neuronal differentiation patterns and/or control localization and connectivity of these FOXP2 positive cells.

  7. Translational arrest by a prokaryotic signal recognition particle is mediated by RNA interactions.

    Science.gov (United States)

    Beckert, Bertrand; Kedrov, Alexej; Sohmen, Daniel; Kempf, Georg; Wild, Klemens; Sinning, Irmgard; Stahlberg, Henning; Wilson, Daniel N; Beckmann, Roland

    2015-10-01

    The signal recognition particle (SRP) recognizes signal sequences of nascent polypeptides and targets ribosome-nascent chain complexes to membrane translocation sites. In eukaryotes, translating ribosomes are slowed down by the Alu domain of SRP to allow efficient targeting. In prokaryotes, however, little is known about the structure and function of Alu domain-containing SRPs. Here, we report a complete molecular model of SRP from the Gram-positive bacterium Bacillus subtilis, based on cryo-EM. The SRP comprises two subunits, 6S RNA and SRP54 or Ffh, and it facilitates elongation slowdown similarly to its eukaryotic counterpart. However, protein contacts with the small ribosomal subunit observed for the mammalian Alu domain are substituted in bacteria by RNA-RNA interactions of 6S RNA with the α-sarcin-ricin loop and helices H43 and H44 of 23S rRNA. Our findings provide a structural basis for cotranslational targeting and RNA-driven elongation arrest in prokaryotes. PMID:26344568

  8. A high-performance approach to minimizing interactions between inbound and outbound signals in helmet

    Science.gov (United States)

    Zhou, Jin; Ayhan, Bulent; Kwan, Chiman; Sands, O. S.

    2012-06-01

    NASA is developing a new generation of audio system for astronauts. The idea is to use directional speakers and microphone arrays. However, since the helmet environment is very reverberant, the inbound signals in the directional speaker may still enter the outbound path (microphone array), resulting in an annoying positive feedback loop. To improve the communication quality between astronauts, it is necessary to develop a digital filtering system to minimize the interactions between inbound and outbound signals. In this paper, we will present the following results. First, we set up experiments under three scenarios: office, bowl, and helmet. Experiments were then performed. Second, 3 adaptive filters known as normalized least mean square (NLMS), affine projection (AP), and recursive least square (RLS) were applied to the experimental data. We also developed a new frequency domain adaptive filter called FDAFSS (frequency domain adaptive filter (FDAF) with spectral subtraction (SS)), which is a combination of FDAF and SS. FDAFSS was compared with LMS, AP, RLS, FDAF, and SS filters and FDAFSS yielded better performance in terms of perceptual speech quality (PESQ). Moreover, FDAFSS is fast and can yield uniform convergence across different frequency bands.

  9. Adrenergic Metabolic and Hemodynamic Effects of Octopamine in the Liver

    Directory of Open Access Journals (Sweden)

    Adelar Bracht

    2013-11-01

    Full Text Available The fruit extracts of Citrus aurantium (bitter orange are traditionally used as weight-loss products and as appetite suppressants. A component of these extracts is octopamine, which is an adrenergic agent. Weight-loss and adrenergic actions are always related to metabolic changes and this work was designed to investigate a possible action of octopamine on liver metabolism. The isolated perfused rat liver was used to measure catabolic and anabolic pathways and hemodynamics. Octopamine increased glycogenolysis, glycolysis, oxygen uptake, gluconeogenesis and the portal perfusion pressure. Octopamine also accelerated the oxidation of exogenous fatty acids (octanoate and oleate, as revealed by the increase in 14CO2 production derived from 14C labeled precursors. The changes in glycogenolysis, oxygen uptake and perfusion pressure were almost completely abolished by α1-adrenergic antagonists. The same changes were partly sensitive to the β-adrenergic antagonist propranolol. It can be concluded that octopamine accelerates both catabolic and anabolic processes in the liver via adrenergic stimulation. Acceleration of oxygen uptake under substrate-free perfusion conditions also means acceleration of the oxidation of endogenous fatty acids, which are derived from lipolysis. All these effects are compatible with an overall stimulating effect of octopamine on metabolism, which is compatible with its reported weight-loss effects in experimental animals.

  10. Adrenergic metabolic and hemodynamic effects of octopamine in the liver.

    Science.gov (United States)

    de Oliveira, Andrea Luiza; de Paula, Mariana Nascimento; Comar, Jurandir Fernando; Vilela, Vanessa Rodrigues; Peralta, Rosane Marina; Bracht, Adelar

    2013-01-01

    The fruit extracts of Citrus aurantium (bitter orange) are traditionally used as weight-loss products and as appetite suppressants. A component of these extracts is octopamine, which is an adrenergic agent. Weight-loss and adrenergic actions are always related to metabolic changes and this work was designed to investigate a possible action of octopamine on liver metabolism. The isolated perfused rat liver was used to measure catabolic and anabolic pathways and hemodynamics. Octopamine increased glycogenolysis, glycolysis, oxygen uptake, gluconeogenesis and the portal perfusion pressure. Octopamine also accelerated the oxidation of exogenous fatty acids (octanoate and oleate), as revealed by the increase in ¹⁴CO₂ production derived from ¹⁴C labeled precursors. The changes in glycogenolysis, oxygen uptake and perfusion pressure were almost completely abolished by α₁-adrenergic antagonists. The same changes were partly sensitive to the β-adrenergic antagonist propranolol. It can be concluded that octopamine accelerates both catabolic and anabolic processes in the liver via adrenergic stimulation. Acceleration of oxygen uptake under substrate-free perfusion conditions also means acceleration of the oxidation of endogenous fatty acids, which are derived from lipolysis. All these effects are compatible with an overall stimulating effect of octopamine on metabolism, which is compatible with its reported weight-loss effects in experimental animals. PMID:24196353

  11. Adrenergic Receptors and Metabolism: Role in development of cardiovascular disease

    Directory of Open Access Journals (Sweden)

    Michele eCiccarelli

    2013-10-01

    Full Text Available Activation of the adrenergic system has a profound effects on metabolism. Increased circulating catecholamine and activation of the different adrenergic receptors deployed in the various organs produce important metabolic responses which include: 1 increased lipolysis and elevated levels of fatty acids in plasma, 2 increased gluconeogenesis by the liver to provide substrate for the brain and 3 moderate inhibition of insulin release by the pancreas to conserve glucose and to shift fuel metabolism of muscle in the direction of fatty acid oxidation. These physiological responses, typical of the stress conditions, are demonstrated to be detrimental for the functioning of different organs like the cardiac muscle when they become chronic. Indeed, a common feature of many pathological conditions involving over-activation of the adrenergic system is the development of metabolic alterations which can include insulin resistance, altered glucose and lipid metabolism and mitochondrial dysfunction. These patterns are involved with a variably extent among the different pathologies , however they are in general strictly correlated to the level of activation of the adrenergic system. Here we will review the effects of the different adrenergic receptors subtypes on the metabolic variation observed in important disease like Heart Failure.

  12. Functional interactions and signaling properties of mammalian DNA mismatch repair proteins.

    Science.gov (United States)

    Bellacosa, A

    2001-11-01

    The mismatch repair (MMR) system promotes genomic fidelity by repairing base-base mismatches, insertion-deletion loops and heterologies generated during DNA replication and recombination. This function is critically dependent on the assembling of multimeric complexes involved in mismatch recognition and signal transduction to downstream repair events. In addition, MMR proteins coordinate a complex network of physical and functional interactions that mediate other DNA transactions, such as transcription-coupled repair, base excision repair and recombination. MMR proteins are also involved in activation of cell cycle checkpoint and induction of apoptosis when DNA damage overwhelms a critical threshold. For this reason, they play a role in cell death by alkylating agents and other chemotherapeutic drugs, including cisplatin. Inactivation of MMR genes in hereditary and sporadic cancer is associated with a mutator phenotype and inhibition of apoptosis. In the future, a deeper understanding of the molecular mechanisms and functional interactions of MMR proteins will lead to the development of more effective cancer prevention and treatment strategies. PMID:11687886

  13. Reversible oxidation of phosphatase and tensin homolog (PTEN) alters its interactions with signaling and regulatory proteins.

    Science.gov (United States)

    Verrastro, Ivan; Tveen-Jensen, Karina; Woscholski, Rudiger; Spickett, Corinne M; Pitt, Andrew R

    2016-01-01

    Phosphatase and tensin homolog (PTEN) is involved in a number of different cellular processes including metabolism, apoptosis, cell proliferation and survival. It is a redox-sensitive dual-specificity protein phosphatase that acts as a tumor suppressor by negatively regulating the PI3K/Akt pathway. While direct evidence of redox regulation of PTEN downstream signaling has been reported, the effect of PTEN redox status on its protein-protein interactions is poorly understood. PTEN-GST in its reduced and a DTT-reversible H2O2-oxidized form was immobilized on a glutathione-sepharose support and incubated with cell lysate to capture interacting proteins. Captured proteins were analyzed by LC-MSMS and comparatively quantified using label-free methods. 97 Potential protein interactors were identified, including a significant number that are novel. The abundance of fourteen interactors was found to vary significantly with the redox status of PTEN. Altered binding to PTEN was confirmed by affinity pull-down and Western blotting for Prdx1, Trx, and Anxa2, while DDB1 was validated as a novel interactor with unaltered binding. These results suggest that the redox status of PTEN causes a functional variation in the PTEN interactome. The resin capture method developed had distinct advantages in that the redox status of PTEN could be directly controlled and measured. PMID:26561776

  14. Signal interactions and interference in insect choruses: singing and listening in the social environment.

    Science.gov (United States)

    Greenfield, Michael D

    2015-01-01

    Acoustic insects usually sing amidst conspecifics, thereby creating a social environment-the chorus-in which individuals communicate, find mates, and avoid predation. A temporal structure may arise in a chorus because of competitive and cooperative factors that favor certain signal interactions between neighbors. This temporal structure can generate significant acoustic interference among singers that pose problems for communication, mate finding, and predator detection. Acoustic insects can reduce interference by means of selective attention to only their nearest neighbors and by alternating calls with neighbors. Alternatively, they may synchronize, allowing them to preserve call rhythm and also to listen for predators during the silent intervals between calls. Moreover, males singing in choruses may benefit from reduced per capita predation risk as well as enhanced vigilance. They may also enjoy greater per capita attractiveness to females, particularly in the case of synchronous choruses. In many cases, however, the overall temporal structure of the chorus is only an emergent property of simple, pairwise interactions between neighbors. Nonetheless, the chorus that emerges can impose significant selection pressure on the singing of those individual males. Thus, feedback loops may occur and potentially influence traits at both individual and group levels in a chorus. PMID:25236356

  15. Chromosomal organization of adrenergic receptor genes

    International Nuclear Information System (INIS)

    The adrenergic receptors (ARs) (subtypes α1, α2, β1, and β2) are a prototypic family of guanine nucleotide binding regulatory protein-coupled receptors that mediate the physiological effects of the hormone epinephrine and the neurotransmitter norepinephrine. The authors have previously assigned the genes for β2-and α2-AR to human chromosomes 5 and 10, respectively. By Southern analysis of somatic cell hybrids and in situ chromosomal hybridization, they have now mapped the α1-AR gene to chromosome 5q32→q34, the same position as β2-AR, and the β1-AR gene to chromosome 10q24→q26, the region where α2-AR, is located. In mouse, both α2-and β1-AR genes were assigned to chromosome 19, and the α1-AR locus was localized to chromosome 11. Pulsed field gel electrophoresis has shown that the α1-and β2-AR genes in humans are within 300 kilobases (kb) and the distance between the α2- and β1-AR genes is <225 kb. The proximity of these two pairs of AR genes and the sequence similarity that exists among all the ARs strongly suggest that they are evolutionarily related. Moreover, they likely arose from a common ancestral receptor gene and subsequently diverged through gene duplication and chromosomal duplication to perform their distinctive roles in mediation the physiological effects of catecholamines. The AR genes thus provide a paradigm for understanding the evolution of such structurally conserved yet functionally divergent families off receptor molecules

  16. Signal processing by T-type calcium channel interactions in the cerebellum

    Science.gov (United States)

    Engbers, Jordan D. T.; Anderson, Dustin; Zamponi, Gerald W.; Turner, Ray W.

    2013-01-01

    T-type calcium channels of the Cav3 family are unique among voltage-gated calcium channels due to their low activation voltage, rapid inactivation, and small single channel conductance. These special properties allow Cav3 calcium channels to regulate neuronal processing in the subthreshold voltage range. Here, we review two different subthreshold ion channel interactions involving Cav3 channels and explore the ability of these interactions to expand the functional roles of Cav3 channels. In cerebellar Purkinje cells, Cav3 and intermediate conductance calcium-activated potassium (IKCa) channels form a novel complex which creates a low voltage-activated, transient outward current capable of suppressing temporal summation of excitatory postsynaptic potentials (EPSPs). In large diameter neurons of the deep cerebellar nuclei, Cav3-mediated calcium current (IT) and hyperpolarization-activated cation current (IH) are activated during trains of inhibitory postsynaptic potentials. These currents have distinct, and yet synergistic, roles in the subthreshold domain with IT generating a rebound burst and IH controlling first spike latency and rebound spike precision. However, by shortening the membrane time constant the membrane returns towards resting value at a faster rate, allowing IH to increase the efficacy of IT and increase the range of burst frequencies that can be generated. The net effect of Cav3 channels thus depends on the channels with which they are paired. When expressed in a complex with a KCa channel, Cav3 channels reduce excitability when processing excitatory inputs. If functionally coupled with an HCN channel, the depolarizing effect of Cav3 channels is accentuated, allowing for efficient inversion of inhibitory inputs to generate a rebound burst output. Therefore, signal processing relies not only on the activity of individual subtypes of channels but also on complex interactions between ion channels whether based on a physical complex or by indirect

  17. Elements toward novel therapeutic targeting of the adrenergic system.

    Science.gov (United States)

    Ghanemi, Abdelaziz; Hu, Xintian

    2015-02-01

    Adrenergic receptors belong to the family of the G protein coupled receptors that represent important targets in the modern pharmacotherapies. Studies on different physiological and pathophysiological properties of the adrenergic system have led to novel evidences and theories that suggest novel possible targeting of such system in a variety of pathologies and disorders, even beyond the classical known therapeutic possibilities. Herein, those advances have been illustrated with selected concepts and different examples. Furthermore, we illustrated the applications and the therapeutic implications that such findings and advances might have in the contexts of experimental pharmacology, therapeutics and clinic. We hope that the content of this work will guide researches devoted to the adrenergic aspects that combine neurosciences with pharmacology. PMID:25481798

  18. Regulatory Networks and Complex Interactions between the Insulin and Angiotensin II Signalling Systems: Models and Implications for Hypertension and Diabetes

    OpenAIRE

    Çizmeci, Deniz; Arkun, Yaman

    2013-01-01

    Regulatory Networks and Complex Interactions between the Insulin and Angiotensin II Signalling Systems: Models and Implications for Hypertension and Diabetes Deniz Cizmeci, Yaman Arkun* Department of Chemical and Biological Engineering, Koc University, Istanbul, Turkey Abstract The cross-talk between insulin and angiotensin II signalling pathways plays a significant role in the co-occurrence of diabetes and hypertension. We developed a mathematical model of the system of ...

  19. Wnt/β-Catenin and Retinoic Acid Receptor Signaling Pathways Interact to Regulate Chondrocyte Function and Matrix Turnover*

    OpenAIRE

    Yasuhara, Rika; Yuasa, Takahito; Williams, Julie A.; Byers, Stephen W.; Shah, Salim; Pacifici, Maurizio; Iwamoto, Masahiro; Enomoto-Iwamoto, Motomi

    2009-01-01

    Activation of the Wnt/β-catenin and retinoid signaling pathways is known to tilt cartilage matrix homeostasis toward catabolism. Here, we investigated possible interactions between these pathways. We found that all-trans-retinoic acid (RA) treatment of mouse epiphyseal chondrocytes in culture did increase Wnt/β-catenin signaling in the absence or presence of exogenous Wnt3a, as revealed by lymphoid enhancer factor/T-cell factor/β-catenin reporter activity and β-catenin nuclear accumulation. T...

  20. Alpha-adrenergic receptors in rat skeletal muscle

    DEFF Research Database (Denmark)

    Rattigan, S; Appleby, G J; Edwards, S J;

    1986-01-01

    Sarcolemma-enriched preparations from muscles rich in slow oxidative red fibres contained specific binding sites for the alpha 1 antagonist, prazosin (e.g. soleus Kd 0.13 nM, Bmax 29 fmol/mg protein). Binding sites for prazosin were almost absent from white muscle. Displacement of prazosin bindin...... adrenergic receptors are present on the sarcolemma of slow oxidative red fibres of rat skeletal muscle. The presence provides the mechanistic basis for apparent alpha-adrenergic effects to increase glucose and oxygen uptake in perfused rat hindquarter....

  1. DMPD: Signal transduction pathways mediated by the interaction of CpG DNA withToll-like receptor 9. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 14751759 Signal transduction pathways mediated by the interaction of CpG DNA withTo...;16(1):17-22. (.png) (.svg) (.html) (.csml) Show Signal transduction pathways mediated by the interaction of... CpG DNA withToll-like receptor 9. PubmedID 14751759 Title Signal transduction pa

  2. Anti-Inflammatory Prostanoids: Focus on the Interactions between Electrophile Signaling and Resolution of Inflammation

    Directory of Open Access Journals (Sweden)

    Beatriz Díez-Dacal

    2010-01-01

    Full Text Available Prostanoids are products of cyclooxygenase biosynthetic pathways and constitute a family of lipidic mediators of widely diverse structures and biological actions. Besides their known proinflammatory role, numerous works have revealed the anti-inflammatory effects of various prostanoids and established their role in the resolution of inflammation. Among these, prostaglandins with cyclopentenone structure (cyPG are electrophilic lipids that may act through various mechanisms, including the activation of nuclear and membrane receptors and, importantly, direct addition to protein cysteine residues and modification of protein function. Due to their ability to influence cysteine modification–mediated signaling, cyPG may play a critical role in the interplay between redox and inflammatory signaling pathways. Moreover, cellular redox status modulates cyPG addition to proteins; thus, a reciprocal regulation exists between these two factors. After initial controversy, it is becoming clear that endogenous cyPG are generated at concentrations sufficient to promote inflammatory resolution. As for other prostanoids, cyPG effects are highly dependent on context factors and they may exert pro- or anti-inflammatory actions in a cell type–dependent manner, or even biphasic or dual actions in a given cell type or tissue. In light of the growing number of cyPG protein targets identified, cyPG resemble other pleiotropic mediators acting through protein modification. However, their complex structure results in an inter- and intramolecular selectivity of the residues being modified, thus opening the way for structure-activity and drug discovery studies. Detailed characterization of cyPG interactions with cellular proteins will help us to understand their mechanism of action fully and establish their therapeutic potential in inflammation.

  3. Divergence of acoustic signals in a widely distributed frog: relevance of inter-male interactions.

    Science.gov (United States)

    Velásquez, Nelson A; Opazo, Daniel; Díaz, Javier; Penna, Mario

    2014-01-01

    Divergence of acoustic signals in a geographic scale results from diverse evolutionary forces acting in parallel and affecting directly inter-male vocal interactions among disjunct populations. Pleurodema thaul is a frog having an extensive latitudinal distribution in Chile along which males' advertisement calls exhibit an important variation. Using the playback paradigm we studied the evoked vocal responses of males of three populations of P. thaul in Chile, from northern, central and southern distribution. In each population, males were stimulated with standard synthetic calls having the acoustic structure of local and foreign populations. Males of both northern and central populations displayed strong vocal responses when were confronted with the synthetic call of their own populations, giving weaker responses to the call of the southern population. The southern population gave stronger responses to calls of the northern population than to the local call. Furthermore, males in all populations were stimulated with synthetic calls for which the dominant frequency, pulse rate and modulation depth were varied parametrically. Individuals from the northern and central populations gave lower responses to a synthetic call devoid of amplitude modulation relative to stimuli containing modulation depths between 30-100%, whereas the southern population responded similarly to all stimuli in this series. Geographic variation in the evoked vocal responses of males of P. thaul underlines the importance of inter-male interactions in driving the divergence of the acoustic traits and contributes evidence for a role of intra-sexual selection in the evolution of the sound communication system of this anuran. PMID:24489957

  4. Plasma membrane lipid–protein interactions affect signaling processes in sterol-biosynthesis mutants in Arabidopsis thaliana

    OpenAIRE

    Zauber, Henrik; Burgos, Asdrubal; Garapati, Prashanth; Schulze, Waltraud X.

    2014-01-01

    The plasma membrane is an important organelle providing structure, signaling and transport as major biological functions. Being composed of lipids and proteins with different physicochemical properties, the biological functions of membranes depend on specific protein-protein and protein-lipid interactions. Interactions of proteins with their specific sterol and lipid environment were shown to be important factors for protein recruitment into sub-compartmental structures of the plasma membrane...

  5. Beyond the Canon: Within-Plant and Population-Level Heterogeneity in Jasmonate Signaling Engaged by Plant-Insect Interactions

    OpenAIRE

    Dapeng Li; Baldwin, Ian T; Emmanuel Gaquerel

    2016-01-01

    Plants have evolved sophisticated communication and defense systems with which they interact with insects. Jasmonates are synthesized from the oxylipin pathway and act as pivotal cellular orchestrators of many of the metabolic and physiological processes that mediate these interactions. Many of these jasmonate-dependent responses are tissue-specific and translate from modulations of the canonical jasmonate signaling pathway. Here we provide a short overview of within-plant heterogeneities in ...

  6. Cytotoxic effects of TBBPA and its interactions with signalling pathways in mammalian cells

    Energy Technology Data Exchange (ETDEWEB)

    Strack, S.; Sander, M.; Detzel, T.; Krug, H.F. [Forschungszentrum Kalsruhe (Germany). Inst. fuer Toxikologie und Genetik; Kuch, B. [Stuttgart Univ. (Germany). Inst. fuer Siedlungswasserbau und Wasserguetewirtschaft

    2004-09-15

    Toxic effects of TBBPA published so far have been recently reviewed by Birnbaum and Staskal The LC{sub 50} indicating the acute toxicity in vivo due to a single oral dose in mice and rats were higher than 4 to 5 g/kg, however, systematically long-term in vivo studies are missing. Weak estrogenic effects have been described by Meerts et al., demonstrating for TBBPA less pronounced activity than for other brominated bisphenols. The same group described competitive interactions in vitro with human transthyretin (TTR). In binding affinity assays they could demonstrate that TBBPA binds to TTR ten times more effectively than T{sub 4}. However, the available toxicological data are still extremely limited. For a comprehensive risk assessment valid data are insufficient. The aim of this study was to evaluate possible cytotoxic effects, and to gain insights into the underlying molecular mechanisms respectively the corresponding cellular signalling processes. This approach would allow to identify sensitive end-points of cellular toxicological responses. For these molecular toxicological investigations established cell lines should be used, in order to have a suitable model for appropriate toxicological studies.

  7. Wnt isoform-specific interactions with coreceptor specify inhibition or potentiation of signaling by LRP6 antibodies.

    Science.gov (United States)

    Gong, Yan; Bourhis, Eric; Chiu, Cecilia; Stawicki, Scott; DeAlmeida, Venita I; Liu, Bob Y; Phamluong, Khanhky; Cao, Tim C; Carano, Richard A D; Ernst, James A; Solloway, Mark; Rubinfeld, Bonnee; Hannoush, Rami N; Wu, Yan; Polakis, Paul; Costa, Mike

    2010-01-01

    β-Catenin-dependent Wnt signaling is initiated as Wnt binds to both the receptor FZD and coreceptor LRP5/6, which then assembles a multimeric complex at the cytoplasmic membrane face to recruit and inactivate the kinase GSK3. The large number and sequence diversity of Wnt isoforms suggest the possibility of domain-specific ligand-coreceptor interactions, and distinct binding sites on LRP6 for Wnt3a and Wnt9b have recently been identified in vitro. Whether mechanistically different interactions between Wnts and coreceptors might mediate signaling remains to be determined. It is also not clear whether coreceptor homodimerization induced extracellularly can activate Wnt signaling, as is the case for receptor tyrosine kinases. We generated monoclonal antibodies against LRP6 with the unexpected ability to inhibit signaling by some Wnt isoforms and potentiate signaling by other isoforms. In cell culture, two antibodies characterized further show reciprocal activities on most Wnts, with one antibody antagonizing and the other potentiating. We demonstrate that these antibodies bind to different regions of LRP6 protein, and inhibition of signaling results from blocking Wnt binding. Antibody-mediated dimerization of LRP6 can potentiate signaling only when a Wnt isoform is also able to bind the complex, presumably recruiting FZD. Endogenous autocrine Wnt signaling in different tumor cell lines can be either antagonized or enhanced by the LRP6 antibodies, indicating expression of different Wnt isoforms. As anticipated from the roles of Wnt signaling in cancer and bone development, antibody activities can also be observed in mice for inhibition of tumor growth and in organ culture for enhancement of bone mineral density. Collectively, our results indicate that separate binding sites for different subsets of Wnt isoforms determine the inhibition or potentiation of signaling conferred by LRP6 antibodies. This complexity of coreceptor-ligand interactions may allow for

  8. The essential role for aromatic cluster in the β3 adrenergic receptor

    Institute of Scientific and Technical Information of China (English)

    Hai-yan CAI; Zhi-jian XU; Jie TANG; Ying SUN; Kai-xian CHEN; He-yao WANG; Wei-liang ZHU

    2012-01-01

    Aim:To explore the function of the conserved aromatic cluster F2135.47,F3086.51,and F3096.52 in human β3 adrenergic receptor (hβ3AR).Methods:Point mutation technology was used to produce plasmid mutations of hβ3AR.HEK-293 cells were transiently co-transfected with the hβ3AR (wild-type or mutant) plasmids and luciferase reporter vector pCRE-luc.The expression levels of hβ3AR in the cells were determined by Western blot analysis.The constitutive signalling and the signalling induced by the β3AR selective agonist,BRL (BRL37344),were then evaluated.To further explore the interaction mechanism between BRL and β3AR,a three-dimensional complex model of β3AR and BRL was constructed by homology modelling and molecular docking.Results:For F3086.51,Ala and Leu substitution significantly decreased the constitutive activities of β3AR to approximately 10% of that for the wild-type receptor.However,both the potency and maximal efficacy were unchanged by Ala substitution.In the F3086.51L construct,the EC50 value manifested as a "right shift" of approximately two orders of magnitude with an increased Emax.Impressively,the molecular pharmacological phenotype was similar to the wild-type receptor for the introduction of Tyr at position 3086.51,though the EC50 value increased by approximately five-fold for the mutant.For F3096.52,the constitutive signalling for both F3096.52A and F3096.52L constructs were strongly impaired.In the F3096.52A construct,BRL-stimulated signalling showed a normal Emax but reduced potency.Leu substitution of F3096.52 reduced both the Emax and potency.When F3096.52 was mutated to Tyr,the constitutive activity was decreased approximately three-fold,and BRL-stimulated signalling was significantly impaired.Furthermore,the double mutant (F3086.51A_F3096 52A) caused the total loss of β3AR function.The predicted binding mode between β3AR and BRL revealed that both F3086.51 and F3096.52 were in the BRL binding pocket of β3AR,while F2135.47 and W3056

  9. Beyond the Canon: Within-Plant and Population-Level Heterogeneity in Jasmonate Signaling Engaged by Plant-Insect Interactions.

    Science.gov (United States)

    Li, Dapeng; Baldwin, Ian T; Gaquerel, Emmanuel

    2016-01-01

    Plants have evolved sophisticated communication and defense systems with which they interact with insects. Jasmonates are synthesized from the oxylipin pathway and act as pivotal cellular orchestrators of many of the metabolic and physiological processes that mediate these interactions. Many of these jasmonate-dependent responses are tissue-specific and translate from modulations of the canonical jasmonate signaling pathway. Here we provide a short overview of within-plant heterogeneities in jasmonate signaling and dependent responses in the context of plant-insect interactions as illuminated by examples from recent work with the ecological model, Nicotiana attenuata. We then discuss means of manipulating jasmonate signaling by creating tissue-specific jasmonate sinks, and the micrografting of different transgenic plants. The metabolic phenotyping of these manipulations provides an integrative understanding of the functional significance of deviations from the canonical model of this hormonal pathway. Additionally, natural variation in jasmonate biosynthesis and signaling both among and within species can explain polymorphisms in resistance to insects in nature. In this respect, insect-guided explorations of population-level variations in jasmonate metabolism have revealed more complexity than previously realized and we discuss how different "omic" techniques can be used to exploit the natural variation that occurs in this important signaling pathway. PMID:27135234

  10. Beyond the Canon: Within-Plant and Population-Level Heterogeneity in Jasmonate Signaling Engaged by Plant-Insect Interactions

    Directory of Open Access Journals (Sweden)

    Dapeng Li

    2016-03-01

    Full Text Available Plants have evolved sophisticated communication and defense systems with which they interact with insects. Jasmonates are synthesized from the oxylipin pathway and act as pivotal cellular orchestrators of many of the metabolic and physiological processes that mediate these interactions. Many of these jasmonate-dependent responses are tissue-specific and translate from modulations of the canonical jasmonate signaling pathway. Here we provide a short overview of within-plant heterogeneities in jasmonate signaling and dependent responses in the context of plant-insect interactions as illuminated by examples from recent work with the ecological model, Nicotiana attenuata. We then discuss means of manipulating jasmonate signaling by creating tissue-specific jasmonate sinks, and the micrografting of different transgenic plants. The metabolic phenotyping of these manipulations provides an integrative understanding of the functional significance of deviations from the canonical model of this hormonal pathway. Additionally, natural variation in jasmonate biosynthesis and signaling both among and within species can explain polymorphisms in resistance to insects in nature. In this respect, insect-guided explorations of population-level variations in jasmonate metabolism have revealed more complexity than previously realized and we discuss how different “omic” techniques can be used to exploit the natural variation that occurs in this important signaling pathway.

  11. Adrenergic receptor subtypes in the cerebral circulation of newborn piglets

    International Nuclear Information System (INIS)

    The purpose of this study was to identify the α-adrenergic receptor subtype mediating cerebral vasoconstriction during sympathetic nerve stimulation in the newborn piglet. The effect of α1- and α2-antagonists prazosin and yohimbine on the cerebrovascular response to unilateral electrical stimulation (15 Hz, 15 V) of the superior cervical sympathetic trunk was studied in 25 newborn piglets. Regional cerebral blood flow was measured with tracer microspheres. Sympathetic stimulation decreased blood flow to the ipsilateral cerebrum hippocampus, choroid plexus, and masseter muscle. α1-Adrenergic receptor blockade with prazosin inhibited the sympathetic vasoconstriction in the cerebrum, hippocampus, and masseter muscle and abolished it in the choroid plexus. α/sub s/-Adrenergic receptor blockade with yohimbine had no effect. Following the higher dose of yohimbine, however, blood flow to all brain regions was increased by approximately two-fold, possibly due to enhanced cerebral metabolism. These data demonstrate that vascular α1-adrenergic receptors mediate vasoconstriction to neuroadrenergic stimulation in cerebral resistance vessels in the newborn piglet

  12. ADRENERGIC RESPONSE IN CHILDREN WITH ASTHMA ON EXOGENOUS STIMULI

    NARCIS (Netherlands)

    VANAALDEREN, WMC; POSTMA, DS; KOETER, GH; DEMONCHY, JGR; KNOL, K

    1992-01-01

    In asthmatic childen it was investigated whether the degree of impairment of the adrenergic response on exogenous stimuli is related to the magnitude of the 24-hour amplitude in airflow obstructions. Urinary-adrenaline and noradrenaline excretion after house dust mite (HDM) inhalation and after exer

  13. Interactions between polymorphisms in the aryl hydrocarbon receptor signalling pathway and exposure to persistent organochlorine pollutants affect human semen quality

    DEFF Research Database (Denmark)

    Brokken, L J S; Lundberg, P J; Spanò, M;

    2014-01-01

    Persistent organic pollutants (POPs) may affect male reproductive function. Many dioxin-like POPs exert their effects by activation of the aryl hydrocarbon receptor (AHR) signalling pathway. We analysed whether gene-environment interactions between polymorphisms in AHR (R554K) and AHR repressor (...

  14. Generation of a command language for nuclear signal and image processing on the basis of a general interactive system

    International Nuclear Information System (INIS)

    In the field of nuclear medicine, BASIC and FORTRAN are currently being favoured as higher-level programming languages for computer-aided signal processing, and most operating systems of so-called ''freely programmable analyzers'' in nuclear wards have compilers for this purpose. However, FORTRAN is not an interactive language and thus not suited for conversational computing as a man-machine interface. BASIC, on the other hand, although a useful starting language for beginners, is not sufficiently sophisticated for complex nuclear medicine problems involving detailed calculations. Integration of new methods of signal acquisition, processing and presentation into an existing system or generation of new systems is difficult in FORTRAN, BASIC or ASSEMBLER and can only be done by system specialists, not by nuclear physicians. This problem may be solved by suitable interactive systems that are easy to learn, flexible, transparent and user-friendly. An interactive system of this type, XDS, was developed in the course of a project on evaluation of radiological image sequences. An XDS-generated command processing system for signal and image processing in nuclear medicine is described. The system is characterized by interactive program development and execution, problem-relevant data types, a flexible procedure concept and an integrated system implementation language for modern image processing algorithms. The advantages of the interactive system are illustrated by an example of diagnosis by nuclear methods. (orig.)

  15. Special Issue: Redox Active Natural Products and Their Interaction with Cellular Signalling Pathways

    Directory of Open Access Journals (Sweden)

    Claus Jacob

    2014-11-01

    Full Text Available During the last decade, research into natural products has experienced a certain renaissance. The urgent need for more and more effective antibiotics in medicine, the demand for ecologically friendly plant protectants in agriculture, “natural” cosmetics and the issue of a sustainable and healthy nutrition in an ageing society have fuelled research into Nature’s treasure chest of “green gold”. Here, redox active secondary metabolites from plants, fungi, bacteria and other (micro-organisms often have been at the forefront of the most interesting developments. These agents provide powerful means to interfere with many, probably most cellular signaling pathways in humans, animals and lower organisms, and therefore can be used to protect, i.e., in form of antioxidants, and to frighten off or even kill, i.e., in form of repellants, antibiotics, fungicides and selective, often catalytic “sensor/effector” anticancer agents. Interestingly, whilst natural product research dates back many decades, in some cases even centuries, and compounds such as allicin and various flavonoids have been investigated thoroughly in the past, it has only recently become possible to investigate their precise interactions and mode(s of action inside living cells. Here, fluorescent staining and labelling on the one side, and appropriate detection, either qualitatively under the microscope or quantitatively in flow cytometers and plate readers, on the other, enable researchers to obtain the various pieces of information necessary to construct a fairly complete puzzle of how such compounds act and interact in living cells. Complemented by the more traditional activity assays and Western Blots, and increasingly joined by techniques such as proteomics, chemogenetic screening and mRNA profiling, these cell based bioanalytical techniques form a powerful platform for “intracellular diagnostics”. In the case of redox active compounds, especially of Reactive Sulfur

  16. Comment on "Dark Matter with Pseudoscalar-Mediated Interactions Explains the DAMA Signal and the Galactic Center Excess"

    CERN Document Server

    Yang, Kwei-Chou

    2016-01-01

    Arina et al. have proposed the Dirac fermionic dark matter with pseudoscalar-mediated interactions to explain the Galactic Center excess, correct relic density and DAMA signal. They have assumed that contact interactions remain roughly valid in calculating scattering rates at the direct detection even when the mediator mass is the same order as the typical momentum transfer. We show that such a replacement is not suitable. Adopting the full form of interactions, we show that the gamma-ray excess allowed parameters are completely outside of the DAMA iodine 3$\\sigma$ region, even for heavy-flavor-universal couplings, for which $m_{DM} \\sim 40$ GeV in the gamma-ray excess fit. As for Higgs-like couplings, the two regions overlap for $m_a\\lesssim$ 15 MeV, where long-range interactions, instead of contact interactions, occur at the DAMA.

  17. Beta2-adrenergic receptor stimulation inhibits nitric oxide generation by Mycobacterium avium infected macrophages.

    Science.gov (United States)

    Boomershine, C S; Lafuse, W P; Zwilling, B S

    1999-11-01

    Catecholamine regulation of nitric oxide (NO) production by IFNgamma-primed macrophages infected with Mycobacterium avium was investigated. Epinephrine treatment of IFNgamma-primed macrophages at the time of M. avium infection inhibited the anti-mycobacterial activity of the cells. The anti-mycobacterial activity of macrophages correlated with NO production. Using specific adrenergic receptor agonists, the abrogation of mycobacterial killing and decreased NO production by catecholamines was shown to be mediated via the beta2-adrenergic receptor. Elevation of intracellular cAMP levels mimicked the catecholamine-mediated inhibition of NO in both M. avium infected and LPS stimulated macrophages. Specific inhibitors of both adenylate cyclase and protein kinase A prevented the beta2-adrenoceptor-mediated inhibition of nitric oxide production. Beta2-adrenoreceptor stimulation at the time of M. avium infection of IFNgamma-primed macrophages also inhibited expression of iNOS mRNA. These observations show that catecholamine hormones can affect the outcome of macrophage-pathogen interactions and suggest that one result of sympathetic nervous system activation is the suppression of the capacity of macrophages to produce anti-microbial effector molecules. PMID:10580815

  18. Alpha 2-adrenergic receptor turnover in adipose tissue and kidney: irreversible blockade of alpha 2-adrenergic receptors by benextramine

    Energy Technology Data Exchange (ETDEWEB)

    Taouis, M.; Berlan, M.; Lafontan, M.

    1987-01-01

    The recovery of post- and extrasynaptic alpha 2-adrenergic receptor-binding sites was studied in vivo in male golden hamsters after treatment with an irreversible alpha-adrenoceptor antagonist benextramine, a tetramine disulfide that possesses a high affinity for alpha 2-binding sites. The kidney alpha 2-adrenergic receptor number was measured with (/sup 3/H)yohimbine, whereas (/sup 3/H)clonidine was used for fat cell and brain membrane alpha 2-binding site identification. Benextramine treatment of fat cell, kidney, and brain membranes reduced or completely suppressed, in an irreversible manner, (/sup 3/H) clonidine and (/sup 3/H)yohimbine binding without modifying adenosine (A1-receptor) and beta-adrenergic receptor sites. This irreversible binding was also found 1 and 2 hr after intraperitoneal administration of benextramine to the hamsters. Although it bound irreversibly to peripheral and central alpha 2-adrenergic receptors on isolated membranes, benextramine was unable to cross the blood-brain barrier of the hamster at the concentrations used (10-20 mg/kg). After the irreversible blockade, alpha 2-binding sites reappeared in kidney and adipose tissue following a monoexponential time course. Recovery of binding sites was more rapid in kidney than in adipose tissue; the half-lives of the receptor were 31 and 46 hr, respectively in the tissues. The rates of receptor production were 1.5 and 1.8 fmol/mg of protein/hr in kidney and adipose tissue. Reappearance of alpha 2-binding sites was associated with a rapid recovery of function (antilipolytic potencies of alpha 2-agonists) in fat cells inasmuch as occupancy of 15% of (/sup 3/H)clonidine-binding sites was sufficient to promote 40% inhibition of lipolysis. Benextramine is a useful tool to estimate turnover of alpha 2-adrenergic receptors under normal and pathological situations.

  19. Juxtacrine interaction of macrophages and bone marrow stromal cells induce interleukin-6 signals and promote cell migration

    Institute of Scientific and Technical Information of China (English)

    Jia Chang; Amy J Koh; Hernan Roca; Laurie K McCauley

    2015-01-01

    The bone marrow contains a heterogeneous milieu of cells, including macrophages, which are key cellular mediators for resolving infection and inflammation. Macrophages are most well known for their ability to phagocytose foreign bodies or apoptotic cells to maintain homeostasis;however, little is known about their function in the bone microenvironment. In the current study, we investigated the in vitro interaction of murine macrophages and bone marrow stromal cells (BMSCs), with focus on the juxtacrine induction of IL-6 signaling and the resultant effect on BMSC migration and growth. The juxtacrine interaction of primary mouse macrophages and BMSCs activated IL-6 signaling in the co-cultures, which subsequently enhanced BMSC migration and increased BMSC numbers. BMSCs and macrophages harvested from IL-6 knockout mice revealed that IL-6 signaling was essential for enhancement of BMSC migration and increased BMSC numbers via juxtacrine interactions. BMSCs were the main contributor of IL-6 signaling, and hence activation of the IL-6/gp130/STAT3 pathway. Meanwhile, macrophage derived IL-6 remained important for the overall production of IL-6 protein in the co-cultures. Taken together, these findings show the function of macrophages as co-inducers of migration and growth of BMSCs, which could directly influence bone formation and turnover.

  20. Alpha 2-adrenergic receptor stimulation of phospholipase A2 and of adenylate cyclase in transfected Chinese hamster ovary cells is mediated by different mechanisms

    International Nuclear Information System (INIS)

    The effect of alpha 2-adrenergic receptor activation on adenylate cyclase activity in Chinese hamster ovary cells stably transfected with the alpha 2A-adrenergic receptor gene is biphasic. At lower concentrations of epinephrine forskolin-stimulated cyclic AMP production is inhibited, but at higher concentrations the inhibition is reversed. Both of these effects are blocked by the alpha 2 antagonist yohimbine but not by the alpha 1 antagonist prazosin. Pretreatment with pertussis toxin attenuates inhibition at lower concentrations of epinephrine and greatly potentiates forskolin-stimulated cyclic AMP production at higher concentrations of epinephrine. alpha 2-Adrenergic receptor stimulation also causes arachidonic acid mobilization, presumably via phospholipase A2. This effect is blocked by yohimbine, quinacrine, removal of extracellular Ca2+, and pretreatment with pertussis toxin. Quinacrine and removal of extracellular Ca2+, in contrast, have no effect on the enhanced forskolin-stimulated cyclic AMP production. Thus, it appears that the alpha 2-adrenergic receptor in these cells can simultaneously activate distinct signal transduction systems; inhibition of adenylate cyclase and stimulation of phospholipase A2, both via G1, and potentiation of cyclic AMP production by a different (pertussis toxin-insensitive) mechanism

  1. The Alpha-1A Adrenergic Receptor in the Rabbit Heart.

    Directory of Open Access Journals (Sweden)

    R Croft Thomas

    Full Text Available The alpha-1A-adrenergic receptor (AR subtype is associated with cardioprotective signaling in the mouse and human heart. The rabbit is useful for cardiac disease modeling, but data on the alpha-1A in the rabbit heart are limited. Our objective was to test for expression and function of the alpha-1A in rabbit heart. By quantitative real-time reverse transcription PCR (qPCR on mRNA from ventricular myocardium of adult male New Zealand White rabbits, the alpha-1B was 99% of total alpha-1-AR mRNA, with <1% alpha-1A and alpha-1D, whereas alpha-1A mRNA was over 50% of total in brain and liver. Saturation radioligand binding identified ~4 fmol total alpha-1-ARs per mg myocardial protein, with 17% alpha-1A by competition with the selective antagonist 5-methylurapidil. The alpha-1D was not detected by competition with BMY-7378, indicating that 83% of alpha-1-ARs were alpha-1B. In isolated left ventricle and right ventricle, the selective alpha-1A agonist A61603 stimulated a negative inotropic effect, versus a positive inotropic effect with the nonselective alpha-1-agonist phenylephrine and the beta-agonist isoproterenol. Blood pressure assay in conscious rabbits using an indwelling aortic telemeter showed that A61603 by bolus intravenous dosing increased mean arterial pressure by 20 mm Hg at 0.14 μg/kg, 10-fold lower than norepinephrine, and chronic A61603 infusion by iPRECIO programmable micro Infusion pump did not increase BP at 22 μg/kg/d. A myocardial slice model useful in human myocardium and an anthracycline cardiotoxicity model useful in mouse were both problematic in rabbit. We conclude that alpha-1A mRNA is very low in rabbit heart, but the receptor is present by binding and mediates a negative inotropic response. Expression and function of the alpha-1A in rabbit heart differ from mouse and human, but the vasopressor response is similar to mouse.

  2. Beta-Adrenergic Receptor Expression in Muscle Cells

    Science.gov (United States)

    Young, Ronald B.; Bridge, K.; Vaughn, J. R.

    1999-01-01

    beta-adrenergic receptor (bAR) agonists presumably exert their physiological action on skeletal muscle cells through the bAR. Since the signal generated by the bAR is cyclic AMP (cAMP), experiments were initiated in primary chicken muscle cell cultures to determine if artificial elevation of intracellular cAMP by treatment with forskolin would alter the population of bAR expressed on the surface of muscle cells. Chicken skeletal muscle cells after 7 days in culture were employed for the experiments because muscle cells have attained a steady state with respect to muscle protein metabolism at this stage. Cells were treated with 0-10 uM forskolin for a total of three days. At the end of the 1, 2, and 3 day treatment intervals, the concentration of cAMP and the bAR population were measured. Receptor population was measured in intact muscle cell cultures as the difference between total binding of [H-3]CGP-12177 and non-specific binding of [H-3]CGP-12177 in the presence of 1 uM propranolol. Intracellular cAMP concentration was measured by radioimmunoassay. The concentration of cAMP in forskolin-treated cells increased up to 10-fold in a dose dependent manner. Increasing concentrations of forskolin also led to an increase in (beta)AR population, with a maximum increase of approximately 50% at 10 uM. This increase in (beta)AR population was apparent after only 1 day of treatment, and the pattern of increase was maintained for all 3 days of the treatment period. Thus, increasing the intracellular concentration of cAMP leads to up-regulation of (beta)AR population. Clenbuterol and isoproterenol gave similar effects on bAR population. The effect of forskolin on the quantity and apparent synthesis rate of the heavy chain of myosin (mhc) were also investigated. A maximum increase of 50% in the quantity of mhc was observed at 0.2 UM forskolin, but higher concentrations of forskolin reduced the quantity of mhc back to control levels.

  3. TCR signal strength alters T-DC activation and interaction times and directs the outcome of differentiation.

    Directory of Open Access Journals (Sweden)

    Nicholas eVan Panhuys

    2016-01-01

    Full Text Available The ability of CD4+ T cells to differentiate into effector subsets underpins their ability to shape the immune response and mediate host protection. During T cell receptor induced activation of CD4+ T cells both the quality and quantity of specific activatory peptide/MHC ligands have been shown to control the polarization of naïve CD4+ T cells in addition to co-stimulatory and cytokine based signals. Recently, advances in two photon microscopy and tetramer based cell tracking methods have allowed investigators to greatly extend the study of the role of TCR signaling in effector differentiation under in vivo conditions. In this review we consider data from recent in vivo studies analyzing the role of TCR signal strength in controlling the outcome of CD4+ T cell differentiation and discuss the role of the TCR in controlling the critical nature of CD4+ T cell interactions with dendritic cells during activation. We further propose a model whereby TCR signal strength controls the temporal aspects of T:DC interactions and the implications for this in mediating the downstream signaling events which influence the transcriptional and epigenetic regulation of effector differentiation.

  4. Gene-Environment Interactions Target Mitogen-activated Protein 3 Kinase 1 (MAP3K1) Signaling in Eyelid Morphogenesis.

    Science.gov (United States)

    Mongan, Maureen; Meng, Qinghang; Wang, Jingjing; Kao, Winston W-Y; Puga, Alvaro; Xia, Ying

    2015-08-01

    Gene-environment interactions determine the biological outcomes through mechanisms that are poorly understood. Mouse embryonic eyelid closure is a well defined model to study the genetic control of developmental programs. Using this model, we investigated how exposure to dioxin-like environmental pollutants modifies the genetic risk of developmental abnormalities. Our studies reveal that mitogen-activated protein 3 kinase 1 (MAP3K1) signaling is a focal point of gene-environment cross-talk. Dioxin exposure, acting through the aryl hydrocarbon receptor (AHR), blocked eyelid closure in genetic mutants in which MAP3K1 signaling was attenuated but did not disturb this developmental program in either wild type or mutant mice with attenuated epidermal growth factor receptor or WNT signaling. Exposure also markedly inhibited c-Jun phosphorylation in Map3k1(+/-) embryonic eyelid epithelium, suggesting that dioxin-induced AHR pathways can synergize with gene mutations to inhibit MAP3K1 signaling. Our studies uncover a novel mechanism through which the dioxin-AHR axis interacts with the MAP3K1 signaling pathways during fetal development and provide strong empirical evidence that specific gene alterations can increase the risk of developmental abnormalities driven by environmental pollutant exposure. PMID:26109068

  5. Toward understanding social cues and signals in human–robot interaction: effects of robot gaze and proxemic behavior

    Science.gov (United States)

    Fiore, Stephen M.; Wiltshire, Travis J.; Lobato, Emilio J. C.; Jentsch, Florian G.; Huang, Wesley H.; Axelrod, Benjamin

    2013-01-01

    As robots are increasingly deployed in settings requiring social interaction, research is needed to examine the social signals perceived by humans when robots display certain social cues. In this paper, we report a study designed to examine how humans interpret social cues exhibited by robots. We first provide a brief overview of perspectives from social cognition in humans and how these processes are applicable to human–robot interaction (HRI). We then discuss the need to examine the relationship between social cues and signals as a function of the degree to which a robot is perceived as a socially present agent. We describe an experiment in which social cues were manipulated on an iRobot AvaTM mobile robotics platform in a hallway navigation scenario. Cues associated with the robot’s proxemic behavior were found to significantly affect participant perceptions of the robot’s social presence and emotional state while cues associated with the robot’s gaze behavior were not found to be significant. Further, regardless of the proxemic behavior, participants attributed more social presence and emotional states to the robot over repeated interactions than when they first interacted with it. Generally, these results indicate the importance for HRI research to consider how social cues expressed by a robot can differentially affect perceptions of the robot’s mental states and intentions. The discussion focuses on implications for the design of robotic systems and future directions for research on the relationship between social cues and signals. PMID:24348434

  6. Towards understanding social cues and signals in human-robot interaction: Effects of robot gaze and proxemic behavior

    Directory of Open Access Journals (Sweden)

    TravisJWiltshire

    2013-11-01

    Full Text Available As robots are increasingly deployed in settings requiring social interaction, research is needed to examine the social signals perceived by humans when robots display certain social cues. In this paper, we report a study designed to examine how humans interpret social cues exhibited by robots. We first provide a brief overview of perspectives from social cognition in humans and how these processes are applicable to human-robot interaction (HRI. We then discuss the need to examine the relationship between social cues and signals as a function of the degree to which a robot is perceived as a socially present agent. We describe an experiment in which social cues were manipulated on an iRobot Ava™ Mobile Robotics Platform in a hallway navigation scenario. Cues associated with the robot’s proxemic behavior were found to significantly affect participant perceptions of the robot’s social presence and emotional state while cues associated with the robot’s gaze behavior were not found to be significant. Further, regardless of the proxemic behavior, participants attributed more social presence and emotional states to the robot over repeated interactions than when they first interacted with it. Generally, these results indicate the importance for HRI research to consider how social cues expressed by a robot can differentially affect perceptions of the robot’s mental states and intentions. The discussion focuses on implications for the design of robotic systems and future directions for research on the relationship between social cues and signals.

  7. Rapid and robust signaling in the CsrA cascade via RNA–protein interactions and feedback regulation

    OpenAIRE

    Adamson, David Nellinger; Lim, Han N.

    2013-01-01

    Bacterial survival requires the rapid propagation of signals through gene networks during stress, but how this is achieved is not well understood. This study systematically characterizes the signaling dynamics of a cascade of RNA–protein interactions in the CsrA system, which regulates stress responses and biofilm formation in Escherichia coli. Noncoding RNAs are at the center of the CsrA system; target mRNAs are bound by CsrA proteins that inhibit their translation, CsrA proteins are sequest...

  8. Crystallographic analysis of NHERF1–PLCβ3 interaction provides structural basis for CXCR2 signaling in pancreatic cancer

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Yuanyuan; Wang, Shuo; Holcomb, Joshua; Trescott, Laura; Guan, Xiaoqing; Hou, Yuning [Department of Biochemistry and Molecular Biology, Wayne State University School of Medicine, Detroit, MI (United States); Brunzelle, Joseph [Advanced Photon Source, Argonne National Lab, Argonne, IL (United States); Sirinupong, Nualpun [Nutraceuticals and Functional Food Research and Development Center, Prince of Songkla University, Hat-Yai, Songkhla (Thailand); Li, Chunying, E-mail: cl@med.wayne.edu [Department of Biochemistry and Molecular Biology, Wayne State University School of Medicine, Detroit, MI (United States); Yang, Zhe, E-mail: zyang@med.wayne.edu [Department of Biochemistry and Molecular Biology, Wayne State University School of Medicine, Detroit, MI (United States)

    2014-04-04

    Highlights: • CXCR2–NHERF1–PLCβ3 complex regulates CXCR2 signaling in pancreatic cancer. • The crystal structure of the NHERF1 PDZ1 domain in complex with PLCβ3. • The structure reveals specificity determinants of PDZ1–PLCβ3 interaction. • Endogenous PLCβ3 in pancreatic cancer cells interacts with both PDZ1 and PDZ2. • Structural basis of the PDZ1–PLCβ3 interaction is valuable in selective drug design. - Abstract: The formation of CXCR2–NHERF1–PLCβ3 macromolecular complex in pancreatic cancer cells regulates CXCR2 signaling activity and plays an important role in tumor proliferation and invasion. We previously have shown that disruption of the NHERF1-mediated CXCR2–PLCβ3 interaction abolishes the CXCR2 signaling cascade and inhibits pancreatic tumor growth in vitro and in vivo. Here we report the crystal structure of the NHERF1 PDZ1 domain in complex with the C-terminal PLCβ3 sequence. The structure reveals that the PDZ1–PLCβ3 binding specificity is achieved by numerous hydrogen bonds and hydrophobic contacts with the last four PLCβ3 residues contributing to specific interactions. We also show that PLCβ3 can bind both NHERF1 PDZ1 and PDZ2 in pancreatic cancer cells, consistent with the observation that the peptide binding pockets of these PDZ domains are highly structurally conserved. This study provides an understanding of the structural basis for the PDZ-mediated NHERF1–PLCβ3 interaction that could prove valuable in selective drug design against CXCR2-related cancers.

  9. Crystallographic analysis of NHERF1–PLCβ3 interaction provides structural basis for CXCR2 signaling in pancreatic cancer

    International Nuclear Information System (INIS)

    Highlights: • CXCR2–NHERF1–PLCβ3 complex regulates CXCR2 signaling in pancreatic cancer. • The crystal structure of the NHERF1 PDZ1 domain in complex with PLCβ3. • The structure reveals specificity determinants of PDZ1–PLCβ3 interaction. • Endogenous PLCβ3 in pancreatic cancer cells interacts with both PDZ1 and PDZ2. • Structural basis of the PDZ1–PLCβ3 interaction is valuable in selective drug design. - Abstract: The formation of CXCR2–NHERF1–PLCβ3 macromolecular complex in pancreatic cancer cells regulates CXCR2 signaling activity and plays an important role in tumor proliferation and invasion. We previously have shown that disruption of the NHERF1-mediated CXCR2–PLCβ3 interaction abolishes the CXCR2 signaling cascade and inhibits pancreatic tumor growth in vitro and in vivo. Here we report the crystal structure of the NHERF1 PDZ1 domain in complex with the C-terminal PLCβ3 sequence. The structure reveals that the PDZ1–PLCβ3 binding specificity is achieved by numerous hydrogen bonds and hydrophobic contacts with the last four PLCβ3 residues contributing to specific interactions. We also show that PLCβ3 can bind both NHERF1 PDZ1 and PDZ2 in pancreatic cancer cells, consistent with the observation that the peptide binding pockets of these PDZ domains are highly structurally conserved. This study provides an understanding of the structural basis for the PDZ-mediated NHERF1–PLCβ3 interaction that could prove valuable in selective drug design against CXCR2-related cancers

  10. Assessing structural and functional responses of murine hearts to acute and sustained β-adrenergic stimulation in vivo

    OpenAIRE

    Puhl, Sarah-Lena; Weeks, Kate L.; Ranieri, Antonella; Avkiran, Metin

    2016-01-01

    INTRODUCTION: Given the importance of β-adrenoceptor signalling in regulating cardiac structure and function, robust protocols are required to assess potential alterations in such regulation in murine models in vivo.METHODS: Echocardiography was performed in naïve and stressed (isoprenaline; 30μg/g/days.c. for up to 14days) mice, in the absence or presence of acute β-adrenergic stimulation (dobutamine 0.75μg/g, i.p.). Controls received saline infusion and/or injection. Hearts were additionall...

  11. Two distinct sites in sonic Hedgehog combine for heparan sulfate interactions and cell signaling functions

    DEFF Research Database (Denmark)

    Chang, Shu-Chun; Mulloy, Barbara; Magee, Anthony I;

    2011-01-01

    Hedgehog (Hh) proteins are morphogens that mediate many developmental processes. Hh signaling is significant for many aspects of embryonic development, whereas dysregulation of this pathway is associated with several types of cancer. Hh proteins require heparan sulfate proteoglycans (HSPGs) for...... their normal distribution and signaling activity. Here, we have used molecular modeling to examine the heparin-binding domain of sonic hedgehog (Shh). In biochemical and cell biological assays, the importance of specific residues of the putative heparin-binding domain for signaling was assessed. It was...

  12. Developing Novel Interface and Signal Amplification Strategies for Study of Biological Interactions by Surface Plasmon Resonance(SPR) and SPRimaing

    OpenAIRE

    Liu, Ying

    2012-01-01

    Surface plasmon resonance (SPR) has been widely used as a powerful analytical technique for the study of a broad range of biomolecular interactions. With the capability of real-time detection, SPR allows convenient and nondestructive measurement of analyte concentration and binding kinetics. To improve the performance of SPR biosensing, we have developed a series of novel methods that lead to ultrasensitive detection via signal amplification by coupling inline atom transfer radical polymeriza...

  13. Beta-Adrenergic gene therapy for cardiovascular disease

    Directory of Open Access Journals (Sweden)

    Koch Walter J

    2000-10-01

    Full Text Available Abstract Gene therapy using in vivo recombinant adenovirus-mediated gene transfer is an effective technique that offers great potential to improve existing drug treatments for the complex cardiovascular diseases of heart failure and vascular smooth muscle intimal hyperplasia. Cardiac-specific adenovirus-mediated transfer of the carboxyl-terminus of the β-adrenergic receptor kinase (βARKct, acting as a Gβγ-β-adrenergic receptor kinase (βARK1 inhibitor, improves basal and agonist-induced cardiac performance in both normal and failing rabbit hearts. In addition, βARKct adenovirus infection of vascular smooth muscle is capable of significantly diminishing neointimal proliferation after angioplasty. Therefore, further investigation is warranted to determine whether inhibition of βARK1 activity and sequestration of Gβγ via an adenovirus that encodes the βARKct transgene might be a useful clinical tool for the treatment of cardiovascular pathologies.

  14. β2-Adrenergic receptor agonist ameliorates phenotypes and corrects microRNA-mediated IGF1 deficits in a mouse model of Rett syndrome

    OpenAIRE

    Mellios, Nikolaos; Woodson, Jonathan; Garcia, Rodrigo I.; Crawford, Benjamin; Sharma, Jitendra; Sheridan, Steven D.; Haggarty, Stephen J.; Sur, Mriganka

    2014-01-01

    Rett syndrome is a devastating neurodevelopmental disorder with diverse symptoms and no available treatment. Previous work from our laboratory has identified deficits in insulin-like growth factor 1 (IGF1) levels in Mecp2 mutant mice, and demonstrated correction of symptoms and molecular-signaling alterations with IGF1 treatment. Here, we show that treatment with the adrenergic receptor agonist clenbuterol rescues a microRNA pathway that underlies IGF1 expression, improves survival, and ameli...

  15. A High Performance Approach to Minimizing Interactions between Inbound and Outbound Signals in Helmet Project

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose a high performance approach to enhancing communications between astronauts. In the new generation of NASA audio systems for astronauts, inbound signals...

  16. Families on the spot: sexual signals influence parent–offspring interactions

    OpenAIRE

    Morales, Judith; Alonso-Álvarez, Carlos; Pérez, Cristóbal; Torres, Roxana; Serafino, Ester; Velando, Alberto

    2009-01-01

    In 1950, Tinbergen described the elicitation of offspring begging by the red spot on the bill of parent gulls, and this became a model system for behavioural studies. Current knowledge on colour traits suggests they can act as sexual signals revealing individual quality. However, sexual signals have never been studied simultaneously in relationship to parent–offspring and sexual conflicts. We manipulated the red-spot size in one member of yellow-legged gull pairs and observed their partners' ...

  17. Regulation of Latent Membrane Protein 1 Signaling through Interaction with Cytoskeletal Proteins

    OpenAIRE

    Holthusen, Kirsten; Talaty, Pooja; Everly, David N.

    2015-01-01

    Latent membrane protein 1 (LMP1) of Epstein-Barr virus (EBV) induces constitutive signaling in EBV-infected cells to ensure the survival of the latently infected cells. LMP1 is localized to lipid raft domains to induce signaling. In the present study, a genome-wide screen based on bimolecular fluorescence complementation (BiFC) was performed to identify LMP1-binding proteins. Several actin cytoskeleton-associated proteins were identified in the screen. Overexpression of these proteins affecte...

  18. An approach to emotion recognition in single-channel EEG signals: a mother child interaction

    Science.gov (United States)

    Gómez, A.; Quintero, L.; López, N.; Castro, J.

    2016-04-01

    In this work, we perform a first approach to emotion recognition from EEG single channel signals extracted in four (4) mother-child dyads experiment in developmental psychology. Single channel EEG signals are analyzed and processed using several window sizes by performing a statistical analysis over features in the time and frequency domains. Finally, a neural network obtained an average accuracy rate of 99% of classification in two emotional states such as happiness and sadness.

  19. Effects of Leptin and Melanocortin Signaling Interactions on Pubertal Development and Reproduction

    OpenAIRE

    Israel, Davelene D.; Sheffer-Babila, Sharone; de Luca, Carl; Jo, Young-Hwan; Liu, Shun Mei; Xia, Qiu; Spergel, Daniel J.; Dun, Siok L.; Dun, Nae J.; Chua, Streamson C.

    2012-01-01

    Leptin and melanocortin signaling control ingestive behavior, energy balance, and substrate utilization, but only leptin signaling defects cause hypothalamic hypogonadism and infertility. Although GnRH neurons do not express leptin receptors, leptin influences GnRH neuron activity via regulation of immediate downstream mediators including the neuropeptides neuropeptide Y and the melanocortin agonist and antagonist, α-MSH, agouti-related peptide, respectively. Here we show that modulation of m...

  20. Reconstruction of Protein-Protein Interaction Network of Insulin Signaling in Homo Sapiens

    OpenAIRE

    Saliha Durmuş Tekir; Pelin Ümit; Aysun Eren Toku; Kutlu Ö. Ülgen

    2010-01-01

    Diabetes is one of the most prevalent diseases in the world. Type 1 diabetes is characterized by the failure of synthesizing and secreting of insulin because of destroyed pancreatic β-cells. Type 2 diabetes, on the other hand, is described by the decreased synthesis and secretion of insulin because of the defect in pancreatic β-cells as well as by the failure of responding to insulin because of malfunctioning of insulin signaling. In order to understand the signaling mechanisms of responding ...

  1. The human thoracic duct is functionally innervated by adrenergic nerves

    DEFF Research Database (Denmark)

    Telinius, Niklas; Baandrup, Ulrik; Rumessen, Jüri;

    2014-01-01

    Lymphatic vessels from animals have been shown to be innervated. While morphological studies have confirmed human lymphatic vessels are innervated, functional studies supporting this are lacking. The present study demonstrates a functional innervation of the human thoracic duct (TD) that is......, acetylcholine, and methacholine was demonstrated by exogenous application to human TD ring segments. Norepinephrine provided the most consistent responses, whereas responses to the other agonists varied. We conclude that the human TD is functionally innervated with both cholinergic and adrenergic components...

  2. Beta-adrenergic agonists as additive in beef cattle

    OpenAIRE

    Marcelo Vedovatto; Camila Celeste Brandão Ferreira Ítavo; João Artêmio Marin Beltrame; Ricardo Carneiro Brumatti; Gumercindo Loriano Franco

    2014-01-01

    The agonists receptor beta-adrenergic (β-AA) are present in virtually all types of mammalian cells and are stimulated by catecholamines (epinephrine and norepinephrine) produced by the organism itself. The β-AA agonists are synthetic substances with similar structure to these amines. When provided in the diet they alter the body composition of animals, affecting the distribution of nutrients toward to protein deposition, and decreasing lipogenesis. Although the mechanisms of action are not fu...

  3. In vivo effects of pertussis toxin on adrenergic vasoconstriction

    Czech Academy of Sciences Publication Activity Database

    Pintérová, Mária; Kuneš, Jaroslav; Dobešová, Zdenka; Zicha, Josef

    Bratislava : Advent-Orion, 2007 - (Pecháňová, O.), s. 76-82 ISBN 978-80-8071-094-1 R&D Projects: GA MŠk(CZ) 1M0510 Institutional research plan: CEZ:AV0Z50110509 Keywords : inhibitory Gi proteins * nifedipine-sensitive calcium influx * alpha-adrenergic vasoconstriction Subject RIV: FA - Cardiovascular Diseases incl. Cardiotharic Surgery

  4. Photoaffinity labeling of alpha 1-adrenergic receptors of rat heart

    International Nuclear Information System (INIS)

    The photoaffinity probe [125I]aryl azidoprazosin was used to examine structural aspects of rat left ventricular alpha 1-adrenergic receptor. Autoradiography of sodium dodecyl sulfate-polyacrylamide gel electrophoresis-resolved proteins from photoaffinity-labeled membranes revealed a specifically labeled protein of mass 77 kDa. Adrenergic drugs competed with the photoaffinity probe for binding to the receptor. Because the autoradiographic pattern was unaltered by incubating labeled membranes in gel sample buffer containing high concentrations of reducing agents, the binding component of the cardiac alpha 1-adrenergic receptor appears to be a single polypeptide chain. The photoaffinity probe specifically labeled a single protein of approximately 68 kDa in membranes of cardiac myocytes prepared from rat left ventricles. The role played by sulfhydryls in receptor structure and function was also studied. Dithiothreitol (DTT) inhibited [3H]prazosin binding to left ventricular membranes and altered both the equilibrium dissociation constant and maximal number of [3H]prazosin-binding sites but not the ability of the guanine nucleotide guanyl-5'-yl imidodiphosphate to decrease agonist affinity for the receptors. When photoaffinity-labeled membranes were incubated with 40 mM DTT for 30 min at room temperature, two specifically labeled proteins of 77 and 68 kDa were identified. The DTT-induced conversion of the 77-kDa protein to 68 kDa was irreversible with washing, but the effect of DTT on [3H]prazosin binding was reversible. Both 77- and 68-kDa proteins were observed with liver membranes even in the absence of reducing agent. The DTT-induced conversion of the 77-kDa protein to 68 kDa is due to enhancement in protease activity by the reductant. Results document that the cardiac alpha 1-adrenergic receptor is a 77-kDa protein, similar in mass to the receptor in liver and other sites

  5. ADRENERGIC RESPONSES TO STRESS: TRANSCRIPTIONAL AND POST-TRANSCRIPTIONAL CHANGES

    OpenAIRE

    Wong, Dona L.; Tai, T. C.; Wong-Faull, David C.; Claycomb, Robert; Kvetnansky, Richard

    2008-01-01

    Stress effects on adrenergic responses in rats were examined in adrenal medulla, the primary source of circulating epinephrine (Epi). Irrespective of duration, immobilization (IMMO) increased adrenal corticosterone to the same extent. In contrast, epinephrine changed little, suggesting that Epi synthesis replenishes adrenal pools and sustains circulating levels for the heightened alertness and physiological changes required of the "flight or fight" response. IMMO also induced the epinephrine-...

  6. Augmenting Social Interactions: Realtime Behavioural Feedback using Social Signal Processing Techniques

    OpenAIRE

    Damian, Ionut; Tan, Chiew Seng Sean; Baur, Tobias; SCHOENING, Johannes; Luyten, Kris; André, Elisabeth

    2015-01-01

    Nonverbal and unconscious behaviour is an important component of daily human-human interaction. This is especially true in situations such as public speaking, job interviews or information sensitive conversations, where researchers have shown that an increased awareness of one’s behaviour can improve the outcome of the interaction. With wearable technology, such as Google Glass, we now have the opportunity to augment social interactions and provide realtime feedback on one’s behaviour in a...

  7. Hydrogen sulfide decreases β-adrenergic agonist-stimulated lung liquid clearance by inhibiting ENaC-mediated transepithelial sodium absorption.

    Science.gov (United States)

    Agné, Alisa M; Baldin, Jan-Peter; Benjamin, Audra R; Orogo-Wenn, Maria C; Wichmann, Lukas; Olson, Kenneth R; Walters, Dafydd V; Althaus, Mike

    2015-04-01

    In pulmonary epithelia, β-adrenergic agonists regulate the membrane abundance of the epithelial sodium channel (ENaC) and, thereby, control the rate of transepithelial electrolyte absorption. This is a crucial regulatory mechanism for lung liquid clearance at birth and thereafter. This study investigated the influence of the gaseous signaling molecule hydrogen sulfide (H2S) on β-adrenergic agonist-regulated pulmonary sodium and liquid absorption. Application of the H2S-liberating molecule Na2S (50 μM) to the alveolar compartment of rat lungs in situ decreased baseline liquid absorption and abrogated the stimulation of liquid absorption by the β-adrenergic agonist terbutaline. There was no additional effect of Na2S over that of the ENaC inhibitor amiloride. In electrophysiological Ussing chamber experiments with native lung epithelia (Xenopus laevis), Na2S inhibited the stimulation of amiloride-sensitive current by terbutaline. β-adrenergic agonists generally increase ENaC abundance by cAMP formation and activation of PKA. Activation of this pathway by forskolin and 3-isobutyl-1-methylxanthine increased amiloride-sensitive currents in H441 pulmonary epithelial cells. This effect was inhibited by Na2S in a dose-dependent manner (5-50 μM). Na2S had no effect on cellular ATP concentration, cAMP formation, and activation of PKA. By contrast, Na2S prevented the cAMP-induced increase in ENaC activity in the apical membrane of H441 cells. H441 cells expressed the H2S-generating enzymes cystathionine-β-synthase, cystathionine-γ-lyase, and 3-mercaptopyruvate sulfurtransferase, and they produced H2S amounts within the employed concentration range. These data demonstrate that H2S prevents the stimulation of ENaC by cAMP/PKA and, thereby, inhibits the proabsorptive effect of β-adrenergic agonists on lung liquid clearance. PMID:25632025

  8. Ontogeny of alpha- and beta-adrenergic anorexia in rats.

    Science.gov (United States)

    Lora-Vilchis, M C; Chambert, G; Rodriguez-Zendejas, A M; Soto-Mora, L M; Russek, M; Epstein, A N

    1988-12-01

    The anorectic action of alpha- (phenylephrine) and beta- (isoproterenol) adrenergic agonists was studied in mildly deprived neonatal, weanling, prepubescent, and adult rats. Intraperitoneal phenylephrine produced a reduction of food intake at all ages but with reduced potency and with a maximum of 50% in neonates. Contrary to intramuscular epinephrine that has no effect on feeding at any age, intramuscular phenylephrine was as effective as intraperitoneal in neonates, probably because it is not as rapidly destroyed in tissues as epinephrine. However, in weanlings and adults intramuscular phenylephrine was much less anorectic than intraperitoneal, suggesting that this effect is exerted via the liver. Isoproterenol did not reduce milk intake at any age before adulthood. Lactate had no effect on milk intake before the age of 40 days. Thus catecholamine anorexia is a purely alpha-adrenergic effect in young rats and appears before the metabolic effect of lactate. beta-Adrenergic anorexia, on the other hand, can be obtained only after puberty, suggesting that the mechanism mediating it matures after the preparatory action of the sexual hormones. PMID:2849323

  9. Thyrotoxic periodic paralysis triggered by β2-adrenergic bronchodilators.

    Science.gov (United States)

    Yeh, Fu-Chiang; Chiang, Wen-Fang; Wang, Chih-Chiang; Lin, Shih-Hua

    2014-05-01

    Hypokalemic periodic paralysis is the most common form of periodic paralysis and is characterized by attacks of muscle paralysis associated with a low serum potassium (K+) level due to an acute intracellular shifting. Thyrotoxic periodic paralysis (TPP), characterized by the triad of muscle paralysis, acute hypokalemia, and hyperthyroidism, is one cause of hypokalemic periodic paralysis. The triggering of an attack of undiagnosed TPP by β2-adrenergic bronchodilators has, to our knowledge, not been reported previously. We describe two young men who presented to the emergency department with the sudden onset of muscle paralysis after administration of inhaled β2-adrenergic bronchodilators for asthma. In both cases, the physical examination revealed an enlarged thyroid gland and symmetrical flaccid paralysis with areflexia of lower extremities. Hypokalemia with low urine K+ excretion and normal blood acid-base status was found on laboratory testing, suggestive of an intracellular shift of K+, and the patients' muscle strength recovered at serum K+ concentrations of 3.0 and 3.3 mmol/L. One patient developed hyperkalemia after a total potassium chloride supplementation of 110 mmol. Thyroid function testing was diagnostic of primary hyperthyroidism due to Graves disease in both cases. These cases illustrate that β2-adrenergic bronchodilators should be considered a potential precipitant of TPP. PMID:24852589

  10. Alpha-1-Adrenergic Receptors: Targets for Agonist Drugs to Treat Heart Failure

    OpenAIRE

    Jensen, Brian C.; O'Connell, Timothy D.; Simpson, Paul C.

    2010-01-01

    Evidence from cell, animal, and human studies demonstrates that α1-adrenergic receptors mediate adaptive and protective effects in the heart. These effects may be particularly important in chronic heart failure, when catecholamine levels are elevated and β-adrenergic receptors are down regulated and dysfunctional. This review summarizes these data and proposes that selectively activating α1-adrenergic receptors in the heart may represent a novel and effective way to treat heart failure.

  11. Activation of mTORC1 is essential for β-adrenergic stimulation of adipose browning.

    Science.gov (United States)

    Liu, Dianxin; Bordicchia, Marica; Zhang, Chaoying; Fang, Huafeng; Wei, Wan; Li, Jian-Liang; Guilherme, Adilson; Guntur, Kalyani; Czech, Michael P; Collins, Sheila

    2016-05-01

    A classic metabolic concept posits that insulin promotes energy storage and adipose expansion, while catecholamines stimulate release of adipose energy stores by hydrolysis of triglycerides through β-adrenergic receptor (βARs) and protein kinase A (PKA) signaling. Here, we have shown that a key hub in the insulin signaling pathway, activation of p70 ribosomal S6 kinase (S6K1) through mTORC1, is also triggered by PKA activation in both mouse and human adipocytes. Mice with mTORC1 impairment, either through adipocyte-specific deletion of Raptor or pharmacologic rapamycin treatment, were refractory to the well-known βAR-dependent increase of uncoupling protein UCP1 expression and expansion of beige/brite adipocytes (so-called browning) in white adipose tissue (WAT). Mechanistically, PKA directly phosphorylated mTOR and RAPTOR on unique serine residues, an effect that was independent of insulin/AKT signaling. Abrogation of the PKA site within RAPTOR disrupted βAR/mTORC1 activation of S6K1 without affecting mTORC1 activation by insulin. Conversely, a phosphomimetic RAPTOR augmented S6K1 activity. Together, these studies reveal a signaling pathway from βARs and PKA through mTORC1 that is required for adipose browning by catecholamines and provides potential therapeutic strategies to enhance energy expenditure and combat metabolic disease. PMID:27018708

  12. A proteomics strategy to elucidate functional protein-protein interactions applied to EGF signaling

    DEFF Research Database (Denmark)

    Blagoev, B.; Kratchmarova, I.; Ong, S.E.;

    2003-01-01

    Mass spectrometry-based proteomics can reveal protein-protein interactions on a large scale, but it has been difficult to separate background binding from functionally important interactions and still preserve weak binders. To investigate the epidermal growth factor receptor (EGFR) pathway, we em...

  13. Plasma membrane lipid-protein interactions affect signaling processes in sterol-biosynthesis mutants of Arabidopsis thaliana

    Directory of Open Access Journals (Sweden)

    Henrik eZauber

    2014-03-01

    Full Text Available The plasma membrane is an important organelle providing structure, signaling and transport as major biological functions. Being composed of lipids and proteins with different physicochemical properties, the biological functions of membranes depend on specific protein-protein and protein-lipid interactions. Interactions of proteins with their specific sterol and lipid environment were shown to be important factors for protein recruitment into sub-compartmental structures of the plasma membrane. System-wide implications of altered endogenous sterol levels for membrane functions in living cells were not studied in higher plant cells. In particular, little is known how alterations in membrane sterol composition affect protein and lipid organization and interaction within membranes. Here, we conducted a comparative analysis of the plasma membrane protein and lipid composition in Arabidopsis sterol-biosynthesis mutants smt1 and ugt80A2;B1. smt1 shows general alterations in sterol composition while ugt80A2;B1 is significantly impaired in sterol glycosylation. By systematically analyzing different cellular fractions and combining proteomic with lipidomic data we were able to reveal contrasting alterations in lipid-protein interactions in both mutants, with resulting differential changes in plasma membrane signaling status.

  14. Functional Interaction between HEXIM and Hedgehog Signaling during Drosophila Wing Development

    Science.gov (United States)

    Nguyen, Duy; Fayol, Olivier; Buisine, Nicolas; Lecorre, Pierrette; Uguen, Patricia

    2016-01-01

    Studying the dynamic of gene regulatory networks is essential in order to understand the specific signals and factors that govern cell proliferation and differentiation during development. This also has direct implication in human health and cancer biology. The general transcriptional elongation regulator P-TEFb regulates the transcriptional status of many developmental genes. Its biological activity is controlled by an inhibitory complex composed of HEXIM and the 7SK snRNA. Here, we examine the function of HEXIM during Drosophila development. Our key finding is that HEXIM affects the Hedgehog signaling pathway. HEXIM knockdown flies display strong phenotypes and organ failures. In the wing imaginal disc, HEXIM knockdown initially induces ectopic expression of Hedgehog (Hh) and its transcriptional effector Cubitus interuptus (Ci). In turn, deregulated Hedgehog signaling provokes apoptosis, which is continuously compensated by apoptosis-induced cell proliferation. Thus, the HEXIM knockdown mutant phenotype does not result from the apoptotic ablation of imaginal disc; but rather from the failure of dividing cells to commit to a proper developmental program due to Hedgehog signaling defects. Furthermore, we show that ci is a genetic suppressor of hexim. Thus, HEXIM ensures the integrity of Hedgehog signaling in wing imaginal disc, by a yet unknown mechanism. To our knowledge, this is the first time that the physiological function of HEXIM has been addressed in such details in vivo. PMID:27176767

  15. Steep Differences in Wingless Signaling Trigger Myc-Independent Competitive Cell Interactions

    OpenAIRE

    Vincent, Jean-Paul; Kolahgar, Golnar; Gagliardi, Maria; Piddini, Eugenia

    2011-01-01

    Summary Wnt signaling is a key regulator of development that is often associated with cancer. Wingless, a Drosophila Wnt homolog, has been reported to be a survival factor in wing imaginal discs. However, we found that prospective wing cells survive in the absence of Wingless as long as they are not surrounded by Wingless-responding cells. Moreover, local autonomous overactivation of Wg signaling (as a result of a mutation in APC or axin) leads to the elimination of surrounding normal cells. ...

  16. SNP-SNP interaction analysis of NF-κB signaling pathway on breast cancer survival

    DEFF Research Database (Denmark)

    Jamshidi, Maral; Fagerholm, Rainer; Khan, Sofia;

    2015-01-01

    extensive dataset (n = 30,431) from the Breast Cancer Association Consortium, we investigated the association of 917 SNPs in 75 genes in the NF-κB pathway with breast cancer prognosis. We explored SNP-SNP interactions on survival using the likelihood-ratio test comparing multivariate Cox' regression models...... of SNP pairs without and with an interaction term. We found two interacting pairs associating with prognosis: patients simultaneously homozygous for the rare alleles of rs5996080 and rs7973914 had worse survival (HRinteraction 6.98, 95% CI=3.3-14.4, P=1.42E-07), and patients carrying at least one...

  17. An additive interaction between the NFκB and estrogen receptor signalling pathways in human endometrial epithelial cells

    Science.gov (United States)

    King, A.E.; Collins, F.; Klonisch, T.; Sallenave, J.-M.; Critchley, H.O.D.; Saunders, P.T.K.

    2010-01-01

    BACKGROUND Human embryo implantation is regulated by estradiol (E2), progesterone and locally produced mediators including interleukin-1β (IL-1β). Interactions between the estrogen receptor (ER) and NF kappa B (NFκB) signalling pathways have been reported in other systems but have not been detailed in human endometrium. METHODS AND RESULTS Real-time PCR showed that mRNA for the p65 and p105 NFκB subunits is maximally expressed in endometrium from the putative implantation window. Both subunits are localized in the endometrial epithelium throughout the menstrual cycle. Reporter assays for estrogen response element (ERE) activity were used to examine functional interactions between ER and NFκB in telomerase immortalized endometrial epithelial cells (TERT-EEC). E2 and IL-1β treatment of TERT-EECs enhances ERE activity by a NFκB and ER dependent mechanism; this effect could be mediated by ERα or ERβ. E2 and IL-1β also positively interact to increase endogenous gene expression of prostaglandin E synthase and c-myc. This is a gene-dependent action as there is no additive effect on cyclin D1 or progesterone receptor expression. CONCLUSION In summary, we have established that NFκB signalling proteins are expressed in normal endometrium and report that IL-1β can enhance the actions of E2 in a cell line derived from healthy endometrium. This mechanism may allow IL-1β, possibly from the developing embryo, to modulate the function of the endometrial epithelium to promote successful implantation, for example by regulating prostaglandin production. Aberrations in the interaction between the ER and NFκB signalling pathways may have a negative impact on implantation contributing to pathologies such as early pregnancy loss and infertility. PMID:19955102

  18. Evidence for Interaction between the Stop Signal and the Stroop Task Conflict

    Science.gov (United States)

    Kalanthroff, Eyal; Goldfarb, Liat; Henik, Avishai

    2013-01-01

    Performance of the Stroop task reflects two conflicts--informational (between the incongruent word and ink color) and task (between relevant color naming and irrelevant word reading). The task conflict is usually not visible, and is only seen when task control is damaged. Using the stop-signal paradigm, a few studies demonstrated longer…

  19. Identification and Small-Signal Analysis of Interaction Modes in VSC MTDC Systems

    OpenAIRE

    Beerten, Jef; D'Arco, Salvatore; Suul, Jon Are

    2016-01-01

    In this paper, a methodology is presented to identify and analyse interaction modes between converters in Voltage Source Converter Multi-Terminal High Voltage Direct Current (VSC MTDC) systems. The absence of a substantial level of energy stored in such power electronics based systems results in fast system dynamics, governed by electromagnetic phenomena. Moreover, interactions between converters are largely influenced by the control parameters and in general, an a-priori identification of in...

  20. Study of Torsional Interactions in Multi-terminal DC Systems through Small Signal Stability Analysis

    OpenAIRE

    Padiyar, KR; Geetha, MK

    1991-01-01

    Turbo-generators can be subjected to negatively damped subsynchronous frequency oscillations caused by the interactions between the generator and the external network. This phenomena is termed as subsynchronous resonance (SSR) and it is well known that series compensated AC lines are the major contributors. In recent years, it has been established that HVDC systems with converter controllers can also cause unfavourable torsional interactions. Report the development of the mathematical model b...

  1. SDCCAG8 Interacts with RAB Effector Proteins RABEP2 and ERC1 and Is Required for Hedgehog Signaling.

    Directory of Open Access Journals (Sweden)

    Rannar Airik

    Full Text Available Recessive mutations in the SDCCAG8 gene cause a nephronophthisis-related ciliopathy with Bardet-Biedl syndrome-like features in humans. Our previous characterization of the orthologous Sdccag8gt/gt mouse model recapitulated the retinal-renal disease phenotypes and identified impaired DNA damage response signaling as an underlying disease mechanism in the kidney. However, several other phenotypic and mechanistic features of Sdccag8gt/gt mice remained unexplored. Here we show that Sdccag8gt/gt mice exhibit developmental and structural abnormalities of the skeleton and limbs, suggesting impaired Hedgehog (Hh signaling. Indeed, cell culture studies demonstrate the requirement of SDCCAG8 for ciliogenesis and Hh signaling. Using an affinity proteomics approach, we demonstrate that SDCCAG8 interacts with proteins of the centriolar satellites (OFD1, AZI1, of the endosomal sorting complex (RABEP2, ERC1, and with non-muscle myosin motor proteins (MYH9, MYH10, MYH14 at the centrosome. Furthermore, we show that RABEP2 localization at the centrosome is regulated by SDCCAG8. siRNA mediated RABEP2 knockdown in hTERT-RPE1 cells leads to defective ciliogenesis, indicating a critical role for RABEP2 in this process. Together, this study identifies several centrosome-associated proteins as novel SDCCAG8 interaction partners, and provides new insights into the function of SDCCAG8 at this structure.

  2. SDCCAG8 Interacts with RAB Effector Proteins RABEP2 and ERC1 and Is Required for Hedgehog Signaling

    Science.gov (United States)

    Schueler, Markus; Airik, Merlin; Cho, Jang; Ulanowicz, Kelsey A.; Porath, Jonathan D.; Hurd, Toby W.; Bekker-Jensen, Simon; Schrøder, Jacob M.; Andersen, Jens S.; Hildebrandt, Friedhelm

    2016-01-01

    Recessive mutations in the SDCCAG8 gene cause a nephronophthisis-related ciliopathy with Bardet-Biedl syndrome-like features in humans. Our previous characterization of the orthologous Sdccag8gt/gt mouse model recapitulated the retinal-renal disease phenotypes and identified impaired DNA damage response signaling as an underlying disease mechanism in the kidney. However, several other phenotypic and mechanistic features of Sdccag8gt/gt mice remained unexplored. Here we show that Sdccag8gt/gt mice exhibit developmental and structural abnormalities of the skeleton and limbs, suggesting impaired Hedgehog (Hh) signaling. Indeed, cell culture studies demonstrate the requirement of SDCCAG8 for ciliogenesis and Hh signaling. Using an affinity proteomics approach, we demonstrate that SDCCAG8 interacts with proteins of the centriolar satellites (OFD1, AZI1), of the endosomal sorting complex (RABEP2, ERC1), and with non-muscle myosin motor proteins (MYH9, MYH10, MYH14) at the centrosome. Furthermore, we show that RABEP2 localization at the centrosome is regulated by SDCCAG8. siRNA mediated RABEP2 knockdown in hTERT-RPE1 cells leads to defective ciliogenesis, indicating a critical role for RABEP2 in this process. Together, this study identifies several centrosome-associated proteins as novel SDCCAG8 interaction partners, and provides new insights into the function of SDCCAG8 at this structure. PMID:27224062

  3. Hepatitis B virus polymerase blocks pattern recognition receptor signaling via interaction with DDX3: implications for immune evasion.

    Directory of Open Access Journals (Sweden)

    Haifeng Wang

    Full Text Available Viral infection leads to induction of pattern-recognition receptor signaling, which leads to interferon regulatory factor (IRF activation and ultimately interferon (IFN production. To establish infection, many viruses have strategies to evade the innate immunity. For the hepatitis B virus (HBV, which causes chronic infection in the liver, the evasion strategy remains uncertain. We now show that HBV polymerase (Pol blocks IRF signaling, indicating that HBV Pol is the viral molecule that effectively counteracts host innate immune response. In particular, HBV Pol inhibits TANK-binding kinase 1 (TBK1/IkappaB kinase-epsilon (IKKepsilon, the effector kinases of IRF signaling. Intriguingly, HBV Pol inhibits TBK1/IKKepsilon activity by disrupting the interaction between IKKepsilon and DDX3 DEAD box RNA helicase, which was recently shown to augment TBK1/IKKepsilon activity. This unexpected role of HBV Pol may explain how HBV evades innate immune response in the early phase of the infection. A therapeutic implication of this work is that a strategy to interfere with the HBV Pol-DDX3 interaction might lead to the resolution of life-long persistent infection.

  4. Microenvironment interactions and B-cell receptor signaling in Chronic Lymphocytic Leukemia: Implications for disease pathogenesis and treatment.

    Science.gov (United States)

    Ten Hacken, Elisa; Burger, Jan A

    2016-03-01

    Chronic Lymphocytic Leukemia (CLL) is a malignancy of mature B lymphocytes which are highly dependent on interactions with the tissue microenvironment for their survival and proliferation. Critical components of the microenvironment are monocyte-derived nurselike cells (NLCs), mesenchymal stromal cells, T cells and NK cells, which communicate with CLL cells through a complex network of adhesion molecules, chemokine receptors, tumor necrosis factor (TNF) family members, and soluble factors. (Auto-) antigens and/or autonomous mechanisms activate the B-cell receptor (BCR) and its downstream signaling cascade in secondary lymphatic tissues, playing a central pathogenetic role in CLL. Novel small molecule inhibitors, including the Bruton's tyrosine kinase (BTK) inhibitor ibrutinib and the phosphoinositide-3-kinase delta (PI3Kδ) inhibitor idelalisib, target BCR signaling and have become the most successful new therapeutics in this disease. We here review the cellular and molecular characteristics of CLL cells, and discuss the cellular components and key pathways involved in the cross-talk with their microenvironment. We also highlight the relevant novel treatment strategies, focusing on immunomodulatory agents and BCR signaling inhibitors and how these treatments disrupt CLL-microenvironment interactions. This article is part of a Special Issue entitled: Tumor Microenvironment Regulation of Cancer Cell Survival, Metastasis, Inflammation, and Immune Surveillance edited by Peter Ruvolo and Gregg L. Semenza. PMID:26193078

  5. The contribution of IL-6 to beta 3 adrenergic receptor mediated adipose tissue remodeling.

    Science.gov (United States)

    Buzelle, Samyra L; MacPherson, Rebecca E K; Peppler, Willem T; Castellani, Laura; Wright, David C

    2015-02-01

    The chronic activation of beta 3 adrenergic receptors results in marked alterations in adipose tissue morphology and metabolism, including increases in mitochondrial content and the expression of enzymes involved in lipogenesis and glyceroneogenesis. Acute treatment with CL 316,243, a beta 3 adrenergic agonist, induces the expression of interleukin 6. Interestingly, IL-6 has been shown to induce mitochondrial genes in cultured adipocytes. Therefore, the purpose of this paper was to examine the role of interleukin 6 in mediating the in vivo effects of CL 316,243 in white adipose tissue. Circulating IL-6, and markers of IL-6 signaling in white adipose tissue were increased 4 h following a single injection of CL 316,243 in C57BL6/J mice. Once daily injections of CL 316,243 for 5 days increased the protein content of a number of mitochondrial proteins including CORE1, Cytochrome C, PDH, MCAD, and Citrate Synthase to a similar extent in adipose tissue from WT and IL-6(-/-) mice. Conversely, CL 316,243-induced increases in COXIV and phosphorylated AMPK were attenuated in IL-6(-/-) mice. Likewise, the slight, but significant, CL 316,243-induced increases in ATGL, PEPCK, and PPARγ, were reduced or absent in adipose tissue IL-6(-/-) mice. The attenuated response to CL 316,243 in white adipose tissue in IL-6(-/-) mice was associated with reductions in whole-body oxygen consumption and energy expenditure in the light phase. Our findings suggest that IL-6 plays a limited role in CL 316,243-mediated adipose tissue remodeling. PMID:25713332

  6. Cardiac Effects of Attenuating Gsα - Dependent Signaling.

    Directory of Open Access Journals (Sweden)

    Marcus R Streit

    Full Text Available Inhibition of β-adrenergic signalling plays a key role in treatment of heart failure. Gsα is essential for β-adrenergic signal transduction. In order to reduce side-effects of beta-adrenergic inhibition diminishing β-adrenergic signalling in the heart at the level of Gsα is a promising option.We analyzed the influence of Gsα on regulation of myocardial function and development of cardiac hypertrophy, using a transgenic mouse model (C57BL6/J mice overexpressing a dominant negative Gsα-mutant under control of the α-MHC-promotor. Cardiac phenotype was characterized in vivo and in vitro and under acute and chronic β-adrenergic stimulation. At rest, Gsα-DN-mice showed bradycardia (602 ± 13 vs. 660 ± 17 bpm, p<0.05 and decreased dp/dtmax (5037 ± 546- vs. 6835 ± 505 mmHg/s, p = 0.02. No significant differences were found regarding ejection fraction, heart weight and cardiomyocyte size. β-blockade by propranolol revealed no baseline differences of hemodynamic parameters between wildtype and Gsα-DN-mice. Acute adrenergic stimulation resulted in decreased β-adrenergic responsiveness in Gsα-DN-mice. Under chronic adrenergic stimulation, wildtype mice developed myocardial hypertrophy associated with increase of LV/BW-ratio by 23% (4.4 ± 0.2 vs. 3.5 ± 0.1 mg/g, p<0.01 and cardiac myocyte size by 24% (14927 ± 442 px vs. 12013 ± 583 px, p<0.001. In contrast, both parameters were unchanged in Gsα-DN-mice after chronic isoproterenol stimulation.Overexpression of a dominant negative mutant of Gsα leads to decreased β-adrenergic responsiveness and is protective against isoproterenol-induced hypertrophy. Thus, Gsα-DN-mice provide novel insights into β-adrenergic signal transduction and its modulation in myocardial overload and failure.

  7. Structure and mechanism of calmodulin binding to a signaling sphingolipid reveal new aspects of lipid-protein interactions.

    Science.gov (United States)

    Kovacs, Erika; Harmat, Veronika; Tóth, Judit; Vértessy, Beáta G; Módos, Károly; Kardos, József; Liliom, Károly

    2010-10-01

    Lipid-protein interactions are rarely characterized at a structural molecular level due to technical difficulties; however, the biological significance of understanding the mechanism of these interactions is outstanding. In this report, we provide mechanistic insight into the inhibitory complex formation of the lipid mediator sphingosylphosphorylcholine with calmodulin, the most central and ubiquitous regulator protein in calcium signaling. We applied crystallographic, thermodynamic, kinetic, and spectroscopic approaches using purified bovine calmodulin and bovine cerebral microsomal fraction to arrive at our conclusions. Here we present 1) a 1.6-Å resolution crystal structure of their complex, in which the sphingolipid occupies the conventional hydrophobic binding site on calmodulin; 2) a peculiar stoichiometry-dependent binding process: at low or high protein-to-lipid ratio calmodulin binds lipid micelles or a few lipid molecules in a compact globular conformation, respectively, and 3) evidence that the sphingolipid displaces calmodulin from its targets on cerebral microsomes. We have ascertained the specificity of the interaction using structurally related lipids as controls. Our observations reveal the structural basis of selective calmodulin inhibition by the sphingolipid. On the basis of the crystallographic and biophysical characterization of the calmodulin-sphingosylphosphorylcholine interaction, we propose a novel lipid-protein binding model, which might be applicable to other interactions as well. PMID:20522785

  8. Suramin blocks interaction between human FGF1 and FGFR2 D2 domain and reduces downstream signaling activity.

    Science.gov (United States)

    Wu, Zong-Sian; Liu, Che Fu; Fu, Brian; Chou, Ruey-Hwang; Yu, Chin

    2016-09-01

    The extracellular portion of the human fibroblast growth factor receptor2 D2 domain (FGFR2 D2) interacts with human fibroblast growth factor 1 (hFGF1) to activate a downstream signaling cascade that ultimately affects mitosis and differentiation. Suramin is an antiparasiticdrug and a potent inhibitor of FGF-induced angiogenesis. Suramin has been shown to bind to hFGF1, and might block the interaction between hFGF1 and FGFR2 D2. Here, we titrated hFGF1 with FGFR2 D2 and suramin to elucidate their interactions using the detection of NMR. The docking results of both hFGF1-FGFR2 D2 domain and hFGF1-suramin complex were superimposed. The results indicate that suramin blocks the interaction between hFGF1 and FGFR2 D2. We used the PyMOL software to show the hydrophobic interaction of hFGF1-suramin. In addition, we used a Water-soluble Tetrazolium salts assay (WST1) to assess hFGF1 bioactivity. The results will be useful for the development of new antimitogenic activity drugs. PMID:27387234

  9. Colored nectar as an honest signal in plant-animal interactions

    OpenAIRE

    Zhang, Feng-Ping; Larson-Rabin, Zachary; Li, De-Zhu; Wang, Hong

    2012-01-01

    Many flowering plants obtain the services of pollinators by using their floral traits as signals to advertise the rewards they offer to visitors—such as nectar, pollen and other food resources. Some plants use colorful pigments to draw pollinators’ attention to their nectar, instead of relying on the appeal of nectar taste. Although this rare floral trait of colored nectar was first recorded by the Greek poet Homer in the Odyssey, it has only recently received the attention of modern science....

  10. Is The CD200/CD200 Receptor Interaction More Than Just a Myeloid Cell Inhibitory Signal?

    OpenAIRE

    Minas, Konstantinos; Liversidge, Janet

    2006-01-01

    The membrane glycoprotein CD200, which has a widespread but defined distribution and a structurally similar receptor (CD200R) that transmits an inhibitory signal to cells of the hematopoetic lineage, especially myeloid cells, has been characterized. CD200R expression is restricted predominantly to cells of the myeloid lineage indicating that this ligand/receptor pair has a specific role in controlling myeloid cell function. In addition to CD200R, several related genes have been identified. Wh...

  11. Redox signaling in inflammation: interactions of endogenous electrophiles and mitochondria in cardiovascular disease

    OpenAIRE

    Koenitzer, Jeffrey R.; Freeman, Bruce A.

    2010-01-01

    Reactive species derived from oxygen and nitric oxide are produced during inflammation and promote oxidation and nitration of biomolecules, including unsaturated fatty acids. Among the products of these reactions are α,β-unsaturated carbonyl and nitro derivatives of fatty acids, electrophilic species whose reactivity with nucleophilic amino acids provides a means of posttranslational protein modification and signaling. These electrophilic fatty acids activate cytosolic and nuclear stress–resp...

  12. Does a Common Pathway Transduce Symbiotic Signals in Plant-Microbe Interactions?

    Science.gov (United States)

    Genre, Andrea; Russo, Giulia

    2016-01-01

    Recent years have witnessed major advances in our knowledge of plant mutualistic symbioses such as the rhizobium-legume symbiosis (RLS) and arbuscular mycorrhizas (AM). Some of these findings caused the revision of longstanding hypotheses, but one of the most solid theories is that a conserved set of plant proteins rules the transduction of symbiotic signals from beneficial glomeromycetes and rhizobia in a so-called common symbiotic pathway (CSP). Nevertheless, the picture still misses several elements, and a few crucial points remain unclear. How does one common pathway discriminate between - at least - two symbionts? Can we exclude that microbes other than AM fungi and rhizobia also use this pathway to communicate with their host plants? We here discuss the possibility that our current view is biased by a long-lasting focus on legumes, whose ability to develop both AM and RLS is an exception among plants and a recent innovation in their evolution; investigations in non-legumes are starting to place legume symbiotic signaling in a broader perspective. Furthermore, recent studies suggest that CSP proteins act in a wider scenario of symbiotic and non-symbiotic signaling. Overall, evidence is accumulating in favor of distinct activities for CSP proteins in AM and RLS, depending on the molecular and cellular context where they act. PMID:26909085

  13. Does a Common Pathway Transduce Symbiotic Signals in Plant–Microbe Interactions?

    Science.gov (United States)

    Genre, Andrea; Russo, Giulia

    2016-01-01

    Recent years have witnessed major advances in our knowledge of plant mutualistic symbioses such as the rhizobium-legume symbiosis (RLS) and arbuscular mycorrhizas (AM). Some of these findings caused the revision of longstanding hypotheses, but one of the most solid theories is that a conserved set of plant proteins rules the transduction of symbiotic signals from beneficial glomeromycetes and rhizobia in a so-called common symbiotic pathway (CSP). Nevertheless, the picture still misses several elements, and a few crucial points remain unclear. How does one common pathway discriminate between – at least – two symbionts? Can we exclude that microbes other than AM fungi and rhizobia also use this pathway to communicate with their host plants? We here discuss the possibility that our current view is biased by a long-lasting focus on legumes, whose ability to develop both AM and RLS is an exception among plants and a recent innovation in their evolution; investigations in non-legumes are starting to place legume symbiotic signaling in a broader perspective. Furthermore, recent studies suggest that CSP proteins act in a wider scenario of symbiotic and non-symbiotic signaling. Overall, evidence is accumulating in favor of distinct activities for CSP proteins in AM and RLS, depending on the molecular and cellular context where they act. PMID:26909085

  14. Molecular Mechanisms Underlying β-Adrenergic Receptor-Mediated Cross-Talk between Sympathetic Neurons and Immune Cells

    Directory of Open Access Journals (Sweden)

    Dianne Lorton

    2015-03-01

    Full Text Available Cross-talk between the sympathetic nervous system (SNS and immune system is vital for health and well-being. Infection, tissue injury and inflammation raise firing rates of sympathetic nerves, increasing their release of norepinephrine (NE in lymphoid organs and tissues. NE stimulation of β2-adrenergic receptors (ARs in immune cells activates the cAMP-protein kinase A (PKA intracellular signaling pathway, a pathway that interfaces with other signaling pathways that regulate proliferation, differentiation, maturation and effector functions in immune cells. Immune–SNS cross-talk is required to maintain homeostasis under normal conditions, to develop an immune response of appropriate magnitude after injury or immune challenge, and subsequently restore homeostasis. Typically, β2-AR-induced cAMP is immunosuppressive. However, many studies report actions of β2-AR stimulation in immune cells that are inconsistent with typical cAMP–PKA signal transduction. Research during the last decade in non-immune organs, has unveiled novel alternative signaling mechanisms induced by β2-AR activation, such as a signaling switch from cAMP–PKA to mitogen-activated protein kinase (MAPK pathways. If alternative signaling occurs in immune cells, it may explain inconsistent findings of sympathetic regulation of immune function. Here, we review β2-AR signaling, assess the available evidence for alternative signaling in immune cells, and provide insight into the circumstances necessary for “signal switching” in immune cells.

  15. Ghost-in-the-Machine reveals human social signals for human–robot interaction

    Science.gov (United States)

    Loth, Sebastian; Jettka, Katharina; Giuliani, Manuel; de Ruiter, Jan P.

    2015-01-01

    We used a new method called “Ghost-in-the-Machine” (GiM) to investigate social interactions with a robotic bartender taking orders for drinks and serving them. Using the GiM paradigm allowed us to identify how human participants recognize the intentions of customers on the basis of the output of the robotic recognizers. Specifically, we measured which recognizer modalities (e.g., speech, the distance to the bar) were relevant at different stages of the interaction. This provided insights into human social behavior necessary for the development of socially competent robots. When initiating the drink-order interaction, the most important recognizers were those based on computer vision. When drink orders were being placed, however, the most important information source was the speech recognition. Interestingly, the participants used only a subset of the available information, focussing only on a few relevant recognizers while ignoring others. This reduced the risk of acting on erroneous sensor data and enabled them to complete service interactions more swiftly than a robot using all available sensor data. We also investigated socially appropriate response strategies. In their responses, the participants preferred to use the same modality as the customer’s requests, e.g., they tended to respond verbally to verbal requests. Also, they added redundancy to their responses, for instance by using echo questions. We argue that incorporating the social strategies discovered with the GiM paradigm in multimodal grammars of human–robot interactions improves the robustness and the ease-of-use of these interactions, and therefore provides a smoother user experience. PMID:26582998

  16. H2S AND NO SIGNALING INTERACTIONS IN THALE CRESS (ARABIDOPSIS THALIANA L. AND PEPPER (CAPSICUM ANNUUM L. LEAVES

    Directory of Open Access Journals (Sweden)

    Miroslav Lisjak

    2012-06-01

    Full Text Available This research comprehends a set of experiments with several thale cress (Arabidopsis thaliana L. and pepper (Capsicum annuum L. genotypes in controlled conditions using growth chambers, with the aim of determining the physiological role of hydrogen sulfide (H2S in plants, as well as its potential effect as a signaling compound, particularly in potential interaction with nitric oxide (NO signaling pathways. Special emphasis was focused on stomatal mechanisms and signaling in their opening and closing. Moreover, the effect of treatment of pepper plants with H2S was investigated in salt stress conditions. It was established that the applied H2S donors, NaHS and GYY4137, inhibit stomata closing in both plant species through the reduction of NO accumulation in stomata, which was proven to occur in SNP or ABA treatment. The effects of NO and H2S were opposite those in pepper plants response to salt stress as well, with increased antioxidative activity in leaf obtained after H2S treatments, and with NaHS in particular. In addition, GYY4137 could be considered as a convenient H2S donor for research into H2S functions in plants. The results point out the interactions of H2S and NO in plant cell signaling in both normal and salt stress conditions. Further research of this type should uncover H2S functions in plant metabolism more precisely, especially considering the potential practical value of this knowledge for plant stress resistance improvement and their productivity enhancement.

  17. An additive interaction between the NFκB and estrogen receptor signalling pathways in human endometrial epithelial cells

    OpenAIRE

    King, A E; Collins, F; Klonisch, T; Sallenave, J-M; Critchley, H.O.D.; Saunders, P T K

    2009-01-01

    Human embryo implantation is regulated by estradiol (E2), progesterone and locally produced mediators including interleukin-1 beta (IL-1 beta). Interactions between the estrogen receptor (ER) and NF kappa B (NF kappa B) signalling pathways have been reported in other systems but have not been detailed in human endometrium.Real-time PCR showed that mRNA for the p65 and p105 NF kappa B subunits is maximally expressed in endometrium from the putative implantation window. Both subunits are locali...

  18. Inhibitor of CDK interacting with cyclin A1 (INCA1) regulates proliferation and is repressed by oncogenic signaling

    DEFF Research Database (Denmark)

    Baumer, Nicole; Tickenbrock, Lara; Tschanter, Petra;

    2011-01-01

    The cell cycle is driven by the kinase activity of cyclin/CDK complexes which is negatively regulated by CDK inhibitor proteins. Recently, we identified INCA1 as interaction partner and substrate of cyclin A1 in complex with CDK2. On a functional level, we identified a novel cyclin binding site in...... the INCA1 protein. INCA1 inhibited CDK2 activity and cell proliferation. The inihibitory effects depended on the cyclin-interacting domain. Mitogenic and oncogenic signals suppressed INCA1 expression, while it was induced by cell cycle arrest. We established a deletional mouse model that showed...... increased CDK2 activity in spleen with altered spleen architecture in Inca1-/- mice. Inca1-/- embryonic fibroblasts showed an increase in the fraction of S-phase cells. Furthermore, blasts from ALL and AML patients expressed significantly reduced INCA1 levels highlighting its relevance for growth control in...

  19. Expression of mammalian beta-adrenergic receptors in Xenopus laevis oocytes

    International Nuclear Information System (INIS)

    Xenopus laevis oocytes are a useful transcription and expression system for DNA and RNA, respectively. Total cellular RNA was extracted from mouse lymphoma S49 cells and poly(A)+mRNA prepared by affinity chromatography of RNA on oligo(dT) cellulose. The membranes of S49 cells contain beta-adrenergic receptors that display pharmacological characteristics of beta2-subtype. Xenopus laevis oocytes were injected with 50 ng of mRNA/oocyte. Expression of beta-adrenergic receptors in oocytes incubated for 30 hr after microinjection was assessed in membranes by radioligand binding using [3H] dihydroalprenolol. The injected oocytes displayed 0.34 fmol receptor/oocyte as compared to 0.02 fmol receptor/oocyte in the control oocytes. The affinity of beta-adrenergic receptors in injected oocytes for this radioligand was 2 nM, a value similar to the affinity of beta-adrenergic receptors for DHA in S49 cell membranes. The potency of beta-adrenergic agonists in competing for DHA binding to oocytes membranes was isoproterenol > epinephrine > norepineprine, indicating that the expressed beta-adrenergic receptors were of the beta2-subtype. The K/sub I/ of these agonists for the beta-adrenergic receptor in oocyte membranes was 0.03, 0.15 and 1.2 μM, respectively. The role of post-translational modification in dictating receptor subtype is analyzed using mRNA of beta1- as well as beta2-adrenergic receptors

  20. Antagonism of Lateral Amygdala Alpha1-Adrenergic Receptors Facilitates Fear Conditioning and Long-Term Potentiation

    Science.gov (United States)

    Lazzaro, Stephanie C.; Hou, Mian; Cunha, Catarina; LeDoux, Joseph E.; Cain, Christopher K.

    2010-01-01

    Norepinephrine receptors have been studied in emotion, memory, and attention. However, the role of alpha1-adrenergic receptors in fear conditioning, a major model of emotional learning, is poorly understood. We examined the effect of terazosin, an alpha1-adrenergic receptor antagonist, on cued fear conditioning. Systemic or intra-lateral amygdala…

  1. Molecular aspects of adrenergic modulation of cardiac L-type Ca2+ channels.

    NARCIS (Netherlands)

    Heyden, M.A. van der; Wijnhoven, T.J.M.; Opthof, T.

    2005-01-01

    L-type Ca(2+) channels are predominantly regulated by beta-adrenergic stimulation, enhancing L-type Ca(2+) current by increasing the mean channel open time and/or the opening probability of functional Ca(2+) channels. Stimulation of beta-adrenergic receptors (ARs) results in an increased cyclic aden

  2. Adrenergic effects on exocrine secretion of rat submandibular epidermal growth factor

    DEFF Research Database (Denmark)

    Poulsen, Steen Seier; Nexø, Ebba

    1984-01-01

    The present study was undertaken to investigate the effect of alpha- and beta-adrenergic agonists on secretion of epidermal growth factor (EGF) from the rat submandibular glands and to test the possibility of intestinal absorption of EGF. Alpha-adrenergic agonists increased the concentration of s...

  3. A Saccharomyces cerevisiae Assay System to Investigate Ligand/AdipoR1 Interactions That Lead to Cellular Signaling

    KAUST Repository

    Aouida, Mustapha

    2013-06-07

    Adiponectin is a mammalian hormone that exerts anti-diabetic, anti-cancer and cardioprotective effects through interaction with its major ubiquitously expressed plasma membrane localized receptors, AdipoR1 and AdipoR2. Here, we report a Saccharomyces cerevisiae based method for investigating agonist-AdipoR interactions that is amenable for high-throughput scale-up and can be used to study both AdipoRs separately. Agonist-AdipoR1 interactions are detected using a split firefly luciferase assay based on reconstitution of firefly luciferase (Luc) activity due to juxtaposition of its N- and C-terminal fragments, NLuc and CLuc, by ligand induced interaction of the chimeric proteins CLuc-AdipoR1 and APPL1-NLuc (adaptor protein containing pleckstrin homology domain, phosphotyrosine binding domain and leucine zipper motif 1-NLuc) in a S. cerevisiae strain lacking the yeast homolog of AdipoRs (Izh2p). The assay monitors the earliest known step in the adiponectin-AdipoR anti-diabetic signaling cascade. We demonstrate that reconstituted Luc activity can be detected in colonies or cells using a CCD camera and quantified in cell suspensions using a microplate reader. AdipoR1-APPL1 interaction occurs in absence of ligand but can be stimulated specifically by agonists such as adiponectin and the tobacco protein osmotin that was shown to have AdipoR-dependent adiponectin-like biological activity in mammalian cells. To further validate this assay, we have modeled the three dimensional structures of receptor-ligand complexes of membrane-embedded AdipoR1 with cyclic peptides derived from osmotin or osmotin-like plant proteins. We demonstrate that the calculated AdipoR1-peptide binding energies correlate with the peptides\\' ability to behave as AdipoR1 agonists in the split luciferase assay. Further, we demonstrate agonist-AdipoR dependent activation of protein kinase A (PKA) signaling and AMP activated protein kinase (AMPK) phosphorylation in S. cerevisiae, which are homologous to

  4. A Saccharomyces cerevisiae assay system to investigate ligand/AdipoR1 interactions that lead to cellular signaling.

    Directory of Open Access Journals (Sweden)

    Mustapha Aouida

    Full Text Available Adiponectin is a mammalian hormone that exerts anti-diabetic, anti-cancer and cardioprotective effects through interaction with its major ubiquitously expressed plasma membrane localized receptors, AdipoR1 and AdipoR2. Here, we report a Saccharomyces cerevisiae based method for investigating agonist-AdipoR interactions that is amenable for high-throughput scale-up and can be used to study both AdipoRs separately. Agonist-AdipoR1 interactions are detected using a split firefly luciferase assay based on reconstitution of firefly luciferase (Luc activity due to juxtaposition of its N- and C-terminal fragments, NLuc and CLuc, by ligand induced interaction of the chimeric proteins CLuc-AdipoR1 and APPL1-NLuc (adaptor protein containing pleckstrin homology domain, phosphotyrosine binding domain and leucine zipper motif 1-NLuc in a S. cerevisiae strain lacking the yeast homolog of AdipoRs (Izh2p. The assay monitors the earliest known step in the adiponectin-AdipoR anti-diabetic signaling cascade. We demonstrate that reconstituted Luc activity can be detected in colonies or cells using a CCD camera and quantified in cell suspensions using a microplate reader. AdipoR1-APPL1 interaction occurs in absence of ligand but can be stimulated specifically by agonists such as adiponectin and the tobacco protein osmotin that was shown to have AdipoR-dependent adiponectin-like biological activity in mammalian cells. To further validate this assay, we have modeled the three dimensional structures of receptor-ligand complexes of membrane-embedded AdipoR1 with cyclic peptides derived from osmotin or osmotin-like plant proteins. We demonstrate that the calculated AdipoR1-peptide binding energies correlate with the peptides' ability to behave as AdipoR1 agonists in the split luciferase assay. Further, we demonstrate agonist-AdipoR dependent activation of protein kinase A (PKA signaling and AMP activated protein kinase (AMPK phosphorylation in S. cerevisiae, which are

  5. Regulation of coronary vascular tone via redox modulation in the alpha1-adrenergic-angiotensin-endothelin axis of the myocardium.

    Science.gov (United States)

    Yamaguchi, Osamu; Kaneshiro, Takashi; Saitoh, Shu-ichi; Ishibashi, Toshiyuki; Maruyama, Yukio; Takeishi, Yasuchika

    2009-01-01

    We hypothesized that alpha(1)-adrenoceptor stimulation of cardiac myocytes results in the production of an endothelin (ET)-releasing factor that stimulates the coronary vasculature to release ET and, by manipulating the redox state of cardiac and vascular cells, may influence the extent of alpha(1)-adrenergic-ET-1 vasoconstriction. Dihydroethidium (DHE) and dichlorodihydrofluorescein (DCF) intensities were increased by phenylephrine stimulation in isolated rat cardiac myocytes, which were enhanced by the mitochondrial electron transport chain complex I inhibitor rotenone (DHE: 20.4 +/- 1.2-fold and DCF: 25.2 +/- 0.9-fold, n = 8, P < 0.01, respectively) but not by the NADPH oxidase inhibitor apocynin. Olmesartan, an angiotensin II type 1 receptor antagonist, and enalaprilate did not change DHE and DCF intensities by phenylephrine. Next, we measured the vasoconstriction of isolated, pressurized rat coronary arterioles (diameter: 74 +/- 8 microm) in response to supernatant collected from isolated cardiac myocytes. The addition of supernatant from phenylephrine-stimulated myocytes to a 2-ml vessel bath (n = 8 each) caused volume-dependent vasoconstriction (500 microl: -14.8 +/- 2.2%). Olmesartan and TA0201, an ET type A receptor antagonist, converted vasoconstriction into vasodilation (8.5 +/- 1.2% and 10.5 +/- 0.5%, P < 0.01, respectively) in response to supernatant from phenylephrine-stimulated myocytes, which was eliminated with catalase. Vasoconstriction was weakened using supernatant from phenylephrine with rotenone-treated myocytes. Treatment of arterioles with apocynin to myocyte supernatant converted vasoconstriction into vasodilation (7.8 +/- 0.8%, P < 0.01). These results suggest that alpha(1)-adrenergic stimulation in cardiac myocytes produces angiotensin I and H(2)O(2) and that angiotensin releases ET-1 through NADPH oxidase in coronary arterioles. Thus, coronary vasoconstriction via the alpha-adrenergic-angiotensin-ET axis appears to require redox

  6. Alpha-2 adrenergic receptor-mediated inhibition of thermogenesis

    OpenAIRE

    Madden, Christopher J.; Tupone, Domenico; Cano, Georgina; Morrison, Shaun F.

    2013-01-01

    Alpha2-adrenergic receptor (α2-AR) agonists have been use as anti-hypertensive agents, in the management of drug withdrawal, and as sedative analgesics. Since α2-AR agonists also influence the regulation of body temperature, we explored their potential as antipyretic agents. This study delineates the central neural substrate for the inhibition of rat brown adipose tissue (BAT) and shivering thermogenesis by α2-AR agonists. Nanoinjection of the α2-AR agonist, clonidine (1.2 nmol), into the ros...

  7. Cross talk between H2O2 and interacting signal molecules under plant stress response

    Directory of Open Access Journals (Sweden)

    Ina eSaxena

    2016-04-01

    Full Text Available It is well established that oxidative stress is an important cause of cellular damage. During stress condition plants have evolved regulatory mechanism to adapt to various environmental stresses. One of the consequences of stress is an increase in the cellular concentration of ROS, which is subsequently converted to H2O2. H2O2 is continuously produced as the by-product of oxidative plant aerobic metabolism. Organelles with a high oxidizing metabolic activity or with an intense rate of electron flow, such as chloroplasts, mitochondria, or peroxisomes are major sources of H2O2 production. H2O2 acts as a versatile molecule because of its dual role in cells. Under normal conditions, H2O2 acts as a key regulator of many biological processes because H2O2 has been identified as an important second messenger in signal transduction networks. In this review we discuss potential roles of H2O2 and other signaling molecule during various stress responses.

  8. Cross Talk between H2O2 and Interacting Signal Molecules under Plant Stress Response

    Science.gov (United States)

    Saxena, Ina; Srikanth, Sandhya; Chen, Zhong

    2016-01-01

    It is well established that oxidative stress is an important cause of cellular damage. During stress conditions, plants have evolved regulatory mechanisms to adapt to various environmental stresses. One of the consequences of stress is an increase in the cellular concentration of reactive oxygen species, which is subsequently converted to H2O2. H2O2 is continuously produced as the byproduct of oxidative plant aerobic metabolism. Organelles with a high oxidizing metabolic activity or with an intense rate of electron flow, such as chloroplasts, mitochondria, or peroxisomes are major sources of H2O2 production. H2O2 acts as a versatile molecule because of its dual role in cells. Under normal conditions, H2O2 immerges as an important factor during many biological processes. It has been established that it acts as a secondary messenger in signal transduction networks. In this review, we discuss potential roles of H2O2 and other signaling molecules during various stress responses. PMID:27200043

  9. Alpha and beta adrenergic effects on metabolism in contracting, perfused muscle

    DEFF Research Database (Denmark)

    Richter, Erik; Ruderman, N B; Galbo, H

    1982-01-01

    The role of alpha- and beta-adrenergic receptor stimulation for the effect of epinephrine on muscle glycogenolysis, glucose- and oxygen uptake and muscle performance was studied in the perfused rat hindquarter at rest and during electrical stimulation (60 contractions/min). Adrenergic stimulation...... was obtained by epinephrine in a physiological concentration (2.4 X 10(-8) M) and alpha- and beta-adrenergic blockade by 10(-5) M phentolamine and propranolol, respectively. Epinephrine enhanced net glycogenolysis during contractions most markedly in slow-twitch red fibers. In these fibers the effect...... stimulation of alpha-adrenergic receptors and had a positive inotropic effect during contractions which was abolished by alpha- as well as by beta-adrenergic blockade. The results indicate that epinephrine has profound effects on contracting muscle, and that these effects are elicited through different...

  10. Adrenergic Drugs Blockers or Enhancers for Cognitive Decline ? What to Choose for Alzheimer's Disease Patients?

    Science.gov (United States)

    Femminella, Grazia D; Leosco, Dario; Ferrara, Nicola; Rengo, Giuseppe

    2016-01-01

    The adrenergic system has an important role in normal central nervous system function as well as in brain disease. The locus coeruleus, the main source of norepinephrine in brain, is involved in the regulation of learning and memory, reinforcement of sleep-wake cycle and synaptic plasticity. In Alzheimer's disease, locus coeruleus degeneration is observed early in the course of the disease, years before the onset of clinical cognitive signs, with neurofibrillary detected at the stage of mild cognitive impairment, preceding amyloid deposition. Thus, in the last years, a great interest has grown in evaluating the possibility of central adrenergic system modulation as a therapeutic tool in Alzheimer's disease. However, evidences do not show univocal results, with some studies suggesting that adrenergic stimulation might be beneficial in Alzheimer's Disease and some others favoring adrenergic blockade. In this review, we summarize data from both hypothesis and describe the pathophysiological role of the adrenergic system in neurodegeneration. PMID:27189470

  11. Auxin homeostasis, signaling, and interaction with other growth hormones during the clubroot disease of Brassicaceae

    OpenAIRE

    Ludwig-Müller, Jutta

    2014-01-01

    The obligate biotrophic protist Plasmodiophora brassicae causes worldwide devastating losses on Brassica crops. Among these are oilseed rape, vegetable brassicas, and turnips. However, the fact that Arabidopsis thaliana is a good host for P. brassicae, has boosted research on the molecular interaction using the resources available for this model plant. Due to the uncontrolled growth of infected host root tissues the disease has been coined “clubroot.” Consequently, during the last years, alte...

  12. Inhibition of tumor-stromal interaction through HGF/Met signaling by valproic acid

    International Nuclear Information System (INIS)

    Hepatocyte growth factor (HGF), which is produced by surrounding stromal cells, including fibroblasts and endothelial cells, has been shown to be a significant factor responsible for cancer cell invasion mediated by tumor-stromal interactions. We found in this study that the anti-tumor agent valproic acid (VPA), a histone deacetylase (HDAC) inhibitor, strongly inhibited tumor-stromal interaction. VPA inhibited HGF production in fibroblasts induced by epidermal growth factor (EGF), platelet-derived growth factor, basic fibroblast growth factor, phorbol 12-myristate 13-acetate (PMA) and prostaglandin E2 without any appreciable cytotoxic effect. Other HDAC inhibitors, including butyric acid and trichostatin A (TSA), showed similar inhibitory effects on HGF production stimulated by various inducers. Up-regulations of HGF gene expression induced by PMA and EGF were also suppressed by VPA and TSA. Furthermore, VPA significantly inhibited HGF-induced invasion of HepG2 hepatocellular carcinoma cells. VPA, however, did not affect the increases in phosphorylation of MAPK and Akt in HGF-treated HepG2 cells. These results demonstrated that VPA inhibited two critical processes of tumor-stromal interaction, induction of fibroblastic HGF production and HGF-induced invasion of HepG2 cells, and suggest that those activities serve for other anti-tumor mechanisms of VPA besides causing proliferation arrest, differentiation, and/or apoptosis of tumor cells

  13. Alternative packing of EGFR transmembrane domain suggests that protein-lipid interactions underlie signal conduction across membrane.

    Science.gov (United States)

    Bocharov, Eduard V; Lesovoy, Dmitry M; Pavlov, Konstantin V; Pustovalova, Yulia E; Bocharova, Olga V; Arseniev, Alexander S

    2016-06-01

    The human epidermal growth factor receptor (EGFR) of HER/ErbB receptor tyrosine kinase family mediates a broad spectrum of cellular responses transducing biochemical signals via lateral dimerization in plasma membrane, while inactive receptors can exist in both monomeric and dimeric forms. Recently, the dimeric conformation of the helical single-span transmembrane domains of HER/ErbB employing the relatively polar N-terminal motifs in a fashion permitting proper kinase activation was experimentally determined. Here we describe the EGFR transmembrane domain dimerization via an alternative weakly polar C-terminal motif A(661)xxxG(665) presumably corresponding to the inactive receptor state. During association, the EGFR transmembrane helices undergo a structural adjustment with adaptation of inter-molecular polar and hydrophobic interactions depending upon the surrounding membrane properties that directly affect the transmembrane helix packing. This might imply that signal transduction through membrane and allosteric regulation are inclusively mediated by coupled protein-protein and protein-lipid interactions, elucidating paradoxically loose linkage between ligand binding and kinase activation. PMID:26903218

  14. Genetic interaction of two abscisic acid signaling regulators, HY5 and FIERY1, in mediating lateral root formation

    KAUST Repository

    Chen, Hao

    2011-01-01

    Root architecture is continuously shaped in a manner that helps plants to better adapt to the environment. Gene regulation at the transcriptional or post-transcriptional levels largely controls this environmental response. Recently, RNA silencing has emerged as an important player in gene regulation and is involved in many aspects of plant development, including lateral root formation. In a recent study, we found that FIERY1, a bifunctional abiotic stress and abscisic acid (ABA) signaling regulator and an endogenous RNA silencing suppressor, mediates auxin response during lateral root formation in Arabidopsis. We proposed that FRY1 regulates lateral root development through its activity on adenosine 3,5-bisphosphate (PAP), a strong inhibitor of exoribonucleases (XRNs). Interestingly, some of the phenotypes of fry1, such as enhanced response to light in repressing hypocotyl elongation and hypersensitivity to ABA in lateral root growth, are opposite to those of another light- and ABA-signaling mutant, hy5. Here we analyzed the hy5 fry1 double mutant for root and hypocotyl growth. We found that the hy5 mutation can suppress the enhanced light sensitivity in fry1 hypocotyl elongation and restore the lateral root formation. The genetic interaction between HY5 and FRY1 indicates that HY5 and FRY1 may act in overlapping pathways that mediate light signaling and lateral root development. © 2011 Landes Bioscience.

  15. CD44: molecular interactions, signalling and functions in the nervous system.

    Directory of Open Access Journals (Sweden)

    Grzegorz Marek Wilczynski

    2015-05-01

    Full Text Available CD44 is the major surface hyaluronan receptor implicated in intercellular and cell-matrix adhesion, cell migration and signalling. It is a transmembrane, highly glycosylated protein with several isoforms resulting from alternative gene splicing. The CD44 molecule consists of several domains serving different functions: the N-terminal extracellular domain, the stem region, the transmembrane domain and the C-terminal tail. In the nervous system, CD44 expression occurs in both glial and neuronal cells. The role of CD44 in the physiology and pathology of the nervous system is not entirely understood, however, there exists evidence suggesting it might be involved in the axon guidance, cytoplasmic Ca2+ clearance, dendritic arborization, synaptic transmission, epileptogenesis, oligodendrocyte and astrocyte differentiation, post-traumatic brain repair and brain tumour development.

  16. Regulation of developmental and environmental signaling by interaction between microtubules and membranes in plant cells.

    Science.gov (United States)

    Zhang, Qun; Zhang, Wenhua

    2016-02-01

    Cell division and expansion require the ordered arrangement of microtubules, which are subject to spatial and temporal modifications by developmental and environmental factors. Understanding how signals translate to changes in cortical microtubule organization is of fundamental importance. A defining feature of the cortical microtubule array is its association with the plasma membrane; modules of the plasma membrane are thought to play important roles in the mediation of microtubule organization. In this review, we highlight advances in research on the regulation of cortical microtubule organization by membrane-associated and membrane-tethered proteins and lipids in response to phytohormones and stress. The transmembrane kinase receptor Rho-like guanosine triphosphatase, phospholipase D, phosphatidic acid, and phosphoinositides are discussed with a focus on their roles in microtubule organization. PMID:26687389

  17. Expression of human alpha 2-adrenergic receptors in adipose tissue of beta 3-adrenergic receptor-deficient mice promotes diet-induced obesity.

    Science.gov (United States)

    Valet, P; Grujic, D; Wade, J; Ito, M; Zingaretti, M C; Soloveva, V; Ross, S R; Graves, R A; Cinti, S; Lafontan, M; Lowell, B B

    2000-11-01

    Catecholamines play an important role in controlling white adipose tissue function and development. beta- and alpha 2-adrenergic receptors (ARs) couple positively and negatively, respectively, to adenylyl cyclase and are co-expressed in human adipocytes. Previous studies have demonstrated increased adipocyte alpha 2/beta-AR balance in obesity, and it has been proposed that increased alpha 2-ARs in adipose tissue with or without decreased beta-ARs may contribute mechanistically to the development of increased fat mass. To critically test this hypothesis, adipocyte alpha 2/beta-AR balance was genetically manipulated in mice. Human alpha 2A-ARs were transgenically expressed in the adipose tissue of mice that were either homozygous (-/-) or heterozygous (+/-) for a disrupted beta 3-AR allele. Mice expressing alpha 2-ARs in fat, in the absence of beta 3-ARs (beta 3-AR -/- background), developed high fat diet-induced obesity. Strikingly, this effect was due entirely to adipocyte hyperplasia and required the presence of alpha2-ARs, the absence of beta 3-ARs, and a high fat diet. Of note, obese alpha 2-transgenic beta 3 -/- mice failed to develop insulin resistance, which may reflect the fact that expanded fat mass was due to adipocyte hyperplasia and not adipocyte hypertrophy. In summary, we have demonstrated that increased alpha 2/beta-AR balance in adipocytes promotes obesity by stimulating adipocyte hyperplasia. This study also demonstrates one way in which two genes (alpha 2 and beta 3-AR) and diet interact to influence fat mass. PMID:10948198

  18. The cannabinoid CB1 receptor and mTORC1 signalling pathways interact to modulate glucose homeostasis in mice.

    Science.gov (United States)

    Bermudez-Silva, Francisco J; Romero-Zerbo, Silvana Y; Haissaguerre, Magalie; Ruz-Maldonado, Inmaculada; Lhamyani, Said; El Bekay, Rajaa; Tabarin, Antoine; Marsicano, Giovanni; Cota, Daniela

    2016-01-01

    The endocannabinoid system (ECS) is an intercellular signalling mechanism that is present in the islets of Langerhans and plays a role in the modulation of insulin secretion and expansion of the β-cell mass. The downstream signalling pathways mediating these effects are poorly understood. Mammalian target of rapamycin complex 1 (mTORC1) signalling is a key intracellular pathway involved in energy homeostasis and is known to importantly affect the physiology of pancreatic islets. We investigated the possible relationship between cannabinoid type 1 (CB1) receptor signalling and the mTORC1 pathway in the endocrine pancreas of mice by using pharmacological analysis as well as mice genetically lacking the CB1 receptor or the downstream target of mTORC1, the kinase p70S6K1. In vitro static secretion experiments on islets, western blotting, and in vivo glucose and insulin tolerance tests were performed. The CB1 receptor antagonist rimonabant decreased glucose-stimulated insulin secretion (GSIS) at 0.1 µM while increasing phosphorylation of p70S6K1 and ribosomal protein S6 (rpS6) within the islets. Specific pharmacological blockade of mTORC1 by 3 nM rapamycin, as well as genetic deletion of p70S6K1, impaired the CB1-antagonist-mediated decrease in GSIS. In vivo experiments showed that 3 mg/kg body weight rimonabant decreased insulin levels and induced glucose intolerance in lean mice without altering peripheral insulin sensitivity; this effect was prevented by peripheral administration of low doses of rapamycin (0.1 mg/kg body weight), which increased insulin sensitivity. These findings suggest a functional interaction between the ECS and the mTORC1 pathway within the endocrine pancreas and at the whole-organism level, which could have implications for the development of new therapeutic approaches for pancreatic β-cell diseases. PMID:26563389

  19. The cannabinoid CB1 receptor and mTORC1 signalling pathways interact to modulate glucose homeostasis in mice

    Directory of Open Access Journals (Sweden)

    Francisco J. Bermudez-Silva

    2016-01-01

    Full Text Available The endocannabinoid system (ECS is an intercellular signalling mechanism that is present in the islets of Langerhans and plays a role in the modulation of insulin secretion and expansion of the β-cell mass. The downstream signalling pathways mediating these effects are poorly understood. Mammalian target of rapamycin complex 1 (mTORC1 signalling is a key intracellular pathway involved in energy homeostasis and is known to importantly affect the physiology of pancreatic islets. We investigated the possible relationship between cannabinoid type 1 (CB1 receptor signalling and the mTORC1 pathway in the endocrine pancreas of mice by using pharmacological analysis as well as mice genetically lacking the CB1 receptor or the downstream target of mTORC1, the kinase p70S6K1. In vitro static secretion experiments on islets, western blotting, and in vivo glucose and insulin tolerance tests were performed. The CB1 receptor antagonist rimonabant decreased glucose-stimulated insulin secretion (GSIS at 0.1 µM while increasing phosphorylation of p70S6K1 and ribosomal protein S6 (rpS6 within the islets. Specific pharmacological blockade of mTORC1 by 3 nM rapamycin, as well as genetic deletion of p70S6K1, impaired the CB1-antagonist-mediated decrease in GSIS. In vivo experiments showed that 3 mg/kg body weight rimonabant decreased insulin levels and induced glucose intolerance in lean mice without altering peripheral insulin sensitivity; this effect was prevented by peripheral administration of low doses of rapamycin (0.1 mg/kg body weight, which increased insulin sensitivity. These findings suggest a functional interaction between the ECS and the mTORC1 pathway within the endocrine pancreas and at the whole-organism level, which could have implications for the development of new therapeutic approaches for pancreatic β-cell diseases.

  20. Divergent Label-free Cell Phenotypic Pharmacology of Ligands at the Overexpressed β2-Adrenergic Receptors

    Science.gov (United States)

    Ferrie, Ann M.; Sun, Haiyan; Zaytseva, Natalya; Fang, Ye

    2014-01-01

    We present subclone sensitive cell phenotypic pharmacology of ligands at the β2-adrenergic receptor (β2-AR) stably expressed in HEK-293 cells. The parental cell line was transfected with green fluorescent protein (GFP)-tagged β2-AR. Four stable subclones were established and used to profile a library of sixty-nine AR ligands. Dynamic mass redistribution (DMR) profiling resulted in a pharmacological activity map suggesting that HEK293 endogenously expresses functional Gi-coupled α2-AR and Gs-coupled β2-AR, and the label-free cell phenotypic activity of AR ligands are subclone dependent. Pathway deconvolution revealed that the DMR of epinephrine is originated mostly from the remodeling of actin microfilaments and adhesion complexes, to less extent from the microtubule networks and receptor trafficking, and certain agonists displayed different efficacy towards the cAMP-Epac pathway. We demonstrate that receptor signaling and ligand pharmacology is sensitive to the receptor expression level, and the organization of the receptor and its signaling circuitry.

  1. Relevancies of multiple-interaction events and signal-to-noise ratio for Anger-logic based PET detector designs

    International Nuclear Information System (INIS)

    A fundamental challenge for PET block detector designs is to deploy finer crystal elements while limiting the number of readout channels. The standard Anger-logic scheme including light sharing (an 8 by 8 crystal array coupled to a 2×2 photodetector array with an optical diffuser, multiplexing ratio: 16:1) has been widely used to address such a challenge. Our work proposes a generalized model to study the impacts of two critical parameters on spatial resolution performance of a PET block detector: multiple interaction events and signal-to-noise ratio (SNR). The study consists of the following three parts: (1) studying light output profile and multiple interactions of 511 keV photons within crystal arrays of different crystal widths (from 4 mm down to 1 mm, constant height: 20 mm); (2) applying the Anger-logic positioning algorithm to investigate positioning/decoding uncertainties (i.e., “block effect”) in terms of peak-to-valley ratio (PVR), with light sharing, multiple interactions and photodetector SNR taken into account; and (3) studying the dependency of spatial resolution on SNR in the context of modulation transfer function (MTF). The proposed model can be used to guide the development and evaluation of a standard Anger-logic based PET block detector including: (1) selecting/optimizing the configuration of crystal elements for a given photodetector SNR; and (2) predicting to what extent additional electronic multiplexing may be implemented to further reduce the number of readout channels

  2. Pentamidine blocks the interaction between mutant S100A5 and RAGE V domain and inhibits the RAGE signaling pathway.

    Science.gov (United States)

    Cho, Ching Chang; Chou, Ruey Hwang; Yu, Chin

    2016-08-19

    The human S100 protein family contains small, dimeric and acidic proteins that contain two EF-hand motifs and bind calcium. When S100A5 binds calcium, its conformation changes and promotes interaction with the target protein. The extracellular domain of RAGE (Receptor of Advanced Glycation End products) contain three domains: C1, C2 and V. The RAGE V domain is the target protein of S100A5 that promotes cell survival, growth and differentiation by activating several signaling pathways. Pentamidine is an apoptotic and antiparasitic drug that is used to treat or prevent pneumonia. Here, we found that pentamidine interacts with S100A5 using HSQC titration. We elucidated the interactions of S100A5 with RAGE V domain and pentamidine using fluorescence and NMR spectroscopy. We generated two binary models-the S100A5-RAGE V domain and S100A5-Pentamidine complex-and then observed that the pentamidine and RAGE V domain share a similar binding region in mS100A5. We also used the WST-1 assay to investigate the bioactivity of S100A5, RAGE V domain and pentamidine. These results indicated that pentamidine blocks the binding between S100A5 and RAGE V domain. This finding is useful for the development of new anti-proliferation drugs. PMID:27297108

  3. In situ monitoring the pulse CO2 laser interaction with 316-L stainless steel using acoustical signals and plasma analysis

    International Nuclear Information System (INIS)

    In most laser material processing, material removal by different mechanisms is involved. Here, application of acoustic signals with thermoelastic (below threshold) and breakdown origin (above threshold) together with plasma plume analysis as a simple monitoring system of interaction process is suggested. In this research the interaction of pulse CO2 laser with 200 ns duration and maximum energy of 1.3 J operating at 1 Hz with austenitic stainless steel (316-L) is reported. The results showed that the non-linear point of the curve can serve as a useful indicator of melting fluence threshold (in this case ∼830 J cm-2) with corresponding temperature calculated using plasma plume analysis. Higher acoustic amplitudes and larger plasma plume volume indicates more intense interaction. Also, analysis showed that a phase explosion process with material removal (ejecta) in the form of non-adiabatic (i.e., dt >> α-1) is at play after laser pulse is ended. Also, SEM photographs show different surface quality medication at different laser intensities, which indicates the importance of recoil momentum pressure and possibly electrons and ions densities in heat transfer. Finally, electrochemical test indicate an improved corrosion resistance for laser treated samples compared to untreated ones.

  4. Traf2 interacts with Smad4 and regulates BMP signaling pathway in MC3T3-E1 osteoblasts

    International Nuclear Information System (INIS)

    Bone morphogenetic proteins (BMPs) play important roles in osteoblast differentiation and maturation. In mammals, the BMP-induced receptor-regulated Smads form complexes with Smad4. These complexes translocate and accumulate in the nucleus, where they regulate the transcription of various target genes. However, the function of Smad4 remains unclear. We performed a yeast two-hybrid screen using Smad4 as bait and a cDNA library derived from bone marrow, to indentify the proteins interacting with Smad4. cDNA clones for Tumor necrosis factor (TNF) receptor-associated factor 2 (Traf2) were identified, and the interaction between the endogenous proteins was confirmed in the mouse osteoblast cell line MC3T3-E1. To investigate the function of Traf2, we silenced it with siRNA. The level of BMP-2 protein in the medium, the expression levels of the Bmp2 gene and BMP-induced transcription factor genes, including Runx2, Dlx5, Msx2, and Sp7, and the phosphorylated-Smad1 protein level were increased in cells transfected with Traf2 siRNA. The nuclear accumulation of Smad1 increased with TNF-α stimulation for 30 min at Traf2 silencing. These results suggest that the TNF-α-stimulated nuclear accumulation of Smad1 may be dependent on Traf2. Thus, the interaction between Traf2 and Smad4 may play a role in the cross-talk between TNF-α and BMP signaling pathways.

  5. In situ monitoring the pulse CO 2 laser interaction with 316-L stainless steel using acoustical signals and plasma analysis

    Science.gov (United States)

    Khosroshahi, M. E.; pour, F. Anoosheh; Hadavi, M.; Mahmoodi, M.

    2010-10-01

    In most laser material processing, material removal by different mechanisms is involved. Here, application of acoustic signals with thermoelastic (below threshold) and breakdown origin (above threshold) together with plasma plume analysis as a simple monitoring system of interaction process is suggested. In this research the interaction of pulse CO 2 laser with 200 ns duration and maximum energy of 1.3 J operating at 1 Hz with austenitic stainless steel (316-L) is reported. The results showed that the non-linear point of the curve can serve as a useful indicator of melting fluence threshold (in this case ≈830 J cm -2) with corresponding temperature calculated using plasma plume analysis. Higher acoustic amplitudes and larger plasma plume volume indicates more intense interaction. Also, analysis showed that a phase explosion process with material removal (ejecta) in the form of non-adiabatic (i.e., dt ≫ α-1) is at play after laser pulse is ended. Also, SEM photographs show different surface quality medication at different laser intensities, which indicates the importance of recoil momentum pressure and possibly electrons and ions densities in heat transfer. Finally, electrochemical test indicate an improved corrosion resistance for laser treated samples compared to untreated ones.

  6. Relevancies of multiple-interaction events and signal-to-noise ratio for Anger-logic based PET detector designs

    Energy Technology Data Exchange (ETDEWEB)

    Peng, Hao, E-mail: penghao@mcmaster.ca [Department of Medical Physics, McMaster University, Canada L8S 4K1 (Canada); Department of Electrical and Computer Engineering, McMaster University, Canada L8S 4K1 (Canada)

    2015-10-21

    A fundamental challenge for PET block detector designs is to deploy finer crystal elements while limiting the number of readout channels. The standard Anger-logic scheme including light sharing (an 8 by 8 crystal array coupled to a 2×2 photodetector array with an optical diffuser, multiplexing ratio: 16:1) has been widely used to address such a challenge. Our work proposes a generalized model to study the impacts of two critical parameters on spatial resolution performance of a PET block detector: multiple interaction events and signal-to-noise ratio (SNR). The study consists of the following three parts: (1) studying light output profile and multiple interactions of 511 keV photons within crystal arrays of different crystal widths (from 4 mm down to 1 mm, constant height: 20 mm); (2) applying the Anger-logic positioning algorithm to investigate positioning/decoding uncertainties (i.e., “block effect”) in terms of peak-to-valley ratio (PVR), with light sharing, multiple interactions and photodetector SNR taken into account; and (3) studying the dependency of spatial resolution on SNR in the context of modulation transfer function (MTF). The proposed model can be used to guide the development and evaluation of a standard Anger-logic based PET block detector including: (1) selecting/optimizing the configuration of crystal elements for a given photodetector SNR; and (2) predicting to what extent additional electronic multiplexing may be implemented to further reduce the number of readout channels.

  7. GW627368X inhibits proliferation and induces apoptosis in cervical cancer by interfering with EP4/EGFR interactive signaling.

    Science.gov (United States)

    Parida, S; Pal, I; Parekh, A; Thakur, B; Bharti, R; Das, S; Mandal, M

    2016-01-01

    PGE2, the major product of cyclooxygenases implicated in carcinogenesis, is significantly upregulated in cervical cancer. PGE2 via prostanoid receptor EP4 stimulates proliferation and motility while inhibiting apoptosis and immune surveillance. It promotes angiogenesis by stimulating the production of pro-angiogenic factors. The present study demonstrates GW627368X, a highly selective competitive EP4 antagonist, which hinders cervical cancer progression by inhibiting EP4/epithelial growth factor receptor (EGFR) interactive signaling. GW627368X reduced protein kinase A (PKA) phosphorylation which in turn leads to decreased cAMP response element-binding protein (CREB) activation. Decreased PKA phosphorylation also directly enhanced Bax activity and in part reduced glycogen synthase kinase 3 (GSK3)β phosphorylation. Owing to the interactive signaling between EP4 and EGFR, GW627368X lowered EGFR phosphorylation in turn reducing Akt, mitogen-activated protein kinase (MAPK) and GSK3β activity significantly. Sublethal dose of GW627368X was found to reduce the nuclear translocation of β-catenin in a time dependent manner along with time-dependent decrease in cytoplasmic as well as whole-cell β-catenin. Decreased CREB and β-catenin transcriptional activity restricts the aberrant transcription of key genes like EP4, cyclooxygenase (COX)-2, vascular endothelial growth factor and c-myc, which ultimately control cell survival, proliferation and angiogenesis. Reduced activity of EGFR resulted in enhanced expression of 15-hydroxyprostaglandin dehydrogenase increasing PGE2 degradation thereby blocking a positive feedback loop. In xenograft model, dose-dependent decrease in cancer proliferation was observed characterized by reduction in tumor mass and volume and a marked decrease in Ki67 expression. A diminished CD31 specific staining signified decreased tumor angiogenesis. Reduced expression of pAkt, pMAPK, pEGFR and COX-2 validated in vitro results. GW627368X therefore

  8. Purification and reconstitution of the human platelet α2-adrenergic receptor

    International Nuclear Information System (INIS)

    Human platelet α2-adrenergic receptors have been purified ∼80,000 fold to apparent homogeneity by a five step chromatographic procedure. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis of radioiodinated protein from purified receptor preparations shows a single major band of M/sub r/ 64,000. The competitive binding of ligands to the purified receptor protein shows the proper α2-adrenergic specificity. The α2-adrenergic receptor contains an essential sulfhydryl residues. Thus, exposure of the purified receptor to the sulfhydryl specific reagent, phenylmercuric chloride (PMC), resulted in a 80% loss of binding activity. This loss of binding activity was prevented when exposure to PMC was done in the presence of α2-adrenergic ligands and it was reversed by subsequent exposure to dithiothreitol. Partial proteolysis of purified α2-adrenergic receptors was obtained with S. aureus V-8 protease, α-chymotrypsin and papain. In a comparison with purified β2-adrenergic receptors no common partial proteolytic products were found. Partially purified preparations of the α2-adrenergic receptor were successfully reconstituted into phospholipid vesicles with the inhibitory guanyl nucleotide-binding regulatory protein, N/sub i/. In these reconstituted preparations, epinephrine could stimulate, and phentolamine could block, the GTPase activity of N/sub i/

  9. Receptor activity modifying proteins (RAMPs) interact with the VPAC1 receptor: evidence for differential RAMP modulation of multiple signalling pathways

    International Nuclear Information System (INIS)

    Full text: Receptor activity modifying proteins (RAMP) constitute a family of three accessory proteins that affect the expression and/or phenotype of the calcitonin receptor (CTR) or CTR-like receptor (CRLR). In this study we screened a range of class II G protein-coupled receptors (PTH1, PTH2, GHRH, VPAC1, VPAC2 receptors) for possible RAMP interactions by measurement of receptor-induced translocation of c-myc tagged RAMP1 or HA tagged RAMP3. Of these, only the VPAC1 receptor caused significant translocation of c-myc-RAMP1 or HA-RAMP3 to the cell surface. Co-transfection of VPAC1 and RAMPs did not alter 125I-VIP binding and specificity. VPAC1 receptor function was subsequently analyzed through parallel determinations of cAMP accumulation and phosphoinositide (PI) hydrolysis in the presence and absence of each of the three RAMPs. In contrast to CTR-RAMP interaction, where there was an increase in cAMP Pharmacologisand a decrease in PI hydrolysis, VPAC1-RAMP interaction was characterized by a specific increase in agonist-mediated PI hydrolysis when co-transfected with RAMP2. This change was due to an enhancement of Emax with no change in EC50 value for VIP. No significant change in cAMP accumulation was observed. This is the first demonstration of an interaction of RAMPs with a G protein-coupled receptor outside the CTR family and may suggest a more generalized role for RAMPs in modulating G protein-coupled receptor signaling. Copyright (2001) Australasian Society of Clinical and Experimental Pharmacologists and Toxicologists

  10. Association and gene-gene interactions study of reelin signaling pathway related genes with autism in the Han Chinese population.

    Science.gov (United States)

    Shen, Yidong; Xun, Guanglei; Guo, Hui; He, Yiqun; Ou, Jianjun; Dong, Huixi; Xia, Kun; Zhao, Jingping

    2016-04-01

    Autism is a neurodevelopmental disorder with unclear etiology. Reelin had been proposed to participate in the etiology of autism due to its important role in brain development. The goal of this study was to explore the association and gene-gene interactions of reelin signaling pathway related genes (RELN, VLDLR, LRP8, DAB1, FYN, and CDK5) with autism in Han Chinese population. Genotyping data of the six genes were obtained from a recent genome-wide association study performed in 430 autistic children who fulfilled the DSM-IV-TR criteria for autistic disorder, and 1,074 healthy controls. Single marker case-control association analysis and haplotype case-control association analysis were conducted after the data was screened. Multifactor dimensionality reduction (MDR) was applied to further test gene-gene interactions. Neither the single marker nor the haplotype association tests found any significant difference between the autistic group and the control group after permutation test of 1,000 rounds. The 4-locus MDR model (comprising rs6143734, rs1858782, rs634500, and rs1924267 which belong to RELN and DAB1) was determined to be the model with the highest cross-validation consistency (CVC) and testing balanced accuracy. The results indicate that an interaction between RELN and DAB1 may increase the risk of autism in the Han Chinese population. Furthermore, it can also be inferred that the involvement of RELN in the etiology of autism would occur through interaction with DAB1. Autism Res 2016, 9: 436-442. © 2015 International Society for Autism Research, Wiley Periodicals, Inc. PMID:26285919

  11. Direct interaction of natural and synthetic catechins with signal transducer activator of transcription 1 affects both its phosphorylation and activity

    KAUST Repository

    Menegazzi, Marta

    2013-12-10

    Our previous studies showed that (-)-epigallocatechin-3-gallate (EGCG) inhibits signal transducer activator of transcription 1 (STAT1) activation. Since EGCG may be a promising lead compound for new anti-STAT1 drug design, 15 synthetic catechins, characterized by the (-)-gallocatechin-3-gallate stereochemistry, were studied in the human mammary MDA-MB-231 cell line to identify the minimal structural features that preserve the anti-STAT1 activity. We demonstrate that the presence of three hydroxyl groups of B ring and one hydroxyl group in D ring is essential to preserve their inhibitory action. Moreover, a possible molecular target of these compounds in the STAT1 pathway was investigated. Our results demonstrate a direct interaction between STAT1 protein and catechins displaying anti-STAT1 activity. In particular, surface plasmon resonance (SPR) analysis and molecular modeling indicate the presence of two putative binding sites (a and b) with different affinity. Based on docking data, site-directed mutagenesis was performed, and interaction of the most active catechins with STAT1 was studied with SPR to test whether Gln518 on site a and His568 on site b could be important for the catechin-STAT1 interaction. Data indicate that site b has higher affinity for catechins than site a as the highest affinity constant disappears in the H568ASTAT1 mutant. Furthermore, Janus kinase 2 (JAK2) kinase assay data suggest that the contemporary presence in vitro of STAT1 and catechins inhibits JAK2-elicited STAT1 phosphorylation. The very tight catechin-STAT1 interaction prevents STAT1 phosphorylation and represents a novel, specific and efficient molecular mechanism for the inhibition of STAT1 activation. © Copyright 2014 Federation of European Biochemical Societies. All rights reserved.

  12. Pancreatic amylase is an environmental signal for regulation of biofilm formation and host interaction in Campylobacter jejuni.

    Science.gov (United States)

    Jowiya, Waheed; Brunner, Katja; Abouelhadid, Sherif; Hussain, Haitham A; Nair, Sean P; Sadiq, Sohaib; Williams, Lisa K; Trantham, Emma K; Stephenson, Holly; Wren, Brendan W; Bajaj-Elliott, Mona; Cogan, Tristan A; Laws, Andrew P; Wade, Jim; Dorrell, Nick; Allan, Elaine

    2015-12-01

    Campylobacter jejuni is a commensal bacterium in the intestines of animals and birds and a major cause of food-borne gastroenteritis in humans worldwide. Here we show that exposure to pancreatic amylase leads to secretion of an α-dextran by C. jejuni and that a secreted protease, Cj0511, is required. Exposure of C. jejuni to pancreatic amylase promotes biofilm formation in vitro, increases interaction with human epithelial cell lines, increases virulence in the Galleria mellonella infection model, and promotes colonization of the chicken ileum. We also show that exposure to pancreatic amylase protects C. jejuni from stress conditions in vitro, suggesting that the induced α-dextran may be important during transmission between hosts. This is the first evidence that pancreatic amylase functions as an interkingdom signal in an enteric microorganism. PMID:26438798

  13. Are glutathione S transferases involved in DNA damage signalling? Interactions with DNA damage and repair revealed from molecular epidemiology studies

    Energy Technology Data Exchange (ETDEWEB)

    Dusinska, Maria, E-mail: Maria.DUSINSKA@nilu.no [CEE-Health Effects Group, NILU - Norwegian Institute for Air Research, Kjeller (Norway); Staruchova, Marta; Horska, Alexandra [Department of Experimental and Applied Genetics, Slovak Medical University, Bratislava (Slovakia); Smolkova, Bozena [Laboratory of Cancer Genetics, Cancer Research Institute of the Slovak Academy of Sciences, Bratislava (Slovakia); Collins, Andrew [Department of Nutrition, Faculty of Medicine, University of Oslo (Norway); Bonassi, Stefano [Unit of Clinical and Molecular Epidemiology, IRCCS San Raffaele Pisana, Rome (Italy); Volkovova, Katarina [Department of Experimental and Applied Genetics, Slovak Medical University, Bratislava (Slovakia)

    2012-08-01

    Glutathione S-transferases (GSTs) are members of a multigene family of isoenzymes that are important in the control of oxidative stress and in phase II metabolism. Acting non-enzymically, GSTs can modulate signalling pathways of cell proliferation, cell differentiation and apoptosis. Using a molecular epidemiology approach, we have investigated a potential involvement of GSTs in DNA damage processing, specifically the modulation of DNA repair in a group of 388 healthy adult volunteers; 239 with at least 5 years of occupational exposure to asbestos, stone wool or glass fibre, and 149 reference subjects. We measured DNA damage in lymphocytes using the comet assay (alkaline single cell gel electrophoresis): strand breaks (SBs) and alkali-labile sites, oxidised pyrimidines with endonuclease III, and oxidised purines with formamidopyrimidine DNA glycosylase. We also measured GST activity in erythrocytes, and the capacity for base excision repair (BER) in a lymphocyte extract. Polymorphisms in genes encoding three GST isoenzymes were determined, namely deletion of GSTM1 and GSTT1 and single nucleotide polymorphism Ile105Val in GSTP1. Consumption of vegetables and wine correlated negatively with DNA damage and modulated BER. GST activity correlated with oxidised bases and with BER capacity, and differed depending on polymorphisms in GSTP1, GSTT1 and GSTM1. A significantly lower BER rate was associated with the homozygous GSTT1 deletion in all asbestos site subjects and in the corresponding reference group. Multifactorial analysis revealed effects of sex and exposure in GSTP1 Ile/Val heterozygotes but not in Ile/Ile homozygotes. These variants affected also SBs levels, mainly by interactions of GSTP1 genotype with exposure, with sex, and with smoking habit; and by an interaction between sex and smoking. Our results show that GST polymorphisms and GST activity can apparently influence DNA stability and repair of oxidised bases, suggesting a potential new role for these

  14. Are glutathione S transferases involved in DNA damage signalling? Interactions with DNA damage and repair revealed from molecular epidemiology studies

    International Nuclear Information System (INIS)

    Glutathione S-transferases (GSTs) are members of a multigene family of isoenzymes that are important in the control of oxidative stress and in phase II metabolism. Acting non-enzymically, GSTs can modulate signalling pathways of cell proliferation, cell differentiation and apoptosis. Using a molecular epidemiology approach, we have investigated a potential involvement of GSTs in DNA damage processing, specifically the modulation of DNA repair in a group of 388 healthy adult volunteers; 239 with at least 5 years of occupational exposure to asbestos, stone wool or glass fibre, and 149 reference subjects. We measured DNA damage in lymphocytes using the comet assay (alkaline single cell gel electrophoresis): strand breaks (SBs) and alkali-labile sites, oxidised pyrimidines with endonuclease III, and oxidised purines with formamidopyrimidine DNA glycosylase. We also measured GST activity in erythrocytes, and the capacity for base excision repair (BER) in a lymphocyte extract. Polymorphisms in genes encoding three GST isoenzymes were determined, namely deletion of GSTM1 and GSTT1 and single nucleotide polymorphism Ile105Val in GSTP1. Consumption of vegetables and wine correlated negatively with DNA damage and modulated BER. GST activity correlated with oxidised bases and with BER capacity, and differed depending on polymorphisms in GSTP1, GSTT1 and GSTM1. A significantly lower BER rate was associated with the homozygous GSTT1 deletion in all asbestos site subjects and in the corresponding reference group. Multifactorial analysis revealed effects of sex and exposure in GSTP1 Ile/Val heterozygotes but not in Ile/Ile homozygotes. These variants affected also SBs levels, mainly by interactions of GSTP1 genotype with exposure, with sex, and with smoking habit; and by an interaction between sex and smoking. Our results show that GST polymorphisms and GST activity can apparently influence DNA stability and repair of oxidised bases, suggesting a potential new role for these

  15. Interaction between cAMP and intracellular Ca(2+)-signaling pathways during odor-perception and adaptation in Drosophila.

    Science.gov (United States)

    Murmu, Meena Sriti; Martin, Jean-René

    2016-09-01

    Binding of an odorant to olfactory receptors triggers cascades of second messenger systems in olfactory receptor neurons (ORNs). Biochemical studies indicate that the transduction mechanism at ORNs is mediated by cyclic adenosine monophosphate (cAMP) and/or inositol,1,4,5-triphosphate (InsP3)-signaling pathways in an odorant-dependent manner. However, the interaction between these two second messenger systems during olfactory perception or adaptation processes is much less understood. Here, we used interfering-RNAi to disrupt the level of cAMP alone or in combination with the InsP3-signaling pathway cellular targets, InsP3 receptor (InsP3R) or ryanodine receptor (RyR) in ORNs, and quantify at ORN axon terminals in the antennal lobe, the odor-induced Ca(2+)-response. In-vivo functional bioluminescence Ca(2+)-imaging indicates that a single 5s application of an odor increased Ca(2+)-transients at ORN axon terminals. However, compared to wild-type controls, the magnitude and duration of ORN Ca(2+)-response was significantly diminished in cAMP-defective flies. In a behavioral assay, perception of odorants was defective in flies with a disrupted cAMP level suggesting that the ability of flies to correctly detect an odor depends on cAMP. Simultaneous disruption of cAMP level and InsP3R or RyR further diminished the magnitude and duration of ORN response to odorants and affected the flies' ability to detect an odor. In conclusion, this study provides functional evidence that cAMP and InsP3-signaling pathways act in synergy to mediate odor processing within the ORN axon terminals, which is encoded in the magnitude and duration of ORN response. PMID:27212269

  16. Interaction between Cl- channels and CRAC-related Ca2+ signaling during T lymphocyte activation and proliferation

    Institute of Scientific and Technical Information of China (English)

    Guan-lei WANG; Yan QIAN; Qin-ying QIU; Xiu-jian LAN; Hua HE; Yong-yuan GUAN

    2006-01-01

    Aim:To test the hypothesis that Cl- channel blockers affect T cell proliferation through Ca2+-release-activated Ca2+ (CRAC) signaling and examine the effects of the combination of a CRAC channel blocker and a Cl- channel blocker on concanavalin A (ConA;5 mg/mL) -induced Ca2+ signaling,gene expression and cellular proliferation in human peripheral T lymphocytes.Methods:[3H]Thymidine incorporation,Fura-2 fluorescent probe,RNase protection assay,and reverse transcription.polymerase chain reaction were used.Results:The Cl- channel blocker 4,4'-diisothiocvanostilbene-2,2'-disulfonic acid (DIDS) inhibited ConA-induced Ca2+influx.interleukin-2 mRNA expression and T lymphocyte proliferation in a concentration.dependent manner,and also enhanced the inhibitory effects of 1-{beta-[3-(4-methoxyphenyl)propoxyl]-4-methoxyphenethyl}-1H-imidazole (SK&F96365) on the above key events during T cell activation.A combination ofDIDS (1μmol/L) and SK&F96365 (1μmol/L) significantly diminished ConA-induced ClC-3 mRNA expression by 64%,whereas DIDS (1μmol/L) or SK&F96365 (1μmol/L) alone decreased ConA-induced ClC-3 mRNA expression by only 16% and 9%.respectively.Conclusion:These results suggest that there is an interaction between CRAC-mediated Ca2+ signaling and DIDS-sensitive C1-channels during ConA-induced T cell activation and proliferation.Moreover,the DIDS-sensitive Cl-channels may be related to the ClC-3 Cl- channels.

  17. OVATE Family Protein 8 Positively Mediates Brassinosteroid Signaling through Interacting with the GSK3-like Kinase in Rice.

    Directory of Open Access Journals (Sweden)

    Chao Yang

    2016-06-01

    Full Text Available OVATE gene was first identified as a key regulator of fruit shape in tomato. OVATE family proteins (OFPs are characterized as plant-specific transcription factors and conserved in Arabidopsis, tomato, and rice. Roles of OFPs involved in plant development and growth are largely unknown. Brassinosteroids (BRs are a class of steroid hormones involved in diverse biological functions. OsGKS2 plays a critical role in BR signaling by phosphorylating downstream components such as OsBZR1 and DLT. Here we report in rice that OsOFP8 plays a positive role in BR signaling pathway. BL treatment induced the expression of OsOFP8 and led to enhanced accumulation of OsOFP8 protein. The gain-of-function mutant Osofp8 and OsOFP8 overexpression lines showed enhanced lamina joint inclination, whereas OsOFP8 RNAi transgenic lines showed more upright leaf phenotype, which suggest that OsOFP8 is involved in BR responses. Further analyses indicated that OsGSK2 interacts with and phosphorylates OsOFP8. BRZ treatment resulted in the cytoplasmic distribution of OsOFP8, and bikinin treatment reduced the cytoplasmic accumulation of OsOFP8. Phosphorylation of OsOFP8 by OsGSK2 is needed for its nuclear export. The phospphorylated OsOFP8 shuttles to the cytoplasm and is targeted for proteasomal degradation. These results indicate that OsOFP8 is a substrate of OsGSK2 and the function of OsOFP8 in plant growth and development is at least partly through the BR signaling pathway.

  18. Grancalcin (GCA) modulates Toll-like receptor 9 (TLR9) mediated signaling through its direct interaction with TLR9.

    Science.gov (United States)

    Kim, Tae Whan; Hong, Seunghee; Talukder, Amjad H; Pascual, Virginia; Liu, Yong-Jun

    2016-03-01

    Toll-like receptors (TLRs) are playing important roles in stimulating the innate immune response and intensifying adaptive immune response against invading pathogens. Appropriate regulation of TLR activation is important to maintain a balance between preventing tumor activation and inhibiting autoimmunity. Toll-like receptor 9 (TLR9) senses microbial DNA in the endosomes of plasmacytoid dendritic cells and triggers myeloid differentiation primary response gene 88 (MyD88) dependent nuclear factor kappa B (NF-κB) pathways and type I interferon (IFN) responses. However, mechanisms of how TLR9 signals are mediated and which molecules are involved in controlling TLR9 functions remain poorly understood. Here, we report that penta EF-hand protein grancalcin (GCA) interacts and binds with TLR9 in a yeast two-hybrid system and an overexpression system. Using siRNA-mediated knockdown experiments, we also revealed that GCA positively regulates type I IFN production, cytokine/chemokine production through nuclear localization of interferon regulatory factor 7 (IRF7), NF-κB activation, and mitogen-activated protein kinase (MAPK) activation in plasmacytoid dendritic cells. Our results indicate that heterodimerization of GCA and TLR9 is important for TLR9-mediated downstream signaling and might serve to fine tune processes against viral infection. PMID:26648480

  19. Interactions between the nitrogen signal transduction protein PII and N-acetyl glutamate kinase in organisms that perform oxygenic photosynthesis.

    Science.gov (United States)

    Burillo, Sergio; Luque, Ignacio; Fuentes, Inmaculada; Contreras, Asunción

    2004-06-01

    PII, one of the most conserved signal transduction proteins, is believed to be a key player in the coordination of nitrogen assimilation and carbon metabolism in bacteria, archaea, and plants. However, the identity of PII receptors remains elusive, particularly in photosynthetic organisms. Here we used yeast two-hybrid approaches to identify new PII receptors and to explore the extent of conservation of PII signaling mechanisms between eubacteria and photosynthetic eukaryotes. Screening of Synechococcus sp. strain PCC 7942 libraries with PII as bait resulted in identification of N-acetyl glutamate kinase (NAGK), a key enzyme in the biosynthesis of arginine. The integrity of Ser49, a residue conserved in PII proteins from organisms that perform oxygenic photosynthesis, appears to be essential for NAGK binding. The effect of glnB mutations on NAGK activity is consistent with positive regulation of NAGK by PII. Phylogenetic and yeast two-hybrid analyses strongly suggest that there was conservation of the NAGK-PII regulatory interaction in the evolution of cyanobacteria and chloroplasts, providing insight into the function of eukaryotic PII-like proteins. PMID:15150219

  20. Targeting the interaction of Aurora kinases and SIRT1 mediated by Wnt signaling pathway in colorectal cancer: A critical review.

    Science.gov (United States)

    Subramaniyan, Boopathi; Jagadeesan, Kaviya; Ramakrishnan, Sabitha; Mathan, Ganeshan

    2016-08-01

    The Aurora kinases belong to the family of serine/threonine kinase, a central regulator of mitosis and their expression increased during G2/M phase. It is classified into Aurora A, B and C, each has distinct roles in cellular processes, which includes regulation of spindle assembly, function of centrosomes, cytoskeleton and cytokinesis. During cancer growth, their rapid increase makes most attractive marker for cancer treatment at present. However Aurora A kinase is known to be a marker for cancer therapy, the most important serine/threonine kinase of Aurora B kinase involvement in cancer is still inadequate. Subsequently, the recent findings revealed that the class III histone deacetylase of SIRT1 is a key regulator to activate Aurora kinases from S phase damaged DNA through Wnt signaling pathway. Even if both Aurora A kinase and SIRT1 serve as a marker for cancer therapy, the present review reveals it is interaction in Wnt signaling pathway that solely for colorectal cancer. PMID:27470380

  1. Development of a system based on 3D vision, interactive virtual environments, ergonometric signals and a humanoid for stroke rehabilitation.

    Science.gov (United States)

    Ibarra Zannatha, Juan Manuel; Tamayo, Alejandro Justo Malo; Sánchez, Angel David Gómez; Delgado, Jorge Enrique Lavín; Cheu, Luis Eduardo Rodríguez; Arévalo, Wilson Alexander Sierra

    2013-11-01

    This paper presents a stroke rehabilitation (SR) system for the upper limbs, developed as an interactive virtual environment (IVE) based on a commercial 3D vision system (a Microsoft Kinect), a humanoid robot (an Aldebaran's Nao), and devices producing ergonometric signals. In one environment, the rehabilitation routines, developed by specialists, are presented to the patient simultaneously by the humanoid and an avatar inside the IVE. The patient follows the rehabilitation task, while his avatar copies his gestures that are captured by the Kinect 3D vision system. The information of the patient movements, together with the signals obtained from the ergonometric measurement devices, is used also to supervise and to evaluate the rehabilitation progress. The IVE can also present an RGB image of the patient. In another environment, that uses the same base elements, four game routines--Touch the balls 1 and 2, Simon says, and Follow the point--are used for rehabilitation. These environments are designed to create a positive influence in the rehabilitation process, reduce costs, and engage the patient. PMID:23827333

  2. Adrenergic effects on secretion of amylase from the rat salivary glands

    DEFF Research Database (Denmark)

    Poulsen, Steen Seier; Nexø, Ebba

    1988-01-01

    The present study was undertaken to investigate the effect of adrenergic agents on secretion of amylase from the salivary glands in vivo. Saliva was collected from the distal oesophagus in conscious rats. Adrenaline increased the concentration of amylase in saliva and serum significantly. The...... result of infusion of alpha- and beta-adrenergic antagonists as well as noradrenaline and isoproterenol showed that secretion of salivary amylase is predominantly mediated by stimulation of beta-adrenergic receptors, especially of the beta 1-subtype. Investigation of the isoenzyme pattern in saliva...

  3. Adrenergic pathways in dopamine modulation of K+ transport in cortex slices after low dose X-Rays

    International Nuclear Information System (INIS)

    Using the method of surviving brain cortex slices it has been shown that prolonged whole body acute or chronic 25 cGy X-irradiation (1 cGy/day at dose rate of 2.22 mGy/min) essentially modified dopamine (DA) modulating influence upon Na, K-pump in nervous tissue. Obtained results pointed to that normally DA had the defined biphasic effect upon active K+ transport with lower level activation (by 24.0 %) and higher level inhibition (by 42.1 %). The patterns of the Na,K-pump reaction to DA was not changed after irradiation, but percentage of the total DA suppression was increased by 15.1 % in average after single X-ray exposure and by 34.5 % after chronic one. The decisive role of β-adrenergic mechanisms in realization of postirradiation interaction between systems of catecholamine and active K+ transfer across neuronal membrane has been determined. Experimental data obtained with the use of 10 μM phentolamine and 10 μM propranolol, respectively α- and β-adrenergic antagonists, supported that metabolic DA effect was mediated via α-AR normally, and via β-AR after low dose-rate irradiation. (authors)

  4. Dopaminergic and beta-adrenergic effects on gastric antral motility

    DEFF Research Database (Denmark)

    Bech, K; Hovendal, C P; Gottrup, F;

    1984-01-01

    bethanechol or pentagastrin inducing motor activity patterns as in the phase III of the MMC and the digestive state respectively. The stimulated antral motility was dose-dependently inhibited by dopamine. The effect was significantly blocked by specifically acting dopaminergic blockers, while alpha- and beta......-adrenergic blockers were without any significant effects. Dose-response experiments with bethanechol and dopamine showed inhibition of a non-competitive type. Isoprenaline was used alone and in conjunction with selective blockade of beta 1- and beta 2-receptors during infusion of bethanechol which induces a pattern...... similar to phase III in the migrating myoelectric complex. The stimulated antral motility was dose-dependently inhibited by isoprenaline. The effect could be significantly blocked by propranolol (beta 1 + beta 2-adrenoceptor blocker) and by using in conjunction the beta 1-adrenoceptor blocker practolol...

  5. EEG differences between the opioid and adrenergic psyhoneuroendocrine rat types

    DEFF Research Database (Denmark)

    Cristea, A; Moldovan, M; Munteanu, A M;

    2000-01-01

    Our work is based on the hypothesis of the existence of an opioid psychoneuroendocrine type named "O" type (Cristea, 1993), opposed to the well known adrenergic "A" type described by Roseman and Friedman in 1980. In the present study we tested the differences between the background EEG activity...... adult (140 g) male Wistar population using the distribution of the tail retraction time (TRT) during a tail-flick test. The epidural EEG activity, was quantified within the 1-30 Hz band by six numerical parameters: root mean square (RMS), mean spectral frequency (MSF), spectral edge frequency at 95...... theta RSP asymmetry both during consciousness and ether anesthesia while no such theta gradient could be shown for the "O" type. The differences between the "A" and "O" types are enhanced under light Ether anesthesia to which the "A" type is more resistant. The EEG complementarity between the "A" and "O...

  6. Development of a radioreceptor assay for β2 adrenergic agonists

    International Nuclear Information System (INIS)

    Several β2 adrenergic agonists are illegally used as growth promoters in meat production. We have developed and evaluated a radioreceptor assay for the multianalyte detection of these compounds. The method is based on a competition for binding with receptors (plasma membranes prepared from bovine teat muscles) between a radioactive tracer (3H-dihydroalprenolol) and β2 agonist residues present in the samples. The method has been validated for three β2 agonists (clenbuterol, mabuterol and cimaterol) in bovine urine samples. The detection limit (mean of ''blank'' values + 3 SEM) in urine was 2.4 ppb clenbuterol. Using this procedure, samples containing at least 5 ppb of clenbuterol, mabuterol or cimaterol could be identified as positive for the presence of β2 agonists. (orig.)

  7. Proapoptotic RYBP interacts with FANK1 and induces tumor cell apoptosis through the AP-1 signaling pathway.

    Science.gov (United States)

    Ma, Wen; Zhang, Xuan; Li, Meng; Ma, Xiaoli; Huang, Bingren; Chen, Hong; Chen, Deng

    2016-08-01

    Ring1 and YY1 Binding Protein (RYBP) induces tumor-specific cell apoptosis, but the underlying molecular mechanism has not been fully understood. Here we conducted a yeast two hybrid screen and identified FANK1 (Fibronectin type III and ankyrin repeat domains 1) as a novel RYBP-interacting protein. This interaction was confirmed by coimmunoprecipitation, GST pulldown and immunofluorescence assays. We mapped that the FNIII domain at the N-terminal of FANK1 binds to the Serine/Threonine-rich region at the C-terminal of RYBP. Further studies showed that overexpression of RYBP stabilized, whereas knockdown of RYBP by its specific shRNAs reduced, the expression of FANK1. Mechanistic studies revealed that RYBP inhibited the proteasome degradation of polyubiquitinated FANK1, thus prolonging the half-life of FANK1 protein. Functional studies indicated that RYBP activates FANK1-mediated activator protein 1 (AP-1) signaling pathway which contributes to tumor cell apoptosis. Taken together, our current study uncovered a new mechanism which RYBP utilizes to exert its pro-apoptotic activity in human tumor cells. PMID:27060496

  8. A Cyclic di-GMP-binding Adaptor Protein Interacts with Histidine Kinase to Regulate Two-component Signaling.

    Science.gov (United States)

    Xu, Linghui; Venkataramani, Prabhadevi; Ding, Yichen; Liu, Yang; Deng, Yinyue; Yong, Grace Lisi; Xin, Lingyi; Ye, Ruijuan; Zhang, Lianhui; Yang, Liang; Liang, Zhao-Xun

    2016-07-29

    The bacterial messenger cyclic di-GMP (c-di-GMP) binds to a diverse range of effectors to exert its biological effect. Despite the fact that free-standing PilZ proteins are by far the most prevalent c-di-GMP effectors known to date, their physiological function and mechanism of action remain largely unknown. Here we report that the free-standing PilZ protein PA2799 from the opportunistic pathogen Pseudomonas aeruginosa interacts directly with the hybrid histidine kinase SagS. We show that PA2799 (named as HapZ: histidine kinase associated PilZ) binds directly to the phosphoreceiver (REC) domain of SagS, and that the SagS-HapZ interaction is further enhanced at elevated c-di-GMP concentration. We demonstrate that binding of HapZ to SagS inhibits the phosphotransfer between SagS and the downstream protein HptB in a c-di-GMP-dependent manner. In accordance with the role of SagS as a motile-sessile switch and biofilm growth factor, we show that HapZ impacts surface attachment and biofilm formation most likely by regulating the expression of a large number of genes. The observations suggest a previously unknown mechanism whereby c-di-GMP mediates two-component signaling through a PilZ adaptor protein. PMID:27231351

  9. EFFECTS OF EXERCISE TRAINING ON CARDIOVASCULAR ADRENERGIC SYSTEM

    Directory of Open Access Journals (Sweden)

    Dario eLeosco

    2013-11-01

    Full Text Available In heart failure (HF, exercise has been shown to modulate cardiac sympathetic hyperactivation which is one of the earliest features of neurohormonal derangement in this syndrome and correlates with adverse outcome. An important molecular alteration related to chronic sympathetic overstimulation in HF is represented by cardiac β-adrenergic receptor (β-AR dysfunction . It has been demonstrated that exercise reverses β-AR dysfunction by restoring cardiac receptor membrane density and G-protein-dependent adenylyl cyclase activation. In particular, several evidence indicate that exercise reduces levels of cardiac G-protein coupled receptor kinase-2 (GRK2 which is known to be involved in both β1-AR and β2-AR dysregulation in HF. Similar alterations of β-AR system have been described also in the senescent heart. It has also been demonstrated that exercise training restores adrenal GRK2/α-2AR/cathecolamine (CA production axis. At vascular level, exercise shows a therapeutic effect on age-related impairment of vascular reactivity to adrenergic stimulation and restores β-AR-dependent vasodilatation by increasing vascular β-AR responsiveness and reducing endothelial GRK2 activity. Sympathetic nervous system overdrive is thought to account for >50 % of all cases of hypertension and a lack of balance between parasympathetic and sympathetic modulation has been observed in hypertensive subjects. Non-pharmacological, lifestyle interventions have been associated with reductions in SNS overactivity and blood pressure in hypertension. Several evidence have highlighted the blood pressure lowering effects of aerobic endurance exercise in patients with hypertension and the significant reduction in sympathetic neural activity has been reported as one of the main mechanisms explaining the favourable effects of exercise on blood pressure control.

  10. Adipogenic role of alternatively activated macrophages in β-adrenergic remodeling of white adipose tissue.

    Science.gov (United States)

    Lee, Yun-Hee; Kim, Sang-Nam; Kwon, Hyun-Jung; Maddipati, Krishna Rao; Granneman, James G

    2016-01-01

    De novo brown adipogenesis involves the proliferation and differentiation of progenitors, yet the mechanisms that guide these events in vivo are poorly understood. We previously demonstrated that treatment with a β3-adrenergic receptor (ADRB3) agonist triggers brown/beige adipogenesis in gonadal white adipose tissue following adipocyte death and clearance by tissue macrophages. The close physical relationship between adipocyte progenitors and tissue macrophages suggested that the macrophages that clear dying adipocytes might generate proadipogenic factors. Flow cytometric analysis of macrophages from mice treated with CL 316,243 identified a subpopulation that contained elevated lipid and expressed CD44. Lipidomic analysis of fluorescence-activated cell sorting-isolated macrophages demonstrated that CD44+ macrophages contained four- to five-fold higher levels of the endogenous peroxisome-proliferator activated receptor gamma (PPARγ) ligands 9-hydroxyoctadecadienoic acid (HODE), and 13-HODE compared with CD44- macrophages. Gene expression profiling and immunohistochemistry demonstrated that ADRB3 agonist treatment upregulated expression of ALOX15, the lipoxygenase responsible for generating 9-HODE and 13-HODE. Using an in vitro model of adipocyte efferocytosis, we found that IL-4-primed tissue macrophages accumulated lipid from dying fat cells and upregulated expression of Alox15. Furthermore, treatment of differentiating adipocytes with 9-HODE and 13-HODE potentiated brown/beige adipogenesis. Collectively, these data indicate that noninflammatory removal of adipocyte remnants and coordinated generation of PPARγ ligands by M2 macrophages provides localized adipogenic signals to support de novo brown/beige adipogenesis. PMID:26538237

  11. Adrenergic receptors and gastric secretion in dogs. Is a "tonic balance" relationship between vagal and beta 2-adrenergic activity a possibility?

    DEFF Research Database (Denmark)

    Gottrup, F; Hovendal, C; Bech, K; Andersen, D

    1984-01-01

    vagotomy and beta 2-adrenoceptor activity were studied in conscious gastric fistula dogs. Pentagastrin stimulated acid output was increased slightly in non-vagotomized dogs and to its prevagotomy level in vagotomized dogs after propranolol infusion. Practolol showed no such effect. Histamine stimulated......The relative influence of adrenergic receptors on gastric acid secretion in the dog stomach with different vagal activity or "tone" is almost unknown. beta-adrenoceptors seem to be most important for the direct effect of adrenergic stimulation on acid secretion. In this study the effects of...... acid secretion was not influenced significantly by beta-blockade. Similar dose-response curves were found for non-vagotomized dogs with high beta 2-adrenergic tone and dogs with low vagal tone (vagotomy) after pentagastrin and histamine stimulated acid secretion. This study indicates that a...

  12. ß2-adrenergic receptor Thr164Ile polymorphism, obesity, and diabetes

    DEFF Research Database (Denmark)

    Thomsen, Mette; Dahl, Morten; Tybjærg-Hansen, Anne; Nordestgaard, Børge G

    2012-01-01

    The ß(2)-adrenergic receptor (ADRB2) influences regulation of energy balance by stimulating catecholamine-induced lipolysis in adipose tissue. The rare functional ADRB2rs1800888(Thr164Ile) polymorphism could therefore influence risk of obesity and subsequently diabetes.......The ß(2)-adrenergic receptor (ADRB2) influences regulation of energy balance by stimulating catecholamine-induced lipolysis in adipose tissue. The rare functional ADRB2rs1800888(Thr164Ile) polymorphism could therefore influence risk of obesity and subsequently diabetes....

  13. Forearm vasodilator responses to a β‐adrenergic receptor agonist in premenopausal and postmenopausal women

    OpenAIRE

    Harvey, Ronee E.; Barnes, Jill N.; Charkoudian, Nisha; Curry, Timothy B.; Eisenach, John H.; Hart, Emma C.; Joyner, Michael J.

    2014-01-01

    Abstract Beta‐adrenergic vasodilator responses may be blunted in humans who are at an increased risk for hypertension. Because menopause is associated with an increase in blood pressure, we tested the hypothesis that forearm blood flow responses to the β‐adrenergic receptor agonist isoproterenol are blunted in older, postmenopausal women compared to young, premenopausal women. We used venous occlusion plethysmography to measure forearm blood flow in young premenopausal (26 ± 1 years; n = 13) ...

  14. Targeting QseC Signaling and Virulence for Antibiotic Development

    OpenAIRE

    Rasko, David A.; Moreira, Cristiano G.; Li, De Run; Reading, Nicola C.; Ritchie, Jennifer M.; Waldor, Matthew K.; Williams, Noelle; Taussig, Ron; Wei, Shuguang; Roth, Michael; Hughes, David T.; Huntley, Jason F.; Fina, Maggy W.; Falck, John R.; Sperandio, Vanessa

    2008-01-01

    Many bacterial pathogens rely on a conserved membrane histidine sensor kinase, QseC, to respond to host adrenergic signaling molecules and bacterial signals in order to promote the expression of virulence factors. Using a high-throughput screen, we identified a small molecule, LED209, that inhibits the binding of signals to QseC, preventing its autophosphorylation and consequently inhibiting QseC-mediated activation of virulence gene expression. LED209 is not toxic and does not inhibit pathog...

  15. Impaired adrenergic-mediated plasticity of prefrontal cortical glutamate synapses in rats with developmental disruption of the ventral hippocampus.

    Science.gov (United States)

    Bhardwaj, Sanjeev K; Tse, Yiu Chung; Ryan, Richard; Wong, Tak Pan; Srivastava, Lalit K

    2014-12-01

    Neonatal ventral hippocampus (nVH) lesion in rats is a useful model to study developmental origins of adult cognitive deficits and certain features of schizophrenia. nVH lesion-induced reorganization of excitatory and inhibitory neurotransmissions within prefrontal cortical (PFC) circuits is widely believed to be responsible for many of the behavioral abnormalities in these animals. Here we provide evidence that development of an aberrant medial PFC (mPFC) α-1 adrenergic receptor (α-1AR) function following neonatal lesion markedly affects glutamatergic synaptic plasticity within PFC microcircuits and contributes to PFC-related behavior abnormalities. Using whole-cell patch-clamp recording, we report that norepinephrine-induced α-1AR-dependent long-term depression (LTD) in a subset of cortico-cortical glutamatergic inputs is strikingly diminished in mPFC slices from nVH-lesioned rats. The LTD impairment occurs in conjunction with completely blunted α-1AR signaling through extracellular signal-regulated kinase 1/2. These α-1AR abnormalities have functional significance in a mPFC-related function, that is, extinction of conditioned fear memory. Post-pubertal animals with nVH lesion show significant resistance to extinction of fear by repeated presentations of the conditioned tone stimulus. mPFC infusion of an α-1AR antagonist (benoxathian) or LTD blocking peptide (Tat-GluR23Y) impaired fear extinction in sham controls, but had no significant effect in the lesioned animals. The data suggest that impaired α-1 adrenergic regulation of cortical glutamatergic synaptic plasticity may be an important mechanism in cognitive dysfunctions reported in neurodevelopmental psychiatric disorders. PMID:24917197

  16. Competitive receptor binding radioassay for β-1 and β-2 adrenergic agents

    International Nuclear Information System (INIS)

    A rapid and sensitive competitive receptor bonding assay for β-1 and β-2 adrenergic binding for adrenergic agents has been developed. The steps that are critical for the success of the assay are given in detail so that the assay can be set up in any routine laboratory with relative ease. The rationale behind the use of specific reagents is discussed. The assay requires microgram quantities of test compound, a radiolabeled specific β adrenergic antagonist [3H]dihydroalprenolol (DHA), and turkey erythrocyte β-1 and rat erythrocyte β-2 receptor membranes. Serial dilutions of sample are incubated with appropriate receptor membranes and DHA for 1 hr at room temperature. After equilibrium is attained, the bound radioligand is separated by rapid filtration under vacuum through Whatman GF/B filters. The amount of bound DHA trapped on the filter is inversely proportional to the degree of β-1 and β-2 adrenergic binding of the sample. Separation of bound from free radioligand by filtration permits rapid determination of a large number of samples. This assay quantitates and differentiates β-1 and β-2 adrenergic binding of synthetic adrenergic agents

  17. Demonstration of beta1-adrenergic receptors in human placenta by (-)I125 Iodocyanopindolol binding

    International Nuclear Information System (INIS)

    The highly specific β-adrenergic radioligand (-)125I Iodocyanopindolol (ICYP) was used to characterize the β-adrenergic receptor subtype present in human placenta. Binding of ICYP to membranes from human placenta was saturable with time and ligand concentration, of high affinity, and demonstrated appropriate stereoselectivity and agonist rank order of potency for binding to a β-adrenergic receptor. From saturation binding curves, the KD and Bmax values for ICYP binding were 233±51 pM and 690±139 fmol/mg of proteins, respectively.Analysis of inhibition of ICYP binding by β1- and β2-selective adrenergic antagonists via Hofstee analysis resulted in linear plots, indicating the existence of a homogeneous population of β-adrenergic receptors. From the resulting KI-values for the β1-selective drugs practolol (4.0±0.9 μM) and metoprolol (0.19±0.07 μM) and for the β2-selective drug ICI 118,551 (0.30)±0.06 μM) it is concluded that the β-adrenergic receptor in human placenta is of the β1-subtype. This is further supported by the fact that (-)-noradrenaline and (-)-adrenaline were equipotent in inhibiting ICYP binding

  18. On the adrenergic system of ganoid fish: the beluga, Huso huso (chondrostei).

    Science.gov (United States)

    Balashov, N V; Fänge, R; Govyrin, V A; Leont'eva, G R; Nilsson, S; Prozorovskaya, M P

    1981-04-01

    The adrenergic system of the beluga, Huso huso, was studied by glyoxylic acid fluorescence histochemistry, analyses of catecholamine content in various organs and studies of the effects of acetylcholine and adrenaline on isolated strip preparations from blood vessels, spleen, atrium and ventricle. Chromaffin cells were found mainly in the walls of the posterior cardinal veins, and to some extent also in the wall of the celiaco-mesenteric artery. The plasma concentration of adrenaline was high enough to affect the contraction force of the isolated atrial and ventricular strips, thus adding an adrenergic component to a possible cholinergic inhibitory vagal control of the heart. Fluorescence histochemistry revealed no direct adrenergic innervation of the heart, but blood vessels in the heart and elsewhere received a rich supply of adrenergic nerve terminals. Adrenaline contracted the celiaco-mesenteric artery and the spleen, and produced positive inotropic effects on the paced atrial and ventricular strip preparations. Acetylcholine contracted the ventral aorta and the celiaco-mesenteric artery, and reduced the contraction force of paced ventricular and, especially, atrial preparations. It is concluded that the beluga has a well developed adrenergic system consisting of both chromaffin cells and adrenergic neurons with varicose nerve terminals of the type found in the higher vertebrates. PMID:7304205

  19. ABA Signaling in Guard Cells Entails a Dynamic Protein-Protein Interaction Relay from the PYL-RCAR Family Receptors to Ion Channels

    Institute of Scientific and Technical Information of China (English)

    Sung Chul Lee; Chae Woo Lim; Wenzhi Lan; Kai He; Sheng Luan

    2013-01-01

    Plant hormone abscisic acid (ABA) serves as an integrator of environmental stresses such as drought to trigger stomatal closure by regulating specific ion channels in guard cells.We previously reported that SLACl,an outward anion channel required for stomatal closure,was regulated via reversible protein phosphorylation events involving ABA signaling components,including protein phosphatase 2C members and a SnRK2-type kinase (OST1).In this study,we reconstituted the ABA signaling pathway as a protein-protein interaction relay from the PYL/RCAR-type receptors,to the PP2C-SnRK2 phosphatase-kinase pairs,to the ion channel SLACl.The ABA receptors interacted with and inhibited PP2C phosphatase activity against the SnRK2-type kinase,releasing active SnRK2 kinase to phosphorylate,and activate the SLACl channel,leading to reduced guard cell turgor and stomatal closure.Both yeast two-hybrid and bimolecular fluorescence complementation assays were used to verify the interactions among the components in the pathway.These biochemical assays demonstrated activity modifications of phosphatases and kinases by their interaction partners.The SLACl channel activity was used as an endpoint readout for the strength of the signaling pathway,depending on the presence of different combinations of signaling components.Further study using transgenic plants overexpressing one of the ABA receptors demonstrated that changing the relative level of interacting partners would change ABA sensitivity.

  20. Predicting novel binding modes of agonists to β adrenergic receptors using all-atom molecular dynamics simulations.

    Directory of Open Access Journals (Sweden)

    Stefano Vanni

    Full Text Available Understanding the binding mode of agonists to adrenergic receptors is crucial to enabling improved rational design of new therapeutic agents. However, so far the high conformational flexibility of G protein-coupled receptors has been an obstacle to obtaining structural information on agonist binding at atomic resolution. In this study, we report microsecond classical molecular dynamics simulations of β(1 and β(2 adrenergic receptors bound to the full agonist isoprenaline and in their unliganded form. These simulations show a novel agonist binding mode that differs from the one found for antagonists in the crystal structures and from the docking poses reported by in silico docking studies performed on rigid receptors. Internal water molecules contribute to the stabilization of novel interactions between ligand and receptor, both at the interface of helices V and VI with the catechol group of isoprenaline as well as at the interface of helices III and VII with the ethanolamine moiety of the ligand. Despite the fact that the characteristic N-C-C-OH motif is identical in the co-crystallized ligands and in the full agonist isoprenaline, the interaction network between this group and the anchor site formed by Asp(3.32 and Asn(7.39 is substantially different between agonists and inverse agonists/antagonists due to two water molecules that enter the cavity and contribute to the stabilization of a novel network of interactions. These new binding poses, together with observed conformational changes in the extracellular loops, suggest possible determinants of receptor specificity.

  1. Peptide YY antagonizes beta-adrenergic-stimulated release of insulin in dogs

    International Nuclear Information System (INIS)

    Peptide YY (PYY) and neuropeptide Y (NPY) are peptides of 36 amino acids that share structural homologies with pancreatic polypeptide (PP). PP is predominantly found in the endocrine pancreas. PYY is primarily found in mucosal endocrine cells of the distal ileum, colon, and rectum, whereas NPY is found in both the peripheral and central nervous system. Previous studies indicate that these peptides can interact with the autonomic nervous system. The objective of the present experiments was to study the effect of PYY on neurally stimulated insulin release in conscious dogs. Intravenous administration of PYY (100, 200, and 400 pmol·kg-1 ·h-1) reduced 2-DG-stimulated insulin release in a dose-dependent manner (P <0.05) without affecting plasma glucose levels. Administration of NPY, but not PP, reduced 2-DG-stimulated release of insulin. The inhibitory action of PYY on 2-DG-stimulated insulin release persisted in the presence of atropine or phentolamine treatment; however, hexamethonium alone or phentolamine plus propranolol treatment blocked the inhibitory action of PYY. Release of insulin stimulated by the β-agonist isoproterenol was also inhibited by PYY. These results indicate that PYY can inhibit autonomic neurotransmission by a mechanism that may involve ganglionic or postganglionic inhibition of β-adrenergic stimulation. The findings suggest a role for PYY and NPY in the autonomic regulation of insulin release

  2. β2 Adrenergic Receptor Fluorescent Protein Fusions Traffic to the Plasma Membrane and Retain Functionality

    Science.gov (United States)

    Bubnell, Jaclyn; Pfister, Patrick; Sapar, Maria L.; Rogers, Matthew E.; Feinstein, Paul

    2013-01-01

    Green fluorescent protein (GFP) has proven useful for the study of protein interactions and dynamics for the last twenty years. A variety of new fluorescent proteins have been developed that expand the use of available excitation spectra. We have undertaken an analysis of seven of the most useful fluorescent proteins (XFPs), Cerulean (and mCerulean3), Teal, GFP, Venus, mCherry and TagRFP657, as fusions to the archetypal G-protein coupled receptor, the β2 adrenergic receptor (β2AR). We have characterized these β2AR::XFP fusions in respect to membrane trafficking and G-protein activation. We noticed that in the mouse neural cell line, OP 6, that membrane bound β2AR::XFP fusions robustly localized in the filopodia identical to gap::XFP fusions. All β2AR::XFP fusions show responses indistinguishable from each other and the non-fused form after isoprenaline exposure. Our results provide a platform by which G-protein coupled receptors can be dissected for their functionality. PMID:24086401

  3. Gene-environment interactions in male reproductive health: special reference to the aryl hydrocarbon receptor signaling pathway

    Directory of Open Access Journals (Sweden)

    Leon J S Brokken

    2014-02-01

    Full Text Available Over the last few decades, there have been numerous reports of adverse effects on the reproductive health of wildlife and laboratory animals caused by exposure to endocrine disrupting chemicals (EDCs. The increasing trends in human male reproductive disorders and the mounting evidence for causative environmental factors have therefore sparked growing interest in the health threat posed to humans by EDCs, which are substances in our food, environment and consumer items that interfere with hormone action, biosynthesis or metabolism, resulting in disrupted tissue homeostasis or reproductive function. The mechanisms of EDCs involve a wide array of actions and pathways. Examples include the estrogenic, androgenic, thyroid and retinoid pathways, in which the EDCs may act directly as agonists or antagonists, or indirectly via other nuclear receptors. Dioxins and dioxin-like EDCs exert their biological and toxicological actions through activation of the aryl hydrocarbon-receptor, which besides inducing transcription of detoxifying enzymes also regulates transcriptional activity of other nuclear receptors. There is increasing evidence that genetic predispositions may modify the susceptibility to adverse effects of toxic chemicals. In this review, potential consequences of hereditary predisposition and EDCs are discussed, with a special focus on the currently available publications on interactions between dioxin and androgen signaling.

  4. Lymphotoxin-α3 mediates monocyte-endothelial interaction by TNFR I/NF-κB signaling

    International Nuclear Information System (INIS)

    We recently reported that the single nucleotide polymorphisms of the lymphotoxin-(LT)α gene, a member of the tumor necrosis factor (TNF) family, are closely related to acute myocardial infarction; however, the precise mechanism of LTα signaling in atherogenesis remains unclear. We investigated the role of LTα3, a secreted homotrimer of LTα, in monocyte-endothelial cell adhesion using cultured human umbilical vein endothelial cells (HUVEC). We found that LTα3 induced cell adhesion molecules and activated NF-κB p50 and p65. LTα3 also induced phosphorylation of Akt, phosphorylation and degradation of IκB, nuclear translocation of p65, and increased adhesion of THP1 monocytes to HUVEC. These effects were mediated by TNF receptor (TNFR) I and attenuated by the phosphatidylinositol triphosphate-kinase (PI3K) inhibitors LY294002 and Wortmannin. Thus, LTα3 mediates the monocyte-endothelial interaction via the classical NF-κB pathway following TNFR I/PI3K activation, indicating it may play a role in the development of coronary artery disease.

  5. Interaction of signal transduction between angiotensin AT1 and AT2 receptor subtypes in rat senescent heart

    Institute of Scientific and Technical Information of China (English)

    SHI Shu-tian; LI Yan-fang

    2007-01-01

    Background Angiotensin Ⅱ (Ang Ⅱ) acting at angiotensin AT1 receptor (AT1R) has well documented effects on cardiovascular structure such as the promotion of cardiovascular hypertrophy and fibrosis, which are believed to be opposed by angiotensin AT2 receptor (AT2R) stimulation. The expressions of AT1R and AT2R are up-regulated in senescent hearts. The purpose of this study was to investigate the interaction of signal transduction between AT1R and AT2R, and to detect whether there is any difference in the interaction in rat hearts of different age.Methods In 3.5-, 12-, 18- and 24-month-old rats, the heart cell membrane activities of protein kinase C (PKC) andtyrosine kinase were measured when AT1R and AT2R were both activated by Ang Ⅱ or just the AT1R was activated by Ang Ⅱ and PD123319. The activities of cytosolic phospholipase A2 (cPLA2) and the levels of cGMP were investigated when AT1R and AT2R were both activated by Ang Ⅱ or just the AT2R was activated by Ang Ⅱ and Iosartan.Results When AT1R and AT2R were both activated compared to when the AT1R was activated, the activities of PKC were not different in hearts from 3.5- and 12-month-old rats, but decreased significantly in 18- and 24-month-old rats; the activities of tyrosine kinase were not different in 3.5-month-old rats but decreased significantly in 12-, 18- and 24-month-old rats. The activities of cPLA2 were all decreased significantly in rats of different age when AT1R and AT2R were both activated compared to when the AT2R was activated. Treatment with Ang Ⅱ alone compared to Ang Ⅱ and losartan decreased the levels of cGMP (fmol/mg) in rats of different age (102.7±12.7 versus 86.0±8.0 in 3.5-month-old rats, P<0.05; 81.0±9.4 versus 70.0±6.3 in 12-month-old rats, P<0.05; 69.8±5.6 versus 54.2±5.3 in 18-month-old rats,P<0.01; 57.7±8.0 versus 39.0±3.0 in 24-month-old rats, P<0.01).Conclusions The activation of AT1R inhibited the signal transduction of AT2R during the aging

  6. β2-Adrenergic receptor ablation modulates hepatic lipid accumulation and glucose tolerance in aging mice.

    Science.gov (United States)

    Shi, Yun; Shu, Zhen-Ju; Xue, Xiaoling; Yeh, Chih-Ko; Katz, Michael S; Kamat, Amrita

    2016-06-01

    Catecholamines acting through β-adrenergic receptors (β1-, β2-, β3-AR subtypes) modulate important biological responses in various tissues. Our previous studies suggest a role for increased hepatic β-AR-mediated signaling during aging as a mediator of hepatic steatosis, liver glucose output, and insulin resistance in rodents. In the current study, we have utilized β2-AR knockout (KO) and wildtype (WT) control mice to define further the role of β2-AR signaling during aging on lipid and glucose metabolism. Our results demonstrate for the first time that age-related increases in hepatic triglyceride accumulation and body weight are attenuated upon β2-AR ablation. Although no differences in plasma triglyceride, non-esterified fatty acids or insulin levels were detected between old WT and KO animals, an age-associated increase in hepatic expression of lipid homeostasis regulator Cidea was significantly reduced in old KO mice. Interestingly, we also observed a shift from reduced glucose tolerance in young adult KO animals to significantly improved glucose tolerance in old KO when compared to age-matched WT mice. These results provide evidence for an important role played by β2-ARs in the regulation of lipid and glucose metabolism during aging. The effect of β2-AR ablation on caloric intake during aging is currently not known and requires investigation. Future studies are also warranted to delineate the β2-AR-mediated mechanisms involved in the control of lipid and glucose homeostasis, especially in the context of a growing aging population. PMID:26952573

  7. Interaction of ferroceneboronic acid with diols at aqueous and non-aqueous conditions - signalling and binding abilities of an electrochemical probe for saccharides

    International Nuclear Information System (INIS)

    Highlights: • Electrochemical characterisation of ferroceneboronic acid-diol interactions in non-aqueous solutions. • Elucidation of the signalling process and signalling mechanism of the ferroceneboronic acid upon interaction with diols in aqueous and non-aqueous solutions. • Effect of coordination of boron atom on electrochemistry of ferroceneboronic acid in free and bound forms with diols. - Abstract: Ferroceneboronic acid (FcBA) was employed as a model compound for clarification of binding and signalling properties of molecular probe for saccharides. As the simplest electrochemically active boronic acid, its interactions with diverse diols were studied in homogeneous phase under aqueous and non-aqueous conditions. The FcBA-diol system was examined by cyclic voltammetry resulting in two redox pairs corresponding to free and bound forms of FcBA. Redox potential of the bound form of FcBA was shifted in the cathodic direction in aqueous conditions due to coordination of the hydroxyl group to the boron atom. Oppositely, the anodic shift of the redox potential was observed upon the interaction of FcBA with diols in non-aqueous solvents. The binding properties and signalling mechanism of electrochemically active boronic acids were deduced and the assumptions resulting from the electrochemical behaviour were confirmed by 1H and 11B NMR spectroscopies. The binding constants of the tested diols in aqueous and non-aqueous media were determined and compared

  8. Platelet alpha 2-adrenergic receptors in major depressive disorder. Binding of tritiated clonidine before and after tricyclic antidepressant drug treatment

    International Nuclear Information System (INIS)

    The specific binding of tritiated (3H)-clonidine, an alpha 2-adrenergic receptor agonist, to platelet membranes was measured in normal subjects and in patients with major depressive disorder. The number of platelet alpha 2-adrenergic receptors from the depressed group was significantly higher than that found in platelets obtained from the control population. Treatment with tricyclic antidepressant drugs led to significant decreases in the number of platelet alpha 2-adrenergic receptors. These results support the hypothesis that the depressive syndrome is related to an alpha 2-adrenergic receptor supersensitivity and that the clinical effectiveness of tricyclic antidepressant drugs is associated with a decrease in the number of these receptors

  9. Stress-induced enhancement of mouse amygdalar synaptic plasticity depends on glucocorticoid and ß-adrenergic activity.

    Directory of Open Access Journals (Sweden)

    Ratna Angela Sarabdjitsingh

    Full Text Available BACKGROUND: Glucocorticoid hormones, in interaction with noradrenaline, enable the consolidation of emotionally arousing and stressful experiences in rodents and humans. Such interaction is thought to occur at least partly in the basolateral nucleus of the amygdala (BLA which is crucially involved in emotional memory formation. Extensive evidence points to long-term synaptic potentiation (LTP as a mechanism contributing to memory formation. Here we determined in adolescent C57/Bl6 mice the effects of stress on LTP in the LA-BLA pathway and the specific roles of corticosteroid and β-adrenergic receptor activation in this process. PRINCIPAL FINDINGS: Exposure to 20 min of restraint stress (compared to control treatment prior to slice preparation enhanced subsequent LTP induction in vitro, without affecting baseline fEPSP responses. The role of glucocorticoid receptors, mineralocorticoid receptors and β2-adrenoceptors in the effects of stress was studied by treating mice with the antagonists mifepristone, spironolactone or propranolol respectively (or the corresponding vehicles prior to stress or control treatment. In undisturbed controls, mifepristone and propranolol administration in vivo did not influence LTP induced in vitro. By contrast, spironolactone caused a gradually attenuating form of LTP, both in unstressed and stressed mice. Mifepristone treatment prior to stress strongly reduced the ability to induce LTP in vitro. Propranolol normalized the stress-induced enhancement of LTP to control levels during the first 10 min after high frequency stimulation, after which synaptic responses further declined. CONCLUSIONS: Acute stress changes BLA electrical properties such that subsequent LTP induction is facilitated. Both β-adrenergic and glucocorticoid receptors are involved in the development of these changes. Mineralocorticoid receptors are important for the maintenance of LTP in the BLA, irrespective of stress-induced changes in the

  10. Retromer in Osteoblasts Interacts With Protein Phosphatase 1 Regulator Subunit 14C, Terminates Parathyroid Hormone's Signaling, and Promotes Its Catabolic Response.

    Science.gov (United States)

    Xiong, Lei; Xia, Wen-Fang; Tang, Fu-Lei; Pan, Jin-Xiu; Mei, Lin; Xiong, Wen-Cheng

    2016-07-01

    Parathyroid hormone (PTH) plays critical, but distinct, roles in bone remodeling, including bone formation (anabolic response) and resorption (catabolic response). Although its signaling and function have been extensively investigated, it just began to be understood how distinct functions are induced by PTH activating a common receptor, the PTH type 1 receptor (PTH1R), and how PTH1R signaling is terminated. Here, we provide evidence for vacuolar protein sorting 35 (VPS35), a major component of retromer, in regulating PTH1R trafficking, turning off PTH signaling, and promoting its catabolic function. VPS35 is expressed in osteoblast (OB)-lineage cells. VPS35-deficiency in OBs impaired PTH(1-34)-promoted PTH1R translocation to the trans-Golgi network, enhanced PTH(1-34)-driven signaling, and reduced PTH(1-34)'s catabolic response in culture and in mice. Further mechanical studies revealed that VPS35 interacts with not only PTH1R, but also protein phosphatase 1 regulatory subunit 14C (PPP1R14C), an inhibitory subunit of PP1 phosphatase. PPP1R14C also interacts with PTH1R, which is necessary for the increased endosomal PTH1R signaling and decreased PTH(1-34)'s catabolic response in VPS35-deficient OB-lineage cells. Taken together, these results suggest that VPS35 deregulates PTH1R-signaling likely by its interaction with PTH1R and PPP1R14C. This event is critical for the control of PTH(1-34)-signaling dynamics, which may underlie PTH-induced catabolic response and adequate bone remodeling. PMID:27333042

  11. Looking for a needle in a haystack: Cellular proteins that may interact with the tyrosine-based sorting signal of the TGEV S protein.

    Science.gov (United States)

    Trincone, Anna; Schwegmann-Weßels, Christel

    2015-04-16

    The spike protein S of transmissible gastroenteritis virus, an Alphacoronavirus, contains a tyrosine-based sorting signal that is responsible for ERGIC retention and may be important for a correct viral assembly process. To find out whether the S protein interacts with cellular proteins via this sorting signal, a pulldown assay with GST fusion proteins was performed. Filamin A has been identified as a putative interaction candidate. Immunofluorescence assays confirmed a co-localization between the TGEV S protein and filamin A. Further experiments have to be performed to prove a significant impact of filamin A on TGEV infection. Different approaches of several researchers for the identification of cellular interaction candidates relevant for coronavirus replication are summarized. These results may help in the future to identify the role of cellular proteins during coronavirus assembly at the ER-Golgi intermediate compartment. PMID:25481285

  12. Ganglioside GM2 mediates migration of tumor cells by interacting with integrin and modulating the downstream signaling pathway.

    Science.gov (United States)

    Kundu, Manjari; Mahata, Barun; Banerjee, Avisek; Chakraborty, Sohini; Debnath, Shibjyoti; Ray, Sougata Sinha; Ghosh, Zhumur; Biswas, Kaushik

    2016-07-01

    The definitive role of ganglioside GM2 in mediating tumor-induced growth and progression is still unknown. Here we report a novel role of ganglioside GM2 in mediating tumor cell migration and uncovered its mechanism. Data shows differential expression levels of GM2-synthase as well as GM2 in different human cancer cells. siRNA mediated knockdown of GM2-synthase in CCF52, A549 and SK-RC-26B cells resulted in significant inhibition of tumor cell migration as well as invasion in vitro without affecting cellular proliferation. Over-expression of GM2-synthase in low-GM2 expressing SK-RC-45 cells resulted in a consequent increase in migration thus confirming the potential role GM2 and its downstream partners play in tumor cell migration and motility. Further, treatment of SK-RC-45 cells with exogenous GM2 resulted in a dramatic increase in migratory and invasive capacity with no change in proliferative capacity, thereby confirming the role of GM2 in tumorigenesis specifically by mediating tumor migration and invasion. Gene expression profiling of GM2-synthase silenced cells revealed altered expression of several genes involved in cell migration primarily those controlling the integrin mediated signaling. GM2-synthase knockdown resulted in decreased phosphorylation of FAK, Src as well as Erk, while over-expression and/or exogenous GM2 treatment caused increased FAK and Erk phosphorylation respectively. Again, GM2 mediated invasion and Erk phosphorylation is blocked in integrin knockdown SK-RC-45 cells, thus confirming that GM2 mediated migration and phosphorylation of Erk is integrin dependent. Finally, confocal microscopy suggested co-localization while co-immunoprecipitation and surface plasmon resonance (SPR) confirmed direct interaction of membrane bound ganglioside, GM2 with the integrin receptor. PMID:27066976

  13. Therapeutic synergy and complementarity for ischemia/reperfusion injury: β1-adrenergic blockade and phosphodiesterase-3 inhibition.

    Science.gov (United States)

    Huang, Ming-He; Poh, Kian-Keong; Tan, Huay-Cheem; Welt, Frederick G P; Lui, Charles Y

    2016-07-01

    The β1-blocker when administered before reperfusion activates myocyte prosurvival signaling via β2-adrenergic receptor (β2-AR) and protein kinase A (PKA)-dependent mechanism during ischemia/reperfusion (I/R). The heart is endowed with powerful self-protective ability executed by endogenous β2-adrenopeptide receptor activation. I/R triggers cardiac epinephrine and neuropeptide calcitonin gene-related peptide (CGRP) release. Cardiac β1- and β2-AR stimulation mediates pro- and anti-apoptotic cell signaling, respectively. Removal of myocardial β1-AR-derived proapoptotic force with β1-AR blockade unmasks the dominance of β2-AR mediated prosurvival cell signaling through the well-defined PKA-Akt dependent mechanism. This review focuses on recent clinical and experimental findings including intrinsic cardiac β2-adrenopeptide neuroparacrine signaling mechanisms involved in I/R injury protection. While β2-adrenopeptide-mediated cardioprotection is important, age-related β2-adrenopeptide receptor decoupling can result in their ineffectiveness in response to the receptor-specific therapies. Accordingly, direct activation of receptor-coupled upstream PKA-dependent signaling may serve as a therapeutic alternative to achieve cardioprotection bypassing adrenopeptidergic receptor decoupling accompanied with aging. Phosphodiesterase-3 (PDE3) inhibitor reduces infarct-size via cAMP-dependent PKA signaling. Non-β1-AR-mediated PKA activation activates multiple prosurvival signaling pathways eventually leading to Akt activation. Combination therapy with β1-blocker esmolol and PDE3 inhibitor milrinone additively reduced infarct-size in preclinical studies. Concurrent β1-AR blockade and PDE3 inhibition provides complementary synergy with promising therapeutic potential in patients with acute myocardial infarction and beyond. PMID:27085132

  14. Beta-adrenergic modulation of tremor and corticomuscular coherence in humans.

    Directory of Open Access Journals (Sweden)

    Mark R Baker

    Full Text Available Coherence between the bioelectric activity of sensorimotor cortex and contralateral muscles can be observed around 20 Hz. By contrast, physiological tremor has a dominant frequency around 10 Hz. Although tremor has multiple sources, it is partly central in origin, reflecting a component of motoneuron discharge at this frequency. The motoneuron response to ~20 Hz descending input could be altered by non-linear interactions with ~10 Hz motoneuron firing. We investigated this further in eight healthy human subjects by testing the effects of the beta-adrenergic agents propranolol (non-selective β-antagonist and salbutamol (β(2-agonist, which are known to alter the size of physiological tremor. Corticomuscular coherence was assessed during an auxotonic precision grip task; tremor was quantified using accelerometry during index finger extension. Experiments with propranolol used a double-blind, placebo-controlled crossover design. A single oral dose of propranolol (40 mg significantly increased beta band (15.3-32.2 Hz corticomuscular coherence compared with placebo, but reduced tremor in the 6.2-11.9 Hz range. Salbutamol (2.5 mg was administered by inhalation. Whilst salbutamol significantly increased tremor amplitude as expected, it did not change corticomuscular coherence. The opposite direction of the effects of propranolol on corticomuscular coherence and tremor, and the fact that salbutamol enhances tremor but does not affect coherence, implies that the magnitude of corticomuscular coherence is little influenced by non-linear interactions with 10 Hz oscillations in motoneurons or the periphery. Instead, we suggest that propranolol and salbutamol may affect both tremor and corticomuscular coherence partly via a central site of action.

  15. Adrenalectomy mediated alterations in adrenergic activation of adenylate cyclase in rat liver

    International Nuclear Information System (INIS)

    Adrenalectomy caused a large increase in the number of β-adrenergic binding sites on liver plasma membranes as measured by 125I-iodocyanopindolol (22 and 102 fmol/mg protein for control and adrenalectomized (ADX) rats). Concomitantly an increase in the number of binding sites for 3H-yohimbine was also observed (104 and 175 fmol/mg protein for control and adx membranes). Epinephrine-stimulated increase in cyclic AMP accumulation in isolated hepatocytes were greater in cells from ADX rats. This increase in β-adrenergic mediated action was much less than what may be expected as a result of the increase in the β-adrenergic binding in ADX membranes. In addition phenoxybenzamine (10 μM) further augmented this action of epinephrine in both control and ADX cells. To test the hypothesis that the increase in the number of the inhibitory α2-adrenergic receptors in adrenalectomy is responsible for the muted β-adrenergic response, the authors injected rats with pertussis toxin (PT). This treatment may cause the in vivo ribosylation of the inhibitory binding protein (Ni). Adenylate cyclase (AC) activity in liver plasma membranes prepared from treated and untreated animals was measured. In contrast with control rats, treatment of ADX rats with PT resulted in a significant increase in the basal activity of AC (5.5 and 7.7 pmol/mg protein/min for untreated and treated rats respectively). Isoproterenol (10 μM), caused AC activity to increase to 6.5 and 8.4 pmol/mg protein/min for membranes obtained from ADX untreated and ADX treated rats respectively. The α-adrenergic antagonists had no significant effect on the β-adrenergic-mediated activation of AC in liver plasma membranes from PT treated control and ADX rats. The authors conclude that the β-adrenergic activation of AC is attenuated by Ni protein both directly and as a result of activation of α-adrenergic receptors

  16. A novel GSK3-regulated APC:Axin interaction regulates Wnt signaling by driving a catalytic cycle of efficient βcatenin destruction.

    Science.gov (United States)

    Pronobis, Mira I; Rusan, Nasser M; Peifer, Mark

    2015-01-01

    APC, a key negative regulator of Wnt signaling in development and oncogenesis, acts in the destruction complex with the scaffold Axin and the kinases GSK3 and CK1 to target βcatenin for destruction. Despite 20 years of research, APC's mechanistic function remains mysterious. We used FRAP, super-resolution microscopy, functional tests in mammalian cells and flies, and other approaches to define APC's mechanistic role in the active destruction complex when Wnt signaling is off. Our data suggest APC plays two roles: (1) APC promotes efficient Axin multimerization through one known and one novel APC:Axin interaction site, and (2) GSK3 acts through APC motifs R2 and B to regulate APC:Axin interactions, promoting high-throughput of βcatenin to destruction. We propose a new dynamic model of how the destruction complex regulates Wnt signaling and how this goes wrong in cancer, providing insights into how this multiprotein signaling complex is assembled and functions via multivalent interactions. PMID:26393419

  17. Functions of adrenergic and cholinergic nerves in canine effectors of seminal emission.

    Science.gov (United States)

    Arver, S; Sjöstrand, N O

    1982-05-01

    Spontaneous activity responses to acetylcholine (ACh), adrenaline (A), noradrenaline (NA) and barium chloride as well as the effects of various autonomic drugs on effects of field stimulation of nerves and muscle cells of isolated pieces or strips of cauda epididymidis, vas deferens, ampulla ductus deferentis and prostate of dog were studied. The main results and conclusions are: the muscles show little spontaneous activity but rhythmicity can easily be produced by e.g. stimulating agonists. The muscles are contracted by alpha-adrenoceptor stimulants. ACh has usually no or a very weak contractile effect in high concentrations. Muscles of young dogs are more sensitive to ACh. The excitatory innervation of the muscles is adrenergic and completely blocked by adrenergic neuron blockers as well as alpha-adrenoceptor blocking drugs. Stimulation of adrenergic nerves leads to maximum response already at low frequencies (4-6 Hz). This response is very similar to that provoked by a supramaximal dose of NA. Scopolamine enhances neurogenic contractile effects while physostigmine suppresses them. Hence cholinergic nerves may act by muscarinic prejunctional inhibition of the excitatory adrenergic neurotransmission rather than act directly upon the smooth muscle cells. Since secretory cells receive cholinergic innervation prejunctional inhibition of the adrenergic myomotor nerves may be of functional significance in at least the long copulatory events of the dog. PMID:6127870

  18. Adrenergic blockade does not abolish elevated glucose turnover during bacterial infection

    International Nuclear Information System (INIS)

    Infusions of adrenergic antagonists were used to investigate the role of catecholamines in infection-induced elevations of glucose kinetics. Infection was produced in conscious catheterized rats by repeated subcutaneous injections of live Escherichia coli over 24 h. Glucose kinetics were measured by the constant intravenous infusion of [6-3H]- and [U-14C]glucose. Compared with noninfected rats, infected animals were hyperthermic and showed increased rates of glucose appearance, clearance, and recycling as well as mild hyperlacticacidemia. Plasma catecholamine concentrations were increased by 50-70% in the infected rats, but there were no differences in plasma glucagon, corticosterone, and insulin levels. Adrenergic blockade was produced by primed constant infusion of both propranolol (β-blocker) and phentolamine (α-blocker). A 2-h administration of adrenergic antagonists did not attenuate the elevated glucose kinetics or plasma lactate concentration in the infected rats, although it abolished the hyperthermia. In a second experiment, animals were infused with propranolol and phentolamine beginning 1 h before the first injection of E. coli and throughout the course of infection. Continuous adrenergic blockade failed to attenuate infection-induced elevations in glucose kinetics and plasma lactate. These results indicate that the adrenergic system does not mediate the elevated glucose metabolism observed in this mild model of infection

  19. Heart rate control with adrenergic blockade: Clinical outcomes in cardiovascular medicine

    Directory of Open Access Journals (Sweden)

    David Feldman

    2010-05-01

    Full Text Available David Feldman1, Terry S Elton2, Doron M Menachemi3, Randy K Wexler41Heart Failure/Transplant and VAD Programs, Minneapolis Heart Institute, Minneapolis, Minnesota, USA; 2Division of Pharmacology, College of Pharmacology, The Ohio State University, Columbus, Ohio, USA; 3Heart Failure Services, Edith Wolfson Medical Center, The Heart Institute, Sakler School of Medicine, Tel-Aviv University, Holon, Israel; 4Department of Clinical Family Medicine, The Ohio State University, Columbus, Ohio, USAAbstract: The sympathetic nervous system is involved in regulating various cardiovascular parameters including heart rate (HR and HR variability. Aberrant sympathetic nervous system expression may result in elevated HR or decreased HR variability, and both are independent risk factors for development of cardiovascular disease, including heart failure, myocardial infarction, and hypertension. Epidemiologic studies have established that impaired HR control is linked to increased cardiovascular morbidity and mortality. One successful way of decreasing HR and cardiovascular mortality has been by utilizing β-blockers, because their ability to alter cell signaling at the receptor level has been shown to mitigate the pathogenic effects of sympathetic nervous system hyperactivation. Numerous clinical studies have demonstrated that β-blocker-mediated HR control improvements are associated with decreased mortality in postinfarct and heart failure patients. Although improved HR control benefits have yet to be established in hypertension, both traditional and vasodilating β-blockers exert positive HR control effects in this patient population. However, differences exist between traditional and vasodilating β-blockers; the latter reduce peripheral vascular resistance and exert neutral or positive effects on important metabolic parameters. Clinical evidence suggests that attainment of HR control is an important treatment objective for patients with cardiovascular

  20. Endogenous N-terminal Domain Cleavage Modulates α1D-Adrenergic Receptor Pharmacodynamics.

    Science.gov (United States)

    Kountz, Timothy S; Lee, Kyung-Soon; Aggarwal-Howarth, Stacey; Curran, Elizabeth; Park, Ji-Min; Harris, Dorathy-Ann; Stewart, Aaron; Hendrickson, Joseph; Camp, Nathan D; Wolf-Yadlin, Alejandro; Wang, Edith H; Scott, John D; Hague, Chris

    2016-08-26

    The α1D-adrenergic receptor (ADRA1D) is a key regulator of cardiovascular, prostate, and central nervous system functions. This clinically relevant G protein-coupled receptor has proven difficult to study, as it must form an obligate modular homodimer containing the PDZ proteins scribble and syntrophin or become retained in the endoplasmic reticulum as non-functional protein. We previously determined that targeted removal of the N-terminal (NT) 79 amino acids facilitates ADRA1D plasma membrane expression and agonist-stimulated functional responses. However, whether such an event occurs in physiological contexts was unknown. Herein, we report the ADRA1D is subjected to innate NT processing in cultured human cells. SNAP near-infrared imaging and tandem-affinity purification revealed the ADRA1D is expressed as both full-length and NT truncated forms in multiple human cell lines. Serial truncation mapping identified the cleavage site as Leu(90)/Val(91) in the 95-amino acid ADRA1D NT domain, suggesting human cells express a Δ1-91 ADRA1D species. Tandem-affinity purification MS/MS and co-immunoprecipitation analysis indicate NT processing of ADRA1D is not required to form scribble-syntrophin macromolecular complexes. Yet, label-free dynamic mass redistribution signaling assays demonstrate that Δ1-91 ADRA1D agonist responses were greater than WT ADRA1D. Mutagenesis of the cleavage site nullified the processing event, resulting in ADRA1D agonist responses less than the WT receptor. Thus, we propose that processing of the ADRA1D NT domain is a physiological mechanism employed by cells to generate a functional ADRA1D isoform with optimal pharmacodynamic properties. PMID:27382054

  1. Cerebral aterial spasm. I. Adrenergic mechanism in experimental cerebral vasospasm.

    Directory of Open Access Journals (Sweden)

    Morooka,Hiroshi

    1978-04-01

    Full Text Available This study demonstrates that an adrenergic mechanism plays an important role in producing the delayed cerebral vasospasm which follows subarachnoid hemorrhage. Results were as follows: 1. Experimental subarachnoid hemorrhage (SAH was produced by injection of fresh arterial blood into the cisterna magna in cats. The cerebral vasospasm was shown angiographically to be biphasic in nature: immediate constriction lasting 1 h and marked prolonged spasm occurring between the 3rd and 5th day after SAH. The amount of noradrenaline (NA and dopamine-beta-hydroxylase (DBH activity decreased over a period of 24 h both within the wall of the basilar artery and in the locus ceruleus and then gradually increased, reaching a maximum on the 3rd day after SAH. 2. Topical application of spasmogenic substances (NA and blood produced a marked constriction of the hypersensitive basilar artery on the 3rd day after SAH. 3. 6-Hydroxydopamine (6-OHDA injection into the cisterna magna produced prolonged vasocilatation. The dilated vessel responded with mild transient constriction after the topical application of NA or fresh blood. DBH activity and NA concentration in the vessels, locus ceruleus and medial hypothalamus decreased markedly on the 3rd day after the cisternal injection of 6-OHDA. 4. Various spasmogenic substances (i.e. serotonin, NA, prostaglandins and methemoglobin were measured in a mixture of equal volume of CSF and blood in cats. ONly the serotonin in the mixed fluid produced vasoconstriction. Spasmogenic substances decreased markedly in the mixed fluid incubated for 3 days at 37 degrees C, and none of these substances apart from methemoglobin was present in a concentration sufficient to produce constriction of vessels. 5. These results suggest that early spasm is induced by serotonin around the arteries of the cranial base, and delayed spasm might be caused by hyperreaction of cerebral vessels to spasmogenic substances such as methemoglobin, during the

  2. Beta-adrenergic agonists as additive in beef cattle

    Directory of Open Access Journals (Sweden)

    Marcelo Vedovatto

    2014-10-01

    Full Text Available The agonists receptor beta-adrenergic (β-AA are present in virtually all types of mammalian cells and are stimulated by catecholamines (epinephrine and norepinephrine produced by the organism itself. The β-AA agonists are synthetic substances with similar structure to these amines. When provided in the diet they alter the body composition of animals, affecting the distribution of nutrients toward to protein deposition, and decreasing lipogenesis. Although the mechanisms of action are not fully understood, these may cause morphological and physiological changes such as increased blood flow decrease in plasma insulin, decreased lipogenesis, and muscle hypertrophy mainly in type II fibers. We also observed changes in motility and secretions grastointestinal tract, beyond the direct influence on the rumen bacteria, altering the digestibility of the diet. The β-AA agonists released in some countries for use in beef cattle are ractopamine hydrochloride and zilpaterol hydrochloride. According to literature data, the inclusion of these additives in the diet of feedlot cattle has been associated with an increase infeed efficiency with the increase in daily weight gain and with equal or lower feed intake. Carcass characteristics improvement was verified in carcass weight, and increased loin eye area, but with the possibility to decrease the subcutaneous fat thickness and marbling. Reviews in sensory panel of meat from animals consuming β-AA agonists showed decreased tenderness and juiciness. Thus β-AA improve performance and carcass characteristics, but more studies are needed to confirm whether they have negative influence on the organoleptic characteristics of the meat.

  3. Investigation of cyclooxygenase and signaling pathways involved in human platelet aggregation mediated by synergistic interaction of various agonists

    Directory of Open Access Journals (Sweden)

    Khan N

    2015-07-01

    Full Text Available Nadia Khan,1,2 Ahsana Dar Farooq,1 Bassem Sadek21Dr Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan; 2Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab EmiratesAbstract: In the present study, the mechanism(s of synergistic interaction of various platelet mediators such as arachidonic acid (AA when combined with 5-hydroxytryptamine (5-HT or adenosine diphosphate (ADP on human platelet aggregation were examined. The results demonstrated that 5-HT had no or negligible effect on aggregation but it did potentiate the aggregation response of AA. Similarly, the combination of subeffective concentrations of ADP and AA exhibited noticeable rise in platelet aggregation. Moreover, the observed synergistic effect of AA with 5-HT on platelets was inhibited by different cyclooxygenase (COX inhibitors, namely ibuprofen and celecoxib, with half maximal inhibitory effect (IC50 values of 18.0±1.8 and 15.6±3.4 µmol/L, respectively. Interestingly, the synergistic effect observed for AA with 5-HT was, also, blocked by the 5-HT receptor blockers cyproheptadine (IC50=22.0±7 µmol/L, ketanserin (IC50=152±23 µmol/L, phospholipase C (PLC inhibitor (U73122; IC50=6.1±0.8 µmol/L, and mitogen activated protein kinase (MAPK inhibitor (PD98059; IC50=3.8±0.5 µmol/L. Likewise, the synergism of AA and ADP was, also, attenuated by COX inhibitors (ibuprofen; IC50=20±4 µmol/L and celecoxib; IC50=24±7 µmol/L, PLC inhibitor (U73122; IC50=3.7±0.3 µmol/L, and MAPK inhibitor (PD98059; IC50=2.8±1.1 µmol/L. Our observed data demonstrate that the combination of subthreshold concentrations of agonists amplifies platelet aggregation and that these synergistic effects largely depend on activation of COX/thromboxane A2, receptor-operated Ca2+ channels, Gq/PLC, and MAPK signaling

  4. Molecular Modeling Study of Chiral Separation and Recognition Mechanism of β-Adrenergic Antagonists by Capillary Electrophoresis

    Directory of Open Access Journals (Sweden)

    Yifeng Chai

    2012-01-01

    Full Text Available Chiral separations of five β-adrenergic antagonists (propranolol, esmolol, atenolol, metoprolol, and bisoprolol were studied by capillary electrophoresis using six cyclodextrins (CDs as the chiral selectors. Carboxymethylated-β-cyclodextrin (CM-β-CD exhibited a higher enantioselectivity power compared to the other tested CDs. The influences of the concentration of CM-β-CD, buffer pH, buffer concentration, temperature, and applied voltage were investigated. The good chiral separation of five β-adrenergic antagonists was achieved using 50 mM Tris buffer at pH 4.0 containing 8 mM CM-β-CD with an applied voltage of 24 kV at 20 °C. In order to understand possible chiral recognition mechanisms of these racemates with CM-β-CD, host-guest binding procedures of CM-β-CD and these racemates were studied using the molecular docking software Autodock. The binding free energy was calculated using the Autodock semi-empirical binding free energy function. The results showed that the phenyl or naphthyl ring inserted in the hydrophobic cavity of CM-β-CD and the side chain was found to point out of the cyclodextrin rim. Hydrogen bonding between CM-β-CD and these racemates played an important role in the process of enantionseparation and a model of the hydrogen bonding interaction positions was constructed. The difference in hydrogen bonding formed with the –OH next to the chiral center of the analytes may help to increase chiral discrimination and gave rise to a bigger separation factor. In addition, the longer side chain in the hydrophobic phenyl ring of the enantiomer was not beneficial for enantioseparation and the chiral selectivity factor was found to correspond to the difference in binding free energy.

  5. In silico study of interaction between rice proteins enhanced disease susceptibility 1 and phytoalexin deficient 4, the regulators of salicylic acid signalling pathway

    Indian Academy of Sciences (India)

    Indra Singh; Kavita Shah

    2012-07-01

    Enhanced disease susceptibility 1 (EDS1), a plant-specific protein has homology with the eukaryotic lipase in their N-terminal halves and a unique domain at its C-termini. EDS1 is known to be an important regulator of biotic stress and an essential component of basal immunity. EDS1 interacts with its positive co-regulator phytoalexin deficient 4 (PAD4), resulting in mobilization of the salicylic acid defence pathway. Limited information regarding this interaction in rice is available. To study this interaction, a model of EDS1 and PAD4 proteins from rice was generated and validated with Accelrys DS software version 3.1 using bioinformatics interface. The in silico docking between the two proteins showed a significant protein–protein interaction between rice EDS1 and PAD4, suggesting that they form a dimeric protein complex, which, similar to that in Arabidopsis, is perhaps also important for triggering the salicylic acid signalling pathway in plants.

  6. Structure-guided development of dual β2 adrenergic/dopamine D2 receptor agonists.

    Science.gov (United States)

    Weichert, Dietmar; Stanek, Markus; Hübner, Harald; Gmeiner, Peter

    2016-06-15

    Aiming to discover dual-acting β2 adrenergic/dopamine D2 receptor ligands, a structure-guided approach for the evolution of GPCR agonists that address multiple targets was elaborated. Starting from GPCR crystal structures, we describe the design, synthesis and biological investigation of a defined set of compounds leading to the identification of the benzoxazinone (R)-3, which shows agonist properties at the adrenergic β2 receptor and substantial G protein-promoted activation at the D2 receptor. This directed approach yielded molecular probes with tuned dual activity. The congener desOH-3 devoid of the benzylic hydroxyl function was shown to be a β2 adrenergic antagonist/D2 receptor agonist with Ki values in the low nanomolar range. The compounds may serve as a promising starting point for the investigation and treatment of neurological disorders. PMID:27132867

  7. Investigation of cyclooxygenase and signaling pathways involved in human platelet aggregation mediated by synergistic interaction of various agonists.

    Science.gov (United States)

    Khan, Nadia; Farooq, Ahsana Dar; Sadek, Bassem

    2015-01-01

    In the present study, the mechanism(s) of synergistic interaction of various platelet mediators such as arachidonic acid (AA) when combined with 5-hydroxytryptamine (5-HT) or adenosine diphosphate (ADP) on human platelet aggregation were examined. The results demonstrated that 5-HT had no or negligible effect on aggregation but it did potentiate the aggregation response of AA. Similarly, the combination of subeffective concentrations of ADP and AA exhibited noticeable rise in platelet aggregation. Moreover, the observed synergistic effect of AA with 5-HT on platelets was inhibited by different cyclooxygenase (COX) inhibitors, namely ibuprofen and celecoxib, with half maximal inhibitory effect (IC50) values of 18.0 ± 1.8 and 15.6 ± 3.4 μmol/L, respectively. Interestingly, the synergistic effect observed for AA with 5-HT was, also, blocked by the 5-HT receptor blockers cyproheptadine (IC50=22.0 ± 7 μmol/L), ketanserin (IC50=152 ± 23 μmol/L), phospholipase C (PLC) inhibitor (U73122; IC50=6.1 ± 0.8 μmol/L), and mitogen activated protein kinase (MAPK) inhibitor (PD98059; IC50=3.8 ± 0.5 μmol/L). Likewise, the synergism of AA and ADP was, also, attenuated by COX inhibitors (ibuprofen; IC50=20 ± 4 μmol/L and celecoxib; IC50=24 ± 7 μmol/L), PLC inhibitor (U73122; IC50=3.7 ± 0.3 μmol/L), and MAPK inhibitor (PD98059; IC50=2.8 ± 1.1 μmol/L). Our observed data demonstrate that the combination of subthreshold concentrations of agonists amplifies platelet aggregation and that these synergistic effects largely depend on activation of COX/thromboxane A2, receptor-operated Ca(2+) channels, Gq/PLC, and MAPK signaling pathways. Moreover, our data revealed that inhibition of COX pathways by using both selective and/or non-selective COX inhibitors blocks not only AA metabolism and thromboxane A2 formation, but also its binding to Gq receptors and activation of receptor-operated Ca(2+) channels in platelets. Overall, our results show that PLC and MAPK inhibitors proved

  8. Bridging the gap between modules in isolation and as part of networks: A systems framework for elucidating interaction and regulation of signalling modules

    Science.gov (United States)

    Menon, Govind; Krishnan, J.

    2016-07-01

    While signalling and biochemical modules have been the focus of numerous studies, they are typically studied in isolation, with no examination of the effects of the ambient network. In this paper we formulate and develop a systems framework, rooted in dynamical systems, to understand such effects, by studying the interaction of signalling modules. The modules we consider are (i) basic covalent modification, (ii) monostable switches, (iii) bistable switches, (iv) adaptive modules, and (v) oscillatory modules. We systematically examine the interaction of these modules by analyzing (a) sequential interaction without shared components, (b) sequential interaction with shared components, and (c) oblique interactions. Our studies reveal that the behaviour of a module in isolation may be substantially different from that in a network, and explicitly demonstrate how the behaviour of a given module, the characteristics of the ambient network, and the possibility of shared components can result in new effects. Our global approach illuminates different aspects of the structure and functioning of modules, revealing the importance of dynamical characteristics as well as biochemical features; this provides a methodological platform for investigating the complexity of natural modules shaped by evolution, elucidating the effects of ambient networks on a module in multiple cellular contexts, and highlighting the capabilities and constraints for engineering robust synthetic modules. Overall, such a systems framework provides a platform for bridging the gap between non-linear information processing modules, in isolation and as parts of networks, and a basis for understanding new aspects of natural and engineered cellular networks.

  9. Flow-injection chemiluminescence method to detect a β2 adrenergic agonist.

    Science.gov (United States)

    Zhang, Guangbin; Tang, Yuhai; Shang, Jian; Wang, Zhongcheng; Yu, Hua; Du, Wei; Fu, Qiang

    2015-02-01

    A new method for the detection of β2 adrenergic agonists was developed based on the chemiluminescence (CL) reaction of β2 adrenergic agonist with potassium ferricyanide-luminol CL. The effect of β2 adrenergic agonists including isoprenaline hydrochloride, salbutamol sulfate, terbutaline sulfate and ractopamine on the CL intensity of potassium ferricyanide-luminol was discovered. Detection of the β2 adrenergic agonist was carried out in a flow system. Using uniform design experimentation, the influence factors of CL were optimized. The optimal experimental conditions were 1 mmol/L of potassium ferricyanide, 10 µmol/L of luminol, 1.2 mmol/L of sodium hydroxide, a flow speed of 2.6 mL/min and a distance of 1.2 cm from 'Y2 ' to the flow cell. The linear ranges and limit of detection were 10-100 and 5 ng/mL for isoprenaline hydrochloride, 20-100 and 5 ng/mL for salbutamol sulfate, 8-200 and 1 ng/mL for terbutaline sulfate, 20-100 and 4 ng/mL for ractopamine, respectively. The proposed method allowed 200 injections/h with excellent repeatability and precision. It was successfully applied to the determination of three β2 adrenergic agonists in commercial pharmaceutical formulations with recoveries in the range of 96.8-98.5%. The possible CL reaction mechanism of potassium ferricyanide-luminol-β2 adrenergic agonist was discussed from the UV/vis spectra. PMID:24830367

  10. Evidence that the human cutaneous venoarteriolar response is not mediated by adrenergic mechanisms

    Science.gov (United States)

    Crandall, C. G.; Shibasaki, M.; Yen, T. C.

    2002-01-01

    The venoarteriolar response causes vasoconstriction to skin and muscle via local mechanisms secondary to venous congestion. The purpose of this project was to investigate whether this response occurs through alpha-adrenergic mechanisms. In supine individuals, forearm skin blood flow was monitored via laser-Doppler flowmetry over sites following local administration of terazosin (alpha(1)-antagonist), yohimbine (alpha(2)-antagonist), phentolamine (non-selective alpha-antagonist) and bretylium tosylate (inhibits neurotransmission of adrenergic nerves) via intradermal microdialysis or intradermal injection. In addition, skin blood flow was monitored over an area of forearm skin that was locally anaesthetized via application of EMLA (2.5 % lidocaine (lignocaine) and 2.5 % prilocaine) cream. Skin blood flow was also monitored over adjacent sites that received the vehicle for the specified drug. Each trial was performed on a minimum of seven subjects and on separate days. The venoarteriolar response was engaged by lowering the subject's arm from heart level such that the sites of skin blood flow measurement were 34 +/- 1 cm below the heart. The arm remained in this position for 2 min. Selective and non-selective alpha-adrenoceptor antagonism and presynaptic inhibition of adrenergic neurotransmission did not abolish the venoarteriolar response. However, local anaesthesia blocked the venoarteriolar response without altering alpha-adrenergic mediated vasoconstriction. These data suggest that the venoarteriolar response does not occur through adrenergic mechanisms as previously reported. Rather, the venoarteriolar response may due to myogenic mechanisms associated with changes in vascular pressure or is mediated by a non-adrenergic, but neurally mediated, local mechanism.

  11. Distinctive left-sided distribution of adrenergic-derived cells in the adult mouse heart.

    Directory of Open Access Journals (Sweden)

    Kingsley Osuala

    Full Text Available Adrenaline and noradrenaline are produced within the heart from neuronal and non-neuronal sources. These adrenergic hormones have profound effects on cardiovascular development and function, yet relatively little information is available about the specific tissue distribution of adrenergic cells within the adult heart. The purpose of the present study was to define the anatomical localization of cells derived from an adrenergic lineage within the adult heart. To accomplish this, we performed genetic fate-mapping experiments where mice with the cre-recombinase (Cre gene inserted into the phenylethanolamine-n-methyltransferase (Pnmt locus were cross-mated with homozygous Rosa26 reporter (R26R mice. Because Pnmt serves as a marker gene for adrenergic cells, offspring from these matings express the β-galactosidase (βGAL reporter gene in cells of an adrenergic lineage. βGAL expression was found throughout the adult mouse heart, but was predominantly (89% located in the left atrium (LA and ventricle (LV (p<0.001 compared to RA and RV, where many of these cells appeared to have cardiomyocyte-like morphological and structural characteristics. The staining pattern in the LA was diffuse, but the LV free wall displayed intermittent non-random staining that extended from the apex to the base of the heart, including heavy staining of the anterior papillary muscle along its perimeter. Three-dimensional computer-aided reconstruction of XGAL+ staining revealed distribution throughout the LA and LV, with specific finger-like projections apparent near the mid and apical regions of the LV free wall. These data indicate that adrenergic-derived cells display distinctive left-sided distribution patterns in the adult mouse heart.

  12. Mechanisms of Disease: detrimental adrenergic signaling in acute decompensated heart failure

    OpenAIRE

    Feldman, David S.; Elton, Terry S; Sun, Benjamin; Martin, Mickey M.; Ziolo, Mark T

    2008-01-01

    Acute decompensated heart failure (ADHF) is responsible for more than 1 million hospital admissions each year in the US. Clinicians and scientists have developed therapeutic strategies that reduce mortality in patients with chronic heart failure (HF). Despite the widely appreciated magnitude of the ADHF problem, there is still a critical gap in our understanding of the cellular mechanisms involved and effective treatment strategies for hospitalized patients. Irrespective of the etiology, pati...

  13. In Vivo Phosphoproteomics Analysis Reveals the Cardiac Targets of β-Adrenergic Receptor Signaling

    DEFF Research Database (Denmark)

    Lundby, Alicia; Andersen, Martin N; Steffensen, Annette B;

    2013-01-01

    used quantitative in vivo phosphoproteomics to identify 670 site-specific phosphorylation changes in murine hearts in response to acute treatment with specific βAR agonists. The residues adjacent to the regulated phosphorylation sites exhibited a sequence-specific preference (R-X-X-pS/T), and...

  14. Altered β-adrenergic response in mice lacking myotonic dystrophy protein kinase (DMPK)

    Science.gov (United States)

    Llagostera, Esther; López, María Jesús Álvarez; Scimia, Cecilia; Catalucci, Daniele; Párrizas, Marcelina; Ruiz-Lozano, Pilar; Kaliman, Perla

    2011-01-01

    The protein kinase product of the gene mutated in myotonic dystrophy 1 (DMPK) is reported to play a role in cardiac pathophysiology. To gain insight into the molecular mechanisms modulated by DMPK, we characterize the impact of DMPK ablation in the context of cardiac β-adrenergic function. Our data demonstrate that DMPK knock-out mice present altered β-agonist-induced responses and suggest that this is due, at least in part, to a reduced density of β1-adrenergic receptors in cardiac plasma membranes. PMID:22190319

  15. Altered β-adrenergic response in mice lacking myotonic dystrophy protein kinase (DMPK)

    OpenAIRE

    Llagostera, Esther; López, María Jesús Álvarez; Scimia, Cecilia; Catalucci, Daniele; Párrizas, Marcelina; Ruiz-Lozano, Pilar; Kaliman, Perla

    2012-01-01

    The protein kinase product of the gene mutated in myotonic dystrophy 1 (DMPK) is reported to play a role in cardiac pathophysiology. To gain insight into the molecular mechanisms modulated by DMPK, we characterize the impact of DMPK ablation in the context of cardiac β-adrenergic function. Our data demonstrate that DMPK knock-out mice present altered β-agonist-induced responses and suggest that this is due, at least in part, to a reduced density of β1-adrenergic receptors in cardiac plasma me...

  16. Altered β-adrenergic response in mice lacking myotonic dystrophy protein kinase.

    Science.gov (United States)

    Llagostera, Esther; Álvarez López, María Jesús; Scimia, Cecilia; Catalucci, Daniele; Párrizas, Marcelina; Ruiz-Lozano, Pilar; Kaliman, Perla

    2012-01-01

    The protein kinase product of the gene mutated in myotonic dystrophy 1 (DMPK) is reported to play a role in cardiac pathophysiology. To gain insight into the molecular mechanisms modulated by DMPK, we characterize the impact of DMPK ablation in the context of cardiac β-adrenergic function. Our data demonstrate that DMPK knockout mice present altered β-agonist-induced responses and suggest that this is due, at least in part, to a reduced density of β(1)-adrenergic receptors in cardiac plasma membranes. PMID:22190319

  17. Responsiveness of superficial hand veins to phenylephrine in essential hypertension. Alpha adrenergic blockade during prazosin therapy.

    Science.gov (United States)

    Eichler, H G; Ford, G A; Blaschke, T F; Swislocki, A; Hoffman, B B

    1989-01-01

    Patients with essential hypertension show an increase in vascular resistance. It is unclear whether this is caused by structural changes in the arterial wall or by hyperresponsiveness of vascular smooth muscle to endogenous alpha adrenergic agonists. Using the dorsal hand vein compliance technique we compared the changes in diameter of superficial veins in response to phenylephrine, an alpha 1 adrenergic receptor agonist, and to nitroglycerin, a venorelaxant, in patients with essential hypertension and in normotensive subjects. The dose of phenylephrine that produced 50% of maximal venoconstriction (ED50) in the hypertensive subjects was 257 ng/min (geometric mean; log mean +/- SD was 2.41 +/- 0.54). In the control subjects the ED50 was 269 ng/min (geometric mean; log mean was 2.43 +/- 0.43). Maximal response (Emax) for phenylephrine was 84 +/- 13% in the hypertensive subjects and 90 +/- 6% in the control subjects. Differences in the group means of the ED50 (P = 0.92) or the Emax (P = 0.27) were not significant. There were no significant differences in the ED50 (P = 0.54) or the Emax (P = 0.08) for nitroglycerin between the two groups. These results show no evidence for a generalized change in alpha adrenergic responsiveness in hypertension and support the concept that increased blood pressure responses to alpha adrenergic stimulation in hypertensives are due to structural and geometric changes in the arterial wall rather than to an increased responsiveness of postsynaptic alpha adrenergic receptors. The phenylephrine studies were repeated in seven hypertensive patients during treatment with prazosin, an alpha 1 adrenergic antagonist. The mean dose ratio of the shift in phenylephrine ED50 (ED50 during prazosin therapy/ED50 before prazosin therapy) was 6.1. This indicates that small doses of prazosin (1-2 mg) cause significant in vivo shifts in the dose-response relationship of alpha adrenergic agonists. The dorsal hand vein compliance technique is useful in

  18. Confirmation of a soft photon signal in excess of Q.E.D. expectations in $\\pi^- p$ interactions at 280 GeV/c

    CERN Document Server

    Belogianni, A; Brodbeck, T J; Evans, D; French, Bernard R; Jacholkowski, A; Kinson, J B; Kirk, A; Lenti, V; Loconsole, R A; Manzari, V; Minashvili, I A; Perepelitsa, V F; Rusakovitch, N A; Sonderegger, P; Spyropoulou-Stassinaki, M; Tchlatchidze, G A; Vasileiadis, G; Vichou, I; Villalobos Baillie, O

    1997-01-01

    Photons produced in \\pip interactions at 280 GeV/$c$ were detected by reconstructing the $e^+e^-$ pairs produced via the materialisation of the photons in a 1 mm thick lead sheet placed in front of the MWPC's of the OMEGA spectrometer at CERN. A soft photon signal $ 7.8\\pm 1.6$ times the Q.E.D. inner bremsstrahlung prediction was observed confirming the results of a previous experiment.

  19. Interactions between sarco-endoplasmic reticulum and mitochondria in cardiac and skeletal muscle – pivotal roles in Ca2+ and reactive oxygen species signaling

    OpenAIRE

    Eisner, Verónica; Csordás, György; Hajnóczky, György

    2013-01-01

    Mitochondria are strategically and dynamically positioned in the cell to spatially coordinate ATP production with energy needs and to allow the local exchange of material with other organelles. Interactions of mitochondria with the sarco-endoplasmic reticulum (SR/ER) have been receiving much attention owing to emerging evidence on the role these sites have in cell signaling, dynamics and biosynthetic pathways. One of the most important physiological and pathophysiological paradigms for SR/ER–...

  20. A Stochastic Model of the Germinal Center Integrating Local Antigen Competition, Individualistic T-B Interactions, and B Cell Receptor Signaling.

    Science.gov (United States)

    Wang, Peng; Shih, Chang-Ming; Qi, Hai; Lan, Yue-Heng

    2016-08-15

    The germinal center (GC) reaction underlies productive humoral immunity by orchestrating competition-based affinity maturation to produce plasma cells and memory B cells. T cells are limiting in this process. How B cells integrate signals from T cells and BCRs to make fate decisions while subjected to a cyclic selection process is not clear. In this article, we present a spatiotemporally resolved stochastic model that describes cell behaviors as rate-limited stochastic reactions. We hypothesize a signal integrator protein integrates follicular helper T (Tfh)- and Ag-derived signals to drive different B cell fates in a probabilistic manner and a dedicated module of Tfh interaction promoting factors control the efficiency of contact-dependent Tfh help delivery to B cells. Without assuming deterministic affinity-based decisions or temporal event sequence, this model recapitulates GC characteristics, highlights the importance of efficient T cell help delivery during individual contacts with B cells and intercellular positive feedback for affinity maturation, reveals the possibility that antagonism between BCR signaling and T cell help accelerates affinity maturation, and suggests that the dichotomy between affinity and magnitude of GC reaction can be avoided by tuning the efficiency of contact-dependent help delivery during reiterative T-B interactions. PMID:27421481

  1. Suppressor of Cytokine Signaling (SOCS 5 utilises distinct domains for regulation of JAK1 and interaction with the adaptor protein Shc-1.

    Directory of Open Access Journals (Sweden)

    Edmond M Linossi

    Full Text Available Suppressor of Cytokine Signaling (SOCS5 is thought to act as a tumour suppressor through negative regulation of JAK/STAT and epidermal growth factor (EGF signaling. However, the mechanism/s by which SOCS5 acts on these two distinct pathways is unclear. We show for the first time that SOCS5 can interact directly with JAK via a unique, conserved region in its N-terminus, which we have termed the JAK interaction region (JIR. Co-expression of SOCS5 was able to specifically reduce JAK1 and JAK2 (but not JAK3 or TYK2 autophosphorylation and this function required both the conserved JIR and additional sequences within the long SOCS5 N-terminal region. We further demonstrate that SOCS5 can directly inhibit JAK1 kinase activity, although its mechanism of action appears distinct from that of SOCS1 and SOCS3. In addition, we identify phosphoTyr317 in Shc-1 as a high-affinity substrate for the SOCS5-SH2 domain and suggest that SOCS5 may negatively regulate EGF and growth factor-driven Shc-1 signaling by binding to this site. These findings suggest that different domains in SOCS5 contribute to two distinct mechanisms for regulation of cytokine and growth factor signaling.

  2. Interactions between the Nitrogen Signal Transduction Protein PII and N-Acetyl Glutamate Kinase in Organisms That Perform Oxygenic Photosynthesis

    OpenAIRE

    Burillo, Sergio; Luque, Ignacio; Fuentes, Inmaculada; Contreras, Asunción

    2004-01-01

    PII, one of the most conserved signal transduction proteins, is believed to be a key player in the coordination of nitrogen assimilation and carbon metabolism in bacteria, archaea, and plants. However, the identity of PII receptors remains elusive, particularly in photosynthetic organisms. Here we used yeast two-hybrid approaches to identify new PII receptors and to explore the extent of conservation of PII signaling mechanisms between eubacteria and photosynthetic eukaryotes. Screening of Sy...

  3. A peptide targeting an interaction interface disrupts the dopamine D1-D2 receptor heteromer to block signaling and function in vitro and in vivo: effective selective antagonism

    Science.gov (United States)

    Hasbi, Ahmed; Perreault, Melissa L.; Shen, Maurice Y. F.; Zhang, Lucia; To, Ryan; Fan, Theresa; Nguyen, Tuan; Ji, Xiaodong; O'Dowd, Brian F.; George, Susan R.

    2014-01-01

    Although the dopamine D1-D2 receptor heteromer has emerging physiological relevance and a postulated role in different neuropsychiatric disorders, such as drug addiction, depression, and schizophrenia, there is a need for pharmacological tools that selectively target such receptor complexes in order to analyze their biological and pathophysiological functions. Since no selective antagonists for the D1-D2 heteromer are available, serial deletions and point mutations were used to precisely identify the amino acids involved in an interaction interface between the receptors, residing within the carboxyl tail of the D1 receptor that interacted with the D2 receptor to form the D1-D2 receptor heteromer. It was determined that D1 receptor carboxyl tail residues 404Glu and 405Glu were critical in mediating the interaction with the D2 receptor. Isolated mutation of these residues in the D1 receptor resulted in the loss of agonist activation of the calcium signaling pathway mediated through the D1-D2 receptor heteromer. The physical interaction between the D1 and D2 receptor could be disrupted, as shown by coimmunoprecipitation and BRET analysis, by a small peptide generated from the D1 receptor sequence that contained these amino acids, leading to a switch in G-protein affinities and loss of calcium signaling, resulting in the inhibition of D1-D2 heteromer function. The use of the D1-D2 heteromer-disrupting peptide in vivo revealed a pathophysiological role for the D1-D2 heteromer in the modulation of behavioral despair. This peptide may represent a novel pharmacological tool with potential therapeutic benefits in depression treatment.—Hasbi, A., Perreault, M. L., Shen, M. Y. F., Zhang, L., To, R., Fan, T., Nguyen, T., Ji, X., O'Dowd, B. F., George, S. R. A peptide targeting an interaction interface disrupts the dopamine D1-D2 receptor heteromer to block signaling and function in vitro and in vivo: effective selective antagonism. PMID:25063849

  4. The effect of high-fructose intake on the vasopressor response to angiotensin II and adrenergic agonists in Sprague-Dawley rats.

    Science.gov (United States)

    Abdulla, Mohammed Hadi; Sattar, Munavvar Abdul; Abdullah, Nor Azizan; Johns, Edward James

    2013-07-01

    Effect of losartan was assessed on systemic haemodynamic responses to angiotensin II (Ang II) and adrenergic agonists in the model of high-fructose-fed rat. Twenty-four Sprague-Dawley (SD) rats were fed for 8 weeks either 20% fructose solution (FFR) or tap water (C) ad libitum. FFR or C group received losartan (10mg/kg/day p.o.) for 1 week at the end of feeding period (FFR-L and L) respectively, then the vasopressor responses to Ang II, noradrenaline (NA), phenylephrine (PE) and methoxamine (ME) were determined. The responses (%) to NA, PE, ME and Ang II in FFR were lower (P<0.05) than C (FFR vs. C; 22±2 vs. 32±2, 30±3 vs. 40±3, 9±1 vs. 13±1, 10±1 vs. 17±1) respectively. L group had blunted (P<0.05) responses to NA, PE, ME and Ang II compared to C (L vs. C; 26±2 vs. 32±2, 30±3 vs. 40±3, 7±0.7 vs. 13±1, 5±0.4 vs. 17±1) respectively. FFR-L group had aggravated (P<0.05) response to NA and ME, but blunted response to Ang II compared to FFR (FFR-L vs. FFR; 39±3 vs. 22±2, 11±1 vs. 9±1, 3±0.4 vs. 10±1) respectively. Fructose intake for 8 weeks results in smaller vasopressor response to adrenergic agonists and Ang II. Data also demonstrated an important role played by Ang II in the control of systemic haemodynamics in FFR and point to its interaction with adrenergic neurotransmission. PMID:23811449

  5. Carvedilol and adrenergic agonists suppress the lipopolysaccharide-induced NO production in RAW 264.7 macrophages via the adrenergic receptors

    Czech Academy of Sciences Publication Activity Database

    Pekarová, Michaela; Králová, Jana; Kubala, Lukáš; Číž, Milan; Papežíková, Ivana; Mačičková, T.; Pečivová, J.; Nosál, R.; Lojek, Antonín

    2009-01-01

    Roč. 60, č. 1 (2009), s. 143-150. ISSN 0867-5910 R&D Projects: GA AV ČR(CZ) 1QS500040507; GA ČR(CZ) GA524/08/1753 Institutional research plan: CEZ:AV0Z50040507; CEZ:AV0Z50040702 Keywords : carvedilol * adrenergic agonists * nitric oxide Subject RIV: BO - Biophysics Impact factor: 1.489, year: 2009

  6. Wnt signaling interacts with bmp and edn1 to regulate dorsal-ventral patterning and growth of the craniofacial skeleton.

    Directory of Open Access Journals (Sweden)

    Courtney Alexander

    2014-07-01

    Full Text Available Craniofacial development requires signals from epithelia to pattern skeletogenic neural crest (NC cells, such as the subdivision of each pharyngeal arch into distinct dorsal (D and ventral (V elements. Wnt signaling has been implicated in many aspects of NC and craniofacial development, but its roles in D-V arch patterning remain unclear. To address this we blocked Wnt signaling in zebrafish embryos in a temporally-controlled manner, using transgenics to overexpress a dominant negative Tcf3, (dntcf3, (Tg(hsp70I:tcf3-GFP, or the canonical Wnt inhibitor dickkopf1 (dkk1, (Tg(hsp70i:dkk1-GFP after NC migration. In dntcf3 transgenics, NC cells in the ventral arches of heat-shocked embryos show reduced proliferation, expression of ventral patterning genes (hand2, dlx3b, dlx5a, msxe, and ventral cartilage differentiation (e.g. lower jaws. These D-V patterning defects resemble the phenotypes of zebrafish embryos lacking Bmp or Edn1 signaling, and overexpression of dntcf3 dramatically reduces expression of a subset of Bmp receptors in the arches. Addition of ectopic BMP (or EDN1 protein partially rescues ventral development and expression of dlx3b, dlx5a, and msxe in Wnt signaling-deficient embryos, but surprisingly does not rescue hand2 expression. Thus Wnt signaling provides ventralizing patterning cues to arch NC cells, in part through regulation of Bmp and Edn1 signaling, but independently regulates hand2. Similarly, heat-shocked dkk1+ embryos exhibit ventral arch reductions, but also have mandibular clefts at the ventral midline not seen in dntcf3+ embryos. Dkk1 is expressed in pharyngeal endoderm, and cell transplantation experiments reveal that dntcf3 must be overexpressed in pharyngeal endoderm to disrupt D-V arch patterning, suggesting that distinct endodermal roles for Wnts and Wnt antagonists pattern the developing skeleton.

  7. INTERACT

    DEFF Research Database (Denmark)

    Jochum, Elizabeth; Borggreen, Gunhild; Murphey, TD

    , and demonstrated in public settings. We then describe INTERACT, a proposed research project that stages the robotic marionettes in a live performance. The interdisciplinary project brings humanities research to bear on scientific and technological inquiry, and culminates in the development a live......This paper considers the impact of visual art and performance on robotics and human-computer interaction and outlines a research project that combines puppetry and live performance with robotics. Kinesics—communication through movement—is the foundation of many theatre and performance traditions...... interaction between a human operator and an artificial actor or agent. We can apply insights from puppetry to develop culturally-aware robots. Here we describe the development of a robotic marionette theatre wherein robotic controllers assume the role of human puppeteers. The system has been built, tested...

  8. An alpha-helical extension of the ELMO1 pleckstrin homology domain mediates direct interaction to DOCK180 and is critical in Rac signaling.

    Science.gov (United States)

    Komander, David; Patel, Manishha; Laurin, Mélanie; Fradet, Nadine; Pelletier, Ariane; Barford, David; Côté, Jean-François

    2008-11-01

    The mammalian DOCK180 protein belongs to an evolutionarily conserved protein family, which together with ELMO proteins, is essential for activation of Rac GTPase-dependent biological processes. Here, we have analyzed the DOCK180-ELMO1 interaction, and map direct interaction interfaces to the N-terminal 200 amino acids of DOCK180, and to the C-terminal 200 amino acids of ELMO1, comprising the ELMO1 PH domain. Structural and biochemical analysis of this PH domain reveals that it is incapable of phospholipid binding, but instead structurally resembles FERM domains. Moreover, the structure revealed an N-terminal amphiphatic alpha-helix, and point mutants of invariant hydrophobic residues in this helix disrupt ELMO1-DOCK180 complex formation. A secondary interaction between ELMO1 and DOCK180 is conferred by the DOCK180 SH3 domain and proline-rich motifs at the ELMO1 C-terminus. Mutation of both DOCK180-interaction sites on ELMO1 is required to disrupt the DOCK180-ELMO1 complex. Significantly, although this does not affect DOCK180 GEF activity toward Rac in vivo, Rac signaling is impaired, implying additional roles for ELMO in mediating intracellular Rac signaling. PMID:18768751

  9. Aerobic glycolysis during brain activation: adrenergic regulation and influence of norepinephrine on astrocytic metabolism.

    Science.gov (United States)

    Dienel, Gerald A; Cruz, Nancy F

    2016-07-01

    Aerobic glycolysis occurs during brain activation and is characterized by preferential up-regulation of glucose utilization compared with oxygen consumption even though oxygen level and delivery are adequate. Aerobic glycolysis is a widespread phenomenon that underlies energetics of diverse brain activities, such as alerting, sensory processing, cognition, memory, and pathophysiological conditions, but specific cellular functions fulfilled by aerobic glycolysis are poorly understood. Evaluation of evidence derived from different disciplines reveals that aerobic glycolysis is a complex, regulated phenomenon that is prevented by propranolol, a non-specific β-adrenoceptor antagonist. The metabolic pathways that contribute to excess utilization of glucose compared with oxygen include glycolysis, the pentose phosphate shunt pathway, the malate-aspartate shuttle, and astrocytic glycogen turnover. Increased lactate production by unidentified cells, and lactate dispersal from activated cells and lactate release from the brain, both facilitated by astrocytes, are major factors underlying aerobic glycolysis in subjects with low blood lactate levels. Astrocyte-neuron lactate shuttling with local oxidation is minor. Blockade of aerobic glycolysis by propranolol implicates adrenergic regulatory processes including adrenal release of epinephrine, signaling to brain via the vagus nerve, and increased norepinephrine release from the locus coeruleus. Norepinephrine has a powerful influence on astrocytic metabolism and glycogen turnover that can stimulate carbohydrate utilization more than oxygen consumption, whereas β-receptor blockade 're-balances' the stoichiometry of oxygen-glucose or -carbohydrate metabolism by suppressing glucose and glycogen utilization more than oxygen consumption. This conceptual framework may be helpful for design of future studies to elucidate functional roles of preferential non-oxidative glucose utilization and glycogen turnover during brain

  10. Interactions

    DEFF Research Database (Denmark)

    The main theme of this anthology is the unique interaction between mathematics, physics and philosophy during the beginning of the 20th century. Seminal theories of modern physics and new fundamental mathematical structures were discovered or formed in this period. Significant physicists such as...

  11. 3D structure prediction of human β1-adrenergic receptor via threading-based homology modeling for implications in structure-based drug designing.

    Directory of Open Access Journals (Sweden)

    Zaheer Ul-Haq

    Full Text Available Dilated cardiomyopathy is a disease of left ventricular dysfunction accompanied by impairment of the β1-adrenergic receptor (β1-AR signal cascade. The disturbed β1-AR function may be based on an elevated sympathetic tone observed in patients with heart failure. Prolonged adrenergic stimulation may induce metabolic and electrophysiological disturbances in the myocardium, resulting in tachyarrhythmia that leads to the development of heart failure in human and sudden death. Hence, β1-AR is considered as a promising drug target but attempts to develop effective and specific drug against this tempting pharmaceutical target is slowed down due to the lack of 3D structure of Homo sapiens β1-AR (hsβADR1. This study encompasses elucidation of 3D structural and physicochemical properties of hsβADR1 via threading-based homology modeling. Furthermore, the docking performance of several docking programs including Surflex-Dock, FRED, and GOLD were validated by re-docking and cross-docking experiments. GOLD and Surflex-Dock performed best in re-docking and cross docking experiments, respectively. Consequently, Surflex-Dock was used to predict the binding modes of four hsβADR1 agonists. This study provides clear understanding of hsβADR1 structure and its binding mechanism, thus help in providing the remedial solutions of cardiovascular, effective treatment of asthma and other diseases caused by malfunctioning of the target protein.

  12. Strong signal of dynamical long-range correlating among target fragments in relativistic and ultra-relativistic nuclear interactions

    CERN Document Server

    Ghosh, D; Bhattacharya, S; Ghosh, J; Das, R

    2003-01-01

    This paper reports an investigation on the two-particle long-range angular correlation among the target fragments produced in sup 2 sup 8 Si-AgBr interactions at 14.5 AGeV, sup 1 sup 6 O-AgBr interactions at 60 AGeV and sup 3 sup 2 S-AgBr interactions at 200 AGeV. The experimental data have been compared with Monte Carlo simulated events to extract dynamical correlation. The data exhibit two-particle long-range correlation in emission angle space at all energies. (author)

  13. Characterization and regulation of. beta. /sub 2/-adrenergic receptors in rat vas deferens

    Energy Technology Data Exchange (ETDEWEB)

    May, J.M.

    1985-01-01

    ..beta../sub 2/-Adrenergic receptors in rat vas deferens were examined by measuring the binding of /sup 125/I-pindolol (/sup 125/IPIN) to membrane preparations and the inhibition of evoked contractions in intact tissues. /sup 125/IPIN labeled a single class of binding sites with mass action kinetics. Affinity constants for ..beta..-adrenergic receptor antagonists calculated from both binding and functional experiments agreed well, suggesting that /sup 125/IPIN labels the functional ..beta../sub 2/-adrenergic receptor. n-Bromoacetylalprenololmenthane (BAAM) was used to decrease receptor density so that agonist affinity constants could be determined functionally. Treatment of tissues with BAAM decreased the functional potencies of agonists. Higher concentrations of BAAM decreased the maximum tissue response. Affinity constants for agonists calculated after BAAM treatment were compared to affinity constants determined from binding studies done under conditions designed to promote high or low affinity agonist binding. Functional affinity constants for isoproterenol and salbutamol agreed with the low affinity binding constants, suggesting that the low affinity form of the receptor initiates the functional response. Because acute denervation of vasa deferentia did not alter the density of /sup 125/IPIN binding sites, the sites are probably post-junctional. Chronic infusion of isoproterenol reduced the potency of isoproterenol, the maximum tissue response, and the receptor density. These results suggest that ..beta..-adrenergic receptor density and responsiveness in rat vas deferens are not affected by removing catecholamine sources, but receptor density and responsiveness can be decreased by increasing agonist concentration at the receptor.

  14. Molecular and chemical comparison of beta/sub 2/ and beta/sub 2/ adrenergic receptors

    Energy Technology Data Exchange (ETDEWEB)

    Shorr, R.G.L.; Gotlib, L.; Varrichio, A.; Strohsacker, M.; Minnich, M.; Crooke, S.T.

    1986-05-01

    Beta-adrenergic receptor proteins of 55,000M/sub r/ and 45,000M/sub r/ have been purified from rabbit lung, guinea pig lung, bovine lung and turkey red blood cell plasma membranes by affinity chromatography, size exclusion high performance liquid chromatography and preparative SDS polyacrylamide gel electrophoresis. Each purified receptor was characterized with agonists and selective antagonists in ligand binding competition experiments with (/sup 125/I) cyanopindolol as being of the ..beta../sub 1/ or ..beta../sub 2/ adrenergic receptor subclass. Purified rabbit lung, guinea pig lung and bovine lung were all found to be of the ..beta../sub 2/ receptor subclass. Purified turkey RBC receptor was of the ..beta../sub 1/ subclass. When compared by molecular weight, each of the receptor proteins was found to comigrate on SDS polyacylamide gels with its counterpart from the additional tissues. When the proteins were compared by amino acid composition similar results were obtained for each of the receptors. These results suggest significant levels of sequence homology between the avian ..beta../sub 1/ adrenergic receptor and the mammalian ..beta../sub 2/ adrenergic receptor preparations.

  15. Molecular and chemical comparison of beta2 and beta2 adrenergic receptors

    International Nuclear Information System (INIS)

    Beta-adrenergic receptor proteins of 55,000M/sub r/ and 45,000M/sub r/ have been purified from rabbit lung, guinea pig lung, bovine lung and turkey red blood cell plasma membranes by affinity chromatography, size exclusion high performance liquid chromatography and preparative SDS polyacrylamide gel electrophoresis. Each purified receptor was characterized with agonists and selective antagonists in ligand binding competition experiments with [125I] cyanopindolol as being of the β1 or β2 adrenergic receptor subclass. Purified rabbit lung, guinea pig lung and bovine lung were all found to be of the β2 receptor subclass. Purified turkey RBC receptor was of the β1 subclass. When compared by molecular weight, each of the receptor proteins was found to comigrate on SDS polyacylamide gels with its counterpart from the additional tissues. When the proteins were compared by amino acid composition similar results were obtained for each of the receptors. These results suggest significant levels of sequence homology between the avian β1 adrenergic receptor and the mammalian β2 adrenergic receptor preparations

  16. Hypoxia increases exercise heart rate despite combined inhibition of β-adrenergic and muscarinic receptors.

    Science.gov (United States)

    Siebenmann, C; Rasmussen, P; Sørensen, H; Bonne, T C; Zaar, M; Aachmann-Andersen, N J; Nordsborg, N B; Secher, N H; Lundby, C

    2015-06-15

    Hypoxia increases the heart rate response to exercise, but the mechanism(s) remains unclear. We tested the hypothesis that the tachycardic effect of hypoxia persists during separate, but not combined, inhibition of β-adrenergic and muscarinic receptors. Nine subjects performed incremental exercise to exhaustion in normoxia and hypoxia (fraction of inspired O2 = 12%) after intravenous administration of 1) no drugs (Cont), 2) propranolol (Prop), 3) glycopyrrolate (Glyc), or 4) Prop + Glyc. HR increased with exercise in all drug conditions (P hypoxia than normoxia (P hypoxia and normoxia was 19.8 ± 13.8 beats/min during Cont and similar (17.2 ± 7.7 beats/min, P = 0.95) during Prop but smaller (P hypoxia (P 0.4) but larger during Prop (3.4 ± 1.6 l/min, P = 0.004). Our results demonstrate that the tachycardic effect of hypoxia during exercise partially relies on vagal withdrawal. Conversely, sympathoexcitation either does not contribute or increases heart rate through mechanisms other than β-adrenergic transmission. A potential candidate is α-adrenergic transmission, which could also explain why a tachycardic effect of hypoxia persists during combined β-adrenergic and muscarinic receptor inhibition. PMID:25888515

  17. Substrate utilization and thermogenic responses to beta-adrenergic stimulation in obese subjects with NIDDM

    NARCIS (Netherlands)

    Blaak, E E; Saris, W H; Wolffenbuttel, B H

    1999-01-01

    OBJECTIVE: This study intended to investigate disturbances in beta-adrenergically-mediated substrate utilization and thermogenesis in obese subjects with mild non insulin-dependent diabetes mellitus (NIDDM). DESIGN: Following a baseline period of 30 min, the beta-agonist isoproterenol (ISO) was admi

  18. Effects of thyroid hormone on β-adrenergic responsiveness of aging cardiovascular systems

    International Nuclear Information System (INIS)

    The authors have compared the effects of β-adrenergic stimulation on the heart and peripheral vasculature of young (2-mo-old) and older (12-mo-old) rats both in the presence and absence of triiodothyronine (T3)-induced hyperthyroidism. The hemodynamic consequences of T3 treatment were less prominent in the aged hyperthyroid rats compared with young hyperthyroid rats (both in intact and pithed rats). There was a decrease in sensitivity of chronotropic responsiveness to isoproterenol in older pithed rats, which was apparently reversed by T3 treatment. The number and affinity of myocardial β-adrenergic receptor sites measured by [125I]cyanopindolol were not significantly different in young and older control rats; also, β-receptor density increased to a similar extent in both young and older T3-treated rats. The ability of isoproterenol to relax mesenteric arterial rings, markedly blunted in older rats, was partially restored by T3 treatment without their being any change in isoproterenol-mediated relaxation in the arterial preparation from young rats. The number and affinity of the β-adrenergic receptors measured in the mesenteric arteries was unaffected by either aging or T3 treatment. The data suggest that effects of thyroid hormone and age-related alterations of cardiovascular responsiveness to β-adrenergic stimulation are interrelated in a complex fashion with a net result that the hyperkinetic cardiovascular manifestations in hyperthyroidism are attenuated in the older animals

  19. Molecular characterization of a rat α2B-adrenergic receptor

    International Nuclear Information System (INIS)

    α2-Adrenergic receptors comprise a heterogeneous population based on pharmacologic and molecular evidence. The authors have isolated a cDNA clone (pRNGα2) encoding a rat α2-adrenergic receptor. A rat kidney cDNA library was screened with an oligonucleotide complementary to a highly conserved region found in all biogenic amine receptors described to date. The deduced amino acid sequence displays many features of guanyl nucleotide-binding protein-coupled receptors except it does not have a consensus N-linked glycosylation site near the amino terminus. Membranes prepared from COS cells transfected with pRNGα2 DNA display high affinity an saturable binding to [3H]rauwolscine. Competition curve data analysis shows that RNGα2 protein binds to a variety of adrenergic drugs with the following rank order of potency: yohimbine ≥ chlorpromazine > prazosin ≥ clonidine > norepinephrine ≥ oxymetazoline. RNGα2 RNA accumulates in both rat kidney and neonatal rat lung. When a cysteine residue (Cys-169) that is conserved among all members of the seven-transmembrane-region superfamily is changed to phenylalanine, the RNGα2 protein fails to bind [3H]rauwolscine after expression in COS cells. They conclude that pRNGα2 likely represents a cDNA for a rat α2B-adrenergic receptor

  20. Metaiodobenzylguanidine as an index of the adrenergic nervous system integrity and function

    International Nuclear Information System (INIS)

    The radiopharmaceutical, metaiodobenzylguanidine (MIBG) acts as an analog of norepinephrine (NE). Experiments in rats were carried out to determine how closely the movements of [125I]MIBG in the heart mimicked those of [3H]NE, and if the changes [125I] MIBG concentrations would reflect injury to, and function of, adrenergic neurons in the heart. Injury to adrenergic neurons by 6-hydroxydopamine substantially reduced the uptake of [125I] MIBG into the left ventricle, but the effect was less than that on uptake of [3H]NE uptake and concentration of endogenous NE. Similarly, when desmethylimipramine was given to inhibit the uptake-1 pathway of neurons, the reduction in uptake of [125I]MIBG was statistically significant but less than that of [3H]NE; part of this difference may be attributable to partial uptake of [125I]MIBG into neurons by a diffusion pathway. Substantial fractions of [125I]MIBG and [3H]NE were displaced from the heart by the sympathomimetic drug, phenylpropanolamine. When adrenergic neurons of the heart were stimulated by feeding of rats, the disappearance rates of [3H]NE and [125I]MIBG from the heart were significantly increased. Although not a perfect analog of [3H]NE, [125I]MIBG appears to enter and leave the heart in patterns similar to those of [3H]NE. Thus, movements of [125I]MIBG give indices of adrenergic neuron injury and function in the heart

  1. Adrenergic receptors and gastric acid secretion in dogs. The influence of beta 2-receptors

    DEFF Research Database (Denmark)

    Gottrup, F; Hovendal, C; Bech, K; Andersen, D

    1984-01-01

    The action of adrenergic subtypes of receptors in gastric acid secretion is still uncertain. The purpose of this study was to establish the influence of beta 2-adrenoceptors in the regulation of gastric secretion in conscious gastric fistula dogs. A dose-related inhibitory effect of beta 2...

  2. Protein phosphorylation in isolated human adipocytes - Adrenergic control of the phosphorylation of hormone-sensitive lipase

    International Nuclear Information System (INIS)

    The effect of adrenergic agents on protein phosphorylation in human adipocytes was examined. Freshly isolated human fat cells were incubated with 32PO4 in order to label intracellular ATP, then treated with a variety of adrenergic and other pharmacologic agents. Treatment with the β-adrenergic agonist isoproterenol led to a significant increase in phosphate content of at least five protein bands (Mr 52, 53, 63, 67, 84 kDa). The increase in phosphorylation was partially inhibited by the α-2 agonist clonidine. Epinephrine, a combined α and β agonist, was less effective at increasing phosphate content of the proteins than was isoproterenol. Neither insulin nor the α-1 agonist phenylephrine had any discernible effect on the pattern of protein phosphorylation. The 84 kDa phosphorylated peptide band appears to contain hormone-sensitive lipase, a key enzyme in the lipolytic pathway which is activated by phosphorylation. These results are somewhat different than previously reported results for rat adipocytes, and represent the first report of overall pattern and adrenergic modulation of protein phosphorylation in human adipocytes

  3. Adrenergic crisis due to pheochromocytoma – practical aspects. A short review

    OpenAIRE

    Juszczak, Kajetan; Drewa, Tomasz

    2014-01-01

    Introduction The definitive therapy in case of pheochromocytoma is complete surgical resection. Improper preoperative assessment and medical management generally places the patient at risk for complications, resulting from an adrenergic crisis. Therefore, it is crucial to adequately optimize these patients before surgery. Optimal preoperative medical management significantly decreases morbidity and mortality during the tumor resection. Material and methods This review addresses current knowle...

  4. Pet measurements of postsynaptic muscarinic and beta adrenergic receptors in the heart

    International Nuclear Information System (INIS)

    There is ample evidence from both experimental and clinical studies that changes in β-adrenergic and muscarinic receptor density can be associated with such cardiac diseases as congestive heart failure, myocardial ischemia and infarction, cardiomyopathy, diabetes, or thyroid-induced muscle disease. Changes in B-adrenergic density also have been shown in the denervated transplanted heart. These alterations of cardiac receptors have been demonstrated in vitro on homogenates from samples collected mainly during surgery or post mortem. Recent developments of Positron Emission Tomography (PET) techniques and of radioligands suitable for cardiac receptor binding studies in vivo have made possible both the imaging and the measurement of receptor density. From these studies, important information is now available concerning physiologic and pathologic conditions, as well as alterations induced by treatment. For the investigation of myocardial B-adrenergic receptors we have used [11C] CGP 12177, a potent hydrophilic antagonist of the 3-adrenergic receptor. The quantification of myocardial muscarinic receptors in vivo has been obtained with [11C] MQNB, a nonmetabolized hydrophilic antagonist of the muscarinic receptor. Receptor density and affinity have been measured by a kinetic, nonequilibrium approach in an experimental protocol that provides sufficient data to determine values for all parameters from a single experiment

  5. The role of adrenergic activation on murine luteal cell viability and progesterone production.

    Science.gov (United States)

    Wang, Jing; Tang, Min; Jiang, Huaide; Wu, Bing; Cai, Wei; Hu, Chuan; Bao, Riqiang; Dong, Qiming; Xiao, Li; Li, Gang; Zhang, Chunping

    2016-09-15

    Sympathetic innervations exist in mammalian CL. The action of catecholaminergic system on luteal cells has been the focus of a variety of studies. Norepinephrine (NE) increased progesterone secretion of cattle luteal cells by activating β-adrenoceptors. In this study, murine luteal cells were treated with NE and isoprenaline (ISO). We found that NE increased the viability of murine luteal cells and ISO decreased the viability of luteal cells. Both NE and ISO promoted the progesterone production. Nonselective β-adrenergic antagonist, propranolol reversed the effect of ISO on cell viability but did not reverse the effect of NE on cell viability. Propranolol blocked the influence of NE and ISO on progesterone production. These results reveal that the increase of luteal cell viability induced by NE is not dependent on β-adrenergic activation. α-Adrenergic activation possibly contributes to it. Both NE and ISO increased progesterone production through activating β-adrenergic receptor. Further study showed that CyclinD2 is involved in the increase of luteal cell induced by NE. 3β-Hydroxysteroid dehydrogenase, LHR, steroidogenic acute regulatory protein (StAR), and PGF2α contribute to the progesterone production induced by NE and ISO. PMID:27173955

  6. Adrenergic activation of electrogenic K+ secretion in guinea pig distal colonic epithelium: involvement of beta1- and beta2-adrenergic receptors.

    Science.gov (United States)

    Zhang, Jin; Halm, Susan T; Halm, Dan R

    2009-08-01

    Adrenergic stimulation of electrogenic K+ secretion in isolated mucosa from guinea pig distal colon required activation of two beta-adrenergic receptor subtypes (beta-AdrR). Addition of epinephrine (epi) or norepinephrine (norepi) to the bathing solution of mucosae in Ussing chambers increased short-circuit current (Isc) and transepithelial conductance (Gt), consistent with this cation secretion. A beta-adrenergic classification was supported by propranolol antagonism of this secretory response and the lack of effect by the alpha-AdrR antagonists BE2254 (alpha1-AdrR) and yohimbine (alpha2-AdrR). Subtype-selective antagonists CGP20712A (beta1-AdrR), ICI-118551 (beta2-AdrR), and SR59320A (beta3-AdrR) were relatively ineffective at inhibiting the epi-stimulated Isc response. In combination, CGP20712A and ICI-118551 inhibited the response, which supported a synergistic action by beta1-AdrR and beta2-AdrR. Expression of mRNA for both beta1-AdrR and beta2-AdrR was indicated by RT-PCR of RNA from colonic epithelial cells. Protein expression was indicated by immunoblot showing bands at molecular weights consistent with monomers and oligomers. Immunoreactivity (ir) for beta1-AdrR and beta2-AdrR was prominent in basolateral membranes of columnar epithelial cells in the crypts of Lieberkühn as well as intercrypt surface epithelium. Cells in the pericryptal sheath also had beta1-AdrR(ir) but did not have discernable beta2-AdrR(ir). The adrenergic sensitivity of K+ secretion measured by Isc and Gt was relatively low as indicated by EC(50)s of 41 +/- 7 nM for epi and 50 +/- 14 nM for norepi. Adrenergic activation of electrogenic K+ secretion required the involvement of both beta1-AdrR and beta2-AdrR, occurring with an agonist sensitivity reduced compared with reported values for either receptor subtype. PMID:19460844

  7. The disintegrin and metalloproteinase ADAM12 contributes to TGF-beta signaling through interaction with the type II receptor

    DEFF Research Database (Denmark)

    Atfi, Azeddine; Dumont, Emmanuelle; Colland, Frédéric;

    2007-01-01

    independent of its protease activity to facilitate the activation of TGF-beta signaling, including the phosphorylation of Smad2, association of Smad2 with Smad4, and transcriptional activation. Furthermore, ADAM12 induces the accumulation of TbetaRII in early endosomal vesicles and stabilizes the Tbeta...

  8. Interaction with both ZNRF3 and LGR4 is required for the signalling activity of R-spondin

    OpenAIRE

    Xie, Yang; Zamponi, Raffaella; Charlat, Olga; Ramones, Melissa; Swalley, Susanne; Jiang, Xiaomo; Rivera, Daniel; Tschantz, William; Lu, Bo; Quinn, Lisa; Dimitri, Chris; Parker, Jefferson; Jeffery, Doug; Wilcox, Sheri K; Watrobka, Mike

    2013-01-01

    This study shows that both ZNRF3- and LGR4-binding motifs of R-spondin are required for its Wnt-promoting activity. These results support a dual receptor model of R-spondin signalling, where LGR4 serves as the engagement receptor while ZNRF3 functions as the effector receptor.

  9. Strategic Sexual Signals: Women's Display versus Avoidance of the Color Red Depends on the Attractiveness of an Anticipated Interaction Partner

    OpenAIRE

    Niesta Kayser, Daniela; Agthe, Maria; Maner, Jon K.

    2016-01-01

    The color red has special meaning in mating-relevant contexts. Wearing red can enhance perceptions of women’s attractiveness and desirability as a potential romantic partner. Building on recent findings, the present study examined whether women’s (N = 74) choice to display the color red is influenced by the attractiveness of an expected opposite-sex interaction partner. Results indicated that female participants who expected to interact with an attractive man displayed red (on clothing, acces...

  10. The Wnt and Delta-Notch signalling pathways interact to direct pair-rule gene expression via caudal during segment addition in the spider Parasteatoda tepidariorum.

    Science.gov (United States)

    Schönauer, Anna; Paese, Christian L B; Hilbrant, Maarten; Leite, Daniel J; Schwager, Evelyn E; Feitosa, Natália Martins; Eibner, Cornelius; Damen, Wim G M; McGregor, Alistair P

    2016-07-01

    In short-germ arthropods, posterior segments are added sequentially from a segment addition zone (SAZ) during embryogenesis. Studies in spiders such as Parasteatoda tepidariorum have provided insights into the gene regulatory network (GRN) underlying segment addition, and revealed that Wnt8 is required for dynamic Delta (Dl) expression associated with the formation of new segments. However, it remains unclear how these pathways interact during SAZ formation and segment addition. Here, we show that Delta-Notch signalling is required for Wnt8 expression in posterior SAZ cells, but represses the expression of this Wnt gene in anterior SAZ cells. We also found that these two signalling pathways are required for the expression of the spider orthologues of even-skipped (eve) and runt-1 (run-1), at least in part via caudal (cad). Moreover, it appears that dynamic expression of eve in this spider does not require a feedback loop with run-1, as is found in the pair-rule circuit of the beetle Tribolium Taken together, our results suggest that the development of posterior segments in Parasteatoda is directed by dynamic interactions between Wnt8 and Delta-Notch signalling that are read out by cad, which is necessary but probably not sufficient to regulate the expression of eve and run-1 Our study therefore provides new insights towards better understanding the evolution and developmental regulation of segmentation in other arthropods, including insects. PMID:27287802

  11. Cellular Prion Protein and Caveolin-1 Interaction in a Neuronal Cell Line Precedes Fyn/Erk 1/2 Signal Transduction

    Directory of Open Access Journals (Sweden)

    Mattia Toni

    2006-01-01

    Full Text Available It has been reported that cellular prion protein (PrPc is enriched in caveolae or caveolae-like domains with caveolin-1 (Cav-1 participating to signal transduction events by Fyn kinase recruitment. By using the Glutathione-S-transferase (GST-fusion proteins assay, we observed that PrPc strongly interacts in vitro with Cav-1. Thus, we ascertained the PrPc caveolar localization in a hypothalamic neuronal cell line (GN11, by confocal microscopy analysis, flotation on density gradient, and coimmunoprecipitation experiments. Following the anti-PrPc antibody-mediated stimulation of live GN11 cells, we observed that PrPc clustered on plasma membrane domains rich in Cav-1 in which Fyn kinase converged to be activated. After these events, a signaling cascade through p42/44 MAP kinase (Erk 1/2 was triggered, suggesting that following translocations from rafts to caveolae or caveolae-like domains PrPc could interact with Cav-1 and induce signal transduction events.

  12. The EGF repeat-specific O-GlcNAc-transferase Eogt interacts with notch signaling and pyrimidine metabolism pathways in Drosophila.

    Directory of Open Access Journals (Sweden)

    Reto Müller

    Full Text Available The O-GlcNAc transferase Eogt modifies EGF repeats in proteins that transit the secretory pathway, including Dumpy and Notch. In this paper, we show that the Notch ligands Delta and Serrate are also substrates of Eogt, that mutation of a putative UDP-GlcNAc binding DXD motif greatly reduces enzyme activity, and that Eogt and the cytoplasmic O-GlcNAc transferase Ogt have distinct substrates in Drosophila larvae. Loss of Eogt is larval lethal and disrupts Dumpy functions, but does not obviously perturb Notch signaling. To identify novel genetic interactions with eogt, we investigated dominant modification of wing blister formation caused by knock-down of eogt. Unexpectedly, heterozygosity for several members of the canonical Notch signaling pathway suppressed wing blister formation. And importantly, extensive genetic interactions with mutants in pyrimidine metabolism were identified. Removal of pyrimidine synthesis alleles suppressed wing blister formation, while removal of uracil catabolism alleles was synthetic lethal with eogt knock-down. Therefore, Eogt may regulate protein functions by O-GlcNAc modification of their EGF repeats, and cellular metabolism by affecting pyrimidine synthesis and catabolism. We propose that eogt knock-down in the wing leads to metabolic and signaling perturbations that increase cytosolic uracil levels, thereby causing wing blister formation.

  13. TRAF6 mediates IL-1β/LPS-induced suppression of TGF-β signaling through its interaction with the type III TGF-β receptor.

    Directory of Open Access Journals (Sweden)

    Seunghwan Lim

    Full Text Available Transforming growth factor-β1 (TGF-β1 is an important anti-inflammatory cytokine that modulates and resolves inflammatory responses. Recent studies have demonstrated that inflammation enhances neoplastic risk and potentiates tumor progression. In the evolution of cancer, pro-inflammatory cytokines such as IL-1β must overcome the anti-inflammatory effects of TGF-β to boost pro-inflammatory responses in epithelial cells. Here we show that IL-1β or Lipopolysaccharide (LPS suppresses TGF-β-induced anti-inflammatory signaling in a NF-κB-independent manner. TRAF6, a key molecule in IL-1β signaling, mediates this suppressive effect through interaction with the type III TGF-β receptor (TβRIII, which is TGF-β-dependent and requires type I TGF-β receptor (TβRI kinase activity. TβRI phosphorylates TβRIII at residue S829, which promotes the TRAF6/TβRIII interaction and consequent sequestration of TβRIII from the TβRII/TβRI complex. Our data indicate that IL-1β enhances the pro-inflammatory response by suppressing TGF-β signaling through TRAF6-mediated sequestration of TβRIII, which may be an important contributor to the early stages of tumor progression.

  14. Inhibition of Wnt/β-catenin signaling by a soluble collagen-derived frizzled domain interacting with Wnt3a and the receptors frizzled 1 and 8.

    Directory of Open Access Journals (Sweden)

    Ismaïl Hendaoui

    Full Text Available The Wnt/β-catenin pathway controls cell proliferation, death and differentiation. Several families of extracellular proteins can antagonize Wnt/β-catenin signaling, including the decoy receptors known as secreted frizzled related proteins (SFRPs, which have a cysteine-rich domain (CRD structurally similar to the extracellular Wnt-binding domain of the frizzled receptors. SFRPs inhibit Wnt signaling by sequestering Wnts through the CRD or by forming inactive complexes with the frizzled receptors. Other endogenous molecules carrying frizzled CRDs inhibit Wnt signaling, such as V3Nter, which is proteolytically derived from the cell surface component collagen XVIII and contains a biologically active frizzled domain (FZC18 inhibiting in vivo cell proliferation and tumor growth in mice. We recently showed that FZC18 expressing cells deliver short-range signals to neighboring cells, decreasing their proliferation in vitro and in vivo through the Wnt/β-catenin signaling pathway. Here, using low concentrations of soluble FZC18 and Wnt3a, we show that they physically interact in a cell-free system. In addition, soluble FZC18 binds the frizzled 1 and 8 receptors' CRDs, reducing cell sensitivity to Wnt3a. Conversely, inhibition of Wnt/β-catenin signaling was partially rescued by the expression of full-length frizzled 1 and 8 receptors, but enhanced by the expression of a chimeric cell-membrane-tethered frizzled 8 CRD. Moreover, soluble, partially purified recombinant FZC18_CRD inhibited Wnt3a-induced β-catenin activation. Taken together, the data indicate that collagen XVIII-derived frizzled CRD shifts Wnt sensitivity of normal cells to a lower pitch and controls their growth.

  15. Loss of platelet alpha 2-adrenergic receptors during simulated extracorporeal circulation: prevention with prostaglandin E1

    International Nuclear Information System (INIS)

    Cardiopulmonary bypass prolongs bleeding time and increases postoperative blood loss. During in vitro recirculation in an extracorporeal circuit containing a membrane oxygenator and primed with fresh heparinized human blood, the authors previously observed thrombocytopenia, impaired platelet aggregation, and depletion of granular contents, all of which were prevented with prostaglandin E1 (PGE1). To investigate these changes further, they studied the number and affinity of platelet alpha 2-adrenergic receptors by measuring the binding of 3H-yohimbine. Before recirculation, they found 235 alpha 2-adrenergic receptors per platelet, a Kd of 3.37 nmol/L, complete aggregation with 1.04 mumol/L epinephrine, and a platelet count of 281,000 microliters-1. After 2 minutes of recirculation, 9.44 mumol/L epinephrine was required to produce complete aggregation, and the platelet count was 104,000 microliters-1 (44% of control). After 2 hours of recirculation, the platelet count had increased to 123,000 microliters-1. However, epinephrine did not induce platelet aggregation even at 100 mumol/L. Moreover, alpha 2-adrenergic binding sites were not detectable, and affinity for yohimbine could not be calculated. Two minutes after PGE1 0.3 mumol/L was added to the circuit, platelet numbers, response to epinephrine, alpha 2-adrenergic binding sites per platelet, and affinity for yohimbine were not significantly different from control values. At 2 hours, the number of alpha 2-adrenergic sites was not significantly changed from control, but the affinity of yohimbine for platelets was significantly decreased 2.5-fold

  16. Phosphorylation of APP-CTF-AICD domains and interaction with adaptor proteins: signal transduction and/or transcriptional role--relevance for Alzheimer pathology.

    Science.gov (United States)

    Schettini, Gennaro; Govoni, Stefano; Racchi, Marco; Rodriguez, Guido

    2010-12-01

    In recent decades, the study of the amyloid precursor protein (APP) and of its proteolytic products carboxy terminal fragment (CTF), APP intracellular C-terminal domain (AICD) and amyloid beta has been mostly focussed on the role of APP as a producer of the toxic amyloid beta peptide. Here, we reconsider the role of APP suggesting, in a provocative way, the protein as a central player in a putative signalling pathway. We highlight the presence in the cytosolic tail of APP of the YENPTY motif which is typical of tyrosine kinase receptors, the phosphorylation of the tyrosine, serine and threonine residues, the kinases involved and the interaction with intracellular adaptor proteins. In particular, we examine the interaction with Shc and Grb2 regulators, which through the activation of Ras proteins elicit downstream signalling events such as the MAPK pathway. The review also addresses the interaction of APP, CTFs and AICD with other adaptor proteins and in particular with Fe65 for nuclear transcriptional activity and the importance of phosphorylation for sorting the secretases involved in the amyloidogenic or non-amyloidogenic pathways. We provide a novel perspective on Alzheimer's disease pathogenesis, focussing on the perturbation of the physiological activities of APP-CTFs and AICD as an alternative perspective from that which normally focuses on the accumulation of neurotoxic proteolytic fragments. PMID:21039524

  17. Iron Metabolism Regulates p53 Signaling through Direct Heme-p53 Interaction and Modulation of p53 Localization, Stability, and Function

    Directory of Open Access Journals (Sweden)

    Jia Shen

    2014-04-01

    Full Text Available Iron excess is closely associated with tumorigenesis in multiple types of human cancers, with underlying mechanisms yet unclear. Recently, iron deprivation has emerged as a major strategy for chemotherapy, but it exerts tumor suppression only on select human malignancies. Here, we report that the tumor suppressor protein p53 is downregulated during iron excess. Strikingly, the iron polyporphyrin heme binds to p53 protein, interferes with p53-DNA interactions, and triggers both nuclear export and cytosolic degradation of p53. Moreover, in a tumorigenicity assay, iron deprivation suppressed wild-type p53-dependent tumor growth, suggesting that upregulation of wild-type p53 signaling underlies the selective efficacy of iron deprivation. Our findings thus identify a direct link between iron/heme homeostasis and the regulation of p53 signaling, which not only provides mechanistic insights into iron-excess-associated tumorigenesis but may also help predict and improve outcomes in iron-deprivation-based chemotherapy.

  18. Polycomb-Mediated Repression and Sonic Hedgehog Signaling Interact to Regulate Merkel Cell Specification during Skin Development.

    Directory of Open Access Journals (Sweden)

    Carolina N Perdigoto

    2016-07-01

    Full Text Available An increasing amount of evidence indicates that developmental programs are tightly regulated by the complex interplay between signaling pathways, as well as transcriptional and epigenetic processes. Here, we have uncovered coordination between transcriptional and morphogen cues to specify Merkel cells, poorly understood skin cells that mediate light touch sensations. In murine dorsal skin, Merkel cells are part of touch domes, which are skin structures consisting of specialized keratinocytes, Merkel cells, and afferent neurons, and are located exclusively around primary hair follicles. We show that the developing primary hair follicle functions as a niche required for Merkel cell specification. We find that intraepidermal Sonic hedgehog (Shh signaling, initiated by the production of Shh ligand in the developing hair follicles, is required for Merkel cell specification. The importance of Shh for Merkel cell formation is further reinforced by the fact that Shh overexpression in embryonic epidermal progenitors leads to ectopic Merkel cells. Interestingly, Shh signaling is common to primary, secondary, and tertiary hair follicles, raising the possibility that there are restrictive mechanisms that regulate Merkel cell specification exclusively around primary hair follicles. Indeed, we find that loss of Polycomb repressive complex 2 (PRC2 in the epidermis results in the formation of ectopic Merkel cells that are associated with all hair types. We show that PRC2 loss expands the field of epidermal cells competent to differentiate into Merkel cells through the upregulation of key Merkel-differentiation genes, which are known PRC2 targets. Importantly, PRC2-mediated repression of the Merkel cell differentiation program requires inductive Shh signaling to form mature Merkel cells. Our study exemplifies how the interplay between epigenetic and morphogen cues regulates the complex patterning and formation of the mammalian skin structures.

  19. Polycomb-Mediated Repression and Sonic Hedgehog Signaling Interact to Regulate Merkel Cell Specification during Skin Development

    Science.gov (United States)

    Bar, Carmit; Tsai, Pai-Chi; Valdes, Victor J.; Cohen, Idan; Santoriello, Francis J.; Zhao, Dejian; Hsu, Ya-Chieh; Ezhkova, Elena

    2016-01-01

    An increasing amount of evidence indicates that developmental programs are tightly regulated by the complex interplay between signaling pathways, as well as transcriptional and epigenetic processes. Here, we have uncovered coordination between transcriptional and morphogen cues to specify Merkel cells, poorly understood skin cells that mediate light touch sensations. In murine dorsal skin, Merkel cells are part of touch domes, which are skin structures consisting of specialized keratinocytes, Merkel cells, and afferent neurons, and are located exclusively around primary hair follicles. We show that the developing primary hair follicle functions as a niche required for Merkel cell specification. We find that intraepidermal Sonic hedgehog (Shh) signaling, initiated by the production of Shh ligand in the developing hair follicles, is required for Merkel cell specification. The importance of Shh for Merkel cell formation is further reinforced by the fact that Shh overexpression in embryonic epidermal progenitors leads to ectopic Merkel cells. Interestingly, Shh signaling is common to primary, secondary, and tertiary hair follicles, raising the possibility that there are restrictive mechanisms that regulate Merkel cell specification exclusively around primary hair follicles. Indeed, we find that loss of Polycomb repressive complex 2 (PRC2) in the epidermis results in the formation of ectopic Merkel cells that are associated with all hair types. We show that PRC2 loss expands the field of epidermal cells competent to differentiate into Merkel cells through the upregulation of key Merkel-differentiation genes, which are known PRC2 targets. Importantly, PRC2-mediated repression of the Merkel cell differentiation program requires inductive Shh signaling to form mature Merkel cells. Our study exemplifies how the interplay between epigenetic and morphogen cues regulates the complex patterning and formation of the mammalian skin structures. PMID:27414999

  20. Skeletal muscle PLIN3 and PLIN5 are serine phosphorylated at rest and following lipolysis during adrenergic or contractile stimulation.

    Science.gov (United States)

    Macpherson, Rebecca E K; Vandenboom, Rene; Roy, Brian D; Peters, Sandra J

    2013-09-01

    In adipose tissue, access of adipose triglyceride and hormone-sensitive lipases (ATGL and HSL) to the lipid droplet depends on PLIN1 phosphorylation, however, PLIN1 is not expressed in skeletal muscle and the phosphorylation of the expressed PLINs has yet to be investigated. Further, direct interactions between skeletal muscle PLINs and HSL are unknown. We investigated the isolated and combined effects of epinephrine and contraction on PLIN-to-lipase interactions as well as phosphorylation. Isolated rat solei were assigned to one of four 30 min in vitro conditions (25°C): (1) rest; (2) intermittent tetanic stimulation (60 Hz for 150 msec; train rate 20/min); (3) 5 nmol/L epinephrine; (4) intermittent tetanic stimulation and 5 nmol/L epinephrine. Immunoprecipitation of serine phosphorylated proteins followed by Western blotting for PLIN2, PLIN3, PLIN5, revealed that only PLIN2 is not phosphorylated under any of the experimental conditions. This is the first study to show that in whole rat skeletal muscle PLIN3 and PLIN5 are serine phosphorylated. The degree of serine phosphorylation remained unchanged following adrenergic and/or contractile stimulation. Oil red O staining of muscle sections for lipid content shows a significant decrease following each condition, confirming lipolysis occurred (P stimulation and that while PLIN3, PLIN5 are serine phosphorylated at rest, the degree of phosphorylation does not change with lipolytic stimulation. PMID:24303154

  1. Wnt/β-Catenin and noncanonical Wnt signaling interact in tissue evagination in the simple eumetazoan Hydra

    Science.gov (United States)

    Philipp, Isabelle; Aufschnaiter, Roland; Özbek, Suat; Pontasch, Stefanie; Jenewein, Marcell; Watanabe, Hiroshi; Rentzsch, Fabian; Holstein, Thomas W.; Hobmayer, Bert

    2009-01-01

    In and evaginations of 2D cell sheets are major shape generating processes in animal development. They result from directed movement and intercalation of polarized cells associated with cell shape changes. Work on several bilaterian model organisms has emphasized the role of noncanonical Wnt signaling in cell polarization and movement. However, the molecular processes responsible for generating tissue and body shape in ancestral, prebilaterian animals are unknown. We show that noncanonical Wnt signaling acts in mass tissue movements during bud and tentacle evagination and regeneration in the cnidarian polyp Hydra. The wnt5, wnt8, frizzled2 (fz2), and dishevelled-expressing cell clusters define the positions, where bud and tentacle evaginations are initiated; wnt8, fz2, and dishevelled remain up-regulated in those epithelial cells, undergoing cell shape changes during the entire evagination process. Downstream of wnt and dsh expression, JNK activity is required for the evagination process. Multiple ectopic wnt5, wnt8, fz2, and dishevelled-expressing centers and the subsequent evagination of ectopic tentacles are induced throughout the body column by activation of Wnt/β-Catenin signaling. Our results indicate that integration of axial patterning and tissue morphogenesis by the coordinated action of canonical and noncanonical Wnt pathways was crucial for the evolution of eumetazoan body plans. PMID:19237582

  2. Stimulation of Wnt/β-Catenin Signaling to Improve Bone Development by Naringin via Interacting with AMPK and Akt

    Directory of Open Access Journals (Sweden)

    Dawei Wang

    2015-07-01

    Full Text Available Background/Aims: Naringin is a naturally existing compound in citrus fruits and has been elucidated to promote bone development and maintenance. Methods: The biological roles of naringin were investigated in vitro using osteoblast-like UMR-106 cells, and in vivo through performing ovariectomy to mimic osteoporosis in female mice. Since Wnt/β-catenin signaling is involved in osteoblastogenesis, the effect of naringin on Wnt/β-catenin signaling was studied. Results: Naringin promoted the mRNA and protein expressions of β-catenin, and improved Ser552 phosphorylation on β-catenin in UMR-106 cells, which leads to the activation of lymphoid enhancer factor (LEF/ T-cell factor (TCF transcription factors. The recruitments of protein kinase B (Akt inhibitor (Akti-1/2 and AMP-activated protein kinase (AMPK inhibitor (Dorsomorphin reduced the influence of naringin on β-catenin phosphorylation, suggesting naringin activates β-catenin via regulating Akt and AMPK. In ovariectomized (OVX mice naringin treatment improved the bone strength while AMPK and Akt inhibitors partly reversed the effect, which further proved the involvements of Akt and AMPK in the action of naringin in vivo. Conclusion: Our study points to a novel finding on the mechanism of naringin in facilitating bone formation via Akt and AMPK signaling.

  3. Strategic Sexual Signals: Women's Display versus Avoidance of the Color Red Depends on the Attractiveness of an Anticipated Interaction Partner.

    Directory of Open Access Journals (Sweden)

    Daniela Niesta Kayser

    Full Text Available The color red has special meaning in mating-relevant contexts. Wearing red can enhance perceptions of women's attractiveness and desirability as a potential romantic partner. Building on recent findings, the present study examined whether women's (N = 74 choice to display the color red is influenced by the attractiveness of an expected opposite-sex interaction partner. Results indicated that female participants who expected to interact with an attractive man displayed red (on clothing, accessories, and/or makeup more often than a baseline consisting of women in a natural environment with no induced expectation. In contrast, when women expected to interact with an unattractive man, they eschewed red, displaying it less often than in the baseline condition. Findings are discussed with respect to evolutionary and cultural perspectives on mate evaluation and selection.

  4. Strategic Sexual Signals: Women's Display versus Avoidance of the Color Red Depends on the Attractiveness of an Anticipated Interaction Partner.

    Science.gov (United States)

    Niesta Kayser, Daniela; Agthe, Maria; Maner, Jon K

    2016-01-01

    The color red has special meaning in mating-relevant contexts. Wearing red can enhance perceptions of women's attractiveness and desirability as a potential romantic partner. Building on recent findings, the present study examined whether women's (N = 74) choice to display the color red is influenced by the attractiveness of an expected opposite-sex interaction partner. Results indicated that female participants who expected to interact with an attractive man displayed red (on clothing, accessories, and/or makeup) more often than a baseline consisting of women in a natural environment with no induced expectation. In contrast, when women expected to interact with an unattractive man, they eschewed red, displaying it less often than in the baseline condition. Findings are discussed with respect to evolutionary and cultural perspectives on mate evaluation and selection. PMID:26960135

  5. Selective hyaluronan-CD44 signaling promotes miRNA-21 expression and interacts with vitamin D function during cutaneous squamous cell carcinomas progression following UV irradiation

    Directory of Open Access Journals (Sweden)

    Lilly YW Bourguignon

    2015-05-01

    Full Text Available Hyaluronan (HA, the major extracellular matrix component, is often anchored to CD44 isoforms, a family of structurally/functionally important cell surface receptors. Our recent results indicate that UV irradiation (UVR-induced cutaneous squamous cell carcinomas (SCC overexpress a variety of CD44 variant isoforms (CD44v, with different CD44v isoforms appear to confer malignant SCC properties. UVR also stimulates HA degradation in epidermal keratinocytes. Both large HA polymers and their UVR-induced catabolic products (small HA selectively activate CD44 isoform-mediated cellular signaling in normal keratinocytes and SCC cells, with all of the downstream processes being mediated by RhoGTPases (e.g., RhoA and Rac1. Importantly, we found that the hormonally active form of vitamin D (1,25(OH2D3 not only prevents the UVR-induced small HA activation of abnormal keratinocyte behavior and SCC progression, but also enhances large HA stimulation of normal keratinocyte activities and epidermal function(s. Furthermore, we found that HA and its UVR-induced catabolic products (e.g., large and small HA selectively activate CD44-mediated Rac and RhoA signaling. Specifically, large HA-CD44 interaction promotes Rac/PKNγ-dependent normal keratinocyte differentiation, DNA repair and keratinocyte survival. Conversely, small HA-CD44v isoform interaction stimulates RhoA/ROK-dependent NFκB signaling and microRNA-21 (miR-21 production, leading to inflammation, proliferation (following acute UVR response and SCC progression (following chronic UVR exposure. Active vitamin D inhibits small HA-CD44v-mediated RhoA/ROK signaling and SCC progression; and it also enhances large HA-CD44-mediated differentiation, DNA repair and normal epidermal function. Selective applications of large HA and vitamin D will be used to improve the UVR-induced HA (small vs. large HA-CD44 isoform interaction with RhoGTPase signaling and skin inflammation as a potential therapeutic treatment for skin

  6. Arabidopsis STO/BBX24 negatively regulates UV-B signaling by interacting with COP1 and repressing HY5 transcriptional activity

    Institute of Scientific and Technical Information of China (English)

    Lei Jiang; Yan Wang; Qian-Feng Li; Lars Olof Bj(o)rn; Jun-Xian He; Shao-Shan Li

    2012-01-01

    UV-B (280-315 nm) is an integral part of solar radiation and can act either as a stress inducer or as a developmental signal.In recent years,increasing attention has been paid to the Iow-fluence UV-B-induced photomorphogenic response and several key players in this response have been identified,which include UVR8 (a UV-B-specific photoreceptor),COPI (a WD40-repeat-containing RING finger protein),HY5 (a basic zipper transcription factor),and RUP1/2 (two UVR8-interacting proteins).Here we report that Arabidopsis SALT TOLERANCE (STO/BBX24),a known regulator for light signaling in plants,defines a new signaling component in UV-B-mediated photomorphogenesis.The bbx24 mutant is hypersensitive to UV-B radiation and becomes extremely dwarfed under UV-B treatment.By contrast,BBX24 overexpression transgenic lines respond much more weakly to UV-B than the bbx24 and wild-type plants.BBX24 expression is UV-B-inducible and its accumulation under UV-B requires COP1.Co-immunoprecipitation experiments indicate that BBX24 interacts with COP1 in planta upon UV-B illumination.Moreover,BBX24 interacts with HY5 and acts antagonistically with HY5 in UV-B-induced inhibition of hypocotyl elongation.Furthermore,BBX24 attenuates UV-B-induced HY5 accumulation and suppresses its transcription-activation activity.Taken together,our results reveal a previously uncharacterized function of the light-regulated BBX24 in UV-B responses and demonstrate that BBX24 functions as a negative regulator of photomorphogenic UV-B responses by interacting with both COP1 and HY5.The UV-B-inducible expression pattern and its suppression of HY5 activity suggest that BBX24 could be a new component of the feedback regulatory module of UV-B signaling in plants.

  7. Oog1, an oocyte-specific protein, interacts with Ras and Ras-signaling proteins during early embryogenesis

    International Nuclear Information System (INIS)

    We previously identified an oocyte-specific gene, Oogenesin 1 (Oog1), that encodes 326 amino acids containing a leucine zipper structure and a leucine-rich repeat. In the present study, to identify the interacting proteins of Oog1, we performed a yeast two-hybrid screening using a GV-oocyte cDNA library and found that Ral guanine nucleotide dissociation stimulator (RalGDS) is the binding partner of Oog1. Coimmunoprecipitation assay confirmed the interaction between Oog1 and RalGDS proteins. Colocalization experiments provide the evidence that the nuclear localization of RalGDS depends on the expression of Oog1. Interestingly, RalGDS protein localized in the nucleus rather than the cytoplasm between late 1-cell and early 2-cell stages, the time when Oog1 localizes in the nucleus. We also examined the interaction between Oog1 and Ras by GST pull-down assay and revealed that Oog1 interacts with Ras in a GTP-dependent manner. These findings suggest a role of Oog1 as a Ras-binding protein

  8. Chemical signals and their interactions change transpiration processes in tomato wild-type and flacca mutant

    DEFF Research Database (Denmark)

    Prokic, Ljiljana; Wollenweber, Bernd; Stikic, Radmila

    2011-01-01

    effects of chemicalsignals on the mechanism of transpiration of isolated leaves of L. esculentum Mill. cv. Ailsa Craig (WT) and mutant flacca. In bioassays, exogenic activity of different ABA concentrations and pH were tested in both genotype of tomato in order to stimulate chemical signals occurring...... drought conditions xylem sap pH was higher in leaves extract than in extracts of roots, indicating that an apoplastic pH gradient exists in WT, but not in flacca plants. So, reactions of flacca could not be only the result of lower ABA concentration, but also the result of an altered sensitivity to...

  9. Transforming Growth Factor β1 Signaling via Interaction with Cell Surface Hyal-2 and Recruitment of WWOX/WOX1*

    OpenAIRE

    Hsu, Li-Jin; Schultz, Lori; Hong, Qunying; van Moer, Kris; Heath, John; Li, Meng-Yen; Lai, Feng-Jie; Lin, Sing-Ru; Lee, Ming-Hui; Lo, Cheng-Peng; Lin, Yee-Shin; Chen, Shur-Tzu; Chang, Nan-Shan

    2009-01-01

    Transforming growth factor β (TGF-β) initiates multiple signal pathways and activates many downstream kinases. Here, we determined that TGF-β1 bound cell surface hyaluronidase Hyal-2 on microvilli in type II TGF-β receptor-deficient HCT116 cells, as determined by immunoelectron microscopy. This binding resulted in recruitment of proapoptotic WOX1 (also named WWOX or FOR) and formation of Hyal-2·WOX1 complexes for relocation to the nuclei. TGF-β1 strengthened the binding of the catalytic domai...

  10. The phenomenon of acquired resistance to metformin in breast cancer cells: The interaction of growth pathways and estrogen receptor signaling.

    Science.gov (United States)

    Scherbakov, Alexander M; Sorokin, Danila V; Tatarskiy, Victor V; Prokhorov, Nikolay S; Semina, Svetlana E; Berstein, Lev M; Krasil'nikov, Mikhail A

    2016-04-01

    Metformin, a biguanide antidiabetic drug, is used to decrease hyperglycemia in patients with type 2 diabetes. Recently, the epidemiological studies revealed the potential of metformin as an anti-tumor drug for several types of cancer, including breast cancer. Anti-tumor metformin action was found to be mediated, at least in part, via activation of adenosine monophosphate-activated protein kinase (AMPK)-intracellular energy sensor, which inhibits the mammalian target of rapamycin (mTOR) and some other signaling pathways. Nevertheless, some patients can be non-sensitive or resistant to metformin action. Here we analyzed the mechanism of the formation of metformin-resistant phenotype in breast cancer cells and its role in estrogen receptor (ER) regulation. The experiments were performed on the ER-positive MCF-7 breast cancer cells and metformin-resistant MCF-7 subline (MCF-7/M) developed due to long-term metformin treatment. The transcriptional activity of NF-κB and ER was measured by the luciferase reporter gene analysis. The protein expression was determined by immunoblotting (Snail1, (phospho)AMPK, (phospho)IκBα, (phospho)mTOR, cyclin D1, (phospho)Akt and ERα) and immunohistochemical analysis (E-cadherin). We have found that: 1) metformin treatment of MCF-7 cells is accompanied with the stimulation of AMPK and inhibition of growth-related proteins including IκBα, NF-κB, cyclin D1 and ERα; 2) long-term metformin treatment lead to the appearance and progression of cross-resistance to metformin and tamoxifen; the resistant cells are characterized with the unaffected AMPK activity, but the irreversible ER suppression and constitutive activation of Akt/Snail1 signaling; 3) Akt/Snail1 signaling is involved into progression of metformin resistance. The results presented may be considered as the first evidence of the progression of cross-resistance to metformin and tamoxifen in breast cancer cells. Importantly, the acquired resistance to both drugs is based on the

  11. Effect of adrenergic agonists on coronary blood flow: a laboratory study in healthy volunteers.

    Science.gov (United States)

    Vargas Pelaez, Alvaro F; Gao, Zhaohui; Ahmad, Tariq A; Leuenberger, Urs A; Proctor, David N; Maman, Stephan R; Muller, Matthew D

    2016-05-01

    Myocardial oxygen supply and demand mismatch is fundamental to the pathophysiology of ischemia and infarction. The sympathetic nervous system, through α-adrenergic receptors and β-adrenergic receptors, influences both myocardial oxygen supply and demand. In animal models, mechanistic studies have established that adrenergic receptors contribute to coronary vascular tone. The purpose of this laboratory study was to noninvasively quantify coronary responses to adrenergic receptor stimulation in humans. Fourteen healthy volunteers (11 men and 3 women) performed isometric handgrip exercise to fatigue followed by intravenous infusion of isoproterenol. A subset of individuals also received infusions of phenylephrine (n = 6), terbutaline (n = 10), and epinephrine (n = 4); all dosages were based on fat-free mass and were infused slowly to achieve steady-state. The left anterior descending coronary artery was visualized using Doppler echocardiography. Beat-by-beat heart rate (HR), blood pressure (BP), peak diastolic coronary velocity (CBVpeak), and coronary velocity time integral were calculated. Data are presented as M ± SD Isometric handgrip elicited significant increases in BP, HR, and CBVpeak (from 23.3 ± 5.3 to 34.5 ± 9.9 cm/sec). Isoproterenol raised HR and CBVpeak (from 22.6 ± 4.8 to 43.9 ± 12.4 cm/sec). Terbutaline and epinephrine evoked coronary hyperemia whereas phenylephrine did not significantly alter CBVpeak. Different indices of coronary hyperemia (changes in CBVpeak and velocity time integral) were significantly correlated (R = 0.803). The current data indicate that coronary hyperemia occurs in healthy humans in response to isometric handgrip exercise and low-dose, steady-state infusions of isoproterenol, terbutaline, and epinephrine. The contribution of β1 versus β2 receptors to coronary hyperemia remains to be determined. In this echocardiographic study, we demonstrate that coronary blood flow increases when β-adrenergic

  12. Phosphoproteomic analysis of induced resistance reveals activation of signal transduction processes by beneficial and pathogenic interaction in grapevine.

    Science.gov (United States)

    Perazzolli, Michele; Palmieri, Maria Cristina; Matafora, Vittoria; Bachi, Angela; Pertot, Ilaria

    2016-05-20

    Protein phosphorylation regulates several key processes of the plant immune system. Protein kinases and phosphatases are pivotal regulators of defense mechanisms elicited by resistance inducers. However, the phosphorylation cascades that trigger the induced resistance mechanisms in plants have not yet been deeply investigated. The beneficial fungus Trichoderma harzianum T39 (T39) induces resistance against grapevine downy mildew (Plasmopara viticola), but its efficacy could be further improved by a better understanding of the cellular regulations involved. We investigated quantitative changes in the grapevine phosphoproteome during T39-induced resistance to get an overview of regulatory mechanisms of downy mildew resistance. Immunodetection experiments revealed activation of the 45 and 49kDa kinases by T39 treatment both before and after pathogen inoculation, and the phosphoproteomic analysis identified 103 phosphopeptides that were significantly affected by the phosphorylation cascades during T39-induced resistance. Peptides affected by T39 treatment showed comparable phosphorylation levels after P. viticola inoculation, indicating activation of the microbial recognition machinery before pathogen infection. Phosphorylation profiles of proteins related to photosynthetic processes and protein ubiquitination indicated a partial overlap of cellular responses in T39-treated and control plants. However, phosphorylation changes of proteins involved in response to stimuli, signal transduction, hormone signaling, gene expression regulation, and RNA metabolism were exclusively elicited by P. viticola inoculation in T39-treated plants. These results highlighted the relevance of phosphorylation changes during T39-induced resistance and identified key regulator candidates of the grapevine defense against downy mildew. PMID:27010348

  13. Renal albumin excretion: twin studies identify influences of heredity, environment, and adrenergic pathway polymorphism

    DEFF Research Database (Denmark)

    Rao, Fangwen; Wessel, Jennifer; Wen, Gen; Zhang, Lian; Rana, Brinda K; Kennedy, Brian P; Greenwood, Tiffany A; Salem, Rany M; Chen, Yuqing; Khandrika, Srikrishna; Hamilton, Bruce A; Smith, Douglas W; Ziegler, Michael G; Schork, Nicholas J; O'Connor, Daniel T; Holstein-Rathlou, N.-H.

    2007-01-01

    biosynthesis (tyrosine hydroxylase), catabolism (monoamine oxidase A), storage/release (chromogranin A), receptor target (dopamine D1 receptor), and postreceptor signal transduction (sorting nexin 13 and rho kinase). Epistasis (gene-by-gene interaction) occurred between alleles at rho kinase, tyrosine...

  14. ELMO1 Directly Interacts with Gβγ Subunit to Transduce GPCR Signaling to Rac1 Activation in Chemotaxis

    Science.gov (United States)

    Wang, Youhong; Xu, Xuehua; Pan, Miao; Jin, Tian

    2016-01-01

    Diverse chemokines bind to G protein-coupled receptors (GPCRs) to activate the small GTPase Rac to regulate F-actin dynamics during chemotaxis. ELMO and Dock proteins form complexes that function as guanine nucleotide exchange factors (GEFs) for Rac activation. However, the linkage between GPCR activation and the ELMO/Dock-mediated Rac activation is not fully understood. In the present study, we show that chemoattractants induce dynamic membrane translocation of ELMO1 in mammalian cells. ELMO1 plays an important role in GPCR-mediated chemotaxis. We also reveal that ELMO1 and Dock1 form a stable complex. Importantly, activation of chemokine GPCR promotes the interaction between ELMO1 and Gβγ. The ELMO1-Gβγ interaction is through the N-terminus of ELMO1 protein and is important for the membrane translocation of ELMO1. ELMO1 is required for Rac1 activation upon chemoattractant stimulation. Our results suggest that chemokine GPCR-mediated interaction between Gβγ and ELMO1/Dock1 complex might serve as an evolutionarily conserved mechanism for Rac activation to regulate actin cytoskeleton for chemotaxis of human cells.

  15. Alpha-amylase activity in blood increases after pharmacological, but not psychological, activation of the adrenergic system

    OpenAIRE

    Nater, Urs M.; Roberto La Marca; Katja Erni; Ulrike Ehlert

    2015-01-01

    BACKGROUND & AIM: Alpha-amylase in both blood and saliva has been used as a diagnostic parameter. While studies examining alpha-amylase activity in saliva have shown that it is sensitive to physiological and psychological challenge of the adrenergic system, no challenge studies have attempted to elucidate the role of the adrenergic system in alpha-amylase activity in blood. We set out to examine the impact of psychological and pharmacological challenge on alpha-amylase in blood in two separat...

  16. Effects of supply of β-adrenergic agonists on growth performance, carcass characteristics and meat quality of feedlot cattle

    OpenAIRE

    Carolina Floret Costa; André Luis Coneglian Brichi; Ismael Castro Pereira; Marco Aurélio Factori; Cyntia Ludovico Martins; Mário De Beni Arrigoni

    2015-01-01

    To enhance the efficiency of production of beef, some countries use β-adrenergics, promoters of non-hormonal growth, on final phase of beef cattle. These substances are chemically and pharmacologically similar to the natural catecholamines (dopamine, noreprinephrine and eprinephrine) and promote an increase of the deposition rate of muscle tissue, with consequent decrease in the deposition of adipose tissue. The β-adrenergic most used in beef cattle are ractopamine hydrochloride and zilpatero...

  17. Iontophoretic {beta}-adrenergic stimulation of human sweat glands: possible assay for cystic fibrosis transmembrane conductance regulator activity in vivo.

    OpenAIRE

    Shamsuddin, A. K. M.; Reddy, M. M.; Quinton, P. M.

    2008-01-01

    With the advent of numerous candidate drugs for therapy in cystic fibrosis (CF), there is an urgent need for easily interpretable assays for testing their therapeutic value. Defects in the cystic fibrosis transmembrane conductance regulator (CFTR) abolished beta-adrenergic but not cholinergic sweating in CF. Therefore, the beta-adrenergic response of the sweat gland may serve both as an in vivo diagnostic tool for CF and as a quantitative assay for testing the efficacy of new drugs designed t...

  18. Possible association of β2- and β3-adrenergic receptor gene polymorphisms with susceptibility to breast cancer

    OpenAIRE

    Xin-en HUANG; Hamajima, Nobuyuki; Saito, Toshiko; Matsuo, Keitaro; Mizutani, Mitsuhiro; Iwata, Hiroji; Iwase, Takuji; Miura, Shigeto; Mizuno, Tsutomu; Tokudome, Shinkan; Tajima, Kazuo

    2001-01-01

    Background The involvement of β2-adrenergic receptor (ADRB2) and β3-adrenergic receptor (ADRB3) in both adipocyte lipolysis and thermogenic activity suggests that polymorphisms in the encoding genes might be linked with interindividual variation in obesity, an important risk factor for postmenopausal breast cancer. In order to examine the hypothesis that genetic variations in ADRB2 and ADRB3 represent interindividual susceptibility factors for obesity and breast cancer, we conducted a hospita...

  19. Physiopathology of beta-adrenergic dysfunction and role of MRP4 during aging, diabetes mellitus and metabolic syndrom

    OpenAIRE

    Carillion, Aude

    2015-01-01

    The studies presented in this report looked for a better understanding of the altered response to stimulation of the β-adrenergic receptors in several physiopathological contexts. The first study confirms the alteration of the β-adrenergic response at the cardiomyocyte level in the senescent cardiomyopathy. The role of MRP4 (multidrug resistance associated protein 4) in the reduced inotropic response to isoproterenol is emphasized. The second study evaluates the response to β-adrenoceptors st...

  20. βig-h3 promotes human osteosarcoma cells metastasis by interacting with integrin α2β1 and activating PI3K signaling pathway.

    Directory of Open Access Journals (Sweden)

    Yun-Shan Guo

    Full Text Available Osteosarcoma, the most common primary bone tumor in children and young adolescents, is characterized by local invasion and distant metastasis. But the detailed mechanisms of osteosarcoma metastasis are not well known. In the present study, we found that βig-h3 promotes metastatic potential of human osteosarcoma cells in vitro and in vivo. Furthermore, βig-h3 co-localized with integrin α2β1 in osteosarcoma cells. But βig-h3 did not change integrin α2β1 expression in Saos-2 cells. Interaction of βig-h3 with integrin α2β1 mediates metastasis of human osteosarcoma cells. The second FAS1 domain of βig-h3 but not the first FAS1 domain, the third FAS1 domain or the fourth FAS1 domain mediates human osteosarcoma cells metastasis, which is the α2β1 integrin-interacting domain. We further demonstrated that PI3K/AKT signaling pathway is involved in βig-h3-induced human osteosarcoma cells metastasis process. Together, these results reveal βig-h3 enhances the metastasis potentials of human osteosarcoma cells via integrin α2β1-mediated PI3K/AKT signal pathways. The discovery of βig-h3-mediated pathway helps us to understand the mechanism of human osteosarcoma metastasis and provides evidence for the possibility that βig-h3 can be a potential therapeutic target for osteosarcoma treatment.

  1. Transport of receptors, receptor signaling complexes and ion channels via neuropeptide-secretory vesicles

    Institute of Scientific and Technical Information of China (English)

    Bo Zhao; Hai-Bo Wang; Ying-Jin Lu; Jian-Wen Hu; Lan Bao; Xu Zhang

    2011-01-01

    Stimulus-induced exocytosis of large dense-core vesicles(LDCVs)leads to discharge of neuropeptides and fusion of LDCV membranes with the plasma membrane. However, the contribution of LDCVs to the properties of the neuronal membrane remains largely unclear. The present study found that LDCVs were associated with multiple receptors, channels and signaling molecules, suggesting that neuronal sensitivity is modulated by an LDCV-mediated mechanism. Liquid chromatography-mass spectrometry combined with immunoblotting of subcellular fractions identified 298 proteins in LDCV membranes purified from the dorsal spinal cord, including Gprotein-coupled receptors, Gproteins and other signaling molecules, ion channels and trafficking-related proteins. Morphological assays showed that δ-opioid receptor 1(DORI), β2 adrenergic receptor(AR), Gα12,voltage-gated calcium channel a2δ1subunit and P2X purinoceptor 2 were localized in substance P(SP)-positive LDCVs in small-diameter dorsal root ganglion neurons, whereas β1 AR, Wnt receptor frizzled 8 and dishevelled 1 were present in SP-negative LDCVs.Furthermore, DOR1/α12/Gβ1γ5/phospholipase C β2 complexes were associated with LDCVs. Blockade of the DOR1/Gαi2 interaction largely abolished the LDCV localization of Gαi2 and impaired stimulation-induced surface expression of Gαi2. Thus, LDCVs serve as carriers of receptors, ion channels and preassembled receptor signaling complexes, enabling a rapid, activity-dependent modulation of neuronal sensitivity.

  2. Bispectrum Analysis of Non-linear wave-wave Interaction between VLF Transmitter signal and ELF emission on the Basis of DEMETER satellite observations

    Science.gov (United States)

    Sondhiya, Deepak Kumar; Gwal, Ashok Kumar; Kasde, Satish Kumar

    2016-07-01

    Symmetric sidebands are observed in the ionosphere by the DEMETER (Detection of Electromagnetic Radiation Transmitted through Earthquake Region) satellite, when it passes above the Indian VLF transmitter, named VTX (18.2 kHz), located near Kanyakumari, India. The spectral boarding phenomena may be divided into two types: (1) spectrally broadened components occurring without any association with ELF/VLF emissions under disturbed ionospheric condition, (2) Spectrally broadened components with predominant side band structure in association with ELF emission. Generally spectral analysis at second order (Power spectrum) is used to analyze the frequency component of signal, but it losses the phase information among the different Fourier components. To retain this information the bispectrum (third order) and/or the bicoherence (normalized bispectrum) are used. Results suggest a non-linear mode coupling between the transmitter signal and ELF emission which produces sidebands that are quasi-electrostatic in nature. However, faint spectral broadened components in both types 1 and 2 may be connected with Doppler shift of quasi-electrostatic, whistler mode waves with a broad spectrum near resonance cone, due to scattering of the transmitter signals from ionospheric irregularities in the F-region. Keywords: spectral boarding, wave-wave Interaction, whistler mode waves and Doppler shift

  3. Tyrosine kinase signalling in breast cancer: Epidermal growth factor receptor and c-Src interactions in breast cancer

    International Nuclear Information System (INIS)

    Both the non-receptor tyrosine kinase, c-Src, and members of the epidermal growth factor (EGF) receptor family are overexpressed in high percentages of human breast cancers. Because these molecules are plasma membrane-associated and involved in mitogenesis, it has been speculated that they function in concert with one another to promote breast cancer development and progression. Evidence to date supports a model wherein c-Src potentiates the survival, proliferation and tumorigenesis of EGF receptor family members, in part by associating with them. Phosphorylation of the EGF receptor by c-SRC is also critical for mitogenic signaling initiated by the EGF receptor itself, as well as by several G-protein coupled receptors (GPCRs), a cytokine receptor, and the estrogen receptor. Thus, c-Src appears to have pleiotropic effects on cancer cells by modulating the action of multiple growth-promoting receptors

  4. {beta}-adrenergic receptor density and adenylate cyclase activity in lead-exposed rat brain after cessation of lead exposure

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Huoy-Rou [I-Shou University, Department of Biomedical Engineering, Dashu Shiang, Kaohsiung County (Taiwan); Tsao, Der-An [Fooyin University of Technology, Department of Medical Technology (Taiwan); Yu, Hsin-Su [Taiwan University, Department of Dermatology, College of Medicine (Taiwan); Ho, Chi-Kung [Kaohsiung Medical University, Occupational Medicine (Taiwan); Kaohsiung Medical University, Graduate Institute of Medicine, Research Center for Occupational Disease (Taiwan)

    2005-01-01

    To understanding the reversible or irreversible harm to the {beta}-adrenergic system in the brain of lead-exposed rats, this study sets up an animal model to estimate the change in the sympathetic nervous system of brain after lead exposure was withdrawn. We address the following topics in this study: (a) the relationship between withdrawal time of lead exposure and brain {beta}-adrenergic receptor, blood lead level, and brain lead level in lead-exposed rats after lead exposure was stopped; and (b) the relationship between lead level and {beta}-adrenergic receptor and cyclic AMP (c-AMP) in brain. Wistar rats were chronically fed with 2% lead acetate and water for 2 months. Radioligand binding was assayed by a method that fulfilled strict criteria of {beta}-adrenergic receptor using the ligand [{sup 125}I]iodocyanopindolol. The levels of lead were determined by electrothermal atomic absorption spectrometry. The c-AMP level was determined by radioimmunoassay. The results showed a close relationship between decreasing lead levels and increasing numbers of brain {beta}-adrenergic receptors and brain adenylate cyclase activity after lead exposure was withdrawn. The effect of lead exposure on the {beta}-adrenergic system of the brain is a partly reversible condition. (orig.)

  5. Turning-Off Signaling by Siglecs, Selectins, and Galectins: Chemical Inhibition of Glycan-Dependent Interactions in Cancer

    Science.gov (United States)

    Cagnoni, Alejandro J.; Pérez Sáez, Juan M.; Rabinovich, Gabriel A.; Mariño, Karina V.

    2016-01-01

    Aberrant glycosylation, a common feature associated with malignancy, has been implicated in important events during cancer progression. Our understanding of the role of glycans in cancer has grown exponentially in the last few years, concurrent with important advances in glycomics and glycoproteomic technologies, paving the way for the validation of a number of glycan structures as potential glycobiomarkers. However, the molecular bases underlying cancer-associated glycan modifications are still far from understood. Glycans exhibit a natural heterogeneity, crucial for their diverse functional roles as specific carriers of biologically relevant information. This information is decoded by families of proteins named lectins, including sialic acid-binding immunoglobulin (Ig)-like lectins (siglecs), C-type lectin receptors (CLRs), and galectins. Siglecs are primarily expressed on the surface of immune cells and differentially control innate and adaptive immune responses. Among CLRs, selectins are a family of cell adhesion molecules that mediate interactions between cancer cells and platelets, leukocytes, and endothelial cells, thus facilitating tumor cell invasion and metastasis. Galectins, a family of soluble proteins that bind β-galactoside-containing glycans, have been implicated in diverse events associated with cancer biology such as apoptosis, homotypic cell aggregation, angiogenesis, cell migration, and tumor-immune escape. Consequently, individual members of these lectin families have become promising targets for the design of novel anticancer therapies. During the past decade, a number of inhibitors of lectin–glycan interactions have been developed including small-molecule inhibitors, multivalent saccharide ligands, and more recently peptides and peptidomimetics have offered alternatives for tackling tumor progression. In this article, we review the current status of the discovery and development of chemical lectin inhibitors and discuss novel strategies to

  6. β2 Adrenergic receptor on T lymphocytes and its clinical implications

    Institute of Scientific and Technical Information of China (English)

    Xuelai Fan; Yuedan Wang

    2009-01-01

    Sustained complex cross-talk between the immune system and the nervous system plays a vital role in retaining homeostasis in a healthy individual.One of the central regulatory mechanisms involved is the existence and functions of β2-adrenergic receptors (β2AR) on T lymphocytes.This article reviews research progress made recently,including the expression of adrenergic receptors on Tlymphocytes,the structure and intracellular pathways of β2AR,the activation of I32AR by either endogenous or exogenous agonists,and the effect of β2AR stimulation on T cells which alters T cell proliferation,differentiation,cytokine production and T-helper-mediated antibody production.Furthermore,we discuss the roles of β2AR played in the pathogenesis and treatment of autoimmune diseases.

  7. Exercise training modulates functional sympatholysis and alpha-adrenergic vasoconstrictor responsiveness in hypertensive and normotensive individuals

    DEFF Research Database (Denmark)

    Mortensen, Stefan Peter; Nyberg, Michael Permin; Gliemann Hybholt, Lasse;

    2014-01-01

    Essential hypertension is linked to an increased sympathetic vasoconstrictor activity and reduced tissue perfusion. We investigated the role of exercise training on functional sympatholysis and postjunctional α-adrenergic responsiveness in individuals with essential hypertension. Leg haemodynamics...... exercise training improves functional sympatholysis and reduces postjunctional α-adrenergic responsiveness in both normo- and hypertensive individuals. The ability for functional sympatholysis and the vasodilator and sympatholytic effect of intravascular ATP appears not to be altered in essential...... were measured before and after 8 weeks of aerobic training (3-4 times/week) in 8 hypertensive (47 ± 2 years) and 8 normotensive untrained individuals (46 ± 1 years) during arterial tyramine infusion, arterial ATP infusion and/or one-legged knee extensions. Before training, exercise hypaeremia and leg...

  8. Altered hepatic vasopressin and alpha 1-adrenergic receptors after chronic endotoxin infusion

    Energy Technology Data Exchange (ETDEWEB)

    Roth, B.L.; Spitzer, J.A.

    1987-05-01

    Sepsis and septic shock are complicated by a number of hemodynamic and metabolic aberrations. These include catecholamine refractoriness and altered glucose metabolism. Recently, a nonshock rat model of continuous endotoxin infusion via an implanted osmotic pump was developed that reproduces some of the metabolic and cardiovascular findings of human sepsis. By using this model, we have found a decreased number of hepatic plasma membrane alpha 1-adrenergic and (Arg8)vasopressin receptors in rats continuously infused with endotoxin. There was a significant decrease in (/sup 3/H)prazosin (35 +/- 7%) and (/sup 3/H) (Arg8)vasopressin (43 +/- 8%) receptors after 30 h of continuous endotoxin infusion with no change in affinity. The ability of norepinephrine to form the high-affinity complex with alpha 1-adrenergic receptors was not altered after chronic endotoxin infusion. The results are consistent with the concept that alterations in receptor number might underlie certain of the metabolic consequences of chronic sepsis.

  9. Expression of hippocampal adrenergic receptor mRNA in a rat model of depression

    Institute of Scientific and Technical Information of China (English)

    Jianbin Zhang; Lingling Wang; Xinjun Wang; Jingfeng Jiang; Xiaoren Xiang; Tianjun Wang

    2011-01-01

    Adrenergic receptor dysfunction is suggested as a potential cause of hippocampal vulnerability to stress-related pathology. We examined mRNA expression of adrenergic receptor (AR) subtypes α1-AR, α2-AR, and β1-AR in hippocampal subregions (CA1, CA3, dentate gyrus) using in situ hybridization in a depression model induced by chronic unpredictable mild stress and social isolation. α1-AR mRNA expression was significantly increased in the CA3 and dentate gyrus, β1-AR mRNA was significantly increased in the CA1, and α2-AR mRNA remained unchanged in all regions of depression rats compared with controls. Thus, different AR subtypes exhibit a differing pattern of mRNA expression in various hippocampal subregions following depression.

  10. Agonist-promoted desensitization and phosphorylation of α1-adrenergic receptors coupled to stimulation of phosphatidylinositol metabolism

    International Nuclear Information System (INIS)

    In the DDT1 MF-2 hamster vas deferens smooth muscle cell line the α1-adrenergic receptor (α1-AR) agonist norepinephrine (NE) promotes rapid attenuation of α1-AR-mediated phosphatidylinositol (PI) metabolism which is paralleled by rapid phosphorylation of the α1-AR. Cells were labeled by incubation with 32P/sub i/. Coincubation with NE (100 μM) significantly increases the rate of 32P-labeling of both PI and phosphatidic acid. Pretreatment of cells with 100 μM NE (in the presence of 1 μM propranolol to prevent β-AR interactions) results in a drastic attenuation of the NE response on PI metabolism. α1-AR from labeled cells can be solubilized and purified by affinity chromatography on Affigel-A55414 and wheat germ agglutinin agarose chromatography. SDS-PAGE of purified α1-AR shows a NE-promoted increase in phosphorylation of the M/sub r/ 80K ligand binding peptide. Stoichiometry of phosphorylation increases from ∼ 1 mol phosphate/mol α1-AR in the basal condition to ∼ 2.5 after NE treatment. Both desensitization and phosphorylation are rapid being maximal within 10-20 min of agonist exposure. These results together with previous findings that phorbol esters promote rapid α1-AR uncoupling and phosphorylation suggest that receptor phosphorylation is an important mechanism of regulation of α1-AR receptor responsiveness

  11. β2 adrenergic agonist, clenbuterol, enhances working memory performance in aging animals

    OpenAIRE

    Ramos, Brian P.; Colgan, Leslie A.; Nou, Eric; Arnsten, Amy F.T.

    2007-01-01

    Previous studies using a mixed β1 and β2 adrenergic antagonist, propanolol, have indicated that β adrenoceptors have little effect on the cognitive functioning of the prefrontal cortex. However, recent studies have suggested that endogenous stimulation of β1 adrenoceptors impairs working memory in both rats and monkeys. Since propanolol has no effect on cognition, we hypothesized that activation of β2 adrenoceptors might improve performance in a working memory task. We tested this hypothesis ...

  12. β2-Adrenergic Receptor-Dependent Sexual Dimorphism For Murine Leukocyte Migration

    OpenAIRE

    de Coupade, Catherine; Brown, Adrienne S.; Dazin, Paul F; Levine, Jon D.; Green, Paul G.

    2007-01-01

    In wild-type FVB mice, leukocyte recruitment to lipopolysaccharide was sexually dimorphic, with a greater number of leukocytes recruited in females. In male β2-adrenergic receptor knock out mice (bred on a congenic FVB background) the number leukocytes recruited was increased ~4-fold, while in females there was no change, eliminating sexual dimorphism in leukocyte migration. While there were significantly fewer recruited CD62L+ and CD11a+ leukocytes in wild-type males, only in male β2-adrener...

  13. The rush to adrenaline: drugs in sport acting on the β-adrenergic system

    OpenAIRE

    Davis, E.; Loiacono, R.; Summers, R. J.

    2008-01-01

    Athletes attempt to improve performance with drugs that act on the β-adrenergic system directly or indirectly. Of three β-adrenoceptor (AR) subtypes, the β2-AR is the main target in sport; they have bronchodilator and anabolic actions and enhance anti-inflammatory actions of corticosteroids. Although demonstrable in animal experiments and humans, there is little evidence that these properties can significantly improve performance in trained athletes. Their actions may also be compromised by r...

  14. The role of basolateral amygdala adrenergic receptors in hippocampus dependent spatial memory in rat

    OpenAIRE

    Vafaei A.L.; Rashidy-Pour A

    2008-01-01

    Background and the purpose of the study: There are extensive evidences indicating that the noradrenergic system of the basolateral nucleus of the amygdala (BLA) is involved in memory processes. The present study investigated the role of the BLA adrenergic receptors (ARs) in hippocampus dependent spatial memory in place avoidance task in male rat. Material and Methods: Long Evans rats (n=150) were trained to avoid footshock in a 60° segment while foraging for scattered food on a circul...

  15. Cooperation of β2- and β3-adrenergic receptors in hematopoietic progenitor cell mobilization

    OpenAIRE

    Méndez-Ferrer, Simón; Battista, Michela; Frenette, Paul S.

    2010-01-01

    CXCL12/SDF-1 dynamically regulates hematopoietic stem cell (HSC) attraction in the bone marrow (BM). Circadian regulation of bone formation and HSC traffic is relayed in bone and BM by β-adrenergic receptors (β-AR) expressed on HSCs, osteoblasts and mesenchymal stem / progenitor cells. Circadian HSC release from the BM follows rhythmic secretion of norepinephrine (NE) from nerve terminals, β3-AR activation and Cxcl12 downregulation, possibly due to reduced Sp1 nuclear content. Here, we show t...

  16. alpha-adrenergic Blockade Unmasks a Greater Compensatory Vasodilation in Hypoperfused Contracting Muscle

    Directory of Open Access Journals (Sweden)

    DarrenP.Casey

    2012-07-01

    Full Text Available We previously demonstrated that acute hypoperfusion in exercising human muscle causes an immediate increase in vascular resistance that is followed by a partial restoration (less than 100% recovery of flow. In the current study we examined the contribution of alpha-adrenergic vasoconstriction in the initial changes in vascular resistance at the onset of hypoperfusion as well as in the recovery of flow over time. Nine healthy male subjects (29 ± 2 performed rhythmic forearm exercise (20% of maximum during hypoperfusion evoked by intra-arterial balloon inflation. Each trial included; baseline, exercise prior to inflation, exercise with inflation, and exercise after deflation (3 min each. Forearm blood flow (FBF; ultrasound, local (brachial artery, and systemic arterial pressure (MAP; Finometer were measured. The trial was repeated during phentolamine infusion (alpha-adrenergic receptor blockade. Forearm vascular conductance (FVC; ml min-1 100 mmHg-1 and resistance (mmHg ml min-1 was calculated from BF (ml min-1 and local MAP (mmHg. Recovery of FBF and FVC (steady state inflation plus exercise value – nadir/ [steady state exercise (control value-nadir] with phentolamine was enhanced compared with the respective control (no drug trial (FBF = 97 ± 5% vs. 81 ± 6%, P < 0.05; FVC = 126 ± 9% vs. 91 ± 5%, P < 0.01. However, the absolute (0.05 ± 0.01 vs. 0.06 ± 0.01 mmHg ml min-1; P = 0.17 and relative (35 ± 5% vs. 31 ± 2%; P = 0.41 increase in vascular resistance at the onset of balloon inflation was not different between the alpha-adrenergic receptor inhibition and control (no drug trials. Therefore, our data indicate that alpha-adrenergic mediated vasoconstriction restricts compensatory vasodilation during forearm exercise with hypoperfusion, but is not responsible for the initial increase in vascular resistance at the onset of hypoperfusion.

  17. Adrenergic regulation of lipolysis in situ at rest and during exercise.

    OpenAIRE

    Arner, P; Kriegholm, E; Engfeldt, P; Bolinder, J

    1990-01-01

    The adrenergic regulation of lipolysis was investigated in situ at rest and during standardized bicycle exercise in nonobese healthy subjects, using microdialysis of the extracellular space in subcutaneous adipose tissue. The glycerol concentration was about two times greater in adipose tissue than in venous blood. At rest, the glycerol concentration in adipose tissue was rapidly increased by 100% (P less than 0.01) after the addition of phentolamine to the ingoing perfusate, whereas addition...

  18. Conjugation of ß-Adrenergic Antagonist Alprenolol to Implantable Polymer-Aescin Matrices for Local Delivery

    OpenAIRE

    Ewa Oledzka; Dagmara Pachowska; Marcin Sobczak; Agnieszka Lis-Cieplak; Grzegorz Nalecz-Jawecki; Anna Zgadzaj; Waclaw Kolodziejski

    2015-01-01

    The sustained release of alprenolol, a ß-adrenergic antagonist, could be beneficial for the treatment of various heart diseases while reducing the side effects resulting from its continuous use. The novel and branched copolymers uniquely composed of biodegradable components (lactide and glycolide) have been synthesized using natural and therapeutically-efficient ß-aescin-initiator, and consequently characterized to determine their structures and physicochemical properties. The obtained matric...

  19. Evaluation of spirometry values in relation to beta-2-adrenergic receptor gene polymorphism

    OpenAIRE

    Poziomkowska-Gesicka, I; Dzieciolowska-Baran, E; Gawlikowska-Sroka, A; Slowik-Zylka, D; Sroczynski, T

    2010-01-01

    Introduction The vagus nerve plays a special role in the control of respiratory system activity which represents the parasympathetic part of the autonomic nervous system. A small bronchial innervation by the sympathetic system also is observed, and there is a significant expression of adrenergic receptors, in particular β2 receptors, in the airways. The development of genetics and molecular biology allows for a detailed study which can clarify the essential elements in the pathogenesis of man...

  20. Phorbol esters promote alpha 1-adrenergic receptor phosphorylation and receptor uncoupling from inositol phospholipid metabolism.

    OpenAIRE

    Leeb-Lundberg, L M; Cotecchia, S; Lomasney, J W; DeBernardis, J F; Lefkowitz, R J; Caron, M G

    1985-01-01

    DDT1 MF-2 cells, which are derived from hamster vas deferens smooth muscle, contain alpha 1-adrenergic receptors (54,800 +/- 2700 sites per cell) that are coupled to stimulation of inositol phospholipid metabolism. Incubation of these cells with tumor-promoting phorbol esters, which stimulate calcium- and phospholipid-dependent protein kinase, leads to a marked attenuation of the ability of alpha 1-receptor agonists such as norepinephrine to stimulate the turnover of inositol phospholipids. T...

  1. α2A-Adrenergic Receptors Heterosynaptically Regulate Glutamatergic Transmission in the BNST

    OpenAIRE

    Shields, Angela D.; Wang, Qin; Winder, Danny G.

    2009-01-01

    Stress is a major driving force in reinstatement of drug-seeking behavior. The bed nucleus of the stria terminalis (BNST) has been identified as a key brain region in this behavior, and receives a dense input of the stress-neurotransmitter norepinephrine through the ventral noradrenergic bundle. Activation of α2-adrenergic receptors (α2-ARs) in the BNST blocks stress-induced reinstatement of drug-seeking, indicating a potentially important role for these receptors. Currently, it is unclear ho...

  2. Role of β-adrenergic receptors in the hyperphagic and hypermetabolic responses to dietary methionine restriction

    OpenAIRE

    Plaisance, Eric P; Henagan, Tara M.; Echlin, Haley; Boudreau, Anik; Hill, Kasey L.; Lenard, Natalie R.; Hasek, Barbara E.; Orentreich, Norman; Gettys, Thomas W

    2010-01-01

    Dietary methionine restriction (MR) limits fat deposition and decreases plasma leptin, while increasing food consumption, total energy expenditure (EE), plasma adiponectin, and expression of uncoupling protein 1 (UCP1) in brown and white adipose tissue (BAT and WAT). β-adrenergic receptors (β-AR) serve as conduits for sympathetic input to adipose tissue, but their role in mediating the effects of MR on energy homeostasis is unclear. Energy intake, weight, and adiposity were modestly higher in...

  3. Effect of beta2-adrenergic agonists on eosinophil adhesion, superoxide anion generation, and degranulation

    OpenAIRE

    Toru Noguchi; Kazuyuki Nakagome; Takehito Kobayashi; Yutaka Ueda; Tomoyuki Soma; Hidetomo Nakamoto; Makoto Nagata

    2015-01-01

    Background: Eosinophils play important roles in the development of asthma exacerbation. Viral infection is a major cause of asthma exacerbation, and the expression of IFN-γ-inducible protein of 10 kDa (IP-10) and cysteinyl leukotrienes (cysLTs) is up-regulated in virus-induced asthma. As β2-adrenergic agonists, such as formoterol or salbutamol, are used to treat asthma exacerbation, we examined whether formoterol or salbutamol could modify eosinophil functions such as adhesiveness, particular...

  4. Cardiac pressure overload hypertrophy is differentially regulated by β-adrenergic receptor subtypes

    OpenAIRE

    Zhao, Mingming; Fajardo, Giovanni; Urashima, Takashi; Spin, Joshua M; Poorfarahani, Sara; Rajagopalan, Viswanathan; Huynh, Diem; Connolly, Andrew; Quertermous, Thomas; Bernstein, Daniel

    2011-01-01

    In isolated myocytes, hypertrophy induced by norepinephrine is mediated via α1-adrenergic receptors (ARs) and not β-ARs. However, mice with deletions of both major cardiac α1-ARs still develop hypertrophy in response to pressure overload. Our purpose was to better define the role of β-AR subtypes in regulating cardiac hypertrophy in vivo, important given the widespread clinical use of β-AR antagonists and the likelihood that patients treated with these agents could develop conditions of furth...

  5. Beta-2-Adrenergic Receptor Methylation Influences Asthma Phenotype in The School Inner City Asthma Study

    OpenAIRE

    Gaffin, Jonathan M.; Phipatanakul, Wanda

    2014-01-01

    Asthma is the most common chronic illness of childhood and inner city residents suffer a disproportionately high rate of asthma diagnosis and asthma morbidity. The School Inner City Asthma Study investigates the school classroom based environmental exposures that may lead to asthma morbidity in inner city school children with asthma. Within this cohort, we investigated the role of methylation at the promoter region of the beta-2-adrenergic receptor in relation to asthma morbidity. We found th...

  6. Influence of beta adrenergic blockade on effects of physical training in patients with ischaemic heart disease.

    OpenAIRE

    L. Vanhees; Fagard, R.; Amery, A

    1982-01-01

    Reduction in heart rate during submaximal exercise is often used to judge the progress of patients with ischaemic heart disease in the course of a physical training programme. Some patients, however, are treated with beta adrenergic blocking drugs and it remains controversial if chronic beta blockade influences the effects of training and if heart rate remains a useful guide in the evaluation of the state of training of these patients. Male postinfarction patients, 15 treated with and 15 with...

  7. ADRB3 adrenergic receptor is a key regulator of human myometrial apoptosis and inflammation during chorioamnionitis.

    OpenAIRE

    Lirussi, Fréderic; Rakotoniaina, Zo; Madani, Siham; Goirand, Françoise; Breuiller-Fouché, Michelle; Leroy, Marie-Josèphe; Sagot, Paul; Morrison, John; Dumas, Monique; Bardou, Marc

    2008-01-01

    The pathophysiology underlying preterm labor triggered by inflammatory conditions such as chorioamnionitis remains largely unclear. It has already been suggested that beta-3 adrenergic (ADRB3) agonists might be of interest in the pharmacological management of preterm labor. Although there is evidence implicating ADRB receptors in the control of inflammation, there are minimal data relating specifically to ADRB3. To explore the cellular consequences of chorioamnionitis and detect apoptosis, we...

  8. Stimulation of the ADRB3 adrenergic receptor induces relaxation of human placental arteries: influence of preeclampsia.

    OpenAIRE

    Rouget, Céline; Barthez, O.; Goirand, Françoise; Leroy, Marie-Josephe; Breuiller-Fouché, Michelle; Rakotoniaina, Zo; Guérard, P.; Morcillo, Esteban; Advenier, C; Sagot, Paul; Cabrol, Dominique; Dumas, Monique; Bardou, Marc

    2006-01-01

    Preeclampsia, which complicates 3-8% of pregnancies, is one of the leading causes of neonatal morbidity and mortality. Its pathophysiology remains unclear. The aim of the present study was to investigate the presence and the role of beta2- and beta2-adrenergic receptors (ADRB2 and ADRB3, respectively) in human placental arteries and to assess the influence of preeclampsia on ADRB responsiveness. SR 59119A, salbutamol, and isoproterenol (ADRB3, ADRB2, and nonselective ADRB agonists, respective...

  9. Identification of a genetic interaction between the tumor suppressor EAF2 and the retinoblastoma protein (Rb) signaling pathway in C. elegans and prostate cancer cells

    International Nuclear Information System (INIS)

    Highlights: • RNAi screen identified genetic enhancers for the C. elegans homolog of EAF2. • EAF2 and RBBP4 proteins physically bind to each other and alter transcription. • Overexpression of EAF2 and RBBP4 induces the cell death in prostate cancer cells. - Abstract: The tumor suppressor EAF2 is regulated by androgen signaling and associated with prostate cancer. While EAF2 and its partner ELL have been shown to be members of protein complexes involved in RNA polymerase II transcriptional elongation, the biologic roles for EAF2 especially with regards to the development of cancer remains poorly understood. We have previously identified the eaf-1 gene in Caenorhabditiselegans as the ortholog of EAF2, and shown that eaf-1 interacts with the ELL ortholog ell-1 to control development and fertility in worms. To identify genetic pathways that interact with eaf-1, we screened RNAi libraries consisting of transcription factors, phosphatases, and chromatin-modifying factors to identify genes which enhance the effects of eaf-1(tm3976) on fertility. From this screen, we identified lin-53, hmg-1.2, pha-4, ruvb-2 and set-6 as hits. LIN-53 is the C. elegans ortholog of human retinoblastoma binding protein 4/7 (RBBP 4/7), which binds to the retinoblastoma protein and inhibits the Ras signaling pathway. We find that lin-53 showed a synthetic interaction with eaf-1(tm3976) where knockdown of lin-53 in an eaf-1(tm3976) mutant resulted in sterile worms. This phenotype may be due to cell death as the treated worms contain degenerated embryos with increased expression of the ced-1:GFP cell death marker. Further we find that the interaction between eaf-1 and lin-53/RBBP4/7 also exists in vertebrates, which is reflected by the formation of a protein complex between EAF2 and RBBP4/7. Finally, overexpression of either human EAF2 or RBBP4 in LNCaP cells induced the cell death while knockdown of EAF2 in LNCaP enhanced cell proliferation, indicating an important role of EAF2 in

  10. Identification of a genetic interaction between the tumor suppressor EAF2 and the retinoblastoma protein (Rb) signaling pathway in C. elegans and prostate cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Cai, Liquan; Wang, Dan [Department of Urology, The University of Pittsburgh, 5200 Centre Avenue, Pittsburgh, PA 15216 (United States); Fisher, Alfred L., E-mail: fishera2@uthscsa.edu [Division of Geriatrics, Gerontology, and Palliative Medicine, Department of Medicine, UTHSCSA, San Antonio, TX 78229 (United States); Center for Healthy Aging, UTHSCSA, San Antonio, TX 78229 (United States); GRECC, STVAHCS, San Antonio, TX 78229 (United States); Wang, Zhou, E-mail: wangz2@upmc.edu [Department of Urology, The University of Pittsburgh, 5200 Centre Avenue, Pittsburgh, PA 15216 (United States); GRECC, STVAHCS, San Antonio, TX 78229 (United States)

    2014-05-02

    Highlights: • RNAi screen identified genetic enhancers for the C. elegans homolog of EAF2. • EAF2 and RBBP4 proteins physically bind to each other and alter transcription. • Overexpression of EAF2 and RBBP4 induces the cell death in prostate cancer cells. - Abstract: The tumor suppressor EAF2 is regulated by androgen signaling and associated with prostate cancer. While EAF2 and its partner ELL have been shown to be members of protein complexes involved in RNA polymerase II transcriptional elongation, the biologic roles for EAF2 especially with regards to the development of cancer remains poorly understood. We have previously identified the eaf-1 gene in Caenorhabditiselegans as the ortholog of EAF2, and shown that eaf-1 interacts with the ELL ortholog ell-1 to control development and fertility in worms. To identify genetic pathways that interact with eaf-1, we screened RNAi libraries consisting of transcription factors, phosphatases, and chromatin-modifying factors to identify genes which enhance the effects of eaf-1(tm3976) on fertility. From this screen, we identified lin-53, hmg-1.2, pha-4, ruvb-2 and set-6 as hits. LIN-53 is the C. elegans ortholog of human retinoblastoma binding protein 4/7 (RBBP 4/7), which binds to the retinoblastoma protein and inhibits the Ras signaling pathway. We find that lin-53 showed a synthetic interaction with eaf-1(tm3976) where knockdown of lin-53 in an eaf-1(tm3976) mutant resulted in sterile worms. This phenotype may be due to cell death as the treated worms contain degenerated embryos with increased expression of the ced-1:GFP cell death marker. Further we find that the interaction between eaf-1 and lin-53/RBBP4/7 also exists in vertebrates, which is reflected by the formation of a protein complex between EAF2 and RBBP4/7. Finally, overexpression of either human EAF2 or RBBP4 in LNCaP cells induced the cell death while knockdown of EAF2 in LNCaP enhanced cell proliferation, indicating an important role of EAF2 in

  11. Prostaglandin (PG) E3 synthesis elicted by adrenergic stimuli in guinea-pig trachea (GPT) is mediated primarily by B2 adrenergic receptors

    International Nuclear Information System (INIS)

    The purpose of this study was to examine arachidonic acid (AA) metabolism and to characterize the type of adrenergic receptor (AR) involved in the production of the major metabolite of this fatty acid. [14C]AA was incubated with GPT-rings and the radiolabelled products were extracted and separated by TLC method. The medium was also assayed for radiolabelled immunoreactive PG's (iPG's) and leukotrienes (LT) B4 and C4 by RIA or Enzyme immunoassay (EIA) after exposure to various AR agonists. [14C]AA was incorporated into GPT-rings and metabolized mainly into iPGE2 and smaller amounts into PGF2α. Trace amounts of PGD2 and 6-keto-PGF1α but not LTB4 or LTC4 were detected by RIA and/or EIA. Incubation of GPT rings for 15 minutes with isoproterenol and salbutamol resulted in a significant increase of PGE2 synthesis (optimum conc: 10-7, 10-7M respectively). In contrast, dobutamine, norepinephrine, phenylnephrine and xylazine (up to 10-6M) did not significantly increase PGE2 production. Isoproterenol-induced iPGE2 production was inhibited by a selective β2 antagonist, butoxamine (70%: 10-7M, 91%: 10-6M) and somewhat reduced by β1 antagonists practolol and metoprolol (30-64%:10-6M). These data suggest that isoproterenol induced iPGE2 synthesis is primarily mediated via activation of β2 adrenergic receptor

  12. Food restriction modulates β-adrenergic-sensitive adenylate cyclase in rat liver during aging

    International Nuclear Information System (INIS)

    Adenylate cyclase activities were studied in rat liver during postmaturational aging of male Fischer 344 rats fed ad libitum or restricted to 60% of the ad libitum intake. Catecholamine-stimulated adenylate cyclase activity increased by 200-300% between 6 and 24-27 mo of age in ad libitum-fed rats, whereas in food-restricted rats catecholamine response increased by only 58-84% between 6 and 30 mo. In ad libitum-fed rats, glucagon-stimulated enzyme activity also increased by 40% between 6 and 12 mo and in restricted rats a similar age-related increase was delayed until 18 mo. β-Adrenergic receptor density increased by 50% between 6 and 24 mo in livers from ad libitum-fed but not food-restricted rats and showed a highly significant correlation with maximal isoproterenol-stimulated adenylate cyclase activity over the postmaturational life span. Age-related increases in unstimulated (basal) adenylate cyclase activity and nonreceptor-mediated enzyme activation were retarded by food restriction. The results demonstrate that food restriction diminishes a marked age-related increase in β-adrenergic-sensitive adenylate cyclase activity of rat liver. Alterations of adrenergic-responsive adenylate cyclase with age and the modulatory effects of food restriction appear to be mediated by changes in both receptor and nonreceptor components of adenylate cyclase

  13. Effects of central imidazolinergic and alpha2-adrenergic activation on water intake

    Directory of Open Access Journals (Sweden)

    Sugawara A.M.

    2001-01-01

    Full Text Available Non-adrenergic ligands that bind to imidazoline receptors (I-R, a selective ligand that binds to alpha2-adrenoceptors (alpha2-AR and mixed ligands that bind to both receptors were tested for their action on water intake behavior of 24-h water-deprived rats. All drugs were injected into the third cerebral ventricle. Except for agmatine (80 nmol, mixed ligands binding to I-R/alpha2-AR such as guanabenz (40 nmol and UK 14304 (20 nmol inhibited water intake by 65% and up to 95%, respectively. The selective non-imidazoline alpha2-AR agonist, alpha-methylnoradrenaline, produced inhibition of water intake similar to that obtained with guanabenz, but at higher doses (80 nmol. The non-adrenergic I-R ligands histamine (160 nmol, mixed histaminergic and imidazoline ligand and imidazole-4-acetic acid (80 nmol, imidazoline ligand did not alter water intake. The results show that selective, non-imidazoline alpha2-AR activation suppresses water intake, and suggest that the action on imidazoline sites by non-adrenergic ligands is not sufficient to inhibit water intake.

  14. Effect of alpha 1-adrenergic blockade on myocardial blood flow during exercise after myocardial infarction.

    Science.gov (United States)

    Herzog, C A; Dai, X Z; Bache, R J

    1991-08-01

    The effect of alpha 1-adrenergic blockade with prazosin on myocardial blood flow at rest and during two levels of treadmill exercise was assessed in 16 chronically instrumented dogs 9-14 days after myocardial infarction had been produced by occlusion of the left circumflex coronary artery. During resting conditions prazosin did not alter mean myocardial blood flow or the subendocardial-to-subepicardial flow ratio in either normally perfused or collateral-dependent myocardium. However, during exercise at comparable external work loads and comparable rate-pressure products, prazosin significantly increased blood flow to normally perfused (27% increase at the second level of exercise, P less than 0.001) and collateral-dependent myocardium (35% increase at the second level of exercise, P less than 0.001) compared with control. In addition, prazosin caused a small but significant decrease in the subendocardial-to-subepicardial flow ratio in both normal (1.27 +/- 0.04 to 1.19 +/- 0.04; P less than 0.01) and collateral-dependent myocardium (0.57 +/- 0.11 to 0.52 +/- 0.11; P less than 0.01) compared with control, reflecting a disproportionally greater increase in subepicardial flow in response to alpha 1-adrenergic blockade. These data demonstrate that alpha 1-adrenergic vasoconstriction inhibits coronary vasodilation during exercise, even in areas of collateral-dependent myocardium relatively early after coronary artery occlusion. PMID:1678929

  15. Concanavalin a increases beta-adrenergic and glucocorticoid receptors in porcine splenocytes

    International Nuclear Information System (INIS)

    We identified specific glucocorticoid and beta-adrenergic receptors on porcine splenocytes. There are 2000 to 4000 glucocorticoid receptors per cell with a K /SUB D/ of 2 to 4 nM and 1000 beta-adrenergic receptors with a K /SUB D/ of 0.3 to 0.6 nM. When splenocytes were incubated with concanavalin A (Con A), there was an approximate 2-fold increase in both gluococorticoid and beta-adrenergic receptors with no change in binding affinity. Incubation of splenocytes with cortisol as low as 40 nM (13 ng/ml) inhibited proliferation in response to Con A. This inhibitory effect of cortisol was not due to cytotoxic effects of glucocorticoids. At maximal physiologic concentrations (400 nM; 135 ng/ml), cortisol caused reductions in Con A activation of thymocytes and peripheral blood mononuclear cells. When eight wk old pigs were restrained, there was an increase in plasma cortisol, atrophy of thymus and reduction in skin test responses to phytohemagglutinin. On the basis of the data, we suggest that physiologic concentrations of stress asociated hormones affect functional activities of porcine lymphoid cells. Since activated splenocytes display increased numbers of receptors for these hormones, perhaps glucocorticoids or catecholamines normally function in vivo to suppress clonal expansion of antigen activated and autoreactive T lymphocytes

  16. Adrenergic mechanism responsible for pathological alteration in gastric mucosal blood flow in rats with ulcer bleeding

    Science.gov (United States)

    Semyachkina-Glushkovskaya, O. V.; Pavlov, A. N.; Semyachkin-Glushkovskiy, I. A.; Gekalyuk, A. S.; Ulanova, M. V.; Lychagov, V. V.; Tuchin, V. V.

    2014-09-01

    The adrenergic system plays an important role in regulation of central and peripheral circulation in normal state and during hemorrhage. Because the impaired gastric mucosal blood flow (GMBF) is the major cause of gastroduodenal lesions, including ulcer bleeding (UB), we studied the adrenergic mechanism responsible for regulation of GMBF in rats with a model of stress-induced UB (SUB) using the laser Doppler flowmetry (LDF). First, we examined the effect of adrenaline on GMBF in rats under normal state and during UB. In all healthy animals the submucosal adrenaline injection caused a decrease in local GMBF. During UB the submucosal injection of adrenaline was accompanied by less pronounced GMBF suppression in 30,3% rats with SUB vs. healthy ones. In 69,7% rats with SUB we observed the increase in local GMBF after submucosal injection of adrenaline. Second, we studied the sensitivity of gastric β2-adrenoreceptors and the activity of two factors which are involved in β2-adrenomediated vasorelaxation-KATP -channels and NO. The effects of submucosal injection of isoproterenol, ICI118551 and glybenclamide on GMBF as well as NO levels in gastric tissue were significantly elevated in rats with SUB vs. healthy rats. Thus, our results indicate that high activation of gastric β2-adrenoreceptors associated with the increased vascular KATP -channels activity and elevated NO production is the important adrenergic mechanism implicated in the pathogenesis of UB.

  17. Functions of the conserved thrombospondin carboxy-terminal cassette in cell-extracellular matrix interactions and signaling.

    Science.gov (United States)

    Adams, Josephine C

    2004-06-01

    Thrombospondins (TSPs) are extracellular, multidomain, calcium-binding glycoproteins that function at cell surfaces, in extracellular matrix (ECM) and as bridging molecules in cell-cell interactions. TSPs are multifunctional and modulate cell behavior during development, wound-healing, immune response, tumor growth and in the homeostasis of adult tissues. TSPs are assembled as oligomers that are composed of homologous polypeptides. In all the TSP polypeptides, the most highly-conserved region is the carboxyl-region, which contains a characteristic set of domains comprising EGF domains, TSP type 3 repeats and a globular carboxy-terminal domain. This large region is termed here the thrombospondin carboxy-terminal cassette (TSP-CTC). The strong conservation of the TSP-CTC suggests that it may mediate ancestral functions that are shared by all TSPs. This review summarizes the current knowledge of the TSP-CTC and areas of future interest. PMID:15094125

  18. In situ monitoring the pulse CO{sub 2} laser interaction with 316-L stainless steel using acoustical signals and plasma analysis

    Energy Technology Data Exchange (ETDEWEB)

    Khosroshahi, M.E., E-mail: khosro@aut.ac.ir [Amirkabir University of Technology, Faculty of Biomedical Eng., Biomaterial Group, Laser and Nanobiophotonics Lab., Tehran (Iran, Islamic Republic of); Anoosheh pour, F. [Amirkabir University of Technology, Faculty of Biomedical Eng., Biomaterial Group, Laser and Nanobiophotonics Lab., Tehran (Iran, Islamic Republic of); Hadavi, M. [Amirkabir University of Technology, Faculty of Mining and Metallurgical Eng., Tehran (Iran, Islamic Republic of); Mahmoodi, M. [Amirkabir University of Technology, Faculty of Biomedical Eng., Biomaterial Group, Laser and Nanobiophotonics Lab., Tehran (Iran, Islamic Republic of)

    2010-10-01

    In most laser material processing, material removal by different mechanisms is involved. Here, application of acoustic signals with thermoelastic (below threshold) and breakdown origin (above threshold) together with plasma plume analysis as a simple monitoring system of interaction process is suggested. In this research the interaction of pulse CO{sub 2} laser with 200 ns duration and maximum energy of 1.3 J operating at 1 Hz with austenitic stainless steel (316-L) is reported. The results showed that the non-linear point of the curve can serve as a useful indicator of melting fluence threshold (in this case {approx}830 J cm{sup -2}) with corresponding temperature calculated using plasma plume analysis. Higher acoustic amplitudes and larger plasma plume volume indicates more intense interaction. Also, analysis showed that a phase explosion process with material removal (ejecta) in the form of non-adiabatic (i.e., d{sub t} >> {alpha}{sup -1}) is at play after laser pulse is ended. Also, SEM photographs show different surface quality medication at different laser intensities, which indicates the importance of recoil momentum pressure and possibly electrons and ions densities in heat transfer. Finally, electrochemical test indicate an improved corrosion resistance for laser treated samples compared to untreated ones.

  19. Role of inositol 1,4,5-trisphosphate receptors in α1-adrenergic receptor-induced cardiomyocyte hypertrophy

    Institute of Scientific and Technical Information of China (English)

    Da-li LUO; Jian GAO; Xiao-mei LAN; Gang WANG; Sheng WEI; Rui-ping XIAO; Qi-de HAN

    2006-01-01

    Aim: Intracellular Ca2+ plays pivotal roles in diverse cellular functions, including gene transcription that underlies cardiac remodeling during stress responses. However, the role of inositol 1,4,5-trisphosphate receptors (IP3Rs) in the mediation of cardiac intracellular Ca2+ and hypertrophic growth remains elusive. Prior work with neonatal rat ventricular myocytes suggests that activation of IP3Rs may be linked to α1 adrenergic receptor (α1AR) increased stereotyped Ca2+ spark occurrence and global Ca2+ oscillations. Thus, we hypothesized that Ca2+ release through IP3Rs was necessary for α1AR-stimulated cardiac hypertrophy. Methods: We used myoinositol 1,4,5-trisphosphate hexakis (butyryloxymethyl) ester (IP3BM), a membrane-permeant ester of IP3, to activate IP3Rs directly, and Fluo 4/AM to measure intracellular Ca2+ signaling. Results: IP3BM (10μmol·L-1) mimicked the effects of phenylephrine, a selective agonist of α1AR, in increments in local Ca2+ spark release (especially in the perinuclear area) and global Ca2+ transient frequencies. More importantly, IP3R inhibitors, 2-aminoethoxydiphenyl borate and Xestospongin C, abolished the IP3BM-induced Ca2+ responses, and significantly suppressed α1AR-induced cardiomyocyte hypertrophy assayed by cell size, [3H] leucine incorporation and atrial natriuretic factor gene expression, during sustained (48 h) phenylephrine stimulation. Conclusion: These results, therefore, provide cellular mechanisms that link IP3R signaling to α1AR-stimulated gene expression and cardiomyocyte hypertrophy.

  20. Systems Biology Model of Interactions Between Tissue Growth Factors and DNA Damage Pathways: Low Dose Response and Cross-Talk in TGFbeta and ATM Signaling

    Energy Technology Data Exchange (ETDEWEB)

    O' Neill, Peter [University of Oxford; Anderson, Jennifer [University of Oxford

    2014-10-02

    The etiology of radiation carcinogenesis has been described in terms of aberrant changes that span several levels of biological organization. Growth factors regulate many important cellular and tissue functions including apoptosis, differentiation and proliferation. A variety of genetic and epigenetic changes of growth factors have been shown to contribute to cancer initiation and progression. It is known that cellular and tissue damage to ionizing radiation is in part initiated by the production of reactive oxygen species, which can activate cytokine signaling, and the DNA damage response pathways, most notably the ATM signaling pathway. Recently the transforming growth factor β (TGFβ) pathway has been shown to regulate or directly interact with the ATM pathway in the response to radiation. The relevance of this interaction with the ATM pathway is not known although p53 becomes phosphorylated and DNA damage responses are involved. However, growth factor interactions with DNA damage responses have not been elucidated particularly at low doses and further characterization of their relationship to cancer processes is warranted. Our goal will be to use a systems biology approach to mathematically and experimentally describe the low dose responses and cross-talk between the ATM and TGFβ pathways initiated by low and high LET radiation. We will characterize ATM and TGFβ signaling in epithelial and fibroblast cells using 2D models and ultimately extending to 3D organotypic cell culture models to begin to elucidate possible differences that may occur for different cell types and/or inter-cellular communication. We will investigate the roles of the Smad and Activating transcription factor 2 (ATF2) proteins as the potential major contributors to cross- talk between the TGFβ and ATM pathways, and links to cell cycle control and/or the DNA damage response, and potential differences in their responses at low and high doses. We have developed various experimental

  1. β-adrenergic receptor activation in immortalized human urothelial cells stimulates inflammatory responses by PKA-independent mechanisms

    Directory of Open Access Journals (Sweden)

    Porter James E

    2005-08-01

    Full Text Available Abstract Background Interstitial cystitis (IC is a debilitating disease characterized by chronic inflammation of the urinary bladder, yet specific cellular mechanisms of inflammation in IC are largely unknown. Multiple lines of evidence suggest that β-adrenergic receptor (AR signaling is increased in the inflamed urothelium, however the precise effects of these urothelial cell signals have not been studied. In order to better elucidate the AR signaling mechanisms of inflammation associated with IC, we have examined the effects of β-AR stimulation in an immortalized human urothelial cell line (UROtsa. For these studies, UROtsa cells were treated with effective concentrations of the selective β-AR agonist isoproterenol, in the absence or presence of selective inhibitors of protein kinase A (PKA. Cell lysates were analyzed by radioimmunoassay for generation of cAMP or by Western blotting for induction of protein products associated with inflammatory responses. Results Radioligand binding demonstrated the presence of β-ARs on human urothelial UROtsa cell membranes. Stimulating UROtsa cells with isoproterenol led to concentration-dependent increases of cAMP production that could be inhibited by pretreatment with a blocking concentration of the selective β-AR antagonist propranolol. In addition, isoproterenol activation of these same cells led to significant increases in the amount of phosphorylated extracellular signal-regulated kinase (pERK, inducible nitric oxide synthase (iNOS and the induced form of cyclooxygenase (COX-2 when compared to control. Moreover, preincubation of UROtsa cells with the selective PKA inhibitors H-89 or Rp-cAMPs did not diminish this isoproterenol mediated phosphorylation of ERK or production of iNOS and COX-2. Conclusion Functional β-ARs expressed on human urothelial UROtsa cell membranes increase the generation of cAMP and production of protein products associated with inflammation when activated by the selective

  2. Ranibizumab interacts with the VEGF-A/VEGFR-2 signaling pathway in human RPE cells at different levels.

    Science.gov (United States)

    Ranjbar, Mahdy; Brinkmann, Max Philipp; Tura, Aysegül; Rudolf, Martin; Miura, Yoko; Grisanti, Salvatore

    2016-07-01

    Vascular endothelial growth factor (VEGF) secreted by the retinal pigment epithelium (RPE) plays an important role in ocular homeostasis, but also in diseases, most notably age-related macular degeneration (AMD). To date, anti-VEGF drugs like ranibizumab have been shown to be most effective in treating these pathologic conditions. However, clinical trials suggest that the RPE could degenerate and perish through anti-VEGF treatment. Herein, we evaluated possible pathways and outcomes of the interaction between ranibizumab and human RPE cells (ARPE-19). Results indicate that ranibizumab affects the VEGF-A metabolism in RPE cells from an extra- as well as intracellular site. The drug is taken up into the cells, with the VEGF receptor 2 (VEGFR-2) being involved, and decreases VEGF-A protein levels within the cells as well as extracellularly. Oxidative stress plays a key role in various inflammatory disorders of the eye. Our results suggest that oxidative stress inhibits RPE cell proliferation. This anti-proliferative effect on RPE cells is significantly enhanced through ranibizumab, which does not inhibit RPE cell proliferation substantially in absence of relevant oxidative stress. Therefore, we emphasize that anti-VEGF treatment should be selected carefully in AMD patients with preexistent extensive RPE atrophy. PMID:27163716

  3. Biased Gs versus Gq proteins and β-arrestin signaling in the NK1 receptor determined by interactions in the water hydrogen bond network.

    Science.gov (United States)

    Valentin-Hansen, Louise; Frimurer, Thomas M; Mokrosinski, Jacek; Holliday, Nicholas D; Schwartz, Thue W

    2015-10-01

    X-ray structures, molecular dynamics simulations, and mutational analysis have previously indicated that an extended water hydrogen bond network between trans-membranes I-III, VI, and VII constitutes an allosteric interface essential for stabilizing different active and inactive helical constellations during the seven-trans-membrane receptor activation. The neurokinin-1 receptor signals efficiently through Gq, Gs, and β-arrestin when stimulated by substance P, but it lacks any sign of constitutive activity. In the water hydrogen bond network the neurokinin-1 has a unique Glu residue instead of the highly conserved AspII:10 (2.50). Here, we find that this GluII:10 occupies the space of a putative allosteric modulating Na(+) ion and makes direct inter-helical interactions in particular with SerIII:15 (3.39) and AsnVII:16 (7.49) of the NPXXY motif. Mutational changes in the interface between GluII:10 and AsnVII:16 created receptors that selectively signaled through the following: 1) Gq only; 2) β-arrestin only; and 3) Gq and β-arrestin but not through Gs. Interestingly, increased constitutive Gs but not Gq signaling was observed by Ala substitution of four out of the six core polar residues of the network, in particular SerIII:15. Three residues were essential for all three signaling pathways, i.e. the water-gating micro-switch residues TrpVI:13 (6.48) of the CWXP motif and TyrVII:20 (7.53) of the NPXXY motif plus the totally conserved AsnI:18 (1.50) stabilizing the kink in trans-membrane VII. It is concluded that the interface between position II:10 (2.50), III:15 (3.39), and VII:16 (7.49) in the center of the water hydrogen bond network constitutes a focal point for fine-tuning seven trans-membrane receptor conformations activating different signal transduction pathways. PMID:26269596

  4. Cannabinoid receptor 2 expression modulates Gβ(1)γ(2) protein interaction with the activator of G protein signalling 2/dynein light chain protein Tctex-1.

    Science.gov (United States)

    Nagler, Marina; Palkowitsch, Lysann; Rading, Sebastian; Moepps, Barbara; Karsak, Meliha

    2016-01-01

    The activator of G protein signalling AGS2 (Tctex-1) forms protein complexes with Gβγ, and controls cell proliferation by regulating cell cycle progression. A direct interaction of Tctex-1 with various G protein-coupled receptors has been reported. Since the carboxyl terminal portion of CB2 carries a putative Tctex-1 binding motif, we investigated the potential interplay of CB2 and Tctex-1 in the absence and presence of Gβγ. The supposed interaction of cannabinoid receptor CB2 with Tctex-1 and the influence of CB2 on the formation of Tctex-1-Gβγ-complexes were studied by co- and/or immunoprecipitation experiments in transiently transfected HEK293 cells. The analysis on Tctex-1 protein was performed in the absence and presence of the ligands JWH 133, 2-AG, and AM 630, the protein biosynthesis inhibitor cycloheximide or the protein degradation blockers MG132, NH4Cl/leupeptin or bafilomycin. Our results show that CB2 neither directly nor indirectly via Gβγ interacts with Tctex-1, but competes with Tctex-1 in binding to Gβγ. The Tctex-1-Gβγ protein interaction was disrupted by CB2 receptor expression resulting in a release of Tctex-1 from the complex, and its degradation by the proteasome and partly by lysosomes. The decrease in Tctex-1 protein levels is induced by CB2 expression "dose-dependently" and is independent of stimulation by agonist or blocking by an inverse agonist treatment. The results suggest that CB2 receptor expression independent of its activation by agonists is sufficient to competitively disrupt Gβγ-Tctex-1 complexes, and to initiate Tctex-1 degradation. These findings implicate that CB2 receptor expression modifies the stability of intracellular protein complexes by a non-canonical pathway. PMID:26410677

  5. Alterations of cAMP-dependent signaling in dystrophic skeletal muscle

    Directory of Open Access Journals (Sweden)

    Rüdiger eRudolf

    2013-10-01

    Full Text Available Autonomic regulation processes in striated muscles are largely mediated by cAMP/PKA-signaling. In order to achieve specificity of signaling its spatial-temporal compartmentation plays a critical role. We discuss here how specificity of cAMP/PKA-signaling can be achieved in skeletal muscle by spatio-temporal compartmentation. While a microdomain containing PKA type I in the region of the neuromuscular junction is important for post-synaptic, activity-dependent stabilization of the nicotinic acetylcholine receptor, PKA type I and II microdomains in the sarcomeric part of skeletal muscle are likely to play different roles, including the regulation of muscle homeostasis. These microdomains are due to specific A-kinase anchoring proteins, like rapsyn and myospryn. Importantly, recent evidence indicates that compartmentation of the cAMP/PKA-dependent signaling pathway and pharmacological activation of cAMP production are aberrant in different skeletal muscles disorders. Thus, we discuss here their potential as targets for palliative treatment of certain forms of dystrophy and myasthenia. Under physiological conditions, the neuropeptide, α-calcitonin-related peptide, as well as beta-adrenergic agonists are the most-mentioned natural triggers for activating cAMP/PKA signaling in skeletal muscle. While the precise domains and functions of these first messengers are still under investigation, agonists of β2-adrenoceptors clearly exhibit anabolic activity under normal conditions and reduce protein degradation during atrophic periods. Past and recent studies suggest direct sympathetic innervation of skeletal muscle fibers. In summary, the organization and roles of cAMP-dependent signaling in skeletal muscle are increasingly understood, revealing crucial functions in processes like nerve-muscle interaction and muscle trophicity.

  6. POMP与SuFu相互作用调控Hedgehog信号通路的活性%POMP Interacts with Suppressor of Fused in Regulating Hedgehog Signaling

    Institute of Scientific and Technical Information of China (English)

    黄璇; 李勇; 汪玲芳; 邵佳; 罗时文

    2012-01-01

    Hedgehog signaling pathway plays an important role in embryogenesis and tissue regeneration, which is also related closely to carcinogenesis and tumor formation. Suppressor of Fused ( SuFu ) , the intracellular component of Hedgehog signaling, negatively regulates the pathway via binding to transcription factors Gli ( s) , but the specific molecular mechanism still remains unclear. Herein, proteasome maturation protein ( POMP) was screened out successfully as a new interacting protein of human SuFu using yeast two hybrid system. Their interaction was further confirmed by co-immunoprecipitation and GST pull-down, and the co-localization was also observed under confocal microscope. To explore the influence of their interaction on Hedgehog signaling, POMP overexpression plasmid, POMP RNAi plasmids and Gli transcription activity detection system ( dual luciferase reporter assay) were constructed. Co-transfected with SuFu, exogenous POMP can positively regulate Hedgehog signaling, while knockdown of POMP restrained Gli activity. Our studies will provide new clues for elucidating the specific molecular mechanisms of Hedgehog signaling and reveal a new biology function of POMP.%Hedgehog信号通路在胚胎发育、组织再生中发挥重要的作用,且与癌症发生发展密切相关.其胞内调控组分Suppressor of Fused(SuFu)蛋白通过结合转录因子Gli(s),负调控该信号通路,但其作用的分子机制仍不甚清楚.在本项研究中,以人SuFu作为诱饵蛋白,利用酵母双杂交技术成功地筛选到1个新的相互作用因子—蛋白酶体成熟蛋白(POMP),通过免疫共沉淀、体外GST pull-down和免疫细胞化学实验验证其相互作用.为了探究POMP与SuFu的相互作用对Hedgehog信号通路的影响,构建了POMP的过表达质粒和干扰质粒(miR-RNAi)以及转录因子Gli活性检测系统,即荧光素酶报告基因法,结果显示,过表达SuFu蛋白时POMP正调控Hedgehog信号通路,而下调POMP的表达则抑

  7. Saturated high-fat diet-induced obesity increases adenylate cyclase of myocardial β-adrenergic system and does not compromise cardiac function.

    Science.gov (United States)

    Vileigas, Danielle F; de Deus, Adriana F; da Silva, Danielle C T; de Tomasi, Loreta C; de Campos, Dijon H S; Adorni, Caroline S; de Oliveira, Scarlet M; Sant'Ana, Paula G; Okoshi, Katashi; Padovani, Carlos R; Cicogna, Antonio C

    2016-09-01

    Obesity is a worldwide pandemic associated with high incidence of cardiovascular disease. The mechanisms by which the obesity leads cardiac dysfunction are not fully elucidated and few studies have evaluated the relationship between obesity and proteins involved in myocardial β-adrenergic (βA) system. The purpose of this study was to evaluate the cardiac function and βA pathway components in myocardium of obese rats. Male Wistar rats were distributed into two groups: control (n = 17; standard diet) and obese (n = 17; saturated high-fat diet) fed for 33 weeks. Nutritional profile and comorbidities were assessed. Cardiac structure and function was evaluated by macroscopic postmortem, echocardiographic and isolated papillary muscle analyzes. Myocardial protein expression of β1- and β2-adrenergic receptors, Gαs protein, adenylate cyclase (AC) and protein kinase A (PKA) was performed by Western blot. Cardiac cyclic adenosine monophosphate (cAMP) levels and PKA activity were assessed by ELISA Obese rats showed increased adiposity index (P < 0.001) and several comorbidities as hypertension, glucose intolerance, insulin resistance, and dyslipidemia compared with control rats. Echocardiographic assessment revealed increased left atrium diameter (C: 4.98 ± 0.38 vs. Ob: 5.47 ± 0.53, P = 0.024) and posterior wall shortening velocity (C: 37.1 ± 3.6 vs. Ob: 41.8 ± 3.8, P = 0.007) in obese group. Papillary muscle evaluation indicated that baseline data and myocardial responsiveness to isoproterenol stimulation were similar between the groups. Protein expression of myocardial AC was higher in obese group than in the control (C: 1.00 ± 0.21 vs. Ob: 1.25 ± 0.10, P = 0.025), whereas the other components were unchanged. These results suggest that saturated high-fat diet-induced obesity was not effective in triggering cardiac dysfunction and impair the beta-adrenergic signaling. PMID:27582064

  8. Loss of bone marrow adrenergic beta 1 and 2 receptors modifies transcriptional networks, reduces circulating inflammatory factors, and regulates blood pressure.

    Science.gov (United States)

    Ahmari, Niousha; Schmidt, Jordan T; Krane, Gregory A; Malphurs, Wendi; Cunningham, Bruce E; Owen, Jennifer L; Martyniuk, Christopher J; Zubcevic, Jasenka

    2016-07-01

    Hypertension (HTN) is a prevalent condition with complex etiology and pathophysiology. Evidence exists of significant communication between the nervous system and the immune system (IS), and there appears to be a direct role for inflammatory bone marrow (BM) cells in the pathophysiology of hypertension. However, the molecular and neural mechanisms underlying this interaction have not been characterized. Here, we transplanted whole BM cells from the beta 1 and 2 adrenergic receptor (AdrB1(tm1Bkk)AdrB2(tm1Bkk)/J) knockout (KO) mice into near lethally irradiated C57BL/6J mice to generate a BM AdrB1.B2 KO chimera. This allowed us to evaluate the role of the BM beta 1 and beta 2 adrenergic receptors in mediating BM IS homeostasis and regulating blood pressure (BP) in an otherwise intact physiological setting. Fluorescence-activated cell sorting demonstrated that a decrease in systolic and mean BP in the AdrB1.B2 KO chimera is associated with a decrease in circulating inflammatory T cells, macrophage/monocytes, and neutrophils. Transcriptomics in the BM identified 7,419 differentially expressed transcripts between the C57 and AdrB1.B2 KO chimera. Pathway analysis revealed differentially expressed transcripts related to several cell processes in the BM of C57 compared with AdrB1.B2 KO chimera, including processes related to immunity (e.g., T-cell activation, T-cell recruitment, cytokine production, leukocyte migration and function), the cardiovascular system (e.g., blood vessel development, peripheral nerve blood flow), and the brain (e.g., central nervous system development, neurite development) among others. This study generates new insight into the molecular events that underlie the interaction between the sympathetic drive and IS in modulation of BP. PMID:27235450

  9. Control of heart rate during thermoregulation in the heliothermic lizard Pogona barbata: importance of cholinergic and adrenergic mechanisms.

    Science.gov (United States)

    Seebacher, F; Franklin, C E

    2001-12-01

    During thermoregulation in the bearded dragon Pogona barbata, heart rate when heating is significantly faster than when cooling at any given body temperature (heart rate hysteresis), resulting in faster rates of heating than cooling. However, the mechanisms that control heart rate during heating and cooling are unknown. The aim of this study was to test the hypothesis that changes in cholinergic and adrenergic tone on the heart are responsible for the heart rate hysteresis during heating and cooling in P. barbata. Heating and cooling trials were conducted before and after the administration of atropine, a muscarinic antagonist, and sotalol, a beta-adrenergic antagonist. Cholinergic and beta-adrenergic blockade did not abolish the heart rate hysteresis, as the heart rate during heating was significantly faster than during cooling in all cases. Adrenergic tone was extremely high (92.3 %) at the commencement of heating, and decreased to 30.7 % at the end of the cooling period. Moreover, in four lizards there was an instantaneous drop in heart rate (up to 15 beats min(-1)) as the heat source was switched off, and this drop in heart rate coincided with either a drop in beta-adrenergic tone or an increase in cholinergic tone. Rates of heating were significantly faster during the cholinergic blockade, and least with a combined cholinergic and beta-adrenergic blockade. The results showed that cholinergic and beta-adrenergic systems are not the only control mechanisms acting on the heart during heating and cooling, but they do have a significant effect on heart rate and on rates of heating and cooling. PMID:11815660

  10. Pepper protein phosphatase type 2C, CaADIP1 and its interacting partner CaRLP1 antagonistically regulate ABA signalling and drought response.

    Science.gov (United States)

    Lim, Chae Woo; Lee, Sung Chul

    2016-07-01

    Abscisic acid (ABA) is a key phytohormone that regulates plant growth and developmental processes, including seed germination and stomatal closing. Here, we report the identification and functional characterization of a novel type 2C protein phosphatase, CaADIP1 (Capsicum annuum ABA and Drought-Induced Protein phosphatase 1). The expression of CaADIP1 was induced in pepper leaves by ABA, drought and NaCl treatments. Arabidopsis plants overexpressing CaADIP1 (CaADIP1-OX) exhibited an ABA-hyposensitive and drought-susceptible phenotype. We used a yeast two-hybrid screening assay to identify CaRLP1 (Capsicum annuum RCAR-Like Protein 1), which interacts with CaADIP1 in the cytoplasm and nucleus. In contrast to CaADIP1-OX plants, CaRLP1-OX plants displayed an ABA-hypersensitive and drought-tolerant phenotype, which was characterized by low levels of transpirational water loss and increased expression of stress-responsive genes relative to those of wild-type plants. In CaADIP1-OX/CaRLP1-OX double transgenic plants, ectopic expression of the CaRLP1 gene led to strong suppression of CaADIP1-induced ABA hyposensitivity during the germinative and post-germinative stages, indicating that CaADIP1 and CaRLP1 act in the same signalling pathway and CaADIP1 functions downstream of CaRLP1. Our results indicate that CaADIP1 and its interacting partner CaRLP1 antagonistically regulate the ABA-dependent defense signalling response to drought stress. PMID:26825039

  11. Expression Patterns of OsPIL11, a Phytochrome-Interacting Factor in Rice, and Preliminary Analysis of Its Roles in Light Signal Transduction

    Institute of Scientific and Technical Information of China (English)

    LI Li; PENG Wei-feng; LIU Qian-qian; ZHOU Jin-jun; LIANG Wei-hong; XIE Xian-zhi

    2012-01-01

    The expression patterns of OsPlL11,one of six putative phytochrome-interacting factors,were analyzed in different organs of transgenic tobacco (Nicotiana tabacum).The expression of OsPIL 11 was organ-specific and was regulated by leaf development,abscisic acid (ABA),jasmonic acid (JA) and salicylic acid (SA).To further explore the role of OsPlL 11 in plant light signal transduction,a plant expression vector of OsPIL11 was constructed and introduced into tobacco.When grown under continuous red light,OsPIL11-overexpressed transgenic tobacco exhibited shorter hypocotyls and larger cotyledons and leaves compared to wild-type seedlings.When grown under continuous far-red light,however,transgenic and wild-type seedlings showed similar phenotypes.These results indicate that OsPIL11 is involved in red light induced de-etiolation,but not in far-red light induced de-etiolation in transgenic tobacco,which lays the foundation for dissecting the function of OsPIL 11 in phytochrome-mediated light signal transduction in rice.

  12. YY162 prevents ADHD-like behavioral side effects and cytotoxicity induced by Aroclor1254 via interactive signaling between antioxidant potential, BDNF/TrkB, DAT and NET.

    Science.gov (United States)

    Nam, Yunsung; Shin, Eun-Joo; Shin, Seung Woo; Lim, Yong Kwang; Jung, Jong Ho; Lee, Jeong Hyun; Ha, Jong Ryul; Chae, Jong Seok; Ko, Sung Kwon; Jeong, Ji Hoon; Jang, Choon-Gon; Kim, Hyoung-Chun

    2014-03-01

    Methylphenidate (MP) has become the primary drug of choice for treatment of attention-deficit/hyperactivity disorder (ADHD). However, its psychotropic effects severely hamper long-term clinical use. We evaluated the effects of YY162, which consists of terpenoid-strengthened Ginkgo biloba and ginsenoside Rg3, on the ADHD-like condition induced by Aroclor1254, because both components have been suggested to modulate oxidative stress, dopaminergic neurotransmission, and brain-derived neurotrophic factor (BDNF) signaling, which may be critical targets for understanding the pathogenesis of ADHD. YY162 attenuated the increase in reactive oxygen species (ROS) and decrease in BDNF levels induced by Aroclor1254 in SH-SY5Y neuroblastoma cells. YY162 significantly attenuated Aroclor1254-induced ADHD-like behavior and oxidative stress in ICR mice. Furthermore, YY162 attenuated reductions in p-TrkB, BDNF, dopamine transporter (DAT) and norepinephrine transporter (NET) expression. These attenuating effects of YY162 were comparable to those of MP. Importantly, K252a, a TrkB antagonist, counteracted the protective effects of YY162. Our results suggest that YY162 possesses significant protective activities against ADHD-like conditions with negligible behavioral side effects, and that interactive signaling between antioxidant potential and BDNF/TrkB receptor for the positive modulation of the DAT and NET is important for YY162-mediated neuroprotective activity. PMID:24394491

  13. Alpha-adrenergic blocker mediated osteoblastic stem cell differentiation

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Yoon Jung [Craniomaxillofacial Reconstructive Sciences Major, College of Dentistry, Seoul National University, Seoul 110-749 (Korea, Republic of); Lee, Jue Yeon [Craniomaxillofacial Reconstructive Sciences Major, College of Dentistry, Seoul National University, Seoul 110-749 (Korea, Republic of); Research Center, Nano Intelligent Biomedical Engineering Corporation (NIBEC), Seoul (Korea, Republic of); Lee, Seung Jin [Department of Industrial Pharmacy, College of Pharmacy, Ewha Womans University, Seoul (Korea, Republic of); Research Center, Nano Intelligent Biomedical Engineering Corporation (NIBEC), Seoul (Korea, Republic of); Chung, Chong-Pyoung [Department of Periodontology, School of Dentistry, Seoul National University, Seoul (Korea, Republic of); Research Center, Nano Intelligent Biomedical Engineering Corporation (NIBEC), Seoul (Korea, Republic of); Park, Yoon Jeong, E-mail: parkyj@snu.ac.kr [Craniomaxillofacial Reconstructive Sciences Major, College of Dentistry, Seoul National University, Seoul 110-749 (Korea, Republic of); Research Center, Nano Intelligent Biomedical Engineering Corporation (NIBEC), Seoul (Korea, Republic of)

    2011-12-16

    Highlights: Black-Right-Pointing-Pointer Doxazocin directly up-regulated bone metabolism at a low dose. Black-Right-Pointing-Pointer Doxazocin induced osteoblastic stem cell differentiation without affecting cell proliferation. Black-Right-Pointing-Pointer This osteogenic stem cell differentiation is mediated by ERK-signal dependent pathway. -- Abstract: Recent researches have indicated a role for antihypertensive drugs including alpha- or beta-blockers in the prevention of bone loss. Some epidemiological studies reported the protective effects of those agents on fracture risk. However, there is limited information on the association with those agents especially at the mechanism of action. In the present study, we investigated the effects of doxazosin, an alpha-blocker that is clinically used for the treatment of benign prostatic hyperplasia (BPH) along with antihypertensive medication, on the osteogenic stem cell differentiation. We found that doxazosin increased osteogenic differentiation of human mesenchymal stem cells, detected by Alizarin red S staining and calcein. Doxazosin not only induced expression of alkaline phosphatase, type I collagen, osteopontin, and osteocalcin, it also resulted in increased phosphorylation of extracellular signal-regulated kinase (ERK1/2), a MAP kinase involved in osteoblastic differentiation. Treatment with U0126, a MAP kinase inhibitor, significantly blocked doxazosin-induced osteoblastic differentiation. Unrelated to activation of osteogenic differentiation by doxazosin, we found that there were no significant changes in adipogenic differentiation or in the expression of adipose-specific genes, including peroxisome proliferator-activated receptor {gamma}, aP2, or LPL. In this report, we suggest that doxazosin has the ability to increase osteogenic cell differentiation via ERK1/2 activation in osteogenic differentiation of adult stem cells, which supports the protective effects of antihypertensive drug on fracture risk and

  14. The Interaction between Rice ERF3 and WOX11 Promotes Crown Root Development by Regulating Gene Expression Involved in Cytokinin Signaling[OPEN

    Science.gov (United States)

    Song, Yaling; Huang, Yulan

    2015-01-01

    Crown roots are the main components of the fibrous root system in rice (Oryza sativa). WOX11, a WUSCHEL-related homeobox gene specifically expressed in the emerging crown root meristem, is a key regulator in crown root development. However, the nature of WOX11 function in crown root development has remained elusive. Here, we identified a rice AP2/ERF protein, ERF3, which interacts with WOX11 and was expressed in crown root initials and during crown root growth. Functional analysis revealed that ERF3 was essential for crown root development and acts in auxin- and cytokinin-responsive gene expression. Downregulation of ERF3 in wox11 mutants produced a more severe root phenotype. Also, increased expression of ERF3 could partially complement wox11, indicating that the two genes functioned cooperatively to regulate crown root development. ERF3 and WOX11 shared a common target, the cytokinin-responsive gene RR2. The expression of ERF3 and WOX11 only partially overlapped, underlining a spatio-temporal control of RR2 expression and crown root development. Furthermore, ERF3-regulated RR2 expression was involved in crown root initiation, while the ERF3/WOX11 interaction likely repressed RR2 during crown root elongation. These results define a mechanism regulating gene expression involved in cytokinin signaling during different stages of crown root development in rice. PMID:26307379

  15. PIM-1 kinase interacts with the DNA binding domain of the vitamin D receptor: a further kinase implicated in 1,25-(OH2D3 signaling

    Directory of Open Access Journals (Sweden)

    Maier Christina J

    2012-06-01

    Full Text Available Abstract Background The vitamin D3 receptor (VDR is responsible for mediating the pleiotropic and, in part, cell-type-specific effects of 1,25-dihydroxyvitamin D3 (calcitriol on the cardiovascular and the muscle system, on the bone development and maintenance, mineral homeostasis, cell proliferation, cell differentiation, vitamin D metabolism, and immune response modulation. Results Based on data obtained from genome-wide yeast two-hybrid screenings, domain mapping studies, intracellular co-localization approaches as well as reporter transcription assay measurements, we show here that the C-terminus of human PIM-1 kinase isoform2 (amino acid residues 135–313, a serine/threonine kinase of the calcium/calmodulin-regulated kinase family, directly interacts with VDR through the receptor’s DNA-binding domain. We further demonstrate that PIM-1 modulates calcitriol signaling in HaCaT keratinocytes by enhancing both endogenous calcitriol response gene transcription (osteopontin and an extrachromosomal DR3 reporter response. Conclusion These results, taken together with previous reports of involvement of kinase pathways in VDR transactivation, underscore the biological relevance of this novel protein-protein interaction.

  16. Alpha-2 adrenergic and serotonin-1B receptors in the OK cell, an opossum kidney cell line

    Energy Technology Data Exchange (ETDEWEB)

    Murphy, T.J.

    1988-01-01

    Alpha-2 adrenergic and serotonin-1B (5HT{sub 1B}) receptors, both negatively-coupled to adenylyl cyclase, were characterized in the OK cell line, a renal proximal tubule epithelial cell line derived from the kidney of a North American opossum. In membrane saturation radioligand binding experiments, ({sup 3}H)yohimbine and ({sup 3}H)rauwolscine labeled an equivalent number of binding sites. Detailed pharmacological analysis of OK cell alpha-2 adrenergic receptors in competition binding assays indicate this receptor is neither an alpha-2A nor an alpha-2B adrenergic receptor subtype, although the alpha-2B receptor subtype-selective drugs prazosin, ARC-239 and chlorpromazine have affinities for OK cell alpha-2 adrenergic receptors similar to those at the alpha-2B receptor subtype. Determinations of agonist potency for inhibition of PTH-stimulated cyclic AMP production and radioligand binding analysis using ({sup 125}I)({minus})-cyanopindolol indicate that a 5HT{sub 1B} receptor is expressed in the OK cell line. A biochemical effector system coupled to this receptor subtype has not been previously described. Several compounds appear to be potent agonists at the 5TH{sub 1B} receptor including the beta adrenergic antagonists cyanopindolol, pindolol, propranolol and alprenolol.

  17. Alpha-2 adrenergic and serotonin-1B receptors in the OK cell, an opossum kidney cell line

    International Nuclear Information System (INIS)

    Alpha-2 adrenergic and serotonin-1B (5HT1B) receptors, both negatively-coupled to adenylyl cyclase, were characterized in the OK cell line, a renal proximal tubule epithelial cell line derived from the kidney of a North American opossum. In membrane saturation radioligand binding experiments, [3H]yohimbine and [3H]rauwolscine labeled an equivalent number of binding sites. Detailed pharmacological analysis of OK cell alpha-2 adrenergic receptors in competition binding assays indicate this receptor is neither an alpha-2A nor an alpha-2B adrenergic receptor subtype, although the alpha-2B receptor subtype-selective drugs prazosin, ARC-239 and chlorpromazine have affinities for OK cell alpha-2 adrenergic receptors similar to those at the alpha-2B receptor subtype. Determinations of agonist potency for inhibition of PTH-stimulated cyclic AMP production and radioligand binding analysis using [125I](-)-cyanopindolol indicate that a 5HT1B receptor is expressed in the OK cell line. A biochemical effector system coupled to this receptor subtype has not been previously described. Several compounds appear to be potent agonists at the 5TH1B receptor including the beta adrenergic antagonists cyanopindolol, pindolol, propranolol and alprenolol

  18. Alpha adrenergic modulation on effects of norepinephrine transporter inhibitor reboxetine in five-choice serial reaction time task

    Directory of Open Access Journals (Sweden)

    Liu Yia-Ping

    2009-08-01

    Full Text Available Abstract The study examined the effects of a norepinephrine transporter (NET inhibitor reboxetine (RBX on an attentional performance test. Adult SD rats trained with five-choice serial reaction time task (5-CSRTT were administered with RBX (0, 3.0 and 10 mg/kg in the testing day. Alpha-1 adrenergic receptor antagonist PRA and alpha-2 adrenergic receptor antagonist RX821002 were used to clarify the RBX effect. Results revealed that rat received RBX at 10 mg/kg had an increase in the percentage of the correct response and decreases in the numbers of premature response. Alpha-1 adrenergic receptor antagonist Prazosin (PRA at 0.1 mg/kg reversed the RBX augmented correct responding rate. However, alpha-2 adrenergic receptor antagonist RX821002 at 0.05 and 0.1 mg/kg dose dependently reversed the RBX reduced impulsive responding. Our results suggested that RBX as a norepinephrine transporter inhibitor can be beneficial in both attentional accuracy and response control and alpha-1 and alpha-2 adrenergic receptors might be involved differently.

  19. GRG5/AES interacts with T-cell factor 4 (TCF4 and downregulates Wnt signaling in human cells and zebrafish embryos.

    Directory of Open Access Journals (Sweden)

    Angela M Sousa Costa

    Full Text Available Transcriptional control by TCF/LEF proteins is crucial in key developmental processes such as embryo polarity, tissue architecture and cell fate determination. TCFs associate with β-catenin to activate transcription in the presence of Wnt signaling, but in its absence act as repressors together with Groucho-family proteins (GRGs. TCF4 is critical in vertebrate intestinal epithelium, where TCF4-β-catenin complexes are necessary for the maintenance of a proliferative compartment, and their abnormal formation initiates tumorigenesis. However, the extent of TCF4-GRG complexes' roles in development and the mechanisms by which they repress transcription are not completely understood. Here we characterize the interaction between TCF4 and GRG5/AES, a Groucho family member whose functional relationship with TCFs has been controversial. We map the core GRG interaction region in TCF4 to a 111-amino acid fragment and show that, in contrast to other GRGs, GRG5/AES-binding specifically depends on a 4-amino acid motif (LVPQ present only in TCF3 and some TCF4 isoforms. We further demonstrate that GRG5/AES represses Wnt-mediated transcription both in human cells and zebrafish embryos. Importantly, we provide the first evidence of an inherent repressive function of GRG5/AES in dorsal-ventral patterning during early zebrafish embryogenesis. These results improve our understanding of TCF-GRG interactions, have significant implications for models of transcriptional repression by TCF-GRG complexes, and lay the groundwork for in depth direct assessment of the potential role of Groucho-family proteins in both normal and abnormal development.

  20. Prostaglandin (PG) E3 synthesis elicted by adrenergic stimuli in guinea-pig trachea (GPT) is mediated primarily by B2 adrenergic receptors

    Energy Technology Data Exchange (ETDEWEB)

    Nadel, G.L.; Malik, K.U.; Lew, D.B. (Univ. of Tennessee, Memphis (United States))

    1990-02-26

    The purpose of this study was to examine arachidonic acid (AA) metabolism and to characterize the type of adrenergic receptor (AR) involved in the production of the major metabolite of this fatty acid. ({sup 14}C)AA was incubated with GPT-rings and the radiolabelled products were extracted and separated by TLC method. The medium was also assayed for radiolabelled immunoreactive PG's (iPG's) and leukotrienes (LT) B4 and C4 by RIA or Enzyme immunoassay (EIA) after exposure to various AR agonists. ({sup 14}C)AA was incorporated into GPT-rings and metabolized mainly into iPGE2 and smaller amounts into PGF2{alpha}. Trace amounts of PGD2 and 6-keto-PGF1{alpha} but not LTB4 or LTC4 were detected by RIA and/or EIA. Incubation of GPT rings for 15 minutes with isoproterenol and salbutamol resulted in a significant increase of PGE2 synthesis (optimum conc: 10{sup {minus}7}, 10{sup {minus}7}M respectively). In contrast, dobutamine, norepinephrine, phenylnephrine and xylazine (up to 10{sup {minus}6}M) did not significantly increase PGE2 production. Isoproterenol-induced iPGE2 production was inhibited by a selective {beta}2 antagonist, butoxamine (70%: 10{sup {minus}7}M, 91%: 10{sup {minus}6}M) and somewhat reduced by {beta}1 antagonists practolol and metoprolol (30-64%:10{sup {minus}6}M). These data suggest that isoproterenol induced iPGE2 synthesis is primarily mediated via activation of {beta}2 adrenergic receptor.